]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - gold/symtab.cc
(enum captured_mi_execute_command_actions):
[thirdparty/binutils-gdb.git] / gold / symtab.cc
CommitLineData
14bfc3f5
ILT
1// symtab.cc -- the gold symbol table
2
e5756efb 3// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
14bfc3f5
ILT
23#include "gold.h"
24
04bf7072 25#include <cstring>
14bfc3f5 26#include <stdint.h>
04bf7072 27#include <algorithm>
70e654ba 28#include <set>
14bfc3f5
ILT
29#include <string>
30#include <utility>
a2b1aa12 31#include "demangle.h"
14bfc3f5
ILT
32
33#include "object.h"
70e654ba 34#include "dwarf_reader.h"
dbe717ef 35#include "dynobj.h"
75f65a3e 36#include "output.h"
61ba1cf9 37#include "target.h"
645f8123 38#include "workqueue.h"
14bfc3f5
ILT
39#include "symtab.h"
40
41namespace gold
42{
43
44// Class Symbol.
45
ead1e424
ILT
46// Initialize fields in Symbol. This initializes everything except u_
47// and source_.
14bfc3f5 48
14bfc3f5 49void
ead1e424
ILT
50Symbol::init_fields(const char* name, const char* version,
51 elfcpp::STT type, elfcpp::STB binding,
52 elfcpp::STV visibility, unsigned char nonvis)
14bfc3f5
ILT
53{
54 this->name_ = name;
55 this->version_ = version;
c06b7b0b
ILT
56 this->symtab_index_ = 0;
57 this->dynsym_index_ = 0;
0a65a3a7 58 this->got_offsets_.init();
f4151f89 59 this->plt_offset_ = 0;
ead1e424
ILT
60 this->type_ = type;
61 this->binding_ = binding;
62 this->visibility_ = visibility;
63 this->nonvis_ = nonvis;
64 this->is_target_special_ = false;
1564db8d
ILT
65 this->is_def_ = false;
66 this->is_forwarder_ = false;
aeddab66 67 this->has_alias_ = false;
c06b7b0b 68 this->needs_dynsym_entry_ = false;
008db82e 69 this->in_reg_ = false;
ead1e424 70 this->in_dyn_ = false;
f4151f89 71 this->has_plt_offset_ = false;
f6ce93d6 72 this->has_warning_ = false;
46fe1623 73 this->is_copied_from_dynobj_ = false;
55a93433 74 this->is_forced_local_ = false;
ead1e424
ILT
75}
76
a2b1aa12
ILT
77// Return the demangled version of the symbol's name, but only
78// if the --demangle flag was set.
79
80static std::string
81demangle(const char* name)
82{
086a1841 83 if (!parameters->options().do_demangle())
ff541f30
ILT
84 return name;
85
a2b1aa12
ILT
86 // cplus_demangle allocates memory for the result it returns,
87 // and returns NULL if the name is already demangled.
88 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
89 if (demangled_name == NULL)
90 return name;
91
92 std::string retval(demangled_name);
93 free(demangled_name);
94 return retval;
95}
96
97std::string
98Symbol::demangled_name() const
99{
ff541f30 100 return demangle(this->name());
a2b1aa12
ILT
101}
102
ead1e424
ILT
103// Initialize the fields in the base class Symbol for SYM in OBJECT.
104
105template<int size, bool big_endian>
106void
107Symbol::init_base(const char* name, const char* version, Object* object,
108 const elfcpp::Sym<size, big_endian>& sym)
109{
110 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
111 sym.get_st_visibility(), sym.get_st_nonvis());
112 this->u_.from_object.object = object;
113 // FIXME: Handle SHN_XINDEX.
16649710 114 this->u_.from_object.shndx = sym.get_st_shndx();
ead1e424 115 this->source_ = FROM_OBJECT;
008db82e 116 this->in_reg_ = !object->is_dynamic();
1564db8d 117 this->in_dyn_ = object->is_dynamic();
14bfc3f5
ILT
118}
119
ead1e424
ILT
120// Initialize the fields in the base class Symbol for a symbol defined
121// in an Output_data.
122
123void
124Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
125 elfcpp::STB binding, elfcpp::STV visibility,
126 unsigned char nonvis, bool offset_is_from_end)
127{
128 this->init_fields(name, NULL, type, binding, visibility, nonvis);
129 this->u_.in_output_data.output_data = od;
130 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
131 this->source_ = IN_OUTPUT_DATA;
008db82e 132 this->in_reg_ = true;
ead1e424
ILT
133}
134
135// Initialize the fields in the base class Symbol for a symbol defined
136// in an Output_segment.
137
138void
139Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
140 elfcpp::STB binding, elfcpp::STV visibility,
141 unsigned char nonvis, Segment_offset_base offset_base)
142{
143 this->init_fields(name, NULL, type, binding, visibility, nonvis);
144 this->u_.in_output_segment.output_segment = os;
145 this->u_.in_output_segment.offset_base = offset_base;
146 this->source_ = IN_OUTPUT_SEGMENT;
008db82e 147 this->in_reg_ = true;
ead1e424
ILT
148}
149
150// Initialize the fields in the base class Symbol for a symbol defined
151// as a constant.
152
153void
154Symbol::init_base(const char* name, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis)
157{
158 this->init_fields(name, NULL, type, binding, visibility, nonvis);
159 this->source_ = CONSTANT;
008db82e 160 this->in_reg_ = true;
ead1e424
ILT
161}
162
c7912668
ILT
163// Allocate a common symbol in the base.
164
165void
166Symbol::allocate_base_common(Output_data* od)
167{
168 gold_assert(this->is_common());
169 this->source_ = IN_OUTPUT_DATA;
170 this->u_.in_output_data.output_data = od;
171 this->u_.in_output_data.offset_is_from_end = false;
172}
173
ead1e424 174// Initialize the fields in Sized_symbol for SYM in OBJECT.
14bfc3f5
ILT
175
176template<int size>
177template<bool big_endian>
178void
179Sized_symbol<size>::init(const char* name, const char* version, Object* object,
180 const elfcpp::Sym<size, big_endian>& sym)
181{
182 this->init_base(name, version, object, sym);
183 this->value_ = sym.get_st_value();
ead1e424
ILT
184 this->symsize_ = sym.get_st_size();
185}
186
187// Initialize the fields in Sized_symbol for a symbol defined in an
188// Output_data.
189
190template<int size>
191void
192Sized_symbol<size>::init(const char* name, Output_data* od,
193 Value_type value, Size_type symsize,
194 elfcpp::STT type, elfcpp::STB binding,
195 elfcpp::STV visibility, unsigned char nonvis,
196 bool offset_is_from_end)
197{
198 this->init_base(name, od, type, binding, visibility, nonvis,
199 offset_is_from_end);
200 this->value_ = value;
201 this->symsize_ = symsize;
202}
203
204// Initialize the fields in Sized_symbol for a symbol defined in an
205// Output_segment.
206
207template<int size>
208void
209Sized_symbol<size>::init(const char* name, Output_segment* os,
210 Value_type value, Size_type symsize,
211 elfcpp::STT type, elfcpp::STB binding,
212 elfcpp::STV visibility, unsigned char nonvis,
213 Segment_offset_base offset_base)
214{
215 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
216 this->value_ = value;
217 this->symsize_ = symsize;
218}
219
220// Initialize the fields in Sized_symbol for a symbol defined as a
221// constant.
222
223template<int size>
224void
225Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
226 elfcpp::STT type, elfcpp::STB binding,
227 elfcpp::STV visibility, unsigned char nonvis)
228{
229 this->init_base(name, type, binding, visibility, nonvis);
230 this->value_ = value;
231 this->symsize_ = symsize;
14bfc3f5
ILT
232}
233
c7912668
ILT
234// Allocate a common symbol.
235
236template<int size>
237void
238Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
239{
240 this->allocate_base_common(od);
241 this->value_ = value;
242}
243
436ca963
ILT
244// Return true if this symbol should be added to the dynamic symbol
245// table.
246
247inline bool
248Symbol::should_add_dynsym_entry() const
249{
250 // If the symbol is used by a dynamic relocation, we need to add it.
251 if (this->needs_dynsym_entry())
252 return true;
253
55a93433
ILT
254 // If the symbol was forced local in a version script, do not add it.
255 if (this->is_forced_local())
256 return false;
257
436ca963
ILT
258 // If exporting all symbols or building a shared library,
259 // and the symbol is defined in a regular object and is
260 // externally visible, we need to add it.
8851ecca 261 if ((parameters->options().export_dynamic() || parameters->options().shared())
436ca963
ILT
262 && !this->is_from_dynobj()
263 && this->is_externally_visible())
264 return true;
265
266 return false;
267}
268
b3b74ddc
ILT
269// Return true if the final value of this symbol is known at link
270// time.
271
272bool
273Symbol::final_value_is_known() const
274{
275 // If we are not generating an executable, then no final values are
276 // known, since they will change at runtime.
8851ecca 277 if (parameters->options().shared() || parameters->options().relocatable())
b3b74ddc
ILT
278 return false;
279
280 // If the symbol is not from an object file, then it is defined, and
281 // known.
282 if (this->source_ != FROM_OBJECT)
283 return true;
284
285 // If the symbol is from a dynamic object, then the final value is
286 // not known.
287 if (this->object()->is_dynamic())
288 return false;
289
290 // If the symbol is not undefined (it is defined or common), then
291 // the final value is known.
292 if (!this->is_undefined())
293 return true;
294
295 // If the symbol is undefined, then whether the final value is known
296 // depends on whether we are doing a static link. If we are doing a
297 // dynamic link, then the final value could be filled in at runtime.
298 // This could reasonably be the case for a weak undefined symbol.
299 return parameters->doing_static_link();
300}
301
77e65537 302// Return the output section where this symbol is defined.
a445fddf 303
77e65537
ILT
304Output_section*
305Symbol::output_section() const
a445fddf
ILT
306{
307 switch (this->source_)
308 {
309 case FROM_OBJECT:
77e65537
ILT
310 {
311 unsigned int shndx = this->u_.from_object.shndx;
312 if (shndx != elfcpp::SHN_UNDEF && shndx < elfcpp::SHN_LORESERVE)
313 {
314 gold_assert(!this->u_.from_object.object->is_dynamic());
315 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
316 section_offset_type dummy;
317 return relobj->output_section(shndx, &dummy);
318 }
319 return NULL;
320 }
321
a445fddf 322 case IN_OUTPUT_DATA:
77e65537
ILT
323 return this->u_.in_output_data.output_data->output_section();
324
a445fddf 325 case IN_OUTPUT_SEGMENT:
a445fddf 326 case CONSTANT:
77e65537
ILT
327 return NULL;
328
329 default:
330 gold_unreachable();
331 }
332}
333
334// Set the symbol's output section. This is used for symbols defined
335// in scripts. This should only be called after the symbol table has
336// been finalized.
337
338void
339Symbol::set_output_section(Output_section* os)
340{
341 switch (this->source_)
342 {
343 case FROM_OBJECT:
344 case IN_OUTPUT_DATA:
345 gold_assert(this->output_section() == os);
346 break;
347 case CONSTANT:
348 this->source_ = IN_OUTPUT_DATA;
349 this->u_.in_output_data.output_data = os;
350 this->u_.in_output_data.offset_is_from_end = false;
351 break;
352 case IN_OUTPUT_SEGMENT:
a445fddf
ILT
353 default:
354 gold_unreachable();
355 }
356}
357
14bfc3f5
ILT
358// Class Symbol_table.
359
09124467
ILT
360Symbol_table::Symbol_table(unsigned int count,
361 const Version_script_info& version_script)
6d013333 362 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
55a93433
ILT
363 forwarders_(), commons_(), forced_locals_(), warnings_(),
364 version_script_(version_script)
14bfc3f5 365{
6d013333 366 namepool_.reserve(count);
14bfc3f5
ILT
367}
368
369Symbol_table::~Symbol_table()
370{
371}
372
ad8f37d1 373// The hash function. The key values are Stringpool keys.
14bfc3f5 374
ad8f37d1 375inline size_t
14bfc3f5
ILT
376Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
377{
f0641a0b 378 return key.first ^ key.second;
14bfc3f5
ILT
379}
380
ad8f37d1
ILT
381// The symbol table key equality function. This is called with
382// Stringpool keys.
14bfc3f5 383
ad8f37d1 384inline bool
14bfc3f5
ILT
385Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
386 const Symbol_table_key& k2) const
387{
388 return k1.first == k2.first && k1.second == k2.second;
389}
390
dd8670e5 391// Make TO a symbol which forwards to FROM.
14bfc3f5
ILT
392
393void
394Symbol_table::make_forwarder(Symbol* from, Symbol* to)
395{
a3ad94ed
ILT
396 gold_assert(from != to);
397 gold_assert(!from->is_forwarder() && !to->is_forwarder());
14bfc3f5
ILT
398 this->forwarders_[from] = to;
399 from->set_forwarder();
400}
401
61ba1cf9
ILT
402// Resolve the forwards from FROM, returning the real symbol.
403
14bfc3f5 404Symbol*
c06b7b0b 405Symbol_table::resolve_forwards(const Symbol* from) const
14bfc3f5 406{
a3ad94ed 407 gold_assert(from->is_forwarder());
c06b7b0b 408 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
14bfc3f5 409 this->forwarders_.find(from);
a3ad94ed 410 gold_assert(p != this->forwarders_.end());
14bfc3f5
ILT
411 return p->second;
412}
413
61ba1cf9
ILT
414// Look up a symbol by name.
415
416Symbol*
417Symbol_table::lookup(const char* name, const char* version) const
418{
f0641a0b
ILT
419 Stringpool::Key name_key;
420 name = this->namepool_.find(name, &name_key);
61ba1cf9
ILT
421 if (name == NULL)
422 return NULL;
f0641a0b
ILT
423
424 Stringpool::Key version_key = 0;
61ba1cf9
ILT
425 if (version != NULL)
426 {
f0641a0b 427 version = this->namepool_.find(version, &version_key);
61ba1cf9
ILT
428 if (version == NULL)
429 return NULL;
430 }
431
f0641a0b 432 Symbol_table_key key(name_key, version_key);
61ba1cf9
ILT
433 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
434 if (p == this->table_.end())
435 return NULL;
436 return p->second;
437}
438
14bfc3f5
ILT
439// Resolve a Symbol with another Symbol. This is only used in the
440// unusual case where there are references to both an unversioned
441// symbol and a symbol with a version, and we then discover that that
1564db8d
ILT
442// version is the default version. Because this is unusual, we do
443// this the slow way, by converting back to an ELF symbol.
14bfc3f5 444
1564db8d 445template<int size, bool big_endian>
14bfc3f5 446void
14b31740 447Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
7d1a9ebb 448 const char* version)
14bfc3f5 449{
1564db8d
ILT
450 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
451 elfcpp::Sym_write<size, big_endian> esym(buf);
452 // We don't bother to set the st_name field.
453 esym.put_st_value(from->value());
454 esym.put_st_size(from->symsize());
455 esym.put_st_info(from->binding(), from->type());
ead1e424 456 esym.put_st_other(from->visibility(), from->nonvis());
16649710 457 esym.put_st_shndx(from->shndx());
70e654ba 458 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
1ebd95fd
ILT
459 if (from->in_reg())
460 to->set_in_reg();
461 if (from->in_dyn())
462 to->set_in_dyn();
14bfc3f5
ILT
463}
464
55a93433
ILT
465// Record that a symbol is forced to be local by a version script.
466
467void
468Symbol_table::force_local(Symbol* sym)
469{
470 if (!sym->is_defined() && !sym->is_common())
471 return;
472 if (sym->is_forced_local())
473 {
474 // We already got this one.
475 return;
476 }
477 sym->set_is_forced_local();
478 this->forced_locals_.push_back(sym);
479}
480
14bfc3f5
ILT
481// Add one symbol from OBJECT to the symbol table. NAME is symbol
482// name and VERSION is the version; both are canonicalized. DEF is
483// whether this is the default version.
484
485// If DEF is true, then this is the definition of a default version of
486// a symbol. That means that any lookup of NAME/NULL and any lookup
487// of NAME/VERSION should always return the same symbol. This is
488// obvious for references, but in particular we want to do this for
489// definitions: overriding NAME/NULL should also override
490// NAME/VERSION. If we don't do that, it would be very hard to
491// override functions in a shared library which uses versioning.
492
493// We implement this by simply making both entries in the hash table
494// point to the same Symbol structure. That is easy enough if this is
495// the first time we see NAME/NULL or NAME/VERSION, but it is possible
496// that we have seen both already, in which case they will both have
497// independent entries in the symbol table. We can't simply change
498// the symbol table entry, because we have pointers to the entries
499// attached to the object files. So we mark the entry attached to the
500// object file as a forwarder, and record it in the forwarders_ map.
501// Note that entries in the hash table will never be marked as
502// forwarders.
70e654ba
ILT
503//
504// SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
505// symbol exactly as it existed in the input file. SYM is usually
506// that as well, but can be modified, for instance if we determine
507// it's in a to-be-discarded section.
14bfc3f5
ILT
508
509template<int size, bool big_endian>
aeddab66 510Sized_symbol<size>*
f6ce93d6 511Symbol_table::add_from_object(Object* object,
14bfc3f5 512 const char *name,
f0641a0b
ILT
513 Stringpool::Key name_key,
514 const char *version,
515 Stringpool::Key version_key,
516 bool def,
70e654ba
ILT
517 const elfcpp::Sym<size, big_endian>& sym,
518 const elfcpp::Sym<size, big_endian>& orig_sym)
14bfc3f5
ILT
519{
520 Symbol* const snull = NULL;
521 std::pair<typename Symbol_table_type::iterator, bool> ins =
f0641a0b
ILT
522 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
523 snull));
14bfc3f5
ILT
524
525 std::pair<typename Symbol_table_type::iterator, bool> insdef =
526 std::make_pair(this->table_.end(), false);
527 if (def)
528 {
f0641a0b
ILT
529 const Stringpool::Key vnull_key = 0;
530 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
531 vnull_key),
14bfc3f5
ILT
532 snull));
533 }
534
535 // ins.first: an iterator, which is a pointer to a pair.
536 // ins.first->first: the key (a pair of name and version).
537 // ins.first->second: the value (Symbol*).
538 // ins.second: true if new entry was inserted, false if not.
539
1564db8d 540 Sized_symbol<size>* ret;
ead1e424
ILT
541 bool was_undefined;
542 bool was_common;
14bfc3f5
ILT
543 if (!ins.second)
544 {
545 // We already have an entry for NAME/VERSION.
7d1a9ebb 546 ret = this->get_sized_symbol<size>(ins.first->second);
a3ad94ed 547 gold_assert(ret != NULL);
ead1e424
ILT
548
549 was_undefined = ret->is_undefined();
550 was_common = ret->is_common();
551
70e654ba 552 this->resolve(ret, sym, orig_sym, object, version);
14bfc3f5
ILT
553
554 if (def)
555 {
556 if (insdef.second)
557 {
558 // This is the first time we have seen NAME/NULL. Make
559 // NAME/NULL point to NAME/VERSION.
560 insdef.first->second = ret;
561 }
99f8faca
ILT
562 else if (insdef.first->second != ret
563 && insdef.first->second->is_undefined())
14bfc3f5
ILT
564 {
565 // This is the unfortunate case where we already have
99f8faca
ILT
566 // entries for both NAME/VERSION and NAME/NULL. Note
567 // that we don't want to combine them if the existing
568 // symbol is going to override the new one. FIXME: We
569 // currently just test is_undefined, but this may not do
570 // the right thing if the existing symbol is from a
571 // shared library and the new one is from a regular
572 // object.
573
274e99f9 574 const Sized_symbol<size>* sym2;
7d1a9ebb
ILT
575 sym2 = this->get_sized_symbol<size>(insdef.first->second);
576 Symbol_table::resolve<size, big_endian>(ret, sym2, version);
14bfc3f5
ILT
577 this->make_forwarder(insdef.first->second, ret);
578 insdef.first->second = ret;
579 }
580 }
581 }
582 else
583 {
584 // This is the first time we have seen NAME/VERSION.
a3ad94ed 585 gold_assert(ins.first->second == NULL);
ead1e424
ILT
586
587 was_undefined = false;
588 was_common = false;
589
14bfc3f5
ILT
590 if (def && !insdef.second)
591 {
14b31740
ILT
592 // We already have an entry for NAME/NULL. If we override
593 // it, then change it to NAME/VERSION.
7d1a9ebb 594 ret = this->get_sized_symbol<size>(insdef.first->second);
70e654ba 595 this->resolve(ret, sym, orig_sym, object, version);
14bfc3f5
ILT
596 ins.first->second = ret;
597 }
598 else
599 {
f6ce93d6 600 Sized_target<size, big_endian>* target =
7d1a9ebb 601 object->sized_target<size, big_endian>();
1564db8d
ILT
602 if (!target->has_make_symbol())
603 ret = new Sized_symbol<size>();
604 else
14bfc3f5 605 {
1564db8d
ILT
606 ret = target->make_symbol();
607 if (ret == NULL)
14bfc3f5
ILT
608 {
609 // This means that we don't want a symbol table
610 // entry after all.
611 if (!def)
612 this->table_.erase(ins.first);
613 else
614 {
615 this->table_.erase(insdef.first);
616 // Inserting insdef invalidated ins.
f0641a0b
ILT
617 this->table_.erase(std::make_pair(name_key,
618 version_key));
14bfc3f5
ILT
619 }
620 return NULL;
621 }
622 }
14bfc3f5 623
1564db8d
ILT
624 ret->init(name, version, object, sym);
625
14bfc3f5
ILT
626 ins.first->second = ret;
627 if (def)
628 {
629 // This is the first time we have seen NAME/NULL. Point
630 // it at the new entry for NAME/VERSION.
a3ad94ed 631 gold_assert(insdef.second);
14bfc3f5
ILT
632 insdef.first->second = ret;
633 }
634 }
635 }
636
ead1e424
ILT
637 // Record every time we see a new undefined symbol, to speed up
638 // archive groups.
639 if (!was_undefined && ret->is_undefined())
640 ++this->saw_undefined_;
641
642 // Keep track of common symbols, to speed up common symbol
643 // allocation.
644 if (!was_common && ret->is_common())
645 this->commons_.push_back(ret);
646
be3e6201
ILT
647 if (def)
648 ret->set_is_default();
14bfc3f5
ILT
649 return ret;
650}
651
f6ce93d6 652// Add all the symbols in a relocatable object to the hash table.
14bfc3f5
ILT
653
654template<int size, bool big_endian>
655void
dbe717ef
ILT
656Symbol_table::add_from_relobj(
657 Sized_relobj<size, big_endian>* relobj,
f6ce93d6 658 const unsigned char* syms,
14bfc3f5
ILT
659 size_t count,
660 const char* sym_names,
661 size_t sym_name_size,
730cdc88 662 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
14bfc3f5 663{
9025d29d 664 gold_assert(size == relobj->target()->get_size());
8851ecca 665 gold_assert(size == parameters->target().get_size());
14bfc3f5 666
a783673b
ILT
667 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
668
88dd47ac
ILT
669 const bool just_symbols = relobj->just_symbols();
670
f6ce93d6 671 const unsigned char* p = syms;
a783673b 672 for (size_t i = 0; i < count; ++i, p += sym_size)
14bfc3f5
ILT
673 {
674 elfcpp::Sym<size, big_endian> sym(p);
a783673b 675 elfcpp::Sym<size, big_endian>* psym = &sym;
14bfc3f5 676
a783673b 677 unsigned int st_name = psym->get_st_name();
14bfc3f5
ILT
678 if (st_name >= sym_name_size)
679 {
75f2446e
ILT
680 relobj->error(_("bad global symbol name offset %u at %zu"),
681 st_name, i);
682 continue;
14bfc3f5
ILT
683 }
684
dbe717ef
ILT
685 const char* name = sym_names + st_name;
686
a783673b
ILT
687 // A symbol defined in a section which we are not including must
688 // be treated as an undefined symbol.
689 unsigned char symbuf[sym_size];
690 elfcpp::Sym<size, big_endian> sym2(symbuf);
691 unsigned int st_shndx = psym->get_st_shndx();
692 if (st_shndx != elfcpp::SHN_UNDEF
693 && st_shndx < elfcpp::SHN_LORESERVE
dbe717ef 694 && !relobj->is_section_included(st_shndx))
a783673b
ILT
695 {
696 memcpy(symbuf, p, sym_size);
697 elfcpp::Sym_write<size, big_endian> sw(symbuf);
698 sw.put_st_shndx(elfcpp::SHN_UNDEF);
699 psym = &sym2;
700 }
701
14bfc3f5
ILT
702 // In an object file, an '@' in the name separates the symbol
703 // name from the version name. If there are two '@' characters,
704 // this is the default version.
705 const char* ver = strchr(name, '@');
09124467 706 int namelen = 0;
55a93433 707 // DEF: is the version default? LOCAL: is the symbol forced local?
09124467 708 bool def = false;
55a93433 709 bool local = false;
09124467
ILT
710
711 if (ver != NULL)
712 {
713 // The symbol name is of the form foo@VERSION or foo@@VERSION
714 namelen = ver - name;
715 ++ver;
716 if (*ver == '@')
717 {
718 def = true;
719 ++ver;
720 }
721 }
722 else if (!version_script_.empty())
723 {
724 // The symbol name did not have a version, but
725 // the version script may assign a version anyway.
726 namelen = strlen(name);
727 def = true;
55a93433 728 // Check the global: entries from the version script.
09124467
ILT
729 const std::string& version =
730 version_script_.get_symbol_version(name);
731 if (!version.empty())
732 ver = version.c_str();
55a93433
ILT
733 // Check the local: entries from the version script
734 if (version_script_.symbol_is_local(name))
735 local = true;
09124467 736 }
14bfc3f5 737
88dd47ac
ILT
738 if (just_symbols)
739 {
740 if (psym != &sym2)
741 memcpy(symbuf, p, sym_size);
742 elfcpp::Sym_write<size, big_endian> sw(symbuf);
743 sw.put_st_shndx(elfcpp::SHN_ABS);
744 if (st_shndx != elfcpp::SHN_UNDEF
745 && st_shndx < elfcpp::SHN_LORESERVE)
746 {
747 // Symbol values in object files are section relative.
748 // This is normally what we want, but since here we are
749 // converting the symbol to absolute we need to add the
750 // section address. The section address in an object
751 // file is normally zero, but people can use a linker
752 // script to change it.
753 sw.put_st_value(sym2.get_st_value()
754 + relobj->section_address(st_shndx));
755 }
756 psym = &sym2;
757 }
758
aeddab66 759 Sized_symbol<size>* res;
14bfc3f5
ILT
760 if (ver == NULL)
761 {
f0641a0b 762 Stringpool::Key name_key;
cfd73a4e 763 name = this->namepool_.add(name, true, &name_key);
dbe717ef 764 res = this->add_from_object(relobj, name, name_key, NULL, 0,
70e654ba 765 false, *psym, sym);
55a93433
ILT
766 if (local)
767 this->force_local(res);
14bfc3f5
ILT
768 }
769 else
770 {
f0641a0b 771 Stringpool::Key name_key;
09124467 772 name = this->namepool_.add_with_length(name, namelen, true,
c0873094 773 &name_key);
f0641a0b 774 Stringpool::Key ver_key;
cfd73a4e 775 ver = this->namepool_.add(ver, true, &ver_key);
f0641a0b 776
dbe717ef 777 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
70e654ba 778 def, *psym, sym);
14bfc3f5
ILT
779 }
780
730cdc88 781 (*sympointers)[i] = res;
14bfc3f5
ILT
782 }
783}
784
dbe717ef
ILT
785// Add all the symbols in a dynamic object to the hash table.
786
787template<int size, bool big_endian>
788void
789Symbol_table::add_from_dynobj(
790 Sized_dynobj<size, big_endian>* dynobj,
791 const unsigned char* syms,
792 size_t count,
793 const char* sym_names,
794 size_t sym_name_size,
795 const unsigned char* versym,
796 size_t versym_size,
797 const std::vector<const char*>* version_map)
798{
9025d29d 799 gold_assert(size == dynobj->target()->get_size());
8851ecca 800 gold_assert(size == parameters->target().get_size());
dbe717ef 801
88dd47ac
ILT
802 if (dynobj->just_symbols())
803 {
804 gold_error(_("--just-symbols does not make sense with a shared object"));
805 return;
806 }
807
dbe717ef
ILT
808 if (versym != NULL && versym_size / 2 < count)
809 {
75f2446e
ILT
810 dynobj->error(_("too few symbol versions"));
811 return;
dbe717ef
ILT
812 }
813
814 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
815
aeddab66
ILT
816 // We keep a list of all STT_OBJECT symbols, so that we can resolve
817 // weak aliases. This is necessary because if the dynamic object
818 // provides the same variable under two names, one of which is a
819 // weak definition, and the regular object refers to the weak
820 // definition, we have to put both the weak definition and the
821 // strong definition into the dynamic symbol table. Given a weak
822 // definition, the only way that we can find the corresponding
823 // strong definition, if any, is to search the symbol table.
824 std::vector<Sized_symbol<size>*> object_symbols;
825
dbe717ef
ILT
826 const unsigned char* p = syms;
827 const unsigned char* vs = versym;
828 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
829 {
830 elfcpp::Sym<size, big_endian> sym(p);
831
65778909
ILT
832 // Ignore symbols with local binding or that have
833 // internal or hidden visibility.
834 if (sym.get_st_bind() == elfcpp::STB_LOCAL
835 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
836 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
dbe717ef
ILT
837 continue;
838
839 unsigned int st_name = sym.get_st_name();
840 if (st_name >= sym_name_size)
841 {
75f2446e
ILT
842 dynobj->error(_("bad symbol name offset %u at %zu"),
843 st_name, i);
844 continue;
dbe717ef
ILT
845 }
846
847 const char* name = sym_names + st_name;
848
aeddab66
ILT
849 Sized_symbol<size>* res;
850
dbe717ef
ILT
851 if (versym == NULL)
852 {
853 Stringpool::Key name_key;
cfd73a4e 854 name = this->namepool_.add(name, true, &name_key);
aeddab66 855 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
70e654ba 856 false, sym, sym);
dbe717ef 857 }
aeddab66
ILT
858 else
859 {
860 // Read the version information.
dbe717ef 861
aeddab66 862 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
dbe717ef 863
aeddab66
ILT
864 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
865 v &= elfcpp::VERSYM_VERSION;
dbe717ef 866
aeddab66
ILT
867 // The Sun documentation says that V can be VER_NDX_LOCAL,
868 // or VER_NDX_GLOBAL, or a version index. The meaning of
869 // VER_NDX_LOCAL is defined as "Symbol has local scope."
870 // The old GNU linker will happily generate VER_NDX_LOCAL
871 // for an undefined symbol. I don't know what the Sun
872 // linker will generate.
dbe717ef 873
aeddab66
ILT
874 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
875 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
876 {
877 // This symbol should not be visible outside the object.
878 continue;
879 }
64707334 880
aeddab66
ILT
881 // At this point we are definitely going to add this symbol.
882 Stringpool::Key name_key;
883 name = this->namepool_.add(name, true, &name_key);
dbe717ef 884
aeddab66
ILT
885 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
886 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
887 {
888 // This symbol does not have a version.
889 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
70e654ba 890 false, sym, sym);
aeddab66
ILT
891 }
892 else
893 {
894 if (v >= version_map->size())
895 {
896 dynobj->error(_("versym for symbol %zu out of range: %u"),
897 i, v);
898 continue;
899 }
dbe717ef 900
aeddab66
ILT
901 const char* version = (*version_map)[v];
902 if (version == NULL)
903 {
904 dynobj->error(_("versym for symbol %zu has no name: %u"),
905 i, v);
906 continue;
907 }
dbe717ef 908
aeddab66
ILT
909 Stringpool::Key version_key;
910 version = this->namepool_.add(version, true, &version_key);
911
912 // If this is an absolute symbol, and the version name
913 // and symbol name are the same, then this is the
914 // version definition symbol. These symbols exist to
915 // support using -u to pull in particular versions. We
916 // do not want to record a version for them.
917 if (sym.get_st_shndx() == elfcpp::SHN_ABS
918 && name_key == version_key)
919 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
70e654ba 920 false, sym, sym);
aeddab66
ILT
921 else
922 {
923 const bool def = (!hidden
924 && (sym.get_st_shndx()
925 != elfcpp::SHN_UNDEF));
926 res = this->add_from_object(dynobj, name, name_key, version,
70e654ba 927 version_key, def, sym, sym);
aeddab66
ILT
928 }
929 }
dbe717ef
ILT
930 }
931
aeddab66
ILT
932 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
933 && sym.get_st_type() == elfcpp::STT_OBJECT)
934 object_symbols.push_back(res);
935 }
936
937 this->record_weak_aliases(&object_symbols);
938}
939
940// This is used to sort weak aliases. We sort them first by section
941// index, then by offset, then by weak ahead of strong.
942
943template<int size>
944class Weak_alias_sorter
945{
946 public:
947 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
948};
949
950template<int size>
951bool
952Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
953 const Sized_symbol<size>* s2) const
954{
955 if (s1->shndx() != s2->shndx())
956 return s1->shndx() < s2->shndx();
957 if (s1->value() != s2->value())
958 return s1->value() < s2->value();
959 if (s1->binding() != s2->binding())
960 {
961 if (s1->binding() == elfcpp::STB_WEAK)
962 return true;
963 if (s2->binding() == elfcpp::STB_WEAK)
964 return false;
965 }
966 return std::string(s1->name()) < std::string(s2->name());
967}
dbe717ef 968
aeddab66
ILT
969// SYMBOLS is a list of object symbols from a dynamic object. Look
970// for any weak aliases, and record them so that if we add the weak
971// alias to the dynamic symbol table, we also add the corresponding
972// strong symbol.
dbe717ef 973
aeddab66
ILT
974template<int size>
975void
976Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
977{
978 // Sort the vector by section index, then by offset, then by weak
979 // ahead of strong.
980 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
981
982 // Walk through the vector. For each weak definition, record
983 // aliases.
984 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
985 symbols->begin();
986 p != symbols->end();
987 ++p)
988 {
989 if ((*p)->binding() != elfcpp::STB_WEAK)
990 continue;
991
992 // Build a circular list of weak aliases. Each symbol points to
993 // the next one in the circular list.
994
995 Sized_symbol<size>* from_sym = *p;
996 typename std::vector<Sized_symbol<size>*>::const_iterator q;
997 for (q = p + 1; q != symbols->end(); ++q)
dbe717ef 998 {
aeddab66
ILT
999 if ((*q)->shndx() != from_sym->shndx()
1000 || (*q)->value() != from_sym->value())
1001 break;
1002
1003 this->weak_aliases_[from_sym] = *q;
1004 from_sym->set_has_alias();
1005 from_sym = *q;
dbe717ef
ILT
1006 }
1007
aeddab66
ILT
1008 if (from_sym != *p)
1009 {
1010 this->weak_aliases_[from_sym] = *p;
1011 from_sym->set_has_alias();
1012 }
dbe717ef 1013
aeddab66 1014 p = q - 1;
dbe717ef
ILT
1015 }
1016}
1017
ead1e424
ILT
1018// Create and return a specially defined symbol. If ONLY_IF_REF is
1019// true, then only create the symbol if there is a reference to it.
86f2e683 1020// If this does not return NULL, it sets *POLDSYM to the existing
306d9ef0 1021// symbol if there is one. This canonicalizes *PNAME and *PVERSION.
ead1e424
ILT
1022
1023template<int size, bool big_endian>
1024Sized_symbol<size>*
9b07f471
ILT
1025Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1026 bool only_if_ref,
7d1a9ebb 1027 Sized_symbol<size>** poldsym)
ead1e424 1028{
ead1e424
ILT
1029 Symbol* oldsym;
1030 Sized_symbol<size>* sym;
86f2e683
ILT
1031 bool add_to_table = false;
1032 typename Symbol_table_type::iterator add_loc = this->table_.end();
ead1e424 1033
55a93433
ILT
1034 // If the caller didn't give us a version, see if we get one from
1035 // the version script.
1036 if (*pversion == NULL)
1037 {
1038 const std::string& v(this->version_script_.get_symbol_version(*pname));
1039 if (!v.empty())
1040 *pversion = v.c_str();
1041 }
1042
ead1e424
ILT
1043 if (only_if_ref)
1044 {
306d9ef0 1045 oldsym = this->lookup(*pname, *pversion);
f6ce93d6 1046 if (oldsym == NULL || !oldsym->is_undefined())
ead1e424 1047 return NULL;
306d9ef0
ILT
1048
1049 *pname = oldsym->name();
1050 *pversion = oldsym->version();
ead1e424
ILT
1051 }
1052 else
1053 {
14b31740 1054 // Canonicalize NAME and VERSION.
f0641a0b 1055 Stringpool::Key name_key;
cfd73a4e 1056 *pname = this->namepool_.add(*pname, true, &name_key);
ead1e424 1057
14b31740 1058 Stringpool::Key version_key = 0;
306d9ef0 1059 if (*pversion != NULL)
cfd73a4e 1060 *pversion = this->namepool_.add(*pversion, true, &version_key);
14b31740 1061
ead1e424 1062 Symbol* const snull = NULL;
ead1e424 1063 std::pair<typename Symbol_table_type::iterator, bool> ins =
14b31740
ILT
1064 this->table_.insert(std::make_pair(std::make_pair(name_key,
1065 version_key),
ead1e424
ILT
1066 snull));
1067
1068 if (!ins.second)
1069 {
14b31740 1070 // We already have a symbol table entry for NAME/VERSION.
ead1e424 1071 oldsym = ins.first->second;
a3ad94ed 1072 gold_assert(oldsym != NULL);
ead1e424
ILT
1073 }
1074 else
1075 {
1076 // We haven't seen this symbol before.
a3ad94ed 1077 gold_assert(ins.first->second == NULL);
86f2e683
ILT
1078 add_to_table = true;
1079 add_loc = ins.first;
ead1e424
ILT
1080 oldsym = NULL;
1081 }
1082 }
1083
8851ecca
ILT
1084 const Target& target = parameters->target();
1085 if (!target.has_make_symbol())
86f2e683
ILT
1086 sym = new Sized_symbol<size>();
1087 else
ead1e424 1088 {
8851ecca
ILT
1089 gold_assert(target.get_size() == size);
1090 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
86f2e683
ILT
1091 typedef Sized_target<size, big_endian> My_target;
1092 const My_target* sized_target =
8851ecca 1093 static_cast<const My_target*>(&target);
86f2e683
ILT
1094 sym = sized_target->make_symbol();
1095 if (sym == NULL)
1096 return NULL;
1097 }
ead1e424 1098
86f2e683
ILT
1099 if (add_to_table)
1100 add_loc->second = sym;
1101 else
1102 gold_assert(oldsym != NULL);
ead1e424 1103
7d1a9ebb 1104 *poldsym = this->get_sized_symbol<size>(oldsym);
ead1e424
ILT
1105
1106 return sym;
1107}
1108
1109// Define a symbol based on an Output_data.
1110
14b31740 1111Symbol*
9b07f471
ILT
1112Symbol_table::define_in_output_data(const char* name,
1113 const char* version,
1114 Output_data* od,
1115 uint64_t value,
1116 uint64_t symsize,
1117 elfcpp::STT type,
1118 elfcpp::STB binding,
ead1e424
ILT
1119 elfcpp::STV visibility,
1120 unsigned char nonvis,
1121 bool offset_is_from_end,
1122 bool only_if_ref)
1123{
8851ecca 1124 if (parameters->target().get_size() == 32)
86f2e683
ILT
1125 {
1126#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
9b07f471 1127 return this->do_define_in_output_data<32>(name, version, od,
86f2e683
ILT
1128 value, symsize, type, binding,
1129 visibility, nonvis,
1130 offset_is_from_end,
1131 only_if_ref);
1132#else
1133 gold_unreachable();
1134#endif
1135 }
8851ecca 1136 else if (parameters->target().get_size() == 64)
86f2e683
ILT
1137 {
1138#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
9b07f471 1139 return this->do_define_in_output_data<64>(name, version, od,
86f2e683
ILT
1140 value, symsize, type, binding,
1141 visibility, nonvis,
1142 offset_is_from_end,
1143 only_if_ref);
1144#else
1145 gold_unreachable();
1146#endif
1147 }
ead1e424 1148 else
a3ad94ed 1149 gold_unreachable();
ead1e424
ILT
1150}
1151
1152// Define a symbol in an Output_data, sized version.
1153
1154template<int size>
14b31740 1155Sized_symbol<size>*
ead1e424 1156Symbol_table::do_define_in_output_data(
ead1e424 1157 const char* name,
14b31740 1158 const char* version,
ead1e424
ILT
1159 Output_data* od,
1160 typename elfcpp::Elf_types<size>::Elf_Addr value,
1161 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1162 elfcpp::STT type,
1163 elfcpp::STB binding,
1164 elfcpp::STV visibility,
1165 unsigned char nonvis,
1166 bool offset_is_from_end,
1167 bool only_if_ref)
1168{
1169 Sized_symbol<size>* sym;
86f2e683 1170 Sized_symbol<size>* oldsym;
ead1e424 1171
8851ecca 1172 if (parameters->target().is_big_endian())
193a53d9
ILT
1173 {
1174#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
7d1a9ebb
ILT
1175 sym = this->define_special_symbol<size, true>(&name, &version,
1176 only_if_ref, &oldsym);
193a53d9
ILT
1177#else
1178 gold_unreachable();
1179#endif
1180 }
ead1e424 1181 else
193a53d9
ILT
1182 {
1183#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
7d1a9ebb
ILT
1184 sym = this->define_special_symbol<size, false>(&name, &version,
1185 only_if_ref, &oldsym);
193a53d9
ILT
1186#else
1187 gold_unreachable();
1188#endif
1189 }
ead1e424
ILT
1190
1191 if (sym == NULL)
14b31740 1192 return NULL;
ead1e424 1193
d4f5281b 1194 gold_assert(version == NULL || oldsym != NULL);
ead1e424
ILT
1195 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1196 offset_is_from_end);
14b31740 1197
e5756efb 1198 if (oldsym == NULL)
55a93433
ILT
1199 {
1200 if (binding == elfcpp::STB_LOCAL
1201 || this->version_script_.symbol_is_local(name))
1202 this->force_local(sym);
1203 return sym;
1204 }
86f2e683 1205
e5756efb
ILT
1206 if (Symbol_table::should_override_with_special(oldsym))
1207 this->override_with_special(oldsym, sym);
1208 delete sym;
1209 return oldsym;
ead1e424
ILT
1210}
1211
1212// Define a symbol based on an Output_segment.
1213
14b31740 1214Symbol*
9b07f471 1215Symbol_table::define_in_output_segment(const char* name,
14b31740 1216 const char* version, Output_segment* os,
9b07f471
ILT
1217 uint64_t value,
1218 uint64_t symsize,
1219 elfcpp::STT type,
1220 elfcpp::STB binding,
ead1e424
ILT
1221 elfcpp::STV visibility,
1222 unsigned char nonvis,
1223 Symbol::Segment_offset_base offset_base,
1224 bool only_if_ref)
1225{
8851ecca 1226 if (parameters->target().get_size() == 32)
86f2e683
ILT
1227 {
1228#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
9b07f471 1229 return this->do_define_in_output_segment<32>(name, version, os,
86f2e683
ILT
1230 value, symsize, type,
1231 binding, visibility, nonvis,
1232 offset_base, only_if_ref);
1233#else
1234 gold_unreachable();
1235#endif
1236 }
8851ecca 1237 else if (parameters->target().get_size() == 64)
86f2e683
ILT
1238 {
1239#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
9b07f471 1240 return this->do_define_in_output_segment<64>(name, version, os,
86f2e683
ILT
1241 value, symsize, type,
1242 binding, visibility, nonvis,
1243 offset_base, only_if_ref);
1244#else
1245 gold_unreachable();
1246#endif
1247 }
ead1e424 1248 else
a3ad94ed 1249 gold_unreachable();
ead1e424
ILT
1250}
1251
1252// Define a symbol in an Output_segment, sized version.
1253
1254template<int size>
14b31740 1255Sized_symbol<size>*
ead1e424 1256Symbol_table::do_define_in_output_segment(
ead1e424 1257 const char* name,
14b31740 1258 const char* version,
ead1e424
ILT
1259 Output_segment* os,
1260 typename elfcpp::Elf_types<size>::Elf_Addr value,
1261 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1262 elfcpp::STT type,
1263 elfcpp::STB binding,
1264 elfcpp::STV visibility,
1265 unsigned char nonvis,
1266 Symbol::Segment_offset_base offset_base,
1267 bool only_if_ref)
1268{
1269 Sized_symbol<size>* sym;
86f2e683 1270 Sized_symbol<size>* oldsym;
ead1e424 1271
8851ecca 1272 if (parameters->target().is_big_endian())
9025d29d
ILT
1273 {
1274#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
7d1a9ebb
ILT
1275 sym = this->define_special_symbol<size, true>(&name, &version,
1276 only_if_ref, &oldsym);
9025d29d
ILT
1277#else
1278 gold_unreachable();
1279#endif
1280 }
ead1e424 1281 else
9025d29d
ILT
1282 {
1283#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
7d1a9ebb
ILT
1284 sym = this->define_special_symbol<size, false>(&name, &version,
1285 only_if_ref, &oldsym);
9025d29d
ILT
1286#else
1287 gold_unreachable();
1288#endif
1289 }
ead1e424
ILT
1290
1291 if (sym == NULL)
14b31740 1292 return NULL;
ead1e424 1293
d4f5281b 1294 gold_assert(version == NULL || oldsym != NULL);
ead1e424
ILT
1295 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1296 offset_base);
14b31740 1297
e5756efb 1298 if (oldsym == NULL)
55a93433
ILT
1299 {
1300 if (binding == elfcpp::STB_LOCAL
1301 || this->version_script_.symbol_is_local(name))
1302 this->force_local(sym);
1303 return sym;
1304 }
86f2e683 1305
e5756efb
ILT
1306 if (Symbol_table::should_override_with_special(oldsym))
1307 this->override_with_special(oldsym, sym);
1308 delete sym;
1309 return oldsym;
ead1e424
ILT
1310}
1311
1312// Define a special symbol with a constant value. It is a multiple
1313// definition error if this symbol is already defined.
1314
14b31740 1315Symbol*
9b07f471
ILT
1316Symbol_table::define_as_constant(const char* name,
1317 const char* version,
1318 uint64_t value,
1319 uint64_t symsize,
1320 elfcpp::STT type,
1321 elfcpp::STB binding,
1322 elfcpp::STV visibility,
1323 unsigned char nonvis,
caa9d5d9
ILT
1324 bool only_if_ref,
1325 bool force_override)
ead1e424 1326{
8851ecca 1327 if (parameters->target().get_size() == 32)
86f2e683
ILT
1328 {
1329#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
9b07f471 1330 return this->do_define_as_constant<32>(name, version, value,
86f2e683 1331 symsize, type, binding,
caa9d5d9
ILT
1332 visibility, nonvis, only_if_ref,
1333 force_override);
86f2e683
ILT
1334#else
1335 gold_unreachable();
1336#endif
1337 }
8851ecca 1338 else if (parameters->target().get_size() == 64)
86f2e683
ILT
1339 {
1340#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
9b07f471 1341 return this->do_define_as_constant<64>(name, version, value,
86f2e683 1342 symsize, type, binding,
caa9d5d9
ILT
1343 visibility, nonvis, only_if_ref,
1344 force_override);
86f2e683
ILT
1345#else
1346 gold_unreachable();
1347#endif
1348 }
ead1e424 1349 else
a3ad94ed 1350 gold_unreachable();
ead1e424
ILT
1351}
1352
1353// Define a symbol as a constant, sized version.
1354
1355template<int size>
14b31740 1356Sized_symbol<size>*
ead1e424 1357Symbol_table::do_define_as_constant(
ead1e424 1358 const char* name,
14b31740 1359 const char* version,
ead1e424
ILT
1360 typename elfcpp::Elf_types<size>::Elf_Addr value,
1361 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1362 elfcpp::STT type,
1363 elfcpp::STB binding,
1364 elfcpp::STV visibility,
1365 unsigned char nonvis,
caa9d5d9
ILT
1366 bool only_if_ref,
1367 bool force_override)
ead1e424
ILT
1368{
1369 Sized_symbol<size>* sym;
86f2e683 1370 Sized_symbol<size>* oldsym;
ead1e424 1371
8851ecca 1372 if (parameters->target().is_big_endian())
9025d29d
ILT
1373 {
1374#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
7d1a9ebb
ILT
1375 sym = this->define_special_symbol<size, true>(&name, &version,
1376 only_if_ref, &oldsym);
9025d29d
ILT
1377#else
1378 gold_unreachable();
1379#endif
1380 }
ead1e424 1381 else
9025d29d
ILT
1382 {
1383#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
7d1a9ebb
ILT
1384 sym = this->define_special_symbol<size, false>(&name, &version,
1385 only_if_ref, &oldsym);
9025d29d
ILT
1386#else
1387 gold_unreachable();
1388#endif
1389 }
ead1e424
ILT
1390
1391 if (sym == NULL)
14b31740 1392 return NULL;
ead1e424 1393
09124467 1394 gold_assert(version == NULL || version == name || oldsym != NULL);
ead1e424 1395 sym->init(name, value, symsize, type, binding, visibility, nonvis);
14b31740 1396
e5756efb 1397 if (oldsym == NULL)
55a93433
ILT
1398 {
1399 if (binding == elfcpp::STB_LOCAL
1400 || this->version_script_.symbol_is_local(name))
1401 this->force_local(sym);
1402 return sym;
1403 }
86f2e683 1404
caa9d5d9 1405 if (force_override || Symbol_table::should_override_with_special(oldsym))
e5756efb
ILT
1406 this->override_with_special(oldsym, sym);
1407 delete sym;
1408 return oldsym;
ead1e424
ILT
1409}
1410
1411// Define a set of symbols in output sections.
1412
1413void
9b07f471 1414Symbol_table::define_symbols(const Layout* layout, int count,
a445fddf
ILT
1415 const Define_symbol_in_section* p,
1416 bool only_if_ref)
ead1e424
ILT
1417{
1418 for (int i = 0; i < count; ++i, ++p)
1419 {
1420 Output_section* os = layout->find_output_section(p->output_section);
1421 if (os != NULL)
9b07f471 1422 this->define_in_output_data(p->name, NULL, os, p->value,
14b31740
ILT
1423 p->size, p->type, p->binding,
1424 p->visibility, p->nonvis,
a445fddf
ILT
1425 p->offset_is_from_end,
1426 only_if_ref || p->only_if_ref);
ead1e424 1427 else
9b07f471 1428 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
ead1e424 1429 p->binding, p->visibility, p->nonvis,
caa9d5d9
ILT
1430 only_if_ref || p->only_if_ref,
1431 false);
ead1e424
ILT
1432 }
1433}
1434
1435// Define a set of symbols in output segments.
1436
1437void
9b07f471 1438Symbol_table::define_symbols(const Layout* layout, int count,
a445fddf
ILT
1439 const Define_symbol_in_segment* p,
1440 bool only_if_ref)
ead1e424
ILT
1441{
1442 for (int i = 0; i < count; ++i, ++p)
1443 {
1444 Output_segment* os = layout->find_output_segment(p->segment_type,
1445 p->segment_flags_set,
1446 p->segment_flags_clear);
1447 if (os != NULL)
9b07f471 1448 this->define_in_output_segment(p->name, NULL, os, p->value,
14b31740
ILT
1449 p->size, p->type, p->binding,
1450 p->visibility, p->nonvis,
a445fddf
ILT
1451 p->offset_base,
1452 only_if_ref || p->only_if_ref);
ead1e424 1453 else
9b07f471 1454 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
ead1e424 1455 p->binding, p->visibility, p->nonvis,
caa9d5d9
ILT
1456 only_if_ref || p->only_if_ref,
1457 false);
ead1e424
ILT
1458 }
1459}
1460
46fe1623
ILT
1461// Define CSYM using a COPY reloc. POSD is the Output_data where the
1462// symbol should be defined--typically a .dyn.bss section. VALUE is
1463// the offset within POSD.
1464
1465template<int size>
1466void
fe8718a4 1467Symbol_table::define_with_copy_reloc(
fe8718a4
ILT
1468 Sized_symbol<size>* csym,
1469 Output_data* posd,
1470 typename elfcpp::Elf_types<size>::Elf_Addr value)
46fe1623
ILT
1471{
1472 gold_assert(csym->is_from_dynobj());
1473 gold_assert(!csym->is_copied_from_dynobj());
1474 Object* object = csym->object();
1475 gold_assert(object->is_dynamic());
1476 Dynobj* dynobj = static_cast<Dynobj*>(object);
1477
1478 // Our copied variable has to override any variable in a shared
1479 // library.
1480 elfcpp::STB binding = csym->binding();
1481 if (binding == elfcpp::STB_WEAK)
1482 binding = elfcpp::STB_GLOBAL;
1483
9b07f471 1484 this->define_in_output_data(csym->name(), csym->version(),
46fe1623
ILT
1485 posd, value, csym->symsize(),
1486 csym->type(), binding,
1487 csym->visibility(), csym->nonvis(),
1488 false, false);
1489
1490 csym->set_is_copied_from_dynobj();
1491 csym->set_needs_dynsym_entry();
1492
1493 this->copied_symbol_dynobjs_[csym] = dynobj;
1494
1495 // We have now defined all aliases, but we have not entered them all
1496 // in the copied_symbol_dynobjs_ map.
1497 if (csym->has_alias())
1498 {
1499 Symbol* sym = csym;
1500 while (true)
1501 {
1502 sym = this->weak_aliases_[sym];
1503 if (sym == csym)
1504 break;
1505 gold_assert(sym->output_data() == posd);
1506
1507 sym->set_is_copied_from_dynobj();
1508 this->copied_symbol_dynobjs_[sym] = dynobj;
1509 }
1510 }
1511}
1512
1513// SYM is defined using a COPY reloc. Return the dynamic object where
1514// the original definition was found.
1515
1516Dynobj*
1517Symbol_table::get_copy_source(const Symbol* sym) const
1518{
1519 gold_assert(sym->is_copied_from_dynobj());
1520 Copied_symbol_dynobjs::const_iterator p =
1521 this->copied_symbol_dynobjs_.find(sym);
1522 gold_assert(p != this->copied_symbol_dynobjs_.end());
1523 return p->second;
1524}
1525
a3ad94ed
ILT
1526// Set the dynamic symbol indexes. INDEX is the index of the first
1527// global dynamic symbol. Pointers to the symbols are stored into the
1528// vector SYMS. The names are added to DYNPOOL. This returns an
1529// updated dynamic symbol index.
1530
1531unsigned int
9b07f471 1532Symbol_table::set_dynsym_indexes(unsigned int index,
a3ad94ed 1533 std::vector<Symbol*>* syms,
14b31740
ILT
1534 Stringpool* dynpool,
1535 Versions* versions)
a3ad94ed
ILT
1536{
1537 for (Symbol_table_type::iterator p = this->table_.begin();
1538 p != this->table_.end();
1539 ++p)
1540 {
1541 Symbol* sym = p->second;
16649710
ILT
1542
1543 // Note that SYM may already have a dynamic symbol index, since
1544 // some symbols appear more than once in the symbol table, with
1545 // and without a version.
1546
436ca963 1547 if (!sym->should_add_dynsym_entry())
16649710
ILT
1548 sym->set_dynsym_index(-1U);
1549 else if (!sym->has_dynsym_index())
a3ad94ed
ILT
1550 {
1551 sym->set_dynsym_index(index);
1552 ++index;
1553 syms->push_back(sym);
cfd73a4e 1554 dynpool->add(sym->name(), false, NULL);
14b31740
ILT
1555
1556 // Record any version information.
09124467
ILT
1557 if (sym->version() != NULL)
1558 versions->record_version(this, dynpool, sym);
a3ad94ed
ILT
1559 }
1560 }
1561
14b31740
ILT
1562 // Finish up the versions. In some cases this may add new dynamic
1563 // symbols.
9b07f471 1564 index = versions->finalize(this, index, syms);
14b31740 1565
a3ad94ed
ILT
1566 return index;
1567}
1568
c06b7b0b 1569// Set the final values for all the symbols. The index of the first
55a93433
ILT
1570// global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1571// file offset OFF. Add their names to POOL. Return the new file
1572// offset. Update *PLOCAL_SYMCOUNT if necessary.
54dc6425 1573
75f65a3e 1574off_t
55a93433
ILT
1575Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1576 size_t dyncount, Stringpool* pool,
1577 unsigned int *plocal_symcount)
54dc6425 1578{
f6ce93d6
ILT
1579 off_t ret;
1580
55a93433
ILT
1581 gold_assert(*plocal_symcount != 0);
1582 this->first_global_index_ = *plocal_symcount;
c06b7b0b 1583
16649710
ILT
1584 this->dynamic_offset_ = dynoff;
1585 this->first_dynamic_global_index_ = dyn_global_index;
1586 this->dynamic_count_ = dyncount;
1587
8851ecca 1588 if (parameters->target().get_size() == 32)
9025d29d
ILT
1589 {
1590#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
55a93433 1591 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
9025d29d
ILT
1592#else
1593 gold_unreachable();
1594#endif
1595 }
8851ecca 1596 else if (parameters->target().get_size() == 64)
9025d29d
ILT
1597 {
1598#if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
55a93433 1599 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
9025d29d
ILT
1600#else
1601 gold_unreachable();
1602#endif
1603 }
61ba1cf9 1604 else
a3ad94ed 1605 gold_unreachable();
f6ce93d6
ILT
1606
1607 // Now that we have the final symbol table, we can reliably note
1608 // which symbols should get warnings.
cb295612 1609 this->warnings_.note_warnings(this);
f6ce93d6
ILT
1610
1611 return ret;
75f65a3e
ILT
1612}
1613
55a93433
ILT
1614// SYM is going into the symbol table at *PINDEX. Add the name to
1615// POOL, update *PINDEX and *POFF.
1616
1617template<int size>
1618void
1619Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1620 unsigned int* pindex, off_t* poff)
1621{
1622 sym->set_symtab_index(*pindex);
1623 pool->add(sym->name(), false, NULL);
1624 ++*pindex;
1625 *poff += elfcpp::Elf_sizes<size>::sym_size;
1626}
1627
ead1e424
ILT
1628// Set the final value for all the symbols. This is called after
1629// Layout::finalize, so all the output sections have their final
1630// address.
75f65a3e
ILT
1631
1632template<int size>
1633off_t
55a93433
ILT
1634Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1635 unsigned int* plocal_symcount)
75f65a3e 1636{
ead1e424 1637 off = align_address(off, size >> 3);
75f65a3e
ILT
1638 this->offset_ = off;
1639
55a93433
ILT
1640 unsigned int index = *plocal_symcount;
1641 const unsigned int orig_index = index;
c06b7b0b 1642
55a93433
ILT
1643 // First do all the symbols which have been forced to be local, as
1644 // they must appear before all global symbols.
1645 for (Forced_locals::iterator p = this->forced_locals_.begin();
1646 p != this->forced_locals_.end();
1647 ++p)
1648 {
1649 Symbol* sym = *p;
1650 gold_assert(sym->is_forced_local());
1651 if (this->sized_finalize_symbol<size>(sym))
1652 {
1653 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1654 ++*plocal_symcount;
1655 }
1656 }
1657
1658 // Now do all the remaining symbols.
c06b7b0b
ILT
1659 for (Symbol_table_type::iterator p = this->table_.begin();
1660 p != this->table_.end();
1661 ++p)
54dc6425 1662 {
55a93433
ILT
1663 Symbol* sym = p->second;
1664 if (this->sized_finalize_symbol<size>(sym))
1665 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1666 }
54dc6425 1667
55a93433 1668 this->output_count_ = index - orig_index;
a3ad94ed 1669
55a93433
ILT
1670 return off;
1671}
75f65a3e 1672
55a93433
ILT
1673// Finalize the symbol SYM. This returns true if the symbol should be
1674// added to the symbol table, false otherwise.
008db82e 1675
55a93433
ILT
1676template<int size>
1677bool
1678Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1679{
1680 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
75f65a3e 1681
55a93433
ILT
1682 // The default version of a symbol may appear twice in the symbol
1683 // table. We only need to finalize it once.
1684 if (sym->has_symtab_index())
1685 return false;
ead1e424 1686
55a93433
ILT
1687 if (!sym->in_reg())
1688 {
1689 gold_assert(!sym->has_symtab_index());
1690 sym->set_symtab_index(-1U);
1691 gold_assert(sym->dynsym_index() == -1U);
1692 return false;
1693 }
ead1e424 1694
55a93433 1695 typename Sized_symbol<size>::Value_type value;
ead1e424 1696
55a93433
ILT
1697 switch (sym->source())
1698 {
1699 case Symbol::FROM_OBJECT:
1700 {
1701 unsigned int shndx = sym->shndx();
ead1e424 1702
55a93433
ILT
1703 // FIXME: We need some target specific support here.
1704 if (shndx >= elfcpp::SHN_LORESERVE
0dfbdef4
ILT
1705 && shndx != elfcpp::SHN_ABS
1706 && shndx != elfcpp::SHN_COMMON)
55a93433
ILT
1707 {
1708 gold_error(_("%s: unsupported symbol section 0x%x"),
1709 sym->demangled_name().c_str(), shndx);
1710 shndx = elfcpp::SHN_UNDEF;
ead1e424 1711 }
ead1e424 1712
55a93433
ILT
1713 Object* symobj = sym->object();
1714 if (symobj->is_dynamic())
ead1e424 1715 {
55a93433
ILT
1716 value = 0;
1717 shndx = elfcpp::SHN_UNDEF;
ead1e424 1718 }
55a93433
ILT
1719 else if (shndx == elfcpp::SHN_UNDEF)
1720 value = 0;
0dfbdef4 1721 else if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
55a93433
ILT
1722 value = sym->value();
1723 else
ead1e424 1724 {
55a93433
ILT
1725 Relobj* relobj = static_cast<Relobj*>(symobj);
1726 section_offset_type secoff;
1727 Output_section* os = relobj->output_section(shndx, &secoff);
1728
1729 if (os == NULL)
ead1e424 1730 {
55a93433
ILT
1731 sym->set_symtab_index(-1U);
1732 gold_assert(sym->dynsym_index() == -1U);
1733 return false;
ead1e424 1734 }
55a93433
ILT
1735
1736 if (sym->type() == elfcpp::STT_TLS)
1737 value = sym->value() + os->tls_offset() + secoff;
1738 else
1739 value = sym->value() + os->address() + secoff;
ead1e424 1740 }
55a93433
ILT
1741 }
1742 break;
1743
1744 case Symbol::IN_OUTPUT_DATA:
1745 {
1746 Output_data* od = sym->output_data();
1747 value = sym->value() + od->address();
1748 if (sym->offset_is_from_end())
1749 value += od->data_size();
1750 }
1751 break;
1752
1753 case Symbol::IN_OUTPUT_SEGMENT:
1754 {
1755 Output_segment* os = sym->output_segment();
1756 value = sym->value() + os->vaddr();
1757 switch (sym->offset_base())
1758 {
1759 case Symbol::SEGMENT_START:
1760 break;
1761 case Symbol::SEGMENT_END:
1762 value += os->memsz();
1763 break;
1764 case Symbol::SEGMENT_BSS:
1765 value += os->filesz();
1766 break;
1767 default:
1768 gold_unreachable();
1769 }
1770 }
1771 break;
ead1e424 1772
55a93433
ILT
1773 case Symbol::CONSTANT:
1774 value = sym->value();
1775 break;
ead1e424 1776
55a93433
ILT
1777 default:
1778 gold_unreachable();
1779 }
ead1e424 1780
55a93433 1781 sym->set_value(value);
9e2dcb77 1782
8851ecca 1783 if (parameters->options().strip_all())
55a93433
ILT
1784 {
1785 sym->set_symtab_index(-1U);
1786 return false;
54dc6425 1787 }
75f65a3e 1788
55a93433 1789 return true;
54dc6425
ILT
1790}
1791
61ba1cf9
ILT
1792// Write out the global symbols.
1793
1794void
9a2d6984
ILT
1795Symbol_table::write_globals(const Input_objects* input_objects,
1796 const Stringpool* sympool,
16649710 1797 const Stringpool* dynpool, Output_file* of) const
61ba1cf9 1798{
8851ecca 1799 switch (parameters->size_and_endianness())
61ba1cf9 1800 {
9025d29d 1801#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1802 case Parameters::TARGET_32_LITTLE:
1803 this->sized_write_globals<32, false>(input_objects, sympool,
1804 dynpool, of);
1805 break;
9025d29d 1806#endif
8851ecca
ILT
1807#ifdef HAVE_TARGET_32_BIG
1808 case Parameters::TARGET_32_BIG:
1809 this->sized_write_globals<32, true>(input_objects, sympool,
1810 dynpool, of);
1811 break;
9025d29d 1812#endif
9025d29d 1813#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1814 case Parameters::TARGET_64_LITTLE:
1815 this->sized_write_globals<64, false>(input_objects, sympool,
1816 dynpool, of);
1817 break;
9025d29d 1818#endif
8851ecca
ILT
1819#ifdef HAVE_TARGET_64_BIG
1820 case Parameters::TARGET_64_BIG:
1821 this->sized_write_globals<64, true>(input_objects, sympool,
1822 dynpool, of);
1823 break;
1824#endif
1825 default:
1826 gold_unreachable();
61ba1cf9 1827 }
61ba1cf9
ILT
1828}
1829
1830// Write out the global symbols.
1831
1832template<int size, bool big_endian>
1833void
9a2d6984 1834Symbol_table::sized_write_globals(const Input_objects* input_objects,
61ba1cf9 1835 const Stringpool* sympool,
16649710 1836 const Stringpool* dynpool,
61ba1cf9
ILT
1837 Output_file* of) const
1838{
8851ecca 1839 const Target& target = parameters->target();
9a2d6984 1840
61ba1cf9 1841 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
55a93433
ILT
1842
1843 const unsigned int output_count = this->output_count_;
1844 const section_size_type oview_size = output_count * sym_size;
1845 const unsigned int first_global_index = this->first_global_index_;
5fe2a0f5
ILT
1846 unsigned char* psyms;
1847 if (this->offset_ == 0 || output_count == 0)
1848 psyms = NULL;
1849 else
1850 psyms = of->get_output_view(this->offset_, oview_size);
16649710 1851
55a93433
ILT
1852 const unsigned int dynamic_count = this->dynamic_count_;
1853 const section_size_type dynamic_size = dynamic_count * sym_size;
1854 const unsigned int first_dynamic_global_index =
1855 this->first_dynamic_global_index_;
16649710 1856 unsigned char* dynamic_view;
5fe2a0f5 1857 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
16649710
ILT
1858 dynamic_view = NULL;
1859 else
1860 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
c06b7b0b 1861
61ba1cf9
ILT
1862 for (Symbol_table_type::const_iterator p = this->table_.begin();
1863 p != this->table_.end();
1864 ++p)
1865 {
1866 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1867
9a2d6984
ILT
1868 // Possibly warn about unresolved symbols in shared libraries.
1869 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
e2827e5f 1870
a3ad94ed 1871 unsigned int sym_index = sym->symtab_index();
16649710
ILT
1872 unsigned int dynsym_index;
1873 if (dynamic_view == NULL)
1874 dynsym_index = -1U;
1875 else
1876 dynsym_index = sym->dynsym_index();
1877
1878 if (sym_index == -1U && dynsym_index == -1U)
a3ad94ed
ILT
1879 {
1880 // This symbol is not included in the output file.
1881 continue;
1882 }
16649710 1883
ead1e424 1884 unsigned int shndx;
88dd47ac
ILT
1885 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
1886 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
ead1e424
ILT
1887 switch (sym->source())
1888 {
1889 case Symbol::FROM_OBJECT:
1890 {
16649710 1891 unsigned int in_shndx = sym->shndx();
ead1e424
ILT
1892
1893 // FIXME: We need some target specific support here.
16649710 1894 if (in_shndx >= elfcpp::SHN_LORESERVE
0dfbdef4
ILT
1895 && in_shndx != elfcpp::SHN_ABS
1896 && in_shndx != elfcpp::SHN_COMMON)
ead1e424 1897 {
75f2446e 1898 gold_error(_("%s: unsupported symbol section 0x%x"),
a2b1aa12 1899 sym->demangled_name().c_str(), in_shndx);
75f2446e 1900 shndx = in_shndx;
f6ce93d6 1901 }
ead1e424
ILT
1902 else
1903 {
75f2446e
ILT
1904 Object* symobj = sym->object();
1905 if (symobj->is_dynamic())
1906 {
1907 if (sym->needs_dynsym_value())
8851ecca 1908 dynsym_value = target.dynsym_value(sym);
75f2446e
ILT
1909 shndx = elfcpp::SHN_UNDEF;
1910 }
1911 else if (in_shndx == elfcpp::SHN_UNDEF
0dfbdef4
ILT
1912 || in_shndx == elfcpp::SHN_ABS
1913 || in_shndx == elfcpp::SHN_COMMON)
75f2446e
ILT
1914 shndx = in_shndx;
1915 else
1916 {
1917 Relobj* relobj = static_cast<Relobj*>(symobj);
8383303e 1918 section_offset_type secoff;
75f2446e
ILT
1919 Output_section* os = relobj->output_section(in_shndx,
1920 &secoff);
1921 gold_assert(os != NULL);
1922 shndx = os->out_shndx();
88dd47ac
ILT
1923
1924 // In object files symbol values are section
1925 // relative.
8851ecca 1926 if (parameters->options().relocatable())
88dd47ac 1927 sym_value -= os->address();
75f2446e 1928 }
ead1e424
ILT
1929 }
1930 }
1931 break;
1932
1933 case Symbol::IN_OUTPUT_DATA:
1934 shndx = sym->output_data()->out_shndx();
1935 break;
1936
1937 case Symbol::IN_OUTPUT_SEGMENT:
1938 shndx = elfcpp::SHN_ABS;
1939 break;
1940
1941 case Symbol::CONSTANT:
1942 shndx = elfcpp::SHN_ABS;
1943 break;
1944
1945 default:
a3ad94ed 1946 gold_unreachable();
ead1e424 1947 }
61ba1cf9 1948
16649710
ILT
1949 if (sym_index != -1U)
1950 {
55a93433
ILT
1951 sym_index -= first_global_index;
1952 gold_assert(sym_index < output_count);
1953 unsigned char* ps = psyms + (sym_index * sym_size);
7d1a9ebb
ILT
1954 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
1955 sympool, ps);
16649710 1956 }
61ba1cf9 1957
16649710
ILT
1958 if (dynsym_index != -1U)
1959 {
1960 dynsym_index -= first_dynamic_global_index;
1961 gold_assert(dynsym_index < dynamic_count);
1962 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
7d1a9ebb
ILT
1963 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
1964 dynpool, pd);
16649710 1965 }
61ba1cf9
ILT
1966 }
1967
c06b7b0b 1968 of->write_output_view(this->offset_, oview_size, psyms);
16649710
ILT
1969 if (dynamic_view != NULL)
1970 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1971}
1972
1973// Write out the symbol SYM, in section SHNDX, to P. POOL is the
1974// strtab holding the name.
1975
1976template<int size, bool big_endian>
1977void
ab5c9e90
ILT
1978Symbol_table::sized_write_symbol(
1979 Sized_symbol<size>* sym,
1980 typename elfcpp::Elf_types<size>::Elf_Addr value,
1981 unsigned int shndx,
1982 const Stringpool* pool,
7d1a9ebb 1983 unsigned char* p) const
16649710
ILT
1984{
1985 elfcpp::Sym_write<size, big_endian> osym(p);
1986 osym.put_st_name(pool->get_offset(sym->name()));
ab5c9e90 1987 osym.put_st_value(value);
16649710 1988 osym.put_st_size(sym->symsize());
55a93433
ILT
1989 // A version script may have overridden the default binding.
1990 if (sym->is_forced_local())
1991 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
1992 else
1993 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
16649710
ILT
1994 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1995 osym.put_st_shndx(shndx);
61ba1cf9
ILT
1996}
1997
9a2d6984
ILT
1998// Check for unresolved symbols in shared libraries. This is
1999// controlled by the --allow-shlib-undefined option.
2000
2001// We only warn about libraries for which we have seen all the
2002// DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2003// which were not seen in this link. If we didn't see a DT_NEEDED
2004// entry, we aren't going to be able to reliably report whether the
2005// symbol is undefined.
2006
2007// We also don't warn about libraries found in the system library
2008// directory (the directory were we find libc.so); we assume that
2009// those libraries are OK. This heuristic avoids problems in
2010// GNU/Linux, in which -ldl can have undefined references satisfied by
2011// ld-linux.so.
2012
2013inline void
2014Symbol_table::warn_about_undefined_dynobj_symbol(
2015 const Input_objects* input_objects,
2016 Symbol* sym) const
2017{
2018 if (sym->source() == Symbol::FROM_OBJECT
2019 && sym->object()->is_dynamic()
2020 && sym->shndx() == elfcpp::SHN_UNDEF
2021 && sym->binding() != elfcpp::STB_WEAK
8851ecca
ILT
2022 && !parameters->options().allow_shlib_undefined()
2023 && !parameters->target().is_defined_by_abi(sym)
9a2d6984
ILT
2024 && !input_objects->found_in_system_library_directory(sym->object()))
2025 {
2026 // A very ugly cast.
2027 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2028 if (!dynobj->has_unknown_needed_entries())
2029 gold_error(_("%s: undefined reference to '%s'"),
a2b1aa12
ILT
2030 sym->object()->name().c_str(),
2031 sym->demangled_name().c_str());
9a2d6984
ILT
2032 }
2033}
2034
a3ad94ed
ILT
2035// Write out a section symbol. Return the update offset.
2036
2037void
9025d29d 2038Symbol_table::write_section_symbol(const Output_section *os,
a3ad94ed
ILT
2039 Output_file* of,
2040 off_t offset) const
2041{
8851ecca 2042 switch (parameters->size_and_endianness())
a3ad94ed 2043 {
9025d29d 2044#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
2045 case Parameters::TARGET_32_LITTLE:
2046 this->sized_write_section_symbol<32, false>(os, of, offset);
2047 break;
9025d29d 2048#endif
8851ecca
ILT
2049#ifdef HAVE_TARGET_32_BIG
2050 case Parameters::TARGET_32_BIG:
2051 this->sized_write_section_symbol<32, true>(os, of, offset);
2052 break;
9025d29d 2053#endif
9025d29d 2054#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
2055 case Parameters::TARGET_64_LITTLE:
2056 this->sized_write_section_symbol<64, false>(os, of, offset);
2057 break;
9025d29d 2058#endif
8851ecca
ILT
2059#ifdef HAVE_TARGET_64_BIG
2060 case Parameters::TARGET_64_BIG:
2061 this->sized_write_section_symbol<64, true>(os, of, offset);
2062 break;
2063#endif
2064 default:
2065 gold_unreachable();
a3ad94ed 2066 }
a3ad94ed
ILT
2067}
2068
2069// Write out a section symbol, specialized for size and endianness.
2070
2071template<int size, bool big_endian>
2072void
2073Symbol_table::sized_write_section_symbol(const Output_section* os,
2074 Output_file* of,
2075 off_t offset) const
2076{
2077 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2078
2079 unsigned char* pov = of->get_output_view(offset, sym_size);
2080
2081 elfcpp::Sym_write<size, big_endian> osym(pov);
2082 osym.put_st_name(0);
2083 osym.put_st_value(os->address());
2084 osym.put_st_size(0);
2085 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2086 elfcpp::STT_SECTION));
2087 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2088 osym.put_st_shndx(os->out_shndx());
2089
2090 of->write_output_view(offset, sym_size, pov);
2091}
2092
abaa3995
ILT
2093// Print statistical information to stderr. This is used for --stats.
2094
2095void
2096Symbol_table::print_stats() const
2097{
2098#if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2099 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2100 program_name, this->table_.size(), this->table_.bucket_count());
2101#else
2102 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2103 program_name, this->table_.size());
2104#endif
ad8f37d1 2105 this->namepool_.print_stats("symbol table stringpool");
abaa3995
ILT
2106}
2107
ff541f30
ILT
2108// We check for ODR violations by looking for symbols with the same
2109// name for which the debugging information reports that they were
2110// defined in different source locations. When comparing the source
2111// location, we consider instances with the same base filename and
2112// line number to be the same. This is because different object
2113// files/shared libraries can include the same header file using
2114// different paths, and we don't want to report an ODR violation in
2115// that case.
2116
2117// This struct is used to compare line information, as returned by
7bf1f802 2118// Dwarf_line_info::one_addr2line. It implements a < comparison
ff541f30
ILT
2119// operator used with std::set.
2120
2121struct Odr_violation_compare
2122{
2123 bool
2124 operator()(const std::string& s1, const std::string& s2) const
2125 {
2126 std::string::size_type pos1 = s1.rfind('/');
2127 std::string::size_type pos2 = s2.rfind('/');
2128 if (pos1 == std::string::npos
2129 || pos2 == std::string::npos)
2130 return s1 < s2;
2131 return s1.compare(pos1, std::string::npos,
2132 s2, pos2, std::string::npos) < 0;
2133 }
2134};
2135
70e654ba
ILT
2136// Check candidate_odr_violations_ to find symbols with the same name
2137// but apparently different definitions (different source-file/line-no).
2138
2139void
17a1d0a9
ILT
2140Symbol_table::detect_odr_violations(const Task* task,
2141 const char* output_file_name) const
70e654ba
ILT
2142{
2143 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2144 it != candidate_odr_violations_.end();
2145 ++it)
2146 {
2147 const char* symbol_name = it->first;
2148 // We use a sorted set so the output is deterministic.
ff541f30 2149 std::set<std::string, Odr_violation_compare> line_nums;
70e654ba 2150
b01c0a4a
ILT
2151 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2152 locs = it->second.begin();
2153 locs != it->second.end();
2154 ++locs)
70e654ba
ILT
2155 {
2156 // We need to lock the object in order to read it. This
17a1d0a9
ILT
2157 // means that we have to run in a singleton Task. If we
2158 // want to run this in a general Task for better
2159 // performance, we will need one Task for object, plus
2160 // appropriate locking to ensure that we don't conflict with
2161 // other uses of the object.
2162 Task_lock_obj<Object> tl(task, locs->object);
a55ce7fe
ILT
2163 std::string lineno = Dwarf_line_info::one_addr2line(
2164 locs->object, locs->shndx, locs->offset);
70e654ba
ILT
2165 if (!lineno.empty())
2166 line_nums.insert(lineno);
2167 }
2168
2169 if (line_nums.size() > 1)
2170 {
dd8670e5 2171 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
78f15696 2172 "places (possible ODR violation):"),
a2b1aa12 2173 output_file_name, demangle(symbol_name).c_str());
70e654ba
ILT
2174 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2175 it2 != line_nums.end();
2176 ++it2)
2177 fprintf(stderr, " %s\n", it2->c_str());
2178 }
2179 }
2180}
2181
f6ce93d6
ILT
2182// Warnings functions.
2183
2184// Add a new warning.
2185
2186void
2187Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
cb295612 2188 const std::string& warning)
f6ce93d6
ILT
2189{
2190 name = symtab->canonicalize_name(name);
cb295612 2191 this->warnings_[name].set(obj, warning);
f6ce93d6
ILT
2192}
2193
2194// Look through the warnings and mark the symbols for which we should
2195// warn. This is called during Layout::finalize when we know the
2196// sources for all the symbols.
2197
2198void
cb295612 2199Warnings::note_warnings(Symbol_table* symtab)
f6ce93d6
ILT
2200{
2201 for (Warning_table::iterator p = this->warnings_.begin();
2202 p != this->warnings_.end();
2203 ++p)
2204 {
2205 Symbol* sym = symtab->lookup(p->first, NULL);
2206 if (sym != NULL
2207 && sym->source() == Symbol::FROM_OBJECT
2208 && sym->object() == p->second.object)
cb295612 2209 sym->set_has_warning();
f6ce93d6
ILT
2210 }
2211}
2212
2213// Issue a warning. This is called when we see a relocation against a
2214// symbol for which has a warning.
2215
75f2446e 2216template<int size, bool big_endian>
f6ce93d6 2217void
75f2446e
ILT
2218Warnings::issue_warning(const Symbol* sym,
2219 const Relocate_info<size, big_endian>* relinfo,
2220 size_t relnum, off_t reloffset) const
f6ce93d6 2221{
a3ad94ed 2222 gold_assert(sym->has_warning());
f6ce93d6 2223 Warning_table::const_iterator p = this->warnings_.find(sym->name());
a3ad94ed 2224 gold_assert(p != this->warnings_.end());
75f2446e
ILT
2225 gold_warning_at_location(relinfo, relnum, reloffset,
2226 "%s", p->second.text.c_str());
f6ce93d6
ILT
2227}
2228
14bfc3f5
ILT
2229// Instantiate the templates we need. We could use the configure
2230// script to restrict this to only the ones needed for implemented
2231// targets.
2232
c7912668
ILT
2233#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2234template
2235void
2236Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2237#endif
2238
2239#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2240template
2241void
2242Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2243#endif
2244
193a53d9 2245#ifdef HAVE_TARGET_32_LITTLE
14bfc3f5
ILT
2246template
2247void
193a53d9
ILT
2248Symbol_table::add_from_relobj<32, false>(
2249 Sized_relobj<32, false>* relobj,
f6ce93d6 2250 const unsigned char* syms,
14bfc3f5
ILT
2251 size_t count,
2252 const char* sym_names,
2253 size_t sym_name_size,
730cdc88 2254 Sized_relobj<32, true>::Symbols* sympointers);
193a53d9 2255#endif
14bfc3f5 2256
193a53d9 2257#ifdef HAVE_TARGET_32_BIG
14bfc3f5
ILT
2258template
2259void
193a53d9
ILT
2260Symbol_table::add_from_relobj<32, true>(
2261 Sized_relobj<32, true>* relobj,
f6ce93d6 2262 const unsigned char* syms,
14bfc3f5
ILT
2263 size_t count,
2264 const char* sym_names,
2265 size_t sym_name_size,
730cdc88 2266 Sized_relobj<32, false>::Symbols* sympointers);
193a53d9 2267#endif
14bfc3f5 2268
193a53d9 2269#ifdef HAVE_TARGET_64_LITTLE
14bfc3f5
ILT
2270template
2271void
193a53d9
ILT
2272Symbol_table::add_from_relobj<64, false>(
2273 Sized_relobj<64, false>* relobj,
f6ce93d6 2274 const unsigned char* syms,
14bfc3f5
ILT
2275 size_t count,
2276 const char* sym_names,
2277 size_t sym_name_size,
730cdc88 2278 Sized_relobj<64, true>::Symbols* sympointers);
193a53d9 2279#endif
14bfc3f5 2280
193a53d9 2281#ifdef HAVE_TARGET_64_BIG
14bfc3f5
ILT
2282template
2283void
193a53d9
ILT
2284Symbol_table::add_from_relobj<64, true>(
2285 Sized_relobj<64, true>* relobj,
f6ce93d6 2286 const unsigned char* syms,
14bfc3f5
ILT
2287 size_t count,
2288 const char* sym_names,
2289 size_t sym_name_size,
730cdc88 2290 Sized_relobj<64, false>::Symbols* sympointers);
193a53d9 2291#endif
14bfc3f5 2292
193a53d9 2293#ifdef HAVE_TARGET_32_LITTLE
dbe717ef
ILT
2294template
2295void
193a53d9
ILT
2296Symbol_table::add_from_dynobj<32, false>(
2297 Sized_dynobj<32, false>* dynobj,
dbe717ef
ILT
2298 const unsigned char* syms,
2299 size_t count,
2300 const char* sym_names,
2301 size_t sym_name_size,
2302 const unsigned char* versym,
2303 size_t versym_size,
2304 const std::vector<const char*>* version_map);
193a53d9 2305#endif
dbe717ef 2306
193a53d9 2307#ifdef HAVE_TARGET_32_BIG
dbe717ef
ILT
2308template
2309void
193a53d9
ILT
2310Symbol_table::add_from_dynobj<32, true>(
2311 Sized_dynobj<32, true>* dynobj,
dbe717ef
ILT
2312 const unsigned char* syms,
2313 size_t count,
2314 const char* sym_names,
2315 size_t sym_name_size,
2316 const unsigned char* versym,
2317 size_t versym_size,
2318 const std::vector<const char*>* version_map);
193a53d9 2319#endif
dbe717ef 2320
193a53d9 2321#ifdef HAVE_TARGET_64_LITTLE
dbe717ef
ILT
2322template
2323void
193a53d9
ILT
2324Symbol_table::add_from_dynobj<64, false>(
2325 Sized_dynobj<64, false>* dynobj,
dbe717ef
ILT
2326 const unsigned char* syms,
2327 size_t count,
2328 const char* sym_names,
2329 size_t sym_name_size,
2330 const unsigned char* versym,
2331 size_t versym_size,
2332 const std::vector<const char*>* version_map);
193a53d9 2333#endif
dbe717ef 2334
193a53d9 2335#ifdef HAVE_TARGET_64_BIG
dbe717ef
ILT
2336template
2337void
193a53d9
ILT
2338Symbol_table::add_from_dynobj<64, true>(
2339 Sized_dynobj<64, true>* dynobj,
dbe717ef
ILT
2340 const unsigned char* syms,
2341 size_t count,
2342 const char* sym_names,
2343 size_t sym_name_size,
2344 const unsigned char* versym,
2345 size_t versym_size,
2346 const std::vector<const char*>* version_map);
193a53d9 2347#endif
dbe717ef 2348
46fe1623
ILT
2349#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2350template
2351void
fe8718a4 2352Symbol_table::define_with_copy_reloc<32>(
fe8718a4
ILT
2353 Sized_symbol<32>* sym,
2354 Output_data* posd,
2355 elfcpp::Elf_types<32>::Elf_Addr value);
46fe1623
ILT
2356#endif
2357
2358#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2359template
2360void
fe8718a4 2361Symbol_table::define_with_copy_reloc<64>(
fe8718a4
ILT
2362 Sized_symbol<64>* sym,
2363 Output_data* posd,
2364 elfcpp::Elf_types<64>::Elf_Addr value);
46fe1623
ILT
2365#endif
2366
75f2446e
ILT
2367#ifdef HAVE_TARGET_32_LITTLE
2368template
2369void
2370Warnings::issue_warning<32, false>(const Symbol* sym,
2371 const Relocate_info<32, false>* relinfo,
2372 size_t relnum, off_t reloffset) const;
2373#endif
2374
2375#ifdef HAVE_TARGET_32_BIG
2376template
2377void
2378Warnings::issue_warning<32, true>(const Symbol* sym,
2379 const Relocate_info<32, true>* relinfo,
2380 size_t relnum, off_t reloffset) const;
2381#endif
2382
2383#ifdef HAVE_TARGET_64_LITTLE
2384template
2385void
2386Warnings::issue_warning<64, false>(const Symbol* sym,
2387 const Relocate_info<64, false>* relinfo,
2388 size_t relnum, off_t reloffset) const;
2389#endif
2390
2391#ifdef HAVE_TARGET_64_BIG
2392template
2393void
2394Warnings::issue_warning<64, true>(const Symbol* sym,
2395 const Relocate_info<64, true>* relinfo,
2396 size_t relnum, off_t reloffset) const;
2397#endif
2398
14bfc3f5 2399} // End namespace gold.