]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - libiberty/splay-tree.c
Include <array> to declare std::array<>.
[thirdparty/binutils-gdb.git] / libiberty / splay-tree.c
CommitLineData
252b5132 1/* A splay-tree datatype.
e495212d 2 Copyright (C) 1998-2017 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by Mark Mitchell (mark@markmitchell.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful, but
13WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
979c05d3
NC
19the Free Software Foundation, 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA. */
252b5132
RH
21
22/* For an easily readable description of splay-trees, see:
23
24 Lewis, Harry R. and Denenberg, Larry. Data Structures and Their
25 Algorithms. Harper-Collins, Inc. 1991. */
26
27#ifdef HAVE_CONFIG_H
28#include "config.h"
29#endif
30
31#ifdef HAVE_STDLIB_H
32#include <stdlib.h>
33#endif
34
60c64519
DD
35#include <stdio.h>
36
252b5132
RH
37#include "libiberty.h"
38#include "splay-tree.h"
39
1e45deed 40static void splay_tree_delete_helper (splay_tree, splay_tree_node);
718c0ded
DD
41static inline void rotate_left (splay_tree_node *,
42 splay_tree_node, splay_tree_node);
43static inline void rotate_right (splay_tree_node *,
44 splay_tree_node, splay_tree_node);
1e45deed 45static void splay_tree_splay (splay_tree, splay_tree_key);
98f0b5d4 46static int splay_tree_foreach_helper (splay_tree_node,
1e45deed 47 splay_tree_foreach_fn, void*);
252b5132
RH
48
49/* Deallocate NODE (a member of SP), and all its sub-trees. */
50
51static void
1e45deed 52splay_tree_delete_helper (splay_tree sp, splay_tree_node node)
252b5132 53{
9923bc33
DD
54 splay_tree_node pending = 0;
55 splay_tree_node active = 0;
56
252b5132
RH
57 if (!node)
58 return;
59
9923bc33
DD
60#define KDEL(x) if (sp->delete_key) (*sp->delete_key)(x);
61#define VDEL(x) if (sp->delete_value) (*sp->delete_value)(x);
62
63 KDEL (node->key);
64 VDEL (node->value);
252b5132 65
9923bc33
DD
66 /* We use the "key" field to hold the "next" pointer. */
67 node->key = (splay_tree_key)pending;
68 pending = (splay_tree_node)node;
252b5132 69
9923bc33
DD
70 /* Now, keep processing the pending list until there aren't any
71 more. This is a little more complicated than just recursing, but
72 it doesn't toast the stack for large trees. */
73
74 while (pending)
75 {
76 active = pending;
77 pending = 0;
78 while (active)
79 {
80 splay_tree_node temp;
81
82 /* active points to a node which has its key and value
83 deallocated, we just need to process left and right. */
84
85 if (active->left)
86 {
87 KDEL (active->left->key);
88 VDEL (active->left->value);
89 active->left->key = (splay_tree_key)pending;
90 pending = (splay_tree_node)(active->left);
91 }
92 if (active->right)
93 {
94 KDEL (active->right->key);
95 VDEL (active->right->value);
96 active->right->key = (splay_tree_key)pending;
97 pending = (splay_tree_node)(active->right);
98 }
99
100 temp = active;
101 active = (splay_tree_node)(temp->key);
102 (*sp->deallocate) ((char*) temp, sp->allocate_data);
103 }
104 }
105#undef KDEL
106#undef VDEL
252b5132
RH
107}
108
718c0ded 109/* Rotate the edge joining the left child N with its parent P. PP is the
145f4ab5 110 grandparents' pointer to P. */
252b5132 111
718c0ded
DD
112static inline void
113rotate_left (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
252b5132 114{
718c0ded
DD
115 splay_tree_node tmp;
116 tmp = n->right;
117 n->right = p;
118 p->left = tmp;
119 *pp = n;
120}
252b5132 121
718c0ded 122/* Rotate the edge joining the right child N with its parent P. PP is the
145f4ab5 123 grandparents' pointer to P. */
252b5132 124
718c0ded
DD
125static inline void
126rotate_right (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
127{
128 splay_tree_node tmp;
129 tmp = n->left;
130 n->left = p;
131 p->right = tmp;
132 *pp = n;
252b5132
RH
133}
134
718c0ded 135/* Bottom up splay of key. */
252b5132
RH
136
137static void
1e45deed 138splay_tree_splay (splay_tree sp, splay_tree_key key)
252b5132
RH
139{
140 if (sp->root == 0)
141 return;
142
718c0ded
DD
143 do {
144 int cmp1, cmp2;
145 splay_tree_node n, c;
146
147 n = sp->root;
148 cmp1 = (*sp->comp) (key, n->key);
149
150 /* Found. */
151 if (cmp1 == 0)
152 return;
153
154 /* Left or right? If no child, then we're done. */
155 if (cmp1 < 0)
156 c = n->left;
157 else
158 c = n->right;
159 if (!c)
160 return;
161
162 /* Next one left or right? If found or no child, we're done
163 after one rotation. */
164 cmp2 = (*sp->comp) (key, c->key);
165 if (cmp2 == 0
166 || (cmp2 < 0 && !c->left)
167 || (cmp2 > 0 && !c->right))
168 {
169 if (cmp1 < 0)
170 rotate_left (&sp->root, n, c);
171 else
172 rotate_right (&sp->root, n, c);
173 return;
174 }
175
176 /* Now we have the four cases of double-rotation. */
177 if (cmp1 < 0 && cmp2 < 0)
178 {
179 rotate_left (&n->left, c, c->left);
180 rotate_left (&sp->root, n, n->left);
181 }
182 else if (cmp1 > 0 && cmp2 > 0)
183 {
184 rotate_right (&n->right, c, c->right);
185 rotate_right (&sp->root, n, n->right);
186 }
187 else if (cmp1 < 0 && cmp2 > 0)
188 {
189 rotate_right (&n->left, c, c->right);
190 rotate_left (&sp->root, n, n->left);
191 }
192 else if (cmp1 > 0 && cmp2 < 0)
193 {
194 rotate_left (&n->right, c, c->left);
195 rotate_right (&sp->root, n, n->right);
196 }
197 } while (1);
252b5132
RH
198}
199
200/* Call FN, passing it the DATA, for every node below NODE, all of
201 which are from SP, following an in-order traversal. If FN every
202 returns a non-zero value, the iteration ceases immediately, and the
203 value is returned. Otherwise, this function returns 0. */
204
205static int
98f0b5d4 206splay_tree_foreach_helper (splay_tree_node node,
1e45deed 207 splay_tree_foreach_fn fn, void *data)
252b5132
RH
208{
209 int val;
98f0b5d4
DD
210 splay_tree_node *stack;
211 int stack_ptr, stack_size;
252b5132 212
98f0b5d4
DD
213 /* A non-recursive implementation is used to avoid filling the stack
214 for large trees. Splay trees are worst case O(n) in the depth of
215 the tree. */
216
217#define INITIAL_STACK_SIZE 100
218 stack_size = INITIAL_STACK_SIZE;
219 stack_ptr = 0;
220 stack = XNEWVEC (splay_tree_node, stack_size);
221 val = 0;
222
223 for (;;)
224 {
225 while (node != NULL)
226 {
227 if (stack_ptr == stack_size)
228 {
229 stack_size *= 2;
230 stack = XRESIZEVEC (splay_tree_node, stack, stack_size);
231 }
232 stack[stack_ptr++] = node;
233 node = node->left;
234 }
252b5132 235
98f0b5d4
DD
236 if (stack_ptr == 0)
237 break;
252b5132 238
98f0b5d4 239 node = stack[--stack_ptr];
252b5132 240
98f0b5d4
DD
241 val = (*fn) (node, data);
242 if (val)
243 break;
252b5132 244
98f0b5d4
DD
245 node = node->right;
246 }
247
248 XDELETEVEC (stack);
249 return val;
250}
2bbcdae9
JB
251
252/* An allocator and deallocator based on xmalloc. */
253static void *
1e45deed 254splay_tree_xmalloc_allocate (int size, void *data ATTRIBUTE_UNUSED)
2bbcdae9 255{
585cc78f 256 return (void *) xmalloc (size);
2bbcdae9
JB
257}
258
259static void
1e45deed 260splay_tree_xmalloc_deallocate (void *object, void *data ATTRIBUTE_UNUSED)
2bbcdae9
JB
261{
262 free (object);
263}
264
265
252b5132
RH
266/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
267 DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
2bbcdae9
JB
268 values. Use xmalloc to allocate the splay tree structure, and any
269 nodes added. */
252b5132
RH
270
271splay_tree
1e45deed
DD
272splay_tree_new (splay_tree_compare_fn compare_fn,
273 splay_tree_delete_key_fn delete_key_fn,
274 splay_tree_delete_value_fn delete_value_fn)
252b5132 275{
2bbcdae9
JB
276 return (splay_tree_new_with_allocator
277 (compare_fn, delete_key_fn, delete_value_fn,
278 splay_tree_xmalloc_allocate, splay_tree_xmalloc_deallocate, 0));
279}
280
281
282/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
283 DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
284 values. */
285
286splay_tree
1e45deed
DD
287splay_tree_new_with_allocator (splay_tree_compare_fn compare_fn,
288 splay_tree_delete_key_fn delete_key_fn,
289 splay_tree_delete_value_fn delete_value_fn,
290 splay_tree_allocate_fn allocate_fn,
291 splay_tree_deallocate_fn deallocate_fn,
292 void *allocate_data)
2bbcdae9 293{
219a461e
DD
294 return
295 splay_tree_new_typed_alloc (compare_fn, delete_key_fn, delete_value_fn,
296 allocate_fn, allocate_fn, deallocate_fn,
297 allocate_data);
298}
299
300/*
301
d4d868a2
RW
302@deftypefn Supplemental splay_tree splay_tree_new_with_typed_alloc @
303(splay_tree_compare_fn @var{compare_fn}, @
304splay_tree_delete_key_fn @var{delete_key_fn}, @
305splay_tree_delete_value_fn @var{delete_value_fn}, @
306splay_tree_allocate_fn @var{tree_allocate_fn}, @
307splay_tree_allocate_fn @var{node_allocate_fn}, @
308splay_tree_deallocate_fn @var{deallocate_fn}, @
219a461e
DD
309void * @var{allocate_data})
310
311This function creates a splay tree that uses two different allocators
312@var{tree_allocate_fn} and @var{node_allocate_fn} to use for allocating the
313tree itself and its nodes respectively. This is useful when variables of
314different types need to be allocated with different allocators.
315
316The splay tree will use @var{compare_fn} to compare nodes,
317@var{delete_key_fn} to deallocate keys, and @var{delete_value_fn} to
318deallocate values.
319
320@end deftypefn
321
322*/
323
324splay_tree
325splay_tree_new_typed_alloc (splay_tree_compare_fn compare_fn,
326 splay_tree_delete_key_fn delete_key_fn,
327 splay_tree_delete_value_fn delete_value_fn,
328 splay_tree_allocate_fn tree_allocate_fn,
329 splay_tree_allocate_fn node_allocate_fn,
330 splay_tree_deallocate_fn deallocate_fn,
331 void * allocate_data)
332{
333 splay_tree sp = (splay_tree) (*tree_allocate_fn)
334 (sizeof (struct splay_tree_s), allocate_data);
335
252b5132
RH
336 sp->root = 0;
337 sp->comp = compare_fn;
338 sp->delete_key = delete_key_fn;
339 sp->delete_value = delete_value_fn;
219a461e 340 sp->allocate = node_allocate_fn;
2bbcdae9
JB
341 sp->deallocate = deallocate_fn;
342 sp->allocate_data = allocate_data;
252b5132
RH
343
344 return sp;
345}
346
347/* Deallocate SP. */
348
349void
1e45deed 350splay_tree_delete (splay_tree sp)
252b5132
RH
351{
352 splay_tree_delete_helper (sp, sp->root);
2bbcdae9 353 (*sp->deallocate) ((char*) sp, sp->allocate_data);
252b5132
RH
354}
355
356/* Insert a new node (associating KEY with DATA) into SP. If a
357 previous node with the indicated KEY exists, its data is replaced
0c0a36a4 358 with the new value. Returns the new node. */
252b5132 359
0c0a36a4 360splay_tree_node
1e45deed 361splay_tree_insert (splay_tree sp, splay_tree_key key, splay_tree_value value)
252b5132 362{
af32ff69 363 int comparison = 0;
252b5132
RH
364
365 splay_tree_splay (sp, key);
366
367 if (sp->root)
368 comparison = (*sp->comp)(sp->root->key, key);
369
370 if (sp->root && comparison == 0)
371 {
372 /* If the root of the tree already has the indicated KEY, just
373 replace the value with VALUE. */
374 if (sp->delete_value)
375 (*sp->delete_value)(sp->root->value);
376 sp->root->value = value;
377 }
378 else
379 {
380 /* Create a new node, and insert it at the root. */
381 splay_tree_node node;
219a461e 382
2bbcdae9 383 node = ((splay_tree_node)
219a461e
DD
384 (*sp->allocate) (sizeof (struct splay_tree_node_s),
385 sp->allocate_data));
252b5132
RH
386 node->key = key;
387 node->value = value;
388
389 if (!sp->root)
390 node->left = node->right = 0;
391 else if (comparison < 0)
392 {
393 node->left = sp->root;
394 node->right = node->left->right;
395 node->left->right = 0;
396 }
397 else
398 {
399 node->right = sp->root;
400 node->left = node->right->left;
401 node->right->left = 0;
402 }
403
74bcd529
DD
404 sp->root = node;
405 }
0c0a36a4
ILT
406
407 return sp->root;
252b5132
RH
408}
409
afe36a78
RH
410/* Remove KEY from SP. It is not an error if it did not exist. */
411
412void
1e45deed 413splay_tree_remove (splay_tree sp, splay_tree_key key)
afe36a78
RH
414{
415 splay_tree_splay (sp, key);
416
417 if (sp->root && (*sp->comp) (sp->root->key, key) == 0)
418 {
419 splay_tree_node left, right;
420
421 left = sp->root->left;
422 right = sp->root->right;
423
424 /* Delete the root node itself. */
425 if (sp->delete_value)
426 (*sp->delete_value) (sp->root->value);
2bbcdae9 427 (*sp->deallocate) (sp->root, sp->allocate_data);
afe36a78
RH
428
429 /* One of the children is now the root. Doesn't matter much
430 which, so long as we preserve the properties of the tree. */
431 if (left)
432 {
433 sp->root = left;
434
435 /* If there was a right child as well, hang it off the
436 right-most leaf of the left child. */
437 if (right)
438 {
439 while (left->right)
440 left = left->right;
441 left->right = right;
442 }
443 }
444 else
445 sp->root = right;
446 }
447}
448
252b5132
RH
449/* Lookup KEY in SP, returning VALUE if present, and NULL
450 otherwise. */
451
452splay_tree_node
1e45deed 453splay_tree_lookup (splay_tree sp, splay_tree_key key)
252b5132
RH
454{
455 splay_tree_splay (sp, key);
456
457 if (sp->root && (*sp->comp)(sp->root->key, key) == 0)
458 return sp->root;
459 else
460 return 0;
461}
462
e00bc6a7
DD
463/* Return the node in SP with the greatest key. */
464
465splay_tree_node
1e45deed 466splay_tree_max (splay_tree sp)
e00bc6a7
DD
467{
468 splay_tree_node n = sp->root;
469
470 if (!n)
471 return NULL;
472
473 while (n->right)
474 n = n->right;
475
476 return n;
477}
478
479/* Return the node in SP with the smallest key. */
480
481splay_tree_node
1e45deed 482splay_tree_min (splay_tree sp)
e00bc6a7
DD
483{
484 splay_tree_node n = sp->root;
485
486 if (!n)
487 return NULL;
488
489 while (n->left)
490 n = n->left;
491
492 return n;
493}
494
74bcd529
DD
495/* Return the immediate predecessor KEY, or NULL if there is no
496 predecessor. KEY need not be present in the tree. */
497
498splay_tree_node
1e45deed 499splay_tree_predecessor (splay_tree sp, splay_tree_key key)
74bcd529
DD
500{
501 int comparison;
502 splay_tree_node node;
503
504 /* If the tree is empty, there is certainly no predecessor. */
505 if (!sp->root)
506 return NULL;
507
508 /* Splay the tree around KEY. That will leave either the KEY
509 itself, its predecessor, or its successor at the root. */
510 splay_tree_splay (sp, key);
511 comparison = (*sp->comp)(sp->root->key, key);
512
513 /* If the predecessor is at the root, just return it. */
514 if (comparison < 0)
515 return sp->root;
516
0f3538e7 517 /* Otherwise, find the rightmost element of the left subtree. */
74bcd529
DD
518 node = sp->root->left;
519 if (node)
520 while (node->right)
521 node = node->right;
522
523 return node;
524}
525
526/* Return the immediate successor KEY, or NULL if there is no
a54ba43f 527 successor. KEY need not be present in the tree. */
74bcd529
DD
528
529splay_tree_node
1e45deed 530splay_tree_successor (splay_tree sp, splay_tree_key key)
74bcd529
DD
531{
532 int comparison;
533 splay_tree_node node;
534
a54ba43f 535 /* If the tree is empty, there is certainly no successor. */
74bcd529
DD
536 if (!sp->root)
537 return NULL;
538
539 /* Splay the tree around KEY. That will leave either the KEY
540 itself, its predecessor, or its successor at the root. */
541 splay_tree_splay (sp, key);
542 comparison = (*sp->comp)(sp->root->key, key);
543
544 /* If the successor is at the root, just return it. */
545 if (comparison > 0)
546 return sp->root;
547
0f3538e7 548 /* Otherwise, find the leftmost element of the right subtree. */
74bcd529
DD
549 node = sp->root->right;
550 if (node)
551 while (node->left)
552 node = node->left;
553
554 return node;
555}
556
252b5132
RH
557/* Call FN, passing it the DATA, for every node in SP, following an
558 in-order traversal. If FN every returns a non-zero value, the
559 iteration ceases immediately, and the value is returned.
560 Otherwise, this function returns 0. */
561
562int
1e45deed 563splay_tree_foreach (splay_tree sp, splay_tree_foreach_fn fn, void *data)
252b5132 564{
98f0b5d4 565 return splay_tree_foreach_helper (sp->root, fn, data);
252b5132
RH
566}
567
568/* Splay-tree comparison function, treating the keys as ints. */
569
570int
1e45deed 571splay_tree_compare_ints (splay_tree_key k1, splay_tree_key k2)
252b5132
RH
572{
573 if ((int) k1 < (int) k2)
574 return -1;
575 else if ((int) k1 > (int) k2)
576 return 1;
577 else
578 return 0;
579}
580
581/* Splay-tree comparison function, treating the keys as pointers. */
582
583int
1e45deed 584splay_tree_compare_pointers (splay_tree_key k1, splay_tree_key k2)
252b5132
RH
585{
586 if ((char*) k1 < (char*) k2)
587 return -1;
588 else if ((char*) k1 > (char*) k2)
589 return 1;
590 else
591 return 0;
592}