]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/page_alloc.c
nouveau/uvmm: fix addr/range calcs for remap operations
[thirdparty/kernel/linux.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4 21#include <linux/interrupt.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
b8c73fc2 25#include <linux/kasan.h>
b073d7f8 26#include <linux/kmsan.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
a238ab5b 29#include <linux/ratelimit.h>
5a3135c2 30#include <linux/oom.h>
1da177e4
LT
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
90491d87 35#include <linux/pagevec.h>
bdc8cb98 36#include <linux/memory_hotplug.h>
1da177e4 37#include <linux/nodemask.h>
a6cccdc3 38#include <linux/vmstat.h>
933e312e 39#include <linux/fault-inject.h>
56de7263 40#include <linux/compaction.h>
0d3d062a 41#include <trace/events/kmem.h>
d379f01d 42#include <trace/events/oom.h>
268bb0ce 43#include <linux/prefetch.h>
6e543d57 44#include <linux/mm_inline.h>
f920e413 45#include <linux/mmu_notifier.h>
041d3a8c 46#include <linux/migrate.h>
5b3cc15a 47#include <linux/sched/mm.h>
48c96a36 48#include <linux/page_owner.h>
df4e817b 49#include <linux/page_table_check.h>
4949148a 50#include <linux/memcontrol.h>
42c269c8 51#include <linux/ftrace.h>
d92a8cfc 52#include <linux/lockdep.h>
eb414681 53#include <linux/psi.h>
4aab2be0 54#include <linux/khugepaged.h>
5bf18281 55#include <linux/delayacct.h>
362d37a1 56#include <linux/cacheinfo.h>
ac924c60 57#include <asm/div64.h>
1da177e4 58#include "internal.h"
e900a918 59#include "shuffle.h"
36e66c55 60#include "page_reporting.h"
1da177e4 61
f04a5d5d
DH
62/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
63typedef int __bitwise fpi_t;
64
65/* No special request */
66#define FPI_NONE ((__force fpi_t)0)
67
68/*
69 * Skip free page reporting notification for the (possibly merged) page.
70 * This does not hinder free page reporting from grabbing the page,
71 * reporting it and marking it "reported" - it only skips notifying
72 * the free page reporting infrastructure about a newly freed page. For
73 * example, used when temporarily pulling a page from a freelist and
74 * putting it back unmodified.
75 */
76#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
77
47b6a24a
DH
78/*
79 * Place the (possibly merged) page to the tail of the freelist. Will ignore
80 * page shuffling (relevant code - e.g., memory onlining - is expected to
81 * shuffle the whole zone).
82 *
83 * Note: No code should rely on this flag for correctness - it's purely
84 * to allow for optimizations when handing back either fresh pages
85 * (memory onlining) or untouched pages (page isolation, free page
86 * reporting).
87 */
88#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
89
c8e251fa
CS
90/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
91static DEFINE_MUTEX(pcp_batch_high_lock);
74f44822 92#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
c8e251fa 93
4b23a68f
MG
94#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
95/*
96 * On SMP, spin_trylock is sufficient protection.
97 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
98 */
99#define pcp_trylock_prepare(flags) do { } while (0)
100#define pcp_trylock_finish(flag) do { } while (0)
101#else
102
103/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
104#define pcp_trylock_prepare(flags) local_irq_save(flags)
105#define pcp_trylock_finish(flags) local_irq_restore(flags)
106#endif
107
01b44456
MG
108/*
109 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
110 * a migration causing the wrong PCP to be locked and remote memory being
111 * potentially allocated, pin the task to the CPU for the lookup+lock.
112 * preempt_disable is used on !RT because it is faster than migrate_disable.
113 * migrate_disable is used on RT because otherwise RT spinlock usage is
114 * interfered with and a high priority task cannot preempt the allocator.
115 */
116#ifndef CONFIG_PREEMPT_RT
117#define pcpu_task_pin() preempt_disable()
118#define pcpu_task_unpin() preempt_enable()
119#else
120#define pcpu_task_pin() migrate_disable()
121#define pcpu_task_unpin() migrate_enable()
122#endif
c8e251fa 123
01b44456
MG
124/*
125 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
126 * Return value should be used with equivalent unlock helper.
127 */
128#define pcpu_spin_lock(type, member, ptr) \
129({ \
130 type *_ret; \
131 pcpu_task_pin(); \
132 _ret = this_cpu_ptr(ptr); \
133 spin_lock(&_ret->member); \
134 _ret; \
135})
136
57490774 137#define pcpu_spin_trylock(type, member, ptr) \
01b44456
MG
138({ \
139 type *_ret; \
140 pcpu_task_pin(); \
141 _ret = this_cpu_ptr(ptr); \
57490774 142 if (!spin_trylock(&_ret->member)) { \
01b44456
MG
143 pcpu_task_unpin(); \
144 _ret = NULL; \
145 } \
146 _ret; \
147})
148
149#define pcpu_spin_unlock(member, ptr) \
150({ \
151 spin_unlock(&ptr->member); \
152 pcpu_task_unpin(); \
153})
154
01b44456
MG
155/* struct per_cpu_pages specific helpers. */
156#define pcp_spin_lock(ptr) \
157 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
158
57490774
MG
159#define pcp_spin_trylock(ptr) \
160 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
01b44456
MG
161
162#define pcp_spin_unlock(ptr) \
163 pcpu_spin_unlock(lock, ptr)
164
72812019
LS
165#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
166DEFINE_PER_CPU(int, numa_node);
167EXPORT_PER_CPU_SYMBOL(numa_node);
168#endif
169
4518085e
KW
170DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
171
7aac7898
LS
172#ifdef CONFIG_HAVE_MEMORYLESS_NODES
173/*
174 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
175 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
176 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
177 * defined in <linux/topology.h>.
178 */
179DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
180EXPORT_PER_CPU_SYMBOL(_numa_mem_);
181#endif
182
8b885f53 183static DEFINE_MUTEX(pcpu_drain_mutex);
bd233f53 184
38addce8 185#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 186volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
187EXPORT_SYMBOL(latent_entropy);
188#endif
189
1da177e4 190/*
13808910 191 * Array of node states.
1da177e4 192 */
13808910
CL
193nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
194 [N_POSSIBLE] = NODE_MASK_ALL,
195 [N_ONLINE] = { { [0] = 1UL } },
196#ifndef CONFIG_NUMA
197 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
198#ifdef CONFIG_HIGHMEM
199 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 200#endif
20b2f52b 201 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
202 [N_CPU] = { { [0] = 1UL } },
203#endif /* NUMA */
204};
205EXPORT_SYMBOL(node_states);
206
dcce284a 207gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a 208
bb14c2c7
VB
209/*
210 * A cached value of the page's pageblock's migratetype, used when the page is
211 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
212 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
213 * Also the migratetype set in the page does not necessarily match the pcplist
214 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
215 * other index - this ensures that it will be put on the correct CMA freelist.
216 */
217static inline int get_pcppage_migratetype(struct page *page)
218{
219 return page->index;
220}
221
222static inline void set_pcppage_migratetype(struct page *page, int migratetype)
223{
224 page->index = migratetype;
225}
226
d9c23400 227#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 228unsigned int pageblock_order __read_mostly;
d9c23400
MG
229#endif
230
7fef431b
DH
231static void __free_pages_ok(struct page *page, unsigned int order,
232 fpi_t fpi_flags);
a226f6c8 233
1da177e4
LT
234/*
235 * results with 256, 32 in the lowmem_reserve sysctl:
236 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
237 * 1G machine -> (16M dma, 784M normal, 224M high)
238 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
239 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 240 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
241 *
242 * TBD: should special case ZONE_DMA32 machines here - in those we normally
243 * don't need any ZONE_NORMAL reservation
1da177e4 244 */
62069aac 245static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 246#ifdef CONFIG_ZONE_DMA
d3cda233 247 [ZONE_DMA] = 256,
4b51d669 248#endif
fb0e7942 249#ifdef CONFIG_ZONE_DMA32
d3cda233 250 [ZONE_DMA32] = 256,
fb0e7942 251#endif
d3cda233 252 [ZONE_NORMAL] = 32,
e53ef38d 253#ifdef CONFIG_HIGHMEM
d3cda233 254 [ZONE_HIGHMEM] = 0,
e53ef38d 255#endif
d3cda233 256 [ZONE_MOVABLE] = 0,
2f1b6248 257};
1da177e4 258
9420f89d 259char * const zone_names[MAX_NR_ZONES] = {
4b51d669 260#ifdef CONFIG_ZONE_DMA
2f1b6248 261 "DMA",
4b51d669 262#endif
fb0e7942 263#ifdef CONFIG_ZONE_DMA32
2f1b6248 264 "DMA32",
fb0e7942 265#endif
2f1b6248 266 "Normal",
e53ef38d 267#ifdef CONFIG_HIGHMEM
2a1e274a 268 "HighMem",
e53ef38d 269#endif
2a1e274a 270 "Movable",
033fbae9
DW
271#ifdef CONFIG_ZONE_DEVICE
272 "Device",
273#endif
2f1b6248
CL
274};
275
c999fbd3 276const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
277 "Unmovable",
278 "Movable",
279 "Reclaimable",
280 "HighAtomic",
281#ifdef CONFIG_CMA
282 "CMA",
283#endif
284#ifdef CONFIG_MEMORY_ISOLATION
285 "Isolate",
286#endif
287};
288
1da177e4 289int min_free_kbytes = 1024;
42aa83cb 290int user_min_free_kbytes = -1;
e95d372c
KW
291static int watermark_boost_factor __read_mostly = 15000;
292static int watermark_scale_factor = 10;
0ee332c1
TH
293
294/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
295int movable_zone;
296EXPORT_SYMBOL(movable_zone);
c713216d 297
418508c1 298#if MAX_NUMNODES > 1
b9726c26 299unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 300unsigned int nr_online_nodes __read_mostly = 1;
418508c1 301EXPORT_SYMBOL(nr_node_ids);
62bc62a8 302EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
303#endif
304
dcdfdd40
KS
305static bool page_contains_unaccepted(struct page *page, unsigned int order);
306static void accept_page(struct page *page, unsigned int order);
307static bool try_to_accept_memory(struct zone *zone, unsigned int order);
308static inline bool has_unaccepted_memory(void);
309static bool __free_unaccepted(struct page *page);
310
9ef9acb0
MG
311int page_group_by_mobility_disabled __read_mostly;
312
3a80a7fa 313#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
314/*
315 * During boot we initialize deferred pages on-demand, as needed, but once
316 * page_alloc_init_late() has finished, the deferred pages are all initialized,
317 * and we can permanently disable that path.
318 */
9420f89d 319DEFINE_STATIC_KEY_TRUE(deferred_pages);
3c0c12cc 320
94ae8b83 321static inline bool deferred_pages_enabled(void)
3c0c12cc 322{
94ae8b83 323 return static_branch_unlikely(&deferred_pages);
3c0c12cc
WL
324}
325
3a80a7fa 326/*
9420f89d
MRI
327 * deferred_grow_zone() is __init, but it is called from
328 * get_page_from_freelist() during early boot until deferred_pages permanently
329 * disables this call. This is why we have refdata wrapper to avoid warning,
330 * and to ensure that the function body gets unloaded.
3a80a7fa 331 */
9420f89d
MRI
332static bool __ref
333_deferred_grow_zone(struct zone *zone, unsigned int order)
3a80a7fa 334{
9420f89d 335 return deferred_grow_zone(zone, order);
3a80a7fa
MG
336}
337#else
94ae8b83 338static inline bool deferred_pages_enabled(void)
2c335680 339{
94ae8b83 340 return false;
2c335680 341}
9420f89d 342#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
3a80a7fa 343
0b423ca2 344/* Return a pointer to the bitmap storing bits affecting a block of pages */
ca891f41 345static inline unsigned long *get_pageblock_bitmap(const struct page *page,
0b423ca2
MG
346 unsigned long pfn)
347{
348#ifdef CONFIG_SPARSEMEM
f1eca35a 349 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
350#else
351 return page_zone(page)->pageblock_flags;
352#endif /* CONFIG_SPARSEMEM */
353}
354
ca891f41 355static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
0b423ca2
MG
356{
357#ifdef CONFIG_SPARSEMEM
358 pfn &= (PAGES_PER_SECTION-1);
0b423ca2 359#else
4f9bc69a 360 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
0b423ca2 361#endif /* CONFIG_SPARSEMEM */
399b795b 362 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
0b423ca2
MG
363}
364
a04d12c2
KS
365/**
366 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
367 * @page: The page within the block of interest
368 * @pfn: The target page frame number
369 * @mask: mask of bits that the caller is interested in
370 *
371 * Return: pageblock_bits flags
372 */
373unsigned long get_pfnblock_flags_mask(const struct page *page,
374 unsigned long pfn, unsigned long mask)
0b423ca2
MG
375{
376 unsigned long *bitmap;
377 unsigned long bitidx, word_bitidx;
378 unsigned long word;
379
380 bitmap = get_pageblock_bitmap(page, pfn);
381 bitidx = pfn_to_bitidx(page, pfn);
382 word_bitidx = bitidx / BITS_PER_LONG;
383 bitidx &= (BITS_PER_LONG-1);
1c563432
MK
384 /*
385 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
386 * a consistent read of the memory array, so that results, even though
387 * racy, are not corrupted.
388 */
389 word = READ_ONCE(bitmap[word_bitidx]);
d93d5ab9 390 return (word >> bitidx) & mask;
0b423ca2
MG
391}
392
ca891f41
MWO
393static __always_inline int get_pfnblock_migratetype(const struct page *page,
394 unsigned long pfn)
0b423ca2 395{
a04d12c2 396 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
0b423ca2
MG
397}
398
399/**
400 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
401 * @page: The page within the block of interest
402 * @flags: The flags to set
403 * @pfn: The target page frame number
0b423ca2
MG
404 * @mask: mask of bits that the caller is interested in
405 */
406void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
407 unsigned long pfn,
0b423ca2
MG
408 unsigned long mask)
409{
410 unsigned long *bitmap;
411 unsigned long bitidx, word_bitidx;
04ec0061 412 unsigned long word;
0b423ca2
MG
413
414 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 415 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
416
417 bitmap = get_pageblock_bitmap(page, pfn);
418 bitidx = pfn_to_bitidx(page, pfn);
419 word_bitidx = bitidx / BITS_PER_LONG;
420 bitidx &= (BITS_PER_LONG-1);
421
422 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
423
d93d5ab9
WY
424 mask <<= bitidx;
425 flags <<= bitidx;
0b423ca2
MG
426
427 word = READ_ONCE(bitmap[word_bitidx]);
04ec0061
UB
428 do {
429 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
0b423ca2 430}
3a80a7fa 431
ee6f509c 432void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 433{
5d0f3f72
KM
434 if (unlikely(page_group_by_mobility_disabled &&
435 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
436 migratetype = MIGRATE_UNMOVABLE;
437
d93d5ab9 438 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
535b81e2 439 page_to_pfn(page), MIGRATETYPE_MASK);
b2a0ac88
MG
440}
441
13e7444b 442#ifdef CONFIG_DEBUG_VM
c6a57e19 443static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 444{
82d9b8c8 445 int ret;
bdc8cb98
DH
446 unsigned seq;
447 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 448 unsigned long sp, start_pfn;
c6a57e19 449
bdc8cb98
DH
450 do {
451 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
452 start_pfn = zone->zone_start_pfn;
453 sp = zone->spanned_pages;
82d9b8c8 454 ret = !zone_spans_pfn(zone, pfn);
bdc8cb98
DH
455 } while (zone_span_seqretry(zone, seq));
456
b5e6a5a2 457 if (ret)
613813e8
DH
458 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
459 pfn, zone_to_nid(zone), zone->name,
460 start_pfn, start_pfn + sp);
b5e6a5a2 461
bdc8cb98 462 return ret;
c6a57e19
DH
463}
464
c6a57e19
DH
465/*
466 * Temporary debugging check for pages not lying within a given zone.
467 */
5bb14214 468static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
469{
470 if (page_outside_zone_boundaries(zone, page))
5bb14214 471 return true;
5b855aa3 472 if (zone != page_zone(page))
5bb14214 473 return true;
c6a57e19 474
5bb14214 475 return false;
1da177e4 476}
13e7444b 477#else
5bb14214 478static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b 479{
5bb14214 480 return false;
13e7444b
NP
481}
482#endif
483
82a3241a 484static void bad_page(struct page *page, const char *reason)
1da177e4 485{
d936cf9b
HD
486 static unsigned long resume;
487 static unsigned long nr_shown;
488 static unsigned long nr_unshown;
489
490 /*
491 * Allow a burst of 60 reports, then keep quiet for that minute;
492 * or allow a steady drip of one report per second.
493 */
494 if (nr_shown == 60) {
495 if (time_before(jiffies, resume)) {
496 nr_unshown++;
497 goto out;
498 }
499 if (nr_unshown) {
ff8e8116 500 pr_alert(
1e9e6365 501 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
502 nr_unshown);
503 nr_unshown = 0;
504 }
505 nr_shown = 0;
506 }
507 if (nr_shown++ == 0)
508 resume = jiffies + 60 * HZ;
509
ff8e8116 510 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 511 current->comm, page_to_pfn(page));
d2f07ec0 512 dump_page(page, reason);
3dc14741 513
4f31888c 514 print_modules();
1da177e4 515 dump_stack();
d936cf9b 516out:
8cc3b392 517 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 518 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 519 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
520}
521
44042b44
MG
522static inline unsigned int order_to_pindex(int migratetype, int order)
523{
44042b44
MG
524#ifdef CONFIG_TRANSPARENT_HUGEPAGE
525 if (order > PAGE_ALLOC_COSTLY_ORDER) {
526 VM_BUG_ON(order != pageblock_order);
5d0a661d 527 return NR_LOWORDER_PCP_LISTS;
44042b44
MG
528 }
529#else
530 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
531#endif
532
c1dc69e6 533 return (MIGRATE_PCPTYPES * order) + migratetype;
44042b44
MG
534}
535
536static inline int pindex_to_order(unsigned int pindex)
537{
538 int order = pindex / MIGRATE_PCPTYPES;
539
540#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5d0a661d 541 if (pindex == NR_LOWORDER_PCP_LISTS)
44042b44 542 order = pageblock_order;
44042b44
MG
543#else
544 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
545#endif
546
547 return order;
548}
549
550static inline bool pcp_allowed_order(unsigned int order)
551{
552 if (order <= PAGE_ALLOC_COSTLY_ORDER)
553 return true;
554#ifdef CONFIG_TRANSPARENT_HUGEPAGE
555 if (order == pageblock_order)
556 return true;
557#endif
558 return false;
559}
560
21d02f8f
MG
561static inline void free_the_page(struct page *page, unsigned int order)
562{
44042b44
MG
563 if (pcp_allowed_order(order)) /* Via pcp? */
564 free_unref_page(page, order);
21d02f8f
MG
565 else
566 __free_pages_ok(page, order, FPI_NONE);
567}
568
1da177e4
LT
569/*
570 * Higher-order pages are called "compound pages". They are structured thusly:
571 *
1d798ca3 572 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 573 *
1d798ca3
KS
574 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
575 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 576 *
1d798ca3 577 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 578 * This usage means that zero-order pages may not be compound.
1da177e4 579 */
d98c7a09 580
d00181b9 581void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
582{
583 int i;
584 int nr_pages = 1 << order;
585
18229df5 586 __SetPageHead(page);
5b24eeef
JM
587 for (i = 1; i < nr_pages; i++)
588 prep_compound_tail(page, i);
1378a5ee 589
5b24eeef 590 prep_compound_head(page, order);
18229df5
AW
591}
592
5375336c
MWO
593void destroy_large_folio(struct folio *folio)
594{
dd6fa0b6 595 if (folio_test_hugetlb(folio)) {
454a00c4 596 free_huge_folio(folio);
dd6fa0b6
MWO
597 return;
598 }
8dc4a8f1 599
de53c05f 600 if (folio_test_large_rmappable(folio))
8dc4a8f1 601 folio_undo_large_rmappable(folio);
5375336c 602
0f2f43fa
MWO
603 mem_cgroup_uncharge(folio);
604 free_the_page(&folio->page, folio_order(folio));
5375336c
MWO
605}
606
ab130f91 607static inline void set_buddy_order(struct page *page, unsigned int order)
6aa3001b 608{
4c21e2f2 609 set_page_private(page, order);
676165a8 610 __SetPageBuddy(page);
1da177e4
LT
611}
612
5e1f0f09
MG
613#ifdef CONFIG_COMPACTION
614static inline struct capture_control *task_capc(struct zone *zone)
615{
616 struct capture_control *capc = current->capture_control;
617
deba0487 618 return unlikely(capc) &&
5e1f0f09
MG
619 !(current->flags & PF_KTHREAD) &&
620 !capc->page &&
deba0487 621 capc->cc->zone == zone ? capc : NULL;
5e1f0f09
MG
622}
623
624static inline bool
625compaction_capture(struct capture_control *capc, struct page *page,
626 int order, int migratetype)
627{
628 if (!capc || order != capc->cc->order)
629 return false;
630
631 /* Do not accidentally pollute CMA or isolated regions*/
632 if (is_migrate_cma(migratetype) ||
633 is_migrate_isolate(migratetype))
634 return false;
635
636 /*
f0953a1b 637 * Do not let lower order allocations pollute a movable pageblock.
5e1f0f09
MG
638 * This might let an unmovable request use a reclaimable pageblock
639 * and vice-versa but no more than normal fallback logic which can
640 * have trouble finding a high-order free page.
641 */
642 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
643 return false;
644
645 capc->page = page;
646 return true;
647}
648
649#else
650static inline struct capture_control *task_capc(struct zone *zone)
651{
652 return NULL;
653}
654
655static inline bool
656compaction_capture(struct capture_control *capc, struct page *page,
657 int order, int migratetype)
658{
659 return false;
660}
661#endif /* CONFIG_COMPACTION */
662
6ab01363
AD
663/* Used for pages not on another list */
664static inline void add_to_free_list(struct page *page, struct zone *zone,
665 unsigned int order, int migratetype)
666{
667 struct free_area *area = &zone->free_area[order];
668
bf75f200 669 list_add(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
670 area->nr_free++;
671}
672
673/* Used for pages not on another list */
674static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
675 unsigned int order, int migratetype)
676{
677 struct free_area *area = &zone->free_area[order];
678
bf75f200 679 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
680 area->nr_free++;
681}
682
293ffa5e
DH
683/*
684 * Used for pages which are on another list. Move the pages to the tail
685 * of the list - so the moved pages won't immediately be considered for
686 * allocation again (e.g., optimization for memory onlining).
687 */
6ab01363
AD
688static inline void move_to_free_list(struct page *page, struct zone *zone,
689 unsigned int order, int migratetype)
690{
691 struct free_area *area = &zone->free_area[order];
692
bf75f200 693 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
6ab01363
AD
694}
695
696static inline void del_page_from_free_list(struct page *page, struct zone *zone,
697 unsigned int order)
698{
36e66c55
AD
699 /* clear reported state and update reported page count */
700 if (page_reported(page))
701 __ClearPageReported(page);
702
bf75f200 703 list_del(&page->buddy_list);
6ab01363
AD
704 __ClearPageBuddy(page);
705 set_page_private(page, 0);
706 zone->free_area[order].nr_free--;
707}
708
5d671eb4
MRI
709static inline struct page *get_page_from_free_area(struct free_area *area,
710 int migratetype)
711{
712 return list_first_entry_or_null(&area->free_list[migratetype],
1bf61092 713 struct page, buddy_list);
5d671eb4
MRI
714}
715
a2129f24
AD
716/*
717 * If this is not the largest possible page, check if the buddy
718 * of the next-highest order is free. If it is, it's possible
719 * that pages are being freed that will coalesce soon. In case,
720 * that is happening, add the free page to the tail of the list
721 * so it's less likely to be used soon and more likely to be merged
722 * as a higher order page
723 */
724static inline bool
725buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
726 struct page *page, unsigned int order)
727{
8170ac47
ZY
728 unsigned long higher_page_pfn;
729 struct page *higher_page;
a2129f24 730
5e0a760b 731 if (order >= MAX_PAGE_ORDER - 1)
a2129f24
AD
732 return false;
733
8170ac47
ZY
734 higher_page_pfn = buddy_pfn & pfn;
735 higher_page = page + (higher_page_pfn - pfn);
a2129f24 736
8170ac47
ZY
737 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
738 NULL) != NULL;
a2129f24
AD
739}
740
1da177e4
LT
741/*
742 * Freeing function for a buddy system allocator.
743 *
744 * The concept of a buddy system is to maintain direct-mapped table
745 * (containing bit values) for memory blocks of various "orders".
746 * The bottom level table contains the map for the smallest allocatable
747 * units of memory (here, pages), and each level above it describes
748 * pairs of units from the levels below, hence, "buddies".
749 * At a high level, all that happens here is marking the table entry
750 * at the bottom level available, and propagating the changes upward
751 * as necessary, plus some accounting needed to play nicely with other
752 * parts of the VM system.
753 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
754 * free pages of length of (1 << order) and marked with PageBuddy.
755 * Page's order is recorded in page_private(page) field.
1da177e4 756 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
757 * other. That is, if we allocate a small block, and both were
758 * free, the remainder of the region must be split into blocks.
1da177e4 759 * If a block is freed, and its buddy is also free, then this
5f63b720 760 * triggers coalescing into a block of larger size.
1da177e4 761 *
6d49e352 762 * -- nyc
1da177e4
LT
763 */
764
48db57f8 765static inline void __free_one_page(struct page *page,
dc4b0caf 766 unsigned long pfn,
ed0ae21d 767 struct zone *zone, unsigned int order,
f04a5d5d 768 int migratetype, fpi_t fpi_flags)
1da177e4 769{
a2129f24 770 struct capture_control *capc = task_capc(zone);
dae37a5d 771 unsigned long buddy_pfn = 0;
a2129f24 772 unsigned long combined_pfn;
a2129f24
AD
773 struct page *buddy;
774 bool to_tail;
d9dddbf5 775
d29bb978 776 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 777 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 778
ed0ae21d 779 VM_BUG_ON(migratetype == -1);
d9dddbf5 780 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 781 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 782
76741e77 783 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 784 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 785
5e0a760b 786 while (order < MAX_PAGE_ORDER) {
5e1f0f09
MG
787 if (compaction_capture(capc, page, order, migratetype)) {
788 __mod_zone_freepage_state(zone, -(1 << order),
789 migratetype);
790 return;
791 }
13ad59df 792
8170ac47
ZY
793 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
794 if (!buddy)
d9dddbf5 795 goto done_merging;
bb0e28eb
ZY
796
797 if (unlikely(order >= pageblock_order)) {
798 /*
799 * We want to prevent merge between freepages on pageblock
800 * without fallbacks and normal pageblock. Without this,
801 * pageblock isolation could cause incorrect freepage or CMA
802 * accounting or HIGHATOMIC accounting.
803 */
b5ffd297 804 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
bb0e28eb
ZY
805
806 if (migratetype != buddy_mt
807 && (!migratetype_is_mergeable(migratetype) ||
808 !migratetype_is_mergeable(buddy_mt)))
809 goto done_merging;
810 }
811
c0a32fc5
SG
812 /*
813 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
814 * merge with it and move up one order.
815 */
b03641af 816 if (page_is_guard(buddy))
2847cf95 817 clear_page_guard(zone, buddy, order, migratetype);
b03641af 818 else
6ab01363 819 del_page_from_free_list(buddy, zone, order);
76741e77
VB
820 combined_pfn = buddy_pfn & pfn;
821 page = page + (combined_pfn - pfn);
822 pfn = combined_pfn;
1da177e4
LT
823 order++;
824 }
d9dddbf5
VB
825
826done_merging:
ab130f91 827 set_buddy_order(page, order);
6dda9d55 828
47b6a24a
DH
829 if (fpi_flags & FPI_TO_TAIL)
830 to_tail = true;
831 else if (is_shuffle_order(order))
a2129f24 832 to_tail = shuffle_pick_tail();
97500a4a 833 else
a2129f24 834 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
97500a4a 835
a2129f24 836 if (to_tail)
6ab01363 837 add_to_free_list_tail(page, zone, order, migratetype);
a2129f24 838 else
6ab01363 839 add_to_free_list(page, zone, order, migratetype);
36e66c55
AD
840
841 /* Notify page reporting subsystem of freed page */
f04a5d5d 842 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
36e66c55 843 page_reporting_notify_free(order);
1da177e4
LT
844}
845
b2c9e2fb
ZY
846/**
847 * split_free_page() -- split a free page at split_pfn_offset
848 * @free_page: the original free page
849 * @order: the order of the page
850 * @split_pfn_offset: split offset within the page
851 *
86d28b07
ZY
852 * Return -ENOENT if the free page is changed, otherwise 0
853 *
b2c9e2fb
ZY
854 * It is used when the free page crosses two pageblocks with different migratetypes
855 * at split_pfn_offset within the page. The split free page will be put into
856 * separate migratetype lists afterwards. Otherwise, the function achieves
857 * nothing.
858 */
86d28b07
ZY
859int split_free_page(struct page *free_page,
860 unsigned int order, unsigned long split_pfn_offset)
b2c9e2fb
ZY
861{
862 struct zone *zone = page_zone(free_page);
863 unsigned long free_page_pfn = page_to_pfn(free_page);
864 unsigned long pfn;
865 unsigned long flags;
866 int free_page_order;
86d28b07
ZY
867 int mt;
868 int ret = 0;
b2c9e2fb 869
88ee1343 870 if (split_pfn_offset == 0)
86d28b07 871 return ret;
88ee1343 872
b2c9e2fb 873 spin_lock_irqsave(&zone->lock, flags);
86d28b07
ZY
874
875 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
876 ret = -ENOENT;
877 goto out;
878 }
879
b5ffd297 880 mt = get_pfnblock_migratetype(free_page, free_page_pfn);
86d28b07
ZY
881 if (likely(!is_migrate_isolate(mt)))
882 __mod_zone_freepage_state(zone, -(1UL << order), mt);
883
b2c9e2fb
ZY
884 del_page_from_free_list(free_page, zone, order);
885 for (pfn = free_page_pfn;
886 pfn < free_page_pfn + (1UL << order);) {
887 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
888
86d28b07 889 free_page_order = min_t(unsigned int,
88ee1343
ZY
890 pfn ? __ffs(pfn) : order,
891 __fls(split_pfn_offset));
b2c9e2fb
ZY
892 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
893 mt, FPI_NONE);
894 pfn += 1UL << free_page_order;
895 split_pfn_offset -= (1UL << free_page_order);
896 /* we have done the first part, now switch to second part */
897 if (split_pfn_offset == 0)
898 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
899 }
86d28b07 900out:
b2c9e2fb 901 spin_unlock_irqrestore(&zone->lock, flags);
86d28b07 902 return ret;
b2c9e2fb 903}
7bfec6f4
MG
904/*
905 * A bad page could be due to a number of fields. Instead of multiple branches,
906 * try and check multiple fields with one check. The caller must do a detailed
907 * check if necessary.
908 */
909static inline bool page_expected_state(struct page *page,
910 unsigned long check_flags)
911{
912 if (unlikely(atomic_read(&page->_mapcount) != -1))
913 return false;
914
915 if (unlikely((unsigned long)page->mapping |
916 page_ref_count(page) |
917#ifdef CONFIG_MEMCG
48060834 918 page->memcg_data |
dba1b8a7
JDB
919#endif
920#ifdef CONFIG_PAGE_POOL
921 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
7bfec6f4
MG
922#endif
923 (page->flags & check_flags)))
924 return false;
925
926 return true;
927}
928
58b7f119 929static const char *page_bad_reason(struct page *page, unsigned long flags)
1da177e4 930{
82a3241a 931 const char *bad_reason = NULL;
f0b791a3 932
53f9263b 933 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
934 bad_reason = "nonzero mapcount";
935 if (unlikely(page->mapping != NULL))
936 bad_reason = "non-NULL mapping";
fe896d18 937 if (unlikely(page_ref_count(page) != 0))
0139aa7b 938 bad_reason = "nonzero _refcount";
58b7f119
WY
939 if (unlikely(page->flags & flags)) {
940 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
941 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
942 else
943 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
f0b791a3 944 }
9edad6ea 945#ifdef CONFIG_MEMCG
48060834 946 if (unlikely(page->memcg_data))
9edad6ea 947 bad_reason = "page still charged to cgroup";
dba1b8a7
JDB
948#endif
949#ifdef CONFIG_PAGE_POOL
950 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
951 bad_reason = "page_pool leak";
9edad6ea 952#endif
58b7f119
WY
953 return bad_reason;
954}
955
a8368cd8 956static void free_page_is_bad_report(struct page *page)
58b7f119
WY
957{
958 bad_page(page,
959 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
bb552ac6
MG
960}
961
a8368cd8 962static inline bool free_page_is_bad(struct page *page)
bb552ac6 963{
da838d4f 964 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
a8368cd8 965 return false;
bb552ac6
MG
966
967 /* Something has gone sideways, find it */
a8368cd8
AM
968 free_page_is_bad_report(page);
969 return true;
1da177e4
LT
970}
971
ecbb490d
KW
972static inline bool is_check_pages_enabled(void)
973{
974 return static_branch_unlikely(&check_pages_enabled);
975}
976
8666925c 977static int free_tail_page_prepare(struct page *head_page, struct page *page)
4db7548c 978{
94688e8e 979 struct folio *folio = (struct folio *)head_page;
4db7548c
MG
980 int ret = 1;
981
982 /*
983 * We rely page->lru.next never has bit 0 set, unless the page
984 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
985 */
986 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
987
ecbb490d 988 if (!is_check_pages_enabled()) {
4db7548c
MG
989 ret = 0;
990 goto out;
991 }
992 switch (page - head_page) {
993 case 1:
cb67f428 994 /* the first tail page: these may be in place of ->mapping */
65a689f3
MWO
995 if (unlikely(folio_entire_mapcount(folio))) {
996 bad_page(page, "nonzero entire_mapcount");
4db7548c
MG
997 goto out;
998 }
65a689f3
MWO
999 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1000 bad_page(page, "nonzero nr_pages_mapped");
cb67f428
HD
1001 goto out;
1002 }
94688e8e
MWO
1003 if (unlikely(atomic_read(&folio->_pincount))) {
1004 bad_page(page, "nonzero pincount");
cb67f428
HD
1005 goto out;
1006 }
4db7548c
MG
1007 break;
1008 case 2:
1009 /*
1010 * the second tail page: ->mapping is
fa3015b7 1011 * deferred_list.next -- ignore value.
4db7548c
MG
1012 */
1013 break;
1014 default:
1015 if (page->mapping != TAIL_MAPPING) {
82a3241a 1016 bad_page(page, "corrupted mapping in tail page");
4db7548c
MG
1017 goto out;
1018 }
1019 break;
1020 }
1021 if (unlikely(!PageTail(page))) {
82a3241a 1022 bad_page(page, "PageTail not set");
4db7548c
MG
1023 goto out;
1024 }
1025 if (unlikely(compound_head(page) != head_page)) {
82a3241a 1026 bad_page(page, "compound_head not consistent");
4db7548c
MG
1027 goto out;
1028 }
1029 ret = 0;
1030out:
1031 page->mapping = NULL;
1032 clear_compound_head(page);
1033 return ret;
1034}
1035
94ae8b83
AK
1036/*
1037 * Skip KASAN memory poisoning when either:
1038 *
0a54864f
PC
1039 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1040 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1041 * using page tags instead (see below).
1042 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1043 * that error detection is disabled for accesses via the page address.
1044 *
1045 * Pages will have match-all tags in the following circumstances:
1046 *
1047 * 1. Pages are being initialized for the first time, including during deferred
1048 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1049 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1050 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1051 * 3. The allocation was excluded from being checked due to sampling,
44383cef 1052 * see the call to kasan_unpoison_pages.
94ae8b83
AK
1053 *
1054 * Poisoning pages during deferred memory init will greatly lengthen the
1055 * process and cause problem in large memory systems as the deferred pages
1056 * initialization is done with interrupt disabled.
1057 *
1058 * Assuming that there will be no reference to those newly initialized
1059 * pages before they are ever allocated, this should have no effect on
1060 * KASAN memory tracking as the poison will be properly inserted at page
1061 * allocation time. The only corner case is when pages are allocated by
1062 * on-demand allocation and then freed again before the deferred pages
1063 * initialization is done, but this is not likely to happen.
1064 */
5267fe5d 1065static inline bool should_skip_kasan_poison(struct page *page)
94ae8b83 1066{
0a54864f
PC
1067 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1068 return deferred_pages_enabled();
1069
5cb6674b 1070 return page_kasan_tag(page) == KASAN_TAG_KERNEL;
94ae8b83
AK
1071}
1072
aeaec8e2 1073static void kernel_init_pages(struct page *page, int numpages)
6471384a
AP
1074{
1075 int i;
1076
9e15afa5
QC
1077 /* s390's use of memset() could override KASAN redzones. */
1078 kasan_disable_current();
d9da8f6c
AK
1079 for (i = 0; i < numpages; i++)
1080 clear_highpage_kasan_tagged(page + i);
9e15afa5 1081 kasan_enable_current();
6471384a
AP
1082}
1083
733aea0b 1084__always_inline bool free_pages_prepare(struct page *page,
5267fe5d 1085 unsigned int order)
4db7548c 1086{
e2769dbd 1087 int bad = 0;
5267fe5d 1088 bool skip_kasan_poison = should_skip_kasan_poison(page);
c3525330 1089 bool init = want_init_on_free();
76f26535 1090 bool compound = PageCompound(page);
4db7548c 1091
4db7548c
MG
1092 VM_BUG_ON_PAGE(PageTail(page), page);
1093
e2769dbd 1094 trace_mm_page_free(page, order);
b073d7f8 1095 kmsan_free_page(page, order);
e2769dbd 1096
17b46e7b
BJ
1097 if (memcg_kmem_online() && PageMemcgKmem(page))
1098 __memcg_kmem_uncharge_page(page, order);
1099
79f5f8fa 1100 if (unlikely(PageHWPoison(page)) && !order) {
17b46e7b 1101 /* Do not let hwpoison pages hit pcplists/buddy */
79f5f8fa 1102 reset_page_owner(page, order);
df4e817b 1103 page_table_check_free(page, order);
79f5f8fa
OS
1104 return false;
1105 }
1106
76f26535
HY
1107 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1108
e2769dbd
MG
1109 /*
1110 * Check tail pages before head page information is cleared to
1111 * avoid checking PageCompound for order-0 pages.
1112 */
1113 if (unlikely(order)) {
e2769dbd
MG
1114 int i;
1115
cb67f428 1116 if (compound)
9c5ccf2d 1117 page[1].flags &= ~PAGE_FLAGS_SECOND;
e2769dbd
MG
1118 for (i = 1; i < (1 << order); i++) {
1119 if (compound)
8666925c 1120 bad += free_tail_page_prepare(page, page + i);
fce0b421 1121 if (is_check_pages_enabled()) {
8666925c 1122 if (free_page_is_bad(page + i)) {
700d2e9a
VB
1123 bad++;
1124 continue;
1125 }
e2769dbd
MG
1126 }
1127 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1128 }
1129 }
bda807d4 1130 if (PageMappingFlags(page))
4db7548c 1131 page->mapping = NULL;
fce0b421 1132 if (is_check_pages_enabled()) {
700d2e9a
VB
1133 if (free_page_is_bad(page))
1134 bad++;
1135 if (bad)
1136 return false;
1137 }
4db7548c 1138
e2769dbd
MG
1139 page_cpupid_reset_last(page);
1140 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1141 reset_page_owner(page, order);
df4e817b 1142 page_table_check_free(page, order);
4db7548c
MG
1143
1144 if (!PageHighMem(page)) {
1145 debug_check_no_locks_freed(page_address(page),
e2769dbd 1146 PAGE_SIZE << order);
4db7548c 1147 debug_check_no_obj_freed(page_address(page),
e2769dbd 1148 PAGE_SIZE << order);
4db7548c 1149 }
6471384a 1150
8db26a3d
VB
1151 kernel_poison_pages(page, 1 << order);
1152
f9d79e8d 1153 /*
1bb5eab3 1154 * As memory initialization might be integrated into KASAN,
7c13c163 1155 * KASAN poisoning and memory initialization code must be
1bb5eab3
AK
1156 * kept together to avoid discrepancies in behavior.
1157 *
f9d79e8d
AK
1158 * With hardware tag-based KASAN, memory tags must be set before the
1159 * page becomes unavailable via debug_pagealloc or arch_free_page.
1160 */
f446883d 1161 if (!skip_kasan_poison) {
c3525330 1162 kasan_poison_pages(page, order, init);
f9d79e8d 1163
db8a0477
AK
1164 /* Memory is already initialized if KASAN did it internally. */
1165 if (kasan_has_integrated_init())
1166 init = false;
1167 }
1168 if (init)
aeaec8e2 1169 kernel_init_pages(page, 1 << order);
db8a0477 1170
234fdce8
QC
1171 /*
1172 * arch_free_page() can make the page's contents inaccessible. s390
1173 * does this. So nothing which can access the page's contents should
1174 * happen after this.
1175 */
1176 arch_free_page(page, order);
1177
77bc7fd6 1178 debug_pagealloc_unmap_pages(page, 1 << order);
d6332692 1179
4db7548c
MG
1180 return true;
1181}
1182
1da177e4 1183/*
5f8dcc21 1184 * Frees a number of pages from the PCP lists
7cba630b 1185 * Assumes all pages on list are in same zone.
207f36ee 1186 * count is the number of pages to free.
1da177e4 1187 */
5f8dcc21 1188static void free_pcppages_bulk(struct zone *zone, int count,
fd56eef2
MG
1189 struct per_cpu_pages *pcp,
1190 int pindex)
1da177e4 1191{
57490774 1192 unsigned long flags;
44042b44 1193 unsigned int order;
3777999d 1194 bool isolated_pageblocks;
8b10b465 1195 struct page *page;
f2260e6b 1196
88e8ac11
CTR
1197 /*
1198 * Ensure proper count is passed which otherwise would stuck in the
1199 * below while (list_empty(list)) loop.
1200 */
1201 count = min(pcp->count, count);
d61372bc
MG
1202
1203 /* Ensure requested pindex is drained first. */
1204 pindex = pindex - 1;
1205
57490774 1206 spin_lock_irqsave(&zone->lock, flags);
8b10b465
MG
1207 isolated_pageblocks = has_isolate_pageblock(zone);
1208
44042b44 1209 while (count > 0) {
5f8dcc21 1210 struct list_head *list;
fd56eef2 1211 int nr_pages;
5f8dcc21 1212
fd56eef2 1213 /* Remove pages from lists in a round-robin fashion. */
5f8dcc21 1214 do {
f142b2c2
KS
1215 if (++pindex > NR_PCP_LISTS - 1)
1216 pindex = 0;
44042b44 1217 list = &pcp->lists[pindex];
f142b2c2 1218 } while (list_empty(list));
48db57f8 1219
44042b44 1220 order = pindex_to_order(pindex);
fd56eef2 1221 nr_pages = 1 << order;
a6f9edd6 1222 do {
8b10b465
MG
1223 int mt;
1224
bf75f200 1225 page = list_last_entry(list, struct page, pcp_list);
8b10b465
MG
1226 mt = get_pcppage_migratetype(page);
1227
0a5f4e5b 1228 /* must delete to avoid corrupting pcp list */
bf75f200 1229 list_del(&page->pcp_list);
fd56eef2
MG
1230 count -= nr_pages;
1231 pcp->count -= nr_pages;
aa016d14 1232
8b10b465
MG
1233 /* MIGRATE_ISOLATE page should not go to pcplists */
1234 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1235 /* Pageblock could have been isolated meanwhile */
1236 if (unlikely(isolated_pageblocks))
1237 mt = get_pageblock_migratetype(page);
0a5f4e5b 1238
8b10b465
MG
1239 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1240 trace_mm_page_pcpu_drain(page, order, mt);
1241 } while (count > 0 && !list_empty(list));
0a5f4e5b 1242 }
8b10b465 1243
57490774 1244 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4
LT
1245}
1246
dc4b0caf
MG
1247static void free_one_page(struct zone *zone,
1248 struct page *page, unsigned long pfn,
7aeb09f9 1249 unsigned int order,
7fef431b 1250 int migratetype, fpi_t fpi_flags)
1da177e4 1251{
df1acc85
MG
1252 unsigned long flags;
1253
1254 spin_lock_irqsave(&zone->lock, flags);
ad53f92e
JK
1255 if (unlikely(has_isolate_pageblock(zone) ||
1256 is_migrate_isolate(migratetype))) {
1257 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1258 }
7fef431b 1259 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
df1acc85 1260 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1261}
1262
7fef431b
DH
1263static void __free_pages_ok(struct page *page, unsigned int order,
1264 fpi_t fpi_flags)
ec95f53a 1265{
95e34412 1266 int migratetype;
dc4b0caf 1267 unsigned long pfn = page_to_pfn(page);
56f0e661 1268 struct zone *zone = page_zone(page);
ec95f53a 1269
5267fe5d 1270 if (!free_pages_prepare(page, order))
ec95f53a
KM
1271 return;
1272
ac4b2901
DW
1273 /*
1274 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1275 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1276 * This will reduce the lock holding time.
1277 */
cfc47a28 1278 migratetype = get_pfnblock_migratetype(page, pfn);
dbbee9d5 1279
250ae189 1280 free_one_page(zone, page, pfn, order, migratetype, fpi_flags);
90249993 1281
d34b0733 1282 __count_vm_events(PGFREE, 1 << order);
1da177e4
LT
1283}
1284
a9cd410a 1285void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1286{
c3993076 1287 unsigned int nr_pages = 1 << order;
e2d0bd2b 1288 struct page *p = page;
c3993076 1289 unsigned int loop;
a226f6c8 1290
7fef431b
DH
1291 /*
1292 * When initializing the memmap, __init_single_page() sets the refcount
1293 * of all pages to 1 ("allocated"/"not free"). We have to set the
1294 * refcount of all involved pages to 0.
1295 */
e2d0bd2b
YL
1296 prefetchw(p);
1297 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1298 prefetchw(p + 1);
c3993076
JW
1299 __ClearPageReserved(p);
1300 set_page_count(p, 0);
a226f6c8 1301 }
e2d0bd2b
YL
1302 __ClearPageReserved(p);
1303 set_page_count(p, 0);
c3993076 1304
9705bea5 1305 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
7fef431b 1306
dcdfdd40 1307 if (page_contains_unaccepted(page, order)) {
5e0a760b 1308 if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
dcdfdd40
KS
1309 return;
1310
1311 accept_page(page, order);
1312 }
1313
7fef431b
DH
1314 /*
1315 * Bypass PCP and place fresh pages right to the tail, primarily
1316 * relevant for memory onlining.
1317 */
0a54864f 1318 __free_pages_ok(page, order, FPI_TO_TAIL);
a226f6c8
DH
1319}
1320
7cf91a98
JK
1321/*
1322 * Check that the whole (or subset of) a pageblock given by the interval of
1323 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
859a85dd 1324 * with the migration of free compaction scanner.
7cf91a98
JK
1325 *
1326 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1327 *
1328 * It's possible on some configurations to have a setup like node0 node1 node0
1329 * i.e. it's possible that all pages within a zones range of pages do not
1330 * belong to a single zone. We assume that a border between node0 and node1
1331 * can occur within a single pageblock, but not a node0 node1 node0
1332 * interleaving within a single pageblock. It is therefore sufficient to check
1333 * the first and last page of a pageblock and avoid checking each individual
1334 * page in a pageblock.
65f67a3e
BW
1335 *
1336 * Note: the function may return non-NULL struct page even for a page block
1337 * which contains a memory hole (i.e. there is no physical memory for a subset
5e0a760b 1338 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
65f67a3e
BW
1339 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1340 * even though the start pfn is online and valid. This should be safe most of
1341 * the time because struct pages are still initialized via init_unavailable_range()
1342 * and pfn walkers shouldn't touch any physical memory range for which they do
1343 * not recognize any specific metadata in struct pages.
7cf91a98
JK
1344 */
1345struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1346 unsigned long end_pfn, struct zone *zone)
1347{
1348 struct page *start_page;
1349 struct page *end_page;
1350
1351 /* end_pfn is one past the range we are checking */
1352 end_pfn--;
1353
3c4322c9 1354 if (!pfn_valid(end_pfn))
7cf91a98
JK
1355 return NULL;
1356
2d070eab
MH
1357 start_page = pfn_to_online_page(start_pfn);
1358 if (!start_page)
1359 return NULL;
7cf91a98
JK
1360
1361 if (page_zone(start_page) != zone)
1362 return NULL;
1363
1364 end_page = pfn_to_page(end_pfn);
1365
1366 /* This gives a shorter code than deriving page_zone(end_page) */
1367 if (page_zone_id(start_page) != page_zone_id(end_page))
1368 return NULL;
1369
1370 return start_page;
1371}
1372
2f47a91f 1373/*
9420f89d
MRI
1374 * The order of subdivision here is critical for the IO subsystem.
1375 * Please do not alter this order without good reasons and regression
1376 * testing. Specifically, as large blocks of memory are subdivided,
1377 * the order in which smaller blocks are delivered depends on the order
1378 * they're subdivided in this function. This is the primary factor
1379 * influencing the order in which pages are delivered to the IO
1380 * subsystem according to empirical testing, and this is also justified
1381 * by considering the behavior of a buddy system containing a single
1382 * large block of memory acted on by a series of small allocations.
1383 * This behavior is a critical factor in sglist merging's success.
80b1f41c 1384 *
9420f89d 1385 * -- nyc
2f47a91f 1386 */
9420f89d
MRI
1387static inline void expand(struct zone *zone, struct page *page,
1388 int low, int high, int migratetype)
2f47a91f 1389{
9420f89d 1390 unsigned long size = 1 << high;
2f47a91f 1391
9420f89d
MRI
1392 while (high > low) {
1393 high--;
1394 size >>= 1;
1395 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2f47a91f 1396
9420f89d
MRI
1397 /*
1398 * Mark as guard pages (or page), that will allow to
1399 * merge back to allocator when buddy will be freed.
1400 * Corresponding page table entries will not be touched,
1401 * pages will stay not present in virtual address space
1402 */
1403 if (set_page_guard(zone, &page[size], high, migratetype))
2f47a91f 1404 continue;
9420f89d
MRI
1405
1406 add_to_free_list(&page[size], zone, high, migratetype);
1407 set_buddy_order(&page[size], high);
2f47a91f 1408 }
2f47a91f
PT
1409}
1410
9420f89d 1411static void check_new_page_bad(struct page *page)
0e56acae 1412{
9420f89d
MRI
1413 if (unlikely(page->flags & __PG_HWPOISON)) {
1414 /* Don't complain about hwpoisoned pages */
1415 page_mapcount_reset(page); /* remove PageBuddy */
1416 return;
0e56acae
AD
1417 }
1418
9420f89d
MRI
1419 bad_page(page,
1420 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
0e56acae
AD
1421}
1422
1423/*
9420f89d 1424 * This page is about to be returned from the page allocator
0e56acae 1425 */
77c7a095 1426static bool check_new_page(struct page *page)
0e56acae 1427{
9420f89d
MRI
1428 if (likely(page_expected_state(page,
1429 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
77c7a095 1430 return false;
0e56acae 1431
9420f89d 1432 check_new_page_bad(page);
77c7a095 1433 return true;
9420f89d 1434}
0e56acae 1435
9420f89d
MRI
1436static inline bool check_new_pages(struct page *page, unsigned int order)
1437{
1438 if (is_check_pages_enabled()) {
1439 for (int i = 0; i < (1 << order); i++) {
1440 struct page *p = page + i;
0e56acae 1441
8666925c 1442 if (check_new_page(p))
9420f89d 1443 return true;
0e56acae
AD
1444 }
1445 }
1446
9420f89d 1447 return false;
0e56acae
AD
1448}
1449
9420f89d 1450static inline bool should_skip_kasan_unpoison(gfp_t flags)
e4443149 1451{
9420f89d
MRI
1452 /* Don't skip if a software KASAN mode is enabled. */
1453 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1454 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1455 return false;
e4443149 1456
9420f89d
MRI
1457 /* Skip, if hardware tag-based KASAN is not enabled. */
1458 if (!kasan_hw_tags_enabled())
1459 return true;
e4443149
DJ
1460
1461 /*
9420f89d
MRI
1462 * With hardware tag-based KASAN enabled, skip if this has been
1463 * requested via __GFP_SKIP_KASAN.
e4443149 1464 */
9420f89d 1465 return flags & __GFP_SKIP_KASAN;
e4443149
DJ
1466}
1467
9420f89d 1468static inline bool should_skip_init(gfp_t flags)
ecd09650 1469{
9420f89d
MRI
1470 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1471 if (!kasan_hw_tags_enabled())
1472 return false;
1473
1474 /* For hardware tag-based KASAN, skip if requested. */
1475 return (flags & __GFP_SKIP_ZERO);
ecd09650
DJ
1476}
1477
9420f89d
MRI
1478inline void post_alloc_hook(struct page *page, unsigned int order,
1479 gfp_t gfp_flags)
7e18adb4 1480{
9420f89d
MRI
1481 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1482 !should_skip_init(gfp_flags);
1483 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1484 int i;
1485
1486 set_page_private(page, 0);
1487 set_page_refcounted(page);
0e1cc95b 1488
9420f89d
MRI
1489 arch_alloc_page(page, order);
1490 debug_pagealloc_map_pages(page, 1 << order);
7e18adb4 1491
3d060856 1492 /*
9420f89d
MRI
1493 * Page unpoisoning must happen before memory initialization.
1494 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1495 * allocations and the page unpoisoning code will complain.
3d060856 1496 */
9420f89d 1497 kernel_unpoison_pages(page, 1 << order);
862b6dee 1498
1bb5eab3
AK
1499 /*
1500 * As memory initialization might be integrated into KASAN,
b42090ae 1501 * KASAN unpoisoning and memory initializion code must be
1bb5eab3
AK
1502 * kept together to avoid discrepancies in behavior.
1503 */
9294b128
AK
1504
1505 /*
44383cef
AK
1506 * If memory tags should be zeroed
1507 * (which happens only when memory should be initialized as well).
9294b128 1508 */
44383cef 1509 if (zero_tags) {
420ef683 1510 /* Initialize both memory and memory tags. */
9294b128
AK
1511 for (i = 0; i != 1 << order; ++i)
1512 tag_clear_highpage(page + i);
1513
44383cef 1514 /* Take note that memory was initialized by the loop above. */
9294b128
AK
1515 init = false;
1516 }
0a54864f
PC
1517 if (!should_skip_kasan_unpoison(gfp_flags) &&
1518 kasan_unpoison_pages(page, order, init)) {
1519 /* Take note that memory was initialized by KASAN. */
1520 if (kasan_has_integrated_init())
1521 init = false;
1522 } else {
1523 /*
1524 * If memory tags have not been set by KASAN, reset the page
1525 * tags to ensure page_address() dereferencing does not fault.
1526 */
70c248ac
CM
1527 for (i = 0; i != 1 << order; ++i)
1528 page_kasan_tag_reset(page + i);
7a3b8353 1529 }
44383cef 1530 /* If memory is still not initialized, initialize it now. */
7e3cbba6 1531 if (init)
aeaec8e2 1532 kernel_init_pages(page, 1 << order);
1bb5eab3
AK
1533
1534 set_page_owner(page, order, gfp_flags);
df4e817b 1535 page_table_check_alloc(page, order);
46f24fd8
JK
1536}
1537
479f854a 1538static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1539 unsigned int alloc_flags)
2a7684a2 1540{
46f24fd8 1541 post_alloc_hook(page, order, gfp_flags);
17cf4406 1542
17cf4406
NP
1543 if (order && (gfp_flags & __GFP_COMP))
1544 prep_compound_page(page, order);
1545
75379191 1546 /*
2f064f34 1547 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1548 * allocate the page. The expectation is that the caller is taking
1549 * steps that will free more memory. The caller should avoid the page
1550 * being used for !PFMEMALLOC purposes.
1551 */
2f064f34
MH
1552 if (alloc_flags & ALLOC_NO_WATERMARKS)
1553 set_page_pfmemalloc(page);
1554 else
1555 clear_page_pfmemalloc(page);
1da177e4
LT
1556}
1557
56fd56b8
MG
1558/*
1559 * Go through the free lists for the given migratetype and remove
1560 * the smallest available page from the freelists
1561 */
85ccc8fa 1562static __always_inline
728ec980 1563struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1564 int migratetype)
1565{
1566 unsigned int current_order;
b8af2941 1567 struct free_area *area;
56fd56b8
MG
1568 struct page *page;
1569
1570 /* Find a page of the appropriate size in the preferred list */
fd377218 1571 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
56fd56b8 1572 area = &(zone->free_area[current_order]);
b03641af 1573 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
1574 if (!page)
1575 continue;
6ab01363
AD
1576 del_page_from_free_list(page, zone, current_order);
1577 expand(zone, page, order, current_order, migratetype);
bb14c2c7 1578 set_pcppage_migratetype(page, migratetype);
10e0f753
WY
1579 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1580 pcp_allowed_order(order) &&
1581 migratetype < MIGRATE_PCPTYPES);
56fd56b8
MG
1582 return page;
1583 }
1584
1585 return NULL;
1586}
1587
1588
b2a0ac88
MG
1589/*
1590 * This array describes the order lists are fallen back to when
1591 * the free lists for the desirable migrate type are depleted
1dd214b8
ZY
1592 *
1593 * The other migratetypes do not have fallbacks.
b2a0ac88 1594 */
aa02d3c1
YD
1595static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1596 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1597 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1598 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
b2a0ac88
MG
1599};
1600
dc67647b 1601#ifdef CONFIG_CMA
85ccc8fa 1602static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1603 unsigned int order)
1604{
1605 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1606}
1607#else
1608static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1609 unsigned int order) { return NULL; }
1610#endif
1611
c361be55 1612/*
293ffa5e 1613 * Move the free pages in a range to the freelist tail of the requested type.
d9c23400 1614 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1615 * boundary. If alignment is required, use move_freepages_block()
1616 */
02aa0cdd 1617static int move_freepages(struct zone *zone,
39ddb991 1618 unsigned long start_pfn, unsigned long end_pfn,
02aa0cdd 1619 int migratetype, int *num_movable)
c361be55
MG
1620{
1621 struct page *page;
39ddb991 1622 unsigned long pfn;
d00181b9 1623 unsigned int order;
d100313f 1624 int pages_moved = 0;
c361be55 1625
39ddb991 1626 for (pfn = start_pfn; pfn <= end_pfn;) {
39ddb991 1627 page = pfn_to_page(pfn);
c361be55 1628 if (!PageBuddy(page)) {
02aa0cdd
VB
1629 /*
1630 * We assume that pages that could be isolated for
1631 * migration are movable. But we don't actually try
1632 * isolating, as that would be expensive.
1633 */
1634 if (num_movable &&
1635 (PageLRU(page) || __PageMovable(page)))
1636 (*num_movable)++;
39ddb991 1637 pfn++;
c361be55
MG
1638 continue;
1639 }
1640
cd961038
DR
1641 /* Make sure we are not inadvertently changing nodes */
1642 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1643 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1644
ab130f91 1645 order = buddy_order(page);
6ab01363 1646 move_to_free_list(page, zone, order, migratetype);
39ddb991 1647 pfn += 1 << order;
d100313f 1648 pages_moved += 1 << order;
c361be55
MG
1649 }
1650
d100313f 1651 return pages_moved;
c361be55
MG
1652}
1653
ee6f509c 1654int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1655 int migratetype, int *num_movable)
c361be55 1656{
39ddb991 1657 unsigned long start_pfn, end_pfn, pfn;
c361be55 1658
4a222127
DR
1659 if (num_movable)
1660 *num_movable = 0;
1661
39ddb991 1662 pfn = page_to_pfn(page);
4f9bc69a
KW
1663 start_pfn = pageblock_start_pfn(pfn);
1664 end_pfn = pageblock_end_pfn(pfn) - 1;
c361be55
MG
1665
1666 /* Do not cross zone boundaries */
108bcc96 1667 if (!zone_spans_pfn(zone, start_pfn))
39ddb991 1668 start_pfn = pfn;
108bcc96 1669 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1670 return 0;
1671
39ddb991 1672 return move_freepages(zone, start_pfn, end_pfn, migratetype,
02aa0cdd 1673 num_movable);
c361be55
MG
1674}
1675
2f66a68f
MG
1676static void change_pageblock_range(struct page *pageblock_page,
1677 int start_order, int migratetype)
1678{
1679 int nr_pageblocks = 1 << (start_order - pageblock_order);
1680
1681 while (nr_pageblocks--) {
1682 set_pageblock_migratetype(pageblock_page, migratetype);
1683 pageblock_page += pageblock_nr_pages;
1684 }
1685}
1686
fef903ef 1687/*
9c0415eb
VB
1688 * When we are falling back to another migratetype during allocation, try to
1689 * steal extra free pages from the same pageblocks to satisfy further
1690 * allocations, instead of polluting multiple pageblocks.
1691 *
1692 * If we are stealing a relatively large buddy page, it is likely there will
1693 * be more free pages in the pageblock, so try to steal them all. For
1694 * reclaimable and unmovable allocations, we steal regardless of page size,
1695 * as fragmentation caused by those allocations polluting movable pageblocks
1696 * is worse than movable allocations stealing from unmovable and reclaimable
1697 * pageblocks.
fef903ef 1698 */
4eb7dce6
JK
1699static bool can_steal_fallback(unsigned int order, int start_mt)
1700{
1701 /*
1702 * Leaving this order check is intended, although there is
1703 * relaxed order check in next check. The reason is that
1704 * we can actually steal whole pageblock if this condition met,
1705 * but, below check doesn't guarantee it and that is just heuristic
1706 * so could be changed anytime.
1707 */
1708 if (order >= pageblock_order)
1709 return true;
1710
1711 if (order >= pageblock_order / 2 ||
1712 start_mt == MIGRATE_RECLAIMABLE ||
1713 start_mt == MIGRATE_UNMOVABLE ||
1714 page_group_by_mobility_disabled)
1715 return true;
1716
1717 return false;
1718}
1719
597c8920 1720static inline bool boost_watermark(struct zone *zone)
1c30844d
MG
1721{
1722 unsigned long max_boost;
1723
1724 if (!watermark_boost_factor)
597c8920 1725 return false;
14f69140
HW
1726 /*
1727 * Don't bother in zones that are unlikely to produce results.
1728 * On small machines, including kdump capture kernels running
1729 * in a small area, boosting the watermark can cause an out of
1730 * memory situation immediately.
1731 */
1732 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
597c8920 1733 return false;
1c30844d
MG
1734
1735 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1736 watermark_boost_factor, 10000);
94b3334c
MG
1737
1738 /*
1739 * high watermark may be uninitialised if fragmentation occurs
1740 * very early in boot so do not boost. We do not fall
1741 * through and boost by pageblock_nr_pages as failing
1742 * allocations that early means that reclaim is not going
1743 * to help and it may even be impossible to reclaim the
1744 * boosted watermark resulting in a hang.
1745 */
1746 if (!max_boost)
597c8920 1747 return false;
94b3334c 1748
1c30844d
MG
1749 max_boost = max(pageblock_nr_pages, max_boost);
1750
1751 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1752 max_boost);
597c8920
JW
1753
1754 return true;
1c30844d
MG
1755}
1756
4eb7dce6
JK
1757/*
1758 * This function implements actual steal behaviour. If order is large enough,
1759 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
1760 * pageblock to our migratetype and determine how many already-allocated pages
1761 * are there in the pageblock with a compatible migratetype. If at least half
1762 * of pages are free or compatible, we can change migratetype of the pageblock
1763 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
1764 */
1765static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 1766 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 1767{
ab130f91 1768 unsigned int current_order = buddy_order(page);
02aa0cdd
VB
1769 int free_pages, movable_pages, alike_pages;
1770 int old_block_type;
1771
1772 old_block_type = get_pageblock_migratetype(page);
fef903ef 1773
3bc48f96
VB
1774 /*
1775 * This can happen due to races and we want to prevent broken
1776 * highatomic accounting.
1777 */
02aa0cdd 1778 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
1779 goto single_page;
1780
fef903ef
SB
1781 /* Take ownership for orders >= pageblock_order */
1782 if (current_order >= pageblock_order) {
1783 change_pageblock_range(page, current_order, start_type);
3bc48f96 1784 goto single_page;
fef903ef
SB
1785 }
1786
1c30844d
MG
1787 /*
1788 * Boost watermarks to increase reclaim pressure to reduce the
1789 * likelihood of future fallbacks. Wake kswapd now as the node
1790 * may be balanced overall and kswapd will not wake naturally.
1791 */
597c8920 1792 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
73444bc4 1793 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 1794
3bc48f96
VB
1795 /* We are not allowed to try stealing from the whole block */
1796 if (!whole_block)
1797 goto single_page;
1798
02aa0cdd
VB
1799 free_pages = move_freepages_block(zone, page, start_type,
1800 &movable_pages);
ebddd111
ML
1801 /* moving whole block can fail due to zone boundary conditions */
1802 if (!free_pages)
1803 goto single_page;
1804
02aa0cdd
VB
1805 /*
1806 * Determine how many pages are compatible with our allocation.
1807 * For movable allocation, it's the number of movable pages which
1808 * we just obtained. For other types it's a bit more tricky.
1809 */
1810 if (start_type == MIGRATE_MOVABLE) {
1811 alike_pages = movable_pages;
1812 } else {
1813 /*
1814 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1815 * to MOVABLE pageblock, consider all non-movable pages as
1816 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1817 * vice versa, be conservative since we can't distinguish the
1818 * exact migratetype of non-movable pages.
1819 */
1820 if (old_block_type == MIGRATE_MOVABLE)
1821 alike_pages = pageblock_nr_pages
1822 - (free_pages + movable_pages);
1823 else
1824 alike_pages = 0;
1825 }
02aa0cdd
VB
1826 /*
1827 * If a sufficient number of pages in the block are either free or of
ebddd111 1828 * compatible migratability as our allocation, claim the whole block.
02aa0cdd
VB
1829 */
1830 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
1831 page_group_by_mobility_disabled)
1832 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
1833
1834 return;
1835
1836single_page:
6ab01363 1837 move_to_free_list(page, zone, current_order, start_type);
4eb7dce6
JK
1838}
1839
2149cdae
JK
1840/*
1841 * Check whether there is a suitable fallback freepage with requested order.
1842 * If only_stealable is true, this function returns fallback_mt only if
1843 * we can steal other freepages all together. This would help to reduce
1844 * fragmentation due to mixed migratetype pages in one pageblock.
1845 */
1846int find_suitable_fallback(struct free_area *area, unsigned int order,
1847 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1848{
1849 int i;
1850 int fallback_mt;
1851
1852 if (area->nr_free == 0)
1853 return -1;
1854
1855 *can_steal = false;
aa02d3c1 1856 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
4eb7dce6 1857 fallback_mt = fallbacks[migratetype][i];
b03641af 1858 if (free_area_empty(area, fallback_mt))
4eb7dce6 1859 continue;
fef903ef 1860
4eb7dce6
JK
1861 if (can_steal_fallback(order, migratetype))
1862 *can_steal = true;
1863
2149cdae
JK
1864 if (!only_stealable)
1865 return fallback_mt;
1866
1867 if (*can_steal)
1868 return fallback_mt;
fef903ef 1869 }
4eb7dce6
JK
1870
1871 return -1;
fef903ef
SB
1872}
1873
0aaa29a5
MG
1874/*
1875 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1876 * there are no empty page blocks that contain a page with a suitable order
1877 */
368d983b 1878static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
0aaa29a5
MG
1879{
1880 int mt;
1881 unsigned long max_managed, flags;
1882
1883 /*
d68e39fc 1884 * The number reserved as: minimum is 1 pageblock, maximum is
9cd20f3f
CTK
1885 * roughly 1% of a zone. But if 1% of a zone falls below a
1886 * pageblock size, then don't reserve any pageblocks.
0aaa29a5
MG
1887 * Check is race-prone but harmless.
1888 */
9cd20f3f
CTK
1889 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
1890 return;
d68e39fc 1891 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
0aaa29a5
MG
1892 if (zone->nr_reserved_highatomic >= max_managed)
1893 return;
1894
1895 spin_lock_irqsave(&zone->lock, flags);
1896
1897 /* Recheck the nr_reserved_highatomic limit under the lock */
1898 if (zone->nr_reserved_highatomic >= max_managed)
1899 goto out_unlock;
1900
1901 /* Yoink! */
1902 mt = get_pageblock_migratetype(page);
1dd214b8
ZY
1903 /* Only reserve normal pageblocks (i.e., they can merge with others) */
1904 if (migratetype_is_mergeable(mt)) {
0aaa29a5
MG
1905 zone->nr_reserved_highatomic += pageblock_nr_pages;
1906 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 1907 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
1908 }
1909
1910out_unlock:
1911 spin_unlock_irqrestore(&zone->lock, flags);
1912}
1913
1914/*
1915 * Used when an allocation is about to fail under memory pressure. This
1916 * potentially hurts the reliability of high-order allocations when under
1917 * intense memory pressure but failed atomic allocations should be easier
1918 * to recover from than an OOM.
29fac03b
MK
1919 *
1920 * If @force is true, try to unreserve a pageblock even though highatomic
1921 * pageblock is exhausted.
0aaa29a5 1922 */
29fac03b
MK
1923static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1924 bool force)
0aaa29a5
MG
1925{
1926 struct zonelist *zonelist = ac->zonelist;
1927 unsigned long flags;
1928 struct zoneref *z;
1929 struct zone *zone;
1930 struct page *page;
1931 int order;
04c8716f 1932 bool ret;
0aaa29a5 1933
97a225e6 1934 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
0aaa29a5 1935 ac->nodemask) {
29fac03b
MK
1936 /*
1937 * Preserve at least one pageblock unless memory pressure
1938 * is really high.
1939 */
1940 if (!force && zone->nr_reserved_highatomic <=
1941 pageblock_nr_pages)
0aaa29a5
MG
1942 continue;
1943
1944 spin_lock_irqsave(&zone->lock, flags);
fd377218 1945 for (order = 0; order < NR_PAGE_ORDERS; order++) {
0aaa29a5
MG
1946 struct free_area *area = &(zone->free_area[order]);
1947
b03641af 1948 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 1949 if (!page)
0aaa29a5
MG
1950 continue;
1951
0aaa29a5 1952 /*
4855e4a7
MK
1953 * In page freeing path, migratetype change is racy so
1954 * we can counter several free pages in a pageblock
f0953a1b 1955 * in this loop although we changed the pageblock type
4855e4a7
MK
1956 * from highatomic to ac->migratetype. So we should
1957 * adjust the count once.
0aaa29a5 1958 */
a6ffdc07 1959 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
1960 /*
1961 * It should never happen but changes to
1962 * locking could inadvertently allow a per-cpu
1963 * drain to add pages to MIGRATE_HIGHATOMIC
1964 * while unreserving so be safe and watch for
1965 * underflows.
1966 */
1967 zone->nr_reserved_highatomic -= min(
1968 pageblock_nr_pages,
1969 zone->nr_reserved_highatomic);
1970 }
0aaa29a5
MG
1971
1972 /*
1973 * Convert to ac->migratetype and avoid the normal
1974 * pageblock stealing heuristics. Minimally, the caller
1975 * is doing the work and needs the pages. More
1976 * importantly, if the block was always converted to
1977 * MIGRATE_UNMOVABLE or another type then the number
1978 * of pageblocks that cannot be completely freed
1979 * may increase.
1980 */
1981 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
1982 ret = move_freepages_block(zone, page, ac->migratetype,
1983 NULL);
29fac03b
MK
1984 if (ret) {
1985 spin_unlock_irqrestore(&zone->lock, flags);
1986 return ret;
1987 }
0aaa29a5
MG
1988 }
1989 spin_unlock_irqrestore(&zone->lock, flags);
1990 }
04c8716f
MK
1991
1992 return false;
0aaa29a5
MG
1993}
1994
3bc48f96
VB
1995/*
1996 * Try finding a free buddy page on the fallback list and put it on the free
1997 * list of requested migratetype, possibly along with other pages from the same
1998 * block, depending on fragmentation avoidance heuristics. Returns true if
1999 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2000 *
2001 * The use of signed ints for order and current_order is a deliberate
2002 * deviation from the rest of this file, to make the for loop
2003 * condition simpler.
3bc48f96 2004 */
85ccc8fa 2005static __always_inline bool
6bb15450
MG
2006__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2007 unsigned int alloc_flags)
b2a0ac88 2008{
b8af2941 2009 struct free_area *area;
b002529d 2010 int current_order;
6bb15450 2011 int min_order = order;
b2a0ac88 2012 struct page *page;
4eb7dce6
JK
2013 int fallback_mt;
2014 bool can_steal;
b2a0ac88 2015
6bb15450
MG
2016 /*
2017 * Do not steal pages from freelists belonging to other pageblocks
2018 * i.e. orders < pageblock_order. If there are no local zones free,
2019 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2020 */
e933dc4a 2021 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
6bb15450
MG
2022 min_order = pageblock_order;
2023
7a8f58f3
VB
2024 /*
2025 * Find the largest available free page in the other list. This roughly
2026 * approximates finding the pageblock with the most free pages, which
2027 * would be too costly to do exactly.
2028 */
5e0a760b 2029 for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
7aeb09f9 2030 --current_order) {
4eb7dce6
JK
2031 area = &(zone->free_area[current_order]);
2032 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2033 start_migratetype, false, &can_steal);
4eb7dce6
JK
2034 if (fallback_mt == -1)
2035 continue;
b2a0ac88 2036
7a8f58f3
VB
2037 /*
2038 * We cannot steal all free pages from the pageblock and the
2039 * requested migratetype is movable. In that case it's better to
2040 * steal and split the smallest available page instead of the
2041 * largest available page, because even if the next movable
2042 * allocation falls back into a different pageblock than this
2043 * one, it won't cause permanent fragmentation.
2044 */
2045 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2046 && current_order > order)
2047 goto find_smallest;
b2a0ac88 2048
7a8f58f3
VB
2049 goto do_steal;
2050 }
e0fff1bd 2051
7a8f58f3 2052 return false;
e0fff1bd 2053
7a8f58f3 2054find_smallest:
fd377218 2055 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
7a8f58f3
VB
2056 area = &(zone->free_area[current_order]);
2057 fallback_mt = find_suitable_fallback(area, current_order,
2058 start_migratetype, false, &can_steal);
2059 if (fallback_mt != -1)
2060 break;
b2a0ac88
MG
2061 }
2062
7a8f58f3
VB
2063 /*
2064 * This should not happen - we already found a suitable fallback
2065 * when looking for the largest page.
2066 */
5e0a760b 2067 VM_BUG_ON(current_order > MAX_PAGE_ORDER);
7a8f58f3
VB
2068
2069do_steal:
b03641af 2070 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2071
1c30844d
MG
2072 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2073 can_steal);
7a8f58f3
VB
2074
2075 trace_mm_page_alloc_extfrag(page, order, current_order,
2076 start_migratetype, fallback_mt);
2077
2078 return true;
2079
b2a0ac88
MG
2080}
2081
56fd56b8 2082/*
1da177e4
LT
2083 * Do the hard work of removing an element from the buddy allocator.
2084 * Call me with the zone->lock already held.
2085 */
85ccc8fa 2086static __always_inline struct page *
6bb15450
MG
2087__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2088 unsigned int alloc_flags)
1da177e4 2089{
1da177e4
LT
2090 struct page *page;
2091
ce8f86ee
H
2092 if (IS_ENABLED(CONFIG_CMA)) {
2093 /*
2094 * Balance movable allocations between regular and CMA areas by
2095 * allocating from CMA when over half of the zone's free memory
2096 * is in the CMA area.
2097 */
2098 if (alloc_flags & ALLOC_CMA &&
2099 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2100 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2101 page = __rmqueue_cma_fallback(zone, order);
2102 if (page)
10e0f753 2103 return page;
ce8f86ee 2104 }
16867664 2105 }
3bc48f96 2106retry:
56fd56b8 2107 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2108 if (unlikely(!page)) {
8510e69c 2109 if (alloc_flags & ALLOC_CMA)
dc67647b
JK
2110 page = __rmqueue_cma_fallback(zone, order);
2111
6bb15450
MG
2112 if (!page && __rmqueue_fallback(zone, order, migratetype,
2113 alloc_flags))
3bc48f96 2114 goto retry;
728ec980 2115 }
b2a0ac88 2116 return page;
1da177e4
LT
2117}
2118
5f63b720 2119/*
1da177e4
LT
2120 * Obtain a specified number of elements from the buddy allocator, all under
2121 * a single hold of the lock, for efficiency. Add them to the supplied list.
2122 * Returns the number of new pages which were placed at *list.
2123 */
5f63b720 2124static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2125 unsigned long count, struct list_head *list,
6bb15450 2126 int migratetype, unsigned int alloc_flags)
1da177e4 2127{
57490774 2128 unsigned long flags;
700d2e9a 2129 int i;
5f63b720 2130
57490774 2131 spin_lock_irqsave(&zone->lock, flags);
1da177e4 2132 for (i = 0; i < count; ++i) {
6bb15450
MG
2133 struct page *page = __rmqueue(zone, order, migratetype,
2134 alloc_flags);
085cc7d5 2135 if (unlikely(page == NULL))
1da177e4 2136 break;
81eabcbe
MG
2137
2138 /*
0fac3ba5
VB
2139 * Split buddy pages returned by expand() are received here in
2140 * physical page order. The page is added to the tail of
2141 * caller's list. From the callers perspective, the linked list
2142 * is ordered by page number under some conditions. This is
2143 * useful for IO devices that can forward direction from the
2144 * head, thus also in the physical page order. This is useful
2145 * for IO devices that can merge IO requests if the physical
2146 * pages are ordered properly.
81eabcbe 2147 */
bf75f200 2148 list_add_tail(&page->pcp_list, list);
bb14c2c7 2149 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2150 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2151 -(1 << order));
1da177e4 2152 }
a6de734b 2153
f2260e6b 2154 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
57490774 2155 spin_unlock_irqrestore(&zone->lock, flags);
2ede3c13 2156
700d2e9a 2157 return i;
1da177e4
LT
2158}
2159
51a755c5
HY
2160/*
2161 * Called from the vmstat counter updater to decay the PCP high.
2162 * Return whether there are addition works to do.
2163 */
2164int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2165{
2166 int high_min, to_drain, batch;
2167 int todo = 0;
2168
2169 high_min = READ_ONCE(pcp->high_min);
2170 batch = READ_ONCE(pcp->batch);
2171 /*
2172 * Decrease pcp->high periodically to try to free possible
2173 * idle PCP pages. And, avoid to free too many pages to
2174 * control latency. This caps pcp->high decrement too.
2175 */
2176 if (pcp->high > high_min) {
2177 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2178 pcp->high - (pcp->high >> 3), high_min);
2179 if (pcp->high > high_min)
2180 todo++;
2181 }
2182
2183 to_drain = pcp->count - pcp->high;
2184 if (to_drain > 0) {
2185 spin_lock(&pcp->lock);
2186 free_pcppages_bulk(zone, to_drain, pcp, 0);
2187 spin_unlock(&pcp->lock);
2188 todo++;
2189 }
2190
2191 return todo;
2192}
2193
4ae7c039 2194#ifdef CONFIG_NUMA
8fce4d8e 2195/*
4037d452
CL
2196 * Called from the vmstat counter updater to drain pagesets of this
2197 * currently executing processor on remote nodes after they have
2198 * expired.
8fce4d8e 2199 */
4037d452 2200void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2201{
7be12fc9 2202 int to_drain, batch;
4ae7c039 2203
4db0c3c2 2204 batch = READ_ONCE(pcp->batch);
7be12fc9 2205 to_drain = min(pcp->count, batch);
4b23a68f 2206 if (to_drain > 0) {
57490774 2207 spin_lock(&pcp->lock);
fd56eef2 2208 free_pcppages_bulk(zone, to_drain, pcp, 0);
57490774 2209 spin_unlock(&pcp->lock);
4b23a68f 2210 }
4ae7c039
CL
2211}
2212#endif
2213
9f8f2172 2214/*
93481ff0 2215 * Drain pcplists of the indicated processor and zone.
9f8f2172 2216 */
93481ff0 2217static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2218{
93481ff0 2219 struct per_cpu_pages *pcp;
1da177e4 2220
28f836b6 2221 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
4b23a68f 2222 if (pcp->count) {
57490774 2223 spin_lock(&pcp->lock);
4b23a68f 2224 free_pcppages_bulk(zone, pcp->count, pcp, 0);
57490774 2225 spin_unlock(&pcp->lock);
4b23a68f 2226 }
93481ff0 2227}
3dfa5721 2228
93481ff0
VB
2229/*
2230 * Drain pcplists of all zones on the indicated processor.
93481ff0
VB
2231 */
2232static void drain_pages(unsigned int cpu)
2233{
2234 struct zone *zone;
2235
2236 for_each_populated_zone(zone) {
2237 drain_pages_zone(cpu, zone);
1da177e4
LT
2238 }
2239}
1da177e4 2240
9f8f2172
CL
2241/*
2242 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2243 */
93481ff0 2244void drain_local_pages(struct zone *zone)
9f8f2172 2245{
93481ff0
VB
2246 int cpu = smp_processor_id();
2247
2248 if (zone)
2249 drain_pages_zone(cpu, zone);
2250 else
2251 drain_pages(cpu);
9f8f2172
CL
2252}
2253
2254/*
ec6e8c7e
VB
2255 * The implementation of drain_all_pages(), exposing an extra parameter to
2256 * drain on all cpus.
93481ff0 2257 *
ec6e8c7e
VB
2258 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2259 * not empty. The check for non-emptiness can however race with a free to
2260 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2261 * that need the guarantee that every CPU has drained can disable the
2262 * optimizing racy check.
9f8f2172 2263 */
3b1f3658 2264static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
9f8f2172 2265{
74046494 2266 int cpu;
74046494
GBY
2267
2268 /*
041711ce 2269 * Allocate in the BSS so we won't require allocation in
74046494
GBY
2270 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2271 */
2272 static cpumask_t cpus_with_pcps;
2273
bd233f53
MG
2274 /*
2275 * Do not drain if one is already in progress unless it's specific to
2276 * a zone. Such callers are primarily CMA and memory hotplug and need
2277 * the drain to be complete when the call returns.
2278 */
2279 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2280 if (!zone)
2281 return;
2282 mutex_lock(&pcpu_drain_mutex);
2283 }
0ccce3b9 2284
74046494
GBY
2285 /*
2286 * We don't care about racing with CPU hotplug event
2287 * as offline notification will cause the notified
2288 * cpu to drain that CPU pcps and on_each_cpu_mask
2289 * disables preemption as part of its processing
2290 */
2291 for_each_online_cpu(cpu) {
28f836b6 2292 struct per_cpu_pages *pcp;
93481ff0 2293 struct zone *z;
74046494 2294 bool has_pcps = false;
93481ff0 2295
ec6e8c7e
VB
2296 if (force_all_cpus) {
2297 /*
2298 * The pcp.count check is racy, some callers need a
2299 * guarantee that no cpu is missed.
2300 */
2301 has_pcps = true;
2302 } else if (zone) {
28f836b6
MG
2303 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2304 if (pcp->count)
74046494 2305 has_pcps = true;
93481ff0
VB
2306 } else {
2307 for_each_populated_zone(z) {
28f836b6
MG
2308 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2309 if (pcp->count) {
93481ff0
VB
2310 has_pcps = true;
2311 break;
2312 }
74046494
GBY
2313 }
2314 }
93481ff0 2315
74046494
GBY
2316 if (has_pcps)
2317 cpumask_set_cpu(cpu, &cpus_with_pcps);
2318 else
2319 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2320 }
0ccce3b9 2321
bd233f53 2322 for_each_cpu(cpu, &cpus_with_pcps) {
443c2acc
NSJ
2323 if (zone)
2324 drain_pages_zone(cpu, zone);
2325 else
2326 drain_pages(cpu);
0ccce3b9 2327 }
bd233f53
MG
2328
2329 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2330}
2331
ec6e8c7e
VB
2332/*
2333 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2334 *
2335 * When zone parameter is non-NULL, spill just the single zone's pages.
ec6e8c7e
VB
2336 */
2337void drain_all_pages(struct zone *zone)
2338{
2339 __drain_all_pages(zone, false);
2340}
2341
44042b44
MG
2342static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2343 unsigned int order)
1da177e4 2344{
5f8dcc21 2345 int migratetype;
1da177e4 2346
5267fe5d 2347 if (!free_pages_prepare(page, order))
9cca35d4 2348 return false;
689bcebf 2349
dc4b0caf 2350 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2351 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2352 return true;
2353}
2354
51a755c5 2355static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
3b12e7e9
MG
2356{
2357 int min_nr_free, max_nr_free;
2358
51a755c5 2359 /* Free as much as possible if batch freeing high-order pages. */
f26b3fa0 2360 if (unlikely(free_high))
51a755c5 2361 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
f26b3fa0 2362
3b12e7e9
MG
2363 /* Check for PCP disabled or boot pageset */
2364 if (unlikely(high < batch))
2365 return 1;
2366
2367 /* Leave at least pcp->batch pages on the list */
2368 min_nr_free = batch;
2369 max_nr_free = high - batch;
2370
2371 /*
6ccdcb6d
HY
2372 * Increase the batch number to the number of the consecutive
2373 * freed pages to reduce zone lock contention.
3b12e7e9 2374 */
6ccdcb6d 2375 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
3b12e7e9
MG
2376
2377 return batch;
2378}
2379
f26b3fa0 2380static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
51a755c5 2381 int batch, bool free_high)
c49c2c47 2382{
51a755c5 2383 int high, high_min, high_max;
c49c2c47 2384
51a755c5
HY
2385 high_min = READ_ONCE(pcp->high_min);
2386 high_max = READ_ONCE(pcp->high_max);
2387 high = pcp->high = clamp(pcp->high, high_min, high_max);
2388
2389 if (unlikely(!high))
c49c2c47
MG
2390 return 0;
2391
51a755c5
HY
2392 if (unlikely(free_high)) {
2393 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2394 high_min);
2395 return 0;
2396 }
c49c2c47
MG
2397
2398 /*
2399 * If reclaim is active, limit the number of pages that can be
2400 * stored on pcp lists
2401 */
51a755c5 2402 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
6ccdcb6d
HY
2403 int free_count = max_t(int, pcp->free_count, batch);
2404
2405 pcp->high = max(high - free_count, high_min);
51a755c5
HY
2406 return min(batch << 2, pcp->high);
2407 }
2408
57c0419c
HY
2409 if (high_min == high_max)
2410 return high;
2411
2412 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
6ccdcb6d
HY
2413 int free_count = max_t(int, pcp->free_count, batch);
2414
2415 pcp->high = max(high - free_count, high_min);
57c0419c
HY
2416 high = max(pcp->count, high_min);
2417 } else if (pcp->count >= high) {
6ccdcb6d 2418 int need_high = pcp->free_count + batch;
51a755c5
HY
2419
2420 /* pcp->high should be large enough to hold batch freed pages */
2421 if (pcp->high < need_high)
2422 pcp->high = clamp(need_high, high_min, high_max);
2423 }
2424
2425 return high;
c49c2c47
MG
2426}
2427
4b23a68f
MG
2428static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2429 struct page *page, int migratetype,
56651377 2430 unsigned int order)
9cca35d4 2431{
51a755c5 2432 int high, batch;
44042b44 2433 int pindex;
ca71fe1a 2434 bool free_high = false;
9cca35d4 2435
c0a24239
HY
2436 /*
2437 * On freeing, reduce the number of pages that are batch allocated.
2438 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2439 * allocations.
2440 */
2441 pcp->alloc_factor >>= 1;
15cd9004 2442 __count_vm_events(PGFREE, 1 << order);
44042b44 2443 pindex = order_to_pindex(migratetype, order);
bf75f200 2444 list_add(&page->pcp_list, &pcp->lists[pindex]);
44042b44 2445 pcp->count += 1 << order;
f26b3fa0 2446
51a755c5 2447 batch = READ_ONCE(pcp->batch);
f26b3fa0
MG
2448 /*
2449 * As high-order pages other than THP's stored on PCP can contribute
2450 * to fragmentation, limit the number stored when PCP is heavily
2451 * freeing without allocation. The remainder after bulk freeing
2452 * stops will be drained from vmstat refresh context.
2453 */
ca71fe1a 2454 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
6ccdcb6d 2455 free_high = (pcp->free_count >= batch &&
362d37a1
HY
2456 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2457 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
51a755c5 2458 pcp->count >= READ_ONCE(batch)));
ca71fe1a
HY
2459 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2460 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2461 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2462 }
6ccdcb6d
HY
2463 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2464 pcp->free_count += (1 << order);
51a755c5 2465 high = nr_pcp_high(pcp, zone, batch, free_high);
3b12e7e9 2466 if (pcp->count >= high) {
51a755c5
HY
2467 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2468 pcp, pindex);
57c0419c
HY
2469 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2470 zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2471 ZONE_MOVABLE, 0))
2472 clear_bit(ZONE_BELOW_HIGH, &zone->flags);
3b12e7e9 2473 }
9cca35d4 2474}
5f8dcc21 2475
9cca35d4 2476/*
44042b44 2477 * Free a pcp page
9cca35d4 2478 */
44042b44 2479void free_unref_page(struct page *page, unsigned int order)
9cca35d4 2480{
4b23a68f
MG
2481 unsigned long __maybe_unused UP_flags;
2482 struct per_cpu_pages *pcp;
2483 struct zone *zone;
9cca35d4 2484 unsigned long pfn = page_to_pfn(page);
7b086755 2485 int migratetype, pcpmigratetype;
9cca35d4 2486
44042b44 2487 if (!free_unref_page_prepare(page, pfn, order))
9cca35d4 2488 return;
da456f14 2489
5f8dcc21
MG
2490 /*
2491 * We only track unmovable, reclaimable and movable on pcp lists.
df1acc85 2492 * Place ISOLATE pages on the isolated list because they are being
7b086755
JW
2493 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2494 * get those areas back if necessary. Otherwise, we may have to free
5f8dcc21
MG
2495 * excessively into the page allocator
2496 */
7b086755 2497 migratetype = pcpmigratetype = get_pcppage_migratetype(page);
df1acc85 2498 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
194159fb 2499 if (unlikely(is_migrate_isolate(migratetype))) {
44042b44 2500 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
9cca35d4 2501 return;
5f8dcc21 2502 }
7b086755 2503 pcpmigratetype = MIGRATE_MOVABLE;
5f8dcc21
MG
2504 }
2505
4b23a68f
MG
2506 zone = page_zone(page);
2507 pcp_trylock_prepare(UP_flags);
57490774 2508 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 2509 if (pcp) {
7b086755 2510 free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
57490774 2511 pcp_spin_unlock(pcp);
4b23a68f
MG
2512 } else {
2513 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2514 }
2515 pcp_trylock_finish(UP_flags);
1da177e4
LT
2516}
2517
cc59850e 2518/*
31b2ff82 2519 * Free a batch of folios
cc59850e 2520 */
90491d87 2521void free_unref_folios(struct folio_batch *folios)
cc59850e 2522{
57490774 2523 unsigned long __maybe_unused UP_flags;
4b23a68f
MG
2524 struct per_cpu_pages *pcp = NULL;
2525 struct zone *locked_zone = NULL;
90491d87 2526 int i, j, migratetype;
9cca35d4 2527
90491d87
MWO
2528 /* Prepare folios for freeing */
2529 for (i = 0, j = 0; i < folios->nr; i++) {
2530 struct folio *folio = folios->folios[i];
7c76d922 2531 unsigned long pfn = folio_pfn(folio);
31b2ff82 2532 unsigned int order = folio_order(folio);
9cca35d4 2533
31b2ff82
MWO
2534 if (order > 0 && folio_test_large_rmappable(folio))
2535 folio_undo_large_rmappable(folio);
2536 if (!free_unref_page_prepare(&folio->page, pfn, order))
053cfda1 2537 continue;
df1acc85
MG
2538
2539 /*
31b2ff82
MWO
2540 * Free isolated folios and orders not handled on the PCP
2541 * directly to the allocator, see comment in free_unref_page.
df1acc85 2542 */
7c76d922 2543 migratetype = get_pcppage_migratetype(&folio->page);
31b2ff82
MWO
2544 if (!pcp_allowed_order(order) ||
2545 is_migrate_isolate(migratetype)) {
7c76d922 2546 free_one_page(folio_zone(folio), &folio->page, pfn,
31b2ff82 2547 order, migratetype, FPI_NONE);
47aef601 2548 continue;
df1acc85 2549 }
31b2ff82 2550 folio->private = (void *)(unsigned long)order;
90491d87
MWO
2551 if (j != i)
2552 folios->folios[j] = folio;
2553 j++;
9cca35d4 2554 }
90491d87 2555 folios->nr = j;
cc59850e 2556
90491d87
MWO
2557 for (i = 0; i < folios->nr; i++) {
2558 struct folio *folio = folios->folios[i];
7c76d922 2559 struct zone *zone = folio_zone(folio);
31b2ff82 2560 unsigned int order = (unsigned long)folio->private;
4b23a68f 2561
31b2ff82 2562 folio->private = NULL;
7c76d922 2563 migratetype = get_pcppage_migratetype(&folio->page);
c3e58a70 2564
90491d87
MWO
2565 /* Different zone requires a different pcp lock */
2566 if (zone != locked_zone) {
57490774
MG
2567 if (pcp) {
2568 pcp_spin_unlock(pcp);
2569 pcp_trylock_finish(UP_flags);
2570 }
01b44456 2571
57490774 2572 /*
7c76d922 2573 * trylock is necessary as folios may be getting freed
57490774
MG
2574 * from IRQ or SoftIRQ context after an IO completion.
2575 */
2576 pcp_trylock_prepare(UP_flags);
2577 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2578 if (unlikely(!pcp)) {
2579 pcp_trylock_finish(UP_flags);
7c76d922 2580 free_one_page(zone, &folio->page,
31b2ff82 2581 folio_pfn(folio), order,
7c76d922 2582 migratetype, FPI_NONE);
57490774
MG
2583 locked_zone = NULL;
2584 continue;
2585 }
4b23a68f 2586 locked_zone = zone;
4b23a68f
MG
2587 }
2588
47aef601
DB
2589 /*
2590 * Non-isolated types over MIGRATE_PCPTYPES get added
2591 * to the MIGRATE_MOVABLE pcp list.
2592 */
47aef601
DB
2593 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2594 migratetype = MIGRATE_MOVABLE;
2595
7c76d922 2596 trace_mm_page_free_batched(&folio->page);
31b2ff82
MWO
2597 free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2598 order);
cc59850e 2599 }
4b23a68f 2600
57490774
MG
2601 if (pcp) {
2602 pcp_spin_unlock(pcp);
2603 pcp_trylock_finish(UP_flags);
2604 }
90491d87 2605 folio_batch_reinit(folios);
cc59850e
KK
2606}
2607
8dfcc9ba
NP
2608/*
2609 * split_page takes a non-compound higher-order page, and splits it into
2610 * n (1<<order) sub-pages: page[0..n]
2611 * Each sub-page must be freed individually.
2612 *
2613 * Note: this is probably too low level an operation for use in drivers.
2614 * Please consult with lkml before using this in your driver.
2615 */
2616void split_page(struct page *page, unsigned int order)
2617{
2618 int i;
2619
309381fe
SL
2620 VM_BUG_ON_PAGE(PageCompound(page), page);
2621 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2622
a9627bc5 2623 for (i = 1; i < (1 << order); i++)
7835e98b 2624 set_page_refcounted(page + i);
46d44d09 2625 split_page_owner(page, order, 0);
b8791381 2626 split_page_memcg(page, order, 0);
8dfcc9ba 2627}
5853ff23 2628EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2629
3c605096 2630int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2631{
9a157dd8
KW
2632 struct zone *zone = page_zone(page);
2633 int mt = get_pageblock_migratetype(page);
748446bb 2634
194159fb 2635 if (!is_migrate_isolate(mt)) {
9a157dd8 2636 unsigned long watermark;
8348faf9
VB
2637 /*
2638 * Obey watermarks as if the page was being allocated. We can
2639 * emulate a high-order watermark check with a raised order-0
2640 * watermark, because we already know our high-order page
2641 * exists.
2642 */
fd1444b2 2643 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 2644 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2645 return 0;
2646
8fb74b9f 2647 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2648 }
748446bb 2649
6ab01363 2650 del_page_from_free_list(page, zone, order);
2139cbe6 2651
400bc7fd 2652 /*
2653 * Set the pageblock if the isolated page is at least half of a
2654 * pageblock
2655 */
748446bb
MG
2656 if (order >= pageblock_order - 1) {
2657 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2658 for (; page < endpage; page += pageblock_nr_pages) {
2659 int mt = get_pageblock_migratetype(page);
1dd214b8
ZY
2660 /*
2661 * Only change normal pageblocks (i.e., they can merge
2662 * with others)
2663 */
2664 if (migratetype_is_mergeable(mt))
47118af0
MN
2665 set_pageblock_migratetype(page,
2666 MIGRATE_MOVABLE);
2667 }
748446bb
MG
2668 }
2669
8fb74b9f 2670 return 1UL << order;
1fb3f8ca
MG
2671}
2672
624f58d8
AD
2673/**
2674 * __putback_isolated_page - Return a now-isolated page back where we got it
2675 * @page: Page that was isolated
2676 * @order: Order of the isolated page
e6a0a7ad 2677 * @mt: The page's pageblock's migratetype
624f58d8
AD
2678 *
2679 * This function is meant to return a page pulled from the free lists via
2680 * __isolate_free_page back to the free lists they were pulled from.
2681 */
2682void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2683{
2684 struct zone *zone = page_zone(page);
2685
2686 /* zone lock should be held when this function is called */
2687 lockdep_assert_held(&zone->lock);
2688
2689 /* Return isolated page to tail of freelist. */
f04a5d5d 2690 __free_one_page(page, page_to_pfn(page), zone, order, mt,
47b6a24a 2691 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
624f58d8
AD
2692}
2693
060e7417
MG
2694/*
2695 * Update NUMA hit/miss statistics
060e7417 2696 */
3e23060b
MG
2697static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2698 long nr_account)
060e7417
MG
2699{
2700#ifdef CONFIG_NUMA
3a321d2a 2701 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2702
4518085e
KW
2703 /* skip numa counters update if numa stats is disabled */
2704 if (!static_branch_likely(&vm_numa_stat_key))
2705 return;
2706
c1093b74 2707 if (zone_to_nid(z) != numa_node_id())
060e7417 2708 local_stat = NUMA_OTHER;
060e7417 2709
c1093b74 2710 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3e23060b 2711 __count_numa_events(z, NUMA_HIT, nr_account);
2df26639 2712 else {
3e23060b
MG
2713 __count_numa_events(z, NUMA_MISS, nr_account);
2714 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
060e7417 2715 }
3e23060b 2716 __count_numa_events(z, local_stat, nr_account);
060e7417
MG
2717#endif
2718}
2719
589d9973
MG
2720static __always_inline
2721struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2722 unsigned int order, unsigned int alloc_flags,
2723 int migratetype)
2724{
2725 struct page *page;
2726 unsigned long flags;
2727
2728 do {
2729 page = NULL;
2730 spin_lock_irqsave(&zone->lock, flags);
eb2e2b42 2731 if (alloc_flags & ALLOC_HIGHATOMIC)
589d9973
MG
2732 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2733 if (!page) {
2734 page = __rmqueue(zone, order, migratetype, alloc_flags);
eb2e2b42
MG
2735
2736 /*
2737 * If the allocation fails, allow OOM handling access
2738 * to HIGHATOMIC reserves as failing now is worse than
2739 * failing a high-order atomic allocation in the
2740 * future.
2741 */
2742 if (!page && (alloc_flags & ALLOC_OOM))
2743 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2744
589d9973
MG
2745 if (!page) {
2746 spin_unlock_irqrestore(&zone->lock, flags);
2747 return NULL;
2748 }
2749 }
2750 __mod_zone_freepage_state(zone, -(1 << order),
2751 get_pcppage_migratetype(page));
2752 spin_unlock_irqrestore(&zone->lock, flags);
2753 } while (check_new_pages(page, order));
2754
2755 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2756 zone_statistics(preferred_zone, zone, 1);
2757
2758 return page;
2759}
2760
51a755c5 2761static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
c0a24239 2762{
51a755c5
HY
2763 int high, base_batch, batch, max_nr_alloc;
2764 int high_max, high_min;
c0a24239 2765
51a755c5
HY
2766 base_batch = READ_ONCE(pcp->batch);
2767 high_min = READ_ONCE(pcp->high_min);
2768 high_max = READ_ONCE(pcp->high_max);
2769 high = pcp->high = clamp(pcp->high, high_min, high_max);
c0a24239
HY
2770
2771 /* Check for PCP disabled or boot pageset */
51a755c5 2772 if (unlikely(high < base_batch))
c0a24239
HY
2773 return 1;
2774
51a755c5
HY
2775 if (order)
2776 batch = base_batch;
2777 else
2778 batch = (base_batch << pcp->alloc_factor);
2779
c0a24239 2780 /*
51a755c5
HY
2781 * If we had larger pcp->high, we could avoid to allocate from
2782 * zone.
c0a24239 2783 */
57c0419c 2784 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
51a755c5
HY
2785 high = pcp->high = min(high + batch, high_max);
2786
c0a24239 2787 if (!order) {
51a755c5
HY
2788 max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2789 /*
2790 * Double the number of pages allocated each time there is
2791 * subsequent allocation of order-0 pages without any freeing.
2792 */
c0a24239
HY
2793 if (batch <= max_nr_alloc &&
2794 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2795 pcp->alloc_factor++;
2796 batch = min(batch, max_nr_alloc);
2797 }
2798
2799 /*
2800 * Scale batch relative to order if batch implies free pages
2801 * can be stored on the PCP. Batch can be 1 for small zones or
2802 * for boot pagesets which should never store free pages as
2803 * the pages may belong to arbitrary zones.
2804 */
2805 if (batch > 1)
2806 batch = max(batch >> order, 2);
2807
2808 return batch;
2809}
2810
066b2393 2811/* Remove page from the per-cpu list, caller must protect the list */
3b822017 2812static inline
44042b44
MG
2813struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2814 int migratetype,
6bb15450 2815 unsigned int alloc_flags,
453f85d4 2816 struct per_cpu_pages *pcp,
066b2393
MG
2817 struct list_head *list)
2818{
2819 struct page *page;
2820
2821 do {
2822 if (list_empty(list)) {
51a755c5 2823 int batch = nr_pcp_alloc(pcp, zone, order);
44042b44
MG
2824 int alloced;
2825
44042b44
MG
2826 alloced = rmqueue_bulk(zone, order,
2827 batch, list,
6bb15450 2828 migratetype, alloc_flags);
44042b44
MG
2829
2830 pcp->count += alloced << order;
066b2393
MG
2831 if (unlikely(list_empty(list)))
2832 return NULL;
2833 }
2834
bf75f200
MG
2835 page = list_first_entry(list, struct page, pcp_list);
2836 list_del(&page->pcp_list);
44042b44 2837 pcp->count -= 1 << order;
700d2e9a 2838 } while (check_new_pages(page, order));
066b2393
MG
2839
2840 return page;
2841}
2842
2843/* Lock and remove page from the per-cpu list */
2844static struct page *rmqueue_pcplist(struct zone *preferred_zone,
44042b44 2845 struct zone *zone, unsigned int order,
663d0cfd 2846 int migratetype, unsigned int alloc_flags)
066b2393
MG
2847{
2848 struct per_cpu_pages *pcp;
2849 struct list_head *list;
066b2393 2850 struct page *page;
4b23a68f 2851 unsigned long __maybe_unused UP_flags;
066b2393 2852
57490774 2853 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4b23a68f 2854 pcp_trylock_prepare(UP_flags);
57490774 2855 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 2856 if (!pcp) {
4b23a68f 2857 pcp_trylock_finish(UP_flags);
4b23a68f
MG
2858 return NULL;
2859 }
3b12e7e9
MG
2860
2861 /*
2862 * On allocation, reduce the number of pages that are batch freed.
2863 * See nr_pcp_free() where free_factor is increased for subsequent
2864 * frees.
2865 */
6ccdcb6d 2866 pcp->free_count >>= 1;
44042b44
MG
2867 list = &pcp->lists[order_to_pindex(migratetype, order)];
2868 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
57490774 2869 pcp_spin_unlock(pcp);
4b23a68f 2870 pcp_trylock_finish(UP_flags);
066b2393 2871 if (page) {
15cd9004 2872 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3e23060b 2873 zone_statistics(preferred_zone, zone, 1);
066b2393 2874 }
066b2393
MG
2875 return page;
2876}
2877
1da177e4 2878/*
a57ae9ef
RX
2879 * Allocate a page from the given zone.
2880 * Use pcplists for THP or "cheap" high-order allocations.
1da177e4 2881 */
b073d7f8
AP
2882
2883/*
2884 * Do not instrument rmqueue() with KMSAN. This function may call
2885 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2886 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2887 * may call rmqueue() again, which will result in a deadlock.
1da177e4 2888 */
b073d7f8 2889__no_sanitize_memory
0a15c3e9 2890static inline
066b2393 2891struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2892 struct zone *zone, unsigned int order,
c603844b
MG
2893 gfp_t gfp_flags, unsigned int alloc_flags,
2894 int migratetype)
1da177e4 2895{
689bcebf 2896 struct page *page;
1da177e4 2897
589d9973
MG
2898 /*
2899 * We most definitely don't want callers attempting to
2900 * allocate greater than order-1 page units with __GFP_NOFAIL.
2901 */
2902 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2903
44042b44 2904 if (likely(pcp_allowed_order(order))) {
f945116e
JW
2905 page = rmqueue_pcplist(preferred_zone, zone, order,
2906 migratetype, alloc_flags);
2907 if (likely(page))
2908 goto out;
066b2393 2909 }
83b9355b 2910
589d9973
MG
2911 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2912 migratetype);
1da177e4 2913
066b2393 2914out:
73444bc4 2915 /* Separate test+clear to avoid unnecessary atomics */
3b11edf1
TH
2916 if ((alloc_flags & ALLOC_KSWAPD) &&
2917 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
73444bc4
MG
2918 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2919 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2920 }
2921
066b2393 2922 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4
LT
2923 return page;
2924}
2925
54aa3866 2926noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
af3b8544
BP
2927{
2928 return __should_fail_alloc_page(gfp_mask, order);
2929}
2930ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2931
f27ce0e1
JK
2932static inline long __zone_watermark_unusable_free(struct zone *z,
2933 unsigned int order, unsigned int alloc_flags)
2934{
f27ce0e1
JK
2935 long unusable_free = (1 << order) - 1;
2936
2937 /*
ab350885
MG
2938 * If the caller does not have rights to reserves below the min
2939 * watermark then subtract the high-atomic reserves. This will
2940 * over-estimate the size of the atomic reserve but it avoids a search.
f27ce0e1 2941 */
ab350885 2942 if (likely(!(alloc_flags & ALLOC_RESERVES)))
f27ce0e1
JK
2943 unusable_free += z->nr_reserved_highatomic;
2944
2945#ifdef CONFIG_CMA
2946 /* If allocation can't use CMA areas don't use free CMA pages */
2947 if (!(alloc_flags & ALLOC_CMA))
2948 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2949#endif
dcdfdd40
KS
2950#ifdef CONFIG_UNACCEPTED_MEMORY
2951 unusable_free += zone_page_state(z, NR_UNACCEPTED);
2952#endif
f27ce0e1
JK
2953
2954 return unusable_free;
2955}
2956
1da177e4 2957/*
97a16fc8
MG
2958 * Return true if free base pages are above 'mark'. For high-order checks it
2959 * will return true of the order-0 watermark is reached and there is at least
2960 * one free page of a suitable size. Checking now avoids taking the zone lock
2961 * to check in the allocation paths if no pages are free.
1da177e4 2962 */
86a294a8 2963bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 2964 int highest_zoneidx, unsigned int alloc_flags,
86a294a8 2965 long free_pages)
1da177e4 2966{
d23ad423 2967 long min = mark;
1da177e4
LT
2968 int o;
2969
0aaa29a5 2970 /* free_pages may go negative - that's OK */
f27ce0e1 2971 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
0aaa29a5 2972
ab350885
MG
2973 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2974 /*
2975 * __GFP_HIGH allows access to 50% of the min reserve as well
2976 * as OOM.
2977 */
1ebbb218 2978 if (alloc_flags & ALLOC_MIN_RESERVE) {
ab350885 2979 min -= min / 2;
0aaa29a5 2980
1ebbb218
MG
2981 /*
2982 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2983 * access more reserves than just __GFP_HIGH. Other
2984 * non-blocking allocations requests such as GFP_NOWAIT
2985 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2986 * access to the min reserve.
2987 */
2988 if (alloc_flags & ALLOC_NON_BLOCK)
2989 min -= min / 4;
2990 }
0aaa29a5 2991
cd04ae1e 2992 /*
ab350885 2993 * OOM victims can try even harder than the normal reserve
cd04ae1e
MH
2994 * users on the grounds that it's definitely going to be in
2995 * the exit path shortly and free memory. Any allocation it
2996 * makes during the free path will be small and short-lived.
2997 */
2998 if (alloc_flags & ALLOC_OOM)
2999 min -= min / 2;
cd04ae1e
MH
3000 }
3001
97a16fc8
MG
3002 /*
3003 * Check watermarks for an order-0 allocation request. If these
3004 * are not met, then a high-order request also cannot go ahead
3005 * even if a suitable page happened to be free.
3006 */
97a225e6 3007 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
88f5acf8 3008 return false;
1da177e4 3009
97a16fc8
MG
3010 /* If this is an order-0 request then the watermark is fine */
3011 if (!order)
3012 return true;
3013
3014 /* For a high-order request, check at least one suitable page is free */
fd377218 3015 for (o = order; o < NR_PAGE_ORDERS; o++) {
97a16fc8
MG
3016 struct free_area *area = &z->free_area[o];
3017 int mt;
3018
3019 if (!area->nr_free)
3020 continue;
3021
97a16fc8 3022 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3023 if (!free_area_empty(area, mt))
97a16fc8
MG
3024 return true;
3025 }
3026
3027#ifdef CONFIG_CMA
d883c6cf 3028 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3029 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3030 return true;
d883c6cf 3031 }
97a16fc8 3032#endif
eb2e2b42
MG
3033 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3034 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
b050e376 3035 return true;
eb2e2b42 3036 }
1da177e4 3037 }
97a16fc8 3038 return false;
88f5acf8
MG
3039}
3040
7aeb09f9 3041bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
97a225e6 3042 int highest_zoneidx, unsigned int alloc_flags)
88f5acf8 3043{
97a225e6 3044 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
88f5acf8
MG
3045 zone_page_state(z, NR_FREE_PAGES));
3046}
3047
48ee5f36 3048static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
97a225e6 3049 unsigned long mark, int highest_zoneidx,
f80b08fc 3050 unsigned int alloc_flags, gfp_t gfp_mask)
48ee5f36 3051{
f27ce0e1 3052 long free_pages;
d883c6cf 3053
f27ce0e1 3054 free_pages = zone_page_state(z, NR_FREE_PAGES);
48ee5f36
MG
3055
3056 /*
3057 * Fast check for order-0 only. If this fails then the reserves
f27ce0e1 3058 * need to be calculated.
48ee5f36 3059 */
f27ce0e1 3060 if (!order) {
9282012f
JK
3061 long usable_free;
3062 long reserved;
f27ce0e1 3063
9282012f
JK
3064 usable_free = free_pages;
3065 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3066
3067 /* reserved may over estimate high-atomic reserves. */
3068 usable_free -= min(usable_free, reserved);
3069 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
f27ce0e1
JK
3070 return true;
3071 }
48ee5f36 3072
f80b08fc
CTR
3073 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3074 free_pages))
3075 return true;
2973d822 3076
f80b08fc 3077 /*
2973d822 3078 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
f80b08fc
CTR
3079 * when checking the min watermark. The min watermark is the
3080 * point where boosting is ignored so that kswapd is woken up
3081 * when below the low watermark.
3082 */
2973d822 3083 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
f80b08fc
CTR
3084 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3085 mark = z->_watermark[WMARK_MIN];
3086 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3087 alloc_flags, free_pages);
3088 }
3089
3090 return false;
48ee5f36
MG
3091}
3092
7aeb09f9 3093bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
97a225e6 3094 unsigned long mark, int highest_zoneidx)
88f5acf8
MG
3095{
3096 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3097
3098 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3099 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3100
97a225e6 3101 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
88f5acf8 3102 free_pages);
1da177e4
LT
3103}
3104
9276b1bc 3105#ifdef CONFIG_NUMA
61bb6cd2
GU
3106int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3107
957f822a
DR
3108static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3109{
e02dc017 3110 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3111 node_reclaim_distance;
957f822a 3112}
9276b1bc 3113#else /* CONFIG_NUMA */
957f822a
DR
3114static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3115{
3116 return true;
3117}
9276b1bc
PJ
3118#endif /* CONFIG_NUMA */
3119
6bb15450
MG
3120/*
3121 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3122 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3123 * premature use of a lower zone may cause lowmem pressure problems that
3124 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3125 * probably too small. It only makes sense to spread allocations to avoid
3126 * fragmentation between the Normal and DMA32 zones.
3127 */
3128static inline unsigned int
0a79cdad 3129alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3130{
736838e9 3131 unsigned int alloc_flags;
0a79cdad 3132
736838e9
MN
3133 /*
3134 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3135 * to save a branch.
3136 */
3137 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
0a79cdad
MG
3138
3139#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3140 if (!zone)
3141 return alloc_flags;
3142
6bb15450 3143 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3144 return alloc_flags;
6bb15450
MG
3145
3146 /*
3147 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3148 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3149 * on UMA that if Normal is populated then so is DMA32.
3150 */
3151 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3152 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3153 return alloc_flags;
6bb15450 3154
8118b82e 3155 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3156#endif /* CONFIG_ZONE_DMA32 */
3157 return alloc_flags;
6bb15450 3158}
6bb15450 3159
8e3560d9
PT
3160/* Must be called after current_gfp_context() which can change gfp_mask */
3161static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3162 unsigned int alloc_flags)
8510e69c
JK
3163{
3164#ifdef CONFIG_CMA
8e3560d9 3165 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
8510e69c 3166 alloc_flags |= ALLOC_CMA;
8510e69c
JK
3167#endif
3168 return alloc_flags;
3169}
3170
7fb1d9fc 3171/*
0798e519 3172 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3173 * a page.
3174 */
3175static struct page *
a9263751
VB
3176get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3177 const struct alloc_context *ac)
753ee728 3178{
6bb15450 3179 struct zoneref *z;
5117f45d 3180 struct zone *zone;
8a87d695
WY
3181 struct pglist_data *last_pgdat = NULL;
3182 bool last_pgdat_dirty_ok = false;
6bb15450 3183 bool no_fallback;
3b8c0be4 3184
6bb15450 3185retry:
7fb1d9fc 3186 /*
9276b1bc 3187 * Scan zonelist, looking for a zone with enough free.
8e464522 3188 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
7fb1d9fc 3189 */
6bb15450
MG
3190 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3191 z = ac->preferred_zoneref;
30d8ec73
MN
3192 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3193 ac->nodemask) {
be06af00 3194 struct page *page;
e085dbc5
JW
3195 unsigned long mark;
3196
664eedde
MG
3197 if (cpusets_enabled() &&
3198 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3199 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3200 continue;
a756cf59
JW
3201 /*
3202 * When allocating a page cache page for writing, we
281e3726
MG
3203 * want to get it from a node that is within its dirty
3204 * limit, such that no single node holds more than its
a756cf59 3205 * proportional share of globally allowed dirty pages.
281e3726 3206 * The dirty limits take into account the node's
a756cf59
JW
3207 * lowmem reserves and high watermark so that kswapd
3208 * should be able to balance it without having to
3209 * write pages from its LRU list.
3210 *
a756cf59 3211 * XXX: For now, allow allocations to potentially
281e3726 3212 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3213 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3214 * which is important when on a NUMA setup the allowed
281e3726 3215 * nodes are together not big enough to reach the
a756cf59 3216 * global limit. The proper fix for these situations
281e3726 3217 * will require awareness of nodes in the
a756cf59
JW
3218 * dirty-throttling and the flusher threads.
3219 */
3b8c0be4 3220 if (ac->spread_dirty_pages) {
8a87d695
WY
3221 if (last_pgdat != zone->zone_pgdat) {
3222 last_pgdat = zone->zone_pgdat;
3223 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3224 }
3b8c0be4 3225
8a87d695 3226 if (!last_pgdat_dirty_ok)
3b8c0be4 3227 continue;
3b8c0be4 3228 }
7fb1d9fc 3229
6bb15450
MG
3230 if (no_fallback && nr_online_nodes > 1 &&
3231 zone != ac->preferred_zoneref->zone) {
3232 int local_nid;
3233
3234 /*
3235 * If moving to a remote node, retry but allow
3236 * fragmenting fallbacks. Locality is more important
3237 * than fragmentation avoidance.
3238 */
3239 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3240 if (zone_to_nid(zone) != local_nid) {
3241 alloc_flags &= ~ALLOC_NOFRAGMENT;
3242 goto retry;
3243 }
3244 }
3245
57c0419c
HY
3246 /*
3247 * Detect whether the number of free pages is below high
3248 * watermark. If so, we will decrease pcp->high and free
3249 * PCP pages in free path to reduce the possibility of
3250 * premature page reclaiming. Detection is done here to
3251 * avoid to do that in hotter free path.
3252 */
3253 if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3254 goto check_alloc_wmark;
3255
3256 mark = high_wmark_pages(zone);
3257 if (zone_watermark_fast(zone, order, mark,
3258 ac->highest_zoneidx, alloc_flags,
3259 gfp_mask))
3260 goto try_this_zone;
3261 else
3262 set_bit(ZONE_BELOW_HIGH, &zone->flags);
3263
3264check_alloc_wmark:
a9214443 3265 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3266 if (!zone_watermark_fast(zone, order, mark,
f80b08fc
CTR
3267 ac->highest_zoneidx, alloc_flags,
3268 gfp_mask)) {
fa5e084e
MG
3269 int ret;
3270
dcdfdd40
KS
3271 if (has_unaccepted_memory()) {
3272 if (try_to_accept_memory(zone, order))
3273 goto try_this_zone;
3274 }
3275
c9e97a19
PT
3276#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3277 /*
3278 * Watermark failed for this zone, but see if we can
3279 * grow this zone if it contains deferred pages.
3280 */
076cf7ea 3281 if (deferred_pages_enabled()) {
c9e97a19
PT
3282 if (_deferred_grow_zone(zone, order))
3283 goto try_this_zone;
3284 }
3285#endif
5dab2911
MG
3286 /* Checked here to keep the fast path fast */
3287 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3288 if (alloc_flags & ALLOC_NO_WATERMARKS)
3289 goto try_this_zone;
3290
202e35db 3291 if (!node_reclaim_enabled() ||
c33d6c06 3292 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3293 continue;
3294
a5f5f91d 3295 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3296 switch (ret) {
a5f5f91d 3297 case NODE_RECLAIM_NOSCAN:
fa5e084e 3298 /* did not scan */
cd38b115 3299 continue;
a5f5f91d 3300 case NODE_RECLAIM_FULL:
fa5e084e 3301 /* scanned but unreclaimable */
cd38b115 3302 continue;
fa5e084e
MG
3303 default:
3304 /* did we reclaim enough */
fed2719e 3305 if (zone_watermark_ok(zone, order, mark,
97a225e6 3306 ac->highest_zoneidx, alloc_flags))
fed2719e
MG
3307 goto try_this_zone;
3308
fed2719e 3309 continue;
0798e519 3310 }
7fb1d9fc
RS
3311 }
3312
fa5e084e 3313try_this_zone:
066b2393 3314 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3315 gfp_mask, alloc_flags, ac->migratetype);
75379191 3316 if (page) {
479f854a 3317 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3318
3319 /*
3320 * If this is a high-order atomic allocation then check
3321 * if the pageblock should be reserved for the future
3322 */
eb2e2b42 3323 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
368d983b 3324 reserve_highatomic_pageblock(page, zone);
0aaa29a5 3325
75379191 3326 return page;
c9e97a19 3327 } else {
dcdfdd40
KS
3328 if (has_unaccepted_memory()) {
3329 if (try_to_accept_memory(zone, order))
3330 goto try_this_zone;
3331 }
3332
c9e97a19
PT
3333#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3334 /* Try again if zone has deferred pages */
076cf7ea 3335 if (deferred_pages_enabled()) {
c9e97a19
PT
3336 if (_deferred_grow_zone(zone, order))
3337 goto try_this_zone;
3338 }
3339#endif
75379191 3340 }
54a6eb5c 3341 }
9276b1bc 3342
6bb15450
MG
3343 /*
3344 * It's possible on a UMA machine to get through all zones that are
3345 * fragmented. If avoiding fragmentation, reset and try again.
3346 */
3347 if (no_fallback) {
3348 alloc_flags &= ~ALLOC_NOFRAGMENT;
3349 goto retry;
3350 }
3351
4ffeaf35 3352 return NULL;
753ee728
MH
3353}
3354
9af744d7 3355static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3356{
a238ab5b 3357 unsigned int filter = SHOW_MEM_FILTER_NODES;
a238ab5b
DH
3358
3359 /*
3360 * This documents exceptions given to allocations in certain
3361 * contexts that are allowed to allocate outside current's set
3362 * of allowed nodes.
3363 */
3364 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3365 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3366 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3367 filter &= ~SHOW_MEM_FILTER_NODES;
88dc6f20 3368 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3369 filter &= ~SHOW_MEM_FILTER_NODES;
3370
974f4367 3371 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
aa187507
MH
3372}
3373
a8e99259 3374void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3375{
3376 struct va_format vaf;
3377 va_list args;
1be334e5 3378 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
aa187507 3379
c4dc63f0
BH
3380 if ((gfp_mask & __GFP_NOWARN) ||
3381 !__ratelimit(&nopage_rs) ||
3382 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
aa187507
MH
3383 return;
3384
7877cdcc
MH
3385 va_start(args, fmt);
3386 vaf.fmt = fmt;
3387 vaf.va = &args;
ef8444ea 3388 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3389 current->comm, &vaf, gfp_mask, &gfp_mask,
3390 nodemask_pr_args(nodemask));
7877cdcc 3391 va_end(args);
3ee9a4f0 3392
a8e99259 3393 cpuset_print_current_mems_allowed();
ef8444ea 3394 pr_cont("\n");
a238ab5b 3395 dump_stack();
685dbf6f 3396 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3397}
3398
6c18ba7a
MH
3399static inline struct page *
3400__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3401 unsigned int alloc_flags,
3402 const struct alloc_context *ac)
3403{
3404 struct page *page;
3405
3406 page = get_page_from_freelist(gfp_mask, order,
3407 alloc_flags|ALLOC_CPUSET, ac);
3408 /*
3409 * fallback to ignore cpuset restriction if our nodes
3410 * are depleted
3411 */
3412 if (!page)
3413 page = get_page_from_freelist(gfp_mask, order,
3414 alloc_flags, ac);
3415
3416 return page;
3417}
3418
11e33f6a
MG
3419static inline struct page *
3420__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3421 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3422{
6e0fc46d
DR
3423 struct oom_control oc = {
3424 .zonelist = ac->zonelist,
3425 .nodemask = ac->nodemask,
2a966b77 3426 .memcg = NULL,
6e0fc46d
DR
3427 .gfp_mask = gfp_mask,
3428 .order = order,
6e0fc46d 3429 };
11e33f6a
MG
3430 struct page *page;
3431
9879de73
JW
3432 *did_some_progress = 0;
3433
9879de73 3434 /*
dc56401f
JW
3435 * Acquire the oom lock. If that fails, somebody else is
3436 * making progress for us.
9879de73 3437 */
dc56401f 3438 if (!mutex_trylock(&oom_lock)) {
9879de73 3439 *did_some_progress = 1;
11e33f6a 3440 schedule_timeout_uninterruptible(1);
1da177e4
LT
3441 return NULL;
3442 }
6b1de916 3443
11e33f6a
MG
3444 /*
3445 * Go through the zonelist yet one more time, keep very high watermark
3446 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3447 * we're still under heavy pressure. But make sure that this reclaim
3448 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3449 * allocation which will never fail due to oom_lock already held.
11e33f6a 3450 */
e746bf73
TH
3451 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3452 ~__GFP_DIRECT_RECLAIM, order,
3453 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3454 if (page)
11e33f6a
MG
3455 goto out;
3456
06ad276a
MH
3457 /* Coredumps can quickly deplete all memory reserves */
3458 if (current->flags & PF_DUMPCORE)
3459 goto out;
3460 /* The OOM killer will not help higher order allocs */
3461 if (order > PAGE_ALLOC_COSTLY_ORDER)
3462 goto out;
dcda9b04
MH
3463 /*
3464 * We have already exhausted all our reclaim opportunities without any
3465 * success so it is time to admit defeat. We will skip the OOM killer
3466 * because it is very likely that the caller has a more reasonable
3467 * fallback than shooting a random task.
cfb4a541
MN
3468 *
3469 * The OOM killer may not free memory on a specific node.
dcda9b04 3470 */
cfb4a541 3471 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
dcda9b04 3472 goto out;
06ad276a 3473 /* The OOM killer does not needlessly kill tasks for lowmem */
97a225e6 3474 if (ac->highest_zoneidx < ZONE_NORMAL)
06ad276a
MH
3475 goto out;
3476 if (pm_suspended_storage())
3477 goto out;
3478 /*
3479 * XXX: GFP_NOFS allocations should rather fail than rely on
3480 * other request to make a forward progress.
3481 * We are in an unfortunate situation where out_of_memory cannot
3482 * do much for this context but let's try it to at least get
3483 * access to memory reserved if the current task is killed (see
3484 * out_of_memory). Once filesystems are ready to handle allocation
3485 * failures more gracefully we should just bail out here.
3486 */
3487
3c2c6488 3488 /* Exhausted what can be done so it's blame time */
3f913fc5
QZ
3489 if (out_of_memory(&oc) ||
3490 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
c32b3cbe 3491 *did_some_progress = 1;
5020e285 3492
6c18ba7a
MH
3493 /*
3494 * Help non-failing allocations by giving them access to memory
3495 * reserves
3496 */
3497 if (gfp_mask & __GFP_NOFAIL)
3498 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3499 ALLOC_NO_WATERMARKS, ac);
5020e285 3500 }
11e33f6a 3501out:
dc56401f 3502 mutex_unlock(&oom_lock);
11e33f6a
MG
3503 return page;
3504}
3505
33c2d214 3506/*
baf2f90b 3507 * Maximum number of compaction retries with a progress before OOM
33c2d214
MH
3508 * killer is consider as the only way to move forward.
3509 */
3510#define MAX_COMPACT_RETRIES 16
3511
56de7263
MG
3512#ifdef CONFIG_COMPACTION
3513/* Try memory compaction for high-order allocations before reclaim */
3514static struct page *
3515__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3516 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3517 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3518{
5e1f0f09 3519 struct page *page = NULL;
eb414681 3520 unsigned long pflags;
499118e9 3521 unsigned int noreclaim_flag;
53853e2d
VB
3522
3523 if (!order)
66199712 3524 return NULL;
66199712 3525
eb414681 3526 psi_memstall_enter(&pflags);
5bf18281 3527 delayacct_compact_start();
499118e9 3528 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3529
c5d01d0d 3530 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3531 prio, &page);
eb414681 3532
499118e9 3533 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3534 psi_memstall_leave(&pflags);
5bf18281 3535 delayacct_compact_end();
56de7263 3536
06dac2f4
CTR
3537 if (*compact_result == COMPACT_SKIPPED)
3538 return NULL;
98dd3b48
VB
3539 /*
3540 * At least in one zone compaction wasn't deferred or skipped, so let's
3541 * count a compaction stall
3542 */
3543 count_vm_event(COMPACTSTALL);
8fb74b9f 3544
5e1f0f09
MG
3545 /* Prep a captured page if available */
3546 if (page)
3547 prep_new_page(page, order, gfp_mask, alloc_flags);
3548
3549 /* Try get a page from the freelist if available */
3550 if (!page)
3551 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3552
98dd3b48
VB
3553 if (page) {
3554 struct zone *zone = page_zone(page);
53853e2d 3555
98dd3b48
VB
3556 zone->compact_blockskip_flush = false;
3557 compaction_defer_reset(zone, order, true);
3558 count_vm_event(COMPACTSUCCESS);
3559 return page;
3560 }
56de7263 3561
98dd3b48
VB
3562 /*
3563 * It's bad if compaction run occurs and fails. The most likely reason
3564 * is that pages exist, but not enough to satisfy watermarks.
3565 */
3566 count_vm_event(COMPACTFAIL);
66199712 3567
98dd3b48 3568 cond_resched();
56de7263
MG
3569
3570 return NULL;
3571}
33c2d214 3572
3250845d
VB
3573static inline bool
3574should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3575 enum compact_result compact_result,
3576 enum compact_priority *compact_priority,
d9436498 3577 int *compaction_retries)
3250845d
VB
3578{
3579 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3580 int min_priority;
65190cff
MH
3581 bool ret = false;
3582 int retries = *compaction_retries;
3583 enum compact_priority priority = *compact_priority;
3250845d
VB
3584
3585 if (!order)
3586 return false;
3587
691d9497
AT
3588 if (fatal_signal_pending(current))
3589 return false;
3590
49433085 3591 /*
ecd8b292
JW
3592 * Compaction was skipped due to a lack of free order-0
3593 * migration targets. Continue if reclaim can help.
49433085 3594 */
ecd8b292 3595 if (compact_result == COMPACT_SKIPPED) {
49433085
VB
3596 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3597 goto out;
3598 }
3599
3250845d 3600 /*
511a69b2
JW
3601 * Compaction managed to coalesce some page blocks, but the
3602 * allocation failed presumably due to a race. Retry some.
3250845d 3603 */
511a69b2
JW
3604 if (compact_result == COMPACT_SUCCESS) {
3605 /*
3606 * !costly requests are much more important than
3607 * __GFP_RETRY_MAYFAIL costly ones because they are de
3608 * facto nofail and invoke OOM killer to move on while
3609 * costly can fail and users are ready to cope with
3610 * that. 1/4 retries is rather arbitrary but we would
3611 * need much more detailed feedback from compaction to
3612 * make a better decision.
3613 */
3614 if (order > PAGE_ALLOC_COSTLY_ORDER)
3615 max_retries /= 4;
3250845d 3616
511a69b2
JW
3617 if (++(*compaction_retries) <= max_retries) {
3618 ret = true;
3619 goto out;
3620 }
65190cff 3621 }
3250845d 3622
d9436498 3623 /*
511a69b2 3624 * Compaction failed. Retry with increasing priority.
d9436498 3625 */
c2033b00
VB
3626 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3627 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3628
c2033b00 3629 if (*compact_priority > min_priority) {
d9436498
VB
3630 (*compact_priority)--;
3631 *compaction_retries = 0;
65190cff 3632 ret = true;
d9436498 3633 }
65190cff
MH
3634out:
3635 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3636 return ret;
3250845d 3637}
56de7263
MG
3638#else
3639static inline struct page *
3640__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3641 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3642 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3643{
33c2d214 3644 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3645 return NULL;
3646}
33c2d214
MH
3647
3648static inline bool
86a294a8
MH
3649should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3650 enum compact_result compact_result,
a5508cd8 3651 enum compact_priority *compact_priority,
d9436498 3652 int *compaction_retries)
33c2d214 3653{
31e49bfd
MH
3654 struct zone *zone;
3655 struct zoneref *z;
3656
3657 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3658 return false;
3659
3660 /*
3661 * There are setups with compaction disabled which would prefer to loop
3662 * inside the allocator rather than hit the oom killer prematurely.
3663 * Let's give them a good hope and keep retrying while the order-0
3664 * watermarks are OK.
3665 */
97a225e6
JK
3666 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3667 ac->highest_zoneidx, ac->nodemask) {
31e49bfd 3668 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
97a225e6 3669 ac->highest_zoneidx, alloc_flags))
31e49bfd
MH
3670 return true;
3671 }
33c2d214
MH
3672 return false;
3673}
3250845d 3674#endif /* CONFIG_COMPACTION */
56de7263 3675
d92a8cfc 3676#ifdef CONFIG_LOCKDEP
93781325 3677static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
3678 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3679
f920e413 3680static bool __need_reclaim(gfp_t gfp_mask)
d92a8cfc 3681{
d92a8cfc
PZ
3682 /* no reclaim without waiting on it */
3683 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3684 return false;
3685
3686 /* this guy won't enter reclaim */
2e517d68 3687 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3688 return false;
3689
d92a8cfc
PZ
3690 if (gfp_mask & __GFP_NOLOCKDEP)
3691 return false;
3692
3693 return true;
3694}
3695
4f3eaf45 3696void __fs_reclaim_acquire(unsigned long ip)
93781325 3697{
4f3eaf45 3698 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
93781325
OS
3699}
3700
4f3eaf45 3701void __fs_reclaim_release(unsigned long ip)
93781325 3702{
4f3eaf45 3703 lock_release(&__fs_reclaim_map, ip);
93781325
OS
3704}
3705
d92a8cfc
PZ
3706void fs_reclaim_acquire(gfp_t gfp_mask)
3707{
f920e413
DV
3708 gfp_mask = current_gfp_context(gfp_mask);
3709
3710 if (__need_reclaim(gfp_mask)) {
3711 if (gfp_mask & __GFP_FS)
4f3eaf45 3712 __fs_reclaim_acquire(_RET_IP_);
f920e413
DV
3713
3714#ifdef CONFIG_MMU_NOTIFIER
3715 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3716 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3717#endif
3718
3719 }
d92a8cfc
PZ
3720}
3721EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3722
3723void fs_reclaim_release(gfp_t gfp_mask)
3724{
f920e413
DV
3725 gfp_mask = current_gfp_context(gfp_mask);
3726
3727 if (__need_reclaim(gfp_mask)) {
3728 if (gfp_mask & __GFP_FS)
4f3eaf45 3729 __fs_reclaim_release(_RET_IP_);
f920e413 3730 }
d92a8cfc
PZ
3731}
3732EXPORT_SYMBOL_GPL(fs_reclaim_release);
3733#endif
3734
3d36424b
MG
3735/*
3736 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3737 * have been rebuilt so allocation retries. Reader side does not lock and
3738 * retries the allocation if zonelist changes. Writer side is protected by the
3739 * embedded spin_lock.
3740 */
3741static DEFINE_SEQLOCK(zonelist_update_seq);
3742
3743static unsigned int zonelist_iter_begin(void)
3744{
3745 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3746 return read_seqbegin(&zonelist_update_seq);
3747
3748 return 0;
3749}
3750
3751static unsigned int check_retry_zonelist(unsigned int seq)
3752{
3753 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3754 return read_seqretry(&zonelist_update_seq, seq);
3755
3756 return seq;
3757}
3758
bba90710 3759/* Perform direct synchronous page reclaim */
2187e17b 3760static unsigned long
a9263751
VB
3761__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3762 const struct alloc_context *ac)
11e33f6a 3763{
499118e9 3764 unsigned int noreclaim_flag;
fa7fc75f 3765 unsigned long progress;
11e33f6a
MG
3766
3767 cond_resched();
3768
3769 /* We now go into synchronous reclaim */
3770 cpuset_memory_pressure_bump();
d92a8cfc 3771 fs_reclaim_acquire(gfp_mask);
93781325 3772 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 3773
a9263751
VB
3774 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3775 ac->nodemask);
11e33f6a 3776
499118e9 3777 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3778 fs_reclaim_release(gfp_mask);
11e33f6a
MG
3779
3780 cond_resched();
3781
bba90710
MS
3782 return progress;
3783}
3784
3785/* The really slow allocator path where we enter direct reclaim */
3786static inline struct page *
3787__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3788 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3789 unsigned long *did_some_progress)
bba90710
MS
3790{
3791 struct page *page = NULL;
fa7fc75f 3792 unsigned long pflags;
bba90710
MS
3793 bool drained = false;
3794
fa7fc75f 3795 psi_memstall_enter(&pflags);
a9263751 3796 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce 3797 if (unlikely(!(*did_some_progress)))
fa7fc75f 3798 goto out;
11e33f6a 3799
9ee493ce 3800retry:
31a6c190 3801 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3802
3803 /*
3804 * If an allocation failed after direct reclaim, it could be because
0aaa29a5 3805 * pages are pinned on the per-cpu lists or in high alloc reserves.
047b9967 3806 * Shrink them and try again
9ee493ce
MG
3807 */
3808 if (!page && !drained) {
29fac03b 3809 unreserve_highatomic_pageblock(ac, false);
93481ff0 3810 drain_all_pages(NULL);
9ee493ce
MG
3811 drained = true;
3812 goto retry;
3813 }
fa7fc75f
SB
3814out:
3815 psi_memstall_leave(&pflags);
9ee493ce 3816
11e33f6a
MG
3817 return page;
3818}
3819
5ecd9d40
DR
3820static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3821 const struct alloc_context *ac)
3a025760
JW
3822{
3823 struct zoneref *z;
3824 struct zone *zone;
e1a55637 3825 pg_data_t *last_pgdat = NULL;
97a225e6 3826 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3a025760 3827
97a225e6 3828 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
5ecd9d40 3829 ac->nodemask) {
bc53008e
WY
3830 if (!managed_zone(zone))
3831 continue;
d137a7cb 3832 if (last_pgdat != zone->zone_pgdat) {
97a225e6 3833 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
d137a7cb
CW
3834 last_pgdat = zone->zone_pgdat;
3835 }
e1a55637 3836 }
3a025760
JW
3837}
3838
c603844b 3839static inline unsigned int
eb2e2b42 3840gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
341ce06f 3841{
c603844b 3842 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3843
736838e9 3844 /*
524c4807 3845 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
736838e9
MN
3846 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3847 * to save two branches.
3848 */
524c4807 3849 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
736838e9 3850 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
933e312e 3851
341ce06f
PZ
3852 /*
3853 * The caller may dip into page reserves a bit more if the caller
3854 * cannot run direct reclaim, or if the caller has realtime scheduling
3855 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1ebbb218 3856 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
341ce06f 3857 */
736838e9
MN
3858 alloc_flags |= (__force int)
3859 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
1da177e4 3860
1ebbb218 3861 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
5c3240d9 3862 /*
b104a35d
DR
3863 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3864 * if it can't schedule.
5c3240d9 3865 */
eb2e2b42 3866 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1ebbb218 3867 alloc_flags |= ALLOC_NON_BLOCK;
eb2e2b42
MG
3868
3869 if (order > 0)
3870 alloc_flags |= ALLOC_HIGHATOMIC;
3871 }
3872
523b9458 3873 /*
1ebbb218
MG
3874 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3875 * GFP_ATOMIC) rather than fail, see the comment for
8e464522 3876 * cpuset_node_allowed().
523b9458 3877 */
1ebbb218
MG
3878 if (alloc_flags & ALLOC_MIN_RESERVE)
3879 alloc_flags &= ~ALLOC_CPUSET;
88dc6f20 3880 } else if (unlikely(rt_task(current)) && in_task())
c988dcbe 3881 alloc_flags |= ALLOC_MIN_RESERVE;
341ce06f 3882
8e3560d9 3883 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
8510e69c 3884
341ce06f
PZ
3885 return alloc_flags;
3886}
3887
cd04ae1e 3888static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3889{
cd04ae1e
MH
3890 if (!tsk_is_oom_victim(tsk))
3891 return false;
3892
3893 /*
3894 * !MMU doesn't have oom reaper so give access to memory reserves
3895 * only to the thread with TIF_MEMDIE set
3896 */
3897 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3898 return false;
3899
cd04ae1e
MH
3900 return true;
3901}
3902
3903/*
3904 * Distinguish requests which really need access to full memory
3905 * reserves from oom victims which can live with a portion of it
3906 */
3907static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3908{
3909 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3910 return 0;
31a6c190 3911 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3912 return ALLOC_NO_WATERMARKS;
31a6c190 3913 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3914 return ALLOC_NO_WATERMARKS;
3915 if (!in_interrupt()) {
3916 if (current->flags & PF_MEMALLOC)
3917 return ALLOC_NO_WATERMARKS;
3918 else if (oom_reserves_allowed(current))
3919 return ALLOC_OOM;
3920 }
31a6c190 3921
cd04ae1e
MH
3922 return 0;
3923}
3924
3925bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3926{
3927 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3928}
3929
0a0337e0
MH
3930/*
3931 * Checks whether it makes sense to retry the reclaim to make a forward progress
3932 * for the given allocation request.
491d79ae
JW
3933 *
3934 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3935 * without success, or when we couldn't even meet the watermark if we
3936 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3937 *
3938 * Returns true if a retry is viable or false to enter the oom path.
3939 */
3940static inline bool
3941should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3942 struct alloc_context *ac, int alloc_flags,
423b452e 3943 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3944{
3945 struct zone *zone;
3946 struct zoneref *z;
15f570bf 3947 bool ret = false;
0a0337e0 3948
423b452e
VB
3949 /*
3950 * Costly allocations might have made a progress but this doesn't mean
3951 * their order will become available due to high fragmentation so
3952 * always increment the no progress counter for them
3953 */
3954 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3955 *no_progress_loops = 0;
3956 else
3957 (*no_progress_loops)++;
3958
ac3f3b0a
CTK
3959 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3960 goto out;
3961
0a0337e0 3962
bca67592
MG
3963 /*
3964 * Keep reclaiming pages while there is a chance this will lead
3965 * somewhere. If none of the target zones can satisfy our allocation
3966 * request even if all reclaimable pages are considered then we are
3967 * screwed and have to go OOM.
0a0337e0 3968 */
97a225e6
JK
3969 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3970 ac->highest_zoneidx, ac->nodemask) {
0a0337e0 3971 unsigned long available;
ede37713 3972 unsigned long reclaimable;
d379f01d
MH
3973 unsigned long min_wmark = min_wmark_pages(zone);
3974 bool wmark;
0a0337e0 3975
5a1c84b4 3976 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3977 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3978
3979 /*
491d79ae
JW
3980 * Would the allocation succeed if we reclaimed all
3981 * reclaimable pages?
0a0337e0 3982 */
d379f01d 3983 wmark = __zone_watermark_ok(zone, order, min_wmark,
97a225e6 3984 ac->highest_zoneidx, alloc_flags, available);
d379f01d
MH
3985 trace_reclaim_retry_zone(z, order, reclaimable,
3986 available, min_wmark, *no_progress_loops, wmark);
3987 if (wmark) {
15f570bf 3988 ret = true;
132b0d21 3989 break;
0a0337e0
MH
3990 }
3991 }
3992
15f570bf
MH
3993 /*
3994 * Memory allocation/reclaim might be called from a WQ context and the
3995 * current implementation of the WQ concurrency control doesn't
3996 * recognize that a particular WQ is congested if the worker thread is
3997 * looping without ever sleeping. Therefore we have to do a short sleep
3998 * here rather than calling cond_resched().
3999 */
4000 if (current->flags & PF_WQ_WORKER)
4001 schedule_timeout_uninterruptible(1);
4002 else
4003 cond_resched();
ac3f3b0a
CTK
4004out:
4005 /* Before OOM, exhaust highatomic_reserve */
4006 if (!ret)
4007 return unreserve_highatomic_pageblock(ac, true);
4008
15f570bf 4009 return ret;
0a0337e0
MH
4010}
4011
902b6281
VB
4012static inline bool
4013check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4014{
4015 /*
4016 * It's possible that cpuset's mems_allowed and the nodemask from
4017 * mempolicy don't intersect. This should be normally dealt with by
4018 * policy_nodemask(), but it's possible to race with cpuset update in
4019 * such a way the check therein was true, and then it became false
4020 * before we got our cpuset_mems_cookie here.
4021 * This assumes that for all allocations, ac->nodemask can come only
4022 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4023 * when it does not intersect with the cpuset restrictions) or the
4024 * caller can deal with a violated nodemask.
4025 */
4026 if (cpusets_enabled() && ac->nodemask &&
4027 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4028 ac->nodemask = NULL;
4029 return true;
4030 }
4031
4032 /*
4033 * When updating a task's mems_allowed or mempolicy nodemask, it is
4034 * possible to race with parallel threads in such a way that our
4035 * allocation can fail while the mask is being updated. If we are about
4036 * to fail, check if the cpuset changed during allocation and if so,
4037 * retry.
4038 */
4039 if (read_mems_allowed_retry(cpuset_mems_cookie))
4040 return true;
4041
4042 return false;
4043}
4044
11e33f6a
MG
4045static inline struct page *
4046__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4047 struct alloc_context *ac)
11e33f6a 4048{
d0164adc 4049 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
803de900 4050 bool can_compact = gfp_compaction_allowed(gfp_mask);
282722b0 4051 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4052 struct page *page = NULL;
c603844b 4053 unsigned int alloc_flags;
11e33f6a 4054 unsigned long did_some_progress;
5ce9bfef 4055 enum compact_priority compact_priority;
c5d01d0d 4056 enum compact_result compact_result;
5ce9bfef
VB
4057 int compaction_retries;
4058 int no_progress_loops;
5ce9bfef 4059 unsigned int cpuset_mems_cookie;
3d36424b 4060 unsigned int zonelist_iter_cookie;
cd04ae1e 4061 int reserve_flags;
1da177e4 4062
3d36424b 4063restart:
5ce9bfef
VB
4064 compaction_retries = 0;
4065 no_progress_loops = 0;
4066 compact_priority = DEF_COMPACT_PRIORITY;
4067 cpuset_mems_cookie = read_mems_allowed_begin();
3d36424b 4068 zonelist_iter_cookie = zonelist_iter_begin();
9a67f648
MH
4069
4070 /*
4071 * The fast path uses conservative alloc_flags to succeed only until
4072 * kswapd needs to be woken up, and to avoid the cost of setting up
4073 * alloc_flags precisely. So we do that now.
4074 */
eb2e2b42 4075 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
9a67f648 4076
e47483bc
VB
4077 /*
4078 * We need to recalculate the starting point for the zonelist iterator
4079 * because we might have used different nodemask in the fast path, or
4080 * there was a cpuset modification and we are retrying - otherwise we
4081 * could end up iterating over non-eligible zones endlessly.
4082 */
4083 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4084 ac->highest_zoneidx, ac->nodemask);
e47483bc
VB
4085 if (!ac->preferred_zoneref->zone)
4086 goto nopage;
4087
8ca1b5a4
FT
4088 /*
4089 * Check for insane configurations where the cpuset doesn't contain
4090 * any suitable zone to satisfy the request - e.g. non-movable
4091 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4092 */
4093 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4094 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4095 ac->highest_zoneidx,
4096 &cpuset_current_mems_allowed);
4097 if (!z->zone)
4098 goto nopage;
4099 }
4100
0a79cdad 4101 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4102 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4103
4104 /*
4105 * The adjusted alloc_flags might result in immediate success, so try
4106 * that first
4107 */
4108 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4109 if (page)
4110 goto got_pg;
4111
a8161d1e
VB
4112 /*
4113 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4114 * that we have enough base pages and don't need to reclaim. For non-
4115 * movable high-order allocations, do that as well, as compaction will
4116 * try prevent permanent fragmentation by migrating from blocks of the
4117 * same migratetype.
4118 * Don't try this for allocations that are allowed to ignore
4119 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4120 */
803de900 4121 if (can_direct_reclaim && can_compact &&
282722b0
VB
4122 (costly_order ||
4123 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4124 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4125 page = __alloc_pages_direct_compact(gfp_mask, order,
4126 alloc_flags, ac,
a5508cd8 4127 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4128 &compact_result);
4129 if (page)
4130 goto got_pg;
4131
cc638f32
VB
4132 /*
4133 * Checks for costly allocations with __GFP_NORETRY, which
4134 * includes some THP page fault allocations
4135 */
4136 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
b39d0ee2
DR
4137 /*
4138 * If allocating entire pageblock(s) and compaction
4139 * failed because all zones are below low watermarks
4140 * or is prohibited because it recently failed at this
3f36d866
DR
4141 * order, fail immediately unless the allocator has
4142 * requested compaction and reclaim retry.
b39d0ee2
DR
4143 *
4144 * Reclaim is
4145 * - potentially very expensive because zones are far
4146 * below their low watermarks or this is part of very
4147 * bursty high order allocations,
4148 * - not guaranteed to help because isolate_freepages()
4149 * may not iterate over freed pages as part of its
4150 * linear scan, and
4151 * - unlikely to make entire pageblocks free on its
4152 * own.
4153 */
4154 if (compact_result == COMPACT_SKIPPED ||
4155 compact_result == COMPACT_DEFERRED)
4156 goto nopage;
a8161d1e 4157
a8161d1e 4158 /*
3eb2771b
VB
4159 * Looks like reclaim/compaction is worth trying, but
4160 * sync compaction could be very expensive, so keep
25160354 4161 * using async compaction.
a8161d1e 4162 */
a5508cd8 4163 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4164 }
4165 }
23771235 4166
31a6c190 4167retry:
23771235 4168 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4169 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4170 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4171
cd04ae1e
MH
4172 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4173 if (reserve_flags)
ce96fa62
ML
4174 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4175 (alloc_flags & ALLOC_KSWAPD);
23771235 4176
e46e7b77 4177 /*
d6a24df0
VB
4178 * Reset the nodemask and zonelist iterators if memory policies can be
4179 * ignored. These allocations are high priority and system rather than
4180 * user oriented.
e46e7b77 4181 */
cd04ae1e 4182 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4183 ac->nodemask = NULL;
e46e7b77 4184 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4185 ac->highest_zoneidx, ac->nodemask);
e46e7b77
MG
4186 }
4187
23771235 4188 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4189 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4190 if (page)
4191 goto got_pg;
1da177e4 4192
d0164adc 4193 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4194 if (!can_direct_reclaim)
1da177e4
LT
4195 goto nopage;
4196
9a67f648
MH
4197 /* Avoid recursion of direct reclaim */
4198 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4199 goto nopage;
4200
a8161d1e
VB
4201 /* Try direct reclaim and then allocating */
4202 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4203 &did_some_progress);
4204 if (page)
4205 goto got_pg;
4206
4207 /* Try direct compaction and then allocating */
a9263751 4208 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4209 compact_priority, &compact_result);
56de7263
MG
4210 if (page)
4211 goto got_pg;
75f30861 4212
9083905a
JW
4213 /* Do not loop if specifically requested */
4214 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4215 goto nopage;
9083905a 4216
0a0337e0
MH
4217 /*
4218 * Do not retry costly high order allocations unless they are
803de900 4219 * __GFP_RETRY_MAYFAIL and we can compact
0a0337e0 4220 */
803de900
VB
4221 if (costly_order && (!can_compact ||
4222 !(gfp_mask & __GFP_RETRY_MAYFAIL)))
a8161d1e 4223 goto nopage;
0a0337e0 4224
0a0337e0 4225 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4226 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4227 goto retry;
4228
33c2d214
MH
4229 /*
4230 * It doesn't make any sense to retry for the compaction if the order-0
4231 * reclaim is not able to make any progress because the current
4232 * implementation of the compaction depends on the sufficient amount
4233 * of free memory (see __compaction_suitable)
4234 */
803de900 4235 if (did_some_progress > 0 && can_compact &&
86a294a8 4236 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4237 compact_result, &compact_priority,
d9436498 4238 &compaction_retries))
33c2d214
MH
4239 goto retry;
4240
902b6281 4241
3d36424b
MG
4242 /*
4243 * Deal with possible cpuset update races or zonelist updates to avoid
4244 * a unnecessary OOM kill.
4245 */
4246 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4247 check_retry_zonelist(zonelist_iter_cookie))
4248 goto restart;
e47483bc 4249
9083905a
JW
4250 /* Reclaim has failed us, start killing things */
4251 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4252 if (page)
4253 goto got_pg;
4254
9a67f648 4255 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e 4256 if (tsk_is_oom_victim(current) &&
8510e69c 4257 (alloc_flags & ALLOC_OOM ||
c288983d 4258 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4259 goto nopage;
4260
9083905a 4261 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4262 if (did_some_progress) {
4263 no_progress_loops = 0;
9083905a 4264 goto retry;
0a0337e0 4265 }
9083905a 4266
1da177e4 4267nopage:
3d36424b
MG
4268 /*
4269 * Deal with possible cpuset update races or zonelist updates to avoid
4270 * a unnecessary OOM kill.
4271 */
4272 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4273 check_retry_zonelist(zonelist_iter_cookie))
4274 goto restart;
5ce9bfef 4275
9a67f648
MH
4276 /*
4277 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4278 * we always retry
4279 */
4280 if (gfp_mask & __GFP_NOFAIL) {
4281 /*
4282 * All existing users of the __GFP_NOFAIL are blockable, so warn
4283 * of any new users that actually require GFP_NOWAIT
4284 */
3f913fc5 4285 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
9a67f648
MH
4286 goto fail;
4287
4288 /*
4289 * PF_MEMALLOC request from this context is rather bizarre
4290 * because we cannot reclaim anything and only can loop waiting
4291 * for somebody to do a work for us
4292 */
3f913fc5 4293 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
9a67f648
MH
4294
4295 /*
4296 * non failing costly orders are a hard requirement which we
4297 * are not prepared for much so let's warn about these users
4298 * so that we can identify them and convert them to something
4299 * else.
4300 */
896c4d52 4301 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
9a67f648 4302
6c18ba7a 4303 /*
1ebbb218
MG
4304 * Help non-failing allocations by giving some access to memory
4305 * reserves normally used for high priority non-blocking
4306 * allocations but do not use ALLOC_NO_WATERMARKS because this
6c18ba7a 4307 * could deplete whole memory reserves which would just make
1ebbb218 4308 * the situation worse.
6c18ba7a 4309 */
1ebbb218 4310 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
6c18ba7a
MH
4311 if (page)
4312 goto got_pg;
4313
9a67f648
MH
4314 cond_resched();
4315 goto retry;
4316 }
4317fail:
a8e99259 4318 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4319 "page allocation failure: order:%u", order);
1da177e4 4320got_pg:
072bb0aa 4321 return page;
1da177e4 4322}
11e33f6a 4323
9cd75558 4324static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4325 int preferred_nid, nodemask_t *nodemask,
8e6a930b 4326 struct alloc_context *ac, gfp_t *alloc_gfp,
9cd75558 4327 unsigned int *alloc_flags)
11e33f6a 4328{
97a225e6 4329 ac->highest_zoneidx = gfp_zone(gfp_mask);
04ec6264 4330 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558 4331 ac->nodemask = nodemask;
01c0bfe0 4332 ac->migratetype = gfp_migratetype(gfp_mask);
11e33f6a 4333
682a3385 4334 if (cpusets_enabled()) {
8e6a930b 4335 *alloc_gfp |= __GFP_HARDWALL;
182f3d7a
MS
4336 /*
4337 * When we are in the interrupt context, it is irrelevant
4338 * to the current task context. It means that any node ok.
4339 */
88dc6f20 4340 if (in_task() && !ac->nodemask)
9cd75558 4341 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4342 else
4343 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4344 }
4345
446ec838 4346 might_alloc(gfp_mask);
11e33f6a
MG
4347
4348 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4349 return false;
11e33f6a 4350
8e3560d9 4351 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
d883c6cf 4352
c9ab0c4f 4353 /* Dirty zone balancing only done in the fast path */
9cd75558 4354 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4355
e46e7b77
MG
4356 /*
4357 * The preferred zone is used for statistics but crucially it is
4358 * also used as the starting point for the zonelist iterator. It
4359 * may get reset for allocations that ignore memory policies.
4360 */
9cd75558 4361 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
97a225e6 4362 ac->highest_zoneidx, ac->nodemask);
a0622d05
MN
4363
4364 return true;
9cd75558
MG
4365}
4366
387ba26f 4367/*
0f87d9d3 4368 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
387ba26f
MG
4369 * @gfp: GFP flags for the allocation
4370 * @preferred_nid: The preferred NUMA node ID to allocate from
4371 * @nodemask: Set of nodes to allocate from, may be NULL
0f87d9d3
MG
4372 * @nr_pages: The number of pages desired on the list or array
4373 * @page_list: Optional list to store the allocated pages
4374 * @page_array: Optional array to store the pages
387ba26f
MG
4375 *
4376 * This is a batched version of the page allocator that attempts to
0f87d9d3
MG
4377 * allocate nr_pages quickly. Pages are added to page_list if page_list
4378 * is not NULL, otherwise it is assumed that the page_array is valid.
387ba26f 4379 *
0f87d9d3
MG
4380 * For lists, nr_pages is the number of pages that should be allocated.
4381 *
4382 * For arrays, only NULL elements are populated with pages and nr_pages
4383 * is the maximum number of pages that will be stored in the array.
4384 *
4385 * Returns the number of pages on the list or array.
387ba26f
MG
4386 */
4387unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4388 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
4389 struct list_head *page_list,
4390 struct page **page_array)
387ba26f
MG
4391{
4392 struct page *page;
4b23a68f 4393 unsigned long __maybe_unused UP_flags;
387ba26f
MG
4394 struct zone *zone;
4395 struct zoneref *z;
4396 struct per_cpu_pages *pcp;
4397 struct list_head *pcp_list;
4398 struct alloc_context ac;
4399 gfp_t alloc_gfp;
4400 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3e23060b 4401 int nr_populated = 0, nr_account = 0;
387ba26f 4402
0f87d9d3
MG
4403 /*
4404 * Skip populated array elements to determine if any pages need
4405 * to be allocated before disabling IRQs.
4406 */
b08e50dd 4407 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
0f87d9d3
MG
4408 nr_populated++;
4409
06147843
CL
4410 /* No pages requested? */
4411 if (unlikely(nr_pages <= 0))
4412 goto out;
4413
b3b64ebd
MG
4414 /* Already populated array? */
4415 if (unlikely(page_array && nr_pages - nr_populated == 0))
06147843 4416 goto out;
b3b64ebd 4417
8dcb3060 4418 /* Bulk allocator does not support memcg accounting. */
f7a449f7 4419 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
8dcb3060
SB
4420 goto failed;
4421
387ba26f 4422 /* Use the single page allocator for one page. */
0f87d9d3 4423 if (nr_pages - nr_populated == 1)
387ba26f
MG
4424 goto failed;
4425
187ad460
MG
4426#ifdef CONFIG_PAGE_OWNER
4427 /*
4428 * PAGE_OWNER may recurse into the allocator to allocate space to
4429 * save the stack with pagesets.lock held. Releasing/reacquiring
4430 * removes much of the performance benefit of bulk allocation so
4431 * force the caller to allocate one page at a time as it'll have
4432 * similar performance to added complexity to the bulk allocator.
4433 */
4434 if (static_branch_unlikely(&page_owner_inited))
4435 goto failed;
4436#endif
4437
387ba26f
MG
4438 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4439 gfp &= gfp_allowed_mask;
4440 alloc_gfp = gfp;
4441 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
06147843 4442 goto out;
387ba26f
MG
4443 gfp = alloc_gfp;
4444
4445 /* Find an allowed local zone that meets the low watermark. */
4446 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4447 unsigned long mark;
4448
4449 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4450 !__cpuset_zone_allowed(zone, gfp)) {
4451 continue;
4452 }
4453
4454 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4455 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4456 goto failed;
4457 }
4458
4459 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4460 if (zone_watermark_fast(zone, 0, mark,
4461 zonelist_zone_idx(ac.preferred_zoneref),
4462 alloc_flags, gfp)) {
4463 break;
4464 }
4465 }
4466
4467 /*
4468 * If there are no allowed local zones that meets the watermarks then
4469 * try to allocate a single page and reclaim if necessary.
4470 */
ce76f9a1 4471 if (unlikely(!zone))
387ba26f
MG
4472 goto failed;
4473
57490774 4474 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4b23a68f 4475 pcp_trylock_prepare(UP_flags);
57490774 4476 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
01b44456 4477 if (!pcp)
4b23a68f 4478 goto failed_irq;
387ba26f 4479
387ba26f 4480 /* Attempt the batch allocation */
44042b44 4481 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
0f87d9d3
MG
4482 while (nr_populated < nr_pages) {
4483
4484 /* Skip existing pages */
4485 if (page_array && page_array[nr_populated]) {
4486 nr_populated++;
4487 continue;
4488 }
4489
44042b44 4490 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
387ba26f 4491 pcp, pcp_list);
ce76f9a1 4492 if (unlikely(!page)) {
c572e488 4493 /* Try and allocate at least one page */
4b23a68f 4494 if (!nr_account) {
57490774 4495 pcp_spin_unlock(pcp);
387ba26f 4496 goto failed_irq;
4b23a68f 4497 }
387ba26f
MG
4498 break;
4499 }
3e23060b 4500 nr_account++;
387ba26f
MG
4501
4502 prep_new_page(page, 0, gfp, 0);
0f87d9d3
MG
4503 if (page_list)
4504 list_add(&page->lru, page_list);
4505 else
4506 page_array[nr_populated] = page;
4507 nr_populated++;
387ba26f
MG
4508 }
4509
57490774 4510 pcp_spin_unlock(pcp);
4b23a68f 4511 pcp_trylock_finish(UP_flags);
43c95bcc 4512
3e23060b
MG
4513 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4514 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
387ba26f 4515
06147843 4516out:
0f87d9d3 4517 return nr_populated;
387ba26f
MG
4518
4519failed_irq:
4b23a68f 4520 pcp_trylock_finish(UP_flags);
387ba26f
MG
4521
4522failed:
4523 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4524 if (page) {
0f87d9d3
MG
4525 if (page_list)
4526 list_add(&page->lru, page_list);
4527 else
4528 page_array[nr_populated] = page;
4529 nr_populated++;
387ba26f
MG
4530 }
4531
06147843 4532 goto out;
387ba26f
MG
4533}
4534EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4535
9cd75558
MG
4536/*
4537 * This is the 'heart' of the zoned buddy allocator.
4538 */
84172f4b 4539struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
04ec6264 4540 nodemask_t *nodemask)
9cd75558
MG
4541{
4542 struct page *page;
4543 unsigned int alloc_flags = ALLOC_WMARK_LOW;
8e6a930b 4544 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4545 struct alloc_context ac = { };
4546
c63ae43b
MH
4547 /*
4548 * There are several places where we assume that the order value is sane
4549 * so bail out early if the request is out of bound.
4550 */
5e0a760b 4551 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
c63ae43b 4552 return NULL;
c63ae43b 4553
6e5e0f28 4554 gfp &= gfp_allowed_mask;
da6df1b0
PT
4555 /*
4556 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4557 * resp. GFP_NOIO which has to be inherited for all allocation requests
4558 * from a particular context which has been marked by
8e3560d9
PT
4559 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4560 * movable zones are not used during allocation.
da6df1b0
PT
4561 */
4562 gfp = current_gfp_context(gfp);
6e5e0f28
MWO
4563 alloc_gfp = gfp;
4564 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
8e6a930b 4565 &alloc_gfp, &alloc_flags))
9cd75558
MG
4566 return NULL;
4567
6bb15450
MG
4568 /*
4569 * Forbid the first pass from falling back to types that fragment
4570 * memory until all local zones are considered.
4571 */
6e5e0f28 4572 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
6bb15450 4573
5117f45d 4574 /* First allocation attempt */
8e6a930b 4575 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4fcb0971
MG
4576 if (likely(page))
4577 goto out;
11e33f6a 4578
da6df1b0 4579 alloc_gfp = gfp;
4fcb0971 4580 ac.spread_dirty_pages = false;
23f086f9 4581
4741526b
MG
4582 /*
4583 * Restore the original nodemask if it was potentially replaced with
4584 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4585 */
97ce86f9 4586 ac.nodemask = nodemask;
16096c25 4587
8e6a930b 4588 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
cc9a6c87 4589
4fcb0971 4590out:
f7a449f7 4591 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
6e5e0f28 4592 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
c4159a75
VD
4593 __free_pages(page, order);
4594 page = NULL;
4949148a
VD
4595 }
4596
8e6a930b 4597 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
b073d7f8 4598 kmsan_alloc_page(page, order, alloc_gfp);
4fcb0971 4599
11e33f6a 4600 return page;
1da177e4 4601}
84172f4b 4602EXPORT_SYMBOL(__alloc_pages);
1da177e4 4603
cc09cb13
MWO
4604struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4605 nodemask_t *nodemask)
4606{
4607 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
23e48832
HD
4608 preferred_nid, nodemask);
4609 return page_rmappable_folio(page);
cc09cb13
MWO
4610}
4611EXPORT_SYMBOL(__folio_alloc);
4612
1da177e4 4613/*
9ea9a680
MH
4614 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4615 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4616 * you need to access high mem.
1da177e4 4617 */
920c7a5d 4618unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4619{
945a1113
AM
4620 struct page *page;
4621
9ea9a680 4622 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4623 if (!page)
4624 return 0;
4625 return (unsigned long) page_address(page);
4626}
1da177e4
LT
4627EXPORT_SYMBOL(__get_free_pages);
4628
920c7a5d 4629unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4630{
dcc1be11 4631 return __get_free_page(gfp_mask | __GFP_ZERO);
1da177e4 4632}
1da177e4
LT
4633EXPORT_SYMBOL(get_zeroed_page);
4634
7f194fbb
MWO
4635/**
4636 * __free_pages - Free pages allocated with alloc_pages().
4637 * @page: The page pointer returned from alloc_pages().
4638 * @order: The order of the allocation.
4639 *
4640 * This function can free multi-page allocations that are not compound
4641 * pages. It does not check that the @order passed in matches that of
4642 * the allocation, so it is easy to leak memory. Freeing more memory
4643 * than was allocated will probably emit a warning.
4644 *
4645 * If the last reference to this page is speculative, it will be released
4646 * by put_page() which only frees the first page of a non-compound
4647 * allocation. To prevent the remaining pages from being leaked, we free
4648 * the subsequent pages here. If you want to use the page's reference
4649 * count to decide when to free the allocation, you should allocate a
4650 * compound page, and use put_page() instead of __free_pages().
4651 *
4652 * Context: May be called in interrupt context or while holding a normal
4653 * spinlock, but not in NMI context or while holding a raw spinlock.
4654 */
742aa7fb
AL
4655void __free_pages(struct page *page, unsigned int order)
4656{
462a8e08
DC
4657 /* get PageHead before we drop reference */
4658 int head = PageHead(page);
4659
742aa7fb
AL
4660 if (put_page_testzero(page))
4661 free_the_page(page, order);
462a8e08 4662 else if (!head)
e320d301
MWO
4663 while (order-- > 0)
4664 free_the_page(page + (1 << order), order);
742aa7fb 4665}
1da177e4
LT
4666EXPORT_SYMBOL(__free_pages);
4667
920c7a5d 4668void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4669{
4670 if (addr != 0) {
725d704e 4671 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4672 __free_pages(virt_to_page((void *)addr), order);
4673 }
4674}
4675
4676EXPORT_SYMBOL(free_pages);
4677
b63ae8ca
AD
4678/*
4679 * Page Fragment:
4680 * An arbitrary-length arbitrary-offset area of memory which resides
4681 * within a 0 or higher order page. Multiple fragments within that page
4682 * are individually refcounted, in the page's reference counter.
4683 *
4684 * The page_frag functions below provide a simple allocation framework for
4685 * page fragments. This is used by the network stack and network device
4686 * drivers to provide a backing region of memory for use as either an
4687 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4688 */
2976db80
AD
4689static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4690 gfp_t gfp_mask)
b63ae8ca
AD
4691{
4692 struct page *page = NULL;
4693 gfp_t gfp = gfp_mask;
4694
4695#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4bc0d63a
YL
4696 gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP |
4697 __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
b63ae8ca
AD
4698 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4699 PAGE_FRAG_CACHE_MAX_ORDER);
4700 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4701#endif
4702 if (unlikely(!page))
4703 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4704
4705 nc->va = page ? page_address(page) : NULL;
4706
4707 return page;
4708}
4709
a0727489
YL
4710void page_frag_cache_drain(struct page_frag_cache *nc)
4711{
4712 if (!nc->va)
4713 return;
4714
4715 __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4716 nc->va = NULL;
4717}
4718EXPORT_SYMBOL(page_frag_cache_drain);
4719
2976db80 4720void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4721{
4722 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4723
742aa7fb
AL
4724 if (page_ref_sub_and_test(page, count))
4725 free_the_page(page, compound_order(page));
44fdffd7 4726}
2976db80 4727EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4728
411c5f36
YL
4729void *__page_frag_alloc_align(struct page_frag_cache *nc,
4730 unsigned int fragsz, gfp_t gfp_mask,
4731 unsigned int align_mask)
b63ae8ca
AD
4732{
4733 unsigned int size = PAGE_SIZE;
4734 struct page *page;
4735 int offset;
4736
4737 if (unlikely(!nc->va)) {
4738refill:
2976db80 4739 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4740 if (!page)
4741 return NULL;
4742
4743#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4744 /* if size can vary use size else just use PAGE_SIZE */
4745 size = nc->size;
4746#endif
4747 /* Even if we own the page, we do not use atomic_set().
4748 * This would break get_page_unless_zero() users.
4749 */
86447726 4750 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4751
4752 /* reset page count bias and offset to start of new frag */
2f064f34 4753 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4754 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4755 nc->offset = size;
4756 }
4757
4758 offset = nc->offset - fragsz;
4759 if (unlikely(offset < 0)) {
4760 page = virt_to_page(nc->va);
4761
fe896d18 4762 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4763 goto refill;
4764
d8c19014
DZ
4765 if (unlikely(nc->pfmemalloc)) {
4766 free_the_page(page, compound_order(page));
4767 goto refill;
4768 }
4769
b63ae8ca
AD
4770#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4771 /* if size can vary use size else just use PAGE_SIZE */
4772 size = nc->size;
4773#endif
4774 /* OK, page count is 0, we can safely set it */
86447726 4775 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4776
4777 /* reset page count bias and offset to start of new frag */
86447726 4778 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca 4779 offset = size - fragsz;
dac22531
ML
4780 if (unlikely(offset < 0)) {
4781 /*
4782 * The caller is trying to allocate a fragment
4783 * with fragsz > PAGE_SIZE but the cache isn't big
4784 * enough to satisfy the request, this may
4785 * happen in low memory conditions.
4786 * We don't release the cache page because
4787 * it could make memory pressure worse
4788 * so we simply return NULL here.
4789 */
4790 return NULL;
4791 }
b63ae8ca
AD
4792 }
4793
4794 nc->pagecnt_bias--;
b358e212 4795 offset &= align_mask;
b63ae8ca
AD
4796 nc->offset = offset;
4797
4798 return nc->va + offset;
4799}
411c5f36 4800EXPORT_SYMBOL(__page_frag_alloc_align);
b63ae8ca
AD
4801
4802/*
4803 * Frees a page fragment allocated out of either a compound or order 0 page.
4804 */
8c2dd3e4 4805void page_frag_free(void *addr)
b63ae8ca
AD
4806{
4807 struct page *page = virt_to_head_page(addr);
4808
742aa7fb
AL
4809 if (unlikely(put_page_testzero(page)))
4810 free_the_page(page, compound_order(page));
b63ae8ca 4811}
8c2dd3e4 4812EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4813
d00181b9
KS
4814static void *make_alloc_exact(unsigned long addr, unsigned int order,
4815 size_t size)
ee85c2e1
AK
4816{
4817 if (addr) {
df48a5f7
LH
4818 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4819 struct page *page = virt_to_page((void *)addr);
4820 struct page *last = page + nr;
4821
46d44d09 4822 split_page_owner(page, order, 0);
b8791381 4823 split_page_memcg(page, order, 0);
df48a5f7
LH
4824 while (page < --last)
4825 set_page_refcounted(last);
4826
4827 last = page + (1UL << order);
4828 for (page += nr; page < last; page++)
4829 __free_pages_ok(page, 0, FPI_TO_TAIL);
ee85c2e1
AK
4830 }
4831 return (void *)addr;
4832}
4833
2be0ffe2
TT
4834/**
4835 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4836 * @size: the number of bytes to allocate
63931eb9 4837 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
4838 *
4839 * This function is similar to alloc_pages(), except that it allocates the
4840 * minimum number of pages to satisfy the request. alloc_pages() can only
4841 * allocate memory in power-of-two pages.
4842 *
5e0a760b 4843 * This function is also limited by MAX_PAGE_ORDER.
2be0ffe2
TT
4844 *
4845 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
4846 *
4847 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
4848 */
4849void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4850{
4851 unsigned int order = get_order(size);
4852 unsigned long addr;
4853
ba7f1b9e
ML
4854 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4855 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9 4856
2be0ffe2 4857 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4858 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4859}
4860EXPORT_SYMBOL(alloc_pages_exact);
4861
ee85c2e1
AK
4862/**
4863 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4864 * pages on a node.
b5e6ab58 4865 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 4866 * @size: the number of bytes to allocate
63931eb9 4867 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
4868 *
4869 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4870 * back.
a862f68a
MR
4871 *
4872 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 4873 */
e1931811 4874void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4875{
d00181b9 4876 unsigned int order = get_order(size);
63931eb9
VB
4877 struct page *p;
4878
ba7f1b9e
ML
4879 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4880 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
63931eb9
VB
4881
4882 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
4883 if (!p)
4884 return NULL;
4885 return make_alloc_exact((unsigned long)page_address(p), order, size);
4886}
ee85c2e1 4887
2be0ffe2
TT
4888/**
4889 * free_pages_exact - release memory allocated via alloc_pages_exact()
4890 * @virt: the value returned by alloc_pages_exact.
4891 * @size: size of allocation, same value as passed to alloc_pages_exact().
4892 *
4893 * Release the memory allocated by a previous call to alloc_pages_exact.
4894 */
4895void free_pages_exact(void *virt, size_t size)
4896{
4897 unsigned long addr = (unsigned long)virt;
4898 unsigned long end = addr + PAGE_ALIGN(size);
4899
4900 while (addr < end) {
4901 free_page(addr);
4902 addr += PAGE_SIZE;
4903 }
4904}
4905EXPORT_SYMBOL(free_pages_exact);
4906
e0fb5815
ZY
4907/**
4908 * nr_free_zone_pages - count number of pages beyond high watermark
4909 * @offset: The zone index of the highest zone
4910 *
a862f68a 4911 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
4912 * high watermark within all zones at or below a given zone index. For each
4913 * zone, the number of pages is calculated as:
0e056eb5
MCC
4914 *
4915 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
4916 *
4917 * Return: number of pages beyond high watermark.
e0fb5815 4918 */
ebec3862 4919static unsigned long nr_free_zone_pages(int offset)
1da177e4 4920{
dd1a239f 4921 struct zoneref *z;
54a6eb5c
MG
4922 struct zone *zone;
4923
e310fd43 4924 /* Just pick one node, since fallback list is circular */
ebec3862 4925 unsigned long sum = 0;
1da177e4 4926
0e88460d 4927 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4928
54a6eb5c 4929 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 4930 unsigned long size = zone_managed_pages(zone);
41858966 4931 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4932 if (size > high)
4933 sum += size - high;
1da177e4
LT
4934 }
4935
4936 return sum;
4937}
4938
e0fb5815
ZY
4939/**
4940 * nr_free_buffer_pages - count number of pages beyond high watermark
4941 *
4942 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4943 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
4944 *
4945 * Return: number of pages beyond high watermark within ZONE_DMA and
4946 * ZONE_NORMAL.
1da177e4 4947 */
ebec3862 4948unsigned long nr_free_buffer_pages(void)
1da177e4 4949{
af4ca457 4950 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4951}
c2f1a551 4952EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4953
19770b32
MG
4954static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4955{
4956 zoneref->zone = zone;
4957 zoneref->zone_idx = zone_idx(zone);
4958}
4959
1da177e4
LT
4960/*
4961 * Builds allocation fallback zone lists.
1a93205b
CL
4962 *
4963 * Add all populated zones of a node to the zonelist.
1da177e4 4964 */
9d3be21b 4965static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 4966{
1a93205b 4967 struct zone *zone;
bc732f1d 4968 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 4969 int nr_zones = 0;
02a68a5e
CL
4970
4971 do {
2f6726e5 4972 zone_type--;
070f8032 4973 zone = pgdat->node_zones + zone_type;
e553f62f 4974 if (populated_zone(zone)) {
9d3be21b 4975 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 4976 check_highest_zone(zone_type);
1da177e4 4977 }
2f6726e5 4978 } while (zone_type);
bc732f1d 4979
070f8032 4980 return nr_zones;
1da177e4
LT
4981}
4982
4983#ifdef CONFIG_NUMA
f0c0b2b8
KH
4984
4985static int __parse_numa_zonelist_order(char *s)
4986{
c9bff3ee 4987 /*
f0953a1b 4988 * We used to support different zonelists modes but they turned
c9bff3ee
MH
4989 * out to be just not useful. Let's keep the warning in place
4990 * if somebody still use the cmd line parameter so that we do
4991 * not fail it silently
4992 */
4993 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4994 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4995 return -EINVAL;
4996 }
4997 return 0;
4998}
4999
e95d372c
KW
5000static char numa_zonelist_order[] = "Node";
5001#define NUMA_ZONELIST_ORDER_LEN 16
f0c0b2b8
KH
5002/*
5003 * sysctl handler for numa_zonelist_order
5004 */
e95d372c 5005static int numa_zonelist_order_handler(struct ctl_table *table, int write,
32927393 5006 void *buffer, size_t *length, loff_t *ppos)
f0c0b2b8 5007{
32927393
CH
5008 if (write)
5009 return __parse_numa_zonelist_order(buffer);
5010 return proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8
KH
5011}
5012
f0c0b2b8
KH
5013static int node_load[MAX_NUMNODES];
5014
1da177e4 5015/**
4dc3b16b 5016 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5017 * @node: node whose fallback list we're appending
5018 * @used_node_mask: nodemask_t of already used nodes
5019 *
5020 * We use a number of factors to determine which is the next node that should
5021 * appear on a given node's fallback list. The node should not have appeared
5022 * already in @node's fallback list, and it should be the next closest node
5023 * according to the distance array (which contains arbitrary distance values
5024 * from each node to each node in the system), and should also prefer nodes
5025 * with no CPUs, since presumably they'll have very little allocation pressure
5026 * on them otherwise.
a862f68a
MR
5027 *
5028 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5029 */
79c28a41 5030int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5031{
4cf808eb 5032 int n, val;
1da177e4 5033 int min_val = INT_MAX;
00ef2d2f 5034 int best_node = NUMA_NO_NODE;
1da177e4 5035
c2baef39
QZ
5036 /*
5037 * Use the local node if we haven't already, but for memoryless local
5038 * node, we should skip it and fall back to other nodes.
5039 */
5040 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
4cf808eb
LT
5041 node_set(node, *used_node_mask);
5042 return node;
5043 }
1da177e4 5044
4b0ef1fe 5045 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5046
5047 /* Don't want a node to appear more than once */
5048 if (node_isset(n, *used_node_mask))
5049 continue;
5050
1da177e4
LT
5051 /* Use the distance array to find the distance */
5052 val = node_distance(node, n);
5053
4cf808eb
LT
5054 /* Penalize nodes under us ("prefer the next node") */
5055 val += (n < node);
5056
1da177e4 5057 /* Give preference to headless and unused nodes */
b630749f 5058 if (!cpumask_empty(cpumask_of_node(n)))
1da177e4
LT
5059 val += PENALTY_FOR_NODE_WITH_CPUS;
5060
5061 /* Slight preference for less loaded node */
37931324 5062 val *= MAX_NUMNODES;
1da177e4
LT
5063 val += node_load[n];
5064
5065 if (val < min_val) {
5066 min_val = val;
5067 best_node = n;
5068 }
5069 }
5070
5071 if (best_node >= 0)
5072 node_set(best_node, *used_node_mask);
5073
5074 return best_node;
5075}
5076
f0c0b2b8
KH
5077
5078/*
5079 * Build zonelists ordered by node and zones within node.
5080 * This results in maximum locality--normal zone overflows into local
5081 * DMA zone, if any--but risks exhausting DMA zone.
5082 */
9d3be21b
MH
5083static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5084 unsigned nr_nodes)
1da177e4 5085{
9d3be21b
MH
5086 struct zoneref *zonerefs;
5087 int i;
5088
5089 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5090
5091 for (i = 0; i < nr_nodes; i++) {
5092 int nr_zones;
5093
5094 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5095
9d3be21b
MH
5096 nr_zones = build_zonerefs_node(node, zonerefs);
5097 zonerefs += nr_zones;
5098 }
5099 zonerefs->zone = NULL;
5100 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5101}
5102
523b9458
CL
5103/*
5104 * Build gfp_thisnode zonelists
5105 */
5106static void build_thisnode_zonelists(pg_data_t *pgdat)
5107{
9d3be21b
MH
5108 struct zoneref *zonerefs;
5109 int nr_zones;
523b9458 5110
9d3be21b
MH
5111 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5112 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5113 zonerefs += nr_zones;
5114 zonerefs->zone = NULL;
5115 zonerefs->zone_idx = 0;
523b9458
CL
5116}
5117
f0c0b2b8
KH
5118/*
5119 * Build zonelists ordered by zone and nodes within zones.
5120 * This results in conserving DMA zone[s] until all Normal memory is
5121 * exhausted, but results in overflowing to remote node while memory
5122 * may still exist in local DMA zone.
5123 */
f0c0b2b8 5124
f0c0b2b8
KH
5125static void build_zonelists(pg_data_t *pgdat)
5126{
9d3be21b 5127 static int node_order[MAX_NUMNODES];
37931324 5128 int node, nr_nodes = 0;
d0ddf49b 5129 nodemask_t used_mask = NODE_MASK_NONE;
f0c0b2b8 5130 int local_node, prev_node;
1da177e4
LT
5131
5132 /* NUMA-aware ordering of nodes */
5133 local_node = pgdat->node_id;
1da177e4 5134 prev_node = local_node;
f0c0b2b8 5135
f0c0b2b8 5136 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5137 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5138 /*
5139 * We don't want to pressure a particular node.
5140 * So adding penalty to the first node in same
5141 * distance group to make it round-robin.
5142 */
957f822a
DR
5143 if (node_distance(local_node, node) !=
5144 node_distance(local_node, prev_node))
37931324 5145 node_load[node] += 1;
f0c0b2b8 5146
9d3be21b 5147 node_order[nr_nodes++] = node;
1da177e4 5148 prev_node = node;
1da177e4 5149 }
523b9458 5150
9d3be21b 5151 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5152 build_thisnode_zonelists(pgdat);
6cf25392
BR
5153 pr_info("Fallback order for Node %d: ", local_node);
5154 for (node = 0; node < nr_nodes; node++)
5155 pr_cont("%d ", node_order[node]);
5156 pr_cont("\n");
1da177e4
LT
5157}
5158
7aac7898
LS
5159#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5160/*
5161 * Return node id of node used for "local" allocations.
5162 * I.e., first node id of first zone in arg node's generic zonelist.
5163 * Used for initializing percpu 'numa_mem', which is used primarily
5164 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5165 */
5166int local_memory_node(int node)
5167{
c33d6c06 5168 struct zoneref *z;
7aac7898 5169
c33d6c06 5170 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5171 gfp_zone(GFP_KERNEL),
c33d6c06 5172 NULL);
c1093b74 5173 return zone_to_nid(z->zone);
7aac7898
LS
5174}
5175#endif
f0c0b2b8 5176
6423aa81
JK
5177static void setup_min_unmapped_ratio(void);
5178static void setup_min_slab_ratio(void);
1da177e4
LT
5179#else /* CONFIG_NUMA */
5180
f0c0b2b8 5181static void build_zonelists(pg_data_t *pgdat)
1da177e4 5182{
19655d34 5183 int node, local_node;
9d3be21b
MH
5184 struct zoneref *zonerefs;
5185 int nr_zones;
1da177e4
LT
5186
5187 local_node = pgdat->node_id;
1da177e4 5188
9d3be21b
MH
5189 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5190 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5191 zonerefs += nr_zones;
1da177e4 5192
54a6eb5c
MG
5193 /*
5194 * Now we build the zonelist so that it contains the zones
5195 * of all the other nodes.
5196 * We don't want to pressure a particular node, so when
5197 * building the zones for node N, we make sure that the
5198 * zones coming right after the local ones are those from
5199 * node N+1 (modulo N)
5200 */
5201 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5202 if (!node_online(node))
5203 continue;
9d3be21b
MH
5204 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5205 zonerefs += nr_zones;
1da177e4 5206 }
54a6eb5c
MG
5207 for (node = 0; node < local_node; node++) {
5208 if (!node_online(node))
5209 continue;
9d3be21b
MH
5210 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5211 zonerefs += nr_zones;
54a6eb5c
MG
5212 }
5213
9d3be21b
MH
5214 zonerefs->zone = NULL;
5215 zonerefs->zone_idx = 0;
1da177e4
LT
5216}
5217
5218#endif /* CONFIG_NUMA */
5219
99dcc3e5
CL
5220/*
5221 * Boot pageset table. One per cpu which is going to be used for all
5222 * zones and all nodes. The parameters will be set in such a way
5223 * that an item put on a list will immediately be handed over to
5224 * the buddy list. This is safe since pageset manipulation is done
5225 * with interrupts disabled.
5226 *
5227 * The boot_pagesets must be kept even after bootup is complete for
5228 * unused processors and/or zones. They do play a role for bootstrapping
5229 * hotplugged processors.
5230 *
5231 * zoneinfo_show() and maybe other functions do
5232 * not check if the processor is online before following the pageset pointer.
5233 * Other parts of the kernel may not check if the zone is available.
5234 */
28f836b6 5235static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
952eaf81
VB
5236/* These effectively disable the pcplists in the boot pageset completely */
5237#define BOOT_PAGESET_HIGH 0
5238#define BOOT_PAGESET_BATCH 1
28f836b6
MG
5239static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5240static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
99dcc3e5 5241
11cd8638 5242static void __build_all_zonelists(void *data)
1da177e4 5243{
6811378e 5244 int nid;
afb6ebb3 5245 int __maybe_unused cpu;
9adb62a5 5246 pg_data_t *self = data;
1007843a 5247 unsigned long flags;
b93e0f32 5248
1007843a 5249 /*
a2ebb515
SAS
5250 * The zonelist_update_seq must be acquired with irqsave because the
5251 * reader can be invoked from IRQ with GFP_ATOMIC.
1007843a 5252 */
a2ebb515 5253 write_seqlock_irqsave(&zonelist_update_seq, flags);
1007843a 5254 /*
a2ebb515
SAS
5255 * Also disable synchronous printk() to prevent any printk() from
5256 * trying to hold port->lock, for
1007843a
TH
5257 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5258 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5259 */
5260 printk_deferred_enter();
9276b1bc 5261
7f9cfb31
BL
5262#ifdef CONFIG_NUMA
5263 memset(node_load, 0, sizeof(node_load));
5264#endif
9adb62a5 5265
c1152583
WY
5266 /*
5267 * This node is hotadded and no memory is yet present. So just
5268 * building zonelists is fine - no need to touch other nodes.
5269 */
9adb62a5
JL
5270 if (self && !node_online(self->node_id)) {
5271 build_zonelists(self);
c1152583 5272 } else {
09f49dca
MH
5273 /*
5274 * All possible nodes have pgdat preallocated
5275 * in free_area_init
5276 */
5277 for_each_node(nid) {
c1152583 5278 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5279
c1152583
WY
5280 build_zonelists(pgdat);
5281 }
99dcc3e5 5282
7aac7898
LS
5283#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5284 /*
5285 * We now know the "local memory node" for each node--
5286 * i.e., the node of the first zone in the generic zonelist.
5287 * Set up numa_mem percpu variable for on-line cpus. During
5288 * boot, only the boot cpu should be on-line; we'll init the
5289 * secondary cpus' numa_mem as they come on-line. During
5290 * node/memory hotplug, we'll fixup all on-line cpus.
5291 */
d9c9a0b9 5292 for_each_online_cpu(cpu)
7aac7898 5293 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5294#endif
d9c9a0b9 5295 }
b93e0f32 5296
1007843a 5297 printk_deferred_exit();
a2ebb515 5298 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
6811378e
YG
5299}
5300
061f67bc
RV
5301static noinline void __init
5302build_all_zonelists_init(void)
5303{
afb6ebb3
MH
5304 int cpu;
5305
061f67bc 5306 __build_all_zonelists(NULL);
afb6ebb3
MH
5307
5308 /*
5309 * Initialize the boot_pagesets that are going to be used
5310 * for bootstrapping processors. The real pagesets for
5311 * each zone will be allocated later when the per cpu
5312 * allocator is available.
5313 *
5314 * boot_pagesets are used also for bootstrapping offline
5315 * cpus if the system is already booted because the pagesets
5316 * are needed to initialize allocators on a specific cpu too.
5317 * F.e. the percpu allocator needs the page allocator which
5318 * needs the percpu allocator in order to allocate its pagesets
5319 * (a chicken-egg dilemma).
5320 */
5321 for_each_possible_cpu(cpu)
28f836b6 5322 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
afb6ebb3 5323
061f67bc
RV
5324 mminit_verify_zonelist();
5325 cpuset_init_current_mems_allowed();
5326}
5327
4eaf3f64 5328/*
4eaf3f64 5329 * unless system_state == SYSTEM_BOOTING.
061f67bc 5330 *
72675e13 5331 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5332 * [protected by SYSTEM_BOOTING].
4eaf3f64 5333 */
72675e13 5334void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e 5335{
0a18e607
DH
5336 unsigned long vm_total_pages;
5337
6811378e 5338 if (system_state == SYSTEM_BOOTING) {
061f67bc 5339 build_all_zonelists_init();
6811378e 5340 } else {
11cd8638 5341 __build_all_zonelists(pgdat);
6811378e
YG
5342 /* cpuset refresh routine should be here */
5343 }
56b9413b
DH
5344 /* Get the number of free pages beyond high watermark in all zones. */
5345 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
9ef9acb0
MG
5346 /*
5347 * Disable grouping by mobility if the number of pages in the
5348 * system is too low to allow the mechanism to work. It would be
5349 * more accurate, but expensive to check per-zone. This check is
5350 * made on memory-hotadd so a system can start with mobility
5351 * disabled and enable it later
5352 */
d9c23400 5353 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5354 page_group_by_mobility_disabled = 1;
5355 else
5356 page_group_by_mobility_disabled = 0;
5357
ce0725f7 5358 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5359 nr_online_nodes,
756a025f
JP
5360 page_group_by_mobility_disabled ? "off" : "on",
5361 vm_total_pages);
f0c0b2b8 5362#ifdef CONFIG_NUMA
f88dfff5 5363 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5364#endif
1da177e4
LT
5365}
5366
9420f89d 5367static int zone_batchsize(struct zone *zone)
1da177e4 5368{
9420f89d
MRI
5369#ifdef CONFIG_MMU
5370 int batch;
1da177e4 5371
9420f89d
MRI
5372 /*
5373 * The number of pages to batch allocate is either ~0.1%
5374 * of the zone or 1MB, whichever is smaller. The batch
5375 * size is striking a balance between allocation latency
5376 * and zone lock contention.
5377 */
5378 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5379 batch /= 4; /* We effectively *= 4 below */
5380 if (batch < 1)
5381 batch = 1;
22b31eec 5382
4b94ffdc 5383 /*
9420f89d
MRI
5384 * Clamp the batch to a 2^n - 1 value. Having a power
5385 * of 2 value was found to be more likely to have
5386 * suboptimal cache aliasing properties in some cases.
5387 *
5388 * For example if 2 tasks are alternately allocating
5389 * batches of pages, one task can end up with a lot
5390 * of pages of one half of the possible page colors
5391 * and the other with pages of the other colors.
4b94ffdc 5392 */
9420f89d 5393 batch = rounddown_pow_of_two(batch + batch/2) - 1;
966cf44f 5394
9420f89d 5395 return batch;
3a6be87f
DH
5396
5397#else
5398 /* The deferral and batching of frees should be suppressed under NOMMU
5399 * conditions.
5400 *
5401 * The problem is that NOMMU needs to be able to allocate large chunks
5402 * of contiguous memory as there's no hardware page translation to
5403 * assemble apparent contiguous memory from discontiguous pages.
5404 *
5405 * Queueing large contiguous runs of pages for batching, however,
5406 * causes the pages to actually be freed in smaller chunks. As there
5407 * can be a significant delay between the individual batches being
5408 * recycled, this leads to the once large chunks of space being
5409 * fragmented and becoming unavailable for high-order allocations.
5410 */
5411 return 0;
5412#endif
e7c8d5c9
CL
5413}
5414
e95d372c 5415static int percpu_pagelist_high_fraction;
90b41691
HY
5416static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5417 int high_fraction)
b92ca18e 5418{
9420f89d
MRI
5419#ifdef CONFIG_MMU
5420 int high;
5421 int nr_split_cpus;
5422 unsigned long total_pages;
c13291a5 5423
90b41691 5424 if (!high_fraction) {
2a1e274a 5425 /*
9420f89d
MRI
5426 * By default, the high value of the pcp is based on the zone
5427 * low watermark so that if they are full then background
5428 * reclaim will not be started prematurely.
2a1e274a 5429 */
9420f89d
MRI
5430 total_pages = low_wmark_pages(zone);
5431 } else {
2a1e274a 5432 /*
9420f89d
MRI
5433 * If percpu_pagelist_high_fraction is configured, the high
5434 * value is based on a fraction of the managed pages in the
5435 * zone.
2a1e274a 5436 */
90b41691 5437 total_pages = zone_managed_pages(zone) / high_fraction;
2a1e274a
MG
5438 }
5439
5440 /*
9420f89d
MRI
5441 * Split the high value across all online CPUs local to the zone. Note
5442 * that early in boot that CPUs may not be online yet and that during
5443 * CPU hotplug that the cpumask is not yet updated when a CPU is being
90b41691
HY
5444 * onlined. For memory nodes that have no CPUs, split the high value
5445 * across all online CPUs to mitigate the risk that reclaim is triggered
9420f89d 5446 * prematurely due to pages stored on pcp lists.
2a1e274a 5447 */
9420f89d
MRI
5448 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5449 if (!nr_split_cpus)
5450 nr_split_cpus = num_online_cpus();
5451 high = total_pages / nr_split_cpus;
2a1e274a 5452
9420f89d
MRI
5453 /*
5454 * Ensure high is at least batch*4. The multiple is based on the
5455 * historical relationship between high and batch.
5456 */
5457 high = max(high, batch << 2);
37b07e41 5458
9420f89d
MRI
5459 return high;
5460#else
5461 return 0;
5462#endif
37b07e41
LS
5463}
5464
51930df5 5465/*
9420f89d
MRI
5466 * pcp->high and pcp->batch values are related and generally batch is lower
5467 * than high. They are also related to pcp->count such that count is lower
5468 * than high, and as soon as it reaches high, the pcplist is flushed.
5469 *
5470 * However, guaranteeing these relations at all times would require e.g. write
5471 * barriers here but also careful usage of read barriers at the read side, and
5472 * thus be prone to error and bad for performance. Thus the update only prevents
90b41691
HY
5473 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5474 * should ensure they can cope with those fields changing asynchronously, and
5475 * fully trust only the pcp->count field on the local CPU with interrupts
5476 * disabled.
9420f89d
MRI
5477 *
5478 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5479 * outside of boot time (or some other assurance that no concurrent updaters
5480 * exist).
51930df5 5481 */
90b41691
HY
5482static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5483 unsigned long high_max, unsigned long batch)
51930df5 5484{
9420f89d 5485 WRITE_ONCE(pcp->batch, batch);
90b41691
HY
5486 WRITE_ONCE(pcp->high_min, high_min);
5487 WRITE_ONCE(pcp->high_max, high_max);
51930df5
MR
5488}
5489
9420f89d 5490static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
c713216d 5491{
9420f89d 5492 int pindex;
90cae1fe 5493
9420f89d
MRI
5494 memset(pcp, 0, sizeof(*pcp));
5495 memset(pzstats, 0, sizeof(*pzstats));
90cae1fe 5496
9420f89d
MRI
5497 spin_lock_init(&pcp->lock);
5498 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5499 INIT_LIST_HEAD(&pcp->lists[pindex]);
2a1e274a 5500
9420f89d
MRI
5501 /*
5502 * Set batch and high values safe for a boot pageset. A true percpu
5503 * pageset's initialization will update them subsequently. Here we don't
5504 * need to be as careful as pageset_update() as nobody can access the
5505 * pageset yet.
5506 */
90b41691
HY
5507 pcp->high_min = BOOT_PAGESET_HIGH;
5508 pcp->high_max = BOOT_PAGESET_HIGH;
9420f89d 5509 pcp->batch = BOOT_PAGESET_BATCH;
6ccdcb6d 5510 pcp->free_count = 0;
9420f89d 5511}
c713216d 5512
90b41691
HY
5513static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5514 unsigned long high_max, unsigned long batch)
9420f89d
MRI
5515{
5516 struct per_cpu_pages *pcp;
5517 int cpu;
2a1e274a 5518
9420f89d
MRI
5519 for_each_possible_cpu(cpu) {
5520 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
90b41691 5521 pageset_update(pcp, high_min, high_max, batch);
2a1e274a 5522 }
9420f89d 5523}
c713216d 5524
9420f89d
MRI
5525/*
5526 * Calculate and set new high and batch values for all per-cpu pagesets of a
5527 * zone based on the zone's size.
5528 */
5529static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5530{
90b41691 5531 int new_high_min, new_high_max, new_batch;
09f49dca 5532
9420f89d 5533 new_batch = max(1, zone_batchsize(zone));
90b41691
HY
5534 if (percpu_pagelist_high_fraction) {
5535 new_high_min = zone_highsize(zone, new_batch, cpu_online,
5536 percpu_pagelist_high_fraction);
5537 /*
5538 * PCP high is tuned manually, disable auto-tuning via
5539 * setting high_min and high_max to the manual value.
5540 */
5541 new_high_max = new_high_min;
5542 } else {
5543 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5544 new_high_max = zone_highsize(zone, new_batch, cpu_online,
5545 MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5546 }
09f49dca 5547
90b41691
HY
5548 if (zone->pageset_high_min == new_high_min &&
5549 zone->pageset_high_max == new_high_max &&
9420f89d
MRI
5550 zone->pageset_batch == new_batch)
5551 return;
37b07e41 5552
90b41691
HY
5553 zone->pageset_high_min = new_high_min;
5554 zone->pageset_high_max = new_high_max;
9420f89d 5555 zone->pageset_batch = new_batch;
122e093c 5556
90b41691
HY
5557 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5558 new_batch);
c713216d 5559}
2a1e274a 5560
9420f89d 5561void __meminit setup_zone_pageset(struct zone *zone)
2a1e274a 5562{
9420f89d 5563 int cpu;
2a1e274a 5564
9420f89d
MRI
5565 /* Size may be 0 on !SMP && !NUMA */
5566 if (sizeof(struct per_cpu_zonestat) > 0)
5567 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
2a1e274a 5568
9420f89d
MRI
5569 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5570 for_each_possible_cpu(cpu) {
5571 struct per_cpu_pages *pcp;
5572 struct per_cpu_zonestat *pzstats;
2a1e274a 5573
9420f89d
MRI
5574 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5575 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5576 per_cpu_pages_init(pcp, pzstats);
a5c6d650 5577 }
9420f89d
MRI
5578
5579 zone_set_pageset_high_and_batch(zone, 0);
2a1e274a 5580}
ed7ed365 5581
7e63efef 5582/*
9420f89d
MRI
5583 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5584 * page high values need to be recalculated.
7e63efef 5585 */
9420f89d 5586static void zone_pcp_update(struct zone *zone, int cpu_online)
7e63efef 5587{
9420f89d
MRI
5588 mutex_lock(&pcp_batch_high_lock);
5589 zone_set_pageset_high_and_batch(zone, cpu_online);
5590 mutex_unlock(&pcp_batch_high_lock);
7e63efef
MG
5591}
5592
5cec4eb7 5593static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
362d37a1 5594{
362d37a1
HY
5595 struct per_cpu_pages *pcp;
5596 struct cpu_cacheinfo *cci;
5597
5cec4eb7
HY
5598 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5599 cci = get_cpu_cacheinfo(cpu);
5600 /*
5601 * If data cache slice of CPU is large enough, "pcp->batch"
5602 * pages can be preserved in PCP before draining PCP for
5603 * consecutive high-order pages freeing without allocation.
5604 * This can reduce zone lock contention without hurting
5605 * cache-hot pages sharing.
5606 */
5607 spin_lock(&pcp->lock);
5608 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5609 pcp->flags |= PCPF_FREE_HIGH_BATCH;
5610 else
5611 pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5612 spin_unlock(&pcp->lock);
362d37a1
HY
5613}
5614
5cec4eb7 5615void setup_pcp_cacheinfo(unsigned int cpu)
362d37a1
HY
5616{
5617 struct zone *zone;
5618
5619 for_each_populated_zone(zone)
5cec4eb7 5620 zone_pcp_update_cacheinfo(zone, cpu);
362d37a1
HY
5621}
5622
7e63efef 5623/*
9420f89d
MRI
5624 * Allocate per cpu pagesets and initialize them.
5625 * Before this call only boot pagesets were available.
7e63efef 5626 */
9420f89d 5627void __init setup_per_cpu_pageset(void)
7e63efef 5628{
9420f89d
MRI
5629 struct pglist_data *pgdat;
5630 struct zone *zone;
5631 int __maybe_unused cpu;
5632
5633 for_each_populated_zone(zone)
5634 setup_zone_pageset(zone);
5635
5636#ifdef CONFIG_NUMA
5637 /*
5638 * Unpopulated zones continue using the boot pagesets.
5639 * The numa stats for these pagesets need to be reset.
5640 * Otherwise, they will end up skewing the stats of
5641 * the nodes these zones are associated with.
5642 */
5643 for_each_possible_cpu(cpu) {
5644 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5645 memset(pzstats->vm_numa_event, 0,
5646 sizeof(pzstats->vm_numa_event));
5647 }
5648#endif
5649
5650 for_each_online_pgdat(pgdat)
5651 pgdat->per_cpu_nodestats =
5652 alloc_percpu(struct per_cpu_nodestat);
7e63efef
MG
5653}
5654
9420f89d
MRI
5655__meminit void zone_pcp_init(struct zone *zone)
5656{
5657 /*
5658 * per cpu subsystem is not up at this point. The following code
5659 * relies on the ability of the linker to provide the
5660 * offset of a (static) per cpu variable into the per cpu area.
5661 */
5662 zone->per_cpu_pageset = &boot_pageset;
5663 zone->per_cpu_zonestats = &boot_zonestats;
90b41691
HY
5664 zone->pageset_high_min = BOOT_PAGESET_HIGH;
5665 zone->pageset_high_max = BOOT_PAGESET_HIGH;
9420f89d
MRI
5666 zone->pageset_batch = BOOT_PAGESET_BATCH;
5667
5668 if (populated_zone(zone))
5669 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5670 zone->present_pages, zone_batchsize(zone));
5671}
ed7ed365 5672
c3d5f5f0
JL
5673void adjust_managed_page_count(struct page *page, long count)
5674{
9705bea5 5675 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 5676 totalram_pages_add(count);
3dcc0571
JL
5677#ifdef CONFIG_HIGHMEM
5678 if (PageHighMem(page))
ca79b0c2 5679 totalhigh_pages_add(count);
3dcc0571 5680#endif
c3d5f5f0 5681}
3dcc0571 5682EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5683
e5cb113f 5684unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 5685{
11199692
JL
5686 void *pos;
5687 unsigned long pages = 0;
69afade7 5688
11199692
JL
5689 start = (void *)PAGE_ALIGN((unsigned long)start);
5690 end = (void *)((unsigned long)end & PAGE_MASK);
5691 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
5692 struct page *page = virt_to_page(pos);
5693 void *direct_map_addr;
5694
5695 /*
5696 * 'direct_map_addr' might be different from 'pos'
5697 * because some architectures' virt_to_page()
5698 * work with aliases. Getting the direct map
5699 * address ensures that we get a _writeable_
5700 * alias for the memset().
5701 */
5702 direct_map_addr = page_address(page);
c746170d
VF
5703 /*
5704 * Perform a kasan-unchecked memset() since this memory
5705 * has not been initialized.
5706 */
5707 direct_map_addr = kasan_reset_tag(direct_map_addr);
dbe67df4 5708 if ((unsigned int)poison <= 0xFF)
0d834328
DH
5709 memset(direct_map_addr, poison, PAGE_SIZE);
5710
5711 free_reserved_page(page);
69afade7
JL
5712 }
5713
5714 if (pages && s)
ff7ed9e4 5715 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
69afade7
JL
5716
5717 return pages;
5718}
5719
005fd4bb 5720static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 5721{
04f8cfea 5722 struct zone *zone;
1da177e4 5723
005fd4bb 5724 lru_add_drain_cpu(cpu);
96f97c43 5725 mlock_drain_remote(cpu);
005fd4bb 5726 drain_pages(cpu);
9f8f2172 5727
005fd4bb
SAS
5728 /*
5729 * Spill the event counters of the dead processor
5730 * into the current processors event counters.
5731 * This artificially elevates the count of the current
5732 * processor.
5733 */
5734 vm_events_fold_cpu(cpu);
9f8f2172 5735
005fd4bb
SAS
5736 /*
5737 * Zero the differential counters of the dead processor
5738 * so that the vm statistics are consistent.
5739 *
5740 * This is only okay since the processor is dead and cannot
5741 * race with what we are doing.
5742 */
5743 cpu_vm_stats_fold(cpu);
04f8cfea
MG
5744
5745 for_each_populated_zone(zone)
5746 zone_pcp_update(zone, 0);
5747
5748 return 0;
5749}
5750
5751static int page_alloc_cpu_online(unsigned int cpu)
5752{
5753 struct zone *zone;
5754
5755 for_each_populated_zone(zone)
5756 zone_pcp_update(zone, 1);
005fd4bb 5757 return 0;
1da177e4 5758}
1da177e4 5759
c4fbed4b 5760void __init page_alloc_init_cpuhp(void)
1da177e4 5761{
005fd4bb
SAS
5762 int ret;
5763
04f8cfea
MG
5764 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5765 "mm/page_alloc:pcp",
5766 page_alloc_cpu_online,
005fd4bb
SAS
5767 page_alloc_cpu_dead);
5768 WARN_ON(ret < 0);
1da177e4
LT
5769}
5770
cb45b0e9 5771/*
34b10060 5772 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
5773 * or min_free_kbytes changes.
5774 */
5775static void calculate_totalreserve_pages(void)
5776{
5777 struct pglist_data *pgdat;
5778 unsigned long reserve_pages = 0;
2f6726e5 5779 enum zone_type i, j;
cb45b0e9
HA
5780
5781 for_each_online_pgdat(pgdat) {
281e3726
MG
5782
5783 pgdat->totalreserve_pages = 0;
5784
cb45b0e9
HA
5785 for (i = 0; i < MAX_NR_ZONES; i++) {
5786 struct zone *zone = pgdat->node_zones + i;
3484b2de 5787 long max = 0;
9705bea5 5788 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
5789
5790 /* Find valid and maximum lowmem_reserve in the zone */
5791 for (j = i; j < MAX_NR_ZONES; j++) {
5792 if (zone->lowmem_reserve[j] > max)
5793 max = zone->lowmem_reserve[j];
5794 }
5795
41858966
MG
5796 /* we treat the high watermark as reserved pages. */
5797 max += high_wmark_pages(zone);
cb45b0e9 5798
3d6357de
AK
5799 if (max > managed_pages)
5800 max = managed_pages;
a8d01437 5801
281e3726 5802 pgdat->totalreserve_pages += max;
a8d01437 5803
cb45b0e9
HA
5804 reserve_pages += max;
5805 }
5806 }
5807 totalreserve_pages = reserve_pages;
5808}
5809
1da177e4
LT
5810/*
5811 * setup_per_zone_lowmem_reserve - called whenever
34b10060 5812 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
5813 * has a correct pages reserved value, so an adequate number of
5814 * pages are left in the zone after a successful __alloc_pages().
5815 */
5816static void setup_per_zone_lowmem_reserve(void)
5817{
5818 struct pglist_data *pgdat;
470c61d7 5819 enum zone_type i, j;
1da177e4 5820
ec936fc5 5821 for_each_online_pgdat(pgdat) {
470c61d7
LS
5822 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5823 struct zone *zone = &pgdat->node_zones[i];
5824 int ratio = sysctl_lowmem_reserve_ratio[i];
5825 bool clear = !ratio || !zone_managed_pages(zone);
5826 unsigned long managed_pages = 0;
5827
5828 for (j = i + 1; j < MAX_NR_ZONES; j++) {
f7ec1044
LS
5829 struct zone *upper_zone = &pgdat->node_zones[j];
5830
5831 managed_pages += zone_managed_pages(upper_zone);
470c61d7 5832
f7ec1044
LS
5833 if (clear)
5834 zone->lowmem_reserve[j] = 0;
5835 else
470c61d7 5836 zone->lowmem_reserve[j] = managed_pages / ratio;
1da177e4
LT
5837 }
5838 }
5839 }
cb45b0e9
HA
5840
5841 /* update totalreserve_pages */
5842 calculate_totalreserve_pages();
1da177e4
LT
5843}
5844
cfd3da1e 5845static void __setup_per_zone_wmarks(void)
1da177e4
LT
5846{
5847 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5848 unsigned long lowmem_pages = 0;
5849 struct zone *zone;
5850 unsigned long flags;
5851
416ef04f 5852 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
1da177e4 5853 for_each_zone(zone) {
416ef04f 5854 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
9705bea5 5855 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
5856 }
5857
5858 for_each_zone(zone) {
ac924c60
AM
5859 u64 tmp;
5860
1125b4e3 5861 spin_lock_irqsave(&zone->lock, flags);
9705bea5 5862 tmp = (u64)pages_min * zone_managed_pages(zone);
72741db6 5863 tmp = div64_ul(tmp, lowmem_pages);
416ef04f 5864 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
1da177e4 5865 /*
669ed175 5866 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
416ef04f 5867 * need highmem and movable zones pages, so cap pages_min
5868 * to a small value here.
669ed175 5869 *
41858966 5870 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 5871 * deltas control async page reclaim, and so should
416ef04f 5872 * not be capped for highmem and movable zones.
1da177e4 5873 */
90ae8d67 5874 unsigned long min_pages;
1da177e4 5875
9705bea5 5876 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 5877 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 5878 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 5879 } else {
669ed175
NP
5880 /*
5881 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5882 * proportionate to the zone's size.
5883 */
a9214443 5884 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
5885 }
5886
795ae7a0
JW
5887 /*
5888 * Set the kswapd watermarks distance according to the
5889 * scale factor in proportion to available memory, but
5890 * ensure a minimum size on small systems.
5891 */
5892 tmp = max_t(u64, tmp >> 2,
9705bea5 5893 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
5894 watermark_scale_factor, 10000));
5895
aa092591 5896 zone->watermark_boost = 0;
a9214443 5897 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
c574bbe9
HY
5898 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5899 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
49f223a9 5900
1125b4e3 5901 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5902 }
cb45b0e9
HA
5903
5904 /* update totalreserve_pages */
5905 calculate_totalreserve_pages();
1da177e4
LT
5906}
5907
cfd3da1e
MG
5908/**
5909 * setup_per_zone_wmarks - called when min_free_kbytes changes
5910 * or when memory is hot-{added|removed}
5911 *
5912 * Ensures that the watermark[min,low,high] values for each zone are set
5913 * correctly with respect to min_free_kbytes.
5914 */
5915void setup_per_zone_wmarks(void)
5916{
b92ca18e 5917 struct zone *zone;
b93e0f32
MH
5918 static DEFINE_SPINLOCK(lock);
5919
5920 spin_lock(&lock);
cfd3da1e 5921 __setup_per_zone_wmarks();
b93e0f32 5922 spin_unlock(&lock);
b92ca18e
MG
5923
5924 /*
5925 * The watermark size have changed so update the pcpu batch
5926 * and high limits or the limits may be inappropriate.
5927 */
5928 for_each_zone(zone)
04f8cfea 5929 zone_pcp_update(zone, 0);
cfd3da1e
MG
5930}
5931
1da177e4
LT
5932/*
5933 * Initialise min_free_kbytes.
5934 *
5935 * For small machines we want it small (128k min). For large machines
8beeae86 5936 * we want it large (256MB max). But it is not linear, because network
1da177e4
LT
5937 * bandwidth does not increase linearly with machine size. We use
5938 *
b8af2941 5939 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
5940 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5941 *
5942 * which yields
5943 *
5944 * 16MB: 512k
5945 * 32MB: 724k
5946 * 64MB: 1024k
5947 * 128MB: 1448k
5948 * 256MB: 2048k
5949 * 512MB: 2896k
5950 * 1024MB: 4096k
5951 * 2048MB: 5792k
5952 * 4096MB: 8192k
5953 * 8192MB: 11584k
5954 * 16384MB: 16384k
5955 */
bd3400ea 5956void calculate_min_free_kbytes(void)
1da177e4
LT
5957{
5958 unsigned long lowmem_kbytes;
5f12733e 5959 int new_min_free_kbytes;
1da177e4
LT
5960
5961 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
5962 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5963
59d336bd
WS
5964 if (new_min_free_kbytes > user_min_free_kbytes)
5965 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5966 else
5f12733e
MH
5967 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5968 new_min_free_kbytes, user_min_free_kbytes);
59d336bd 5969
bd3400ea
LF
5970}
5971
5972int __meminit init_per_zone_wmark_min(void)
5973{
5974 calculate_min_free_kbytes();
bc75d33f 5975 setup_per_zone_wmarks();
a6cccdc3 5976 refresh_zone_stat_thresholds();
1da177e4 5977 setup_per_zone_lowmem_reserve();
6423aa81
JK
5978
5979#ifdef CONFIG_NUMA
5980 setup_min_unmapped_ratio();
5981 setup_min_slab_ratio();
5982#endif
5983
4aab2be0
VB
5984 khugepaged_min_free_kbytes_update();
5985
1da177e4
LT
5986 return 0;
5987}
e08d3fdf 5988postcore_initcall(init_per_zone_wmark_min)
1da177e4
LT
5989
5990/*
b8af2941 5991 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
5992 * that we can call two helper functions whenever min_free_kbytes
5993 * changes.
5994 */
e95d372c 5995static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
32927393 5996 void *buffer, size_t *length, loff_t *ppos)
1da177e4 5997{
da8c757b
HP
5998 int rc;
5999
6000 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6001 if (rc)
6002 return rc;
6003
5f12733e
MH
6004 if (write) {
6005 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6006 setup_per_zone_wmarks();
5f12733e 6007 }
1da177e4
LT
6008 return 0;
6009}
6010
e95d372c 6011static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
32927393 6012 void *buffer, size_t *length, loff_t *ppos)
795ae7a0
JW
6013{
6014 int rc;
6015
6016 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6017 if (rc)
6018 return rc;
6019
6020 if (write)
6021 setup_per_zone_wmarks();
6022
6023 return 0;
6024}
6025
9614634f 6026#ifdef CONFIG_NUMA
6423aa81 6027static void setup_min_unmapped_ratio(void)
9614634f 6028{
6423aa81 6029 pg_data_t *pgdat;
9614634f 6030 struct zone *zone;
9614634f 6031
a5f5f91d 6032 for_each_online_pgdat(pgdat)
81cbcbc2 6033 pgdat->min_unmapped_pages = 0;
a5f5f91d 6034
9614634f 6035 for_each_zone(zone)
9705bea5
AK
6036 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6037 sysctl_min_unmapped_ratio) / 100;
9614634f 6038}
0ff38490 6039
6423aa81 6040
e95d372c 6041static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 6042 void *buffer, size_t *length, loff_t *ppos)
0ff38490 6043{
0ff38490
CL
6044 int rc;
6045
8d65af78 6046 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6047 if (rc)
6048 return rc;
6049
6423aa81
JK
6050 setup_min_unmapped_ratio();
6051
6052 return 0;
6053}
6054
6055static void setup_min_slab_ratio(void)
6056{
6057 pg_data_t *pgdat;
6058 struct zone *zone;
6059
a5f5f91d
MG
6060 for_each_online_pgdat(pgdat)
6061 pgdat->min_slab_pages = 0;
6062
0ff38490 6063 for_each_zone(zone)
9705bea5
AK
6064 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6065 sysctl_min_slab_ratio) / 100;
6423aa81
JK
6066}
6067
e95d372c 6068static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
32927393 6069 void *buffer, size_t *length, loff_t *ppos)
6423aa81
JK
6070{
6071 int rc;
6072
6073 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6074 if (rc)
6075 return rc;
6076
6077 setup_min_slab_ratio();
6078
0ff38490
CL
6079 return 0;
6080}
9614634f
CL
6081#endif
6082
1da177e4
LT
6083/*
6084 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6085 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6086 * whenever sysctl_lowmem_reserve_ratio changes.
6087 *
6088 * The reserve ratio obviously has absolutely no relation with the
41858966 6089 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6090 * if in function of the boot time zone sizes.
6091 */
e95d372c
KW
6092static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6093 int write, void *buffer, size_t *length, loff_t *ppos)
1da177e4 6094{
86aaf255
BH
6095 int i;
6096
8d65af78 6097 proc_dointvec_minmax(table, write, buffer, length, ppos);
86aaf255
BH
6098
6099 for (i = 0; i < MAX_NR_ZONES; i++) {
6100 if (sysctl_lowmem_reserve_ratio[i] < 1)
6101 sysctl_lowmem_reserve_ratio[i] = 0;
6102 }
6103
1da177e4
LT
6104 setup_per_zone_lowmem_reserve();
6105 return 0;
6106}
6107
8ad4b1fb 6108/*
74f44822
MG
6109 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6110 * cpu. It is the fraction of total pages in each zone that a hot per cpu
b8af2941 6111 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6112 */
e95d372c 6113static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
74f44822 6114 int write, void *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6115{
6116 struct zone *zone;
74f44822 6117 int old_percpu_pagelist_high_fraction;
8ad4b1fb
RS
6118 int ret;
6119
7cd2b0a3 6120 mutex_lock(&pcp_batch_high_lock);
74f44822 6121 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
7cd2b0a3 6122
8d65af78 6123 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6124 if (!write || ret < 0)
6125 goto out;
6126
6127 /* Sanity checking to avoid pcp imbalance */
74f44822
MG
6128 if (percpu_pagelist_high_fraction &&
6129 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6130 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
7cd2b0a3
DR
6131 ret = -EINVAL;
6132 goto out;
6133 }
6134
6135 /* No change? */
74f44822 6136 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
7cd2b0a3 6137 goto out;
c8e251fa 6138
cb1ef534 6139 for_each_populated_zone(zone)
74f44822 6140 zone_set_pageset_high_and_batch(zone, 0);
7cd2b0a3 6141out:
c8e251fa 6142 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6143 return ret;
8ad4b1fb
RS
6144}
6145
e95d372c
KW
6146static struct ctl_table page_alloc_sysctl_table[] = {
6147 {
6148 .procname = "min_free_kbytes",
6149 .data = &min_free_kbytes,
6150 .maxlen = sizeof(min_free_kbytes),
6151 .mode = 0644,
6152 .proc_handler = min_free_kbytes_sysctl_handler,
6153 .extra1 = SYSCTL_ZERO,
6154 },
6155 {
6156 .procname = "watermark_boost_factor",
6157 .data = &watermark_boost_factor,
6158 .maxlen = sizeof(watermark_boost_factor),
6159 .mode = 0644,
6160 .proc_handler = proc_dointvec_minmax,
6161 .extra1 = SYSCTL_ZERO,
6162 },
6163 {
6164 .procname = "watermark_scale_factor",
6165 .data = &watermark_scale_factor,
6166 .maxlen = sizeof(watermark_scale_factor),
6167 .mode = 0644,
6168 .proc_handler = watermark_scale_factor_sysctl_handler,
6169 .extra1 = SYSCTL_ONE,
6170 .extra2 = SYSCTL_THREE_THOUSAND,
6171 },
6172 {
6173 .procname = "percpu_pagelist_high_fraction",
6174 .data = &percpu_pagelist_high_fraction,
6175 .maxlen = sizeof(percpu_pagelist_high_fraction),
6176 .mode = 0644,
6177 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6178 .extra1 = SYSCTL_ZERO,
6179 },
6180 {
6181 .procname = "lowmem_reserve_ratio",
6182 .data = &sysctl_lowmem_reserve_ratio,
6183 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6184 .mode = 0644,
6185 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6186 },
6187#ifdef CONFIG_NUMA
6188 {
6189 .procname = "numa_zonelist_order",
6190 .data = &numa_zonelist_order,
6191 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6192 .mode = 0644,
6193 .proc_handler = numa_zonelist_order_handler,
6194 },
6195 {
6196 .procname = "min_unmapped_ratio",
6197 .data = &sysctl_min_unmapped_ratio,
6198 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6199 .mode = 0644,
6200 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6201 .extra1 = SYSCTL_ZERO,
6202 .extra2 = SYSCTL_ONE_HUNDRED,
6203 },
6204 {
6205 .procname = "min_slab_ratio",
6206 .data = &sysctl_min_slab_ratio,
6207 .maxlen = sizeof(sysctl_min_slab_ratio),
6208 .mode = 0644,
6209 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6210 .extra1 = SYSCTL_ZERO,
6211 .extra2 = SYSCTL_ONE_HUNDRED,
6212 },
6213#endif
6214 {}
6215};
6216
6217void __init page_alloc_sysctl_init(void)
6218{
6219 register_sysctl_init("vm", page_alloc_sysctl_table);
6220}
6221
8df995f6 6222#ifdef CONFIG_CONTIG_ALLOC
a1394bdd
MK
6223/* Usage: See admin-guide/dynamic-debug-howto.rst */
6224static void alloc_contig_dump_pages(struct list_head *page_list)
6225{
6226 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6227
6228 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6229 struct page *page;
6230
6231 dump_stack();
6232 list_for_each_entry(page, page_list, lru)
6233 dump_page(page, "migration failure");
6234 }
6235}
a1394bdd 6236
c8b36003
RC
6237/*
6238 * [start, end) must belong to a single zone.
6239 * @migratetype: using migratetype to filter the type of migration in
6240 * trace_mm_alloc_contig_migrate_range_info.
6241 */
b2c9e2fb 6242int __alloc_contig_migrate_range(struct compact_control *cc,
c8b36003
RC
6243 unsigned long start, unsigned long end,
6244 int migratetype)
041d3a8c
MN
6245{
6246 /* This function is based on compact_zone() from compaction.c. */
730ec8c0 6247 unsigned int nr_reclaimed;
041d3a8c
MN
6248 unsigned long pfn = start;
6249 unsigned int tries = 0;
6250 int ret = 0;
8b94e0b8
JK
6251 struct migration_target_control mtc = {
6252 .nid = zone_to_nid(cc->zone),
6253 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6254 };
c8b36003
RC
6255 struct page *page;
6256 unsigned long total_mapped = 0;
6257 unsigned long total_migrated = 0;
6258 unsigned long total_reclaimed = 0;
041d3a8c 6259
361a2a22 6260 lru_cache_disable();
041d3a8c 6261
bb13ffeb 6262 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6263 if (fatal_signal_pending(current)) {
6264 ret = -EINTR;
6265 break;
6266 }
6267
bb13ffeb
MG
6268 if (list_empty(&cc->migratepages)) {
6269 cc->nr_migratepages = 0;
c2ad7a1f
OS
6270 ret = isolate_migratepages_range(cc, pfn, end);
6271 if (ret && ret != -EAGAIN)
041d3a8c 6272 break;
c2ad7a1f 6273 pfn = cc->migrate_pfn;
041d3a8c
MN
6274 tries = 0;
6275 } else if (++tries == 5) {
c8e28b47 6276 ret = -EBUSY;
041d3a8c
MN
6277 break;
6278 }
6279
beb51eaa
MK
6280 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6281 &cc->migratepages);
6282 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6283
c8b36003
RC
6284 if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6285 total_reclaimed += nr_reclaimed;
6286 list_for_each_entry(page, &cc->migratepages, lru)
6287 total_mapped += page_mapcount(page);
6288 }
6289
8b94e0b8 6290 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
5ac95884 6291 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
c8e28b47 6292
c8b36003
RC
6293 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6294 total_migrated += cc->nr_migratepages;
6295
c8e28b47
OS
6296 /*
6297 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6298 * to retry again over this error, so do the same here.
6299 */
6300 if (ret == -ENOMEM)
6301 break;
041d3a8c 6302 }
d479960e 6303
361a2a22 6304 lru_cache_enable();
2a6f5124 6305 if (ret < 0) {
3f913fc5 6306 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
151e084a 6307 alloc_contig_dump_pages(&cc->migratepages);
2a6f5124 6308 putback_movable_pages(&cc->migratepages);
2a6f5124 6309 }
c8b36003
RC
6310
6311 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6312 total_migrated,
6313 total_reclaimed,
6314 total_mapped);
6315 return (ret < 0) ? ret : 0;
041d3a8c
MN
6316}
6317
6318/**
6319 * alloc_contig_range() -- tries to allocate given range of pages
6320 * @start: start PFN to allocate
6321 * @end: one-past-the-last PFN to allocate
f0953a1b 6322 * @migratetype: migratetype of the underlying pageblocks (either
0815f3d8
MN
6323 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6324 * in range must have the same migratetype and it must
6325 * be either of the two.
ca96b625 6326 * @gfp_mask: GFP mask to use during compaction
041d3a8c 6327 *
11ac3e87
ZY
6328 * The PFN range does not have to be pageblock aligned. The PFN range must
6329 * belong to a single zone.
041d3a8c 6330 *
2c7452a0
MK
6331 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6332 * pageblocks in the range. Once isolated, the pageblocks should not
6333 * be modified by others.
041d3a8c 6334 *
a862f68a 6335 * Return: zero on success or negative error code. On success all
041d3a8c
MN
6336 * pages which PFN is in [start, end) are allocated for the caller and
6337 * need to be freed with free_contig_range().
6338 */
0815f3d8 6339int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 6340 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 6341{
041d3a8c 6342 unsigned long outer_start, outer_end;
b2c9e2fb 6343 int order;
d00181b9 6344 int ret = 0;
041d3a8c 6345
bb13ffeb
MG
6346 struct compact_control cc = {
6347 .nr_migratepages = 0,
6348 .order = -1,
6349 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6350 .mode = MIGRATE_SYNC,
bb13ffeb 6351 .ignore_skip_hint = true,
2583d671 6352 .no_set_skip_hint = true,
7dea19f9 6353 .gfp_mask = current_gfp_context(gfp_mask),
b06eda09 6354 .alloc_contig = true,
bb13ffeb
MG
6355 };
6356 INIT_LIST_HEAD(&cc.migratepages);
6357
041d3a8c
MN
6358 /*
6359 * What we do here is we mark all pageblocks in range as
6360 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6361 * have different sizes, and due to the way page allocator
b2c9e2fb 6362 * work, start_isolate_page_range() has special handlings for this.
041d3a8c
MN
6363 *
6364 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6365 * migrate the pages from an unaligned range (ie. pages that
b2c9e2fb 6366 * we are interested in). This will put all the pages in
041d3a8c
MN
6367 * range back to page allocator as MIGRATE_ISOLATE.
6368 *
6369 * When this is done, we take the pages in range from page
6370 * allocator removing them from the buddy system. This way
6371 * page allocator will never consider using them.
6372 *
6373 * This lets us mark the pageblocks back as
6374 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6375 * aligned range but not in the unaligned, original range are
6376 * put back to page allocator so that buddy can use them.
6377 */
6378
6e263fff 6379 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
3fa0c7c7 6380 if (ret)
b2c9e2fb 6381 goto done;
041d3a8c 6382
7612921f
VB
6383 drain_all_pages(cc.zone);
6384
8ef5849f
JK
6385 /*
6386 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
6387 * So, just fall through. test_pages_isolated() has a tracepoint
6388 * which will report the busy page.
6389 *
6390 * It is possible that busy pages could become available before
6391 * the call to test_pages_isolated, and the range will actually be
6392 * allocated. So, if we fall through be sure to clear ret so that
6393 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 6394 */
c8b36003 6395 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
8ef5849f 6396 if (ret && ret != -EBUSY)
041d3a8c 6397 goto done;
68d68ff6 6398 ret = 0;
041d3a8c
MN
6399
6400 /*
b2c9e2fb 6401 * Pages from [start, end) are within a pageblock_nr_pages
041d3a8c
MN
6402 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6403 * more, all pages in [start, end) are free in page allocator.
6404 * What we are going to do is to allocate all pages from
6405 * [start, end) (that is remove them from page allocator).
6406 *
6407 * The only problem is that pages at the beginning and at the
6408 * end of interesting range may be not aligned with pages that
6409 * page allocator holds, ie. they can be part of higher order
6410 * pages. Because of this, we reserve the bigger range and
6411 * once this is done free the pages we are not interested in.
6412 *
6413 * We don't have to hold zone->lock here because the pages are
6414 * isolated thus they won't get removed from buddy.
6415 */
6416
041d3a8c
MN
6417 order = 0;
6418 outer_start = start;
6419 while (!PageBuddy(pfn_to_page(outer_start))) {
5e0a760b 6420 if (++order > MAX_PAGE_ORDER) {
8ef5849f
JK
6421 outer_start = start;
6422 break;
041d3a8c
MN
6423 }
6424 outer_start &= ~0UL << order;
6425 }
6426
8ef5849f 6427 if (outer_start != start) {
ab130f91 6428 order = buddy_order(pfn_to_page(outer_start));
8ef5849f
JK
6429
6430 /*
6431 * outer_start page could be small order buddy page and
6432 * it doesn't include start page. Adjust outer_start
6433 * in this case to report failed page properly
6434 * on tracepoint in test_pages_isolated()
6435 */
6436 if (outer_start + (1UL << order) <= start)
6437 outer_start = start;
6438 }
6439
041d3a8c 6440 /* Make sure the range is really isolated. */
756d25be 6441 if (test_pages_isolated(outer_start, end, 0)) {
041d3a8c
MN
6442 ret = -EBUSY;
6443 goto done;
6444 }
6445
49f223a9 6446 /* Grab isolated pages from freelists. */
bb13ffeb 6447 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6448 if (!outer_end) {
6449 ret = -EBUSY;
6450 goto done;
6451 }
6452
6453 /* Free head and tail (if any) */
6454 if (start != outer_start)
6455 free_contig_range(outer_start, start - outer_start);
6456 if (end != outer_end)
6457 free_contig_range(end, outer_end - end);
6458
6459done:
6e263fff 6460 undo_isolate_page_range(start, end, migratetype);
041d3a8c
MN
6461 return ret;
6462}
255f5985 6463EXPORT_SYMBOL(alloc_contig_range);
5e27a2df
AK
6464
6465static int __alloc_contig_pages(unsigned long start_pfn,
6466 unsigned long nr_pages, gfp_t gfp_mask)
6467{
6468 unsigned long end_pfn = start_pfn + nr_pages;
6469
6470 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6471 gfp_mask);
6472}
6473
6474static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6475 unsigned long nr_pages)
6476{
6477 unsigned long i, end_pfn = start_pfn + nr_pages;
6478 struct page *page;
6479
6480 for (i = start_pfn; i < end_pfn; i++) {
6481 page = pfn_to_online_page(i);
6482 if (!page)
6483 return false;
6484
6485 if (page_zone(page) != z)
6486 return false;
6487
6488 if (PageReserved(page))
4d73ba5f
MG
6489 return false;
6490
6491 if (PageHuge(page))
5e27a2df 6492 return false;
5e27a2df
AK
6493 }
6494 return true;
6495}
6496
6497static bool zone_spans_last_pfn(const struct zone *zone,
6498 unsigned long start_pfn, unsigned long nr_pages)
6499{
6500 unsigned long last_pfn = start_pfn + nr_pages - 1;
6501
6502 return zone_spans_pfn(zone, last_pfn);
6503}
6504
6505/**
6506 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6507 * @nr_pages: Number of contiguous pages to allocate
6508 * @gfp_mask: GFP mask to limit search and used during compaction
6509 * @nid: Target node
6510 * @nodemask: Mask for other possible nodes
6511 *
6512 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6513 * on an applicable zonelist to find a contiguous pfn range which can then be
6514 * tried for allocation with alloc_contig_range(). This routine is intended
6515 * for allocation requests which can not be fulfilled with the buddy allocator.
6516 *
6517 * The allocated memory is always aligned to a page boundary. If nr_pages is a
eaab8e75
AK
6518 * power of two, then allocated range is also guaranteed to be aligned to same
6519 * nr_pages (e.g. 1GB request would be aligned to 1GB).
5e27a2df
AK
6520 *
6521 * Allocated pages can be freed with free_contig_range() or by manually calling
6522 * __free_page() on each allocated page.
6523 *
6524 * Return: pointer to contiguous pages on success, or NULL if not successful.
6525 */
6526struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6527 int nid, nodemask_t *nodemask)
6528{
6529 unsigned long ret, pfn, flags;
6530 struct zonelist *zonelist;
6531 struct zone *zone;
6532 struct zoneref *z;
6533
6534 zonelist = node_zonelist(nid, gfp_mask);
6535 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6536 gfp_zone(gfp_mask), nodemask) {
6537 spin_lock_irqsave(&zone->lock, flags);
6538
6539 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6540 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6541 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6542 /*
6543 * We release the zone lock here because
6544 * alloc_contig_range() will also lock the zone
6545 * at some point. If there's an allocation
6546 * spinning on this lock, it may win the race
6547 * and cause alloc_contig_range() to fail...
6548 */
6549 spin_unlock_irqrestore(&zone->lock, flags);
6550 ret = __alloc_contig_pages(pfn, nr_pages,
6551 gfp_mask);
6552 if (!ret)
6553 return pfn_to_page(pfn);
6554 spin_lock_irqsave(&zone->lock, flags);
6555 }
6556 pfn += nr_pages;
6557 }
6558 spin_unlock_irqrestore(&zone->lock, flags);
6559 }
6560 return NULL;
6561}
4eb0716e 6562#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 6563
78fa5150 6564void free_contig_range(unsigned long pfn, unsigned long nr_pages)
041d3a8c 6565{
78fa5150 6566 unsigned long count = 0;
bcc2b02f
MS
6567
6568 for (; nr_pages--; pfn++) {
6569 struct page *page = pfn_to_page(pfn);
6570
6571 count += page_count(page) != 1;
6572 __free_page(page);
6573 }
78fa5150 6574 WARN(count != 0, "%lu pages are still in use!\n", count);
041d3a8c 6575}
255f5985 6576EXPORT_SYMBOL(free_contig_range);
041d3a8c 6577
ec6e8c7e
VB
6578/*
6579 * Effectively disable pcplists for the zone by setting the high limit to 0
6580 * and draining all cpus. A concurrent page freeing on another CPU that's about
6581 * to put the page on pcplist will either finish before the drain and the page
6582 * will be drained, or observe the new high limit and skip the pcplist.
6583 *
6584 * Must be paired with a call to zone_pcp_enable().
6585 */
6586void zone_pcp_disable(struct zone *zone)
6587{
6588 mutex_lock(&pcp_batch_high_lock);
90b41691 6589 __zone_set_pageset_high_and_batch(zone, 0, 0, 1);
ec6e8c7e
VB
6590 __drain_all_pages(zone, true);
6591}
6592
6593void zone_pcp_enable(struct zone *zone)
6594{
90b41691
HY
6595 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6596 zone->pageset_high_max, zone->pageset_batch);
ec6e8c7e
VB
6597 mutex_unlock(&pcp_batch_high_lock);
6598}
6599
340175b7
JL
6600void zone_pcp_reset(struct zone *zone)
6601{
5a883813 6602 int cpu;
28f836b6 6603 struct per_cpu_zonestat *pzstats;
340175b7 6604
28f836b6 6605 if (zone->per_cpu_pageset != &boot_pageset) {
5a883813 6606 for_each_online_cpu(cpu) {
28f836b6
MG
6607 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6608 drain_zonestat(zone, pzstats);
5a883813 6609 }
28f836b6 6610 free_percpu(zone->per_cpu_pageset);
28f836b6 6611 zone->per_cpu_pageset = &boot_pageset;
022e7fa0
ML
6612 if (zone->per_cpu_zonestats != &boot_zonestats) {
6613 free_percpu(zone->per_cpu_zonestats);
6614 zone->per_cpu_zonestats = &boot_zonestats;
6615 }
340175b7 6616 }
340175b7
JL
6617}
6618
6dcd73d7 6619#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 6620/*
257bea71
DH
6621 * All pages in the range must be in a single zone, must not contain holes,
6622 * must span full sections, and must be isolated before calling this function.
0c0e6195 6623 */
257bea71 6624void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
0c0e6195 6625{
257bea71 6626 unsigned long pfn = start_pfn;
0c0e6195
KH
6627 struct page *page;
6628 struct zone *zone;
0ee5f4f3 6629 unsigned int order;
0c0e6195 6630 unsigned long flags;
5557c766 6631
2d070eab 6632 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
6633 zone = page_zone(pfn_to_page(pfn));
6634 spin_lock_irqsave(&zone->lock, flags);
0c0e6195 6635 while (pfn < end_pfn) {
0c0e6195 6636 page = pfn_to_page(pfn);
b023f468
WC
6637 /*
6638 * The HWPoisoned page may be not in buddy system, and
6639 * page_count() is not 0.
6640 */
6641 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6642 pfn++;
b023f468
WC
6643 continue;
6644 }
aa218795
DH
6645 /*
6646 * At this point all remaining PageOffline() pages have a
6647 * reference count of 0 and can simply be skipped.
6648 */
6649 if (PageOffline(page)) {
6650 BUG_ON(page_count(page));
6651 BUG_ON(PageBuddy(page));
6652 pfn++;
aa218795
DH
6653 continue;
6654 }
b023f468 6655
0c0e6195
KH
6656 BUG_ON(page_count(page));
6657 BUG_ON(!PageBuddy(page));
ab130f91 6658 order = buddy_order(page);
6ab01363 6659 del_page_from_free_list(page, zone, order);
0c0e6195
KH
6660 pfn += (1 << order);
6661 }
6662 spin_unlock_irqrestore(&zone->lock, flags);
6663}
6664#endif
8d22ba1b 6665
8446b59b
ED
6666/*
6667 * This function returns a stable result only if called under zone lock.
6668 */
8d22ba1b
WF
6669bool is_free_buddy_page(struct page *page)
6670{
8d22ba1b 6671 unsigned long pfn = page_to_pfn(page);
7aeb09f9 6672 unsigned int order;
8d22ba1b 6673
fd377218 6674 for (order = 0; order < NR_PAGE_ORDERS; order++) {
8d22ba1b
WF
6675 struct page *page_head = page - (pfn & ((1 << order) - 1));
6676
8446b59b
ED
6677 if (PageBuddy(page_head) &&
6678 buddy_order_unsafe(page_head) >= order)
8d22ba1b
WF
6679 break;
6680 }
8d22ba1b 6681
5e0a760b 6682 return order <= MAX_PAGE_ORDER;
8d22ba1b 6683}
a581865e 6684EXPORT_SYMBOL(is_free_buddy_page);
d4ae9916
NH
6685
6686#ifdef CONFIG_MEMORY_FAILURE
6687/*
06be6ff3
OS
6688 * Break down a higher-order page in sub-pages, and keep our target out of
6689 * buddy allocator.
d4ae9916 6690 */
06be6ff3
OS
6691static void break_down_buddy_pages(struct zone *zone, struct page *page,
6692 struct page *target, int low, int high,
6693 int migratetype)
6694{
6695 unsigned long size = 1 << high;
0dfca313 6696 struct page *current_buddy;
06be6ff3
OS
6697
6698 while (high > low) {
6699 high--;
6700 size >>= 1;
6701
6702 if (target >= &page[size]) {
06be6ff3 6703 current_buddy = page;
0dfca313 6704 page = page + size;
06be6ff3 6705 } else {
06be6ff3
OS
6706 current_buddy = page + size;
6707 }
6708
6709 if (set_page_guard(zone, current_buddy, high, migratetype))
6710 continue;
6711
27e0db3c
KS
6712 add_to_free_list(current_buddy, zone, high, migratetype);
6713 set_buddy_order(current_buddy, high);
06be6ff3
OS
6714 }
6715}
6716
6717/*
6718 * Take a page that will be marked as poisoned off the buddy allocator.
6719 */
6720bool take_page_off_buddy(struct page *page)
d4ae9916
NH
6721{
6722 struct zone *zone = page_zone(page);
6723 unsigned long pfn = page_to_pfn(page);
6724 unsigned long flags;
6725 unsigned int order;
06be6ff3 6726 bool ret = false;
d4ae9916
NH
6727
6728 spin_lock_irqsave(&zone->lock, flags);
fd377218 6729 for (order = 0; order < NR_PAGE_ORDERS; order++) {
d4ae9916 6730 struct page *page_head = page - (pfn & ((1 << order) - 1));
ab130f91 6731 int page_order = buddy_order(page_head);
d4ae9916 6732
ab130f91 6733 if (PageBuddy(page_head) && page_order >= order) {
06be6ff3
OS
6734 unsigned long pfn_head = page_to_pfn(page_head);
6735 int migratetype = get_pfnblock_migratetype(page_head,
6736 pfn_head);
6737
ab130f91 6738 del_page_from_free_list(page_head, zone, page_order);
06be6ff3 6739 break_down_buddy_pages(zone, page_head, page, 0,
ab130f91 6740 page_order, migratetype);
bf181c58 6741 SetPageHWPoisonTakenOff(page);
bac9c6fa
DH
6742 if (!is_migrate_isolate(migratetype))
6743 __mod_zone_freepage_state(zone, -1, migratetype);
06be6ff3 6744 ret = true;
d4ae9916
NH
6745 break;
6746 }
06be6ff3
OS
6747 if (page_count(page_head) > 0)
6748 break;
d4ae9916
NH
6749 }
6750 spin_unlock_irqrestore(&zone->lock, flags);
06be6ff3 6751 return ret;
d4ae9916 6752}
bf181c58
NH
6753
6754/*
6755 * Cancel takeoff done by take_page_off_buddy().
6756 */
6757bool put_page_back_buddy(struct page *page)
6758{
6759 struct zone *zone = page_zone(page);
6760 unsigned long pfn = page_to_pfn(page);
6761 unsigned long flags;
6762 int migratetype = get_pfnblock_migratetype(page, pfn);
6763 bool ret = false;
6764
6765 spin_lock_irqsave(&zone->lock, flags);
6766 if (put_page_testzero(page)) {
6767 ClearPageHWPoisonTakenOff(page);
6768 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6769 if (TestClearPageHWPoison(page)) {
bf181c58
NH
6770 ret = true;
6771 }
6772 }
6773 spin_unlock_irqrestore(&zone->lock, flags);
6774
6775 return ret;
6776}
d4ae9916 6777#endif
62b31070
BH
6778
6779#ifdef CONFIG_ZONE_DMA
6780bool has_managed_dma(void)
6781{
6782 struct pglist_data *pgdat;
6783
6784 for_each_online_pgdat(pgdat) {
6785 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6786
6787 if (managed_zone(zone))
6788 return true;
6789 }
6790 return false;
6791}
6792#endif /* CONFIG_ZONE_DMA */
dcdfdd40
KS
6793
6794#ifdef CONFIG_UNACCEPTED_MEMORY
6795
6796/* Counts number of zones with unaccepted pages. */
6797static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6798
6799static bool lazy_accept = true;
6800
6801static int __init accept_memory_parse(char *p)
6802{
6803 if (!strcmp(p, "lazy")) {
6804 lazy_accept = true;
6805 return 0;
6806 } else if (!strcmp(p, "eager")) {
6807 lazy_accept = false;
6808 return 0;
6809 } else {
6810 return -EINVAL;
6811 }
6812}
6813early_param("accept_memory", accept_memory_parse);
6814
6815static bool page_contains_unaccepted(struct page *page, unsigned int order)
6816{
6817 phys_addr_t start = page_to_phys(page);
6818 phys_addr_t end = start + (PAGE_SIZE << order);
6819
6820 return range_contains_unaccepted_memory(start, end);
6821}
6822
6823static void accept_page(struct page *page, unsigned int order)
6824{
6825 phys_addr_t start = page_to_phys(page);
6826
6827 accept_memory(start, start + (PAGE_SIZE << order));
6828}
6829
6830static bool try_to_accept_memory_one(struct zone *zone)
6831{
6832 unsigned long flags;
6833 struct page *page;
6834 bool last;
6835
6836 if (list_empty(&zone->unaccepted_pages))
6837 return false;
6838
6839 spin_lock_irqsave(&zone->lock, flags);
6840 page = list_first_entry_or_null(&zone->unaccepted_pages,
6841 struct page, lru);
6842 if (!page) {
6843 spin_unlock_irqrestore(&zone->lock, flags);
6844 return false;
6845 }
6846
6847 list_del(&page->lru);
6848 last = list_empty(&zone->unaccepted_pages);
6849
6850 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6851 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6852 spin_unlock_irqrestore(&zone->lock, flags);
6853
5e0a760b 6854 accept_page(page, MAX_PAGE_ORDER);
dcdfdd40 6855
5e0a760b 6856 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
dcdfdd40
KS
6857
6858 if (last)
6859 static_branch_dec(&zones_with_unaccepted_pages);
6860
6861 return true;
6862}
6863
6864static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6865{
6866 long to_accept;
6867 int ret = false;
6868
6869 /* How much to accept to get to high watermark? */
6870 to_accept = high_wmark_pages(zone) -
6871 (zone_page_state(zone, NR_FREE_PAGES) -
6872 __zone_watermark_unusable_free(zone, order, 0));
6873
6874 /* Accept at least one page */
6875 do {
6876 if (!try_to_accept_memory_one(zone))
6877 break;
6878 ret = true;
6879 to_accept -= MAX_ORDER_NR_PAGES;
6880 } while (to_accept > 0);
6881
6882 return ret;
6883}
6884
6885static inline bool has_unaccepted_memory(void)
6886{
6887 return static_branch_unlikely(&zones_with_unaccepted_pages);
6888}
6889
6890static bool __free_unaccepted(struct page *page)
6891{
6892 struct zone *zone = page_zone(page);
6893 unsigned long flags;
6894 bool first = false;
6895
6896 if (!lazy_accept)
6897 return false;
6898
6899 spin_lock_irqsave(&zone->lock, flags);
6900 first = list_empty(&zone->unaccepted_pages);
6901 list_add_tail(&page->lru, &zone->unaccepted_pages);
6902 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6903 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6904 spin_unlock_irqrestore(&zone->lock, flags);
6905
6906 if (first)
6907 static_branch_inc(&zones_with_unaccepted_pages);
6908
6909 return true;
6910}
6911
6912#else
6913
6914static bool page_contains_unaccepted(struct page *page, unsigned int order)
6915{
6916 return false;
6917}
6918
6919static void accept_page(struct page *page, unsigned int order)
6920{
6921}
6922
6923static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6924{
6925 return false;
6926}
6927
6928static inline bool has_unaccepted_memory(void)
6929{
6930 return false;
6931}
6932
6933static bool __free_unaccepted(struct page *page)
6934{
6935 BUILD_BUG();
6936 return false;
6937}
6938
6939#endif /* CONFIG_UNACCEPTED_MEMORY */