]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/page_alloc.c
mm/debug_pagealloc.c: clean-up guard page handling code
[thirdparty/kernel/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
1da177e4 67
7ee3d4e8 68#include <asm/sections.h>
1da177e4 69#include <asm/tlbflush.h>
ac924c60 70#include <asm/div64.h>
1da177e4
LT
71#include "internal.h"
72
c8e251fa
CS
73/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 75#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 76
72812019
LS
77#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78DEFINE_PER_CPU(int, numa_node);
79EXPORT_PER_CPU_SYMBOL(numa_node);
80#endif
81
7aac7898
LS
82#ifdef CONFIG_HAVE_MEMORYLESS_NODES
83/*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 91int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
92#endif
93
1da177e4 94/*
13808910 95 * Array of node states.
1da177e4 96 */
13808910
CL
97nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 [N_POSSIBLE] = NODE_MASK_ALL,
99 [N_ONLINE] = { { [0] = 1UL } },
100#ifndef CONFIG_NUMA
101 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
102#ifdef CONFIG_HIGHMEM
103 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
104#endif
105#ifdef CONFIG_MOVABLE_NODE
106 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
107#endif
108 [N_CPU] = { { [0] = 1UL } },
109#endif /* NUMA */
110};
111EXPORT_SYMBOL(node_states);
112
c3d5f5f0
JL
113/* Protect totalram_pages and zone->managed_pages */
114static DEFINE_SPINLOCK(managed_page_count_lock);
115
6c231b7b 116unsigned long totalram_pages __read_mostly;
cb45b0e9 117unsigned long totalreserve_pages __read_mostly;
e48322ab 118unsigned long totalcma_pages __read_mostly;
ab8fabd4 119
1b76b02f 120int percpu_pagelist_fraction;
dcce284a 121gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 122
bb14c2c7
VB
123/*
124 * A cached value of the page's pageblock's migratetype, used when the page is
125 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127 * Also the migratetype set in the page does not necessarily match the pcplist
128 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129 * other index - this ensures that it will be put on the correct CMA freelist.
130 */
131static inline int get_pcppage_migratetype(struct page *page)
132{
133 return page->index;
134}
135
136static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137{
138 page->index = migratetype;
139}
140
452aa699
RW
141#ifdef CONFIG_PM_SLEEP
142/*
143 * The following functions are used by the suspend/hibernate code to temporarily
144 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145 * while devices are suspended. To avoid races with the suspend/hibernate code,
146 * they should always be called with pm_mutex held (gfp_allowed_mask also should
147 * only be modified with pm_mutex held, unless the suspend/hibernate code is
148 * guaranteed not to run in parallel with that modification).
149 */
c9e664f1
RW
150
151static gfp_t saved_gfp_mask;
152
153void pm_restore_gfp_mask(void)
452aa699
RW
154{
155 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
156 if (saved_gfp_mask) {
157 gfp_allowed_mask = saved_gfp_mask;
158 saved_gfp_mask = 0;
159 }
452aa699
RW
160}
161
c9e664f1 162void pm_restrict_gfp_mask(void)
452aa699 163{
452aa699 164 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
165 WARN_ON(saved_gfp_mask);
166 saved_gfp_mask = gfp_allowed_mask;
d0164adc 167 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 168}
f90ac398
MG
169
170bool pm_suspended_storage(void)
171{
d0164adc 172 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
173 return false;
174 return true;
175}
452aa699
RW
176#endif /* CONFIG_PM_SLEEP */
177
d9c23400 178#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 179unsigned int pageblock_order __read_mostly;
d9c23400
MG
180#endif
181
d98c7a09 182static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 183
1da177e4
LT
184/*
185 * results with 256, 32 in the lowmem_reserve sysctl:
186 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187 * 1G machine -> (16M dma, 784M normal, 224M high)
188 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 190 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
191 *
192 * TBD: should special case ZONE_DMA32 machines here - in those we normally
193 * don't need any ZONE_NORMAL reservation
1da177e4 194 */
2f1b6248 195int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 196#ifdef CONFIG_ZONE_DMA
2f1b6248 197 256,
4b51d669 198#endif
fb0e7942 199#ifdef CONFIG_ZONE_DMA32
2f1b6248 200 256,
fb0e7942 201#endif
e53ef38d 202#ifdef CONFIG_HIGHMEM
2a1e274a 203 32,
e53ef38d 204#endif
2a1e274a 205 32,
2f1b6248 206};
1da177e4
LT
207
208EXPORT_SYMBOL(totalram_pages);
1da177e4 209
15ad7cdc 210static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 211#ifdef CONFIG_ZONE_DMA
2f1b6248 212 "DMA",
4b51d669 213#endif
fb0e7942 214#ifdef CONFIG_ZONE_DMA32
2f1b6248 215 "DMA32",
fb0e7942 216#endif
2f1b6248 217 "Normal",
e53ef38d 218#ifdef CONFIG_HIGHMEM
2a1e274a 219 "HighMem",
e53ef38d 220#endif
2a1e274a 221 "Movable",
033fbae9
DW
222#ifdef CONFIG_ZONE_DEVICE
223 "Device",
224#endif
2f1b6248
CL
225};
226
60f30350
VB
227char * const migratetype_names[MIGRATE_TYPES] = {
228 "Unmovable",
229 "Movable",
230 "Reclaimable",
231 "HighAtomic",
232#ifdef CONFIG_CMA
233 "CMA",
234#endif
235#ifdef CONFIG_MEMORY_ISOLATION
236 "Isolate",
237#endif
238};
239
f1e61557
KS
240compound_page_dtor * const compound_page_dtors[] = {
241 NULL,
242 free_compound_page,
243#ifdef CONFIG_HUGETLB_PAGE
244 free_huge_page,
245#endif
9a982250
KS
246#ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 free_transhuge_page,
248#endif
f1e61557
KS
249};
250
1da177e4 251int min_free_kbytes = 1024;
42aa83cb 252int user_min_free_kbytes = -1;
795ae7a0 253int watermark_scale_factor = 10;
1da177e4 254
2c85f51d
JB
255static unsigned long __meminitdata nr_kernel_pages;
256static unsigned long __meminitdata nr_all_pages;
a3142c8e 257static unsigned long __meminitdata dma_reserve;
1da177e4 258
0ee332c1
TH
259#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262static unsigned long __initdata required_kernelcore;
263static unsigned long __initdata required_movablecore;
264static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 265static bool mirrored_kernelcore;
0ee332c1
TH
266
267/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268int movable_zone;
269EXPORT_SYMBOL(movable_zone);
270#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 271
418508c1
MS
272#if MAX_NUMNODES > 1
273int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 274int nr_online_nodes __read_mostly = 1;
418508c1 275EXPORT_SYMBOL(nr_node_ids);
62bc62a8 276EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
277#endif
278
9ef9acb0
MG
279int page_group_by_mobility_disabled __read_mostly;
280
3a80a7fa
MG
281#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282static inline void reset_deferred_meminit(pg_data_t *pgdat)
283{
284 pgdat->first_deferred_pfn = ULONG_MAX;
285}
286
287/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 288static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 289{
ef70b6f4
MG
290 int nid = early_pfn_to_nid(pfn);
291
292 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
293 return true;
294
295 return false;
296}
297
298/*
299 * Returns false when the remaining initialisation should be deferred until
300 * later in the boot cycle when it can be parallelised.
301 */
302static inline bool update_defer_init(pg_data_t *pgdat,
303 unsigned long pfn, unsigned long zone_end,
304 unsigned long *nr_initialised)
305{
987b3095
LZ
306 unsigned long max_initialise;
307
3a80a7fa
MG
308 /* Always populate low zones for address-contrained allocations */
309 if (zone_end < pgdat_end_pfn(pgdat))
310 return true;
987b3095
LZ
311 /*
312 * Initialise at least 2G of a node but also take into account that
313 * two large system hashes that can take up 1GB for 0.25TB/node.
314 */
315 max_initialise = max(2UL << (30 - PAGE_SHIFT),
316 (pgdat->node_spanned_pages >> 8));
3a80a7fa 317
3a80a7fa 318 (*nr_initialised)++;
987b3095 319 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
320 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
321 pgdat->first_deferred_pfn = pfn;
322 return false;
323 }
324
325 return true;
326}
327#else
328static inline void reset_deferred_meminit(pg_data_t *pgdat)
329{
330}
331
332static inline bool early_page_uninitialised(unsigned long pfn)
333{
334 return false;
335}
336
337static inline bool update_defer_init(pg_data_t *pgdat,
338 unsigned long pfn, unsigned long zone_end,
339 unsigned long *nr_initialised)
340{
341 return true;
342}
343#endif
344
0b423ca2
MG
345/* Return a pointer to the bitmap storing bits affecting a block of pages */
346static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 unsigned long pfn)
348{
349#ifdef CONFIG_SPARSEMEM
350 return __pfn_to_section(pfn)->pageblock_flags;
351#else
352 return page_zone(page)->pageblock_flags;
353#endif /* CONFIG_SPARSEMEM */
354}
355
356static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
357{
358#ifdef CONFIG_SPARSEMEM
359 pfn &= (PAGES_PER_SECTION-1);
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361#else
362 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364#endif /* CONFIG_SPARSEMEM */
365}
366
367/**
368 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
369 * @page: The page within the block of interest
370 * @pfn: The target page frame number
371 * @end_bitidx: The last bit of interest to retrieve
372 * @mask: mask of bits that the caller is interested in
373 *
374 * Return: pageblock_bits flags
375 */
376static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
377 unsigned long pfn,
378 unsigned long end_bitidx,
379 unsigned long mask)
380{
381 unsigned long *bitmap;
382 unsigned long bitidx, word_bitidx;
383 unsigned long word;
384
385 bitmap = get_pageblock_bitmap(page, pfn);
386 bitidx = pfn_to_bitidx(page, pfn);
387 word_bitidx = bitidx / BITS_PER_LONG;
388 bitidx &= (BITS_PER_LONG-1);
389
390 word = bitmap[word_bitidx];
391 bitidx += end_bitidx;
392 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393}
394
395unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
396 unsigned long end_bitidx,
397 unsigned long mask)
398{
399 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400}
401
402static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
403{
404 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405}
406
407/**
408 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
409 * @page: The page within the block of interest
410 * @flags: The flags to set
411 * @pfn: The target page frame number
412 * @end_bitidx: The last bit of interest
413 * @mask: mask of bits that the caller is interested in
414 */
415void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419{
420 unsigned long *bitmap;
421 unsigned long bitidx, word_bitidx;
422 unsigned long old_word, word;
423
424 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
425
426 bitmap = get_pageblock_bitmap(page, pfn);
427 bitidx = pfn_to_bitidx(page, pfn);
428 word_bitidx = bitidx / BITS_PER_LONG;
429 bitidx &= (BITS_PER_LONG-1);
430
431 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432
433 bitidx += end_bitidx;
434 mask <<= (BITS_PER_LONG - bitidx - 1);
435 flags <<= (BITS_PER_LONG - bitidx - 1);
436
437 word = READ_ONCE(bitmap[word_bitidx]);
438 for (;;) {
439 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
440 if (word == old_word)
441 break;
442 word = old_word;
443 }
444}
3a80a7fa 445
ee6f509c 446void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 447{
5d0f3f72
KM
448 if (unlikely(page_group_by_mobility_disabled &&
449 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
450 migratetype = MIGRATE_UNMOVABLE;
451
b2a0ac88
MG
452 set_pageblock_flags_group(page, (unsigned long)migratetype,
453 PB_migrate, PB_migrate_end);
454}
455
13e7444b 456#ifdef CONFIG_DEBUG_VM
c6a57e19 457static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 458{
bdc8cb98
DH
459 int ret = 0;
460 unsigned seq;
461 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 462 unsigned long sp, start_pfn;
c6a57e19 463
bdc8cb98
DH
464 do {
465 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
466 start_pfn = zone->zone_start_pfn;
467 sp = zone->spanned_pages;
108bcc96 468 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
469 ret = 1;
470 } while (zone_span_seqretry(zone, seq));
471
b5e6a5a2 472 if (ret)
613813e8
DH
473 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
474 pfn, zone_to_nid(zone), zone->name,
475 start_pfn, start_pfn + sp);
b5e6a5a2 476
bdc8cb98 477 return ret;
c6a57e19
DH
478}
479
480static int page_is_consistent(struct zone *zone, struct page *page)
481{
14e07298 482 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 483 return 0;
1da177e4 484 if (zone != page_zone(page))
c6a57e19
DH
485 return 0;
486
487 return 1;
488}
489/*
490 * Temporary debugging check for pages not lying within a given zone.
491 */
492static int bad_range(struct zone *zone, struct page *page)
493{
494 if (page_outside_zone_boundaries(zone, page))
1da177e4 495 return 1;
c6a57e19
DH
496 if (!page_is_consistent(zone, page))
497 return 1;
498
1da177e4
LT
499 return 0;
500}
13e7444b
NP
501#else
502static inline int bad_range(struct zone *zone, struct page *page)
503{
504 return 0;
505}
506#endif
507
d230dec1
KS
508static void bad_page(struct page *page, const char *reason,
509 unsigned long bad_flags)
1da177e4 510{
d936cf9b
HD
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 goto out;
523 }
524 if (nr_unshown) {
ff8e8116 525 pr_alert(
1e9e6365 526 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
527 nr_unshown);
528 nr_unshown = 0;
529 }
530 nr_shown = 0;
531 }
532 if (nr_shown++ == 0)
533 resume = jiffies + 60 * HZ;
534
ff8e8116 535 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 536 current->comm, page_to_pfn(page));
ff8e8116
VB
537 __dump_page(page, reason);
538 bad_flags &= page->flags;
539 if (bad_flags)
540 pr_alert("bad because of flags: %#lx(%pGp)\n",
541 bad_flags, &bad_flags);
4e462112 542 dump_page_owner(page);
3dc14741 543
4f31888c 544 print_modules();
1da177e4 545 dump_stack();
d936cf9b 546out:
8cc3b392 547 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 548 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
550}
551
1da177e4
LT
552/*
553 * Higher-order pages are called "compound pages". They are structured thusly:
554 *
1d798ca3 555 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 556 *
1d798ca3
KS
557 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 559 *
1d798ca3
KS
560 * The first tail page's ->compound_dtor holds the offset in array of compound
561 * page destructors. See compound_page_dtors.
1da177e4 562 *
1d798ca3 563 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 564 * This usage means that zero-order pages may not be compound.
1da177e4 565 */
d98c7a09 566
9a982250 567void free_compound_page(struct page *page)
d98c7a09 568{
d85f3385 569 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
570}
571
d00181b9 572void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
573{
574 int i;
575 int nr_pages = 1 << order;
576
f1e61557 577 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
578 set_compound_order(page, order);
579 __SetPageHead(page);
580 for (i = 1; i < nr_pages; i++) {
581 struct page *p = page + i;
58a84aa9 582 set_page_count(p, 0);
1c290f64 583 p->mapping = TAIL_MAPPING;
1d798ca3 584 set_compound_head(p, page);
18229df5 585 }
53f9263b 586 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
587}
588
c0a32fc5
SG
589#ifdef CONFIG_DEBUG_PAGEALLOC
590unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
591bool _debug_pagealloc_enabled __read_mostly
592 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 593EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
594bool _debug_guardpage_enabled __read_mostly;
595
031bc574
JK
596static int __init early_debug_pagealloc(char *buf)
597{
598 if (!buf)
599 return -EINVAL;
2a138dc7 600 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
601}
602early_param("debug_pagealloc", early_debug_pagealloc);
603
e30825f1
JK
604static bool need_debug_guardpage(void)
605{
031bc574
JK
606 /* If we don't use debug_pagealloc, we don't need guard page */
607 if (!debug_pagealloc_enabled())
608 return false;
609
e30825f1
JK
610 return true;
611}
612
613static void init_debug_guardpage(void)
614{
031bc574
JK
615 if (!debug_pagealloc_enabled())
616 return;
617
e30825f1
JK
618 _debug_guardpage_enabled = true;
619}
620
621struct page_ext_operations debug_guardpage_ops = {
622 .need = need_debug_guardpage,
623 .init = init_debug_guardpage,
624};
c0a32fc5
SG
625
626static int __init debug_guardpage_minorder_setup(char *buf)
627{
628 unsigned long res;
629
630 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 631 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
632 return 0;
633 }
634 _debug_guardpage_minorder = res;
1170532b 635 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
636 return 0;
637}
638__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
639
acbc15a4 640static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 641 unsigned int order, int migratetype)
c0a32fc5 642{
e30825f1
JK
643 struct page_ext *page_ext;
644
645 if (!debug_guardpage_enabled())
acbc15a4
JK
646 return false;
647
648 if (order >= debug_guardpage_minorder())
649 return false;
e30825f1
JK
650
651 page_ext = lookup_page_ext(page);
f86e4271 652 if (unlikely(!page_ext))
acbc15a4 653 return false;
f86e4271 654
e30825f1
JK
655 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
656
2847cf95
JK
657 INIT_LIST_HEAD(&page->lru);
658 set_page_private(page, order);
659 /* Guard pages are not available for any usage */
660 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
661
662 return true;
c0a32fc5
SG
663}
664
2847cf95
JK
665static inline void clear_page_guard(struct zone *zone, struct page *page,
666 unsigned int order, int migratetype)
c0a32fc5 667{
e30825f1
JK
668 struct page_ext *page_ext;
669
670 if (!debug_guardpage_enabled())
671 return;
672
673 page_ext = lookup_page_ext(page);
f86e4271
YS
674 if (unlikely(!page_ext))
675 return;
676
e30825f1
JK
677 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
678
2847cf95
JK
679 set_page_private(page, 0);
680 if (!is_migrate_isolate(migratetype))
681 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
682}
683#else
e30825f1 684struct page_ext_operations debug_guardpage_ops = { NULL, };
acbc15a4
JK
685static inline bool set_page_guard(struct zone *zone, struct page *page,
686 unsigned int order, int migratetype) { return false; }
2847cf95
JK
687static inline void clear_page_guard(struct zone *zone, struct page *page,
688 unsigned int order, int migratetype) {}
c0a32fc5
SG
689#endif
690
7aeb09f9 691static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 692{
4c21e2f2 693 set_page_private(page, order);
676165a8 694 __SetPageBuddy(page);
1da177e4
LT
695}
696
697static inline void rmv_page_order(struct page *page)
698{
676165a8 699 __ClearPageBuddy(page);
4c21e2f2 700 set_page_private(page, 0);
1da177e4
LT
701}
702
1da177e4
LT
703/*
704 * This function checks whether a page is free && is the buddy
705 * we can do coalesce a page and its buddy if
13e7444b 706 * (a) the buddy is not in a hole &&
676165a8 707 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
708 * (c) a page and its buddy have the same order &&
709 * (d) a page and its buddy are in the same zone.
676165a8 710 *
cf6fe945
WSH
711 * For recording whether a page is in the buddy system, we set ->_mapcount
712 * PAGE_BUDDY_MAPCOUNT_VALUE.
713 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
714 * serialized by zone->lock.
1da177e4 715 *
676165a8 716 * For recording page's order, we use page_private(page).
1da177e4 717 */
cb2b95e1 718static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 719 unsigned int order)
1da177e4 720{
14e07298 721 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 722 return 0;
13e7444b 723
c0a32fc5 724 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
725 if (page_zone_id(page) != page_zone_id(buddy))
726 return 0;
727
4c5018ce
WY
728 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
729
c0a32fc5
SG
730 return 1;
731 }
732
cb2b95e1 733 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
734 /*
735 * zone check is done late to avoid uselessly
736 * calculating zone/node ids for pages that could
737 * never merge.
738 */
739 if (page_zone_id(page) != page_zone_id(buddy))
740 return 0;
741
4c5018ce
WY
742 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
743
6aa3001b 744 return 1;
676165a8 745 }
6aa3001b 746 return 0;
1da177e4
LT
747}
748
749/*
750 * Freeing function for a buddy system allocator.
751 *
752 * The concept of a buddy system is to maintain direct-mapped table
753 * (containing bit values) for memory blocks of various "orders".
754 * The bottom level table contains the map for the smallest allocatable
755 * units of memory (here, pages), and each level above it describes
756 * pairs of units from the levels below, hence, "buddies".
757 * At a high level, all that happens here is marking the table entry
758 * at the bottom level available, and propagating the changes upward
759 * as necessary, plus some accounting needed to play nicely with other
760 * parts of the VM system.
761 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
762 * free pages of length of (1 << order) and marked with _mapcount
763 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
764 * field.
1da177e4 765 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
766 * other. That is, if we allocate a small block, and both were
767 * free, the remainder of the region must be split into blocks.
1da177e4 768 * If a block is freed, and its buddy is also free, then this
5f63b720 769 * triggers coalescing into a block of larger size.
1da177e4 770 *
6d49e352 771 * -- nyc
1da177e4
LT
772 */
773
48db57f8 774static inline void __free_one_page(struct page *page,
dc4b0caf 775 unsigned long pfn,
ed0ae21d
MG
776 struct zone *zone, unsigned int order,
777 int migratetype)
1da177e4
LT
778{
779 unsigned long page_idx;
6dda9d55 780 unsigned long combined_idx;
43506fad 781 unsigned long uninitialized_var(buddy_idx);
6dda9d55 782 struct page *buddy;
d9dddbf5
VB
783 unsigned int max_order;
784
785 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 786
d29bb978 787 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 788 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 789
ed0ae21d 790 VM_BUG_ON(migratetype == -1);
d9dddbf5 791 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 792 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 793
d9dddbf5 794 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 795
309381fe
SL
796 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
797 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 798
d9dddbf5 799continue_merging:
3c605096 800 while (order < max_order - 1) {
43506fad
KC
801 buddy_idx = __find_buddy_index(page_idx, order);
802 buddy = page + (buddy_idx - page_idx);
cb2b95e1 803 if (!page_is_buddy(page, buddy, order))
d9dddbf5 804 goto done_merging;
c0a32fc5
SG
805 /*
806 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
807 * merge with it and move up one order.
808 */
809 if (page_is_guard(buddy)) {
2847cf95 810 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
811 } else {
812 list_del(&buddy->lru);
813 zone->free_area[order].nr_free--;
814 rmv_page_order(buddy);
815 }
43506fad 816 combined_idx = buddy_idx & page_idx;
1da177e4
LT
817 page = page + (combined_idx - page_idx);
818 page_idx = combined_idx;
819 order++;
820 }
d9dddbf5
VB
821 if (max_order < MAX_ORDER) {
822 /* If we are here, it means order is >= pageblock_order.
823 * We want to prevent merge between freepages on isolate
824 * pageblock and normal pageblock. Without this, pageblock
825 * isolation could cause incorrect freepage or CMA accounting.
826 *
827 * We don't want to hit this code for the more frequent
828 * low-order merging.
829 */
830 if (unlikely(has_isolate_pageblock(zone))) {
831 int buddy_mt;
832
833 buddy_idx = __find_buddy_index(page_idx, order);
834 buddy = page + (buddy_idx - page_idx);
835 buddy_mt = get_pageblock_migratetype(buddy);
836
837 if (migratetype != buddy_mt
838 && (is_migrate_isolate(migratetype) ||
839 is_migrate_isolate(buddy_mt)))
840 goto done_merging;
841 }
842 max_order++;
843 goto continue_merging;
844 }
845
846done_merging:
1da177e4 847 set_page_order(page, order);
6dda9d55
CZ
848
849 /*
850 * If this is not the largest possible page, check if the buddy
851 * of the next-highest order is free. If it is, it's possible
852 * that pages are being freed that will coalesce soon. In case,
853 * that is happening, add the free page to the tail of the list
854 * so it's less likely to be used soon and more likely to be merged
855 * as a higher order page
856 */
b7f50cfa 857 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 858 struct page *higher_page, *higher_buddy;
43506fad
KC
859 combined_idx = buddy_idx & page_idx;
860 higher_page = page + (combined_idx - page_idx);
861 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 862 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
863 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
864 list_add_tail(&page->lru,
865 &zone->free_area[order].free_list[migratetype]);
866 goto out;
867 }
868 }
869
870 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
871out:
1da177e4
LT
872 zone->free_area[order].nr_free++;
873}
874
7bfec6f4
MG
875/*
876 * A bad page could be due to a number of fields. Instead of multiple branches,
877 * try and check multiple fields with one check. The caller must do a detailed
878 * check if necessary.
879 */
880static inline bool page_expected_state(struct page *page,
881 unsigned long check_flags)
882{
883 if (unlikely(atomic_read(&page->_mapcount) != -1))
884 return false;
885
886 if (unlikely((unsigned long)page->mapping |
887 page_ref_count(page) |
888#ifdef CONFIG_MEMCG
889 (unsigned long)page->mem_cgroup |
890#endif
891 (page->flags & check_flags)))
892 return false;
893
894 return true;
895}
896
bb552ac6 897static void free_pages_check_bad(struct page *page)
1da177e4 898{
7bfec6f4
MG
899 const char *bad_reason;
900 unsigned long bad_flags;
901
7bfec6f4
MG
902 bad_reason = NULL;
903 bad_flags = 0;
f0b791a3 904
53f9263b 905 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
906 bad_reason = "nonzero mapcount";
907 if (unlikely(page->mapping != NULL))
908 bad_reason = "non-NULL mapping";
fe896d18 909 if (unlikely(page_ref_count(page) != 0))
0139aa7b 910 bad_reason = "nonzero _refcount";
f0b791a3
DH
911 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
912 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
913 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
914 }
9edad6ea
JW
915#ifdef CONFIG_MEMCG
916 if (unlikely(page->mem_cgroup))
917 bad_reason = "page still charged to cgroup";
918#endif
7bfec6f4 919 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
920}
921
922static inline int free_pages_check(struct page *page)
923{
da838d4f 924 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 925 return 0;
bb552ac6
MG
926
927 /* Something has gone sideways, find it */
928 free_pages_check_bad(page);
7bfec6f4 929 return 1;
1da177e4
LT
930}
931
4db7548c
MG
932static int free_tail_pages_check(struct page *head_page, struct page *page)
933{
934 int ret = 1;
935
936 /*
937 * We rely page->lru.next never has bit 0 set, unless the page
938 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
939 */
940 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
941
942 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
943 ret = 0;
944 goto out;
945 }
946 switch (page - head_page) {
947 case 1:
948 /* the first tail page: ->mapping is compound_mapcount() */
949 if (unlikely(compound_mapcount(page))) {
950 bad_page(page, "nonzero compound_mapcount", 0);
951 goto out;
952 }
953 break;
954 case 2:
955 /*
956 * the second tail page: ->mapping is
957 * page_deferred_list().next -- ignore value.
958 */
959 break;
960 default:
961 if (page->mapping != TAIL_MAPPING) {
962 bad_page(page, "corrupted mapping in tail page", 0);
963 goto out;
964 }
965 break;
966 }
967 if (unlikely(!PageTail(page))) {
968 bad_page(page, "PageTail not set", 0);
969 goto out;
970 }
971 if (unlikely(compound_head(page) != head_page)) {
972 bad_page(page, "compound_head not consistent", 0);
973 goto out;
974 }
975 ret = 0;
976out:
977 page->mapping = NULL;
978 clear_compound_head(page);
979 return ret;
980}
981
e2769dbd
MG
982static __always_inline bool free_pages_prepare(struct page *page,
983 unsigned int order, bool check_free)
4db7548c 984{
e2769dbd 985 int bad = 0;
4db7548c 986
4db7548c
MG
987 VM_BUG_ON_PAGE(PageTail(page), page);
988
e2769dbd
MG
989 trace_mm_page_free(page, order);
990 kmemcheck_free_shadow(page, order);
e2769dbd
MG
991
992 /*
993 * Check tail pages before head page information is cleared to
994 * avoid checking PageCompound for order-0 pages.
995 */
996 if (unlikely(order)) {
997 bool compound = PageCompound(page);
998 int i;
999
1000 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1001
9a73f61b
KS
1002 if (compound)
1003 ClearPageDoubleMap(page);
e2769dbd
MG
1004 for (i = 1; i < (1 << order); i++) {
1005 if (compound)
1006 bad += free_tail_pages_check(page, page + i);
1007 if (unlikely(free_pages_check(page + i))) {
1008 bad++;
1009 continue;
1010 }
1011 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1012 }
1013 }
bda807d4 1014 if (PageMappingFlags(page))
4db7548c 1015 page->mapping = NULL;
c4159a75 1016 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1017 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1018 if (check_free)
1019 bad += free_pages_check(page);
1020 if (bad)
1021 return false;
4db7548c 1022
e2769dbd
MG
1023 page_cpupid_reset_last(page);
1024 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1025 reset_page_owner(page, order);
4db7548c
MG
1026
1027 if (!PageHighMem(page)) {
1028 debug_check_no_locks_freed(page_address(page),
e2769dbd 1029 PAGE_SIZE << order);
4db7548c 1030 debug_check_no_obj_freed(page_address(page),
e2769dbd 1031 PAGE_SIZE << order);
4db7548c 1032 }
e2769dbd
MG
1033 arch_free_page(page, order);
1034 kernel_poison_pages(page, 1 << order, 0);
1035 kernel_map_pages(page, 1 << order, 0);
29b52de1 1036 kasan_free_pages(page, order);
4db7548c 1037
4db7548c
MG
1038 return true;
1039}
1040
e2769dbd
MG
1041#ifdef CONFIG_DEBUG_VM
1042static inline bool free_pcp_prepare(struct page *page)
1043{
1044 return free_pages_prepare(page, 0, true);
1045}
1046
1047static inline bool bulkfree_pcp_prepare(struct page *page)
1048{
1049 return false;
1050}
1051#else
1052static bool free_pcp_prepare(struct page *page)
1053{
1054 return free_pages_prepare(page, 0, false);
1055}
1056
4db7548c
MG
1057static bool bulkfree_pcp_prepare(struct page *page)
1058{
1059 return free_pages_check(page);
1060}
1061#endif /* CONFIG_DEBUG_VM */
1062
1da177e4 1063/*
5f8dcc21 1064 * Frees a number of pages from the PCP lists
1da177e4 1065 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1066 * count is the number of pages to free.
1da177e4
LT
1067 *
1068 * If the zone was previously in an "all pages pinned" state then look to
1069 * see if this freeing clears that state.
1070 *
1071 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1072 * pinned" detection logic.
1073 */
5f8dcc21
MG
1074static void free_pcppages_bulk(struct zone *zone, int count,
1075 struct per_cpu_pages *pcp)
1da177e4 1076{
5f8dcc21 1077 int migratetype = 0;
a6f9edd6 1078 int batch_free = 0;
0d5d823a 1079 unsigned long nr_scanned;
3777999d 1080 bool isolated_pageblocks;
5f8dcc21 1081
c54ad30c 1082 spin_lock(&zone->lock);
3777999d 1083 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1084 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1085 if (nr_scanned)
599d0c95 1086 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1087
e5b31ac2 1088 while (count) {
48db57f8 1089 struct page *page;
5f8dcc21
MG
1090 struct list_head *list;
1091
1092 /*
a6f9edd6
MG
1093 * Remove pages from lists in a round-robin fashion. A
1094 * batch_free count is maintained that is incremented when an
1095 * empty list is encountered. This is so more pages are freed
1096 * off fuller lists instead of spinning excessively around empty
1097 * lists
5f8dcc21
MG
1098 */
1099 do {
a6f9edd6 1100 batch_free++;
5f8dcc21
MG
1101 if (++migratetype == MIGRATE_PCPTYPES)
1102 migratetype = 0;
1103 list = &pcp->lists[migratetype];
1104 } while (list_empty(list));
48db57f8 1105
1d16871d
NK
1106 /* This is the only non-empty list. Free them all. */
1107 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1108 batch_free = count;
1d16871d 1109
a6f9edd6 1110 do {
770c8aaa
BZ
1111 int mt; /* migratetype of the to-be-freed page */
1112
a16601c5 1113 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1114 /* must delete as __free_one_page list manipulates */
1115 list_del(&page->lru);
aa016d14 1116
bb14c2c7 1117 mt = get_pcppage_migratetype(page);
aa016d14
VB
1118 /* MIGRATE_ISOLATE page should not go to pcplists */
1119 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1120 /* Pageblock could have been isolated meanwhile */
3777999d 1121 if (unlikely(isolated_pageblocks))
51bb1a40 1122 mt = get_pageblock_migratetype(page);
51bb1a40 1123
4db7548c
MG
1124 if (bulkfree_pcp_prepare(page))
1125 continue;
1126
dc4b0caf 1127 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1128 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1129 } while (--count && --batch_free && !list_empty(list));
1da177e4 1130 }
c54ad30c 1131 spin_unlock(&zone->lock);
1da177e4
LT
1132}
1133
dc4b0caf
MG
1134static void free_one_page(struct zone *zone,
1135 struct page *page, unsigned long pfn,
7aeb09f9 1136 unsigned int order,
ed0ae21d 1137 int migratetype)
1da177e4 1138{
0d5d823a 1139 unsigned long nr_scanned;
006d22d9 1140 spin_lock(&zone->lock);
599d0c95 1141 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1142 if (nr_scanned)
599d0c95 1143 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1144
ad53f92e
JK
1145 if (unlikely(has_isolate_pageblock(zone) ||
1146 is_migrate_isolate(migratetype))) {
1147 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1148 }
dc4b0caf 1149 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1150 spin_unlock(&zone->lock);
48db57f8
NP
1151}
1152
1e8ce83c
RH
1153static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1154 unsigned long zone, int nid)
1155{
1e8ce83c 1156 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1157 init_page_count(page);
1158 page_mapcount_reset(page);
1159 page_cpupid_reset_last(page);
1e8ce83c 1160
1e8ce83c
RH
1161 INIT_LIST_HEAD(&page->lru);
1162#ifdef WANT_PAGE_VIRTUAL
1163 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1164 if (!is_highmem_idx(zone))
1165 set_page_address(page, __va(pfn << PAGE_SHIFT));
1166#endif
1167}
1168
1169static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1170 int nid)
1171{
1172 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1173}
1174
7e18adb4
MG
1175#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1176static void init_reserved_page(unsigned long pfn)
1177{
1178 pg_data_t *pgdat;
1179 int nid, zid;
1180
1181 if (!early_page_uninitialised(pfn))
1182 return;
1183
1184 nid = early_pfn_to_nid(pfn);
1185 pgdat = NODE_DATA(nid);
1186
1187 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1188 struct zone *zone = &pgdat->node_zones[zid];
1189
1190 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1191 break;
1192 }
1193 __init_single_pfn(pfn, zid, nid);
1194}
1195#else
1196static inline void init_reserved_page(unsigned long pfn)
1197{
1198}
1199#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1200
92923ca3
NZ
1201/*
1202 * Initialised pages do not have PageReserved set. This function is
1203 * called for each range allocated by the bootmem allocator and
1204 * marks the pages PageReserved. The remaining valid pages are later
1205 * sent to the buddy page allocator.
1206 */
4b50bcc7 1207void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1208{
1209 unsigned long start_pfn = PFN_DOWN(start);
1210 unsigned long end_pfn = PFN_UP(end);
1211
7e18adb4
MG
1212 for (; start_pfn < end_pfn; start_pfn++) {
1213 if (pfn_valid(start_pfn)) {
1214 struct page *page = pfn_to_page(start_pfn);
1215
1216 init_reserved_page(start_pfn);
1d798ca3
KS
1217
1218 /* Avoid false-positive PageTail() */
1219 INIT_LIST_HEAD(&page->lru);
1220
7e18adb4
MG
1221 SetPageReserved(page);
1222 }
1223 }
92923ca3
NZ
1224}
1225
ec95f53a
KM
1226static void __free_pages_ok(struct page *page, unsigned int order)
1227{
1228 unsigned long flags;
95e34412 1229 int migratetype;
dc4b0caf 1230 unsigned long pfn = page_to_pfn(page);
ec95f53a 1231
e2769dbd 1232 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1233 return;
1234
cfc47a28 1235 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1236 local_irq_save(flags);
f8891e5e 1237 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1238 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1239 local_irq_restore(flags);
1da177e4
LT
1240}
1241
949698a3 1242static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1243{
c3993076 1244 unsigned int nr_pages = 1 << order;
e2d0bd2b 1245 struct page *p = page;
c3993076 1246 unsigned int loop;
a226f6c8 1247
e2d0bd2b
YL
1248 prefetchw(p);
1249 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1250 prefetchw(p + 1);
c3993076
JW
1251 __ClearPageReserved(p);
1252 set_page_count(p, 0);
a226f6c8 1253 }
e2d0bd2b
YL
1254 __ClearPageReserved(p);
1255 set_page_count(p, 0);
c3993076 1256
e2d0bd2b 1257 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1258 set_page_refcounted(page);
1259 __free_pages(page, order);
a226f6c8
DH
1260}
1261
75a592a4
MG
1262#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1263 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1264
75a592a4
MG
1265static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1266
1267int __meminit early_pfn_to_nid(unsigned long pfn)
1268{
7ace9917 1269 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1270 int nid;
1271
7ace9917 1272 spin_lock(&early_pfn_lock);
75a592a4 1273 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1274 if (nid < 0)
e4568d38 1275 nid = first_online_node;
7ace9917
MG
1276 spin_unlock(&early_pfn_lock);
1277
1278 return nid;
75a592a4
MG
1279}
1280#endif
1281
1282#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1283static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1284 struct mminit_pfnnid_cache *state)
1285{
1286 int nid;
1287
1288 nid = __early_pfn_to_nid(pfn, state);
1289 if (nid >= 0 && nid != node)
1290 return false;
1291 return true;
1292}
1293
1294/* Only safe to use early in boot when initialisation is single-threaded */
1295static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1296{
1297 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1298}
1299
1300#else
1301
1302static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1303{
1304 return true;
1305}
1306static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1307 struct mminit_pfnnid_cache *state)
1308{
1309 return true;
1310}
1311#endif
1312
1313
0e1cc95b 1314void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1315 unsigned int order)
1316{
1317 if (early_page_uninitialised(pfn))
1318 return;
949698a3 1319 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1320}
1321
7cf91a98
JK
1322/*
1323 * Check that the whole (or subset of) a pageblock given by the interval of
1324 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1325 * with the migration of free compaction scanner. The scanners then need to
1326 * use only pfn_valid_within() check for arches that allow holes within
1327 * pageblocks.
1328 *
1329 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1330 *
1331 * It's possible on some configurations to have a setup like node0 node1 node0
1332 * i.e. it's possible that all pages within a zones range of pages do not
1333 * belong to a single zone. We assume that a border between node0 and node1
1334 * can occur within a single pageblock, but not a node0 node1 node0
1335 * interleaving within a single pageblock. It is therefore sufficient to check
1336 * the first and last page of a pageblock and avoid checking each individual
1337 * page in a pageblock.
1338 */
1339struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1340 unsigned long end_pfn, struct zone *zone)
1341{
1342 struct page *start_page;
1343 struct page *end_page;
1344
1345 /* end_pfn is one past the range we are checking */
1346 end_pfn--;
1347
1348 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1349 return NULL;
1350
1351 start_page = pfn_to_page(start_pfn);
1352
1353 if (page_zone(start_page) != zone)
1354 return NULL;
1355
1356 end_page = pfn_to_page(end_pfn);
1357
1358 /* This gives a shorter code than deriving page_zone(end_page) */
1359 if (page_zone_id(start_page) != page_zone_id(end_page))
1360 return NULL;
1361
1362 return start_page;
1363}
1364
1365void set_zone_contiguous(struct zone *zone)
1366{
1367 unsigned long block_start_pfn = zone->zone_start_pfn;
1368 unsigned long block_end_pfn;
1369
1370 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1371 for (; block_start_pfn < zone_end_pfn(zone);
1372 block_start_pfn = block_end_pfn,
1373 block_end_pfn += pageblock_nr_pages) {
1374
1375 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1376
1377 if (!__pageblock_pfn_to_page(block_start_pfn,
1378 block_end_pfn, zone))
1379 return;
1380 }
1381
1382 /* We confirm that there is no hole */
1383 zone->contiguous = true;
1384}
1385
1386void clear_zone_contiguous(struct zone *zone)
1387{
1388 zone->contiguous = false;
1389}
1390
7e18adb4 1391#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1392static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1393 unsigned long pfn, int nr_pages)
1394{
1395 int i;
1396
1397 if (!page)
1398 return;
1399
1400 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1401 if (nr_pages == pageblock_nr_pages &&
1402 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1403 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1404 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1405 return;
1406 }
1407
e780149b
XQ
1408 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1409 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1410 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1411 __free_pages_boot_core(page, 0);
e780149b 1412 }
a4de83dd
MG
1413}
1414
d3cd131d
NS
1415/* Completion tracking for deferred_init_memmap() threads */
1416static atomic_t pgdat_init_n_undone __initdata;
1417static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1418
1419static inline void __init pgdat_init_report_one_done(void)
1420{
1421 if (atomic_dec_and_test(&pgdat_init_n_undone))
1422 complete(&pgdat_init_all_done_comp);
1423}
0e1cc95b 1424
7e18adb4 1425/* Initialise remaining memory on a node */
0e1cc95b 1426static int __init deferred_init_memmap(void *data)
7e18adb4 1427{
0e1cc95b
MG
1428 pg_data_t *pgdat = data;
1429 int nid = pgdat->node_id;
7e18adb4
MG
1430 struct mminit_pfnnid_cache nid_init_state = { };
1431 unsigned long start = jiffies;
1432 unsigned long nr_pages = 0;
1433 unsigned long walk_start, walk_end;
1434 int i, zid;
1435 struct zone *zone;
7e18adb4 1436 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1437 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1438
0e1cc95b 1439 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1440 pgdat_init_report_one_done();
0e1cc95b
MG
1441 return 0;
1442 }
1443
1444 /* Bind memory initialisation thread to a local node if possible */
1445 if (!cpumask_empty(cpumask))
1446 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1447
1448 /* Sanity check boundaries */
1449 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1450 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1451 pgdat->first_deferred_pfn = ULONG_MAX;
1452
1453 /* Only the highest zone is deferred so find it */
1454 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1455 zone = pgdat->node_zones + zid;
1456 if (first_init_pfn < zone_end_pfn(zone))
1457 break;
1458 }
1459
1460 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1461 unsigned long pfn, end_pfn;
54608c3f 1462 struct page *page = NULL;
a4de83dd
MG
1463 struct page *free_base_page = NULL;
1464 unsigned long free_base_pfn = 0;
1465 int nr_to_free = 0;
7e18adb4
MG
1466
1467 end_pfn = min(walk_end, zone_end_pfn(zone));
1468 pfn = first_init_pfn;
1469 if (pfn < walk_start)
1470 pfn = walk_start;
1471 if (pfn < zone->zone_start_pfn)
1472 pfn = zone->zone_start_pfn;
1473
1474 for (; pfn < end_pfn; pfn++) {
54608c3f 1475 if (!pfn_valid_within(pfn))
a4de83dd 1476 goto free_range;
7e18adb4 1477
54608c3f
MG
1478 /*
1479 * Ensure pfn_valid is checked every
e780149b 1480 * pageblock_nr_pages for memory holes
54608c3f 1481 */
e780149b 1482 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1483 if (!pfn_valid(pfn)) {
1484 page = NULL;
a4de83dd 1485 goto free_range;
54608c3f
MG
1486 }
1487 }
1488
1489 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1490 page = NULL;
a4de83dd 1491 goto free_range;
54608c3f
MG
1492 }
1493
1494 /* Minimise pfn page lookups and scheduler checks */
e780149b 1495 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1496 page++;
1497 } else {
a4de83dd
MG
1498 nr_pages += nr_to_free;
1499 deferred_free_range(free_base_page,
1500 free_base_pfn, nr_to_free);
1501 free_base_page = NULL;
1502 free_base_pfn = nr_to_free = 0;
1503
54608c3f
MG
1504 page = pfn_to_page(pfn);
1505 cond_resched();
1506 }
7e18adb4
MG
1507
1508 if (page->flags) {
1509 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1510 goto free_range;
7e18adb4
MG
1511 }
1512
1513 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1514 if (!free_base_page) {
1515 free_base_page = page;
1516 free_base_pfn = pfn;
1517 nr_to_free = 0;
1518 }
1519 nr_to_free++;
1520
1521 /* Where possible, batch up pages for a single free */
1522 continue;
1523free_range:
1524 /* Free the current block of pages to allocator */
1525 nr_pages += nr_to_free;
1526 deferred_free_range(free_base_page, free_base_pfn,
1527 nr_to_free);
1528 free_base_page = NULL;
1529 free_base_pfn = nr_to_free = 0;
7e18adb4 1530 }
e780149b
XQ
1531 /* Free the last block of pages to allocator */
1532 nr_pages += nr_to_free;
1533 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1534
7e18adb4
MG
1535 first_init_pfn = max(end_pfn, first_init_pfn);
1536 }
1537
1538 /* Sanity check that the next zone really is unpopulated */
1539 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1540
0e1cc95b 1541 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1542 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1543
1544 pgdat_init_report_one_done();
0e1cc95b
MG
1545 return 0;
1546}
7cf91a98 1547#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1548
1549void __init page_alloc_init_late(void)
1550{
7cf91a98
JK
1551 struct zone *zone;
1552
1553#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1554 int nid;
1555
d3cd131d
NS
1556 /* There will be num_node_state(N_MEMORY) threads */
1557 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1558 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1559 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1560 }
1561
1562 /* Block until all are initialised */
d3cd131d 1563 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1564
1565 /* Reinit limits that are based on free pages after the kernel is up */
1566 files_maxfiles_init();
7cf91a98
JK
1567#endif
1568
1569 for_each_populated_zone(zone)
1570 set_zone_contiguous(zone);
7e18adb4 1571}
7e18adb4 1572
47118af0 1573#ifdef CONFIG_CMA
9cf510a5 1574/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1575void __init init_cma_reserved_pageblock(struct page *page)
1576{
1577 unsigned i = pageblock_nr_pages;
1578 struct page *p = page;
1579
1580 do {
1581 __ClearPageReserved(p);
1582 set_page_count(p, 0);
1583 } while (++p, --i);
1584
47118af0 1585 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1586
1587 if (pageblock_order >= MAX_ORDER) {
1588 i = pageblock_nr_pages;
1589 p = page;
1590 do {
1591 set_page_refcounted(p);
1592 __free_pages(p, MAX_ORDER - 1);
1593 p += MAX_ORDER_NR_PAGES;
1594 } while (i -= MAX_ORDER_NR_PAGES);
1595 } else {
1596 set_page_refcounted(page);
1597 __free_pages(page, pageblock_order);
1598 }
1599
3dcc0571 1600 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1601}
1602#endif
1da177e4
LT
1603
1604/*
1605 * The order of subdivision here is critical for the IO subsystem.
1606 * Please do not alter this order without good reasons and regression
1607 * testing. Specifically, as large blocks of memory are subdivided,
1608 * the order in which smaller blocks are delivered depends on the order
1609 * they're subdivided in this function. This is the primary factor
1610 * influencing the order in which pages are delivered to the IO
1611 * subsystem according to empirical testing, and this is also justified
1612 * by considering the behavior of a buddy system containing a single
1613 * large block of memory acted on by a series of small allocations.
1614 * This behavior is a critical factor in sglist merging's success.
1615 *
6d49e352 1616 * -- nyc
1da177e4 1617 */
085cc7d5 1618static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1619 int low, int high, struct free_area *area,
1620 int migratetype)
1da177e4
LT
1621{
1622 unsigned long size = 1 << high;
1623
1624 while (high > low) {
1625 area--;
1626 high--;
1627 size >>= 1;
309381fe 1628 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1629
acbc15a4
JK
1630 /*
1631 * Mark as guard pages (or page), that will allow to
1632 * merge back to allocator when buddy will be freed.
1633 * Corresponding page table entries will not be touched,
1634 * pages will stay not present in virtual address space
1635 */
1636 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1637 continue;
acbc15a4 1638
b2a0ac88 1639 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1640 area->nr_free++;
1641 set_page_order(&page[size], high);
1642 }
1da177e4
LT
1643}
1644
4e611801 1645static void check_new_page_bad(struct page *page)
1da177e4 1646{
4e611801
VB
1647 const char *bad_reason = NULL;
1648 unsigned long bad_flags = 0;
7bfec6f4 1649
53f9263b 1650 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1651 bad_reason = "nonzero mapcount";
1652 if (unlikely(page->mapping != NULL))
1653 bad_reason = "non-NULL mapping";
fe896d18 1654 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1655 bad_reason = "nonzero _count";
f4c18e6f
NH
1656 if (unlikely(page->flags & __PG_HWPOISON)) {
1657 bad_reason = "HWPoisoned (hardware-corrupted)";
1658 bad_flags = __PG_HWPOISON;
e570f56c
NH
1659 /* Don't complain about hwpoisoned pages */
1660 page_mapcount_reset(page); /* remove PageBuddy */
1661 return;
f4c18e6f 1662 }
f0b791a3
DH
1663 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1664 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1665 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1666 }
9edad6ea
JW
1667#ifdef CONFIG_MEMCG
1668 if (unlikely(page->mem_cgroup))
1669 bad_reason = "page still charged to cgroup";
1670#endif
4e611801
VB
1671 bad_page(page, bad_reason, bad_flags);
1672}
1673
1674/*
1675 * This page is about to be returned from the page allocator
1676 */
1677static inline int check_new_page(struct page *page)
1678{
1679 if (likely(page_expected_state(page,
1680 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1681 return 0;
1682
1683 check_new_page_bad(page);
1684 return 1;
2a7684a2
WF
1685}
1686
1414c7f4
LA
1687static inline bool free_pages_prezeroed(bool poisoned)
1688{
1689 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1690 page_poisoning_enabled() && poisoned;
1691}
1692
479f854a
MG
1693#ifdef CONFIG_DEBUG_VM
1694static bool check_pcp_refill(struct page *page)
1695{
1696 return false;
1697}
1698
1699static bool check_new_pcp(struct page *page)
1700{
1701 return check_new_page(page);
1702}
1703#else
1704static bool check_pcp_refill(struct page *page)
1705{
1706 return check_new_page(page);
1707}
1708static bool check_new_pcp(struct page *page)
1709{
1710 return false;
1711}
1712#endif /* CONFIG_DEBUG_VM */
1713
1714static bool check_new_pages(struct page *page, unsigned int order)
1715{
1716 int i;
1717 for (i = 0; i < (1 << order); i++) {
1718 struct page *p = page + i;
1719
1720 if (unlikely(check_new_page(p)))
1721 return true;
1722 }
1723
1724 return false;
1725}
1726
46f24fd8
JK
1727inline void post_alloc_hook(struct page *page, unsigned int order,
1728 gfp_t gfp_flags)
1729{
1730 set_page_private(page, 0);
1731 set_page_refcounted(page);
1732
1733 arch_alloc_page(page, order);
1734 kernel_map_pages(page, 1 << order, 1);
1735 kernel_poison_pages(page, 1 << order, 1);
1736 kasan_alloc_pages(page, order);
1737 set_page_owner(page, order, gfp_flags);
1738}
1739
479f854a 1740static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1741 unsigned int alloc_flags)
2a7684a2
WF
1742{
1743 int i;
1414c7f4 1744 bool poisoned = true;
2a7684a2
WF
1745
1746 for (i = 0; i < (1 << order); i++) {
1747 struct page *p = page + i;
1414c7f4
LA
1748 if (poisoned)
1749 poisoned &= page_is_poisoned(p);
2a7684a2 1750 }
689bcebf 1751
46f24fd8 1752 post_alloc_hook(page, order, gfp_flags);
17cf4406 1753
1414c7f4 1754 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1755 for (i = 0; i < (1 << order); i++)
1756 clear_highpage(page + i);
17cf4406
NP
1757
1758 if (order && (gfp_flags & __GFP_COMP))
1759 prep_compound_page(page, order);
1760
75379191 1761 /*
2f064f34 1762 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1763 * allocate the page. The expectation is that the caller is taking
1764 * steps that will free more memory. The caller should avoid the page
1765 * being used for !PFMEMALLOC purposes.
1766 */
2f064f34
MH
1767 if (alloc_flags & ALLOC_NO_WATERMARKS)
1768 set_page_pfmemalloc(page);
1769 else
1770 clear_page_pfmemalloc(page);
1da177e4
LT
1771}
1772
56fd56b8
MG
1773/*
1774 * Go through the free lists for the given migratetype and remove
1775 * the smallest available page from the freelists
1776 */
728ec980
MG
1777static inline
1778struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1779 int migratetype)
1780{
1781 unsigned int current_order;
b8af2941 1782 struct free_area *area;
56fd56b8
MG
1783 struct page *page;
1784
1785 /* Find a page of the appropriate size in the preferred list */
1786 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1787 area = &(zone->free_area[current_order]);
a16601c5 1788 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1789 struct page, lru);
a16601c5
GT
1790 if (!page)
1791 continue;
56fd56b8
MG
1792 list_del(&page->lru);
1793 rmv_page_order(page);
1794 area->nr_free--;
56fd56b8 1795 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1796 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1797 return page;
1798 }
1799
1800 return NULL;
1801}
1802
1803
b2a0ac88
MG
1804/*
1805 * This array describes the order lists are fallen back to when
1806 * the free lists for the desirable migrate type are depleted
1807 */
47118af0 1808static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1809 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1810 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1811 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1812#ifdef CONFIG_CMA
974a786e 1813 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1814#endif
194159fb 1815#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1816 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1817#endif
b2a0ac88
MG
1818};
1819
dc67647b
JK
1820#ifdef CONFIG_CMA
1821static struct page *__rmqueue_cma_fallback(struct zone *zone,
1822 unsigned int order)
1823{
1824 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1825}
1826#else
1827static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1828 unsigned int order) { return NULL; }
1829#endif
1830
c361be55
MG
1831/*
1832 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1833 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1834 * boundary. If alignment is required, use move_freepages_block()
1835 */
435b405c 1836int move_freepages(struct zone *zone,
b69a7288
AB
1837 struct page *start_page, struct page *end_page,
1838 int migratetype)
c361be55
MG
1839{
1840 struct page *page;
d00181b9 1841 unsigned int order;
d100313f 1842 int pages_moved = 0;
c361be55
MG
1843
1844#ifndef CONFIG_HOLES_IN_ZONE
1845 /*
1846 * page_zone is not safe to call in this context when
1847 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1848 * anyway as we check zone boundaries in move_freepages_block().
1849 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1850 * grouping pages by mobility
c361be55 1851 */
97ee4ba7 1852 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1853#endif
1854
1855 for (page = start_page; page <= end_page;) {
344c790e 1856 /* Make sure we are not inadvertently changing nodes */
309381fe 1857 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1858
c361be55
MG
1859 if (!pfn_valid_within(page_to_pfn(page))) {
1860 page++;
1861 continue;
1862 }
1863
1864 if (!PageBuddy(page)) {
1865 page++;
1866 continue;
1867 }
1868
1869 order = page_order(page);
84be48d8
KS
1870 list_move(&page->lru,
1871 &zone->free_area[order].free_list[migratetype]);
c361be55 1872 page += 1 << order;
d100313f 1873 pages_moved += 1 << order;
c361be55
MG
1874 }
1875
d100313f 1876 return pages_moved;
c361be55
MG
1877}
1878
ee6f509c 1879int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1880 int migratetype)
c361be55
MG
1881{
1882 unsigned long start_pfn, end_pfn;
1883 struct page *start_page, *end_page;
1884
1885 start_pfn = page_to_pfn(page);
d9c23400 1886 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1887 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1888 end_page = start_page + pageblock_nr_pages - 1;
1889 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1890
1891 /* Do not cross zone boundaries */
108bcc96 1892 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1893 start_page = page;
108bcc96 1894 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1895 return 0;
1896
1897 return move_freepages(zone, start_page, end_page, migratetype);
1898}
1899
2f66a68f
MG
1900static void change_pageblock_range(struct page *pageblock_page,
1901 int start_order, int migratetype)
1902{
1903 int nr_pageblocks = 1 << (start_order - pageblock_order);
1904
1905 while (nr_pageblocks--) {
1906 set_pageblock_migratetype(pageblock_page, migratetype);
1907 pageblock_page += pageblock_nr_pages;
1908 }
1909}
1910
fef903ef 1911/*
9c0415eb
VB
1912 * When we are falling back to another migratetype during allocation, try to
1913 * steal extra free pages from the same pageblocks to satisfy further
1914 * allocations, instead of polluting multiple pageblocks.
1915 *
1916 * If we are stealing a relatively large buddy page, it is likely there will
1917 * be more free pages in the pageblock, so try to steal them all. For
1918 * reclaimable and unmovable allocations, we steal regardless of page size,
1919 * as fragmentation caused by those allocations polluting movable pageblocks
1920 * is worse than movable allocations stealing from unmovable and reclaimable
1921 * pageblocks.
fef903ef 1922 */
4eb7dce6
JK
1923static bool can_steal_fallback(unsigned int order, int start_mt)
1924{
1925 /*
1926 * Leaving this order check is intended, although there is
1927 * relaxed order check in next check. The reason is that
1928 * we can actually steal whole pageblock if this condition met,
1929 * but, below check doesn't guarantee it and that is just heuristic
1930 * so could be changed anytime.
1931 */
1932 if (order >= pageblock_order)
1933 return true;
1934
1935 if (order >= pageblock_order / 2 ||
1936 start_mt == MIGRATE_RECLAIMABLE ||
1937 start_mt == MIGRATE_UNMOVABLE ||
1938 page_group_by_mobility_disabled)
1939 return true;
1940
1941 return false;
1942}
1943
1944/*
1945 * This function implements actual steal behaviour. If order is large enough,
1946 * we can steal whole pageblock. If not, we first move freepages in this
1947 * pageblock and check whether half of pages are moved or not. If half of
1948 * pages are moved, we can change migratetype of pageblock and permanently
1949 * use it's pages as requested migratetype in the future.
1950 */
1951static void steal_suitable_fallback(struct zone *zone, struct page *page,
1952 int start_type)
fef903ef 1953{
d00181b9 1954 unsigned int current_order = page_order(page);
4eb7dce6 1955 int pages;
fef903ef 1956
fef903ef
SB
1957 /* Take ownership for orders >= pageblock_order */
1958 if (current_order >= pageblock_order) {
1959 change_pageblock_range(page, current_order, start_type);
3a1086fb 1960 return;
fef903ef
SB
1961 }
1962
4eb7dce6 1963 pages = move_freepages_block(zone, page, start_type);
fef903ef 1964
4eb7dce6
JK
1965 /* Claim the whole block if over half of it is free */
1966 if (pages >= (1 << (pageblock_order-1)) ||
1967 page_group_by_mobility_disabled)
1968 set_pageblock_migratetype(page, start_type);
1969}
1970
2149cdae
JK
1971/*
1972 * Check whether there is a suitable fallback freepage with requested order.
1973 * If only_stealable is true, this function returns fallback_mt only if
1974 * we can steal other freepages all together. This would help to reduce
1975 * fragmentation due to mixed migratetype pages in one pageblock.
1976 */
1977int find_suitable_fallback(struct free_area *area, unsigned int order,
1978 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1979{
1980 int i;
1981 int fallback_mt;
1982
1983 if (area->nr_free == 0)
1984 return -1;
1985
1986 *can_steal = false;
1987 for (i = 0;; i++) {
1988 fallback_mt = fallbacks[migratetype][i];
974a786e 1989 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1990 break;
1991
1992 if (list_empty(&area->free_list[fallback_mt]))
1993 continue;
fef903ef 1994
4eb7dce6
JK
1995 if (can_steal_fallback(order, migratetype))
1996 *can_steal = true;
1997
2149cdae
JK
1998 if (!only_stealable)
1999 return fallback_mt;
2000
2001 if (*can_steal)
2002 return fallback_mt;
fef903ef 2003 }
4eb7dce6
JK
2004
2005 return -1;
fef903ef
SB
2006}
2007
0aaa29a5
MG
2008/*
2009 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2010 * there are no empty page blocks that contain a page with a suitable order
2011 */
2012static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2013 unsigned int alloc_order)
2014{
2015 int mt;
2016 unsigned long max_managed, flags;
2017
2018 /*
2019 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2020 * Check is race-prone but harmless.
2021 */
2022 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2023 if (zone->nr_reserved_highatomic >= max_managed)
2024 return;
2025
2026 spin_lock_irqsave(&zone->lock, flags);
2027
2028 /* Recheck the nr_reserved_highatomic limit under the lock */
2029 if (zone->nr_reserved_highatomic >= max_managed)
2030 goto out_unlock;
2031
2032 /* Yoink! */
2033 mt = get_pageblock_migratetype(page);
2034 if (mt != MIGRATE_HIGHATOMIC &&
2035 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2036 zone->nr_reserved_highatomic += pageblock_nr_pages;
2037 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2038 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2039 }
2040
2041out_unlock:
2042 spin_unlock_irqrestore(&zone->lock, flags);
2043}
2044
2045/*
2046 * Used when an allocation is about to fail under memory pressure. This
2047 * potentially hurts the reliability of high-order allocations when under
2048 * intense memory pressure but failed atomic allocations should be easier
2049 * to recover from than an OOM.
2050 */
2051static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2052{
2053 struct zonelist *zonelist = ac->zonelist;
2054 unsigned long flags;
2055 struct zoneref *z;
2056 struct zone *zone;
2057 struct page *page;
2058 int order;
2059
2060 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2061 ac->nodemask) {
2062 /* Preserve at least one pageblock */
2063 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2064 continue;
2065
2066 spin_lock_irqsave(&zone->lock, flags);
2067 for (order = 0; order < MAX_ORDER; order++) {
2068 struct free_area *area = &(zone->free_area[order]);
2069
a16601c5
GT
2070 page = list_first_entry_or_null(
2071 &area->free_list[MIGRATE_HIGHATOMIC],
2072 struct page, lru);
2073 if (!page)
0aaa29a5
MG
2074 continue;
2075
0aaa29a5
MG
2076 /*
2077 * It should never happen but changes to locking could
2078 * inadvertently allow a per-cpu drain to add pages
2079 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2080 * and watch for underflows.
2081 */
2082 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2083 zone->nr_reserved_highatomic);
2084
2085 /*
2086 * Convert to ac->migratetype and avoid the normal
2087 * pageblock stealing heuristics. Minimally, the caller
2088 * is doing the work and needs the pages. More
2089 * importantly, if the block was always converted to
2090 * MIGRATE_UNMOVABLE or another type then the number
2091 * of pageblocks that cannot be completely freed
2092 * may increase.
2093 */
2094 set_pageblock_migratetype(page, ac->migratetype);
2095 move_freepages_block(zone, page, ac->migratetype);
2096 spin_unlock_irqrestore(&zone->lock, flags);
2097 return;
2098 }
2099 spin_unlock_irqrestore(&zone->lock, flags);
2100 }
2101}
2102
b2a0ac88 2103/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2104static inline struct page *
7aeb09f9 2105__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2106{
b8af2941 2107 struct free_area *area;
7aeb09f9 2108 unsigned int current_order;
b2a0ac88 2109 struct page *page;
4eb7dce6
JK
2110 int fallback_mt;
2111 bool can_steal;
b2a0ac88
MG
2112
2113 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2114 for (current_order = MAX_ORDER-1;
2115 current_order >= order && current_order <= MAX_ORDER-1;
2116 --current_order) {
4eb7dce6
JK
2117 area = &(zone->free_area[current_order]);
2118 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2119 start_migratetype, false, &can_steal);
4eb7dce6
JK
2120 if (fallback_mt == -1)
2121 continue;
b2a0ac88 2122
a16601c5 2123 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2124 struct page, lru);
2125 if (can_steal)
2126 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2127
4eb7dce6
JK
2128 /* Remove the page from the freelists */
2129 area->nr_free--;
2130 list_del(&page->lru);
2131 rmv_page_order(page);
3a1086fb 2132
4eb7dce6
JK
2133 expand(zone, page, order, current_order, area,
2134 start_migratetype);
2135 /*
bb14c2c7 2136 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2137 * migratetype depending on the decisions in
bb14c2c7
VB
2138 * find_suitable_fallback(). This is OK as long as it does not
2139 * differ for MIGRATE_CMA pageblocks. Those can be used as
2140 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2141 */
bb14c2c7 2142 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2143
4eb7dce6
JK
2144 trace_mm_page_alloc_extfrag(page, order, current_order,
2145 start_migratetype, fallback_mt);
e0fff1bd 2146
4eb7dce6 2147 return page;
b2a0ac88
MG
2148 }
2149
728ec980 2150 return NULL;
b2a0ac88
MG
2151}
2152
56fd56b8 2153/*
1da177e4
LT
2154 * Do the hard work of removing an element from the buddy allocator.
2155 * Call me with the zone->lock already held.
2156 */
b2a0ac88 2157static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2158 int migratetype)
1da177e4 2159{
1da177e4
LT
2160 struct page *page;
2161
56fd56b8 2162 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2163 if (unlikely(!page)) {
dc67647b
JK
2164 if (migratetype == MIGRATE_MOVABLE)
2165 page = __rmqueue_cma_fallback(zone, order);
2166
2167 if (!page)
2168 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2169 }
2170
0d3d062a 2171 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2172 return page;
1da177e4
LT
2173}
2174
5f63b720 2175/*
1da177e4
LT
2176 * Obtain a specified number of elements from the buddy allocator, all under
2177 * a single hold of the lock, for efficiency. Add them to the supplied list.
2178 * Returns the number of new pages which were placed at *list.
2179 */
5f63b720 2180static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2181 unsigned long count, struct list_head *list,
b745bc85 2182 int migratetype, bool cold)
1da177e4 2183{
5bcc9f86 2184 int i;
5f63b720 2185
c54ad30c 2186 spin_lock(&zone->lock);
1da177e4 2187 for (i = 0; i < count; ++i) {
6ac0206b 2188 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2189 if (unlikely(page == NULL))
1da177e4 2190 break;
81eabcbe 2191
479f854a
MG
2192 if (unlikely(check_pcp_refill(page)))
2193 continue;
2194
81eabcbe
MG
2195 /*
2196 * Split buddy pages returned by expand() are received here
2197 * in physical page order. The page is added to the callers and
2198 * list and the list head then moves forward. From the callers
2199 * perspective, the linked list is ordered by page number in
2200 * some conditions. This is useful for IO devices that can
2201 * merge IO requests if the physical pages are ordered
2202 * properly.
2203 */
b745bc85 2204 if (likely(!cold))
e084b2d9
MG
2205 list_add(&page->lru, list);
2206 else
2207 list_add_tail(&page->lru, list);
81eabcbe 2208 list = &page->lru;
bb14c2c7 2209 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2210 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2211 -(1 << order));
1da177e4 2212 }
f2260e6b 2213 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2214 spin_unlock(&zone->lock);
085cc7d5 2215 return i;
1da177e4
LT
2216}
2217
4ae7c039 2218#ifdef CONFIG_NUMA
8fce4d8e 2219/*
4037d452
CL
2220 * Called from the vmstat counter updater to drain pagesets of this
2221 * currently executing processor on remote nodes after they have
2222 * expired.
2223 *
879336c3
CL
2224 * Note that this function must be called with the thread pinned to
2225 * a single processor.
8fce4d8e 2226 */
4037d452 2227void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2228{
4ae7c039 2229 unsigned long flags;
7be12fc9 2230 int to_drain, batch;
4ae7c039 2231
4037d452 2232 local_irq_save(flags);
4db0c3c2 2233 batch = READ_ONCE(pcp->batch);
7be12fc9 2234 to_drain = min(pcp->count, batch);
2a13515c
KM
2235 if (to_drain > 0) {
2236 free_pcppages_bulk(zone, to_drain, pcp);
2237 pcp->count -= to_drain;
2238 }
4037d452 2239 local_irq_restore(flags);
4ae7c039
CL
2240}
2241#endif
2242
9f8f2172 2243/*
93481ff0 2244 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2245 *
2246 * The processor must either be the current processor and the
2247 * thread pinned to the current processor or a processor that
2248 * is not online.
2249 */
93481ff0 2250static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2251{
c54ad30c 2252 unsigned long flags;
93481ff0
VB
2253 struct per_cpu_pageset *pset;
2254 struct per_cpu_pages *pcp;
1da177e4 2255
93481ff0
VB
2256 local_irq_save(flags);
2257 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2258
93481ff0
VB
2259 pcp = &pset->pcp;
2260 if (pcp->count) {
2261 free_pcppages_bulk(zone, pcp->count, pcp);
2262 pcp->count = 0;
2263 }
2264 local_irq_restore(flags);
2265}
3dfa5721 2266
93481ff0
VB
2267/*
2268 * Drain pcplists of all zones on the indicated processor.
2269 *
2270 * The processor must either be the current processor and the
2271 * thread pinned to the current processor or a processor that
2272 * is not online.
2273 */
2274static void drain_pages(unsigned int cpu)
2275{
2276 struct zone *zone;
2277
2278 for_each_populated_zone(zone) {
2279 drain_pages_zone(cpu, zone);
1da177e4
LT
2280 }
2281}
1da177e4 2282
9f8f2172
CL
2283/*
2284 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2285 *
2286 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2287 * the single zone's pages.
9f8f2172 2288 */
93481ff0 2289void drain_local_pages(struct zone *zone)
9f8f2172 2290{
93481ff0
VB
2291 int cpu = smp_processor_id();
2292
2293 if (zone)
2294 drain_pages_zone(cpu, zone);
2295 else
2296 drain_pages(cpu);
9f8f2172
CL
2297}
2298
2299/*
74046494
GBY
2300 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2301 *
93481ff0
VB
2302 * When zone parameter is non-NULL, spill just the single zone's pages.
2303 *
74046494
GBY
2304 * Note that this code is protected against sending an IPI to an offline
2305 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2306 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2307 * nothing keeps CPUs from showing up after we populated the cpumask and
2308 * before the call to on_each_cpu_mask().
9f8f2172 2309 */
93481ff0 2310void drain_all_pages(struct zone *zone)
9f8f2172 2311{
74046494 2312 int cpu;
74046494
GBY
2313
2314 /*
2315 * Allocate in the BSS so we wont require allocation in
2316 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2317 */
2318 static cpumask_t cpus_with_pcps;
2319
2320 /*
2321 * We don't care about racing with CPU hotplug event
2322 * as offline notification will cause the notified
2323 * cpu to drain that CPU pcps and on_each_cpu_mask
2324 * disables preemption as part of its processing
2325 */
2326 for_each_online_cpu(cpu) {
93481ff0
VB
2327 struct per_cpu_pageset *pcp;
2328 struct zone *z;
74046494 2329 bool has_pcps = false;
93481ff0
VB
2330
2331 if (zone) {
74046494 2332 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2333 if (pcp->pcp.count)
74046494 2334 has_pcps = true;
93481ff0
VB
2335 } else {
2336 for_each_populated_zone(z) {
2337 pcp = per_cpu_ptr(z->pageset, cpu);
2338 if (pcp->pcp.count) {
2339 has_pcps = true;
2340 break;
2341 }
74046494
GBY
2342 }
2343 }
93481ff0 2344
74046494
GBY
2345 if (has_pcps)
2346 cpumask_set_cpu(cpu, &cpus_with_pcps);
2347 else
2348 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2349 }
93481ff0
VB
2350 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2351 zone, 1);
9f8f2172
CL
2352}
2353
296699de 2354#ifdef CONFIG_HIBERNATION
1da177e4
LT
2355
2356void mark_free_pages(struct zone *zone)
2357{
f623f0db
RW
2358 unsigned long pfn, max_zone_pfn;
2359 unsigned long flags;
7aeb09f9 2360 unsigned int order, t;
86760a2c 2361 struct page *page;
1da177e4 2362
8080fc03 2363 if (zone_is_empty(zone))
1da177e4
LT
2364 return;
2365
2366 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2367
108bcc96 2368 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2369 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2370 if (pfn_valid(pfn)) {
86760a2c 2371 page = pfn_to_page(pfn);
ba6b0979
JK
2372
2373 if (page_zone(page) != zone)
2374 continue;
2375
7be98234
RW
2376 if (!swsusp_page_is_forbidden(page))
2377 swsusp_unset_page_free(page);
f623f0db 2378 }
1da177e4 2379
b2a0ac88 2380 for_each_migratetype_order(order, t) {
86760a2c
GT
2381 list_for_each_entry(page,
2382 &zone->free_area[order].free_list[t], lru) {
f623f0db 2383 unsigned long i;
1da177e4 2384
86760a2c 2385 pfn = page_to_pfn(page);
f623f0db 2386 for (i = 0; i < (1UL << order); i++)
7be98234 2387 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2388 }
b2a0ac88 2389 }
1da177e4
LT
2390 spin_unlock_irqrestore(&zone->lock, flags);
2391}
e2c55dc8 2392#endif /* CONFIG_PM */
1da177e4 2393
1da177e4
LT
2394/*
2395 * Free a 0-order page
b745bc85 2396 * cold == true ? free a cold page : free a hot page
1da177e4 2397 */
b745bc85 2398void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2399{
2400 struct zone *zone = page_zone(page);
2401 struct per_cpu_pages *pcp;
2402 unsigned long flags;
dc4b0caf 2403 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2404 int migratetype;
1da177e4 2405
4db7548c 2406 if (!free_pcp_prepare(page))
689bcebf
HD
2407 return;
2408
dc4b0caf 2409 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2410 set_pcppage_migratetype(page, migratetype);
1da177e4 2411 local_irq_save(flags);
f8891e5e 2412 __count_vm_event(PGFREE);
da456f14 2413
5f8dcc21
MG
2414 /*
2415 * We only track unmovable, reclaimable and movable on pcp lists.
2416 * Free ISOLATE pages back to the allocator because they are being
2417 * offlined but treat RESERVE as movable pages so we can get those
2418 * areas back if necessary. Otherwise, we may have to free
2419 * excessively into the page allocator
2420 */
2421 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2422 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2423 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2424 goto out;
2425 }
2426 migratetype = MIGRATE_MOVABLE;
2427 }
2428
99dcc3e5 2429 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2430 if (!cold)
5f8dcc21 2431 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2432 else
2433 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2434 pcp->count++;
48db57f8 2435 if (pcp->count >= pcp->high) {
4db0c3c2 2436 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2437 free_pcppages_bulk(zone, batch, pcp);
2438 pcp->count -= batch;
48db57f8 2439 }
5f8dcc21
MG
2440
2441out:
1da177e4 2442 local_irq_restore(flags);
1da177e4
LT
2443}
2444
cc59850e
KK
2445/*
2446 * Free a list of 0-order pages
2447 */
b745bc85 2448void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2449{
2450 struct page *page, *next;
2451
2452 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2453 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2454 free_hot_cold_page(page, cold);
2455 }
2456}
2457
8dfcc9ba
NP
2458/*
2459 * split_page takes a non-compound higher-order page, and splits it into
2460 * n (1<<order) sub-pages: page[0..n]
2461 * Each sub-page must be freed individually.
2462 *
2463 * Note: this is probably too low level an operation for use in drivers.
2464 * Please consult with lkml before using this in your driver.
2465 */
2466void split_page(struct page *page, unsigned int order)
2467{
2468 int i;
2469
309381fe
SL
2470 VM_BUG_ON_PAGE(PageCompound(page), page);
2471 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2472
2473#ifdef CONFIG_KMEMCHECK
2474 /*
2475 * Split shadow pages too, because free(page[0]) would
2476 * otherwise free the whole shadow.
2477 */
2478 if (kmemcheck_page_is_tracked(page))
2479 split_page(virt_to_page(page[0].shadow), order);
2480#endif
2481
a9627bc5 2482 for (i = 1; i < (1 << order); i++)
7835e98b 2483 set_page_refcounted(page + i);
a9627bc5 2484 split_page_owner(page, order);
8dfcc9ba 2485}
5853ff23 2486EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2487
3c605096 2488int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2489{
748446bb
MG
2490 unsigned long watermark;
2491 struct zone *zone;
2139cbe6 2492 int mt;
748446bb
MG
2493
2494 BUG_ON(!PageBuddy(page));
2495
2496 zone = page_zone(page);
2e30abd1 2497 mt = get_pageblock_migratetype(page);
748446bb 2498
194159fb 2499 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2500 /*
2501 * Obey watermarks as if the page was being allocated. We can
2502 * emulate a high-order watermark check with a raised order-0
2503 * watermark, because we already know our high-order page
2504 * exists.
2505 */
2506 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2507 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2508 return 0;
2509
8fb74b9f 2510 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2511 }
748446bb
MG
2512
2513 /* Remove page from free list */
2514 list_del(&page->lru);
2515 zone->free_area[order].nr_free--;
2516 rmv_page_order(page);
2139cbe6 2517
400bc7fd 2518 /*
2519 * Set the pageblock if the isolated page is at least half of a
2520 * pageblock
2521 */
748446bb
MG
2522 if (order >= pageblock_order - 1) {
2523 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2524 for (; page < endpage; page += pageblock_nr_pages) {
2525 int mt = get_pageblock_migratetype(page);
194159fb 2526 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2527 set_pageblock_migratetype(page,
2528 MIGRATE_MOVABLE);
2529 }
748446bb
MG
2530 }
2531
f3a14ced 2532
8fb74b9f 2533 return 1UL << order;
1fb3f8ca
MG
2534}
2535
060e7417
MG
2536/*
2537 * Update NUMA hit/miss statistics
2538 *
2539 * Must be called with interrupts disabled.
2540 *
2541 * When __GFP_OTHER_NODE is set assume the node of the preferred
2542 * zone is the local node. This is useful for daemons who allocate
2543 * memory on behalf of other processes.
2544 */
2545static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2546 gfp_t flags)
2547{
2548#ifdef CONFIG_NUMA
2549 int local_nid = numa_node_id();
2550 enum zone_stat_item local_stat = NUMA_LOCAL;
2551
2552 if (unlikely(flags & __GFP_OTHER_NODE)) {
2553 local_stat = NUMA_OTHER;
2554 local_nid = preferred_zone->node;
2555 }
2556
2557 if (z->node == local_nid) {
2558 __inc_zone_state(z, NUMA_HIT);
2559 __inc_zone_state(z, local_stat);
2560 } else {
2561 __inc_zone_state(z, NUMA_MISS);
2562 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2563 }
2564#endif
2565}
2566
1da177e4 2567/*
75379191 2568 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2569 */
0a15c3e9
MG
2570static inline
2571struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2572 struct zone *zone, unsigned int order,
c603844b
MG
2573 gfp_t gfp_flags, unsigned int alloc_flags,
2574 int migratetype)
1da177e4
LT
2575{
2576 unsigned long flags;
689bcebf 2577 struct page *page;
b745bc85 2578 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2579
48db57f8 2580 if (likely(order == 0)) {
1da177e4 2581 struct per_cpu_pages *pcp;
5f8dcc21 2582 struct list_head *list;
1da177e4 2583
1da177e4 2584 local_irq_save(flags);
479f854a
MG
2585 do {
2586 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2587 list = &pcp->lists[migratetype];
2588 if (list_empty(list)) {
2589 pcp->count += rmqueue_bulk(zone, 0,
2590 pcp->batch, list,
2591 migratetype, cold);
2592 if (unlikely(list_empty(list)))
2593 goto failed;
2594 }
b92a6edd 2595
479f854a
MG
2596 if (cold)
2597 page = list_last_entry(list, struct page, lru);
2598 else
2599 page = list_first_entry(list, struct page, lru);
5f8dcc21 2600
83b9355b
VB
2601 list_del(&page->lru);
2602 pcp->count--;
2603
2604 } while (check_new_pcp(page));
7fb1d9fc 2605 } else {
0f352e53
MH
2606 /*
2607 * We most definitely don't want callers attempting to
2608 * allocate greater than order-1 page units with __GFP_NOFAIL.
2609 */
2610 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2611 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2612
479f854a
MG
2613 do {
2614 page = NULL;
2615 if (alloc_flags & ALLOC_HARDER) {
2616 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2617 if (page)
2618 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2619 }
2620 if (!page)
2621 page = __rmqueue(zone, order, migratetype);
2622 } while (page && check_new_pages(page, order));
a74609fa
NP
2623 spin_unlock(&zone->lock);
2624 if (!page)
2625 goto failed;
d1ce749a 2626 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2627 get_pcppage_migratetype(page));
1da177e4
LT
2628 }
2629
16709d1d 2630 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
78afd561 2631 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2632 local_irq_restore(flags);
1da177e4 2633
309381fe 2634 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2635 return page;
a74609fa
NP
2636
2637failed:
2638 local_irq_restore(flags);
a74609fa 2639 return NULL;
1da177e4
LT
2640}
2641
933e312e
AM
2642#ifdef CONFIG_FAIL_PAGE_ALLOC
2643
b2588c4b 2644static struct {
933e312e
AM
2645 struct fault_attr attr;
2646
621a5f7a 2647 bool ignore_gfp_highmem;
71baba4b 2648 bool ignore_gfp_reclaim;
54114994 2649 u32 min_order;
933e312e
AM
2650} fail_page_alloc = {
2651 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2652 .ignore_gfp_reclaim = true,
621a5f7a 2653 .ignore_gfp_highmem = true,
54114994 2654 .min_order = 1,
933e312e
AM
2655};
2656
2657static int __init setup_fail_page_alloc(char *str)
2658{
2659 return setup_fault_attr(&fail_page_alloc.attr, str);
2660}
2661__setup("fail_page_alloc=", setup_fail_page_alloc);
2662
deaf386e 2663static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2664{
54114994 2665 if (order < fail_page_alloc.min_order)
deaf386e 2666 return false;
933e312e 2667 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2668 return false;
933e312e 2669 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2670 return false;
71baba4b
MG
2671 if (fail_page_alloc.ignore_gfp_reclaim &&
2672 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2673 return false;
933e312e
AM
2674
2675 return should_fail(&fail_page_alloc.attr, 1 << order);
2676}
2677
2678#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2679
2680static int __init fail_page_alloc_debugfs(void)
2681{
f4ae40a6 2682 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2683 struct dentry *dir;
933e312e 2684
dd48c085
AM
2685 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2686 &fail_page_alloc.attr);
2687 if (IS_ERR(dir))
2688 return PTR_ERR(dir);
933e312e 2689
b2588c4b 2690 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2691 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2692 goto fail;
2693 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2694 &fail_page_alloc.ignore_gfp_highmem))
2695 goto fail;
2696 if (!debugfs_create_u32("min-order", mode, dir,
2697 &fail_page_alloc.min_order))
2698 goto fail;
2699
2700 return 0;
2701fail:
dd48c085 2702 debugfs_remove_recursive(dir);
933e312e 2703
b2588c4b 2704 return -ENOMEM;
933e312e
AM
2705}
2706
2707late_initcall(fail_page_alloc_debugfs);
2708
2709#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2710
2711#else /* CONFIG_FAIL_PAGE_ALLOC */
2712
deaf386e 2713static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2714{
deaf386e 2715 return false;
933e312e
AM
2716}
2717
2718#endif /* CONFIG_FAIL_PAGE_ALLOC */
2719
1da177e4 2720/*
97a16fc8
MG
2721 * Return true if free base pages are above 'mark'. For high-order checks it
2722 * will return true of the order-0 watermark is reached and there is at least
2723 * one free page of a suitable size. Checking now avoids taking the zone lock
2724 * to check in the allocation paths if no pages are free.
1da177e4 2725 */
86a294a8
MH
2726bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2727 int classzone_idx, unsigned int alloc_flags,
2728 long free_pages)
1da177e4 2729{
d23ad423 2730 long min = mark;
1da177e4 2731 int o;
c603844b 2732 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2733
0aaa29a5 2734 /* free_pages may go negative - that's OK */
df0a6daa 2735 free_pages -= (1 << order) - 1;
0aaa29a5 2736
7fb1d9fc 2737 if (alloc_flags & ALLOC_HIGH)
1da177e4 2738 min -= min / 2;
0aaa29a5
MG
2739
2740 /*
2741 * If the caller does not have rights to ALLOC_HARDER then subtract
2742 * the high-atomic reserves. This will over-estimate the size of the
2743 * atomic reserve but it avoids a search.
2744 */
97a16fc8 2745 if (likely(!alloc_harder))
0aaa29a5
MG
2746 free_pages -= z->nr_reserved_highatomic;
2747 else
1da177e4 2748 min -= min / 4;
e2b19197 2749
d95ea5d1
BZ
2750#ifdef CONFIG_CMA
2751 /* If allocation can't use CMA areas don't use free CMA pages */
2752 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2753 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2754#endif
026b0814 2755
97a16fc8
MG
2756 /*
2757 * Check watermarks for an order-0 allocation request. If these
2758 * are not met, then a high-order request also cannot go ahead
2759 * even if a suitable page happened to be free.
2760 */
2761 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2762 return false;
1da177e4 2763
97a16fc8
MG
2764 /* If this is an order-0 request then the watermark is fine */
2765 if (!order)
2766 return true;
2767
2768 /* For a high-order request, check at least one suitable page is free */
2769 for (o = order; o < MAX_ORDER; o++) {
2770 struct free_area *area = &z->free_area[o];
2771 int mt;
2772
2773 if (!area->nr_free)
2774 continue;
2775
2776 if (alloc_harder)
2777 return true;
1da177e4 2778
97a16fc8
MG
2779 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2780 if (!list_empty(&area->free_list[mt]))
2781 return true;
2782 }
2783
2784#ifdef CONFIG_CMA
2785 if ((alloc_flags & ALLOC_CMA) &&
2786 !list_empty(&area->free_list[MIGRATE_CMA])) {
2787 return true;
2788 }
2789#endif
1da177e4 2790 }
97a16fc8 2791 return false;
88f5acf8
MG
2792}
2793
7aeb09f9 2794bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2795 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2796{
2797 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2798 zone_page_state(z, NR_FREE_PAGES));
2799}
2800
48ee5f36
MG
2801static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2802 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2803{
2804 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2805 long cma_pages = 0;
2806
2807#ifdef CONFIG_CMA
2808 /* If allocation can't use CMA areas don't use free CMA pages */
2809 if (!(alloc_flags & ALLOC_CMA))
2810 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2811#endif
2812
2813 /*
2814 * Fast check for order-0 only. If this fails then the reserves
2815 * need to be calculated. There is a corner case where the check
2816 * passes but only the high-order atomic reserve are free. If
2817 * the caller is !atomic then it'll uselessly search the free
2818 * list. That corner case is then slower but it is harmless.
2819 */
2820 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2821 return true;
2822
2823 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2824 free_pages);
2825}
2826
7aeb09f9 2827bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2828 unsigned long mark, int classzone_idx)
88f5acf8
MG
2829{
2830 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2831
2832 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2833 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2834
e2b19197 2835 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2836 free_pages);
1da177e4
LT
2837}
2838
9276b1bc 2839#ifdef CONFIG_NUMA
957f822a
DR
2840static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2841{
5f7a75ac
MG
2842 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2843 RECLAIM_DISTANCE;
957f822a 2844}
9276b1bc 2845#else /* CONFIG_NUMA */
957f822a
DR
2846static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2847{
2848 return true;
2849}
9276b1bc
PJ
2850#endif /* CONFIG_NUMA */
2851
7fb1d9fc 2852/*
0798e519 2853 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2854 * a page.
2855 */
2856static struct page *
a9263751
VB
2857get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2858 const struct alloc_context *ac)
753ee728 2859{
c33d6c06 2860 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2861 struct zone *zone;
3b8c0be4
MG
2862 struct pglist_data *last_pgdat_dirty_limit = NULL;
2863
7fb1d9fc 2864 /*
9276b1bc 2865 * Scan zonelist, looking for a zone with enough free.
344736f2 2866 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2867 */
c33d6c06 2868 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2869 ac->nodemask) {
be06af00 2870 struct page *page;
e085dbc5
JW
2871 unsigned long mark;
2872
664eedde
MG
2873 if (cpusets_enabled() &&
2874 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2875 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2876 continue;
a756cf59
JW
2877 /*
2878 * When allocating a page cache page for writing, we
281e3726
MG
2879 * want to get it from a node that is within its dirty
2880 * limit, such that no single node holds more than its
a756cf59 2881 * proportional share of globally allowed dirty pages.
281e3726 2882 * The dirty limits take into account the node's
a756cf59
JW
2883 * lowmem reserves and high watermark so that kswapd
2884 * should be able to balance it without having to
2885 * write pages from its LRU list.
2886 *
a756cf59 2887 * XXX: For now, allow allocations to potentially
281e3726 2888 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2889 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2890 * which is important when on a NUMA setup the allowed
281e3726 2891 * nodes are together not big enough to reach the
a756cf59 2892 * global limit. The proper fix for these situations
281e3726 2893 * will require awareness of nodes in the
a756cf59
JW
2894 * dirty-throttling and the flusher threads.
2895 */
3b8c0be4
MG
2896 if (ac->spread_dirty_pages) {
2897 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2898 continue;
2899
2900 if (!node_dirty_ok(zone->zone_pgdat)) {
2901 last_pgdat_dirty_limit = zone->zone_pgdat;
2902 continue;
2903 }
2904 }
7fb1d9fc 2905
e085dbc5 2906 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2907 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2908 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2909 int ret;
2910
5dab2911
MG
2911 /* Checked here to keep the fast path fast */
2912 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2913 if (alloc_flags & ALLOC_NO_WATERMARKS)
2914 goto try_this_zone;
2915
a5f5f91d 2916 if (node_reclaim_mode == 0 ||
c33d6c06 2917 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2918 continue;
2919
a5f5f91d 2920 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 2921 switch (ret) {
a5f5f91d 2922 case NODE_RECLAIM_NOSCAN:
fa5e084e 2923 /* did not scan */
cd38b115 2924 continue;
a5f5f91d 2925 case NODE_RECLAIM_FULL:
fa5e084e 2926 /* scanned but unreclaimable */
cd38b115 2927 continue;
fa5e084e
MG
2928 default:
2929 /* did we reclaim enough */
fed2719e 2930 if (zone_watermark_ok(zone, order, mark,
93ea9964 2931 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2932 goto try_this_zone;
2933
fed2719e 2934 continue;
0798e519 2935 }
7fb1d9fc
RS
2936 }
2937
fa5e084e 2938try_this_zone:
c33d6c06 2939 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2940 gfp_mask, alloc_flags, ac->migratetype);
75379191 2941 if (page) {
479f854a 2942 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2943
2944 /*
2945 * If this is a high-order atomic allocation then check
2946 * if the pageblock should be reserved for the future
2947 */
2948 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2949 reserve_highatomic_pageblock(page, zone, order);
2950
75379191
VB
2951 return page;
2952 }
54a6eb5c 2953 }
9276b1bc 2954
4ffeaf35 2955 return NULL;
753ee728
MH
2956}
2957
29423e77
DR
2958/*
2959 * Large machines with many possible nodes should not always dump per-node
2960 * meminfo in irq context.
2961 */
2962static inline bool should_suppress_show_mem(void)
2963{
2964 bool ret = false;
2965
2966#if NODES_SHIFT > 8
2967 ret = in_interrupt();
2968#endif
2969 return ret;
2970}
2971
a238ab5b
DH
2972static DEFINE_RATELIMIT_STATE(nopage_rs,
2973 DEFAULT_RATELIMIT_INTERVAL,
2974 DEFAULT_RATELIMIT_BURST);
2975
d00181b9 2976void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2977{
a238ab5b
DH
2978 unsigned int filter = SHOW_MEM_FILTER_NODES;
2979
c0a32fc5
SG
2980 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2981 debug_guardpage_minorder() > 0)
a238ab5b
DH
2982 return;
2983
2984 /*
2985 * This documents exceptions given to allocations in certain
2986 * contexts that are allowed to allocate outside current's set
2987 * of allowed nodes.
2988 */
2989 if (!(gfp_mask & __GFP_NOMEMALLOC))
2990 if (test_thread_flag(TIF_MEMDIE) ||
2991 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2992 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2993 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2994 filter &= ~SHOW_MEM_FILTER_NODES;
2995
2996 if (fmt) {
3ee9a4f0
JP
2997 struct va_format vaf;
2998 va_list args;
2999
a238ab5b 3000 va_start(args, fmt);
3ee9a4f0
JP
3001
3002 vaf.fmt = fmt;
3003 vaf.va = &args;
3004
3005 pr_warn("%pV", &vaf);
3006
a238ab5b
DH
3007 va_end(args);
3008 }
3009
c5c990e8
VB
3010 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3011 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3012 dump_stack();
3013 if (!should_suppress_show_mem())
3014 show_mem(filter);
3015}
3016
11e33f6a
MG
3017static inline struct page *
3018__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3019 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3020{
6e0fc46d
DR
3021 struct oom_control oc = {
3022 .zonelist = ac->zonelist,
3023 .nodemask = ac->nodemask,
2a966b77 3024 .memcg = NULL,
6e0fc46d
DR
3025 .gfp_mask = gfp_mask,
3026 .order = order,
6e0fc46d 3027 };
11e33f6a
MG
3028 struct page *page;
3029
9879de73
JW
3030 *did_some_progress = 0;
3031
9879de73 3032 /*
dc56401f
JW
3033 * Acquire the oom lock. If that fails, somebody else is
3034 * making progress for us.
9879de73 3035 */
dc56401f 3036 if (!mutex_trylock(&oom_lock)) {
9879de73 3037 *did_some_progress = 1;
11e33f6a 3038 schedule_timeout_uninterruptible(1);
1da177e4
LT
3039 return NULL;
3040 }
6b1de916 3041
11e33f6a
MG
3042 /*
3043 * Go through the zonelist yet one more time, keep very high watermark
3044 * here, this is only to catch a parallel oom killing, we must fail if
3045 * we're still under heavy pressure.
3046 */
a9263751
VB
3047 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3048 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3049 if (page)
11e33f6a
MG
3050 goto out;
3051
4365a567 3052 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3053 /* Coredumps can quickly deplete all memory reserves */
3054 if (current->flags & PF_DUMPCORE)
3055 goto out;
4365a567
KH
3056 /* The OOM killer will not help higher order allocs */
3057 if (order > PAGE_ALLOC_COSTLY_ORDER)
3058 goto out;
03668b3c 3059 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3060 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3061 goto out;
9083905a
JW
3062 if (pm_suspended_storage())
3063 goto out;
3da88fb3
MH
3064 /*
3065 * XXX: GFP_NOFS allocations should rather fail than rely on
3066 * other request to make a forward progress.
3067 * We are in an unfortunate situation where out_of_memory cannot
3068 * do much for this context but let's try it to at least get
3069 * access to memory reserved if the current task is killed (see
3070 * out_of_memory). Once filesystems are ready to handle allocation
3071 * failures more gracefully we should just bail out here.
3072 */
3073
4167e9b2 3074 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3075 if (gfp_mask & __GFP_THISNODE)
3076 goto out;
3077 }
11e33f6a 3078 /* Exhausted what can be done so it's blamo time */
5020e285 3079 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3080 *did_some_progress = 1;
5020e285
MH
3081
3082 if (gfp_mask & __GFP_NOFAIL) {
3083 page = get_page_from_freelist(gfp_mask, order,
3084 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3085 /*
3086 * fallback to ignore cpuset restriction if our nodes
3087 * are depleted
3088 */
3089 if (!page)
3090 page = get_page_from_freelist(gfp_mask, order,
3091 ALLOC_NO_WATERMARKS, ac);
3092 }
3093 }
11e33f6a 3094out:
dc56401f 3095 mutex_unlock(&oom_lock);
11e33f6a
MG
3096 return page;
3097}
3098
33c2d214
MH
3099/*
3100 * Maximum number of compaction retries wit a progress before OOM
3101 * killer is consider as the only way to move forward.
3102 */
3103#define MAX_COMPACT_RETRIES 16
3104
56de7263
MG
3105#ifdef CONFIG_COMPACTION
3106/* Try memory compaction for high-order allocations before reclaim */
3107static struct page *
3108__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3109 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3110 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3111{
98dd3b48 3112 struct page *page;
53853e2d
VB
3113
3114 if (!order)
66199712 3115 return NULL;
66199712 3116
c06b1fca 3117 current->flags |= PF_MEMALLOC;
c5d01d0d 3118 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3119 prio);
c06b1fca 3120 current->flags &= ~PF_MEMALLOC;
56de7263 3121
c5d01d0d 3122 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3123 return NULL;
53853e2d 3124
98dd3b48
VB
3125 /*
3126 * At least in one zone compaction wasn't deferred or skipped, so let's
3127 * count a compaction stall
3128 */
3129 count_vm_event(COMPACTSTALL);
8fb74b9f 3130
31a6c190 3131 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3132
98dd3b48
VB
3133 if (page) {
3134 struct zone *zone = page_zone(page);
53853e2d 3135
98dd3b48
VB
3136 zone->compact_blockskip_flush = false;
3137 compaction_defer_reset(zone, order, true);
3138 count_vm_event(COMPACTSUCCESS);
3139 return page;
3140 }
56de7263 3141
98dd3b48
VB
3142 /*
3143 * It's bad if compaction run occurs and fails. The most likely reason
3144 * is that pages exist, but not enough to satisfy watermarks.
3145 */
3146 count_vm_event(COMPACTFAIL);
66199712 3147
98dd3b48 3148 cond_resched();
56de7263
MG
3149
3150 return NULL;
3151}
33c2d214 3152
56de7263
MG
3153#else
3154static inline struct page *
3155__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3156 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3157 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3158{
33c2d214 3159 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3160 return NULL;
3161}
33c2d214 3162
6b4e3181
MH
3163#endif /* CONFIG_COMPACTION */
3164
33c2d214 3165static inline bool
86a294a8
MH
3166should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3167 enum compact_result compact_result,
a5508cd8 3168 enum compact_priority *compact_priority,
33c2d214
MH
3169 int compaction_retries)
3170{
31e49bfd
MH
3171 struct zone *zone;
3172 struct zoneref *z;
3173
3174 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3175 return false;
3176
3177 /*
3178 * There are setups with compaction disabled which would prefer to loop
3179 * inside the allocator rather than hit the oom killer prematurely.
3180 * Let's give them a good hope and keep retrying while the order-0
3181 * watermarks are OK.
3182 */
3183 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3184 ac->nodemask) {
3185 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3186 ac_classzone_idx(ac), alloc_flags))
3187 return true;
3188 }
33c2d214
MH
3189 return false;
3190}
56de7263 3191
bba90710
MS
3192/* Perform direct synchronous page reclaim */
3193static int
a9263751
VB
3194__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3195 const struct alloc_context *ac)
11e33f6a 3196{
11e33f6a 3197 struct reclaim_state reclaim_state;
bba90710 3198 int progress;
11e33f6a
MG
3199
3200 cond_resched();
3201
3202 /* We now go into synchronous reclaim */
3203 cpuset_memory_pressure_bump();
c06b1fca 3204 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3205 lockdep_set_current_reclaim_state(gfp_mask);
3206 reclaim_state.reclaimed_slab = 0;
c06b1fca 3207 current->reclaim_state = &reclaim_state;
11e33f6a 3208
a9263751
VB
3209 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3210 ac->nodemask);
11e33f6a 3211
c06b1fca 3212 current->reclaim_state = NULL;
11e33f6a 3213 lockdep_clear_current_reclaim_state();
c06b1fca 3214 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3215
3216 cond_resched();
3217
bba90710
MS
3218 return progress;
3219}
3220
3221/* The really slow allocator path where we enter direct reclaim */
3222static inline struct page *
3223__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3224 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3225 unsigned long *did_some_progress)
bba90710
MS
3226{
3227 struct page *page = NULL;
3228 bool drained = false;
3229
a9263751 3230 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3231 if (unlikely(!(*did_some_progress)))
3232 return NULL;
11e33f6a 3233
9ee493ce 3234retry:
31a6c190 3235 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3236
3237 /*
3238 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3239 * pages are pinned on the per-cpu lists or in high alloc reserves.
3240 * Shrink them them and try again
9ee493ce
MG
3241 */
3242 if (!page && !drained) {
0aaa29a5 3243 unreserve_highatomic_pageblock(ac);
93481ff0 3244 drain_all_pages(NULL);
9ee493ce
MG
3245 drained = true;
3246 goto retry;
3247 }
3248
11e33f6a
MG
3249 return page;
3250}
3251
a9263751 3252static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3253{
3254 struct zoneref *z;
3255 struct zone *zone;
e1a55637 3256 pg_data_t *last_pgdat = NULL;
3a025760 3257
a9263751 3258 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3259 ac->high_zoneidx, ac->nodemask) {
3260 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3261 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3262 last_pgdat = zone->zone_pgdat;
3263 }
3a025760
JW
3264}
3265
c603844b 3266static inline unsigned int
341ce06f
PZ
3267gfp_to_alloc_flags(gfp_t gfp_mask)
3268{
c603844b 3269 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3270
a56f57ff 3271 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3272 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3273
341ce06f
PZ
3274 /*
3275 * The caller may dip into page reserves a bit more if the caller
3276 * cannot run direct reclaim, or if the caller has realtime scheduling
3277 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3278 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3279 */
e6223a3b 3280 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3281
d0164adc 3282 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3283 /*
b104a35d
DR
3284 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3285 * if it can't schedule.
5c3240d9 3286 */
b104a35d 3287 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3288 alloc_flags |= ALLOC_HARDER;
523b9458 3289 /*
b104a35d 3290 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3291 * comment for __cpuset_node_allowed().
523b9458 3292 */
341ce06f 3293 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3294 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3295 alloc_flags |= ALLOC_HARDER;
3296
d95ea5d1 3297#ifdef CONFIG_CMA
43e7a34d 3298 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3299 alloc_flags |= ALLOC_CMA;
3300#endif
341ce06f
PZ
3301 return alloc_flags;
3302}
3303
072bb0aa
MG
3304bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3305{
31a6c190
VB
3306 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3307 return false;
3308
3309 if (gfp_mask & __GFP_MEMALLOC)
3310 return true;
3311 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3312 return true;
3313 if (!in_interrupt() &&
3314 ((current->flags & PF_MEMALLOC) ||
3315 unlikely(test_thread_flag(TIF_MEMDIE))))
3316 return true;
3317
3318 return false;
072bb0aa
MG
3319}
3320
0a0337e0
MH
3321/*
3322 * Maximum number of reclaim retries without any progress before OOM killer
3323 * is consider as the only way to move forward.
3324 */
3325#define MAX_RECLAIM_RETRIES 16
3326
3327/*
3328 * Checks whether it makes sense to retry the reclaim to make a forward progress
3329 * for the given allocation request.
3330 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3331 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3332 * any progress in a row) is considered as well as the reclaimable pages on the
3333 * applicable zone list (with a backoff mechanism which is a function of
3334 * no_progress_loops).
0a0337e0
MH
3335 *
3336 * Returns true if a retry is viable or false to enter the oom path.
3337 */
3338static inline bool
3339should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3340 struct alloc_context *ac, int alloc_flags,
7854ea6c 3341 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3342{
3343 struct zone *zone;
3344 struct zoneref *z;
3345
3346 /*
3347 * Make sure we converge to OOM if we cannot make any progress
3348 * several times in the row.
3349 */
3350 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3351 return false;
3352
bca67592
MG
3353 /*
3354 * Keep reclaiming pages while there is a chance this will lead
3355 * somewhere. If none of the target zones can satisfy our allocation
3356 * request even if all reclaimable pages are considered then we are
3357 * screwed and have to go OOM.
0a0337e0
MH
3358 */
3359 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3360 ac->nodemask) {
3361 unsigned long available;
ede37713 3362 unsigned long reclaimable;
0a0337e0 3363
5a1c84b4 3364 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3365 available -= DIV_ROUND_UP(no_progress_loops * available,
3366 MAX_RECLAIM_RETRIES);
5a1c84b4 3367 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3368
3369 /*
3370 * Would the allocation succeed if we reclaimed the whole
5a1c84b4 3371 * available?
0a0337e0 3372 */
5a1c84b4
MG
3373 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3374 ac_classzone_idx(ac), alloc_flags, available)) {
ede37713
MH
3375 /*
3376 * If we didn't make any progress and have a lot of
3377 * dirty + writeback pages then we should wait for
3378 * an IO to complete to slow down the reclaim and
3379 * prevent from pre mature OOM
3380 */
3381 if (!did_some_progress) {
11fb9989 3382 unsigned long write_pending;
ede37713 3383
5a1c84b4
MG
3384 write_pending = zone_page_state_snapshot(zone,
3385 NR_ZONE_WRITE_PENDING);
ede37713 3386
11fb9989 3387 if (2 * write_pending > reclaimable) {
ede37713
MH
3388 congestion_wait(BLK_RW_ASYNC, HZ/10);
3389 return true;
3390 }
3391 }
5a1c84b4 3392
ede37713
MH
3393 /*
3394 * Memory allocation/reclaim might be called from a WQ
3395 * context and the current implementation of the WQ
3396 * concurrency control doesn't recognize that
3397 * a particular WQ is congested if the worker thread is
3398 * looping without ever sleeping. Therefore we have to
3399 * do a short sleep here rather than calling
3400 * cond_resched().
3401 */
3402 if (current->flags & PF_WQ_WORKER)
3403 schedule_timeout_uninterruptible(1);
3404 else
3405 cond_resched();
3406
0a0337e0
MH
3407 return true;
3408 }
3409 }
3410
3411 return false;
3412}
3413
11e33f6a
MG
3414static inline struct page *
3415__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3416 struct alloc_context *ac)
11e33f6a 3417{
d0164adc 3418 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3419 struct page *page = NULL;
c603844b 3420 unsigned int alloc_flags;
11e33f6a 3421 unsigned long did_some_progress;
a5508cd8 3422 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
c5d01d0d 3423 enum compact_result compact_result;
33c2d214 3424 int compaction_retries = 0;
0a0337e0 3425 int no_progress_loops = 0;
1da177e4 3426
72807a74
MG
3427 /*
3428 * In the slowpath, we sanity check order to avoid ever trying to
3429 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3430 * be using allocators in order of preference for an area that is
3431 * too large.
3432 */
1fc28b70
MG
3433 if (order >= MAX_ORDER) {
3434 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3435 return NULL;
1fc28b70 3436 }
1da177e4 3437
d0164adc
MG
3438 /*
3439 * We also sanity check to catch abuse of atomic reserves being used by
3440 * callers that are not in atomic context.
3441 */
3442 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3443 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3444 gfp_mask &= ~__GFP_ATOMIC;
3445
9bf2229f 3446 /*
31a6c190
VB
3447 * The fast path uses conservative alloc_flags to succeed only until
3448 * kswapd needs to be woken up, and to avoid the cost of setting up
3449 * alloc_flags precisely. So we do that now.
9bf2229f 3450 */
341ce06f 3451 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3452
23771235
VB
3453 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3454 wake_all_kswapds(order, ac);
3455
3456 /*
3457 * The adjusted alloc_flags might result in immediate success, so try
3458 * that first
3459 */
3460 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3461 if (page)
3462 goto got_pg;
3463
a8161d1e
VB
3464 /*
3465 * For costly allocations, try direct compaction first, as it's likely
3466 * that we have enough base pages and don't need to reclaim. Don't try
3467 * that for allocations that are allowed to ignore watermarks, as the
3468 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3469 */
3470 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3471 !gfp_pfmemalloc_allowed(gfp_mask)) {
3472 page = __alloc_pages_direct_compact(gfp_mask, order,
3473 alloc_flags, ac,
a5508cd8 3474 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3475 &compact_result);
3476 if (page)
3477 goto got_pg;
3478
3eb2771b
VB
3479 /*
3480 * Checks for costly allocations with __GFP_NORETRY, which
3481 * includes THP page fault allocations
3482 */
3483 if (gfp_mask & __GFP_NORETRY) {
a8161d1e
VB
3484 /*
3485 * If compaction is deferred for high-order allocations,
3486 * it is because sync compaction recently failed. If
3487 * this is the case and the caller requested a THP
3488 * allocation, we do not want to heavily disrupt the
3489 * system, so we fail the allocation instead of entering
3490 * direct reclaim.
3491 */
3492 if (compact_result == COMPACT_DEFERRED)
3493 goto nopage;
3494
a8161d1e 3495 /*
3eb2771b
VB
3496 * Looks like reclaim/compaction is worth trying, but
3497 * sync compaction could be very expensive, so keep
25160354 3498 * using async compaction.
a8161d1e 3499 */
a5508cd8 3500 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3501 }
3502 }
23771235 3503
31a6c190 3504retry:
23771235 3505 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3506 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3507 wake_all_kswapds(order, ac);
3508
23771235
VB
3509 if (gfp_pfmemalloc_allowed(gfp_mask))
3510 alloc_flags = ALLOC_NO_WATERMARKS;
3511
e46e7b77
MG
3512 /*
3513 * Reset the zonelist iterators if memory policies can be ignored.
3514 * These allocations are high priority and system rather than user
3515 * orientated.
3516 */
23771235 3517 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3518 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3519 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3520 ac->high_zoneidx, ac->nodemask);
3521 }
3522
23771235 3523 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3524 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3525 if (page)
3526 goto got_pg;
1da177e4 3527
d0164adc
MG
3528 /* Caller is not willing to reclaim, we can't balance anything */
3529 if (!can_direct_reclaim) {
aed0a0e3 3530 /*
33d53103
MH
3531 * All existing users of the __GFP_NOFAIL are blockable, so warn
3532 * of any new users that actually allow this type of allocation
3533 * to fail.
aed0a0e3
DR
3534 */
3535 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3536 goto nopage;
aed0a0e3 3537 }
1da177e4 3538
341ce06f 3539 /* Avoid recursion of direct reclaim */
33d53103
MH
3540 if (current->flags & PF_MEMALLOC) {
3541 /*
3542 * __GFP_NOFAIL request from this context is rather bizarre
3543 * because we cannot reclaim anything and only can loop waiting
3544 * for somebody to do a work for us.
3545 */
3546 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3547 cond_resched();
3548 goto retry;
3549 }
341ce06f 3550 goto nopage;
33d53103 3551 }
341ce06f 3552
6583bb64
DR
3553 /* Avoid allocations with no watermarks from looping endlessly */
3554 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3555 goto nopage;
3556
a8161d1e
VB
3557
3558 /* Try direct reclaim and then allocating */
3559 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3560 &did_some_progress);
3561 if (page)
3562 goto got_pg;
3563
3564 /* Try direct compaction and then allocating */
a9263751 3565 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3566 compact_priority, &compact_result);
56de7263
MG
3567 if (page)
3568 goto got_pg;
75f30861 3569
33c2d214
MH
3570 if (order && compaction_made_progress(compact_result))
3571 compaction_retries++;
8fe78048 3572
9083905a
JW
3573 /* Do not loop if specifically requested */
3574 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3575 goto nopage;
9083905a 3576
0a0337e0
MH
3577 /*
3578 * Do not retry costly high order allocations unless they are
3579 * __GFP_REPEAT
3580 */
3581 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3582 goto nopage;
0a0337e0 3583
7854ea6c
MH
3584 /*
3585 * Costly allocations might have made a progress but this doesn't mean
3586 * their order will become available due to high fragmentation so
3587 * always increment the no progress counter for them
3588 */
3589 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3590 no_progress_loops = 0;
7854ea6c 3591 else
0a0337e0 3592 no_progress_loops++;
1da177e4 3593
0a0337e0 3594 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3595 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3596 goto retry;
3597
33c2d214
MH
3598 /*
3599 * It doesn't make any sense to retry for the compaction if the order-0
3600 * reclaim is not able to make any progress because the current
3601 * implementation of the compaction depends on the sufficient amount
3602 * of free memory (see __compaction_suitable)
3603 */
3604 if (did_some_progress > 0 &&
86a294a8 3605 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3606 compact_result, &compact_priority,
86a294a8 3607 compaction_retries))
33c2d214
MH
3608 goto retry;
3609
9083905a
JW
3610 /* Reclaim has failed us, start killing things */
3611 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3612 if (page)
3613 goto got_pg;
3614
3615 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3616 if (did_some_progress) {
3617 no_progress_loops = 0;
9083905a 3618 goto retry;
0a0337e0 3619 }
9083905a 3620
1da177e4 3621nopage:
a238ab5b 3622 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3623got_pg:
072bb0aa 3624 return page;
1da177e4 3625}
11e33f6a
MG
3626
3627/*
3628 * This is the 'heart' of the zoned buddy allocator.
3629 */
3630struct page *
3631__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3632 struct zonelist *zonelist, nodemask_t *nodemask)
3633{
5bb1b169 3634 struct page *page;
cc9a6c87 3635 unsigned int cpuset_mems_cookie;
e6cbd7f2 3636 unsigned int alloc_flags = ALLOC_WMARK_LOW;
83d4ca81 3637 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3638 struct alloc_context ac = {
3639 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3640 .zonelist = zonelist,
a9263751
VB
3641 .nodemask = nodemask,
3642 .migratetype = gfpflags_to_migratetype(gfp_mask),
3643 };
11e33f6a 3644
682a3385 3645 if (cpusets_enabled()) {
83d4ca81 3646 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3647 alloc_flags |= ALLOC_CPUSET;
3648 if (!ac.nodemask)
3649 ac.nodemask = &cpuset_current_mems_allowed;
3650 }
3651
dcce284a
BH
3652 gfp_mask &= gfp_allowed_mask;
3653
11e33f6a
MG
3654 lockdep_trace_alloc(gfp_mask);
3655
d0164adc 3656 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3657
3658 if (should_fail_alloc_page(gfp_mask, order))
3659 return NULL;
3660
3661 /*
3662 * Check the zones suitable for the gfp_mask contain at least one
3663 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3664 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3665 */
3666 if (unlikely(!zonelist->_zonerefs->zone))
3667 return NULL;
3668
a9263751 3669 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3670 alloc_flags |= ALLOC_CMA;
3671
cc9a6c87 3672retry_cpuset:
d26914d1 3673 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3674
c9ab0c4f
MG
3675 /* Dirty zone balancing only done in the fast path */
3676 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3677
e46e7b77
MG
3678 /*
3679 * The preferred zone is used for statistics but crucially it is
3680 * also used as the starting point for the zonelist iterator. It
3681 * may get reset for allocations that ignore memory policies.
3682 */
c33d6c06
MG
3683 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3684 ac.high_zoneidx, ac.nodemask);
3685 if (!ac.preferred_zoneref) {
5bb1b169 3686 page = NULL;
4fcb0971 3687 goto no_zone;
5bb1b169
MG
3688 }
3689
5117f45d 3690 /* First allocation attempt */
a9263751 3691 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3692 if (likely(page))
3693 goto out;
11e33f6a 3694
4fcb0971
MG
3695 /*
3696 * Runtime PM, block IO and its error handling path can deadlock
3697 * because I/O on the device might not complete.
3698 */
3699 alloc_mask = memalloc_noio_flags(gfp_mask);
3700 ac.spread_dirty_pages = false;
23f086f9 3701
4741526b
MG
3702 /*
3703 * Restore the original nodemask if it was potentially replaced with
3704 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3705 */
3706 if (cpusets_enabled())
3707 ac.nodemask = nodemask;
4fcb0971 3708 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3709
4fcb0971 3710no_zone:
cc9a6c87
MG
3711 /*
3712 * When updating a task's mems_allowed, it is possible to race with
3713 * parallel threads in such a way that an allocation can fail while
3714 * the mask is being updated. If a page allocation is about to fail,
3715 * check if the cpuset changed during allocation and if so, retry.
3716 */
83d4ca81
MG
3717 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3718 alloc_mask = gfp_mask;
cc9a6c87 3719 goto retry_cpuset;
83d4ca81 3720 }
cc9a6c87 3721
4fcb0971 3722out:
c4159a75
VD
3723 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3724 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3725 __free_pages(page, order);
3726 page = NULL;
4949148a
VD
3727 }
3728
4fcb0971
MG
3729 if (kmemcheck_enabled && page)
3730 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3731
3732 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3733
11e33f6a 3734 return page;
1da177e4 3735}
d239171e 3736EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3737
3738/*
3739 * Common helper functions.
3740 */
920c7a5d 3741unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3742{
945a1113
AM
3743 struct page *page;
3744
3745 /*
3746 * __get_free_pages() returns a 32-bit address, which cannot represent
3747 * a highmem page
3748 */
3749 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3750
1da177e4
LT
3751 page = alloc_pages(gfp_mask, order);
3752 if (!page)
3753 return 0;
3754 return (unsigned long) page_address(page);
3755}
1da177e4
LT
3756EXPORT_SYMBOL(__get_free_pages);
3757
920c7a5d 3758unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3759{
945a1113 3760 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3761}
1da177e4
LT
3762EXPORT_SYMBOL(get_zeroed_page);
3763
920c7a5d 3764void __free_pages(struct page *page, unsigned int order)
1da177e4 3765{
b5810039 3766 if (put_page_testzero(page)) {
1da177e4 3767 if (order == 0)
b745bc85 3768 free_hot_cold_page(page, false);
1da177e4
LT
3769 else
3770 __free_pages_ok(page, order);
3771 }
3772}
3773
3774EXPORT_SYMBOL(__free_pages);
3775
920c7a5d 3776void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3777{
3778 if (addr != 0) {
725d704e 3779 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3780 __free_pages(virt_to_page((void *)addr), order);
3781 }
3782}
3783
3784EXPORT_SYMBOL(free_pages);
3785
b63ae8ca
AD
3786/*
3787 * Page Fragment:
3788 * An arbitrary-length arbitrary-offset area of memory which resides
3789 * within a 0 or higher order page. Multiple fragments within that page
3790 * are individually refcounted, in the page's reference counter.
3791 *
3792 * The page_frag functions below provide a simple allocation framework for
3793 * page fragments. This is used by the network stack and network device
3794 * drivers to provide a backing region of memory for use as either an
3795 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3796 */
3797static struct page *__page_frag_refill(struct page_frag_cache *nc,
3798 gfp_t gfp_mask)
3799{
3800 struct page *page = NULL;
3801 gfp_t gfp = gfp_mask;
3802
3803#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3804 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3805 __GFP_NOMEMALLOC;
3806 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3807 PAGE_FRAG_CACHE_MAX_ORDER);
3808 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3809#endif
3810 if (unlikely(!page))
3811 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3812
3813 nc->va = page ? page_address(page) : NULL;
3814
3815 return page;
3816}
3817
3818void *__alloc_page_frag(struct page_frag_cache *nc,
3819 unsigned int fragsz, gfp_t gfp_mask)
3820{
3821 unsigned int size = PAGE_SIZE;
3822 struct page *page;
3823 int offset;
3824
3825 if (unlikely(!nc->va)) {
3826refill:
3827 page = __page_frag_refill(nc, gfp_mask);
3828 if (!page)
3829 return NULL;
3830
3831#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3832 /* if size can vary use size else just use PAGE_SIZE */
3833 size = nc->size;
3834#endif
3835 /* Even if we own the page, we do not use atomic_set().
3836 * This would break get_page_unless_zero() users.
3837 */
fe896d18 3838 page_ref_add(page, size - 1);
b63ae8ca
AD
3839
3840 /* reset page count bias and offset to start of new frag */
2f064f34 3841 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3842 nc->pagecnt_bias = size;
3843 nc->offset = size;
3844 }
3845
3846 offset = nc->offset - fragsz;
3847 if (unlikely(offset < 0)) {
3848 page = virt_to_page(nc->va);
3849
fe896d18 3850 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3851 goto refill;
3852
3853#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3854 /* if size can vary use size else just use PAGE_SIZE */
3855 size = nc->size;
3856#endif
3857 /* OK, page count is 0, we can safely set it */
fe896d18 3858 set_page_count(page, size);
b63ae8ca
AD
3859
3860 /* reset page count bias and offset to start of new frag */
3861 nc->pagecnt_bias = size;
3862 offset = size - fragsz;
3863 }
3864
3865 nc->pagecnt_bias--;
3866 nc->offset = offset;
3867
3868 return nc->va + offset;
3869}
3870EXPORT_SYMBOL(__alloc_page_frag);
3871
3872/*
3873 * Frees a page fragment allocated out of either a compound or order 0 page.
3874 */
3875void __free_page_frag(void *addr)
3876{
3877 struct page *page = virt_to_head_page(addr);
3878
3879 if (unlikely(put_page_testzero(page)))
3880 __free_pages_ok(page, compound_order(page));
3881}
3882EXPORT_SYMBOL(__free_page_frag);
3883
d00181b9
KS
3884static void *make_alloc_exact(unsigned long addr, unsigned int order,
3885 size_t size)
ee85c2e1
AK
3886{
3887 if (addr) {
3888 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3889 unsigned long used = addr + PAGE_ALIGN(size);
3890
3891 split_page(virt_to_page((void *)addr), order);
3892 while (used < alloc_end) {
3893 free_page(used);
3894 used += PAGE_SIZE;
3895 }
3896 }
3897 return (void *)addr;
3898}
3899
2be0ffe2
TT
3900/**
3901 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3902 * @size: the number of bytes to allocate
3903 * @gfp_mask: GFP flags for the allocation
3904 *
3905 * This function is similar to alloc_pages(), except that it allocates the
3906 * minimum number of pages to satisfy the request. alloc_pages() can only
3907 * allocate memory in power-of-two pages.
3908 *
3909 * This function is also limited by MAX_ORDER.
3910 *
3911 * Memory allocated by this function must be released by free_pages_exact().
3912 */
3913void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3914{
3915 unsigned int order = get_order(size);
3916 unsigned long addr;
3917
3918 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3919 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3920}
3921EXPORT_SYMBOL(alloc_pages_exact);
3922
ee85c2e1
AK
3923/**
3924 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3925 * pages on a node.
b5e6ab58 3926 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3927 * @size: the number of bytes to allocate
3928 * @gfp_mask: GFP flags for the allocation
3929 *
3930 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3931 * back.
ee85c2e1 3932 */
e1931811 3933void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3934{
d00181b9 3935 unsigned int order = get_order(size);
ee85c2e1
AK
3936 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3937 if (!p)
3938 return NULL;
3939 return make_alloc_exact((unsigned long)page_address(p), order, size);
3940}
ee85c2e1 3941
2be0ffe2
TT
3942/**
3943 * free_pages_exact - release memory allocated via alloc_pages_exact()
3944 * @virt: the value returned by alloc_pages_exact.
3945 * @size: size of allocation, same value as passed to alloc_pages_exact().
3946 *
3947 * Release the memory allocated by a previous call to alloc_pages_exact.
3948 */
3949void free_pages_exact(void *virt, size_t size)
3950{
3951 unsigned long addr = (unsigned long)virt;
3952 unsigned long end = addr + PAGE_ALIGN(size);
3953
3954 while (addr < end) {
3955 free_page(addr);
3956 addr += PAGE_SIZE;
3957 }
3958}
3959EXPORT_SYMBOL(free_pages_exact);
3960
e0fb5815
ZY
3961/**
3962 * nr_free_zone_pages - count number of pages beyond high watermark
3963 * @offset: The zone index of the highest zone
3964 *
3965 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3966 * high watermark within all zones at or below a given zone index. For each
3967 * zone, the number of pages is calculated as:
834405c3 3968 * managed_pages - high_pages
e0fb5815 3969 */
ebec3862 3970static unsigned long nr_free_zone_pages(int offset)
1da177e4 3971{
dd1a239f 3972 struct zoneref *z;
54a6eb5c
MG
3973 struct zone *zone;
3974
e310fd43 3975 /* Just pick one node, since fallback list is circular */
ebec3862 3976 unsigned long sum = 0;
1da177e4 3977
0e88460d 3978 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3979
54a6eb5c 3980 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3981 unsigned long size = zone->managed_pages;
41858966 3982 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3983 if (size > high)
3984 sum += size - high;
1da177e4
LT
3985 }
3986
3987 return sum;
3988}
3989
e0fb5815
ZY
3990/**
3991 * nr_free_buffer_pages - count number of pages beyond high watermark
3992 *
3993 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3994 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3995 */
ebec3862 3996unsigned long nr_free_buffer_pages(void)
1da177e4 3997{
af4ca457 3998 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3999}
c2f1a551 4000EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4001
e0fb5815
ZY
4002/**
4003 * nr_free_pagecache_pages - count number of pages beyond high watermark
4004 *
4005 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4006 * high watermark within all zones.
1da177e4 4007 */
ebec3862 4008unsigned long nr_free_pagecache_pages(void)
1da177e4 4009{
2a1e274a 4010 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4011}
08e0f6a9
CL
4012
4013static inline void show_node(struct zone *zone)
1da177e4 4014{
e5adfffc 4015 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4016 printk("Node %d ", zone_to_nid(zone));
1da177e4 4017}
1da177e4 4018
d02bd27b
IR
4019long si_mem_available(void)
4020{
4021 long available;
4022 unsigned long pagecache;
4023 unsigned long wmark_low = 0;
4024 unsigned long pages[NR_LRU_LISTS];
4025 struct zone *zone;
4026 int lru;
4027
4028 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4029 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4030
4031 for_each_zone(zone)
4032 wmark_low += zone->watermark[WMARK_LOW];
4033
4034 /*
4035 * Estimate the amount of memory available for userspace allocations,
4036 * without causing swapping.
4037 */
4038 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4039
4040 /*
4041 * Not all the page cache can be freed, otherwise the system will
4042 * start swapping. Assume at least half of the page cache, or the
4043 * low watermark worth of cache, needs to stay.
4044 */
4045 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4046 pagecache -= min(pagecache / 2, wmark_low);
4047 available += pagecache;
4048
4049 /*
4050 * Part of the reclaimable slab consists of items that are in use,
4051 * and cannot be freed. Cap this estimate at the low watermark.
4052 */
4053 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4054 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4055
4056 if (available < 0)
4057 available = 0;
4058 return available;
4059}
4060EXPORT_SYMBOL_GPL(si_mem_available);
4061
1da177e4
LT
4062void si_meminfo(struct sysinfo *val)
4063{
4064 val->totalram = totalram_pages;
11fb9989 4065 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4066 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4067 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4068 val->totalhigh = totalhigh_pages;
4069 val->freehigh = nr_free_highpages();
1da177e4
LT
4070 val->mem_unit = PAGE_SIZE;
4071}
4072
4073EXPORT_SYMBOL(si_meminfo);
4074
4075#ifdef CONFIG_NUMA
4076void si_meminfo_node(struct sysinfo *val, int nid)
4077{
cdd91a77
JL
4078 int zone_type; /* needs to be signed */
4079 unsigned long managed_pages = 0;
fc2bd799
JK
4080 unsigned long managed_highpages = 0;
4081 unsigned long free_highpages = 0;
1da177e4
LT
4082 pg_data_t *pgdat = NODE_DATA(nid);
4083
cdd91a77
JL
4084 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4085 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4086 val->totalram = managed_pages;
11fb9989 4087 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4088 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4089#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4090 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4091 struct zone *zone = &pgdat->node_zones[zone_type];
4092
4093 if (is_highmem(zone)) {
4094 managed_highpages += zone->managed_pages;
4095 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4096 }
4097 }
4098 val->totalhigh = managed_highpages;
4099 val->freehigh = free_highpages;
98d2b0eb 4100#else
fc2bd799
JK
4101 val->totalhigh = managed_highpages;
4102 val->freehigh = free_highpages;
98d2b0eb 4103#endif
1da177e4
LT
4104 val->mem_unit = PAGE_SIZE;
4105}
4106#endif
4107
ddd588b5 4108/*
7bf02ea2
DR
4109 * Determine whether the node should be displayed or not, depending on whether
4110 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4111 */
7bf02ea2 4112bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4113{
4114 bool ret = false;
cc9a6c87 4115 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4116
4117 if (!(flags & SHOW_MEM_FILTER_NODES))
4118 goto out;
4119
cc9a6c87 4120 do {
d26914d1 4121 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4122 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4123 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4124out:
4125 return ret;
4126}
4127
1da177e4
LT
4128#define K(x) ((x) << (PAGE_SHIFT-10))
4129
377e4f16
RV
4130static void show_migration_types(unsigned char type)
4131{
4132 static const char types[MIGRATE_TYPES] = {
4133 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4134 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4135 [MIGRATE_RECLAIMABLE] = 'E',
4136 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4137#ifdef CONFIG_CMA
4138 [MIGRATE_CMA] = 'C',
4139#endif
194159fb 4140#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4141 [MIGRATE_ISOLATE] = 'I',
194159fb 4142#endif
377e4f16
RV
4143 };
4144 char tmp[MIGRATE_TYPES + 1];
4145 char *p = tmp;
4146 int i;
4147
4148 for (i = 0; i < MIGRATE_TYPES; i++) {
4149 if (type & (1 << i))
4150 *p++ = types[i];
4151 }
4152
4153 *p = '\0';
4154 printk("(%s) ", tmp);
4155}
4156
1da177e4
LT
4157/*
4158 * Show free area list (used inside shift_scroll-lock stuff)
4159 * We also calculate the percentage fragmentation. We do this by counting the
4160 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4161 *
4162 * Bits in @filter:
4163 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4164 * cpuset.
1da177e4 4165 */
7bf02ea2 4166void show_free_areas(unsigned int filter)
1da177e4 4167{
d1bfcdb8 4168 unsigned long free_pcp = 0;
c7241913 4169 int cpu;
1da177e4 4170 struct zone *zone;
599d0c95 4171 pg_data_t *pgdat;
1da177e4 4172
ee99c71c 4173 for_each_populated_zone(zone) {
7bf02ea2 4174 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4175 continue;
d1bfcdb8 4176
761b0677
KK
4177 for_each_online_cpu(cpu)
4178 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4179 }
4180
a731286d
KM
4181 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4182 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4183 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4184 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4185 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4186 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4187 global_node_page_state(NR_ACTIVE_ANON),
4188 global_node_page_state(NR_INACTIVE_ANON),
4189 global_node_page_state(NR_ISOLATED_ANON),
4190 global_node_page_state(NR_ACTIVE_FILE),
4191 global_node_page_state(NR_INACTIVE_FILE),
4192 global_node_page_state(NR_ISOLATED_FILE),
4193 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4194 global_node_page_state(NR_FILE_DIRTY),
4195 global_node_page_state(NR_WRITEBACK),
4196 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4197 global_page_state(NR_SLAB_RECLAIMABLE),
4198 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4199 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4200 global_node_page_state(NR_SHMEM),
a25700a5 4201 global_page_state(NR_PAGETABLE),
d1ce749a 4202 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4203 global_page_state(NR_FREE_PAGES),
4204 free_pcp,
d1ce749a 4205 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4206
599d0c95
MG
4207 for_each_online_pgdat(pgdat) {
4208 printk("Node %d"
4209 " active_anon:%lukB"
4210 " inactive_anon:%lukB"
4211 " active_file:%lukB"
4212 " inactive_file:%lukB"
4213 " unevictable:%lukB"
4214 " isolated(anon):%lukB"
4215 " isolated(file):%lukB"
50658e2e 4216 " mapped:%lukB"
11fb9989
MG
4217 " dirty:%lukB"
4218 " writeback:%lukB"
4219 " shmem:%lukB"
4220#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4221 " shmem_thp: %lukB"
4222 " shmem_pmdmapped: %lukB"
4223 " anon_thp: %lukB"
4224#endif
4225 " writeback_tmp:%lukB"
4226 " unstable:%lukB"
33e077bd 4227 " pages_scanned:%lu"
599d0c95
MG
4228 " all_unreclaimable? %s"
4229 "\n",
4230 pgdat->node_id,
4231 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4232 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4233 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4234 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4235 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4236 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4237 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4238 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4239 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4240 K(node_page_state(pgdat, NR_WRITEBACK)),
4241#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4242 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4243 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4244 * HPAGE_PMD_NR),
4245 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4246#endif
4247 K(node_page_state(pgdat, NR_SHMEM)),
4248 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4249 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
33e077bd 4250 node_page_state(pgdat, NR_PAGES_SCANNED),
599d0c95
MG
4251 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4252 }
4253
ee99c71c 4254 for_each_populated_zone(zone) {
1da177e4
LT
4255 int i;
4256
7bf02ea2 4257 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4258 continue;
d1bfcdb8
KK
4259
4260 free_pcp = 0;
4261 for_each_online_cpu(cpu)
4262 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4263
1da177e4
LT
4264 show_node(zone);
4265 printk("%s"
4266 " free:%lukB"
4267 " min:%lukB"
4268 " low:%lukB"
4269 " high:%lukB"
71c799f4
MK
4270 " active_anon:%lukB"
4271 " inactive_anon:%lukB"
4272 " active_file:%lukB"
4273 " inactive_file:%lukB"
4274 " unevictable:%lukB"
5a1c84b4 4275 " writepending:%lukB"
1da177e4 4276 " present:%lukB"
9feedc9d 4277 " managed:%lukB"
4a0aa73f 4278 " mlocked:%lukB"
4a0aa73f
KM
4279 " slab_reclaimable:%lukB"
4280 " slab_unreclaimable:%lukB"
c6a7f572 4281 " kernel_stack:%lukB"
4a0aa73f 4282 " pagetables:%lukB"
4a0aa73f 4283 " bounce:%lukB"
d1bfcdb8
KK
4284 " free_pcp:%lukB"
4285 " local_pcp:%ukB"
d1ce749a 4286 " free_cma:%lukB"
1da177e4
LT
4287 "\n",
4288 zone->name,
88f5acf8 4289 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4290 K(min_wmark_pages(zone)),
4291 K(low_wmark_pages(zone)),
4292 K(high_wmark_pages(zone)),
71c799f4
MK
4293 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4294 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4295 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4296 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4297 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4298 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4299 K(zone->present_pages),
9feedc9d 4300 K(zone->managed_pages),
4a0aa73f 4301 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4302 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4303 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4304 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4305 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4306 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4307 K(free_pcp),
4308 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4309 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4310 printk("lowmem_reserve[]:");
4311 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4312 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4313 printk("\n");
4314 }
4315
ee99c71c 4316 for_each_populated_zone(zone) {
d00181b9
KS
4317 unsigned int order;
4318 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4319 unsigned char types[MAX_ORDER];
1da177e4 4320
7bf02ea2 4321 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4322 continue;
1da177e4
LT
4323 show_node(zone);
4324 printk("%s: ", zone->name);
1da177e4
LT
4325
4326 spin_lock_irqsave(&zone->lock, flags);
4327 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4328 struct free_area *area = &zone->free_area[order];
4329 int type;
4330
4331 nr[order] = area->nr_free;
8f9de51a 4332 total += nr[order] << order;
377e4f16
RV
4333
4334 types[order] = 0;
4335 for (type = 0; type < MIGRATE_TYPES; type++) {
4336 if (!list_empty(&area->free_list[type]))
4337 types[order] |= 1 << type;
4338 }
1da177e4
LT
4339 }
4340 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4341 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4342 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4343 if (nr[order])
4344 show_migration_types(types[order]);
4345 }
1da177e4
LT
4346 printk("= %lukB\n", K(total));
4347 }
4348
949f7ec5
DR
4349 hugetlb_show_meminfo();
4350
11fb9989 4351 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4352
1da177e4
LT
4353 show_swap_cache_info();
4354}
4355
19770b32
MG
4356static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4357{
4358 zoneref->zone = zone;
4359 zoneref->zone_idx = zone_idx(zone);
4360}
4361
1da177e4
LT
4362/*
4363 * Builds allocation fallback zone lists.
1a93205b
CL
4364 *
4365 * Add all populated zones of a node to the zonelist.
1da177e4 4366 */
f0c0b2b8 4367static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4368 int nr_zones)
1da177e4 4369{
1a93205b 4370 struct zone *zone;
bc732f1d 4371 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4372
4373 do {
2f6726e5 4374 zone_type--;
070f8032 4375 zone = pgdat->node_zones + zone_type;
6aa303de 4376 if (managed_zone(zone)) {
dd1a239f
MG
4377 zoneref_set_zone(zone,
4378 &zonelist->_zonerefs[nr_zones++]);
070f8032 4379 check_highest_zone(zone_type);
1da177e4 4380 }
2f6726e5 4381 } while (zone_type);
bc732f1d 4382
070f8032 4383 return nr_zones;
1da177e4
LT
4384}
4385
f0c0b2b8
KH
4386
4387/*
4388 * zonelist_order:
4389 * 0 = automatic detection of better ordering.
4390 * 1 = order by ([node] distance, -zonetype)
4391 * 2 = order by (-zonetype, [node] distance)
4392 *
4393 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4394 * the same zonelist. So only NUMA can configure this param.
4395 */
4396#define ZONELIST_ORDER_DEFAULT 0
4397#define ZONELIST_ORDER_NODE 1
4398#define ZONELIST_ORDER_ZONE 2
4399
4400/* zonelist order in the kernel.
4401 * set_zonelist_order() will set this to NODE or ZONE.
4402 */
4403static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4404static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4405
4406
1da177e4 4407#ifdef CONFIG_NUMA
f0c0b2b8
KH
4408/* The value user specified ....changed by config */
4409static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4410/* string for sysctl */
4411#define NUMA_ZONELIST_ORDER_LEN 16
4412char numa_zonelist_order[16] = "default";
4413
4414/*
4415 * interface for configure zonelist ordering.
4416 * command line option "numa_zonelist_order"
4417 * = "[dD]efault - default, automatic configuration.
4418 * = "[nN]ode - order by node locality, then by zone within node
4419 * = "[zZ]one - order by zone, then by locality within zone
4420 */
4421
4422static int __parse_numa_zonelist_order(char *s)
4423{
4424 if (*s == 'd' || *s == 'D') {
4425 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4426 } else if (*s == 'n' || *s == 'N') {
4427 user_zonelist_order = ZONELIST_ORDER_NODE;
4428 } else if (*s == 'z' || *s == 'Z') {
4429 user_zonelist_order = ZONELIST_ORDER_ZONE;
4430 } else {
1170532b 4431 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4432 return -EINVAL;
4433 }
4434 return 0;
4435}
4436
4437static __init int setup_numa_zonelist_order(char *s)
4438{
ecb256f8
VL
4439 int ret;
4440
4441 if (!s)
4442 return 0;
4443
4444 ret = __parse_numa_zonelist_order(s);
4445 if (ret == 0)
4446 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4447
4448 return ret;
f0c0b2b8
KH
4449}
4450early_param("numa_zonelist_order", setup_numa_zonelist_order);
4451
4452/*
4453 * sysctl handler for numa_zonelist_order
4454 */
cccad5b9 4455int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4456 void __user *buffer, size_t *length,
f0c0b2b8
KH
4457 loff_t *ppos)
4458{
4459 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4460 int ret;
443c6f14 4461 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4462
443c6f14 4463 mutex_lock(&zl_order_mutex);
dacbde09
CG
4464 if (write) {
4465 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4466 ret = -EINVAL;
4467 goto out;
4468 }
4469 strcpy(saved_string, (char *)table->data);
4470 }
8d65af78 4471 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4472 if (ret)
443c6f14 4473 goto out;
f0c0b2b8
KH
4474 if (write) {
4475 int oldval = user_zonelist_order;
dacbde09
CG
4476
4477 ret = __parse_numa_zonelist_order((char *)table->data);
4478 if (ret) {
f0c0b2b8
KH
4479 /*
4480 * bogus value. restore saved string
4481 */
dacbde09 4482 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4483 NUMA_ZONELIST_ORDER_LEN);
4484 user_zonelist_order = oldval;
4eaf3f64
HL
4485 } else if (oldval != user_zonelist_order) {
4486 mutex_lock(&zonelists_mutex);
9adb62a5 4487 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4488 mutex_unlock(&zonelists_mutex);
4489 }
f0c0b2b8 4490 }
443c6f14
AK
4491out:
4492 mutex_unlock(&zl_order_mutex);
4493 return ret;
f0c0b2b8
KH
4494}
4495
4496
62bc62a8 4497#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4498static int node_load[MAX_NUMNODES];
4499
1da177e4 4500/**
4dc3b16b 4501 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4502 * @node: node whose fallback list we're appending
4503 * @used_node_mask: nodemask_t of already used nodes
4504 *
4505 * We use a number of factors to determine which is the next node that should
4506 * appear on a given node's fallback list. The node should not have appeared
4507 * already in @node's fallback list, and it should be the next closest node
4508 * according to the distance array (which contains arbitrary distance values
4509 * from each node to each node in the system), and should also prefer nodes
4510 * with no CPUs, since presumably they'll have very little allocation pressure
4511 * on them otherwise.
4512 * It returns -1 if no node is found.
4513 */
f0c0b2b8 4514static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4515{
4cf808eb 4516 int n, val;
1da177e4 4517 int min_val = INT_MAX;
00ef2d2f 4518 int best_node = NUMA_NO_NODE;
a70f7302 4519 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4520
4cf808eb
LT
4521 /* Use the local node if we haven't already */
4522 if (!node_isset(node, *used_node_mask)) {
4523 node_set(node, *used_node_mask);
4524 return node;
4525 }
1da177e4 4526
4b0ef1fe 4527 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4528
4529 /* Don't want a node to appear more than once */
4530 if (node_isset(n, *used_node_mask))
4531 continue;
4532
1da177e4
LT
4533 /* Use the distance array to find the distance */
4534 val = node_distance(node, n);
4535
4cf808eb
LT
4536 /* Penalize nodes under us ("prefer the next node") */
4537 val += (n < node);
4538
1da177e4 4539 /* Give preference to headless and unused nodes */
a70f7302
RR
4540 tmp = cpumask_of_node(n);
4541 if (!cpumask_empty(tmp))
1da177e4
LT
4542 val += PENALTY_FOR_NODE_WITH_CPUS;
4543
4544 /* Slight preference for less loaded node */
4545 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4546 val += node_load[n];
4547
4548 if (val < min_val) {
4549 min_val = val;
4550 best_node = n;
4551 }
4552 }
4553
4554 if (best_node >= 0)
4555 node_set(best_node, *used_node_mask);
4556
4557 return best_node;
4558}
4559
f0c0b2b8
KH
4560
4561/*
4562 * Build zonelists ordered by node and zones within node.
4563 * This results in maximum locality--normal zone overflows into local
4564 * DMA zone, if any--but risks exhausting DMA zone.
4565 */
4566static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4567{
f0c0b2b8 4568 int j;
1da177e4 4569 struct zonelist *zonelist;
f0c0b2b8 4570
54a6eb5c 4571 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4572 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4573 ;
bc732f1d 4574 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4575 zonelist->_zonerefs[j].zone = NULL;
4576 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4577}
4578
523b9458
CL
4579/*
4580 * Build gfp_thisnode zonelists
4581 */
4582static void build_thisnode_zonelists(pg_data_t *pgdat)
4583{
523b9458
CL
4584 int j;
4585 struct zonelist *zonelist;
4586
54a6eb5c 4587 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4588 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4589 zonelist->_zonerefs[j].zone = NULL;
4590 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4591}
4592
f0c0b2b8
KH
4593/*
4594 * Build zonelists ordered by zone and nodes within zones.
4595 * This results in conserving DMA zone[s] until all Normal memory is
4596 * exhausted, but results in overflowing to remote node while memory
4597 * may still exist in local DMA zone.
4598 */
4599static int node_order[MAX_NUMNODES];
4600
4601static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4602{
f0c0b2b8
KH
4603 int pos, j, node;
4604 int zone_type; /* needs to be signed */
4605 struct zone *z;
4606 struct zonelist *zonelist;
4607
54a6eb5c
MG
4608 zonelist = &pgdat->node_zonelists[0];
4609 pos = 0;
4610 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4611 for (j = 0; j < nr_nodes; j++) {
4612 node = node_order[j];
4613 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4614 if (managed_zone(z)) {
dd1a239f
MG
4615 zoneref_set_zone(z,
4616 &zonelist->_zonerefs[pos++]);
54a6eb5c 4617 check_highest_zone(zone_type);
f0c0b2b8
KH
4618 }
4619 }
f0c0b2b8 4620 }
dd1a239f
MG
4621 zonelist->_zonerefs[pos].zone = NULL;
4622 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4623}
4624
3193913c
MG
4625#if defined(CONFIG_64BIT)
4626/*
4627 * Devices that require DMA32/DMA are relatively rare and do not justify a
4628 * penalty to every machine in case the specialised case applies. Default
4629 * to Node-ordering on 64-bit NUMA machines
4630 */
4631static int default_zonelist_order(void)
4632{
4633 return ZONELIST_ORDER_NODE;
4634}
4635#else
4636/*
4637 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4638 * by the kernel. If processes running on node 0 deplete the low memory zone
4639 * then reclaim will occur more frequency increasing stalls and potentially
4640 * be easier to OOM if a large percentage of the zone is under writeback or
4641 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4642 * Hence, default to zone ordering on 32-bit.
4643 */
f0c0b2b8
KH
4644static int default_zonelist_order(void)
4645{
f0c0b2b8
KH
4646 return ZONELIST_ORDER_ZONE;
4647}
3193913c 4648#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4649
4650static void set_zonelist_order(void)
4651{
4652 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4653 current_zonelist_order = default_zonelist_order();
4654 else
4655 current_zonelist_order = user_zonelist_order;
4656}
4657
4658static void build_zonelists(pg_data_t *pgdat)
4659{
c00eb15a 4660 int i, node, load;
1da177e4 4661 nodemask_t used_mask;
f0c0b2b8
KH
4662 int local_node, prev_node;
4663 struct zonelist *zonelist;
d00181b9 4664 unsigned int order = current_zonelist_order;
1da177e4
LT
4665
4666 /* initialize zonelists */
523b9458 4667 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4668 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4669 zonelist->_zonerefs[0].zone = NULL;
4670 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4671 }
4672
4673 /* NUMA-aware ordering of nodes */
4674 local_node = pgdat->node_id;
62bc62a8 4675 load = nr_online_nodes;
1da177e4
LT
4676 prev_node = local_node;
4677 nodes_clear(used_mask);
f0c0b2b8 4678
f0c0b2b8 4679 memset(node_order, 0, sizeof(node_order));
c00eb15a 4680 i = 0;
f0c0b2b8 4681
1da177e4
LT
4682 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4683 /*
4684 * We don't want to pressure a particular node.
4685 * So adding penalty to the first node in same
4686 * distance group to make it round-robin.
4687 */
957f822a
DR
4688 if (node_distance(local_node, node) !=
4689 node_distance(local_node, prev_node))
f0c0b2b8
KH
4690 node_load[node] = load;
4691
1da177e4
LT
4692 prev_node = node;
4693 load--;
f0c0b2b8
KH
4694 if (order == ZONELIST_ORDER_NODE)
4695 build_zonelists_in_node_order(pgdat, node);
4696 else
c00eb15a 4697 node_order[i++] = node; /* remember order */
f0c0b2b8 4698 }
1da177e4 4699
f0c0b2b8
KH
4700 if (order == ZONELIST_ORDER_ZONE) {
4701 /* calculate node order -- i.e., DMA last! */
c00eb15a 4702 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4703 }
523b9458
CL
4704
4705 build_thisnode_zonelists(pgdat);
1da177e4
LT
4706}
4707
7aac7898
LS
4708#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4709/*
4710 * Return node id of node used for "local" allocations.
4711 * I.e., first node id of first zone in arg node's generic zonelist.
4712 * Used for initializing percpu 'numa_mem', which is used primarily
4713 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4714 */
4715int local_memory_node(int node)
4716{
c33d6c06 4717 struct zoneref *z;
7aac7898 4718
c33d6c06 4719 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4720 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4721 NULL);
4722 return z->zone->node;
7aac7898
LS
4723}
4724#endif
f0c0b2b8 4725
6423aa81
JK
4726static void setup_min_unmapped_ratio(void);
4727static void setup_min_slab_ratio(void);
1da177e4
LT
4728#else /* CONFIG_NUMA */
4729
f0c0b2b8
KH
4730static void set_zonelist_order(void)
4731{
4732 current_zonelist_order = ZONELIST_ORDER_ZONE;
4733}
4734
4735static void build_zonelists(pg_data_t *pgdat)
1da177e4 4736{
19655d34 4737 int node, local_node;
54a6eb5c
MG
4738 enum zone_type j;
4739 struct zonelist *zonelist;
1da177e4
LT
4740
4741 local_node = pgdat->node_id;
1da177e4 4742
54a6eb5c 4743 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4744 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4745
54a6eb5c
MG
4746 /*
4747 * Now we build the zonelist so that it contains the zones
4748 * of all the other nodes.
4749 * We don't want to pressure a particular node, so when
4750 * building the zones for node N, we make sure that the
4751 * zones coming right after the local ones are those from
4752 * node N+1 (modulo N)
4753 */
4754 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4755 if (!node_online(node))
4756 continue;
bc732f1d 4757 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4758 }
54a6eb5c
MG
4759 for (node = 0; node < local_node; node++) {
4760 if (!node_online(node))
4761 continue;
bc732f1d 4762 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4763 }
4764
dd1a239f
MG
4765 zonelist->_zonerefs[j].zone = NULL;
4766 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4767}
4768
4769#endif /* CONFIG_NUMA */
4770
99dcc3e5
CL
4771/*
4772 * Boot pageset table. One per cpu which is going to be used for all
4773 * zones and all nodes. The parameters will be set in such a way
4774 * that an item put on a list will immediately be handed over to
4775 * the buddy list. This is safe since pageset manipulation is done
4776 * with interrupts disabled.
4777 *
4778 * The boot_pagesets must be kept even after bootup is complete for
4779 * unused processors and/or zones. They do play a role for bootstrapping
4780 * hotplugged processors.
4781 *
4782 * zoneinfo_show() and maybe other functions do
4783 * not check if the processor is online before following the pageset pointer.
4784 * Other parts of the kernel may not check if the zone is available.
4785 */
4786static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4787static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4788static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4789
4eaf3f64
HL
4790/*
4791 * Global mutex to protect against size modification of zonelists
4792 * as well as to serialize pageset setup for the new populated zone.
4793 */
4794DEFINE_MUTEX(zonelists_mutex);
4795
9b1a4d38 4796/* return values int ....just for stop_machine() */
4ed7e022 4797static int __build_all_zonelists(void *data)
1da177e4 4798{
6811378e 4799 int nid;
99dcc3e5 4800 int cpu;
9adb62a5 4801 pg_data_t *self = data;
9276b1bc 4802
7f9cfb31
BL
4803#ifdef CONFIG_NUMA
4804 memset(node_load, 0, sizeof(node_load));
4805#endif
9adb62a5
JL
4806
4807 if (self && !node_online(self->node_id)) {
4808 build_zonelists(self);
9adb62a5
JL
4809 }
4810
9276b1bc 4811 for_each_online_node(nid) {
7ea1530a
CL
4812 pg_data_t *pgdat = NODE_DATA(nid);
4813
4814 build_zonelists(pgdat);
9276b1bc 4815 }
99dcc3e5
CL
4816
4817 /*
4818 * Initialize the boot_pagesets that are going to be used
4819 * for bootstrapping processors. The real pagesets for
4820 * each zone will be allocated later when the per cpu
4821 * allocator is available.
4822 *
4823 * boot_pagesets are used also for bootstrapping offline
4824 * cpus if the system is already booted because the pagesets
4825 * are needed to initialize allocators on a specific cpu too.
4826 * F.e. the percpu allocator needs the page allocator which
4827 * needs the percpu allocator in order to allocate its pagesets
4828 * (a chicken-egg dilemma).
4829 */
7aac7898 4830 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4831 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4832
7aac7898
LS
4833#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4834 /*
4835 * We now know the "local memory node" for each node--
4836 * i.e., the node of the first zone in the generic zonelist.
4837 * Set up numa_mem percpu variable for on-line cpus. During
4838 * boot, only the boot cpu should be on-line; we'll init the
4839 * secondary cpus' numa_mem as they come on-line. During
4840 * node/memory hotplug, we'll fixup all on-line cpus.
4841 */
4842 if (cpu_online(cpu))
4843 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4844#endif
4845 }
4846
6811378e
YG
4847 return 0;
4848}
4849
061f67bc
RV
4850static noinline void __init
4851build_all_zonelists_init(void)
4852{
4853 __build_all_zonelists(NULL);
4854 mminit_verify_zonelist();
4855 cpuset_init_current_mems_allowed();
4856}
4857
4eaf3f64
HL
4858/*
4859 * Called with zonelists_mutex held always
4860 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4861 *
4862 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4863 * [we're only called with non-NULL zone through __meminit paths] and
4864 * (2) call of __init annotated helper build_all_zonelists_init
4865 * [protected by SYSTEM_BOOTING].
4eaf3f64 4866 */
9adb62a5 4867void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4868{
f0c0b2b8
KH
4869 set_zonelist_order();
4870
6811378e 4871 if (system_state == SYSTEM_BOOTING) {
061f67bc 4872 build_all_zonelists_init();
6811378e 4873 } else {
e9959f0f 4874#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4875 if (zone)
4876 setup_zone_pageset(zone);
e9959f0f 4877#endif
dd1895e2
CS
4878 /* we have to stop all cpus to guarantee there is no user
4879 of zonelist */
9adb62a5 4880 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4881 /* cpuset refresh routine should be here */
4882 }
bd1e22b8 4883 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4884 /*
4885 * Disable grouping by mobility if the number of pages in the
4886 * system is too low to allow the mechanism to work. It would be
4887 * more accurate, but expensive to check per-zone. This check is
4888 * made on memory-hotadd so a system can start with mobility
4889 * disabled and enable it later
4890 */
d9c23400 4891 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4892 page_group_by_mobility_disabled = 1;
4893 else
4894 page_group_by_mobility_disabled = 0;
4895
756a025f
JP
4896 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4897 nr_online_nodes,
4898 zonelist_order_name[current_zonelist_order],
4899 page_group_by_mobility_disabled ? "off" : "on",
4900 vm_total_pages);
f0c0b2b8 4901#ifdef CONFIG_NUMA
f88dfff5 4902 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4903#endif
1da177e4
LT
4904}
4905
4906/*
4907 * Helper functions to size the waitqueue hash table.
4908 * Essentially these want to choose hash table sizes sufficiently
4909 * large so that collisions trying to wait on pages are rare.
4910 * But in fact, the number of active page waitqueues on typical
4911 * systems is ridiculously low, less than 200. So this is even
4912 * conservative, even though it seems large.
4913 *
4914 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4915 * waitqueues, i.e. the size of the waitq table given the number of pages.
4916 */
4917#define PAGES_PER_WAITQUEUE 256
4918
cca448fe 4919#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4920static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4921{
4922 unsigned long size = 1;
4923
4924 pages /= PAGES_PER_WAITQUEUE;
4925
4926 while (size < pages)
4927 size <<= 1;
4928
4929 /*
4930 * Once we have dozens or even hundreds of threads sleeping
4931 * on IO we've got bigger problems than wait queue collision.
4932 * Limit the size of the wait table to a reasonable size.
4933 */
4934 size = min(size, 4096UL);
4935
4936 return max(size, 4UL);
4937}
cca448fe
YG
4938#else
4939/*
4940 * A zone's size might be changed by hot-add, so it is not possible to determine
4941 * a suitable size for its wait_table. So we use the maximum size now.
4942 *
4943 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4944 *
4945 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4946 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4947 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4948 *
4949 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4950 * or more by the traditional way. (See above). It equals:
4951 *
4952 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4953 * ia64(16K page size) : = ( 8G + 4M)byte.
4954 * powerpc (64K page size) : = (32G +16M)byte.
4955 */
4956static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4957{
4958 return 4096UL;
4959}
4960#endif
1da177e4
LT
4961
4962/*
4963 * This is an integer logarithm so that shifts can be used later
4964 * to extract the more random high bits from the multiplicative
4965 * hash function before the remainder is taken.
4966 */
4967static inline unsigned long wait_table_bits(unsigned long size)
4968{
4969 return ffz(~size);
4970}
4971
1da177e4
LT
4972/*
4973 * Initially all pages are reserved - free ones are freed
4974 * up by free_all_bootmem() once the early boot process is
4975 * done. Non-atomic initialization, single-pass.
4976 */
c09b4240 4977void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4978 unsigned long start_pfn, enum memmap_context context)
1da177e4 4979{
4b94ffdc 4980 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4981 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4982 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4983 unsigned long pfn;
3a80a7fa 4984 unsigned long nr_initialised = 0;
342332e6
TI
4985#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4986 struct memblock_region *r = NULL, *tmp;
4987#endif
1da177e4 4988
22b31eec
HD
4989 if (highest_memmap_pfn < end_pfn - 1)
4990 highest_memmap_pfn = end_pfn - 1;
4991
4b94ffdc
DW
4992 /*
4993 * Honor reservation requested by the driver for this ZONE_DEVICE
4994 * memory
4995 */
4996 if (altmap && start_pfn == altmap->base_pfn)
4997 start_pfn += altmap->reserve;
4998
cbe8dd4a 4999 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5000 /*
b72d0ffb
AM
5001 * There can be holes in boot-time mem_map[]s handed to this
5002 * function. They do not exist on hotplugged memory.
a2f3aa02 5003 */
b72d0ffb
AM
5004 if (context != MEMMAP_EARLY)
5005 goto not_early;
5006
5007 if (!early_pfn_valid(pfn))
5008 continue;
5009 if (!early_pfn_in_nid(pfn, nid))
5010 continue;
5011 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5012 break;
342332e6
TI
5013
5014#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5015 /*
5016 * Check given memblock attribute by firmware which can affect
5017 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5018 * mirrored, it's an overlapped memmap init. skip it.
5019 */
5020 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5021 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5022 for_each_memblock(memory, tmp)
5023 if (pfn < memblock_region_memory_end_pfn(tmp))
5024 break;
5025 r = tmp;
5026 }
5027 if (pfn >= memblock_region_memory_base_pfn(r) &&
5028 memblock_is_mirror(r)) {
5029 /* already initialized as NORMAL */
5030 pfn = memblock_region_memory_end_pfn(r);
5031 continue;
342332e6 5032 }
a2f3aa02 5033 }
b72d0ffb 5034#endif
ac5d2539 5035
b72d0ffb 5036not_early:
ac5d2539
MG
5037 /*
5038 * Mark the block movable so that blocks are reserved for
5039 * movable at startup. This will force kernel allocations
5040 * to reserve their blocks rather than leaking throughout
5041 * the address space during boot when many long-lived
974a786e 5042 * kernel allocations are made.
ac5d2539
MG
5043 *
5044 * bitmap is created for zone's valid pfn range. but memmap
5045 * can be created for invalid pages (for alignment)
5046 * check here not to call set_pageblock_migratetype() against
5047 * pfn out of zone.
5048 */
5049 if (!(pfn & (pageblock_nr_pages - 1))) {
5050 struct page *page = pfn_to_page(pfn);
5051
5052 __init_single_page(page, pfn, zone, nid);
5053 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5054 } else {
5055 __init_single_pfn(pfn, zone, nid);
5056 }
1da177e4
LT
5057 }
5058}
5059
1e548deb 5060static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5061{
7aeb09f9 5062 unsigned int order, t;
b2a0ac88
MG
5063 for_each_migratetype_order(order, t) {
5064 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5065 zone->free_area[order].nr_free = 0;
5066 }
5067}
5068
5069#ifndef __HAVE_ARCH_MEMMAP_INIT
5070#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5071 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5072#endif
5073
7cd2b0a3 5074static int zone_batchsize(struct zone *zone)
e7c8d5c9 5075{
3a6be87f 5076#ifdef CONFIG_MMU
e7c8d5c9
CL
5077 int batch;
5078
5079 /*
5080 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5081 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5082 *
5083 * OK, so we don't know how big the cache is. So guess.
5084 */
b40da049 5085 batch = zone->managed_pages / 1024;
ba56e91c
SR
5086 if (batch * PAGE_SIZE > 512 * 1024)
5087 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5088 batch /= 4; /* We effectively *= 4 below */
5089 if (batch < 1)
5090 batch = 1;
5091
5092 /*
0ceaacc9
NP
5093 * Clamp the batch to a 2^n - 1 value. Having a power
5094 * of 2 value was found to be more likely to have
5095 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5096 *
0ceaacc9
NP
5097 * For example if 2 tasks are alternately allocating
5098 * batches of pages, one task can end up with a lot
5099 * of pages of one half of the possible page colors
5100 * and the other with pages of the other colors.
e7c8d5c9 5101 */
9155203a 5102 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5103
e7c8d5c9 5104 return batch;
3a6be87f
DH
5105
5106#else
5107 /* The deferral and batching of frees should be suppressed under NOMMU
5108 * conditions.
5109 *
5110 * The problem is that NOMMU needs to be able to allocate large chunks
5111 * of contiguous memory as there's no hardware page translation to
5112 * assemble apparent contiguous memory from discontiguous pages.
5113 *
5114 * Queueing large contiguous runs of pages for batching, however,
5115 * causes the pages to actually be freed in smaller chunks. As there
5116 * can be a significant delay between the individual batches being
5117 * recycled, this leads to the once large chunks of space being
5118 * fragmented and becoming unavailable for high-order allocations.
5119 */
5120 return 0;
5121#endif
e7c8d5c9
CL
5122}
5123
8d7a8fa9
CS
5124/*
5125 * pcp->high and pcp->batch values are related and dependent on one another:
5126 * ->batch must never be higher then ->high.
5127 * The following function updates them in a safe manner without read side
5128 * locking.
5129 *
5130 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5131 * those fields changing asynchronously (acording the the above rule).
5132 *
5133 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5134 * outside of boot time (or some other assurance that no concurrent updaters
5135 * exist).
5136 */
5137static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5138 unsigned long batch)
5139{
5140 /* start with a fail safe value for batch */
5141 pcp->batch = 1;
5142 smp_wmb();
5143
5144 /* Update high, then batch, in order */
5145 pcp->high = high;
5146 smp_wmb();
5147
5148 pcp->batch = batch;
5149}
5150
3664033c 5151/* a companion to pageset_set_high() */
4008bab7
CS
5152static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5153{
8d7a8fa9 5154 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5155}
5156
88c90dbc 5157static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5158{
5159 struct per_cpu_pages *pcp;
5f8dcc21 5160 int migratetype;
2caaad41 5161
1c6fe946
MD
5162 memset(p, 0, sizeof(*p));
5163
3dfa5721 5164 pcp = &p->pcp;
2caaad41 5165 pcp->count = 0;
5f8dcc21
MG
5166 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5167 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5168}
5169
88c90dbc
CS
5170static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5171{
5172 pageset_init(p);
5173 pageset_set_batch(p, batch);
5174}
5175
8ad4b1fb 5176/*
3664033c 5177 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5178 * to the value high for the pageset p.
5179 */
3664033c 5180static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5181 unsigned long high)
5182{
8d7a8fa9
CS
5183 unsigned long batch = max(1UL, high / 4);
5184 if ((high / 4) > (PAGE_SHIFT * 8))
5185 batch = PAGE_SHIFT * 8;
8ad4b1fb 5186
8d7a8fa9 5187 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5188}
5189
7cd2b0a3
DR
5190static void pageset_set_high_and_batch(struct zone *zone,
5191 struct per_cpu_pageset *pcp)
56cef2b8 5192{
56cef2b8 5193 if (percpu_pagelist_fraction)
3664033c 5194 pageset_set_high(pcp,
56cef2b8
CS
5195 (zone->managed_pages /
5196 percpu_pagelist_fraction));
5197 else
5198 pageset_set_batch(pcp, zone_batchsize(zone));
5199}
5200
169f6c19
CS
5201static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5202{
5203 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5204
5205 pageset_init(pcp);
5206 pageset_set_high_and_batch(zone, pcp);
5207}
5208
4ed7e022 5209static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5210{
5211 int cpu;
319774e2 5212 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5213 for_each_possible_cpu(cpu)
5214 zone_pageset_init(zone, cpu);
319774e2
WF
5215}
5216
2caaad41 5217/*
99dcc3e5
CL
5218 * Allocate per cpu pagesets and initialize them.
5219 * Before this call only boot pagesets were available.
e7c8d5c9 5220 */
99dcc3e5 5221void __init setup_per_cpu_pageset(void)
e7c8d5c9 5222{
b4911ea2 5223 struct pglist_data *pgdat;
99dcc3e5 5224 struct zone *zone;
e7c8d5c9 5225
319774e2
WF
5226 for_each_populated_zone(zone)
5227 setup_zone_pageset(zone);
b4911ea2
MG
5228
5229 for_each_online_pgdat(pgdat)
5230 pgdat->per_cpu_nodestats =
5231 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5232}
5233
bd721ea7 5234static noinline __ref
cca448fe 5235int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5236{
5237 int i;
cca448fe 5238 size_t alloc_size;
ed8ece2e
DH
5239
5240 /*
5241 * The per-page waitqueue mechanism uses hashed waitqueues
5242 * per zone.
5243 */
02b694de
YG
5244 zone->wait_table_hash_nr_entries =
5245 wait_table_hash_nr_entries(zone_size_pages);
5246 zone->wait_table_bits =
5247 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5248 alloc_size = zone->wait_table_hash_nr_entries
5249 * sizeof(wait_queue_head_t);
5250
cd94b9db 5251 if (!slab_is_available()) {
cca448fe 5252 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5253 memblock_virt_alloc_node_nopanic(
5254 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5255 } else {
5256 /*
5257 * This case means that a zone whose size was 0 gets new memory
5258 * via memory hot-add.
5259 * But it may be the case that a new node was hot-added. In
5260 * this case vmalloc() will not be able to use this new node's
5261 * memory - this wait_table must be initialized to use this new
5262 * node itself as well.
5263 * To use this new node's memory, further consideration will be
5264 * necessary.
5265 */
8691f3a7 5266 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5267 }
5268 if (!zone->wait_table)
5269 return -ENOMEM;
ed8ece2e 5270
b8af2941 5271 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5272 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5273
5274 return 0;
ed8ece2e
DH
5275}
5276
c09b4240 5277static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5278{
99dcc3e5
CL
5279 /*
5280 * per cpu subsystem is not up at this point. The following code
5281 * relies on the ability of the linker to provide the
5282 * offset of a (static) per cpu variable into the per cpu area.
5283 */
5284 zone->pageset = &boot_pageset;
ed8ece2e 5285
b38a8725 5286 if (populated_zone(zone))
99dcc3e5
CL
5287 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5288 zone->name, zone->present_pages,
5289 zone_batchsize(zone));
ed8ece2e
DH
5290}
5291
4ed7e022 5292int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5293 unsigned long zone_start_pfn,
b171e409 5294 unsigned long size)
ed8ece2e
DH
5295{
5296 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5297 int ret;
5298 ret = zone_wait_table_init(zone, size);
5299 if (ret)
5300 return ret;
ed8ece2e
DH
5301 pgdat->nr_zones = zone_idx(zone) + 1;
5302
ed8ece2e
DH
5303 zone->zone_start_pfn = zone_start_pfn;
5304
708614e6
MG
5305 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5306 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5307 pgdat->node_id,
5308 (unsigned long)zone_idx(zone),
5309 zone_start_pfn, (zone_start_pfn + size));
5310
1e548deb 5311 zone_init_free_lists(zone);
718127cc
YG
5312
5313 return 0;
ed8ece2e
DH
5314}
5315
0ee332c1 5316#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5317#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5318
c713216d
MG
5319/*
5320 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5321 */
8a942fde
MG
5322int __meminit __early_pfn_to_nid(unsigned long pfn,
5323 struct mminit_pfnnid_cache *state)
c713216d 5324{
c13291a5 5325 unsigned long start_pfn, end_pfn;
e76b63f8 5326 int nid;
7c243c71 5327
8a942fde
MG
5328 if (state->last_start <= pfn && pfn < state->last_end)
5329 return state->last_nid;
c713216d 5330
e76b63f8
YL
5331 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5332 if (nid != -1) {
8a942fde
MG
5333 state->last_start = start_pfn;
5334 state->last_end = end_pfn;
5335 state->last_nid = nid;
e76b63f8
YL
5336 }
5337
5338 return nid;
c713216d
MG
5339}
5340#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5341
c713216d 5342/**
6782832e 5343 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5344 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5345 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5346 *
7d018176
ZZ
5347 * If an architecture guarantees that all ranges registered contain no holes
5348 * and may be freed, this this function may be used instead of calling
5349 * memblock_free_early_nid() manually.
c713216d 5350 */
c13291a5 5351void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5352{
c13291a5
TH
5353 unsigned long start_pfn, end_pfn;
5354 int i, this_nid;
edbe7d23 5355
c13291a5
TH
5356 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5357 start_pfn = min(start_pfn, max_low_pfn);
5358 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5359
c13291a5 5360 if (start_pfn < end_pfn)
6782832e
SS
5361 memblock_free_early_nid(PFN_PHYS(start_pfn),
5362 (end_pfn - start_pfn) << PAGE_SHIFT,
5363 this_nid);
edbe7d23 5364 }
edbe7d23 5365}
edbe7d23 5366
c713216d
MG
5367/**
5368 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5369 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5370 *
7d018176
ZZ
5371 * If an architecture guarantees that all ranges registered contain no holes and may
5372 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5373 */
5374void __init sparse_memory_present_with_active_regions(int nid)
5375{
c13291a5
TH
5376 unsigned long start_pfn, end_pfn;
5377 int i, this_nid;
c713216d 5378
c13291a5
TH
5379 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5380 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5381}
5382
5383/**
5384 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5385 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5386 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5387 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5388 *
5389 * It returns the start and end page frame of a node based on information
7d018176 5390 * provided by memblock_set_node(). If called for a node
c713216d 5391 * with no available memory, a warning is printed and the start and end
88ca3b94 5392 * PFNs will be 0.
c713216d 5393 */
a3142c8e 5394void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5395 unsigned long *start_pfn, unsigned long *end_pfn)
5396{
c13291a5 5397 unsigned long this_start_pfn, this_end_pfn;
c713216d 5398 int i;
c13291a5 5399
c713216d
MG
5400 *start_pfn = -1UL;
5401 *end_pfn = 0;
5402
c13291a5
TH
5403 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5404 *start_pfn = min(*start_pfn, this_start_pfn);
5405 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5406 }
5407
633c0666 5408 if (*start_pfn == -1UL)
c713216d 5409 *start_pfn = 0;
c713216d
MG
5410}
5411
2a1e274a
MG
5412/*
5413 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5414 * assumption is made that zones within a node are ordered in monotonic
5415 * increasing memory addresses so that the "highest" populated zone is used
5416 */
b69a7288 5417static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5418{
5419 int zone_index;
5420 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5421 if (zone_index == ZONE_MOVABLE)
5422 continue;
5423
5424 if (arch_zone_highest_possible_pfn[zone_index] >
5425 arch_zone_lowest_possible_pfn[zone_index])
5426 break;
5427 }
5428
5429 VM_BUG_ON(zone_index == -1);
5430 movable_zone = zone_index;
5431}
5432
5433/*
5434 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5435 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5436 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5437 * in each node depending on the size of each node and how evenly kernelcore
5438 * is distributed. This helper function adjusts the zone ranges
5439 * provided by the architecture for a given node by using the end of the
5440 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5441 * zones within a node are in order of monotonic increases memory addresses
5442 */
b69a7288 5443static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5444 unsigned long zone_type,
5445 unsigned long node_start_pfn,
5446 unsigned long node_end_pfn,
5447 unsigned long *zone_start_pfn,
5448 unsigned long *zone_end_pfn)
5449{
5450 /* Only adjust if ZONE_MOVABLE is on this node */
5451 if (zone_movable_pfn[nid]) {
5452 /* Size ZONE_MOVABLE */
5453 if (zone_type == ZONE_MOVABLE) {
5454 *zone_start_pfn = zone_movable_pfn[nid];
5455 *zone_end_pfn = min(node_end_pfn,
5456 arch_zone_highest_possible_pfn[movable_zone]);
5457
e506b996
XQ
5458 /* Adjust for ZONE_MOVABLE starting within this range */
5459 } else if (!mirrored_kernelcore &&
5460 *zone_start_pfn < zone_movable_pfn[nid] &&
5461 *zone_end_pfn > zone_movable_pfn[nid]) {
5462 *zone_end_pfn = zone_movable_pfn[nid];
5463
2a1e274a
MG
5464 /* Check if this whole range is within ZONE_MOVABLE */
5465 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5466 *zone_start_pfn = *zone_end_pfn;
5467 }
5468}
5469
c713216d
MG
5470/*
5471 * Return the number of pages a zone spans in a node, including holes
5472 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5473 */
6ea6e688 5474static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5475 unsigned long zone_type,
7960aedd
ZY
5476 unsigned long node_start_pfn,
5477 unsigned long node_end_pfn,
d91749c1
TI
5478 unsigned long *zone_start_pfn,
5479 unsigned long *zone_end_pfn,
c713216d
MG
5480 unsigned long *ignored)
5481{
b5685e92 5482 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5483 if (!node_start_pfn && !node_end_pfn)
5484 return 0;
5485
7960aedd 5486 /* Get the start and end of the zone */
d91749c1
TI
5487 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5488 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5489 adjust_zone_range_for_zone_movable(nid, zone_type,
5490 node_start_pfn, node_end_pfn,
d91749c1 5491 zone_start_pfn, zone_end_pfn);
c713216d
MG
5492
5493 /* Check that this node has pages within the zone's required range */
d91749c1 5494 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5495 return 0;
5496
5497 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5498 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5499 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5500
5501 /* Return the spanned pages */
d91749c1 5502 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5503}
5504
5505/*
5506 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5507 * then all holes in the requested range will be accounted for.
c713216d 5508 */
32996250 5509unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5510 unsigned long range_start_pfn,
5511 unsigned long range_end_pfn)
5512{
96e907d1
TH
5513 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5514 unsigned long start_pfn, end_pfn;
5515 int i;
c713216d 5516
96e907d1
TH
5517 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5518 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5519 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5520 nr_absent -= end_pfn - start_pfn;
c713216d 5521 }
96e907d1 5522 return nr_absent;
c713216d
MG
5523}
5524
5525/**
5526 * absent_pages_in_range - Return number of page frames in holes within a range
5527 * @start_pfn: The start PFN to start searching for holes
5528 * @end_pfn: The end PFN to stop searching for holes
5529 *
88ca3b94 5530 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5531 */
5532unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5533 unsigned long end_pfn)
5534{
5535 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5536}
5537
5538/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5539static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5540 unsigned long zone_type,
7960aedd
ZY
5541 unsigned long node_start_pfn,
5542 unsigned long node_end_pfn,
c713216d
MG
5543 unsigned long *ignored)
5544{
96e907d1
TH
5545 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5546 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5547 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5548 unsigned long nr_absent;
9c7cd687 5549
b5685e92 5550 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5551 if (!node_start_pfn && !node_end_pfn)
5552 return 0;
5553
96e907d1
TH
5554 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5555 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5556
2a1e274a
MG
5557 adjust_zone_range_for_zone_movable(nid, zone_type,
5558 node_start_pfn, node_end_pfn,
5559 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5560 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5561
5562 /*
5563 * ZONE_MOVABLE handling.
5564 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5565 * and vice versa.
5566 */
e506b996
XQ
5567 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5568 unsigned long start_pfn, end_pfn;
5569 struct memblock_region *r;
5570
5571 for_each_memblock(memory, r) {
5572 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5573 zone_start_pfn, zone_end_pfn);
5574 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5575 zone_start_pfn, zone_end_pfn);
5576
5577 if (zone_type == ZONE_MOVABLE &&
5578 memblock_is_mirror(r))
5579 nr_absent += end_pfn - start_pfn;
5580
5581 if (zone_type == ZONE_NORMAL &&
5582 !memblock_is_mirror(r))
5583 nr_absent += end_pfn - start_pfn;
342332e6
TI
5584 }
5585 }
5586
5587 return nr_absent;
c713216d 5588}
0e0b864e 5589
0ee332c1 5590#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5591static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5592 unsigned long zone_type,
7960aedd
ZY
5593 unsigned long node_start_pfn,
5594 unsigned long node_end_pfn,
d91749c1
TI
5595 unsigned long *zone_start_pfn,
5596 unsigned long *zone_end_pfn,
c713216d
MG
5597 unsigned long *zones_size)
5598{
d91749c1
TI
5599 unsigned int zone;
5600
5601 *zone_start_pfn = node_start_pfn;
5602 for (zone = 0; zone < zone_type; zone++)
5603 *zone_start_pfn += zones_size[zone];
5604
5605 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5606
c713216d
MG
5607 return zones_size[zone_type];
5608}
5609
6ea6e688 5610static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5611 unsigned long zone_type,
7960aedd
ZY
5612 unsigned long node_start_pfn,
5613 unsigned long node_end_pfn,
c713216d
MG
5614 unsigned long *zholes_size)
5615{
5616 if (!zholes_size)
5617 return 0;
5618
5619 return zholes_size[zone_type];
5620}
20e6926d 5621
0ee332c1 5622#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5623
a3142c8e 5624static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5625 unsigned long node_start_pfn,
5626 unsigned long node_end_pfn,
5627 unsigned long *zones_size,
5628 unsigned long *zholes_size)
c713216d 5629{
febd5949 5630 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5631 enum zone_type i;
5632
febd5949
GZ
5633 for (i = 0; i < MAX_NR_ZONES; i++) {
5634 struct zone *zone = pgdat->node_zones + i;
d91749c1 5635 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5636 unsigned long size, real_size;
c713216d 5637
febd5949
GZ
5638 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5639 node_start_pfn,
5640 node_end_pfn,
d91749c1
TI
5641 &zone_start_pfn,
5642 &zone_end_pfn,
febd5949
GZ
5643 zones_size);
5644 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5645 node_start_pfn, node_end_pfn,
5646 zholes_size);
d91749c1
TI
5647 if (size)
5648 zone->zone_start_pfn = zone_start_pfn;
5649 else
5650 zone->zone_start_pfn = 0;
febd5949
GZ
5651 zone->spanned_pages = size;
5652 zone->present_pages = real_size;
5653
5654 totalpages += size;
5655 realtotalpages += real_size;
5656 }
5657
5658 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5659 pgdat->node_present_pages = realtotalpages;
5660 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5661 realtotalpages);
5662}
5663
835c134e
MG
5664#ifndef CONFIG_SPARSEMEM
5665/*
5666 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5667 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5668 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5669 * round what is now in bits to nearest long in bits, then return it in
5670 * bytes.
5671 */
7c45512d 5672static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5673{
5674 unsigned long usemapsize;
5675
7c45512d 5676 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5677 usemapsize = roundup(zonesize, pageblock_nr_pages);
5678 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5679 usemapsize *= NR_PAGEBLOCK_BITS;
5680 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5681
5682 return usemapsize / 8;
5683}
5684
5685static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5686 struct zone *zone,
5687 unsigned long zone_start_pfn,
5688 unsigned long zonesize)
835c134e 5689{
7c45512d 5690 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5691 zone->pageblock_flags = NULL;
58a01a45 5692 if (usemapsize)
6782832e
SS
5693 zone->pageblock_flags =
5694 memblock_virt_alloc_node_nopanic(usemapsize,
5695 pgdat->node_id);
835c134e
MG
5696}
5697#else
7c45512d
LT
5698static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5699 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5700#endif /* CONFIG_SPARSEMEM */
5701
d9c23400 5702#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5703
d9c23400 5704/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5705void __paginginit set_pageblock_order(void)
d9c23400 5706{
955c1cd7
AM
5707 unsigned int order;
5708
d9c23400
MG
5709 /* Check that pageblock_nr_pages has not already been setup */
5710 if (pageblock_order)
5711 return;
5712
955c1cd7
AM
5713 if (HPAGE_SHIFT > PAGE_SHIFT)
5714 order = HUGETLB_PAGE_ORDER;
5715 else
5716 order = MAX_ORDER - 1;
5717
d9c23400
MG
5718 /*
5719 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5720 * This value may be variable depending on boot parameters on IA64 and
5721 * powerpc.
d9c23400
MG
5722 */
5723 pageblock_order = order;
5724}
5725#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5726
ba72cb8c
MG
5727/*
5728 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5729 * is unused as pageblock_order is set at compile-time. See
5730 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5731 * the kernel config
ba72cb8c 5732 */
15ca220e 5733void __paginginit set_pageblock_order(void)
ba72cb8c 5734{
ba72cb8c 5735}
d9c23400
MG
5736
5737#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5738
01cefaef
JL
5739static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5740 unsigned long present_pages)
5741{
5742 unsigned long pages = spanned_pages;
5743
5744 /*
5745 * Provide a more accurate estimation if there are holes within
5746 * the zone and SPARSEMEM is in use. If there are holes within the
5747 * zone, each populated memory region may cost us one or two extra
5748 * memmap pages due to alignment because memmap pages for each
5749 * populated regions may not naturally algined on page boundary.
5750 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5751 */
5752 if (spanned_pages > present_pages + (present_pages >> 4) &&
5753 IS_ENABLED(CONFIG_SPARSEMEM))
5754 pages = present_pages;
5755
5756 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5757}
5758
1da177e4
LT
5759/*
5760 * Set up the zone data structures:
5761 * - mark all pages reserved
5762 * - mark all memory queues empty
5763 * - clear the memory bitmaps
6527af5d
MK
5764 *
5765 * NOTE: pgdat should get zeroed by caller.
1da177e4 5766 */
7f3eb55b 5767static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5768{
2f1b6248 5769 enum zone_type j;
ed8ece2e 5770 int nid = pgdat->node_id;
718127cc 5771 int ret;
1da177e4 5772
208d54e5 5773 pgdat_resize_init(pgdat);
8177a420
AA
5774#ifdef CONFIG_NUMA_BALANCING
5775 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5776 pgdat->numabalancing_migrate_nr_pages = 0;
5777 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5778#endif
5779#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5780 spin_lock_init(&pgdat->split_queue_lock);
5781 INIT_LIST_HEAD(&pgdat->split_queue);
5782 pgdat->split_queue_len = 0;
8177a420 5783#endif
1da177e4 5784 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5785 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5786#ifdef CONFIG_COMPACTION
5787 init_waitqueue_head(&pgdat->kcompactd_wait);
5788#endif
eefa864b 5789 pgdat_page_ext_init(pgdat);
a52633d8 5790 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5791 lruvec_init(node_lruvec(pgdat));
5f63b720 5792
1da177e4
LT
5793 for (j = 0; j < MAX_NR_ZONES; j++) {
5794 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5795 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5796 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5797
febd5949
GZ
5798 size = zone->spanned_pages;
5799 realsize = freesize = zone->present_pages;
1da177e4 5800
0e0b864e 5801 /*
9feedc9d 5802 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5803 * is used by this zone for memmap. This affects the watermark
5804 * and per-cpu initialisations
5805 */
01cefaef 5806 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5807 if (!is_highmem_idx(j)) {
5808 if (freesize >= memmap_pages) {
5809 freesize -= memmap_pages;
5810 if (memmap_pages)
5811 printk(KERN_DEBUG
5812 " %s zone: %lu pages used for memmap\n",
5813 zone_names[j], memmap_pages);
5814 } else
1170532b 5815 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5816 zone_names[j], memmap_pages, freesize);
5817 }
0e0b864e 5818
6267276f 5819 /* Account for reserved pages */
9feedc9d
JL
5820 if (j == 0 && freesize > dma_reserve) {
5821 freesize -= dma_reserve;
d903ef9f 5822 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5823 zone_names[0], dma_reserve);
0e0b864e
MG
5824 }
5825
98d2b0eb 5826 if (!is_highmem_idx(j))
9feedc9d 5827 nr_kernel_pages += freesize;
01cefaef
JL
5828 /* Charge for highmem memmap if there are enough kernel pages */
5829 else if (nr_kernel_pages > memmap_pages * 2)
5830 nr_kernel_pages -= memmap_pages;
9feedc9d 5831 nr_all_pages += freesize;
1da177e4 5832
9feedc9d
JL
5833 /*
5834 * Set an approximate value for lowmem here, it will be adjusted
5835 * when the bootmem allocator frees pages into the buddy system.
5836 * And all highmem pages will be managed by the buddy system.
5837 */
5838 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5839#ifdef CONFIG_NUMA
d5f541ed 5840 zone->node = nid;
9614634f 5841#endif
1da177e4 5842 zone->name = zone_names[j];
a52633d8 5843 zone->zone_pgdat = pgdat;
1da177e4 5844 spin_lock_init(&zone->lock);
bdc8cb98 5845 zone_seqlock_init(zone);
ed8ece2e 5846 zone_pcp_init(zone);
81c0a2bb 5847
1da177e4
LT
5848 if (!size)
5849 continue;
5850
955c1cd7 5851 set_pageblock_order();
7c45512d 5852 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5853 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5854 BUG_ON(ret);
76cdd58e 5855 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5856 }
5857}
5858
bd721ea7 5859static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5860{
b0aeba74 5861 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5862 unsigned long __maybe_unused offset = 0;
5863
1da177e4
LT
5864 /* Skip empty nodes */
5865 if (!pgdat->node_spanned_pages)
5866 return;
5867
d41dee36 5868#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5869 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5870 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5871 /* ia64 gets its own node_mem_map, before this, without bootmem */
5872 if (!pgdat->node_mem_map) {
b0aeba74 5873 unsigned long size, end;
d41dee36
AW
5874 struct page *map;
5875
e984bb43
BP
5876 /*
5877 * The zone's endpoints aren't required to be MAX_ORDER
5878 * aligned but the node_mem_map endpoints must be in order
5879 * for the buddy allocator to function correctly.
5880 */
108bcc96 5881 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5882 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5883 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5884 map = alloc_remap(pgdat->node_id, size);
5885 if (!map)
6782832e
SS
5886 map = memblock_virt_alloc_node_nopanic(size,
5887 pgdat->node_id);
a1c34a3b 5888 pgdat->node_mem_map = map + offset;
1da177e4 5889 }
12d810c1 5890#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5891 /*
5892 * With no DISCONTIG, the global mem_map is just set as node 0's
5893 */
c713216d 5894 if (pgdat == NODE_DATA(0)) {
1da177e4 5895 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5896#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5897 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5898 mem_map -= offset;
0ee332c1 5899#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5900 }
1da177e4 5901#endif
d41dee36 5902#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5903}
5904
9109fb7b
JW
5905void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5906 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5907{
9109fb7b 5908 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5909 unsigned long start_pfn = 0;
5910 unsigned long end_pfn = 0;
9109fb7b 5911
88fdf75d 5912 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 5913 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 5914
3a80a7fa 5915 reset_deferred_meminit(pgdat);
1da177e4
LT
5916 pgdat->node_id = nid;
5917 pgdat->node_start_pfn = node_start_pfn;
75ef7184 5918 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
5919#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5920 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5921 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5922 (u64)start_pfn << PAGE_SHIFT,
5923 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5924#else
5925 start_pfn = node_start_pfn;
7960aedd
ZY
5926#endif
5927 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5928 zones_size, zholes_size);
1da177e4
LT
5929
5930 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5931#ifdef CONFIG_FLAT_NODE_MEM_MAP
5932 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5933 nid, (unsigned long)pgdat,
5934 (unsigned long)pgdat->node_mem_map);
5935#endif
1da177e4 5936
7f3eb55b 5937 free_area_init_core(pgdat);
1da177e4
LT
5938}
5939
0ee332c1 5940#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5941
5942#if MAX_NUMNODES > 1
5943/*
5944 * Figure out the number of possible node ids.
5945 */
f9872caf 5946void __init setup_nr_node_ids(void)
418508c1 5947{
904a9553 5948 unsigned int highest;
418508c1 5949
904a9553 5950 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5951 nr_node_ids = highest + 1;
5952}
418508c1
MS
5953#endif
5954
1e01979c
TH
5955/**
5956 * node_map_pfn_alignment - determine the maximum internode alignment
5957 *
5958 * This function should be called after node map is populated and sorted.
5959 * It calculates the maximum power of two alignment which can distinguish
5960 * all the nodes.
5961 *
5962 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5963 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5964 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5965 * shifted, 1GiB is enough and this function will indicate so.
5966 *
5967 * This is used to test whether pfn -> nid mapping of the chosen memory
5968 * model has fine enough granularity to avoid incorrect mapping for the
5969 * populated node map.
5970 *
5971 * Returns the determined alignment in pfn's. 0 if there is no alignment
5972 * requirement (single node).
5973 */
5974unsigned long __init node_map_pfn_alignment(void)
5975{
5976 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5977 unsigned long start, end, mask;
1e01979c 5978 int last_nid = -1;
c13291a5 5979 int i, nid;
1e01979c 5980
c13291a5 5981 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5982 if (!start || last_nid < 0 || last_nid == nid) {
5983 last_nid = nid;
5984 last_end = end;
5985 continue;
5986 }
5987
5988 /*
5989 * Start with a mask granular enough to pin-point to the
5990 * start pfn and tick off bits one-by-one until it becomes
5991 * too coarse to separate the current node from the last.
5992 */
5993 mask = ~((1 << __ffs(start)) - 1);
5994 while (mask && last_end <= (start & (mask << 1)))
5995 mask <<= 1;
5996
5997 /* accumulate all internode masks */
5998 accl_mask |= mask;
5999 }
6000
6001 /* convert mask to number of pages */
6002 return ~accl_mask + 1;
6003}
6004
a6af2bc3 6005/* Find the lowest pfn for a node */
b69a7288 6006static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6007{
a6af2bc3 6008 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6009 unsigned long start_pfn;
6010 int i;
1abbfb41 6011
c13291a5
TH
6012 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6013 min_pfn = min(min_pfn, start_pfn);
c713216d 6014
a6af2bc3 6015 if (min_pfn == ULONG_MAX) {
1170532b 6016 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6017 return 0;
6018 }
6019
6020 return min_pfn;
c713216d
MG
6021}
6022
6023/**
6024 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6025 *
6026 * It returns the minimum PFN based on information provided via
7d018176 6027 * memblock_set_node().
c713216d
MG
6028 */
6029unsigned long __init find_min_pfn_with_active_regions(void)
6030{
6031 return find_min_pfn_for_node(MAX_NUMNODES);
6032}
6033
37b07e41
LS
6034/*
6035 * early_calculate_totalpages()
6036 * Sum pages in active regions for movable zone.
4b0ef1fe 6037 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6038 */
484f51f8 6039static unsigned long __init early_calculate_totalpages(void)
7e63efef 6040{
7e63efef 6041 unsigned long totalpages = 0;
c13291a5
TH
6042 unsigned long start_pfn, end_pfn;
6043 int i, nid;
6044
6045 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6046 unsigned long pages = end_pfn - start_pfn;
7e63efef 6047
37b07e41
LS
6048 totalpages += pages;
6049 if (pages)
4b0ef1fe 6050 node_set_state(nid, N_MEMORY);
37b07e41 6051 }
b8af2941 6052 return totalpages;
7e63efef
MG
6053}
6054
2a1e274a
MG
6055/*
6056 * Find the PFN the Movable zone begins in each node. Kernel memory
6057 * is spread evenly between nodes as long as the nodes have enough
6058 * memory. When they don't, some nodes will have more kernelcore than
6059 * others
6060 */
b224ef85 6061static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6062{
6063 int i, nid;
6064 unsigned long usable_startpfn;
6065 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6066 /* save the state before borrow the nodemask */
4b0ef1fe 6067 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6068 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6069 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6070 struct memblock_region *r;
b2f3eebe
TC
6071
6072 /* Need to find movable_zone earlier when movable_node is specified. */
6073 find_usable_zone_for_movable();
6074
6075 /*
6076 * If movable_node is specified, ignore kernelcore and movablecore
6077 * options.
6078 */
6079 if (movable_node_is_enabled()) {
136199f0
EM
6080 for_each_memblock(memory, r) {
6081 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6082 continue;
6083
136199f0 6084 nid = r->nid;
b2f3eebe 6085
136199f0 6086 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6087 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6088 min(usable_startpfn, zone_movable_pfn[nid]) :
6089 usable_startpfn;
6090 }
6091
6092 goto out2;
6093 }
2a1e274a 6094
342332e6
TI
6095 /*
6096 * If kernelcore=mirror is specified, ignore movablecore option
6097 */
6098 if (mirrored_kernelcore) {
6099 bool mem_below_4gb_not_mirrored = false;
6100
6101 for_each_memblock(memory, r) {
6102 if (memblock_is_mirror(r))
6103 continue;
6104
6105 nid = r->nid;
6106
6107 usable_startpfn = memblock_region_memory_base_pfn(r);
6108
6109 if (usable_startpfn < 0x100000) {
6110 mem_below_4gb_not_mirrored = true;
6111 continue;
6112 }
6113
6114 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6115 min(usable_startpfn, zone_movable_pfn[nid]) :
6116 usable_startpfn;
6117 }
6118
6119 if (mem_below_4gb_not_mirrored)
6120 pr_warn("This configuration results in unmirrored kernel memory.");
6121
6122 goto out2;
6123 }
6124
7e63efef 6125 /*
b2f3eebe 6126 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6127 * kernelcore that corresponds so that memory usable for
6128 * any allocation type is evenly spread. If both kernelcore
6129 * and movablecore are specified, then the value of kernelcore
6130 * will be used for required_kernelcore if it's greater than
6131 * what movablecore would have allowed.
6132 */
6133 if (required_movablecore) {
7e63efef
MG
6134 unsigned long corepages;
6135
6136 /*
6137 * Round-up so that ZONE_MOVABLE is at least as large as what
6138 * was requested by the user
6139 */
6140 required_movablecore =
6141 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6142 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6143 corepages = totalpages - required_movablecore;
6144
6145 required_kernelcore = max(required_kernelcore, corepages);
6146 }
6147
bde304bd
XQ
6148 /*
6149 * If kernelcore was not specified or kernelcore size is larger
6150 * than totalpages, there is no ZONE_MOVABLE.
6151 */
6152 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6153 goto out;
2a1e274a
MG
6154
6155 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6156 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6157
6158restart:
6159 /* Spread kernelcore memory as evenly as possible throughout nodes */
6160 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6161 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6162 unsigned long start_pfn, end_pfn;
6163
2a1e274a
MG
6164 /*
6165 * Recalculate kernelcore_node if the division per node
6166 * now exceeds what is necessary to satisfy the requested
6167 * amount of memory for the kernel
6168 */
6169 if (required_kernelcore < kernelcore_node)
6170 kernelcore_node = required_kernelcore / usable_nodes;
6171
6172 /*
6173 * As the map is walked, we track how much memory is usable
6174 * by the kernel using kernelcore_remaining. When it is
6175 * 0, the rest of the node is usable by ZONE_MOVABLE
6176 */
6177 kernelcore_remaining = kernelcore_node;
6178
6179 /* Go through each range of PFNs within this node */
c13291a5 6180 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6181 unsigned long size_pages;
6182
c13291a5 6183 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6184 if (start_pfn >= end_pfn)
6185 continue;
6186
6187 /* Account for what is only usable for kernelcore */
6188 if (start_pfn < usable_startpfn) {
6189 unsigned long kernel_pages;
6190 kernel_pages = min(end_pfn, usable_startpfn)
6191 - start_pfn;
6192
6193 kernelcore_remaining -= min(kernel_pages,
6194 kernelcore_remaining);
6195 required_kernelcore -= min(kernel_pages,
6196 required_kernelcore);
6197
6198 /* Continue if range is now fully accounted */
6199 if (end_pfn <= usable_startpfn) {
6200
6201 /*
6202 * Push zone_movable_pfn to the end so
6203 * that if we have to rebalance
6204 * kernelcore across nodes, we will
6205 * not double account here
6206 */
6207 zone_movable_pfn[nid] = end_pfn;
6208 continue;
6209 }
6210 start_pfn = usable_startpfn;
6211 }
6212
6213 /*
6214 * The usable PFN range for ZONE_MOVABLE is from
6215 * start_pfn->end_pfn. Calculate size_pages as the
6216 * number of pages used as kernelcore
6217 */
6218 size_pages = end_pfn - start_pfn;
6219 if (size_pages > kernelcore_remaining)
6220 size_pages = kernelcore_remaining;
6221 zone_movable_pfn[nid] = start_pfn + size_pages;
6222
6223 /*
6224 * Some kernelcore has been met, update counts and
6225 * break if the kernelcore for this node has been
b8af2941 6226 * satisfied
2a1e274a
MG
6227 */
6228 required_kernelcore -= min(required_kernelcore,
6229 size_pages);
6230 kernelcore_remaining -= size_pages;
6231 if (!kernelcore_remaining)
6232 break;
6233 }
6234 }
6235
6236 /*
6237 * If there is still required_kernelcore, we do another pass with one
6238 * less node in the count. This will push zone_movable_pfn[nid] further
6239 * along on the nodes that still have memory until kernelcore is
b8af2941 6240 * satisfied
2a1e274a
MG
6241 */
6242 usable_nodes--;
6243 if (usable_nodes && required_kernelcore > usable_nodes)
6244 goto restart;
6245
b2f3eebe 6246out2:
2a1e274a
MG
6247 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6248 for (nid = 0; nid < MAX_NUMNODES; nid++)
6249 zone_movable_pfn[nid] =
6250 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6251
20e6926d 6252out:
66918dcd 6253 /* restore the node_state */
4b0ef1fe 6254 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6255}
6256
4b0ef1fe
LJ
6257/* Any regular or high memory on that node ? */
6258static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6259{
37b07e41
LS
6260 enum zone_type zone_type;
6261
4b0ef1fe
LJ
6262 if (N_MEMORY == N_NORMAL_MEMORY)
6263 return;
6264
6265 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6266 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6267 if (populated_zone(zone)) {
4b0ef1fe
LJ
6268 node_set_state(nid, N_HIGH_MEMORY);
6269 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6270 zone_type <= ZONE_NORMAL)
6271 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6272 break;
6273 }
37b07e41 6274 }
37b07e41
LS
6275}
6276
c713216d
MG
6277/**
6278 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6279 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6280 *
6281 * This will call free_area_init_node() for each active node in the system.
7d018176 6282 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6283 * zone in each node and their holes is calculated. If the maximum PFN
6284 * between two adjacent zones match, it is assumed that the zone is empty.
6285 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6286 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6287 * starts where the previous one ended. For example, ZONE_DMA32 starts
6288 * at arch_max_dma_pfn.
6289 */
6290void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6291{
c13291a5
TH
6292 unsigned long start_pfn, end_pfn;
6293 int i, nid;
a6af2bc3 6294
c713216d
MG
6295 /* Record where the zone boundaries are */
6296 memset(arch_zone_lowest_possible_pfn, 0,
6297 sizeof(arch_zone_lowest_possible_pfn));
6298 memset(arch_zone_highest_possible_pfn, 0,
6299 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6300
6301 start_pfn = find_min_pfn_with_active_regions();
6302
6303 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6304 if (i == ZONE_MOVABLE)
6305 continue;
90cae1fe
OH
6306
6307 end_pfn = max(max_zone_pfn[i], start_pfn);
6308 arch_zone_lowest_possible_pfn[i] = start_pfn;
6309 arch_zone_highest_possible_pfn[i] = end_pfn;
6310
6311 start_pfn = end_pfn;
c713216d 6312 }
2a1e274a
MG
6313 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6314 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6315
6316 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6317 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6318 find_zone_movable_pfns_for_nodes();
c713216d 6319
c713216d 6320 /* Print out the zone ranges */
f88dfff5 6321 pr_info("Zone ranges:\n");
2a1e274a
MG
6322 for (i = 0; i < MAX_NR_ZONES; i++) {
6323 if (i == ZONE_MOVABLE)
6324 continue;
f88dfff5 6325 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6326 if (arch_zone_lowest_possible_pfn[i] ==
6327 arch_zone_highest_possible_pfn[i])
f88dfff5 6328 pr_cont("empty\n");
72f0ba02 6329 else
8d29e18a
JG
6330 pr_cont("[mem %#018Lx-%#018Lx]\n",
6331 (u64)arch_zone_lowest_possible_pfn[i]
6332 << PAGE_SHIFT,
6333 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6334 << PAGE_SHIFT) - 1);
2a1e274a
MG
6335 }
6336
6337 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6338 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6339 for (i = 0; i < MAX_NUMNODES; i++) {
6340 if (zone_movable_pfn[i])
8d29e18a
JG
6341 pr_info(" Node %d: %#018Lx\n", i,
6342 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6343 }
c713216d 6344
f2d52fe5 6345 /* Print out the early node map */
f88dfff5 6346 pr_info("Early memory node ranges\n");
c13291a5 6347 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6348 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6349 (u64)start_pfn << PAGE_SHIFT,
6350 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6351
6352 /* Initialise every node */
708614e6 6353 mminit_verify_pageflags_layout();
8ef82866 6354 setup_nr_node_ids();
c713216d
MG
6355 for_each_online_node(nid) {
6356 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6357 free_area_init_node(nid, NULL,
c713216d 6358 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6359
6360 /* Any memory on that node */
6361 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6362 node_set_state(nid, N_MEMORY);
6363 check_for_memory(pgdat, nid);
c713216d
MG
6364 }
6365}
2a1e274a 6366
7e63efef 6367static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6368{
6369 unsigned long long coremem;
6370 if (!p)
6371 return -EINVAL;
6372
6373 coremem = memparse(p, &p);
7e63efef 6374 *core = coremem >> PAGE_SHIFT;
2a1e274a 6375
7e63efef 6376 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6377 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6378
6379 return 0;
6380}
ed7ed365 6381
7e63efef
MG
6382/*
6383 * kernelcore=size sets the amount of memory for use for allocations that
6384 * cannot be reclaimed or migrated.
6385 */
6386static int __init cmdline_parse_kernelcore(char *p)
6387{
342332e6
TI
6388 /* parse kernelcore=mirror */
6389 if (parse_option_str(p, "mirror")) {
6390 mirrored_kernelcore = true;
6391 return 0;
6392 }
6393
7e63efef
MG
6394 return cmdline_parse_core(p, &required_kernelcore);
6395}
6396
6397/*
6398 * movablecore=size sets the amount of memory for use for allocations that
6399 * can be reclaimed or migrated.
6400 */
6401static int __init cmdline_parse_movablecore(char *p)
6402{
6403 return cmdline_parse_core(p, &required_movablecore);
6404}
6405
ed7ed365 6406early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6407early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6408
0ee332c1 6409#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6410
c3d5f5f0
JL
6411void adjust_managed_page_count(struct page *page, long count)
6412{
6413 spin_lock(&managed_page_count_lock);
6414 page_zone(page)->managed_pages += count;
6415 totalram_pages += count;
3dcc0571
JL
6416#ifdef CONFIG_HIGHMEM
6417 if (PageHighMem(page))
6418 totalhigh_pages += count;
6419#endif
c3d5f5f0
JL
6420 spin_unlock(&managed_page_count_lock);
6421}
3dcc0571 6422EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6423
11199692 6424unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6425{
11199692
JL
6426 void *pos;
6427 unsigned long pages = 0;
69afade7 6428
11199692
JL
6429 start = (void *)PAGE_ALIGN((unsigned long)start);
6430 end = (void *)((unsigned long)end & PAGE_MASK);
6431 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6432 if ((unsigned int)poison <= 0xFF)
11199692
JL
6433 memset(pos, poison, PAGE_SIZE);
6434 free_reserved_page(virt_to_page(pos));
69afade7
JL
6435 }
6436
6437 if (pages && s)
11199692 6438 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6439 s, pages << (PAGE_SHIFT - 10), start, end);
6440
6441 return pages;
6442}
11199692 6443EXPORT_SYMBOL(free_reserved_area);
69afade7 6444
cfa11e08
JL
6445#ifdef CONFIG_HIGHMEM
6446void free_highmem_page(struct page *page)
6447{
6448 __free_reserved_page(page);
6449 totalram_pages++;
7b4b2a0d 6450 page_zone(page)->managed_pages++;
cfa11e08
JL
6451 totalhigh_pages++;
6452}
6453#endif
6454
7ee3d4e8
JL
6455
6456void __init mem_init_print_info(const char *str)
6457{
6458 unsigned long physpages, codesize, datasize, rosize, bss_size;
6459 unsigned long init_code_size, init_data_size;
6460
6461 physpages = get_num_physpages();
6462 codesize = _etext - _stext;
6463 datasize = _edata - _sdata;
6464 rosize = __end_rodata - __start_rodata;
6465 bss_size = __bss_stop - __bss_start;
6466 init_data_size = __init_end - __init_begin;
6467 init_code_size = _einittext - _sinittext;
6468
6469 /*
6470 * Detect special cases and adjust section sizes accordingly:
6471 * 1) .init.* may be embedded into .data sections
6472 * 2) .init.text.* may be out of [__init_begin, __init_end],
6473 * please refer to arch/tile/kernel/vmlinux.lds.S.
6474 * 3) .rodata.* may be embedded into .text or .data sections.
6475 */
6476#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6477 do { \
6478 if (start <= pos && pos < end && size > adj) \
6479 size -= adj; \
6480 } while (0)
7ee3d4e8
JL
6481
6482 adj_init_size(__init_begin, __init_end, init_data_size,
6483 _sinittext, init_code_size);
6484 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6485 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6486 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6487 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6488
6489#undef adj_init_size
6490
756a025f 6491 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6492#ifdef CONFIG_HIGHMEM
756a025f 6493 ", %luK highmem"
7ee3d4e8 6494#endif
756a025f
JP
6495 "%s%s)\n",
6496 nr_free_pages() << (PAGE_SHIFT - 10),
6497 physpages << (PAGE_SHIFT - 10),
6498 codesize >> 10, datasize >> 10, rosize >> 10,
6499 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6500 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6501 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6502#ifdef CONFIG_HIGHMEM
756a025f 6503 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6504#endif
756a025f 6505 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6506}
6507
0e0b864e 6508/**
88ca3b94
RD
6509 * set_dma_reserve - set the specified number of pages reserved in the first zone
6510 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6511 *
013110a7 6512 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6513 * In the DMA zone, a significant percentage may be consumed by kernel image
6514 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6515 * function may optionally be used to account for unfreeable pages in the
6516 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6517 * smaller per-cpu batchsize.
0e0b864e
MG
6518 */
6519void __init set_dma_reserve(unsigned long new_dma_reserve)
6520{
6521 dma_reserve = new_dma_reserve;
6522}
6523
1da177e4
LT
6524void __init free_area_init(unsigned long *zones_size)
6525{
9109fb7b 6526 free_area_init_node(0, zones_size,
1da177e4
LT
6527 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6528}
1da177e4 6529
1da177e4
LT
6530static int page_alloc_cpu_notify(struct notifier_block *self,
6531 unsigned long action, void *hcpu)
6532{
6533 int cpu = (unsigned long)hcpu;
1da177e4 6534
8bb78442 6535 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6536 lru_add_drain_cpu(cpu);
9f8f2172
CL
6537 drain_pages(cpu);
6538
6539 /*
6540 * Spill the event counters of the dead processor
6541 * into the current processors event counters.
6542 * This artificially elevates the count of the current
6543 * processor.
6544 */
f8891e5e 6545 vm_events_fold_cpu(cpu);
9f8f2172
CL
6546
6547 /*
6548 * Zero the differential counters of the dead processor
6549 * so that the vm statistics are consistent.
6550 *
6551 * This is only okay since the processor is dead and cannot
6552 * race with what we are doing.
6553 */
2bb921e5 6554 cpu_vm_stats_fold(cpu);
1da177e4
LT
6555 }
6556 return NOTIFY_OK;
6557}
1da177e4
LT
6558
6559void __init page_alloc_init(void)
6560{
6561 hotcpu_notifier(page_alloc_cpu_notify, 0);
6562}
6563
cb45b0e9 6564/*
34b10060 6565 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6566 * or min_free_kbytes changes.
6567 */
6568static void calculate_totalreserve_pages(void)
6569{
6570 struct pglist_data *pgdat;
6571 unsigned long reserve_pages = 0;
2f6726e5 6572 enum zone_type i, j;
cb45b0e9
HA
6573
6574 for_each_online_pgdat(pgdat) {
281e3726
MG
6575
6576 pgdat->totalreserve_pages = 0;
6577
cb45b0e9
HA
6578 for (i = 0; i < MAX_NR_ZONES; i++) {
6579 struct zone *zone = pgdat->node_zones + i;
3484b2de 6580 long max = 0;
cb45b0e9
HA
6581
6582 /* Find valid and maximum lowmem_reserve in the zone */
6583 for (j = i; j < MAX_NR_ZONES; j++) {
6584 if (zone->lowmem_reserve[j] > max)
6585 max = zone->lowmem_reserve[j];
6586 }
6587
41858966
MG
6588 /* we treat the high watermark as reserved pages. */
6589 max += high_wmark_pages(zone);
cb45b0e9 6590
b40da049
JL
6591 if (max > zone->managed_pages)
6592 max = zone->managed_pages;
a8d01437 6593
281e3726 6594 pgdat->totalreserve_pages += max;
a8d01437 6595
cb45b0e9
HA
6596 reserve_pages += max;
6597 }
6598 }
6599 totalreserve_pages = reserve_pages;
6600}
6601
1da177e4
LT
6602/*
6603 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6604 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6605 * has a correct pages reserved value, so an adequate number of
6606 * pages are left in the zone after a successful __alloc_pages().
6607 */
6608static void setup_per_zone_lowmem_reserve(void)
6609{
6610 struct pglist_data *pgdat;
2f6726e5 6611 enum zone_type j, idx;
1da177e4 6612
ec936fc5 6613 for_each_online_pgdat(pgdat) {
1da177e4
LT
6614 for (j = 0; j < MAX_NR_ZONES; j++) {
6615 struct zone *zone = pgdat->node_zones + j;
b40da049 6616 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6617
6618 zone->lowmem_reserve[j] = 0;
6619
2f6726e5
CL
6620 idx = j;
6621 while (idx) {
1da177e4
LT
6622 struct zone *lower_zone;
6623
2f6726e5
CL
6624 idx--;
6625
1da177e4
LT
6626 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6627 sysctl_lowmem_reserve_ratio[idx] = 1;
6628
6629 lower_zone = pgdat->node_zones + idx;
b40da049 6630 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6631 sysctl_lowmem_reserve_ratio[idx];
b40da049 6632 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6633 }
6634 }
6635 }
cb45b0e9
HA
6636
6637 /* update totalreserve_pages */
6638 calculate_totalreserve_pages();
1da177e4
LT
6639}
6640
cfd3da1e 6641static void __setup_per_zone_wmarks(void)
1da177e4
LT
6642{
6643 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6644 unsigned long lowmem_pages = 0;
6645 struct zone *zone;
6646 unsigned long flags;
6647
6648 /* Calculate total number of !ZONE_HIGHMEM pages */
6649 for_each_zone(zone) {
6650 if (!is_highmem(zone))
b40da049 6651 lowmem_pages += zone->managed_pages;
1da177e4
LT
6652 }
6653
6654 for_each_zone(zone) {
ac924c60
AM
6655 u64 tmp;
6656
1125b4e3 6657 spin_lock_irqsave(&zone->lock, flags);
b40da049 6658 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6659 do_div(tmp, lowmem_pages);
1da177e4
LT
6660 if (is_highmem(zone)) {
6661 /*
669ed175
NP
6662 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6663 * need highmem pages, so cap pages_min to a small
6664 * value here.
6665 *
41858966 6666 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6667 * deltas control asynch page reclaim, and so should
669ed175 6668 * not be capped for highmem.
1da177e4 6669 */
90ae8d67 6670 unsigned long min_pages;
1da177e4 6671
b40da049 6672 min_pages = zone->managed_pages / 1024;
90ae8d67 6673 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6674 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6675 } else {
669ed175
NP
6676 /*
6677 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6678 * proportionate to the zone's size.
6679 */
41858966 6680 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6681 }
6682
795ae7a0
JW
6683 /*
6684 * Set the kswapd watermarks distance according to the
6685 * scale factor in proportion to available memory, but
6686 * ensure a minimum size on small systems.
6687 */
6688 tmp = max_t(u64, tmp >> 2,
6689 mult_frac(zone->managed_pages,
6690 watermark_scale_factor, 10000));
6691
6692 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6693 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6694
1125b4e3 6695 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6696 }
cb45b0e9
HA
6697
6698 /* update totalreserve_pages */
6699 calculate_totalreserve_pages();
1da177e4
LT
6700}
6701
cfd3da1e
MG
6702/**
6703 * setup_per_zone_wmarks - called when min_free_kbytes changes
6704 * or when memory is hot-{added|removed}
6705 *
6706 * Ensures that the watermark[min,low,high] values for each zone are set
6707 * correctly with respect to min_free_kbytes.
6708 */
6709void setup_per_zone_wmarks(void)
6710{
6711 mutex_lock(&zonelists_mutex);
6712 __setup_per_zone_wmarks();
6713 mutex_unlock(&zonelists_mutex);
6714}
6715
1da177e4
LT
6716/*
6717 * Initialise min_free_kbytes.
6718 *
6719 * For small machines we want it small (128k min). For large machines
6720 * we want it large (64MB max). But it is not linear, because network
6721 * bandwidth does not increase linearly with machine size. We use
6722 *
b8af2941 6723 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6724 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6725 *
6726 * which yields
6727 *
6728 * 16MB: 512k
6729 * 32MB: 724k
6730 * 64MB: 1024k
6731 * 128MB: 1448k
6732 * 256MB: 2048k
6733 * 512MB: 2896k
6734 * 1024MB: 4096k
6735 * 2048MB: 5792k
6736 * 4096MB: 8192k
6737 * 8192MB: 11584k
6738 * 16384MB: 16384k
6739 */
1b79acc9 6740int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6741{
6742 unsigned long lowmem_kbytes;
5f12733e 6743 int new_min_free_kbytes;
1da177e4
LT
6744
6745 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6746 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6747
6748 if (new_min_free_kbytes > user_min_free_kbytes) {
6749 min_free_kbytes = new_min_free_kbytes;
6750 if (min_free_kbytes < 128)
6751 min_free_kbytes = 128;
6752 if (min_free_kbytes > 65536)
6753 min_free_kbytes = 65536;
6754 } else {
6755 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6756 new_min_free_kbytes, user_min_free_kbytes);
6757 }
bc75d33f 6758 setup_per_zone_wmarks();
a6cccdc3 6759 refresh_zone_stat_thresholds();
1da177e4 6760 setup_per_zone_lowmem_reserve();
6423aa81
JK
6761
6762#ifdef CONFIG_NUMA
6763 setup_min_unmapped_ratio();
6764 setup_min_slab_ratio();
6765#endif
6766
1da177e4
LT
6767 return 0;
6768}
bc22af74 6769core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6770
6771/*
b8af2941 6772 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6773 * that we can call two helper functions whenever min_free_kbytes
6774 * changes.
6775 */
cccad5b9 6776int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6777 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6778{
da8c757b
HP
6779 int rc;
6780
6781 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6782 if (rc)
6783 return rc;
6784
5f12733e
MH
6785 if (write) {
6786 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6787 setup_per_zone_wmarks();
5f12733e 6788 }
1da177e4
LT
6789 return 0;
6790}
6791
795ae7a0
JW
6792int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6793 void __user *buffer, size_t *length, loff_t *ppos)
6794{
6795 int rc;
6796
6797 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6798 if (rc)
6799 return rc;
6800
6801 if (write)
6802 setup_per_zone_wmarks();
6803
6804 return 0;
6805}
6806
9614634f 6807#ifdef CONFIG_NUMA
6423aa81 6808static void setup_min_unmapped_ratio(void)
9614634f 6809{
6423aa81 6810 pg_data_t *pgdat;
9614634f 6811 struct zone *zone;
9614634f 6812
a5f5f91d 6813 for_each_online_pgdat(pgdat)
81cbcbc2 6814 pgdat->min_unmapped_pages = 0;
a5f5f91d 6815
9614634f 6816 for_each_zone(zone)
a5f5f91d 6817 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 6818 sysctl_min_unmapped_ratio) / 100;
9614634f 6819}
0ff38490 6820
6423aa81
JK
6821
6822int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6823 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 6824{
0ff38490
CL
6825 int rc;
6826
8d65af78 6827 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6828 if (rc)
6829 return rc;
6830
6423aa81
JK
6831 setup_min_unmapped_ratio();
6832
6833 return 0;
6834}
6835
6836static void setup_min_slab_ratio(void)
6837{
6838 pg_data_t *pgdat;
6839 struct zone *zone;
6840
a5f5f91d
MG
6841 for_each_online_pgdat(pgdat)
6842 pgdat->min_slab_pages = 0;
6843
0ff38490 6844 for_each_zone(zone)
a5f5f91d 6845 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 6846 sysctl_min_slab_ratio) / 100;
6423aa81
JK
6847}
6848
6849int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6850 void __user *buffer, size_t *length, loff_t *ppos)
6851{
6852 int rc;
6853
6854 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6855 if (rc)
6856 return rc;
6857
6858 setup_min_slab_ratio();
6859
0ff38490
CL
6860 return 0;
6861}
9614634f
CL
6862#endif
6863
1da177e4
LT
6864/*
6865 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6866 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6867 * whenever sysctl_lowmem_reserve_ratio changes.
6868 *
6869 * The reserve ratio obviously has absolutely no relation with the
41858966 6870 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6871 * if in function of the boot time zone sizes.
6872 */
cccad5b9 6873int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6874 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6875{
8d65af78 6876 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6877 setup_per_zone_lowmem_reserve();
6878 return 0;
6879}
6880
8ad4b1fb
RS
6881/*
6882 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6883 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6884 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6885 */
cccad5b9 6886int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6887 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6888{
6889 struct zone *zone;
7cd2b0a3 6890 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6891 int ret;
6892
7cd2b0a3
DR
6893 mutex_lock(&pcp_batch_high_lock);
6894 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6895
8d65af78 6896 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6897 if (!write || ret < 0)
6898 goto out;
6899
6900 /* Sanity checking to avoid pcp imbalance */
6901 if (percpu_pagelist_fraction &&
6902 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6903 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6904 ret = -EINVAL;
6905 goto out;
6906 }
6907
6908 /* No change? */
6909 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6910 goto out;
c8e251fa 6911
364df0eb 6912 for_each_populated_zone(zone) {
7cd2b0a3
DR
6913 unsigned int cpu;
6914
22a7f12b 6915 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6916 pageset_set_high_and_batch(zone,
6917 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6918 }
7cd2b0a3 6919out:
c8e251fa 6920 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6921 return ret;
8ad4b1fb
RS
6922}
6923
a9919c79 6924#ifdef CONFIG_NUMA
f034b5d4 6925int hashdist = HASHDIST_DEFAULT;
1da177e4 6926
1da177e4
LT
6927static int __init set_hashdist(char *str)
6928{
6929 if (!str)
6930 return 0;
6931 hashdist = simple_strtoul(str, &str, 0);
6932 return 1;
6933}
6934__setup("hashdist=", set_hashdist);
6935#endif
6936
6937/*
6938 * allocate a large system hash table from bootmem
6939 * - it is assumed that the hash table must contain an exact power-of-2
6940 * quantity of entries
6941 * - limit is the number of hash buckets, not the total allocation size
6942 */
6943void *__init alloc_large_system_hash(const char *tablename,
6944 unsigned long bucketsize,
6945 unsigned long numentries,
6946 int scale,
6947 int flags,
6948 unsigned int *_hash_shift,
6949 unsigned int *_hash_mask,
31fe62b9
TB
6950 unsigned long low_limit,
6951 unsigned long high_limit)
1da177e4 6952{
31fe62b9 6953 unsigned long long max = high_limit;
1da177e4
LT
6954 unsigned long log2qty, size;
6955 void *table = NULL;
6956
6957 /* allow the kernel cmdline to have a say */
6958 if (!numentries) {
6959 /* round applicable memory size up to nearest megabyte */
04903664 6960 numentries = nr_kernel_pages;
a7e83318
JZ
6961
6962 /* It isn't necessary when PAGE_SIZE >= 1MB */
6963 if (PAGE_SHIFT < 20)
6964 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6965
6966 /* limit to 1 bucket per 2^scale bytes of low memory */
6967 if (scale > PAGE_SHIFT)
6968 numentries >>= (scale - PAGE_SHIFT);
6969 else
6970 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6971
6972 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6973 if (unlikely(flags & HASH_SMALL)) {
6974 /* Makes no sense without HASH_EARLY */
6975 WARN_ON(!(flags & HASH_EARLY));
6976 if (!(numentries >> *_hash_shift)) {
6977 numentries = 1UL << *_hash_shift;
6978 BUG_ON(!numentries);
6979 }
6980 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6981 numentries = PAGE_SIZE / bucketsize;
1da177e4 6982 }
6e692ed3 6983 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6984
6985 /* limit allocation size to 1/16 total memory by default */
6986 if (max == 0) {
6987 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6988 do_div(max, bucketsize);
6989 }
074b8517 6990 max = min(max, 0x80000000ULL);
1da177e4 6991
31fe62b9
TB
6992 if (numentries < low_limit)
6993 numentries = low_limit;
1da177e4
LT
6994 if (numentries > max)
6995 numentries = max;
6996
f0d1b0b3 6997 log2qty = ilog2(numentries);
1da177e4
LT
6998
6999 do {
7000 size = bucketsize << log2qty;
7001 if (flags & HASH_EARLY)
6782832e 7002 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7003 else if (hashdist)
7004 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7005 else {
1037b83b
ED
7006 /*
7007 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7008 * some pages at the end of hash table which
7009 * alloc_pages_exact() automatically does
1037b83b 7010 */
264ef8a9 7011 if (get_order(size) < MAX_ORDER) {
a1dd268c 7012 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7013 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7014 }
1da177e4
LT
7015 }
7016 } while (!table && size > PAGE_SIZE && --log2qty);
7017
7018 if (!table)
7019 panic("Failed to allocate %s hash table\n", tablename);
7020
1170532b
JP
7021 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7022 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7023
7024 if (_hash_shift)
7025 *_hash_shift = log2qty;
7026 if (_hash_mask)
7027 *_hash_mask = (1 << log2qty) - 1;
7028
7029 return table;
7030}
a117e66e 7031
a5d76b54 7032/*
80934513
MK
7033 * This function checks whether pageblock includes unmovable pages or not.
7034 * If @count is not zero, it is okay to include less @count unmovable pages
7035 *
b8af2941 7036 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7037 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7038 * expect this function should be exact.
a5d76b54 7039 */
b023f468
WC
7040bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7041 bool skip_hwpoisoned_pages)
49ac8255
KH
7042{
7043 unsigned long pfn, iter, found;
47118af0
MN
7044 int mt;
7045
49ac8255
KH
7046 /*
7047 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7048 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7049 */
7050 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7051 return false;
47118af0
MN
7052 mt = get_pageblock_migratetype(page);
7053 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7054 return false;
49ac8255
KH
7055
7056 pfn = page_to_pfn(page);
7057 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7058 unsigned long check = pfn + iter;
7059
29723fcc 7060 if (!pfn_valid_within(check))
49ac8255 7061 continue;
29723fcc 7062
49ac8255 7063 page = pfn_to_page(check);
c8721bbb
NH
7064
7065 /*
7066 * Hugepages are not in LRU lists, but they're movable.
7067 * We need not scan over tail pages bacause we don't
7068 * handle each tail page individually in migration.
7069 */
7070 if (PageHuge(page)) {
7071 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7072 continue;
7073 }
7074
97d255c8
MK
7075 /*
7076 * We can't use page_count without pin a page
7077 * because another CPU can free compound page.
7078 * This check already skips compound tails of THP
0139aa7b 7079 * because their page->_refcount is zero at all time.
97d255c8 7080 */
fe896d18 7081 if (!page_ref_count(page)) {
49ac8255
KH
7082 if (PageBuddy(page))
7083 iter += (1 << page_order(page)) - 1;
7084 continue;
7085 }
97d255c8 7086
b023f468
WC
7087 /*
7088 * The HWPoisoned page may be not in buddy system, and
7089 * page_count() is not 0.
7090 */
7091 if (skip_hwpoisoned_pages && PageHWPoison(page))
7092 continue;
7093
49ac8255
KH
7094 if (!PageLRU(page))
7095 found++;
7096 /*
6b4f7799
JW
7097 * If there are RECLAIMABLE pages, we need to check
7098 * it. But now, memory offline itself doesn't call
7099 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7100 */
7101 /*
7102 * If the page is not RAM, page_count()should be 0.
7103 * we don't need more check. This is an _used_ not-movable page.
7104 *
7105 * The problematic thing here is PG_reserved pages. PG_reserved
7106 * is set to both of a memory hole page and a _used_ kernel
7107 * page at boot.
7108 */
7109 if (found > count)
80934513 7110 return true;
49ac8255 7111 }
80934513 7112 return false;
49ac8255
KH
7113}
7114
7115bool is_pageblock_removable_nolock(struct page *page)
7116{
656a0706
MH
7117 struct zone *zone;
7118 unsigned long pfn;
687875fb
MH
7119
7120 /*
7121 * We have to be careful here because we are iterating over memory
7122 * sections which are not zone aware so we might end up outside of
7123 * the zone but still within the section.
656a0706
MH
7124 * We have to take care about the node as well. If the node is offline
7125 * its NODE_DATA will be NULL - see page_zone.
687875fb 7126 */
656a0706
MH
7127 if (!node_online(page_to_nid(page)))
7128 return false;
7129
7130 zone = page_zone(page);
7131 pfn = page_to_pfn(page);
108bcc96 7132 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7133 return false;
7134
b023f468 7135 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7136}
0c0e6195 7137
080fe206 7138#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7139
7140static unsigned long pfn_max_align_down(unsigned long pfn)
7141{
7142 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7143 pageblock_nr_pages) - 1);
7144}
7145
7146static unsigned long pfn_max_align_up(unsigned long pfn)
7147{
7148 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7149 pageblock_nr_pages));
7150}
7151
041d3a8c 7152/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7153static int __alloc_contig_migrate_range(struct compact_control *cc,
7154 unsigned long start, unsigned long end)
041d3a8c
MN
7155{
7156 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7157 unsigned long nr_reclaimed;
041d3a8c
MN
7158 unsigned long pfn = start;
7159 unsigned int tries = 0;
7160 int ret = 0;
7161
be49a6e1 7162 migrate_prep();
041d3a8c 7163
bb13ffeb 7164 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7165 if (fatal_signal_pending(current)) {
7166 ret = -EINTR;
7167 break;
7168 }
7169
bb13ffeb
MG
7170 if (list_empty(&cc->migratepages)) {
7171 cc->nr_migratepages = 0;
edc2ca61 7172 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7173 if (!pfn) {
7174 ret = -EINTR;
7175 break;
7176 }
7177 tries = 0;
7178 } else if (++tries == 5) {
7179 ret = ret < 0 ? ret : -EBUSY;
7180 break;
7181 }
7182
beb51eaa
MK
7183 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7184 &cc->migratepages);
7185 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7186
9c620e2b 7187 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7188 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7189 }
2a6f5124
SP
7190 if (ret < 0) {
7191 putback_movable_pages(&cc->migratepages);
7192 return ret;
7193 }
7194 return 0;
041d3a8c
MN
7195}
7196
7197/**
7198 * alloc_contig_range() -- tries to allocate given range of pages
7199 * @start: start PFN to allocate
7200 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7201 * @migratetype: migratetype of the underlaying pageblocks (either
7202 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7203 * in range must have the same migratetype and it must
7204 * be either of the two.
041d3a8c
MN
7205 *
7206 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7207 * aligned, however it's the caller's responsibility to guarantee that
7208 * we are the only thread that changes migrate type of pageblocks the
7209 * pages fall in.
7210 *
7211 * The PFN range must belong to a single zone.
7212 *
7213 * Returns zero on success or negative error code. On success all
7214 * pages which PFN is in [start, end) are allocated for the caller and
7215 * need to be freed with free_contig_range().
7216 */
0815f3d8
MN
7217int alloc_contig_range(unsigned long start, unsigned long end,
7218 unsigned migratetype)
041d3a8c 7219{
041d3a8c 7220 unsigned long outer_start, outer_end;
d00181b9
KS
7221 unsigned int order;
7222 int ret = 0;
041d3a8c 7223
bb13ffeb
MG
7224 struct compact_control cc = {
7225 .nr_migratepages = 0,
7226 .order = -1,
7227 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7228 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7229 .ignore_skip_hint = true,
7230 };
7231 INIT_LIST_HEAD(&cc.migratepages);
7232
041d3a8c
MN
7233 /*
7234 * What we do here is we mark all pageblocks in range as
7235 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7236 * have different sizes, and due to the way page allocator
7237 * work, we align the range to biggest of the two pages so
7238 * that page allocator won't try to merge buddies from
7239 * different pageblocks and change MIGRATE_ISOLATE to some
7240 * other migration type.
7241 *
7242 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7243 * migrate the pages from an unaligned range (ie. pages that
7244 * we are interested in). This will put all the pages in
7245 * range back to page allocator as MIGRATE_ISOLATE.
7246 *
7247 * When this is done, we take the pages in range from page
7248 * allocator removing them from the buddy system. This way
7249 * page allocator will never consider using them.
7250 *
7251 * This lets us mark the pageblocks back as
7252 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7253 * aligned range but not in the unaligned, original range are
7254 * put back to page allocator so that buddy can use them.
7255 */
7256
7257 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7258 pfn_max_align_up(end), migratetype,
7259 false);
041d3a8c 7260 if (ret)
86a595f9 7261 return ret;
041d3a8c 7262
8ef5849f
JK
7263 /*
7264 * In case of -EBUSY, we'd like to know which page causes problem.
7265 * So, just fall through. We will check it in test_pages_isolated().
7266 */
bb13ffeb 7267 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7268 if (ret && ret != -EBUSY)
041d3a8c
MN
7269 goto done;
7270
7271 /*
7272 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7273 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7274 * more, all pages in [start, end) are free in page allocator.
7275 * What we are going to do is to allocate all pages from
7276 * [start, end) (that is remove them from page allocator).
7277 *
7278 * The only problem is that pages at the beginning and at the
7279 * end of interesting range may be not aligned with pages that
7280 * page allocator holds, ie. they can be part of higher order
7281 * pages. Because of this, we reserve the bigger range and
7282 * once this is done free the pages we are not interested in.
7283 *
7284 * We don't have to hold zone->lock here because the pages are
7285 * isolated thus they won't get removed from buddy.
7286 */
7287
7288 lru_add_drain_all();
510f5507 7289 drain_all_pages(cc.zone);
041d3a8c
MN
7290
7291 order = 0;
7292 outer_start = start;
7293 while (!PageBuddy(pfn_to_page(outer_start))) {
7294 if (++order >= MAX_ORDER) {
8ef5849f
JK
7295 outer_start = start;
7296 break;
041d3a8c
MN
7297 }
7298 outer_start &= ~0UL << order;
7299 }
7300
8ef5849f
JK
7301 if (outer_start != start) {
7302 order = page_order(pfn_to_page(outer_start));
7303
7304 /*
7305 * outer_start page could be small order buddy page and
7306 * it doesn't include start page. Adjust outer_start
7307 * in this case to report failed page properly
7308 * on tracepoint in test_pages_isolated()
7309 */
7310 if (outer_start + (1UL << order) <= start)
7311 outer_start = start;
7312 }
7313
041d3a8c 7314 /* Make sure the range is really isolated. */
b023f468 7315 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7316 pr_info("%s: [%lx, %lx) PFNs busy\n",
7317 __func__, outer_start, end);
041d3a8c
MN
7318 ret = -EBUSY;
7319 goto done;
7320 }
7321
49f223a9 7322 /* Grab isolated pages from freelists. */
bb13ffeb 7323 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7324 if (!outer_end) {
7325 ret = -EBUSY;
7326 goto done;
7327 }
7328
7329 /* Free head and tail (if any) */
7330 if (start != outer_start)
7331 free_contig_range(outer_start, start - outer_start);
7332 if (end != outer_end)
7333 free_contig_range(end, outer_end - end);
7334
7335done:
7336 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7337 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7338 return ret;
7339}
7340
7341void free_contig_range(unsigned long pfn, unsigned nr_pages)
7342{
bcc2b02f
MS
7343 unsigned int count = 0;
7344
7345 for (; nr_pages--; pfn++) {
7346 struct page *page = pfn_to_page(pfn);
7347
7348 count += page_count(page) != 1;
7349 __free_page(page);
7350 }
7351 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7352}
7353#endif
7354
4ed7e022 7355#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7356/*
7357 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7358 * page high values need to be recalulated.
7359 */
4ed7e022
JL
7360void __meminit zone_pcp_update(struct zone *zone)
7361{
0a647f38 7362 unsigned cpu;
c8e251fa 7363 mutex_lock(&pcp_batch_high_lock);
0a647f38 7364 for_each_possible_cpu(cpu)
169f6c19
CS
7365 pageset_set_high_and_batch(zone,
7366 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7367 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7368}
7369#endif
7370
340175b7
JL
7371void zone_pcp_reset(struct zone *zone)
7372{
7373 unsigned long flags;
5a883813
MK
7374 int cpu;
7375 struct per_cpu_pageset *pset;
340175b7
JL
7376
7377 /* avoid races with drain_pages() */
7378 local_irq_save(flags);
7379 if (zone->pageset != &boot_pageset) {
5a883813
MK
7380 for_each_online_cpu(cpu) {
7381 pset = per_cpu_ptr(zone->pageset, cpu);
7382 drain_zonestat(zone, pset);
7383 }
340175b7
JL
7384 free_percpu(zone->pageset);
7385 zone->pageset = &boot_pageset;
7386 }
7387 local_irq_restore(flags);
7388}
7389
6dcd73d7 7390#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7391/*
b9eb6319
JK
7392 * All pages in the range must be in a single zone and isolated
7393 * before calling this.
0c0e6195
KH
7394 */
7395void
7396__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7397{
7398 struct page *page;
7399 struct zone *zone;
7aeb09f9 7400 unsigned int order, i;
0c0e6195
KH
7401 unsigned long pfn;
7402 unsigned long flags;
7403 /* find the first valid pfn */
7404 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7405 if (pfn_valid(pfn))
7406 break;
7407 if (pfn == end_pfn)
7408 return;
7409 zone = page_zone(pfn_to_page(pfn));
7410 spin_lock_irqsave(&zone->lock, flags);
7411 pfn = start_pfn;
7412 while (pfn < end_pfn) {
7413 if (!pfn_valid(pfn)) {
7414 pfn++;
7415 continue;
7416 }
7417 page = pfn_to_page(pfn);
b023f468
WC
7418 /*
7419 * The HWPoisoned page may be not in buddy system, and
7420 * page_count() is not 0.
7421 */
7422 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7423 pfn++;
7424 SetPageReserved(page);
7425 continue;
7426 }
7427
0c0e6195
KH
7428 BUG_ON(page_count(page));
7429 BUG_ON(!PageBuddy(page));
7430 order = page_order(page);
7431#ifdef CONFIG_DEBUG_VM
1170532b
JP
7432 pr_info("remove from free list %lx %d %lx\n",
7433 pfn, 1 << order, end_pfn);
0c0e6195
KH
7434#endif
7435 list_del(&page->lru);
7436 rmv_page_order(page);
7437 zone->free_area[order].nr_free--;
0c0e6195
KH
7438 for (i = 0; i < (1 << order); i++)
7439 SetPageReserved((page+i));
7440 pfn += (1 << order);
7441 }
7442 spin_unlock_irqrestore(&zone->lock, flags);
7443}
7444#endif
8d22ba1b 7445
8d22ba1b
WF
7446bool is_free_buddy_page(struct page *page)
7447{
7448 struct zone *zone = page_zone(page);
7449 unsigned long pfn = page_to_pfn(page);
7450 unsigned long flags;
7aeb09f9 7451 unsigned int order;
8d22ba1b
WF
7452
7453 spin_lock_irqsave(&zone->lock, flags);
7454 for (order = 0; order < MAX_ORDER; order++) {
7455 struct page *page_head = page - (pfn & ((1 << order) - 1));
7456
7457 if (PageBuddy(page_head) && page_order(page_head) >= order)
7458 break;
7459 }
7460 spin_unlock_irqrestore(&zone->lock, flags);
7461
7462 return order < MAX_ORDER;
7463}