]> git.ipfire.org Git - thirdparty/linux.git/blame - lib/bitmap.c
gpiolib: Drop duplicate offset check in gpiochip_is_requested()
[thirdparty/linux.git] / lib / bitmap.c
CommitLineData
40b0b3f8 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * lib/bitmap.c
4 * Helper functions for bitmap.h.
1da177e4 5 */
c13656b9 6
1da177e4
LT
7#include <linux/bitmap.h>
8#include <linux/bitops.h>
50af5ead 9#include <linux/bug.h>
c13656b9 10#include <linux/ctype.h>
e829c2e4 11#include <linux/device.h>
c13656b9
BG
12#include <linux/errno.h>
13#include <linux/export.h>
e52bc7c2 14#include <linux/kernel.h>
ce1091d4 15#include <linux/mm.h>
c42b65e3 16#include <linux/slab.h>
e52bc7c2 17#include <linux/string.h>
c13656b9 18#include <linux/thread_info.h>
13d4ea09 19#include <linux/uaccess.h>
5aaba363
SH
20
21#include <asm/page.h>
1da177e4 22
e371c481
YN
23#include "kstrtox.h"
24
7d7363e4
RD
25/**
26 * DOC: bitmap introduction
27 *
197d6c1d 28 * bitmaps provide an array of bits, implemented using an
1da177e4
LT
29 * array of unsigned longs. The number of valid bits in a
30 * given bitmap does _not_ need to be an exact multiple of
31 * BITS_PER_LONG.
32 *
33 * The possible unused bits in the last, partially used word
34 * of a bitmap are 'don't care'. The implementation makes
35 * no particular effort to keep them zero. It ensures that
36 * their value will not affect the results of any operation.
37 * The bitmap operations that return Boolean (bitmap_empty,
38 * for example) or scalar (bitmap_weight, for example) results
39 * carefully filter out these unused bits from impacting their
40 * results.
41 *
1da177e4
LT
42 * The byte ordering of bitmaps is more natural on little
43 * endian architectures. See the big-endian headers
44 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
45 * for the best explanations of this ordering.
46 */
47
1da177e4 48int __bitmap_equal(const unsigned long *bitmap1,
5e068069 49 const unsigned long *bitmap2, unsigned int bits)
1da177e4 50{
5e068069 51 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
52 for (k = 0; k < lim; ++k)
53 if (bitmap1[k] != bitmap2[k])
54 return 0;
55
56 if (bits % BITS_PER_LONG)
57 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
58 return 0;
59
60 return 1;
61}
62EXPORT_SYMBOL(__bitmap_equal);
63
b9fa6442
TG
64bool __bitmap_or_equal(const unsigned long *bitmap1,
65 const unsigned long *bitmap2,
66 const unsigned long *bitmap3,
67 unsigned int bits)
68{
69 unsigned int k, lim = bits / BITS_PER_LONG;
70 unsigned long tmp;
71
72 for (k = 0; k < lim; ++k) {
73 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
74 return false;
75 }
76
77 if (!(bits % BITS_PER_LONG))
78 return true;
79
80 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
81 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
82}
83
3d6684f4 84void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
1da177e4 85{
ca1250bb 86 unsigned int k, lim = BITS_TO_LONGS(bits);
1da177e4
LT
87 for (k = 0; k < lim; ++k)
88 dst[k] = ~src[k];
1da177e4
LT
89}
90EXPORT_SYMBOL(__bitmap_complement);
91
72fd4a35 92/**
1da177e4 93 * __bitmap_shift_right - logical right shift of the bits in a bitmap
05fb6bf0
RD
94 * @dst : destination bitmap
95 * @src : source bitmap
96 * @shift : shift by this many bits
2fbad299 97 * @nbits : bitmap size, in bits
1da177e4
LT
98 *
99 * Shifting right (dividing) means moving bits in the MS -> LS bit
100 * direction. Zeros are fed into the vacated MS positions and the
101 * LS bits shifted off the bottom are lost.
102 */
2fbad299
RV
103void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
104 unsigned shift, unsigned nbits)
1da177e4 105{
cfac1d08 106 unsigned k, lim = BITS_TO_LONGS(nbits);
2fbad299 107 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
cfac1d08 108 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1da177e4
LT
109 for (k = 0; off + k < lim; ++k) {
110 unsigned long upper, lower;
111
112 /*
113 * If shift is not word aligned, take lower rem bits of
114 * word above and make them the top rem bits of result.
115 */
116 if (!rem || off + k + 1 >= lim)
117 upper = 0;
118 else {
119 upper = src[off + k + 1];
cfac1d08 120 if (off + k + 1 == lim - 1)
1da177e4 121 upper &= mask;
9d8a6b2a 122 upper <<= (BITS_PER_LONG - rem);
1da177e4
LT
123 }
124 lower = src[off + k];
cfac1d08 125 if (off + k == lim - 1)
1da177e4 126 lower &= mask;
9d8a6b2a
RV
127 lower >>= rem;
128 dst[k] = lower | upper;
1da177e4
LT
129 }
130 if (off)
131 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
132}
133EXPORT_SYMBOL(__bitmap_shift_right);
134
135
72fd4a35 136/**
1da177e4 137 * __bitmap_shift_left - logical left shift of the bits in a bitmap
05fb6bf0
RD
138 * @dst : destination bitmap
139 * @src : source bitmap
140 * @shift : shift by this many bits
dba94c25 141 * @nbits : bitmap size, in bits
1da177e4
LT
142 *
143 * Shifting left (multiplying) means moving bits in the LS -> MS
144 * direction. Zeros are fed into the vacated LS bit positions
145 * and those MS bits shifted off the top are lost.
146 */
147
dba94c25
RV
148void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
149 unsigned int shift, unsigned int nbits)
1da177e4 150{
dba94c25 151 int k;
7f590657 152 unsigned int lim = BITS_TO_LONGS(nbits);
dba94c25 153 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
1da177e4
LT
154 for (k = lim - off - 1; k >= 0; --k) {
155 unsigned long upper, lower;
156
157 /*
158 * If shift is not word aligned, take upper rem bits of
159 * word below and make them the bottom rem bits of result.
160 */
161 if (rem && k > 0)
6d874eca 162 lower = src[k - 1] >> (BITS_PER_LONG - rem);
1da177e4
LT
163 else
164 lower = 0;
7f590657 165 upper = src[k] << rem;
6d874eca 166 dst[k + off] = lower | upper;
1da177e4
LT
167 }
168 if (off)
169 memset(dst, 0, off*sizeof(unsigned long));
170}
171EXPORT_SYMBOL(__bitmap_shift_left);
172
20927671
SB
173/**
174 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
175 * @dst: destination bitmap, might overlap with src
176 * @src: source bitmap
177 * @first: start bit of region to be removed
178 * @cut: number of bits to remove
179 * @nbits: bitmap size, in bits
180 *
181 * Set the n-th bit of @dst iff the n-th bit of @src is set and
182 * n is less than @first, or the m-th bit of @src is set for any
183 * m such that @first <= n < nbits, and m = n + @cut.
184 *
185 * In pictures, example for a big-endian 32-bit architecture:
186 *
4642289b 187 * The @src bitmap is::
20927671 188 *
4642289b
MCC
189 * 31 63
190 * | |
191 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101
192 * | | | |
193 * 16 14 0 32
20927671 194 *
4642289b
MCC
195 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
196 *
197 * 31 63
198 * | |
199 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010
200 * | | |
201 * 14 (bit 17 0 32
202 * from @src)
20927671
SB
203 *
204 * Note that @dst and @src might overlap partially or entirely.
205 *
206 * This is implemented in the obvious way, with a shift and carry
207 * step for each moved bit. Optimisation is left as an exercise
208 * for the compiler.
209 */
210void bitmap_cut(unsigned long *dst, const unsigned long *src,
211 unsigned int first, unsigned int cut, unsigned int nbits)
212{
213 unsigned int len = BITS_TO_LONGS(nbits);
214 unsigned long keep = 0, carry;
215 int i;
216
20927671
SB
217 if (first % BITS_PER_LONG) {
218 keep = src[first / BITS_PER_LONG] &
219 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
220 }
221
5959f829
SB
222 memmove(dst, src, len * sizeof(*dst));
223
20927671
SB
224 while (cut--) {
225 for (i = first / BITS_PER_LONG; i < len; i++) {
226 if (i < len - 1)
227 carry = dst[i + 1] & 1UL;
228 else
229 carry = 0;
230
231 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
232 }
233 }
234
235 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
236 dst[first / BITS_PER_LONG] |= keep;
237}
238EXPORT_SYMBOL(bitmap_cut);
239
f4b0373b 240int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 241 const unsigned long *bitmap2, unsigned int bits)
1da177e4 242{
2f9305eb 243 unsigned int k;
7e5f97d1 244 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 245 unsigned long result = 0;
1da177e4 246
7e5f97d1 247 for (k = 0; k < lim; k++)
f4b0373b 248 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
7e5f97d1
RV
249 if (bits % BITS_PER_LONG)
250 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
251 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 252 return result != 0;
1da177e4
LT
253}
254EXPORT_SYMBOL(__bitmap_and);
255
256void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 257 const unsigned long *bitmap2, unsigned int bits)
1da177e4 258{
2f9305eb
RV
259 unsigned int k;
260 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
261
262 for (k = 0; k < nr; k++)
263 dst[k] = bitmap1[k] | bitmap2[k];
264}
265EXPORT_SYMBOL(__bitmap_or);
266
267void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 268 const unsigned long *bitmap2, unsigned int bits)
1da177e4 269{
2f9305eb
RV
270 unsigned int k;
271 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
272
273 for (k = 0; k < nr; k++)
274 dst[k] = bitmap1[k] ^ bitmap2[k];
275}
276EXPORT_SYMBOL(__bitmap_xor);
277
f4b0373b 278int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 279 const unsigned long *bitmap2, unsigned int bits)
1da177e4 280{
2f9305eb 281 unsigned int k;
74e76531 282 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 283 unsigned long result = 0;
1da177e4 284
74e76531 285 for (k = 0; k < lim; k++)
f4b0373b 286 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
74e76531
RV
287 if (bits % BITS_PER_LONG)
288 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
289 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 290 return result != 0;
1da177e4
LT
291}
292EXPORT_SYMBOL(__bitmap_andnot);
293
30544ed5
AS
294void __bitmap_replace(unsigned long *dst,
295 const unsigned long *old, const unsigned long *new,
296 const unsigned long *mask, unsigned int nbits)
297{
298 unsigned int k;
299 unsigned int nr = BITS_TO_LONGS(nbits);
300
301 for (k = 0; k < nr; k++)
302 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
303}
304EXPORT_SYMBOL(__bitmap_replace);
305
1da177e4 306int __bitmap_intersects(const unsigned long *bitmap1,
6dfe9799 307 const unsigned long *bitmap2, unsigned int bits)
1da177e4 308{
6dfe9799 309 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
310 for (k = 0; k < lim; ++k)
311 if (bitmap1[k] & bitmap2[k])
312 return 1;
313
314 if (bits % BITS_PER_LONG)
315 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
316 return 1;
317 return 0;
318}
319EXPORT_SYMBOL(__bitmap_intersects);
320
321int __bitmap_subset(const unsigned long *bitmap1,
5be20213 322 const unsigned long *bitmap2, unsigned int bits)
1da177e4 323{
5be20213 324 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
325 for (k = 0; k < lim; ++k)
326 if (bitmap1[k] & ~bitmap2[k])
327 return 0;
328
329 if (bits % BITS_PER_LONG)
330 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
331 return 0;
332 return 1;
333}
334EXPORT_SYMBOL(__bitmap_subset);
335
877d9f3b 336int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
1da177e4 337{
877d9f3b
RV
338 unsigned int k, lim = bits/BITS_PER_LONG;
339 int w = 0;
1da177e4
LT
340
341 for (k = 0; k < lim; k++)
37d54111 342 w += hweight_long(bitmap[k]);
1da177e4
LT
343
344 if (bits % BITS_PER_LONG)
37d54111 345 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
1da177e4
LT
346
347 return w;
348}
1da177e4
LT
349EXPORT_SYMBOL(__bitmap_weight);
350
e5af323c 351void __bitmap_set(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
352{
353 unsigned long *p = map + BIT_WORD(start);
fb5ac542 354 const unsigned int size = start + len;
c1a2a962
AM
355 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
356 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
357
fb5ac542 358 while (len - bits_to_set >= 0) {
c1a2a962 359 *p |= mask_to_set;
fb5ac542 360 len -= bits_to_set;
c1a2a962
AM
361 bits_to_set = BITS_PER_LONG;
362 mask_to_set = ~0UL;
363 p++;
364 }
fb5ac542 365 if (len) {
c1a2a962
AM
366 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
367 *p |= mask_to_set;
368 }
369}
e5af323c 370EXPORT_SYMBOL(__bitmap_set);
c1a2a962 371
e5af323c 372void __bitmap_clear(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
373{
374 unsigned long *p = map + BIT_WORD(start);
154f5e38 375 const unsigned int size = start + len;
c1a2a962
AM
376 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
377 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
378
154f5e38 379 while (len - bits_to_clear >= 0) {
c1a2a962 380 *p &= ~mask_to_clear;
154f5e38 381 len -= bits_to_clear;
c1a2a962
AM
382 bits_to_clear = BITS_PER_LONG;
383 mask_to_clear = ~0UL;
384 p++;
385 }
154f5e38 386 if (len) {
c1a2a962
AM
387 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
388 *p &= ~mask_to_clear;
389 }
390}
e5af323c 391EXPORT_SYMBOL(__bitmap_clear);
c1a2a962 392
5e19b013
MN
393/**
394 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
c1a2a962
AM
395 * @map: The address to base the search on
396 * @size: The bitmap size in bits
397 * @start: The bitnumber to start searching at
398 * @nr: The number of zeroed bits we're looking for
399 * @align_mask: Alignment mask for zero area
5e19b013 400 * @align_offset: Alignment offset for zero area.
c1a2a962
AM
401 *
402 * The @align_mask should be one less than a power of 2; the effect is that
5e19b013
MN
403 * the bit offset of all zero areas this function finds plus @align_offset
404 * is multiple of that power of 2.
c1a2a962 405 */
5e19b013
MN
406unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
407 unsigned long size,
408 unsigned long start,
409 unsigned int nr,
410 unsigned long align_mask,
411 unsigned long align_offset)
c1a2a962
AM
412{
413 unsigned long index, end, i;
414again:
415 index = find_next_zero_bit(map, size, start);
416
417 /* Align allocation */
5e19b013 418 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
c1a2a962
AM
419
420 end = index + nr;
421 if (end > size)
422 return end;
423 i = find_next_bit(map, end, index);
424 if (i < end) {
425 start = i + 1;
426 goto again;
427 }
428 return index;
429}
5e19b013 430EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
c1a2a962 431
1da177e4 432/*
6d49e352 433 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
1da177e4
LT
434 * second version by Paul Jackson, third by Joe Korty.
435 */
436
01a3ee2b 437/**
9a86e2ba 438 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
01a3ee2b
RC
439 *
440 * @ubuf: pointer to user buffer containing string.
441 * @ulen: buffer size in bytes. If string is smaller than this
442 * then it must be terminated with a \0.
443 * @maskp: pointer to bitmap array that will contain result.
444 * @nmaskbits: size of bitmap, in bits.
01a3ee2b
RC
445 */
446int bitmap_parse_user(const char __user *ubuf,
447 unsigned int ulen, unsigned long *maskp,
448 int nmaskbits)
449{
e66eda06
YN
450 char *buf;
451 int ret;
452
453 buf = memdup_user_nul(ubuf, ulen);
454 if (IS_ERR(buf))
455 return PTR_ERR(buf);
456
2d626158 457 ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
b9c321fd 458
e66eda06
YN
459 kfree(buf);
460 return ret;
01a3ee2b
RC
461}
462EXPORT_SYMBOL(bitmap_parse_user);
1da177e4 463
5aaba363
SH
464/**
465 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
466 * @list: indicates whether the bitmap must be list
467 * @buf: page aligned buffer into which string is placed
468 * @maskp: pointer to bitmap to convert
469 * @nmaskbits: size of bitmap, in bits
470 *
471 * Output format is a comma-separated list of decimal numbers and
472 * ranges if list is specified or hex digits grouped into comma-separated
473 * sets of 8 digits/set. Returns the number of characters written to buf.
9cf79d11 474 *
ce1091d4
RV
475 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
476 * area and that sufficient storage remains at @buf to accommodate the
477 * bitmap_print_to_pagebuf() output. Returns the number of characters
478 * actually printed to @buf, excluding terminating '\0'.
5aaba363
SH
479 */
480int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
481 int nmaskbits)
482{
ce1091d4 483 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
5aaba363 484
8ec3d768
RV
485 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
486 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
5aaba363
SH
487}
488EXPORT_SYMBOL(bitmap_print_to_pagebuf);
489
e371c481
YN
490/*
491 * Region 9-38:4/10 describes the following bitmap structure:
9d7a3366
PG
492 * 0 9 12 18 38 N
493 * .........****......****......****..................
494 * ^ ^ ^ ^ ^
495 * start off group_len end nbits
e371c481
YN
496 */
497struct region {
498 unsigned int start;
499 unsigned int off;
500 unsigned int group_len;
501 unsigned int end;
9d7a3366 502 unsigned int nbits;
e371c481
YN
503};
504
f3c869ca 505static void bitmap_set_region(const struct region *r, unsigned long *bitmap)
e371c481
YN
506{
507 unsigned int start;
508
e371c481
YN
509 for (start = r->start; start <= r->end; start += r->group_len)
510 bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
e371c481
YN
511}
512
513static int bitmap_check_region(const struct region *r)
514{
515 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
516 return -EINVAL;
517
f3c869ca
PG
518 if (r->end >= r->nbits)
519 return -ERANGE;
520
e371c481
YN
521 return 0;
522}
523
2c4885d2
PG
524static const char *bitmap_getnum(const char *str, unsigned int *num,
525 unsigned int lastbit)
e371c481
YN
526{
527 unsigned long long n;
528 unsigned int len;
529
2c4885d2
PG
530 if (str[0] == 'N') {
531 *num = lastbit;
532 return str + 1;
533 }
534
e371c481
YN
535 len = _parse_integer(str, 10, &n);
536 if (!len)
537 return ERR_PTR(-EINVAL);
538 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
539 return ERR_PTR(-EOVERFLOW);
540
541 *num = n;
542 return str + len;
543}
544
545static inline bool end_of_str(char c)
546{
547 return c == '\0' || c == '\n';
548}
549
550static inline bool __end_of_region(char c)
551{
552 return isspace(c) || c == ',';
553}
554
555static inline bool end_of_region(char c)
556{
557 return __end_of_region(c) || end_of_str(c);
558}
559
560/*
20607434 561 * The format allows commas and whitespaces at the beginning
e371c481
YN
562 * of the region.
563 */
564static const char *bitmap_find_region(const char *str)
565{
566 while (__end_of_region(*str))
567 str++;
568
569 return end_of_str(*str) ? NULL : str;
570}
571
2d626158
YN
572static const char *bitmap_find_region_reverse(const char *start, const char *end)
573{
574 while (start <= end && __end_of_region(*end))
575 end--;
576
577 return end;
578}
579
e371c481
YN
580static const char *bitmap_parse_region(const char *str, struct region *r)
581{
2c4885d2
PG
582 unsigned int lastbit = r->nbits - 1;
583
584 str = bitmap_getnum(str, &r->start, lastbit);
e371c481
YN
585 if (IS_ERR(str))
586 return str;
587
588 if (end_of_region(*str))
589 goto no_end;
590
591 if (*str != '-')
592 return ERR_PTR(-EINVAL);
593
2c4885d2 594 str = bitmap_getnum(str + 1, &r->end, lastbit);
e371c481
YN
595 if (IS_ERR(str))
596 return str;
597
598 if (end_of_region(*str))
599 goto no_pattern;
600
601 if (*str != ':')
602 return ERR_PTR(-EINVAL);
603
2c4885d2 604 str = bitmap_getnum(str + 1, &r->off, lastbit);
e371c481
YN
605 if (IS_ERR(str))
606 return str;
607
608 if (*str != '/')
609 return ERR_PTR(-EINVAL);
610
2c4885d2 611 return bitmap_getnum(str + 1, &r->group_len, lastbit);
e371c481
YN
612
613no_end:
614 r->end = r->start;
615no_pattern:
616 r->off = r->end + 1;
617 r->group_len = r->end + 1;
618
619 return end_of_str(*str) ? NULL : str;
620}
621
1da177e4 622/**
e371c481
YN
623 * bitmap_parselist - convert list format ASCII string to bitmap
624 * @buf: read user string from this buffer; must be terminated
625 * with a \0 or \n.
6e1907ff 626 * @maskp: write resulting mask here
1da177e4
LT
627 * @nmaskbits: number of bits in mask to be written
628 *
629 * Input format is a comma-separated list of decimal numbers and
630 * ranges. Consecutively set bits are shown as two hyphen-separated
631 * decimal numbers, the smallest and largest bit numbers set in
632 * the range.
2d13e6ca
NC
633 * Optionally each range can be postfixed to denote that only parts of it
634 * should be set. The range will divided to groups of specific size.
635 * From each group will be used only defined amount of bits.
636 * Syntax: range:used_size/group_size
637 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
2c4885d2
PG
638 * The value 'N' can be used as a dynamically substituted token for the
639 * maximum allowed value; i.e (nmaskbits - 1). Keep in mind that it is
640 * dynamic, so if system changes cause the bitmap width to change, such
641 * as more cores in a CPU list, then any ranges using N will also change.
1da177e4 642 *
40bf19a8
MCC
643 * Returns: 0 on success, -errno on invalid input strings. Error values:
644 *
e371c481 645 * - ``-EINVAL``: wrong region format
40bf19a8
MCC
646 * - ``-EINVAL``: invalid character in string
647 * - ``-ERANGE``: bit number specified too large for mask
e371c481 648 * - ``-EOVERFLOW``: integer overflow in the input parameters
1da177e4 649 */
e371c481 650int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
1da177e4 651{
e371c481
YN
652 struct region r;
653 long ret;
1da177e4 654
9d7a3366
PG
655 r.nbits = nmaskbits;
656 bitmap_zero(maskp, r.nbits);
4b060420 657
e371c481
YN
658 while (buf) {
659 buf = bitmap_find_region(buf);
660 if (buf == NULL)
661 return 0;
2d13e6ca 662
e371c481
YN
663 buf = bitmap_parse_region(buf, &r);
664 if (IS_ERR(buf))
665 return PTR_ERR(buf);
2d13e6ca 666
e371c481
YN
667 ret = bitmap_check_region(&r);
668 if (ret)
669 return ret;
4b060420 670
f3c869ca 671 bitmap_set_region(&r, maskp);
e371c481 672 }
4b060420 673
1da177e4
LT
674 return 0;
675}
676EXPORT_SYMBOL(bitmap_parselist);
677
4b060420
MT
678
679/**
680 * bitmap_parselist_user()
681 *
682 * @ubuf: pointer to user buffer containing string.
683 * @ulen: buffer size in bytes. If string is smaller than this
684 * then it must be terminated with a \0.
685 * @maskp: pointer to bitmap array that will contain result.
686 * @nmaskbits: size of bitmap, in bits.
687 *
688 * Wrapper for bitmap_parselist(), providing it with user buffer.
4b060420
MT
689 */
690int bitmap_parselist_user(const char __user *ubuf,
691 unsigned int ulen, unsigned long *maskp,
692 int nmaskbits)
693{
281327c9
YN
694 char *buf;
695 int ret;
696
697 buf = memdup_user_nul(ubuf, ulen);
698 if (IS_ERR(buf))
699 return PTR_ERR(buf);
700
701 ret = bitmap_parselist(buf, maskp, nmaskbits);
702
703 kfree(buf);
704 return ret;
4b060420
MT
705}
706EXPORT_SYMBOL(bitmap_parselist_user);
707
2d626158
YN
708static const char *bitmap_get_x32_reverse(const char *start,
709 const char *end, u32 *num)
710{
711 u32 ret = 0;
712 int c, i;
713
714 for (i = 0; i < 32; i += 4) {
715 c = hex_to_bin(*end--);
716 if (c < 0)
717 return ERR_PTR(-EINVAL);
718
719 ret |= c << i;
720
721 if (start > end || __end_of_region(*end))
722 goto out;
723 }
724
725 if (hex_to_bin(*end--) >= 0)
726 return ERR_PTR(-EOVERFLOW);
727out:
728 *num = ret;
729 return end;
730}
731
732/**
733 * bitmap_parse - convert an ASCII hex string into a bitmap.
734 * @start: pointer to buffer containing string.
735 * @buflen: buffer size in bytes. If string is smaller than this
736 * then it must be terminated with a \0 or \n. In that case,
737 * UINT_MAX may be provided instead of string length.
738 * @maskp: pointer to bitmap array that will contain result.
739 * @nmaskbits: size of bitmap, in bits.
740 *
741 * Commas group hex digits into chunks. Each chunk defines exactly 32
742 * bits of the resultant bitmask. No chunk may specify a value larger
743 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
744 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
745 * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
746 * Leading, embedded and trailing whitespace accepted.
747 */
748int bitmap_parse(const char *start, unsigned int buflen,
749 unsigned long *maskp, int nmaskbits)
750{
751 const char *end = strnchrnul(start, buflen, '\n') - 1;
752 int chunks = BITS_TO_U32(nmaskbits);
753 u32 *bitmap = (u32 *)maskp;
754 int unset_bit;
81c4f4d9 755 int chunk;
2d626158 756
81c4f4d9 757 for (chunk = 0; ; chunk++) {
2d626158
YN
758 end = bitmap_find_region_reverse(start, end);
759 if (start > end)
760 break;
761
762 if (!chunks--)
763 return -EOVERFLOW;
764
81c4f4d9
AG
765#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
766 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]);
767#else
768 end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]);
769#endif
2d626158
YN
770 if (IS_ERR(end))
771 return PTR_ERR(end);
772 }
773
774 unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
775 if (unset_bit < nmaskbits) {
776 bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
777 return 0;
778 }
779
780 if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
781 return -EOVERFLOW;
782
783 return 0;
784}
785EXPORT_SYMBOL(bitmap_parse);
786
4b060420 787
cdc90a18 788#ifdef CONFIG_NUMA
72fd4a35 789/**
9a86e2ba 790 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
fb5eeeee 791 * @buf: pointer to a bitmap
df1d80a9
RV
792 * @pos: a bit position in @buf (0 <= @pos < @nbits)
793 * @nbits: number of valid bit positions in @buf
fb5eeeee 794 *
df1d80a9 795 * Map the bit at position @pos in @buf (of length @nbits) to the
fb5eeeee 796 * ordinal of which set bit it is. If it is not set or if @pos
96b7f341 797 * is not a valid bit position, map to -1.
fb5eeeee
PJ
798 *
799 * If for example, just bits 4 through 7 are set in @buf, then @pos
800 * values 4 through 7 will get mapped to 0 through 3, respectively,
a8551748 801 * and other @pos values will get mapped to -1. When @pos value 7
fb5eeeee
PJ
802 * gets mapped to (returns) @ord value 3 in this example, that means
803 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
804 *
805 * The bit positions 0 through @bits are valid positions in @buf.
806 */
df1d80a9 807static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
fb5eeeee 808{
df1d80a9 809 if (pos >= nbits || !test_bit(pos, buf))
96b7f341 810 return -1;
fb5eeeee 811
df1d80a9 812 return __bitmap_weight(buf, pos);
fb5eeeee
PJ
813}
814
815/**
9a86e2ba 816 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
fb5eeeee
PJ
817 * @buf: pointer to bitmap
818 * @ord: ordinal bit position (n-th set bit, n >= 0)
f6a1f5db 819 * @nbits: number of valid bit positions in @buf
fb5eeeee
PJ
820 *
821 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
f6a1f5db
RV
822 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
823 * >= weight(buf), returns @nbits.
fb5eeeee
PJ
824 *
825 * If for example, just bits 4 through 7 are set in @buf, then @ord
826 * values 0 through 3 will get mapped to 4 through 7, respectively,
f6a1f5db 827 * and all other @ord values returns @nbits. When @ord value 3
fb5eeeee
PJ
828 * gets mapped to (returns) @pos value 7 in this example, that means
829 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
830 *
f6a1f5db 831 * The bit positions 0 through @nbits-1 are valid positions in @buf.
fb5eeeee 832 */
f6a1f5db 833unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
fb5eeeee 834{
f6a1f5db 835 unsigned int pos;
fb5eeeee 836
f6a1f5db
RV
837 for (pos = find_first_bit(buf, nbits);
838 pos < nbits && ord;
839 pos = find_next_bit(buf, nbits, pos + 1))
840 ord--;
fb5eeeee
PJ
841
842 return pos;
843}
844
845/**
846 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
fb5eeeee 847 * @dst: remapped result
96b7f341 848 * @src: subset to be remapped
fb5eeeee
PJ
849 * @old: defines domain of map
850 * @new: defines range of map
9814ec13 851 * @nbits: number of bits in each of these bitmaps
fb5eeeee
PJ
852 *
853 * Let @old and @new define a mapping of bit positions, such that
854 * whatever position is held by the n-th set bit in @old is mapped
855 * to the n-th set bit in @new. In the more general case, allowing
856 * for the possibility that the weight 'w' of @new is less than the
857 * weight of @old, map the position of the n-th set bit in @old to
858 * the position of the m-th set bit in @new, where m == n % w.
859 *
96b7f341
PJ
860 * If either of the @old and @new bitmaps are empty, or if @src and
861 * @dst point to the same location, then this routine copies @src
862 * to @dst.
fb5eeeee 863 *
96b7f341
PJ
864 * The positions of unset bits in @old are mapped to themselves
865 * (the identify map).
fb5eeeee
PJ
866 *
867 * Apply the above specified mapping to @src, placing the result in
868 * @dst, clearing any bits previously set in @dst.
869 *
fb5eeeee
PJ
870 * For example, lets say that @old has bits 4 through 7 set, and
871 * @new has bits 12 through 15 set. This defines the mapping of bit
872 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
873 * bit positions unchanged. So if say @src comes into this routine
874 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
875 * 13 and 15 set.
fb5eeeee
PJ
876 */
877void bitmap_remap(unsigned long *dst, const unsigned long *src,
878 const unsigned long *old, const unsigned long *new,
9814ec13 879 unsigned int nbits)
fb5eeeee 880{
9814ec13 881 unsigned int oldbit, w;
fb5eeeee 882
fb5eeeee
PJ
883 if (dst == src) /* following doesn't handle inplace remaps */
884 return;
9814ec13 885 bitmap_zero(dst, nbits);
96b7f341 886
9814ec13
RV
887 w = bitmap_weight(new, nbits);
888 for_each_set_bit(oldbit, src, nbits) {
889 int n = bitmap_pos_to_ord(old, oldbit, nbits);
08564fb7 890
96b7f341
PJ
891 if (n < 0 || w == 0)
892 set_bit(oldbit, dst); /* identity map */
893 else
9814ec13 894 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
fb5eeeee
PJ
895 }
896}
fb5eeeee
PJ
897
898/**
899 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
6e1907ff
RD
900 * @oldbit: bit position to be mapped
901 * @old: defines domain of map
902 * @new: defines range of map
903 * @bits: number of bits in each of these bitmaps
fb5eeeee
PJ
904 *
905 * Let @old and @new define a mapping of bit positions, such that
906 * whatever position is held by the n-th set bit in @old is mapped
907 * to the n-th set bit in @new. In the more general case, allowing
908 * for the possibility that the weight 'w' of @new is less than the
909 * weight of @old, map the position of the n-th set bit in @old to
910 * the position of the m-th set bit in @new, where m == n % w.
911 *
96b7f341
PJ
912 * The positions of unset bits in @old are mapped to themselves
913 * (the identify map).
fb5eeeee
PJ
914 *
915 * Apply the above specified mapping to bit position @oldbit, returning
916 * the new bit position.
917 *
918 * For example, lets say that @old has bits 4 through 7 set, and
919 * @new has bits 12 through 15 set. This defines the mapping of bit
920 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
921 * bit positions unchanged. So if say @oldbit is 5, then this routine
922 * returns 13.
fb5eeeee
PJ
923 */
924int bitmap_bitremap(int oldbit, const unsigned long *old,
925 const unsigned long *new, int bits)
926{
96b7f341
PJ
927 int w = bitmap_weight(new, bits);
928 int n = bitmap_pos_to_ord(old, oldbit, bits);
929 if (n < 0 || w == 0)
930 return oldbit;
931 else
932 return bitmap_ord_to_pos(new, n % w, bits);
fb5eeeee 933}
fb5eeeee 934
7ea931c9
PJ
935/**
936 * bitmap_onto - translate one bitmap relative to another
937 * @dst: resulting translated bitmap
938 * @orig: original untranslated bitmap
939 * @relmap: bitmap relative to which translated
940 * @bits: number of bits in each of these bitmaps
941 *
942 * Set the n-th bit of @dst iff there exists some m such that the
943 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
944 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
945 * (If you understood the previous sentence the first time your
946 * read it, you're overqualified for your current job.)
947 *
948 * In other words, @orig is mapped onto (surjectively) @dst,
da3dae54 949 * using the map { <n, m> | the n-th bit of @relmap is the
7ea931c9
PJ
950 * m-th set bit of @relmap }.
951 *
952 * Any set bits in @orig above bit number W, where W is the
953 * weight of (number of set bits in) @relmap are mapped nowhere.
954 * In particular, if for all bits m set in @orig, m >= W, then
955 * @dst will end up empty. In situations where the possibility
956 * of such an empty result is not desired, one way to avoid it is
957 * to use the bitmap_fold() operator, below, to first fold the
958 * @orig bitmap over itself so that all its set bits x are in the
959 * range 0 <= x < W. The bitmap_fold() operator does this by
960 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
961 *
962 * Example [1] for bitmap_onto():
963 * Let's say @relmap has bits 30-39 set, and @orig has bits
964 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
965 * @dst will have bits 31, 33, 35, 37 and 39 set.
966 *
967 * When bit 0 is set in @orig, it means turn on the bit in
968 * @dst corresponding to whatever is the first bit (if any)
969 * that is turned on in @relmap. Since bit 0 was off in the
970 * above example, we leave off that bit (bit 30) in @dst.
971 *
972 * When bit 1 is set in @orig (as in the above example), it
973 * means turn on the bit in @dst corresponding to whatever
974 * is the second bit that is turned on in @relmap. The second
975 * bit in @relmap that was turned on in the above example was
976 * bit 31, so we turned on bit 31 in @dst.
977 *
978 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
979 * because they were the 4th, 6th, 8th and 10th set bits
980 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
981 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
982 *
983 * When bit 11 is set in @orig, it means turn on the bit in
25985edc 984 * @dst corresponding to whatever is the twelfth bit that is
7ea931c9
PJ
985 * turned on in @relmap. In the above example, there were
986 * only ten bits turned on in @relmap (30..39), so that bit
987 * 11 was set in @orig had no affect on @dst.
988 *
989 * Example [2] for bitmap_fold() + bitmap_onto():
40bf19a8
MCC
990 * Let's say @relmap has these ten bits set::
991 *
7ea931c9 992 * 40 41 42 43 45 48 53 61 74 95
40bf19a8 993 *
7ea931c9
PJ
994 * (for the curious, that's 40 plus the first ten terms of the
995 * Fibonacci sequence.)
996 *
997 * Further lets say we use the following code, invoking
998 * bitmap_fold() then bitmap_onto, as suggested above to
40bf19a8 999 * avoid the possibility of an empty @dst result::
7ea931c9
PJ
1000 *
1001 * unsigned long *tmp; // a temporary bitmap's bits
1002 *
1003 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
1004 * bitmap_onto(dst, tmp, relmap, bits);
1005 *
1006 * Then this table shows what various values of @dst would be, for
1007 * various @orig's. I list the zero-based positions of each set bit.
1008 * The tmp column shows the intermediate result, as computed by
1009 * using bitmap_fold() to fold the @orig bitmap modulo ten
40bf19a8 1010 * (the weight of @relmap):
7ea931c9 1011 *
40bf19a8 1012 * =============== ============== =================
7ea931c9
PJ
1013 * @orig tmp @dst
1014 * 0 0 40
1015 * 1 1 41
1016 * 9 9 95
40bf19a8 1017 * 10 0 40 [#f1]_
7ea931c9
PJ
1018 * 1 3 5 7 1 3 5 7 41 43 48 61
1019 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
1020 * 0 9 18 27 0 9 8 7 40 61 74 95
1021 * 0 10 20 30 0 40
1022 * 0 11 22 33 0 1 2 3 40 41 42 43
1023 * 0 12 24 36 0 2 4 6 40 42 45 53
40bf19a8
MCC
1024 * 78 102 211 1 2 8 41 42 74 [#f1]_
1025 * =============== ============== =================
1026 *
1027 * .. [#f1]
7ea931c9 1028 *
40bf19a8 1029 * For these marked lines, if we hadn't first done bitmap_fold()
7ea931c9
PJ
1030 * into tmp, then the @dst result would have been empty.
1031 *
1032 * If either of @orig or @relmap is empty (no set bits), then @dst
1033 * will be returned empty.
1034 *
1035 * If (as explained above) the only set bits in @orig are in positions
1036 * m where m >= W, (where W is the weight of @relmap) then @dst will
1037 * once again be returned empty.
1038 *
1039 * All bits in @dst not set by the above rule are cleared.
1040 */
1041void bitmap_onto(unsigned long *dst, const unsigned long *orig,
eb569883 1042 const unsigned long *relmap, unsigned int bits)
7ea931c9 1043{
eb569883 1044 unsigned int n, m; /* same meaning as in above comment */
7ea931c9
PJ
1045
1046 if (dst == orig) /* following doesn't handle inplace mappings */
1047 return;
1048 bitmap_zero(dst, bits);
1049
1050 /*
1051 * The following code is a more efficient, but less
1052 * obvious, equivalent to the loop:
1053 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1054 * n = bitmap_ord_to_pos(orig, m, bits);
1055 * if (test_bit(m, orig))
1056 * set_bit(n, dst);
1057 * }
1058 */
1059
1060 m = 0;
08564fb7 1061 for_each_set_bit(n, relmap, bits) {
7ea931c9
PJ
1062 /* m == bitmap_pos_to_ord(relmap, n, bits) */
1063 if (test_bit(m, orig))
1064 set_bit(n, dst);
1065 m++;
1066 }
1067}
7ea931c9
PJ
1068
1069/**
1070 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1071 * @dst: resulting smaller bitmap
1072 * @orig: original larger bitmap
1073 * @sz: specified size
b26ad583 1074 * @nbits: number of bits in each of these bitmaps
7ea931c9
PJ
1075 *
1076 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1077 * Clear all other bits in @dst. See further the comment and
1078 * Example [2] for bitmap_onto() for why and how to use this.
1079 */
1080void bitmap_fold(unsigned long *dst, const unsigned long *orig,
b26ad583 1081 unsigned int sz, unsigned int nbits)
7ea931c9 1082{
b26ad583 1083 unsigned int oldbit;
7ea931c9
PJ
1084
1085 if (dst == orig) /* following doesn't handle inplace mappings */
1086 return;
b26ad583 1087 bitmap_zero(dst, nbits);
7ea931c9 1088
b26ad583 1089 for_each_set_bit(oldbit, orig, nbits)
7ea931c9
PJ
1090 set_bit(oldbit % sz, dst);
1091}
cdc90a18 1092#endif /* CONFIG_NUMA */
7ea931c9 1093
3cf64b93
PJ
1094/*
1095 * Common code for bitmap_*_region() routines.
1096 * bitmap: array of unsigned longs corresponding to the bitmap
1097 * pos: the beginning of the region
1098 * order: region size (log base 2 of number of bits)
1099 * reg_op: operation(s) to perform on that region of bitmap
1da177e4 1100 *
3cf64b93
PJ
1101 * Can set, verify and/or release a region of bits in a bitmap,
1102 * depending on which combination of REG_OP_* flag bits is set.
1da177e4 1103 *
3cf64b93
PJ
1104 * A region of a bitmap is a sequence of bits in the bitmap, of
1105 * some size '1 << order' (a power of two), aligned to that same
1106 * '1 << order' power of two.
1107 *
1108 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1109 * Returns 0 in all other cases and reg_ops.
1da177e4 1110 */
3cf64b93
PJ
1111
1112enum {
1113 REG_OP_ISFREE, /* true if region is all zero bits */
1114 REG_OP_ALLOC, /* set all bits in region */
1115 REG_OP_RELEASE, /* clear all bits in region */
1116};
1117
9279d328 1118static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1da177e4 1119{
3cf64b93
PJ
1120 int nbits_reg; /* number of bits in region */
1121 int index; /* index first long of region in bitmap */
1122 int offset; /* bit offset region in bitmap[index] */
1123 int nlongs_reg; /* num longs spanned by region in bitmap */
74373c6a 1124 int nbitsinlong; /* num bits of region in each spanned long */
3cf64b93 1125 unsigned long mask; /* bitmask for one long of region */
74373c6a 1126 int i; /* scans bitmap by longs */
3cf64b93 1127 int ret = 0; /* return value */
74373c6a 1128
3cf64b93
PJ
1129 /*
1130 * Either nlongs_reg == 1 (for small orders that fit in one long)
1131 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1132 */
1133 nbits_reg = 1 << order;
1134 index = pos / BITS_PER_LONG;
1135 offset = pos - (index * BITS_PER_LONG);
1136 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1137 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1da177e4 1138
3cf64b93
PJ
1139 /*
1140 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1141 * overflows if nbitsinlong == BITS_PER_LONG.
1142 */
74373c6a 1143 mask = (1UL << (nbitsinlong - 1));
1da177e4 1144 mask += mask - 1;
3cf64b93 1145 mask <<= offset;
1da177e4 1146
3cf64b93
PJ
1147 switch (reg_op) {
1148 case REG_OP_ISFREE:
1149 for (i = 0; i < nlongs_reg; i++) {
1150 if (bitmap[index + i] & mask)
1151 goto done;
1152 }
1153 ret = 1; /* all bits in region free (zero) */
1154 break;
1155
1156 case REG_OP_ALLOC:
1157 for (i = 0; i < nlongs_reg; i++)
1158 bitmap[index + i] |= mask;
1159 break;
1160
1161 case REG_OP_RELEASE:
1162 for (i = 0; i < nlongs_reg; i++)
1163 bitmap[index + i] &= ~mask;
1164 break;
1da177e4 1165 }
3cf64b93
PJ
1166done:
1167 return ret;
1168}
1169
1170/**
1171 * bitmap_find_free_region - find a contiguous aligned mem region
1172 * @bitmap: array of unsigned longs corresponding to the bitmap
1173 * @bits: number of bits in the bitmap
1174 * @order: region size (log base 2 of number of bits) to find
1175 *
1176 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1177 * allocate them (set them to one). Only consider regions of length
1178 * a power (@order) of two, aligned to that power of two, which
1179 * makes the search algorithm much faster.
1180 *
1181 * Return the bit offset in bitmap of the allocated region,
1182 * or -errno on failure.
1183 */
9279d328 1184int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
3cf64b93 1185{
9279d328 1186 unsigned int pos, end; /* scans bitmap by regions of size order */
aa8e4fc6 1187
9279d328 1188 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
aa8e4fc6
LT
1189 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1190 continue;
1191 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1192 return pos;
1193 }
1194 return -ENOMEM;
1da177e4
LT
1195}
1196EXPORT_SYMBOL(bitmap_find_free_region);
1197
1198/**
87e24802 1199 * bitmap_release_region - release allocated bitmap region
3cf64b93
PJ
1200 * @bitmap: array of unsigned longs corresponding to the bitmap
1201 * @pos: beginning of bit region to release
1202 * @order: region size (log base 2 of number of bits) to release
1da177e4 1203 *
72fd4a35 1204 * This is the complement to __bitmap_find_free_region() and releases
1da177e4 1205 * the found region (by clearing it in the bitmap).
3cf64b93
PJ
1206 *
1207 * No return value.
1da177e4 1208 */
9279d328 1209void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1210{
3cf64b93 1211 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1da177e4
LT
1212}
1213EXPORT_SYMBOL(bitmap_release_region);
1214
87e24802
PJ
1215/**
1216 * bitmap_allocate_region - allocate bitmap region
3cf64b93
PJ
1217 * @bitmap: array of unsigned longs corresponding to the bitmap
1218 * @pos: beginning of bit region to allocate
1219 * @order: region size (log base 2 of number of bits) to allocate
87e24802
PJ
1220 *
1221 * Allocate (set bits in) a specified region of a bitmap.
3cf64b93 1222 *
6e1907ff 1223 * Return 0 on success, or %-EBUSY if specified region wasn't
87e24802
PJ
1224 * free (not all bits were zero).
1225 */
9279d328 1226int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1227{
3cf64b93
PJ
1228 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1229 return -EBUSY;
2ac521d3 1230 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1da177e4
LT
1231}
1232EXPORT_SYMBOL(bitmap_allocate_region);
ccbe329b
DV
1233
1234/**
1235 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1236 * @dst: destination buffer
1237 * @src: bitmap to copy
1238 * @nbits: number of bits in the bitmap
1239 *
1240 * Require nbits % BITS_PER_LONG == 0.
1241 */
e8f24278 1242#ifdef __BIG_ENDIAN
9b6c2d2e 1243void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
ccbe329b 1244{
9b6c2d2e 1245 unsigned int i;
ccbe329b
DV
1246
1247 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1248 if (BITS_PER_LONG == 64)
9b6c2d2e 1249 dst[i] = cpu_to_le64(src[i]);
ccbe329b 1250 else
9b6c2d2e 1251 dst[i] = cpu_to_le32(src[i]);
ccbe329b
DV
1252 }
1253}
1254EXPORT_SYMBOL(bitmap_copy_le);
e8f24278 1255#endif
c724f193 1256
c42b65e3
AS
1257unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1258{
1259 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1260 flags);
1261}
1262EXPORT_SYMBOL(bitmap_alloc);
1263
1264unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1265{
1266 return bitmap_alloc(nbits, flags | __GFP_ZERO);
1267}
1268EXPORT_SYMBOL(bitmap_zalloc);
1269
1270void bitmap_free(const unsigned long *bitmap)
1271{
1272 kfree(bitmap);
1273}
1274EXPORT_SYMBOL(bitmap_free);
1275
e829c2e4
BG
1276static void devm_bitmap_free(void *data)
1277{
1278 unsigned long *bitmap = data;
1279
1280 bitmap_free(bitmap);
1281}
1282
1283unsigned long *devm_bitmap_alloc(struct device *dev,
1284 unsigned int nbits, gfp_t flags)
1285{
1286 unsigned long *bitmap;
1287 int ret;
1288
1289 bitmap = bitmap_alloc(nbits, flags);
1290 if (!bitmap)
1291 return NULL;
1292
1293 ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
1294 if (ret)
1295 return NULL;
1296
1297 return bitmap;
1298}
1299EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
1300
1301unsigned long *devm_bitmap_zalloc(struct device *dev,
1302 unsigned int nbits, gfp_t flags)
1303{
1304 return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
1305}
1306EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
1307
c724f193
YN
1308#if BITS_PER_LONG == 64
1309/**
1310 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1311 * @bitmap: array of unsigned longs, the destination bitmap
1312 * @buf: array of u32 (in host byte order), the source bitmap
1313 * @nbits: number of bits in @bitmap
1314 */
ccf7a6d4 1315void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
c724f193
YN
1316{
1317 unsigned int i, halfwords;
1318
c724f193
YN
1319 halfwords = DIV_ROUND_UP(nbits, 32);
1320 for (i = 0; i < halfwords; i++) {
1321 bitmap[i/2] = (unsigned long) buf[i];
1322 if (++i < halfwords)
1323 bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1324 }
1325
1326 /* Clear tail bits in last word beyond nbits. */
1327 if (nbits % BITS_PER_LONG)
1328 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1329}
1330EXPORT_SYMBOL(bitmap_from_arr32);
1331
1332/**
1333 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1334 * @buf: array of u32 (in host byte order), the dest bitmap
1335 * @bitmap: array of unsigned longs, the source bitmap
1336 * @nbits: number of bits in @bitmap
1337 */
1338void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1339{
1340 unsigned int i, halfwords;
1341
c724f193
YN
1342 halfwords = DIV_ROUND_UP(nbits, 32);
1343 for (i = 0; i < halfwords; i++) {
1344 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1345 if (++i < halfwords)
1346 buf[i] = (u32) (bitmap[i/2] >> 32);
1347 }
1348
1349 /* Clear tail bits in last element of array beyond nbits. */
1350 if (nbits % BITS_PER_LONG)
1351 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1352}
1353EXPORT_SYMBOL(bitmap_to_arr32);
1354
1355#endif