]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/page_alloc.c
Revert "mm, oom: prevent premature OOM killer invocation for high order request"
[thirdparty/kernel/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
1da177e4 67
7ee3d4e8 68#include <asm/sections.h>
1da177e4 69#include <asm/tlbflush.h>
ac924c60 70#include <asm/div64.h>
1da177e4
LT
71#include "internal.h"
72
c8e251fa
CS
73/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 75#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 76
72812019
LS
77#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78DEFINE_PER_CPU(int, numa_node);
79EXPORT_PER_CPU_SYMBOL(numa_node);
80#endif
81
7aac7898
LS
82#ifdef CONFIG_HAVE_MEMORYLESS_NODES
83/*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 91int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
92#endif
93
1da177e4 94/*
13808910 95 * Array of node states.
1da177e4 96 */
13808910
CL
97nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 [N_POSSIBLE] = NODE_MASK_ALL,
99 [N_ONLINE] = { { [0] = 1UL } },
100#ifndef CONFIG_NUMA
101 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
102#ifdef CONFIG_HIGHMEM
103 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
104#endif
105#ifdef CONFIG_MOVABLE_NODE
106 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
107#endif
108 [N_CPU] = { { [0] = 1UL } },
109#endif /* NUMA */
110};
111EXPORT_SYMBOL(node_states);
112
c3d5f5f0
JL
113/* Protect totalram_pages and zone->managed_pages */
114static DEFINE_SPINLOCK(managed_page_count_lock);
115
6c231b7b 116unsigned long totalram_pages __read_mostly;
cb45b0e9 117unsigned long totalreserve_pages __read_mostly;
e48322ab 118unsigned long totalcma_pages __read_mostly;
ab8fabd4 119
1b76b02f 120int percpu_pagelist_fraction;
dcce284a 121gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 122
bb14c2c7
VB
123/*
124 * A cached value of the page's pageblock's migratetype, used when the page is
125 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127 * Also the migratetype set in the page does not necessarily match the pcplist
128 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129 * other index - this ensures that it will be put on the correct CMA freelist.
130 */
131static inline int get_pcppage_migratetype(struct page *page)
132{
133 return page->index;
134}
135
136static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137{
138 page->index = migratetype;
139}
140
452aa699
RW
141#ifdef CONFIG_PM_SLEEP
142/*
143 * The following functions are used by the suspend/hibernate code to temporarily
144 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145 * while devices are suspended. To avoid races with the suspend/hibernate code,
146 * they should always be called with pm_mutex held (gfp_allowed_mask also should
147 * only be modified with pm_mutex held, unless the suspend/hibernate code is
148 * guaranteed not to run in parallel with that modification).
149 */
c9e664f1
RW
150
151static gfp_t saved_gfp_mask;
152
153void pm_restore_gfp_mask(void)
452aa699
RW
154{
155 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
156 if (saved_gfp_mask) {
157 gfp_allowed_mask = saved_gfp_mask;
158 saved_gfp_mask = 0;
159 }
452aa699
RW
160}
161
c9e664f1 162void pm_restrict_gfp_mask(void)
452aa699 163{
452aa699 164 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
165 WARN_ON(saved_gfp_mask);
166 saved_gfp_mask = gfp_allowed_mask;
d0164adc 167 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 168}
f90ac398
MG
169
170bool pm_suspended_storage(void)
171{
d0164adc 172 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
173 return false;
174 return true;
175}
452aa699
RW
176#endif /* CONFIG_PM_SLEEP */
177
d9c23400 178#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 179unsigned int pageblock_order __read_mostly;
d9c23400
MG
180#endif
181
d98c7a09 182static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 183
1da177e4
LT
184/*
185 * results with 256, 32 in the lowmem_reserve sysctl:
186 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187 * 1G machine -> (16M dma, 784M normal, 224M high)
188 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 190 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
191 *
192 * TBD: should special case ZONE_DMA32 machines here - in those we normally
193 * don't need any ZONE_NORMAL reservation
1da177e4 194 */
2f1b6248 195int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 196#ifdef CONFIG_ZONE_DMA
2f1b6248 197 256,
4b51d669 198#endif
fb0e7942 199#ifdef CONFIG_ZONE_DMA32
2f1b6248 200 256,
fb0e7942 201#endif
e53ef38d 202#ifdef CONFIG_HIGHMEM
2a1e274a 203 32,
e53ef38d 204#endif
2a1e274a 205 32,
2f1b6248 206};
1da177e4
LT
207
208EXPORT_SYMBOL(totalram_pages);
1da177e4 209
15ad7cdc 210static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 211#ifdef CONFIG_ZONE_DMA
2f1b6248 212 "DMA",
4b51d669 213#endif
fb0e7942 214#ifdef CONFIG_ZONE_DMA32
2f1b6248 215 "DMA32",
fb0e7942 216#endif
2f1b6248 217 "Normal",
e53ef38d 218#ifdef CONFIG_HIGHMEM
2a1e274a 219 "HighMem",
e53ef38d 220#endif
2a1e274a 221 "Movable",
033fbae9
DW
222#ifdef CONFIG_ZONE_DEVICE
223 "Device",
224#endif
2f1b6248
CL
225};
226
60f30350
VB
227char * const migratetype_names[MIGRATE_TYPES] = {
228 "Unmovable",
229 "Movable",
230 "Reclaimable",
231 "HighAtomic",
232#ifdef CONFIG_CMA
233 "CMA",
234#endif
235#ifdef CONFIG_MEMORY_ISOLATION
236 "Isolate",
237#endif
238};
239
f1e61557
KS
240compound_page_dtor * const compound_page_dtors[] = {
241 NULL,
242 free_compound_page,
243#ifdef CONFIG_HUGETLB_PAGE
244 free_huge_page,
245#endif
9a982250
KS
246#ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 free_transhuge_page,
248#endif
f1e61557
KS
249};
250
1da177e4 251int min_free_kbytes = 1024;
42aa83cb 252int user_min_free_kbytes = -1;
795ae7a0 253int watermark_scale_factor = 10;
1da177e4 254
2c85f51d
JB
255static unsigned long __meminitdata nr_kernel_pages;
256static unsigned long __meminitdata nr_all_pages;
a3142c8e 257static unsigned long __meminitdata dma_reserve;
1da177e4 258
0ee332c1
TH
259#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262static unsigned long __initdata required_kernelcore;
263static unsigned long __initdata required_movablecore;
264static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 265static bool mirrored_kernelcore;
0ee332c1
TH
266
267/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268int movable_zone;
269EXPORT_SYMBOL(movable_zone);
270#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 271
418508c1
MS
272#if MAX_NUMNODES > 1
273int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 274int nr_online_nodes __read_mostly = 1;
418508c1 275EXPORT_SYMBOL(nr_node_ids);
62bc62a8 276EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
277#endif
278
9ef9acb0
MG
279int page_group_by_mobility_disabled __read_mostly;
280
3a80a7fa
MG
281#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282static inline void reset_deferred_meminit(pg_data_t *pgdat)
283{
284 pgdat->first_deferred_pfn = ULONG_MAX;
285}
286
287/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 288static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 289{
ef70b6f4
MG
290 int nid = early_pfn_to_nid(pfn);
291
292 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
293 return true;
294
295 return false;
296}
297
298/*
299 * Returns false when the remaining initialisation should be deferred until
300 * later in the boot cycle when it can be parallelised.
301 */
302static inline bool update_defer_init(pg_data_t *pgdat,
303 unsigned long pfn, unsigned long zone_end,
304 unsigned long *nr_initialised)
305{
987b3095
LZ
306 unsigned long max_initialise;
307
3a80a7fa
MG
308 /* Always populate low zones for address-contrained allocations */
309 if (zone_end < pgdat_end_pfn(pgdat))
310 return true;
987b3095
LZ
311 /*
312 * Initialise at least 2G of a node but also take into account that
313 * two large system hashes that can take up 1GB for 0.25TB/node.
314 */
315 max_initialise = max(2UL << (30 - PAGE_SHIFT),
316 (pgdat->node_spanned_pages >> 8));
3a80a7fa 317
3a80a7fa 318 (*nr_initialised)++;
987b3095 319 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
320 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
321 pgdat->first_deferred_pfn = pfn;
322 return false;
323 }
324
325 return true;
326}
327#else
328static inline void reset_deferred_meminit(pg_data_t *pgdat)
329{
330}
331
332static inline bool early_page_uninitialised(unsigned long pfn)
333{
334 return false;
335}
336
337static inline bool update_defer_init(pg_data_t *pgdat,
338 unsigned long pfn, unsigned long zone_end,
339 unsigned long *nr_initialised)
340{
341 return true;
342}
343#endif
344
0b423ca2
MG
345/* Return a pointer to the bitmap storing bits affecting a block of pages */
346static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 unsigned long pfn)
348{
349#ifdef CONFIG_SPARSEMEM
350 return __pfn_to_section(pfn)->pageblock_flags;
351#else
352 return page_zone(page)->pageblock_flags;
353#endif /* CONFIG_SPARSEMEM */
354}
355
356static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
357{
358#ifdef CONFIG_SPARSEMEM
359 pfn &= (PAGES_PER_SECTION-1);
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361#else
362 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364#endif /* CONFIG_SPARSEMEM */
365}
366
367/**
368 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
369 * @page: The page within the block of interest
370 * @pfn: The target page frame number
371 * @end_bitidx: The last bit of interest to retrieve
372 * @mask: mask of bits that the caller is interested in
373 *
374 * Return: pageblock_bits flags
375 */
376static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
377 unsigned long pfn,
378 unsigned long end_bitidx,
379 unsigned long mask)
380{
381 unsigned long *bitmap;
382 unsigned long bitidx, word_bitidx;
383 unsigned long word;
384
385 bitmap = get_pageblock_bitmap(page, pfn);
386 bitidx = pfn_to_bitidx(page, pfn);
387 word_bitidx = bitidx / BITS_PER_LONG;
388 bitidx &= (BITS_PER_LONG-1);
389
390 word = bitmap[word_bitidx];
391 bitidx += end_bitidx;
392 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393}
394
395unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
396 unsigned long end_bitidx,
397 unsigned long mask)
398{
399 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400}
401
402static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
403{
404 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405}
406
407/**
408 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
409 * @page: The page within the block of interest
410 * @flags: The flags to set
411 * @pfn: The target page frame number
412 * @end_bitidx: The last bit of interest
413 * @mask: mask of bits that the caller is interested in
414 */
415void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419{
420 unsigned long *bitmap;
421 unsigned long bitidx, word_bitidx;
422 unsigned long old_word, word;
423
424 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
425
426 bitmap = get_pageblock_bitmap(page, pfn);
427 bitidx = pfn_to_bitidx(page, pfn);
428 word_bitidx = bitidx / BITS_PER_LONG;
429 bitidx &= (BITS_PER_LONG-1);
430
431 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432
433 bitidx += end_bitidx;
434 mask <<= (BITS_PER_LONG - bitidx - 1);
435 flags <<= (BITS_PER_LONG - bitidx - 1);
436
437 word = READ_ONCE(bitmap[word_bitidx]);
438 for (;;) {
439 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
440 if (word == old_word)
441 break;
442 word = old_word;
443 }
444}
3a80a7fa 445
ee6f509c 446void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 447{
5d0f3f72
KM
448 if (unlikely(page_group_by_mobility_disabled &&
449 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
450 migratetype = MIGRATE_UNMOVABLE;
451
b2a0ac88
MG
452 set_pageblock_flags_group(page, (unsigned long)migratetype,
453 PB_migrate, PB_migrate_end);
454}
455
13e7444b 456#ifdef CONFIG_DEBUG_VM
c6a57e19 457static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 458{
bdc8cb98
DH
459 int ret = 0;
460 unsigned seq;
461 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 462 unsigned long sp, start_pfn;
c6a57e19 463
bdc8cb98
DH
464 do {
465 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
466 start_pfn = zone->zone_start_pfn;
467 sp = zone->spanned_pages;
108bcc96 468 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
469 ret = 1;
470 } while (zone_span_seqretry(zone, seq));
471
b5e6a5a2 472 if (ret)
613813e8
DH
473 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
474 pfn, zone_to_nid(zone), zone->name,
475 start_pfn, start_pfn + sp);
b5e6a5a2 476
bdc8cb98 477 return ret;
c6a57e19
DH
478}
479
480static int page_is_consistent(struct zone *zone, struct page *page)
481{
14e07298 482 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 483 return 0;
1da177e4 484 if (zone != page_zone(page))
c6a57e19
DH
485 return 0;
486
487 return 1;
488}
489/*
490 * Temporary debugging check for pages not lying within a given zone.
491 */
492static int bad_range(struct zone *zone, struct page *page)
493{
494 if (page_outside_zone_boundaries(zone, page))
1da177e4 495 return 1;
c6a57e19
DH
496 if (!page_is_consistent(zone, page))
497 return 1;
498
1da177e4
LT
499 return 0;
500}
13e7444b
NP
501#else
502static inline int bad_range(struct zone *zone, struct page *page)
503{
504 return 0;
505}
506#endif
507
d230dec1
KS
508static void bad_page(struct page *page, const char *reason,
509 unsigned long bad_flags)
1da177e4 510{
d936cf9b
HD
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 goto out;
523 }
524 if (nr_unshown) {
ff8e8116 525 pr_alert(
1e9e6365 526 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
527 nr_unshown);
528 nr_unshown = 0;
529 }
530 nr_shown = 0;
531 }
532 if (nr_shown++ == 0)
533 resume = jiffies + 60 * HZ;
534
ff8e8116 535 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 536 current->comm, page_to_pfn(page));
ff8e8116
VB
537 __dump_page(page, reason);
538 bad_flags &= page->flags;
539 if (bad_flags)
540 pr_alert("bad because of flags: %#lx(%pGp)\n",
541 bad_flags, &bad_flags);
4e462112 542 dump_page_owner(page);
3dc14741 543
4f31888c 544 print_modules();
1da177e4 545 dump_stack();
d936cf9b 546out:
8cc3b392 547 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 548 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
550}
551
1da177e4
LT
552/*
553 * Higher-order pages are called "compound pages". They are structured thusly:
554 *
1d798ca3 555 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 556 *
1d798ca3
KS
557 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 559 *
1d798ca3
KS
560 * The first tail page's ->compound_dtor holds the offset in array of compound
561 * page destructors. See compound_page_dtors.
1da177e4 562 *
1d798ca3 563 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 564 * This usage means that zero-order pages may not be compound.
1da177e4 565 */
d98c7a09 566
9a982250 567void free_compound_page(struct page *page)
d98c7a09 568{
d85f3385 569 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
570}
571
d00181b9 572void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
573{
574 int i;
575 int nr_pages = 1 << order;
576
f1e61557 577 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
578 set_compound_order(page, order);
579 __SetPageHead(page);
580 for (i = 1; i < nr_pages; i++) {
581 struct page *p = page + i;
58a84aa9 582 set_page_count(p, 0);
1c290f64 583 p->mapping = TAIL_MAPPING;
1d798ca3 584 set_compound_head(p, page);
18229df5 585 }
53f9263b 586 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
587}
588
c0a32fc5
SG
589#ifdef CONFIG_DEBUG_PAGEALLOC
590unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
591bool _debug_pagealloc_enabled __read_mostly
592 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 593EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
594bool _debug_guardpage_enabled __read_mostly;
595
031bc574
JK
596static int __init early_debug_pagealloc(char *buf)
597{
598 if (!buf)
599 return -EINVAL;
2a138dc7 600 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
601}
602early_param("debug_pagealloc", early_debug_pagealloc);
603
e30825f1
JK
604static bool need_debug_guardpage(void)
605{
031bc574
JK
606 /* If we don't use debug_pagealloc, we don't need guard page */
607 if (!debug_pagealloc_enabled())
608 return false;
609
f1c1e9f7
JK
610 if (!debug_guardpage_minorder())
611 return false;
612
e30825f1
JK
613 return true;
614}
615
616static void init_debug_guardpage(void)
617{
031bc574
JK
618 if (!debug_pagealloc_enabled())
619 return;
620
f1c1e9f7
JK
621 if (!debug_guardpage_minorder())
622 return;
623
e30825f1
JK
624 _debug_guardpage_enabled = true;
625}
626
627struct page_ext_operations debug_guardpage_ops = {
628 .need = need_debug_guardpage,
629 .init = init_debug_guardpage,
630};
c0a32fc5
SG
631
632static int __init debug_guardpage_minorder_setup(char *buf)
633{
634 unsigned long res;
635
636 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 637 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
638 return 0;
639 }
640 _debug_guardpage_minorder = res;
1170532b 641 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
642 return 0;
643}
f1c1e9f7 644early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 645
acbc15a4 646static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 647 unsigned int order, int migratetype)
c0a32fc5 648{
e30825f1
JK
649 struct page_ext *page_ext;
650
651 if (!debug_guardpage_enabled())
acbc15a4
JK
652 return false;
653
654 if (order >= debug_guardpage_minorder())
655 return false;
e30825f1
JK
656
657 page_ext = lookup_page_ext(page);
f86e4271 658 if (unlikely(!page_ext))
acbc15a4 659 return false;
f86e4271 660
e30825f1
JK
661 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
662
2847cf95
JK
663 INIT_LIST_HEAD(&page->lru);
664 set_page_private(page, order);
665 /* Guard pages are not available for any usage */
666 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
667
668 return true;
c0a32fc5
SG
669}
670
2847cf95
JK
671static inline void clear_page_guard(struct zone *zone, struct page *page,
672 unsigned int order, int migratetype)
c0a32fc5 673{
e30825f1
JK
674 struct page_ext *page_ext;
675
676 if (!debug_guardpage_enabled())
677 return;
678
679 page_ext = lookup_page_ext(page);
f86e4271
YS
680 if (unlikely(!page_ext))
681 return;
682
e30825f1
JK
683 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
684
2847cf95
JK
685 set_page_private(page, 0);
686 if (!is_migrate_isolate(migratetype))
687 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
688}
689#else
980ac167 690struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
691static inline bool set_page_guard(struct zone *zone, struct page *page,
692 unsigned int order, int migratetype) { return false; }
2847cf95
JK
693static inline void clear_page_guard(struct zone *zone, struct page *page,
694 unsigned int order, int migratetype) {}
c0a32fc5
SG
695#endif
696
7aeb09f9 697static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 698{
4c21e2f2 699 set_page_private(page, order);
676165a8 700 __SetPageBuddy(page);
1da177e4
LT
701}
702
703static inline void rmv_page_order(struct page *page)
704{
676165a8 705 __ClearPageBuddy(page);
4c21e2f2 706 set_page_private(page, 0);
1da177e4
LT
707}
708
1da177e4
LT
709/*
710 * This function checks whether a page is free && is the buddy
711 * we can do coalesce a page and its buddy if
13e7444b 712 * (a) the buddy is not in a hole &&
676165a8 713 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
714 * (c) a page and its buddy have the same order &&
715 * (d) a page and its buddy are in the same zone.
676165a8 716 *
cf6fe945
WSH
717 * For recording whether a page is in the buddy system, we set ->_mapcount
718 * PAGE_BUDDY_MAPCOUNT_VALUE.
719 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
720 * serialized by zone->lock.
1da177e4 721 *
676165a8 722 * For recording page's order, we use page_private(page).
1da177e4 723 */
cb2b95e1 724static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 725 unsigned int order)
1da177e4 726{
14e07298 727 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 728 return 0;
13e7444b 729
c0a32fc5 730 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
731 if (page_zone_id(page) != page_zone_id(buddy))
732 return 0;
733
4c5018ce
WY
734 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
735
c0a32fc5
SG
736 return 1;
737 }
738
cb2b95e1 739 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
740 /*
741 * zone check is done late to avoid uselessly
742 * calculating zone/node ids for pages that could
743 * never merge.
744 */
745 if (page_zone_id(page) != page_zone_id(buddy))
746 return 0;
747
4c5018ce
WY
748 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
749
6aa3001b 750 return 1;
676165a8 751 }
6aa3001b 752 return 0;
1da177e4
LT
753}
754
755/*
756 * Freeing function for a buddy system allocator.
757 *
758 * The concept of a buddy system is to maintain direct-mapped table
759 * (containing bit values) for memory blocks of various "orders".
760 * The bottom level table contains the map for the smallest allocatable
761 * units of memory (here, pages), and each level above it describes
762 * pairs of units from the levels below, hence, "buddies".
763 * At a high level, all that happens here is marking the table entry
764 * at the bottom level available, and propagating the changes upward
765 * as necessary, plus some accounting needed to play nicely with other
766 * parts of the VM system.
767 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
768 * free pages of length of (1 << order) and marked with _mapcount
769 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
770 * field.
1da177e4 771 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
772 * other. That is, if we allocate a small block, and both were
773 * free, the remainder of the region must be split into blocks.
1da177e4 774 * If a block is freed, and its buddy is also free, then this
5f63b720 775 * triggers coalescing into a block of larger size.
1da177e4 776 *
6d49e352 777 * -- nyc
1da177e4
LT
778 */
779
48db57f8 780static inline void __free_one_page(struct page *page,
dc4b0caf 781 unsigned long pfn,
ed0ae21d
MG
782 struct zone *zone, unsigned int order,
783 int migratetype)
1da177e4
LT
784{
785 unsigned long page_idx;
6dda9d55 786 unsigned long combined_idx;
43506fad 787 unsigned long uninitialized_var(buddy_idx);
6dda9d55 788 struct page *buddy;
d9dddbf5
VB
789 unsigned int max_order;
790
791 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 792
d29bb978 793 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 794 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 795
ed0ae21d 796 VM_BUG_ON(migratetype == -1);
d9dddbf5 797 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 798 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 799
d9dddbf5 800 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 801
309381fe
SL
802 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
803 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 804
d9dddbf5 805continue_merging:
3c605096 806 while (order < max_order - 1) {
43506fad
KC
807 buddy_idx = __find_buddy_index(page_idx, order);
808 buddy = page + (buddy_idx - page_idx);
cb2b95e1 809 if (!page_is_buddy(page, buddy, order))
d9dddbf5 810 goto done_merging;
c0a32fc5
SG
811 /*
812 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
813 * merge with it and move up one order.
814 */
815 if (page_is_guard(buddy)) {
2847cf95 816 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
817 } else {
818 list_del(&buddy->lru);
819 zone->free_area[order].nr_free--;
820 rmv_page_order(buddy);
821 }
43506fad 822 combined_idx = buddy_idx & page_idx;
1da177e4
LT
823 page = page + (combined_idx - page_idx);
824 page_idx = combined_idx;
825 order++;
826 }
d9dddbf5
VB
827 if (max_order < MAX_ORDER) {
828 /* If we are here, it means order is >= pageblock_order.
829 * We want to prevent merge between freepages on isolate
830 * pageblock and normal pageblock. Without this, pageblock
831 * isolation could cause incorrect freepage or CMA accounting.
832 *
833 * We don't want to hit this code for the more frequent
834 * low-order merging.
835 */
836 if (unlikely(has_isolate_pageblock(zone))) {
837 int buddy_mt;
838
839 buddy_idx = __find_buddy_index(page_idx, order);
840 buddy = page + (buddy_idx - page_idx);
841 buddy_mt = get_pageblock_migratetype(buddy);
842
843 if (migratetype != buddy_mt
844 && (is_migrate_isolate(migratetype) ||
845 is_migrate_isolate(buddy_mt)))
846 goto done_merging;
847 }
848 max_order++;
849 goto continue_merging;
850 }
851
852done_merging:
1da177e4 853 set_page_order(page, order);
6dda9d55
CZ
854
855 /*
856 * If this is not the largest possible page, check if the buddy
857 * of the next-highest order is free. If it is, it's possible
858 * that pages are being freed that will coalesce soon. In case,
859 * that is happening, add the free page to the tail of the list
860 * so it's less likely to be used soon and more likely to be merged
861 * as a higher order page
862 */
b7f50cfa 863 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 864 struct page *higher_page, *higher_buddy;
43506fad
KC
865 combined_idx = buddy_idx & page_idx;
866 higher_page = page + (combined_idx - page_idx);
867 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 868 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
869 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
870 list_add_tail(&page->lru,
871 &zone->free_area[order].free_list[migratetype]);
872 goto out;
873 }
874 }
875
876 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
877out:
1da177e4
LT
878 zone->free_area[order].nr_free++;
879}
880
7bfec6f4
MG
881/*
882 * A bad page could be due to a number of fields. Instead of multiple branches,
883 * try and check multiple fields with one check. The caller must do a detailed
884 * check if necessary.
885 */
886static inline bool page_expected_state(struct page *page,
887 unsigned long check_flags)
888{
889 if (unlikely(atomic_read(&page->_mapcount) != -1))
890 return false;
891
892 if (unlikely((unsigned long)page->mapping |
893 page_ref_count(page) |
894#ifdef CONFIG_MEMCG
895 (unsigned long)page->mem_cgroup |
896#endif
897 (page->flags & check_flags)))
898 return false;
899
900 return true;
901}
902
bb552ac6 903static void free_pages_check_bad(struct page *page)
1da177e4 904{
7bfec6f4
MG
905 const char *bad_reason;
906 unsigned long bad_flags;
907
7bfec6f4
MG
908 bad_reason = NULL;
909 bad_flags = 0;
f0b791a3 910
53f9263b 911 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
912 bad_reason = "nonzero mapcount";
913 if (unlikely(page->mapping != NULL))
914 bad_reason = "non-NULL mapping";
fe896d18 915 if (unlikely(page_ref_count(page) != 0))
0139aa7b 916 bad_reason = "nonzero _refcount";
f0b791a3
DH
917 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
918 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
919 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
920 }
9edad6ea
JW
921#ifdef CONFIG_MEMCG
922 if (unlikely(page->mem_cgroup))
923 bad_reason = "page still charged to cgroup";
924#endif
7bfec6f4 925 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
926}
927
928static inline int free_pages_check(struct page *page)
929{
da838d4f 930 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 931 return 0;
bb552ac6
MG
932
933 /* Something has gone sideways, find it */
934 free_pages_check_bad(page);
7bfec6f4 935 return 1;
1da177e4
LT
936}
937
4db7548c
MG
938static int free_tail_pages_check(struct page *head_page, struct page *page)
939{
940 int ret = 1;
941
942 /*
943 * We rely page->lru.next never has bit 0 set, unless the page
944 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
945 */
946 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
947
948 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
949 ret = 0;
950 goto out;
951 }
952 switch (page - head_page) {
953 case 1:
954 /* the first tail page: ->mapping is compound_mapcount() */
955 if (unlikely(compound_mapcount(page))) {
956 bad_page(page, "nonzero compound_mapcount", 0);
957 goto out;
958 }
959 break;
960 case 2:
961 /*
962 * the second tail page: ->mapping is
963 * page_deferred_list().next -- ignore value.
964 */
965 break;
966 default:
967 if (page->mapping != TAIL_MAPPING) {
968 bad_page(page, "corrupted mapping in tail page", 0);
969 goto out;
970 }
971 break;
972 }
973 if (unlikely(!PageTail(page))) {
974 bad_page(page, "PageTail not set", 0);
975 goto out;
976 }
977 if (unlikely(compound_head(page) != head_page)) {
978 bad_page(page, "compound_head not consistent", 0);
979 goto out;
980 }
981 ret = 0;
982out:
983 page->mapping = NULL;
984 clear_compound_head(page);
985 return ret;
986}
987
e2769dbd
MG
988static __always_inline bool free_pages_prepare(struct page *page,
989 unsigned int order, bool check_free)
4db7548c 990{
e2769dbd 991 int bad = 0;
4db7548c 992
4db7548c
MG
993 VM_BUG_ON_PAGE(PageTail(page), page);
994
e2769dbd
MG
995 trace_mm_page_free(page, order);
996 kmemcheck_free_shadow(page, order);
e2769dbd
MG
997
998 /*
999 * Check tail pages before head page information is cleared to
1000 * avoid checking PageCompound for order-0 pages.
1001 */
1002 if (unlikely(order)) {
1003 bool compound = PageCompound(page);
1004 int i;
1005
1006 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1007
9a73f61b
KS
1008 if (compound)
1009 ClearPageDoubleMap(page);
e2769dbd
MG
1010 for (i = 1; i < (1 << order); i++) {
1011 if (compound)
1012 bad += free_tail_pages_check(page, page + i);
1013 if (unlikely(free_pages_check(page + i))) {
1014 bad++;
1015 continue;
1016 }
1017 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1018 }
1019 }
bda807d4 1020 if (PageMappingFlags(page))
4db7548c 1021 page->mapping = NULL;
c4159a75 1022 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1023 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1024 if (check_free)
1025 bad += free_pages_check(page);
1026 if (bad)
1027 return false;
4db7548c 1028
e2769dbd
MG
1029 page_cpupid_reset_last(page);
1030 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1031 reset_page_owner(page, order);
4db7548c
MG
1032
1033 if (!PageHighMem(page)) {
1034 debug_check_no_locks_freed(page_address(page),
e2769dbd 1035 PAGE_SIZE << order);
4db7548c 1036 debug_check_no_obj_freed(page_address(page),
e2769dbd 1037 PAGE_SIZE << order);
4db7548c 1038 }
e2769dbd
MG
1039 arch_free_page(page, order);
1040 kernel_poison_pages(page, 1 << order, 0);
1041 kernel_map_pages(page, 1 << order, 0);
29b52de1 1042 kasan_free_pages(page, order);
4db7548c 1043
4db7548c
MG
1044 return true;
1045}
1046
e2769dbd
MG
1047#ifdef CONFIG_DEBUG_VM
1048static inline bool free_pcp_prepare(struct page *page)
1049{
1050 return free_pages_prepare(page, 0, true);
1051}
1052
1053static inline bool bulkfree_pcp_prepare(struct page *page)
1054{
1055 return false;
1056}
1057#else
1058static bool free_pcp_prepare(struct page *page)
1059{
1060 return free_pages_prepare(page, 0, false);
1061}
1062
4db7548c
MG
1063static bool bulkfree_pcp_prepare(struct page *page)
1064{
1065 return free_pages_check(page);
1066}
1067#endif /* CONFIG_DEBUG_VM */
1068
1da177e4 1069/*
5f8dcc21 1070 * Frees a number of pages from the PCP lists
1da177e4 1071 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1072 * count is the number of pages to free.
1da177e4
LT
1073 *
1074 * If the zone was previously in an "all pages pinned" state then look to
1075 * see if this freeing clears that state.
1076 *
1077 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1078 * pinned" detection logic.
1079 */
5f8dcc21
MG
1080static void free_pcppages_bulk(struct zone *zone, int count,
1081 struct per_cpu_pages *pcp)
1da177e4 1082{
5f8dcc21 1083 int migratetype = 0;
a6f9edd6 1084 int batch_free = 0;
0d5d823a 1085 unsigned long nr_scanned;
3777999d 1086 bool isolated_pageblocks;
5f8dcc21 1087
c54ad30c 1088 spin_lock(&zone->lock);
3777999d 1089 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1090 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1091 if (nr_scanned)
599d0c95 1092 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1093
e5b31ac2 1094 while (count) {
48db57f8 1095 struct page *page;
5f8dcc21
MG
1096 struct list_head *list;
1097
1098 /*
a6f9edd6
MG
1099 * Remove pages from lists in a round-robin fashion. A
1100 * batch_free count is maintained that is incremented when an
1101 * empty list is encountered. This is so more pages are freed
1102 * off fuller lists instead of spinning excessively around empty
1103 * lists
5f8dcc21
MG
1104 */
1105 do {
a6f9edd6 1106 batch_free++;
5f8dcc21
MG
1107 if (++migratetype == MIGRATE_PCPTYPES)
1108 migratetype = 0;
1109 list = &pcp->lists[migratetype];
1110 } while (list_empty(list));
48db57f8 1111
1d16871d
NK
1112 /* This is the only non-empty list. Free them all. */
1113 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1114 batch_free = count;
1d16871d 1115
a6f9edd6 1116 do {
770c8aaa
BZ
1117 int mt; /* migratetype of the to-be-freed page */
1118
a16601c5 1119 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1120 /* must delete as __free_one_page list manipulates */
1121 list_del(&page->lru);
aa016d14 1122
bb14c2c7 1123 mt = get_pcppage_migratetype(page);
aa016d14
VB
1124 /* MIGRATE_ISOLATE page should not go to pcplists */
1125 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1126 /* Pageblock could have been isolated meanwhile */
3777999d 1127 if (unlikely(isolated_pageblocks))
51bb1a40 1128 mt = get_pageblock_migratetype(page);
51bb1a40 1129
4db7548c
MG
1130 if (bulkfree_pcp_prepare(page))
1131 continue;
1132
dc4b0caf 1133 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1134 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1135 } while (--count && --batch_free && !list_empty(list));
1da177e4 1136 }
c54ad30c 1137 spin_unlock(&zone->lock);
1da177e4
LT
1138}
1139
dc4b0caf
MG
1140static void free_one_page(struct zone *zone,
1141 struct page *page, unsigned long pfn,
7aeb09f9 1142 unsigned int order,
ed0ae21d 1143 int migratetype)
1da177e4 1144{
0d5d823a 1145 unsigned long nr_scanned;
006d22d9 1146 spin_lock(&zone->lock);
599d0c95 1147 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1148 if (nr_scanned)
599d0c95 1149 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1150
ad53f92e
JK
1151 if (unlikely(has_isolate_pageblock(zone) ||
1152 is_migrate_isolate(migratetype))) {
1153 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1154 }
dc4b0caf 1155 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1156 spin_unlock(&zone->lock);
48db57f8
NP
1157}
1158
1e8ce83c
RH
1159static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1160 unsigned long zone, int nid)
1161{
1e8ce83c 1162 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1163 init_page_count(page);
1164 page_mapcount_reset(page);
1165 page_cpupid_reset_last(page);
1e8ce83c 1166
1e8ce83c
RH
1167 INIT_LIST_HEAD(&page->lru);
1168#ifdef WANT_PAGE_VIRTUAL
1169 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1170 if (!is_highmem_idx(zone))
1171 set_page_address(page, __va(pfn << PAGE_SHIFT));
1172#endif
1173}
1174
1175static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1176 int nid)
1177{
1178 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1179}
1180
7e18adb4
MG
1181#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1182static void init_reserved_page(unsigned long pfn)
1183{
1184 pg_data_t *pgdat;
1185 int nid, zid;
1186
1187 if (!early_page_uninitialised(pfn))
1188 return;
1189
1190 nid = early_pfn_to_nid(pfn);
1191 pgdat = NODE_DATA(nid);
1192
1193 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1194 struct zone *zone = &pgdat->node_zones[zid];
1195
1196 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1197 break;
1198 }
1199 __init_single_pfn(pfn, zid, nid);
1200}
1201#else
1202static inline void init_reserved_page(unsigned long pfn)
1203{
1204}
1205#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1206
92923ca3
NZ
1207/*
1208 * Initialised pages do not have PageReserved set. This function is
1209 * called for each range allocated by the bootmem allocator and
1210 * marks the pages PageReserved. The remaining valid pages are later
1211 * sent to the buddy page allocator.
1212 */
4b50bcc7 1213void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1214{
1215 unsigned long start_pfn = PFN_DOWN(start);
1216 unsigned long end_pfn = PFN_UP(end);
1217
7e18adb4
MG
1218 for (; start_pfn < end_pfn; start_pfn++) {
1219 if (pfn_valid(start_pfn)) {
1220 struct page *page = pfn_to_page(start_pfn);
1221
1222 init_reserved_page(start_pfn);
1d798ca3
KS
1223
1224 /* Avoid false-positive PageTail() */
1225 INIT_LIST_HEAD(&page->lru);
1226
7e18adb4
MG
1227 SetPageReserved(page);
1228 }
1229 }
92923ca3
NZ
1230}
1231
ec95f53a
KM
1232static void __free_pages_ok(struct page *page, unsigned int order)
1233{
1234 unsigned long flags;
95e34412 1235 int migratetype;
dc4b0caf 1236 unsigned long pfn = page_to_pfn(page);
ec95f53a 1237
e2769dbd 1238 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1239 return;
1240
cfc47a28 1241 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1242 local_irq_save(flags);
f8891e5e 1243 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1244 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1245 local_irq_restore(flags);
1da177e4
LT
1246}
1247
949698a3 1248static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1249{
c3993076 1250 unsigned int nr_pages = 1 << order;
e2d0bd2b 1251 struct page *p = page;
c3993076 1252 unsigned int loop;
a226f6c8 1253
e2d0bd2b
YL
1254 prefetchw(p);
1255 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1256 prefetchw(p + 1);
c3993076
JW
1257 __ClearPageReserved(p);
1258 set_page_count(p, 0);
a226f6c8 1259 }
e2d0bd2b
YL
1260 __ClearPageReserved(p);
1261 set_page_count(p, 0);
c3993076 1262
e2d0bd2b 1263 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1264 set_page_refcounted(page);
1265 __free_pages(page, order);
a226f6c8
DH
1266}
1267
75a592a4
MG
1268#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1269 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1270
75a592a4
MG
1271static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1272
1273int __meminit early_pfn_to_nid(unsigned long pfn)
1274{
7ace9917 1275 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1276 int nid;
1277
7ace9917 1278 spin_lock(&early_pfn_lock);
75a592a4 1279 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1280 if (nid < 0)
e4568d38 1281 nid = first_online_node;
7ace9917
MG
1282 spin_unlock(&early_pfn_lock);
1283
1284 return nid;
75a592a4
MG
1285}
1286#endif
1287
1288#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1289static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1290 struct mminit_pfnnid_cache *state)
1291{
1292 int nid;
1293
1294 nid = __early_pfn_to_nid(pfn, state);
1295 if (nid >= 0 && nid != node)
1296 return false;
1297 return true;
1298}
1299
1300/* Only safe to use early in boot when initialisation is single-threaded */
1301static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1302{
1303 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1304}
1305
1306#else
1307
1308static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1309{
1310 return true;
1311}
1312static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1313 struct mminit_pfnnid_cache *state)
1314{
1315 return true;
1316}
1317#endif
1318
1319
0e1cc95b 1320void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1321 unsigned int order)
1322{
1323 if (early_page_uninitialised(pfn))
1324 return;
949698a3 1325 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1326}
1327
7cf91a98
JK
1328/*
1329 * Check that the whole (or subset of) a pageblock given by the interval of
1330 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1331 * with the migration of free compaction scanner. The scanners then need to
1332 * use only pfn_valid_within() check for arches that allow holes within
1333 * pageblocks.
1334 *
1335 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1336 *
1337 * It's possible on some configurations to have a setup like node0 node1 node0
1338 * i.e. it's possible that all pages within a zones range of pages do not
1339 * belong to a single zone. We assume that a border between node0 and node1
1340 * can occur within a single pageblock, but not a node0 node1 node0
1341 * interleaving within a single pageblock. It is therefore sufficient to check
1342 * the first and last page of a pageblock and avoid checking each individual
1343 * page in a pageblock.
1344 */
1345struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1346 unsigned long end_pfn, struct zone *zone)
1347{
1348 struct page *start_page;
1349 struct page *end_page;
1350
1351 /* end_pfn is one past the range we are checking */
1352 end_pfn--;
1353
1354 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1355 return NULL;
1356
1357 start_page = pfn_to_page(start_pfn);
1358
1359 if (page_zone(start_page) != zone)
1360 return NULL;
1361
1362 end_page = pfn_to_page(end_pfn);
1363
1364 /* This gives a shorter code than deriving page_zone(end_page) */
1365 if (page_zone_id(start_page) != page_zone_id(end_page))
1366 return NULL;
1367
1368 return start_page;
1369}
1370
1371void set_zone_contiguous(struct zone *zone)
1372{
1373 unsigned long block_start_pfn = zone->zone_start_pfn;
1374 unsigned long block_end_pfn;
1375
1376 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1377 for (; block_start_pfn < zone_end_pfn(zone);
1378 block_start_pfn = block_end_pfn,
1379 block_end_pfn += pageblock_nr_pages) {
1380
1381 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1382
1383 if (!__pageblock_pfn_to_page(block_start_pfn,
1384 block_end_pfn, zone))
1385 return;
1386 }
1387
1388 /* We confirm that there is no hole */
1389 zone->contiguous = true;
1390}
1391
1392void clear_zone_contiguous(struct zone *zone)
1393{
1394 zone->contiguous = false;
1395}
1396
7e18adb4 1397#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1398static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1399 unsigned long pfn, int nr_pages)
1400{
1401 int i;
1402
1403 if (!page)
1404 return;
1405
1406 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1407 if (nr_pages == pageblock_nr_pages &&
1408 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1409 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1410 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1411 return;
1412 }
1413
e780149b
XQ
1414 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1415 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1416 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1417 __free_pages_boot_core(page, 0);
e780149b 1418 }
a4de83dd
MG
1419}
1420
d3cd131d
NS
1421/* Completion tracking for deferred_init_memmap() threads */
1422static atomic_t pgdat_init_n_undone __initdata;
1423static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1424
1425static inline void __init pgdat_init_report_one_done(void)
1426{
1427 if (atomic_dec_and_test(&pgdat_init_n_undone))
1428 complete(&pgdat_init_all_done_comp);
1429}
0e1cc95b 1430
7e18adb4 1431/* Initialise remaining memory on a node */
0e1cc95b 1432static int __init deferred_init_memmap(void *data)
7e18adb4 1433{
0e1cc95b
MG
1434 pg_data_t *pgdat = data;
1435 int nid = pgdat->node_id;
7e18adb4
MG
1436 struct mminit_pfnnid_cache nid_init_state = { };
1437 unsigned long start = jiffies;
1438 unsigned long nr_pages = 0;
1439 unsigned long walk_start, walk_end;
1440 int i, zid;
1441 struct zone *zone;
7e18adb4 1442 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1443 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1444
0e1cc95b 1445 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1446 pgdat_init_report_one_done();
0e1cc95b
MG
1447 return 0;
1448 }
1449
1450 /* Bind memory initialisation thread to a local node if possible */
1451 if (!cpumask_empty(cpumask))
1452 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1453
1454 /* Sanity check boundaries */
1455 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1456 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1457 pgdat->first_deferred_pfn = ULONG_MAX;
1458
1459 /* Only the highest zone is deferred so find it */
1460 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1461 zone = pgdat->node_zones + zid;
1462 if (first_init_pfn < zone_end_pfn(zone))
1463 break;
1464 }
1465
1466 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1467 unsigned long pfn, end_pfn;
54608c3f 1468 struct page *page = NULL;
a4de83dd
MG
1469 struct page *free_base_page = NULL;
1470 unsigned long free_base_pfn = 0;
1471 int nr_to_free = 0;
7e18adb4
MG
1472
1473 end_pfn = min(walk_end, zone_end_pfn(zone));
1474 pfn = first_init_pfn;
1475 if (pfn < walk_start)
1476 pfn = walk_start;
1477 if (pfn < zone->zone_start_pfn)
1478 pfn = zone->zone_start_pfn;
1479
1480 for (; pfn < end_pfn; pfn++) {
54608c3f 1481 if (!pfn_valid_within(pfn))
a4de83dd 1482 goto free_range;
7e18adb4 1483
54608c3f
MG
1484 /*
1485 * Ensure pfn_valid is checked every
e780149b 1486 * pageblock_nr_pages for memory holes
54608c3f 1487 */
e780149b 1488 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1489 if (!pfn_valid(pfn)) {
1490 page = NULL;
a4de83dd 1491 goto free_range;
54608c3f
MG
1492 }
1493 }
1494
1495 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1496 page = NULL;
a4de83dd 1497 goto free_range;
54608c3f
MG
1498 }
1499
1500 /* Minimise pfn page lookups and scheduler checks */
e780149b 1501 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1502 page++;
1503 } else {
a4de83dd
MG
1504 nr_pages += nr_to_free;
1505 deferred_free_range(free_base_page,
1506 free_base_pfn, nr_to_free);
1507 free_base_page = NULL;
1508 free_base_pfn = nr_to_free = 0;
1509
54608c3f
MG
1510 page = pfn_to_page(pfn);
1511 cond_resched();
1512 }
7e18adb4
MG
1513
1514 if (page->flags) {
1515 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1516 goto free_range;
7e18adb4
MG
1517 }
1518
1519 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1520 if (!free_base_page) {
1521 free_base_page = page;
1522 free_base_pfn = pfn;
1523 nr_to_free = 0;
1524 }
1525 nr_to_free++;
1526
1527 /* Where possible, batch up pages for a single free */
1528 continue;
1529free_range:
1530 /* Free the current block of pages to allocator */
1531 nr_pages += nr_to_free;
1532 deferred_free_range(free_base_page, free_base_pfn,
1533 nr_to_free);
1534 free_base_page = NULL;
1535 free_base_pfn = nr_to_free = 0;
7e18adb4 1536 }
e780149b
XQ
1537 /* Free the last block of pages to allocator */
1538 nr_pages += nr_to_free;
1539 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1540
7e18adb4
MG
1541 first_init_pfn = max(end_pfn, first_init_pfn);
1542 }
1543
1544 /* Sanity check that the next zone really is unpopulated */
1545 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1546
0e1cc95b 1547 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1548 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1549
1550 pgdat_init_report_one_done();
0e1cc95b
MG
1551 return 0;
1552}
7cf91a98 1553#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1554
1555void __init page_alloc_init_late(void)
1556{
7cf91a98
JK
1557 struct zone *zone;
1558
1559#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1560 int nid;
1561
d3cd131d
NS
1562 /* There will be num_node_state(N_MEMORY) threads */
1563 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1564 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1565 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1566 }
1567
1568 /* Block until all are initialised */
d3cd131d 1569 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1570
1571 /* Reinit limits that are based on free pages after the kernel is up */
1572 files_maxfiles_init();
7cf91a98
JK
1573#endif
1574
1575 for_each_populated_zone(zone)
1576 set_zone_contiguous(zone);
7e18adb4 1577}
7e18adb4 1578
47118af0 1579#ifdef CONFIG_CMA
9cf510a5 1580/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1581void __init init_cma_reserved_pageblock(struct page *page)
1582{
1583 unsigned i = pageblock_nr_pages;
1584 struct page *p = page;
1585
1586 do {
1587 __ClearPageReserved(p);
1588 set_page_count(p, 0);
1589 } while (++p, --i);
1590
47118af0 1591 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1592
1593 if (pageblock_order >= MAX_ORDER) {
1594 i = pageblock_nr_pages;
1595 p = page;
1596 do {
1597 set_page_refcounted(p);
1598 __free_pages(p, MAX_ORDER - 1);
1599 p += MAX_ORDER_NR_PAGES;
1600 } while (i -= MAX_ORDER_NR_PAGES);
1601 } else {
1602 set_page_refcounted(page);
1603 __free_pages(page, pageblock_order);
1604 }
1605
3dcc0571 1606 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1607}
1608#endif
1da177e4
LT
1609
1610/*
1611 * The order of subdivision here is critical for the IO subsystem.
1612 * Please do not alter this order without good reasons and regression
1613 * testing. Specifically, as large blocks of memory are subdivided,
1614 * the order in which smaller blocks are delivered depends on the order
1615 * they're subdivided in this function. This is the primary factor
1616 * influencing the order in which pages are delivered to the IO
1617 * subsystem according to empirical testing, and this is also justified
1618 * by considering the behavior of a buddy system containing a single
1619 * large block of memory acted on by a series of small allocations.
1620 * This behavior is a critical factor in sglist merging's success.
1621 *
6d49e352 1622 * -- nyc
1da177e4 1623 */
085cc7d5 1624static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1625 int low, int high, struct free_area *area,
1626 int migratetype)
1da177e4
LT
1627{
1628 unsigned long size = 1 << high;
1629
1630 while (high > low) {
1631 area--;
1632 high--;
1633 size >>= 1;
309381fe 1634 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1635
acbc15a4
JK
1636 /*
1637 * Mark as guard pages (or page), that will allow to
1638 * merge back to allocator when buddy will be freed.
1639 * Corresponding page table entries will not be touched,
1640 * pages will stay not present in virtual address space
1641 */
1642 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1643 continue;
acbc15a4 1644
b2a0ac88 1645 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1646 area->nr_free++;
1647 set_page_order(&page[size], high);
1648 }
1da177e4
LT
1649}
1650
4e611801 1651static void check_new_page_bad(struct page *page)
1da177e4 1652{
4e611801
VB
1653 const char *bad_reason = NULL;
1654 unsigned long bad_flags = 0;
7bfec6f4 1655
53f9263b 1656 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1657 bad_reason = "nonzero mapcount";
1658 if (unlikely(page->mapping != NULL))
1659 bad_reason = "non-NULL mapping";
fe896d18 1660 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1661 bad_reason = "nonzero _count";
f4c18e6f
NH
1662 if (unlikely(page->flags & __PG_HWPOISON)) {
1663 bad_reason = "HWPoisoned (hardware-corrupted)";
1664 bad_flags = __PG_HWPOISON;
e570f56c
NH
1665 /* Don't complain about hwpoisoned pages */
1666 page_mapcount_reset(page); /* remove PageBuddy */
1667 return;
f4c18e6f 1668 }
f0b791a3
DH
1669 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1670 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1671 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1672 }
9edad6ea
JW
1673#ifdef CONFIG_MEMCG
1674 if (unlikely(page->mem_cgroup))
1675 bad_reason = "page still charged to cgroup";
1676#endif
4e611801
VB
1677 bad_page(page, bad_reason, bad_flags);
1678}
1679
1680/*
1681 * This page is about to be returned from the page allocator
1682 */
1683static inline int check_new_page(struct page *page)
1684{
1685 if (likely(page_expected_state(page,
1686 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1687 return 0;
1688
1689 check_new_page_bad(page);
1690 return 1;
2a7684a2
WF
1691}
1692
1414c7f4
LA
1693static inline bool free_pages_prezeroed(bool poisoned)
1694{
1695 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1696 page_poisoning_enabled() && poisoned;
1697}
1698
479f854a
MG
1699#ifdef CONFIG_DEBUG_VM
1700static bool check_pcp_refill(struct page *page)
1701{
1702 return false;
1703}
1704
1705static bool check_new_pcp(struct page *page)
1706{
1707 return check_new_page(page);
1708}
1709#else
1710static bool check_pcp_refill(struct page *page)
1711{
1712 return check_new_page(page);
1713}
1714static bool check_new_pcp(struct page *page)
1715{
1716 return false;
1717}
1718#endif /* CONFIG_DEBUG_VM */
1719
1720static bool check_new_pages(struct page *page, unsigned int order)
1721{
1722 int i;
1723 for (i = 0; i < (1 << order); i++) {
1724 struct page *p = page + i;
1725
1726 if (unlikely(check_new_page(p)))
1727 return true;
1728 }
1729
1730 return false;
1731}
1732
46f24fd8
JK
1733inline void post_alloc_hook(struct page *page, unsigned int order,
1734 gfp_t gfp_flags)
1735{
1736 set_page_private(page, 0);
1737 set_page_refcounted(page);
1738
1739 arch_alloc_page(page, order);
1740 kernel_map_pages(page, 1 << order, 1);
1741 kernel_poison_pages(page, 1 << order, 1);
1742 kasan_alloc_pages(page, order);
1743 set_page_owner(page, order, gfp_flags);
1744}
1745
479f854a 1746static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1747 unsigned int alloc_flags)
2a7684a2
WF
1748{
1749 int i;
1414c7f4 1750 bool poisoned = true;
2a7684a2
WF
1751
1752 for (i = 0; i < (1 << order); i++) {
1753 struct page *p = page + i;
1414c7f4
LA
1754 if (poisoned)
1755 poisoned &= page_is_poisoned(p);
2a7684a2 1756 }
689bcebf 1757
46f24fd8 1758 post_alloc_hook(page, order, gfp_flags);
17cf4406 1759
1414c7f4 1760 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1761 for (i = 0; i < (1 << order); i++)
1762 clear_highpage(page + i);
17cf4406
NP
1763
1764 if (order && (gfp_flags & __GFP_COMP))
1765 prep_compound_page(page, order);
1766
75379191 1767 /*
2f064f34 1768 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1769 * allocate the page. The expectation is that the caller is taking
1770 * steps that will free more memory. The caller should avoid the page
1771 * being used for !PFMEMALLOC purposes.
1772 */
2f064f34
MH
1773 if (alloc_flags & ALLOC_NO_WATERMARKS)
1774 set_page_pfmemalloc(page);
1775 else
1776 clear_page_pfmemalloc(page);
1da177e4
LT
1777}
1778
56fd56b8
MG
1779/*
1780 * Go through the free lists for the given migratetype and remove
1781 * the smallest available page from the freelists
1782 */
728ec980
MG
1783static inline
1784struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1785 int migratetype)
1786{
1787 unsigned int current_order;
b8af2941 1788 struct free_area *area;
56fd56b8
MG
1789 struct page *page;
1790
1791 /* Find a page of the appropriate size in the preferred list */
1792 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1793 area = &(zone->free_area[current_order]);
a16601c5 1794 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1795 struct page, lru);
a16601c5
GT
1796 if (!page)
1797 continue;
56fd56b8
MG
1798 list_del(&page->lru);
1799 rmv_page_order(page);
1800 area->nr_free--;
56fd56b8 1801 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1802 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1803 return page;
1804 }
1805
1806 return NULL;
1807}
1808
1809
b2a0ac88
MG
1810/*
1811 * This array describes the order lists are fallen back to when
1812 * the free lists for the desirable migrate type are depleted
1813 */
47118af0 1814static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1815 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1816 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1817 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1818#ifdef CONFIG_CMA
974a786e 1819 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1820#endif
194159fb 1821#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1822 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1823#endif
b2a0ac88
MG
1824};
1825
dc67647b
JK
1826#ifdef CONFIG_CMA
1827static struct page *__rmqueue_cma_fallback(struct zone *zone,
1828 unsigned int order)
1829{
1830 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1831}
1832#else
1833static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1834 unsigned int order) { return NULL; }
1835#endif
1836
c361be55
MG
1837/*
1838 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1839 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1840 * boundary. If alignment is required, use move_freepages_block()
1841 */
435b405c 1842int move_freepages(struct zone *zone,
b69a7288
AB
1843 struct page *start_page, struct page *end_page,
1844 int migratetype)
c361be55
MG
1845{
1846 struct page *page;
d00181b9 1847 unsigned int order;
d100313f 1848 int pages_moved = 0;
c361be55
MG
1849
1850#ifndef CONFIG_HOLES_IN_ZONE
1851 /*
1852 * page_zone is not safe to call in this context when
1853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1854 * anyway as we check zone boundaries in move_freepages_block().
1855 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1856 * grouping pages by mobility
c361be55 1857 */
97ee4ba7 1858 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1859#endif
1860
1861 for (page = start_page; page <= end_page;) {
344c790e 1862 /* Make sure we are not inadvertently changing nodes */
309381fe 1863 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1864
c361be55
MG
1865 if (!pfn_valid_within(page_to_pfn(page))) {
1866 page++;
1867 continue;
1868 }
1869
1870 if (!PageBuddy(page)) {
1871 page++;
1872 continue;
1873 }
1874
1875 order = page_order(page);
84be48d8
KS
1876 list_move(&page->lru,
1877 &zone->free_area[order].free_list[migratetype]);
c361be55 1878 page += 1 << order;
d100313f 1879 pages_moved += 1 << order;
c361be55
MG
1880 }
1881
d100313f 1882 return pages_moved;
c361be55
MG
1883}
1884
ee6f509c 1885int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1886 int migratetype)
c361be55
MG
1887{
1888 unsigned long start_pfn, end_pfn;
1889 struct page *start_page, *end_page;
1890
1891 start_pfn = page_to_pfn(page);
d9c23400 1892 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1893 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1894 end_page = start_page + pageblock_nr_pages - 1;
1895 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1896
1897 /* Do not cross zone boundaries */
108bcc96 1898 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1899 start_page = page;
108bcc96 1900 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1901 return 0;
1902
1903 return move_freepages(zone, start_page, end_page, migratetype);
1904}
1905
2f66a68f
MG
1906static void change_pageblock_range(struct page *pageblock_page,
1907 int start_order, int migratetype)
1908{
1909 int nr_pageblocks = 1 << (start_order - pageblock_order);
1910
1911 while (nr_pageblocks--) {
1912 set_pageblock_migratetype(pageblock_page, migratetype);
1913 pageblock_page += pageblock_nr_pages;
1914 }
1915}
1916
fef903ef 1917/*
9c0415eb
VB
1918 * When we are falling back to another migratetype during allocation, try to
1919 * steal extra free pages from the same pageblocks to satisfy further
1920 * allocations, instead of polluting multiple pageblocks.
1921 *
1922 * If we are stealing a relatively large buddy page, it is likely there will
1923 * be more free pages in the pageblock, so try to steal them all. For
1924 * reclaimable and unmovable allocations, we steal regardless of page size,
1925 * as fragmentation caused by those allocations polluting movable pageblocks
1926 * is worse than movable allocations stealing from unmovable and reclaimable
1927 * pageblocks.
fef903ef 1928 */
4eb7dce6
JK
1929static bool can_steal_fallback(unsigned int order, int start_mt)
1930{
1931 /*
1932 * Leaving this order check is intended, although there is
1933 * relaxed order check in next check. The reason is that
1934 * we can actually steal whole pageblock if this condition met,
1935 * but, below check doesn't guarantee it and that is just heuristic
1936 * so could be changed anytime.
1937 */
1938 if (order >= pageblock_order)
1939 return true;
1940
1941 if (order >= pageblock_order / 2 ||
1942 start_mt == MIGRATE_RECLAIMABLE ||
1943 start_mt == MIGRATE_UNMOVABLE ||
1944 page_group_by_mobility_disabled)
1945 return true;
1946
1947 return false;
1948}
1949
1950/*
1951 * This function implements actual steal behaviour. If order is large enough,
1952 * we can steal whole pageblock. If not, we first move freepages in this
1953 * pageblock and check whether half of pages are moved or not. If half of
1954 * pages are moved, we can change migratetype of pageblock and permanently
1955 * use it's pages as requested migratetype in the future.
1956 */
1957static void steal_suitable_fallback(struct zone *zone, struct page *page,
1958 int start_type)
fef903ef 1959{
d00181b9 1960 unsigned int current_order = page_order(page);
4eb7dce6 1961 int pages;
fef903ef 1962
fef903ef
SB
1963 /* Take ownership for orders >= pageblock_order */
1964 if (current_order >= pageblock_order) {
1965 change_pageblock_range(page, current_order, start_type);
3a1086fb 1966 return;
fef903ef
SB
1967 }
1968
4eb7dce6 1969 pages = move_freepages_block(zone, page, start_type);
fef903ef 1970
4eb7dce6
JK
1971 /* Claim the whole block if over half of it is free */
1972 if (pages >= (1 << (pageblock_order-1)) ||
1973 page_group_by_mobility_disabled)
1974 set_pageblock_migratetype(page, start_type);
1975}
1976
2149cdae
JK
1977/*
1978 * Check whether there is a suitable fallback freepage with requested order.
1979 * If only_stealable is true, this function returns fallback_mt only if
1980 * we can steal other freepages all together. This would help to reduce
1981 * fragmentation due to mixed migratetype pages in one pageblock.
1982 */
1983int find_suitable_fallback(struct free_area *area, unsigned int order,
1984 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1985{
1986 int i;
1987 int fallback_mt;
1988
1989 if (area->nr_free == 0)
1990 return -1;
1991
1992 *can_steal = false;
1993 for (i = 0;; i++) {
1994 fallback_mt = fallbacks[migratetype][i];
974a786e 1995 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1996 break;
1997
1998 if (list_empty(&area->free_list[fallback_mt]))
1999 continue;
fef903ef 2000
4eb7dce6
JK
2001 if (can_steal_fallback(order, migratetype))
2002 *can_steal = true;
2003
2149cdae
JK
2004 if (!only_stealable)
2005 return fallback_mt;
2006
2007 if (*can_steal)
2008 return fallback_mt;
fef903ef 2009 }
4eb7dce6
JK
2010
2011 return -1;
fef903ef
SB
2012}
2013
0aaa29a5
MG
2014/*
2015 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2016 * there are no empty page blocks that contain a page with a suitable order
2017 */
2018static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2019 unsigned int alloc_order)
2020{
2021 int mt;
2022 unsigned long max_managed, flags;
2023
2024 /*
2025 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2026 * Check is race-prone but harmless.
2027 */
2028 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2029 if (zone->nr_reserved_highatomic >= max_managed)
2030 return;
2031
2032 spin_lock_irqsave(&zone->lock, flags);
2033
2034 /* Recheck the nr_reserved_highatomic limit under the lock */
2035 if (zone->nr_reserved_highatomic >= max_managed)
2036 goto out_unlock;
2037
2038 /* Yoink! */
2039 mt = get_pageblock_migratetype(page);
2040 if (mt != MIGRATE_HIGHATOMIC &&
2041 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2042 zone->nr_reserved_highatomic += pageblock_nr_pages;
2043 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2044 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2045 }
2046
2047out_unlock:
2048 spin_unlock_irqrestore(&zone->lock, flags);
2049}
2050
2051/*
2052 * Used when an allocation is about to fail under memory pressure. This
2053 * potentially hurts the reliability of high-order allocations when under
2054 * intense memory pressure but failed atomic allocations should be easier
2055 * to recover from than an OOM.
2056 */
2057static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2058{
2059 struct zonelist *zonelist = ac->zonelist;
2060 unsigned long flags;
2061 struct zoneref *z;
2062 struct zone *zone;
2063 struct page *page;
2064 int order;
2065
2066 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2067 ac->nodemask) {
2068 /* Preserve at least one pageblock */
2069 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2070 continue;
2071
2072 spin_lock_irqsave(&zone->lock, flags);
2073 for (order = 0; order < MAX_ORDER; order++) {
2074 struct free_area *area = &(zone->free_area[order]);
2075
a16601c5
GT
2076 page = list_first_entry_or_null(
2077 &area->free_list[MIGRATE_HIGHATOMIC],
2078 struct page, lru);
2079 if (!page)
0aaa29a5
MG
2080 continue;
2081
0aaa29a5
MG
2082 /*
2083 * It should never happen but changes to locking could
2084 * inadvertently allow a per-cpu drain to add pages
2085 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2086 * and watch for underflows.
2087 */
2088 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2089 zone->nr_reserved_highatomic);
2090
2091 /*
2092 * Convert to ac->migratetype and avoid the normal
2093 * pageblock stealing heuristics. Minimally, the caller
2094 * is doing the work and needs the pages. More
2095 * importantly, if the block was always converted to
2096 * MIGRATE_UNMOVABLE or another type then the number
2097 * of pageblocks that cannot be completely freed
2098 * may increase.
2099 */
2100 set_pageblock_migratetype(page, ac->migratetype);
2101 move_freepages_block(zone, page, ac->migratetype);
2102 spin_unlock_irqrestore(&zone->lock, flags);
2103 return;
2104 }
2105 spin_unlock_irqrestore(&zone->lock, flags);
2106 }
2107}
2108
b2a0ac88 2109/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2110static inline struct page *
7aeb09f9 2111__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2112{
b8af2941 2113 struct free_area *area;
7aeb09f9 2114 unsigned int current_order;
b2a0ac88 2115 struct page *page;
4eb7dce6
JK
2116 int fallback_mt;
2117 bool can_steal;
b2a0ac88
MG
2118
2119 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2120 for (current_order = MAX_ORDER-1;
2121 current_order >= order && current_order <= MAX_ORDER-1;
2122 --current_order) {
4eb7dce6
JK
2123 area = &(zone->free_area[current_order]);
2124 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2125 start_migratetype, false, &can_steal);
4eb7dce6
JK
2126 if (fallback_mt == -1)
2127 continue;
b2a0ac88 2128
a16601c5 2129 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2130 struct page, lru);
2131 if (can_steal)
2132 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2133
4eb7dce6
JK
2134 /* Remove the page from the freelists */
2135 area->nr_free--;
2136 list_del(&page->lru);
2137 rmv_page_order(page);
3a1086fb 2138
4eb7dce6
JK
2139 expand(zone, page, order, current_order, area,
2140 start_migratetype);
2141 /*
bb14c2c7 2142 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2143 * migratetype depending on the decisions in
bb14c2c7
VB
2144 * find_suitable_fallback(). This is OK as long as it does not
2145 * differ for MIGRATE_CMA pageblocks. Those can be used as
2146 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2147 */
bb14c2c7 2148 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2149
4eb7dce6
JK
2150 trace_mm_page_alloc_extfrag(page, order, current_order,
2151 start_migratetype, fallback_mt);
e0fff1bd 2152
4eb7dce6 2153 return page;
b2a0ac88
MG
2154 }
2155
728ec980 2156 return NULL;
b2a0ac88
MG
2157}
2158
56fd56b8 2159/*
1da177e4
LT
2160 * Do the hard work of removing an element from the buddy allocator.
2161 * Call me with the zone->lock already held.
2162 */
b2a0ac88 2163static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2164 int migratetype)
1da177e4 2165{
1da177e4
LT
2166 struct page *page;
2167
56fd56b8 2168 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2169 if (unlikely(!page)) {
dc67647b
JK
2170 if (migratetype == MIGRATE_MOVABLE)
2171 page = __rmqueue_cma_fallback(zone, order);
2172
2173 if (!page)
2174 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2175 }
2176
0d3d062a 2177 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2178 return page;
1da177e4
LT
2179}
2180
5f63b720 2181/*
1da177e4
LT
2182 * Obtain a specified number of elements from the buddy allocator, all under
2183 * a single hold of the lock, for efficiency. Add them to the supplied list.
2184 * Returns the number of new pages which were placed at *list.
2185 */
5f63b720 2186static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2187 unsigned long count, struct list_head *list,
b745bc85 2188 int migratetype, bool cold)
1da177e4 2189{
5bcc9f86 2190 int i;
5f63b720 2191
c54ad30c 2192 spin_lock(&zone->lock);
1da177e4 2193 for (i = 0; i < count; ++i) {
6ac0206b 2194 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2195 if (unlikely(page == NULL))
1da177e4 2196 break;
81eabcbe 2197
479f854a
MG
2198 if (unlikely(check_pcp_refill(page)))
2199 continue;
2200
81eabcbe
MG
2201 /*
2202 * Split buddy pages returned by expand() are received here
2203 * in physical page order. The page is added to the callers and
2204 * list and the list head then moves forward. From the callers
2205 * perspective, the linked list is ordered by page number in
2206 * some conditions. This is useful for IO devices that can
2207 * merge IO requests if the physical pages are ordered
2208 * properly.
2209 */
b745bc85 2210 if (likely(!cold))
e084b2d9
MG
2211 list_add(&page->lru, list);
2212 else
2213 list_add_tail(&page->lru, list);
81eabcbe 2214 list = &page->lru;
bb14c2c7 2215 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2216 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2217 -(1 << order));
1da177e4 2218 }
f2260e6b 2219 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2220 spin_unlock(&zone->lock);
085cc7d5 2221 return i;
1da177e4
LT
2222}
2223
4ae7c039 2224#ifdef CONFIG_NUMA
8fce4d8e 2225/*
4037d452
CL
2226 * Called from the vmstat counter updater to drain pagesets of this
2227 * currently executing processor on remote nodes after they have
2228 * expired.
2229 *
879336c3
CL
2230 * Note that this function must be called with the thread pinned to
2231 * a single processor.
8fce4d8e 2232 */
4037d452 2233void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2234{
4ae7c039 2235 unsigned long flags;
7be12fc9 2236 int to_drain, batch;
4ae7c039 2237
4037d452 2238 local_irq_save(flags);
4db0c3c2 2239 batch = READ_ONCE(pcp->batch);
7be12fc9 2240 to_drain = min(pcp->count, batch);
2a13515c
KM
2241 if (to_drain > 0) {
2242 free_pcppages_bulk(zone, to_drain, pcp);
2243 pcp->count -= to_drain;
2244 }
4037d452 2245 local_irq_restore(flags);
4ae7c039
CL
2246}
2247#endif
2248
9f8f2172 2249/*
93481ff0 2250 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2251 *
2252 * The processor must either be the current processor and the
2253 * thread pinned to the current processor or a processor that
2254 * is not online.
2255 */
93481ff0 2256static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2257{
c54ad30c 2258 unsigned long flags;
93481ff0
VB
2259 struct per_cpu_pageset *pset;
2260 struct per_cpu_pages *pcp;
1da177e4 2261
93481ff0
VB
2262 local_irq_save(flags);
2263 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2264
93481ff0
VB
2265 pcp = &pset->pcp;
2266 if (pcp->count) {
2267 free_pcppages_bulk(zone, pcp->count, pcp);
2268 pcp->count = 0;
2269 }
2270 local_irq_restore(flags);
2271}
3dfa5721 2272
93481ff0
VB
2273/*
2274 * Drain pcplists of all zones on the indicated processor.
2275 *
2276 * The processor must either be the current processor and the
2277 * thread pinned to the current processor or a processor that
2278 * is not online.
2279 */
2280static void drain_pages(unsigned int cpu)
2281{
2282 struct zone *zone;
2283
2284 for_each_populated_zone(zone) {
2285 drain_pages_zone(cpu, zone);
1da177e4
LT
2286 }
2287}
1da177e4 2288
9f8f2172
CL
2289/*
2290 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2291 *
2292 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2293 * the single zone's pages.
9f8f2172 2294 */
93481ff0 2295void drain_local_pages(struct zone *zone)
9f8f2172 2296{
93481ff0
VB
2297 int cpu = smp_processor_id();
2298
2299 if (zone)
2300 drain_pages_zone(cpu, zone);
2301 else
2302 drain_pages(cpu);
9f8f2172
CL
2303}
2304
2305/*
74046494
GBY
2306 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2307 *
93481ff0
VB
2308 * When zone parameter is non-NULL, spill just the single zone's pages.
2309 *
74046494
GBY
2310 * Note that this code is protected against sending an IPI to an offline
2311 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2312 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2313 * nothing keeps CPUs from showing up after we populated the cpumask and
2314 * before the call to on_each_cpu_mask().
9f8f2172 2315 */
93481ff0 2316void drain_all_pages(struct zone *zone)
9f8f2172 2317{
74046494 2318 int cpu;
74046494
GBY
2319
2320 /*
2321 * Allocate in the BSS so we wont require allocation in
2322 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2323 */
2324 static cpumask_t cpus_with_pcps;
2325
2326 /*
2327 * We don't care about racing with CPU hotplug event
2328 * as offline notification will cause the notified
2329 * cpu to drain that CPU pcps and on_each_cpu_mask
2330 * disables preemption as part of its processing
2331 */
2332 for_each_online_cpu(cpu) {
93481ff0
VB
2333 struct per_cpu_pageset *pcp;
2334 struct zone *z;
74046494 2335 bool has_pcps = false;
93481ff0
VB
2336
2337 if (zone) {
74046494 2338 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2339 if (pcp->pcp.count)
74046494 2340 has_pcps = true;
93481ff0
VB
2341 } else {
2342 for_each_populated_zone(z) {
2343 pcp = per_cpu_ptr(z->pageset, cpu);
2344 if (pcp->pcp.count) {
2345 has_pcps = true;
2346 break;
2347 }
74046494
GBY
2348 }
2349 }
93481ff0 2350
74046494
GBY
2351 if (has_pcps)
2352 cpumask_set_cpu(cpu, &cpus_with_pcps);
2353 else
2354 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2355 }
93481ff0
VB
2356 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2357 zone, 1);
9f8f2172
CL
2358}
2359
296699de 2360#ifdef CONFIG_HIBERNATION
1da177e4
LT
2361
2362void mark_free_pages(struct zone *zone)
2363{
f623f0db
RW
2364 unsigned long pfn, max_zone_pfn;
2365 unsigned long flags;
7aeb09f9 2366 unsigned int order, t;
86760a2c 2367 struct page *page;
1da177e4 2368
8080fc03 2369 if (zone_is_empty(zone))
1da177e4
LT
2370 return;
2371
2372 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2373
108bcc96 2374 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2375 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2376 if (pfn_valid(pfn)) {
86760a2c 2377 page = pfn_to_page(pfn);
ba6b0979
JK
2378
2379 if (page_zone(page) != zone)
2380 continue;
2381
7be98234
RW
2382 if (!swsusp_page_is_forbidden(page))
2383 swsusp_unset_page_free(page);
f623f0db 2384 }
1da177e4 2385
b2a0ac88 2386 for_each_migratetype_order(order, t) {
86760a2c
GT
2387 list_for_each_entry(page,
2388 &zone->free_area[order].free_list[t], lru) {
f623f0db 2389 unsigned long i;
1da177e4 2390
86760a2c 2391 pfn = page_to_pfn(page);
f623f0db 2392 for (i = 0; i < (1UL << order); i++)
7be98234 2393 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2394 }
b2a0ac88 2395 }
1da177e4
LT
2396 spin_unlock_irqrestore(&zone->lock, flags);
2397}
e2c55dc8 2398#endif /* CONFIG_PM */
1da177e4 2399
1da177e4
LT
2400/*
2401 * Free a 0-order page
b745bc85 2402 * cold == true ? free a cold page : free a hot page
1da177e4 2403 */
b745bc85 2404void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2405{
2406 struct zone *zone = page_zone(page);
2407 struct per_cpu_pages *pcp;
2408 unsigned long flags;
dc4b0caf 2409 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2410 int migratetype;
1da177e4 2411
4db7548c 2412 if (!free_pcp_prepare(page))
689bcebf
HD
2413 return;
2414
dc4b0caf 2415 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2416 set_pcppage_migratetype(page, migratetype);
1da177e4 2417 local_irq_save(flags);
f8891e5e 2418 __count_vm_event(PGFREE);
da456f14 2419
5f8dcc21
MG
2420 /*
2421 * We only track unmovable, reclaimable and movable on pcp lists.
2422 * Free ISOLATE pages back to the allocator because they are being
2423 * offlined but treat RESERVE as movable pages so we can get those
2424 * areas back if necessary. Otherwise, we may have to free
2425 * excessively into the page allocator
2426 */
2427 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2428 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2429 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2430 goto out;
2431 }
2432 migratetype = MIGRATE_MOVABLE;
2433 }
2434
99dcc3e5 2435 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2436 if (!cold)
5f8dcc21 2437 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2438 else
2439 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2440 pcp->count++;
48db57f8 2441 if (pcp->count >= pcp->high) {
4db0c3c2 2442 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2443 free_pcppages_bulk(zone, batch, pcp);
2444 pcp->count -= batch;
48db57f8 2445 }
5f8dcc21
MG
2446
2447out:
1da177e4 2448 local_irq_restore(flags);
1da177e4
LT
2449}
2450
cc59850e
KK
2451/*
2452 * Free a list of 0-order pages
2453 */
b745bc85 2454void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2455{
2456 struct page *page, *next;
2457
2458 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2459 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2460 free_hot_cold_page(page, cold);
2461 }
2462}
2463
8dfcc9ba
NP
2464/*
2465 * split_page takes a non-compound higher-order page, and splits it into
2466 * n (1<<order) sub-pages: page[0..n]
2467 * Each sub-page must be freed individually.
2468 *
2469 * Note: this is probably too low level an operation for use in drivers.
2470 * Please consult with lkml before using this in your driver.
2471 */
2472void split_page(struct page *page, unsigned int order)
2473{
2474 int i;
2475
309381fe
SL
2476 VM_BUG_ON_PAGE(PageCompound(page), page);
2477 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2478
2479#ifdef CONFIG_KMEMCHECK
2480 /*
2481 * Split shadow pages too, because free(page[0]) would
2482 * otherwise free the whole shadow.
2483 */
2484 if (kmemcheck_page_is_tracked(page))
2485 split_page(virt_to_page(page[0].shadow), order);
2486#endif
2487
a9627bc5 2488 for (i = 1; i < (1 << order); i++)
7835e98b 2489 set_page_refcounted(page + i);
a9627bc5 2490 split_page_owner(page, order);
8dfcc9ba 2491}
5853ff23 2492EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2493
3c605096 2494int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2495{
748446bb
MG
2496 unsigned long watermark;
2497 struct zone *zone;
2139cbe6 2498 int mt;
748446bb
MG
2499
2500 BUG_ON(!PageBuddy(page));
2501
2502 zone = page_zone(page);
2e30abd1 2503 mt = get_pageblock_migratetype(page);
748446bb 2504
194159fb 2505 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2506 /*
2507 * Obey watermarks as if the page was being allocated. We can
2508 * emulate a high-order watermark check with a raised order-0
2509 * watermark, because we already know our high-order page
2510 * exists.
2511 */
2512 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2513 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2514 return 0;
2515
8fb74b9f 2516 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2517 }
748446bb
MG
2518
2519 /* Remove page from free list */
2520 list_del(&page->lru);
2521 zone->free_area[order].nr_free--;
2522 rmv_page_order(page);
2139cbe6 2523
400bc7fd 2524 /*
2525 * Set the pageblock if the isolated page is at least half of a
2526 * pageblock
2527 */
748446bb
MG
2528 if (order >= pageblock_order - 1) {
2529 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2530 for (; page < endpage; page += pageblock_nr_pages) {
2531 int mt = get_pageblock_migratetype(page);
194159fb 2532 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2533 set_pageblock_migratetype(page,
2534 MIGRATE_MOVABLE);
2535 }
748446bb
MG
2536 }
2537
f3a14ced 2538
8fb74b9f 2539 return 1UL << order;
1fb3f8ca
MG
2540}
2541
060e7417
MG
2542/*
2543 * Update NUMA hit/miss statistics
2544 *
2545 * Must be called with interrupts disabled.
2546 *
2547 * When __GFP_OTHER_NODE is set assume the node of the preferred
2548 * zone is the local node. This is useful for daemons who allocate
2549 * memory on behalf of other processes.
2550 */
2551static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2552 gfp_t flags)
2553{
2554#ifdef CONFIG_NUMA
2555 int local_nid = numa_node_id();
2556 enum zone_stat_item local_stat = NUMA_LOCAL;
2557
2558 if (unlikely(flags & __GFP_OTHER_NODE)) {
2559 local_stat = NUMA_OTHER;
2560 local_nid = preferred_zone->node;
2561 }
2562
2563 if (z->node == local_nid) {
2564 __inc_zone_state(z, NUMA_HIT);
2565 __inc_zone_state(z, local_stat);
2566 } else {
2567 __inc_zone_state(z, NUMA_MISS);
2568 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2569 }
2570#endif
2571}
2572
1da177e4 2573/*
75379191 2574 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2575 */
0a15c3e9
MG
2576static inline
2577struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2578 struct zone *zone, unsigned int order,
c603844b
MG
2579 gfp_t gfp_flags, unsigned int alloc_flags,
2580 int migratetype)
1da177e4
LT
2581{
2582 unsigned long flags;
689bcebf 2583 struct page *page;
b745bc85 2584 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2585
48db57f8 2586 if (likely(order == 0)) {
1da177e4 2587 struct per_cpu_pages *pcp;
5f8dcc21 2588 struct list_head *list;
1da177e4 2589
1da177e4 2590 local_irq_save(flags);
479f854a
MG
2591 do {
2592 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2593 list = &pcp->lists[migratetype];
2594 if (list_empty(list)) {
2595 pcp->count += rmqueue_bulk(zone, 0,
2596 pcp->batch, list,
2597 migratetype, cold);
2598 if (unlikely(list_empty(list)))
2599 goto failed;
2600 }
b92a6edd 2601
479f854a
MG
2602 if (cold)
2603 page = list_last_entry(list, struct page, lru);
2604 else
2605 page = list_first_entry(list, struct page, lru);
5f8dcc21 2606
83b9355b
VB
2607 list_del(&page->lru);
2608 pcp->count--;
2609
2610 } while (check_new_pcp(page));
7fb1d9fc 2611 } else {
0f352e53
MH
2612 /*
2613 * We most definitely don't want callers attempting to
2614 * allocate greater than order-1 page units with __GFP_NOFAIL.
2615 */
2616 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2617 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2618
479f854a
MG
2619 do {
2620 page = NULL;
2621 if (alloc_flags & ALLOC_HARDER) {
2622 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2623 if (page)
2624 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2625 }
2626 if (!page)
2627 page = __rmqueue(zone, order, migratetype);
2628 } while (page && check_new_pages(page, order));
a74609fa
NP
2629 spin_unlock(&zone->lock);
2630 if (!page)
2631 goto failed;
d1ce749a 2632 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2633 get_pcppage_migratetype(page));
1da177e4
LT
2634 }
2635
16709d1d 2636 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
78afd561 2637 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2638 local_irq_restore(flags);
1da177e4 2639
309381fe 2640 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2641 return page;
a74609fa
NP
2642
2643failed:
2644 local_irq_restore(flags);
a74609fa 2645 return NULL;
1da177e4
LT
2646}
2647
933e312e
AM
2648#ifdef CONFIG_FAIL_PAGE_ALLOC
2649
b2588c4b 2650static struct {
933e312e
AM
2651 struct fault_attr attr;
2652
621a5f7a 2653 bool ignore_gfp_highmem;
71baba4b 2654 bool ignore_gfp_reclaim;
54114994 2655 u32 min_order;
933e312e
AM
2656} fail_page_alloc = {
2657 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2658 .ignore_gfp_reclaim = true,
621a5f7a 2659 .ignore_gfp_highmem = true,
54114994 2660 .min_order = 1,
933e312e
AM
2661};
2662
2663static int __init setup_fail_page_alloc(char *str)
2664{
2665 return setup_fault_attr(&fail_page_alloc.attr, str);
2666}
2667__setup("fail_page_alloc=", setup_fail_page_alloc);
2668
deaf386e 2669static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2670{
54114994 2671 if (order < fail_page_alloc.min_order)
deaf386e 2672 return false;
933e312e 2673 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2674 return false;
933e312e 2675 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2676 return false;
71baba4b
MG
2677 if (fail_page_alloc.ignore_gfp_reclaim &&
2678 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2679 return false;
933e312e
AM
2680
2681 return should_fail(&fail_page_alloc.attr, 1 << order);
2682}
2683
2684#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2685
2686static int __init fail_page_alloc_debugfs(void)
2687{
f4ae40a6 2688 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2689 struct dentry *dir;
933e312e 2690
dd48c085
AM
2691 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2692 &fail_page_alloc.attr);
2693 if (IS_ERR(dir))
2694 return PTR_ERR(dir);
933e312e 2695
b2588c4b 2696 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2697 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2698 goto fail;
2699 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2700 &fail_page_alloc.ignore_gfp_highmem))
2701 goto fail;
2702 if (!debugfs_create_u32("min-order", mode, dir,
2703 &fail_page_alloc.min_order))
2704 goto fail;
2705
2706 return 0;
2707fail:
dd48c085 2708 debugfs_remove_recursive(dir);
933e312e 2709
b2588c4b 2710 return -ENOMEM;
933e312e
AM
2711}
2712
2713late_initcall(fail_page_alloc_debugfs);
2714
2715#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2716
2717#else /* CONFIG_FAIL_PAGE_ALLOC */
2718
deaf386e 2719static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2720{
deaf386e 2721 return false;
933e312e
AM
2722}
2723
2724#endif /* CONFIG_FAIL_PAGE_ALLOC */
2725
1da177e4 2726/*
97a16fc8
MG
2727 * Return true if free base pages are above 'mark'. For high-order checks it
2728 * will return true of the order-0 watermark is reached and there is at least
2729 * one free page of a suitable size. Checking now avoids taking the zone lock
2730 * to check in the allocation paths if no pages are free.
1da177e4 2731 */
86a294a8
MH
2732bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2733 int classzone_idx, unsigned int alloc_flags,
2734 long free_pages)
1da177e4 2735{
d23ad423 2736 long min = mark;
1da177e4 2737 int o;
c603844b 2738 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2739
0aaa29a5 2740 /* free_pages may go negative - that's OK */
df0a6daa 2741 free_pages -= (1 << order) - 1;
0aaa29a5 2742
7fb1d9fc 2743 if (alloc_flags & ALLOC_HIGH)
1da177e4 2744 min -= min / 2;
0aaa29a5
MG
2745
2746 /*
2747 * If the caller does not have rights to ALLOC_HARDER then subtract
2748 * the high-atomic reserves. This will over-estimate the size of the
2749 * atomic reserve but it avoids a search.
2750 */
97a16fc8 2751 if (likely(!alloc_harder))
0aaa29a5
MG
2752 free_pages -= z->nr_reserved_highatomic;
2753 else
1da177e4 2754 min -= min / 4;
e2b19197 2755
d95ea5d1
BZ
2756#ifdef CONFIG_CMA
2757 /* If allocation can't use CMA areas don't use free CMA pages */
2758 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2759 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2760#endif
026b0814 2761
97a16fc8
MG
2762 /*
2763 * Check watermarks for an order-0 allocation request. If these
2764 * are not met, then a high-order request also cannot go ahead
2765 * even if a suitable page happened to be free.
2766 */
2767 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2768 return false;
1da177e4 2769
97a16fc8
MG
2770 /* If this is an order-0 request then the watermark is fine */
2771 if (!order)
2772 return true;
2773
2774 /* For a high-order request, check at least one suitable page is free */
2775 for (o = order; o < MAX_ORDER; o++) {
2776 struct free_area *area = &z->free_area[o];
2777 int mt;
2778
2779 if (!area->nr_free)
2780 continue;
2781
2782 if (alloc_harder)
2783 return true;
1da177e4 2784
97a16fc8
MG
2785 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2786 if (!list_empty(&area->free_list[mt]))
2787 return true;
2788 }
2789
2790#ifdef CONFIG_CMA
2791 if ((alloc_flags & ALLOC_CMA) &&
2792 !list_empty(&area->free_list[MIGRATE_CMA])) {
2793 return true;
2794 }
2795#endif
1da177e4 2796 }
97a16fc8 2797 return false;
88f5acf8
MG
2798}
2799
7aeb09f9 2800bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2801 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2802{
2803 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2804 zone_page_state(z, NR_FREE_PAGES));
2805}
2806
48ee5f36
MG
2807static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2808 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2809{
2810 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2811 long cma_pages = 0;
2812
2813#ifdef CONFIG_CMA
2814 /* If allocation can't use CMA areas don't use free CMA pages */
2815 if (!(alloc_flags & ALLOC_CMA))
2816 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2817#endif
2818
2819 /*
2820 * Fast check for order-0 only. If this fails then the reserves
2821 * need to be calculated. There is a corner case where the check
2822 * passes but only the high-order atomic reserve are free. If
2823 * the caller is !atomic then it'll uselessly search the free
2824 * list. That corner case is then slower but it is harmless.
2825 */
2826 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2827 return true;
2828
2829 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2830 free_pages);
2831}
2832
7aeb09f9 2833bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2834 unsigned long mark, int classzone_idx)
88f5acf8
MG
2835{
2836 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2837
2838 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2839 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2840
e2b19197 2841 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2842 free_pages);
1da177e4
LT
2843}
2844
9276b1bc 2845#ifdef CONFIG_NUMA
957f822a
DR
2846static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2847{
5f7a75ac
MG
2848 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2849 RECLAIM_DISTANCE;
957f822a 2850}
9276b1bc 2851#else /* CONFIG_NUMA */
957f822a
DR
2852static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2853{
2854 return true;
2855}
9276b1bc
PJ
2856#endif /* CONFIG_NUMA */
2857
7fb1d9fc 2858/*
0798e519 2859 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2860 * a page.
2861 */
2862static struct page *
a9263751
VB
2863get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2864 const struct alloc_context *ac)
753ee728 2865{
c33d6c06 2866 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2867 struct zone *zone;
3b8c0be4
MG
2868 struct pglist_data *last_pgdat_dirty_limit = NULL;
2869
7fb1d9fc 2870 /*
9276b1bc 2871 * Scan zonelist, looking for a zone with enough free.
344736f2 2872 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2873 */
c33d6c06 2874 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2875 ac->nodemask) {
be06af00 2876 struct page *page;
e085dbc5
JW
2877 unsigned long mark;
2878
664eedde
MG
2879 if (cpusets_enabled() &&
2880 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2881 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2882 continue;
a756cf59
JW
2883 /*
2884 * When allocating a page cache page for writing, we
281e3726
MG
2885 * want to get it from a node that is within its dirty
2886 * limit, such that no single node holds more than its
a756cf59 2887 * proportional share of globally allowed dirty pages.
281e3726 2888 * The dirty limits take into account the node's
a756cf59
JW
2889 * lowmem reserves and high watermark so that kswapd
2890 * should be able to balance it without having to
2891 * write pages from its LRU list.
2892 *
a756cf59 2893 * XXX: For now, allow allocations to potentially
281e3726 2894 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2895 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2896 * which is important when on a NUMA setup the allowed
281e3726 2897 * nodes are together not big enough to reach the
a756cf59 2898 * global limit. The proper fix for these situations
281e3726 2899 * will require awareness of nodes in the
a756cf59
JW
2900 * dirty-throttling and the flusher threads.
2901 */
3b8c0be4
MG
2902 if (ac->spread_dirty_pages) {
2903 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2904 continue;
2905
2906 if (!node_dirty_ok(zone->zone_pgdat)) {
2907 last_pgdat_dirty_limit = zone->zone_pgdat;
2908 continue;
2909 }
2910 }
7fb1d9fc 2911
e085dbc5 2912 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2913 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2914 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2915 int ret;
2916
5dab2911
MG
2917 /* Checked here to keep the fast path fast */
2918 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2919 if (alloc_flags & ALLOC_NO_WATERMARKS)
2920 goto try_this_zone;
2921
a5f5f91d 2922 if (node_reclaim_mode == 0 ||
c33d6c06 2923 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2924 continue;
2925
a5f5f91d 2926 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 2927 switch (ret) {
a5f5f91d 2928 case NODE_RECLAIM_NOSCAN:
fa5e084e 2929 /* did not scan */
cd38b115 2930 continue;
a5f5f91d 2931 case NODE_RECLAIM_FULL:
fa5e084e 2932 /* scanned but unreclaimable */
cd38b115 2933 continue;
fa5e084e
MG
2934 default:
2935 /* did we reclaim enough */
fed2719e 2936 if (zone_watermark_ok(zone, order, mark,
93ea9964 2937 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2938 goto try_this_zone;
2939
fed2719e 2940 continue;
0798e519 2941 }
7fb1d9fc
RS
2942 }
2943
fa5e084e 2944try_this_zone:
c33d6c06 2945 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2946 gfp_mask, alloc_flags, ac->migratetype);
75379191 2947 if (page) {
479f854a 2948 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2949
2950 /*
2951 * If this is a high-order atomic allocation then check
2952 * if the pageblock should be reserved for the future
2953 */
2954 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2955 reserve_highatomic_pageblock(page, zone, order);
2956
75379191
VB
2957 return page;
2958 }
54a6eb5c 2959 }
9276b1bc 2960
4ffeaf35 2961 return NULL;
753ee728
MH
2962}
2963
29423e77
DR
2964/*
2965 * Large machines with many possible nodes should not always dump per-node
2966 * meminfo in irq context.
2967 */
2968static inline bool should_suppress_show_mem(void)
2969{
2970 bool ret = false;
2971
2972#if NODES_SHIFT > 8
2973 ret = in_interrupt();
2974#endif
2975 return ret;
2976}
2977
a238ab5b
DH
2978static DEFINE_RATELIMIT_STATE(nopage_rs,
2979 DEFAULT_RATELIMIT_INTERVAL,
2980 DEFAULT_RATELIMIT_BURST);
2981
d00181b9 2982void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2983{
a238ab5b
DH
2984 unsigned int filter = SHOW_MEM_FILTER_NODES;
2985
c0a32fc5
SG
2986 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2987 debug_guardpage_minorder() > 0)
a238ab5b
DH
2988 return;
2989
2990 /*
2991 * This documents exceptions given to allocations in certain
2992 * contexts that are allowed to allocate outside current's set
2993 * of allowed nodes.
2994 */
2995 if (!(gfp_mask & __GFP_NOMEMALLOC))
2996 if (test_thread_flag(TIF_MEMDIE) ||
2997 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2998 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2999 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3000 filter &= ~SHOW_MEM_FILTER_NODES;
3001
3002 if (fmt) {
3ee9a4f0
JP
3003 struct va_format vaf;
3004 va_list args;
3005
a238ab5b 3006 va_start(args, fmt);
3ee9a4f0
JP
3007
3008 vaf.fmt = fmt;
3009 vaf.va = &args;
3010
3011 pr_warn("%pV", &vaf);
3012
a238ab5b
DH
3013 va_end(args);
3014 }
3015
c5c990e8
VB
3016 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3017 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3018 dump_stack();
3019 if (!should_suppress_show_mem())
3020 show_mem(filter);
3021}
3022
11e33f6a
MG
3023static inline struct page *
3024__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3025 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3026{
6e0fc46d
DR
3027 struct oom_control oc = {
3028 .zonelist = ac->zonelist,
3029 .nodemask = ac->nodemask,
2a966b77 3030 .memcg = NULL,
6e0fc46d
DR
3031 .gfp_mask = gfp_mask,
3032 .order = order,
6e0fc46d 3033 };
11e33f6a
MG
3034 struct page *page;
3035
9879de73
JW
3036 *did_some_progress = 0;
3037
9879de73 3038 /*
dc56401f
JW
3039 * Acquire the oom lock. If that fails, somebody else is
3040 * making progress for us.
9879de73 3041 */
dc56401f 3042 if (!mutex_trylock(&oom_lock)) {
9879de73 3043 *did_some_progress = 1;
11e33f6a 3044 schedule_timeout_uninterruptible(1);
1da177e4
LT
3045 return NULL;
3046 }
6b1de916 3047
11e33f6a
MG
3048 /*
3049 * Go through the zonelist yet one more time, keep very high watermark
3050 * here, this is only to catch a parallel oom killing, we must fail if
3051 * we're still under heavy pressure.
3052 */
a9263751
VB
3053 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3054 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3055 if (page)
11e33f6a
MG
3056 goto out;
3057
4365a567 3058 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3059 /* Coredumps can quickly deplete all memory reserves */
3060 if (current->flags & PF_DUMPCORE)
3061 goto out;
4365a567
KH
3062 /* The OOM killer will not help higher order allocs */
3063 if (order > PAGE_ALLOC_COSTLY_ORDER)
3064 goto out;
03668b3c 3065 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3066 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3067 goto out;
9083905a
JW
3068 if (pm_suspended_storage())
3069 goto out;
3da88fb3
MH
3070 /*
3071 * XXX: GFP_NOFS allocations should rather fail than rely on
3072 * other request to make a forward progress.
3073 * We are in an unfortunate situation where out_of_memory cannot
3074 * do much for this context but let's try it to at least get
3075 * access to memory reserved if the current task is killed (see
3076 * out_of_memory). Once filesystems are ready to handle allocation
3077 * failures more gracefully we should just bail out here.
3078 */
3079
4167e9b2 3080 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3081 if (gfp_mask & __GFP_THISNODE)
3082 goto out;
3083 }
11e33f6a 3084 /* Exhausted what can be done so it's blamo time */
5020e285 3085 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3086 *did_some_progress = 1;
5020e285
MH
3087
3088 if (gfp_mask & __GFP_NOFAIL) {
3089 page = get_page_from_freelist(gfp_mask, order,
3090 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3091 /*
3092 * fallback to ignore cpuset restriction if our nodes
3093 * are depleted
3094 */
3095 if (!page)
3096 page = get_page_from_freelist(gfp_mask, order,
3097 ALLOC_NO_WATERMARKS, ac);
3098 }
3099 }
11e33f6a 3100out:
dc56401f 3101 mutex_unlock(&oom_lock);
11e33f6a
MG
3102 return page;
3103}
3104
33c2d214
MH
3105/*
3106 * Maximum number of compaction retries wit a progress before OOM
3107 * killer is consider as the only way to move forward.
3108 */
3109#define MAX_COMPACT_RETRIES 16
3110
56de7263
MG
3111#ifdef CONFIG_COMPACTION
3112/* Try memory compaction for high-order allocations before reclaim */
3113static struct page *
3114__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3115 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3116 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3117{
98dd3b48 3118 struct page *page;
53853e2d
VB
3119
3120 if (!order)
66199712 3121 return NULL;
66199712 3122
c06b1fca 3123 current->flags |= PF_MEMALLOC;
c5d01d0d 3124 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3125 prio);
c06b1fca 3126 current->flags &= ~PF_MEMALLOC;
56de7263 3127
c5d01d0d 3128 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3129 return NULL;
53853e2d 3130
98dd3b48
VB
3131 /*
3132 * At least in one zone compaction wasn't deferred or skipped, so let's
3133 * count a compaction stall
3134 */
3135 count_vm_event(COMPACTSTALL);
8fb74b9f 3136
31a6c190 3137 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3138
98dd3b48
VB
3139 if (page) {
3140 struct zone *zone = page_zone(page);
53853e2d 3141
98dd3b48
VB
3142 zone->compact_blockskip_flush = false;
3143 compaction_defer_reset(zone, order, true);
3144 count_vm_event(COMPACTSUCCESS);
3145 return page;
3146 }
56de7263 3147
98dd3b48
VB
3148 /*
3149 * It's bad if compaction run occurs and fails. The most likely reason
3150 * is that pages exist, but not enough to satisfy watermarks.
3151 */
3152 count_vm_event(COMPACTFAIL);
66199712 3153
98dd3b48 3154 cond_resched();
56de7263
MG
3155
3156 return NULL;
3157}
33c2d214 3158
3250845d
VB
3159static inline bool
3160should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3161 enum compact_result compact_result,
3162 enum compact_priority *compact_priority,
3163 int compaction_retries)
3164{
3165 int max_retries = MAX_COMPACT_RETRIES;
3166
3167 if (!order)
3168 return false;
3169
3170 /*
3171 * compaction considers all the zone as desperately out of memory
3172 * so it doesn't really make much sense to retry except when the
3173 * failure could be caused by insufficient priority
3174 */
3175 if (compaction_failed(compact_result)) {
3176 if (*compact_priority > MIN_COMPACT_PRIORITY) {
3177 (*compact_priority)--;
3178 return true;
3179 }
3180 return false;
3181 }
3182
3183 /*
3184 * make sure the compaction wasn't deferred or didn't bail out early
3185 * due to locks contention before we declare that we should give up.
3186 * But do not retry if the given zonelist is not suitable for
3187 * compaction.
3188 */
3189 if (compaction_withdrawn(compact_result))
3190 return compaction_zonelist_suitable(ac, order, alloc_flags);
3191
3192 /*
3193 * !costly requests are much more important than __GFP_REPEAT
3194 * costly ones because they are de facto nofail and invoke OOM
3195 * killer to move on while costly can fail and users are ready
3196 * to cope with that. 1/4 retries is rather arbitrary but we
3197 * would need much more detailed feedback from compaction to
3198 * make a better decision.
3199 */
3200 if (order > PAGE_ALLOC_COSTLY_ORDER)
3201 max_retries /= 4;
3202 if (compaction_retries <= max_retries)
3203 return true;
3204
3205 return false;
3206}
56de7263
MG
3207#else
3208static inline struct page *
3209__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3210 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3211 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3212{
33c2d214 3213 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3214 return NULL;
3215}
33c2d214
MH
3216
3217static inline bool
86a294a8
MH
3218should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3219 enum compact_result compact_result,
a5508cd8 3220 enum compact_priority *compact_priority,
33c2d214
MH
3221 int compaction_retries)
3222{
31e49bfd
MH
3223 struct zone *zone;
3224 struct zoneref *z;
3225
3226 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3227 return false;
3228
3229 /*
3230 * There are setups with compaction disabled which would prefer to loop
3231 * inside the allocator rather than hit the oom killer prematurely.
3232 * Let's give them a good hope and keep retrying while the order-0
3233 * watermarks are OK.
3234 */
3235 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3236 ac->nodemask) {
3237 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3238 ac_classzone_idx(ac), alloc_flags))
3239 return true;
3240 }
33c2d214
MH
3241 return false;
3242}
3250845d 3243#endif /* CONFIG_COMPACTION */
56de7263 3244
bba90710
MS
3245/* Perform direct synchronous page reclaim */
3246static int
a9263751
VB
3247__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3248 const struct alloc_context *ac)
11e33f6a 3249{
11e33f6a 3250 struct reclaim_state reclaim_state;
bba90710 3251 int progress;
11e33f6a
MG
3252
3253 cond_resched();
3254
3255 /* We now go into synchronous reclaim */
3256 cpuset_memory_pressure_bump();
c06b1fca 3257 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3258 lockdep_set_current_reclaim_state(gfp_mask);
3259 reclaim_state.reclaimed_slab = 0;
c06b1fca 3260 current->reclaim_state = &reclaim_state;
11e33f6a 3261
a9263751
VB
3262 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3263 ac->nodemask);
11e33f6a 3264
c06b1fca 3265 current->reclaim_state = NULL;
11e33f6a 3266 lockdep_clear_current_reclaim_state();
c06b1fca 3267 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3268
3269 cond_resched();
3270
bba90710
MS
3271 return progress;
3272}
3273
3274/* The really slow allocator path where we enter direct reclaim */
3275static inline struct page *
3276__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3277 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3278 unsigned long *did_some_progress)
bba90710
MS
3279{
3280 struct page *page = NULL;
3281 bool drained = false;
3282
a9263751 3283 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3284 if (unlikely(!(*did_some_progress)))
3285 return NULL;
11e33f6a 3286
9ee493ce 3287retry:
31a6c190 3288 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3289
3290 /*
3291 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3292 * pages are pinned on the per-cpu lists or in high alloc reserves.
3293 * Shrink them them and try again
9ee493ce
MG
3294 */
3295 if (!page && !drained) {
0aaa29a5 3296 unreserve_highatomic_pageblock(ac);
93481ff0 3297 drain_all_pages(NULL);
9ee493ce
MG
3298 drained = true;
3299 goto retry;
3300 }
3301
11e33f6a
MG
3302 return page;
3303}
3304
a9263751 3305static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3306{
3307 struct zoneref *z;
3308 struct zone *zone;
e1a55637 3309 pg_data_t *last_pgdat = NULL;
3a025760 3310
a9263751 3311 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3312 ac->high_zoneidx, ac->nodemask) {
3313 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3314 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3315 last_pgdat = zone->zone_pgdat;
3316 }
3a025760
JW
3317}
3318
c603844b 3319static inline unsigned int
341ce06f
PZ
3320gfp_to_alloc_flags(gfp_t gfp_mask)
3321{
c603844b 3322 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3323
a56f57ff 3324 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3325 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3326
341ce06f
PZ
3327 /*
3328 * The caller may dip into page reserves a bit more if the caller
3329 * cannot run direct reclaim, or if the caller has realtime scheduling
3330 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3331 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3332 */
e6223a3b 3333 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3334
d0164adc 3335 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3336 /*
b104a35d
DR
3337 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3338 * if it can't schedule.
5c3240d9 3339 */
b104a35d 3340 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3341 alloc_flags |= ALLOC_HARDER;
523b9458 3342 /*
b104a35d 3343 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3344 * comment for __cpuset_node_allowed().
523b9458 3345 */
341ce06f 3346 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3347 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3348 alloc_flags |= ALLOC_HARDER;
3349
d95ea5d1 3350#ifdef CONFIG_CMA
43e7a34d 3351 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3352 alloc_flags |= ALLOC_CMA;
3353#endif
341ce06f
PZ
3354 return alloc_flags;
3355}
3356
072bb0aa
MG
3357bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3358{
31a6c190
VB
3359 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3360 return false;
3361
3362 if (gfp_mask & __GFP_MEMALLOC)
3363 return true;
3364 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3365 return true;
3366 if (!in_interrupt() &&
3367 ((current->flags & PF_MEMALLOC) ||
3368 unlikely(test_thread_flag(TIF_MEMDIE))))
3369 return true;
3370
3371 return false;
072bb0aa
MG
3372}
3373
0a0337e0
MH
3374/*
3375 * Maximum number of reclaim retries without any progress before OOM killer
3376 * is consider as the only way to move forward.
3377 */
3378#define MAX_RECLAIM_RETRIES 16
3379
3380/*
3381 * Checks whether it makes sense to retry the reclaim to make a forward progress
3382 * for the given allocation request.
3383 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3384 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3385 * any progress in a row) is considered as well as the reclaimable pages on the
3386 * applicable zone list (with a backoff mechanism which is a function of
3387 * no_progress_loops).
0a0337e0
MH
3388 *
3389 * Returns true if a retry is viable or false to enter the oom path.
3390 */
3391static inline bool
3392should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3393 struct alloc_context *ac, int alloc_flags,
7854ea6c 3394 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3395{
3396 struct zone *zone;
3397 struct zoneref *z;
3398
3399 /*
3400 * Make sure we converge to OOM if we cannot make any progress
3401 * several times in the row.
3402 */
3403 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3404 return false;
3405
bca67592
MG
3406 /*
3407 * Keep reclaiming pages while there is a chance this will lead
3408 * somewhere. If none of the target zones can satisfy our allocation
3409 * request even if all reclaimable pages are considered then we are
3410 * screwed and have to go OOM.
0a0337e0
MH
3411 */
3412 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3413 ac->nodemask) {
3414 unsigned long available;
ede37713 3415 unsigned long reclaimable;
0a0337e0 3416
5a1c84b4 3417 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3418 available -= DIV_ROUND_UP(no_progress_loops * available,
3419 MAX_RECLAIM_RETRIES);
5a1c84b4 3420 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3421
3422 /*
3423 * Would the allocation succeed if we reclaimed the whole
5a1c84b4 3424 * available?
0a0337e0 3425 */
5a1c84b4
MG
3426 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3427 ac_classzone_idx(ac), alloc_flags, available)) {
ede37713
MH
3428 /*
3429 * If we didn't make any progress and have a lot of
3430 * dirty + writeback pages then we should wait for
3431 * an IO to complete to slow down the reclaim and
3432 * prevent from pre mature OOM
3433 */
3434 if (!did_some_progress) {
11fb9989 3435 unsigned long write_pending;
ede37713 3436
5a1c84b4
MG
3437 write_pending = zone_page_state_snapshot(zone,
3438 NR_ZONE_WRITE_PENDING);
ede37713 3439
11fb9989 3440 if (2 * write_pending > reclaimable) {
ede37713
MH
3441 congestion_wait(BLK_RW_ASYNC, HZ/10);
3442 return true;
3443 }
3444 }
5a1c84b4 3445
ede37713
MH
3446 /*
3447 * Memory allocation/reclaim might be called from a WQ
3448 * context and the current implementation of the WQ
3449 * concurrency control doesn't recognize that
3450 * a particular WQ is congested if the worker thread is
3451 * looping without ever sleeping. Therefore we have to
3452 * do a short sleep here rather than calling
3453 * cond_resched().
3454 */
3455 if (current->flags & PF_WQ_WORKER)
3456 schedule_timeout_uninterruptible(1);
3457 else
3458 cond_resched();
3459
0a0337e0
MH
3460 return true;
3461 }
3462 }
3463
3464 return false;
3465}
3466
11e33f6a
MG
3467static inline struct page *
3468__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3469 struct alloc_context *ac)
11e33f6a 3470{
d0164adc 3471 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3472 struct page *page = NULL;
c603844b 3473 unsigned int alloc_flags;
11e33f6a 3474 unsigned long did_some_progress;
a5508cd8 3475 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
c5d01d0d 3476 enum compact_result compact_result;
33c2d214 3477 int compaction_retries = 0;
0a0337e0 3478 int no_progress_loops = 0;
1da177e4 3479
72807a74
MG
3480 /*
3481 * In the slowpath, we sanity check order to avoid ever trying to
3482 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3483 * be using allocators in order of preference for an area that is
3484 * too large.
3485 */
1fc28b70
MG
3486 if (order >= MAX_ORDER) {
3487 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3488 return NULL;
1fc28b70 3489 }
1da177e4 3490
d0164adc
MG
3491 /*
3492 * We also sanity check to catch abuse of atomic reserves being used by
3493 * callers that are not in atomic context.
3494 */
3495 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3496 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3497 gfp_mask &= ~__GFP_ATOMIC;
3498
9bf2229f 3499 /*
31a6c190
VB
3500 * The fast path uses conservative alloc_flags to succeed only until
3501 * kswapd needs to be woken up, and to avoid the cost of setting up
3502 * alloc_flags precisely. So we do that now.
9bf2229f 3503 */
341ce06f 3504 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3505
23771235
VB
3506 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3507 wake_all_kswapds(order, ac);
3508
3509 /*
3510 * The adjusted alloc_flags might result in immediate success, so try
3511 * that first
3512 */
3513 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3514 if (page)
3515 goto got_pg;
3516
a8161d1e
VB
3517 /*
3518 * For costly allocations, try direct compaction first, as it's likely
3519 * that we have enough base pages and don't need to reclaim. Don't try
3520 * that for allocations that are allowed to ignore watermarks, as the
3521 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3522 */
3523 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3524 !gfp_pfmemalloc_allowed(gfp_mask)) {
3525 page = __alloc_pages_direct_compact(gfp_mask, order,
3526 alloc_flags, ac,
a5508cd8 3527 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3528 &compact_result);
3529 if (page)
3530 goto got_pg;
3531
3eb2771b
VB
3532 /*
3533 * Checks for costly allocations with __GFP_NORETRY, which
3534 * includes THP page fault allocations
3535 */
3536 if (gfp_mask & __GFP_NORETRY) {
a8161d1e
VB
3537 /*
3538 * If compaction is deferred for high-order allocations,
3539 * it is because sync compaction recently failed. If
3540 * this is the case and the caller requested a THP
3541 * allocation, we do not want to heavily disrupt the
3542 * system, so we fail the allocation instead of entering
3543 * direct reclaim.
3544 */
3545 if (compact_result == COMPACT_DEFERRED)
3546 goto nopage;
3547
a8161d1e 3548 /*
3eb2771b
VB
3549 * Looks like reclaim/compaction is worth trying, but
3550 * sync compaction could be very expensive, so keep
25160354 3551 * using async compaction.
a8161d1e 3552 */
a5508cd8 3553 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3554 }
3555 }
23771235 3556
31a6c190 3557retry:
23771235 3558 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3559 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3560 wake_all_kswapds(order, ac);
3561
23771235
VB
3562 if (gfp_pfmemalloc_allowed(gfp_mask))
3563 alloc_flags = ALLOC_NO_WATERMARKS;
3564
e46e7b77
MG
3565 /*
3566 * Reset the zonelist iterators if memory policies can be ignored.
3567 * These allocations are high priority and system rather than user
3568 * orientated.
3569 */
23771235 3570 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3571 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3572 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3573 ac->high_zoneidx, ac->nodemask);
3574 }
3575
23771235 3576 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3577 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3578 if (page)
3579 goto got_pg;
1da177e4 3580
d0164adc
MG
3581 /* Caller is not willing to reclaim, we can't balance anything */
3582 if (!can_direct_reclaim) {
aed0a0e3 3583 /*
33d53103
MH
3584 * All existing users of the __GFP_NOFAIL are blockable, so warn
3585 * of any new users that actually allow this type of allocation
3586 * to fail.
aed0a0e3
DR
3587 */
3588 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3589 goto nopage;
aed0a0e3 3590 }
1da177e4 3591
341ce06f 3592 /* Avoid recursion of direct reclaim */
33d53103
MH
3593 if (current->flags & PF_MEMALLOC) {
3594 /*
3595 * __GFP_NOFAIL request from this context is rather bizarre
3596 * because we cannot reclaim anything and only can loop waiting
3597 * for somebody to do a work for us.
3598 */
3599 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3600 cond_resched();
3601 goto retry;
3602 }
341ce06f 3603 goto nopage;
33d53103 3604 }
341ce06f 3605
6583bb64
DR
3606 /* Avoid allocations with no watermarks from looping endlessly */
3607 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3608 goto nopage;
3609
a8161d1e
VB
3610
3611 /* Try direct reclaim and then allocating */
3612 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3613 &did_some_progress);
3614 if (page)
3615 goto got_pg;
3616
3617 /* Try direct compaction and then allocating */
a9263751 3618 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3619 compact_priority, &compact_result);
56de7263
MG
3620 if (page)
3621 goto got_pg;
75f30861 3622
33c2d214
MH
3623 if (order && compaction_made_progress(compact_result))
3624 compaction_retries++;
8fe78048 3625
9083905a
JW
3626 /* Do not loop if specifically requested */
3627 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3628 goto nopage;
9083905a 3629
0a0337e0
MH
3630 /*
3631 * Do not retry costly high order allocations unless they are
3632 * __GFP_REPEAT
3633 */
3634 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3635 goto nopage;
0a0337e0 3636
7854ea6c
MH
3637 /*
3638 * Costly allocations might have made a progress but this doesn't mean
3639 * their order will become available due to high fragmentation so
3640 * always increment the no progress counter for them
3641 */
3642 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3643 no_progress_loops = 0;
7854ea6c 3644 else
0a0337e0 3645 no_progress_loops++;
1da177e4 3646
0a0337e0 3647 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3648 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3649 goto retry;
3650
33c2d214
MH
3651 /*
3652 * It doesn't make any sense to retry for the compaction if the order-0
3653 * reclaim is not able to make any progress because the current
3654 * implementation of the compaction depends on the sufficient amount
3655 * of free memory (see __compaction_suitable)
3656 */
3657 if (did_some_progress > 0 &&
86a294a8 3658 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3659 compact_result, &compact_priority,
86a294a8 3660 compaction_retries))
33c2d214
MH
3661 goto retry;
3662
9083905a
JW
3663 /* Reclaim has failed us, start killing things */
3664 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3665 if (page)
3666 goto got_pg;
3667
3668 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3669 if (did_some_progress) {
3670 no_progress_loops = 0;
9083905a 3671 goto retry;
0a0337e0 3672 }
9083905a 3673
1da177e4 3674nopage:
a238ab5b 3675 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3676got_pg:
072bb0aa 3677 return page;
1da177e4 3678}
11e33f6a
MG
3679
3680/*
3681 * This is the 'heart' of the zoned buddy allocator.
3682 */
3683struct page *
3684__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3685 struct zonelist *zonelist, nodemask_t *nodemask)
3686{
5bb1b169 3687 struct page *page;
cc9a6c87 3688 unsigned int cpuset_mems_cookie;
e6cbd7f2 3689 unsigned int alloc_flags = ALLOC_WMARK_LOW;
83d4ca81 3690 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3691 struct alloc_context ac = {
3692 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3693 .zonelist = zonelist,
a9263751
VB
3694 .nodemask = nodemask,
3695 .migratetype = gfpflags_to_migratetype(gfp_mask),
3696 };
11e33f6a 3697
682a3385 3698 if (cpusets_enabled()) {
83d4ca81 3699 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3700 alloc_flags |= ALLOC_CPUSET;
3701 if (!ac.nodemask)
3702 ac.nodemask = &cpuset_current_mems_allowed;
3703 }
3704
dcce284a
BH
3705 gfp_mask &= gfp_allowed_mask;
3706
11e33f6a
MG
3707 lockdep_trace_alloc(gfp_mask);
3708
d0164adc 3709 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3710
3711 if (should_fail_alloc_page(gfp_mask, order))
3712 return NULL;
3713
3714 /*
3715 * Check the zones suitable for the gfp_mask contain at least one
3716 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3717 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3718 */
3719 if (unlikely(!zonelist->_zonerefs->zone))
3720 return NULL;
3721
a9263751 3722 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3723 alloc_flags |= ALLOC_CMA;
3724
cc9a6c87 3725retry_cpuset:
d26914d1 3726 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3727
c9ab0c4f
MG
3728 /* Dirty zone balancing only done in the fast path */
3729 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3730
e46e7b77
MG
3731 /*
3732 * The preferred zone is used for statistics but crucially it is
3733 * also used as the starting point for the zonelist iterator. It
3734 * may get reset for allocations that ignore memory policies.
3735 */
c33d6c06
MG
3736 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3737 ac.high_zoneidx, ac.nodemask);
3738 if (!ac.preferred_zoneref) {
5bb1b169 3739 page = NULL;
4fcb0971 3740 goto no_zone;
5bb1b169
MG
3741 }
3742
5117f45d 3743 /* First allocation attempt */
a9263751 3744 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3745 if (likely(page))
3746 goto out;
11e33f6a 3747
4fcb0971
MG
3748 /*
3749 * Runtime PM, block IO and its error handling path can deadlock
3750 * because I/O on the device might not complete.
3751 */
3752 alloc_mask = memalloc_noio_flags(gfp_mask);
3753 ac.spread_dirty_pages = false;
23f086f9 3754
4741526b
MG
3755 /*
3756 * Restore the original nodemask if it was potentially replaced with
3757 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3758 */
3759 if (cpusets_enabled())
3760 ac.nodemask = nodemask;
4fcb0971 3761 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3762
4fcb0971 3763no_zone:
cc9a6c87
MG
3764 /*
3765 * When updating a task's mems_allowed, it is possible to race with
3766 * parallel threads in such a way that an allocation can fail while
3767 * the mask is being updated. If a page allocation is about to fail,
3768 * check if the cpuset changed during allocation and if so, retry.
3769 */
83d4ca81
MG
3770 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3771 alloc_mask = gfp_mask;
cc9a6c87 3772 goto retry_cpuset;
83d4ca81 3773 }
cc9a6c87 3774
4fcb0971 3775out:
c4159a75
VD
3776 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3777 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3778 __free_pages(page, order);
3779 page = NULL;
4949148a
VD
3780 }
3781
4fcb0971
MG
3782 if (kmemcheck_enabled && page)
3783 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3784
3785 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3786
11e33f6a 3787 return page;
1da177e4 3788}
d239171e 3789EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3790
3791/*
3792 * Common helper functions.
3793 */
920c7a5d 3794unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3795{
945a1113
AM
3796 struct page *page;
3797
3798 /*
3799 * __get_free_pages() returns a 32-bit address, which cannot represent
3800 * a highmem page
3801 */
3802 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3803
1da177e4
LT
3804 page = alloc_pages(gfp_mask, order);
3805 if (!page)
3806 return 0;
3807 return (unsigned long) page_address(page);
3808}
1da177e4
LT
3809EXPORT_SYMBOL(__get_free_pages);
3810
920c7a5d 3811unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3812{
945a1113 3813 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3814}
1da177e4
LT
3815EXPORT_SYMBOL(get_zeroed_page);
3816
920c7a5d 3817void __free_pages(struct page *page, unsigned int order)
1da177e4 3818{
b5810039 3819 if (put_page_testzero(page)) {
1da177e4 3820 if (order == 0)
b745bc85 3821 free_hot_cold_page(page, false);
1da177e4
LT
3822 else
3823 __free_pages_ok(page, order);
3824 }
3825}
3826
3827EXPORT_SYMBOL(__free_pages);
3828
920c7a5d 3829void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3830{
3831 if (addr != 0) {
725d704e 3832 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3833 __free_pages(virt_to_page((void *)addr), order);
3834 }
3835}
3836
3837EXPORT_SYMBOL(free_pages);
3838
b63ae8ca
AD
3839/*
3840 * Page Fragment:
3841 * An arbitrary-length arbitrary-offset area of memory which resides
3842 * within a 0 or higher order page. Multiple fragments within that page
3843 * are individually refcounted, in the page's reference counter.
3844 *
3845 * The page_frag functions below provide a simple allocation framework for
3846 * page fragments. This is used by the network stack and network device
3847 * drivers to provide a backing region of memory for use as either an
3848 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3849 */
3850static struct page *__page_frag_refill(struct page_frag_cache *nc,
3851 gfp_t gfp_mask)
3852{
3853 struct page *page = NULL;
3854 gfp_t gfp = gfp_mask;
3855
3856#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3857 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3858 __GFP_NOMEMALLOC;
3859 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3860 PAGE_FRAG_CACHE_MAX_ORDER);
3861 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3862#endif
3863 if (unlikely(!page))
3864 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3865
3866 nc->va = page ? page_address(page) : NULL;
3867
3868 return page;
3869}
3870
3871void *__alloc_page_frag(struct page_frag_cache *nc,
3872 unsigned int fragsz, gfp_t gfp_mask)
3873{
3874 unsigned int size = PAGE_SIZE;
3875 struct page *page;
3876 int offset;
3877
3878 if (unlikely(!nc->va)) {
3879refill:
3880 page = __page_frag_refill(nc, gfp_mask);
3881 if (!page)
3882 return NULL;
3883
3884#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3885 /* if size can vary use size else just use PAGE_SIZE */
3886 size = nc->size;
3887#endif
3888 /* Even if we own the page, we do not use atomic_set().
3889 * This would break get_page_unless_zero() users.
3890 */
fe896d18 3891 page_ref_add(page, size - 1);
b63ae8ca
AD
3892
3893 /* reset page count bias and offset to start of new frag */
2f064f34 3894 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3895 nc->pagecnt_bias = size;
3896 nc->offset = size;
3897 }
3898
3899 offset = nc->offset - fragsz;
3900 if (unlikely(offset < 0)) {
3901 page = virt_to_page(nc->va);
3902
fe896d18 3903 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3904 goto refill;
3905
3906#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3907 /* if size can vary use size else just use PAGE_SIZE */
3908 size = nc->size;
3909#endif
3910 /* OK, page count is 0, we can safely set it */
fe896d18 3911 set_page_count(page, size);
b63ae8ca
AD
3912
3913 /* reset page count bias and offset to start of new frag */
3914 nc->pagecnt_bias = size;
3915 offset = size - fragsz;
3916 }
3917
3918 nc->pagecnt_bias--;
3919 nc->offset = offset;
3920
3921 return nc->va + offset;
3922}
3923EXPORT_SYMBOL(__alloc_page_frag);
3924
3925/*
3926 * Frees a page fragment allocated out of either a compound or order 0 page.
3927 */
3928void __free_page_frag(void *addr)
3929{
3930 struct page *page = virt_to_head_page(addr);
3931
3932 if (unlikely(put_page_testzero(page)))
3933 __free_pages_ok(page, compound_order(page));
3934}
3935EXPORT_SYMBOL(__free_page_frag);
3936
d00181b9
KS
3937static void *make_alloc_exact(unsigned long addr, unsigned int order,
3938 size_t size)
ee85c2e1
AK
3939{
3940 if (addr) {
3941 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3942 unsigned long used = addr + PAGE_ALIGN(size);
3943
3944 split_page(virt_to_page((void *)addr), order);
3945 while (used < alloc_end) {
3946 free_page(used);
3947 used += PAGE_SIZE;
3948 }
3949 }
3950 return (void *)addr;
3951}
3952
2be0ffe2
TT
3953/**
3954 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3955 * @size: the number of bytes to allocate
3956 * @gfp_mask: GFP flags for the allocation
3957 *
3958 * This function is similar to alloc_pages(), except that it allocates the
3959 * minimum number of pages to satisfy the request. alloc_pages() can only
3960 * allocate memory in power-of-two pages.
3961 *
3962 * This function is also limited by MAX_ORDER.
3963 *
3964 * Memory allocated by this function must be released by free_pages_exact().
3965 */
3966void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3967{
3968 unsigned int order = get_order(size);
3969 unsigned long addr;
3970
3971 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3972 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3973}
3974EXPORT_SYMBOL(alloc_pages_exact);
3975
ee85c2e1
AK
3976/**
3977 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3978 * pages on a node.
b5e6ab58 3979 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3980 * @size: the number of bytes to allocate
3981 * @gfp_mask: GFP flags for the allocation
3982 *
3983 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3984 * back.
ee85c2e1 3985 */
e1931811 3986void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3987{
d00181b9 3988 unsigned int order = get_order(size);
ee85c2e1
AK
3989 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3990 if (!p)
3991 return NULL;
3992 return make_alloc_exact((unsigned long)page_address(p), order, size);
3993}
ee85c2e1 3994
2be0ffe2
TT
3995/**
3996 * free_pages_exact - release memory allocated via alloc_pages_exact()
3997 * @virt: the value returned by alloc_pages_exact.
3998 * @size: size of allocation, same value as passed to alloc_pages_exact().
3999 *
4000 * Release the memory allocated by a previous call to alloc_pages_exact.
4001 */
4002void free_pages_exact(void *virt, size_t size)
4003{
4004 unsigned long addr = (unsigned long)virt;
4005 unsigned long end = addr + PAGE_ALIGN(size);
4006
4007 while (addr < end) {
4008 free_page(addr);
4009 addr += PAGE_SIZE;
4010 }
4011}
4012EXPORT_SYMBOL(free_pages_exact);
4013
e0fb5815
ZY
4014/**
4015 * nr_free_zone_pages - count number of pages beyond high watermark
4016 * @offset: The zone index of the highest zone
4017 *
4018 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4019 * high watermark within all zones at or below a given zone index. For each
4020 * zone, the number of pages is calculated as:
834405c3 4021 * managed_pages - high_pages
e0fb5815 4022 */
ebec3862 4023static unsigned long nr_free_zone_pages(int offset)
1da177e4 4024{
dd1a239f 4025 struct zoneref *z;
54a6eb5c
MG
4026 struct zone *zone;
4027
e310fd43 4028 /* Just pick one node, since fallback list is circular */
ebec3862 4029 unsigned long sum = 0;
1da177e4 4030
0e88460d 4031 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4032
54a6eb5c 4033 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4034 unsigned long size = zone->managed_pages;
41858966 4035 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4036 if (size > high)
4037 sum += size - high;
1da177e4
LT
4038 }
4039
4040 return sum;
4041}
4042
e0fb5815
ZY
4043/**
4044 * nr_free_buffer_pages - count number of pages beyond high watermark
4045 *
4046 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4047 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4048 */
ebec3862 4049unsigned long nr_free_buffer_pages(void)
1da177e4 4050{
af4ca457 4051 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4052}
c2f1a551 4053EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4054
e0fb5815
ZY
4055/**
4056 * nr_free_pagecache_pages - count number of pages beyond high watermark
4057 *
4058 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4059 * high watermark within all zones.
1da177e4 4060 */
ebec3862 4061unsigned long nr_free_pagecache_pages(void)
1da177e4 4062{
2a1e274a 4063 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4064}
08e0f6a9
CL
4065
4066static inline void show_node(struct zone *zone)
1da177e4 4067{
e5adfffc 4068 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4069 printk("Node %d ", zone_to_nid(zone));
1da177e4 4070}
1da177e4 4071
d02bd27b
IR
4072long si_mem_available(void)
4073{
4074 long available;
4075 unsigned long pagecache;
4076 unsigned long wmark_low = 0;
4077 unsigned long pages[NR_LRU_LISTS];
4078 struct zone *zone;
4079 int lru;
4080
4081 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4082 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4083
4084 for_each_zone(zone)
4085 wmark_low += zone->watermark[WMARK_LOW];
4086
4087 /*
4088 * Estimate the amount of memory available for userspace allocations,
4089 * without causing swapping.
4090 */
4091 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4092
4093 /*
4094 * Not all the page cache can be freed, otherwise the system will
4095 * start swapping. Assume at least half of the page cache, or the
4096 * low watermark worth of cache, needs to stay.
4097 */
4098 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4099 pagecache -= min(pagecache / 2, wmark_low);
4100 available += pagecache;
4101
4102 /*
4103 * Part of the reclaimable slab consists of items that are in use,
4104 * and cannot be freed. Cap this estimate at the low watermark.
4105 */
4106 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4107 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4108
4109 if (available < 0)
4110 available = 0;
4111 return available;
4112}
4113EXPORT_SYMBOL_GPL(si_mem_available);
4114
1da177e4
LT
4115void si_meminfo(struct sysinfo *val)
4116{
4117 val->totalram = totalram_pages;
11fb9989 4118 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4119 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4120 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4121 val->totalhigh = totalhigh_pages;
4122 val->freehigh = nr_free_highpages();
1da177e4
LT
4123 val->mem_unit = PAGE_SIZE;
4124}
4125
4126EXPORT_SYMBOL(si_meminfo);
4127
4128#ifdef CONFIG_NUMA
4129void si_meminfo_node(struct sysinfo *val, int nid)
4130{
cdd91a77
JL
4131 int zone_type; /* needs to be signed */
4132 unsigned long managed_pages = 0;
fc2bd799
JK
4133 unsigned long managed_highpages = 0;
4134 unsigned long free_highpages = 0;
1da177e4
LT
4135 pg_data_t *pgdat = NODE_DATA(nid);
4136
cdd91a77
JL
4137 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4138 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4139 val->totalram = managed_pages;
11fb9989 4140 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4141 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4142#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4143 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4144 struct zone *zone = &pgdat->node_zones[zone_type];
4145
4146 if (is_highmem(zone)) {
4147 managed_highpages += zone->managed_pages;
4148 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4149 }
4150 }
4151 val->totalhigh = managed_highpages;
4152 val->freehigh = free_highpages;
98d2b0eb 4153#else
fc2bd799
JK
4154 val->totalhigh = managed_highpages;
4155 val->freehigh = free_highpages;
98d2b0eb 4156#endif
1da177e4
LT
4157 val->mem_unit = PAGE_SIZE;
4158}
4159#endif
4160
ddd588b5 4161/*
7bf02ea2
DR
4162 * Determine whether the node should be displayed or not, depending on whether
4163 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4164 */
7bf02ea2 4165bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4166{
4167 bool ret = false;
cc9a6c87 4168 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4169
4170 if (!(flags & SHOW_MEM_FILTER_NODES))
4171 goto out;
4172
cc9a6c87 4173 do {
d26914d1 4174 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4175 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4176 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4177out:
4178 return ret;
4179}
4180
1da177e4
LT
4181#define K(x) ((x) << (PAGE_SHIFT-10))
4182
377e4f16
RV
4183static void show_migration_types(unsigned char type)
4184{
4185 static const char types[MIGRATE_TYPES] = {
4186 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4187 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4188 [MIGRATE_RECLAIMABLE] = 'E',
4189 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4190#ifdef CONFIG_CMA
4191 [MIGRATE_CMA] = 'C',
4192#endif
194159fb 4193#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4194 [MIGRATE_ISOLATE] = 'I',
194159fb 4195#endif
377e4f16
RV
4196 };
4197 char tmp[MIGRATE_TYPES + 1];
4198 char *p = tmp;
4199 int i;
4200
4201 for (i = 0; i < MIGRATE_TYPES; i++) {
4202 if (type & (1 << i))
4203 *p++ = types[i];
4204 }
4205
4206 *p = '\0';
4207 printk("(%s) ", tmp);
4208}
4209
1da177e4
LT
4210/*
4211 * Show free area list (used inside shift_scroll-lock stuff)
4212 * We also calculate the percentage fragmentation. We do this by counting the
4213 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4214 *
4215 * Bits in @filter:
4216 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4217 * cpuset.
1da177e4 4218 */
7bf02ea2 4219void show_free_areas(unsigned int filter)
1da177e4 4220{
d1bfcdb8 4221 unsigned long free_pcp = 0;
c7241913 4222 int cpu;
1da177e4 4223 struct zone *zone;
599d0c95 4224 pg_data_t *pgdat;
1da177e4 4225
ee99c71c 4226 for_each_populated_zone(zone) {
7bf02ea2 4227 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4228 continue;
d1bfcdb8 4229
761b0677
KK
4230 for_each_online_cpu(cpu)
4231 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4232 }
4233
a731286d
KM
4234 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4235 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4236 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4237 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4238 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4239 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4240 global_node_page_state(NR_ACTIVE_ANON),
4241 global_node_page_state(NR_INACTIVE_ANON),
4242 global_node_page_state(NR_ISOLATED_ANON),
4243 global_node_page_state(NR_ACTIVE_FILE),
4244 global_node_page_state(NR_INACTIVE_FILE),
4245 global_node_page_state(NR_ISOLATED_FILE),
4246 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4247 global_node_page_state(NR_FILE_DIRTY),
4248 global_node_page_state(NR_WRITEBACK),
4249 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4250 global_page_state(NR_SLAB_RECLAIMABLE),
4251 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4252 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4253 global_node_page_state(NR_SHMEM),
a25700a5 4254 global_page_state(NR_PAGETABLE),
d1ce749a 4255 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4256 global_page_state(NR_FREE_PAGES),
4257 free_pcp,
d1ce749a 4258 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4259
599d0c95
MG
4260 for_each_online_pgdat(pgdat) {
4261 printk("Node %d"
4262 " active_anon:%lukB"
4263 " inactive_anon:%lukB"
4264 " active_file:%lukB"
4265 " inactive_file:%lukB"
4266 " unevictable:%lukB"
4267 " isolated(anon):%lukB"
4268 " isolated(file):%lukB"
50658e2e 4269 " mapped:%lukB"
11fb9989
MG
4270 " dirty:%lukB"
4271 " writeback:%lukB"
4272 " shmem:%lukB"
4273#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4274 " shmem_thp: %lukB"
4275 " shmem_pmdmapped: %lukB"
4276 " anon_thp: %lukB"
4277#endif
4278 " writeback_tmp:%lukB"
4279 " unstable:%lukB"
33e077bd 4280 " pages_scanned:%lu"
599d0c95
MG
4281 " all_unreclaimable? %s"
4282 "\n",
4283 pgdat->node_id,
4284 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4285 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4286 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4287 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4288 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4289 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4290 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4291 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4292 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4293 K(node_page_state(pgdat, NR_WRITEBACK)),
4294#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4295 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4296 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4297 * HPAGE_PMD_NR),
4298 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4299#endif
4300 K(node_page_state(pgdat, NR_SHMEM)),
4301 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4302 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
33e077bd 4303 node_page_state(pgdat, NR_PAGES_SCANNED),
599d0c95
MG
4304 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4305 }
4306
ee99c71c 4307 for_each_populated_zone(zone) {
1da177e4
LT
4308 int i;
4309
7bf02ea2 4310 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4311 continue;
d1bfcdb8
KK
4312
4313 free_pcp = 0;
4314 for_each_online_cpu(cpu)
4315 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4316
1da177e4
LT
4317 show_node(zone);
4318 printk("%s"
4319 " free:%lukB"
4320 " min:%lukB"
4321 " low:%lukB"
4322 " high:%lukB"
71c799f4
MK
4323 " active_anon:%lukB"
4324 " inactive_anon:%lukB"
4325 " active_file:%lukB"
4326 " inactive_file:%lukB"
4327 " unevictable:%lukB"
5a1c84b4 4328 " writepending:%lukB"
1da177e4 4329 " present:%lukB"
9feedc9d 4330 " managed:%lukB"
4a0aa73f 4331 " mlocked:%lukB"
4a0aa73f
KM
4332 " slab_reclaimable:%lukB"
4333 " slab_unreclaimable:%lukB"
c6a7f572 4334 " kernel_stack:%lukB"
4a0aa73f 4335 " pagetables:%lukB"
4a0aa73f 4336 " bounce:%lukB"
d1bfcdb8
KK
4337 " free_pcp:%lukB"
4338 " local_pcp:%ukB"
d1ce749a 4339 " free_cma:%lukB"
1da177e4
LT
4340 "\n",
4341 zone->name,
88f5acf8 4342 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4343 K(min_wmark_pages(zone)),
4344 K(low_wmark_pages(zone)),
4345 K(high_wmark_pages(zone)),
71c799f4
MK
4346 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4347 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4348 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4349 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4350 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4351 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4352 K(zone->present_pages),
9feedc9d 4353 K(zone->managed_pages),
4a0aa73f 4354 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4355 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4356 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4357 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4358 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4359 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4360 K(free_pcp),
4361 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4362 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4363 printk("lowmem_reserve[]:");
4364 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4365 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4366 printk("\n");
4367 }
4368
ee99c71c 4369 for_each_populated_zone(zone) {
d00181b9
KS
4370 unsigned int order;
4371 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4372 unsigned char types[MAX_ORDER];
1da177e4 4373
7bf02ea2 4374 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4375 continue;
1da177e4
LT
4376 show_node(zone);
4377 printk("%s: ", zone->name);
1da177e4
LT
4378
4379 spin_lock_irqsave(&zone->lock, flags);
4380 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4381 struct free_area *area = &zone->free_area[order];
4382 int type;
4383
4384 nr[order] = area->nr_free;
8f9de51a 4385 total += nr[order] << order;
377e4f16
RV
4386
4387 types[order] = 0;
4388 for (type = 0; type < MIGRATE_TYPES; type++) {
4389 if (!list_empty(&area->free_list[type]))
4390 types[order] |= 1 << type;
4391 }
1da177e4
LT
4392 }
4393 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4394 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4395 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4396 if (nr[order])
4397 show_migration_types(types[order]);
4398 }
1da177e4
LT
4399 printk("= %lukB\n", K(total));
4400 }
4401
949f7ec5
DR
4402 hugetlb_show_meminfo();
4403
11fb9989 4404 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4405
1da177e4
LT
4406 show_swap_cache_info();
4407}
4408
19770b32
MG
4409static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4410{
4411 zoneref->zone = zone;
4412 zoneref->zone_idx = zone_idx(zone);
4413}
4414
1da177e4
LT
4415/*
4416 * Builds allocation fallback zone lists.
1a93205b
CL
4417 *
4418 * Add all populated zones of a node to the zonelist.
1da177e4 4419 */
f0c0b2b8 4420static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4421 int nr_zones)
1da177e4 4422{
1a93205b 4423 struct zone *zone;
bc732f1d 4424 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4425
4426 do {
2f6726e5 4427 zone_type--;
070f8032 4428 zone = pgdat->node_zones + zone_type;
6aa303de 4429 if (managed_zone(zone)) {
dd1a239f
MG
4430 zoneref_set_zone(zone,
4431 &zonelist->_zonerefs[nr_zones++]);
070f8032 4432 check_highest_zone(zone_type);
1da177e4 4433 }
2f6726e5 4434 } while (zone_type);
bc732f1d 4435
070f8032 4436 return nr_zones;
1da177e4
LT
4437}
4438
f0c0b2b8
KH
4439
4440/*
4441 * zonelist_order:
4442 * 0 = automatic detection of better ordering.
4443 * 1 = order by ([node] distance, -zonetype)
4444 * 2 = order by (-zonetype, [node] distance)
4445 *
4446 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4447 * the same zonelist. So only NUMA can configure this param.
4448 */
4449#define ZONELIST_ORDER_DEFAULT 0
4450#define ZONELIST_ORDER_NODE 1
4451#define ZONELIST_ORDER_ZONE 2
4452
4453/* zonelist order in the kernel.
4454 * set_zonelist_order() will set this to NODE or ZONE.
4455 */
4456static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4457static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4458
4459
1da177e4 4460#ifdef CONFIG_NUMA
f0c0b2b8
KH
4461/* The value user specified ....changed by config */
4462static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4463/* string for sysctl */
4464#define NUMA_ZONELIST_ORDER_LEN 16
4465char numa_zonelist_order[16] = "default";
4466
4467/*
4468 * interface for configure zonelist ordering.
4469 * command line option "numa_zonelist_order"
4470 * = "[dD]efault - default, automatic configuration.
4471 * = "[nN]ode - order by node locality, then by zone within node
4472 * = "[zZ]one - order by zone, then by locality within zone
4473 */
4474
4475static int __parse_numa_zonelist_order(char *s)
4476{
4477 if (*s == 'd' || *s == 'D') {
4478 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4479 } else if (*s == 'n' || *s == 'N') {
4480 user_zonelist_order = ZONELIST_ORDER_NODE;
4481 } else if (*s == 'z' || *s == 'Z') {
4482 user_zonelist_order = ZONELIST_ORDER_ZONE;
4483 } else {
1170532b 4484 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4485 return -EINVAL;
4486 }
4487 return 0;
4488}
4489
4490static __init int setup_numa_zonelist_order(char *s)
4491{
ecb256f8
VL
4492 int ret;
4493
4494 if (!s)
4495 return 0;
4496
4497 ret = __parse_numa_zonelist_order(s);
4498 if (ret == 0)
4499 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4500
4501 return ret;
f0c0b2b8
KH
4502}
4503early_param("numa_zonelist_order", setup_numa_zonelist_order);
4504
4505/*
4506 * sysctl handler for numa_zonelist_order
4507 */
cccad5b9 4508int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4509 void __user *buffer, size_t *length,
f0c0b2b8
KH
4510 loff_t *ppos)
4511{
4512 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4513 int ret;
443c6f14 4514 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4515
443c6f14 4516 mutex_lock(&zl_order_mutex);
dacbde09
CG
4517 if (write) {
4518 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4519 ret = -EINVAL;
4520 goto out;
4521 }
4522 strcpy(saved_string, (char *)table->data);
4523 }
8d65af78 4524 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4525 if (ret)
443c6f14 4526 goto out;
f0c0b2b8
KH
4527 if (write) {
4528 int oldval = user_zonelist_order;
dacbde09
CG
4529
4530 ret = __parse_numa_zonelist_order((char *)table->data);
4531 if (ret) {
f0c0b2b8
KH
4532 /*
4533 * bogus value. restore saved string
4534 */
dacbde09 4535 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4536 NUMA_ZONELIST_ORDER_LEN);
4537 user_zonelist_order = oldval;
4eaf3f64
HL
4538 } else if (oldval != user_zonelist_order) {
4539 mutex_lock(&zonelists_mutex);
9adb62a5 4540 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4541 mutex_unlock(&zonelists_mutex);
4542 }
f0c0b2b8 4543 }
443c6f14
AK
4544out:
4545 mutex_unlock(&zl_order_mutex);
4546 return ret;
f0c0b2b8
KH
4547}
4548
4549
62bc62a8 4550#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4551static int node_load[MAX_NUMNODES];
4552
1da177e4 4553/**
4dc3b16b 4554 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4555 * @node: node whose fallback list we're appending
4556 * @used_node_mask: nodemask_t of already used nodes
4557 *
4558 * We use a number of factors to determine which is the next node that should
4559 * appear on a given node's fallback list. The node should not have appeared
4560 * already in @node's fallback list, and it should be the next closest node
4561 * according to the distance array (which contains arbitrary distance values
4562 * from each node to each node in the system), and should also prefer nodes
4563 * with no CPUs, since presumably they'll have very little allocation pressure
4564 * on them otherwise.
4565 * It returns -1 if no node is found.
4566 */
f0c0b2b8 4567static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4568{
4cf808eb 4569 int n, val;
1da177e4 4570 int min_val = INT_MAX;
00ef2d2f 4571 int best_node = NUMA_NO_NODE;
a70f7302 4572 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4573
4cf808eb
LT
4574 /* Use the local node if we haven't already */
4575 if (!node_isset(node, *used_node_mask)) {
4576 node_set(node, *used_node_mask);
4577 return node;
4578 }
1da177e4 4579
4b0ef1fe 4580 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4581
4582 /* Don't want a node to appear more than once */
4583 if (node_isset(n, *used_node_mask))
4584 continue;
4585
1da177e4
LT
4586 /* Use the distance array to find the distance */
4587 val = node_distance(node, n);
4588
4cf808eb
LT
4589 /* Penalize nodes under us ("prefer the next node") */
4590 val += (n < node);
4591
1da177e4 4592 /* Give preference to headless and unused nodes */
a70f7302
RR
4593 tmp = cpumask_of_node(n);
4594 if (!cpumask_empty(tmp))
1da177e4
LT
4595 val += PENALTY_FOR_NODE_WITH_CPUS;
4596
4597 /* Slight preference for less loaded node */
4598 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4599 val += node_load[n];
4600
4601 if (val < min_val) {
4602 min_val = val;
4603 best_node = n;
4604 }
4605 }
4606
4607 if (best_node >= 0)
4608 node_set(best_node, *used_node_mask);
4609
4610 return best_node;
4611}
4612
f0c0b2b8
KH
4613
4614/*
4615 * Build zonelists ordered by node and zones within node.
4616 * This results in maximum locality--normal zone overflows into local
4617 * DMA zone, if any--but risks exhausting DMA zone.
4618 */
4619static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4620{
f0c0b2b8 4621 int j;
1da177e4 4622 struct zonelist *zonelist;
f0c0b2b8 4623
c9634cf0 4624 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
dd1a239f 4625 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4626 ;
bc732f1d 4627 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4628 zonelist->_zonerefs[j].zone = NULL;
4629 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4630}
4631
523b9458
CL
4632/*
4633 * Build gfp_thisnode zonelists
4634 */
4635static void build_thisnode_zonelists(pg_data_t *pgdat)
4636{
523b9458
CL
4637 int j;
4638 struct zonelist *zonelist;
4639
c9634cf0 4640 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
bc732f1d 4641 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4642 zonelist->_zonerefs[j].zone = NULL;
4643 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4644}
4645
f0c0b2b8
KH
4646/*
4647 * Build zonelists ordered by zone and nodes within zones.
4648 * This results in conserving DMA zone[s] until all Normal memory is
4649 * exhausted, but results in overflowing to remote node while memory
4650 * may still exist in local DMA zone.
4651 */
4652static int node_order[MAX_NUMNODES];
4653
4654static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4655{
f0c0b2b8
KH
4656 int pos, j, node;
4657 int zone_type; /* needs to be signed */
4658 struct zone *z;
4659 struct zonelist *zonelist;
4660
c9634cf0 4661 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
54a6eb5c
MG
4662 pos = 0;
4663 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4664 for (j = 0; j < nr_nodes; j++) {
4665 node = node_order[j];
4666 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4667 if (managed_zone(z)) {
dd1a239f
MG
4668 zoneref_set_zone(z,
4669 &zonelist->_zonerefs[pos++]);
54a6eb5c 4670 check_highest_zone(zone_type);
f0c0b2b8
KH
4671 }
4672 }
f0c0b2b8 4673 }
dd1a239f
MG
4674 zonelist->_zonerefs[pos].zone = NULL;
4675 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4676}
4677
3193913c
MG
4678#if defined(CONFIG_64BIT)
4679/*
4680 * Devices that require DMA32/DMA are relatively rare and do not justify a
4681 * penalty to every machine in case the specialised case applies. Default
4682 * to Node-ordering on 64-bit NUMA machines
4683 */
4684static int default_zonelist_order(void)
4685{
4686 return ZONELIST_ORDER_NODE;
4687}
4688#else
4689/*
4690 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4691 * by the kernel. If processes running on node 0 deplete the low memory zone
4692 * then reclaim will occur more frequency increasing stalls and potentially
4693 * be easier to OOM if a large percentage of the zone is under writeback or
4694 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4695 * Hence, default to zone ordering on 32-bit.
4696 */
f0c0b2b8
KH
4697static int default_zonelist_order(void)
4698{
f0c0b2b8
KH
4699 return ZONELIST_ORDER_ZONE;
4700}
3193913c 4701#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4702
4703static void set_zonelist_order(void)
4704{
4705 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4706 current_zonelist_order = default_zonelist_order();
4707 else
4708 current_zonelist_order = user_zonelist_order;
4709}
4710
4711static void build_zonelists(pg_data_t *pgdat)
4712{
c00eb15a 4713 int i, node, load;
1da177e4 4714 nodemask_t used_mask;
f0c0b2b8
KH
4715 int local_node, prev_node;
4716 struct zonelist *zonelist;
d00181b9 4717 unsigned int order = current_zonelist_order;
1da177e4
LT
4718
4719 /* initialize zonelists */
523b9458 4720 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4721 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4722 zonelist->_zonerefs[0].zone = NULL;
4723 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4724 }
4725
4726 /* NUMA-aware ordering of nodes */
4727 local_node = pgdat->node_id;
62bc62a8 4728 load = nr_online_nodes;
1da177e4
LT
4729 prev_node = local_node;
4730 nodes_clear(used_mask);
f0c0b2b8 4731
f0c0b2b8 4732 memset(node_order, 0, sizeof(node_order));
c00eb15a 4733 i = 0;
f0c0b2b8 4734
1da177e4
LT
4735 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4736 /*
4737 * We don't want to pressure a particular node.
4738 * So adding penalty to the first node in same
4739 * distance group to make it round-robin.
4740 */
957f822a
DR
4741 if (node_distance(local_node, node) !=
4742 node_distance(local_node, prev_node))
f0c0b2b8
KH
4743 node_load[node] = load;
4744
1da177e4
LT
4745 prev_node = node;
4746 load--;
f0c0b2b8
KH
4747 if (order == ZONELIST_ORDER_NODE)
4748 build_zonelists_in_node_order(pgdat, node);
4749 else
c00eb15a 4750 node_order[i++] = node; /* remember order */
f0c0b2b8 4751 }
1da177e4 4752
f0c0b2b8
KH
4753 if (order == ZONELIST_ORDER_ZONE) {
4754 /* calculate node order -- i.e., DMA last! */
c00eb15a 4755 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4756 }
523b9458
CL
4757
4758 build_thisnode_zonelists(pgdat);
1da177e4
LT
4759}
4760
7aac7898
LS
4761#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4762/*
4763 * Return node id of node used for "local" allocations.
4764 * I.e., first node id of first zone in arg node's generic zonelist.
4765 * Used for initializing percpu 'numa_mem', which is used primarily
4766 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4767 */
4768int local_memory_node(int node)
4769{
c33d6c06 4770 struct zoneref *z;
7aac7898 4771
c33d6c06 4772 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4773 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4774 NULL);
4775 return z->zone->node;
7aac7898
LS
4776}
4777#endif
f0c0b2b8 4778
6423aa81
JK
4779static void setup_min_unmapped_ratio(void);
4780static void setup_min_slab_ratio(void);
1da177e4
LT
4781#else /* CONFIG_NUMA */
4782
f0c0b2b8
KH
4783static void set_zonelist_order(void)
4784{
4785 current_zonelist_order = ZONELIST_ORDER_ZONE;
4786}
4787
4788static void build_zonelists(pg_data_t *pgdat)
1da177e4 4789{
19655d34 4790 int node, local_node;
54a6eb5c
MG
4791 enum zone_type j;
4792 struct zonelist *zonelist;
1da177e4
LT
4793
4794 local_node = pgdat->node_id;
1da177e4 4795
c9634cf0 4796 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
bc732f1d 4797 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4798
54a6eb5c
MG
4799 /*
4800 * Now we build the zonelist so that it contains the zones
4801 * of all the other nodes.
4802 * We don't want to pressure a particular node, so when
4803 * building the zones for node N, we make sure that the
4804 * zones coming right after the local ones are those from
4805 * node N+1 (modulo N)
4806 */
4807 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4808 if (!node_online(node))
4809 continue;
bc732f1d 4810 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4811 }
54a6eb5c
MG
4812 for (node = 0; node < local_node; node++) {
4813 if (!node_online(node))
4814 continue;
bc732f1d 4815 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4816 }
4817
dd1a239f
MG
4818 zonelist->_zonerefs[j].zone = NULL;
4819 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4820}
4821
4822#endif /* CONFIG_NUMA */
4823
99dcc3e5
CL
4824/*
4825 * Boot pageset table. One per cpu which is going to be used for all
4826 * zones and all nodes. The parameters will be set in such a way
4827 * that an item put on a list will immediately be handed over to
4828 * the buddy list. This is safe since pageset manipulation is done
4829 * with interrupts disabled.
4830 *
4831 * The boot_pagesets must be kept even after bootup is complete for
4832 * unused processors and/or zones. They do play a role for bootstrapping
4833 * hotplugged processors.
4834 *
4835 * zoneinfo_show() and maybe other functions do
4836 * not check if the processor is online before following the pageset pointer.
4837 * Other parts of the kernel may not check if the zone is available.
4838 */
4839static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4840static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4841static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4842
4eaf3f64
HL
4843/*
4844 * Global mutex to protect against size modification of zonelists
4845 * as well as to serialize pageset setup for the new populated zone.
4846 */
4847DEFINE_MUTEX(zonelists_mutex);
4848
9b1a4d38 4849/* return values int ....just for stop_machine() */
4ed7e022 4850static int __build_all_zonelists(void *data)
1da177e4 4851{
6811378e 4852 int nid;
99dcc3e5 4853 int cpu;
9adb62a5 4854 pg_data_t *self = data;
9276b1bc 4855
7f9cfb31
BL
4856#ifdef CONFIG_NUMA
4857 memset(node_load, 0, sizeof(node_load));
4858#endif
9adb62a5
JL
4859
4860 if (self && !node_online(self->node_id)) {
4861 build_zonelists(self);
9adb62a5
JL
4862 }
4863
9276b1bc 4864 for_each_online_node(nid) {
7ea1530a
CL
4865 pg_data_t *pgdat = NODE_DATA(nid);
4866
4867 build_zonelists(pgdat);
9276b1bc 4868 }
99dcc3e5
CL
4869
4870 /*
4871 * Initialize the boot_pagesets that are going to be used
4872 * for bootstrapping processors. The real pagesets for
4873 * each zone will be allocated later when the per cpu
4874 * allocator is available.
4875 *
4876 * boot_pagesets are used also for bootstrapping offline
4877 * cpus if the system is already booted because the pagesets
4878 * are needed to initialize allocators on a specific cpu too.
4879 * F.e. the percpu allocator needs the page allocator which
4880 * needs the percpu allocator in order to allocate its pagesets
4881 * (a chicken-egg dilemma).
4882 */
7aac7898 4883 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4884 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4885
7aac7898
LS
4886#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4887 /*
4888 * We now know the "local memory node" for each node--
4889 * i.e., the node of the first zone in the generic zonelist.
4890 * Set up numa_mem percpu variable for on-line cpus. During
4891 * boot, only the boot cpu should be on-line; we'll init the
4892 * secondary cpus' numa_mem as they come on-line. During
4893 * node/memory hotplug, we'll fixup all on-line cpus.
4894 */
4895 if (cpu_online(cpu))
4896 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4897#endif
4898 }
4899
6811378e
YG
4900 return 0;
4901}
4902
061f67bc
RV
4903static noinline void __init
4904build_all_zonelists_init(void)
4905{
4906 __build_all_zonelists(NULL);
4907 mminit_verify_zonelist();
4908 cpuset_init_current_mems_allowed();
4909}
4910
4eaf3f64
HL
4911/*
4912 * Called with zonelists_mutex held always
4913 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4914 *
4915 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4916 * [we're only called with non-NULL zone through __meminit paths] and
4917 * (2) call of __init annotated helper build_all_zonelists_init
4918 * [protected by SYSTEM_BOOTING].
4eaf3f64 4919 */
9adb62a5 4920void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4921{
f0c0b2b8
KH
4922 set_zonelist_order();
4923
6811378e 4924 if (system_state == SYSTEM_BOOTING) {
061f67bc 4925 build_all_zonelists_init();
6811378e 4926 } else {
e9959f0f 4927#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4928 if (zone)
4929 setup_zone_pageset(zone);
e9959f0f 4930#endif
dd1895e2
CS
4931 /* we have to stop all cpus to guarantee there is no user
4932 of zonelist */
9adb62a5 4933 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4934 /* cpuset refresh routine should be here */
4935 }
bd1e22b8 4936 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4937 /*
4938 * Disable grouping by mobility if the number of pages in the
4939 * system is too low to allow the mechanism to work. It would be
4940 * more accurate, but expensive to check per-zone. This check is
4941 * made on memory-hotadd so a system can start with mobility
4942 * disabled and enable it later
4943 */
d9c23400 4944 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4945 page_group_by_mobility_disabled = 1;
4946 else
4947 page_group_by_mobility_disabled = 0;
4948
756a025f
JP
4949 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4950 nr_online_nodes,
4951 zonelist_order_name[current_zonelist_order],
4952 page_group_by_mobility_disabled ? "off" : "on",
4953 vm_total_pages);
f0c0b2b8 4954#ifdef CONFIG_NUMA
f88dfff5 4955 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4956#endif
1da177e4
LT
4957}
4958
4959/*
4960 * Helper functions to size the waitqueue hash table.
4961 * Essentially these want to choose hash table sizes sufficiently
4962 * large so that collisions trying to wait on pages are rare.
4963 * But in fact, the number of active page waitqueues on typical
4964 * systems is ridiculously low, less than 200. So this is even
4965 * conservative, even though it seems large.
4966 *
4967 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4968 * waitqueues, i.e. the size of the waitq table given the number of pages.
4969 */
4970#define PAGES_PER_WAITQUEUE 256
4971
cca448fe 4972#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4973static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4974{
4975 unsigned long size = 1;
4976
4977 pages /= PAGES_PER_WAITQUEUE;
4978
4979 while (size < pages)
4980 size <<= 1;
4981
4982 /*
4983 * Once we have dozens or even hundreds of threads sleeping
4984 * on IO we've got bigger problems than wait queue collision.
4985 * Limit the size of the wait table to a reasonable size.
4986 */
4987 size = min(size, 4096UL);
4988
4989 return max(size, 4UL);
4990}
cca448fe
YG
4991#else
4992/*
4993 * A zone's size might be changed by hot-add, so it is not possible to determine
4994 * a suitable size for its wait_table. So we use the maximum size now.
4995 *
4996 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4997 *
4998 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4999 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5000 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5001 *
5002 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5003 * or more by the traditional way. (See above). It equals:
5004 *
5005 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5006 * ia64(16K page size) : = ( 8G + 4M)byte.
5007 * powerpc (64K page size) : = (32G +16M)byte.
5008 */
5009static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5010{
5011 return 4096UL;
5012}
5013#endif
1da177e4
LT
5014
5015/*
5016 * This is an integer logarithm so that shifts can be used later
5017 * to extract the more random high bits from the multiplicative
5018 * hash function before the remainder is taken.
5019 */
5020static inline unsigned long wait_table_bits(unsigned long size)
5021{
5022 return ffz(~size);
5023}
5024
1da177e4
LT
5025/*
5026 * Initially all pages are reserved - free ones are freed
5027 * up by free_all_bootmem() once the early boot process is
5028 * done. Non-atomic initialization, single-pass.
5029 */
c09b4240 5030void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5031 unsigned long start_pfn, enum memmap_context context)
1da177e4 5032{
4b94ffdc 5033 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5034 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5035 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5036 unsigned long pfn;
3a80a7fa 5037 unsigned long nr_initialised = 0;
342332e6
TI
5038#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5039 struct memblock_region *r = NULL, *tmp;
5040#endif
1da177e4 5041
22b31eec
HD
5042 if (highest_memmap_pfn < end_pfn - 1)
5043 highest_memmap_pfn = end_pfn - 1;
5044
4b94ffdc
DW
5045 /*
5046 * Honor reservation requested by the driver for this ZONE_DEVICE
5047 * memory
5048 */
5049 if (altmap && start_pfn == altmap->base_pfn)
5050 start_pfn += altmap->reserve;
5051
cbe8dd4a 5052 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5053 /*
b72d0ffb
AM
5054 * There can be holes in boot-time mem_map[]s handed to this
5055 * function. They do not exist on hotplugged memory.
a2f3aa02 5056 */
b72d0ffb
AM
5057 if (context != MEMMAP_EARLY)
5058 goto not_early;
5059
5060 if (!early_pfn_valid(pfn))
5061 continue;
5062 if (!early_pfn_in_nid(pfn, nid))
5063 continue;
5064 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5065 break;
342332e6
TI
5066
5067#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5068 /*
5069 * Check given memblock attribute by firmware which can affect
5070 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5071 * mirrored, it's an overlapped memmap init. skip it.
5072 */
5073 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5074 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5075 for_each_memblock(memory, tmp)
5076 if (pfn < memblock_region_memory_end_pfn(tmp))
5077 break;
5078 r = tmp;
5079 }
5080 if (pfn >= memblock_region_memory_base_pfn(r) &&
5081 memblock_is_mirror(r)) {
5082 /* already initialized as NORMAL */
5083 pfn = memblock_region_memory_end_pfn(r);
5084 continue;
342332e6 5085 }
a2f3aa02 5086 }
b72d0ffb 5087#endif
ac5d2539 5088
b72d0ffb 5089not_early:
ac5d2539
MG
5090 /*
5091 * Mark the block movable so that blocks are reserved for
5092 * movable at startup. This will force kernel allocations
5093 * to reserve their blocks rather than leaking throughout
5094 * the address space during boot when many long-lived
974a786e 5095 * kernel allocations are made.
ac5d2539
MG
5096 *
5097 * bitmap is created for zone's valid pfn range. but memmap
5098 * can be created for invalid pages (for alignment)
5099 * check here not to call set_pageblock_migratetype() against
5100 * pfn out of zone.
5101 */
5102 if (!(pfn & (pageblock_nr_pages - 1))) {
5103 struct page *page = pfn_to_page(pfn);
5104
5105 __init_single_page(page, pfn, zone, nid);
5106 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5107 } else {
5108 __init_single_pfn(pfn, zone, nid);
5109 }
1da177e4
LT
5110 }
5111}
5112
1e548deb 5113static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5114{
7aeb09f9 5115 unsigned int order, t;
b2a0ac88
MG
5116 for_each_migratetype_order(order, t) {
5117 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5118 zone->free_area[order].nr_free = 0;
5119 }
5120}
5121
5122#ifndef __HAVE_ARCH_MEMMAP_INIT
5123#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5124 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5125#endif
5126
7cd2b0a3 5127static int zone_batchsize(struct zone *zone)
e7c8d5c9 5128{
3a6be87f 5129#ifdef CONFIG_MMU
e7c8d5c9
CL
5130 int batch;
5131
5132 /*
5133 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5134 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5135 *
5136 * OK, so we don't know how big the cache is. So guess.
5137 */
b40da049 5138 batch = zone->managed_pages / 1024;
ba56e91c
SR
5139 if (batch * PAGE_SIZE > 512 * 1024)
5140 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5141 batch /= 4; /* We effectively *= 4 below */
5142 if (batch < 1)
5143 batch = 1;
5144
5145 /*
0ceaacc9
NP
5146 * Clamp the batch to a 2^n - 1 value. Having a power
5147 * of 2 value was found to be more likely to have
5148 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5149 *
0ceaacc9
NP
5150 * For example if 2 tasks are alternately allocating
5151 * batches of pages, one task can end up with a lot
5152 * of pages of one half of the possible page colors
5153 * and the other with pages of the other colors.
e7c8d5c9 5154 */
9155203a 5155 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5156
e7c8d5c9 5157 return batch;
3a6be87f
DH
5158
5159#else
5160 /* The deferral and batching of frees should be suppressed under NOMMU
5161 * conditions.
5162 *
5163 * The problem is that NOMMU needs to be able to allocate large chunks
5164 * of contiguous memory as there's no hardware page translation to
5165 * assemble apparent contiguous memory from discontiguous pages.
5166 *
5167 * Queueing large contiguous runs of pages for batching, however,
5168 * causes the pages to actually be freed in smaller chunks. As there
5169 * can be a significant delay between the individual batches being
5170 * recycled, this leads to the once large chunks of space being
5171 * fragmented and becoming unavailable for high-order allocations.
5172 */
5173 return 0;
5174#endif
e7c8d5c9
CL
5175}
5176
8d7a8fa9
CS
5177/*
5178 * pcp->high and pcp->batch values are related and dependent on one another:
5179 * ->batch must never be higher then ->high.
5180 * The following function updates them in a safe manner without read side
5181 * locking.
5182 *
5183 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5184 * those fields changing asynchronously (acording the the above rule).
5185 *
5186 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5187 * outside of boot time (or some other assurance that no concurrent updaters
5188 * exist).
5189 */
5190static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5191 unsigned long batch)
5192{
5193 /* start with a fail safe value for batch */
5194 pcp->batch = 1;
5195 smp_wmb();
5196
5197 /* Update high, then batch, in order */
5198 pcp->high = high;
5199 smp_wmb();
5200
5201 pcp->batch = batch;
5202}
5203
3664033c 5204/* a companion to pageset_set_high() */
4008bab7
CS
5205static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5206{
8d7a8fa9 5207 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5208}
5209
88c90dbc 5210static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5211{
5212 struct per_cpu_pages *pcp;
5f8dcc21 5213 int migratetype;
2caaad41 5214
1c6fe946
MD
5215 memset(p, 0, sizeof(*p));
5216
3dfa5721 5217 pcp = &p->pcp;
2caaad41 5218 pcp->count = 0;
5f8dcc21
MG
5219 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5220 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5221}
5222
88c90dbc
CS
5223static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5224{
5225 pageset_init(p);
5226 pageset_set_batch(p, batch);
5227}
5228
8ad4b1fb 5229/*
3664033c 5230 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5231 * to the value high for the pageset p.
5232 */
3664033c 5233static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5234 unsigned long high)
5235{
8d7a8fa9
CS
5236 unsigned long batch = max(1UL, high / 4);
5237 if ((high / 4) > (PAGE_SHIFT * 8))
5238 batch = PAGE_SHIFT * 8;
8ad4b1fb 5239
8d7a8fa9 5240 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5241}
5242
7cd2b0a3
DR
5243static void pageset_set_high_and_batch(struct zone *zone,
5244 struct per_cpu_pageset *pcp)
56cef2b8 5245{
56cef2b8 5246 if (percpu_pagelist_fraction)
3664033c 5247 pageset_set_high(pcp,
56cef2b8
CS
5248 (zone->managed_pages /
5249 percpu_pagelist_fraction));
5250 else
5251 pageset_set_batch(pcp, zone_batchsize(zone));
5252}
5253
169f6c19
CS
5254static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5255{
5256 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5257
5258 pageset_init(pcp);
5259 pageset_set_high_and_batch(zone, pcp);
5260}
5261
4ed7e022 5262static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5263{
5264 int cpu;
319774e2 5265 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5266 for_each_possible_cpu(cpu)
5267 zone_pageset_init(zone, cpu);
319774e2
WF
5268}
5269
2caaad41 5270/*
99dcc3e5
CL
5271 * Allocate per cpu pagesets and initialize them.
5272 * Before this call only boot pagesets were available.
e7c8d5c9 5273 */
99dcc3e5 5274void __init setup_per_cpu_pageset(void)
e7c8d5c9 5275{
b4911ea2 5276 struct pglist_data *pgdat;
99dcc3e5 5277 struct zone *zone;
e7c8d5c9 5278
319774e2
WF
5279 for_each_populated_zone(zone)
5280 setup_zone_pageset(zone);
b4911ea2
MG
5281
5282 for_each_online_pgdat(pgdat)
5283 pgdat->per_cpu_nodestats =
5284 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5285}
5286
bd721ea7 5287static noinline __ref
cca448fe 5288int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5289{
5290 int i;
cca448fe 5291 size_t alloc_size;
ed8ece2e
DH
5292
5293 /*
5294 * The per-page waitqueue mechanism uses hashed waitqueues
5295 * per zone.
5296 */
02b694de
YG
5297 zone->wait_table_hash_nr_entries =
5298 wait_table_hash_nr_entries(zone_size_pages);
5299 zone->wait_table_bits =
5300 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5301 alloc_size = zone->wait_table_hash_nr_entries
5302 * sizeof(wait_queue_head_t);
5303
cd94b9db 5304 if (!slab_is_available()) {
cca448fe 5305 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5306 memblock_virt_alloc_node_nopanic(
5307 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5308 } else {
5309 /*
5310 * This case means that a zone whose size was 0 gets new memory
5311 * via memory hot-add.
5312 * But it may be the case that a new node was hot-added. In
5313 * this case vmalloc() will not be able to use this new node's
5314 * memory - this wait_table must be initialized to use this new
5315 * node itself as well.
5316 * To use this new node's memory, further consideration will be
5317 * necessary.
5318 */
8691f3a7 5319 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5320 }
5321 if (!zone->wait_table)
5322 return -ENOMEM;
ed8ece2e 5323
b8af2941 5324 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5325 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5326
5327 return 0;
ed8ece2e
DH
5328}
5329
c09b4240 5330static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5331{
99dcc3e5
CL
5332 /*
5333 * per cpu subsystem is not up at this point. The following code
5334 * relies on the ability of the linker to provide the
5335 * offset of a (static) per cpu variable into the per cpu area.
5336 */
5337 zone->pageset = &boot_pageset;
ed8ece2e 5338
b38a8725 5339 if (populated_zone(zone))
99dcc3e5
CL
5340 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5341 zone->name, zone->present_pages,
5342 zone_batchsize(zone));
ed8ece2e
DH
5343}
5344
4ed7e022 5345int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5346 unsigned long zone_start_pfn,
b171e409 5347 unsigned long size)
ed8ece2e
DH
5348{
5349 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5350 int ret;
5351 ret = zone_wait_table_init(zone, size);
5352 if (ret)
5353 return ret;
ed8ece2e
DH
5354 pgdat->nr_zones = zone_idx(zone) + 1;
5355
ed8ece2e
DH
5356 zone->zone_start_pfn = zone_start_pfn;
5357
708614e6
MG
5358 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5359 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5360 pgdat->node_id,
5361 (unsigned long)zone_idx(zone),
5362 zone_start_pfn, (zone_start_pfn + size));
5363
1e548deb 5364 zone_init_free_lists(zone);
718127cc
YG
5365
5366 return 0;
ed8ece2e
DH
5367}
5368
0ee332c1 5369#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5370#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5371
c713216d
MG
5372/*
5373 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5374 */
8a942fde
MG
5375int __meminit __early_pfn_to_nid(unsigned long pfn,
5376 struct mminit_pfnnid_cache *state)
c713216d 5377{
c13291a5 5378 unsigned long start_pfn, end_pfn;
e76b63f8 5379 int nid;
7c243c71 5380
8a942fde
MG
5381 if (state->last_start <= pfn && pfn < state->last_end)
5382 return state->last_nid;
c713216d 5383
e76b63f8
YL
5384 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5385 if (nid != -1) {
8a942fde
MG
5386 state->last_start = start_pfn;
5387 state->last_end = end_pfn;
5388 state->last_nid = nid;
e76b63f8
YL
5389 }
5390
5391 return nid;
c713216d
MG
5392}
5393#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5394
c713216d 5395/**
6782832e 5396 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5397 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5398 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5399 *
7d018176
ZZ
5400 * If an architecture guarantees that all ranges registered contain no holes
5401 * and may be freed, this this function may be used instead of calling
5402 * memblock_free_early_nid() manually.
c713216d 5403 */
c13291a5 5404void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5405{
c13291a5
TH
5406 unsigned long start_pfn, end_pfn;
5407 int i, this_nid;
edbe7d23 5408
c13291a5
TH
5409 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5410 start_pfn = min(start_pfn, max_low_pfn);
5411 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5412
c13291a5 5413 if (start_pfn < end_pfn)
6782832e
SS
5414 memblock_free_early_nid(PFN_PHYS(start_pfn),
5415 (end_pfn - start_pfn) << PAGE_SHIFT,
5416 this_nid);
edbe7d23 5417 }
edbe7d23 5418}
edbe7d23 5419
c713216d
MG
5420/**
5421 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5422 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5423 *
7d018176
ZZ
5424 * If an architecture guarantees that all ranges registered contain no holes and may
5425 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5426 */
5427void __init sparse_memory_present_with_active_regions(int nid)
5428{
c13291a5
TH
5429 unsigned long start_pfn, end_pfn;
5430 int i, this_nid;
c713216d 5431
c13291a5
TH
5432 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5433 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5434}
5435
5436/**
5437 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5438 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5439 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5440 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5441 *
5442 * It returns the start and end page frame of a node based on information
7d018176 5443 * provided by memblock_set_node(). If called for a node
c713216d 5444 * with no available memory, a warning is printed and the start and end
88ca3b94 5445 * PFNs will be 0.
c713216d 5446 */
a3142c8e 5447void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5448 unsigned long *start_pfn, unsigned long *end_pfn)
5449{
c13291a5 5450 unsigned long this_start_pfn, this_end_pfn;
c713216d 5451 int i;
c13291a5 5452
c713216d
MG
5453 *start_pfn = -1UL;
5454 *end_pfn = 0;
5455
c13291a5
TH
5456 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5457 *start_pfn = min(*start_pfn, this_start_pfn);
5458 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5459 }
5460
633c0666 5461 if (*start_pfn == -1UL)
c713216d 5462 *start_pfn = 0;
c713216d
MG
5463}
5464
2a1e274a
MG
5465/*
5466 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5467 * assumption is made that zones within a node are ordered in monotonic
5468 * increasing memory addresses so that the "highest" populated zone is used
5469 */
b69a7288 5470static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5471{
5472 int zone_index;
5473 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5474 if (zone_index == ZONE_MOVABLE)
5475 continue;
5476
5477 if (arch_zone_highest_possible_pfn[zone_index] >
5478 arch_zone_lowest_possible_pfn[zone_index])
5479 break;
5480 }
5481
5482 VM_BUG_ON(zone_index == -1);
5483 movable_zone = zone_index;
5484}
5485
5486/*
5487 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5488 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5489 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5490 * in each node depending on the size of each node and how evenly kernelcore
5491 * is distributed. This helper function adjusts the zone ranges
5492 * provided by the architecture for a given node by using the end of the
5493 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5494 * zones within a node are in order of monotonic increases memory addresses
5495 */
b69a7288 5496static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5497 unsigned long zone_type,
5498 unsigned long node_start_pfn,
5499 unsigned long node_end_pfn,
5500 unsigned long *zone_start_pfn,
5501 unsigned long *zone_end_pfn)
5502{
5503 /* Only adjust if ZONE_MOVABLE is on this node */
5504 if (zone_movable_pfn[nid]) {
5505 /* Size ZONE_MOVABLE */
5506 if (zone_type == ZONE_MOVABLE) {
5507 *zone_start_pfn = zone_movable_pfn[nid];
5508 *zone_end_pfn = min(node_end_pfn,
5509 arch_zone_highest_possible_pfn[movable_zone]);
5510
e506b996
XQ
5511 /* Adjust for ZONE_MOVABLE starting within this range */
5512 } else if (!mirrored_kernelcore &&
5513 *zone_start_pfn < zone_movable_pfn[nid] &&
5514 *zone_end_pfn > zone_movable_pfn[nid]) {
5515 *zone_end_pfn = zone_movable_pfn[nid];
5516
2a1e274a
MG
5517 /* Check if this whole range is within ZONE_MOVABLE */
5518 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5519 *zone_start_pfn = *zone_end_pfn;
5520 }
5521}
5522
c713216d
MG
5523/*
5524 * Return the number of pages a zone spans in a node, including holes
5525 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5526 */
6ea6e688 5527static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5528 unsigned long zone_type,
7960aedd
ZY
5529 unsigned long node_start_pfn,
5530 unsigned long node_end_pfn,
d91749c1
TI
5531 unsigned long *zone_start_pfn,
5532 unsigned long *zone_end_pfn,
c713216d
MG
5533 unsigned long *ignored)
5534{
b5685e92 5535 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5536 if (!node_start_pfn && !node_end_pfn)
5537 return 0;
5538
7960aedd 5539 /* Get the start and end of the zone */
d91749c1
TI
5540 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5541 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5542 adjust_zone_range_for_zone_movable(nid, zone_type,
5543 node_start_pfn, node_end_pfn,
d91749c1 5544 zone_start_pfn, zone_end_pfn);
c713216d
MG
5545
5546 /* Check that this node has pages within the zone's required range */
d91749c1 5547 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5548 return 0;
5549
5550 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5551 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5552 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5553
5554 /* Return the spanned pages */
d91749c1 5555 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5556}
5557
5558/*
5559 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5560 * then all holes in the requested range will be accounted for.
c713216d 5561 */
32996250 5562unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5563 unsigned long range_start_pfn,
5564 unsigned long range_end_pfn)
5565{
96e907d1
TH
5566 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5567 unsigned long start_pfn, end_pfn;
5568 int i;
c713216d 5569
96e907d1
TH
5570 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5571 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5572 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5573 nr_absent -= end_pfn - start_pfn;
c713216d 5574 }
96e907d1 5575 return nr_absent;
c713216d
MG
5576}
5577
5578/**
5579 * absent_pages_in_range - Return number of page frames in holes within a range
5580 * @start_pfn: The start PFN to start searching for holes
5581 * @end_pfn: The end PFN to stop searching for holes
5582 *
88ca3b94 5583 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5584 */
5585unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5586 unsigned long end_pfn)
5587{
5588 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5589}
5590
5591/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5592static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5593 unsigned long zone_type,
7960aedd
ZY
5594 unsigned long node_start_pfn,
5595 unsigned long node_end_pfn,
c713216d
MG
5596 unsigned long *ignored)
5597{
96e907d1
TH
5598 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5599 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5600 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5601 unsigned long nr_absent;
9c7cd687 5602
b5685e92 5603 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5604 if (!node_start_pfn && !node_end_pfn)
5605 return 0;
5606
96e907d1
TH
5607 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5608 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5609
2a1e274a
MG
5610 adjust_zone_range_for_zone_movable(nid, zone_type,
5611 node_start_pfn, node_end_pfn,
5612 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5613 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5614
5615 /*
5616 * ZONE_MOVABLE handling.
5617 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5618 * and vice versa.
5619 */
e506b996
XQ
5620 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5621 unsigned long start_pfn, end_pfn;
5622 struct memblock_region *r;
5623
5624 for_each_memblock(memory, r) {
5625 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5626 zone_start_pfn, zone_end_pfn);
5627 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5628 zone_start_pfn, zone_end_pfn);
5629
5630 if (zone_type == ZONE_MOVABLE &&
5631 memblock_is_mirror(r))
5632 nr_absent += end_pfn - start_pfn;
5633
5634 if (zone_type == ZONE_NORMAL &&
5635 !memblock_is_mirror(r))
5636 nr_absent += end_pfn - start_pfn;
342332e6
TI
5637 }
5638 }
5639
5640 return nr_absent;
c713216d 5641}
0e0b864e 5642
0ee332c1 5643#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5644static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5645 unsigned long zone_type,
7960aedd
ZY
5646 unsigned long node_start_pfn,
5647 unsigned long node_end_pfn,
d91749c1
TI
5648 unsigned long *zone_start_pfn,
5649 unsigned long *zone_end_pfn,
c713216d
MG
5650 unsigned long *zones_size)
5651{
d91749c1
TI
5652 unsigned int zone;
5653
5654 *zone_start_pfn = node_start_pfn;
5655 for (zone = 0; zone < zone_type; zone++)
5656 *zone_start_pfn += zones_size[zone];
5657
5658 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5659
c713216d
MG
5660 return zones_size[zone_type];
5661}
5662
6ea6e688 5663static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5664 unsigned long zone_type,
7960aedd
ZY
5665 unsigned long node_start_pfn,
5666 unsigned long node_end_pfn,
c713216d
MG
5667 unsigned long *zholes_size)
5668{
5669 if (!zholes_size)
5670 return 0;
5671
5672 return zholes_size[zone_type];
5673}
20e6926d 5674
0ee332c1 5675#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5676
a3142c8e 5677static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5678 unsigned long node_start_pfn,
5679 unsigned long node_end_pfn,
5680 unsigned long *zones_size,
5681 unsigned long *zholes_size)
c713216d 5682{
febd5949 5683 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5684 enum zone_type i;
5685
febd5949
GZ
5686 for (i = 0; i < MAX_NR_ZONES; i++) {
5687 struct zone *zone = pgdat->node_zones + i;
d91749c1 5688 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5689 unsigned long size, real_size;
c713216d 5690
febd5949
GZ
5691 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5692 node_start_pfn,
5693 node_end_pfn,
d91749c1
TI
5694 &zone_start_pfn,
5695 &zone_end_pfn,
febd5949
GZ
5696 zones_size);
5697 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5698 node_start_pfn, node_end_pfn,
5699 zholes_size);
d91749c1
TI
5700 if (size)
5701 zone->zone_start_pfn = zone_start_pfn;
5702 else
5703 zone->zone_start_pfn = 0;
febd5949
GZ
5704 zone->spanned_pages = size;
5705 zone->present_pages = real_size;
5706
5707 totalpages += size;
5708 realtotalpages += real_size;
5709 }
5710
5711 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5712 pgdat->node_present_pages = realtotalpages;
5713 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5714 realtotalpages);
5715}
5716
835c134e
MG
5717#ifndef CONFIG_SPARSEMEM
5718/*
5719 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5720 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5721 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5722 * round what is now in bits to nearest long in bits, then return it in
5723 * bytes.
5724 */
7c45512d 5725static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5726{
5727 unsigned long usemapsize;
5728
7c45512d 5729 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5730 usemapsize = roundup(zonesize, pageblock_nr_pages);
5731 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5732 usemapsize *= NR_PAGEBLOCK_BITS;
5733 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5734
5735 return usemapsize / 8;
5736}
5737
5738static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5739 struct zone *zone,
5740 unsigned long zone_start_pfn,
5741 unsigned long zonesize)
835c134e 5742{
7c45512d 5743 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5744 zone->pageblock_flags = NULL;
58a01a45 5745 if (usemapsize)
6782832e
SS
5746 zone->pageblock_flags =
5747 memblock_virt_alloc_node_nopanic(usemapsize,
5748 pgdat->node_id);
835c134e
MG
5749}
5750#else
7c45512d
LT
5751static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5752 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5753#endif /* CONFIG_SPARSEMEM */
5754
d9c23400 5755#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5756
d9c23400 5757/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5758void __paginginit set_pageblock_order(void)
d9c23400 5759{
955c1cd7
AM
5760 unsigned int order;
5761
d9c23400
MG
5762 /* Check that pageblock_nr_pages has not already been setup */
5763 if (pageblock_order)
5764 return;
5765
955c1cd7
AM
5766 if (HPAGE_SHIFT > PAGE_SHIFT)
5767 order = HUGETLB_PAGE_ORDER;
5768 else
5769 order = MAX_ORDER - 1;
5770
d9c23400
MG
5771 /*
5772 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5773 * This value may be variable depending on boot parameters on IA64 and
5774 * powerpc.
d9c23400
MG
5775 */
5776 pageblock_order = order;
5777}
5778#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5779
ba72cb8c
MG
5780/*
5781 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5782 * is unused as pageblock_order is set at compile-time. See
5783 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5784 * the kernel config
ba72cb8c 5785 */
15ca220e 5786void __paginginit set_pageblock_order(void)
ba72cb8c 5787{
ba72cb8c 5788}
d9c23400
MG
5789
5790#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5791
01cefaef
JL
5792static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5793 unsigned long present_pages)
5794{
5795 unsigned long pages = spanned_pages;
5796
5797 /*
5798 * Provide a more accurate estimation if there are holes within
5799 * the zone and SPARSEMEM is in use. If there are holes within the
5800 * zone, each populated memory region may cost us one or two extra
5801 * memmap pages due to alignment because memmap pages for each
5802 * populated regions may not naturally algined on page boundary.
5803 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5804 */
5805 if (spanned_pages > present_pages + (present_pages >> 4) &&
5806 IS_ENABLED(CONFIG_SPARSEMEM))
5807 pages = present_pages;
5808
5809 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5810}
5811
1da177e4
LT
5812/*
5813 * Set up the zone data structures:
5814 * - mark all pages reserved
5815 * - mark all memory queues empty
5816 * - clear the memory bitmaps
6527af5d
MK
5817 *
5818 * NOTE: pgdat should get zeroed by caller.
1da177e4 5819 */
7f3eb55b 5820static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5821{
2f1b6248 5822 enum zone_type j;
ed8ece2e 5823 int nid = pgdat->node_id;
718127cc 5824 int ret;
1da177e4 5825
208d54e5 5826 pgdat_resize_init(pgdat);
8177a420
AA
5827#ifdef CONFIG_NUMA_BALANCING
5828 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5829 pgdat->numabalancing_migrate_nr_pages = 0;
5830 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5831#endif
5832#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5833 spin_lock_init(&pgdat->split_queue_lock);
5834 INIT_LIST_HEAD(&pgdat->split_queue);
5835 pgdat->split_queue_len = 0;
8177a420 5836#endif
1da177e4 5837 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5838 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5839#ifdef CONFIG_COMPACTION
5840 init_waitqueue_head(&pgdat->kcompactd_wait);
5841#endif
eefa864b 5842 pgdat_page_ext_init(pgdat);
a52633d8 5843 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5844 lruvec_init(node_lruvec(pgdat));
5f63b720 5845
1da177e4
LT
5846 for (j = 0; j < MAX_NR_ZONES; j++) {
5847 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5848 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5849 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5850
febd5949
GZ
5851 size = zone->spanned_pages;
5852 realsize = freesize = zone->present_pages;
1da177e4 5853
0e0b864e 5854 /*
9feedc9d 5855 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5856 * is used by this zone for memmap. This affects the watermark
5857 * and per-cpu initialisations
5858 */
01cefaef 5859 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5860 if (!is_highmem_idx(j)) {
5861 if (freesize >= memmap_pages) {
5862 freesize -= memmap_pages;
5863 if (memmap_pages)
5864 printk(KERN_DEBUG
5865 " %s zone: %lu pages used for memmap\n",
5866 zone_names[j], memmap_pages);
5867 } else
1170532b 5868 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5869 zone_names[j], memmap_pages, freesize);
5870 }
0e0b864e 5871
6267276f 5872 /* Account for reserved pages */
9feedc9d
JL
5873 if (j == 0 && freesize > dma_reserve) {
5874 freesize -= dma_reserve;
d903ef9f 5875 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5876 zone_names[0], dma_reserve);
0e0b864e
MG
5877 }
5878
98d2b0eb 5879 if (!is_highmem_idx(j))
9feedc9d 5880 nr_kernel_pages += freesize;
01cefaef
JL
5881 /* Charge for highmem memmap if there are enough kernel pages */
5882 else if (nr_kernel_pages > memmap_pages * 2)
5883 nr_kernel_pages -= memmap_pages;
9feedc9d 5884 nr_all_pages += freesize;
1da177e4 5885
9feedc9d
JL
5886 /*
5887 * Set an approximate value for lowmem here, it will be adjusted
5888 * when the bootmem allocator frees pages into the buddy system.
5889 * And all highmem pages will be managed by the buddy system.
5890 */
5891 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5892#ifdef CONFIG_NUMA
d5f541ed 5893 zone->node = nid;
9614634f 5894#endif
1da177e4 5895 zone->name = zone_names[j];
a52633d8 5896 zone->zone_pgdat = pgdat;
1da177e4 5897 spin_lock_init(&zone->lock);
bdc8cb98 5898 zone_seqlock_init(zone);
ed8ece2e 5899 zone_pcp_init(zone);
81c0a2bb 5900
1da177e4
LT
5901 if (!size)
5902 continue;
5903
955c1cd7 5904 set_pageblock_order();
7c45512d 5905 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5906 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5907 BUG_ON(ret);
76cdd58e 5908 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5909 }
5910}
5911
bd721ea7 5912static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5913{
b0aeba74 5914 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5915 unsigned long __maybe_unused offset = 0;
5916
1da177e4
LT
5917 /* Skip empty nodes */
5918 if (!pgdat->node_spanned_pages)
5919 return;
5920
d41dee36 5921#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5922 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5923 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5924 /* ia64 gets its own node_mem_map, before this, without bootmem */
5925 if (!pgdat->node_mem_map) {
b0aeba74 5926 unsigned long size, end;
d41dee36
AW
5927 struct page *map;
5928
e984bb43
BP
5929 /*
5930 * The zone's endpoints aren't required to be MAX_ORDER
5931 * aligned but the node_mem_map endpoints must be in order
5932 * for the buddy allocator to function correctly.
5933 */
108bcc96 5934 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5935 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5936 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5937 map = alloc_remap(pgdat->node_id, size);
5938 if (!map)
6782832e
SS
5939 map = memblock_virt_alloc_node_nopanic(size,
5940 pgdat->node_id);
a1c34a3b 5941 pgdat->node_mem_map = map + offset;
1da177e4 5942 }
12d810c1 5943#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5944 /*
5945 * With no DISCONTIG, the global mem_map is just set as node 0's
5946 */
c713216d 5947 if (pgdat == NODE_DATA(0)) {
1da177e4 5948 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5949#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5950 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5951 mem_map -= offset;
0ee332c1 5952#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5953 }
1da177e4 5954#endif
d41dee36 5955#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5956}
5957
9109fb7b
JW
5958void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5959 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5960{
9109fb7b 5961 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5962 unsigned long start_pfn = 0;
5963 unsigned long end_pfn = 0;
9109fb7b 5964
88fdf75d 5965 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 5966 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 5967
3a80a7fa 5968 reset_deferred_meminit(pgdat);
1da177e4
LT
5969 pgdat->node_id = nid;
5970 pgdat->node_start_pfn = node_start_pfn;
75ef7184 5971 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
5972#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5973 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5974 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5975 (u64)start_pfn << PAGE_SHIFT,
5976 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5977#else
5978 start_pfn = node_start_pfn;
7960aedd
ZY
5979#endif
5980 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5981 zones_size, zholes_size);
1da177e4
LT
5982
5983 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5984#ifdef CONFIG_FLAT_NODE_MEM_MAP
5985 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5986 nid, (unsigned long)pgdat,
5987 (unsigned long)pgdat->node_mem_map);
5988#endif
1da177e4 5989
7f3eb55b 5990 free_area_init_core(pgdat);
1da177e4
LT
5991}
5992
0ee332c1 5993#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5994
5995#if MAX_NUMNODES > 1
5996/*
5997 * Figure out the number of possible node ids.
5998 */
f9872caf 5999void __init setup_nr_node_ids(void)
418508c1 6000{
904a9553 6001 unsigned int highest;
418508c1 6002
904a9553 6003 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6004 nr_node_ids = highest + 1;
6005}
418508c1
MS
6006#endif
6007
1e01979c
TH
6008/**
6009 * node_map_pfn_alignment - determine the maximum internode alignment
6010 *
6011 * This function should be called after node map is populated and sorted.
6012 * It calculates the maximum power of two alignment which can distinguish
6013 * all the nodes.
6014 *
6015 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6016 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6017 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6018 * shifted, 1GiB is enough and this function will indicate so.
6019 *
6020 * This is used to test whether pfn -> nid mapping of the chosen memory
6021 * model has fine enough granularity to avoid incorrect mapping for the
6022 * populated node map.
6023 *
6024 * Returns the determined alignment in pfn's. 0 if there is no alignment
6025 * requirement (single node).
6026 */
6027unsigned long __init node_map_pfn_alignment(void)
6028{
6029 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6030 unsigned long start, end, mask;
1e01979c 6031 int last_nid = -1;
c13291a5 6032 int i, nid;
1e01979c 6033
c13291a5 6034 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6035 if (!start || last_nid < 0 || last_nid == nid) {
6036 last_nid = nid;
6037 last_end = end;
6038 continue;
6039 }
6040
6041 /*
6042 * Start with a mask granular enough to pin-point to the
6043 * start pfn and tick off bits one-by-one until it becomes
6044 * too coarse to separate the current node from the last.
6045 */
6046 mask = ~((1 << __ffs(start)) - 1);
6047 while (mask && last_end <= (start & (mask << 1)))
6048 mask <<= 1;
6049
6050 /* accumulate all internode masks */
6051 accl_mask |= mask;
6052 }
6053
6054 /* convert mask to number of pages */
6055 return ~accl_mask + 1;
6056}
6057
a6af2bc3 6058/* Find the lowest pfn for a node */
b69a7288 6059static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6060{
a6af2bc3 6061 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6062 unsigned long start_pfn;
6063 int i;
1abbfb41 6064
c13291a5
TH
6065 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6066 min_pfn = min(min_pfn, start_pfn);
c713216d 6067
a6af2bc3 6068 if (min_pfn == ULONG_MAX) {
1170532b 6069 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6070 return 0;
6071 }
6072
6073 return min_pfn;
c713216d
MG
6074}
6075
6076/**
6077 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6078 *
6079 * It returns the minimum PFN based on information provided via
7d018176 6080 * memblock_set_node().
c713216d
MG
6081 */
6082unsigned long __init find_min_pfn_with_active_regions(void)
6083{
6084 return find_min_pfn_for_node(MAX_NUMNODES);
6085}
6086
37b07e41
LS
6087/*
6088 * early_calculate_totalpages()
6089 * Sum pages in active regions for movable zone.
4b0ef1fe 6090 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6091 */
484f51f8 6092static unsigned long __init early_calculate_totalpages(void)
7e63efef 6093{
7e63efef 6094 unsigned long totalpages = 0;
c13291a5
TH
6095 unsigned long start_pfn, end_pfn;
6096 int i, nid;
6097
6098 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6099 unsigned long pages = end_pfn - start_pfn;
7e63efef 6100
37b07e41
LS
6101 totalpages += pages;
6102 if (pages)
4b0ef1fe 6103 node_set_state(nid, N_MEMORY);
37b07e41 6104 }
b8af2941 6105 return totalpages;
7e63efef
MG
6106}
6107
2a1e274a
MG
6108/*
6109 * Find the PFN the Movable zone begins in each node. Kernel memory
6110 * is spread evenly between nodes as long as the nodes have enough
6111 * memory. When they don't, some nodes will have more kernelcore than
6112 * others
6113 */
b224ef85 6114static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6115{
6116 int i, nid;
6117 unsigned long usable_startpfn;
6118 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6119 /* save the state before borrow the nodemask */
4b0ef1fe 6120 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6121 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6122 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6123 struct memblock_region *r;
b2f3eebe
TC
6124
6125 /* Need to find movable_zone earlier when movable_node is specified. */
6126 find_usable_zone_for_movable();
6127
6128 /*
6129 * If movable_node is specified, ignore kernelcore and movablecore
6130 * options.
6131 */
6132 if (movable_node_is_enabled()) {
136199f0
EM
6133 for_each_memblock(memory, r) {
6134 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6135 continue;
6136
136199f0 6137 nid = r->nid;
b2f3eebe 6138
136199f0 6139 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6140 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6141 min(usable_startpfn, zone_movable_pfn[nid]) :
6142 usable_startpfn;
6143 }
6144
6145 goto out2;
6146 }
2a1e274a 6147
342332e6
TI
6148 /*
6149 * If kernelcore=mirror is specified, ignore movablecore option
6150 */
6151 if (mirrored_kernelcore) {
6152 bool mem_below_4gb_not_mirrored = false;
6153
6154 for_each_memblock(memory, r) {
6155 if (memblock_is_mirror(r))
6156 continue;
6157
6158 nid = r->nid;
6159
6160 usable_startpfn = memblock_region_memory_base_pfn(r);
6161
6162 if (usable_startpfn < 0x100000) {
6163 mem_below_4gb_not_mirrored = true;
6164 continue;
6165 }
6166
6167 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6168 min(usable_startpfn, zone_movable_pfn[nid]) :
6169 usable_startpfn;
6170 }
6171
6172 if (mem_below_4gb_not_mirrored)
6173 pr_warn("This configuration results in unmirrored kernel memory.");
6174
6175 goto out2;
6176 }
6177
7e63efef 6178 /*
b2f3eebe 6179 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6180 * kernelcore that corresponds so that memory usable for
6181 * any allocation type is evenly spread. If both kernelcore
6182 * and movablecore are specified, then the value of kernelcore
6183 * will be used for required_kernelcore if it's greater than
6184 * what movablecore would have allowed.
6185 */
6186 if (required_movablecore) {
7e63efef
MG
6187 unsigned long corepages;
6188
6189 /*
6190 * Round-up so that ZONE_MOVABLE is at least as large as what
6191 * was requested by the user
6192 */
6193 required_movablecore =
6194 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6195 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6196 corepages = totalpages - required_movablecore;
6197
6198 required_kernelcore = max(required_kernelcore, corepages);
6199 }
6200
bde304bd
XQ
6201 /*
6202 * If kernelcore was not specified or kernelcore size is larger
6203 * than totalpages, there is no ZONE_MOVABLE.
6204 */
6205 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6206 goto out;
2a1e274a
MG
6207
6208 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6209 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6210
6211restart:
6212 /* Spread kernelcore memory as evenly as possible throughout nodes */
6213 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6214 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6215 unsigned long start_pfn, end_pfn;
6216
2a1e274a
MG
6217 /*
6218 * Recalculate kernelcore_node if the division per node
6219 * now exceeds what is necessary to satisfy the requested
6220 * amount of memory for the kernel
6221 */
6222 if (required_kernelcore < kernelcore_node)
6223 kernelcore_node = required_kernelcore / usable_nodes;
6224
6225 /*
6226 * As the map is walked, we track how much memory is usable
6227 * by the kernel using kernelcore_remaining. When it is
6228 * 0, the rest of the node is usable by ZONE_MOVABLE
6229 */
6230 kernelcore_remaining = kernelcore_node;
6231
6232 /* Go through each range of PFNs within this node */
c13291a5 6233 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6234 unsigned long size_pages;
6235
c13291a5 6236 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6237 if (start_pfn >= end_pfn)
6238 continue;
6239
6240 /* Account for what is only usable for kernelcore */
6241 if (start_pfn < usable_startpfn) {
6242 unsigned long kernel_pages;
6243 kernel_pages = min(end_pfn, usable_startpfn)
6244 - start_pfn;
6245
6246 kernelcore_remaining -= min(kernel_pages,
6247 kernelcore_remaining);
6248 required_kernelcore -= min(kernel_pages,
6249 required_kernelcore);
6250
6251 /* Continue if range is now fully accounted */
6252 if (end_pfn <= usable_startpfn) {
6253
6254 /*
6255 * Push zone_movable_pfn to the end so
6256 * that if we have to rebalance
6257 * kernelcore across nodes, we will
6258 * not double account here
6259 */
6260 zone_movable_pfn[nid] = end_pfn;
6261 continue;
6262 }
6263 start_pfn = usable_startpfn;
6264 }
6265
6266 /*
6267 * The usable PFN range for ZONE_MOVABLE is from
6268 * start_pfn->end_pfn. Calculate size_pages as the
6269 * number of pages used as kernelcore
6270 */
6271 size_pages = end_pfn - start_pfn;
6272 if (size_pages > kernelcore_remaining)
6273 size_pages = kernelcore_remaining;
6274 zone_movable_pfn[nid] = start_pfn + size_pages;
6275
6276 /*
6277 * Some kernelcore has been met, update counts and
6278 * break if the kernelcore for this node has been
b8af2941 6279 * satisfied
2a1e274a
MG
6280 */
6281 required_kernelcore -= min(required_kernelcore,
6282 size_pages);
6283 kernelcore_remaining -= size_pages;
6284 if (!kernelcore_remaining)
6285 break;
6286 }
6287 }
6288
6289 /*
6290 * If there is still required_kernelcore, we do another pass with one
6291 * less node in the count. This will push zone_movable_pfn[nid] further
6292 * along on the nodes that still have memory until kernelcore is
b8af2941 6293 * satisfied
2a1e274a
MG
6294 */
6295 usable_nodes--;
6296 if (usable_nodes && required_kernelcore > usable_nodes)
6297 goto restart;
6298
b2f3eebe 6299out2:
2a1e274a
MG
6300 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6301 for (nid = 0; nid < MAX_NUMNODES; nid++)
6302 zone_movable_pfn[nid] =
6303 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6304
20e6926d 6305out:
66918dcd 6306 /* restore the node_state */
4b0ef1fe 6307 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6308}
6309
4b0ef1fe
LJ
6310/* Any regular or high memory on that node ? */
6311static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6312{
37b07e41
LS
6313 enum zone_type zone_type;
6314
4b0ef1fe
LJ
6315 if (N_MEMORY == N_NORMAL_MEMORY)
6316 return;
6317
6318 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6319 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6320 if (populated_zone(zone)) {
4b0ef1fe
LJ
6321 node_set_state(nid, N_HIGH_MEMORY);
6322 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6323 zone_type <= ZONE_NORMAL)
6324 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6325 break;
6326 }
37b07e41 6327 }
37b07e41
LS
6328}
6329
c713216d
MG
6330/**
6331 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6332 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6333 *
6334 * This will call free_area_init_node() for each active node in the system.
7d018176 6335 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6336 * zone in each node and their holes is calculated. If the maximum PFN
6337 * between two adjacent zones match, it is assumed that the zone is empty.
6338 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6339 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6340 * starts where the previous one ended. For example, ZONE_DMA32 starts
6341 * at arch_max_dma_pfn.
6342 */
6343void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6344{
c13291a5
TH
6345 unsigned long start_pfn, end_pfn;
6346 int i, nid;
a6af2bc3 6347
c713216d
MG
6348 /* Record where the zone boundaries are */
6349 memset(arch_zone_lowest_possible_pfn, 0,
6350 sizeof(arch_zone_lowest_possible_pfn));
6351 memset(arch_zone_highest_possible_pfn, 0,
6352 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6353
6354 start_pfn = find_min_pfn_with_active_regions();
6355
6356 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6357 if (i == ZONE_MOVABLE)
6358 continue;
90cae1fe
OH
6359
6360 end_pfn = max(max_zone_pfn[i], start_pfn);
6361 arch_zone_lowest_possible_pfn[i] = start_pfn;
6362 arch_zone_highest_possible_pfn[i] = end_pfn;
6363
6364 start_pfn = end_pfn;
c713216d 6365 }
2a1e274a
MG
6366 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6367 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6368
6369 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6370 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6371 find_zone_movable_pfns_for_nodes();
c713216d 6372
c713216d 6373 /* Print out the zone ranges */
f88dfff5 6374 pr_info("Zone ranges:\n");
2a1e274a
MG
6375 for (i = 0; i < MAX_NR_ZONES; i++) {
6376 if (i == ZONE_MOVABLE)
6377 continue;
f88dfff5 6378 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6379 if (arch_zone_lowest_possible_pfn[i] ==
6380 arch_zone_highest_possible_pfn[i])
f88dfff5 6381 pr_cont("empty\n");
72f0ba02 6382 else
8d29e18a
JG
6383 pr_cont("[mem %#018Lx-%#018Lx]\n",
6384 (u64)arch_zone_lowest_possible_pfn[i]
6385 << PAGE_SHIFT,
6386 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6387 << PAGE_SHIFT) - 1);
2a1e274a
MG
6388 }
6389
6390 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6391 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6392 for (i = 0; i < MAX_NUMNODES; i++) {
6393 if (zone_movable_pfn[i])
8d29e18a
JG
6394 pr_info(" Node %d: %#018Lx\n", i,
6395 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6396 }
c713216d 6397
f2d52fe5 6398 /* Print out the early node map */
f88dfff5 6399 pr_info("Early memory node ranges\n");
c13291a5 6400 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6401 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6402 (u64)start_pfn << PAGE_SHIFT,
6403 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6404
6405 /* Initialise every node */
708614e6 6406 mminit_verify_pageflags_layout();
8ef82866 6407 setup_nr_node_ids();
c713216d
MG
6408 for_each_online_node(nid) {
6409 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6410 free_area_init_node(nid, NULL,
c713216d 6411 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6412
6413 /* Any memory on that node */
6414 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6415 node_set_state(nid, N_MEMORY);
6416 check_for_memory(pgdat, nid);
c713216d
MG
6417 }
6418}
2a1e274a 6419
7e63efef 6420static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6421{
6422 unsigned long long coremem;
6423 if (!p)
6424 return -EINVAL;
6425
6426 coremem = memparse(p, &p);
7e63efef 6427 *core = coremem >> PAGE_SHIFT;
2a1e274a 6428
7e63efef 6429 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6430 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6431
6432 return 0;
6433}
ed7ed365 6434
7e63efef
MG
6435/*
6436 * kernelcore=size sets the amount of memory for use for allocations that
6437 * cannot be reclaimed or migrated.
6438 */
6439static int __init cmdline_parse_kernelcore(char *p)
6440{
342332e6
TI
6441 /* parse kernelcore=mirror */
6442 if (parse_option_str(p, "mirror")) {
6443 mirrored_kernelcore = true;
6444 return 0;
6445 }
6446
7e63efef
MG
6447 return cmdline_parse_core(p, &required_kernelcore);
6448}
6449
6450/*
6451 * movablecore=size sets the amount of memory for use for allocations that
6452 * can be reclaimed or migrated.
6453 */
6454static int __init cmdline_parse_movablecore(char *p)
6455{
6456 return cmdline_parse_core(p, &required_movablecore);
6457}
6458
ed7ed365 6459early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6460early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6461
0ee332c1 6462#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6463
c3d5f5f0
JL
6464void adjust_managed_page_count(struct page *page, long count)
6465{
6466 spin_lock(&managed_page_count_lock);
6467 page_zone(page)->managed_pages += count;
6468 totalram_pages += count;
3dcc0571
JL
6469#ifdef CONFIG_HIGHMEM
6470 if (PageHighMem(page))
6471 totalhigh_pages += count;
6472#endif
c3d5f5f0
JL
6473 spin_unlock(&managed_page_count_lock);
6474}
3dcc0571 6475EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6476
11199692 6477unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6478{
11199692
JL
6479 void *pos;
6480 unsigned long pages = 0;
69afade7 6481
11199692
JL
6482 start = (void *)PAGE_ALIGN((unsigned long)start);
6483 end = (void *)((unsigned long)end & PAGE_MASK);
6484 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6485 if ((unsigned int)poison <= 0xFF)
11199692
JL
6486 memset(pos, poison, PAGE_SIZE);
6487 free_reserved_page(virt_to_page(pos));
69afade7
JL
6488 }
6489
6490 if (pages && s)
11199692 6491 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6492 s, pages << (PAGE_SHIFT - 10), start, end);
6493
6494 return pages;
6495}
11199692 6496EXPORT_SYMBOL(free_reserved_area);
69afade7 6497
cfa11e08
JL
6498#ifdef CONFIG_HIGHMEM
6499void free_highmem_page(struct page *page)
6500{
6501 __free_reserved_page(page);
6502 totalram_pages++;
7b4b2a0d 6503 page_zone(page)->managed_pages++;
cfa11e08
JL
6504 totalhigh_pages++;
6505}
6506#endif
6507
7ee3d4e8
JL
6508
6509void __init mem_init_print_info(const char *str)
6510{
6511 unsigned long physpages, codesize, datasize, rosize, bss_size;
6512 unsigned long init_code_size, init_data_size;
6513
6514 physpages = get_num_physpages();
6515 codesize = _etext - _stext;
6516 datasize = _edata - _sdata;
6517 rosize = __end_rodata - __start_rodata;
6518 bss_size = __bss_stop - __bss_start;
6519 init_data_size = __init_end - __init_begin;
6520 init_code_size = _einittext - _sinittext;
6521
6522 /*
6523 * Detect special cases and adjust section sizes accordingly:
6524 * 1) .init.* may be embedded into .data sections
6525 * 2) .init.text.* may be out of [__init_begin, __init_end],
6526 * please refer to arch/tile/kernel/vmlinux.lds.S.
6527 * 3) .rodata.* may be embedded into .text or .data sections.
6528 */
6529#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6530 do { \
6531 if (start <= pos && pos < end && size > adj) \
6532 size -= adj; \
6533 } while (0)
7ee3d4e8
JL
6534
6535 adj_init_size(__init_begin, __init_end, init_data_size,
6536 _sinittext, init_code_size);
6537 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6538 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6539 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6540 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6541
6542#undef adj_init_size
6543
756a025f 6544 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6545#ifdef CONFIG_HIGHMEM
756a025f 6546 ", %luK highmem"
7ee3d4e8 6547#endif
756a025f
JP
6548 "%s%s)\n",
6549 nr_free_pages() << (PAGE_SHIFT - 10),
6550 physpages << (PAGE_SHIFT - 10),
6551 codesize >> 10, datasize >> 10, rosize >> 10,
6552 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6553 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6554 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6555#ifdef CONFIG_HIGHMEM
756a025f 6556 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6557#endif
756a025f 6558 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6559}
6560
0e0b864e 6561/**
88ca3b94
RD
6562 * set_dma_reserve - set the specified number of pages reserved in the first zone
6563 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6564 *
013110a7 6565 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6566 * In the DMA zone, a significant percentage may be consumed by kernel image
6567 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6568 * function may optionally be used to account for unfreeable pages in the
6569 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6570 * smaller per-cpu batchsize.
0e0b864e
MG
6571 */
6572void __init set_dma_reserve(unsigned long new_dma_reserve)
6573{
6574 dma_reserve = new_dma_reserve;
6575}
6576
1da177e4
LT
6577void __init free_area_init(unsigned long *zones_size)
6578{
9109fb7b 6579 free_area_init_node(0, zones_size,
1da177e4
LT
6580 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6581}
1da177e4 6582
1da177e4
LT
6583static int page_alloc_cpu_notify(struct notifier_block *self,
6584 unsigned long action, void *hcpu)
6585{
6586 int cpu = (unsigned long)hcpu;
1da177e4 6587
8bb78442 6588 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6589 lru_add_drain_cpu(cpu);
9f8f2172
CL
6590 drain_pages(cpu);
6591
6592 /*
6593 * Spill the event counters of the dead processor
6594 * into the current processors event counters.
6595 * This artificially elevates the count of the current
6596 * processor.
6597 */
f8891e5e 6598 vm_events_fold_cpu(cpu);
9f8f2172
CL
6599
6600 /*
6601 * Zero the differential counters of the dead processor
6602 * so that the vm statistics are consistent.
6603 *
6604 * This is only okay since the processor is dead and cannot
6605 * race with what we are doing.
6606 */
2bb921e5 6607 cpu_vm_stats_fold(cpu);
1da177e4
LT
6608 }
6609 return NOTIFY_OK;
6610}
1da177e4
LT
6611
6612void __init page_alloc_init(void)
6613{
6614 hotcpu_notifier(page_alloc_cpu_notify, 0);
6615}
6616
cb45b0e9 6617/*
34b10060 6618 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6619 * or min_free_kbytes changes.
6620 */
6621static void calculate_totalreserve_pages(void)
6622{
6623 struct pglist_data *pgdat;
6624 unsigned long reserve_pages = 0;
2f6726e5 6625 enum zone_type i, j;
cb45b0e9
HA
6626
6627 for_each_online_pgdat(pgdat) {
281e3726
MG
6628
6629 pgdat->totalreserve_pages = 0;
6630
cb45b0e9
HA
6631 for (i = 0; i < MAX_NR_ZONES; i++) {
6632 struct zone *zone = pgdat->node_zones + i;
3484b2de 6633 long max = 0;
cb45b0e9
HA
6634
6635 /* Find valid and maximum lowmem_reserve in the zone */
6636 for (j = i; j < MAX_NR_ZONES; j++) {
6637 if (zone->lowmem_reserve[j] > max)
6638 max = zone->lowmem_reserve[j];
6639 }
6640
41858966
MG
6641 /* we treat the high watermark as reserved pages. */
6642 max += high_wmark_pages(zone);
cb45b0e9 6643
b40da049
JL
6644 if (max > zone->managed_pages)
6645 max = zone->managed_pages;
a8d01437 6646
281e3726 6647 pgdat->totalreserve_pages += max;
a8d01437 6648
cb45b0e9
HA
6649 reserve_pages += max;
6650 }
6651 }
6652 totalreserve_pages = reserve_pages;
6653}
6654
1da177e4
LT
6655/*
6656 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6657 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6658 * has a correct pages reserved value, so an adequate number of
6659 * pages are left in the zone after a successful __alloc_pages().
6660 */
6661static void setup_per_zone_lowmem_reserve(void)
6662{
6663 struct pglist_data *pgdat;
2f6726e5 6664 enum zone_type j, idx;
1da177e4 6665
ec936fc5 6666 for_each_online_pgdat(pgdat) {
1da177e4
LT
6667 for (j = 0; j < MAX_NR_ZONES; j++) {
6668 struct zone *zone = pgdat->node_zones + j;
b40da049 6669 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6670
6671 zone->lowmem_reserve[j] = 0;
6672
2f6726e5
CL
6673 idx = j;
6674 while (idx) {
1da177e4
LT
6675 struct zone *lower_zone;
6676
2f6726e5
CL
6677 idx--;
6678
1da177e4
LT
6679 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6680 sysctl_lowmem_reserve_ratio[idx] = 1;
6681
6682 lower_zone = pgdat->node_zones + idx;
b40da049 6683 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6684 sysctl_lowmem_reserve_ratio[idx];
b40da049 6685 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6686 }
6687 }
6688 }
cb45b0e9
HA
6689
6690 /* update totalreserve_pages */
6691 calculate_totalreserve_pages();
1da177e4
LT
6692}
6693
cfd3da1e 6694static void __setup_per_zone_wmarks(void)
1da177e4
LT
6695{
6696 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6697 unsigned long lowmem_pages = 0;
6698 struct zone *zone;
6699 unsigned long flags;
6700
6701 /* Calculate total number of !ZONE_HIGHMEM pages */
6702 for_each_zone(zone) {
6703 if (!is_highmem(zone))
b40da049 6704 lowmem_pages += zone->managed_pages;
1da177e4
LT
6705 }
6706
6707 for_each_zone(zone) {
ac924c60
AM
6708 u64 tmp;
6709
1125b4e3 6710 spin_lock_irqsave(&zone->lock, flags);
b40da049 6711 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6712 do_div(tmp, lowmem_pages);
1da177e4
LT
6713 if (is_highmem(zone)) {
6714 /*
669ed175
NP
6715 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6716 * need highmem pages, so cap pages_min to a small
6717 * value here.
6718 *
41858966 6719 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6720 * deltas control asynch page reclaim, and so should
669ed175 6721 * not be capped for highmem.
1da177e4 6722 */
90ae8d67 6723 unsigned long min_pages;
1da177e4 6724
b40da049 6725 min_pages = zone->managed_pages / 1024;
90ae8d67 6726 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6727 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6728 } else {
669ed175
NP
6729 /*
6730 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6731 * proportionate to the zone's size.
6732 */
41858966 6733 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6734 }
6735
795ae7a0
JW
6736 /*
6737 * Set the kswapd watermarks distance according to the
6738 * scale factor in proportion to available memory, but
6739 * ensure a minimum size on small systems.
6740 */
6741 tmp = max_t(u64, tmp >> 2,
6742 mult_frac(zone->managed_pages,
6743 watermark_scale_factor, 10000));
6744
6745 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6746 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6747
1125b4e3 6748 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6749 }
cb45b0e9
HA
6750
6751 /* update totalreserve_pages */
6752 calculate_totalreserve_pages();
1da177e4
LT
6753}
6754
cfd3da1e
MG
6755/**
6756 * setup_per_zone_wmarks - called when min_free_kbytes changes
6757 * or when memory is hot-{added|removed}
6758 *
6759 * Ensures that the watermark[min,low,high] values for each zone are set
6760 * correctly with respect to min_free_kbytes.
6761 */
6762void setup_per_zone_wmarks(void)
6763{
6764 mutex_lock(&zonelists_mutex);
6765 __setup_per_zone_wmarks();
6766 mutex_unlock(&zonelists_mutex);
6767}
6768
1da177e4
LT
6769/*
6770 * Initialise min_free_kbytes.
6771 *
6772 * For small machines we want it small (128k min). For large machines
6773 * we want it large (64MB max). But it is not linear, because network
6774 * bandwidth does not increase linearly with machine size. We use
6775 *
b8af2941 6776 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6777 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6778 *
6779 * which yields
6780 *
6781 * 16MB: 512k
6782 * 32MB: 724k
6783 * 64MB: 1024k
6784 * 128MB: 1448k
6785 * 256MB: 2048k
6786 * 512MB: 2896k
6787 * 1024MB: 4096k
6788 * 2048MB: 5792k
6789 * 4096MB: 8192k
6790 * 8192MB: 11584k
6791 * 16384MB: 16384k
6792 */
1b79acc9 6793int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6794{
6795 unsigned long lowmem_kbytes;
5f12733e 6796 int new_min_free_kbytes;
1da177e4
LT
6797
6798 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6799 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6800
6801 if (new_min_free_kbytes > user_min_free_kbytes) {
6802 min_free_kbytes = new_min_free_kbytes;
6803 if (min_free_kbytes < 128)
6804 min_free_kbytes = 128;
6805 if (min_free_kbytes > 65536)
6806 min_free_kbytes = 65536;
6807 } else {
6808 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6809 new_min_free_kbytes, user_min_free_kbytes);
6810 }
bc75d33f 6811 setup_per_zone_wmarks();
a6cccdc3 6812 refresh_zone_stat_thresholds();
1da177e4 6813 setup_per_zone_lowmem_reserve();
6423aa81
JK
6814
6815#ifdef CONFIG_NUMA
6816 setup_min_unmapped_ratio();
6817 setup_min_slab_ratio();
6818#endif
6819
1da177e4
LT
6820 return 0;
6821}
bc22af74 6822core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6823
6824/*
b8af2941 6825 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6826 * that we can call two helper functions whenever min_free_kbytes
6827 * changes.
6828 */
cccad5b9 6829int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6830 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6831{
da8c757b
HP
6832 int rc;
6833
6834 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6835 if (rc)
6836 return rc;
6837
5f12733e
MH
6838 if (write) {
6839 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6840 setup_per_zone_wmarks();
5f12733e 6841 }
1da177e4
LT
6842 return 0;
6843}
6844
795ae7a0
JW
6845int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6846 void __user *buffer, size_t *length, loff_t *ppos)
6847{
6848 int rc;
6849
6850 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6851 if (rc)
6852 return rc;
6853
6854 if (write)
6855 setup_per_zone_wmarks();
6856
6857 return 0;
6858}
6859
9614634f 6860#ifdef CONFIG_NUMA
6423aa81 6861static void setup_min_unmapped_ratio(void)
9614634f 6862{
6423aa81 6863 pg_data_t *pgdat;
9614634f 6864 struct zone *zone;
9614634f 6865
a5f5f91d 6866 for_each_online_pgdat(pgdat)
81cbcbc2 6867 pgdat->min_unmapped_pages = 0;
a5f5f91d 6868
9614634f 6869 for_each_zone(zone)
a5f5f91d 6870 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 6871 sysctl_min_unmapped_ratio) / 100;
9614634f 6872}
0ff38490 6873
6423aa81
JK
6874
6875int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6876 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 6877{
0ff38490
CL
6878 int rc;
6879
8d65af78 6880 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6881 if (rc)
6882 return rc;
6883
6423aa81
JK
6884 setup_min_unmapped_ratio();
6885
6886 return 0;
6887}
6888
6889static void setup_min_slab_ratio(void)
6890{
6891 pg_data_t *pgdat;
6892 struct zone *zone;
6893
a5f5f91d
MG
6894 for_each_online_pgdat(pgdat)
6895 pgdat->min_slab_pages = 0;
6896
0ff38490 6897 for_each_zone(zone)
a5f5f91d 6898 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 6899 sysctl_min_slab_ratio) / 100;
6423aa81
JK
6900}
6901
6902int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6903 void __user *buffer, size_t *length, loff_t *ppos)
6904{
6905 int rc;
6906
6907 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6908 if (rc)
6909 return rc;
6910
6911 setup_min_slab_ratio();
6912
0ff38490
CL
6913 return 0;
6914}
9614634f
CL
6915#endif
6916
1da177e4
LT
6917/*
6918 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6919 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6920 * whenever sysctl_lowmem_reserve_ratio changes.
6921 *
6922 * The reserve ratio obviously has absolutely no relation with the
41858966 6923 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6924 * if in function of the boot time zone sizes.
6925 */
cccad5b9 6926int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6927 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6928{
8d65af78 6929 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6930 setup_per_zone_lowmem_reserve();
6931 return 0;
6932}
6933
8ad4b1fb
RS
6934/*
6935 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6936 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6937 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6938 */
cccad5b9 6939int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6940 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6941{
6942 struct zone *zone;
7cd2b0a3 6943 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6944 int ret;
6945
7cd2b0a3
DR
6946 mutex_lock(&pcp_batch_high_lock);
6947 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6948
8d65af78 6949 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6950 if (!write || ret < 0)
6951 goto out;
6952
6953 /* Sanity checking to avoid pcp imbalance */
6954 if (percpu_pagelist_fraction &&
6955 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6956 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6957 ret = -EINVAL;
6958 goto out;
6959 }
6960
6961 /* No change? */
6962 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6963 goto out;
c8e251fa 6964
364df0eb 6965 for_each_populated_zone(zone) {
7cd2b0a3
DR
6966 unsigned int cpu;
6967
22a7f12b 6968 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6969 pageset_set_high_and_batch(zone,
6970 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6971 }
7cd2b0a3 6972out:
c8e251fa 6973 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6974 return ret;
8ad4b1fb
RS
6975}
6976
a9919c79 6977#ifdef CONFIG_NUMA
f034b5d4 6978int hashdist = HASHDIST_DEFAULT;
1da177e4 6979
1da177e4
LT
6980static int __init set_hashdist(char *str)
6981{
6982 if (!str)
6983 return 0;
6984 hashdist = simple_strtoul(str, &str, 0);
6985 return 1;
6986}
6987__setup("hashdist=", set_hashdist);
6988#endif
6989
f6f34b43
SD
6990#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6991/*
6992 * Returns the number of pages that arch has reserved but
6993 * is not known to alloc_large_system_hash().
6994 */
6995static unsigned long __init arch_reserved_kernel_pages(void)
6996{
6997 return 0;
6998}
6999#endif
7000
1da177e4
LT
7001/*
7002 * allocate a large system hash table from bootmem
7003 * - it is assumed that the hash table must contain an exact power-of-2
7004 * quantity of entries
7005 * - limit is the number of hash buckets, not the total allocation size
7006 */
7007void *__init alloc_large_system_hash(const char *tablename,
7008 unsigned long bucketsize,
7009 unsigned long numentries,
7010 int scale,
7011 int flags,
7012 unsigned int *_hash_shift,
7013 unsigned int *_hash_mask,
31fe62b9
TB
7014 unsigned long low_limit,
7015 unsigned long high_limit)
1da177e4 7016{
31fe62b9 7017 unsigned long long max = high_limit;
1da177e4
LT
7018 unsigned long log2qty, size;
7019 void *table = NULL;
7020
7021 /* allow the kernel cmdline to have a say */
7022 if (!numentries) {
7023 /* round applicable memory size up to nearest megabyte */
04903664 7024 numentries = nr_kernel_pages;
f6f34b43 7025 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7026
7027 /* It isn't necessary when PAGE_SIZE >= 1MB */
7028 if (PAGE_SHIFT < 20)
7029 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7030
7031 /* limit to 1 bucket per 2^scale bytes of low memory */
7032 if (scale > PAGE_SHIFT)
7033 numentries >>= (scale - PAGE_SHIFT);
7034 else
7035 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7036
7037 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7038 if (unlikely(flags & HASH_SMALL)) {
7039 /* Makes no sense without HASH_EARLY */
7040 WARN_ON(!(flags & HASH_EARLY));
7041 if (!(numentries >> *_hash_shift)) {
7042 numentries = 1UL << *_hash_shift;
7043 BUG_ON(!numentries);
7044 }
7045 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7046 numentries = PAGE_SIZE / bucketsize;
1da177e4 7047 }
6e692ed3 7048 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7049
7050 /* limit allocation size to 1/16 total memory by default */
7051 if (max == 0) {
7052 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7053 do_div(max, bucketsize);
7054 }
074b8517 7055 max = min(max, 0x80000000ULL);
1da177e4 7056
31fe62b9
TB
7057 if (numentries < low_limit)
7058 numentries = low_limit;
1da177e4
LT
7059 if (numentries > max)
7060 numentries = max;
7061
f0d1b0b3 7062 log2qty = ilog2(numentries);
1da177e4
LT
7063
7064 do {
7065 size = bucketsize << log2qty;
7066 if (flags & HASH_EARLY)
6782832e 7067 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7068 else if (hashdist)
7069 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7070 else {
1037b83b
ED
7071 /*
7072 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7073 * some pages at the end of hash table which
7074 * alloc_pages_exact() automatically does
1037b83b 7075 */
264ef8a9 7076 if (get_order(size) < MAX_ORDER) {
a1dd268c 7077 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7078 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7079 }
1da177e4
LT
7080 }
7081 } while (!table && size > PAGE_SIZE && --log2qty);
7082
7083 if (!table)
7084 panic("Failed to allocate %s hash table\n", tablename);
7085
1170532b
JP
7086 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7087 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7088
7089 if (_hash_shift)
7090 *_hash_shift = log2qty;
7091 if (_hash_mask)
7092 *_hash_mask = (1 << log2qty) - 1;
7093
7094 return table;
7095}
a117e66e 7096
a5d76b54 7097/*
80934513
MK
7098 * This function checks whether pageblock includes unmovable pages or not.
7099 * If @count is not zero, it is okay to include less @count unmovable pages
7100 *
b8af2941 7101 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7102 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7103 * expect this function should be exact.
a5d76b54 7104 */
b023f468
WC
7105bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7106 bool skip_hwpoisoned_pages)
49ac8255
KH
7107{
7108 unsigned long pfn, iter, found;
47118af0
MN
7109 int mt;
7110
49ac8255
KH
7111 /*
7112 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7113 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7114 */
7115 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7116 return false;
47118af0
MN
7117 mt = get_pageblock_migratetype(page);
7118 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7119 return false;
49ac8255
KH
7120
7121 pfn = page_to_pfn(page);
7122 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7123 unsigned long check = pfn + iter;
7124
29723fcc 7125 if (!pfn_valid_within(check))
49ac8255 7126 continue;
29723fcc 7127
49ac8255 7128 page = pfn_to_page(check);
c8721bbb
NH
7129
7130 /*
7131 * Hugepages are not in LRU lists, but they're movable.
7132 * We need not scan over tail pages bacause we don't
7133 * handle each tail page individually in migration.
7134 */
7135 if (PageHuge(page)) {
7136 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7137 continue;
7138 }
7139
97d255c8
MK
7140 /*
7141 * We can't use page_count without pin a page
7142 * because another CPU can free compound page.
7143 * This check already skips compound tails of THP
0139aa7b 7144 * because their page->_refcount is zero at all time.
97d255c8 7145 */
fe896d18 7146 if (!page_ref_count(page)) {
49ac8255
KH
7147 if (PageBuddy(page))
7148 iter += (1 << page_order(page)) - 1;
7149 continue;
7150 }
97d255c8 7151
b023f468
WC
7152 /*
7153 * The HWPoisoned page may be not in buddy system, and
7154 * page_count() is not 0.
7155 */
7156 if (skip_hwpoisoned_pages && PageHWPoison(page))
7157 continue;
7158
49ac8255
KH
7159 if (!PageLRU(page))
7160 found++;
7161 /*
6b4f7799
JW
7162 * If there are RECLAIMABLE pages, we need to check
7163 * it. But now, memory offline itself doesn't call
7164 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7165 */
7166 /*
7167 * If the page is not RAM, page_count()should be 0.
7168 * we don't need more check. This is an _used_ not-movable page.
7169 *
7170 * The problematic thing here is PG_reserved pages. PG_reserved
7171 * is set to both of a memory hole page and a _used_ kernel
7172 * page at boot.
7173 */
7174 if (found > count)
80934513 7175 return true;
49ac8255 7176 }
80934513 7177 return false;
49ac8255
KH
7178}
7179
7180bool is_pageblock_removable_nolock(struct page *page)
7181{
656a0706
MH
7182 struct zone *zone;
7183 unsigned long pfn;
687875fb
MH
7184
7185 /*
7186 * We have to be careful here because we are iterating over memory
7187 * sections which are not zone aware so we might end up outside of
7188 * the zone but still within the section.
656a0706
MH
7189 * We have to take care about the node as well. If the node is offline
7190 * its NODE_DATA will be NULL - see page_zone.
687875fb 7191 */
656a0706
MH
7192 if (!node_online(page_to_nid(page)))
7193 return false;
7194
7195 zone = page_zone(page);
7196 pfn = page_to_pfn(page);
108bcc96 7197 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7198 return false;
7199
b023f468 7200 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7201}
0c0e6195 7202
080fe206 7203#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7204
7205static unsigned long pfn_max_align_down(unsigned long pfn)
7206{
7207 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7208 pageblock_nr_pages) - 1);
7209}
7210
7211static unsigned long pfn_max_align_up(unsigned long pfn)
7212{
7213 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7214 pageblock_nr_pages));
7215}
7216
041d3a8c 7217/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7218static int __alloc_contig_migrate_range(struct compact_control *cc,
7219 unsigned long start, unsigned long end)
041d3a8c
MN
7220{
7221 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7222 unsigned long nr_reclaimed;
041d3a8c
MN
7223 unsigned long pfn = start;
7224 unsigned int tries = 0;
7225 int ret = 0;
7226
be49a6e1 7227 migrate_prep();
041d3a8c 7228
bb13ffeb 7229 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7230 if (fatal_signal_pending(current)) {
7231 ret = -EINTR;
7232 break;
7233 }
7234
bb13ffeb
MG
7235 if (list_empty(&cc->migratepages)) {
7236 cc->nr_migratepages = 0;
edc2ca61 7237 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7238 if (!pfn) {
7239 ret = -EINTR;
7240 break;
7241 }
7242 tries = 0;
7243 } else if (++tries == 5) {
7244 ret = ret < 0 ? ret : -EBUSY;
7245 break;
7246 }
7247
beb51eaa
MK
7248 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7249 &cc->migratepages);
7250 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7251
9c620e2b 7252 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7253 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7254 }
2a6f5124
SP
7255 if (ret < 0) {
7256 putback_movable_pages(&cc->migratepages);
7257 return ret;
7258 }
7259 return 0;
041d3a8c
MN
7260}
7261
7262/**
7263 * alloc_contig_range() -- tries to allocate given range of pages
7264 * @start: start PFN to allocate
7265 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7266 * @migratetype: migratetype of the underlaying pageblocks (either
7267 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7268 * in range must have the same migratetype and it must
7269 * be either of the two.
041d3a8c
MN
7270 *
7271 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7272 * aligned, however it's the caller's responsibility to guarantee that
7273 * we are the only thread that changes migrate type of pageblocks the
7274 * pages fall in.
7275 *
7276 * The PFN range must belong to a single zone.
7277 *
7278 * Returns zero on success or negative error code. On success all
7279 * pages which PFN is in [start, end) are allocated for the caller and
7280 * need to be freed with free_contig_range().
7281 */
0815f3d8
MN
7282int alloc_contig_range(unsigned long start, unsigned long end,
7283 unsigned migratetype)
041d3a8c 7284{
041d3a8c 7285 unsigned long outer_start, outer_end;
d00181b9
KS
7286 unsigned int order;
7287 int ret = 0;
041d3a8c 7288
bb13ffeb
MG
7289 struct compact_control cc = {
7290 .nr_migratepages = 0,
7291 .order = -1,
7292 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7293 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7294 .ignore_skip_hint = true,
7295 };
7296 INIT_LIST_HEAD(&cc.migratepages);
7297
041d3a8c
MN
7298 /*
7299 * What we do here is we mark all pageblocks in range as
7300 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7301 * have different sizes, and due to the way page allocator
7302 * work, we align the range to biggest of the two pages so
7303 * that page allocator won't try to merge buddies from
7304 * different pageblocks and change MIGRATE_ISOLATE to some
7305 * other migration type.
7306 *
7307 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7308 * migrate the pages from an unaligned range (ie. pages that
7309 * we are interested in). This will put all the pages in
7310 * range back to page allocator as MIGRATE_ISOLATE.
7311 *
7312 * When this is done, we take the pages in range from page
7313 * allocator removing them from the buddy system. This way
7314 * page allocator will never consider using them.
7315 *
7316 * This lets us mark the pageblocks back as
7317 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7318 * aligned range but not in the unaligned, original range are
7319 * put back to page allocator so that buddy can use them.
7320 */
7321
7322 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7323 pfn_max_align_up(end), migratetype,
7324 false);
041d3a8c 7325 if (ret)
86a595f9 7326 return ret;
041d3a8c 7327
8ef5849f
JK
7328 /*
7329 * In case of -EBUSY, we'd like to know which page causes problem.
7330 * So, just fall through. We will check it in test_pages_isolated().
7331 */
bb13ffeb 7332 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7333 if (ret && ret != -EBUSY)
041d3a8c
MN
7334 goto done;
7335
7336 /*
7337 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7338 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7339 * more, all pages in [start, end) are free in page allocator.
7340 * What we are going to do is to allocate all pages from
7341 * [start, end) (that is remove them from page allocator).
7342 *
7343 * The only problem is that pages at the beginning and at the
7344 * end of interesting range may be not aligned with pages that
7345 * page allocator holds, ie. they can be part of higher order
7346 * pages. Because of this, we reserve the bigger range and
7347 * once this is done free the pages we are not interested in.
7348 *
7349 * We don't have to hold zone->lock here because the pages are
7350 * isolated thus they won't get removed from buddy.
7351 */
7352
7353 lru_add_drain_all();
510f5507 7354 drain_all_pages(cc.zone);
041d3a8c
MN
7355
7356 order = 0;
7357 outer_start = start;
7358 while (!PageBuddy(pfn_to_page(outer_start))) {
7359 if (++order >= MAX_ORDER) {
8ef5849f
JK
7360 outer_start = start;
7361 break;
041d3a8c
MN
7362 }
7363 outer_start &= ~0UL << order;
7364 }
7365
8ef5849f
JK
7366 if (outer_start != start) {
7367 order = page_order(pfn_to_page(outer_start));
7368
7369 /*
7370 * outer_start page could be small order buddy page and
7371 * it doesn't include start page. Adjust outer_start
7372 * in this case to report failed page properly
7373 * on tracepoint in test_pages_isolated()
7374 */
7375 if (outer_start + (1UL << order) <= start)
7376 outer_start = start;
7377 }
7378
041d3a8c 7379 /* Make sure the range is really isolated. */
b023f468 7380 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7381 pr_info("%s: [%lx, %lx) PFNs busy\n",
7382 __func__, outer_start, end);
041d3a8c
MN
7383 ret = -EBUSY;
7384 goto done;
7385 }
7386
49f223a9 7387 /* Grab isolated pages from freelists. */
bb13ffeb 7388 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7389 if (!outer_end) {
7390 ret = -EBUSY;
7391 goto done;
7392 }
7393
7394 /* Free head and tail (if any) */
7395 if (start != outer_start)
7396 free_contig_range(outer_start, start - outer_start);
7397 if (end != outer_end)
7398 free_contig_range(end, outer_end - end);
7399
7400done:
7401 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7402 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7403 return ret;
7404}
7405
7406void free_contig_range(unsigned long pfn, unsigned nr_pages)
7407{
bcc2b02f
MS
7408 unsigned int count = 0;
7409
7410 for (; nr_pages--; pfn++) {
7411 struct page *page = pfn_to_page(pfn);
7412
7413 count += page_count(page) != 1;
7414 __free_page(page);
7415 }
7416 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7417}
7418#endif
7419
4ed7e022 7420#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7421/*
7422 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7423 * page high values need to be recalulated.
7424 */
4ed7e022
JL
7425void __meminit zone_pcp_update(struct zone *zone)
7426{
0a647f38 7427 unsigned cpu;
c8e251fa 7428 mutex_lock(&pcp_batch_high_lock);
0a647f38 7429 for_each_possible_cpu(cpu)
169f6c19
CS
7430 pageset_set_high_and_batch(zone,
7431 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7432 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7433}
7434#endif
7435
340175b7
JL
7436void zone_pcp_reset(struct zone *zone)
7437{
7438 unsigned long flags;
5a883813
MK
7439 int cpu;
7440 struct per_cpu_pageset *pset;
340175b7
JL
7441
7442 /* avoid races with drain_pages() */
7443 local_irq_save(flags);
7444 if (zone->pageset != &boot_pageset) {
5a883813
MK
7445 for_each_online_cpu(cpu) {
7446 pset = per_cpu_ptr(zone->pageset, cpu);
7447 drain_zonestat(zone, pset);
7448 }
340175b7
JL
7449 free_percpu(zone->pageset);
7450 zone->pageset = &boot_pageset;
7451 }
7452 local_irq_restore(flags);
7453}
7454
6dcd73d7 7455#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7456/*
b9eb6319
JK
7457 * All pages in the range must be in a single zone and isolated
7458 * before calling this.
0c0e6195
KH
7459 */
7460void
7461__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7462{
7463 struct page *page;
7464 struct zone *zone;
7aeb09f9 7465 unsigned int order, i;
0c0e6195
KH
7466 unsigned long pfn;
7467 unsigned long flags;
7468 /* find the first valid pfn */
7469 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7470 if (pfn_valid(pfn))
7471 break;
7472 if (pfn == end_pfn)
7473 return;
7474 zone = page_zone(pfn_to_page(pfn));
7475 spin_lock_irqsave(&zone->lock, flags);
7476 pfn = start_pfn;
7477 while (pfn < end_pfn) {
7478 if (!pfn_valid(pfn)) {
7479 pfn++;
7480 continue;
7481 }
7482 page = pfn_to_page(pfn);
b023f468
WC
7483 /*
7484 * The HWPoisoned page may be not in buddy system, and
7485 * page_count() is not 0.
7486 */
7487 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7488 pfn++;
7489 SetPageReserved(page);
7490 continue;
7491 }
7492
0c0e6195
KH
7493 BUG_ON(page_count(page));
7494 BUG_ON(!PageBuddy(page));
7495 order = page_order(page);
7496#ifdef CONFIG_DEBUG_VM
1170532b
JP
7497 pr_info("remove from free list %lx %d %lx\n",
7498 pfn, 1 << order, end_pfn);
0c0e6195
KH
7499#endif
7500 list_del(&page->lru);
7501 rmv_page_order(page);
7502 zone->free_area[order].nr_free--;
0c0e6195
KH
7503 for (i = 0; i < (1 << order); i++)
7504 SetPageReserved((page+i));
7505 pfn += (1 << order);
7506 }
7507 spin_unlock_irqrestore(&zone->lock, flags);
7508}
7509#endif
8d22ba1b 7510
8d22ba1b
WF
7511bool is_free_buddy_page(struct page *page)
7512{
7513 struct zone *zone = page_zone(page);
7514 unsigned long pfn = page_to_pfn(page);
7515 unsigned long flags;
7aeb09f9 7516 unsigned int order;
8d22ba1b
WF
7517
7518 spin_lock_irqsave(&zone->lock, flags);
7519 for (order = 0; order < MAX_ORDER; order++) {
7520 struct page *page_head = page - (pfn & ((1 << order) - 1));
7521
7522 if (PageBuddy(page_head) && page_order(page_head) >= order)
7523 break;
7524 }
7525 spin_unlock_irqrestore(&zone->lock, flags);
7526
7527 return order < MAX_ORDER;
7528}