]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/page_alloc.c
mm/hotplug: treat CMA pages as unmovable
[thirdparty/kernel/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
ca79b0c2 19#include <linux/highmem.h>
1da177e4
LT
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
10ed273f 23#include <linux/jiffies.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/topology.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
bdc8cb98 39#include <linux/memory_hotplug.h>
1da177e4
LT
40#include <linux/nodemask.h>
41#include <linux/vmalloc.h>
a6cccdc3 42#include <linux/vmstat.h>
4be38e35 43#include <linux/mempolicy.h>
4b94ffdc 44#include <linux/memremap.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
eefa864b 51#include <linux/page_ext.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
d379f01d 56#include <trace/events/oom.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
949f7ec5 60#include <linux/hugetlb.h>
8bd75c77 61#include <linux/sched/rt.h>
5b3cc15a 62#include <linux/sched/mm.h>
48c96a36 63#include <linux/page_owner.h>
0e1cc95b 64#include <linux/kthread.h>
4949148a 65#include <linux/memcontrol.h>
42c269c8 66#include <linux/ftrace.h>
d92a8cfc 67#include <linux/lockdep.h>
556b969a 68#include <linux/nmi.h>
eb414681 69#include <linux/psi.h>
1da177e4 70
7ee3d4e8 71#include <asm/sections.h>
1da177e4 72#include <asm/tlbflush.h>
ac924c60 73#include <asm/div64.h>
1da177e4
LT
74#include "internal.h"
75
c8e251fa
CS
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 78#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 79
72812019
LS
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
4518085e
KW
85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86
7aac7898
LS
87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
88/*
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
93 */
94DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 96int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
97#endif
98
bd233f53 99/* work_structs for global per-cpu drains */
d9367bd0
WY
100struct pcpu_drain {
101 struct zone *zone;
102 struct work_struct work;
103};
bd233f53 104DEFINE_MUTEX(pcpu_drain_mutex);
d9367bd0 105DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 106
38addce8 107#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 108volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
109EXPORT_SYMBOL(latent_entropy);
110#endif
111
1da177e4 112/*
13808910 113 * Array of node states.
1da177e4 114 */
13808910
CL
115nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
116 [N_POSSIBLE] = NODE_MASK_ALL,
117 [N_ONLINE] = { { [0] = 1UL } },
118#ifndef CONFIG_NUMA
119 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
120#ifdef CONFIG_HIGHMEM
121 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 122#endif
20b2f52b 123 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
124 [N_CPU] = { { [0] = 1UL } },
125#endif /* NUMA */
126};
127EXPORT_SYMBOL(node_states);
128
ca79b0c2
AK
129atomic_long_t _totalram_pages __read_mostly;
130EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 131unsigned long totalreserve_pages __read_mostly;
e48322ab 132unsigned long totalcma_pages __read_mostly;
ab8fabd4 133
1b76b02f 134int percpu_pagelist_fraction;
dcce284a 135gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 136
bb14c2c7
VB
137/*
138 * A cached value of the page's pageblock's migratetype, used when the page is
139 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
140 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
141 * Also the migratetype set in the page does not necessarily match the pcplist
142 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
143 * other index - this ensures that it will be put on the correct CMA freelist.
144 */
145static inline int get_pcppage_migratetype(struct page *page)
146{
147 return page->index;
148}
149
150static inline void set_pcppage_migratetype(struct page *page, int migratetype)
151{
152 page->index = migratetype;
153}
154
452aa699
RW
155#ifdef CONFIG_PM_SLEEP
156/*
157 * The following functions are used by the suspend/hibernate code to temporarily
158 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
159 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
160 * they should always be called with system_transition_mutex held
161 * (gfp_allowed_mask also should only be modified with system_transition_mutex
162 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
163 * with that modification).
452aa699 164 */
c9e664f1
RW
165
166static gfp_t saved_gfp_mask;
167
168void pm_restore_gfp_mask(void)
452aa699 169{
55f2503c 170 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
171 if (saved_gfp_mask) {
172 gfp_allowed_mask = saved_gfp_mask;
173 saved_gfp_mask = 0;
174 }
452aa699
RW
175}
176
c9e664f1 177void pm_restrict_gfp_mask(void)
452aa699 178{
55f2503c 179 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
180 WARN_ON(saved_gfp_mask);
181 saved_gfp_mask = gfp_allowed_mask;
d0164adc 182 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 183}
f90ac398
MG
184
185bool pm_suspended_storage(void)
186{
d0164adc 187 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
188 return false;
189 return true;
190}
452aa699
RW
191#endif /* CONFIG_PM_SLEEP */
192
d9c23400 193#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 194unsigned int pageblock_order __read_mostly;
d9c23400
MG
195#endif
196
d98c7a09 197static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 198
1da177e4
LT
199/*
200 * results with 256, 32 in the lowmem_reserve sysctl:
201 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
202 * 1G machine -> (16M dma, 784M normal, 224M high)
203 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
204 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 205 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
206 *
207 * TBD: should special case ZONE_DMA32 machines here - in those we normally
208 * don't need any ZONE_NORMAL reservation
1da177e4 209 */
d3cda233 210int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 211#ifdef CONFIG_ZONE_DMA
d3cda233 212 [ZONE_DMA] = 256,
4b51d669 213#endif
fb0e7942 214#ifdef CONFIG_ZONE_DMA32
d3cda233 215 [ZONE_DMA32] = 256,
fb0e7942 216#endif
d3cda233 217 [ZONE_NORMAL] = 32,
e53ef38d 218#ifdef CONFIG_HIGHMEM
d3cda233 219 [ZONE_HIGHMEM] = 0,
e53ef38d 220#endif
d3cda233 221 [ZONE_MOVABLE] = 0,
2f1b6248 222};
1da177e4
LT
223
224EXPORT_SYMBOL(totalram_pages);
1da177e4 225
15ad7cdc 226static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 227#ifdef CONFIG_ZONE_DMA
2f1b6248 228 "DMA",
4b51d669 229#endif
fb0e7942 230#ifdef CONFIG_ZONE_DMA32
2f1b6248 231 "DMA32",
fb0e7942 232#endif
2f1b6248 233 "Normal",
e53ef38d 234#ifdef CONFIG_HIGHMEM
2a1e274a 235 "HighMem",
e53ef38d 236#endif
2a1e274a 237 "Movable",
033fbae9
DW
238#ifdef CONFIG_ZONE_DEVICE
239 "Device",
240#endif
2f1b6248
CL
241};
242
c999fbd3 243const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
244 "Unmovable",
245 "Movable",
246 "Reclaimable",
247 "HighAtomic",
248#ifdef CONFIG_CMA
249 "CMA",
250#endif
251#ifdef CONFIG_MEMORY_ISOLATION
252 "Isolate",
253#endif
254};
255
f1e61557
KS
256compound_page_dtor * const compound_page_dtors[] = {
257 NULL,
258 free_compound_page,
259#ifdef CONFIG_HUGETLB_PAGE
260 free_huge_page,
261#endif
9a982250
KS
262#ifdef CONFIG_TRANSPARENT_HUGEPAGE
263 free_transhuge_page,
264#endif
f1e61557
KS
265};
266
1da177e4 267int min_free_kbytes = 1024;
42aa83cb 268int user_min_free_kbytes = -1;
1c30844d 269int watermark_boost_factor __read_mostly = 15000;
795ae7a0 270int watermark_scale_factor = 10;
1da177e4 271
bbe5d993
OS
272static unsigned long nr_kernel_pages __initdata;
273static unsigned long nr_all_pages __initdata;
274static unsigned long dma_reserve __initdata;
1da177e4 275
0ee332c1 276#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
bbe5d993
OS
277static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
278static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 279static unsigned long required_kernelcore __initdata;
a5c6d650 280static unsigned long required_kernelcore_percent __initdata;
7f16f91f 281static unsigned long required_movablecore __initdata;
a5c6d650 282static unsigned long required_movablecore_percent __initdata;
bbe5d993 283static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 284static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
285
286/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
287int movable_zone;
288EXPORT_SYMBOL(movable_zone);
289#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 290
418508c1 291#if MAX_NUMNODES > 1
b9726c26 292unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 293unsigned int nr_online_nodes __read_mostly = 1;
418508c1 294EXPORT_SYMBOL(nr_node_ids);
62bc62a8 295EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
296#endif
297
9ef9acb0
MG
298int page_group_by_mobility_disabled __read_mostly;
299
3a80a7fa 300#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
301/*
302 * During boot we initialize deferred pages on-demand, as needed, but once
303 * page_alloc_init_late() has finished, the deferred pages are all initialized,
304 * and we can permanently disable that path.
305 */
306static DEFINE_STATIC_KEY_TRUE(deferred_pages);
307
308/*
309 * Calling kasan_free_pages() only after deferred memory initialization
310 * has completed. Poisoning pages during deferred memory init will greatly
311 * lengthen the process and cause problem in large memory systems as the
312 * deferred pages initialization is done with interrupt disabled.
313 *
314 * Assuming that there will be no reference to those newly initialized
315 * pages before they are ever allocated, this should have no effect on
316 * KASAN memory tracking as the poison will be properly inserted at page
317 * allocation time. The only corner case is when pages are allocated by
318 * on-demand allocation and then freed again before the deferred pages
319 * initialization is done, but this is not likely to happen.
320 */
321static inline void kasan_free_nondeferred_pages(struct page *page, int order)
322{
323 if (!static_branch_unlikely(&deferred_pages))
324 kasan_free_pages(page, order);
325}
326
3a80a7fa 327/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 328static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 329{
ef70b6f4
MG
330 int nid = early_pfn_to_nid(pfn);
331
332 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
333 return true;
334
335 return false;
336}
337
338/*
d3035be4 339 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
340 * later in the boot cycle when it can be parallelised.
341 */
d3035be4
PT
342static bool __meminit
343defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 344{
d3035be4
PT
345 static unsigned long prev_end_pfn, nr_initialised;
346
347 /*
348 * prev_end_pfn static that contains the end of previous zone
349 * No need to protect because called very early in boot before smp_init.
350 */
351 if (prev_end_pfn != end_pfn) {
352 prev_end_pfn = end_pfn;
353 nr_initialised = 0;
354 }
355
3c2c6488 356 /* Always populate low zones for address-constrained allocations */
d3035be4 357 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 358 return false;
23b68cfa
WY
359
360 /*
361 * We start only with one section of pages, more pages are added as
362 * needed until the rest of deferred pages are initialized.
363 */
d3035be4 364 nr_initialised++;
23b68cfa 365 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
366 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
367 NODE_DATA(nid)->first_deferred_pfn = pfn;
368 return true;
3a80a7fa 369 }
d3035be4 370 return false;
3a80a7fa
MG
371}
372#else
3c0c12cc
WL
373#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
374
3a80a7fa
MG
375static inline bool early_page_uninitialised(unsigned long pfn)
376{
377 return false;
378}
379
d3035be4 380static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 381{
d3035be4 382 return false;
3a80a7fa
MG
383}
384#endif
385
0b423ca2
MG
386/* Return a pointer to the bitmap storing bits affecting a block of pages */
387static inline unsigned long *get_pageblock_bitmap(struct page *page,
388 unsigned long pfn)
389{
390#ifdef CONFIG_SPARSEMEM
391 return __pfn_to_section(pfn)->pageblock_flags;
392#else
393 return page_zone(page)->pageblock_flags;
394#endif /* CONFIG_SPARSEMEM */
395}
396
397static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
398{
399#ifdef CONFIG_SPARSEMEM
400 pfn &= (PAGES_PER_SECTION-1);
401 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
402#else
403 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
404 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
405#endif /* CONFIG_SPARSEMEM */
406}
407
408/**
409 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
410 * @page: The page within the block of interest
411 * @pfn: The target page frame number
412 * @end_bitidx: The last bit of interest to retrieve
413 * @mask: mask of bits that the caller is interested in
414 *
415 * Return: pageblock_bits flags
416 */
417static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
418 unsigned long pfn,
419 unsigned long end_bitidx,
420 unsigned long mask)
421{
422 unsigned long *bitmap;
423 unsigned long bitidx, word_bitidx;
424 unsigned long word;
425
426 bitmap = get_pageblock_bitmap(page, pfn);
427 bitidx = pfn_to_bitidx(page, pfn);
428 word_bitidx = bitidx / BITS_PER_LONG;
429 bitidx &= (BITS_PER_LONG-1);
430
431 word = bitmap[word_bitidx];
432 bitidx += end_bitidx;
433 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
434}
435
436unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
437 unsigned long end_bitidx,
438 unsigned long mask)
439{
440 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
441}
442
443static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
444{
445 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
446}
447
448/**
449 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
450 * @page: The page within the block of interest
451 * @flags: The flags to set
452 * @pfn: The target page frame number
453 * @end_bitidx: The last bit of interest
454 * @mask: mask of bits that the caller is interested in
455 */
456void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
457 unsigned long pfn,
458 unsigned long end_bitidx,
459 unsigned long mask)
460{
461 unsigned long *bitmap;
462 unsigned long bitidx, word_bitidx;
463 unsigned long old_word, word;
464
465 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 466 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
467
468 bitmap = get_pageblock_bitmap(page, pfn);
469 bitidx = pfn_to_bitidx(page, pfn);
470 word_bitidx = bitidx / BITS_PER_LONG;
471 bitidx &= (BITS_PER_LONG-1);
472
473 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
474
475 bitidx += end_bitidx;
476 mask <<= (BITS_PER_LONG - bitidx - 1);
477 flags <<= (BITS_PER_LONG - bitidx - 1);
478
479 word = READ_ONCE(bitmap[word_bitidx]);
480 for (;;) {
481 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
482 if (word == old_word)
483 break;
484 word = old_word;
485 }
486}
3a80a7fa 487
ee6f509c 488void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 489{
5d0f3f72
KM
490 if (unlikely(page_group_by_mobility_disabled &&
491 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
492 migratetype = MIGRATE_UNMOVABLE;
493
b2a0ac88
MG
494 set_pageblock_flags_group(page, (unsigned long)migratetype,
495 PB_migrate, PB_migrate_end);
496}
497
13e7444b 498#ifdef CONFIG_DEBUG_VM
c6a57e19 499static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 500{
bdc8cb98
DH
501 int ret = 0;
502 unsigned seq;
503 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 504 unsigned long sp, start_pfn;
c6a57e19 505
bdc8cb98
DH
506 do {
507 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
508 start_pfn = zone->zone_start_pfn;
509 sp = zone->spanned_pages;
108bcc96 510 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
511 ret = 1;
512 } while (zone_span_seqretry(zone, seq));
513
b5e6a5a2 514 if (ret)
613813e8
DH
515 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
516 pfn, zone_to_nid(zone), zone->name,
517 start_pfn, start_pfn + sp);
b5e6a5a2 518
bdc8cb98 519 return ret;
c6a57e19
DH
520}
521
522static int page_is_consistent(struct zone *zone, struct page *page)
523{
14e07298 524 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 525 return 0;
1da177e4 526 if (zone != page_zone(page))
c6a57e19
DH
527 return 0;
528
529 return 1;
530}
531/*
532 * Temporary debugging check for pages not lying within a given zone.
533 */
d73d3c9f 534static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
535{
536 if (page_outside_zone_boundaries(zone, page))
1da177e4 537 return 1;
c6a57e19
DH
538 if (!page_is_consistent(zone, page))
539 return 1;
540
1da177e4
LT
541 return 0;
542}
13e7444b 543#else
d73d3c9f 544static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
545{
546 return 0;
547}
548#endif
549
d230dec1
KS
550static void bad_page(struct page *page, const char *reason,
551 unsigned long bad_flags)
1da177e4 552{
d936cf9b
HD
553 static unsigned long resume;
554 static unsigned long nr_shown;
555 static unsigned long nr_unshown;
556
557 /*
558 * Allow a burst of 60 reports, then keep quiet for that minute;
559 * or allow a steady drip of one report per second.
560 */
561 if (nr_shown == 60) {
562 if (time_before(jiffies, resume)) {
563 nr_unshown++;
564 goto out;
565 }
566 if (nr_unshown) {
ff8e8116 567 pr_alert(
1e9e6365 568 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
569 nr_unshown);
570 nr_unshown = 0;
571 }
572 nr_shown = 0;
573 }
574 if (nr_shown++ == 0)
575 resume = jiffies + 60 * HZ;
576
ff8e8116 577 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 578 current->comm, page_to_pfn(page));
ff8e8116
VB
579 __dump_page(page, reason);
580 bad_flags &= page->flags;
581 if (bad_flags)
582 pr_alert("bad because of flags: %#lx(%pGp)\n",
583 bad_flags, &bad_flags);
4e462112 584 dump_page_owner(page);
3dc14741 585
4f31888c 586 print_modules();
1da177e4 587 dump_stack();
d936cf9b 588out:
8cc3b392 589 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 590 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 591 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
592}
593
1da177e4
LT
594/*
595 * Higher-order pages are called "compound pages". They are structured thusly:
596 *
1d798ca3 597 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 598 *
1d798ca3
KS
599 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
600 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 601 *
1d798ca3
KS
602 * The first tail page's ->compound_dtor holds the offset in array of compound
603 * page destructors. See compound_page_dtors.
1da177e4 604 *
1d798ca3 605 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 606 * This usage means that zero-order pages may not be compound.
1da177e4 607 */
d98c7a09 608
9a982250 609void free_compound_page(struct page *page)
d98c7a09 610{
d85f3385 611 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
612}
613
d00181b9 614void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
615{
616 int i;
617 int nr_pages = 1 << order;
618
f1e61557 619 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
620 set_compound_order(page, order);
621 __SetPageHead(page);
622 for (i = 1; i < nr_pages; i++) {
623 struct page *p = page + i;
58a84aa9 624 set_page_count(p, 0);
1c290f64 625 p->mapping = TAIL_MAPPING;
1d798ca3 626 set_compound_head(p, page);
18229df5 627 }
53f9263b 628 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
629}
630
c0a32fc5
SG
631#ifdef CONFIG_DEBUG_PAGEALLOC
632unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
633bool _debug_pagealloc_enabled __read_mostly
634 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 635EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
636bool _debug_guardpage_enabled __read_mostly;
637
031bc574
JK
638static int __init early_debug_pagealloc(char *buf)
639{
640 if (!buf)
641 return -EINVAL;
2a138dc7 642 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
643}
644early_param("debug_pagealloc", early_debug_pagealloc);
645
e30825f1
JK
646static bool need_debug_guardpage(void)
647{
031bc574
JK
648 /* If we don't use debug_pagealloc, we don't need guard page */
649 if (!debug_pagealloc_enabled())
650 return false;
651
f1c1e9f7
JK
652 if (!debug_guardpage_minorder())
653 return false;
654
e30825f1
JK
655 return true;
656}
657
658static void init_debug_guardpage(void)
659{
031bc574
JK
660 if (!debug_pagealloc_enabled())
661 return;
662
f1c1e9f7
JK
663 if (!debug_guardpage_minorder())
664 return;
665
e30825f1
JK
666 _debug_guardpage_enabled = true;
667}
668
669struct page_ext_operations debug_guardpage_ops = {
670 .need = need_debug_guardpage,
671 .init = init_debug_guardpage,
672};
c0a32fc5
SG
673
674static int __init debug_guardpage_minorder_setup(char *buf)
675{
676 unsigned long res;
677
678 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 679 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
680 return 0;
681 }
682 _debug_guardpage_minorder = res;
1170532b 683 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
684 return 0;
685}
f1c1e9f7 686early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 687
acbc15a4 688static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 689 unsigned int order, int migratetype)
c0a32fc5 690{
e30825f1
JK
691 struct page_ext *page_ext;
692
693 if (!debug_guardpage_enabled())
acbc15a4
JK
694 return false;
695
696 if (order >= debug_guardpage_minorder())
697 return false;
e30825f1
JK
698
699 page_ext = lookup_page_ext(page);
f86e4271 700 if (unlikely(!page_ext))
acbc15a4 701 return false;
f86e4271 702
e30825f1
JK
703 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
704
2847cf95
JK
705 INIT_LIST_HEAD(&page->lru);
706 set_page_private(page, order);
707 /* Guard pages are not available for any usage */
708 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
709
710 return true;
c0a32fc5
SG
711}
712
2847cf95
JK
713static inline void clear_page_guard(struct zone *zone, struct page *page,
714 unsigned int order, int migratetype)
c0a32fc5 715{
e30825f1
JK
716 struct page_ext *page_ext;
717
718 if (!debug_guardpage_enabled())
719 return;
720
721 page_ext = lookup_page_ext(page);
f86e4271
YS
722 if (unlikely(!page_ext))
723 return;
724
e30825f1
JK
725 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
726
2847cf95
JK
727 set_page_private(page, 0);
728 if (!is_migrate_isolate(migratetype))
729 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
730}
731#else
980ac167 732struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
733static inline bool set_page_guard(struct zone *zone, struct page *page,
734 unsigned int order, int migratetype) { return false; }
2847cf95
JK
735static inline void clear_page_guard(struct zone *zone, struct page *page,
736 unsigned int order, int migratetype) {}
c0a32fc5
SG
737#endif
738
7aeb09f9 739static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 740{
4c21e2f2 741 set_page_private(page, order);
676165a8 742 __SetPageBuddy(page);
1da177e4
LT
743}
744
745static inline void rmv_page_order(struct page *page)
746{
676165a8 747 __ClearPageBuddy(page);
4c21e2f2 748 set_page_private(page, 0);
1da177e4
LT
749}
750
1da177e4
LT
751/*
752 * This function checks whether a page is free && is the buddy
6e292b9b 753 * we can coalesce a page and its buddy if
13ad59df 754 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 755 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
756 * (c) a page and its buddy have the same order &&
757 * (d) a page and its buddy are in the same zone.
676165a8 758 *
6e292b9b
MW
759 * For recording whether a page is in the buddy system, we set PageBuddy.
760 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 761 *
676165a8 762 * For recording page's order, we use page_private(page).
1da177e4 763 */
cb2b95e1 764static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 765 unsigned int order)
1da177e4 766{
c0a32fc5 767 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
768 if (page_zone_id(page) != page_zone_id(buddy))
769 return 0;
770
4c5018ce
WY
771 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
772
c0a32fc5
SG
773 return 1;
774 }
775
cb2b95e1 776 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
777 /*
778 * zone check is done late to avoid uselessly
779 * calculating zone/node ids for pages that could
780 * never merge.
781 */
782 if (page_zone_id(page) != page_zone_id(buddy))
783 return 0;
784
4c5018ce
WY
785 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
786
6aa3001b 787 return 1;
676165a8 788 }
6aa3001b 789 return 0;
1da177e4
LT
790}
791
5e1f0f09
MG
792#ifdef CONFIG_COMPACTION
793static inline struct capture_control *task_capc(struct zone *zone)
794{
795 struct capture_control *capc = current->capture_control;
796
797 return capc &&
798 !(current->flags & PF_KTHREAD) &&
799 !capc->page &&
800 capc->cc->zone == zone &&
801 capc->cc->direct_compaction ? capc : NULL;
802}
803
804static inline bool
805compaction_capture(struct capture_control *capc, struct page *page,
806 int order, int migratetype)
807{
808 if (!capc || order != capc->cc->order)
809 return false;
810
811 /* Do not accidentally pollute CMA or isolated regions*/
812 if (is_migrate_cma(migratetype) ||
813 is_migrate_isolate(migratetype))
814 return false;
815
816 /*
817 * Do not let lower order allocations polluate a movable pageblock.
818 * This might let an unmovable request use a reclaimable pageblock
819 * and vice-versa but no more than normal fallback logic which can
820 * have trouble finding a high-order free page.
821 */
822 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
823 return false;
824
825 capc->page = page;
826 return true;
827}
828
829#else
830static inline struct capture_control *task_capc(struct zone *zone)
831{
832 return NULL;
833}
834
835static inline bool
836compaction_capture(struct capture_control *capc, struct page *page,
837 int order, int migratetype)
838{
839 return false;
840}
841#endif /* CONFIG_COMPACTION */
842
1da177e4
LT
843/*
844 * Freeing function for a buddy system allocator.
845 *
846 * The concept of a buddy system is to maintain direct-mapped table
847 * (containing bit values) for memory blocks of various "orders".
848 * The bottom level table contains the map for the smallest allocatable
849 * units of memory (here, pages), and each level above it describes
850 * pairs of units from the levels below, hence, "buddies".
851 * At a high level, all that happens here is marking the table entry
852 * at the bottom level available, and propagating the changes upward
853 * as necessary, plus some accounting needed to play nicely with other
854 * parts of the VM system.
855 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
856 * free pages of length of (1 << order) and marked with PageBuddy.
857 * Page's order is recorded in page_private(page) field.
1da177e4 858 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
859 * other. That is, if we allocate a small block, and both were
860 * free, the remainder of the region must be split into blocks.
1da177e4 861 * If a block is freed, and its buddy is also free, then this
5f63b720 862 * triggers coalescing into a block of larger size.
1da177e4 863 *
6d49e352 864 * -- nyc
1da177e4
LT
865 */
866
48db57f8 867static inline void __free_one_page(struct page *page,
dc4b0caf 868 unsigned long pfn,
ed0ae21d
MG
869 struct zone *zone, unsigned int order,
870 int migratetype)
1da177e4 871{
76741e77
VB
872 unsigned long combined_pfn;
873 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 874 struct page *buddy;
d9dddbf5 875 unsigned int max_order;
5e1f0f09 876 struct capture_control *capc = task_capc(zone);
d9dddbf5
VB
877
878 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 879
d29bb978 880 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 881 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 882
ed0ae21d 883 VM_BUG_ON(migratetype == -1);
d9dddbf5 884 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 885 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 886
76741e77 887 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 888 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 889
d9dddbf5 890continue_merging:
3c605096 891 while (order < max_order - 1) {
5e1f0f09
MG
892 if (compaction_capture(capc, page, order, migratetype)) {
893 __mod_zone_freepage_state(zone, -(1 << order),
894 migratetype);
895 return;
896 }
76741e77
VB
897 buddy_pfn = __find_buddy_pfn(pfn, order);
898 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
899
900 if (!pfn_valid_within(buddy_pfn))
901 goto done_merging;
cb2b95e1 902 if (!page_is_buddy(page, buddy, order))
d9dddbf5 903 goto done_merging;
c0a32fc5
SG
904 /*
905 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
906 * merge with it and move up one order.
907 */
908 if (page_is_guard(buddy)) {
2847cf95 909 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
910 } else {
911 list_del(&buddy->lru);
912 zone->free_area[order].nr_free--;
913 rmv_page_order(buddy);
914 }
76741e77
VB
915 combined_pfn = buddy_pfn & pfn;
916 page = page + (combined_pfn - pfn);
917 pfn = combined_pfn;
1da177e4
LT
918 order++;
919 }
d9dddbf5
VB
920 if (max_order < MAX_ORDER) {
921 /* If we are here, it means order is >= pageblock_order.
922 * We want to prevent merge between freepages on isolate
923 * pageblock and normal pageblock. Without this, pageblock
924 * isolation could cause incorrect freepage or CMA accounting.
925 *
926 * We don't want to hit this code for the more frequent
927 * low-order merging.
928 */
929 if (unlikely(has_isolate_pageblock(zone))) {
930 int buddy_mt;
931
76741e77
VB
932 buddy_pfn = __find_buddy_pfn(pfn, order);
933 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
934 buddy_mt = get_pageblock_migratetype(buddy);
935
936 if (migratetype != buddy_mt
937 && (is_migrate_isolate(migratetype) ||
938 is_migrate_isolate(buddy_mt)))
939 goto done_merging;
940 }
941 max_order++;
942 goto continue_merging;
943 }
944
945done_merging:
1da177e4 946 set_page_order(page, order);
6dda9d55
CZ
947
948 /*
949 * If this is not the largest possible page, check if the buddy
950 * of the next-highest order is free. If it is, it's possible
951 * that pages are being freed that will coalesce soon. In case,
952 * that is happening, add the free page to the tail of the list
953 * so it's less likely to be used soon and more likely to be merged
954 * as a higher order page
955 */
13ad59df 956 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 957 struct page *higher_page, *higher_buddy;
76741e77
VB
958 combined_pfn = buddy_pfn & pfn;
959 higher_page = page + (combined_pfn - pfn);
960 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
961 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
962 if (pfn_valid_within(buddy_pfn) &&
963 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
964 list_add_tail(&page->lru,
965 &zone->free_area[order].free_list[migratetype]);
966 goto out;
967 }
968 }
969
970 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
971out:
1da177e4
LT
972 zone->free_area[order].nr_free++;
973}
974
7bfec6f4
MG
975/*
976 * A bad page could be due to a number of fields. Instead of multiple branches,
977 * try and check multiple fields with one check. The caller must do a detailed
978 * check if necessary.
979 */
980static inline bool page_expected_state(struct page *page,
981 unsigned long check_flags)
982{
983 if (unlikely(atomic_read(&page->_mapcount) != -1))
984 return false;
985
986 if (unlikely((unsigned long)page->mapping |
987 page_ref_count(page) |
988#ifdef CONFIG_MEMCG
989 (unsigned long)page->mem_cgroup |
990#endif
991 (page->flags & check_flags)))
992 return false;
993
994 return true;
995}
996
bb552ac6 997static void free_pages_check_bad(struct page *page)
1da177e4 998{
7bfec6f4
MG
999 const char *bad_reason;
1000 unsigned long bad_flags;
1001
7bfec6f4
MG
1002 bad_reason = NULL;
1003 bad_flags = 0;
f0b791a3 1004
53f9263b 1005 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1006 bad_reason = "nonzero mapcount";
1007 if (unlikely(page->mapping != NULL))
1008 bad_reason = "non-NULL mapping";
fe896d18 1009 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1010 bad_reason = "nonzero _refcount";
f0b791a3
DH
1011 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1012 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1013 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1014 }
9edad6ea
JW
1015#ifdef CONFIG_MEMCG
1016 if (unlikely(page->mem_cgroup))
1017 bad_reason = "page still charged to cgroup";
1018#endif
7bfec6f4 1019 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
1020}
1021
1022static inline int free_pages_check(struct page *page)
1023{
da838d4f 1024 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1025 return 0;
bb552ac6
MG
1026
1027 /* Something has gone sideways, find it */
1028 free_pages_check_bad(page);
7bfec6f4 1029 return 1;
1da177e4
LT
1030}
1031
4db7548c
MG
1032static int free_tail_pages_check(struct page *head_page, struct page *page)
1033{
1034 int ret = 1;
1035
1036 /*
1037 * We rely page->lru.next never has bit 0 set, unless the page
1038 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1039 */
1040 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1041
1042 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1043 ret = 0;
1044 goto out;
1045 }
1046 switch (page - head_page) {
1047 case 1:
4da1984e 1048 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
1049 if (unlikely(compound_mapcount(page))) {
1050 bad_page(page, "nonzero compound_mapcount", 0);
1051 goto out;
1052 }
1053 break;
1054 case 2:
1055 /*
1056 * the second tail page: ->mapping is
fa3015b7 1057 * deferred_list.next -- ignore value.
4db7548c
MG
1058 */
1059 break;
1060 default:
1061 if (page->mapping != TAIL_MAPPING) {
1062 bad_page(page, "corrupted mapping in tail page", 0);
1063 goto out;
1064 }
1065 break;
1066 }
1067 if (unlikely(!PageTail(page))) {
1068 bad_page(page, "PageTail not set", 0);
1069 goto out;
1070 }
1071 if (unlikely(compound_head(page) != head_page)) {
1072 bad_page(page, "compound_head not consistent", 0);
1073 goto out;
1074 }
1075 ret = 0;
1076out:
1077 page->mapping = NULL;
1078 clear_compound_head(page);
1079 return ret;
1080}
1081
e2769dbd
MG
1082static __always_inline bool free_pages_prepare(struct page *page,
1083 unsigned int order, bool check_free)
4db7548c 1084{
e2769dbd 1085 int bad = 0;
4db7548c 1086
4db7548c
MG
1087 VM_BUG_ON_PAGE(PageTail(page), page);
1088
e2769dbd 1089 trace_mm_page_free(page, order);
e2769dbd
MG
1090
1091 /*
1092 * Check tail pages before head page information is cleared to
1093 * avoid checking PageCompound for order-0 pages.
1094 */
1095 if (unlikely(order)) {
1096 bool compound = PageCompound(page);
1097 int i;
1098
1099 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1100
9a73f61b
KS
1101 if (compound)
1102 ClearPageDoubleMap(page);
e2769dbd
MG
1103 for (i = 1; i < (1 << order); i++) {
1104 if (compound)
1105 bad += free_tail_pages_check(page, page + i);
1106 if (unlikely(free_pages_check(page + i))) {
1107 bad++;
1108 continue;
1109 }
1110 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1111 }
1112 }
bda807d4 1113 if (PageMappingFlags(page))
4db7548c 1114 page->mapping = NULL;
c4159a75 1115 if (memcg_kmem_enabled() && PageKmemcg(page))
60cd4bcd 1116 __memcg_kmem_uncharge(page, order);
e2769dbd
MG
1117 if (check_free)
1118 bad += free_pages_check(page);
1119 if (bad)
1120 return false;
4db7548c 1121
e2769dbd
MG
1122 page_cpupid_reset_last(page);
1123 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1124 reset_page_owner(page, order);
4db7548c
MG
1125
1126 if (!PageHighMem(page)) {
1127 debug_check_no_locks_freed(page_address(page),
e2769dbd 1128 PAGE_SIZE << order);
4db7548c 1129 debug_check_no_obj_freed(page_address(page),
e2769dbd 1130 PAGE_SIZE << order);
4db7548c 1131 }
e2769dbd
MG
1132 arch_free_page(page, order);
1133 kernel_poison_pages(page, 1 << order, 0);
1134 kernel_map_pages(page, 1 << order, 0);
3c0c12cc 1135 kasan_free_nondeferred_pages(page, order);
4db7548c 1136
4db7548c
MG
1137 return true;
1138}
1139
e2769dbd
MG
1140#ifdef CONFIG_DEBUG_VM
1141static inline bool free_pcp_prepare(struct page *page)
1142{
1143 return free_pages_prepare(page, 0, true);
1144}
1145
1146static inline bool bulkfree_pcp_prepare(struct page *page)
1147{
1148 return false;
1149}
1150#else
1151static bool free_pcp_prepare(struct page *page)
1152{
1153 return free_pages_prepare(page, 0, false);
1154}
1155
4db7548c
MG
1156static bool bulkfree_pcp_prepare(struct page *page)
1157{
1158 return free_pages_check(page);
1159}
1160#endif /* CONFIG_DEBUG_VM */
1161
97334162
AL
1162static inline void prefetch_buddy(struct page *page)
1163{
1164 unsigned long pfn = page_to_pfn(page);
1165 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1166 struct page *buddy = page + (buddy_pfn - pfn);
1167
1168 prefetch(buddy);
1169}
1170
1da177e4 1171/*
5f8dcc21 1172 * Frees a number of pages from the PCP lists
1da177e4 1173 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1174 * count is the number of pages to free.
1da177e4
LT
1175 *
1176 * If the zone was previously in an "all pages pinned" state then look to
1177 * see if this freeing clears that state.
1178 *
1179 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1180 * pinned" detection logic.
1181 */
5f8dcc21
MG
1182static void free_pcppages_bulk(struct zone *zone, int count,
1183 struct per_cpu_pages *pcp)
1da177e4 1184{
5f8dcc21 1185 int migratetype = 0;
a6f9edd6 1186 int batch_free = 0;
97334162 1187 int prefetch_nr = 0;
3777999d 1188 bool isolated_pageblocks;
0a5f4e5b
AL
1189 struct page *page, *tmp;
1190 LIST_HEAD(head);
f2260e6b 1191
e5b31ac2 1192 while (count) {
5f8dcc21
MG
1193 struct list_head *list;
1194
1195 /*
a6f9edd6
MG
1196 * Remove pages from lists in a round-robin fashion. A
1197 * batch_free count is maintained that is incremented when an
1198 * empty list is encountered. This is so more pages are freed
1199 * off fuller lists instead of spinning excessively around empty
1200 * lists
5f8dcc21
MG
1201 */
1202 do {
a6f9edd6 1203 batch_free++;
5f8dcc21
MG
1204 if (++migratetype == MIGRATE_PCPTYPES)
1205 migratetype = 0;
1206 list = &pcp->lists[migratetype];
1207 } while (list_empty(list));
48db57f8 1208
1d16871d
NK
1209 /* This is the only non-empty list. Free them all. */
1210 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1211 batch_free = count;
1d16871d 1212
a6f9edd6 1213 do {
a16601c5 1214 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1215 /* must delete to avoid corrupting pcp list */
a6f9edd6 1216 list_del(&page->lru);
77ba9062 1217 pcp->count--;
aa016d14 1218
4db7548c
MG
1219 if (bulkfree_pcp_prepare(page))
1220 continue;
1221
0a5f4e5b 1222 list_add_tail(&page->lru, &head);
97334162
AL
1223
1224 /*
1225 * We are going to put the page back to the global
1226 * pool, prefetch its buddy to speed up later access
1227 * under zone->lock. It is believed the overhead of
1228 * an additional test and calculating buddy_pfn here
1229 * can be offset by reduced memory latency later. To
1230 * avoid excessive prefetching due to large count, only
1231 * prefetch buddy for the first pcp->batch nr of pages.
1232 */
1233 if (prefetch_nr++ < pcp->batch)
1234 prefetch_buddy(page);
e5b31ac2 1235 } while (--count && --batch_free && !list_empty(list));
1da177e4 1236 }
0a5f4e5b
AL
1237
1238 spin_lock(&zone->lock);
1239 isolated_pageblocks = has_isolate_pageblock(zone);
1240
1241 /*
1242 * Use safe version since after __free_one_page(),
1243 * page->lru.next will not point to original list.
1244 */
1245 list_for_each_entry_safe(page, tmp, &head, lru) {
1246 int mt = get_pcppage_migratetype(page);
1247 /* MIGRATE_ISOLATE page should not go to pcplists */
1248 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1249 /* Pageblock could have been isolated meanwhile */
1250 if (unlikely(isolated_pageblocks))
1251 mt = get_pageblock_migratetype(page);
1252
1253 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1254 trace_mm_page_pcpu_drain(page, 0, mt);
1255 }
d34b0733 1256 spin_unlock(&zone->lock);
1da177e4
LT
1257}
1258
dc4b0caf
MG
1259static void free_one_page(struct zone *zone,
1260 struct page *page, unsigned long pfn,
7aeb09f9 1261 unsigned int order,
ed0ae21d 1262 int migratetype)
1da177e4 1263{
d34b0733 1264 spin_lock(&zone->lock);
ad53f92e
JK
1265 if (unlikely(has_isolate_pageblock(zone) ||
1266 is_migrate_isolate(migratetype))) {
1267 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1268 }
dc4b0caf 1269 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1270 spin_unlock(&zone->lock);
48db57f8
NP
1271}
1272
1e8ce83c 1273static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1274 unsigned long zone, int nid)
1e8ce83c 1275{
d0dc12e8 1276 mm_zero_struct_page(page);
1e8ce83c 1277 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1278 init_page_count(page);
1279 page_mapcount_reset(page);
1280 page_cpupid_reset_last(page);
2813b9c0 1281 page_kasan_tag_reset(page);
1e8ce83c 1282
1e8ce83c
RH
1283 INIT_LIST_HEAD(&page->lru);
1284#ifdef WANT_PAGE_VIRTUAL
1285 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1286 if (!is_highmem_idx(zone))
1287 set_page_address(page, __va(pfn << PAGE_SHIFT));
1288#endif
1289}
1290
7e18adb4 1291#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1292static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1293{
1294 pg_data_t *pgdat;
1295 int nid, zid;
1296
1297 if (!early_page_uninitialised(pfn))
1298 return;
1299
1300 nid = early_pfn_to_nid(pfn);
1301 pgdat = NODE_DATA(nid);
1302
1303 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1304 struct zone *zone = &pgdat->node_zones[zid];
1305
1306 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1307 break;
1308 }
d0dc12e8 1309 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1310}
1311#else
1312static inline void init_reserved_page(unsigned long pfn)
1313{
1314}
1315#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1316
92923ca3
NZ
1317/*
1318 * Initialised pages do not have PageReserved set. This function is
1319 * called for each range allocated by the bootmem allocator and
1320 * marks the pages PageReserved. The remaining valid pages are later
1321 * sent to the buddy page allocator.
1322 */
4b50bcc7 1323void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1324{
1325 unsigned long start_pfn = PFN_DOWN(start);
1326 unsigned long end_pfn = PFN_UP(end);
1327
7e18adb4
MG
1328 for (; start_pfn < end_pfn; start_pfn++) {
1329 if (pfn_valid(start_pfn)) {
1330 struct page *page = pfn_to_page(start_pfn);
1331
1332 init_reserved_page(start_pfn);
1d798ca3
KS
1333
1334 /* Avoid false-positive PageTail() */
1335 INIT_LIST_HEAD(&page->lru);
1336
d483da5b
AD
1337 /*
1338 * no need for atomic set_bit because the struct
1339 * page is not visible yet so nobody should
1340 * access it yet.
1341 */
1342 __SetPageReserved(page);
7e18adb4
MG
1343 }
1344 }
92923ca3
NZ
1345}
1346
ec95f53a
KM
1347static void __free_pages_ok(struct page *page, unsigned int order)
1348{
d34b0733 1349 unsigned long flags;
95e34412 1350 int migratetype;
dc4b0caf 1351 unsigned long pfn = page_to_pfn(page);
ec95f53a 1352
e2769dbd 1353 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1354 return;
1355
cfc47a28 1356 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1357 local_irq_save(flags);
1358 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1359 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1360 local_irq_restore(flags);
1da177e4
LT
1361}
1362
a9cd410a 1363void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1364{
c3993076 1365 unsigned int nr_pages = 1 << order;
e2d0bd2b 1366 struct page *p = page;
c3993076 1367 unsigned int loop;
a226f6c8 1368
e2d0bd2b
YL
1369 prefetchw(p);
1370 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1371 prefetchw(p + 1);
c3993076
JW
1372 __ClearPageReserved(p);
1373 set_page_count(p, 0);
a226f6c8 1374 }
e2d0bd2b
YL
1375 __ClearPageReserved(p);
1376 set_page_count(p, 0);
c3993076 1377
9705bea5 1378 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1379 set_page_refcounted(page);
1380 __free_pages(page, order);
a226f6c8
DH
1381}
1382
75a592a4
MG
1383#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1384 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1385
75a592a4
MG
1386static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1387
1388int __meminit early_pfn_to_nid(unsigned long pfn)
1389{
7ace9917 1390 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1391 int nid;
1392
7ace9917 1393 spin_lock(&early_pfn_lock);
75a592a4 1394 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1395 if (nid < 0)
e4568d38 1396 nid = first_online_node;
7ace9917
MG
1397 spin_unlock(&early_pfn_lock);
1398
1399 return nid;
75a592a4
MG
1400}
1401#endif
1402
1403#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1404static inline bool __meminit __maybe_unused
1405meminit_pfn_in_nid(unsigned long pfn, int node,
1406 struct mminit_pfnnid_cache *state)
75a592a4
MG
1407{
1408 int nid;
1409
1410 nid = __early_pfn_to_nid(pfn, state);
1411 if (nid >= 0 && nid != node)
1412 return false;
1413 return true;
1414}
1415
1416/* Only safe to use early in boot when initialisation is single-threaded */
1417static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1418{
1419 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1420}
1421
1422#else
1423
1424static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1425{
1426 return true;
1427}
d73d3c9f
MK
1428static inline bool __meminit __maybe_unused
1429meminit_pfn_in_nid(unsigned long pfn, int node,
1430 struct mminit_pfnnid_cache *state)
75a592a4
MG
1431{
1432 return true;
1433}
1434#endif
1435
1436
7c2ee349 1437void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1438 unsigned int order)
1439{
1440 if (early_page_uninitialised(pfn))
1441 return;
a9cd410a 1442 __free_pages_core(page, order);
3a80a7fa
MG
1443}
1444
7cf91a98
JK
1445/*
1446 * Check that the whole (or subset of) a pageblock given by the interval of
1447 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1448 * with the migration of free compaction scanner. The scanners then need to
1449 * use only pfn_valid_within() check for arches that allow holes within
1450 * pageblocks.
1451 *
1452 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1453 *
1454 * It's possible on some configurations to have a setup like node0 node1 node0
1455 * i.e. it's possible that all pages within a zones range of pages do not
1456 * belong to a single zone. We assume that a border between node0 and node1
1457 * can occur within a single pageblock, but not a node0 node1 node0
1458 * interleaving within a single pageblock. It is therefore sufficient to check
1459 * the first and last page of a pageblock and avoid checking each individual
1460 * page in a pageblock.
1461 */
1462struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1463 unsigned long end_pfn, struct zone *zone)
1464{
1465 struct page *start_page;
1466 struct page *end_page;
1467
1468 /* end_pfn is one past the range we are checking */
1469 end_pfn--;
1470
1471 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1472 return NULL;
1473
2d070eab
MH
1474 start_page = pfn_to_online_page(start_pfn);
1475 if (!start_page)
1476 return NULL;
7cf91a98
JK
1477
1478 if (page_zone(start_page) != zone)
1479 return NULL;
1480
1481 end_page = pfn_to_page(end_pfn);
1482
1483 /* This gives a shorter code than deriving page_zone(end_page) */
1484 if (page_zone_id(start_page) != page_zone_id(end_page))
1485 return NULL;
1486
1487 return start_page;
1488}
1489
1490void set_zone_contiguous(struct zone *zone)
1491{
1492 unsigned long block_start_pfn = zone->zone_start_pfn;
1493 unsigned long block_end_pfn;
1494
1495 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1496 for (; block_start_pfn < zone_end_pfn(zone);
1497 block_start_pfn = block_end_pfn,
1498 block_end_pfn += pageblock_nr_pages) {
1499
1500 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1501
1502 if (!__pageblock_pfn_to_page(block_start_pfn,
1503 block_end_pfn, zone))
1504 return;
1505 }
1506
1507 /* We confirm that there is no hole */
1508 zone->contiguous = true;
1509}
1510
1511void clear_zone_contiguous(struct zone *zone)
1512{
1513 zone->contiguous = false;
1514}
1515
7e18adb4 1516#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1517static void __init deferred_free_range(unsigned long pfn,
1518 unsigned long nr_pages)
a4de83dd 1519{
2f47a91f
PT
1520 struct page *page;
1521 unsigned long i;
a4de83dd 1522
2f47a91f 1523 if (!nr_pages)
a4de83dd
MG
1524 return;
1525
2f47a91f
PT
1526 page = pfn_to_page(pfn);
1527
a4de83dd 1528 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1529 if (nr_pages == pageblock_nr_pages &&
1530 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1531 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1532 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1533 return;
1534 }
1535
e780149b
XQ
1536 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1537 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1538 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1539 __free_pages_core(page, 0);
e780149b 1540 }
a4de83dd
MG
1541}
1542
d3cd131d
NS
1543/* Completion tracking for deferred_init_memmap() threads */
1544static atomic_t pgdat_init_n_undone __initdata;
1545static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1546
1547static inline void __init pgdat_init_report_one_done(void)
1548{
1549 if (atomic_dec_and_test(&pgdat_init_n_undone))
1550 complete(&pgdat_init_all_done_comp);
1551}
0e1cc95b 1552
2f47a91f 1553/*
80b1f41c
PT
1554 * Returns true if page needs to be initialized or freed to buddy allocator.
1555 *
1556 * First we check if pfn is valid on architectures where it is possible to have
1557 * holes within pageblock_nr_pages. On systems where it is not possible, this
1558 * function is optimized out.
1559 *
1560 * Then, we check if a current large page is valid by only checking the validity
1561 * of the head pfn.
1562 *
1563 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1564 * within a node: a pfn is between start and end of a node, but does not belong
1565 * to this memory node.
2f47a91f 1566 */
80b1f41c
PT
1567static inline bool __init
1568deferred_pfn_valid(int nid, unsigned long pfn,
1569 struct mminit_pfnnid_cache *nid_init_state)
2f47a91f 1570{
80b1f41c
PT
1571 if (!pfn_valid_within(pfn))
1572 return false;
1573 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1574 return false;
1575 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1576 return false;
1577 return true;
1578}
2f47a91f 1579
80b1f41c
PT
1580/*
1581 * Free pages to buddy allocator. Try to free aligned pages in
1582 * pageblock_nr_pages sizes.
1583 */
1584static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1585 unsigned long end_pfn)
1586{
1587 struct mminit_pfnnid_cache nid_init_state = { };
1588 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1589 unsigned long nr_free = 0;
2f47a91f 1590
80b1f41c
PT
1591 for (; pfn < end_pfn; pfn++) {
1592 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1593 deferred_free_range(pfn - nr_free, nr_free);
1594 nr_free = 0;
1595 } else if (!(pfn & nr_pgmask)) {
1596 deferred_free_range(pfn - nr_free, nr_free);
1597 nr_free = 1;
3a2d7fa8 1598 touch_nmi_watchdog();
80b1f41c
PT
1599 } else {
1600 nr_free++;
1601 }
1602 }
1603 /* Free the last block of pages to allocator */
1604 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1605}
1606
80b1f41c
PT
1607/*
1608 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1609 * by performing it only once every pageblock_nr_pages.
1610 * Return number of pages initialized.
1611 */
1612static unsigned long __init deferred_init_pages(int nid, int zid,
1613 unsigned long pfn,
1614 unsigned long end_pfn)
2f47a91f
PT
1615{
1616 struct mminit_pfnnid_cache nid_init_state = { };
1617 unsigned long nr_pgmask = pageblock_nr_pages - 1;
2f47a91f 1618 unsigned long nr_pages = 0;
2f47a91f 1619 struct page *page = NULL;
2f47a91f 1620
80b1f41c
PT
1621 for (; pfn < end_pfn; pfn++) {
1622 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1623 page = NULL;
2f47a91f 1624 continue;
80b1f41c 1625 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1626 page = pfn_to_page(pfn);
3a2d7fa8 1627 touch_nmi_watchdog();
80b1f41c
PT
1628 } else {
1629 page++;
2f47a91f 1630 }
d0dc12e8 1631 __init_single_page(page, pfn, zid, nid);
80b1f41c 1632 nr_pages++;
2f47a91f 1633 }
80b1f41c 1634 return (nr_pages);
2f47a91f
PT
1635}
1636
7e18adb4 1637/* Initialise remaining memory on a node */
0e1cc95b 1638static int __init deferred_init_memmap(void *data)
7e18adb4 1639{
0e1cc95b
MG
1640 pg_data_t *pgdat = data;
1641 int nid = pgdat->node_id;
7e18adb4
MG
1642 unsigned long start = jiffies;
1643 unsigned long nr_pages = 0;
3a2d7fa8 1644 unsigned long spfn, epfn, first_init_pfn, flags;
2f47a91f
PT
1645 phys_addr_t spa, epa;
1646 int zid;
7e18adb4 1647 struct zone *zone;
0e1cc95b 1648 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1649 u64 i;
7e18adb4 1650
3a2d7fa8
PT
1651 /* Bind memory initialisation thread to a local node if possible */
1652 if (!cpumask_empty(cpumask))
1653 set_cpus_allowed_ptr(current, cpumask);
1654
1655 pgdat_resize_lock(pgdat, &flags);
1656 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1657 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1658 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1659 pgdat_init_report_one_done();
0e1cc95b
MG
1660 return 0;
1661 }
1662
7e18adb4
MG
1663 /* Sanity check boundaries */
1664 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1665 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1666 pgdat->first_deferred_pfn = ULONG_MAX;
1667
1668 /* Only the highest zone is deferred so find it */
1669 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1670 zone = pgdat->node_zones + zid;
1671 if (first_init_pfn < zone_end_pfn(zone))
1672 break;
1673 }
2f47a91f 1674 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1675
80b1f41c
PT
1676 /*
1677 * Initialize and free pages. We do it in two loops: first we initialize
1678 * struct page, than free to buddy allocator, because while we are
1679 * freeing pages we can access pages that are ahead (computing buddy
1680 * page in __free_one_page()).
1681 */
1682 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1683 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1684 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1685 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1686 }
2f47a91f
PT
1687 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1688 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1689 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
80b1f41c 1690 deferred_free_pages(nid, zid, spfn, epfn);
7e18adb4 1691 }
3a2d7fa8 1692 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1693
1694 /* Sanity check that the next zone really is unpopulated */
1695 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1696
0e1cc95b 1697 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1698 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1699
1700 pgdat_init_report_one_done();
0e1cc95b
MG
1701 return 0;
1702}
c9e97a19 1703
c9e97a19
PT
1704/*
1705 * If this zone has deferred pages, try to grow it by initializing enough
1706 * deferred pages to satisfy the allocation specified by order, rounded up to
1707 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1708 * of SECTION_SIZE bytes by initializing struct pages in increments of
1709 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1710 *
1711 * Return true when zone was grown, otherwise return false. We return true even
1712 * when we grow less than requested, to let the caller decide if there are
1713 * enough pages to satisfy the allocation.
1714 *
1715 * Note: We use noinline because this function is needed only during boot, and
1716 * it is called from a __ref function _deferred_grow_zone. This way we are
1717 * making sure that it is not inlined into permanent text section.
1718 */
1719static noinline bool __init
1720deferred_grow_zone(struct zone *zone, unsigned int order)
1721{
1722 int zid = zone_idx(zone);
1723 int nid = zone_to_nid(zone);
1724 pg_data_t *pgdat = NODE_DATA(nid);
1725 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1726 unsigned long nr_pages = 0;
1727 unsigned long first_init_pfn, spfn, epfn, t, flags;
1728 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1729 phys_addr_t spa, epa;
1730 u64 i;
1731
1732 /* Only the last zone may have deferred pages */
1733 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1734 return false;
1735
1736 pgdat_resize_lock(pgdat, &flags);
1737
1738 /*
1739 * If deferred pages have been initialized while we were waiting for
1740 * the lock, return true, as the zone was grown. The caller will retry
1741 * this zone. We won't return to this function since the caller also
1742 * has this static branch.
1743 */
1744 if (!static_branch_unlikely(&deferred_pages)) {
1745 pgdat_resize_unlock(pgdat, &flags);
1746 return true;
1747 }
1748
1749 /*
1750 * If someone grew this zone while we were waiting for spinlock, return
1751 * true, as there might be enough pages already.
1752 */
1753 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1754 pgdat_resize_unlock(pgdat, &flags);
1755 return true;
1756 }
1757
1758 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1759
1760 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1761 pgdat_resize_unlock(pgdat, &flags);
1762 return false;
1763 }
1764
1765 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1766 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1767 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1768
1769 while (spfn < epfn && nr_pages < nr_pages_needed) {
1770 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1771 first_deferred_pfn = min(t, epfn);
1772 nr_pages += deferred_init_pages(nid, zid, spfn,
1773 first_deferred_pfn);
1774 spfn = first_deferred_pfn;
1775 }
1776
1777 if (nr_pages >= nr_pages_needed)
1778 break;
1779 }
1780
1781 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1782 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1783 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1784 deferred_free_pages(nid, zid, spfn, epfn);
1785
1786 if (first_deferred_pfn == epfn)
1787 break;
1788 }
1789 pgdat->first_deferred_pfn = first_deferred_pfn;
1790 pgdat_resize_unlock(pgdat, &flags);
1791
1792 return nr_pages > 0;
1793}
1794
1795/*
1796 * deferred_grow_zone() is __init, but it is called from
1797 * get_page_from_freelist() during early boot until deferred_pages permanently
1798 * disables this call. This is why we have refdata wrapper to avoid warning,
1799 * and to ensure that the function body gets unloaded.
1800 */
1801static bool __ref
1802_deferred_grow_zone(struct zone *zone, unsigned int order)
1803{
1804 return deferred_grow_zone(zone, order);
1805}
1806
7cf91a98 1807#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1808
1809void __init page_alloc_init_late(void)
1810{
7cf91a98
JK
1811 struct zone *zone;
1812
1813#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1814 int nid;
1815
d3cd131d
NS
1816 /* There will be num_node_state(N_MEMORY) threads */
1817 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1818 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1819 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1820 }
1821
1822 /* Block until all are initialised */
d3cd131d 1823 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1824
c9e97a19
PT
1825 /*
1826 * We initialized the rest of the deferred pages. Permanently disable
1827 * on-demand struct page initialization.
1828 */
1829 static_branch_disable(&deferred_pages);
1830
4248b0da
MG
1831 /* Reinit limits that are based on free pages after the kernel is up */
1832 files_maxfiles_init();
7cf91a98 1833#endif
3010f876
PT
1834#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1835 /* Discard memblock private memory */
1836 memblock_discard();
1837#endif
7cf91a98
JK
1838
1839 for_each_populated_zone(zone)
1840 set_zone_contiguous(zone);
7e18adb4 1841}
7e18adb4 1842
47118af0 1843#ifdef CONFIG_CMA
9cf510a5 1844/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1845void __init init_cma_reserved_pageblock(struct page *page)
1846{
1847 unsigned i = pageblock_nr_pages;
1848 struct page *p = page;
1849
1850 do {
1851 __ClearPageReserved(p);
1852 set_page_count(p, 0);
d883c6cf 1853 } while (++p, --i);
47118af0 1854
47118af0 1855 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1856
1857 if (pageblock_order >= MAX_ORDER) {
1858 i = pageblock_nr_pages;
1859 p = page;
1860 do {
1861 set_page_refcounted(p);
1862 __free_pages(p, MAX_ORDER - 1);
1863 p += MAX_ORDER_NR_PAGES;
1864 } while (i -= MAX_ORDER_NR_PAGES);
1865 } else {
1866 set_page_refcounted(page);
1867 __free_pages(page, pageblock_order);
1868 }
1869
3dcc0571 1870 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1871}
1872#endif
1da177e4
LT
1873
1874/*
1875 * The order of subdivision here is critical for the IO subsystem.
1876 * Please do not alter this order without good reasons and regression
1877 * testing. Specifically, as large blocks of memory are subdivided,
1878 * the order in which smaller blocks are delivered depends on the order
1879 * they're subdivided in this function. This is the primary factor
1880 * influencing the order in which pages are delivered to the IO
1881 * subsystem according to empirical testing, and this is also justified
1882 * by considering the behavior of a buddy system containing a single
1883 * large block of memory acted on by a series of small allocations.
1884 * This behavior is a critical factor in sglist merging's success.
1885 *
6d49e352 1886 * -- nyc
1da177e4 1887 */
085cc7d5 1888static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1889 int low, int high, struct free_area *area,
1890 int migratetype)
1da177e4
LT
1891{
1892 unsigned long size = 1 << high;
1893
1894 while (high > low) {
1895 area--;
1896 high--;
1897 size >>= 1;
309381fe 1898 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1899
acbc15a4
JK
1900 /*
1901 * Mark as guard pages (or page), that will allow to
1902 * merge back to allocator when buddy will be freed.
1903 * Corresponding page table entries will not be touched,
1904 * pages will stay not present in virtual address space
1905 */
1906 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1907 continue;
acbc15a4 1908
b2a0ac88 1909 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1910 area->nr_free++;
1911 set_page_order(&page[size], high);
1912 }
1da177e4
LT
1913}
1914
4e611801 1915static void check_new_page_bad(struct page *page)
1da177e4 1916{
4e611801
VB
1917 const char *bad_reason = NULL;
1918 unsigned long bad_flags = 0;
7bfec6f4 1919
53f9263b 1920 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1921 bad_reason = "nonzero mapcount";
1922 if (unlikely(page->mapping != NULL))
1923 bad_reason = "non-NULL mapping";
fe896d18 1924 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1925 bad_reason = "nonzero _count";
f4c18e6f
NH
1926 if (unlikely(page->flags & __PG_HWPOISON)) {
1927 bad_reason = "HWPoisoned (hardware-corrupted)";
1928 bad_flags = __PG_HWPOISON;
e570f56c
NH
1929 /* Don't complain about hwpoisoned pages */
1930 page_mapcount_reset(page); /* remove PageBuddy */
1931 return;
f4c18e6f 1932 }
f0b791a3
DH
1933 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1934 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1935 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1936 }
9edad6ea
JW
1937#ifdef CONFIG_MEMCG
1938 if (unlikely(page->mem_cgroup))
1939 bad_reason = "page still charged to cgroup";
1940#endif
4e611801
VB
1941 bad_page(page, bad_reason, bad_flags);
1942}
1943
1944/*
1945 * This page is about to be returned from the page allocator
1946 */
1947static inline int check_new_page(struct page *page)
1948{
1949 if (likely(page_expected_state(page,
1950 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1951 return 0;
1952
1953 check_new_page_bad(page);
1954 return 1;
2a7684a2
WF
1955}
1956
bd33ef36 1957static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1958{
1959 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1960 page_poisoning_enabled();
1414c7f4
LA
1961}
1962
479f854a
MG
1963#ifdef CONFIG_DEBUG_VM
1964static bool check_pcp_refill(struct page *page)
1965{
1966 return false;
1967}
1968
1969static bool check_new_pcp(struct page *page)
1970{
1971 return check_new_page(page);
1972}
1973#else
1974static bool check_pcp_refill(struct page *page)
1975{
1976 return check_new_page(page);
1977}
1978static bool check_new_pcp(struct page *page)
1979{
1980 return false;
1981}
1982#endif /* CONFIG_DEBUG_VM */
1983
1984static bool check_new_pages(struct page *page, unsigned int order)
1985{
1986 int i;
1987 for (i = 0; i < (1 << order); i++) {
1988 struct page *p = page + i;
1989
1990 if (unlikely(check_new_page(p)))
1991 return true;
1992 }
1993
1994 return false;
1995}
1996
46f24fd8
JK
1997inline void post_alloc_hook(struct page *page, unsigned int order,
1998 gfp_t gfp_flags)
1999{
2000 set_page_private(page, 0);
2001 set_page_refcounted(page);
2002
2003 arch_alloc_page(page, order);
2004 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2005 kasan_alloc_pages(page, order);
4117992d 2006 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2007 set_page_owner(page, order, gfp_flags);
2008}
2009
479f854a 2010static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2011 unsigned int alloc_flags)
2a7684a2
WF
2012{
2013 int i;
689bcebf 2014
46f24fd8 2015 post_alloc_hook(page, order, gfp_flags);
17cf4406 2016
bd33ef36 2017 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
2018 for (i = 0; i < (1 << order); i++)
2019 clear_highpage(page + i);
17cf4406
NP
2020
2021 if (order && (gfp_flags & __GFP_COMP))
2022 prep_compound_page(page, order);
2023
75379191 2024 /*
2f064f34 2025 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2026 * allocate the page. The expectation is that the caller is taking
2027 * steps that will free more memory. The caller should avoid the page
2028 * being used for !PFMEMALLOC purposes.
2029 */
2f064f34
MH
2030 if (alloc_flags & ALLOC_NO_WATERMARKS)
2031 set_page_pfmemalloc(page);
2032 else
2033 clear_page_pfmemalloc(page);
1da177e4
LT
2034}
2035
56fd56b8
MG
2036/*
2037 * Go through the free lists for the given migratetype and remove
2038 * the smallest available page from the freelists
2039 */
85ccc8fa 2040static __always_inline
728ec980 2041struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2042 int migratetype)
2043{
2044 unsigned int current_order;
b8af2941 2045 struct free_area *area;
56fd56b8
MG
2046 struct page *page;
2047
2048 /* Find a page of the appropriate size in the preferred list */
2049 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2050 area = &(zone->free_area[current_order]);
a16601c5 2051 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 2052 struct page, lru);
a16601c5
GT
2053 if (!page)
2054 continue;
56fd56b8
MG
2055 list_del(&page->lru);
2056 rmv_page_order(page);
2057 area->nr_free--;
56fd56b8 2058 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 2059 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2060 return page;
2061 }
2062
2063 return NULL;
2064}
2065
2066
b2a0ac88
MG
2067/*
2068 * This array describes the order lists are fallen back to when
2069 * the free lists for the desirable migrate type are depleted
2070 */
47118af0 2071static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2072 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2073 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2074 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2075#ifdef CONFIG_CMA
974a786e 2076 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2077#endif
194159fb 2078#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2079 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2080#endif
b2a0ac88
MG
2081};
2082
dc67647b 2083#ifdef CONFIG_CMA
85ccc8fa 2084static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2085 unsigned int order)
2086{
2087 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2088}
2089#else
2090static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2091 unsigned int order) { return NULL; }
2092#endif
2093
c361be55
MG
2094/*
2095 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2096 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2097 * boundary. If alignment is required, use move_freepages_block()
2098 */
02aa0cdd 2099static int move_freepages(struct zone *zone,
b69a7288 2100 struct page *start_page, struct page *end_page,
02aa0cdd 2101 int migratetype, int *num_movable)
c361be55
MG
2102{
2103 struct page *page;
d00181b9 2104 unsigned int order;
d100313f 2105 int pages_moved = 0;
c361be55
MG
2106
2107#ifndef CONFIG_HOLES_IN_ZONE
2108 /*
2109 * page_zone is not safe to call in this context when
2110 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2111 * anyway as we check zone boundaries in move_freepages_block().
2112 * Remove at a later date when no bug reports exist related to
ac0e5b7a 2113 * grouping pages by mobility
c361be55 2114 */
3e04040d
AB
2115 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2116 pfn_valid(page_to_pfn(end_page)) &&
2117 page_zone(start_page) != page_zone(end_page));
c361be55 2118#endif
c361be55
MG
2119 for (page = start_page; page <= end_page;) {
2120 if (!pfn_valid_within(page_to_pfn(page))) {
2121 page++;
2122 continue;
2123 }
2124
f073bdc5
AB
2125 /* Make sure we are not inadvertently changing nodes */
2126 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2127
c361be55 2128 if (!PageBuddy(page)) {
02aa0cdd
VB
2129 /*
2130 * We assume that pages that could be isolated for
2131 * migration are movable. But we don't actually try
2132 * isolating, as that would be expensive.
2133 */
2134 if (num_movable &&
2135 (PageLRU(page) || __PageMovable(page)))
2136 (*num_movable)++;
2137
c361be55
MG
2138 page++;
2139 continue;
2140 }
2141
2142 order = page_order(page);
84be48d8
KS
2143 list_move(&page->lru,
2144 &zone->free_area[order].free_list[migratetype]);
c361be55 2145 page += 1 << order;
d100313f 2146 pages_moved += 1 << order;
c361be55
MG
2147 }
2148
d100313f 2149 return pages_moved;
c361be55
MG
2150}
2151
ee6f509c 2152int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2153 int migratetype, int *num_movable)
c361be55
MG
2154{
2155 unsigned long start_pfn, end_pfn;
2156 struct page *start_page, *end_page;
2157
4a222127
DR
2158 if (num_movable)
2159 *num_movable = 0;
2160
c361be55 2161 start_pfn = page_to_pfn(page);
d9c23400 2162 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2163 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2164 end_page = start_page + pageblock_nr_pages - 1;
2165 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2166
2167 /* Do not cross zone boundaries */
108bcc96 2168 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2169 start_page = page;
108bcc96 2170 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2171 return 0;
2172
02aa0cdd
VB
2173 return move_freepages(zone, start_page, end_page, migratetype,
2174 num_movable);
c361be55
MG
2175}
2176
2f66a68f
MG
2177static void change_pageblock_range(struct page *pageblock_page,
2178 int start_order, int migratetype)
2179{
2180 int nr_pageblocks = 1 << (start_order - pageblock_order);
2181
2182 while (nr_pageblocks--) {
2183 set_pageblock_migratetype(pageblock_page, migratetype);
2184 pageblock_page += pageblock_nr_pages;
2185 }
2186}
2187
fef903ef 2188/*
9c0415eb
VB
2189 * When we are falling back to another migratetype during allocation, try to
2190 * steal extra free pages from the same pageblocks to satisfy further
2191 * allocations, instead of polluting multiple pageblocks.
2192 *
2193 * If we are stealing a relatively large buddy page, it is likely there will
2194 * be more free pages in the pageblock, so try to steal them all. For
2195 * reclaimable and unmovable allocations, we steal regardless of page size,
2196 * as fragmentation caused by those allocations polluting movable pageblocks
2197 * is worse than movable allocations stealing from unmovable and reclaimable
2198 * pageblocks.
fef903ef 2199 */
4eb7dce6
JK
2200static bool can_steal_fallback(unsigned int order, int start_mt)
2201{
2202 /*
2203 * Leaving this order check is intended, although there is
2204 * relaxed order check in next check. The reason is that
2205 * we can actually steal whole pageblock if this condition met,
2206 * but, below check doesn't guarantee it and that is just heuristic
2207 * so could be changed anytime.
2208 */
2209 if (order >= pageblock_order)
2210 return true;
2211
2212 if (order >= pageblock_order / 2 ||
2213 start_mt == MIGRATE_RECLAIMABLE ||
2214 start_mt == MIGRATE_UNMOVABLE ||
2215 page_group_by_mobility_disabled)
2216 return true;
2217
2218 return false;
2219}
2220
1c30844d
MG
2221static inline void boost_watermark(struct zone *zone)
2222{
2223 unsigned long max_boost;
2224
2225 if (!watermark_boost_factor)
2226 return;
2227
2228 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2229 watermark_boost_factor, 10000);
94b3334c
MG
2230
2231 /*
2232 * high watermark may be uninitialised if fragmentation occurs
2233 * very early in boot so do not boost. We do not fall
2234 * through and boost by pageblock_nr_pages as failing
2235 * allocations that early means that reclaim is not going
2236 * to help and it may even be impossible to reclaim the
2237 * boosted watermark resulting in a hang.
2238 */
2239 if (!max_boost)
2240 return;
2241
1c30844d
MG
2242 max_boost = max(pageblock_nr_pages, max_boost);
2243
2244 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2245 max_boost);
2246}
2247
4eb7dce6
JK
2248/*
2249 * This function implements actual steal behaviour. If order is large enough,
2250 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2251 * pageblock to our migratetype and determine how many already-allocated pages
2252 * are there in the pageblock with a compatible migratetype. If at least half
2253 * of pages are free or compatible, we can change migratetype of the pageblock
2254 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2255 */
2256static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2257 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2258{
d00181b9 2259 unsigned int current_order = page_order(page);
3bc48f96 2260 struct free_area *area;
02aa0cdd
VB
2261 int free_pages, movable_pages, alike_pages;
2262 int old_block_type;
2263
2264 old_block_type = get_pageblock_migratetype(page);
fef903ef 2265
3bc48f96
VB
2266 /*
2267 * This can happen due to races and we want to prevent broken
2268 * highatomic accounting.
2269 */
02aa0cdd 2270 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2271 goto single_page;
2272
fef903ef
SB
2273 /* Take ownership for orders >= pageblock_order */
2274 if (current_order >= pageblock_order) {
2275 change_pageblock_range(page, current_order, start_type);
3bc48f96 2276 goto single_page;
fef903ef
SB
2277 }
2278
1c30844d
MG
2279 /*
2280 * Boost watermarks to increase reclaim pressure to reduce the
2281 * likelihood of future fallbacks. Wake kswapd now as the node
2282 * may be balanced overall and kswapd will not wake naturally.
2283 */
2284 boost_watermark(zone);
2285 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2286 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2287
3bc48f96
VB
2288 /* We are not allowed to try stealing from the whole block */
2289 if (!whole_block)
2290 goto single_page;
2291
02aa0cdd
VB
2292 free_pages = move_freepages_block(zone, page, start_type,
2293 &movable_pages);
2294 /*
2295 * Determine how many pages are compatible with our allocation.
2296 * For movable allocation, it's the number of movable pages which
2297 * we just obtained. For other types it's a bit more tricky.
2298 */
2299 if (start_type == MIGRATE_MOVABLE) {
2300 alike_pages = movable_pages;
2301 } else {
2302 /*
2303 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2304 * to MOVABLE pageblock, consider all non-movable pages as
2305 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2306 * vice versa, be conservative since we can't distinguish the
2307 * exact migratetype of non-movable pages.
2308 */
2309 if (old_block_type == MIGRATE_MOVABLE)
2310 alike_pages = pageblock_nr_pages
2311 - (free_pages + movable_pages);
2312 else
2313 alike_pages = 0;
2314 }
2315
3bc48f96 2316 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2317 if (!free_pages)
3bc48f96 2318 goto single_page;
fef903ef 2319
02aa0cdd
VB
2320 /*
2321 * If a sufficient number of pages in the block are either free or of
2322 * comparable migratability as our allocation, claim the whole block.
2323 */
2324 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2325 page_group_by_mobility_disabled)
2326 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2327
2328 return;
2329
2330single_page:
2331 area = &zone->free_area[current_order];
2332 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2333}
2334
2149cdae
JK
2335/*
2336 * Check whether there is a suitable fallback freepage with requested order.
2337 * If only_stealable is true, this function returns fallback_mt only if
2338 * we can steal other freepages all together. This would help to reduce
2339 * fragmentation due to mixed migratetype pages in one pageblock.
2340 */
2341int find_suitable_fallback(struct free_area *area, unsigned int order,
2342 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2343{
2344 int i;
2345 int fallback_mt;
2346
2347 if (area->nr_free == 0)
2348 return -1;
2349
2350 *can_steal = false;
2351 for (i = 0;; i++) {
2352 fallback_mt = fallbacks[migratetype][i];
974a786e 2353 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2354 break;
2355
2356 if (list_empty(&area->free_list[fallback_mt]))
2357 continue;
fef903ef 2358
4eb7dce6
JK
2359 if (can_steal_fallback(order, migratetype))
2360 *can_steal = true;
2361
2149cdae
JK
2362 if (!only_stealable)
2363 return fallback_mt;
2364
2365 if (*can_steal)
2366 return fallback_mt;
fef903ef 2367 }
4eb7dce6
JK
2368
2369 return -1;
fef903ef
SB
2370}
2371
0aaa29a5
MG
2372/*
2373 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2374 * there are no empty page blocks that contain a page with a suitable order
2375 */
2376static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2377 unsigned int alloc_order)
2378{
2379 int mt;
2380 unsigned long max_managed, flags;
2381
2382 /*
2383 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2384 * Check is race-prone but harmless.
2385 */
9705bea5 2386 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2387 if (zone->nr_reserved_highatomic >= max_managed)
2388 return;
2389
2390 spin_lock_irqsave(&zone->lock, flags);
2391
2392 /* Recheck the nr_reserved_highatomic limit under the lock */
2393 if (zone->nr_reserved_highatomic >= max_managed)
2394 goto out_unlock;
2395
2396 /* Yoink! */
2397 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2398 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2399 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2400 zone->nr_reserved_highatomic += pageblock_nr_pages;
2401 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2402 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2403 }
2404
2405out_unlock:
2406 spin_unlock_irqrestore(&zone->lock, flags);
2407}
2408
2409/*
2410 * Used when an allocation is about to fail under memory pressure. This
2411 * potentially hurts the reliability of high-order allocations when under
2412 * intense memory pressure but failed atomic allocations should be easier
2413 * to recover from than an OOM.
29fac03b
MK
2414 *
2415 * If @force is true, try to unreserve a pageblock even though highatomic
2416 * pageblock is exhausted.
0aaa29a5 2417 */
29fac03b
MK
2418static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2419 bool force)
0aaa29a5
MG
2420{
2421 struct zonelist *zonelist = ac->zonelist;
2422 unsigned long flags;
2423 struct zoneref *z;
2424 struct zone *zone;
2425 struct page *page;
2426 int order;
04c8716f 2427 bool ret;
0aaa29a5
MG
2428
2429 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2430 ac->nodemask) {
29fac03b
MK
2431 /*
2432 * Preserve at least one pageblock unless memory pressure
2433 * is really high.
2434 */
2435 if (!force && zone->nr_reserved_highatomic <=
2436 pageblock_nr_pages)
0aaa29a5
MG
2437 continue;
2438
2439 spin_lock_irqsave(&zone->lock, flags);
2440 for (order = 0; order < MAX_ORDER; order++) {
2441 struct free_area *area = &(zone->free_area[order]);
2442
a16601c5
GT
2443 page = list_first_entry_or_null(
2444 &area->free_list[MIGRATE_HIGHATOMIC],
2445 struct page, lru);
2446 if (!page)
0aaa29a5
MG
2447 continue;
2448
0aaa29a5 2449 /*
4855e4a7
MK
2450 * In page freeing path, migratetype change is racy so
2451 * we can counter several free pages in a pageblock
2452 * in this loop althoug we changed the pageblock type
2453 * from highatomic to ac->migratetype. So we should
2454 * adjust the count once.
0aaa29a5 2455 */
a6ffdc07 2456 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2457 /*
2458 * It should never happen but changes to
2459 * locking could inadvertently allow a per-cpu
2460 * drain to add pages to MIGRATE_HIGHATOMIC
2461 * while unreserving so be safe and watch for
2462 * underflows.
2463 */
2464 zone->nr_reserved_highatomic -= min(
2465 pageblock_nr_pages,
2466 zone->nr_reserved_highatomic);
2467 }
0aaa29a5
MG
2468
2469 /*
2470 * Convert to ac->migratetype and avoid the normal
2471 * pageblock stealing heuristics. Minimally, the caller
2472 * is doing the work and needs the pages. More
2473 * importantly, if the block was always converted to
2474 * MIGRATE_UNMOVABLE or another type then the number
2475 * of pageblocks that cannot be completely freed
2476 * may increase.
2477 */
2478 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2479 ret = move_freepages_block(zone, page, ac->migratetype,
2480 NULL);
29fac03b
MK
2481 if (ret) {
2482 spin_unlock_irqrestore(&zone->lock, flags);
2483 return ret;
2484 }
0aaa29a5
MG
2485 }
2486 spin_unlock_irqrestore(&zone->lock, flags);
2487 }
04c8716f
MK
2488
2489 return false;
0aaa29a5
MG
2490}
2491
3bc48f96
VB
2492/*
2493 * Try finding a free buddy page on the fallback list and put it on the free
2494 * list of requested migratetype, possibly along with other pages from the same
2495 * block, depending on fragmentation avoidance heuristics. Returns true if
2496 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2497 *
2498 * The use of signed ints for order and current_order is a deliberate
2499 * deviation from the rest of this file, to make the for loop
2500 * condition simpler.
3bc48f96 2501 */
85ccc8fa 2502static __always_inline bool
6bb15450
MG
2503__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2504 unsigned int alloc_flags)
b2a0ac88 2505{
b8af2941 2506 struct free_area *area;
b002529d 2507 int current_order;
6bb15450 2508 int min_order = order;
b2a0ac88 2509 struct page *page;
4eb7dce6
JK
2510 int fallback_mt;
2511 bool can_steal;
b2a0ac88 2512
6bb15450
MG
2513 /*
2514 * Do not steal pages from freelists belonging to other pageblocks
2515 * i.e. orders < pageblock_order. If there are no local zones free,
2516 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2517 */
2518 if (alloc_flags & ALLOC_NOFRAGMENT)
2519 min_order = pageblock_order;
2520
7a8f58f3
VB
2521 /*
2522 * Find the largest available free page in the other list. This roughly
2523 * approximates finding the pageblock with the most free pages, which
2524 * would be too costly to do exactly.
2525 */
6bb15450 2526 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2527 --current_order) {
4eb7dce6
JK
2528 area = &(zone->free_area[current_order]);
2529 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2530 start_migratetype, false, &can_steal);
4eb7dce6
JK
2531 if (fallback_mt == -1)
2532 continue;
b2a0ac88 2533
7a8f58f3
VB
2534 /*
2535 * We cannot steal all free pages from the pageblock and the
2536 * requested migratetype is movable. In that case it's better to
2537 * steal and split the smallest available page instead of the
2538 * largest available page, because even if the next movable
2539 * allocation falls back into a different pageblock than this
2540 * one, it won't cause permanent fragmentation.
2541 */
2542 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2543 && current_order > order)
2544 goto find_smallest;
b2a0ac88 2545
7a8f58f3
VB
2546 goto do_steal;
2547 }
e0fff1bd 2548
7a8f58f3 2549 return false;
e0fff1bd 2550
7a8f58f3
VB
2551find_smallest:
2552 for (current_order = order; current_order < MAX_ORDER;
2553 current_order++) {
2554 area = &(zone->free_area[current_order]);
2555 fallback_mt = find_suitable_fallback(area, current_order,
2556 start_migratetype, false, &can_steal);
2557 if (fallback_mt != -1)
2558 break;
b2a0ac88
MG
2559 }
2560
7a8f58f3
VB
2561 /*
2562 * This should not happen - we already found a suitable fallback
2563 * when looking for the largest page.
2564 */
2565 VM_BUG_ON(current_order == MAX_ORDER);
2566
2567do_steal:
2568 page = list_first_entry(&area->free_list[fallback_mt],
2569 struct page, lru);
2570
1c30844d
MG
2571 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2572 can_steal);
7a8f58f3
VB
2573
2574 trace_mm_page_alloc_extfrag(page, order, current_order,
2575 start_migratetype, fallback_mt);
2576
2577 return true;
2578
b2a0ac88
MG
2579}
2580
56fd56b8 2581/*
1da177e4
LT
2582 * Do the hard work of removing an element from the buddy allocator.
2583 * Call me with the zone->lock already held.
2584 */
85ccc8fa 2585static __always_inline struct page *
6bb15450
MG
2586__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2587 unsigned int alloc_flags)
1da177e4 2588{
1da177e4
LT
2589 struct page *page;
2590
3bc48f96 2591retry:
56fd56b8 2592 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2593 if (unlikely(!page)) {
dc67647b
JK
2594 if (migratetype == MIGRATE_MOVABLE)
2595 page = __rmqueue_cma_fallback(zone, order);
2596
6bb15450
MG
2597 if (!page && __rmqueue_fallback(zone, order, migratetype,
2598 alloc_flags))
3bc48f96 2599 goto retry;
728ec980
MG
2600 }
2601
0d3d062a 2602 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2603 return page;
1da177e4
LT
2604}
2605
5f63b720 2606/*
1da177e4
LT
2607 * Obtain a specified number of elements from the buddy allocator, all under
2608 * a single hold of the lock, for efficiency. Add them to the supplied list.
2609 * Returns the number of new pages which were placed at *list.
2610 */
5f63b720 2611static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2612 unsigned long count, struct list_head *list,
6bb15450 2613 int migratetype, unsigned int alloc_flags)
1da177e4 2614{
a6de734b 2615 int i, alloced = 0;
5f63b720 2616
d34b0733 2617 spin_lock(&zone->lock);
1da177e4 2618 for (i = 0; i < count; ++i) {
6bb15450
MG
2619 struct page *page = __rmqueue(zone, order, migratetype,
2620 alloc_flags);
085cc7d5 2621 if (unlikely(page == NULL))
1da177e4 2622 break;
81eabcbe 2623
479f854a
MG
2624 if (unlikely(check_pcp_refill(page)))
2625 continue;
2626
81eabcbe 2627 /*
0fac3ba5
VB
2628 * Split buddy pages returned by expand() are received here in
2629 * physical page order. The page is added to the tail of
2630 * caller's list. From the callers perspective, the linked list
2631 * is ordered by page number under some conditions. This is
2632 * useful for IO devices that can forward direction from the
2633 * head, thus also in the physical page order. This is useful
2634 * for IO devices that can merge IO requests if the physical
2635 * pages are ordered properly.
81eabcbe 2636 */
0fac3ba5 2637 list_add_tail(&page->lru, list);
a6de734b 2638 alloced++;
bb14c2c7 2639 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2640 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2641 -(1 << order));
1da177e4 2642 }
a6de734b
MG
2643
2644 /*
2645 * i pages were removed from the buddy list even if some leak due
2646 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2647 * on i. Do not confuse with 'alloced' which is the number of
2648 * pages added to the pcp list.
2649 */
f2260e6b 2650 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2651 spin_unlock(&zone->lock);
a6de734b 2652 return alloced;
1da177e4
LT
2653}
2654
4ae7c039 2655#ifdef CONFIG_NUMA
8fce4d8e 2656/*
4037d452
CL
2657 * Called from the vmstat counter updater to drain pagesets of this
2658 * currently executing processor on remote nodes after they have
2659 * expired.
2660 *
879336c3
CL
2661 * Note that this function must be called with the thread pinned to
2662 * a single processor.
8fce4d8e 2663 */
4037d452 2664void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2665{
4ae7c039 2666 unsigned long flags;
7be12fc9 2667 int to_drain, batch;
4ae7c039 2668
4037d452 2669 local_irq_save(flags);
4db0c3c2 2670 batch = READ_ONCE(pcp->batch);
7be12fc9 2671 to_drain = min(pcp->count, batch);
77ba9062 2672 if (to_drain > 0)
2a13515c 2673 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2674 local_irq_restore(flags);
4ae7c039
CL
2675}
2676#endif
2677
9f8f2172 2678/*
93481ff0 2679 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2680 *
2681 * The processor must either be the current processor and the
2682 * thread pinned to the current processor or a processor that
2683 * is not online.
2684 */
93481ff0 2685static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2686{
c54ad30c 2687 unsigned long flags;
93481ff0
VB
2688 struct per_cpu_pageset *pset;
2689 struct per_cpu_pages *pcp;
1da177e4 2690
93481ff0
VB
2691 local_irq_save(flags);
2692 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2693
93481ff0 2694 pcp = &pset->pcp;
77ba9062 2695 if (pcp->count)
93481ff0 2696 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2697 local_irq_restore(flags);
2698}
3dfa5721 2699
93481ff0
VB
2700/*
2701 * Drain pcplists of all zones on the indicated processor.
2702 *
2703 * The processor must either be the current processor and the
2704 * thread pinned to the current processor or a processor that
2705 * is not online.
2706 */
2707static void drain_pages(unsigned int cpu)
2708{
2709 struct zone *zone;
2710
2711 for_each_populated_zone(zone) {
2712 drain_pages_zone(cpu, zone);
1da177e4
LT
2713 }
2714}
1da177e4 2715
9f8f2172
CL
2716/*
2717 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2718 *
2719 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2720 * the single zone's pages.
9f8f2172 2721 */
93481ff0 2722void drain_local_pages(struct zone *zone)
9f8f2172 2723{
93481ff0
VB
2724 int cpu = smp_processor_id();
2725
2726 if (zone)
2727 drain_pages_zone(cpu, zone);
2728 else
2729 drain_pages(cpu);
9f8f2172
CL
2730}
2731
0ccce3b9
MG
2732static void drain_local_pages_wq(struct work_struct *work)
2733{
d9367bd0
WY
2734 struct pcpu_drain *drain;
2735
2736 drain = container_of(work, struct pcpu_drain, work);
2737
a459eeb7
MH
2738 /*
2739 * drain_all_pages doesn't use proper cpu hotplug protection so
2740 * we can race with cpu offline when the WQ can move this from
2741 * a cpu pinned worker to an unbound one. We can operate on a different
2742 * cpu which is allright but we also have to make sure to not move to
2743 * a different one.
2744 */
2745 preempt_disable();
d9367bd0 2746 drain_local_pages(drain->zone);
a459eeb7 2747 preempt_enable();
0ccce3b9
MG
2748}
2749
9f8f2172 2750/*
74046494
GBY
2751 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2752 *
93481ff0
VB
2753 * When zone parameter is non-NULL, spill just the single zone's pages.
2754 *
0ccce3b9 2755 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2756 */
93481ff0 2757void drain_all_pages(struct zone *zone)
9f8f2172 2758{
74046494 2759 int cpu;
74046494
GBY
2760
2761 /*
2762 * Allocate in the BSS so we wont require allocation in
2763 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2764 */
2765 static cpumask_t cpus_with_pcps;
2766
ce612879
MH
2767 /*
2768 * Make sure nobody triggers this path before mm_percpu_wq is fully
2769 * initialized.
2770 */
2771 if (WARN_ON_ONCE(!mm_percpu_wq))
2772 return;
2773
bd233f53
MG
2774 /*
2775 * Do not drain if one is already in progress unless it's specific to
2776 * a zone. Such callers are primarily CMA and memory hotplug and need
2777 * the drain to be complete when the call returns.
2778 */
2779 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2780 if (!zone)
2781 return;
2782 mutex_lock(&pcpu_drain_mutex);
2783 }
0ccce3b9 2784
74046494
GBY
2785 /*
2786 * We don't care about racing with CPU hotplug event
2787 * as offline notification will cause the notified
2788 * cpu to drain that CPU pcps and on_each_cpu_mask
2789 * disables preemption as part of its processing
2790 */
2791 for_each_online_cpu(cpu) {
93481ff0
VB
2792 struct per_cpu_pageset *pcp;
2793 struct zone *z;
74046494 2794 bool has_pcps = false;
93481ff0
VB
2795
2796 if (zone) {
74046494 2797 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2798 if (pcp->pcp.count)
74046494 2799 has_pcps = true;
93481ff0
VB
2800 } else {
2801 for_each_populated_zone(z) {
2802 pcp = per_cpu_ptr(z->pageset, cpu);
2803 if (pcp->pcp.count) {
2804 has_pcps = true;
2805 break;
2806 }
74046494
GBY
2807 }
2808 }
93481ff0 2809
74046494
GBY
2810 if (has_pcps)
2811 cpumask_set_cpu(cpu, &cpus_with_pcps);
2812 else
2813 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2814 }
0ccce3b9 2815
bd233f53 2816 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
2817 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2818
2819 drain->zone = zone;
2820 INIT_WORK(&drain->work, drain_local_pages_wq);
2821 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 2822 }
bd233f53 2823 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 2824 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
2825
2826 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2827}
2828
296699de 2829#ifdef CONFIG_HIBERNATION
1da177e4 2830
556b969a
CY
2831/*
2832 * Touch the watchdog for every WD_PAGE_COUNT pages.
2833 */
2834#define WD_PAGE_COUNT (128*1024)
2835
1da177e4
LT
2836void mark_free_pages(struct zone *zone)
2837{
556b969a 2838 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2839 unsigned long flags;
7aeb09f9 2840 unsigned int order, t;
86760a2c 2841 struct page *page;
1da177e4 2842
8080fc03 2843 if (zone_is_empty(zone))
1da177e4
LT
2844 return;
2845
2846 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2847
108bcc96 2848 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2849 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2850 if (pfn_valid(pfn)) {
86760a2c 2851 page = pfn_to_page(pfn);
ba6b0979 2852
556b969a
CY
2853 if (!--page_count) {
2854 touch_nmi_watchdog();
2855 page_count = WD_PAGE_COUNT;
2856 }
2857
ba6b0979
JK
2858 if (page_zone(page) != zone)
2859 continue;
2860
7be98234
RW
2861 if (!swsusp_page_is_forbidden(page))
2862 swsusp_unset_page_free(page);
f623f0db 2863 }
1da177e4 2864
b2a0ac88 2865 for_each_migratetype_order(order, t) {
86760a2c
GT
2866 list_for_each_entry(page,
2867 &zone->free_area[order].free_list[t], lru) {
f623f0db 2868 unsigned long i;
1da177e4 2869
86760a2c 2870 pfn = page_to_pfn(page);
556b969a
CY
2871 for (i = 0; i < (1UL << order); i++) {
2872 if (!--page_count) {
2873 touch_nmi_watchdog();
2874 page_count = WD_PAGE_COUNT;
2875 }
7be98234 2876 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2877 }
f623f0db 2878 }
b2a0ac88 2879 }
1da177e4
LT
2880 spin_unlock_irqrestore(&zone->lock, flags);
2881}
e2c55dc8 2882#endif /* CONFIG_PM */
1da177e4 2883
2d4894b5 2884static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2885{
5f8dcc21 2886 int migratetype;
1da177e4 2887
4db7548c 2888 if (!free_pcp_prepare(page))
9cca35d4 2889 return false;
689bcebf 2890
dc4b0caf 2891 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2892 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2893 return true;
2894}
2895
2d4894b5 2896static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2897{
2898 struct zone *zone = page_zone(page);
2899 struct per_cpu_pages *pcp;
2900 int migratetype;
2901
2902 migratetype = get_pcppage_migratetype(page);
d34b0733 2903 __count_vm_event(PGFREE);
da456f14 2904
5f8dcc21
MG
2905 /*
2906 * We only track unmovable, reclaimable and movable on pcp lists.
2907 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2908 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2909 * areas back if necessary. Otherwise, we may have to free
2910 * excessively into the page allocator
2911 */
2912 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2913 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2914 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2915 return;
5f8dcc21
MG
2916 }
2917 migratetype = MIGRATE_MOVABLE;
2918 }
2919
99dcc3e5 2920 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2921 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2922 pcp->count++;
48db57f8 2923 if (pcp->count >= pcp->high) {
4db0c3c2 2924 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 2925 free_pcppages_bulk(zone, batch, pcp);
48db57f8 2926 }
9cca35d4 2927}
5f8dcc21 2928
9cca35d4
MG
2929/*
2930 * Free a 0-order page
9cca35d4 2931 */
2d4894b5 2932void free_unref_page(struct page *page)
9cca35d4
MG
2933{
2934 unsigned long flags;
2935 unsigned long pfn = page_to_pfn(page);
2936
2d4894b5 2937 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2938 return;
2939
2940 local_irq_save(flags);
2d4894b5 2941 free_unref_page_commit(page, pfn);
d34b0733 2942 local_irq_restore(flags);
1da177e4
LT
2943}
2944
cc59850e
KK
2945/*
2946 * Free a list of 0-order pages
2947 */
2d4894b5 2948void free_unref_page_list(struct list_head *list)
cc59850e
KK
2949{
2950 struct page *page, *next;
9cca35d4 2951 unsigned long flags, pfn;
c24ad77d 2952 int batch_count = 0;
9cca35d4
MG
2953
2954 /* Prepare pages for freeing */
2955 list_for_each_entry_safe(page, next, list, lru) {
2956 pfn = page_to_pfn(page);
2d4894b5 2957 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2958 list_del(&page->lru);
2959 set_page_private(page, pfn);
2960 }
cc59850e 2961
9cca35d4 2962 local_irq_save(flags);
cc59850e 2963 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2964 unsigned long pfn = page_private(page);
2965
2966 set_page_private(page, 0);
2d4894b5
MG
2967 trace_mm_page_free_batched(page);
2968 free_unref_page_commit(page, pfn);
c24ad77d
LS
2969
2970 /*
2971 * Guard against excessive IRQ disabled times when we get
2972 * a large list of pages to free.
2973 */
2974 if (++batch_count == SWAP_CLUSTER_MAX) {
2975 local_irq_restore(flags);
2976 batch_count = 0;
2977 local_irq_save(flags);
2978 }
cc59850e 2979 }
9cca35d4 2980 local_irq_restore(flags);
cc59850e
KK
2981}
2982
8dfcc9ba
NP
2983/*
2984 * split_page takes a non-compound higher-order page, and splits it into
2985 * n (1<<order) sub-pages: page[0..n]
2986 * Each sub-page must be freed individually.
2987 *
2988 * Note: this is probably too low level an operation for use in drivers.
2989 * Please consult with lkml before using this in your driver.
2990 */
2991void split_page(struct page *page, unsigned int order)
2992{
2993 int i;
2994
309381fe
SL
2995 VM_BUG_ON_PAGE(PageCompound(page), page);
2996 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2997
a9627bc5 2998 for (i = 1; i < (1 << order); i++)
7835e98b 2999 set_page_refcounted(page + i);
a9627bc5 3000 split_page_owner(page, order);
8dfcc9ba 3001}
5853ff23 3002EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3003
3c605096 3004int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3005{
748446bb
MG
3006 unsigned long watermark;
3007 struct zone *zone;
2139cbe6 3008 int mt;
748446bb
MG
3009
3010 BUG_ON(!PageBuddy(page));
3011
3012 zone = page_zone(page);
2e30abd1 3013 mt = get_pageblock_migratetype(page);
748446bb 3014
194159fb 3015 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3016 /*
3017 * Obey watermarks as if the page was being allocated. We can
3018 * emulate a high-order watermark check with a raised order-0
3019 * watermark, because we already know our high-order page
3020 * exists.
3021 */
fd1444b2 3022 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3023 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3024 return 0;
3025
8fb74b9f 3026 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3027 }
748446bb
MG
3028
3029 /* Remove page from free list */
3030 list_del(&page->lru);
3031 zone->free_area[order].nr_free--;
3032 rmv_page_order(page);
2139cbe6 3033
400bc7fd 3034 /*
3035 * Set the pageblock if the isolated page is at least half of a
3036 * pageblock
3037 */
748446bb
MG
3038 if (order >= pageblock_order - 1) {
3039 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3040 for (; page < endpage; page += pageblock_nr_pages) {
3041 int mt = get_pageblock_migratetype(page);
88ed365e 3042 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3043 && !is_migrate_highatomic(mt))
47118af0
MN
3044 set_pageblock_migratetype(page,
3045 MIGRATE_MOVABLE);
3046 }
748446bb
MG
3047 }
3048
f3a14ced 3049
8fb74b9f 3050 return 1UL << order;
1fb3f8ca
MG
3051}
3052
060e7417
MG
3053/*
3054 * Update NUMA hit/miss statistics
3055 *
3056 * Must be called with interrupts disabled.
060e7417 3057 */
41b6167e 3058static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3059{
3060#ifdef CONFIG_NUMA
3a321d2a 3061 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3062
4518085e
KW
3063 /* skip numa counters update if numa stats is disabled */
3064 if (!static_branch_likely(&vm_numa_stat_key))
3065 return;
3066
c1093b74 3067 if (zone_to_nid(z) != numa_node_id())
060e7417 3068 local_stat = NUMA_OTHER;
060e7417 3069
c1093b74 3070 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3071 __inc_numa_state(z, NUMA_HIT);
2df26639 3072 else {
3a321d2a
KW
3073 __inc_numa_state(z, NUMA_MISS);
3074 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3075 }
3a321d2a 3076 __inc_numa_state(z, local_stat);
060e7417
MG
3077#endif
3078}
3079
066b2393
MG
3080/* Remove page from the per-cpu list, caller must protect the list */
3081static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3082 unsigned int alloc_flags,
453f85d4 3083 struct per_cpu_pages *pcp,
066b2393
MG
3084 struct list_head *list)
3085{
3086 struct page *page;
3087
3088 do {
3089 if (list_empty(list)) {
3090 pcp->count += rmqueue_bulk(zone, 0,
3091 pcp->batch, list,
6bb15450 3092 migratetype, alloc_flags);
066b2393
MG
3093 if (unlikely(list_empty(list)))
3094 return NULL;
3095 }
3096
453f85d4 3097 page = list_first_entry(list, struct page, lru);
066b2393
MG
3098 list_del(&page->lru);
3099 pcp->count--;
3100 } while (check_new_pcp(page));
3101
3102 return page;
3103}
3104
3105/* Lock and remove page from the per-cpu list */
3106static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3107 struct zone *zone, unsigned int order,
6bb15450
MG
3108 gfp_t gfp_flags, int migratetype,
3109 unsigned int alloc_flags)
066b2393
MG
3110{
3111 struct per_cpu_pages *pcp;
3112 struct list_head *list;
066b2393 3113 struct page *page;
d34b0733 3114 unsigned long flags;
066b2393 3115
d34b0733 3116 local_irq_save(flags);
066b2393
MG
3117 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3118 list = &pcp->lists[migratetype];
6bb15450 3119 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393
MG
3120 if (page) {
3121 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3122 zone_statistics(preferred_zone, zone);
3123 }
d34b0733 3124 local_irq_restore(flags);
066b2393
MG
3125 return page;
3126}
3127
1da177e4 3128/*
75379191 3129 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3130 */
0a15c3e9 3131static inline
066b2393 3132struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3133 struct zone *zone, unsigned int order,
c603844b
MG
3134 gfp_t gfp_flags, unsigned int alloc_flags,
3135 int migratetype)
1da177e4
LT
3136{
3137 unsigned long flags;
689bcebf 3138 struct page *page;
1da177e4 3139
d34b0733 3140 if (likely(order == 0)) {
066b2393 3141 page = rmqueue_pcplist(preferred_zone, zone, order,
6bb15450 3142 gfp_flags, migratetype, alloc_flags);
066b2393
MG
3143 goto out;
3144 }
83b9355b 3145
066b2393
MG
3146 /*
3147 * We most definitely don't want callers attempting to
3148 * allocate greater than order-1 page units with __GFP_NOFAIL.
3149 */
3150 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3151 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3152
066b2393
MG
3153 do {
3154 page = NULL;
3155 if (alloc_flags & ALLOC_HARDER) {
3156 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3157 if (page)
3158 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3159 }
a74609fa 3160 if (!page)
6bb15450 3161 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3162 } while (page && check_new_pages(page, order));
3163 spin_unlock(&zone->lock);
3164 if (!page)
3165 goto failed;
3166 __mod_zone_freepage_state(zone, -(1 << order),
3167 get_pcppage_migratetype(page));
1da177e4 3168
16709d1d 3169 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3170 zone_statistics(preferred_zone, zone);
a74609fa 3171 local_irq_restore(flags);
1da177e4 3172
066b2393 3173out:
73444bc4
MG
3174 /* Separate test+clear to avoid unnecessary atomics */
3175 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3176 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3177 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3178 }
3179
066b2393 3180 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3181 return page;
a74609fa
NP
3182
3183failed:
3184 local_irq_restore(flags);
a74609fa 3185 return NULL;
1da177e4
LT
3186}
3187
933e312e
AM
3188#ifdef CONFIG_FAIL_PAGE_ALLOC
3189
b2588c4b 3190static struct {
933e312e
AM
3191 struct fault_attr attr;
3192
621a5f7a 3193 bool ignore_gfp_highmem;
71baba4b 3194 bool ignore_gfp_reclaim;
54114994 3195 u32 min_order;
933e312e
AM
3196} fail_page_alloc = {
3197 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3198 .ignore_gfp_reclaim = true,
621a5f7a 3199 .ignore_gfp_highmem = true,
54114994 3200 .min_order = 1,
933e312e
AM
3201};
3202
3203static int __init setup_fail_page_alloc(char *str)
3204{
3205 return setup_fault_attr(&fail_page_alloc.attr, str);
3206}
3207__setup("fail_page_alloc=", setup_fail_page_alloc);
3208
af3b8544 3209static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3210{
54114994 3211 if (order < fail_page_alloc.min_order)
deaf386e 3212 return false;
933e312e 3213 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3214 return false;
933e312e 3215 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3216 return false;
71baba4b
MG
3217 if (fail_page_alloc.ignore_gfp_reclaim &&
3218 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3219 return false;
933e312e
AM
3220
3221 return should_fail(&fail_page_alloc.attr, 1 << order);
3222}
3223
3224#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3225
3226static int __init fail_page_alloc_debugfs(void)
3227{
0825a6f9 3228 umode_t mode = S_IFREG | 0600;
933e312e 3229 struct dentry *dir;
933e312e 3230
dd48c085
AM
3231 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3232 &fail_page_alloc.attr);
b2588c4b 3233
d9f7979c
GKH
3234 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3235 &fail_page_alloc.ignore_gfp_reclaim);
3236 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3237 &fail_page_alloc.ignore_gfp_highmem);
3238 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3239
d9f7979c 3240 return 0;
933e312e
AM
3241}
3242
3243late_initcall(fail_page_alloc_debugfs);
3244
3245#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3246
3247#else /* CONFIG_FAIL_PAGE_ALLOC */
3248
af3b8544 3249static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3250{
deaf386e 3251 return false;
933e312e
AM
3252}
3253
3254#endif /* CONFIG_FAIL_PAGE_ALLOC */
3255
af3b8544
BP
3256static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3257{
3258 return __should_fail_alloc_page(gfp_mask, order);
3259}
3260ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3261
1da177e4 3262/*
97a16fc8
MG
3263 * Return true if free base pages are above 'mark'. For high-order checks it
3264 * will return true of the order-0 watermark is reached and there is at least
3265 * one free page of a suitable size. Checking now avoids taking the zone lock
3266 * to check in the allocation paths if no pages are free.
1da177e4 3267 */
86a294a8
MH
3268bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3269 int classzone_idx, unsigned int alloc_flags,
3270 long free_pages)
1da177e4 3271{
d23ad423 3272 long min = mark;
1da177e4 3273 int o;
cd04ae1e 3274 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3275
0aaa29a5 3276 /* free_pages may go negative - that's OK */
df0a6daa 3277 free_pages -= (1 << order) - 1;
0aaa29a5 3278
7fb1d9fc 3279 if (alloc_flags & ALLOC_HIGH)
1da177e4 3280 min -= min / 2;
0aaa29a5
MG
3281
3282 /*
3283 * If the caller does not have rights to ALLOC_HARDER then subtract
3284 * the high-atomic reserves. This will over-estimate the size of the
3285 * atomic reserve but it avoids a search.
3286 */
cd04ae1e 3287 if (likely(!alloc_harder)) {
0aaa29a5 3288 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3289 } else {
3290 /*
3291 * OOM victims can try even harder than normal ALLOC_HARDER
3292 * users on the grounds that it's definitely going to be in
3293 * the exit path shortly and free memory. Any allocation it
3294 * makes during the free path will be small and short-lived.
3295 */
3296 if (alloc_flags & ALLOC_OOM)
3297 min -= min / 2;
3298 else
3299 min -= min / 4;
3300 }
3301
e2b19197 3302
d883c6cf
JK
3303#ifdef CONFIG_CMA
3304 /* If allocation can't use CMA areas don't use free CMA pages */
3305 if (!(alloc_flags & ALLOC_CMA))
3306 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3307#endif
3308
97a16fc8
MG
3309 /*
3310 * Check watermarks for an order-0 allocation request. If these
3311 * are not met, then a high-order request also cannot go ahead
3312 * even if a suitable page happened to be free.
3313 */
3314 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3315 return false;
1da177e4 3316
97a16fc8
MG
3317 /* If this is an order-0 request then the watermark is fine */
3318 if (!order)
3319 return true;
3320
3321 /* For a high-order request, check at least one suitable page is free */
3322 for (o = order; o < MAX_ORDER; o++) {
3323 struct free_area *area = &z->free_area[o];
3324 int mt;
3325
3326 if (!area->nr_free)
3327 continue;
3328
97a16fc8
MG
3329 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3330 if (!list_empty(&area->free_list[mt]))
3331 return true;
3332 }
3333
3334#ifdef CONFIG_CMA
d883c6cf
JK
3335 if ((alloc_flags & ALLOC_CMA) &&
3336 !list_empty(&area->free_list[MIGRATE_CMA])) {
97a16fc8 3337 return true;
d883c6cf 3338 }
97a16fc8 3339#endif
b050e376
VB
3340 if (alloc_harder &&
3341 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3342 return true;
1da177e4 3343 }
97a16fc8 3344 return false;
88f5acf8
MG
3345}
3346
7aeb09f9 3347bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3348 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3349{
3350 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3351 zone_page_state(z, NR_FREE_PAGES));
3352}
3353
48ee5f36
MG
3354static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3355 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3356{
3357 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3358 long cma_pages = 0;
3359
3360#ifdef CONFIG_CMA
3361 /* If allocation can't use CMA areas don't use free CMA pages */
3362 if (!(alloc_flags & ALLOC_CMA))
3363 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3364#endif
48ee5f36
MG
3365
3366 /*
3367 * Fast check for order-0 only. If this fails then the reserves
3368 * need to be calculated. There is a corner case where the check
3369 * passes but only the high-order atomic reserve are free. If
3370 * the caller is !atomic then it'll uselessly search the free
3371 * list. That corner case is then slower but it is harmless.
3372 */
d883c6cf 3373 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3374 return true;
3375
3376 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3377 free_pages);
3378}
3379
7aeb09f9 3380bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3381 unsigned long mark, int classzone_idx)
88f5acf8
MG
3382{
3383 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3384
3385 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3386 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3387
e2b19197 3388 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3389 free_pages);
1da177e4
LT
3390}
3391
9276b1bc 3392#ifdef CONFIG_NUMA
957f822a
DR
3393static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3394{
e02dc017 3395 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3396 RECLAIM_DISTANCE;
957f822a 3397}
9276b1bc 3398#else /* CONFIG_NUMA */
957f822a
DR
3399static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3400{
3401 return true;
3402}
9276b1bc
PJ
3403#endif /* CONFIG_NUMA */
3404
6bb15450
MG
3405/*
3406 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3407 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3408 * premature use of a lower zone may cause lowmem pressure problems that
3409 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3410 * probably too small. It only makes sense to spread allocations to avoid
3411 * fragmentation between the Normal and DMA32 zones.
3412 */
3413static inline unsigned int
0a79cdad 3414alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3415{
0a79cdad
MG
3416 unsigned int alloc_flags = 0;
3417
3418 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3419 alloc_flags |= ALLOC_KSWAPD;
3420
3421#ifdef CONFIG_ZONE_DMA32
6bb15450 3422 if (zone_idx(zone) != ZONE_NORMAL)
0a79cdad 3423 goto out;
6bb15450
MG
3424
3425 /*
3426 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3427 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3428 * on UMA that if Normal is populated then so is DMA32.
3429 */
3430 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3431 if (nr_online_nodes > 1 && !populated_zone(--zone))
0a79cdad 3432 goto out;
6bb15450 3433
0a79cdad
MG
3434out:
3435#endif /* CONFIG_ZONE_DMA32 */
3436 return alloc_flags;
6bb15450 3437}
6bb15450 3438
7fb1d9fc 3439/*
0798e519 3440 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3441 * a page.
3442 */
3443static struct page *
a9263751
VB
3444get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3445 const struct alloc_context *ac)
753ee728 3446{
6bb15450 3447 struct zoneref *z;
5117f45d 3448 struct zone *zone;
3b8c0be4 3449 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3450 bool no_fallback;
3b8c0be4 3451
6bb15450 3452retry:
7fb1d9fc 3453 /*
9276b1bc 3454 * Scan zonelist, looking for a zone with enough free.
344736f2 3455 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3456 */
6bb15450
MG
3457 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3458 z = ac->preferred_zoneref;
c33d6c06 3459 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3460 ac->nodemask) {
be06af00 3461 struct page *page;
e085dbc5
JW
3462 unsigned long mark;
3463
664eedde
MG
3464 if (cpusets_enabled() &&
3465 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3466 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3467 continue;
a756cf59
JW
3468 /*
3469 * When allocating a page cache page for writing, we
281e3726
MG
3470 * want to get it from a node that is within its dirty
3471 * limit, such that no single node holds more than its
a756cf59 3472 * proportional share of globally allowed dirty pages.
281e3726 3473 * The dirty limits take into account the node's
a756cf59
JW
3474 * lowmem reserves and high watermark so that kswapd
3475 * should be able to balance it without having to
3476 * write pages from its LRU list.
3477 *
a756cf59 3478 * XXX: For now, allow allocations to potentially
281e3726 3479 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3480 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3481 * which is important when on a NUMA setup the allowed
281e3726 3482 * nodes are together not big enough to reach the
a756cf59 3483 * global limit. The proper fix for these situations
281e3726 3484 * will require awareness of nodes in the
a756cf59
JW
3485 * dirty-throttling and the flusher threads.
3486 */
3b8c0be4
MG
3487 if (ac->spread_dirty_pages) {
3488 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3489 continue;
3490
3491 if (!node_dirty_ok(zone->zone_pgdat)) {
3492 last_pgdat_dirty_limit = zone->zone_pgdat;
3493 continue;
3494 }
3495 }
7fb1d9fc 3496
6bb15450
MG
3497 if (no_fallback && nr_online_nodes > 1 &&
3498 zone != ac->preferred_zoneref->zone) {
3499 int local_nid;
3500
3501 /*
3502 * If moving to a remote node, retry but allow
3503 * fragmenting fallbacks. Locality is more important
3504 * than fragmentation avoidance.
3505 */
3506 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3507 if (zone_to_nid(zone) != local_nid) {
3508 alloc_flags &= ~ALLOC_NOFRAGMENT;
3509 goto retry;
3510 }
3511 }
3512
a9214443 3513 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3514 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3515 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3516 int ret;
3517
c9e97a19
PT
3518#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3519 /*
3520 * Watermark failed for this zone, but see if we can
3521 * grow this zone if it contains deferred pages.
3522 */
3523 if (static_branch_unlikely(&deferred_pages)) {
3524 if (_deferred_grow_zone(zone, order))
3525 goto try_this_zone;
3526 }
3527#endif
5dab2911
MG
3528 /* Checked here to keep the fast path fast */
3529 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3530 if (alloc_flags & ALLOC_NO_WATERMARKS)
3531 goto try_this_zone;
3532
a5f5f91d 3533 if (node_reclaim_mode == 0 ||
c33d6c06 3534 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3535 continue;
3536
a5f5f91d 3537 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3538 switch (ret) {
a5f5f91d 3539 case NODE_RECLAIM_NOSCAN:
fa5e084e 3540 /* did not scan */
cd38b115 3541 continue;
a5f5f91d 3542 case NODE_RECLAIM_FULL:
fa5e084e 3543 /* scanned but unreclaimable */
cd38b115 3544 continue;
fa5e084e
MG
3545 default:
3546 /* did we reclaim enough */
fed2719e 3547 if (zone_watermark_ok(zone, order, mark,
93ea9964 3548 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3549 goto try_this_zone;
3550
fed2719e 3551 continue;
0798e519 3552 }
7fb1d9fc
RS
3553 }
3554
fa5e084e 3555try_this_zone:
066b2393 3556 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3557 gfp_mask, alloc_flags, ac->migratetype);
75379191 3558 if (page) {
479f854a 3559 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3560
3561 /*
3562 * If this is a high-order atomic allocation then check
3563 * if the pageblock should be reserved for the future
3564 */
3565 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3566 reserve_highatomic_pageblock(page, zone, order);
3567
75379191 3568 return page;
c9e97a19
PT
3569 } else {
3570#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3571 /* Try again if zone has deferred pages */
3572 if (static_branch_unlikely(&deferred_pages)) {
3573 if (_deferred_grow_zone(zone, order))
3574 goto try_this_zone;
3575 }
3576#endif
75379191 3577 }
54a6eb5c 3578 }
9276b1bc 3579
6bb15450
MG
3580 /*
3581 * It's possible on a UMA machine to get through all zones that are
3582 * fragmented. If avoiding fragmentation, reset and try again.
3583 */
3584 if (no_fallback) {
3585 alloc_flags &= ~ALLOC_NOFRAGMENT;
3586 goto retry;
3587 }
3588
4ffeaf35 3589 return NULL;
753ee728
MH
3590}
3591
9af744d7 3592static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3593{
a238ab5b 3594 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3595 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3596
2c029a1e 3597 if (!__ratelimit(&show_mem_rs))
a238ab5b
DH
3598 return;
3599
3600 /*
3601 * This documents exceptions given to allocations in certain
3602 * contexts that are allowed to allocate outside current's set
3603 * of allowed nodes.
3604 */
3605 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3606 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3607 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3608 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3609 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3610 filter &= ~SHOW_MEM_FILTER_NODES;
3611
9af744d7 3612 show_mem(filter, nodemask);
aa187507
MH
3613}
3614
a8e99259 3615void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3616{
3617 struct va_format vaf;
3618 va_list args;
3619 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3620 DEFAULT_RATELIMIT_BURST);
3621
0f7896f1 3622 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3623 return;
3624
7877cdcc
MH
3625 va_start(args, fmt);
3626 vaf.fmt = fmt;
3627 vaf.va = &args;
ef8444ea 3628 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3629 current->comm, &vaf, gfp_mask, &gfp_mask,
3630 nodemask_pr_args(nodemask));
7877cdcc 3631 va_end(args);
3ee9a4f0 3632
a8e99259 3633 cpuset_print_current_mems_allowed();
ef8444ea 3634 pr_cont("\n");
a238ab5b 3635 dump_stack();
685dbf6f 3636 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3637}
3638
6c18ba7a
MH
3639static inline struct page *
3640__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3641 unsigned int alloc_flags,
3642 const struct alloc_context *ac)
3643{
3644 struct page *page;
3645
3646 page = get_page_from_freelist(gfp_mask, order,
3647 alloc_flags|ALLOC_CPUSET, ac);
3648 /*
3649 * fallback to ignore cpuset restriction if our nodes
3650 * are depleted
3651 */
3652 if (!page)
3653 page = get_page_from_freelist(gfp_mask, order,
3654 alloc_flags, ac);
3655
3656 return page;
3657}
3658
11e33f6a
MG
3659static inline struct page *
3660__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3661 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3662{
6e0fc46d
DR
3663 struct oom_control oc = {
3664 .zonelist = ac->zonelist,
3665 .nodemask = ac->nodemask,
2a966b77 3666 .memcg = NULL,
6e0fc46d
DR
3667 .gfp_mask = gfp_mask,
3668 .order = order,
6e0fc46d 3669 };
11e33f6a
MG
3670 struct page *page;
3671
9879de73
JW
3672 *did_some_progress = 0;
3673
9879de73 3674 /*
dc56401f
JW
3675 * Acquire the oom lock. If that fails, somebody else is
3676 * making progress for us.
9879de73 3677 */
dc56401f 3678 if (!mutex_trylock(&oom_lock)) {
9879de73 3679 *did_some_progress = 1;
11e33f6a 3680 schedule_timeout_uninterruptible(1);
1da177e4
LT
3681 return NULL;
3682 }
6b1de916 3683
11e33f6a
MG
3684 /*
3685 * Go through the zonelist yet one more time, keep very high watermark
3686 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3687 * we're still under heavy pressure. But make sure that this reclaim
3688 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3689 * allocation which will never fail due to oom_lock already held.
11e33f6a 3690 */
e746bf73
TH
3691 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3692 ~__GFP_DIRECT_RECLAIM, order,
3693 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3694 if (page)
11e33f6a
MG
3695 goto out;
3696
06ad276a
MH
3697 /* Coredumps can quickly deplete all memory reserves */
3698 if (current->flags & PF_DUMPCORE)
3699 goto out;
3700 /* The OOM killer will not help higher order allocs */
3701 if (order > PAGE_ALLOC_COSTLY_ORDER)
3702 goto out;
dcda9b04
MH
3703 /*
3704 * We have already exhausted all our reclaim opportunities without any
3705 * success so it is time to admit defeat. We will skip the OOM killer
3706 * because it is very likely that the caller has a more reasonable
3707 * fallback than shooting a random task.
3708 */
3709 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3710 goto out;
06ad276a
MH
3711 /* The OOM killer does not needlessly kill tasks for lowmem */
3712 if (ac->high_zoneidx < ZONE_NORMAL)
3713 goto out;
3714 if (pm_suspended_storage())
3715 goto out;
3716 /*
3717 * XXX: GFP_NOFS allocations should rather fail than rely on
3718 * other request to make a forward progress.
3719 * We are in an unfortunate situation where out_of_memory cannot
3720 * do much for this context but let's try it to at least get
3721 * access to memory reserved if the current task is killed (see
3722 * out_of_memory). Once filesystems are ready to handle allocation
3723 * failures more gracefully we should just bail out here.
3724 */
3725
3726 /* The OOM killer may not free memory on a specific node */
3727 if (gfp_mask & __GFP_THISNODE)
3728 goto out;
3da88fb3 3729
3c2c6488 3730 /* Exhausted what can be done so it's blame time */
5020e285 3731 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3732 *did_some_progress = 1;
5020e285 3733
6c18ba7a
MH
3734 /*
3735 * Help non-failing allocations by giving them access to memory
3736 * reserves
3737 */
3738 if (gfp_mask & __GFP_NOFAIL)
3739 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3740 ALLOC_NO_WATERMARKS, ac);
5020e285 3741 }
11e33f6a 3742out:
dc56401f 3743 mutex_unlock(&oom_lock);
11e33f6a
MG
3744 return page;
3745}
3746
33c2d214
MH
3747/*
3748 * Maximum number of compaction retries wit a progress before OOM
3749 * killer is consider as the only way to move forward.
3750 */
3751#define MAX_COMPACT_RETRIES 16
3752
56de7263
MG
3753#ifdef CONFIG_COMPACTION
3754/* Try memory compaction for high-order allocations before reclaim */
3755static struct page *
3756__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3757 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3758 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3759{
5e1f0f09 3760 struct page *page = NULL;
eb414681 3761 unsigned long pflags;
499118e9 3762 unsigned int noreclaim_flag;
53853e2d
VB
3763
3764 if (!order)
66199712 3765 return NULL;
66199712 3766
eb414681 3767 psi_memstall_enter(&pflags);
499118e9 3768 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3769
c5d01d0d 3770 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3771 prio, &page);
eb414681 3772
499118e9 3773 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3774 psi_memstall_leave(&pflags);
56de7263 3775
5e1f0f09
MG
3776 if (*compact_result <= COMPACT_INACTIVE) {
3777 WARN_ON_ONCE(page);
98dd3b48 3778 return NULL;
5e1f0f09 3779 }
53853e2d 3780
98dd3b48
VB
3781 /*
3782 * At least in one zone compaction wasn't deferred or skipped, so let's
3783 * count a compaction stall
3784 */
3785 count_vm_event(COMPACTSTALL);
8fb74b9f 3786
5e1f0f09
MG
3787 /* Prep a captured page if available */
3788 if (page)
3789 prep_new_page(page, order, gfp_mask, alloc_flags);
3790
3791 /* Try get a page from the freelist if available */
3792 if (!page)
3793 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3794
98dd3b48
VB
3795 if (page) {
3796 struct zone *zone = page_zone(page);
53853e2d 3797
98dd3b48
VB
3798 zone->compact_blockskip_flush = false;
3799 compaction_defer_reset(zone, order, true);
3800 count_vm_event(COMPACTSUCCESS);
3801 return page;
3802 }
56de7263 3803
98dd3b48
VB
3804 /*
3805 * It's bad if compaction run occurs and fails. The most likely reason
3806 * is that pages exist, but not enough to satisfy watermarks.
3807 */
3808 count_vm_event(COMPACTFAIL);
66199712 3809
98dd3b48 3810 cond_resched();
56de7263
MG
3811
3812 return NULL;
3813}
33c2d214 3814
3250845d
VB
3815static inline bool
3816should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3817 enum compact_result compact_result,
3818 enum compact_priority *compact_priority,
d9436498 3819 int *compaction_retries)
3250845d
VB
3820{
3821 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3822 int min_priority;
65190cff
MH
3823 bool ret = false;
3824 int retries = *compaction_retries;
3825 enum compact_priority priority = *compact_priority;
3250845d
VB
3826
3827 if (!order)
3828 return false;
3829
d9436498
VB
3830 if (compaction_made_progress(compact_result))
3831 (*compaction_retries)++;
3832
3250845d
VB
3833 /*
3834 * compaction considers all the zone as desperately out of memory
3835 * so it doesn't really make much sense to retry except when the
3836 * failure could be caused by insufficient priority
3837 */
d9436498
VB
3838 if (compaction_failed(compact_result))
3839 goto check_priority;
3250845d
VB
3840
3841 /*
3842 * make sure the compaction wasn't deferred or didn't bail out early
3843 * due to locks contention before we declare that we should give up.
3844 * But do not retry if the given zonelist is not suitable for
3845 * compaction.
3846 */
65190cff
MH
3847 if (compaction_withdrawn(compact_result)) {
3848 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3849 goto out;
3850 }
3250845d
VB
3851
3852 /*
dcda9b04 3853 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3854 * costly ones because they are de facto nofail and invoke OOM
3855 * killer to move on while costly can fail and users are ready
3856 * to cope with that. 1/4 retries is rather arbitrary but we
3857 * would need much more detailed feedback from compaction to
3858 * make a better decision.
3859 */
3860 if (order > PAGE_ALLOC_COSTLY_ORDER)
3861 max_retries /= 4;
65190cff
MH
3862 if (*compaction_retries <= max_retries) {
3863 ret = true;
3864 goto out;
3865 }
3250845d 3866
d9436498
VB
3867 /*
3868 * Make sure there are attempts at the highest priority if we exhausted
3869 * all retries or failed at the lower priorities.
3870 */
3871check_priority:
c2033b00
VB
3872 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3873 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3874
c2033b00 3875 if (*compact_priority > min_priority) {
d9436498
VB
3876 (*compact_priority)--;
3877 *compaction_retries = 0;
65190cff 3878 ret = true;
d9436498 3879 }
65190cff
MH
3880out:
3881 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3882 return ret;
3250845d 3883}
56de7263
MG
3884#else
3885static inline struct page *
3886__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3887 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3888 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3889{
33c2d214 3890 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3891 return NULL;
3892}
33c2d214
MH
3893
3894static inline bool
86a294a8
MH
3895should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3896 enum compact_result compact_result,
a5508cd8 3897 enum compact_priority *compact_priority,
d9436498 3898 int *compaction_retries)
33c2d214 3899{
31e49bfd
MH
3900 struct zone *zone;
3901 struct zoneref *z;
3902
3903 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3904 return false;
3905
3906 /*
3907 * There are setups with compaction disabled which would prefer to loop
3908 * inside the allocator rather than hit the oom killer prematurely.
3909 * Let's give them a good hope and keep retrying while the order-0
3910 * watermarks are OK.
3911 */
3912 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3913 ac->nodemask) {
3914 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3915 ac_classzone_idx(ac), alloc_flags))
3916 return true;
3917 }
33c2d214
MH
3918 return false;
3919}
3250845d 3920#endif /* CONFIG_COMPACTION */
56de7263 3921
d92a8cfc 3922#ifdef CONFIG_LOCKDEP
93781325 3923static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
3924 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3925
3926static bool __need_fs_reclaim(gfp_t gfp_mask)
3927{
3928 gfp_mask = current_gfp_context(gfp_mask);
3929
3930 /* no reclaim without waiting on it */
3931 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3932 return false;
3933
3934 /* this guy won't enter reclaim */
2e517d68 3935 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3936 return false;
3937
3938 /* We're only interested __GFP_FS allocations for now */
3939 if (!(gfp_mask & __GFP_FS))
3940 return false;
3941
3942 if (gfp_mask & __GFP_NOLOCKDEP)
3943 return false;
3944
3945 return true;
3946}
3947
93781325
OS
3948void __fs_reclaim_acquire(void)
3949{
3950 lock_map_acquire(&__fs_reclaim_map);
3951}
3952
3953void __fs_reclaim_release(void)
3954{
3955 lock_map_release(&__fs_reclaim_map);
3956}
3957
d92a8cfc
PZ
3958void fs_reclaim_acquire(gfp_t gfp_mask)
3959{
3960 if (__need_fs_reclaim(gfp_mask))
93781325 3961 __fs_reclaim_acquire();
d92a8cfc
PZ
3962}
3963EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3964
3965void fs_reclaim_release(gfp_t gfp_mask)
3966{
3967 if (__need_fs_reclaim(gfp_mask))
93781325 3968 __fs_reclaim_release();
d92a8cfc
PZ
3969}
3970EXPORT_SYMBOL_GPL(fs_reclaim_release);
3971#endif
3972
bba90710
MS
3973/* Perform direct synchronous page reclaim */
3974static int
a9263751
VB
3975__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3976 const struct alloc_context *ac)
11e33f6a 3977{
11e33f6a 3978 struct reclaim_state reclaim_state;
bba90710 3979 int progress;
499118e9 3980 unsigned int noreclaim_flag;
eb414681 3981 unsigned long pflags;
11e33f6a
MG
3982
3983 cond_resched();
3984
3985 /* We now go into synchronous reclaim */
3986 cpuset_memory_pressure_bump();
eb414681 3987 psi_memstall_enter(&pflags);
d92a8cfc 3988 fs_reclaim_acquire(gfp_mask);
93781325 3989 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 3990 reclaim_state.reclaimed_slab = 0;
c06b1fca 3991 current->reclaim_state = &reclaim_state;
11e33f6a 3992
a9263751
VB
3993 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3994 ac->nodemask);
11e33f6a 3995
c06b1fca 3996 current->reclaim_state = NULL;
499118e9 3997 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3998 fs_reclaim_release(gfp_mask);
eb414681 3999 psi_memstall_leave(&pflags);
11e33f6a
MG
4000
4001 cond_resched();
4002
bba90710
MS
4003 return progress;
4004}
4005
4006/* The really slow allocator path where we enter direct reclaim */
4007static inline struct page *
4008__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4009 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4010 unsigned long *did_some_progress)
bba90710
MS
4011{
4012 struct page *page = NULL;
4013 bool drained = false;
4014
a9263751 4015 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4016 if (unlikely(!(*did_some_progress)))
4017 return NULL;
11e33f6a 4018
9ee493ce 4019retry:
31a6c190 4020 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4021
4022 /*
4023 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
4024 * pages are pinned on the per-cpu lists or in high alloc reserves.
4025 * Shrink them them and try again
9ee493ce
MG
4026 */
4027 if (!page && !drained) {
29fac03b 4028 unreserve_highatomic_pageblock(ac, false);
93481ff0 4029 drain_all_pages(NULL);
9ee493ce
MG
4030 drained = true;
4031 goto retry;
4032 }
4033
11e33f6a
MG
4034 return page;
4035}
4036
5ecd9d40
DR
4037static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4038 const struct alloc_context *ac)
3a025760
JW
4039{
4040 struct zoneref *z;
4041 struct zone *zone;
e1a55637 4042 pg_data_t *last_pgdat = NULL;
5ecd9d40 4043 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 4044
5ecd9d40
DR
4045 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4046 ac->nodemask) {
e1a55637 4047 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 4048 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
4049 last_pgdat = zone->zone_pgdat;
4050 }
3a025760
JW
4051}
4052
c603844b 4053static inline unsigned int
341ce06f
PZ
4054gfp_to_alloc_flags(gfp_t gfp_mask)
4055{
c603844b 4056 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4057
a56f57ff 4058 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 4059 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 4060
341ce06f
PZ
4061 /*
4062 * The caller may dip into page reserves a bit more if the caller
4063 * cannot run direct reclaim, or if the caller has realtime scheduling
4064 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4065 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4066 */
e6223a3b 4067 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 4068
d0164adc 4069 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4070 /*
b104a35d
DR
4071 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4072 * if it can't schedule.
5c3240d9 4073 */
b104a35d 4074 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4075 alloc_flags |= ALLOC_HARDER;
523b9458 4076 /*
b104a35d 4077 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4078 * comment for __cpuset_node_allowed().
523b9458 4079 */
341ce06f 4080 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4081 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4082 alloc_flags |= ALLOC_HARDER;
4083
0a79cdad
MG
4084 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4085 alloc_flags |= ALLOC_KSWAPD;
4086
d883c6cf
JK
4087#ifdef CONFIG_CMA
4088 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4089 alloc_flags |= ALLOC_CMA;
4090#endif
341ce06f
PZ
4091 return alloc_flags;
4092}
4093
cd04ae1e 4094static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4095{
cd04ae1e
MH
4096 if (!tsk_is_oom_victim(tsk))
4097 return false;
4098
4099 /*
4100 * !MMU doesn't have oom reaper so give access to memory reserves
4101 * only to the thread with TIF_MEMDIE set
4102 */
4103 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4104 return false;
4105
cd04ae1e
MH
4106 return true;
4107}
4108
4109/*
4110 * Distinguish requests which really need access to full memory
4111 * reserves from oom victims which can live with a portion of it
4112 */
4113static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4114{
4115 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4116 return 0;
31a6c190 4117 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4118 return ALLOC_NO_WATERMARKS;
31a6c190 4119 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4120 return ALLOC_NO_WATERMARKS;
4121 if (!in_interrupt()) {
4122 if (current->flags & PF_MEMALLOC)
4123 return ALLOC_NO_WATERMARKS;
4124 else if (oom_reserves_allowed(current))
4125 return ALLOC_OOM;
4126 }
31a6c190 4127
cd04ae1e
MH
4128 return 0;
4129}
4130
4131bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4132{
4133 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4134}
4135
0a0337e0
MH
4136/*
4137 * Checks whether it makes sense to retry the reclaim to make a forward progress
4138 * for the given allocation request.
491d79ae
JW
4139 *
4140 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4141 * without success, or when we couldn't even meet the watermark if we
4142 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4143 *
4144 * Returns true if a retry is viable or false to enter the oom path.
4145 */
4146static inline bool
4147should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4148 struct alloc_context *ac, int alloc_flags,
423b452e 4149 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4150{
4151 struct zone *zone;
4152 struct zoneref *z;
15f570bf 4153 bool ret = false;
0a0337e0 4154
423b452e
VB
4155 /*
4156 * Costly allocations might have made a progress but this doesn't mean
4157 * their order will become available due to high fragmentation so
4158 * always increment the no progress counter for them
4159 */
4160 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4161 *no_progress_loops = 0;
4162 else
4163 (*no_progress_loops)++;
4164
0a0337e0
MH
4165 /*
4166 * Make sure we converge to OOM if we cannot make any progress
4167 * several times in the row.
4168 */
04c8716f
MK
4169 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4170 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4171 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4172 }
0a0337e0 4173
bca67592
MG
4174 /*
4175 * Keep reclaiming pages while there is a chance this will lead
4176 * somewhere. If none of the target zones can satisfy our allocation
4177 * request even if all reclaimable pages are considered then we are
4178 * screwed and have to go OOM.
0a0337e0
MH
4179 */
4180 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4181 ac->nodemask) {
4182 unsigned long available;
ede37713 4183 unsigned long reclaimable;
d379f01d
MH
4184 unsigned long min_wmark = min_wmark_pages(zone);
4185 bool wmark;
0a0337e0 4186
5a1c84b4 4187 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4188 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4189
4190 /*
491d79ae
JW
4191 * Would the allocation succeed if we reclaimed all
4192 * reclaimable pages?
0a0337e0 4193 */
d379f01d
MH
4194 wmark = __zone_watermark_ok(zone, order, min_wmark,
4195 ac_classzone_idx(ac), alloc_flags, available);
4196 trace_reclaim_retry_zone(z, order, reclaimable,
4197 available, min_wmark, *no_progress_loops, wmark);
4198 if (wmark) {
ede37713
MH
4199 /*
4200 * If we didn't make any progress and have a lot of
4201 * dirty + writeback pages then we should wait for
4202 * an IO to complete to slow down the reclaim and
4203 * prevent from pre mature OOM
4204 */
4205 if (!did_some_progress) {
11fb9989 4206 unsigned long write_pending;
ede37713 4207
5a1c84b4
MG
4208 write_pending = zone_page_state_snapshot(zone,
4209 NR_ZONE_WRITE_PENDING);
ede37713 4210
11fb9989 4211 if (2 * write_pending > reclaimable) {
ede37713
MH
4212 congestion_wait(BLK_RW_ASYNC, HZ/10);
4213 return true;
4214 }
4215 }
5a1c84b4 4216
15f570bf
MH
4217 ret = true;
4218 goto out;
0a0337e0
MH
4219 }
4220 }
4221
15f570bf
MH
4222out:
4223 /*
4224 * Memory allocation/reclaim might be called from a WQ context and the
4225 * current implementation of the WQ concurrency control doesn't
4226 * recognize that a particular WQ is congested if the worker thread is
4227 * looping without ever sleeping. Therefore we have to do a short sleep
4228 * here rather than calling cond_resched().
4229 */
4230 if (current->flags & PF_WQ_WORKER)
4231 schedule_timeout_uninterruptible(1);
4232 else
4233 cond_resched();
4234 return ret;
0a0337e0
MH
4235}
4236
902b6281
VB
4237static inline bool
4238check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4239{
4240 /*
4241 * It's possible that cpuset's mems_allowed and the nodemask from
4242 * mempolicy don't intersect. This should be normally dealt with by
4243 * policy_nodemask(), but it's possible to race with cpuset update in
4244 * such a way the check therein was true, and then it became false
4245 * before we got our cpuset_mems_cookie here.
4246 * This assumes that for all allocations, ac->nodemask can come only
4247 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4248 * when it does not intersect with the cpuset restrictions) or the
4249 * caller can deal with a violated nodemask.
4250 */
4251 if (cpusets_enabled() && ac->nodemask &&
4252 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4253 ac->nodemask = NULL;
4254 return true;
4255 }
4256
4257 /*
4258 * When updating a task's mems_allowed or mempolicy nodemask, it is
4259 * possible to race with parallel threads in such a way that our
4260 * allocation can fail while the mask is being updated. If we are about
4261 * to fail, check if the cpuset changed during allocation and if so,
4262 * retry.
4263 */
4264 if (read_mems_allowed_retry(cpuset_mems_cookie))
4265 return true;
4266
4267 return false;
4268}
4269
11e33f6a
MG
4270static inline struct page *
4271__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4272 struct alloc_context *ac)
11e33f6a 4273{
d0164adc 4274 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4275 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4276 struct page *page = NULL;
c603844b 4277 unsigned int alloc_flags;
11e33f6a 4278 unsigned long did_some_progress;
5ce9bfef 4279 enum compact_priority compact_priority;
c5d01d0d 4280 enum compact_result compact_result;
5ce9bfef
VB
4281 int compaction_retries;
4282 int no_progress_loops;
5ce9bfef 4283 unsigned int cpuset_mems_cookie;
cd04ae1e 4284 int reserve_flags;
1da177e4 4285
d0164adc
MG
4286 /*
4287 * We also sanity check to catch abuse of atomic reserves being used by
4288 * callers that are not in atomic context.
4289 */
4290 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4291 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4292 gfp_mask &= ~__GFP_ATOMIC;
4293
5ce9bfef
VB
4294retry_cpuset:
4295 compaction_retries = 0;
4296 no_progress_loops = 0;
4297 compact_priority = DEF_COMPACT_PRIORITY;
4298 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4299
4300 /*
4301 * The fast path uses conservative alloc_flags to succeed only until
4302 * kswapd needs to be woken up, and to avoid the cost of setting up
4303 * alloc_flags precisely. So we do that now.
4304 */
4305 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4306
e47483bc
VB
4307 /*
4308 * We need to recalculate the starting point for the zonelist iterator
4309 * because we might have used different nodemask in the fast path, or
4310 * there was a cpuset modification and we are retrying - otherwise we
4311 * could end up iterating over non-eligible zones endlessly.
4312 */
4313 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4314 ac->high_zoneidx, ac->nodemask);
4315 if (!ac->preferred_zoneref->zone)
4316 goto nopage;
4317
0a79cdad 4318 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4319 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4320
4321 /*
4322 * The adjusted alloc_flags might result in immediate success, so try
4323 * that first
4324 */
4325 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4326 if (page)
4327 goto got_pg;
4328
a8161d1e
VB
4329 /*
4330 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4331 * that we have enough base pages and don't need to reclaim. For non-
4332 * movable high-order allocations, do that as well, as compaction will
4333 * try prevent permanent fragmentation by migrating from blocks of the
4334 * same migratetype.
4335 * Don't try this for allocations that are allowed to ignore
4336 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4337 */
282722b0
VB
4338 if (can_direct_reclaim &&
4339 (costly_order ||
4340 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4341 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4342 page = __alloc_pages_direct_compact(gfp_mask, order,
4343 alloc_flags, ac,
a5508cd8 4344 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4345 &compact_result);
4346 if (page)
4347 goto got_pg;
4348
3eb2771b
VB
4349 /*
4350 * Checks for costly allocations with __GFP_NORETRY, which
4351 * includes THP page fault allocations
4352 */
282722b0 4353 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4354 /*
4355 * If compaction is deferred for high-order allocations,
4356 * it is because sync compaction recently failed. If
4357 * this is the case and the caller requested a THP
4358 * allocation, we do not want to heavily disrupt the
4359 * system, so we fail the allocation instead of entering
4360 * direct reclaim.
4361 */
4362 if (compact_result == COMPACT_DEFERRED)
4363 goto nopage;
4364
a8161d1e 4365 /*
3eb2771b
VB
4366 * Looks like reclaim/compaction is worth trying, but
4367 * sync compaction could be very expensive, so keep
25160354 4368 * using async compaction.
a8161d1e 4369 */
a5508cd8 4370 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4371 }
4372 }
23771235 4373
31a6c190 4374retry:
23771235 4375 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4376 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4377 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4378
cd04ae1e
MH
4379 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4380 if (reserve_flags)
4381 alloc_flags = reserve_flags;
23771235 4382
e46e7b77 4383 /*
d6a24df0
VB
4384 * Reset the nodemask and zonelist iterators if memory policies can be
4385 * ignored. These allocations are high priority and system rather than
4386 * user oriented.
e46e7b77 4387 */
cd04ae1e 4388 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4389 ac->nodemask = NULL;
e46e7b77
MG
4390 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4391 ac->high_zoneidx, ac->nodemask);
4392 }
4393
23771235 4394 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4395 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4396 if (page)
4397 goto got_pg;
1da177e4 4398
d0164adc 4399 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4400 if (!can_direct_reclaim)
1da177e4
LT
4401 goto nopage;
4402
9a67f648
MH
4403 /* Avoid recursion of direct reclaim */
4404 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4405 goto nopage;
4406
a8161d1e
VB
4407 /* Try direct reclaim and then allocating */
4408 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4409 &did_some_progress);
4410 if (page)
4411 goto got_pg;
4412
4413 /* Try direct compaction and then allocating */
a9263751 4414 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4415 compact_priority, &compact_result);
56de7263
MG
4416 if (page)
4417 goto got_pg;
75f30861 4418
9083905a
JW
4419 /* Do not loop if specifically requested */
4420 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4421 goto nopage;
9083905a 4422
0a0337e0
MH
4423 /*
4424 * Do not retry costly high order allocations unless they are
dcda9b04 4425 * __GFP_RETRY_MAYFAIL
0a0337e0 4426 */
dcda9b04 4427 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4428 goto nopage;
0a0337e0 4429
0a0337e0 4430 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4431 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4432 goto retry;
4433
33c2d214
MH
4434 /*
4435 * It doesn't make any sense to retry for the compaction if the order-0
4436 * reclaim is not able to make any progress because the current
4437 * implementation of the compaction depends on the sufficient amount
4438 * of free memory (see __compaction_suitable)
4439 */
4440 if (did_some_progress > 0 &&
86a294a8 4441 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4442 compact_result, &compact_priority,
d9436498 4443 &compaction_retries))
33c2d214
MH
4444 goto retry;
4445
902b6281
VB
4446
4447 /* Deal with possible cpuset update races before we start OOM killing */
4448 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4449 goto retry_cpuset;
4450
9083905a
JW
4451 /* Reclaim has failed us, start killing things */
4452 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4453 if (page)
4454 goto got_pg;
4455
9a67f648 4456 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4457 if (tsk_is_oom_victim(current) &&
4458 (alloc_flags == ALLOC_OOM ||
c288983d 4459 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4460 goto nopage;
4461
9083905a 4462 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4463 if (did_some_progress) {
4464 no_progress_loops = 0;
9083905a 4465 goto retry;
0a0337e0 4466 }
9083905a 4467
1da177e4 4468nopage:
902b6281
VB
4469 /* Deal with possible cpuset update races before we fail */
4470 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4471 goto retry_cpuset;
4472
9a67f648
MH
4473 /*
4474 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4475 * we always retry
4476 */
4477 if (gfp_mask & __GFP_NOFAIL) {
4478 /*
4479 * All existing users of the __GFP_NOFAIL are blockable, so warn
4480 * of any new users that actually require GFP_NOWAIT
4481 */
4482 if (WARN_ON_ONCE(!can_direct_reclaim))
4483 goto fail;
4484
4485 /*
4486 * PF_MEMALLOC request from this context is rather bizarre
4487 * because we cannot reclaim anything and only can loop waiting
4488 * for somebody to do a work for us
4489 */
4490 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4491
4492 /*
4493 * non failing costly orders are a hard requirement which we
4494 * are not prepared for much so let's warn about these users
4495 * so that we can identify them and convert them to something
4496 * else.
4497 */
4498 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4499
6c18ba7a
MH
4500 /*
4501 * Help non-failing allocations by giving them access to memory
4502 * reserves but do not use ALLOC_NO_WATERMARKS because this
4503 * could deplete whole memory reserves which would just make
4504 * the situation worse
4505 */
4506 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4507 if (page)
4508 goto got_pg;
4509
9a67f648
MH
4510 cond_resched();
4511 goto retry;
4512 }
4513fail:
a8e99259 4514 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4515 "page allocation failure: order:%u", order);
1da177e4 4516got_pg:
072bb0aa 4517 return page;
1da177e4 4518}
11e33f6a 4519
9cd75558 4520static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4521 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4522 struct alloc_context *ac, gfp_t *alloc_mask,
4523 unsigned int *alloc_flags)
11e33f6a 4524{
9cd75558 4525 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4526 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4527 ac->nodemask = nodemask;
4528 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4529
682a3385 4530 if (cpusets_enabled()) {
9cd75558 4531 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4532 if (!ac->nodemask)
4533 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4534 else
4535 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4536 }
4537
d92a8cfc
PZ
4538 fs_reclaim_acquire(gfp_mask);
4539 fs_reclaim_release(gfp_mask);
11e33f6a 4540
d0164adc 4541 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4542
4543 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4544 return false;
11e33f6a 4545
d883c6cf
JK
4546 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4547 *alloc_flags |= ALLOC_CMA;
4548
9cd75558
MG
4549 return true;
4550}
21bb9bd1 4551
9cd75558 4552/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4553static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4554{
c9ab0c4f 4555 /* Dirty zone balancing only done in the fast path */
9cd75558 4556 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4557
e46e7b77
MG
4558 /*
4559 * The preferred zone is used for statistics but crucially it is
4560 * also used as the starting point for the zonelist iterator. It
4561 * may get reset for allocations that ignore memory policies.
4562 */
9cd75558
MG
4563 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4564 ac->high_zoneidx, ac->nodemask);
4565}
4566
4567/*
4568 * This is the 'heart' of the zoned buddy allocator.
4569 */
4570struct page *
04ec6264
VB
4571__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4572 nodemask_t *nodemask)
9cd75558
MG
4573{
4574 struct page *page;
4575 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4576 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4577 struct alloc_context ac = { };
4578
c63ae43b
MH
4579 /*
4580 * There are several places where we assume that the order value is sane
4581 * so bail out early if the request is out of bound.
4582 */
4583 if (unlikely(order >= MAX_ORDER)) {
4584 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4585 return NULL;
4586 }
4587
9cd75558 4588 gfp_mask &= gfp_allowed_mask;
f19360f0 4589 alloc_mask = gfp_mask;
04ec6264 4590 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4591 return NULL;
4592
a380b40a 4593 finalise_ac(gfp_mask, &ac);
5bb1b169 4594
6bb15450
MG
4595 /*
4596 * Forbid the first pass from falling back to types that fragment
4597 * memory until all local zones are considered.
4598 */
0a79cdad 4599 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4600
5117f45d 4601 /* First allocation attempt */
a9263751 4602 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4603 if (likely(page))
4604 goto out;
11e33f6a 4605
4fcb0971 4606 /*
7dea19f9
MH
4607 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4608 * resp. GFP_NOIO which has to be inherited for all allocation requests
4609 * from a particular context which has been marked by
4610 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4611 */
7dea19f9 4612 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4613 ac.spread_dirty_pages = false;
23f086f9 4614
4741526b
MG
4615 /*
4616 * Restore the original nodemask if it was potentially replaced with
4617 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4618 */
e47483bc 4619 if (unlikely(ac.nodemask != nodemask))
4741526b 4620 ac.nodemask = nodemask;
16096c25 4621
4fcb0971 4622 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4623
4fcb0971 4624out:
c4159a75 4625 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
60cd4bcd 4626 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
c4159a75
VD
4627 __free_pages(page, order);
4628 page = NULL;
4949148a
VD
4629 }
4630
4fcb0971
MG
4631 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4632
11e33f6a 4633 return page;
1da177e4 4634}
d239171e 4635EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4636
4637/*
9ea9a680
MH
4638 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4639 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4640 * you need to access high mem.
1da177e4 4641 */
920c7a5d 4642unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4643{
945a1113
AM
4644 struct page *page;
4645
9ea9a680 4646 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4647 if (!page)
4648 return 0;
4649 return (unsigned long) page_address(page);
4650}
1da177e4
LT
4651EXPORT_SYMBOL(__get_free_pages);
4652
920c7a5d 4653unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4654{
945a1113 4655 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4656}
1da177e4
LT
4657EXPORT_SYMBOL(get_zeroed_page);
4658
742aa7fb 4659static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4660{
742aa7fb
AL
4661 if (order == 0) /* Via pcp? */
4662 free_unref_page(page);
4663 else
4664 __free_pages_ok(page, order);
1da177e4
LT
4665}
4666
742aa7fb
AL
4667void __free_pages(struct page *page, unsigned int order)
4668{
4669 if (put_page_testzero(page))
4670 free_the_page(page, order);
4671}
1da177e4
LT
4672EXPORT_SYMBOL(__free_pages);
4673
920c7a5d 4674void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4675{
4676 if (addr != 0) {
725d704e 4677 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4678 __free_pages(virt_to_page((void *)addr), order);
4679 }
4680}
4681
4682EXPORT_SYMBOL(free_pages);
4683
b63ae8ca
AD
4684/*
4685 * Page Fragment:
4686 * An arbitrary-length arbitrary-offset area of memory which resides
4687 * within a 0 or higher order page. Multiple fragments within that page
4688 * are individually refcounted, in the page's reference counter.
4689 *
4690 * The page_frag functions below provide a simple allocation framework for
4691 * page fragments. This is used by the network stack and network device
4692 * drivers to provide a backing region of memory for use as either an
4693 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4694 */
2976db80
AD
4695static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4696 gfp_t gfp_mask)
b63ae8ca
AD
4697{
4698 struct page *page = NULL;
4699 gfp_t gfp = gfp_mask;
4700
4701#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4702 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4703 __GFP_NOMEMALLOC;
4704 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4705 PAGE_FRAG_CACHE_MAX_ORDER);
4706 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4707#endif
4708 if (unlikely(!page))
4709 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4710
4711 nc->va = page ? page_address(page) : NULL;
4712
4713 return page;
4714}
4715
2976db80 4716void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4717{
4718 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4719
742aa7fb
AL
4720 if (page_ref_sub_and_test(page, count))
4721 free_the_page(page, compound_order(page));
44fdffd7 4722}
2976db80 4723EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4724
8c2dd3e4
AD
4725void *page_frag_alloc(struct page_frag_cache *nc,
4726 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4727{
4728 unsigned int size = PAGE_SIZE;
4729 struct page *page;
4730 int offset;
4731
4732 if (unlikely(!nc->va)) {
4733refill:
2976db80 4734 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4735 if (!page)
4736 return NULL;
4737
4738#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4739 /* if size can vary use size else just use PAGE_SIZE */
4740 size = nc->size;
4741#endif
4742 /* Even if we own the page, we do not use atomic_set().
4743 * This would break get_page_unless_zero() users.
4744 */
86447726 4745 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4746
4747 /* reset page count bias and offset to start of new frag */
2f064f34 4748 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4749 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4750 nc->offset = size;
4751 }
4752
4753 offset = nc->offset - fragsz;
4754 if (unlikely(offset < 0)) {
4755 page = virt_to_page(nc->va);
4756
fe896d18 4757 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4758 goto refill;
4759
4760#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4761 /* if size can vary use size else just use PAGE_SIZE */
4762 size = nc->size;
4763#endif
4764 /* OK, page count is 0, we can safely set it */
86447726 4765 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4766
4767 /* reset page count bias and offset to start of new frag */
86447726 4768 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4769 offset = size - fragsz;
4770 }
4771
4772 nc->pagecnt_bias--;
4773 nc->offset = offset;
4774
4775 return nc->va + offset;
4776}
8c2dd3e4 4777EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4778
4779/*
4780 * Frees a page fragment allocated out of either a compound or order 0 page.
4781 */
8c2dd3e4 4782void page_frag_free(void *addr)
b63ae8ca
AD
4783{
4784 struct page *page = virt_to_head_page(addr);
4785
742aa7fb
AL
4786 if (unlikely(put_page_testzero(page)))
4787 free_the_page(page, compound_order(page));
b63ae8ca 4788}
8c2dd3e4 4789EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4790
d00181b9
KS
4791static void *make_alloc_exact(unsigned long addr, unsigned int order,
4792 size_t size)
ee85c2e1
AK
4793{
4794 if (addr) {
4795 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4796 unsigned long used = addr + PAGE_ALIGN(size);
4797
4798 split_page(virt_to_page((void *)addr), order);
4799 while (used < alloc_end) {
4800 free_page(used);
4801 used += PAGE_SIZE;
4802 }
4803 }
4804 return (void *)addr;
4805}
4806
2be0ffe2
TT
4807/**
4808 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4809 * @size: the number of bytes to allocate
4810 * @gfp_mask: GFP flags for the allocation
4811 *
4812 * This function is similar to alloc_pages(), except that it allocates the
4813 * minimum number of pages to satisfy the request. alloc_pages() can only
4814 * allocate memory in power-of-two pages.
4815 *
4816 * This function is also limited by MAX_ORDER.
4817 *
4818 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
4819 *
4820 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
4821 */
4822void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4823{
4824 unsigned int order = get_order(size);
4825 unsigned long addr;
4826
4827 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4828 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4829}
4830EXPORT_SYMBOL(alloc_pages_exact);
4831
ee85c2e1
AK
4832/**
4833 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4834 * pages on a node.
b5e6ab58 4835 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4836 * @size: the number of bytes to allocate
4837 * @gfp_mask: GFP flags for the allocation
4838 *
4839 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4840 * back.
a862f68a
MR
4841 *
4842 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 4843 */
e1931811 4844void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4845{
d00181b9 4846 unsigned int order = get_order(size);
ee85c2e1
AK
4847 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4848 if (!p)
4849 return NULL;
4850 return make_alloc_exact((unsigned long)page_address(p), order, size);
4851}
ee85c2e1 4852
2be0ffe2
TT
4853/**
4854 * free_pages_exact - release memory allocated via alloc_pages_exact()
4855 * @virt: the value returned by alloc_pages_exact.
4856 * @size: size of allocation, same value as passed to alloc_pages_exact().
4857 *
4858 * Release the memory allocated by a previous call to alloc_pages_exact.
4859 */
4860void free_pages_exact(void *virt, size_t size)
4861{
4862 unsigned long addr = (unsigned long)virt;
4863 unsigned long end = addr + PAGE_ALIGN(size);
4864
4865 while (addr < end) {
4866 free_page(addr);
4867 addr += PAGE_SIZE;
4868 }
4869}
4870EXPORT_SYMBOL(free_pages_exact);
4871
e0fb5815
ZY
4872/**
4873 * nr_free_zone_pages - count number of pages beyond high watermark
4874 * @offset: The zone index of the highest zone
4875 *
a862f68a 4876 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
4877 * high watermark within all zones at or below a given zone index. For each
4878 * zone, the number of pages is calculated as:
0e056eb5
MCC
4879 *
4880 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
4881 *
4882 * Return: number of pages beyond high watermark.
e0fb5815 4883 */
ebec3862 4884static unsigned long nr_free_zone_pages(int offset)
1da177e4 4885{
dd1a239f 4886 struct zoneref *z;
54a6eb5c
MG
4887 struct zone *zone;
4888
e310fd43 4889 /* Just pick one node, since fallback list is circular */
ebec3862 4890 unsigned long sum = 0;
1da177e4 4891
0e88460d 4892 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4893
54a6eb5c 4894 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 4895 unsigned long size = zone_managed_pages(zone);
41858966 4896 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4897 if (size > high)
4898 sum += size - high;
1da177e4
LT
4899 }
4900
4901 return sum;
4902}
4903
e0fb5815
ZY
4904/**
4905 * nr_free_buffer_pages - count number of pages beyond high watermark
4906 *
4907 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4908 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
4909 *
4910 * Return: number of pages beyond high watermark within ZONE_DMA and
4911 * ZONE_NORMAL.
1da177e4 4912 */
ebec3862 4913unsigned long nr_free_buffer_pages(void)
1da177e4 4914{
af4ca457 4915 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4916}
c2f1a551 4917EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4918
e0fb5815
ZY
4919/**
4920 * nr_free_pagecache_pages - count number of pages beyond high watermark
4921 *
4922 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4923 * high watermark within all zones.
a862f68a
MR
4924 *
4925 * Return: number of pages beyond high watermark within all zones.
1da177e4 4926 */
ebec3862 4927unsigned long nr_free_pagecache_pages(void)
1da177e4 4928{
2a1e274a 4929 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4930}
08e0f6a9
CL
4931
4932static inline void show_node(struct zone *zone)
1da177e4 4933{
e5adfffc 4934 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4935 printk("Node %d ", zone_to_nid(zone));
1da177e4 4936}
1da177e4 4937
d02bd27b
IR
4938long si_mem_available(void)
4939{
4940 long available;
4941 unsigned long pagecache;
4942 unsigned long wmark_low = 0;
4943 unsigned long pages[NR_LRU_LISTS];
b29940c1 4944 unsigned long reclaimable;
d02bd27b
IR
4945 struct zone *zone;
4946 int lru;
4947
4948 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4949 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4950
4951 for_each_zone(zone)
a9214443 4952 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
4953
4954 /*
4955 * Estimate the amount of memory available for userspace allocations,
4956 * without causing swapping.
4957 */
c41f012a 4958 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4959
4960 /*
4961 * Not all the page cache can be freed, otherwise the system will
4962 * start swapping. Assume at least half of the page cache, or the
4963 * low watermark worth of cache, needs to stay.
4964 */
4965 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4966 pagecache -= min(pagecache / 2, wmark_low);
4967 available += pagecache;
4968
4969 /*
b29940c1
VB
4970 * Part of the reclaimable slab and other kernel memory consists of
4971 * items that are in use, and cannot be freed. Cap this estimate at the
4972 * low watermark.
d02bd27b 4973 */
b29940c1
VB
4974 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4975 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4976 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 4977
d02bd27b
IR
4978 if (available < 0)
4979 available = 0;
4980 return available;
4981}
4982EXPORT_SYMBOL_GPL(si_mem_available);
4983
1da177e4
LT
4984void si_meminfo(struct sysinfo *val)
4985{
ca79b0c2 4986 val->totalram = totalram_pages();
11fb9989 4987 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4988 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4989 val->bufferram = nr_blockdev_pages();
ca79b0c2 4990 val->totalhigh = totalhigh_pages();
1da177e4 4991 val->freehigh = nr_free_highpages();
1da177e4
LT
4992 val->mem_unit = PAGE_SIZE;
4993}
4994
4995EXPORT_SYMBOL(si_meminfo);
4996
4997#ifdef CONFIG_NUMA
4998void si_meminfo_node(struct sysinfo *val, int nid)
4999{
cdd91a77
JL
5000 int zone_type; /* needs to be signed */
5001 unsigned long managed_pages = 0;
fc2bd799
JK
5002 unsigned long managed_highpages = 0;
5003 unsigned long free_highpages = 0;
1da177e4
LT
5004 pg_data_t *pgdat = NODE_DATA(nid);
5005
cdd91a77 5006 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5007 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5008 val->totalram = managed_pages;
11fb9989 5009 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5010 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5011#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5012 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5013 struct zone *zone = &pgdat->node_zones[zone_type];
5014
5015 if (is_highmem(zone)) {
9705bea5 5016 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5017 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5018 }
5019 }
5020 val->totalhigh = managed_highpages;
5021 val->freehigh = free_highpages;
98d2b0eb 5022#else
fc2bd799
JK
5023 val->totalhigh = managed_highpages;
5024 val->freehigh = free_highpages;
98d2b0eb 5025#endif
1da177e4
LT
5026 val->mem_unit = PAGE_SIZE;
5027}
5028#endif
5029
ddd588b5 5030/*
7bf02ea2
DR
5031 * Determine whether the node should be displayed or not, depending on whether
5032 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5033 */
9af744d7 5034static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5035{
ddd588b5 5036 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5037 return false;
ddd588b5 5038
9af744d7
MH
5039 /*
5040 * no node mask - aka implicit memory numa policy. Do not bother with
5041 * the synchronization - read_mems_allowed_begin - because we do not
5042 * have to be precise here.
5043 */
5044 if (!nodemask)
5045 nodemask = &cpuset_current_mems_allowed;
5046
5047 return !node_isset(nid, *nodemask);
ddd588b5
DR
5048}
5049
1da177e4
LT
5050#define K(x) ((x) << (PAGE_SHIFT-10))
5051
377e4f16
RV
5052static void show_migration_types(unsigned char type)
5053{
5054 static const char types[MIGRATE_TYPES] = {
5055 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5056 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5057 [MIGRATE_RECLAIMABLE] = 'E',
5058 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5059#ifdef CONFIG_CMA
5060 [MIGRATE_CMA] = 'C',
5061#endif
194159fb 5062#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5063 [MIGRATE_ISOLATE] = 'I',
194159fb 5064#endif
377e4f16
RV
5065 };
5066 char tmp[MIGRATE_TYPES + 1];
5067 char *p = tmp;
5068 int i;
5069
5070 for (i = 0; i < MIGRATE_TYPES; i++) {
5071 if (type & (1 << i))
5072 *p++ = types[i];
5073 }
5074
5075 *p = '\0';
1f84a18f 5076 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5077}
5078
1da177e4
LT
5079/*
5080 * Show free area list (used inside shift_scroll-lock stuff)
5081 * We also calculate the percentage fragmentation. We do this by counting the
5082 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5083 *
5084 * Bits in @filter:
5085 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5086 * cpuset.
1da177e4 5087 */
9af744d7 5088void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5089{
d1bfcdb8 5090 unsigned long free_pcp = 0;
c7241913 5091 int cpu;
1da177e4 5092 struct zone *zone;
599d0c95 5093 pg_data_t *pgdat;
1da177e4 5094
ee99c71c 5095 for_each_populated_zone(zone) {
9af744d7 5096 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5097 continue;
d1bfcdb8 5098
761b0677
KK
5099 for_each_online_cpu(cpu)
5100 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5101 }
5102
a731286d
KM
5103 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5104 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
5105 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5106 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5107 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5108 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5109 global_node_page_state(NR_ACTIVE_ANON),
5110 global_node_page_state(NR_INACTIVE_ANON),
5111 global_node_page_state(NR_ISOLATED_ANON),
5112 global_node_page_state(NR_ACTIVE_FILE),
5113 global_node_page_state(NR_INACTIVE_FILE),
5114 global_node_page_state(NR_ISOLATED_FILE),
5115 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5116 global_node_page_state(NR_FILE_DIRTY),
5117 global_node_page_state(NR_WRITEBACK),
5118 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
5119 global_node_page_state(NR_SLAB_RECLAIMABLE),
5120 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 5121 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5122 global_node_page_state(NR_SHMEM),
c41f012a
MH
5123 global_zone_page_state(NR_PAGETABLE),
5124 global_zone_page_state(NR_BOUNCE),
5125 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5126 free_pcp,
c41f012a 5127 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5128
599d0c95 5129 for_each_online_pgdat(pgdat) {
9af744d7 5130 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5131 continue;
5132
599d0c95
MG
5133 printk("Node %d"
5134 " active_anon:%lukB"
5135 " inactive_anon:%lukB"
5136 " active_file:%lukB"
5137 " inactive_file:%lukB"
5138 " unevictable:%lukB"
5139 " isolated(anon):%lukB"
5140 " isolated(file):%lukB"
50658e2e 5141 " mapped:%lukB"
11fb9989
MG
5142 " dirty:%lukB"
5143 " writeback:%lukB"
5144 " shmem:%lukB"
5145#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5146 " shmem_thp: %lukB"
5147 " shmem_pmdmapped: %lukB"
5148 " anon_thp: %lukB"
5149#endif
5150 " writeback_tmp:%lukB"
5151 " unstable:%lukB"
599d0c95
MG
5152 " all_unreclaimable? %s"
5153 "\n",
5154 pgdat->node_id,
5155 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5156 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5157 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5158 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5159 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5160 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5161 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5162 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5163 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5164 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5165 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5166#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5167 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5168 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5169 * HPAGE_PMD_NR),
5170 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5171#endif
11fb9989
MG
5172 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5173 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
5174 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5175 "yes" : "no");
599d0c95
MG
5176 }
5177
ee99c71c 5178 for_each_populated_zone(zone) {
1da177e4
LT
5179 int i;
5180
9af744d7 5181 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5182 continue;
d1bfcdb8
KK
5183
5184 free_pcp = 0;
5185 for_each_online_cpu(cpu)
5186 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5187
1da177e4 5188 show_node(zone);
1f84a18f
JP
5189 printk(KERN_CONT
5190 "%s"
1da177e4
LT
5191 " free:%lukB"
5192 " min:%lukB"
5193 " low:%lukB"
5194 " high:%lukB"
71c799f4
MK
5195 " active_anon:%lukB"
5196 " inactive_anon:%lukB"
5197 " active_file:%lukB"
5198 " inactive_file:%lukB"
5199 " unevictable:%lukB"
5a1c84b4 5200 " writepending:%lukB"
1da177e4 5201 " present:%lukB"
9feedc9d 5202 " managed:%lukB"
4a0aa73f 5203 " mlocked:%lukB"
c6a7f572 5204 " kernel_stack:%lukB"
4a0aa73f 5205 " pagetables:%lukB"
4a0aa73f 5206 " bounce:%lukB"
d1bfcdb8
KK
5207 " free_pcp:%lukB"
5208 " local_pcp:%ukB"
d1ce749a 5209 " free_cma:%lukB"
1da177e4
LT
5210 "\n",
5211 zone->name,
88f5acf8 5212 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5213 K(min_wmark_pages(zone)),
5214 K(low_wmark_pages(zone)),
5215 K(high_wmark_pages(zone)),
71c799f4
MK
5216 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5217 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5218 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5219 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5220 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5221 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5222 K(zone->present_pages),
9705bea5 5223 K(zone_managed_pages(zone)),
4a0aa73f 5224 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5225 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 5226 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5227 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5228 K(free_pcp),
5229 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5230 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5231 printk("lowmem_reserve[]:");
5232 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5233 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5234 printk(KERN_CONT "\n");
1da177e4
LT
5235 }
5236
ee99c71c 5237 for_each_populated_zone(zone) {
d00181b9
KS
5238 unsigned int order;
5239 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5240 unsigned char types[MAX_ORDER];
1da177e4 5241
9af744d7 5242 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5243 continue;
1da177e4 5244 show_node(zone);
1f84a18f 5245 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5246
5247 spin_lock_irqsave(&zone->lock, flags);
5248 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5249 struct free_area *area = &zone->free_area[order];
5250 int type;
5251
5252 nr[order] = area->nr_free;
8f9de51a 5253 total += nr[order] << order;
377e4f16
RV
5254
5255 types[order] = 0;
5256 for (type = 0; type < MIGRATE_TYPES; type++) {
5257 if (!list_empty(&area->free_list[type]))
5258 types[order] |= 1 << type;
5259 }
1da177e4
LT
5260 }
5261 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5262 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5263 printk(KERN_CONT "%lu*%lukB ",
5264 nr[order], K(1UL) << order);
377e4f16
RV
5265 if (nr[order])
5266 show_migration_types(types[order]);
5267 }
1f84a18f 5268 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5269 }
5270
949f7ec5
DR
5271 hugetlb_show_meminfo();
5272
11fb9989 5273 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5274
1da177e4
LT
5275 show_swap_cache_info();
5276}
5277
19770b32
MG
5278static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5279{
5280 zoneref->zone = zone;
5281 zoneref->zone_idx = zone_idx(zone);
5282}
5283
1da177e4
LT
5284/*
5285 * Builds allocation fallback zone lists.
1a93205b
CL
5286 *
5287 * Add all populated zones of a node to the zonelist.
1da177e4 5288 */
9d3be21b 5289static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5290{
1a93205b 5291 struct zone *zone;
bc732f1d 5292 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5293 int nr_zones = 0;
02a68a5e
CL
5294
5295 do {
2f6726e5 5296 zone_type--;
070f8032 5297 zone = pgdat->node_zones + zone_type;
6aa303de 5298 if (managed_zone(zone)) {
9d3be21b 5299 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5300 check_highest_zone(zone_type);
1da177e4 5301 }
2f6726e5 5302 } while (zone_type);
bc732f1d 5303
070f8032 5304 return nr_zones;
1da177e4
LT
5305}
5306
5307#ifdef CONFIG_NUMA
f0c0b2b8
KH
5308
5309static int __parse_numa_zonelist_order(char *s)
5310{
c9bff3ee
MH
5311 /*
5312 * We used to support different zonlists modes but they turned
5313 * out to be just not useful. Let's keep the warning in place
5314 * if somebody still use the cmd line parameter so that we do
5315 * not fail it silently
5316 */
5317 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5318 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5319 return -EINVAL;
5320 }
5321 return 0;
5322}
5323
5324static __init int setup_numa_zonelist_order(char *s)
5325{
ecb256f8
VL
5326 if (!s)
5327 return 0;
5328
c9bff3ee 5329 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5330}
5331early_param("numa_zonelist_order", setup_numa_zonelist_order);
5332
c9bff3ee
MH
5333char numa_zonelist_order[] = "Node";
5334
f0c0b2b8
KH
5335/*
5336 * sysctl handler for numa_zonelist_order
5337 */
cccad5b9 5338int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5339 void __user *buffer, size_t *length,
f0c0b2b8
KH
5340 loff_t *ppos)
5341{
c9bff3ee 5342 char *str;
f0c0b2b8
KH
5343 int ret;
5344
c9bff3ee
MH
5345 if (!write)
5346 return proc_dostring(table, write, buffer, length, ppos);
5347 str = memdup_user_nul(buffer, 16);
5348 if (IS_ERR(str))
5349 return PTR_ERR(str);
dacbde09 5350
c9bff3ee
MH
5351 ret = __parse_numa_zonelist_order(str);
5352 kfree(str);
443c6f14 5353 return ret;
f0c0b2b8
KH
5354}
5355
5356
62bc62a8 5357#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5358static int node_load[MAX_NUMNODES];
5359
1da177e4 5360/**
4dc3b16b 5361 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5362 * @node: node whose fallback list we're appending
5363 * @used_node_mask: nodemask_t of already used nodes
5364 *
5365 * We use a number of factors to determine which is the next node that should
5366 * appear on a given node's fallback list. The node should not have appeared
5367 * already in @node's fallback list, and it should be the next closest node
5368 * according to the distance array (which contains arbitrary distance values
5369 * from each node to each node in the system), and should also prefer nodes
5370 * with no CPUs, since presumably they'll have very little allocation pressure
5371 * on them otherwise.
a862f68a
MR
5372 *
5373 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5374 */
f0c0b2b8 5375static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5376{
4cf808eb 5377 int n, val;
1da177e4 5378 int min_val = INT_MAX;
00ef2d2f 5379 int best_node = NUMA_NO_NODE;
a70f7302 5380 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5381
4cf808eb
LT
5382 /* Use the local node if we haven't already */
5383 if (!node_isset(node, *used_node_mask)) {
5384 node_set(node, *used_node_mask);
5385 return node;
5386 }
1da177e4 5387
4b0ef1fe 5388 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5389
5390 /* Don't want a node to appear more than once */
5391 if (node_isset(n, *used_node_mask))
5392 continue;
5393
1da177e4
LT
5394 /* Use the distance array to find the distance */
5395 val = node_distance(node, n);
5396
4cf808eb
LT
5397 /* Penalize nodes under us ("prefer the next node") */
5398 val += (n < node);
5399
1da177e4 5400 /* Give preference to headless and unused nodes */
a70f7302
RR
5401 tmp = cpumask_of_node(n);
5402 if (!cpumask_empty(tmp))
1da177e4
LT
5403 val += PENALTY_FOR_NODE_WITH_CPUS;
5404
5405 /* Slight preference for less loaded node */
5406 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5407 val += node_load[n];
5408
5409 if (val < min_val) {
5410 min_val = val;
5411 best_node = n;
5412 }
5413 }
5414
5415 if (best_node >= 0)
5416 node_set(best_node, *used_node_mask);
5417
5418 return best_node;
5419}
5420
f0c0b2b8
KH
5421
5422/*
5423 * Build zonelists ordered by node and zones within node.
5424 * This results in maximum locality--normal zone overflows into local
5425 * DMA zone, if any--but risks exhausting DMA zone.
5426 */
9d3be21b
MH
5427static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5428 unsigned nr_nodes)
1da177e4 5429{
9d3be21b
MH
5430 struct zoneref *zonerefs;
5431 int i;
5432
5433 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5434
5435 for (i = 0; i < nr_nodes; i++) {
5436 int nr_zones;
5437
5438 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5439
9d3be21b
MH
5440 nr_zones = build_zonerefs_node(node, zonerefs);
5441 zonerefs += nr_zones;
5442 }
5443 zonerefs->zone = NULL;
5444 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5445}
5446
523b9458
CL
5447/*
5448 * Build gfp_thisnode zonelists
5449 */
5450static void build_thisnode_zonelists(pg_data_t *pgdat)
5451{
9d3be21b
MH
5452 struct zoneref *zonerefs;
5453 int nr_zones;
523b9458 5454
9d3be21b
MH
5455 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5456 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5457 zonerefs += nr_zones;
5458 zonerefs->zone = NULL;
5459 zonerefs->zone_idx = 0;
523b9458
CL
5460}
5461
f0c0b2b8
KH
5462/*
5463 * Build zonelists ordered by zone and nodes within zones.
5464 * This results in conserving DMA zone[s] until all Normal memory is
5465 * exhausted, but results in overflowing to remote node while memory
5466 * may still exist in local DMA zone.
5467 */
f0c0b2b8 5468
f0c0b2b8
KH
5469static void build_zonelists(pg_data_t *pgdat)
5470{
9d3be21b
MH
5471 static int node_order[MAX_NUMNODES];
5472 int node, load, nr_nodes = 0;
1da177e4 5473 nodemask_t used_mask;
f0c0b2b8 5474 int local_node, prev_node;
1da177e4
LT
5475
5476 /* NUMA-aware ordering of nodes */
5477 local_node = pgdat->node_id;
62bc62a8 5478 load = nr_online_nodes;
1da177e4
LT
5479 prev_node = local_node;
5480 nodes_clear(used_mask);
f0c0b2b8 5481
f0c0b2b8 5482 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5483 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5484 /*
5485 * We don't want to pressure a particular node.
5486 * So adding penalty to the first node in same
5487 * distance group to make it round-robin.
5488 */
957f822a
DR
5489 if (node_distance(local_node, node) !=
5490 node_distance(local_node, prev_node))
f0c0b2b8
KH
5491 node_load[node] = load;
5492
9d3be21b 5493 node_order[nr_nodes++] = node;
1da177e4
LT
5494 prev_node = node;
5495 load--;
1da177e4 5496 }
523b9458 5497
9d3be21b 5498 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5499 build_thisnode_zonelists(pgdat);
1da177e4
LT
5500}
5501
7aac7898
LS
5502#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5503/*
5504 * Return node id of node used for "local" allocations.
5505 * I.e., first node id of first zone in arg node's generic zonelist.
5506 * Used for initializing percpu 'numa_mem', which is used primarily
5507 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5508 */
5509int local_memory_node(int node)
5510{
c33d6c06 5511 struct zoneref *z;
7aac7898 5512
c33d6c06 5513 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5514 gfp_zone(GFP_KERNEL),
c33d6c06 5515 NULL);
c1093b74 5516 return zone_to_nid(z->zone);
7aac7898
LS
5517}
5518#endif
f0c0b2b8 5519
6423aa81
JK
5520static void setup_min_unmapped_ratio(void);
5521static void setup_min_slab_ratio(void);
1da177e4
LT
5522#else /* CONFIG_NUMA */
5523
f0c0b2b8 5524static void build_zonelists(pg_data_t *pgdat)
1da177e4 5525{
19655d34 5526 int node, local_node;
9d3be21b
MH
5527 struct zoneref *zonerefs;
5528 int nr_zones;
1da177e4
LT
5529
5530 local_node = pgdat->node_id;
1da177e4 5531
9d3be21b
MH
5532 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5533 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5534 zonerefs += nr_zones;
1da177e4 5535
54a6eb5c
MG
5536 /*
5537 * Now we build the zonelist so that it contains the zones
5538 * of all the other nodes.
5539 * We don't want to pressure a particular node, so when
5540 * building the zones for node N, we make sure that the
5541 * zones coming right after the local ones are those from
5542 * node N+1 (modulo N)
5543 */
5544 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5545 if (!node_online(node))
5546 continue;
9d3be21b
MH
5547 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5548 zonerefs += nr_zones;
1da177e4 5549 }
54a6eb5c
MG
5550 for (node = 0; node < local_node; node++) {
5551 if (!node_online(node))
5552 continue;
9d3be21b
MH
5553 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5554 zonerefs += nr_zones;
54a6eb5c
MG
5555 }
5556
9d3be21b
MH
5557 zonerefs->zone = NULL;
5558 zonerefs->zone_idx = 0;
1da177e4
LT
5559}
5560
5561#endif /* CONFIG_NUMA */
5562
99dcc3e5
CL
5563/*
5564 * Boot pageset table. One per cpu which is going to be used for all
5565 * zones and all nodes. The parameters will be set in such a way
5566 * that an item put on a list will immediately be handed over to
5567 * the buddy list. This is safe since pageset manipulation is done
5568 * with interrupts disabled.
5569 *
5570 * The boot_pagesets must be kept even after bootup is complete for
5571 * unused processors and/or zones. They do play a role for bootstrapping
5572 * hotplugged processors.
5573 *
5574 * zoneinfo_show() and maybe other functions do
5575 * not check if the processor is online before following the pageset pointer.
5576 * Other parts of the kernel may not check if the zone is available.
5577 */
5578static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5579static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5580static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5581
11cd8638 5582static void __build_all_zonelists(void *data)
1da177e4 5583{
6811378e 5584 int nid;
afb6ebb3 5585 int __maybe_unused cpu;
9adb62a5 5586 pg_data_t *self = data;
b93e0f32
MH
5587 static DEFINE_SPINLOCK(lock);
5588
5589 spin_lock(&lock);
9276b1bc 5590
7f9cfb31
BL
5591#ifdef CONFIG_NUMA
5592 memset(node_load, 0, sizeof(node_load));
5593#endif
9adb62a5 5594
c1152583
WY
5595 /*
5596 * This node is hotadded and no memory is yet present. So just
5597 * building zonelists is fine - no need to touch other nodes.
5598 */
9adb62a5
JL
5599 if (self && !node_online(self->node_id)) {
5600 build_zonelists(self);
c1152583
WY
5601 } else {
5602 for_each_online_node(nid) {
5603 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5604
c1152583
WY
5605 build_zonelists(pgdat);
5606 }
99dcc3e5 5607
7aac7898
LS
5608#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5609 /*
5610 * We now know the "local memory node" for each node--
5611 * i.e., the node of the first zone in the generic zonelist.
5612 * Set up numa_mem percpu variable for on-line cpus. During
5613 * boot, only the boot cpu should be on-line; we'll init the
5614 * secondary cpus' numa_mem as they come on-line. During
5615 * node/memory hotplug, we'll fixup all on-line cpus.
5616 */
d9c9a0b9 5617 for_each_online_cpu(cpu)
7aac7898 5618 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5619#endif
d9c9a0b9 5620 }
b93e0f32
MH
5621
5622 spin_unlock(&lock);
6811378e
YG
5623}
5624
061f67bc
RV
5625static noinline void __init
5626build_all_zonelists_init(void)
5627{
afb6ebb3
MH
5628 int cpu;
5629
061f67bc 5630 __build_all_zonelists(NULL);
afb6ebb3
MH
5631
5632 /*
5633 * Initialize the boot_pagesets that are going to be used
5634 * for bootstrapping processors. The real pagesets for
5635 * each zone will be allocated later when the per cpu
5636 * allocator is available.
5637 *
5638 * boot_pagesets are used also for bootstrapping offline
5639 * cpus if the system is already booted because the pagesets
5640 * are needed to initialize allocators on a specific cpu too.
5641 * F.e. the percpu allocator needs the page allocator which
5642 * needs the percpu allocator in order to allocate its pagesets
5643 * (a chicken-egg dilemma).
5644 */
5645 for_each_possible_cpu(cpu)
5646 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5647
061f67bc
RV
5648 mminit_verify_zonelist();
5649 cpuset_init_current_mems_allowed();
5650}
5651
4eaf3f64 5652/*
4eaf3f64 5653 * unless system_state == SYSTEM_BOOTING.
061f67bc 5654 *
72675e13 5655 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5656 * [protected by SYSTEM_BOOTING].
4eaf3f64 5657 */
72675e13 5658void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5659{
5660 if (system_state == SYSTEM_BOOTING) {
061f67bc 5661 build_all_zonelists_init();
6811378e 5662 } else {
11cd8638 5663 __build_all_zonelists(pgdat);
6811378e
YG
5664 /* cpuset refresh routine should be here */
5665 }
bd1e22b8 5666 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5667 /*
5668 * Disable grouping by mobility if the number of pages in the
5669 * system is too low to allow the mechanism to work. It would be
5670 * more accurate, but expensive to check per-zone. This check is
5671 * made on memory-hotadd so a system can start with mobility
5672 * disabled and enable it later
5673 */
d9c23400 5674 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5675 page_group_by_mobility_disabled = 1;
5676 else
5677 page_group_by_mobility_disabled = 0;
5678
ce0725f7 5679 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5680 nr_online_nodes,
756a025f
JP
5681 page_group_by_mobility_disabled ? "off" : "on",
5682 vm_total_pages);
f0c0b2b8 5683#ifdef CONFIG_NUMA
f88dfff5 5684 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5685#endif
1da177e4
LT
5686}
5687
a9a9e77f
PT
5688/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5689static bool __meminit
5690overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5691{
5692#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5693 static struct memblock_region *r;
5694
5695 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5696 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5697 for_each_memblock(memory, r) {
5698 if (*pfn < memblock_region_memory_end_pfn(r))
5699 break;
5700 }
5701 }
5702 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5703 memblock_is_mirror(r)) {
5704 *pfn = memblock_region_memory_end_pfn(r);
5705 return true;
5706 }
5707 }
5708#endif
5709 return false;
5710}
5711
1da177e4
LT
5712/*
5713 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5714 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5715 * done. Non-atomic initialization, single-pass.
5716 */
c09b4240 5717void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5718 unsigned long start_pfn, enum memmap_context context,
5719 struct vmem_altmap *altmap)
1da177e4 5720{
a9a9e77f 5721 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5722 struct page *page;
1da177e4 5723
22b31eec
HD
5724 if (highest_memmap_pfn < end_pfn - 1)
5725 highest_memmap_pfn = end_pfn - 1;
5726
966cf44f 5727#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5728 /*
5729 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5730 * memory. We limit the total number of pages to initialize to just
5731 * those that might contain the memory mapping. We will defer the
5732 * ZONE_DEVICE page initialization until after we have released
5733 * the hotplug lock.
4b94ffdc 5734 */
966cf44f
AD
5735 if (zone == ZONE_DEVICE) {
5736 if (!altmap)
5737 return;
5738
5739 if (start_pfn == altmap->base_pfn)
5740 start_pfn += altmap->reserve;
5741 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5742 }
5743#endif
4b94ffdc 5744
cbe8dd4a 5745 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5746 /*
b72d0ffb
AM
5747 * There can be holes in boot-time mem_map[]s handed to this
5748 * function. They do not exist on hotplugged memory.
a2f3aa02 5749 */
a9a9e77f
PT
5750 if (context == MEMMAP_EARLY) {
5751 if (!early_pfn_valid(pfn))
b72d0ffb 5752 continue;
a9a9e77f
PT
5753 if (!early_pfn_in_nid(pfn, nid))
5754 continue;
5755 if (overlap_memmap_init(zone, &pfn))
5756 continue;
5757 if (defer_init(nid, pfn, end_pfn))
5758 break;
a2f3aa02 5759 }
ac5d2539 5760
d0dc12e8
PT
5761 page = pfn_to_page(pfn);
5762 __init_single_page(page, pfn, zone, nid);
5763 if (context == MEMMAP_HOTPLUG)
d483da5b 5764 __SetPageReserved(page);
d0dc12e8 5765
ac5d2539
MG
5766 /*
5767 * Mark the block movable so that blocks are reserved for
5768 * movable at startup. This will force kernel allocations
5769 * to reserve their blocks rather than leaking throughout
5770 * the address space during boot when many long-lived
974a786e 5771 * kernel allocations are made.
ac5d2539
MG
5772 *
5773 * bitmap is created for zone's valid pfn range. but memmap
5774 * can be created for invalid pages (for alignment)
5775 * check here not to call set_pageblock_migratetype() against
5776 * pfn out of zone.
5777 */
5778 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5779 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5780 cond_resched();
ac5d2539 5781 }
1da177e4
LT
5782 }
5783}
5784
966cf44f
AD
5785#ifdef CONFIG_ZONE_DEVICE
5786void __ref memmap_init_zone_device(struct zone *zone,
5787 unsigned long start_pfn,
5788 unsigned long size,
5789 struct dev_pagemap *pgmap)
5790{
5791 unsigned long pfn, end_pfn = start_pfn + size;
5792 struct pglist_data *pgdat = zone->zone_pgdat;
5793 unsigned long zone_idx = zone_idx(zone);
5794 unsigned long start = jiffies;
5795 int nid = pgdat->node_id;
5796
5797 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5798 return;
5799
5800 /*
5801 * The call to memmap_init_zone should have already taken care
5802 * of the pages reserved for the memmap, so we can just jump to
5803 * the end of that region and start processing the device pages.
5804 */
5805 if (pgmap->altmap_valid) {
5806 struct vmem_altmap *altmap = &pgmap->altmap;
5807
5808 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5809 size = end_pfn - start_pfn;
5810 }
5811
5812 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5813 struct page *page = pfn_to_page(pfn);
5814
5815 __init_single_page(page, pfn, zone_idx, nid);
5816
5817 /*
5818 * Mark page reserved as it will need to wait for onlining
5819 * phase for it to be fully associated with a zone.
5820 *
5821 * We can use the non-atomic __set_bit operation for setting
5822 * the flag as we are still initializing the pages.
5823 */
5824 __SetPageReserved(page);
5825
5826 /*
5827 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5828 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5829 * page is ever freed or placed on a driver-private list.
5830 */
5831 page->pgmap = pgmap;
5832 page->hmm_data = 0;
5833
5834 /*
5835 * Mark the block movable so that blocks are reserved for
5836 * movable at startup. This will force kernel allocations
5837 * to reserve their blocks rather than leaking throughout
5838 * the address space during boot when many long-lived
5839 * kernel allocations are made.
5840 *
5841 * bitmap is created for zone's valid pfn range. but memmap
5842 * can be created for invalid pages (for alignment)
5843 * check here not to call set_pageblock_migratetype() against
5844 * pfn out of zone.
5845 *
5846 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5847 * because this is done early in sparse_add_one_section
5848 */
5849 if (!(pfn & (pageblock_nr_pages - 1))) {
5850 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5851 cond_resched();
5852 }
5853 }
5854
5855 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5856 size, jiffies_to_msecs(jiffies - start));
5857}
5858
5859#endif
1e548deb 5860static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5861{
7aeb09f9 5862 unsigned int order, t;
b2a0ac88
MG
5863 for_each_migratetype_order(order, t) {
5864 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5865 zone->free_area[order].nr_free = 0;
5866 }
5867}
5868
dfb3ccd0
PT
5869void __meminit __weak memmap_init(unsigned long size, int nid,
5870 unsigned long zone, unsigned long start_pfn)
5871{
5872 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5873}
1da177e4 5874
7cd2b0a3 5875static int zone_batchsize(struct zone *zone)
e7c8d5c9 5876{
3a6be87f 5877#ifdef CONFIG_MMU
e7c8d5c9
CL
5878 int batch;
5879
5880 /*
5881 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 5882 * size of the zone.
e7c8d5c9 5883 */
9705bea5 5884 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
5885 /* But no more than a meg. */
5886 if (batch * PAGE_SIZE > 1024 * 1024)
5887 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5888 batch /= 4; /* We effectively *= 4 below */
5889 if (batch < 1)
5890 batch = 1;
5891
5892 /*
0ceaacc9
NP
5893 * Clamp the batch to a 2^n - 1 value. Having a power
5894 * of 2 value was found to be more likely to have
5895 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5896 *
0ceaacc9
NP
5897 * For example if 2 tasks are alternately allocating
5898 * batches of pages, one task can end up with a lot
5899 * of pages of one half of the possible page colors
5900 * and the other with pages of the other colors.
e7c8d5c9 5901 */
9155203a 5902 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5903
e7c8d5c9 5904 return batch;
3a6be87f
DH
5905
5906#else
5907 /* The deferral and batching of frees should be suppressed under NOMMU
5908 * conditions.
5909 *
5910 * The problem is that NOMMU needs to be able to allocate large chunks
5911 * of contiguous memory as there's no hardware page translation to
5912 * assemble apparent contiguous memory from discontiguous pages.
5913 *
5914 * Queueing large contiguous runs of pages for batching, however,
5915 * causes the pages to actually be freed in smaller chunks. As there
5916 * can be a significant delay between the individual batches being
5917 * recycled, this leads to the once large chunks of space being
5918 * fragmented and becoming unavailable for high-order allocations.
5919 */
5920 return 0;
5921#endif
e7c8d5c9
CL
5922}
5923
8d7a8fa9
CS
5924/*
5925 * pcp->high and pcp->batch values are related and dependent on one another:
5926 * ->batch must never be higher then ->high.
5927 * The following function updates them in a safe manner without read side
5928 * locking.
5929 *
5930 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5931 * those fields changing asynchronously (acording the the above rule).
5932 *
5933 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5934 * outside of boot time (or some other assurance that no concurrent updaters
5935 * exist).
5936 */
5937static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5938 unsigned long batch)
5939{
5940 /* start with a fail safe value for batch */
5941 pcp->batch = 1;
5942 smp_wmb();
5943
5944 /* Update high, then batch, in order */
5945 pcp->high = high;
5946 smp_wmb();
5947
5948 pcp->batch = batch;
5949}
5950
3664033c 5951/* a companion to pageset_set_high() */
4008bab7
CS
5952static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5953{
8d7a8fa9 5954 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5955}
5956
88c90dbc 5957static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5958{
5959 struct per_cpu_pages *pcp;
5f8dcc21 5960 int migratetype;
2caaad41 5961
1c6fe946
MD
5962 memset(p, 0, sizeof(*p));
5963
3dfa5721 5964 pcp = &p->pcp;
5f8dcc21
MG
5965 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5966 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5967}
5968
88c90dbc
CS
5969static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5970{
5971 pageset_init(p);
5972 pageset_set_batch(p, batch);
5973}
5974
8ad4b1fb 5975/*
3664033c 5976 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5977 * to the value high for the pageset p.
5978 */
3664033c 5979static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5980 unsigned long high)
5981{
8d7a8fa9
CS
5982 unsigned long batch = max(1UL, high / 4);
5983 if ((high / 4) > (PAGE_SHIFT * 8))
5984 batch = PAGE_SHIFT * 8;
8ad4b1fb 5985
8d7a8fa9 5986 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5987}
5988
7cd2b0a3
DR
5989static void pageset_set_high_and_batch(struct zone *zone,
5990 struct per_cpu_pageset *pcp)
56cef2b8 5991{
56cef2b8 5992 if (percpu_pagelist_fraction)
3664033c 5993 pageset_set_high(pcp,
9705bea5 5994 (zone_managed_pages(zone) /
56cef2b8
CS
5995 percpu_pagelist_fraction));
5996 else
5997 pageset_set_batch(pcp, zone_batchsize(zone));
5998}
5999
169f6c19
CS
6000static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6001{
6002 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6003
6004 pageset_init(pcp);
6005 pageset_set_high_and_batch(zone, pcp);
6006}
6007
72675e13 6008void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6009{
6010 int cpu;
319774e2 6011 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6012 for_each_possible_cpu(cpu)
6013 zone_pageset_init(zone, cpu);
319774e2
WF
6014}
6015
2caaad41 6016/*
99dcc3e5
CL
6017 * Allocate per cpu pagesets and initialize them.
6018 * Before this call only boot pagesets were available.
e7c8d5c9 6019 */
99dcc3e5 6020void __init setup_per_cpu_pageset(void)
e7c8d5c9 6021{
b4911ea2 6022 struct pglist_data *pgdat;
99dcc3e5 6023 struct zone *zone;
e7c8d5c9 6024
319774e2
WF
6025 for_each_populated_zone(zone)
6026 setup_zone_pageset(zone);
b4911ea2
MG
6027
6028 for_each_online_pgdat(pgdat)
6029 pgdat->per_cpu_nodestats =
6030 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6031}
6032
c09b4240 6033static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6034{
99dcc3e5
CL
6035 /*
6036 * per cpu subsystem is not up at this point. The following code
6037 * relies on the ability of the linker to provide the
6038 * offset of a (static) per cpu variable into the per cpu area.
6039 */
6040 zone->pageset = &boot_pageset;
ed8ece2e 6041
b38a8725 6042 if (populated_zone(zone))
99dcc3e5
CL
6043 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6044 zone->name, zone->present_pages,
6045 zone_batchsize(zone));
ed8ece2e
DH
6046}
6047
dc0bbf3b 6048void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6049 unsigned long zone_start_pfn,
b171e409 6050 unsigned long size)
ed8ece2e
DH
6051{
6052 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6053 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6054
8f416836
WY
6055 if (zone_idx > pgdat->nr_zones)
6056 pgdat->nr_zones = zone_idx;
ed8ece2e 6057
ed8ece2e
DH
6058 zone->zone_start_pfn = zone_start_pfn;
6059
708614e6
MG
6060 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6061 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6062 pgdat->node_id,
6063 (unsigned long)zone_idx(zone),
6064 zone_start_pfn, (zone_start_pfn + size));
6065
1e548deb 6066 zone_init_free_lists(zone);
9dcb8b68 6067 zone->initialized = 1;
ed8ece2e
DH
6068}
6069
0ee332c1 6070#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 6071#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 6072
c713216d
MG
6073/*
6074 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 6075 */
8a942fde
MG
6076int __meminit __early_pfn_to_nid(unsigned long pfn,
6077 struct mminit_pfnnid_cache *state)
c713216d 6078{
c13291a5 6079 unsigned long start_pfn, end_pfn;
e76b63f8 6080 int nid;
7c243c71 6081
8a942fde
MG
6082 if (state->last_start <= pfn && pfn < state->last_end)
6083 return state->last_nid;
c713216d 6084
e76b63f8 6085 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
98fa15f3 6086 if (nid != NUMA_NO_NODE) {
8a942fde
MG
6087 state->last_start = start_pfn;
6088 state->last_end = end_pfn;
6089 state->last_nid = nid;
e76b63f8
YL
6090 }
6091
6092 return nid;
c713216d
MG
6093}
6094#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6095
c713216d 6096/**
6782832e 6097 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 6098 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 6099 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 6100 *
7d018176
ZZ
6101 * If an architecture guarantees that all ranges registered contain no holes
6102 * and may be freed, this this function may be used instead of calling
6103 * memblock_free_early_nid() manually.
c713216d 6104 */
c13291a5 6105void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 6106{
c13291a5
TH
6107 unsigned long start_pfn, end_pfn;
6108 int i, this_nid;
edbe7d23 6109
c13291a5
TH
6110 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6111 start_pfn = min(start_pfn, max_low_pfn);
6112 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 6113
c13291a5 6114 if (start_pfn < end_pfn)
6782832e
SS
6115 memblock_free_early_nid(PFN_PHYS(start_pfn),
6116 (end_pfn - start_pfn) << PAGE_SHIFT,
6117 this_nid);
edbe7d23 6118 }
edbe7d23 6119}
edbe7d23 6120
c713216d
MG
6121/**
6122 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 6123 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 6124 *
7d018176
ZZ
6125 * If an architecture guarantees that all ranges registered contain no holes and may
6126 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
6127 */
6128void __init sparse_memory_present_with_active_regions(int nid)
6129{
c13291a5
TH
6130 unsigned long start_pfn, end_pfn;
6131 int i, this_nid;
c713216d 6132
c13291a5
TH
6133 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6134 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
6135}
6136
6137/**
6138 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6139 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6140 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6141 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6142 *
6143 * It returns the start and end page frame of a node based on information
7d018176 6144 * provided by memblock_set_node(). If called for a node
c713216d 6145 * with no available memory, a warning is printed and the start and end
88ca3b94 6146 * PFNs will be 0.
c713216d 6147 */
bbe5d993 6148void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6149 unsigned long *start_pfn, unsigned long *end_pfn)
6150{
c13291a5 6151 unsigned long this_start_pfn, this_end_pfn;
c713216d 6152 int i;
c13291a5 6153
c713216d
MG
6154 *start_pfn = -1UL;
6155 *end_pfn = 0;
6156
c13291a5
TH
6157 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6158 *start_pfn = min(*start_pfn, this_start_pfn);
6159 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6160 }
6161
633c0666 6162 if (*start_pfn == -1UL)
c713216d 6163 *start_pfn = 0;
c713216d
MG
6164}
6165
2a1e274a
MG
6166/*
6167 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6168 * assumption is made that zones within a node are ordered in monotonic
6169 * increasing memory addresses so that the "highest" populated zone is used
6170 */
b69a7288 6171static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6172{
6173 int zone_index;
6174 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6175 if (zone_index == ZONE_MOVABLE)
6176 continue;
6177
6178 if (arch_zone_highest_possible_pfn[zone_index] >
6179 arch_zone_lowest_possible_pfn[zone_index])
6180 break;
6181 }
6182
6183 VM_BUG_ON(zone_index == -1);
6184 movable_zone = zone_index;
6185}
6186
6187/*
6188 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6189 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6190 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6191 * in each node depending on the size of each node and how evenly kernelcore
6192 * is distributed. This helper function adjusts the zone ranges
6193 * provided by the architecture for a given node by using the end of the
6194 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6195 * zones within a node are in order of monotonic increases memory addresses
6196 */
bbe5d993 6197static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6198 unsigned long zone_type,
6199 unsigned long node_start_pfn,
6200 unsigned long node_end_pfn,
6201 unsigned long *zone_start_pfn,
6202 unsigned long *zone_end_pfn)
6203{
6204 /* Only adjust if ZONE_MOVABLE is on this node */
6205 if (zone_movable_pfn[nid]) {
6206 /* Size ZONE_MOVABLE */
6207 if (zone_type == ZONE_MOVABLE) {
6208 *zone_start_pfn = zone_movable_pfn[nid];
6209 *zone_end_pfn = min(node_end_pfn,
6210 arch_zone_highest_possible_pfn[movable_zone]);
6211
e506b996
XQ
6212 /* Adjust for ZONE_MOVABLE starting within this range */
6213 } else if (!mirrored_kernelcore &&
6214 *zone_start_pfn < zone_movable_pfn[nid] &&
6215 *zone_end_pfn > zone_movable_pfn[nid]) {
6216 *zone_end_pfn = zone_movable_pfn[nid];
6217
2a1e274a
MG
6218 /* Check if this whole range is within ZONE_MOVABLE */
6219 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6220 *zone_start_pfn = *zone_end_pfn;
6221 }
6222}
6223
c713216d
MG
6224/*
6225 * Return the number of pages a zone spans in a node, including holes
6226 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6227 */
bbe5d993 6228static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6229 unsigned long zone_type,
7960aedd
ZY
6230 unsigned long node_start_pfn,
6231 unsigned long node_end_pfn,
d91749c1
TI
6232 unsigned long *zone_start_pfn,
6233 unsigned long *zone_end_pfn,
c713216d
MG
6234 unsigned long *ignored)
6235{
b5685e92 6236 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6237 if (!node_start_pfn && !node_end_pfn)
6238 return 0;
6239
7960aedd 6240 /* Get the start and end of the zone */
d91749c1
TI
6241 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6242 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
6243 adjust_zone_range_for_zone_movable(nid, zone_type,
6244 node_start_pfn, node_end_pfn,
d91749c1 6245 zone_start_pfn, zone_end_pfn);
c713216d
MG
6246
6247 /* Check that this node has pages within the zone's required range */
d91749c1 6248 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6249 return 0;
6250
6251 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6252 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6253 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6254
6255 /* Return the spanned pages */
d91749c1 6256 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6257}
6258
6259/*
6260 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6261 * then all holes in the requested range will be accounted for.
c713216d 6262 */
bbe5d993 6263unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6264 unsigned long range_start_pfn,
6265 unsigned long range_end_pfn)
6266{
96e907d1
TH
6267 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6268 unsigned long start_pfn, end_pfn;
6269 int i;
c713216d 6270
96e907d1
TH
6271 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6272 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6273 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6274 nr_absent -= end_pfn - start_pfn;
c713216d 6275 }
96e907d1 6276 return nr_absent;
c713216d
MG
6277}
6278
6279/**
6280 * absent_pages_in_range - Return number of page frames in holes within a range
6281 * @start_pfn: The start PFN to start searching for holes
6282 * @end_pfn: The end PFN to stop searching for holes
6283 *
a862f68a 6284 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6285 */
6286unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6287 unsigned long end_pfn)
6288{
6289 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6290}
6291
6292/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6293static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6294 unsigned long zone_type,
7960aedd
ZY
6295 unsigned long node_start_pfn,
6296 unsigned long node_end_pfn,
c713216d
MG
6297 unsigned long *ignored)
6298{
96e907d1
TH
6299 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6300 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6301 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6302 unsigned long nr_absent;
9c7cd687 6303
b5685e92 6304 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6305 if (!node_start_pfn && !node_end_pfn)
6306 return 0;
6307
96e907d1
TH
6308 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6309 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6310
2a1e274a
MG
6311 adjust_zone_range_for_zone_movable(nid, zone_type,
6312 node_start_pfn, node_end_pfn,
6313 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6314 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6315
6316 /*
6317 * ZONE_MOVABLE handling.
6318 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6319 * and vice versa.
6320 */
e506b996
XQ
6321 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6322 unsigned long start_pfn, end_pfn;
6323 struct memblock_region *r;
6324
6325 for_each_memblock(memory, r) {
6326 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6327 zone_start_pfn, zone_end_pfn);
6328 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6329 zone_start_pfn, zone_end_pfn);
6330
6331 if (zone_type == ZONE_MOVABLE &&
6332 memblock_is_mirror(r))
6333 nr_absent += end_pfn - start_pfn;
6334
6335 if (zone_type == ZONE_NORMAL &&
6336 !memblock_is_mirror(r))
6337 nr_absent += end_pfn - start_pfn;
342332e6
TI
6338 }
6339 }
6340
6341 return nr_absent;
c713216d 6342}
0e0b864e 6343
0ee332c1 6344#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
bbe5d993 6345static inline unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6346 unsigned long zone_type,
7960aedd
ZY
6347 unsigned long node_start_pfn,
6348 unsigned long node_end_pfn,
d91749c1
TI
6349 unsigned long *zone_start_pfn,
6350 unsigned long *zone_end_pfn,
c713216d
MG
6351 unsigned long *zones_size)
6352{
d91749c1
TI
6353 unsigned int zone;
6354
6355 *zone_start_pfn = node_start_pfn;
6356 for (zone = 0; zone < zone_type; zone++)
6357 *zone_start_pfn += zones_size[zone];
6358
6359 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6360
c713216d
MG
6361 return zones_size[zone_type];
6362}
6363
bbe5d993 6364static inline unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6365 unsigned long zone_type,
7960aedd
ZY
6366 unsigned long node_start_pfn,
6367 unsigned long node_end_pfn,
c713216d
MG
6368 unsigned long *zholes_size)
6369{
6370 if (!zholes_size)
6371 return 0;
6372
6373 return zholes_size[zone_type];
6374}
20e6926d 6375
0ee332c1 6376#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6377
bbe5d993 6378static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6379 unsigned long node_start_pfn,
6380 unsigned long node_end_pfn,
6381 unsigned long *zones_size,
6382 unsigned long *zholes_size)
c713216d 6383{
febd5949 6384 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6385 enum zone_type i;
6386
febd5949
GZ
6387 for (i = 0; i < MAX_NR_ZONES; i++) {
6388 struct zone *zone = pgdat->node_zones + i;
d91749c1 6389 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6390 unsigned long size, real_size;
c713216d 6391
febd5949
GZ
6392 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6393 node_start_pfn,
6394 node_end_pfn,
d91749c1
TI
6395 &zone_start_pfn,
6396 &zone_end_pfn,
febd5949
GZ
6397 zones_size);
6398 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6399 node_start_pfn, node_end_pfn,
6400 zholes_size);
d91749c1
TI
6401 if (size)
6402 zone->zone_start_pfn = zone_start_pfn;
6403 else
6404 zone->zone_start_pfn = 0;
febd5949
GZ
6405 zone->spanned_pages = size;
6406 zone->present_pages = real_size;
6407
6408 totalpages += size;
6409 realtotalpages += real_size;
6410 }
6411
6412 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6413 pgdat->node_present_pages = realtotalpages;
6414 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6415 realtotalpages);
6416}
6417
835c134e
MG
6418#ifndef CONFIG_SPARSEMEM
6419/*
6420 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6421 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6422 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6423 * round what is now in bits to nearest long in bits, then return it in
6424 * bytes.
6425 */
7c45512d 6426static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6427{
6428 unsigned long usemapsize;
6429
7c45512d 6430 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6431 usemapsize = roundup(zonesize, pageblock_nr_pages);
6432 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6433 usemapsize *= NR_PAGEBLOCK_BITS;
6434 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6435
6436 return usemapsize / 8;
6437}
6438
7cc2a959 6439static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6440 struct zone *zone,
6441 unsigned long zone_start_pfn,
6442 unsigned long zonesize)
835c134e 6443{
7c45512d 6444 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6445 zone->pageblock_flags = NULL;
23a7052a 6446 if (usemapsize) {
6782832e 6447 zone->pageblock_flags =
26fb3dae
MR
6448 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6449 pgdat->node_id);
23a7052a
MR
6450 if (!zone->pageblock_flags)
6451 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6452 usemapsize, zone->name, pgdat->node_id);
6453 }
835c134e
MG
6454}
6455#else
7c45512d
LT
6456static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6457 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6458#endif /* CONFIG_SPARSEMEM */
6459
d9c23400 6460#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6461
d9c23400 6462/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6463void __init set_pageblock_order(void)
d9c23400 6464{
955c1cd7
AM
6465 unsigned int order;
6466
d9c23400
MG
6467 /* Check that pageblock_nr_pages has not already been setup */
6468 if (pageblock_order)
6469 return;
6470
955c1cd7
AM
6471 if (HPAGE_SHIFT > PAGE_SHIFT)
6472 order = HUGETLB_PAGE_ORDER;
6473 else
6474 order = MAX_ORDER - 1;
6475
d9c23400
MG
6476 /*
6477 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6478 * This value may be variable depending on boot parameters on IA64 and
6479 * powerpc.
d9c23400
MG
6480 */
6481 pageblock_order = order;
6482}
6483#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6484
ba72cb8c
MG
6485/*
6486 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6487 * is unused as pageblock_order is set at compile-time. See
6488 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6489 * the kernel config
ba72cb8c 6490 */
03e85f9d 6491void __init set_pageblock_order(void)
ba72cb8c 6492{
ba72cb8c 6493}
d9c23400
MG
6494
6495#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6496
03e85f9d 6497static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6498 unsigned long present_pages)
01cefaef
JL
6499{
6500 unsigned long pages = spanned_pages;
6501
6502 /*
6503 * Provide a more accurate estimation if there are holes within
6504 * the zone and SPARSEMEM is in use. If there are holes within the
6505 * zone, each populated memory region may cost us one or two extra
6506 * memmap pages due to alignment because memmap pages for each
89d790ab 6507 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6508 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6509 */
6510 if (spanned_pages > present_pages + (present_pages >> 4) &&
6511 IS_ENABLED(CONFIG_SPARSEMEM))
6512 pages = present_pages;
6513
6514 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6515}
6516
ace1db39
OS
6517#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6518static void pgdat_init_split_queue(struct pglist_data *pgdat)
6519{
6520 spin_lock_init(&pgdat->split_queue_lock);
6521 INIT_LIST_HEAD(&pgdat->split_queue);
6522 pgdat->split_queue_len = 0;
6523}
6524#else
6525static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6526#endif
6527
6528#ifdef CONFIG_COMPACTION
6529static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6530{
6531 init_waitqueue_head(&pgdat->kcompactd_wait);
6532}
6533#else
6534static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6535#endif
6536
03e85f9d 6537static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6538{
208d54e5 6539 pgdat_resize_init(pgdat);
ace1db39 6540
ace1db39
OS
6541 pgdat_init_split_queue(pgdat);
6542 pgdat_init_kcompactd(pgdat);
6543
1da177e4 6544 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6545 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6546
eefa864b 6547 pgdat_page_ext_init(pgdat);
a52633d8 6548 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6549 lruvec_init(node_lruvec(pgdat));
03e85f9d
OS
6550}
6551
6552static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6553 unsigned long remaining_pages)
6554{
9705bea5 6555 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6556 zone_set_nid(zone, nid);
6557 zone->name = zone_names[idx];
6558 zone->zone_pgdat = NODE_DATA(nid);
6559 spin_lock_init(&zone->lock);
6560 zone_seqlock_init(zone);
6561 zone_pcp_init(zone);
6562}
6563
6564/*
6565 * Set up the zone data structures
6566 * - init pgdat internals
6567 * - init all zones belonging to this node
6568 *
6569 * NOTE: this function is only called during memory hotplug
6570 */
6571#ifdef CONFIG_MEMORY_HOTPLUG
6572void __ref free_area_init_core_hotplug(int nid)
6573{
6574 enum zone_type z;
6575 pg_data_t *pgdat = NODE_DATA(nid);
6576
6577 pgdat_init_internals(pgdat);
6578 for (z = 0; z < MAX_NR_ZONES; z++)
6579 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6580}
6581#endif
6582
6583/*
6584 * Set up the zone data structures:
6585 * - mark all pages reserved
6586 * - mark all memory queues empty
6587 * - clear the memory bitmaps
6588 *
6589 * NOTE: pgdat should get zeroed by caller.
6590 * NOTE: this function is only called during early init.
6591 */
6592static void __init free_area_init_core(struct pglist_data *pgdat)
6593{
6594 enum zone_type j;
6595 int nid = pgdat->node_id;
5f63b720 6596
03e85f9d 6597 pgdat_init_internals(pgdat);
385386cf
JW
6598 pgdat->per_cpu_nodestats = &boot_nodestats;
6599
1da177e4
LT
6600 for (j = 0; j < MAX_NR_ZONES; j++) {
6601 struct zone *zone = pgdat->node_zones + j;
e6943859 6602 unsigned long size, freesize, memmap_pages;
d91749c1 6603 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6604
febd5949 6605 size = zone->spanned_pages;
e6943859 6606 freesize = zone->present_pages;
1da177e4 6607
0e0b864e 6608 /*
9feedc9d 6609 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6610 * is used by this zone for memmap. This affects the watermark
6611 * and per-cpu initialisations
6612 */
e6943859 6613 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6614 if (!is_highmem_idx(j)) {
6615 if (freesize >= memmap_pages) {
6616 freesize -= memmap_pages;
6617 if (memmap_pages)
6618 printk(KERN_DEBUG
6619 " %s zone: %lu pages used for memmap\n",
6620 zone_names[j], memmap_pages);
6621 } else
1170532b 6622 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6623 zone_names[j], memmap_pages, freesize);
6624 }
0e0b864e 6625
6267276f 6626 /* Account for reserved pages */
9feedc9d
JL
6627 if (j == 0 && freesize > dma_reserve) {
6628 freesize -= dma_reserve;
d903ef9f 6629 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6630 zone_names[0], dma_reserve);
0e0b864e
MG
6631 }
6632
98d2b0eb 6633 if (!is_highmem_idx(j))
9feedc9d 6634 nr_kernel_pages += freesize;
01cefaef
JL
6635 /* Charge for highmem memmap if there are enough kernel pages */
6636 else if (nr_kernel_pages > memmap_pages * 2)
6637 nr_kernel_pages -= memmap_pages;
9feedc9d 6638 nr_all_pages += freesize;
1da177e4 6639
9feedc9d
JL
6640 /*
6641 * Set an approximate value for lowmem here, it will be adjusted
6642 * when the bootmem allocator frees pages into the buddy system.
6643 * And all highmem pages will be managed by the buddy system.
6644 */
03e85f9d 6645 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6646
d883c6cf 6647 if (!size)
1da177e4
LT
6648 continue;
6649
955c1cd7 6650 set_pageblock_order();
d883c6cf
JK
6651 setup_usemap(pgdat, zone, zone_start_pfn, size);
6652 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6653 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6654 }
6655}
6656
0cd842f9 6657#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6658static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6659{
b0aeba74 6660 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6661 unsigned long __maybe_unused offset = 0;
6662
1da177e4
LT
6663 /* Skip empty nodes */
6664 if (!pgdat->node_spanned_pages)
6665 return;
6666
b0aeba74
TL
6667 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6668 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6669 /* ia64 gets its own node_mem_map, before this, without bootmem */
6670 if (!pgdat->node_mem_map) {
b0aeba74 6671 unsigned long size, end;
d41dee36
AW
6672 struct page *map;
6673
e984bb43
BP
6674 /*
6675 * The zone's endpoints aren't required to be MAX_ORDER
6676 * aligned but the node_mem_map endpoints must be in order
6677 * for the buddy allocator to function correctly.
6678 */
108bcc96 6679 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6680 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6681 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6682 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6683 pgdat->node_id);
23a7052a
MR
6684 if (!map)
6685 panic("Failed to allocate %ld bytes for node %d memory map\n",
6686 size, pgdat->node_id);
a1c34a3b 6687 pgdat->node_mem_map = map + offset;
1da177e4 6688 }
0cd842f9
OS
6689 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6690 __func__, pgdat->node_id, (unsigned long)pgdat,
6691 (unsigned long)pgdat->node_mem_map);
12d810c1 6692#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6693 /*
6694 * With no DISCONTIG, the global mem_map is just set as node 0's
6695 */
c713216d 6696 if (pgdat == NODE_DATA(0)) {
1da177e4 6697 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6698#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6699 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6700 mem_map -= offset;
0ee332c1 6701#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6702 }
1da177e4
LT
6703#endif
6704}
0cd842f9
OS
6705#else
6706static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6707#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6708
0188dc98
OS
6709#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6710static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6711{
0188dc98
OS
6712 pgdat->first_deferred_pfn = ULONG_MAX;
6713}
6714#else
6715static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6716#endif
6717
03e85f9d 6718void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6719 unsigned long node_start_pfn,
6720 unsigned long *zholes_size)
1da177e4 6721{
9109fb7b 6722 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6723 unsigned long start_pfn = 0;
6724 unsigned long end_pfn = 0;
9109fb7b 6725
88fdf75d 6726 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6727 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6728
1da177e4
LT
6729 pgdat->node_id = nid;
6730 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6731 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6732#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6733 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6734 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6735 (u64)start_pfn << PAGE_SHIFT,
6736 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6737#else
6738 start_pfn = node_start_pfn;
7960aedd
ZY
6739#endif
6740 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6741 zones_size, zholes_size);
1da177e4
LT
6742
6743 alloc_node_mem_map(pgdat);
0188dc98 6744 pgdat_set_deferred_range(pgdat);
1da177e4 6745
7f3eb55b 6746 free_area_init_core(pgdat);
1da177e4
LT
6747}
6748
aca52c39 6749#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f
PT
6750/*
6751 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6752 * pages zeroed
6753 */
6754static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6755{
6756 unsigned long pfn;
6757 u64 pgcnt = 0;
6758
6759 for (pfn = spfn; pfn < epfn; pfn++) {
6760 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6761 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6762 + pageblock_nr_pages - 1;
6763 continue;
6764 }
6765 mm_zero_struct_page(pfn_to_page(pfn));
6766 pgcnt++;
6767 }
6768
6769 return pgcnt;
6770}
6771
a4a3ede2
PT
6772/*
6773 * Only struct pages that are backed by physical memory are zeroed and
6774 * initialized by going through __init_single_page(). But, there are some
6775 * struct pages which are reserved in memblock allocator and their fields
6776 * may be accessed (for example page_to_pfn() on some configuration accesses
6777 * flags). We must explicitly zero those struct pages.
907ec5fc
NH
6778 *
6779 * This function also addresses a similar issue where struct pages are left
6780 * uninitialized because the physical address range is not covered by
6781 * memblock.memory or memblock.reserved. That could happen when memblock
6782 * layout is manually configured via memmap=.
a4a3ede2 6783 */
03e85f9d 6784void __init zero_resv_unavail(void)
a4a3ede2
PT
6785{
6786 phys_addr_t start, end;
a4a3ede2 6787 u64 i, pgcnt;
907ec5fc 6788 phys_addr_t next = 0;
a4a3ede2
PT
6789
6790 /*
907ec5fc 6791 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6792 */
6793 pgcnt = 0;
907ec5fc
NH
6794 for_each_mem_range(i, &memblock.memory, NULL,
6795 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f
PT
6796 if (next < start)
6797 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
907ec5fc
NH
6798 next = end;
6799 }
ec393a0f 6800 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
907ec5fc 6801
a4a3ede2
PT
6802 /*
6803 * Struct pages that do not have backing memory. This could be because
6804 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6805 */
6806 if (pgcnt)
907ec5fc 6807 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6808}
aca52c39 6809#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6810
0ee332c1 6811#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6812
6813#if MAX_NUMNODES > 1
6814/*
6815 * Figure out the number of possible node ids.
6816 */
f9872caf 6817void __init setup_nr_node_ids(void)
418508c1 6818{
904a9553 6819 unsigned int highest;
418508c1 6820
904a9553 6821 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6822 nr_node_ids = highest + 1;
6823}
418508c1
MS
6824#endif
6825
1e01979c
TH
6826/**
6827 * node_map_pfn_alignment - determine the maximum internode alignment
6828 *
6829 * This function should be called after node map is populated and sorted.
6830 * It calculates the maximum power of two alignment which can distinguish
6831 * all the nodes.
6832 *
6833 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6834 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6835 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6836 * shifted, 1GiB is enough and this function will indicate so.
6837 *
6838 * This is used to test whether pfn -> nid mapping of the chosen memory
6839 * model has fine enough granularity to avoid incorrect mapping for the
6840 * populated node map.
6841 *
a862f68a 6842 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
6843 * requirement (single node).
6844 */
6845unsigned long __init node_map_pfn_alignment(void)
6846{
6847 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6848 unsigned long start, end, mask;
98fa15f3 6849 int last_nid = NUMA_NO_NODE;
c13291a5 6850 int i, nid;
1e01979c 6851
c13291a5 6852 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6853 if (!start || last_nid < 0 || last_nid == nid) {
6854 last_nid = nid;
6855 last_end = end;
6856 continue;
6857 }
6858
6859 /*
6860 * Start with a mask granular enough to pin-point to the
6861 * start pfn and tick off bits one-by-one until it becomes
6862 * too coarse to separate the current node from the last.
6863 */
6864 mask = ~((1 << __ffs(start)) - 1);
6865 while (mask && last_end <= (start & (mask << 1)))
6866 mask <<= 1;
6867
6868 /* accumulate all internode masks */
6869 accl_mask |= mask;
6870 }
6871
6872 /* convert mask to number of pages */
6873 return ~accl_mask + 1;
6874}
6875
a6af2bc3 6876/* Find the lowest pfn for a node */
b69a7288 6877static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6878{
a6af2bc3 6879 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6880 unsigned long start_pfn;
6881 int i;
1abbfb41 6882
c13291a5
TH
6883 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6884 min_pfn = min(min_pfn, start_pfn);
c713216d 6885
a6af2bc3 6886 if (min_pfn == ULONG_MAX) {
1170532b 6887 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6888 return 0;
6889 }
6890
6891 return min_pfn;
c713216d
MG
6892}
6893
6894/**
6895 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6896 *
a862f68a 6897 * Return: the minimum PFN based on information provided via
7d018176 6898 * memblock_set_node().
c713216d
MG
6899 */
6900unsigned long __init find_min_pfn_with_active_regions(void)
6901{
6902 return find_min_pfn_for_node(MAX_NUMNODES);
6903}
6904
37b07e41
LS
6905/*
6906 * early_calculate_totalpages()
6907 * Sum pages in active regions for movable zone.
4b0ef1fe 6908 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6909 */
484f51f8 6910static unsigned long __init early_calculate_totalpages(void)
7e63efef 6911{
7e63efef 6912 unsigned long totalpages = 0;
c13291a5
TH
6913 unsigned long start_pfn, end_pfn;
6914 int i, nid;
6915
6916 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6917 unsigned long pages = end_pfn - start_pfn;
7e63efef 6918
37b07e41
LS
6919 totalpages += pages;
6920 if (pages)
4b0ef1fe 6921 node_set_state(nid, N_MEMORY);
37b07e41 6922 }
b8af2941 6923 return totalpages;
7e63efef
MG
6924}
6925
2a1e274a
MG
6926/*
6927 * Find the PFN the Movable zone begins in each node. Kernel memory
6928 * is spread evenly between nodes as long as the nodes have enough
6929 * memory. When they don't, some nodes will have more kernelcore than
6930 * others
6931 */
b224ef85 6932static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6933{
6934 int i, nid;
6935 unsigned long usable_startpfn;
6936 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6937 /* save the state before borrow the nodemask */
4b0ef1fe 6938 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6939 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6940 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6941 struct memblock_region *r;
b2f3eebe
TC
6942
6943 /* Need to find movable_zone earlier when movable_node is specified. */
6944 find_usable_zone_for_movable();
6945
6946 /*
6947 * If movable_node is specified, ignore kernelcore and movablecore
6948 * options.
6949 */
6950 if (movable_node_is_enabled()) {
136199f0
EM
6951 for_each_memblock(memory, r) {
6952 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6953 continue;
6954
136199f0 6955 nid = r->nid;
b2f3eebe 6956
136199f0 6957 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6958 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6959 min(usable_startpfn, zone_movable_pfn[nid]) :
6960 usable_startpfn;
6961 }
6962
6963 goto out2;
6964 }
2a1e274a 6965
342332e6
TI
6966 /*
6967 * If kernelcore=mirror is specified, ignore movablecore option
6968 */
6969 if (mirrored_kernelcore) {
6970 bool mem_below_4gb_not_mirrored = false;
6971
6972 for_each_memblock(memory, r) {
6973 if (memblock_is_mirror(r))
6974 continue;
6975
6976 nid = r->nid;
6977
6978 usable_startpfn = memblock_region_memory_base_pfn(r);
6979
6980 if (usable_startpfn < 0x100000) {
6981 mem_below_4gb_not_mirrored = true;
6982 continue;
6983 }
6984
6985 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6986 min(usable_startpfn, zone_movable_pfn[nid]) :
6987 usable_startpfn;
6988 }
6989
6990 if (mem_below_4gb_not_mirrored)
6991 pr_warn("This configuration results in unmirrored kernel memory.");
6992
6993 goto out2;
6994 }
6995
7e63efef 6996 /*
a5c6d650
DR
6997 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6998 * amount of necessary memory.
6999 */
7000 if (required_kernelcore_percent)
7001 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7002 10000UL;
7003 if (required_movablecore_percent)
7004 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7005 10000UL;
7006
7007 /*
7008 * If movablecore= was specified, calculate what size of
7e63efef
MG
7009 * kernelcore that corresponds so that memory usable for
7010 * any allocation type is evenly spread. If both kernelcore
7011 * and movablecore are specified, then the value of kernelcore
7012 * will be used for required_kernelcore if it's greater than
7013 * what movablecore would have allowed.
7014 */
7015 if (required_movablecore) {
7e63efef
MG
7016 unsigned long corepages;
7017
7018 /*
7019 * Round-up so that ZONE_MOVABLE is at least as large as what
7020 * was requested by the user
7021 */
7022 required_movablecore =
7023 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7024 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7025 corepages = totalpages - required_movablecore;
7026
7027 required_kernelcore = max(required_kernelcore, corepages);
7028 }
7029
bde304bd
XQ
7030 /*
7031 * If kernelcore was not specified or kernelcore size is larger
7032 * than totalpages, there is no ZONE_MOVABLE.
7033 */
7034 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7035 goto out;
2a1e274a
MG
7036
7037 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7038 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7039
7040restart:
7041 /* Spread kernelcore memory as evenly as possible throughout nodes */
7042 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7043 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7044 unsigned long start_pfn, end_pfn;
7045
2a1e274a
MG
7046 /*
7047 * Recalculate kernelcore_node if the division per node
7048 * now exceeds what is necessary to satisfy the requested
7049 * amount of memory for the kernel
7050 */
7051 if (required_kernelcore < kernelcore_node)
7052 kernelcore_node = required_kernelcore / usable_nodes;
7053
7054 /*
7055 * As the map is walked, we track how much memory is usable
7056 * by the kernel using kernelcore_remaining. When it is
7057 * 0, the rest of the node is usable by ZONE_MOVABLE
7058 */
7059 kernelcore_remaining = kernelcore_node;
7060
7061 /* Go through each range of PFNs within this node */
c13291a5 7062 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7063 unsigned long size_pages;
7064
c13291a5 7065 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7066 if (start_pfn >= end_pfn)
7067 continue;
7068
7069 /* Account for what is only usable for kernelcore */
7070 if (start_pfn < usable_startpfn) {
7071 unsigned long kernel_pages;
7072 kernel_pages = min(end_pfn, usable_startpfn)
7073 - start_pfn;
7074
7075 kernelcore_remaining -= min(kernel_pages,
7076 kernelcore_remaining);
7077 required_kernelcore -= min(kernel_pages,
7078 required_kernelcore);
7079
7080 /* Continue if range is now fully accounted */
7081 if (end_pfn <= usable_startpfn) {
7082
7083 /*
7084 * Push zone_movable_pfn to the end so
7085 * that if we have to rebalance
7086 * kernelcore across nodes, we will
7087 * not double account here
7088 */
7089 zone_movable_pfn[nid] = end_pfn;
7090 continue;
7091 }
7092 start_pfn = usable_startpfn;
7093 }
7094
7095 /*
7096 * The usable PFN range for ZONE_MOVABLE is from
7097 * start_pfn->end_pfn. Calculate size_pages as the
7098 * number of pages used as kernelcore
7099 */
7100 size_pages = end_pfn - start_pfn;
7101 if (size_pages > kernelcore_remaining)
7102 size_pages = kernelcore_remaining;
7103 zone_movable_pfn[nid] = start_pfn + size_pages;
7104
7105 /*
7106 * Some kernelcore has been met, update counts and
7107 * break if the kernelcore for this node has been
b8af2941 7108 * satisfied
2a1e274a
MG
7109 */
7110 required_kernelcore -= min(required_kernelcore,
7111 size_pages);
7112 kernelcore_remaining -= size_pages;
7113 if (!kernelcore_remaining)
7114 break;
7115 }
7116 }
7117
7118 /*
7119 * If there is still required_kernelcore, we do another pass with one
7120 * less node in the count. This will push zone_movable_pfn[nid] further
7121 * along on the nodes that still have memory until kernelcore is
b8af2941 7122 * satisfied
2a1e274a
MG
7123 */
7124 usable_nodes--;
7125 if (usable_nodes && required_kernelcore > usable_nodes)
7126 goto restart;
7127
b2f3eebe 7128out2:
2a1e274a
MG
7129 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7130 for (nid = 0; nid < MAX_NUMNODES; nid++)
7131 zone_movable_pfn[nid] =
7132 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7133
20e6926d 7134out:
66918dcd 7135 /* restore the node_state */
4b0ef1fe 7136 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7137}
7138
4b0ef1fe
LJ
7139/* Any regular or high memory on that node ? */
7140static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7141{
37b07e41
LS
7142 enum zone_type zone_type;
7143
4b0ef1fe 7144 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7145 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7146 if (populated_zone(zone)) {
7b0e0c0e
OS
7147 if (IS_ENABLED(CONFIG_HIGHMEM))
7148 node_set_state(nid, N_HIGH_MEMORY);
7149 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7150 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7151 break;
7152 }
37b07e41 7153 }
37b07e41
LS
7154}
7155
c713216d
MG
7156/**
7157 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 7158 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7159 *
7160 * This will call free_area_init_node() for each active node in the system.
7d018176 7161 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7162 * zone in each node and their holes is calculated. If the maximum PFN
7163 * between two adjacent zones match, it is assumed that the zone is empty.
7164 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7165 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7166 * starts where the previous one ended. For example, ZONE_DMA32 starts
7167 * at arch_max_dma_pfn.
7168 */
7169void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7170{
c13291a5
TH
7171 unsigned long start_pfn, end_pfn;
7172 int i, nid;
a6af2bc3 7173
c713216d
MG
7174 /* Record where the zone boundaries are */
7175 memset(arch_zone_lowest_possible_pfn, 0,
7176 sizeof(arch_zone_lowest_possible_pfn));
7177 memset(arch_zone_highest_possible_pfn, 0,
7178 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7179
7180 start_pfn = find_min_pfn_with_active_regions();
7181
7182 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
7183 if (i == ZONE_MOVABLE)
7184 continue;
90cae1fe
OH
7185
7186 end_pfn = max(max_zone_pfn[i], start_pfn);
7187 arch_zone_lowest_possible_pfn[i] = start_pfn;
7188 arch_zone_highest_possible_pfn[i] = end_pfn;
7189
7190 start_pfn = end_pfn;
c713216d 7191 }
2a1e274a
MG
7192
7193 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7194 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7195 find_zone_movable_pfns_for_nodes();
c713216d 7196
c713216d 7197 /* Print out the zone ranges */
f88dfff5 7198 pr_info("Zone ranges:\n");
2a1e274a
MG
7199 for (i = 0; i < MAX_NR_ZONES; i++) {
7200 if (i == ZONE_MOVABLE)
7201 continue;
f88dfff5 7202 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7203 if (arch_zone_lowest_possible_pfn[i] ==
7204 arch_zone_highest_possible_pfn[i])
f88dfff5 7205 pr_cont("empty\n");
72f0ba02 7206 else
8d29e18a
JG
7207 pr_cont("[mem %#018Lx-%#018Lx]\n",
7208 (u64)arch_zone_lowest_possible_pfn[i]
7209 << PAGE_SHIFT,
7210 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7211 << PAGE_SHIFT) - 1);
2a1e274a
MG
7212 }
7213
7214 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7215 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7216 for (i = 0; i < MAX_NUMNODES; i++) {
7217 if (zone_movable_pfn[i])
8d29e18a
JG
7218 pr_info(" Node %d: %#018Lx\n", i,
7219 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7220 }
c713216d 7221
f2d52fe5 7222 /* Print out the early node map */
f88dfff5 7223 pr_info("Early memory node ranges\n");
c13291a5 7224 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
7225 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7226 (u64)start_pfn << PAGE_SHIFT,
7227 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
7228
7229 /* Initialise every node */
708614e6 7230 mminit_verify_pageflags_layout();
8ef82866 7231 setup_nr_node_ids();
e181ae0c 7232 zero_resv_unavail();
c713216d
MG
7233 for_each_online_node(nid) {
7234 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 7235 free_area_init_node(nid, NULL,
c713216d 7236 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
7237
7238 /* Any memory on that node */
7239 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7240 node_set_state(nid, N_MEMORY);
7241 check_for_memory(pgdat, nid);
c713216d
MG
7242 }
7243}
2a1e274a 7244
a5c6d650
DR
7245static int __init cmdline_parse_core(char *p, unsigned long *core,
7246 unsigned long *percent)
2a1e274a
MG
7247{
7248 unsigned long long coremem;
a5c6d650
DR
7249 char *endptr;
7250
2a1e274a
MG
7251 if (!p)
7252 return -EINVAL;
7253
a5c6d650
DR
7254 /* Value may be a percentage of total memory, otherwise bytes */
7255 coremem = simple_strtoull(p, &endptr, 0);
7256 if (*endptr == '%') {
7257 /* Paranoid check for percent values greater than 100 */
7258 WARN_ON(coremem > 100);
2a1e274a 7259
a5c6d650
DR
7260 *percent = coremem;
7261 } else {
7262 coremem = memparse(p, &p);
7263 /* Paranoid check that UL is enough for the coremem value */
7264 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7265
a5c6d650
DR
7266 *core = coremem >> PAGE_SHIFT;
7267 *percent = 0UL;
7268 }
2a1e274a
MG
7269 return 0;
7270}
ed7ed365 7271
7e63efef
MG
7272/*
7273 * kernelcore=size sets the amount of memory for use for allocations that
7274 * cannot be reclaimed or migrated.
7275 */
7276static int __init cmdline_parse_kernelcore(char *p)
7277{
342332e6
TI
7278 /* parse kernelcore=mirror */
7279 if (parse_option_str(p, "mirror")) {
7280 mirrored_kernelcore = true;
7281 return 0;
7282 }
7283
a5c6d650
DR
7284 return cmdline_parse_core(p, &required_kernelcore,
7285 &required_kernelcore_percent);
7e63efef
MG
7286}
7287
7288/*
7289 * movablecore=size sets the amount of memory for use for allocations that
7290 * can be reclaimed or migrated.
7291 */
7292static int __init cmdline_parse_movablecore(char *p)
7293{
a5c6d650
DR
7294 return cmdline_parse_core(p, &required_movablecore,
7295 &required_movablecore_percent);
7e63efef
MG
7296}
7297
ed7ed365 7298early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7299early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7300
0ee332c1 7301#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7302
c3d5f5f0
JL
7303void adjust_managed_page_count(struct page *page, long count)
7304{
9705bea5 7305 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7306 totalram_pages_add(count);
3dcc0571
JL
7307#ifdef CONFIG_HIGHMEM
7308 if (PageHighMem(page))
ca79b0c2 7309 totalhigh_pages_add(count);
3dcc0571 7310#endif
c3d5f5f0 7311}
3dcc0571 7312EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7313
e5cb113f 7314unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7315{
11199692
JL
7316 void *pos;
7317 unsigned long pages = 0;
69afade7 7318
11199692
JL
7319 start = (void *)PAGE_ALIGN((unsigned long)start);
7320 end = (void *)((unsigned long)end & PAGE_MASK);
7321 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7322 struct page *page = virt_to_page(pos);
7323 void *direct_map_addr;
7324
7325 /*
7326 * 'direct_map_addr' might be different from 'pos'
7327 * because some architectures' virt_to_page()
7328 * work with aliases. Getting the direct map
7329 * address ensures that we get a _writeable_
7330 * alias for the memset().
7331 */
7332 direct_map_addr = page_address(page);
dbe67df4 7333 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7334 memset(direct_map_addr, poison, PAGE_SIZE);
7335
7336 free_reserved_page(page);
69afade7
JL
7337 }
7338
7339 if (pages && s)
adb1fe9a
JP
7340 pr_info("Freeing %s memory: %ldK\n",
7341 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7342
7343 return pages;
7344}
7345
cfa11e08
JL
7346#ifdef CONFIG_HIGHMEM
7347void free_highmem_page(struct page *page)
7348{
7349 __free_reserved_page(page);
ca79b0c2 7350 totalram_pages_inc();
9705bea5 7351 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7352 totalhigh_pages_inc();
cfa11e08
JL
7353}
7354#endif
7355
7ee3d4e8
JL
7356
7357void __init mem_init_print_info(const char *str)
7358{
7359 unsigned long physpages, codesize, datasize, rosize, bss_size;
7360 unsigned long init_code_size, init_data_size;
7361
7362 physpages = get_num_physpages();
7363 codesize = _etext - _stext;
7364 datasize = _edata - _sdata;
7365 rosize = __end_rodata - __start_rodata;
7366 bss_size = __bss_stop - __bss_start;
7367 init_data_size = __init_end - __init_begin;
7368 init_code_size = _einittext - _sinittext;
7369
7370 /*
7371 * Detect special cases and adjust section sizes accordingly:
7372 * 1) .init.* may be embedded into .data sections
7373 * 2) .init.text.* may be out of [__init_begin, __init_end],
7374 * please refer to arch/tile/kernel/vmlinux.lds.S.
7375 * 3) .rodata.* may be embedded into .text or .data sections.
7376 */
7377#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7378 do { \
7379 if (start <= pos && pos < end && size > adj) \
7380 size -= adj; \
7381 } while (0)
7ee3d4e8
JL
7382
7383 adj_init_size(__init_begin, __init_end, init_data_size,
7384 _sinittext, init_code_size);
7385 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7386 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7387 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7388 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7389
7390#undef adj_init_size
7391
756a025f 7392 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7393#ifdef CONFIG_HIGHMEM
756a025f 7394 ", %luK highmem"
7ee3d4e8 7395#endif
756a025f
JP
7396 "%s%s)\n",
7397 nr_free_pages() << (PAGE_SHIFT - 10),
7398 physpages << (PAGE_SHIFT - 10),
7399 codesize >> 10, datasize >> 10, rosize >> 10,
7400 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7401 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7402 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7403#ifdef CONFIG_HIGHMEM
ca79b0c2 7404 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7405#endif
756a025f 7406 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7407}
7408
0e0b864e 7409/**
88ca3b94
RD
7410 * set_dma_reserve - set the specified number of pages reserved in the first zone
7411 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7412 *
013110a7 7413 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7414 * In the DMA zone, a significant percentage may be consumed by kernel image
7415 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7416 * function may optionally be used to account for unfreeable pages in the
7417 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7418 * smaller per-cpu batchsize.
0e0b864e
MG
7419 */
7420void __init set_dma_reserve(unsigned long new_dma_reserve)
7421{
7422 dma_reserve = new_dma_reserve;
7423}
7424
1da177e4
LT
7425void __init free_area_init(unsigned long *zones_size)
7426{
e181ae0c 7427 zero_resv_unavail();
9109fb7b 7428 free_area_init_node(0, zones_size,
1da177e4
LT
7429 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7430}
1da177e4 7431
005fd4bb 7432static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7433{
1da177e4 7434
005fd4bb
SAS
7435 lru_add_drain_cpu(cpu);
7436 drain_pages(cpu);
9f8f2172 7437
005fd4bb
SAS
7438 /*
7439 * Spill the event counters of the dead processor
7440 * into the current processors event counters.
7441 * This artificially elevates the count of the current
7442 * processor.
7443 */
7444 vm_events_fold_cpu(cpu);
9f8f2172 7445
005fd4bb
SAS
7446 /*
7447 * Zero the differential counters of the dead processor
7448 * so that the vm statistics are consistent.
7449 *
7450 * This is only okay since the processor is dead and cannot
7451 * race with what we are doing.
7452 */
7453 cpu_vm_stats_fold(cpu);
7454 return 0;
1da177e4 7455}
1da177e4
LT
7456
7457void __init page_alloc_init(void)
7458{
005fd4bb
SAS
7459 int ret;
7460
7461 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7462 "mm/page_alloc:dead", NULL,
7463 page_alloc_cpu_dead);
7464 WARN_ON(ret < 0);
1da177e4
LT
7465}
7466
cb45b0e9 7467/*
34b10060 7468 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7469 * or min_free_kbytes changes.
7470 */
7471static void calculate_totalreserve_pages(void)
7472{
7473 struct pglist_data *pgdat;
7474 unsigned long reserve_pages = 0;
2f6726e5 7475 enum zone_type i, j;
cb45b0e9
HA
7476
7477 for_each_online_pgdat(pgdat) {
281e3726
MG
7478
7479 pgdat->totalreserve_pages = 0;
7480
cb45b0e9
HA
7481 for (i = 0; i < MAX_NR_ZONES; i++) {
7482 struct zone *zone = pgdat->node_zones + i;
3484b2de 7483 long max = 0;
9705bea5 7484 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7485
7486 /* Find valid and maximum lowmem_reserve in the zone */
7487 for (j = i; j < MAX_NR_ZONES; j++) {
7488 if (zone->lowmem_reserve[j] > max)
7489 max = zone->lowmem_reserve[j];
7490 }
7491
41858966
MG
7492 /* we treat the high watermark as reserved pages. */
7493 max += high_wmark_pages(zone);
cb45b0e9 7494
3d6357de
AK
7495 if (max > managed_pages)
7496 max = managed_pages;
a8d01437 7497
281e3726 7498 pgdat->totalreserve_pages += max;
a8d01437 7499
cb45b0e9
HA
7500 reserve_pages += max;
7501 }
7502 }
7503 totalreserve_pages = reserve_pages;
7504}
7505
1da177e4
LT
7506/*
7507 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7508 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7509 * has a correct pages reserved value, so an adequate number of
7510 * pages are left in the zone after a successful __alloc_pages().
7511 */
7512static void setup_per_zone_lowmem_reserve(void)
7513{
7514 struct pglist_data *pgdat;
2f6726e5 7515 enum zone_type j, idx;
1da177e4 7516
ec936fc5 7517 for_each_online_pgdat(pgdat) {
1da177e4
LT
7518 for (j = 0; j < MAX_NR_ZONES; j++) {
7519 struct zone *zone = pgdat->node_zones + j;
9705bea5 7520 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7521
7522 zone->lowmem_reserve[j] = 0;
7523
2f6726e5
CL
7524 idx = j;
7525 while (idx) {
1da177e4
LT
7526 struct zone *lower_zone;
7527
2f6726e5 7528 idx--;
1da177e4 7529 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7530
7531 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7532 sysctl_lowmem_reserve_ratio[idx] = 0;
7533 lower_zone->lowmem_reserve[j] = 0;
7534 } else {
7535 lower_zone->lowmem_reserve[j] =
7536 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7537 }
9705bea5 7538 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7539 }
7540 }
7541 }
cb45b0e9
HA
7542
7543 /* update totalreserve_pages */
7544 calculate_totalreserve_pages();
1da177e4
LT
7545}
7546
cfd3da1e 7547static void __setup_per_zone_wmarks(void)
1da177e4
LT
7548{
7549 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7550 unsigned long lowmem_pages = 0;
7551 struct zone *zone;
7552 unsigned long flags;
7553
7554 /* Calculate total number of !ZONE_HIGHMEM pages */
7555 for_each_zone(zone) {
7556 if (!is_highmem(zone))
9705bea5 7557 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7558 }
7559
7560 for_each_zone(zone) {
ac924c60
AM
7561 u64 tmp;
7562
1125b4e3 7563 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7564 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7565 do_div(tmp, lowmem_pages);
1da177e4
LT
7566 if (is_highmem(zone)) {
7567 /*
669ed175
NP
7568 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7569 * need highmem pages, so cap pages_min to a small
7570 * value here.
7571 *
41858966 7572 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7573 * deltas control async page reclaim, and so should
669ed175 7574 * not be capped for highmem.
1da177e4 7575 */
90ae8d67 7576 unsigned long min_pages;
1da177e4 7577
9705bea5 7578 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7579 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7580 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7581 } else {
669ed175
NP
7582 /*
7583 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7584 * proportionate to the zone's size.
7585 */
a9214443 7586 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7587 }
7588
795ae7a0
JW
7589 /*
7590 * Set the kswapd watermarks distance according to the
7591 * scale factor in proportion to available memory, but
7592 * ensure a minimum size on small systems.
7593 */
7594 tmp = max_t(u64, tmp >> 2,
9705bea5 7595 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7596 watermark_scale_factor, 10000));
7597
a9214443
MG
7598 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7599 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
1c30844d 7600 zone->watermark_boost = 0;
49f223a9 7601
1125b4e3 7602 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7603 }
cb45b0e9
HA
7604
7605 /* update totalreserve_pages */
7606 calculate_totalreserve_pages();
1da177e4
LT
7607}
7608
cfd3da1e
MG
7609/**
7610 * setup_per_zone_wmarks - called when min_free_kbytes changes
7611 * or when memory is hot-{added|removed}
7612 *
7613 * Ensures that the watermark[min,low,high] values for each zone are set
7614 * correctly with respect to min_free_kbytes.
7615 */
7616void setup_per_zone_wmarks(void)
7617{
b93e0f32
MH
7618 static DEFINE_SPINLOCK(lock);
7619
7620 spin_lock(&lock);
cfd3da1e 7621 __setup_per_zone_wmarks();
b93e0f32 7622 spin_unlock(&lock);
cfd3da1e
MG
7623}
7624
1da177e4
LT
7625/*
7626 * Initialise min_free_kbytes.
7627 *
7628 * For small machines we want it small (128k min). For large machines
7629 * we want it large (64MB max). But it is not linear, because network
7630 * bandwidth does not increase linearly with machine size. We use
7631 *
b8af2941 7632 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7633 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7634 *
7635 * which yields
7636 *
7637 * 16MB: 512k
7638 * 32MB: 724k
7639 * 64MB: 1024k
7640 * 128MB: 1448k
7641 * 256MB: 2048k
7642 * 512MB: 2896k
7643 * 1024MB: 4096k
7644 * 2048MB: 5792k
7645 * 4096MB: 8192k
7646 * 8192MB: 11584k
7647 * 16384MB: 16384k
7648 */
1b79acc9 7649int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7650{
7651 unsigned long lowmem_kbytes;
5f12733e 7652 int new_min_free_kbytes;
1da177e4
LT
7653
7654 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7655 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7656
7657 if (new_min_free_kbytes > user_min_free_kbytes) {
7658 min_free_kbytes = new_min_free_kbytes;
7659 if (min_free_kbytes < 128)
7660 min_free_kbytes = 128;
7661 if (min_free_kbytes > 65536)
7662 min_free_kbytes = 65536;
7663 } else {
7664 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7665 new_min_free_kbytes, user_min_free_kbytes);
7666 }
bc75d33f 7667 setup_per_zone_wmarks();
a6cccdc3 7668 refresh_zone_stat_thresholds();
1da177e4 7669 setup_per_zone_lowmem_reserve();
6423aa81
JK
7670
7671#ifdef CONFIG_NUMA
7672 setup_min_unmapped_ratio();
7673 setup_min_slab_ratio();
7674#endif
7675
1da177e4
LT
7676 return 0;
7677}
bc22af74 7678core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7679
7680/*
b8af2941 7681 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7682 * that we can call two helper functions whenever min_free_kbytes
7683 * changes.
7684 */
cccad5b9 7685int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7686 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7687{
da8c757b
HP
7688 int rc;
7689
7690 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7691 if (rc)
7692 return rc;
7693
5f12733e
MH
7694 if (write) {
7695 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7696 setup_per_zone_wmarks();
5f12733e 7697 }
1da177e4
LT
7698 return 0;
7699}
7700
1c30844d
MG
7701int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7702 void __user *buffer, size_t *length, loff_t *ppos)
7703{
7704 int rc;
7705
7706 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7707 if (rc)
7708 return rc;
7709
7710 return 0;
7711}
7712
795ae7a0
JW
7713int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7714 void __user *buffer, size_t *length, loff_t *ppos)
7715{
7716 int rc;
7717
7718 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7719 if (rc)
7720 return rc;
7721
7722 if (write)
7723 setup_per_zone_wmarks();
7724
7725 return 0;
7726}
7727
9614634f 7728#ifdef CONFIG_NUMA
6423aa81 7729static void setup_min_unmapped_ratio(void)
9614634f 7730{
6423aa81 7731 pg_data_t *pgdat;
9614634f 7732 struct zone *zone;
9614634f 7733
a5f5f91d 7734 for_each_online_pgdat(pgdat)
81cbcbc2 7735 pgdat->min_unmapped_pages = 0;
a5f5f91d 7736
9614634f 7737 for_each_zone(zone)
9705bea5
AK
7738 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7739 sysctl_min_unmapped_ratio) / 100;
9614634f 7740}
0ff38490 7741
6423aa81
JK
7742
7743int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7744 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7745{
0ff38490
CL
7746 int rc;
7747
8d65af78 7748 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7749 if (rc)
7750 return rc;
7751
6423aa81
JK
7752 setup_min_unmapped_ratio();
7753
7754 return 0;
7755}
7756
7757static void setup_min_slab_ratio(void)
7758{
7759 pg_data_t *pgdat;
7760 struct zone *zone;
7761
a5f5f91d
MG
7762 for_each_online_pgdat(pgdat)
7763 pgdat->min_slab_pages = 0;
7764
0ff38490 7765 for_each_zone(zone)
9705bea5
AK
7766 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7767 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7768}
7769
7770int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7771 void __user *buffer, size_t *length, loff_t *ppos)
7772{
7773 int rc;
7774
7775 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7776 if (rc)
7777 return rc;
7778
7779 setup_min_slab_ratio();
7780
0ff38490
CL
7781 return 0;
7782}
9614634f
CL
7783#endif
7784
1da177e4
LT
7785/*
7786 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7787 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7788 * whenever sysctl_lowmem_reserve_ratio changes.
7789 *
7790 * The reserve ratio obviously has absolutely no relation with the
41858966 7791 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7792 * if in function of the boot time zone sizes.
7793 */
cccad5b9 7794int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7795 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7796{
8d65af78 7797 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7798 setup_per_zone_lowmem_reserve();
7799 return 0;
7800}
7801
8ad4b1fb
RS
7802/*
7803 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7804 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7805 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7806 */
cccad5b9 7807int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7808 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7809{
7810 struct zone *zone;
7cd2b0a3 7811 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7812 int ret;
7813
7cd2b0a3
DR
7814 mutex_lock(&pcp_batch_high_lock);
7815 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7816
8d65af78 7817 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7818 if (!write || ret < 0)
7819 goto out;
7820
7821 /* Sanity checking to avoid pcp imbalance */
7822 if (percpu_pagelist_fraction &&
7823 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7824 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7825 ret = -EINVAL;
7826 goto out;
7827 }
7828
7829 /* No change? */
7830 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7831 goto out;
c8e251fa 7832
364df0eb 7833 for_each_populated_zone(zone) {
7cd2b0a3
DR
7834 unsigned int cpu;
7835
22a7f12b 7836 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7837 pageset_set_high_and_batch(zone,
7838 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7839 }
7cd2b0a3 7840out:
c8e251fa 7841 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7842 return ret;
8ad4b1fb
RS
7843}
7844
a9919c79 7845#ifdef CONFIG_NUMA
f034b5d4 7846int hashdist = HASHDIST_DEFAULT;
1da177e4 7847
1da177e4
LT
7848static int __init set_hashdist(char *str)
7849{
7850 if (!str)
7851 return 0;
7852 hashdist = simple_strtoul(str, &str, 0);
7853 return 1;
7854}
7855__setup("hashdist=", set_hashdist);
7856#endif
7857
f6f34b43
SD
7858#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7859/*
7860 * Returns the number of pages that arch has reserved but
7861 * is not known to alloc_large_system_hash().
7862 */
7863static unsigned long __init arch_reserved_kernel_pages(void)
7864{
7865 return 0;
7866}
7867#endif
7868
9017217b
PT
7869/*
7870 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7871 * machines. As memory size is increased the scale is also increased but at
7872 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7873 * quadruples the scale is increased by one, which means the size of hash table
7874 * only doubles, instead of quadrupling as well.
7875 * Because 32-bit systems cannot have large physical memory, where this scaling
7876 * makes sense, it is disabled on such platforms.
7877 */
7878#if __BITS_PER_LONG > 32
7879#define ADAPT_SCALE_BASE (64ul << 30)
7880#define ADAPT_SCALE_SHIFT 2
7881#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7882#endif
7883
1da177e4
LT
7884/*
7885 * allocate a large system hash table from bootmem
7886 * - it is assumed that the hash table must contain an exact power-of-2
7887 * quantity of entries
7888 * - limit is the number of hash buckets, not the total allocation size
7889 */
7890void *__init alloc_large_system_hash(const char *tablename,
7891 unsigned long bucketsize,
7892 unsigned long numentries,
7893 int scale,
7894 int flags,
7895 unsigned int *_hash_shift,
7896 unsigned int *_hash_mask,
31fe62b9
TB
7897 unsigned long low_limit,
7898 unsigned long high_limit)
1da177e4 7899{
31fe62b9 7900 unsigned long long max = high_limit;
1da177e4
LT
7901 unsigned long log2qty, size;
7902 void *table = NULL;
3749a8f0 7903 gfp_t gfp_flags;
1da177e4
LT
7904
7905 /* allow the kernel cmdline to have a say */
7906 if (!numentries) {
7907 /* round applicable memory size up to nearest megabyte */
04903664 7908 numentries = nr_kernel_pages;
f6f34b43 7909 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7910
7911 /* It isn't necessary when PAGE_SIZE >= 1MB */
7912 if (PAGE_SHIFT < 20)
7913 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7914
9017217b
PT
7915#if __BITS_PER_LONG > 32
7916 if (!high_limit) {
7917 unsigned long adapt;
7918
7919 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7920 adapt <<= ADAPT_SCALE_SHIFT)
7921 scale++;
7922 }
7923#endif
7924
1da177e4
LT
7925 /* limit to 1 bucket per 2^scale bytes of low memory */
7926 if (scale > PAGE_SHIFT)
7927 numentries >>= (scale - PAGE_SHIFT);
7928 else
7929 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7930
7931 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7932 if (unlikely(flags & HASH_SMALL)) {
7933 /* Makes no sense without HASH_EARLY */
7934 WARN_ON(!(flags & HASH_EARLY));
7935 if (!(numentries >> *_hash_shift)) {
7936 numentries = 1UL << *_hash_shift;
7937 BUG_ON(!numentries);
7938 }
7939 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7940 numentries = PAGE_SIZE / bucketsize;
1da177e4 7941 }
6e692ed3 7942 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7943
7944 /* limit allocation size to 1/16 total memory by default */
7945 if (max == 0) {
7946 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7947 do_div(max, bucketsize);
7948 }
074b8517 7949 max = min(max, 0x80000000ULL);
1da177e4 7950
31fe62b9
TB
7951 if (numentries < low_limit)
7952 numentries = low_limit;
1da177e4
LT
7953 if (numentries > max)
7954 numentries = max;
7955
f0d1b0b3 7956 log2qty = ilog2(numentries);
1da177e4 7957
3749a8f0 7958 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7959 do {
7960 size = bucketsize << log2qty;
ea1f5f37
PT
7961 if (flags & HASH_EARLY) {
7962 if (flags & HASH_ZERO)
26fb3dae 7963 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 7964 else
7e1c4e27
MR
7965 table = memblock_alloc_raw(size,
7966 SMP_CACHE_BYTES);
ea1f5f37 7967 } else if (hashdist) {
3749a8f0 7968 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7969 } else {
1037b83b
ED
7970 /*
7971 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7972 * some pages at the end of hash table which
7973 * alloc_pages_exact() automatically does
1037b83b 7974 */
264ef8a9 7975 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7976 table = alloc_pages_exact(size, gfp_flags);
7977 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7978 }
1da177e4
LT
7979 }
7980 } while (!table && size > PAGE_SIZE && --log2qty);
7981
7982 if (!table)
7983 panic("Failed to allocate %s hash table\n", tablename);
7984
1170532b
JP
7985 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7986 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7987
7988 if (_hash_shift)
7989 *_hash_shift = log2qty;
7990 if (_hash_mask)
7991 *_hash_mask = (1 << log2qty) - 1;
7992
7993 return table;
7994}
a117e66e 7995
a5d76b54 7996/*
80934513
MK
7997 * This function checks whether pageblock includes unmovable pages or not.
7998 * If @count is not zero, it is okay to include less @count unmovable pages
7999 *
b8af2941 8000 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8001 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8002 * check without lock_page also may miss some movable non-lru pages at
8003 * race condition. So you can't expect this function should be exact.
a5d76b54 8004 */
b023f468 8005bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
d381c547 8006 int migratetype, int flags)
49ac8255 8007{
1a9f2191
QC
8008 unsigned long found;
8009 unsigned long iter = 0;
8010 unsigned long pfn = page_to_pfn(page);
8011 const char *reason = "unmovable page";
47118af0 8012
49ac8255 8013 /*
15c30bc0
MH
8014 * TODO we could make this much more efficient by not checking every
8015 * page in the range if we know all of them are in MOVABLE_ZONE and
8016 * that the movable zone guarantees that pages are migratable but
8017 * the later is not the case right now unfortunatelly. E.g. movablecore
8018 * can still lead to having bootmem allocations in zone_movable.
49ac8255 8019 */
49ac8255 8020
1a9f2191
QC
8021 if (is_migrate_cma_page(page)) {
8022 /*
8023 * CMA allocations (alloc_contig_range) really need to mark
8024 * isolate CMA pageblocks even when they are not movable in fact
8025 * so consider them movable here.
8026 */
8027 if (is_migrate_cma(migratetype))
8028 return false;
8029
8030 reason = "CMA page";
8031 goto unmovable;
8032 }
4da2ce25 8033
1a9f2191 8034 for (found = 0; iter < pageblock_nr_pages; iter++) {
49ac8255
KH
8035 unsigned long check = pfn + iter;
8036
29723fcc 8037 if (!pfn_valid_within(check))
49ac8255 8038 continue;
29723fcc 8039
49ac8255 8040 page = pfn_to_page(check);
c8721bbb 8041
d7ab3672 8042 if (PageReserved(page))
15c30bc0 8043 goto unmovable;
d7ab3672 8044
9d789999
MH
8045 /*
8046 * If the zone is movable and we have ruled out all reserved
8047 * pages then it should be reasonably safe to assume the rest
8048 * is movable.
8049 */
8050 if (zone_idx(zone) == ZONE_MOVABLE)
8051 continue;
8052
c8721bbb
NH
8053 /*
8054 * Hugepages are not in LRU lists, but they're movable.
8bb4e7a2 8055 * We need not scan over tail pages because we don't
c8721bbb
NH
8056 * handle each tail page individually in migration.
8057 */
8058 if (PageHuge(page)) {
17e2e7d7
OS
8059 struct page *head = compound_head(page);
8060 unsigned int skip_pages;
464c7ffb 8061
17e2e7d7 8062 if (!hugepage_migration_supported(page_hstate(head)))
464c7ffb
AK
8063 goto unmovable;
8064
17e2e7d7
OS
8065 skip_pages = (1 << compound_order(head)) - (page - head);
8066 iter += skip_pages - 1;
c8721bbb
NH
8067 continue;
8068 }
8069
97d255c8
MK
8070 /*
8071 * We can't use page_count without pin a page
8072 * because another CPU can free compound page.
8073 * This check already skips compound tails of THP
0139aa7b 8074 * because their page->_refcount is zero at all time.
97d255c8 8075 */
fe896d18 8076 if (!page_ref_count(page)) {
49ac8255
KH
8077 if (PageBuddy(page))
8078 iter += (1 << page_order(page)) - 1;
8079 continue;
8080 }
97d255c8 8081
b023f468
WC
8082 /*
8083 * The HWPoisoned page may be not in buddy system, and
8084 * page_count() is not 0.
8085 */
d381c547 8086 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
b023f468
WC
8087 continue;
8088
0efadf48
YX
8089 if (__PageMovable(page))
8090 continue;
8091
49ac8255
KH
8092 if (!PageLRU(page))
8093 found++;
8094 /*
6b4f7799
JW
8095 * If there are RECLAIMABLE pages, we need to check
8096 * it. But now, memory offline itself doesn't call
8097 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8098 */
8099 /*
8100 * If the page is not RAM, page_count()should be 0.
8101 * we don't need more check. This is an _used_ not-movable page.
8102 *
8103 * The problematic thing here is PG_reserved pages. PG_reserved
8104 * is set to both of a memory hole page and a _used_ kernel
8105 * page at boot.
8106 */
8107 if (found > count)
15c30bc0 8108 goto unmovable;
49ac8255 8109 }
80934513 8110 return false;
15c30bc0
MH
8111unmovable:
8112 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
d381c547 8113 if (flags & REPORT_FAILURE)
1a9f2191 8114 dump_page(pfn_to_page(pfn + iter), reason);
15c30bc0 8115 return true;
49ac8255
KH
8116}
8117
080fe206 8118#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
8119
8120static unsigned long pfn_max_align_down(unsigned long pfn)
8121{
8122 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8123 pageblock_nr_pages) - 1);
8124}
8125
8126static unsigned long pfn_max_align_up(unsigned long pfn)
8127{
8128 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8129 pageblock_nr_pages));
8130}
8131
041d3a8c 8132/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8133static int __alloc_contig_migrate_range(struct compact_control *cc,
8134 unsigned long start, unsigned long end)
041d3a8c
MN
8135{
8136 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 8137 unsigned long nr_reclaimed;
041d3a8c
MN
8138 unsigned long pfn = start;
8139 unsigned int tries = 0;
8140 int ret = 0;
8141
be49a6e1 8142 migrate_prep();
041d3a8c 8143
bb13ffeb 8144 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8145 if (fatal_signal_pending(current)) {
8146 ret = -EINTR;
8147 break;
8148 }
8149
bb13ffeb
MG
8150 if (list_empty(&cc->migratepages)) {
8151 cc->nr_migratepages = 0;
edc2ca61 8152 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8153 if (!pfn) {
8154 ret = -EINTR;
8155 break;
8156 }
8157 tries = 0;
8158 } else if (++tries == 5) {
8159 ret = ret < 0 ? ret : -EBUSY;
8160 break;
8161 }
8162
beb51eaa
MK
8163 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8164 &cc->migratepages);
8165 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8166
9c620e2b 8167 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8168 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8169 }
2a6f5124
SP
8170 if (ret < 0) {
8171 putback_movable_pages(&cc->migratepages);
8172 return ret;
8173 }
8174 return 0;
041d3a8c
MN
8175}
8176
8177/**
8178 * alloc_contig_range() -- tries to allocate given range of pages
8179 * @start: start PFN to allocate
8180 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8181 * @migratetype: migratetype of the underlaying pageblocks (either
8182 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8183 * in range must have the same migratetype and it must
8184 * be either of the two.
ca96b625 8185 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8186 *
8187 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8188 * aligned. The PFN range must belong to a single zone.
041d3a8c 8189 *
2c7452a0
MK
8190 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8191 * pageblocks in the range. Once isolated, the pageblocks should not
8192 * be modified by others.
041d3a8c 8193 *
a862f68a 8194 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8195 * pages which PFN is in [start, end) are allocated for the caller and
8196 * need to be freed with free_contig_range().
8197 */
0815f3d8 8198int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8199 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8200{
041d3a8c 8201 unsigned long outer_start, outer_end;
d00181b9
KS
8202 unsigned int order;
8203 int ret = 0;
041d3a8c 8204
bb13ffeb
MG
8205 struct compact_control cc = {
8206 .nr_migratepages = 0,
8207 .order = -1,
8208 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8209 .mode = MIGRATE_SYNC,
bb13ffeb 8210 .ignore_skip_hint = true,
2583d671 8211 .no_set_skip_hint = true,
7dea19f9 8212 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
8213 };
8214 INIT_LIST_HEAD(&cc.migratepages);
8215
041d3a8c
MN
8216 /*
8217 * What we do here is we mark all pageblocks in range as
8218 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8219 * have different sizes, and due to the way page allocator
8220 * work, we align the range to biggest of the two pages so
8221 * that page allocator won't try to merge buddies from
8222 * different pageblocks and change MIGRATE_ISOLATE to some
8223 * other migration type.
8224 *
8225 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8226 * migrate the pages from an unaligned range (ie. pages that
8227 * we are interested in). This will put all the pages in
8228 * range back to page allocator as MIGRATE_ISOLATE.
8229 *
8230 * When this is done, we take the pages in range from page
8231 * allocator removing them from the buddy system. This way
8232 * page allocator will never consider using them.
8233 *
8234 * This lets us mark the pageblocks back as
8235 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8236 * aligned range but not in the unaligned, original range are
8237 * put back to page allocator so that buddy can use them.
8238 */
8239
8240 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8241 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8242 if (ret < 0)
86a595f9 8243 return ret;
041d3a8c 8244
8ef5849f
JK
8245 /*
8246 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8247 * So, just fall through. test_pages_isolated() has a tracepoint
8248 * which will report the busy page.
8249 *
8250 * It is possible that busy pages could become available before
8251 * the call to test_pages_isolated, and the range will actually be
8252 * allocated. So, if we fall through be sure to clear ret so that
8253 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8254 */
bb13ffeb 8255 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8256 if (ret && ret != -EBUSY)
041d3a8c 8257 goto done;
63cd4489 8258 ret =0;
041d3a8c
MN
8259
8260 /*
8261 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8262 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8263 * more, all pages in [start, end) are free in page allocator.
8264 * What we are going to do is to allocate all pages from
8265 * [start, end) (that is remove them from page allocator).
8266 *
8267 * The only problem is that pages at the beginning and at the
8268 * end of interesting range may be not aligned with pages that
8269 * page allocator holds, ie. they can be part of higher order
8270 * pages. Because of this, we reserve the bigger range and
8271 * once this is done free the pages we are not interested in.
8272 *
8273 * We don't have to hold zone->lock here because the pages are
8274 * isolated thus they won't get removed from buddy.
8275 */
8276
8277 lru_add_drain_all();
041d3a8c
MN
8278
8279 order = 0;
8280 outer_start = start;
8281 while (!PageBuddy(pfn_to_page(outer_start))) {
8282 if (++order >= MAX_ORDER) {
8ef5849f
JK
8283 outer_start = start;
8284 break;
041d3a8c
MN
8285 }
8286 outer_start &= ~0UL << order;
8287 }
8288
8ef5849f
JK
8289 if (outer_start != start) {
8290 order = page_order(pfn_to_page(outer_start));
8291
8292 /*
8293 * outer_start page could be small order buddy page and
8294 * it doesn't include start page. Adjust outer_start
8295 * in this case to report failed page properly
8296 * on tracepoint in test_pages_isolated()
8297 */
8298 if (outer_start + (1UL << order) <= start)
8299 outer_start = start;
8300 }
8301
041d3a8c 8302 /* Make sure the range is really isolated. */
b023f468 8303 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 8304 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8305 __func__, outer_start, end);
041d3a8c
MN
8306 ret = -EBUSY;
8307 goto done;
8308 }
8309
49f223a9 8310 /* Grab isolated pages from freelists. */
bb13ffeb 8311 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8312 if (!outer_end) {
8313 ret = -EBUSY;
8314 goto done;
8315 }
8316
8317 /* Free head and tail (if any) */
8318 if (start != outer_start)
8319 free_contig_range(outer_start, start - outer_start);
8320 if (end != outer_end)
8321 free_contig_range(end, outer_end - end);
8322
8323done:
8324 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8325 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8326 return ret;
8327}
8328
8329void free_contig_range(unsigned long pfn, unsigned nr_pages)
8330{
bcc2b02f
MS
8331 unsigned int count = 0;
8332
8333 for (; nr_pages--; pfn++) {
8334 struct page *page = pfn_to_page(pfn);
8335
8336 count += page_count(page) != 1;
8337 __free_page(page);
8338 }
8339 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
8340}
8341#endif
8342
d883c6cf 8343#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
8344/*
8345 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8346 * page high values need to be recalulated.
8347 */
4ed7e022
JL
8348void __meminit zone_pcp_update(struct zone *zone)
8349{
0a647f38 8350 unsigned cpu;
c8e251fa 8351 mutex_lock(&pcp_batch_high_lock);
0a647f38 8352 for_each_possible_cpu(cpu)
169f6c19
CS
8353 pageset_set_high_and_batch(zone,
8354 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 8355 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
8356}
8357#endif
8358
340175b7
JL
8359void zone_pcp_reset(struct zone *zone)
8360{
8361 unsigned long flags;
5a883813
MK
8362 int cpu;
8363 struct per_cpu_pageset *pset;
340175b7
JL
8364
8365 /* avoid races with drain_pages() */
8366 local_irq_save(flags);
8367 if (zone->pageset != &boot_pageset) {
5a883813
MK
8368 for_each_online_cpu(cpu) {
8369 pset = per_cpu_ptr(zone->pageset, cpu);
8370 drain_zonestat(zone, pset);
8371 }
340175b7
JL
8372 free_percpu(zone->pageset);
8373 zone->pageset = &boot_pageset;
8374 }
8375 local_irq_restore(flags);
8376}
8377
6dcd73d7 8378#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8379/*
b9eb6319
JK
8380 * All pages in the range must be in a single zone and isolated
8381 * before calling this.
0c0e6195
KH
8382 */
8383void
8384__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8385{
8386 struct page *page;
8387 struct zone *zone;
7aeb09f9 8388 unsigned int order, i;
0c0e6195
KH
8389 unsigned long pfn;
8390 unsigned long flags;
8391 /* find the first valid pfn */
8392 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8393 if (pfn_valid(pfn))
8394 break;
8395 if (pfn == end_pfn)
8396 return;
2d070eab 8397 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8398 zone = page_zone(pfn_to_page(pfn));
8399 spin_lock_irqsave(&zone->lock, flags);
8400 pfn = start_pfn;
8401 while (pfn < end_pfn) {
8402 if (!pfn_valid(pfn)) {
8403 pfn++;
8404 continue;
8405 }
8406 page = pfn_to_page(pfn);
b023f468
WC
8407 /*
8408 * The HWPoisoned page may be not in buddy system, and
8409 * page_count() is not 0.
8410 */
8411 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8412 pfn++;
8413 SetPageReserved(page);
8414 continue;
8415 }
8416
0c0e6195
KH
8417 BUG_ON(page_count(page));
8418 BUG_ON(!PageBuddy(page));
8419 order = page_order(page);
8420#ifdef CONFIG_DEBUG_VM
1170532b
JP
8421 pr_info("remove from free list %lx %d %lx\n",
8422 pfn, 1 << order, end_pfn);
0c0e6195
KH
8423#endif
8424 list_del(&page->lru);
8425 rmv_page_order(page);
8426 zone->free_area[order].nr_free--;
0c0e6195
KH
8427 for (i = 0; i < (1 << order); i++)
8428 SetPageReserved((page+i));
8429 pfn += (1 << order);
8430 }
8431 spin_unlock_irqrestore(&zone->lock, flags);
8432}
8433#endif
8d22ba1b 8434
8d22ba1b
WF
8435bool is_free_buddy_page(struct page *page)
8436{
8437 struct zone *zone = page_zone(page);
8438 unsigned long pfn = page_to_pfn(page);
8439 unsigned long flags;
7aeb09f9 8440 unsigned int order;
8d22ba1b
WF
8441
8442 spin_lock_irqsave(&zone->lock, flags);
8443 for (order = 0; order < MAX_ORDER; order++) {
8444 struct page *page_head = page - (pfn & ((1 << order) - 1));
8445
8446 if (PageBuddy(page_head) && page_order(page_head) >= order)
8447 break;
8448 }
8449 spin_unlock_irqrestore(&zone->lock, flags);
8450
8451 return order < MAX_ORDER;
8452}
d4ae9916
NH
8453
8454#ifdef CONFIG_MEMORY_FAILURE
8455/*
8456 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8457 * test is performed under the zone lock to prevent a race against page
8458 * allocation.
8459 */
8460bool set_hwpoison_free_buddy_page(struct page *page)
8461{
8462 struct zone *zone = page_zone(page);
8463 unsigned long pfn = page_to_pfn(page);
8464 unsigned long flags;
8465 unsigned int order;
8466 bool hwpoisoned = false;
8467
8468 spin_lock_irqsave(&zone->lock, flags);
8469 for (order = 0; order < MAX_ORDER; order++) {
8470 struct page *page_head = page - (pfn & ((1 << order) - 1));
8471
8472 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8473 if (!TestSetPageHWPoison(page))
8474 hwpoisoned = true;
8475 break;
8476 }
8477 }
8478 spin_unlock_irqrestore(&zone->lock, flags);
8479
8480 return hwpoisoned;
8481}
8482#endif