]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/page_alloc.c
mm, vmscan: get rid of throttle_vm_writeout
[thirdparty/kernel/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
1da177e4 67
7ee3d4e8 68#include <asm/sections.h>
1da177e4 69#include <asm/tlbflush.h>
ac924c60 70#include <asm/div64.h>
1da177e4
LT
71#include "internal.h"
72
c8e251fa
CS
73/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 75#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 76
72812019
LS
77#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78DEFINE_PER_CPU(int, numa_node);
79EXPORT_PER_CPU_SYMBOL(numa_node);
80#endif
81
7aac7898
LS
82#ifdef CONFIG_HAVE_MEMORYLESS_NODES
83/*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 91int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
92#endif
93
1da177e4 94/*
13808910 95 * Array of node states.
1da177e4 96 */
13808910
CL
97nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 [N_POSSIBLE] = NODE_MASK_ALL,
99 [N_ONLINE] = { { [0] = 1UL } },
100#ifndef CONFIG_NUMA
101 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
102#ifdef CONFIG_HIGHMEM
103 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
104#endif
105#ifdef CONFIG_MOVABLE_NODE
106 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
107#endif
108 [N_CPU] = { { [0] = 1UL } },
109#endif /* NUMA */
110};
111EXPORT_SYMBOL(node_states);
112
c3d5f5f0
JL
113/* Protect totalram_pages and zone->managed_pages */
114static DEFINE_SPINLOCK(managed_page_count_lock);
115
6c231b7b 116unsigned long totalram_pages __read_mostly;
cb45b0e9 117unsigned long totalreserve_pages __read_mostly;
e48322ab 118unsigned long totalcma_pages __read_mostly;
ab8fabd4 119
1b76b02f 120int percpu_pagelist_fraction;
dcce284a 121gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 122
bb14c2c7
VB
123/*
124 * A cached value of the page's pageblock's migratetype, used when the page is
125 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127 * Also the migratetype set in the page does not necessarily match the pcplist
128 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129 * other index - this ensures that it will be put on the correct CMA freelist.
130 */
131static inline int get_pcppage_migratetype(struct page *page)
132{
133 return page->index;
134}
135
136static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137{
138 page->index = migratetype;
139}
140
452aa699
RW
141#ifdef CONFIG_PM_SLEEP
142/*
143 * The following functions are used by the suspend/hibernate code to temporarily
144 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145 * while devices are suspended. To avoid races with the suspend/hibernate code,
146 * they should always be called with pm_mutex held (gfp_allowed_mask also should
147 * only be modified with pm_mutex held, unless the suspend/hibernate code is
148 * guaranteed not to run in parallel with that modification).
149 */
c9e664f1
RW
150
151static gfp_t saved_gfp_mask;
152
153void pm_restore_gfp_mask(void)
452aa699
RW
154{
155 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
156 if (saved_gfp_mask) {
157 gfp_allowed_mask = saved_gfp_mask;
158 saved_gfp_mask = 0;
159 }
452aa699
RW
160}
161
c9e664f1 162void pm_restrict_gfp_mask(void)
452aa699 163{
452aa699 164 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
165 WARN_ON(saved_gfp_mask);
166 saved_gfp_mask = gfp_allowed_mask;
d0164adc 167 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 168}
f90ac398
MG
169
170bool pm_suspended_storage(void)
171{
d0164adc 172 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
173 return false;
174 return true;
175}
452aa699
RW
176#endif /* CONFIG_PM_SLEEP */
177
d9c23400 178#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 179unsigned int pageblock_order __read_mostly;
d9c23400
MG
180#endif
181
d98c7a09 182static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 183
1da177e4
LT
184/*
185 * results with 256, 32 in the lowmem_reserve sysctl:
186 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187 * 1G machine -> (16M dma, 784M normal, 224M high)
188 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 190 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
191 *
192 * TBD: should special case ZONE_DMA32 machines here - in those we normally
193 * don't need any ZONE_NORMAL reservation
1da177e4 194 */
2f1b6248 195int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 196#ifdef CONFIG_ZONE_DMA
2f1b6248 197 256,
4b51d669 198#endif
fb0e7942 199#ifdef CONFIG_ZONE_DMA32
2f1b6248 200 256,
fb0e7942 201#endif
e53ef38d 202#ifdef CONFIG_HIGHMEM
2a1e274a 203 32,
e53ef38d 204#endif
2a1e274a 205 32,
2f1b6248 206};
1da177e4
LT
207
208EXPORT_SYMBOL(totalram_pages);
1da177e4 209
15ad7cdc 210static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 211#ifdef CONFIG_ZONE_DMA
2f1b6248 212 "DMA",
4b51d669 213#endif
fb0e7942 214#ifdef CONFIG_ZONE_DMA32
2f1b6248 215 "DMA32",
fb0e7942 216#endif
2f1b6248 217 "Normal",
e53ef38d 218#ifdef CONFIG_HIGHMEM
2a1e274a 219 "HighMem",
e53ef38d 220#endif
2a1e274a 221 "Movable",
033fbae9
DW
222#ifdef CONFIG_ZONE_DEVICE
223 "Device",
224#endif
2f1b6248
CL
225};
226
60f30350
VB
227char * const migratetype_names[MIGRATE_TYPES] = {
228 "Unmovable",
229 "Movable",
230 "Reclaimable",
231 "HighAtomic",
232#ifdef CONFIG_CMA
233 "CMA",
234#endif
235#ifdef CONFIG_MEMORY_ISOLATION
236 "Isolate",
237#endif
238};
239
f1e61557
KS
240compound_page_dtor * const compound_page_dtors[] = {
241 NULL,
242 free_compound_page,
243#ifdef CONFIG_HUGETLB_PAGE
244 free_huge_page,
245#endif
9a982250
KS
246#ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 free_transhuge_page,
248#endif
f1e61557
KS
249};
250
1da177e4 251int min_free_kbytes = 1024;
42aa83cb 252int user_min_free_kbytes = -1;
795ae7a0 253int watermark_scale_factor = 10;
1da177e4 254
2c85f51d
JB
255static unsigned long __meminitdata nr_kernel_pages;
256static unsigned long __meminitdata nr_all_pages;
a3142c8e 257static unsigned long __meminitdata dma_reserve;
1da177e4 258
0ee332c1
TH
259#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262static unsigned long __initdata required_kernelcore;
263static unsigned long __initdata required_movablecore;
264static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 265static bool mirrored_kernelcore;
0ee332c1
TH
266
267/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268int movable_zone;
269EXPORT_SYMBOL(movable_zone);
270#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 271
418508c1
MS
272#if MAX_NUMNODES > 1
273int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 274int nr_online_nodes __read_mostly = 1;
418508c1 275EXPORT_SYMBOL(nr_node_ids);
62bc62a8 276EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
277#endif
278
9ef9acb0
MG
279int page_group_by_mobility_disabled __read_mostly;
280
3a80a7fa
MG
281#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282static inline void reset_deferred_meminit(pg_data_t *pgdat)
283{
284 pgdat->first_deferred_pfn = ULONG_MAX;
285}
286
287/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 288static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 289{
ef70b6f4
MG
290 int nid = early_pfn_to_nid(pfn);
291
292 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
293 return true;
294
295 return false;
296}
297
298/*
299 * Returns false when the remaining initialisation should be deferred until
300 * later in the boot cycle when it can be parallelised.
301 */
302static inline bool update_defer_init(pg_data_t *pgdat,
303 unsigned long pfn, unsigned long zone_end,
304 unsigned long *nr_initialised)
305{
987b3095
LZ
306 unsigned long max_initialise;
307
3a80a7fa
MG
308 /* Always populate low zones for address-contrained allocations */
309 if (zone_end < pgdat_end_pfn(pgdat))
310 return true;
987b3095
LZ
311 /*
312 * Initialise at least 2G of a node but also take into account that
313 * two large system hashes that can take up 1GB for 0.25TB/node.
314 */
315 max_initialise = max(2UL << (30 - PAGE_SHIFT),
316 (pgdat->node_spanned_pages >> 8));
3a80a7fa 317
3a80a7fa 318 (*nr_initialised)++;
987b3095 319 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
320 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
321 pgdat->first_deferred_pfn = pfn;
322 return false;
323 }
324
325 return true;
326}
327#else
328static inline void reset_deferred_meminit(pg_data_t *pgdat)
329{
330}
331
332static inline bool early_page_uninitialised(unsigned long pfn)
333{
334 return false;
335}
336
337static inline bool update_defer_init(pg_data_t *pgdat,
338 unsigned long pfn, unsigned long zone_end,
339 unsigned long *nr_initialised)
340{
341 return true;
342}
343#endif
344
0b423ca2
MG
345/* Return a pointer to the bitmap storing bits affecting a block of pages */
346static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 unsigned long pfn)
348{
349#ifdef CONFIG_SPARSEMEM
350 return __pfn_to_section(pfn)->pageblock_flags;
351#else
352 return page_zone(page)->pageblock_flags;
353#endif /* CONFIG_SPARSEMEM */
354}
355
356static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
357{
358#ifdef CONFIG_SPARSEMEM
359 pfn &= (PAGES_PER_SECTION-1);
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361#else
362 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364#endif /* CONFIG_SPARSEMEM */
365}
366
367/**
368 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
369 * @page: The page within the block of interest
370 * @pfn: The target page frame number
371 * @end_bitidx: The last bit of interest to retrieve
372 * @mask: mask of bits that the caller is interested in
373 *
374 * Return: pageblock_bits flags
375 */
376static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
377 unsigned long pfn,
378 unsigned long end_bitidx,
379 unsigned long mask)
380{
381 unsigned long *bitmap;
382 unsigned long bitidx, word_bitidx;
383 unsigned long word;
384
385 bitmap = get_pageblock_bitmap(page, pfn);
386 bitidx = pfn_to_bitidx(page, pfn);
387 word_bitidx = bitidx / BITS_PER_LONG;
388 bitidx &= (BITS_PER_LONG-1);
389
390 word = bitmap[word_bitidx];
391 bitidx += end_bitidx;
392 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393}
394
395unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
396 unsigned long end_bitidx,
397 unsigned long mask)
398{
399 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400}
401
402static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
403{
404 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405}
406
407/**
408 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
409 * @page: The page within the block of interest
410 * @flags: The flags to set
411 * @pfn: The target page frame number
412 * @end_bitidx: The last bit of interest
413 * @mask: mask of bits that the caller is interested in
414 */
415void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419{
420 unsigned long *bitmap;
421 unsigned long bitidx, word_bitidx;
422 unsigned long old_word, word;
423
424 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
425
426 bitmap = get_pageblock_bitmap(page, pfn);
427 bitidx = pfn_to_bitidx(page, pfn);
428 word_bitidx = bitidx / BITS_PER_LONG;
429 bitidx &= (BITS_PER_LONG-1);
430
431 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432
433 bitidx += end_bitidx;
434 mask <<= (BITS_PER_LONG - bitidx - 1);
435 flags <<= (BITS_PER_LONG - bitidx - 1);
436
437 word = READ_ONCE(bitmap[word_bitidx]);
438 for (;;) {
439 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
440 if (word == old_word)
441 break;
442 word = old_word;
443 }
444}
3a80a7fa 445
ee6f509c 446void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 447{
5d0f3f72
KM
448 if (unlikely(page_group_by_mobility_disabled &&
449 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
450 migratetype = MIGRATE_UNMOVABLE;
451
b2a0ac88
MG
452 set_pageblock_flags_group(page, (unsigned long)migratetype,
453 PB_migrate, PB_migrate_end);
454}
455
13e7444b 456#ifdef CONFIG_DEBUG_VM
c6a57e19 457static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 458{
bdc8cb98
DH
459 int ret = 0;
460 unsigned seq;
461 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 462 unsigned long sp, start_pfn;
c6a57e19 463
bdc8cb98
DH
464 do {
465 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
466 start_pfn = zone->zone_start_pfn;
467 sp = zone->spanned_pages;
108bcc96 468 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
469 ret = 1;
470 } while (zone_span_seqretry(zone, seq));
471
b5e6a5a2 472 if (ret)
613813e8
DH
473 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
474 pfn, zone_to_nid(zone), zone->name,
475 start_pfn, start_pfn + sp);
b5e6a5a2 476
bdc8cb98 477 return ret;
c6a57e19
DH
478}
479
480static int page_is_consistent(struct zone *zone, struct page *page)
481{
14e07298 482 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 483 return 0;
1da177e4 484 if (zone != page_zone(page))
c6a57e19
DH
485 return 0;
486
487 return 1;
488}
489/*
490 * Temporary debugging check for pages not lying within a given zone.
491 */
492static int bad_range(struct zone *zone, struct page *page)
493{
494 if (page_outside_zone_boundaries(zone, page))
1da177e4 495 return 1;
c6a57e19
DH
496 if (!page_is_consistent(zone, page))
497 return 1;
498
1da177e4
LT
499 return 0;
500}
13e7444b
NP
501#else
502static inline int bad_range(struct zone *zone, struct page *page)
503{
504 return 0;
505}
506#endif
507
d230dec1
KS
508static void bad_page(struct page *page, const char *reason,
509 unsigned long bad_flags)
1da177e4 510{
d936cf9b
HD
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 goto out;
523 }
524 if (nr_unshown) {
ff8e8116 525 pr_alert(
1e9e6365 526 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
527 nr_unshown);
528 nr_unshown = 0;
529 }
530 nr_shown = 0;
531 }
532 if (nr_shown++ == 0)
533 resume = jiffies + 60 * HZ;
534
ff8e8116 535 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 536 current->comm, page_to_pfn(page));
ff8e8116
VB
537 __dump_page(page, reason);
538 bad_flags &= page->flags;
539 if (bad_flags)
540 pr_alert("bad because of flags: %#lx(%pGp)\n",
541 bad_flags, &bad_flags);
4e462112 542 dump_page_owner(page);
3dc14741 543
4f31888c 544 print_modules();
1da177e4 545 dump_stack();
d936cf9b 546out:
8cc3b392 547 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 548 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
550}
551
1da177e4
LT
552/*
553 * Higher-order pages are called "compound pages". They are structured thusly:
554 *
1d798ca3 555 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 556 *
1d798ca3
KS
557 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 559 *
1d798ca3
KS
560 * The first tail page's ->compound_dtor holds the offset in array of compound
561 * page destructors. See compound_page_dtors.
1da177e4 562 *
1d798ca3 563 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 564 * This usage means that zero-order pages may not be compound.
1da177e4 565 */
d98c7a09 566
9a982250 567void free_compound_page(struct page *page)
d98c7a09 568{
d85f3385 569 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
570}
571
d00181b9 572void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
573{
574 int i;
575 int nr_pages = 1 << order;
576
f1e61557 577 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
578 set_compound_order(page, order);
579 __SetPageHead(page);
580 for (i = 1; i < nr_pages; i++) {
581 struct page *p = page + i;
58a84aa9 582 set_page_count(p, 0);
1c290f64 583 p->mapping = TAIL_MAPPING;
1d798ca3 584 set_compound_head(p, page);
18229df5 585 }
53f9263b 586 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
587}
588
c0a32fc5
SG
589#ifdef CONFIG_DEBUG_PAGEALLOC
590unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
591bool _debug_pagealloc_enabled __read_mostly
592 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 593EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
594bool _debug_guardpage_enabled __read_mostly;
595
031bc574
JK
596static int __init early_debug_pagealloc(char *buf)
597{
598 if (!buf)
599 return -EINVAL;
2a138dc7 600 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
601}
602early_param("debug_pagealloc", early_debug_pagealloc);
603
e30825f1
JK
604static bool need_debug_guardpage(void)
605{
031bc574
JK
606 /* If we don't use debug_pagealloc, we don't need guard page */
607 if (!debug_pagealloc_enabled())
608 return false;
609
e30825f1
JK
610 return true;
611}
612
613static void init_debug_guardpage(void)
614{
031bc574
JK
615 if (!debug_pagealloc_enabled())
616 return;
617
e30825f1
JK
618 _debug_guardpage_enabled = true;
619}
620
621struct page_ext_operations debug_guardpage_ops = {
622 .need = need_debug_guardpage,
623 .init = init_debug_guardpage,
624};
c0a32fc5
SG
625
626static int __init debug_guardpage_minorder_setup(char *buf)
627{
628 unsigned long res;
629
630 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 631 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
632 return 0;
633 }
634 _debug_guardpage_minorder = res;
1170532b 635 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
636 return 0;
637}
638__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
639
2847cf95
JK
640static inline void set_page_guard(struct zone *zone, struct page *page,
641 unsigned int order, int migratetype)
c0a32fc5 642{
e30825f1
JK
643 struct page_ext *page_ext;
644
645 if (!debug_guardpage_enabled())
646 return;
647
648 page_ext = lookup_page_ext(page);
f86e4271
YS
649 if (unlikely(!page_ext))
650 return;
651
e30825f1
JK
652 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
653
2847cf95
JK
654 INIT_LIST_HEAD(&page->lru);
655 set_page_private(page, order);
656 /* Guard pages are not available for any usage */
657 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
658}
659
2847cf95
JK
660static inline void clear_page_guard(struct zone *zone, struct page *page,
661 unsigned int order, int migratetype)
c0a32fc5 662{
e30825f1
JK
663 struct page_ext *page_ext;
664
665 if (!debug_guardpage_enabled())
666 return;
667
668 page_ext = lookup_page_ext(page);
f86e4271
YS
669 if (unlikely(!page_ext))
670 return;
671
e30825f1
JK
672 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
2847cf95
JK
674 set_page_private(page, 0);
675 if (!is_migrate_isolate(migratetype))
676 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
677}
678#else
e30825f1 679struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
680static inline void set_page_guard(struct zone *zone, struct page *page,
681 unsigned int order, int migratetype) {}
682static inline void clear_page_guard(struct zone *zone, struct page *page,
683 unsigned int order, int migratetype) {}
c0a32fc5
SG
684#endif
685
7aeb09f9 686static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 687{
4c21e2f2 688 set_page_private(page, order);
676165a8 689 __SetPageBuddy(page);
1da177e4
LT
690}
691
692static inline void rmv_page_order(struct page *page)
693{
676165a8 694 __ClearPageBuddy(page);
4c21e2f2 695 set_page_private(page, 0);
1da177e4
LT
696}
697
1da177e4
LT
698/*
699 * This function checks whether a page is free && is the buddy
700 * we can do coalesce a page and its buddy if
13e7444b 701 * (a) the buddy is not in a hole &&
676165a8 702 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
703 * (c) a page and its buddy have the same order &&
704 * (d) a page and its buddy are in the same zone.
676165a8 705 *
cf6fe945
WSH
706 * For recording whether a page is in the buddy system, we set ->_mapcount
707 * PAGE_BUDDY_MAPCOUNT_VALUE.
708 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
709 * serialized by zone->lock.
1da177e4 710 *
676165a8 711 * For recording page's order, we use page_private(page).
1da177e4 712 */
cb2b95e1 713static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 714 unsigned int order)
1da177e4 715{
14e07298 716 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 717 return 0;
13e7444b 718
c0a32fc5 719 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
720 if (page_zone_id(page) != page_zone_id(buddy))
721 return 0;
722
4c5018ce
WY
723 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
724
c0a32fc5
SG
725 return 1;
726 }
727
cb2b95e1 728 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
729 /*
730 * zone check is done late to avoid uselessly
731 * calculating zone/node ids for pages that could
732 * never merge.
733 */
734 if (page_zone_id(page) != page_zone_id(buddy))
735 return 0;
736
4c5018ce
WY
737 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
738
6aa3001b 739 return 1;
676165a8 740 }
6aa3001b 741 return 0;
1da177e4
LT
742}
743
744/*
745 * Freeing function for a buddy system allocator.
746 *
747 * The concept of a buddy system is to maintain direct-mapped table
748 * (containing bit values) for memory blocks of various "orders".
749 * The bottom level table contains the map for the smallest allocatable
750 * units of memory (here, pages), and each level above it describes
751 * pairs of units from the levels below, hence, "buddies".
752 * At a high level, all that happens here is marking the table entry
753 * at the bottom level available, and propagating the changes upward
754 * as necessary, plus some accounting needed to play nicely with other
755 * parts of the VM system.
756 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
757 * free pages of length of (1 << order) and marked with _mapcount
758 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
759 * field.
1da177e4 760 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
761 * other. That is, if we allocate a small block, and both were
762 * free, the remainder of the region must be split into blocks.
1da177e4 763 * If a block is freed, and its buddy is also free, then this
5f63b720 764 * triggers coalescing into a block of larger size.
1da177e4 765 *
6d49e352 766 * -- nyc
1da177e4
LT
767 */
768
48db57f8 769static inline void __free_one_page(struct page *page,
dc4b0caf 770 unsigned long pfn,
ed0ae21d
MG
771 struct zone *zone, unsigned int order,
772 int migratetype)
1da177e4
LT
773{
774 unsigned long page_idx;
6dda9d55 775 unsigned long combined_idx;
43506fad 776 unsigned long uninitialized_var(buddy_idx);
6dda9d55 777 struct page *buddy;
d9dddbf5
VB
778 unsigned int max_order;
779
780 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 781
d29bb978 782 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 783 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 784
ed0ae21d 785 VM_BUG_ON(migratetype == -1);
d9dddbf5 786 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 787 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 788
d9dddbf5 789 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 790
309381fe
SL
791 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
792 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 793
d9dddbf5 794continue_merging:
3c605096 795 while (order < max_order - 1) {
43506fad
KC
796 buddy_idx = __find_buddy_index(page_idx, order);
797 buddy = page + (buddy_idx - page_idx);
cb2b95e1 798 if (!page_is_buddy(page, buddy, order))
d9dddbf5 799 goto done_merging;
c0a32fc5
SG
800 /*
801 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
802 * merge with it and move up one order.
803 */
804 if (page_is_guard(buddy)) {
2847cf95 805 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
806 } else {
807 list_del(&buddy->lru);
808 zone->free_area[order].nr_free--;
809 rmv_page_order(buddy);
810 }
43506fad 811 combined_idx = buddy_idx & page_idx;
1da177e4
LT
812 page = page + (combined_idx - page_idx);
813 page_idx = combined_idx;
814 order++;
815 }
d9dddbf5
VB
816 if (max_order < MAX_ORDER) {
817 /* If we are here, it means order is >= pageblock_order.
818 * We want to prevent merge between freepages on isolate
819 * pageblock and normal pageblock. Without this, pageblock
820 * isolation could cause incorrect freepage or CMA accounting.
821 *
822 * We don't want to hit this code for the more frequent
823 * low-order merging.
824 */
825 if (unlikely(has_isolate_pageblock(zone))) {
826 int buddy_mt;
827
828 buddy_idx = __find_buddy_index(page_idx, order);
829 buddy = page + (buddy_idx - page_idx);
830 buddy_mt = get_pageblock_migratetype(buddy);
831
832 if (migratetype != buddy_mt
833 && (is_migrate_isolate(migratetype) ||
834 is_migrate_isolate(buddy_mt)))
835 goto done_merging;
836 }
837 max_order++;
838 goto continue_merging;
839 }
840
841done_merging:
1da177e4 842 set_page_order(page, order);
6dda9d55
CZ
843
844 /*
845 * If this is not the largest possible page, check if the buddy
846 * of the next-highest order is free. If it is, it's possible
847 * that pages are being freed that will coalesce soon. In case,
848 * that is happening, add the free page to the tail of the list
849 * so it's less likely to be used soon and more likely to be merged
850 * as a higher order page
851 */
b7f50cfa 852 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 853 struct page *higher_page, *higher_buddy;
43506fad
KC
854 combined_idx = buddy_idx & page_idx;
855 higher_page = page + (combined_idx - page_idx);
856 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 857 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
858 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
859 list_add_tail(&page->lru,
860 &zone->free_area[order].free_list[migratetype]);
861 goto out;
862 }
863 }
864
865 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
866out:
1da177e4
LT
867 zone->free_area[order].nr_free++;
868}
869
7bfec6f4
MG
870/*
871 * A bad page could be due to a number of fields. Instead of multiple branches,
872 * try and check multiple fields with one check. The caller must do a detailed
873 * check if necessary.
874 */
875static inline bool page_expected_state(struct page *page,
876 unsigned long check_flags)
877{
878 if (unlikely(atomic_read(&page->_mapcount) != -1))
879 return false;
880
881 if (unlikely((unsigned long)page->mapping |
882 page_ref_count(page) |
883#ifdef CONFIG_MEMCG
884 (unsigned long)page->mem_cgroup |
885#endif
886 (page->flags & check_flags)))
887 return false;
888
889 return true;
890}
891
bb552ac6 892static void free_pages_check_bad(struct page *page)
1da177e4 893{
7bfec6f4
MG
894 const char *bad_reason;
895 unsigned long bad_flags;
896
7bfec6f4
MG
897 bad_reason = NULL;
898 bad_flags = 0;
f0b791a3 899
53f9263b 900 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
901 bad_reason = "nonzero mapcount";
902 if (unlikely(page->mapping != NULL))
903 bad_reason = "non-NULL mapping";
fe896d18 904 if (unlikely(page_ref_count(page) != 0))
0139aa7b 905 bad_reason = "nonzero _refcount";
f0b791a3
DH
906 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
907 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
908 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
909 }
9edad6ea
JW
910#ifdef CONFIG_MEMCG
911 if (unlikely(page->mem_cgroup))
912 bad_reason = "page still charged to cgroup";
913#endif
7bfec6f4 914 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
915}
916
917static inline int free_pages_check(struct page *page)
918{
da838d4f 919 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 920 return 0;
bb552ac6
MG
921
922 /* Something has gone sideways, find it */
923 free_pages_check_bad(page);
7bfec6f4 924 return 1;
1da177e4
LT
925}
926
4db7548c
MG
927static int free_tail_pages_check(struct page *head_page, struct page *page)
928{
929 int ret = 1;
930
931 /*
932 * We rely page->lru.next never has bit 0 set, unless the page
933 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
934 */
935 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
936
937 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
938 ret = 0;
939 goto out;
940 }
941 switch (page - head_page) {
942 case 1:
943 /* the first tail page: ->mapping is compound_mapcount() */
944 if (unlikely(compound_mapcount(page))) {
945 bad_page(page, "nonzero compound_mapcount", 0);
946 goto out;
947 }
948 break;
949 case 2:
950 /*
951 * the second tail page: ->mapping is
952 * page_deferred_list().next -- ignore value.
953 */
954 break;
955 default:
956 if (page->mapping != TAIL_MAPPING) {
957 bad_page(page, "corrupted mapping in tail page", 0);
958 goto out;
959 }
960 break;
961 }
962 if (unlikely(!PageTail(page))) {
963 bad_page(page, "PageTail not set", 0);
964 goto out;
965 }
966 if (unlikely(compound_head(page) != head_page)) {
967 bad_page(page, "compound_head not consistent", 0);
968 goto out;
969 }
970 ret = 0;
971out:
972 page->mapping = NULL;
973 clear_compound_head(page);
974 return ret;
975}
976
e2769dbd
MG
977static __always_inline bool free_pages_prepare(struct page *page,
978 unsigned int order, bool check_free)
4db7548c 979{
e2769dbd 980 int bad = 0;
4db7548c 981
4db7548c
MG
982 VM_BUG_ON_PAGE(PageTail(page), page);
983
e2769dbd
MG
984 trace_mm_page_free(page, order);
985 kmemcheck_free_shadow(page, order);
e2769dbd
MG
986
987 /*
988 * Check tail pages before head page information is cleared to
989 * avoid checking PageCompound for order-0 pages.
990 */
991 if (unlikely(order)) {
992 bool compound = PageCompound(page);
993 int i;
994
995 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 996
9a73f61b
KS
997 if (compound)
998 ClearPageDoubleMap(page);
e2769dbd
MG
999 for (i = 1; i < (1 << order); i++) {
1000 if (compound)
1001 bad += free_tail_pages_check(page, page + i);
1002 if (unlikely(free_pages_check(page + i))) {
1003 bad++;
1004 continue;
1005 }
1006 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1007 }
1008 }
bda807d4 1009 if (PageMappingFlags(page))
4db7548c 1010 page->mapping = NULL;
c4159a75 1011 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1012 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1013 if (check_free)
1014 bad += free_pages_check(page);
1015 if (bad)
1016 return false;
4db7548c 1017
e2769dbd
MG
1018 page_cpupid_reset_last(page);
1019 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1020 reset_page_owner(page, order);
4db7548c
MG
1021
1022 if (!PageHighMem(page)) {
1023 debug_check_no_locks_freed(page_address(page),
e2769dbd 1024 PAGE_SIZE << order);
4db7548c 1025 debug_check_no_obj_freed(page_address(page),
e2769dbd 1026 PAGE_SIZE << order);
4db7548c 1027 }
e2769dbd
MG
1028 arch_free_page(page, order);
1029 kernel_poison_pages(page, 1 << order, 0);
1030 kernel_map_pages(page, 1 << order, 0);
29b52de1 1031 kasan_free_pages(page, order);
4db7548c 1032
4db7548c
MG
1033 return true;
1034}
1035
e2769dbd
MG
1036#ifdef CONFIG_DEBUG_VM
1037static inline bool free_pcp_prepare(struct page *page)
1038{
1039 return free_pages_prepare(page, 0, true);
1040}
1041
1042static inline bool bulkfree_pcp_prepare(struct page *page)
1043{
1044 return false;
1045}
1046#else
1047static bool free_pcp_prepare(struct page *page)
1048{
1049 return free_pages_prepare(page, 0, false);
1050}
1051
4db7548c
MG
1052static bool bulkfree_pcp_prepare(struct page *page)
1053{
1054 return free_pages_check(page);
1055}
1056#endif /* CONFIG_DEBUG_VM */
1057
1da177e4 1058/*
5f8dcc21 1059 * Frees a number of pages from the PCP lists
1da177e4 1060 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1061 * count is the number of pages to free.
1da177e4
LT
1062 *
1063 * If the zone was previously in an "all pages pinned" state then look to
1064 * see if this freeing clears that state.
1065 *
1066 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1067 * pinned" detection logic.
1068 */
5f8dcc21
MG
1069static void free_pcppages_bulk(struct zone *zone, int count,
1070 struct per_cpu_pages *pcp)
1da177e4 1071{
5f8dcc21 1072 int migratetype = 0;
a6f9edd6 1073 int batch_free = 0;
0d5d823a 1074 unsigned long nr_scanned;
3777999d 1075 bool isolated_pageblocks;
5f8dcc21 1076
c54ad30c 1077 spin_lock(&zone->lock);
3777999d 1078 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1079 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1080 if (nr_scanned)
599d0c95 1081 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1082
e5b31ac2 1083 while (count) {
48db57f8 1084 struct page *page;
5f8dcc21
MG
1085 struct list_head *list;
1086
1087 /*
a6f9edd6
MG
1088 * Remove pages from lists in a round-robin fashion. A
1089 * batch_free count is maintained that is incremented when an
1090 * empty list is encountered. This is so more pages are freed
1091 * off fuller lists instead of spinning excessively around empty
1092 * lists
5f8dcc21
MG
1093 */
1094 do {
a6f9edd6 1095 batch_free++;
5f8dcc21
MG
1096 if (++migratetype == MIGRATE_PCPTYPES)
1097 migratetype = 0;
1098 list = &pcp->lists[migratetype];
1099 } while (list_empty(list));
48db57f8 1100
1d16871d
NK
1101 /* This is the only non-empty list. Free them all. */
1102 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1103 batch_free = count;
1d16871d 1104
a6f9edd6 1105 do {
770c8aaa
BZ
1106 int mt; /* migratetype of the to-be-freed page */
1107
a16601c5 1108 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1109 /* must delete as __free_one_page list manipulates */
1110 list_del(&page->lru);
aa016d14 1111
bb14c2c7 1112 mt = get_pcppage_migratetype(page);
aa016d14
VB
1113 /* MIGRATE_ISOLATE page should not go to pcplists */
1114 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1115 /* Pageblock could have been isolated meanwhile */
3777999d 1116 if (unlikely(isolated_pageblocks))
51bb1a40 1117 mt = get_pageblock_migratetype(page);
51bb1a40 1118
4db7548c
MG
1119 if (bulkfree_pcp_prepare(page))
1120 continue;
1121
dc4b0caf 1122 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1123 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1124 } while (--count && --batch_free && !list_empty(list));
1da177e4 1125 }
c54ad30c 1126 spin_unlock(&zone->lock);
1da177e4
LT
1127}
1128
dc4b0caf
MG
1129static void free_one_page(struct zone *zone,
1130 struct page *page, unsigned long pfn,
7aeb09f9 1131 unsigned int order,
ed0ae21d 1132 int migratetype)
1da177e4 1133{
0d5d823a 1134 unsigned long nr_scanned;
006d22d9 1135 spin_lock(&zone->lock);
599d0c95 1136 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1137 if (nr_scanned)
599d0c95 1138 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1139
ad53f92e
JK
1140 if (unlikely(has_isolate_pageblock(zone) ||
1141 is_migrate_isolate(migratetype))) {
1142 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1143 }
dc4b0caf 1144 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1145 spin_unlock(&zone->lock);
48db57f8
NP
1146}
1147
1e8ce83c
RH
1148static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1149 unsigned long zone, int nid)
1150{
1e8ce83c 1151 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1152 init_page_count(page);
1153 page_mapcount_reset(page);
1154 page_cpupid_reset_last(page);
1e8ce83c 1155
1e8ce83c
RH
1156 INIT_LIST_HEAD(&page->lru);
1157#ifdef WANT_PAGE_VIRTUAL
1158 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1159 if (!is_highmem_idx(zone))
1160 set_page_address(page, __va(pfn << PAGE_SHIFT));
1161#endif
1162}
1163
1164static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1165 int nid)
1166{
1167 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1168}
1169
7e18adb4
MG
1170#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1171static void init_reserved_page(unsigned long pfn)
1172{
1173 pg_data_t *pgdat;
1174 int nid, zid;
1175
1176 if (!early_page_uninitialised(pfn))
1177 return;
1178
1179 nid = early_pfn_to_nid(pfn);
1180 pgdat = NODE_DATA(nid);
1181
1182 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1183 struct zone *zone = &pgdat->node_zones[zid];
1184
1185 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1186 break;
1187 }
1188 __init_single_pfn(pfn, zid, nid);
1189}
1190#else
1191static inline void init_reserved_page(unsigned long pfn)
1192{
1193}
1194#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1195
92923ca3
NZ
1196/*
1197 * Initialised pages do not have PageReserved set. This function is
1198 * called for each range allocated by the bootmem allocator and
1199 * marks the pages PageReserved. The remaining valid pages are later
1200 * sent to the buddy page allocator.
1201 */
4b50bcc7 1202void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1203{
1204 unsigned long start_pfn = PFN_DOWN(start);
1205 unsigned long end_pfn = PFN_UP(end);
1206
7e18adb4
MG
1207 for (; start_pfn < end_pfn; start_pfn++) {
1208 if (pfn_valid(start_pfn)) {
1209 struct page *page = pfn_to_page(start_pfn);
1210
1211 init_reserved_page(start_pfn);
1d798ca3
KS
1212
1213 /* Avoid false-positive PageTail() */
1214 INIT_LIST_HEAD(&page->lru);
1215
7e18adb4
MG
1216 SetPageReserved(page);
1217 }
1218 }
92923ca3
NZ
1219}
1220
ec95f53a
KM
1221static void __free_pages_ok(struct page *page, unsigned int order)
1222{
1223 unsigned long flags;
95e34412 1224 int migratetype;
dc4b0caf 1225 unsigned long pfn = page_to_pfn(page);
ec95f53a 1226
e2769dbd 1227 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1228 return;
1229
cfc47a28 1230 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1231 local_irq_save(flags);
f8891e5e 1232 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1233 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1234 local_irq_restore(flags);
1da177e4
LT
1235}
1236
949698a3 1237static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1238{
c3993076 1239 unsigned int nr_pages = 1 << order;
e2d0bd2b 1240 struct page *p = page;
c3993076 1241 unsigned int loop;
a226f6c8 1242
e2d0bd2b
YL
1243 prefetchw(p);
1244 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1245 prefetchw(p + 1);
c3993076
JW
1246 __ClearPageReserved(p);
1247 set_page_count(p, 0);
a226f6c8 1248 }
e2d0bd2b
YL
1249 __ClearPageReserved(p);
1250 set_page_count(p, 0);
c3993076 1251
e2d0bd2b 1252 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1253 set_page_refcounted(page);
1254 __free_pages(page, order);
a226f6c8
DH
1255}
1256
75a592a4
MG
1257#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1258 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1259
75a592a4
MG
1260static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1261
1262int __meminit early_pfn_to_nid(unsigned long pfn)
1263{
7ace9917 1264 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1265 int nid;
1266
7ace9917 1267 spin_lock(&early_pfn_lock);
75a592a4 1268 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1269 if (nid < 0)
e4568d38 1270 nid = first_online_node;
7ace9917
MG
1271 spin_unlock(&early_pfn_lock);
1272
1273 return nid;
75a592a4
MG
1274}
1275#endif
1276
1277#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1278static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1279 struct mminit_pfnnid_cache *state)
1280{
1281 int nid;
1282
1283 nid = __early_pfn_to_nid(pfn, state);
1284 if (nid >= 0 && nid != node)
1285 return false;
1286 return true;
1287}
1288
1289/* Only safe to use early in boot when initialisation is single-threaded */
1290static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1291{
1292 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1293}
1294
1295#else
1296
1297static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1298{
1299 return true;
1300}
1301static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1302 struct mminit_pfnnid_cache *state)
1303{
1304 return true;
1305}
1306#endif
1307
1308
0e1cc95b 1309void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1310 unsigned int order)
1311{
1312 if (early_page_uninitialised(pfn))
1313 return;
949698a3 1314 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1315}
1316
7cf91a98
JK
1317/*
1318 * Check that the whole (or subset of) a pageblock given by the interval of
1319 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1320 * with the migration of free compaction scanner. The scanners then need to
1321 * use only pfn_valid_within() check for arches that allow holes within
1322 * pageblocks.
1323 *
1324 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1325 *
1326 * It's possible on some configurations to have a setup like node0 node1 node0
1327 * i.e. it's possible that all pages within a zones range of pages do not
1328 * belong to a single zone. We assume that a border between node0 and node1
1329 * can occur within a single pageblock, but not a node0 node1 node0
1330 * interleaving within a single pageblock. It is therefore sufficient to check
1331 * the first and last page of a pageblock and avoid checking each individual
1332 * page in a pageblock.
1333 */
1334struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1335 unsigned long end_pfn, struct zone *zone)
1336{
1337 struct page *start_page;
1338 struct page *end_page;
1339
1340 /* end_pfn is one past the range we are checking */
1341 end_pfn--;
1342
1343 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1344 return NULL;
1345
1346 start_page = pfn_to_page(start_pfn);
1347
1348 if (page_zone(start_page) != zone)
1349 return NULL;
1350
1351 end_page = pfn_to_page(end_pfn);
1352
1353 /* This gives a shorter code than deriving page_zone(end_page) */
1354 if (page_zone_id(start_page) != page_zone_id(end_page))
1355 return NULL;
1356
1357 return start_page;
1358}
1359
1360void set_zone_contiguous(struct zone *zone)
1361{
1362 unsigned long block_start_pfn = zone->zone_start_pfn;
1363 unsigned long block_end_pfn;
1364
1365 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1366 for (; block_start_pfn < zone_end_pfn(zone);
1367 block_start_pfn = block_end_pfn,
1368 block_end_pfn += pageblock_nr_pages) {
1369
1370 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1371
1372 if (!__pageblock_pfn_to_page(block_start_pfn,
1373 block_end_pfn, zone))
1374 return;
1375 }
1376
1377 /* We confirm that there is no hole */
1378 zone->contiguous = true;
1379}
1380
1381void clear_zone_contiguous(struct zone *zone)
1382{
1383 zone->contiguous = false;
1384}
1385
7e18adb4 1386#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1387static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1388 unsigned long pfn, int nr_pages)
1389{
1390 int i;
1391
1392 if (!page)
1393 return;
1394
1395 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1396 if (nr_pages == pageblock_nr_pages &&
1397 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1398 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1399 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1400 return;
1401 }
1402
e780149b
XQ
1403 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1404 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1405 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1406 __free_pages_boot_core(page, 0);
e780149b 1407 }
a4de83dd
MG
1408}
1409
d3cd131d
NS
1410/* Completion tracking for deferred_init_memmap() threads */
1411static atomic_t pgdat_init_n_undone __initdata;
1412static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1413
1414static inline void __init pgdat_init_report_one_done(void)
1415{
1416 if (atomic_dec_and_test(&pgdat_init_n_undone))
1417 complete(&pgdat_init_all_done_comp);
1418}
0e1cc95b 1419
7e18adb4 1420/* Initialise remaining memory on a node */
0e1cc95b 1421static int __init deferred_init_memmap(void *data)
7e18adb4 1422{
0e1cc95b
MG
1423 pg_data_t *pgdat = data;
1424 int nid = pgdat->node_id;
7e18adb4
MG
1425 struct mminit_pfnnid_cache nid_init_state = { };
1426 unsigned long start = jiffies;
1427 unsigned long nr_pages = 0;
1428 unsigned long walk_start, walk_end;
1429 int i, zid;
1430 struct zone *zone;
7e18adb4 1431 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1432 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1433
0e1cc95b 1434 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1435 pgdat_init_report_one_done();
0e1cc95b
MG
1436 return 0;
1437 }
1438
1439 /* Bind memory initialisation thread to a local node if possible */
1440 if (!cpumask_empty(cpumask))
1441 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1442
1443 /* Sanity check boundaries */
1444 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1445 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1446 pgdat->first_deferred_pfn = ULONG_MAX;
1447
1448 /* Only the highest zone is deferred so find it */
1449 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1450 zone = pgdat->node_zones + zid;
1451 if (first_init_pfn < zone_end_pfn(zone))
1452 break;
1453 }
1454
1455 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1456 unsigned long pfn, end_pfn;
54608c3f 1457 struct page *page = NULL;
a4de83dd
MG
1458 struct page *free_base_page = NULL;
1459 unsigned long free_base_pfn = 0;
1460 int nr_to_free = 0;
7e18adb4
MG
1461
1462 end_pfn = min(walk_end, zone_end_pfn(zone));
1463 pfn = first_init_pfn;
1464 if (pfn < walk_start)
1465 pfn = walk_start;
1466 if (pfn < zone->zone_start_pfn)
1467 pfn = zone->zone_start_pfn;
1468
1469 for (; pfn < end_pfn; pfn++) {
54608c3f 1470 if (!pfn_valid_within(pfn))
a4de83dd 1471 goto free_range;
7e18adb4 1472
54608c3f
MG
1473 /*
1474 * Ensure pfn_valid is checked every
e780149b 1475 * pageblock_nr_pages for memory holes
54608c3f 1476 */
e780149b 1477 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1478 if (!pfn_valid(pfn)) {
1479 page = NULL;
a4de83dd 1480 goto free_range;
54608c3f
MG
1481 }
1482 }
1483
1484 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1485 page = NULL;
a4de83dd 1486 goto free_range;
54608c3f
MG
1487 }
1488
1489 /* Minimise pfn page lookups and scheduler checks */
e780149b 1490 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1491 page++;
1492 } else {
a4de83dd
MG
1493 nr_pages += nr_to_free;
1494 deferred_free_range(free_base_page,
1495 free_base_pfn, nr_to_free);
1496 free_base_page = NULL;
1497 free_base_pfn = nr_to_free = 0;
1498
54608c3f
MG
1499 page = pfn_to_page(pfn);
1500 cond_resched();
1501 }
7e18adb4
MG
1502
1503 if (page->flags) {
1504 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1505 goto free_range;
7e18adb4
MG
1506 }
1507
1508 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1509 if (!free_base_page) {
1510 free_base_page = page;
1511 free_base_pfn = pfn;
1512 nr_to_free = 0;
1513 }
1514 nr_to_free++;
1515
1516 /* Where possible, batch up pages for a single free */
1517 continue;
1518free_range:
1519 /* Free the current block of pages to allocator */
1520 nr_pages += nr_to_free;
1521 deferred_free_range(free_base_page, free_base_pfn,
1522 nr_to_free);
1523 free_base_page = NULL;
1524 free_base_pfn = nr_to_free = 0;
7e18adb4 1525 }
e780149b
XQ
1526 /* Free the last block of pages to allocator */
1527 nr_pages += nr_to_free;
1528 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1529
7e18adb4
MG
1530 first_init_pfn = max(end_pfn, first_init_pfn);
1531 }
1532
1533 /* Sanity check that the next zone really is unpopulated */
1534 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1535
0e1cc95b 1536 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1537 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1538
1539 pgdat_init_report_one_done();
0e1cc95b
MG
1540 return 0;
1541}
7cf91a98 1542#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1543
1544void __init page_alloc_init_late(void)
1545{
7cf91a98
JK
1546 struct zone *zone;
1547
1548#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1549 int nid;
1550
d3cd131d
NS
1551 /* There will be num_node_state(N_MEMORY) threads */
1552 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1553 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1554 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1555 }
1556
1557 /* Block until all are initialised */
d3cd131d 1558 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1559
1560 /* Reinit limits that are based on free pages after the kernel is up */
1561 files_maxfiles_init();
7cf91a98
JK
1562#endif
1563
1564 for_each_populated_zone(zone)
1565 set_zone_contiguous(zone);
7e18adb4 1566}
7e18adb4 1567
47118af0 1568#ifdef CONFIG_CMA
9cf510a5 1569/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1570void __init init_cma_reserved_pageblock(struct page *page)
1571{
1572 unsigned i = pageblock_nr_pages;
1573 struct page *p = page;
1574
1575 do {
1576 __ClearPageReserved(p);
1577 set_page_count(p, 0);
1578 } while (++p, --i);
1579
47118af0 1580 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1581
1582 if (pageblock_order >= MAX_ORDER) {
1583 i = pageblock_nr_pages;
1584 p = page;
1585 do {
1586 set_page_refcounted(p);
1587 __free_pages(p, MAX_ORDER - 1);
1588 p += MAX_ORDER_NR_PAGES;
1589 } while (i -= MAX_ORDER_NR_PAGES);
1590 } else {
1591 set_page_refcounted(page);
1592 __free_pages(page, pageblock_order);
1593 }
1594
3dcc0571 1595 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1596}
1597#endif
1da177e4
LT
1598
1599/*
1600 * The order of subdivision here is critical for the IO subsystem.
1601 * Please do not alter this order without good reasons and regression
1602 * testing. Specifically, as large blocks of memory are subdivided,
1603 * the order in which smaller blocks are delivered depends on the order
1604 * they're subdivided in this function. This is the primary factor
1605 * influencing the order in which pages are delivered to the IO
1606 * subsystem according to empirical testing, and this is also justified
1607 * by considering the behavior of a buddy system containing a single
1608 * large block of memory acted on by a series of small allocations.
1609 * This behavior is a critical factor in sglist merging's success.
1610 *
6d49e352 1611 * -- nyc
1da177e4 1612 */
085cc7d5 1613static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1614 int low, int high, struct free_area *area,
1615 int migratetype)
1da177e4
LT
1616{
1617 unsigned long size = 1 << high;
1618
1619 while (high > low) {
1620 area--;
1621 high--;
1622 size >>= 1;
309381fe 1623 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1624
2847cf95 1625 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1626 debug_guardpage_enabled() &&
2847cf95 1627 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1628 /*
1629 * Mark as guard pages (or page), that will allow to
1630 * merge back to allocator when buddy will be freed.
1631 * Corresponding page table entries will not be touched,
1632 * pages will stay not present in virtual address space
1633 */
2847cf95 1634 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1635 continue;
1636 }
b2a0ac88 1637 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1638 area->nr_free++;
1639 set_page_order(&page[size], high);
1640 }
1da177e4
LT
1641}
1642
4e611801 1643static void check_new_page_bad(struct page *page)
1da177e4 1644{
4e611801
VB
1645 const char *bad_reason = NULL;
1646 unsigned long bad_flags = 0;
7bfec6f4 1647
53f9263b 1648 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1649 bad_reason = "nonzero mapcount";
1650 if (unlikely(page->mapping != NULL))
1651 bad_reason = "non-NULL mapping";
fe896d18 1652 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1653 bad_reason = "nonzero _count";
f4c18e6f
NH
1654 if (unlikely(page->flags & __PG_HWPOISON)) {
1655 bad_reason = "HWPoisoned (hardware-corrupted)";
1656 bad_flags = __PG_HWPOISON;
e570f56c
NH
1657 /* Don't complain about hwpoisoned pages */
1658 page_mapcount_reset(page); /* remove PageBuddy */
1659 return;
f4c18e6f 1660 }
f0b791a3
DH
1661 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1662 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1663 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1664 }
9edad6ea
JW
1665#ifdef CONFIG_MEMCG
1666 if (unlikely(page->mem_cgroup))
1667 bad_reason = "page still charged to cgroup";
1668#endif
4e611801
VB
1669 bad_page(page, bad_reason, bad_flags);
1670}
1671
1672/*
1673 * This page is about to be returned from the page allocator
1674 */
1675static inline int check_new_page(struct page *page)
1676{
1677 if (likely(page_expected_state(page,
1678 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1679 return 0;
1680
1681 check_new_page_bad(page);
1682 return 1;
2a7684a2
WF
1683}
1684
1414c7f4
LA
1685static inline bool free_pages_prezeroed(bool poisoned)
1686{
1687 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1688 page_poisoning_enabled() && poisoned;
1689}
1690
479f854a
MG
1691#ifdef CONFIG_DEBUG_VM
1692static bool check_pcp_refill(struct page *page)
1693{
1694 return false;
1695}
1696
1697static bool check_new_pcp(struct page *page)
1698{
1699 return check_new_page(page);
1700}
1701#else
1702static bool check_pcp_refill(struct page *page)
1703{
1704 return check_new_page(page);
1705}
1706static bool check_new_pcp(struct page *page)
1707{
1708 return false;
1709}
1710#endif /* CONFIG_DEBUG_VM */
1711
1712static bool check_new_pages(struct page *page, unsigned int order)
1713{
1714 int i;
1715 for (i = 0; i < (1 << order); i++) {
1716 struct page *p = page + i;
1717
1718 if (unlikely(check_new_page(p)))
1719 return true;
1720 }
1721
1722 return false;
1723}
1724
46f24fd8
JK
1725inline void post_alloc_hook(struct page *page, unsigned int order,
1726 gfp_t gfp_flags)
1727{
1728 set_page_private(page, 0);
1729 set_page_refcounted(page);
1730
1731 arch_alloc_page(page, order);
1732 kernel_map_pages(page, 1 << order, 1);
1733 kernel_poison_pages(page, 1 << order, 1);
1734 kasan_alloc_pages(page, order);
1735 set_page_owner(page, order, gfp_flags);
1736}
1737
479f854a 1738static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1739 unsigned int alloc_flags)
2a7684a2
WF
1740{
1741 int i;
1414c7f4 1742 bool poisoned = true;
2a7684a2
WF
1743
1744 for (i = 0; i < (1 << order); i++) {
1745 struct page *p = page + i;
1414c7f4
LA
1746 if (poisoned)
1747 poisoned &= page_is_poisoned(p);
2a7684a2 1748 }
689bcebf 1749
46f24fd8 1750 post_alloc_hook(page, order, gfp_flags);
17cf4406 1751
1414c7f4 1752 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1753 for (i = 0; i < (1 << order); i++)
1754 clear_highpage(page + i);
17cf4406
NP
1755
1756 if (order && (gfp_flags & __GFP_COMP))
1757 prep_compound_page(page, order);
1758
75379191 1759 /*
2f064f34 1760 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1761 * allocate the page. The expectation is that the caller is taking
1762 * steps that will free more memory. The caller should avoid the page
1763 * being used for !PFMEMALLOC purposes.
1764 */
2f064f34
MH
1765 if (alloc_flags & ALLOC_NO_WATERMARKS)
1766 set_page_pfmemalloc(page);
1767 else
1768 clear_page_pfmemalloc(page);
1da177e4
LT
1769}
1770
56fd56b8
MG
1771/*
1772 * Go through the free lists for the given migratetype and remove
1773 * the smallest available page from the freelists
1774 */
728ec980
MG
1775static inline
1776struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1777 int migratetype)
1778{
1779 unsigned int current_order;
b8af2941 1780 struct free_area *area;
56fd56b8
MG
1781 struct page *page;
1782
1783 /* Find a page of the appropriate size in the preferred list */
1784 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1785 area = &(zone->free_area[current_order]);
a16601c5 1786 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1787 struct page, lru);
a16601c5
GT
1788 if (!page)
1789 continue;
56fd56b8
MG
1790 list_del(&page->lru);
1791 rmv_page_order(page);
1792 area->nr_free--;
56fd56b8 1793 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1794 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1795 return page;
1796 }
1797
1798 return NULL;
1799}
1800
1801
b2a0ac88
MG
1802/*
1803 * This array describes the order lists are fallen back to when
1804 * the free lists for the desirable migrate type are depleted
1805 */
47118af0 1806static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1807 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1808 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1809 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1810#ifdef CONFIG_CMA
974a786e 1811 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1812#endif
194159fb 1813#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1814 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1815#endif
b2a0ac88
MG
1816};
1817
dc67647b
JK
1818#ifdef CONFIG_CMA
1819static struct page *__rmqueue_cma_fallback(struct zone *zone,
1820 unsigned int order)
1821{
1822 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1823}
1824#else
1825static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1826 unsigned int order) { return NULL; }
1827#endif
1828
c361be55
MG
1829/*
1830 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1831 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1832 * boundary. If alignment is required, use move_freepages_block()
1833 */
435b405c 1834int move_freepages(struct zone *zone,
b69a7288
AB
1835 struct page *start_page, struct page *end_page,
1836 int migratetype)
c361be55
MG
1837{
1838 struct page *page;
d00181b9 1839 unsigned int order;
d100313f 1840 int pages_moved = 0;
c361be55
MG
1841
1842#ifndef CONFIG_HOLES_IN_ZONE
1843 /*
1844 * page_zone is not safe to call in this context when
1845 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1846 * anyway as we check zone boundaries in move_freepages_block().
1847 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1848 * grouping pages by mobility
c361be55 1849 */
97ee4ba7 1850 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1851#endif
1852
1853 for (page = start_page; page <= end_page;) {
344c790e 1854 /* Make sure we are not inadvertently changing nodes */
309381fe 1855 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1856
c361be55
MG
1857 if (!pfn_valid_within(page_to_pfn(page))) {
1858 page++;
1859 continue;
1860 }
1861
1862 if (!PageBuddy(page)) {
1863 page++;
1864 continue;
1865 }
1866
1867 order = page_order(page);
84be48d8
KS
1868 list_move(&page->lru,
1869 &zone->free_area[order].free_list[migratetype]);
c361be55 1870 page += 1 << order;
d100313f 1871 pages_moved += 1 << order;
c361be55
MG
1872 }
1873
d100313f 1874 return pages_moved;
c361be55
MG
1875}
1876
ee6f509c 1877int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1878 int migratetype)
c361be55
MG
1879{
1880 unsigned long start_pfn, end_pfn;
1881 struct page *start_page, *end_page;
1882
1883 start_pfn = page_to_pfn(page);
d9c23400 1884 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1885 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1886 end_page = start_page + pageblock_nr_pages - 1;
1887 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1888
1889 /* Do not cross zone boundaries */
108bcc96 1890 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1891 start_page = page;
108bcc96 1892 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1893 return 0;
1894
1895 return move_freepages(zone, start_page, end_page, migratetype);
1896}
1897
2f66a68f
MG
1898static void change_pageblock_range(struct page *pageblock_page,
1899 int start_order, int migratetype)
1900{
1901 int nr_pageblocks = 1 << (start_order - pageblock_order);
1902
1903 while (nr_pageblocks--) {
1904 set_pageblock_migratetype(pageblock_page, migratetype);
1905 pageblock_page += pageblock_nr_pages;
1906 }
1907}
1908
fef903ef 1909/*
9c0415eb
VB
1910 * When we are falling back to another migratetype during allocation, try to
1911 * steal extra free pages from the same pageblocks to satisfy further
1912 * allocations, instead of polluting multiple pageblocks.
1913 *
1914 * If we are stealing a relatively large buddy page, it is likely there will
1915 * be more free pages in the pageblock, so try to steal them all. For
1916 * reclaimable and unmovable allocations, we steal regardless of page size,
1917 * as fragmentation caused by those allocations polluting movable pageblocks
1918 * is worse than movable allocations stealing from unmovable and reclaimable
1919 * pageblocks.
fef903ef 1920 */
4eb7dce6
JK
1921static bool can_steal_fallback(unsigned int order, int start_mt)
1922{
1923 /*
1924 * Leaving this order check is intended, although there is
1925 * relaxed order check in next check. The reason is that
1926 * we can actually steal whole pageblock if this condition met,
1927 * but, below check doesn't guarantee it and that is just heuristic
1928 * so could be changed anytime.
1929 */
1930 if (order >= pageblock_order)
1931 return true;
1932
1933 if (order >= pageblock_order / 2 ||
1934 start_mt == MIGRATE_RECLAIMABLE ||
1935 start_mt == MIGRATE_UNMOVABLE ||
1936 page_group_by_mobility_disabled)
1937 return true;
1938
1939 return false;
1940}
1941
1942/*
1943 * This function implements actual steal behaviour. If order is large enough,
1944 * we can steal whole pageblock. If not, we first move freepages in this
1945 * pageblock and check whether half of pages are moved or not. If half of
1946 * pages are moved, we can change migratetype of pageblock and permanently
1947 * use it's pages as requested migratetype in the future.
1948 */
1949static void steal_suitable_fallback(struct zone *zone, struct page *page,
1950 int start_type)
fef903ef 1951{
d00181b9 1952 unsigned int current_order = page_order(page);
4eb7dce6 1953 int pages;
fef903ef 1954
fef903ef
SB
1955 /* Take ownership for orders >= pageblock_order */
1956 if (current_order >= pageblock_order) {
1957 change_pageblock_range(page, current_order, start_type);
3a1086fb 1958 return;
fef903ef
SB
1959 }
1960
4eb7dce6 1961 pages = move_freepages_block(zone, page, start_type);
fef903ef 1962
4eb7dce6
JK
1963 /* Claim the whole block if over half of it is free */
1964 if (pages >= (1 << (pageblock_order-1)) ||
1965 page_group_by_mobility_disabled)
1966 set_pageblock_migratetype(page, start_type);
1967}
1968
2149cdae
JK
1969/*
1970 * Check whether there is a suitable fallback freepage with requested order.
1971 * If only_stealable is true, this function returns fallback_mt only if
1972 * we can steal other freepages all together. This would help to reduce
1973 * fragmentation due to mixed migratetype pages in one pageblock.
1974 */
1975int find_suitable_fallback(struct free_area *area, unsigned int order,
1976 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1977{
1978 int i;
1979 int fallback_mt;
1980
1981 if (area->nr_free == 0)
1982 return -1;
1983
1984 *can_steal = false;
1985 for (i = 0;; i++) {
1986 fallback_mt = fallbacks[migratetype][i];
974a786e 1987 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1988 break;
1989
1990 if (list_empty(&area->free_list[fallback_mt]))
1991 continue;
fef903ef 1992
4eb7dce6
JK
1993 if (can_steal_fallback(order, migratetype))
1994 *can_steal = true;
1995
2149cdae
JK
1996 if (!only_stealable)
1997 return fallback_mt;
1998
1999 if (*can_steal)
2000 return fallback_mt;
fef903ef 2001 }
4eb7dce6
JK
2002
2003 return -1;
fef903ef
SB
2004}
2005
0aaa29a5
MG
2006/*
2007 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2008 * there are no empty page blocks that contain a page with a suitable order
2009 */
2010static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2011 unsigned int alloc_order)
2012{
2013 int mt;
2014 unsigned long max_managed, flags;
2015
2016 /*
2017 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2018 * Check is race-prone but harmless.
2019 */
2020 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2021 if (zone->nr_reserved_highatomic >= max_managed)
2022 return;
2023
2024 spin_lock_irqsave(&zone->lock, flags);
2025
2026 /* Recheck the nr_reserved_highatomic limit under the lock */
2027 if (zone->nr_reserved_highatomic >= max_managed)
2028 goto out_unlock;
2029
2030 /* Yoink! */
2031 mt = get_pageblock_migratetype(page);
2032 if (mt != MIGRATE_HIGHATOMIC &&
2033 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2034 zone->nr_reserved_highatomic += pageblock_nr_pages;
2035 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2036 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2037 }
2038
2039out_unlock:
2040 spin_unlock_irqrestore(&zone->lock, flags);
2041}
2042
2043/*
2044 * Used when an allocation is about to fail under memory pressure. This
2045 * potentially hurts the reliability of high-order allocations when under
2046 * intense memory pressure but failed atomic allocations should be easier
2047 * to recover from than an OOM.
2048 */
2049static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2050{
2051 struct zonelist *zonelist = ac->zonelist;
2052 unsigned long flags;
2053 struct zoneref *z;
2054 struct zone *zone;
2055 struct page *page;
2056 int order;
2057
2058 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2059 ac->nodemask) {
2060 /* Preserve at least one pageblock */
2061 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2062 continue;
2063
2064 spin_lock_irqsave(&zone->lock, flags);
2065 for (order = 0; order < MAX_ORDER; order++) {
2066 struct free_area *area = &(zone->free_area[order]);
2067
a16601c5
GT
2068 page = list_first_entry_or_null(
2069 &area->free_list[MIGRATE_HIGHATOMIC],
2070 struct page, lru);
2071 if (!page)
0aaa29a5
MG
2072 continue;
2073
0aaa29a5
MG
2074 /*
2075 * It should never happen but changes to locking could
2076 * inadvertently allow a per-cpu drain to add pages
2077 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2078 * and watch for underflows.
2079 */
2080 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2081 zone->nr_reserved_highatomic);
2082
2083 /*
2084 * Convert to ac->migratetype and avoid the normal
2085 * pageblock stealing heuristics. Minimally, the caller
2086 * is doing the work and needs the pages. More
2087 * importantly, if the block was always converted to
2088 * MIGRATE_UNMOVABLE or another type then the number
2089 * of pageblocks that cannot be completely freed
2090 * may increase.
2091 */
2092 set_pageblock_migratetype(page, ac->migratetype);
2093 move_freepages_block(zone, page, ac->migratetype);
2094 spin_unlock_irqrestore(&zone->lock, flags);
2095 return;
2096 }
2097 spin_unlock_irqrestore(&zone->lock, flags);
2098 }
2099}
2100
b2a0ac88 2101/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2102static inline struct page *
7aeb09f9 2103__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2104{
b8af2941 2105 struct free_area *area;
7aeb09f9 2106 unsigned int current_order;
b2a0ac88 2107 struct page *page;
4eb7dce6
JK
2108 int fallback_mt;
2109 bool can_steal;
b2a0ac88
MG
2110
2111 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2112 for (current_order = MAX_ORDER-1;
2113 current_order >= order && current_order <= MAX_ORDER-1;
2114 --current_order) {
4eb7dce6
JK
2115 area = &(zone->free_area[current_order]);
2116 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2117 start_migratetype, false, &can_steal);
4eb7dce6
JK
2118 if (fallback_mt == -1)
2119 continue;
b2a0ac88 2120
a16601c5 2121 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2122 struct page, lru);
2123 if (can_steal)
2124 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2125
4eb7dce6
JK
2126 /* Remove the page from the freelists */
2127 area->nr_free--;
2128 list_del(&page->lru);
2129 rmv_page_order(page);
3a1086fb 2130
4eb7dce6
JK
2131 expand(zone, page, order, current_order, area,
2132 start_migratetype);
2133 /*
bb14c2c7 2134 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2135 * migratetype depending on the decisions in
bb14c2c7
VB
2136 * find_suitable_fallback(). This is OK as long as it does not
2137 * differ for MIGRATE_CMA pageblocks. Those can be used as
2138 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2139 */
bb14c2c7 2140 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2141
4eb7dce6
JK
2142 trace_mm_page_alloc_extfrag(page, order, current_order,
2143 start_migratetype, fallback_mt);
e0fff1bd 2144
4eb7dce6 2145 return page;
b2a0ac88
MG
2146 }
2147
728ec980 2148 return NULL;
b2a0ac88
MG
2149}
2150
56fd56b8 2151/*
1da177e4
LT
2152 * Do the hard work of removing an element from the buddy allocator.
2153 * Call me with the zone->lock already held.
2154 */
b2a0ac88 2155static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2156 int migratetype)
1da177e4 2157{
1da177e4
LT
2158 struct page *page;
2159
56fd56b8 2160 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2161 if (unlikely(!page)) {
dc67647b
JK
2162 if (migratetype == MIGRATE_MOVABLE)
2163 page = __rmqueue_cma_fallback(zone, order);
2164
2165 if (!page)
2166 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2167 }
2168
0d3d062a 2169 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2170 return page;
1da177e4
LT
2171}
2172
5f63b720 2173/*
1da177e4
LT
2174 * Obtain a specified number of elements from the buddy allocator, all under
2175 * a single hold of the lock, for efficiency. Add them to the supplied list.
2176 * Returns the number of new pages which were placed at *list.
2177 */
5f63b720 2178static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2179 unsigned long count, struct list_head *list,
b745bc85 2180 int migratetype, bool cold)
1da177e4 2181{
5bcc9f86 2182 int i;
5f63b720 2183
c54ad30c 2184 spin_lock(&zone->lock);
1da177e4 2185 for (i = 0; i < count; ++i) {
6ac0206b 2186 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2187 if (unlikely(page == NULL))
1da177e4 2188 break;
81eabcbe 2189
479f854a
MG
2190 if (unlikely(check_pcp_refill(page)))
2191 continue;
2192
81eabcbe
MG
2193 /*
2194 * Split buddy pages returned by expand() are received here
2195 * in physical page order. The page is added to the callers and
2196 * list and the list head then moves forward. From the callers
2197 * perspective, the linked list is ordered by page number in
2198 * some conditions. This is useful for IO devices that can
2199 * merge IO requests if the physical pages are ordered
2200 * properly.
2201 */
b745bc85 2202 if (likely(!cold))
e084b2d9
MG
2203 list_add(&page->lru, list);
2204 else
2205 list_add_tail(&page->lru, list);
81eabcbe 2206 list = &page->lru;
bb14c2c7 2207 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2208 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2209 -(1 << order));
1da177e4 2210 }
f2260e6b 2211 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2212 spin_unlock(&zone->lock);
085cc7d5 2213 return i;
1da177e4
LT
2214}
2215
4ae7c039 2216#ifdef CONFIG_NUMA
8fce4d8e 2217/*
4037d452
CL
2218 * Called from the vmstat counter updater to drain pagesets of this
2219 * currently executing processor on remote nodes after they have
2220 * expired.
2221 *
879336c3
CL
2222 * Note that this function must be called with the thread pinned to
2223 * a single processor.
8fce4d8e 2224 */
4037d452 2225void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2226{
4ae7c039 2227 unsigned long flags;
7be12fc9 2228 int to_drain, batch;
4ae7c039 2229
4037d452 2230 local_irq_save(flags);
4db0c3c2 2231 batch = READ_ONCE(pcp->batch);
7be12fc9 2232 to_drain = min(pcp->count, batch);
2a13515c
KM
2233 if (to_drain > 0) {
2234 free_pcppages_bulk(zone, to_drain, pcp);
2235 pcp->count -= to_drain;
2236 }
4037d452 2237 local_irq_restore(flags);
4ae7c039
CL
2238}
2239#endif
2240
9f8f2172 2241/*
93481ff0 2242 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2243 *
2244 * The processor must either be the current processor and the
2245 * thread pinned to the current processor or a processor that
2246 * is not online.
2247 */
93481ff0 2248static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2249{
c54ad30c 2250 unsigned long flags;
93481ff0
VB
2251 struct per_cpu_pageset *pset;
2252 struct per_cpu_pages *pcp;
1da177e4 2253
93481ff0
VB
2254 local_irq_save(flags);
2255 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2256
93481ff0
VB
2257 pcp = &pset->pcp;
2258 if (pcp->count) {
2259 free_pcppages_bulk(zone, pcp->count, pcp);
2260 pcp->count = 0;
2261 }
2262 local_irq_restore(flags);
2263}
3dfa5721 2264
93481ff0
VB
2265/*
2266 * Drain pcplists of all zones on the indicated processor.
2267 *
2268 * The processor must either be the current processor and the
2269 * thread pinned to the current processor or a processor that
2270 * is not online.
2271 */
2272static void drain_pages(unsigned int cpu)
2273{
2274 struct zone *zone;
2275
2276 for_each_populated_zone(zone) {
2277 drain_pages_zone(cpu, zone);
1da177e4
LT
2278 }
2279}
1da177e4 2280
9f8f2172
CL
2281/*
2282 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2283 *
2284 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2285 * the single zone's pages.
9f8f2172 2286 */
93481ff0 2287void drain_local_pages(struct zone *zone)
9f8f2172 2288{
93481ff0
VB
2289 int cpu = smp_processor_id();
2290
2291 if (zone)
2292 drain_pages_zone(cpu, zone);
2293 else
2294 drain_pages(cpu);
9f8f2172
CL
2295}
2296
2297/*
74046494
GBY
2298 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2299 *
93481ff0
VB
2300 * When zone parameter is non-NULL, spill just the single zone's pages.
2301 *
74046494
GBY
2302 * Note that this code is protected against sending an IPI to an offline
2303 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2304 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2305 * nothing keeps CPUs from showing up after we populated the cpumask and
2306 * before the call to on_each_cpu_mask().
9f8f2172 2307 */
93481ff0 2308void drain_all_pages(struct zone *zone)
9f8f2172 2309{
74046494 2310 int cpu;
74046494
GBY
2311
2312 /*
2313 * Allocate in the BSS so we wont require allocation in
2314 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2315 */
2316 static cpumask_t cpus_with_pcps;
2317
2318 /*
2319 * We don't care about racing with CPU hotplug event
2320 * as offline notification will cause the notified
2321 * cpu to drain that CPU pcps and on_each_cpu_mask
2322 * disables preemption as part of its processing
2323 */
2324 for_each_online_cpu(cpu) {
93481ff0
VB
2325 struct per_cpu_pageset *pcp;
2326 struct zone *z;
74046494 2327 bool has_pcps = false;
93481ff0
VB
2328
2329 if (zone) {
74046494 2330 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2331 if (pcp->pcp.count)
74046494 2332 has_pcps = true;
93481ff0
VB
2333 } else {
2334 for_each_populated_zone(z) {
2335 pcp = per_cpu_ptr(z->pageset, cpu);
2336 if (pcp->pcp.count) {
2337 has_pcps = true;
2338 break;
2339 }
74046494
GBY
2340 }
2341 }
93481ff0 2342
74046494
GBY
2343 if (has_pcps)
2344 cpumask_set_cpu(cpu, &cpus_with_pcps);
2345 else
2346 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2347 }
93481ff0
VB
2348 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2349 zone, 1);
9f8f2172
CL
2350}
2351
296699de 2352#ifdef CONFIG_HIBERNATION
1da177e4
LT
2353
2354void mark_free_pages(struct zone *zone)
2355{
f623f0db
RW
2356 unsigned long pfn, max_zone_pfn;
2357 unsigned long flags;
7aeb09f9 2358 unsigned int order, t;
86760a2c 2359 struct page *page;
1da177e4 2360
8080fc03 2361 if (zone_is_empty(zone))
1da177e4
LT
2362 return;
2363
2364 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2365
108bcc96 2366 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2367 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2368 if (pfn_valid(pfn)) {
86760a2c 2369 page = pfn_to_page(pfn);
ba6b0979
JK
2370
2371 if (page_zone(page) != zone)
2372 continue;
2373
7be98234
RW
2374 if (!swsusp_page_is_forbidden(page))
2375 swsusp_unset_page_free(page);
f623f0db 2376 }
1da177e4 2377
b2a0ac88 2378 for_each_migratetype_order(order, t) {
86760a2c
GT
2379 list_for_each_entry(page,
2380 &zone->free_area[order].free_list[t], lru) {
f623f0db 2381 unsigned long i;
1da177e4 2382
86760a2c 2383 pfn = page_to_pfn(page);
f623f0db 2384 for (i = 0; i < (1UL << order); i++)
7be98234 2385 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2386 }
b2a0ac88 2387 }
1da177e4
LT
2388 spin_unlock_irqrestore(&zone->lock, flags);
2389}
e2c55dc8 2390#endif /* CONFIG_PM */
1da177e4 2391
1da177e4
LT
2392/*
2393 * Free a 0-order page
b745bc85 2394 * cold == true ? free a cold page : free a hot page
1da177e4 2395 */
b745bc85 2396void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2397{
2398 struct zone *zone = page_zone(page);
2399 struct per_cpu_pages *pcp;
2400 unsigned long flags;
dc4b0caf 2401 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2402 int migratetype;
1da177e4 2403
4db7548c 2404 if (!free_pcp_prepare(page))
689bcebf
HD
2405 return;
2406
dc4b0caf 2407 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2408 set_pcppage_migratetype(page, migratetype);
1da177e4 2409 local_irq_save(flags);
f8891e5e 2410 __count_vm_event(PGFREE);
da456f14 2411
5f8dcc21
MG
2412 /*
2413 * We only track unmovable, reclaimable and movable on pcp lists.
2414 * Free ISOLATE pages back to the allocator because they are being
2415 * offlined but treat RESERVE as movable pages so we can get those
2416 * areas back if necessary. Otherwise, we may have to free
2417 * excessively into the page allocator
2418 */
2419 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2420 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2421 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2422 goto out;
2423 }
2424 migratetype = MIGRATE_MOVABLE;
2425 }
2426
99dcc3e5 2427 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2428 if (!cold)
5f8dcc21 2429 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2430 else
2431 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2432 pcp->count++;
48db57f8 2433 if (pcp->count >= pcp->high) {
4db0c3c2 2434 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2435 free_pcppages_bulk(zone, batch, pcp);
2436 pcp->count -= batch;
48db57f8 2437 }
5f8dcc21
MG
2438
2439out:
1da177e4 2440 local_irq_restore(flags);
1da177e4
LT
2441}
2442
cc59850e
KK
2443/*
2444 * Free a list of 0-order pages
2445 */
b745bc85 2446void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2447{
2448 struct page *page, *next;
2449
2450 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2451 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2452 free_hot_cold_page(page, cold);
2453 }
2454}
2455
8dfcc9ba
NP
2456/*
2457 * split_page takes a non-compound higher-order page, and splits it into
2458 * n (1<<order) sub-pages: page[0..n]
2459 * Each sub-page must be freed individually.
2460 *
2461 * Note: this is probably too low level an operation for use in drivers.
2462 * Please consult with lkml before using this in your driver.
2463 */
2464void split_page(struct page *page, unsigned int order)
2465{
2466 int i;
2467
309381fe
SL
2468 VM_BUG_ON_PAGE(PageCompound(page), page);
2469 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2470
2471#ifdef CONFIG_KMEMCHECK
2472 /*
2473 * Split shadow pages too, because free(page[0]) would
2474 * otherwise free the whole shadow.
2475 */
2476 if (kmemcheck_page_is_tracked(page))
2477 split_page(virt_to_page(page[0].shadow), order);
2478#endif
2479
a9627bc5 2480 for (i = 1; i < (1 << order); i++)
7835e98b 2481 set_page_refcounted(page + i);
a9627bc5 2482 split_page_owner(page, order);
8dfcc9ba 2483}
5853ff23 2484EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2485
3c605096 2486int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2487{
748446bb
MG
2488 unsigned long watermark;
2489 struct zone *zone;
2139cbe6 2490 int mt;
748446bb
MG
2491
2492 BUG_ON(!PageBuddy(page));
2493
2494 zone = page_zone(page);
2e30abd1 2495 mt = get_pageblock_migratetype(page);
748446bb 2496
194159fb 2497 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2498 /*
2499 * Obey watermarks as if the page was being allocated. We can
2500 * emulate a high-order watermark check with a raised order-0
2501 * watermark, because we already know our high-order page
2502 * exists.
2503 */
2504 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2505 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2506 return 0;
2507
8fb74b9f 2508 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2509 }
748446bb
MG
2510
2511 /* Remove page from free list */
2512 list_del(&page->lru);
2513 zone->free_area[order].nr_free--;
2514 rmv_page_order(page);
2139cbe6 2515
400bc7fd 2516 /*
2517 * Set the pageblock if the isolated page is at least half of a
2518 * pageblock
2519 */
748446bb
MG
2520 if (order >= pageblock_order - 1) {
2521 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2522 for (; page < endpage; page += pageblock_nr_pages) {
2523 int mt = get_pageblock_migratetype(page);
194159fb 2524 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2525 set_pageblock_migratetype(page,
2526 MIGRATE_MOVABLE);
2527 }
748446bb
MG
2528 }
2529
f3a14ced 2530
8fb74b9f 2531 return 1UL << order;
1fb3f8ca
MG
2532}
2533
060e7417
MG
2534/*
2535 * Update NUMA hit/miss statistics
2536 *
2537 * Must be called with interrupts disabled.
2538 *
2539 * When __GFP_OTHER_NODE is set assume the node of the preferred
2540 * zone is the local node. This is useful for daemons who allocate
2541 * memory on behalf of other processes.
2542 */
2543static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2544 gfp_t flags)
2545{
2546#ifdef CONFIG_NUMA
2547 int local_nid = numa_node_id();
2548 enum zone_stat_item local_stat = NUMA_LOCAL;
2549
2550 if (unlikely(flags & __GFP_OTHER_NODE)) {
2551 local_stat = NUMA_OTHER;
2552 local_nid = preferred_zone->node;
2553 }
2554
2555 if (z->node == local_nid) {
2556 __inc_zone_state(z, NUMA_HIT);
2557 __inc_zone_state(z, local_stat);
2558 } else {
2559 __inc_zone_state(z, NUMA_MISS);
2560 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2561 }
2562#endif
2563}
2564
1da177e4 2565/*
75379191 2566 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2567 */
0a15c3e9
MG
2568static inline
2569struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2570 struct zone *zone, unsigned int order,
c603844b
MG
2571 gfp_t gfp_flags, unsigned int alloc_flags,
2572 int migratetype)
1da177e4
LT
2573{
2574 unsigned long flags;
689bcebf 2575 struct page *page;
b745bc85 2576 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2577
48db57f8 2578 if (likely(order == 0)) {
1da177e4 2579 struct per_cpu_pages *pcp;
5f8dcc21 2580 struct list_head *list;
1da177e4 2581
1da177e4 2582 local_irq_save(flags);
479f854a
MG
2583 do {
2584 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2585 list = &pcp->lists[migratetype];
2586 if (list_empty(list)) {
2587 pcp->count += rmqueue_bulk(zone, 0,
2588 pcp->batch, list,
2589 migratetype, cold);
2590 if (unlikely(list_empty(list)))
2591 goto failed;
2592 }
b92a6edd 2593
479f854a
MG
2594 if (cold)
2595 page = list_last_entry(list, struct page, lru);
2596 else
2597 page = list_first_entry(list, struct page, lru);
5f8dcc21 2598
83b9355b
VB
2599 list_del(&page->lru);
2600 pcp->count--;
2601
2602 } while (check_new_pcp(page));
7fb1d9fc 2603 } else {
0f352e53
MH
2604 /*
2605 * We most definitely don't want callers attempting to
2606 * allocate greater than order-1 page units with __GFP_NOFAIL.
2607 */
2608 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2609 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2610
479f854a
MG
2611 do {
2612 page = NULL;
2613 if (alloc_flags & ALLOC_HARDER) {
2614 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2615 if (page)
2616 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2617 }
2618 if (!page)
2619 page = __rmqueue(zone, order, migratetype);
2620 } while (page && check_new_pages(page, order));
a74609fa
NP
2621 spin_unlock(&zone->lock);
2622 if (!page)
2623 goto failed;
d1ce749a 2624 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2625 get_pcppage_migratetype(page));
1da177e4
LT
2626 }
2627
16709d1d 2628 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
78afd561 2629 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2630 local_irq_restore(flags);
1da177e4 2631
309381fe 2632 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2633 return page;
a74609fa
NP
2634
2635failed:
2636 local_irq_restore(flags);
a74609fa 2637 return NULL;
1da177e4
LT
2638}
2639
933e312e
AM
2640#ifdef CONFIG_FAIL_PAGE_ALLOC
2641
b2588c4b 2642static struct {
933e312e
AM
2643 struct fault_attr attr;
2644
621a5f7a 2645 bool ignore_gfp_highmem;
71baba4b 2646 bool ignore_gfp_reclaim;
54114994 2647 u32 min_order;
933e312e
AM
2648} fail_page_alloc = {
2649 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2650 .ignore_gfp_reclaim = true,
621a5f7a 2651 .ignore_gfp_highmem = true,
54114994 2652 .min_order = 1,
933e312e
AM
2653};
2654
2655static int __init setup_fail_page_alloc(char *str)
2656{
2657 return setup_fault_attr(&fail_page_alloc.attr, str);
2658}
2659__setup("fail_page_alloc=", setup_fail_page_alloc);
2660
deaf386e 2661static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2662{
54114994 2663 if (order < fail_page_alloc.min_order)
deaf386e 2664 return false;
933e312e 2665 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2666 return false;
933e312e 2667 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2668 return false;
71baba4b
MG
2669 if (fail_page_alloc.ignore_gfp_reclaim &&
2670 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2671 return false;
933e312e
AM
2672
2673 return should_fail(&fail_page_alloc.attr, 1 << order);
2674}
2675
2676#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2677
2678static int __init fail_page_alloc_debugfs(void)
2679{
f4ae40a6 2680 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2681 struct dentry *dir;
933e312e 2682
dd48c085
AM
2683 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2684 &fail_page_alloc.attr);
2685 if (IS_ERR(dir))
2686 return PTR_ERR(dir);
933e312e 2687
b2588c4b 2688 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2689 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2690 goto fail;
2691 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2692 &fail_page_alloc.ignore_gfp_highmem))
2693 goto fail;
2694 if (!debugfs_create_u32("min-order", mode, dir,
2695 &fail_page_alloc.min_order))
2696 goto fail;
2697
2698 return 0;
2699fail:
dd48c085 2700 debugfs_remove_recursive(dir);
933e312e 2701
b2588c4b 2702 return -ENOMEM;
933e312e
AM
2703}
2704
2705late_initcall(fail_page_alloc_debugfs);
2706
2707#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2708
2709#else /* CONFIG_FAIL_PAGE_ALLOC */
2710
deaf386e 2711static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2712{
deaf386e 2713 return false;
933e312e
AM
2714}
2715
2716#endif /* CONFIG_FAIL_PAGE_ALLOC */
2717
1da177e4 2718/*
97a16fc8
MG
2719 * Return true if free base pages are above 'mark'. For high-order checks it
2720 * will return true of the order-0 watermark is reached and there is at least
2721 * one free page of a suitable size. Checking now avoids taking the zone lock
2722 * to check in the allocation paths if no pages are free.
1da177e4 2723 */
86a294a8
MH
2724bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2725 int classzone_idx, unsigned int alloc_flags,
2726 long free_pages)
1da177e4 2727{
d23ad423 2728 long min = mark;
1da177e4 2729 int o;
c603844b 2730 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2731
0aaa29a5 2732 /* free_pages may go negative - that's OK */
df0a6daa 2733 free_pages -= (1 << order) - 1;
0aaa29a5 2734
7fb1d9fc 2735 if (alloc_flags & ALLOC_HIGH)
1da177e4 2736 min -= min / 2;
0aaa29a5
MG
2737
2738 /*
2739 * If the caller does not have rights to ALLOC_HARDER then subtract
2740 * the high-atomic reserves. This will over-estimate the size of the
2741 * atomic reserve but it avoids a search.
2742 */
97a16fc8 2743 if (likely(!alloc_harder))
0aaa29a5
MG
2744 free_pages -= z->nr_reserved_highatomic;
2745 else
1da177e4 2746 min -= min / 4;
e2b19197 2747
d95ea5d1
BZ
2748#ifdef CONFIG_CMA
2749 /* If allocation can't use CMA areas don't use free CMA pages */
2750 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2751 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2752#endif
026b0814 2753
97a16fc8
MG
2754 /*
2755 * Check watermarks for an order-0 allocation request. If these
2756 * are not met, then a high-order request also cannot go ahead
2757 * even if a suitable page happened to be free.
2758 */
2759 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2760 return false;
1da177e4 2761
97a16fc8
MG
2762 /* If this is an order-0 request then the watermark is fine */
2763 if (!order)
2764 return true;
2765
2766 /* For a high-order request, check at least one suitable page is free */
2767 for (o = order; o < MAX_ORDER; o++) {
2768 struct free_area *area = &z->free_area[o];
2769 int mt;
2770
2771 if (!area->nr_free)
2772 continue;
2773
2774 if (alloc_harder)
2775 return true;
1da177e4 2776
97a16fc8
MG
2777 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2778 if (!list_empty(&area->free_list[mt]))
2779 return true;
2780 }
2781
2782#ifdef CONFIG_CMA
2783 if ((alloc_flags & ALLOC_CMA) &&
2784 !list_empty(&area->free_list[MIGRATE_CMA])) {
2785 return true;
2786 }
2787#endif
1da177e4 2788 }
97a16fc8 2789 return false;
88f5acf8
MG
2790}
2791
7aeb09f9 2792bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2793 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2794{
2795 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2796 zone_page_state(z, NR_FREE_PAGES));
2797}
2798
48ee5f36
MG
2799static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2800 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2801{
2802 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2803 long cma_pages = 0;
2804
2805#ifdef CONFIG_CMA
2806 /* If allocation can't use CMA areas don't use free CMA pages */
2807 if (!(alloc_flags & ALLOC_CMA))
2808 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2809#endif
2810
2811 /*
2812 * Fast check for order-0 only. If this fails then the reserves
2813 * need to be calculated. There is a corner case where the check
2814 * passes but only the high-order atomic reserve are free. If
2815 * the caller is !atomic then it'll uselessly search the free
2816 * list. That corner case is then slower but it is harmless.
2817 */
2818 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2819 return true;
2820
2821 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2822 free_pages);
2823}
2824
7aeb09f9 2825bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2826 unsigned long mark, int classzone_idx)
88f5acf8
MG
2827{
2828 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2829
2830 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2831 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2832
e2b19197 2833 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2834 free_pages);
1da177e4
LT
2835}
2836
9276b1bc 2837#ifdef CONFIG_NUMA
957f822a
DR
2838static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2839{
5f7a75ac
MG
2840 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2841 RECLAIM_DISTANCE;
957f822a 2842}
9276b1bc 2843#else /* CONFIG_NUMA */
957f822a
DR
2844static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2845{
2846 return true;
2847}
9276b1bc
PJ
2848#endif /* CONFIG_NUMA */
2849
7fb1d9fc 2850/*
0798e519 2851 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2852 * a page.
2853 */
2854static struct page *
a9263751
VB
2855get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2856 const struct alloc_context *ac)
753ee728 2857{
c33d6c06 2858 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2859 struct zone *zone;
3b8c0be4
MG
2860 struct pglist_data *last_pgdat_dirty_limit = NULL;
2861
7fb1d9fc 2862 /*
9276b1bc 2863 * Scan zonelist, looking for a zone with enough free.
344736f2 2864 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2865 */
c33d6c06 2866 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2867 ac->nodemask) {
be06af00 2868 struct page *page;
e085dbc5
JW
2869 unsigned long mark;
2870
664eedde
MG
2871 if (cpusets_enabled() &&
2872 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2873 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2874 continue;
a756cf59
JW
2875 /*
2876 * When allocating a page cache page for writing, we
281e3726
MG
2877 * want to get it from a node that is within its dirty
2878 * limit, such that no single node holds more than its
a756cf59 2879 * proportional share of globally allowed dirty pages.
281e3726 2880 * The dirty limits take into account the node's
a756cf59
JW
2881 * lowmem reserves and high watermark so that kswapd
2882 * should be able to balance it without having to
2883 * write pages from its LRU list.
2884 *
a756cf59 2885 * XXX: For now, allow allocations to potentially
281e3726 2886 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2887 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2888 * which is important when on a NUMA setup the allowed
281e3726 2889 * nodes are together not big enough to reach the
a756cf59 2890 * global limit. The proper fix for these situations
281e3726 2891 * will require awareness of nodes in the
a756cf59
JW
2892 * dirty-throttling and the flusher threads.
2893 */
3b8c0be4
MG
2894 if (ac->spread_dirty_pages) {
2895 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2896 continue;
2897
2898 if (!node_dirty_ok(zone->zone_pgdat)) {
2899 last_pgdat_dirty_limit = zone->zone_pgdat;
2900 continue;
2901 }
2902 }
7fb1d9fc 2903
e085dbc5 2904 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2905 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2906 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2907 int ret;
2908
5dab2911
MG
2909 /* Checked here to keep the fast path fast */
2910 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2911 if (alloc_flags & ALLOC_NO_WATERMARKS)
2912 goto try_this_zone;
2913
a5f5f91d 2914 if (node_reclaim_mode == 0 ||
c33d6c06 2915 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2916 continue;
2917
a5f5f91d 2918 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 2919 switch (ret) {
a5f5f91d 2920 case NODE_RECLAIM_NOSCAN:
fa5e084e 2921 /* did not scan */
cd38b115 2922 continue;
a5f5f91d 2923 case NODE_RECLAIM_FULL:
fa5e084e 2924 /* scanned but unreclaimable */
cd38b115 2925 continue;
fa5e084e
MG
2926 default:
2927 /* did we reclaim enough */
fed2719e 2928 if (zone_watermark_ok(zone, order, mark,
93ea9964 2929 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2930 goto try_this_zone;
2931
fed2719e 2932 continue;
0798e519 2933 }
7fb1d9fc
RS
2934 }
2935
fa5e084e 2936try_this_zone:
c33d6c06 2937 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2938 gfp_mask, alloc_flags, ac->migratetype);
75379191 2939 if (page) {
479f854a 2940 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2941
2942 /*
2943 * If this is a high-order atomic allocation then check
2944 * if the pageblock should be reserved for the future
2945 */
2946 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2947 reserve_highatomic_pageblock(page, zone, order);
2948
75379191
VB
2949 return page;
2950 }
54a6eb5c 2951 }
9276b1bc 2952
4ffeaf35 2953 return NULL;
753ee728
MH
2954}
2955
29423e77
DR
2956/*
2957 * Large machines with many possible nodes should not always dump per-node
2958 * meminfo in irq context.
2959 */
2960static inline bool should_suppress_show_mem(void)
2961{
2962 bool ret = false;
2963
2964#if NODES_SHIFT > 8
2965 ret = in_interrupt();
2966#endif
2967 return ret;
2968}
2969
a238ab5b
DH
2970static DEFINE_RATELIMIT_STATE(nopage_rs,
2971 DEFAULT_RATELIMIT_INTERVAL,
2972 DEFAULT_RATELIMIT_BURST);
2973
d00181b9 2974void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2975{
a238ab5b
DH
2976 unsigned int filter = SHOW_MEM_FILTER_NODES;
2977
c0a32fc5
SG
2978 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2979 debug_guardpage_minorder() > 0)
a238ab5b
DH
2980 return;
2981
2982 /*
2983 * This documents exceptions given to allocations in certain
2984 * contexts that are allowed to allocate outside current's set
2985 * of allowed nodes.
2986 */
2987 if (!(gfp_mask & __GFP_NOMEMALLOC))
2988 if (test_thread_flag(TIF_MEMDIE) ||
2989 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2990 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2991 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2992 filter &= ~SHOW_MEM_FILTER_NODES;
2993
2994 if (fmt) {
3ee9a4f0
JP
2995 struct va_format vaf;
2996 va_list args;
2997
a238ab5b 2998 va_start(args, fmt);
3ee9a4f0
JP
2999
3000 vaf.fmt = fmt;
3001 vaf.va = &args;
3002
3003 pr_warn("%pV", &vaf);
3004
a238ab5b
DH
3005 va_end(args);
3006 }
3007
c5c990e8
VB
3008 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3009 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3010 dump_stack();
3011 if (!should_suppress_show_mem())
3012 show_mem(filter);
3013}
3014
11e33f6a
MG
3015static inline struct page *
3016__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3017 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3018{
6e0fc46d
DR
3019 struct oom_control oc = {
3020 .zonelist = ac->zonelist,
3021 .nodemask = ac->nodemask,
2a966b77 3022 .memcg = NULL,
6e0fc46d
DR
3023 .gfp_mask = gfp_mask,
3024 .order = order,
6e0fc46d 3025 };
11e33f6a
MG
3026 struct page *page;
3027
9879de73
JW
3028 *did_some_progress = 0;
3029
9879de73 3030 /*
dc56401f
JW
3031 * Acquire the oom lock. If that fails, somebody else is
3032 * making progress for us.
9879de73 3033 */
dc56401f 3034 if (!mutex_trylock(&oom_lock)) {
9879de73 3035 *did_some_progress = 1;
11e33f6a 3036 schedule_timeout_uninterruptible(1);
1da177e4
LT
3037 return NULL;
3038 }
6b1de916 3039
11e33f6a
MG
3040 /*
3041 * Go through the zonelist yet one more time, keep very high watermark
3042 * here, this is only to catch a parallel oom killing, we must fail if
3043 * we're still under heavy pressure.
3044 */
a9263751
VB
3045 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3046 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3047 if (page)
11e33f6a
MG
3048 goto out;
3049
4365a567 3050 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3051 /* Coredumps can quickly deplete all memory reserves */
3052 if (current->flags & PF_DUMPCORE)
3053 goto out;
4365a567
KH
3054 /* The OOM killer will not help higher order allocs */
3055 if (order > PAGE_ALLOC_COSTLY_ORDER)
3056 goto out;
03668b3c 3057 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3058 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3059 goto out;
9083905a
JW
3060 if (pm_suspended_storage())
3061 goto out;
3da88fb3
MH
3062 /*
3063 * XXX: GFP_NOFS allocations should rather fail than rely on
3064 * other request to make a forward progress.
3065 * We are in an unfortunate situation where out_of_memory cannot
3066 * do much for this context but let's try it to at least get
3067 * access to memory reserved if the current task is killed (see
3068 * out_of_memory). Once filesystems are ready to handle allocation
3069 * failures more gracefully we should just bail out here.
3070 */
3071
4167e9b2 3072 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3073 if (gfp_mask & __GFP_THISNODE)
3074 goto out;
3075 }
11e33f6a 3076 /* Exhausted what can be done so it's blamo time */
5020e285 3077 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3078 *did_some_progress = 1;
5020e285
MH
3079
3080 if (gfp_mask & __GFP_NOFAIL) {
3081 page = get_page_from_freelist(gfp_mask, order,
3082 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3083 /*
3084 * fallback to ignore cpuset restriction if our nodes
3085 * are depleted
3086 */
3087 if (!page)
3088 page = get_page_from_freelist(gfp_mask, order,
3089 ALLOC_NO_WATERMARKS, ac);
3090 }
3091 }
11e33f6a 3092out:
dc56401f 3093 mutex_unlock(&oom_lock);
11e33f6a
MG
3094 return page;
3095}
3096
33c2d214
MH
3097/*
3098 * Maximum number of compaction retries wit a progress before OOM
3099 * killer is consider as the only way to move forward.
3100 */
3101#define MAX_COMPACT_RETRIES 16
3102
56de7263
MG
3103#ifdef CONFIG_COMPACTION
3104/* Try memory compaction for high-order allocations before reclaim */
3105static struct page *
3106__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3107 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3108 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3109{
98dd3b48 3110 struct page *page;
53853e2d
VB
3111
3112 if (!order)
66199712 3113 return NULL;
66199712 3114
c06b1fca 3115 current->flags |= PF_MEMALLOC;
c5d01d0d 3116 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3117 prio);
c06b1fca 3118 current->flags &= ~PF_MEMALLOC;
56de7263 3119
c5d01d0d 3120 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3121 return NULL;
53853e2d 3122
98dd3b48
VB
3123 /*
3124 * At least in one zone compaction wasn't deferred or skipped, so let's
3125 * count a compaction stall
3126 */
3127 count_vm_event(COMPACTSTALL);
8fb74b9f 3128
31a6c190 3129 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3130
98dd3b48
VB
3131 if (page) {
3132 struct zone *zone = page_zone(page);
53853e2d 3133
98dd3b48
VB
3134 zone->compact_blockskip_flush = false;
3135 compaction_defer_reset(zone, order, true);
3136 count_vm_event(COMPACTSUCCESS);
3137 return page;
3138 }
56de7263 3139
98dd3b48
VB
3140 /*
3141 * It's bad if compaction run occurs and fails. The most likely reason
3142 * is that pages exist, but not enough to satisfy watermarks.
3143 */
3144 count_vm_event(COMPACTFAIL);
66199712 3145
98dd3b48 3146 cond_resched();
56de7263
MG
3147
3148 return NULL;
3149}
33c2d214 3150
56de7263
MG
3151#else
3152static inline struct page *
3153__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3154 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3155 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3156{
33c2d214 3157 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3158 return NULL;
3159}
33c2d214 3160
6b4e3181
MH
3161#endif /* CONFIG_COMPACTION */
3162
33c2d214 3163static inline bool
86a294a8
MH
3164should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3165 enum compact_result compact_result,
a5508cd8 3166 enum compact_priority *compact_priority,
33c2d214
MH
3167 int compaction_retries)
3168{
31e49bfd
MH
3169 struct zone *zone;
3170 struct zoneref *z;
3171
3172 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3173 return false;
3174
3175 /*
3176 * There are setups with compaction disabled which would prefer to loop
3177 * inside the allocator rather than hit the oom killer prematurely.
3178 * Let's give them a good hope and keep retrying while the order-0
3179 * watermarks are OK.
3180 */
3181 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3182 ac->nodemask) {
3183 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3184 ac_classzone_idx(ac), alloc_flags))
3185 return true;
3186 }
33c2d214
MH
3187 return false;
3188}
56de7263 3189
bba90710
MS
3190/* Perform direct synchronous page reclaim */
3191static int
a9263751
VB
3192__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3193 const struct alloc_context *ac)
11e33f6a 3194{
11e33f6a 3195 struct reclaim_state reclaim_state;
bba90710 3196 int progress;
11e33f6a
MG
3197
3198 cond_resched();
3199
3200 /* We now go into synchronous reclaim */
3201 cpuset_memory_pressure_bump();
c06b1fca 3202 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3203 lockdep_set_current_reclaim_state(gfp_mask);
3204 reclaim_state.reclaimed_slab = 0;
c06b1fca 3205 current->reclaim_state = &reclaim_state;
11e33f6a 3206
a9263751
VB
3207 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3208 ac->nodemask);
11e33f6a 3209
c06b1fca 3210 current->reclaim_state = NULL;
11e33f6a 3211 lockdep_clear_current_reclaim_state();
c06b1fca 3212 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3213
3214 cond_resched();
3215
bba90710
MS
3216 return progress;
3217}
3218
3219/* The really slow allocator path where we enter direct reclaim */
3220static inline struct page *
3221__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3222 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3223 unsigned long *did_some_progress)
bba90710
MS
3224{
3225 struct page *page = NULL;
3226 bool drained = false;
3227
a9263751 3228 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3229 if (unlikely(!(*did_some_progress)))
3230 return NULL;
11e33f6a 3231
9ee493ce 3232retry:
31a6c190 3233 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3234
3235 /*
3236 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3237 * pages are pinned on the per-cpu lists or in high alloc reserves.
3238 * Shrink them them and try again
9ee493ce
MG
3239 */
3240 if (!page && !drained) {
0aaa29a5 3241 unreserve_highatomic_pageblock(ac);
93481ff0 3242 drain_all_pages(NULL);
9ee493ce
MG
3243 drained = true;
3244 goto retry;
3245 }
3246
11e33f6a
MG
3247 return page;
3248}
3249
a9263751 3250static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3251{
3252 struct zoneref *z;
3253 struct zone *zone;
e1a55637 3254 pg_data_t *last_pgdat = NULL;
3a025760 3255
a9263751 3256 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3257 ac->high_zoneidx, ac->nodemask) {
3258 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3259 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3260 last_pgdat = zone->zone_pgdat;
3261 }
3a025760
JW
3262}
3263
c603844b 3264static inline unsigned int
341ce06f
PZ
3265gfp_to_alloc_flags(gfp_t gfp_mask)
3266{
c603844b 3267 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3268
a56f57ff 3269 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3270 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3271
341ce06f
PZ
3272 /*
3273 * The caller may dip into page reserves a bit more if the caller
3274 * cannot run direct reclaim, or if the caller has realtime scheduling
3275 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3276 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3277 */
e6223a3b 3278 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3279
d0164adc 3280 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3281 /*
b104a35d
DR
3282 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3283 * if it can't schedule.
5c3240d9 3284 */
b104a35d 3285 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3286 alloc_flags |= ALLOC_HARDER;
523b9458 3287 /*
b104a35d 3288 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3289 * comment for __cpuset_node_allowed().
523b9458 3290 */
341ce06f 3291 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3292 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3293 alloc_flags |= ALLOC_HARDER;
3294
d95ea5d1 3295#ifdef CONFIG_CMA
43e7a34d 3296 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3297 alloc_flags |= ALLOC_CMA;
3298#endif
341ce06f
PZ
3299 return alloc_flags;
3300}
3301
072bb0aa
MG
3302bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3303{
31a6c190
VB
3304 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3305 return false;
3306
3307 if (gfp_mask & __GFP_MEMALLOC)
3308 return true;
3309 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3310 return true;
3311 if (!in_interrupt() &&
3312 ((current->flags & PF_MEMALLOC) ||
3313 unlikely(test_thread_flag(TIF_MEMDIE))))
3314 return true;
3315
3316 return false;
072bb0aa
MG
3317}
3318
0a0337e0
MH
3319/*
3320 * Maximum number of reclaim retries without any progress before OOM killer
3321 * is consider as the only way to move forward.
3322 */
3323#define MAX_RECLAIM_RETRIES 16
3324
3325/*
3326 * Checks whether it makes sense to retry the reclaim to make a forward progress
3327 * for the given allocation request.
3328 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3329 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3330 * any progress in a row) is considered as well as the reclaimable pages on the
3331 * applicable zone list (with a backoff mechanism which is a function of
3332 * no_progress_loops).
0a0337e0
MH
3333 *
3334 * Returns true if a retry is viable or false to enter the oom path.
3335 */
3336static inline bool
3337should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3338 struct alloc_context *ac, int alloc_flags,
7854ea6c 3339 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3340{
3341 struct zone *zone;
3342 struct zoneref *z;
3343
3344 /*
3345 * Make sure we converge to OOM if we cannot make any progress
3346 * several times in the row.
3347 */
3348 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3349 return false;
3350
bca67592
MG
3351 /*
3352 * Keep reclaiming pages while there is a chance this will lead
3353 * somewhere. If none of the target zones can satisfy our allocation
3354 * request even if all reclaimable pages are considered then we are
3355 * screwed and have to go OOM.
0a0337e0
MH
3356 */
3357 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3358 ac->nodemask) {
3359 unsigned long available;
ede37713 3360 unsigned long reclaimable;
0a0337e0 3361
5a1c84b4 3362 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3363 available -= DIV_ROUND_UP(no_progress_loops * available,
3364 MAX_RECLAIM_RETRIES);
5a1c84b4 3365 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3366
3367 /*
3368 * Would the allocation succeed if we reclaimed the whole
5a1c84b4 3369 * available?
0a0337e0 3370 */
5a1c84b4
MG
3371 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3372 ac_classzone_idx(ac), alloc_flags, available)) {
ede37713
MH
3373 /*
3374 * If we didn't make any progress and have a lot of
3375 * dirty + writeback pages then we should wait for
3376 * an IO to complete to slow down the reclaim and
3377 * prevent from pre mature OOM
3378 */
3379 if (!did_some_progress) {
11fb9989 3380 unsigned long write_pending;
ede37713 3381
5a1c84b4
MG
3382 write_pending = zone_page_state_snapshot(zone,
3383 NR_ZONE_WRITE_PENDING);
ede37713 3384
11fb9989 3385 if (2 * write_pending > reclaimable) {
ede37713
MH
3386 congestion_wait(BLK_RW_ASYNC, HZ/10);
3387 return true;
3388 }
3389 }
5a1c84b4 3390
ede37713
MH
3391 /*
3392 * Memory allocation/reclaim might be called from a WQ
3393 * context and the current implementation of the WQ
3394 * concurrency control doesn't recognize that
3395 * a particular WQ is congested if the worker thread is
3396 * looping without ever sleeping. Therefore we have to
3397 * do a short sleep here rather than calling
3398 * cond_resched().
3399 */
3400 if (current->flags & PF_WQ_WORKER)
3401 schedule_timeout_uninterruptible(1);
3402 else
3403 cond_resched();
3404
0a0337e0
MH
3405 return true;
3406 }
3407 }
3408
3409 return false;
3410}
3411
11e33f6a
MG
3412static inline struct page *
3413__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3414 struct alloc_context *ac)
11e33f6a 3415{
d0164adc 3416 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3417 struct page *page = NULL;
c603844b 3418 unsigned int alloc_flags;
11e33f6a 3419 unsigned long did_some_progress;
a5508cd8 3420 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
c5d01d0d 3421 enum compact_result compact_result;
33c2d214 3422 int compaction_retries = 0;
0a0337e0 3423 int no_progress_loops = 0;
1da177e4 3424
72807a74
MG
3425 /*
3426 * In the slowpath, we sanity check order to avoid ever trying to
3427 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3428 * be using allocators in order of preference for an area that is
3429 * too large.
3430 */
1fc28b70
MG
3431 if (order >= MAX_ORDER) {
3432 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3433 return NULL;
1fc28b70 3434 }
1da177e4 3435
d0164adc
MG
3436 /*
3437 * We also sanity check to catch abuse of atomic reserves being used by
3438 * callers that are not in atomic context.
3439 */
3440 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3441 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3442 gfp_mask &= ~__GFP_ATOMIC;
3443
9bf2229f 3444 /*
31a6c190
VB
3445 * The fast path uses conservative alloc_flags to succeed only until
3446 * kswapd needs to be woken up, and to avoid the cost of setting up
3447 * alloc_flags precisely. So we do that now.
9bf2229f 3448 */
341ce06f 3449 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3450
23771235
VB
3451 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3452 wake_all_kswapds(order, ac);
3453
3454 /*
3455 * The adjusted alloc_flags might result in immediate success, so try
3456 * that first
3457 */
3458 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3459 if (page)
3460 goto got_pg;
3461
a8161d1e
VB
3462 /*
3463 * For costly allocations, try direct compaction first, as it's likely
3464 * that we have enough base pages and don't need to reclaim. Don't try
3465 * that for allocations that are allowed to ignore watermarks, as the
3466 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3467 */
3468 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3469 !gfp_pfmemalloc_allowed(gfp_mask)) {
3470 page = __alloc_pages_direct_compact(gfp_mask, order,
3471 alloc_flags, ac,
a5508cd8 3472 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3473 &compact_result);
3474 if (page)
3475 goto got_pg;
3476
3eb2771b
VB
3477 /*
3478 * Checks for costly allocations with __GFP_NORETRY, which
3479 * includes THP page fault allocations
3480 */
3481 if (gfp_mask & __GFP_NORETRY) {
a8161d1e
VB
3482 /*
3483 * If compaction is deferred for high-order allocations,
3484 * it is because sync compaction recently failed. If
3485 * this is the case and the caller requested a THP
3486 * allocation, we do not want to heavily disrupt the
3487 * system, so we fail the allocation instead of entering
3488 * direct reclaim.
3489 */
3490 if (compact_result == COMPACT_DEFERRED)
3491 goto nopage;
3492
a8161d1e 3493 /*
3eb2771b
VB
3494 * Looks like reclaim/compaction is worth trying, but
3495 * sync compaction could be very expensive, so keep
25160354 3496 * using async compaction.
a8161d1e 3497 */
a5508cd8 3498 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3499 }
3500 }
23771235 3501
31a6c190 3502retry:
23771235 3503 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3504 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3505 wake_all_kswapds(order, ac);
3506
23771235
VB
3507 if (gfp_pfmemalloc_allowed(gfp_mask))
3508 alloc_flags = ALLOC_NO_WATERMARKS;
3509
e46e7b77
MG
3510 /*
3511 * Reset the zonelist iterators if memory policies can be ignored.
3512 * These allocations are high priority and system rather than user
3513 * orientated.
3514 */
23771235 3515 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3516 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3517 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3518 ac->high_zoneidx, ac->nodemask);
3519 }
3520
23771235 3521 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3522 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3523 if (page)
3524 goto got_pg;
1da177e4 3525
d0164adc
MG
3526 /* Caller is not willing to reclaim, we can't balance anything */
3527 if (!can_direct_reclaim) {
aed0a0e3 3528 /*
33d53103
MH
3529 * All existing users of the __GFP_NOFAIL are blockable, so warn
3530 * of any new users that actually allow this type of allocation
3531 * to fail.
aed0a0e3
DR
3532 */
3533 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3534 goto nopage;
aed0a0e3 3535 }
1da177e4 3536
341ce06f 3537 /* Avoid recursion of direct reclaim */
33d53103
MH
3538 if (current->flags & PF_MEMALLOC) {
3539 /*
3540 * __GFP_NOFAIL request from this context is rather bizarre
3541 * because we cannot reclaim anything and only can loop waiting
3542 * for somebody to do a work for us.
3543 */
3544 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3545 cond_resched();
3546 goto retry;
3547 }
341ce06f 3548 goto nopage;
33d53103 3549 }
341ce06f 3550
6583bb64
DR
3551 /* Avoid allocations with no watermarks from looping endlessly */
3552 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3553 goto nopage;
3554
a8161d1e
VB
3555
3556 /* Try direct reclaim and then allocating */
3557 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3558 &did_some_progress);
3559 if (page)
3560 goto got_pg;
3561
3562 /* Try direct compaction and then allocating */
a9263751 3563 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3564 compact_priority, &compact_result);
56de7263
MG
3565 if (page)
3566 goto got_pg;
75f30861 3567
33c2d214
MH
3568 if (order && compaction_made_progress(compact_result))
3569 compaction_retries++;
8fe78048 3570
9083905a
JW
3571 /* Do not loop if specifically requested */
3572 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3573 goto nopage;
9083905a 3574
0a0337e0
MH
3575 /*
3576 * Do not retry costly high order allocations unless they are
3577 * __GFP_REPEAT
3578 */
3579 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3580 goto nopage;
0a0337e0 3581
7854ea6c
MH
3582 /*
3583 * Costly allocations might have made a progress but this doesn't mean
3584 * their order will become available due to high fragmentation so
3585 * always increment the no progress counter for them
3586 */
3587 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3588 no_progress_loops = 0;
7854ea6c 3589 else
0a0337e0 3590 no_progress_loops++;
1da177e4 3591
0a0337e0 3592 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3593 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3594 goto retry;
3595
33c2d214
MH
3596 /*
3597 * It doesn't make any sense to retry for the compaction if the order-0
3598 * reclaim is not able to make any progress because the current
3599 * implementation of the compaction depends on the sufficient amount
3600 * of free memory (see __compaction_suitable)
3601 */
3602 if (did_some_progress > 0 &&
86a294a8 3603 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3604 compact_result, &compact_priority,
86a294a8 3605 compaction_retries))
33c2d214
MH
3606 goto retry;
3607
9083905a
JW
3608 /* Reclaim has failed us, start killing things */
3609 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3610 if (page)
3611 goto got_pg;
3612
3613 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3614 if (did_some_progress) {
3615 no_progress_loops = 0;
9083905a 3616 goto retry;
0a0337e0 3617 }
9083905a 3618
1da177e4 3619nopage:
a238ab5b 3620 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3621got_pg:
072bb0aa 3622 return page;
1da177e4 3623}
11e33f6a
MG
3624
3625/*
3626 * This is the 'heart' of the zoned buddy allocator.
3627 */
3628struct page *
3629__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3630 struct zonelist *zonelist, nodemask_t *nodemask)
3631{
5bb1b169 3632 struct page *page;
cc9a6c87 3633 unsigned int cpuset_mems_cookie;
e6cbd7f2 3634 unsigned int alloc_flags = ALLOC_WMARK_LOW;
83d4ca81 3635 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3636 struct alloc_context ac = {
3637 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3638 .zonelist = zonelist,
a9263751
VB
3639 .nodemask = nodemask,
3640 .migratetype = gfpflags_to_migratetype(gfp_mask),
3641 };
11e33f6a 3642
682a3385 3643 if (cpusets_enabled()) {
83d4ca81 3644 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3645 alloc_flags |= ALLOC_CPUSET;
3646 if (!ac.nodemask)
3647 ac.nodemask = &cpuset_current_mems_allowed;
3648 }
3649
dcce284a
BH
3650 gfp_mask &= gfp_allowed_mask;
3651
11e33f6a
MG
3652 lockdep_trace_alloc(gfp_mask);
3653
d0164adc 3654 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3655
3656 if (should_fail_alloc_page(gfp_mask, order))
3657 return NULL;
3658
3659 /*
3660 * Check the zones suitable for the gfp_mask contain at least one
3661 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3662 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3663 */
3664 if (unlikely(!zonelist->_zonerefs->zone))
3665 return NULL;
3666
a9263751 3667 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3668 alloc_flags |= ALLOC_CMA;
3669
cc9a6c87 3670retry_cpuset:
d26914d1 3671 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3672
c9ab0c4f
MG
3673 /* Dirty zone balancing only done in the fast path */
3674 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3675
e46e7b77
MG
3676 /*
3677 * The preferred zone is used for statistics but crucially it is
3678 * also used as the starting point for the zonelist iterator. It
3679 * may get reset for allocations that ignore memory policies.
3680 */
c33d6c06
MG
3681 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3682 ac.high_zoneidx, ac.nodemask);
3683 if (!ac.preferred_zoneref) {
5bb1b169 3684 page = NULL;
4fcb0971 3685 goto no_zone;
5bb1b169
MG
3686 }
3687
5117f45d 3688 /* First allocation attempt */
a9263751 3689 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3690 if (likely(page))
3691 goto out;
11e33f6a 3692
4fcb0971
MG
3693 /*
3694 * Runtime PM, block IO and its error handling path can deadlock
3695 * because I/O on the device might not complete.
3696 */
3697 alloc_mask = memalloc_noio_flags(gfp_mask);
3698 ac.spread_dirty_pages = false;
23f086f9 3699
4741526b
MG
3700 /*
3701 * Restore the original nodemask if it was potentially replaced with
3702 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3703 */
3704 if (cpusets_enabled())
3705 ac.nodemask = nodemask;
4fcb0971 3706 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3707
4fcb0971 3708no_zone:
cc9a6c87
MG
3709 /*
3710 * When updating a task's mems_allowed, it is possible to race with
3711 * parallel threads in such a way that an allocation can fail while
3712 * the mask is being updated. If a page allocation is about to fail,
3713 * check if the cpuset changed during allocation and if so, retry.
3714 */
83d4ca81
MG
3715 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3716 alloc_mask = gfp_mask;
cc9a6c87 3717 goto retry_cpuset;
83d4ca81 3718 }
cc9a6c87 3719
4fcb0971 3720out:
c4159a75
VD
3721 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3722 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3723 __free_pages(page, order);
3724 page = NULL;
4949148a
VD
3725 }
3726
4fcb0971
MG
3727 if (kmemcheck_enabled && page)
3728 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3729
3730 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3731
11e33f6a 3732 return page;
1da177e4 3733}
d239171e 3734EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3735
3736/*
3737 * Common helper functions.
3738 */
920c7a5d 3739unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3740{
945a1113
AM
3741 struct page *page;
3742
3743 /*
3744 * __get_free_pages() returns a 32-bit address, which cannot represent
3745 * a highmem page
3746 */
3747 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3748
1da177e4
LT
3749 page = alloc_pages(gfp_mask, order);
3750 if (!page)
3751 return 0;
3752 return (unsigned long) page_address(page);
3753}
1da177e4
LT
3754EXPORT_SYMBOL(__get_free_pages);
3755
920c7a5d 3756unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3757{
945a1113 3758 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3759}
1da177e4
LT
3760EXPORT_SYMBOL(get_zeroed_page);
3761
920c7a5d 3762void __free_pages(struct page *page, unsigned int order)
1da177e4 3763{
b5810039 3764 if (put_page_testzero(page)) {
1da177e4 3765 if (order == 0)
b745bc85 3766 free_hot_cold_page(page, false);
1da177e4
LT
3767 else
3768 __free_pages_ok(page, order);
3769 }
3770}
3771
3772EXPORT_SYMBOL(__free_pages);
3773
920c7a5d 3774void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3775{
3776 if (addr != 0) {
725d704e 3777 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3778 __free_pages(virt_to_page((void *)addr), order);
3779 }
3780}
3781
3782EXPORT_SYMBOL(free_pages);
3783
b63ae8ca
AD
3784/*
3785 * Page Fragment:
3786 * An arbitrary-length arbitrary-offset area of memory which resides
3787 * within a 0 or higher order page. Multiple fragments within that page
3788 * are individually refcounted, in the page's reference counter.
3789 *
3790 * The page_frag functions below provide a simple allocation framework for
3791 * page fragments. This is used by the network stack and network device
3792 * drivers to provide a backing region of memory for use as either an
3793 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3794 */
3795static struct page *__page_frag_refill(struct page_frag_cache *nc,
3796 gfp_t gfp_mask)
3797{
3798 struct page *page = NULL;
3799 gfp_t gfp = gfp_mask;
3800
3801#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3802 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3803 __GFP_NOMEMALLOC;
3804 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3805 PAGE_FRAG_CACHE_MAX_ORDER);
3806 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3807#endif
3808 if (unlikely(!page))
3809 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3810
3811 nc->va = page ? page_address(page) : NULL;
3812
3813 return page;
3814}
3815
3816void *__alloc_page_frag(struct page_frag_cache *nc,
3817 unsigned int fragsz, gfp_t gfp_mask)
3818{
3819 unsigned int size = PAGE_SIZE;
3820 struct page *page;
3821 int offset;
3822
3823 if (unlikely(!nc->va)) {
3824refill:
3825 page = __page_frag_refill(nc, gfp_mask);
3826 if (!page)
3827 return NULL;
3828
3829#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3830 /* if size can vary use size else just use PAGE_SIZE */
3831 size = nc->size;
3832#endif
3833 /* Even if we own the page, we do not use atomic_set().
3834 * This would break get_page_unless_zero() users.
3835 */
fe896d18 3836 page_ref_add(page, size - 1);
b63ae8ca
AD
3837
3838 /* reset page count bias and offset to start of new frag */
2f064f34 3839 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3840 nc->pagecnt_bias = size;
3841 nc->offset = size;
3842 }
3843
3844 offset = nc->offset - fragsz;
3845 if (unlikely(offset < 0)) {
3846 page = virt_to_page(nc->va);
3847
fe896d18 3848 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3849 goto refill;
3850
3851#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3852 /* if size can vary use size else just use PAGE_SIZE */
3853 size = nc->size;
3854#endif
3855 /* OK, page count is 0, we can safely set it */
fe896d18 3856 set_page_count(page, size);
b63ae8ca
AD
3857
3858 /* reset page count bias and offset to start of new frag */
3859 nc->pagecnt_bias = size;
3860 offset = size - fragsz;
3861 }
3862
3863 nc->pagecnt_bias--;
3864 nc->offset = offset;
3865
3866 return nc->va + offset;
3867}
3868EXPORT_SYMBOL(__alloc_page_frag);
3869
3870/*
3871 * Frees a page fragment allocated out of either a compound or order 0 page.
3872 */
3873void __free_page_frag(void *addr)
3874{
3875 struct page *page = virt_to_head_page(addr);
3876
3877 if (unlikely(put_page_testzero(page)))
3878 __free_pages_ok(page, compound_order(page));
3879}
3880EXPORT_SYMBOL(__free_page_frag);
3881
d00181b9
KS
3882static void *make_alloc_exact(unsigned long addr, unsigned int order,
3883 size_t size)
ee85c2e1
AK
3884{
3885 if (addr) {
3886 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3887 unsigned long used = addr + PAGE_ALIGN(size);
3888
3889 split_page(virt_to_page((void *)addr), order);
3890 while (used < alloc_end) {
3891 free_page(used);
3892 used += PAGE_SIZE;
3893 }
3894 }
3895 return (void *)addr;
3896}
3897
2be0ffe2
TT
3898/**
3899 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3900 * @size: the number of bytes to allocate
3901 * @gfp_mask: GFP flags for the allocation
3902 *
3903 * This function is similar to alloc_pages(), except that it allocates the
3904 * minimum number of pages to satisfy the request. alloc_pages() can only
3905 * allocate memory in power-of-two pages.
3906 *
3907 * This function is also limited by MAX_ORDER.
3908 *
3909 * Memory allocated by this function must be released by free_pages_exact().
3910 */
3911void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3912{
3913 unsigned int order = get_order(size);
3914 unsigned long addr;
3915
3916 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3917 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3918}
3919EXPORT_SYMBOL(alloc_pages_exact);
3920
ee85c2e1
AK
3921/**
3922 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3923 * pages on a node.
b5e6ab58 3924 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3925 * @size: the number of bytes to allocate
3926 * @gfp_mask: GFP flags for the allocation
3927 *
3928 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3929 * back.
ee85c2e1 3930 */
e1931811 3931void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3932{
d00181b9 3933 unsigned int order = get_order(size);
ee85c2e1
AK
3934 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3935 if (!p)
3936 return NULL;
3937 return make_alloc_exact((unsigned long)page_address(p), order, size);
3938}
ee85c2e1 3939
2be0ffe2
TT
3940/**
3941 * free_pages_exact - release memory allocated via alloc_pages_exact()
3942 * @virt: the value returned by alloc_pages_exact.
3943 * @size: size of allocation, same value as passed to alloc_pages_exact().
3944 *
3945 * Release the memory allocated by a previous call to alloc_pages_exact.
3946 */
3947void free_pages_exact(void *virt, size_t size)
3948{
3949 unsigned long addr = (unsigned long)virt;
3950 unsigned long end = addr + PAGE_ALIGN(size);
3951
3952 while (addr < end) {
3953 free_page(addr);
3954 addr += PAGE_SIZE;
3955 }
3956}
3957EXPORT_SYMBOL(free_pages_exact);
3958
e0fb5815
ZY
3959/**
3960 * nr_free_zone_pages - count number of pages beyond high watermark
3961 * @offset: The zone index of the highest zone
3962 *
3963 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3964 * high watermark within all zones at or below a given zone index. For each
3965 * zone, the number of pages is calculated as:
834405c3 3966 * managed_pages - high_pages
e0fb5815 3967 */
ebec3862 3968static unsigned long nr_free_zone_pages(int offset)
1da177e4 3969{
dd1a239f 3970 struct zoneref *z;
54a6eb5c
MG
3971 struct zone *zone;
3972
e310fd43 3973 /* Just pick one node, since fallback list is circular */
ebec3862 3974 unsigned long sum = 0;
1da177e4 3975
0e88460d 3976 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3977
54a6eb5c 3978 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3979 unsigned long size = zone->managed_pages;
41858966 3980 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3981 if (size > high)
3982 sum += size - high;
1da177e4
LT
3983 }
3984
3985 return sum;
3986}
3987
e0fb5815
ZY
3988/**
3989 * nr_free_buffer_pages - count number of pages beyond high watermark
3990 *
3991 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3992 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3993 */
ebec3862 3994unsigned long nr_free_buffer_pages(void)
1da177e4 3995{
af4ca457 3996 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3997}
c2f1a551 3998EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3999
e0fb5815
ZY
4000/**
4001 * nr_free_pagecache_pages - count number of pages beyond high watermark
4002 *
4003 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4004 * high watermark within all zones.
1da177e4 4005 */
ebec3862 4006unsigned long nr_free_pagecache_pages(void)
1da177e4 4007{
2a1e274a 4008 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4009}
08e0f6a9
CL
4010
4011static inline void show_node(struct zone *zone)
1da177e4 4012{
e5adfffc 4013 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4014 printk("Node %d ", zone_to_nid(zone));
1da177e4 4015}
1da177e4 4016
d02bd27b
IR
4017long si_mem_available(void)
4018{
4019 long available;
4020 unsigned long pagecache;
4021 unsigned long wmark_low = 0;
4022 unsigned long pages[NR_LRU_LISTS];
4023 struct zone *zone;
4024 int lru;
4025
4026 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4027 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4028
4029 for_each_zone(zone)
4030 wmark_low += zone->watermark[WMARK_LOW];
4031
4032 /*
4033 * Estimate the amount of memory available for userspace allocations,
4034 * without causing swapping.
4035 */
4036 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4037
4038 /*
4039 * Not all the page cache can be freed, otherwise the system will
4040 * start swapping. Assume at least half of the page cache, or the
4041 * low watermark worth of cache, needs to stay.
4042 */
4043 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4044 pagecache -= min(pagecache / 2, wmark_low);
4045 available += pagecache;
4046
4047 /*
4048 * Part of the reclaimable slab consists of items that are in use,
4049 * and cannot be freed. Cap this estimate at the low watermark.
4050 */
4051 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4052 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4053
4054 if (available < 0)
4055 available = 0;
4056 return available;
4057}
4058EXPORT_SYMBOL_GPL(si_mem_available);
4059
1da177e4
LT
4060void si_meminfo(struct sysinfo *val)
4061{
4062 val->totalram = totalram_pages;
11fb9989 4063 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4064 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4065 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4066 val->totalhigh = totalhigh_pages;
4067 val->freehigh = nr_free_highpages();
1da177e4
LT
4068 val->mem_unit = PAGE_SIZE;
4069}
4070
4071EXPORT_SYMBOL(si_meminfo);
4072
4073#ifdef CONFIG_NUMA
4074void si_meminfo_node(struct sysinfo *val, int nid)
4075{
cdd91a77
JL
4076 int zone_type; /* needs to be signed */
4077 unsigned long managed_pages = 0;
fc2bd799
JK
4078 unsigned long managed_highpages = 0;
4079 unsigned long free_highpages = 0;
1da177e4
LT
4080 pg_data_t *pgdat = NODE_DATA(nid);
4081
cdd91a77
JL
4082 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4083 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4084 val->totalram = managed_pages;
11fb9989 4085 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4086 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4087#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4088 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4089 struct zone *zone = &pgdat->node_zones[zone_type];
4090
4091 if (is_highmem(zone)) {
4092 managed_highpages += zone->managed_pages;
4093 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4094 }
4095 }
4096 val->totalhigh = managed_highpages;
4097 val->freehigh = free_highpages;
98d2b0eb 4098#else
fc2bd799
JK
4099 val->totalhigh = managed_highpages;
4100 val->freehigh = free_highpages;
98d2b0eb 4101#endif
1da177e4
LT
4102 val->mem_unit = PAGE_SIZE;
4103}
4104#endif
4105
ddd588b5 4106/*
7bf02ea2
DR
4107 * Determine whether the node should be displayed or not, depending on whether
4108 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4109 */
7bf02ea2 4110bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4111{
4112 bool ret = false;
cc9a6c87 4113 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4114
4115 if (!(flags & SHOW_MEM_FILTER_NODES))
4116 goto out;
4117
cc9a6c87 4118 do {
d26914d1 4119 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4120 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4121 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4122out:
4123 return ret;
4124}
4125
1da177e4
LT
4126#define K(x) ((x) << (PAGE_SHIFT-10))
4127
377e4f16
RV
4128static void show_migration_types(unsigned char type)
4129{
4130 static const char types[MIGRATE_TYPES] = {
4131 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4132 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4133 [MIGRATE_RECLAIMABLE] = 'E',
4134 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4135#ifdef CONFIG_CMA
4136 [MIGRATE_CMA] = 'C',
4137#endif
194159fb 4138#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4139 [MIGRATE_ISOLATE] = 'I',
194159fb 4140#endif
377e4f16
RV
4141 };
4142 char tmp[MIGRATE_TYPES + 1];
4143 char *p = tmp;
4144 int i;
4145
4146 for (i = 0; i < MIGRATE_TYPES; i++) {
4147 if (type & (1 << i))
4148 *p++ = types[i];
4149 }
4150
4151 *p = '\0';
4152 printk("(%s) ", tmp);
4153}
4154
1da177e4
LT
4155/*
4156 * Show free area list (used inside shift_scroll-lock stuff)
4157 * We also calculate the percentage fragmentation. We do this by counting the
4158 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4159 *
4160 * Bits in @filter:
4161 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4162 * cpuset.
1da177e4 4163 */
7bf02ea2 4164void show_free_areas(unsigned int filter)
1da177e4 4165{
d1bfcdb8 4166 unsigned long free_pcp = 0;
c7241913 4167 int cpu;
1da177e4 4168 struct zone *zone;
599d0c95 4169 pg_data_t *pgdat;
1da177e4 4170
ee99c71c 4171 for_each_populated_zone(zone) {
7bf02ea2 4172 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4173 continue;
d1bfcdb8 4174
761b0677
KK
4175 for_each_online_cpu(cpu)
4176 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4177 }
4178
a731286d
KM
4179 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4180 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4181 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4182 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4183 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4184 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4185 global_node_page_state(NR_ACTIVE_ANON),
4186 global_node_page_state(NR_INACTIVE_ANON),
4187 global_node_page_state(NR_ISOLATED_ANON),
4188 global_node_page_state(NR_ACTIVE_FILE),
4189 global_node_page_state(NR_INACTIVE_FILE),
4190 global_node_page_state(NR_ISOLATED_FILE),
4191 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4192 global_node_page_state(NR_FILE_DIRTY),
4193 global_node_page_state(NR_WRITEBACK),
4194 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4195 global_page_state(NR_SLAB_RECLAIMABLE),
4196 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4197 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4198 global_node_page_state(NR_SHMEM),
a25700a5 4199 global_page_state(NR_PAGETABLE),
d1ce749a 4200 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4201 global_page_state(NR_FREE_PAGES),
4202 free_pcp,
d1ce749a 4203 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4204
599d0c95
MG
4205 for_each_online_pgdat(pgdat) {
4206 printk("Node %d"
4207 " active_anon:%lukB"
4208 " inactive_anon:%lukB"
4209 " active_file:%lukB"
4210 " inactive_file:%lukB"
4211 " unevictable:%lukB"
4212 " isolated(anon):%lukB"
4213 " isolated(file):%lukB"
50658e2e 4214 " mapped:%lukB"
11fb9989
MG
4215 " dirty:%lukB"
4216 " writeback:%lukB"
4217 " shmem:%lukB"
4218#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4219 " shmem_thp: %lukB"
4220 " shmem_pmdmapped: %lukB"
4221 " anon_thp: %lukB"
4222#endif
4223 " writeback_tmp:%lukB"
4224 " unstable:%lukB"
33e077bd 4225 " pages_scanned:%lu"
599d0c95
MG
4226 " all_unreclaimable? %s"
4227 "\n",
4228 pgdat->node_id,
4229 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4230 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4231 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4232 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4233 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4234 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4235 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4236 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4237 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4238 K(node_page_state(pgdat, NR_WRITEBACK)),
4239#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4240 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4241 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4242 * HPAGE_PMD_NR),
4243 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4244#endif
4245 K(node_page_state(pgdat, NR_SHMEM)),
4246 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4247 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
33e077bd 4248 node_page_state(pgdat, NR_PAGES_SCANNED),
599d0c95
MG
4249 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4250 }
4251
ee99c71c 4252 for_each_populated_zone(zone) {
1da177e4
LT
4253 int i;
4254
7bf02ea2 4255 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4256 continue;
d1bfcdb8
KK
4257
4258 free_pcp = 0;
4259 for_each_online_cpu(cpu)
4260 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4261
1da177e4
LT
4262 show_node(zone);
4263 printk("%s"
4264 " free:%lukB"
4265 " min:%lukB"
4266 " low:%lukB"
4267 " high:%lukB"
71c799f4
MK
4268 " active_anon:%lukB"
4269 " inactive_anon:%lukB"
4270 " active_file:%lukB"
4271 " inactive_file:%lukB"
4272 " unevictable:%lukB"
5a1c84b4 4273 " writepending:%lukB"
1da177e4 4274 " present:%lukB"
9feedc9d 4275 " managed:%lukB"
4a0aa73f 4276 " mlocked:%lukB"
4a0aa73f
KM
4277 " slab_reclaimable:%lukB"
4278 " slab_unreclaimable:%lukB"
c6a7f572 4279 " kernel_stack:%lukB"
4a0aa73f 4280 " pagetables:%lukB"
4a0aa73f 4281 " bounce:%lukB"
d1bfcdb8
KK
4282 " free_pcp:%lukB"
4283 " local_pcp:%ukB"
d1ce749a 4284 " free_cma:%lukB"
1da177e4
LT
4285 "\n",
4286 zone->name,
88f5acf8 4287 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4288 K(min_wmark_pages(zone)),
4289 K(low_wmark_pages(zone)),
4290 K(high_wmark_pages(zone)),
71c799f4
MK
4291 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4292 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4293 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4294 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4295 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4296 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4297 K(zone->present_pages),
9feedc9d 4298 K(zone->managed_pages),
4a0aa73f 4299 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4300 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4301 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4302 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4303 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4304 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4305 K(free_pcp),
4306 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4307 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4308 printk("lowmem_reserve[]:");
4309 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4310 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4311 printk("\n");
4312 }
4313
ee99c71c 4314 for_each_populated_zone(zone) {
d00181b9
KS
4315 unsigned int order;
4316 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4317 unsigned char types[MAX_ORDER];
1da177e4 4318
7bf02ea2 4319 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4320 continue;
1da177e4
LT
4321 show_node(zone);
4322 printk("%s: ", zone->name);
1da177e4
LT
4323
4324 spin_lock_irqsave(&zone->lock, flags);
4325 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4326 struct free_area *area = &zone->free_area[order];
4327 int type;
4328
4329 nr[order] = area->nr_free;
8f9de51a 4330 total += nr[order] << order;
377e4f16
RV
4331
4332 types[order] = 0;
4333 for (type = 0; type < MIGRATE_TYPES; type++) {
4334 if (!list_empty(&area->free_list[type]))
4335 types[order] |= 1 << type;
4336 }
1da177e4
LT
4337 }
4338 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4339 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4340 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4341 if (nr[order])
4342 show_migration_types(types[order]);
4343 }
1da177e4
LT
4344 printk("= %lukB\n", K(total));
4345 }
4346
949f7ec5
DR
4347 hugetlb_show_meminfo();
4348
11fb9989 4349 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4350
1da177e4
LT
4351 show_swap_cache_info();
4352}
4353
19770b32
MG
4354static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4355{
4356 zoneref->zone = zone;
4357 zoneref->zone_idx = zone_idx(zone);
4358}
4359
1da177e4
LT
4360/*
4361 * Builds allocation fallback zone lists.
1a93205b
CL
4362 *
4363 * Add all populated zones of a node to the zonelist.
1da177e4 4364 */
f0c0b2b8 4365static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4366 int nr_zones)
1da177e4 4367{
1a93205b 4368 struct zone *zone;
bc732f1d 4369 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4370
4371 do {
2f6726e5 4372 zone_type--;
070f8032 4373 zone = pgdat->node_zones + zone_type;
6aa303de 4374 if (managed_zone(zone)) {
dd1a239f
MG
4375 zoneref_set_zone(zone,
4376 &zonelist->_zonerefs[nr_zones++]);
070f8032 4377 check_highest_zone(zone_type);
1da177e4 4378 }
2f6726e5 4379 } while (zone_type);
bc732f1d 4380
070f8032 4381 return nr_zones;
1da177e4
LT
4382}
4383
f0c0b2b8
KH
4384
4385/*
4386 * zonelist_order:
4387 * 0 = automatic detection of better ordering.
4388 * 1 = order by ([node] distance, -zonetype)
4389 * 2 = order by (-zonetype, [node] distance)
4390 *
4391 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4392 * the same zonelist. So only NUMA can configure this param.
4393 */
4394#define ZONELIST_ORDER_DEFAULT 0
4395#define ZONELIST_ORDER_NODE 1
4396#define ZONELIST_ORDER_ZONE 2
4397
4398/* zonelist order in the kernel.
4399 * set_zonelist_order() will set this to NODE or ZONE.
4400 */
4401static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4402static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4403
4404
1da177e4 4405#ifdef CONFIG_NUMA
f0c0b2b8
KH
4406/* The value user specified ....changed by config */
4407static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4408/* string for sysctl */
4409#define NUMA_ZONELIST_ORDER_LEN 16
4410char numa_zonelist_order[16] = "default";
4411
4412/*
4413 * interface for configure zonelist ordering.
4414 * command line option "numa_zonelist_order"
4415 * = "[dD]efault - default, automatic configuration.
4416 * = "[nN]ode - order by node locality, then by zone within node
4417 * = "[zZ]one - order by zone, then by locality within zone
4418 */
4419
4420static int __parse_numa_zonelist_order(char *s)
4421{
4422 if (*s == 'd' || *s == 'D') {
4423 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4424 } else if (*s == 'n' || *s == 'N') {
4425 user_zonelist_order = ZONELIST_ORDER_NODE;
4426 } else if (*s == 'z' || *s == 'Z') {
4427 user_zonelist_order = ZONELIST_ORDER_ZONE;
4428 } else {
1170532b 4429 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4430 return -EINVAL;
4431 }
4432 return 0;
4433}
4434
4435static __init int setup_numa_zonelist_order(char *s)
4436{
ecb256f8
VL
4437 int ret;
4438
4439 if (!s)
4440 return 0;
4441
4442 ret = __parse_numa_zonelist_order(s);
4443 if (ret == 0)
4444 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4445
4446 return ret;
f0c0b2b8
KH
4447}
4448early_param("numa_zonelist_order", setup_numa_zonelist_order);
4449
4450/*
4451 * sysctl handler for numa_zonelist_order
4452 */
cccad5b9 4453int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4454 void __user *buffer, size_t *length,
f0c0b2b8
KH
4455 loff_t *ppos)
4456{
4457 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4458 int ret;
443c6f14 4459 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4460
443c6f14 4461 mutex_lock(&zl_order_mutex);
dacbde09
CG
4462 if (write) {
4463 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4464 ret = -EINVAL;
4465 goto out;
4466 }
4467 strcpy(saved_string, (char *)table->data);
4468 }
8d65af78 4469 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4470 if (ret)
443c6f14 4471 goto out;
f0c0b2b8
KH
4472 if (write) {
4473 int oldval = user_zonelist_order;
dacbde09
CG
4474
4475 ret = __parse_numa_zonelist_order((char *)table->data);
4476 if (ret) {
f0c0b2b8
KH
4477 /*
4478 * bogus value. restore saved string
4479 */
dacbde09 4480 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4481 NUMA_ZONELIST_ORDER_LEN);
4482 user_zonelist_order = oldval;
4eaf3f64
HL
4483 } else if (oldval != user_zonelist_order) {
4484 mutex_lock(&zonelists_mutex);
9adb62a5 4485 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4486 mutex_unlock(&zonelists_mutex);
4487 }
f0c0b2b8 4488 }
443c6f14
AK
4489out:
4490 mutex_unlock(&zl_order_mutex);
4491 return ret;
f0c0b2b8
KH
4492}
4493
4494
62bc62a8 4495#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4496static int node_load[MAX_NUMNODES];
4497
1da177e4 4498/**
4dc3b16b 4499 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4500 * @node: node whose fallback list we're appending
4501 * @used_node_mask: nodemask_t of already used nodes
4502 *
4503 * We use a number of factors to determine which is the next node that should
4504 * appear on a given node's fallback list. The node should not have appeared
4505 * already in @node's fallback list, and it should be the next closest node
4506 * according to the distance array (which contains arbitrary distance values
4507 * from each node to each node in the system), and should also prefer nodes
4508 * with no CPUs, since presumably they'll have very little allocation pressure
4509 * on them otherwise.
4510 * It returns -1 if no node is found.
4511 */
f0c0b2b8 4512static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4513{
4cf808eb 4514 int n, val;
1da177e4 4515 int min_val = INT_MAX;
00ef2d2f 4516 int best_node = NUMA_NO_NODE;
a70f7302 4517 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4518
4cf808eb
LT
4519 /* Use the local node if we haven't already */
4520 if (!node_isset(node, *used_node_mask)) {
4521 node_set(node, *used_node_mask);
4522 return node;
4523 }
1da177e4 4524
4b0ef1fe 4525 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4526
4527 /* Don't want a node to appear more than once */
4528 if (node_isset(n, *used_node_mask))
4529 continue;
4530
1da177e4
LT
4531 /* Use the distance array to find the distance */
4532 val = node_distance(node, n);
4533
4cf808eb
LT
4534 /* Penalize nodes under us ("prefer the next node") */
4535 val += (n < node);
4536
1da177e4 4537 /* Give preference to headless and unused nodes */
a70f7302
RR
4538 tmp = cpumask_of_node(n);
4539 if (!cpumask_empty(tmp))
1da177e4
LT
4540 val += PENALTY_FOR_NODE_WITH_CPUS;
4541
4542 /* Slight preference for less loaded node */
4543 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4544 val += node_load[n];
4545
4546 if (val < min_val) {
4547 min_val = val;
4548 best_node = n;
4549 }
4550 }
4551
4552 if (best_node >= 0)
4553 node_set(best_node, *used_node_mask);
4554
4555 return best_node;
4556}
4557
f0c0b2b8
KH
4558
4559/*
4560 * Build zonelists ordered by node and zones within node.
4561 * This results in maximum locality--normal zone overflows into local
4562 * DMA zone, if any--but risks exhausting DMA zone.
4563 */
4564static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4565{
f0c0b2b8 4566 int j;
1da177e4 4567 struct zonelist *zonelist;
f0c0b2b8 4568
54a6eb5c 4569 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4570 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4571 ;
bc732f1d 4572 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4573 zonelist->_zonerefs[j].zone = NULL;
4574 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4575}
4576
523b9458
CL
4577/*
4578 * Build gfp_thisnode zonelists
4579 */
4580static void build_thisnode_zonelists(pg_data_t *pgdat)
4581{
523b9458
CL
4582 int j;
4583 struct zonelist *zonelist;
4584
54a6eb5c 4585 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4586 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4587 zonelist->_zonerefs[j].zone = NULL;
4588 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4589}
4590
f0c0b2b8
KH
4591/*
4592 * Build zonelists ordered by zone and nodes within zones.
4593 * This results in conserving DMA zone[s] until all Normal memory is
4594 * exhausted, but results in overflowing to remote node while memory
4595 * may still exist in local DMA zone.
4596 */
4597static int node_order[MAX_NUMNODES];
4598
4599static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4600{
f0c0b2b8
KH
4601 int pos, j, node;
4602 int zone_type; /* needs to be signed */
4603 struct zone *z;
4604 struct zonelist *zonelist;
4605
54a6eb5c
MG
4606 zonelist = &pgdat->node_zonelists[0];
4607 pos = 0;
4608 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4609 for (j = 0; j < nr_nodes; j++) {
4610 node = node_order[j];
4611 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4612 if (managed_zone(z)) {
dd1a239f
MG
4613 zoneref_set_zone(z,
4614 &zonelist->_zonerefs[pos++]);
54a6eb5c 4615 check_highest_zone(zone_type);
f0c0b2b8
KH
4616 }
4617 }
f0c0b2b8 4618 }
dd1a239f
MG
4619 zonelist->_zonerefs[pos].zone = NULL;
4620 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4621}
4622
3193913c
MG
4623#if defined(CONFIG_64BIT)
4624/*
4625 * Devices that require DMA32/DMA are relatively rare and do not justify a
4626 * penalty to every machine in case the specialised case applies. Default
4627 * to Node-ordering on 64-bit NUMA machines
4628 */
4629static int default_zonelist_order(void)
4630{
4631 return ZONELIST_ORDER_NODE;
4632}
4633#else
4634/*
4635 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4636 * by the kernel. If processes running on node 0 deplete the low memory zone
4637 * then reclaim will occur more frequency increasing stalls and potentially
4638 * be easier to OOM if a large percentage of the zone is under writeback or
4639 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4640 * Hence, default to zone ordering on 32-bit.
4641 */
f0c0b2b8
KH
4642static int default_zonelist_order(void)
4643{
f0c0b2b8
KH
4644 return ZONELIST_ORDER_ZONE;
4645}
3193913c 4646#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4647
4648static void set_zonelist_order(void)
4649{
4650 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4651 current_zonelist_order = default_zonelist_order();
4652 else
4653 current_zonelist_order = user_zonelist_order;
4654}
4655
4656static void build_zonelists(pg_data_t *pgdat)
4657{
c00eb15a 4658 int i, node, load;
1da177e4 4659 nodemask_t used_mask;
f0c0b2b8
KH
4660 int local_node, prev_node;
4661 struct zonelist *zonelist;
d00181b9 4662 unsigned int order = current_zonelist_order;
1da177e4
LT
4663
4664 /* initialize zonelists */
523b9458 4665 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4666 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4667 zonelist->_zonerefs[0].zone = NULL;
4668 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4669 }
4670
4671 /* NUMA-aware ordering of nodes */
4672 local_node = pgdat->node_id;
62bc62a8 4673 load = nr_online_nodes;
1da177e4
LT
4674 prev_node = local_node;
4675 nodes_clear(used_mask);
f0c0b2b8 4676
f0c0b2b8 4677 memset(node_order, 0, sizeof(node_order));
c00eb15a 4678 i = 0;
f0c0b2b8 4679
1da177e4
LT
4680 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4681 /*
4682 * We don't want to pressure a particular node.
4683 * So adding penalty to the first node in same
4684 * distance group to make it round-robin.
4685 */
957f822a
DR
4686 if (node_distance(local_node, node) !=
4687 node_distance(local_node, prev_node))
f0c0b2b8
KH
4688 node_load[node] = load;
4689
1da177e4
LT
4690 prev_node = node;
4691 load--;
f0c0b2b8
KH
4692 if (order == ZONELIST_ORDER_NODE)
4693 build_zonelists_in_node_order(pgdat, node);
4694 else
c00eb15a 4695 node_order[i++] = node; /* remember order */
f0c0b2b8 4696 }
1da177e4 4697
f0c0b2b8
KH
4698 if (order == ZONELIST_ORDER_ZONE) {
4699 /* calculate node order -- i.e., DMA last! */
c00eb15a 4700 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4701 }
523b9458
CL
4702
4703 build_thisnode_zonelists(pgdat);
1da177e4
LT
4704}
4705
7aac7898
LS
4706#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4707/*
4708 * Return node id of node used for "local" allocations.
4709 * I.e., first node id of first zone in arg node's generic zonelist.
4710 * Used for initializing percpu 'numa_mem', which is used primarily
4711 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4712 */
4713int local_memory_node(int node)
4714{
c33d6c06 4715 struct zoneref *z;
7aac7898 4716
c33d6c06 4717 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4718 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4719 NULL);
4720 return z->zone->node;
7aac7898
LS
4721}
4722#endif
f0c0b2b8 4723
6423aa81
JK
4724static void setup_min_unmapped_ratio(void);
4725static void setup_min_slab_ratio(void);
1da177e4
LT
4726#else /* CONFIG_NUMA */
4727
f0c0b2b8
KH
4728static void set_zonelist_order(void)
4729{
4730 current_zonelist_order = ZONELIST_ORDER_ZONE;
4731}
4732
4733static void build_zonelists(pg_data_t *pgdat)
1da177e4 4734{
19655d34 4735 int node, local_node;
54a6eb5c
MG
4736 enum zone_type j;
4737 struct zonelist *zonelist;
1da177e4
LT
4738
4739 local_node = pgdat->node_id;
1da177e4 4740
54a6eb5c 4741 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4742 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4743
54a6eb5c
MG
4744 /*
4745 * Now we build the zonelist so that it contains the zones
4746 * of all the other nodes.
4747 * We don't want to pressure a particular node, so when
4748 * building the zones for node N, we make sure that the
4749 * zones coming right after the local ones are those from
4750 * node N+1 (modulo N)
4751 */
4752 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4753 if (!node_online(node))
4754 continue;
bc732f1d 4755 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4756 }
54a6eb5c
MG
4757 for (node = 0; node < local_node; node++) {
4758 if (!node_online(node))
4759 continue;
bc732f1d 4760 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4761 }
4762
dd1a239f
MG
4763 zonelist->_zonerefs[j].zone = NULL;
4764 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4765}
4766
4767#endif /* CONFIG_NUMA */
4768
99dcc3e5
CL
4769/*
4770 * Boot pageset table. One per cpu which is going to be used for all
4771 * zones and all nodes. The parameters will be set in such a way
4772 * that an item put on a list will immediately be handed over to
4773 * the buddy list. This is safe since pageset manipulation is done
4774 * with interrupts disabled.
4775 *
4776 * The boot_pagesets must be kept even after bootup is complete for
4777 * unused processors and/or zones. They do play a role for bootstrapping
4778 * hotplugged processors.
4779 *
4780 * zoneinfo_show() and maybe other functions do
4781 * not check if the processor is online before following the pageset pointer.
4782 * Other parts of the kernel may not check if the zone is available.
4783 */
4784static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4785static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4786static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4787
4eaf3f64
HL
4788/*
4789 * Global mutex to protect against size modification of zonelists
4790 * as well as to serialize pageset setup for the new populated zone.
4791 */
4792DEFINE_MUTEX(zonelists_mutex);
4793
9b1a4d38 4794/* return values int ....just for stop_machine() */
4ed7e022 4795static int __build_all_zonelists(void *data)
1da177e4 4796{
6811378e 4797 int nid;
99dcc3e5 4798 int cpu;
9adb62a5 4799 pg_data_t *self = data;
9276b1bc 4800
7f9cfb31
BL
4801#ifdef CONFIG_NUMA
4802 memset(node_load, 0, sizeof(node_load));
4803#endif
9adb62a5
JL
4804
4805 if (self && !node_online(self->node_id)) {
4806 build_zonelists(self);
9adb62a5
JL
4807 }
4808
9276b1bc 4809 for_each_online_node(nid) {
7ea1530a
CL
4810 pg_data_t *pgdat = NODE_DATA(nid);
4811
4812 build_zonelists(pgdat);
9276b1bc 4813 }
99dcc3e5
CL
4814
4815 /*
4816 * Initialize the boot_pagesets that are going to be used
4817 * for bootstrapping processors. The real pagesets for
4818 * each zone will be allocated later when the per cpu
4819 * allocator is available.
4820 *
4821 * boot_pagesets are used also for bootstrapping offline
4822 * cpus if the system is already booted because the pagesets
4823 * are needed to initialize allocators on a specific cpu too.
4824 * F.e. the percpu allocator needs the page allocator which
4825 * needs the percpu allocator in order to allocate its pagesets
4826 * (a chicken-egg dilemma).
4827 */
7aac7898 4828 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4829 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4830
7aac7898
LS
4831#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4832 /*
4833 * We now know the "local memory node" for each node--
4834 * i.e., the node of the first zone in the generic zonelist.
4835 * Set up numa_mem percpu variable for on-line cpus. During
4836 * boot, only the boot cpu should be on-line; we'll init the
4837 * secondary cpus' numa_mem as they come on-line. During
4838 * node/memory hotplug, we'll fixup all on-line cpus.
4839 */
4840 if (cpu_online(cpu))
4841 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4842#endif
4843 }
4844
6811378e
YG
4845 return 0;
4846}
4847
061f67bc
RV
4848static noinline void __init
4849build_all_zonelists_init(void)
4850{
4851 __build_all_zonelists(NULL);
4852 mminit_verify_zonelist();
4853 cpuset_init_current_mems_allowed();
4854}
4855
4eaf3f64
HL
4856/*
4857 * Called with zonelists_mutex held always
4858 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4859 *
4860 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4861 * [we're only called with non-NULL zone through __meminit paths] and
4862 * (2) call of __init annotated helper build_all_zonelists_init
4863 * [protected by SYSTEM_BOOTING].
4eaf3f64 4864 */
9adb62a5 4865void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4866{
f0c0b2b8
KH
4867 set_zonelist_order();
4868
6811378e 4869 if (system_state == SYSTEM_BOOTING) {
061f67bc 4870 build_all_zonelists_init();
6811378e 4871 } else {
e9959f0f 4872#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4873 if (zone)
4874 setup_zone_pageset(zone);
e9959f0f 4875#endif
dd1895e2
CS
4876 /* we have to stop all cpus to guarantee there is no user
4877 of zonelist */
9adb62a5 4878 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4879 /* cpuset refresh routine should be here */
4880 }
bd1e22b8 4881 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4882 /*
4883 * Disable grouping by mobility if the number of pages in the
4884 * system is too low to allow the mechanism to work. It would be
4885 * more accurate, but expensive to check per-zone. This check is
4886 * made on memory-hotadd so a system can start with mobility
4887 * disabled and enable it later
4888 */
d9c23400 4889 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4890 page_group_by_mobility_disabled = 1;
4891 else
4892 page_group_by_mobility_disabled = 0;
4893
756a025f
JP
4894 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4895 nr_online_nodes,
4896 zonelist_order_name[current_zonelist_order],
4897 page_group_by_mobility_disabled ? "off" : "on",
4898 vm_total_pages);
f0c0b2b8 4899#ifdef CONFIG_NUMA
f88dfff5 4900 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4901#endif
1da177e4
LT
4902}
4903
4904/*
4905 * Helper functions to size the waitqueue hash table.
4906 * Essentially these want to choose hash table sizes sufficiently
4907 * large so that collisions trying to wait on pages are rare.
4908 * But in fact, the number of active page waitqueues on typical
4909 * systems is ridiculously low, less than 200. So this is even
4910 * conservative, even though it seems large.
4911 *
4912 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4913 * waitqueues, i.e. the size of the waitq table given the number of pages.
4914 */
4915#define PAGES_PER_WAITQUEUE 256
4916
cca448fe 4917#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4918static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4919{
4920 unsigned long size = 1;
4921
4922 pages /= PAGES_PER_WAITQUEUE;
4923
4924 while (size < pages)
4925 size <<= 1;
4926
4927 /*
4928 * Once we have dozens or even hundreds of threads sleeping
4929 * on IO we've got bigger problems than wait queue collision.
4930 * Limit the size of the wait table to a reasonable size.
4931 */
4932 size = min(size, 4096UL);
4933
4934 return max(size, 4UL);
4935}
cca448fe
YG
4936#else
4937/*
4938 * A zone's size might be changed by hot-add, so it is not possible to determine
4939 * a suitable size for its wait_table. So we use the maximum size now.
4940 *
4941 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4942 *
4943 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4944 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4945 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4946 *
4947 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4948 * or more by the traditional way. (See above). It equals:
4949 *
4950 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4951 * ia64(16K page size) : = ( 8G + 4M)byte.
4952 * powerpc (64K page size) : = (32G +16M)byte.
4953 */
4954static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4955{
4956 return 4096UL;
4957}
4958#endif
1da177e4
LT
4959
4960/*
4961 * This is an integer logarithm so that shifts can be used later
4962 * to extract the more random high bits from the multiplicative
4963 * hash function before the remainder is taken.
4964 */
4965static inline unsigned long wait_table_bits(unsigned long size)
4966{
4967 return ffz(~size);
4968}
4969
1da177e4
LT
4970/*
4971 * Initially all pages are reserved - free ones are freed
4972 * up by free_all_bootmem() once the early boot process is
4973 * done. Non-atomic initialization, single-pass.
4974 */
c09b4240 4975void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4976 unsigned long start_pfn, enum memmap_context context)
1da177e4 4977{
4b94ffdc 4978 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4979 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4980 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4981 unsigned long pfn;
3a80a7fa 4982 unsigned long nr_initialised = 0;
342332e6
TI
4983#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4984 struct memblock_region *r = NULL, *tmp;
4985#endif
1da177e4 4986
22b31eec
HD
4987 if (highest_memmap_pfn < end_pfn - 1)
4988 highest_memmap_pfn = end_pfn - 1;
4989
4b94ffdc
DW
4990 /*
4991 * Honor reservation requested by the driver for this ZONE_DEVICE
4992 * memory
4993 */
4994 if (altmap && start_pfn == altmap->base_pfn)
4995 start_pfn += altmap->reserve;
4996
cbe8dd4a 4997 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4998 /*
b72d0ffb
AM
4999 * There can be holes in boot-time mem_map[]s handed to this
5000 * function. They do not exist on hotplugged memory.
a2f3aa02 5001 */
b72d0ffb
AM
5002 if (context != MEMMAP_EARLY)
5003 goto not_early;
5004
5005 if (!early_pfn_valid(pfn))
5006 continue;
5007 if (!early_pfn_in_nid(pfn, nid))
5008 continue;
5009 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5010 break;
342332e6
TI
5011
5012#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5013 /*
5014 * Check given memblock attribute by firmware which can affect
5015 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5016 * mirrored, it's an overlapped memmap init. skip it.
5017 */
5018 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5019 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5020 for_each_memblock(memory, tmp)
5021 if (pfn < memblock_region_memory_end_pfn(tmp))
5022 break;
5023 r = tmp;
5024 }
5025 if (pfn >= memblock_region_memory_base_pfn(r) &&
5026 memblock_is_mirror(r)) {
5027 /* already initialized as NORMAL */
5028 pfn = memblock_region_memory_end_pfn(r);
5029 continue;
342332e6 5030 }
a2f3aa02 5031 }
b72d0ffb 5032#endif
ac5d2539 5033
b72d0ffb 5034not_early:
ac5d2539
MG
5035 /*
5036 * Mark the block movable so that blocks are reserved for
5037 * movable at startup. This will force kernel allocations
5038 * to reserve their blocks rather than leaking throughout
5039 * the address space during boot when many long-lived
974a786e 5040 * kernel allocations are made.
ac5d2539
MG
5041 *
5042 * bitmap is created for zone's valid pfn range. but memmap
5043 * can be created for invalid pages (for alignment)
5044 * check here not to call set_pageblock_migratetype() against
5045 * pfn out of zone.
5046 */
5047 if (!(pfn & (pageblock_nr_pages - 1))) {
5048 struct page *page = pfn_to_page(pfn);
5049
5050 __init_single_page(page, pfn, zone, nid);
5051 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5052 } else {
5053 __init_single_pfn(pfn, zone, nid);
5054 }
1da177e4
LT
5055 }
5056}
5057
1e548deb 5058static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5059{
7aeb09f9 5060 unsigned int order, t;
b2a0ac88
MG
5061 for_each_migratetype_order(order, t) {
5062 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5063 zone->free_area[order].nr_free = 0;
5064 }
5065}
5066
5067#ifndef __HAVE_ARCH_MEMMAP_INIT
5068#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5069 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5070#endif
5071
7cd2b0a3 5072static int zone_batchsize(struct zone *zone)
e7c8d5c9 5073{
3a6be87f 5074#ifdef CONFIG_MMU
e7c8d5c9
CL
5075 int batch;
5076
5077 /*
5078 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5079 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5080 *
5081 * OK, so we don't know how big the cache is. So guess.
5082 */
b40da049 5083 batch = zone->managed_pages / 1024;
ba56e91c
SR
5084 if (batch * PAGE_SIZE > 512 * 1024)
5085 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5086 batch /= 4; /* We effectively *= 4 below */
5087 if (batch < 1)
5088 batch = 1;
5089
5090 /*
0ceaacc9
NP
5091 * Clamp the batch to a 2^n - 1 value. Having a power
5092 * of 2 value was found to be more likely to have
5093 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5094 *
0ceaacc9
NP
5095 * For example if 2 tasks are alternately allocating
5096 * batches of pages, one task can end up with a lot
5097 * of pages of one half of the possible page colors
5098 * and the other with pages of the other colors.
e7c8d5c9 5099 */
9155203a 5100 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5101
e7c8d5c9 5102 return batch;
3a6be87f
DH
5103
5104#else
5105 /* The deferral and batching of frees should be suppressed under NOMMU
5106 * conditions.
5107 *
5108 * The problem is that NOMMU needs to be able to allocate large chunks
5109 * of contiguous memory as there's no hardware page translation to
5110 * assemble apparent contiguous memory from discontiguous pages.
5111 *
5112 * Queueing large contiguous runs of pages for batching, however,
5113 * causes the pages to actually be freed in smaller chunks. As there
5114 * can be a significant delay between the individual batches being
5115 * recycled, this leads to the once large chunks of space being
5116 * fragmented and becoming unavailable for high-order allocations.
5117 */
5118 return 0;
5119#endif
e7c8d5c9
CL
5120}
5121
8d7a8fa9
CS
5122/*
5123 * pcp->high and pcp->batch values are related and dependent on one another:
5124 * ->batch must never be higher then ->high.
5125 * The following function updates them in a safe manner without read side
5126 * locking.
5127 *
5128 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5129 * those fields changing asynchronously (acording the the above rule).
5130 *
5131 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5132 * outside of boot time (or some other assurance that no concurrent updaters
5133 * exist).
5134 */
5135static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5136 unsigned long batch)
5137{
5138 /* start with a fail safe value for batch */
5139 pcp->batch = 1;
5140 smp_wmb();
5141
5142 /* Update high, then batch, in order */
5143 pcp->high = high;
5144 smp_wmb();
5145
5146 pcp->batch = batch;
5147}
5148
3664033c 5149/* a companion to pageset_set_high() */
4008bab7
CS
5150static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5151{
8d7a8fa9 5152 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5153}
5154
88c90dbc 5155static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5156{
5157 struct per_cpu_pages *pcp;
5f8dcc21 5158 int migratetype;
2caaad41 5159
1c6fe946
MD
5160 memset(p, 0, sizeof(*p));
5161
3dfa5721 5162 pcp = &p->pcp;
2caaad41 5163 pcp->count = 0;
5f8dcc21
MG
5164 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5165 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5166}
5167
88c90dbc
CS
5168static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5169{
5170 pageset_init(p);
5171 pageset_set_batch(p, batch);
5172}
5173
8ad4b1fb 5174/*
3664033c 5175 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5176 * to the value high for the pageset p.
5177 */
3664033c 5178static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5179 unsigned long high)
5180{
8d7a8fa9
CS
5181 unsigned long batch = max(1UL, high / 4);
5182 if ((high / 4) > (PAGE_SHIFT * 8))
5183 batch = PAGE_SHIFT * 8;
8ad4b1fb 5184
8d7a8fa9 5185 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5186}
5187
7cd2b0a3
DR
5188static void pageset_set_high_and_batch(struct zone *zone,
5189 struct per_cpu_pageset *pcp)
56cef2b8 5190{
56cef2b8 5191 if (percpu_pagelist_fraction)
3664033c 5192 pageset_set_high(pcp,
56cef2b8
CS
5193 (zone->managed_pages /
5194 percpu_pagelist_fraction));
5195 else
5196 pageset_set_batch(pcp, zone_batchsize(zone));
5197}
5198
169f6c19
CS
5199static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5200{
5201 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5202
5203 pageset_init(pcp);
5204 pageset_set_high_and_batch(zone, pcp);
5205}
5206
4ed7e022 5207static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5208{
5209 int cpu;
319774e2 5210 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5211 for_each_possible_cpu(cpu)
5212 zone_pageset_init(zone, cpu);
319774e2
WF
5213}
5214
2caaad41 5215/*
99dcc3e5
CL
5216 * Allocate per cpu pagesets and initialize them.
5217 * Before this call only boot pagesets were available.
e7c8d5c9 5218 */
99dcc3e5 5219void __init setup_per_cpu_pageset(void)
e7c8d5c9 5220{
b4911ea2 5221 struct pglist_data *pgdat;
99dcc3e5 5222 struct zone *zone;
e7c8d5c9 5223
319774e2
WF
5224 for_each_populated_zone(zone)
5225 setup_zone_pageset(zone);
b4911ea2
MG
5226
5227 for_each_online_pgdat(pgdat)
5228 pgdat->per_cpu_nodestats =
5229 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5230}
5231
bd721ea7 5232static noinline __ref
cca448fe 5233int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5234{
5235 int i;
cca448fe 5236 size_t alloc_size;
ed8ece2e
DH
5237
5238 /*
5239 * The per-page waitqueue mechanism uses hashed waitqueues
5240 * per zone.
5241 */
02b694de
YG
5242 zone->wait_table_hash_nr_entries =
5243 wait_table_hash_nr_entries(zone_size_pages);
5244 zone->wait_table_bits =
5245 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5246 alloc_size = zone->wait_table_hash_nr_entries
5247 * sizeof(wait_queue_head_t);
5248
cd94b9db 5249 if (!slab_is_available()) {
cca448fe 5250 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5251 memblock_virt_alloc_node_nopanic(
5252 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5253 } else {
5254 /*
5255 * This case means that a zone whose size was 0 gets new memory
5256 * via memory hot-add.
5257 * But it may be the case that a new node was hot-added. In
5258 * this case vmalloc() will not be able to use this new node's
5259 * memory - this wait_table must be initialized to use this new
5260 * node itself as well.
5261 * To use this new node's memory, further consideration will be
5262 * necessary.
5263 */
8691f3a7 5264 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5265 }
5266 if (!zone->wait_table)
5267 return -ENOMEM;
ed8ece2e 5268
b8af2941 5269 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5270 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5271
5272 return 0;
ed8ece2e
DH
5273}
5274
c09b4240 5275static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5276{
99dcc3e5
CL
5277 /*
5278 * per cpu subsystem is not up at this point. The following code
5279 * relies on the ability of the linker to provide the
5280 * offset of a (static) per cpu variable into the per cpu area.
5281 */
5282 zone->pageset = &boot_pageset;
ed8ece2e 5283
b38a8725 5284 if (populated_zone(zone))
99dcc3e5
CL
5285 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5286 zone->name, zone->present_pages,
5287 zone_batchsize(zone));
ed8ece2e
DH
5288}
5289
4ed7e022 5290int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5291 unsigned long zone_start_pfn,
b171e409 5292 unsigned long size)
ed8ece2e
DH
5293{
5294 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5295 int ret;
5296 ret = zone_wait_table_init(zone, size);
5297 if (ret)
5298 return ret;
ed8ece2e
DH
5299 pgdat->nr_zones = zone_idx(zone) + 1;
5300
ed8ece2e
DH
5301 zone->zone_start_pfn = zone_start_pfn;
5302
708614e6
MG
5303 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5304 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5305 pgdat->node_id,
5306 (unsigned long)zone_idx(zone),
5307 zone_start_pfn, (zone_start_pfn + size));
5308
1e548deb 5309 zone_init_free_lists(zone);
718127cc
YG
5310
5311 return 0;
ed8ece2e
DH
5312}
5313
0ee332c1 5314#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5315#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5316
c713216d
MG
5317/*
5318 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5319 */
8a942fde
MG
5320int __meminit __early_pfn_to_nid(unsigned long pfn,
5321 struct mminit_pfnnid_cache *state)
c713216d 5322{
c13291a5 5323 unsigned long start_pfn, end_pfn;
e76b63f8 5324 int nid;
7c243c71 5325
8a942fde
MG
5326 if (state->last_start <= pfn && pfn < state->last_end)
5327 return state->last_nid;
c713216d 5328
e76b63f8
YL
5329 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5330 if (nid != -1) {
8a942fde
MG
5331 state->last_start = start_pfn;
5332 state->last_end = end_pfn;
5333 state->last_nid = nid;
e76b63f8
YL
5334 }
5335
5336 return nid;
c713216d
MG
5337}
5338#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5339
c713216d 5340/**
6782832e 5341 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5342 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5343 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5344 *
7d018176
ZZ
5345 * If an architecture guarantees that all ranges registered contain no holes
5346 * and may be freed, this this function may be used instead of calling
5347 * memblock_free_early_nid() manually.
c713216d 5348 */
c13291a5 5349void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5350{
c13291a5
TH
5351 unsigned long start_pfn, end_pfn;
5352 int i, this_nid;
edbe7d23 5353
c13291a5
TH
5354 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5355 start_pfn = min(start_pfn, max_low_pfn);
5356 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5357
c13291a5 5358 if (start_pfn < end_pfn)
6782832e
SS
5359 memblock_free_early_nid(PFN_PHYS(start_pfn),
5360 (end_pfn - start_pfn) << PAGE_SHIFT,
5361 this_nid);
edbe7d23 5362 }
edbe7d23 5363}
edbe7d23 5364
c713216d
MG
5365/**
5366 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5367 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5368 *
7d018176
ZZ
5369 * If an architecture guarantees that all ranges registered contain no holes and may
5370 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5371 */
5372void __init sparse_memory_present_with_active_regions(int nid)
5373{
c13291a5
TH
5374 unsigned long start_pfn, end_pfn;
5375 int i, this_nid;
c713216d 5376
c13291a5
TH
5377 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5378 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5379}
5380
5381/**
5382 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5383 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5384 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5385 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5386 *
5387 * It returns the start and end page frame of a node based on information
7d018176 5388 * provided by memblock_set_node(). If called for a node
c713216d 5389 * with no available memory, a warning is printed and the start and end
88ca3b94 5390 * PFNs will be 0.
c713216d 5391 */
a3142c8e 5392void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5393 unsigned long *start_pfn, unsigned long *end_pfn)
5394{
c13291a5 5395 unsigned long this_start_pfn, this_end_pfn;
c713216d 5396 int i;
c13291a5 5397
c713216d
MG
5398 *start_pfn = -1UL;
5399 *end_pfn = 0;
5400
c13291a5
TH
5401 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5402 *start_pfn = min(*start_pfn, this_start_pfn);
5403 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5404 }
5405
633c0666 5406 if (*start_pfn == -1UL)
c713216d 5407 *start_pfn = 0;
c713216d
MG
5408}
5409
2a1e274a
MG
5410/*
5411 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5412 * assumption is made that zones within a node are ordered in monotonic
5413 * increasing memory addresses so that the "highest" populated zone is used
5414 */
b69a7288 5415static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5416{
5417 int zone_index;
5418 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5419 if (zone_index == ZONE_MOVABLE)
5420 continue;
5421
5422 if (arch_zone_highest_possible_pfn[zone_index] >
5423 arch_zone_lowest_possible_pfn[zone_index])
5424 break;
5425 }
5426
5427 VM_BUG_ON(zone_index == -1);
5428 movable_zone = zone_index;
5429}
5430
5431/*
5432 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5433 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5434 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5435 * in each node depending on the size of each node and how evenly kernelcore
5436 * is distributed. This helper function adjusts the zone ranges
5437 * provided by the architecture for a given node by using the end of the
5438 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5439 * zones within a node are in order of monotonic increases memory addresses
5440 */
b69a7288 5441static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5442 unsigned long zone_type,
5443 unsigned long node_start_pfn,
5444 unsigned long node_end_pfn,
5445 unsigned long *zone_start_pfn,
5446 unsigned long *zone_end_pfn)
5447{
5448 /* Only adjust if ZONE_MOVABLE is on this node */
5449 if (zone_movable_pfn[nid]) {
5450 /* Size ZONE_MOVABLE */
5451 if (zone_type == ZONE_MOVABLE) {
5452 *zone_start_pfn = zone_movable_pfn[nid];
5453 *zone_end_pfn = min(node_end_pfn,
5454 arch_zone_highest_possible_pfn[movable_zone]);
5455
e506b996
XQ
5456 /* Adjust for ZONE_MOVABLE starting within this range */
5457 } else if (!mirrored_kernelcore &&
5458 *zone_start_pfn < zone_movable_pfn[nid] &&
5459 *zone_end_pfn > zone_movable_pfn[nid]) {
5460 *zone_end_pfn = zone_movable_pfn[nid];
5461
2a1e274a
MG
5462 /* Check if this whole range is within ZONE_MOVABLE */
5463 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5464 *zone_start_pfn = *zone_end_pfn;
5465 }
5466}
5467
c713216d
MG
5468/*
5469 * Return the number of pages a zone spans in a node, including holes
5470 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5471 */
6ea6e688 5472static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5473 unsigned long zone_type,
7960aedd
ZY
5474 unsigned long node_start_pfn,
5475 unsigned long node_end_pfn,
d91749c1
TI
5476 unsigned long *zone_start_pfn,
5477 unsigned long *zone_end_pfn,
c713216d
MG
5478 unsigned long *ignored)
5479{
b5685e92 5480 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5481 if (!node_start_pfn && !node_end_pfn)
5482 return 0;
5483
7960aedd 5484 /* Get the start and end of the zone */
d91749c1
TI
5485 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5486 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5487 adjust_zone_range_for_zone_movable(nid, zone_type,
5488 node_start_pfn, node_end_pfn,
d91749c1 5489 zone_start_pfn, zone_end_pfn);
c713216d
MG
5490
5491 /* Check that this node has pages within the zone's required range */
d91749c1 5492 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5493 return 0;
5494
5495 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5496 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5497 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5498
5499 /* Return the spanned pages */
d91749c1 5500 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5501}
5502
5503/*
5504 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5505 * then all holes in the requested range will be accounted for.
c713216d 5506 */
32996250 5507unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5508 unsigned long range_start_pfn,
5509 unsigned long range_end_pfn)
5510{
96e907d1
TH
5511 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5512 unsigned long start_pfn, end_pfn;
5513 int i;
c713216d 5514
96e907d1
TH
5515 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5516 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5517 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5518 nr_absent -= end_pfn - start_pfn;
c713216d 5519 }
96e907d1 5520 return nr_absent;
c713216d
MG
5521}
5522
5523/**
5524 * absent_pages_in_range - Return number of page frames in holes within a range
5525 * @start_pfn: The start PFN to start searching for holes
5526 * @end_pfn: The end PFN to stop searching for holes
5527 *
88ca3b94 5528 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5529 */
5530unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5531 unsigned long end_pfn)
5532{
5533 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5534}
5535
5536/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5537static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5538 unsigned long zone_type,
7960aedd
ZY
5539 unsigned long node_start_pfn,
5540 unsigned long node_end_pfn,
c713216d
MG
5541 unsigned long *ignored)
5542{
96e907d1
TH
5543 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5544 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5545 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5546 unsigned long nr_absent;
9c7cd687 5547
b5685e92 5548 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5549 if (!node_start_pfn && !node_end_pfn)
5550 return 0;
5551
96e907d1
TH
5552 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5553 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5554
2a1e274a
MG
5555 adjust_zone_range_for_zone_movable(nid, zone_type,
5556 node_start_pfn, node_end_pfn,
5557 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5558 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5559
5560 /*
5561 * ZONE_MOVABLE handling.
5562 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5563 * and vice versa.
5564 */
e506b996
XQ
5565 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5566 unsigned long start_pfn, end_pfn;
5567 struct memblock_region *r;
5568
5569 for_each_memblock(memory, r) {
5570 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5571 zone_start_pfn, zone_end_pfn);
5572 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5573 zone_start_pfn, zone_end_pfn);
5574
5575 if (zone_type == ZONE_MOVABLE &&
5576 memblock_is_mirror(r))
5577 nr_absent += end_pfn - start_pfn;
5578
5579 if (zone_type == ZONE_NORMAL &&
5580 !memblock_is_mirror(r))
5581 nr_absent += end_pfn - start_pfn;
342332e6
TI
5582 }
5583 }
5584
5585 return nr_absent;
c713216d 5586}
0e0b864e 5587
0ee332c1 5588#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5589static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5590 unsigned long zone_type,
7960aedd
ZY
5591 unsigned long node_start_pfn,
5592 unsigned long node_end_pfn,
d91749c1
TI
5593 unsigned long *zone_start_pfn,
5594 unsigned long *zone_end_pfn,
c713216d
MG
5595 unsigned long *zones_size)
5596{
d91749c1
TI
5597 unsigned int zone;
5598
5599 *zone_start_pfn = node_start_pfn;
5600 for (zone = 0; zone < zone_type; zone++)
5601 *zone_start_pfn += zones_size[zone];
5602
5603 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5604
c713216d
MG
5605 return zones_size[zone_type];
5606}
5607
6ea6e688 5608static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5609 unsigned long zone_type,
7960aedd
ZY
5610 unsigned long node_start_pfn,
5611 unsigned long node_end_pfn,
c713216d
MG
5612 unsigned long *zholes_size)
5613{
5614 if (!zholes_size)
5615 return 0;
5616
5617 return zholes_size[zone_type];
5618}
20e6926d 5619
0ee332c1 5620#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5621
a3142c8e 5622static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5623 unsigned long node_start_pfn,
5624 unsigned long node_end_pfn,
5625 unsigned long *zones_size,
5626 unsigned long *zholes_size)
c713216d 5627{
febd5949 5628 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5629 enum zone_type i;
5630
febd5949
GZ
5631 for (i = 0; i < MAX_NR_ZONES; i++) {
5632 struct zone *zone = pgdat->node_zones + i;
d91749c1 5633 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5634 unsigned long size, real_size;
c713216d 5635
febd5949
GZ
5636 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5637 node_start_pfn,
5638 node_end_pfn,
d91749c1
TI
5639 &zone_start_pfn,
5640 &zone_end_pfn,
febd5949
GZ
5641 zones_size);
5642 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5643 node_start_pfn, node_end_pfn,
5644 zholes_size);
d91749c1
TI
5645 if (size)
5646 zone->zone_start_pfn = zone_start_pfn;
5647 else
5648 zone->zone_start_pfn = 0;
febd5949
GZ
5649 zone->spanned_pages = size;
5650 zone->present_pages = real_size;
5651
5652 totalpages += size;
5653 realtotalpages += real_size;
5654 }
5655
5656 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5657 pgdat->node_present_pages = realtotalpages;
5658 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5659 realtotalpages);
5660}
5661
835c134e
MG
5662#ifndef CONFIG_SPARSEMEM
5663/*
5664 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5665 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5666 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5667 * round what is now in bits to nearest long in bits, then return it in
5668 * bytes.
5669 */
7c45512d 5670static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5671{
5672 unsigned long usemapsize;
5673
7c45512d 5674 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5675 usemapsize = roundup(zonesize, pageblock_nr_pages);
5676 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5677 usemapsize *= NR_PAGEBLOCK_BITS;
5678 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5679
5680 return usemapsize / 8;
5681}
5682
5683static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5684 struct zone *zone,
5685 unsigned long zone_start_pfn,
5686 unsigned long zonesize)
835c134e 5687{
7c45512d 5688 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5689 zone->pageblock_flags = NULL;
58a01a45 5690 if (usemapsize)
6782832e
SS
5691 zone->pageblock_flags =
5692 memblock_virt_alloc_node_nopanic(usemapsize,
5693 pgdat->node_id);
835c134e
MG
5694}
5695#else
7c45512d
LT
5696static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5697 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5698#endif /* CONFIG_SPARSEMEM */
5699
d9c23400 5700#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5701
d9c23400 5702/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5703void __paginginit set_pageblock_order(void)
d9c23400 5704{
955c1cd7
AM
5705 unsigned int order;
5706
d9c23400
MG
5707 /* Check that pageblock_nr_pages has not already been setup */
5708 if (pageblock_order)
5709 return;
5710
955c1cd7
AM
5711 if (HPAGE_SHIFT > PAGE_SHIFT)
5712 order = HUGETLB_PAGE_ORDER;
5713 else
5714 order = MAX_ORDER - 1;
5715
d9c23400
MG
5716 /*
5717 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5718 * This value may be variable depending on boot parameters on IA64 and
5719 * powerpc.
d9c23400
MG
5720 */
5721 pageblock_order = order;
5722}
5723#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5724
ba72cb8c
MG
5725/*
5726 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5727 * is unused as pageblock_order is set at compile-time. See
5728 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5729 * the kernel config
ba72cb8c 5730 */
15ca220e 5731void __paginginit set_pageblock_order(void)
ba72cb8c 5732{
ba72cb8c 5733}
d9c23400
MG
5734
5735#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5736
01cefaef
JL
5737static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5738 unsigned long present_pages)
5739{
5740 unsigned long pages = spanned_pages;
5741
5742 /*
5743 * Provide a more accurate estimation if there are holes within
5744 * the zone and SPARSEMEM is in use. If there are holes within the
5745 * zone, each populated memory region may cost us one or two extra
5746 * memmap pages due to alignment because memmap pages for each
5747 * populated regions may not naturally algined on page boundary.
5748 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5749 */
5750 if (spanned_pages > present_pages + (present_pages >> 4) &&
5751 IS_ENABLED(CONFIG_SPARSEMEM))
5752 pages = present_pages;
5753
5754 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5755}
5756
1da177e4
LT
5757/*
5758 * Set up the zone data structures:
5759 * - mark all pages reserved
5760 * - mark all memory queues empty
5761 * - clear the memory bitmaps
6527af5d
MK
5762 *
5763 * NOTE: pgdat should get zeroed by caller.
1da177e4 5764 */
7f3eb55b 5765static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5766{
2f1b6248 5767 enum zone_type j;
ed8ece2e 5768 int nid = pgdat->node_id;
718127cc 5769 int ret;
1da177e4 5770
208d54e5 5771 pgdat_resize_init(pgdat);
8177a420
AA
5772#ifdef CONFIG_NUMA_BALANCING
5773 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5774 pgdat->numabalancing_migrate_nr_pages = 0;
5775 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5776#endif
5777#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5778 spin_lock_init(&pgdat->split_queue_lock);
5779 INIT_LIST_HEAD(&pgdat->split_queue);
5780 pgdat->split_queue_len = 0;
8177a420 5781#endif
1da177e4 5782 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5783 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5784#ifdef CONFIG_COMPACTION
5785 init_waitqueue_head(&pgdat->kcompactd_wait);
5786#endif
eefa864b 5787 pgdat_page_ext_init(pgdat);
a52633d8 5788 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5789 lruvec_init(node_lruvec(pgdat));
5f63b720 5790
1da177e4
LT
5791 for (j = 0; j < MAX_NR_ZONES; j++) {
5792 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5793 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5794 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5795
febd5949
GZ
5796 size = zone->spanned_pages;
5797 realsize = freesize = zone->present_pages;
1da177e4 5798
0e0b864e 5799 /*
9feedc9d 5800 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5801 * is used by this zone for memmap. This affects the watermark
5802 * and per-cpu initialisations
5803 */
01cefaef 5804 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5805 if (!is_highmem_idx(j)) {
5806 if (freesize >= memmap_pages) {
5807 freesize -= memmap_pages;
5808 if (memmap_pages)
5809 printk(KERN_DEBUG
5810 " %s zone: %lu pages used for memmap\n",
5811 zone_names[j], memmap_pages);
5812 } else
1170532b 5813 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5814 zone_names[j], memmap_pages, freesize);
5815 }
0e0b864e 5816
6267276f 5817 /* Account for reserved pages */
9feedc9d
JL
5818 if (j == 0 && freesize > dma_reserve) {
5819 freesize -= dma_reserve;
d903ef9f 5820 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5821 zone_names[0], dma_reserve);
0e0b864e
MG
5822 }
5823
98d2b0eb 5824 if (!is_highmem_idx(j))
9feedc9d 5825 nr_kernel_pages += freesize;
01cefaef
JL
5826 /* Charge for highmem memmap if there are enough kernel pages */
5827 else if (nr_kernel_pages > memmap_pages * 2)
5828 nr_kernel_pages -= memmap_pages;
9feedc9d 5829 nr_all_pages += freesize;
1da177e4 5830
9feedc9d
JL
5831 /*
5832 * Set an approximate value for lowmem here, it will be adjusted
5833 * when the bootmem allocator frees pages into the buddy system.
5834 * And all highmem pages will be managed by the buddy system.
5835 */
5836 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5837#ifdef CONFIG_NUMA
d5f541ed 5838 zone->node = nid;
9614634f 5839#endif
1da177e4 5840 zone->name = zone_names[j];
a52633d8 5841 zone->zone_pgdat = pgdat;
1da177e4 5842 spin_lock_init(&zone->lock);
bdc8cb98 5843 zone_seqlock_init(zone);
ed8ece2e 5844 zone_pcp_init(zone);
81c0a2bb 5845
1da177e4
LT
5846 if (!size)
5847 continue;
5848
955c1cd7 5849 set_pageblock_order();
7c45512d 5850 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5851 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5852 BUG_ON(ret);
76cdd58e 5853 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5854 }
5855}
5856
bd721ea7 5857static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5858{
b0aeba74 5859 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5860 unsigned long __maybe_unused offset = 0;
5861
1da177e4
LT
5862 /* Skip empty nodes */
5863 if (!pgdat->node_spanned_pages)
5864 return;
5865
d41dee36 5866#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5867 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5868 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5869 /* ia64 gets its own node_mem_map, before this, without bootmem */
5870 if (!pgdat->node_mem_map) {
b0aeba74 5871 unsigned long size, end;
d41dee36
AW
5872 struct page *map;
5873
e984bb43
BP
5874 /*
5875 * The zone's endpoints aren't required to be MAX_ORDER
5876 * aligned but the node_mem_map endpoints must be in order
5877 * for the buddy allocator to function correctly.
5878 */
108bcc96 5879 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5880 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5881 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5882 map = alloc_remap(pgdat->node_id, size);
5883 if (!map)
6782832e
SS
5884 map = memblock_virt_alloc_node_nopanic(size,
5885 pgdat->node_id);
a1c34a3b 5886 pgdat->node_mem_map = map + offset;
1da177e4 5887 }
12d810c1 5888#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5889 /*
5890 * With no DISCONTIG, the global mem_map is just set as node 0's
5891 */
c713216d 5892 if (pgdat == NODE_DATA(0)) {
1da177e4 5893 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5894#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5895 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5896 mem_map -= offset;
0ee332c1 5897#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5898 }
1da177e4 5899#endif
d41dee36 5900#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5901}
5902
9109fb7b
JW
5903void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5904 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5905{
9109fb7b 5906 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5907 unsigned long start_pfn = 0;
5908 unsigned long end_pfn = 0;
9109fb7b 5909
88fdf75d 5910 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 5911 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 5912
3a80a7fa 5913 reset_deferred_meminit(pgdat);
1da177e4
LT
5914 pgdat->node_id = nid;
5915 pgdat->node_start_pfn = node_start_pfn;
75ef7184 5916 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
5917#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5918 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5919 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5920 (u64)start_pfn << PAGE_SHIFT,
5921 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5922#else
5923 start_pfn = node_start_pfn;
7960aedd
ZY
5924#endif
5925 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5926 zones_size, zholes_size);
1da177e4
LT
5927
5928 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5929#ifdef CONFIG_FLAT_NODE_MEM_MAP
5930 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5931 nid, (unsigned long)pgdat,
5932 (unsigned long)pgdat->node_mem_map);
5933#endif
1da177e4 5934
7f3eb55b 5935 free_area_init_core(pgdat);
1da177e4
LT
5936}
5937
0ee332c1 5938#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5939
5940#if MAX_NUMNODES > 1
5941/*
5942 * Figure out the number of possible node ids.
5943 */
f9872caf 5944void __init setup_nr_node_ids(void)
418508c1 5945{
904a9553 5946 unsigned int highest;
418508c1 5947
904a9553 5948 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5949 nr_node_ids = highest + 1;
5950}
418508c1
MS
5951#endif
5952
1e01979c
TH
5953/**
5954 * node_map_pfn_alignment - determine the maximum internode alignment
5955 *
5956 * This function should be called after node map is populated and sorted.
5957 * It calculates the maximum power of two alignment which can distinguish
5958 * all the nodes.
5959 *
5960 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5961 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5962 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5963 * shifted, 1GiB is enough and this function will indicate so.
5964 *
5965 * This is used to test whether pfn -> nid mapping of the chosen memory
5966 * model has fine enough granularity to avoid incorrect mapping for the
5967 * populated node map.
5968 *
5969 * Returns the determined alignment in pfn's. 0 if there is no alignment
5970 * requirement (single node).
5971 */
5972unsigned long __init node_map_pfn_alignment(void)
5973{
5974 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5975 unsigned long start, end, mask;
1e01979c 5976 int last_nid = -1;
c13291a5 5977 int i, nid;
1e01979c 5978
c13291a5 5979 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5980 if (!start || last_nid < 0 || last_nid == nid) {
5981 last_nid = nid;
5982 last_end = end;
5983 continue;
5984 }
5985
5986 /*
5987 * Start with a mask granular enough to pin-point to the
5988 * start pfn and tick off bits one-by-one until it becomes
5989 * too coarse to separate the current node from the last.
5990 */
5991 mask = ~((1 << __ffs(start)) - 1);
5992 while (mask && last_end <= (start & (mask << 1)))
5993 mask <<= 1;
5994
5995 /* accumulate all internode masks */
5996 accl_mask |= mask;
5997 }
5998
5999 /* convert mask to number of pages */
6000 return ~accl_mask + 1;
6001}
6002
a6af2bc3 6003/* Find the lowest pfn for a node */
b69a7288 6004static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6005{
a6af2bc3 6006 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6007 unsigned long start_pfn;
6008 int i;
1abbfb41 6009
c13291a5
TH
6010 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6011 min_pfn = min(min_pfn, start_pfn);
c713216d 6012
a6af2bc3 6013 if (min_pfn == ULONG_MAX) {
1170532b 6014 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6015 return 0;
6016 }
6017
6018 return min_pfn;
c713216d
MG
6019}
6020
6021/**
6022 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6023 *
6024 * It returns the minimum PFN based on information provided via
7d018176 6025 * memblock_set_node().
c713216d
MG
6026 */
6027unsigned long __init find_min_pfn_with_active_regions(void)
6028{
6029 return find_min_pfn_for_node(MAX_NUMNODES);
6030}
6031
37b07e41
LS
6032/*
6033 * early_calculate_totalpages()
6034 * Sum pages in active regions for movable zone.
4b0ef1fe 6035 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6036 */
484f51f8 6037static unsigned long __init early_calculate_totalpages(void)
7e63efef 6038{
7e63efef 6039 unsigned long totalpages = 0;
c13291a5
TH
6040 unsigned long start_pfn, end_pfn;
6041 int i, nid;
6042
6043 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6044 unsigned long pages = end_pfn - start_pfn;
7e63efef 6045
37b07e41
LS
6046 totalpages += pages;
6047 if (pages)
4b0ef1fe 6048 node_set_state(nid, N_MEMORY);
37b07e41 6049 }
b8af2941 6050 return totalpages;
7e63efef
MG
6051}
6052
2a1e274a
MG
6053/*
6054 * Find the PFN the Movable zone begins in each node. Kernel memory
6055 * is spread evenly between nodes as long as the nodes have enough
6056 * memory. When they don't, some nodes will have more kernelcore than
6057 * others
6058 */
b224ef85 6059static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6060{
6061 int i, nid;
6062 unsigned long usable_startpfn;
6063 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6064 /* save the state before borrow the nodemask */
4b0ef1fe 6065 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6066 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6067 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6068 struct memblock_region *r;
b2f3eebe
TC
6069
6070 /* Need to find movable_zone earlier when movable_node is specified. */
6071 find_usable_zone_for_movable();
6072
6073 /*
6074 * If movable_node is specified, ignore kernelcore and movablecore
6075 * options.
6076 */
6077 if (movable_node_is_enabled()) {
136199f0
EM
6078 for_each_memblock(memory, r) {
6079 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6080 continue;
6081
136199f0 6082 nid = r->nid;
b2f3eebe 6083
136199f0 6084 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6085 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6086 min(usable_startpfn, zone_movable_pfn[nid]) :
6087 usable_startpfn;
6088 }
6089
6090 goto out2;
6091 }
2a1e274a 6092
342332e6
TI
6093 /*
6094 * If kernelcore=mirror is specified, ignore movablecore option
6095 */
6096 if (mirrored_kernelcore) {
6097 bool mem_below_4gb_not_mirrored = false;
6098
6099 for_each_memblock(memory, r) {
6100 if (memblock_is_mirror(r))
6101 continue;
6102
6103 nid = r->nid;
6104
6105 usable_startpfn = memblock_region_memory_base_pfn(r);
6106
6107 if (usable_startpfn < 0x100000) {
6108 mem_below_4gb_not_mirrored = true;
6109 continue;
6110 }
6111
6112 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6113 min(usable_startpfn, zone_movable_pfn[nid]) :
6114 usable_startpfn;
6115 }
6116
6117 if (mem_below_4gb_not_mirrored)
6118 pr_warn("This configuration results in unmirrored kernel memory.");
6119
6120 goto out2;
6121 }
6122
7e63efef 6123 /*
b2f3eebe 6124 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6125 * kernelcore that corresponds so that memory usable for
6126 * any allocation type is evenly spread. If both kernelcore
6127 * and movablecore are specified, then the value of kernelcore
6128 * will be used for required_kernelcore if it's greater than
6129 * what movablecore would have allowed.
6130 */
6131 if (required_movablecore) {
7e63efef
MG
6132 unsigned long corepages;
6133
6134 /*
6135 * Round-up so that ZONE_MOVABLE is at least as large as what
6136 * was requested by the user
6137 */
6138 required_movablecore =
6139 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6140 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6141 corepages = totalpages - required_movablecore;
6142
6143 required_kernelcore = max(required_kernelcore, corepages);
6144 }
6145
bde304bd
XQ
6146 /*
6147 * If kernelcore was not specified or kernelcore size is larger
6148 * than totalpages, there is no ZONE_MOVABLE.
6149 */
6150 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6151 goto out;
2a1e274a
MG
6152
6153 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6154 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6155
6156restart:
6157 /* Spread kernelcore memory as evenly as possible throughout nodes */
6158 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6159 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6160 unsigned long start_pfn, end_pfn;
6161
2a1e274a
MG
6162 /*
6163 * Recalculate kernelcore_node if the division per node
6164 * now exceeds what is necessary to satisfy the requested
6165 * amount of memory for the kernel
6166 */
6167 if (required_kernelcore < kernelcore_node)
6168 kernelcore_node = required_kernelcore / usable_nodes;
6169
6170 /*
6171 * As the map is walked, we track how much memory is usable
6172 * by the kernel using kernelcore_remaining. When it is
6173 * 0, the rest of the node is usable by ZONE_MOVABLE
6174 */
6175 kernelcore_remaining = kernelcore_node;
6176
6177 /* Go through each range of PFNs within this node */
c13291a5 6178 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6179 unsigned long size_pages;
6180
c13291a5 6181 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6182 if (start_pfn >= end_pfn)
6183 continue;
6184
6185 /* Account for what is only usable for kernelcore */
6186 if (start_pfn < usable_startpfn) {
6187 unsigned long kernel_pages;
6188 kernel_pages = min(end_pfn, usable_startpfn)
6189 - start_pfn;
6190
6191 kernelcore_remaining -= min(kernel_pages,
6192 kernelcore_remaining);
6193 required_kernelcore -= min(kernel_pages,
6194 required_kernelcore);
6195
6196 /* Continue if range is now fully accounted */
6197 if (end_pfn <= usable_startpfn) {
6198
6199 /*
6200 * Push zone_movable_pfn to the end so
6201 * that if we have to rebalance
6202 * kernelcore across nodes, we will
6203 * not double account here
6204 */
6205 zone_movable_pfn[nid] = end_pfn;
6206 continue;
6207 }
6208 start_pfn = usable_startpfn;
6209 }
6210
6211 /*
6212 * The usable PFN range for ZONE_MOVABLE is from
6213 * start_pfn->end_pfn. Calculate size_pages as the
6214 * number of pages used as kernelcore
6215 */
6216 size_pages = end_pfn - start_pfn;
6217 if (size_pages > kernelcore_remaining)
6218 size_pages = kernelcore_remaining;
6219 zone_movable_pfn[nid] = start_pfn + size_pages;
6220
6221 /*
6222 * Some kernelcore has been met, update counts and
6223 * break if the kernelcore for this node has been
b8af2941 6224 * satisfied
2a1e274a
MG
6225 */
6226 required_kernelcore -= min(required_kernelcore,
6227 size_pages);
6228 kernelcore_remaining -= size_pages;
6229 if (!kernelcore_remaining)
6230 break;
6231 }
6232 }
6233
6234 /*
6235 * If there is still required_kernelcore, we do another pass with one
6236 * less node in the count. This will push zone_movable_pfn[nid] further
6237 * along on the nodes that still have memory until kernelcore is
b8af2941 6238 * satisfied
2a1e274a
MG
6239 */
6240 usable_nodes--;
6241 if (usable_nodes && required_kernelcore > usable_nodes)
6242 goto restart;
6243
b2f3eebe 6244out2:
2a1e274a
MG
6245 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6246 for (nid = 0; nid < MAX_NUMNODES; nid++)
6247 zone_movable_pfn[nid] =
6248 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6249
20e6926d 6250out:
66918dcd 6251 /* restore the node_state */
4b0ef1fe 6252 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6253}
6254
4b0ef1fe
LJ
6255/* Any regular or high memory on that node ? */
6256static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6257{
37b07e41
LS
6258 enum zone_type zone_type;
6259
4b0ef1fe
LJ
6260 if (N_MEMORY == N_NORMAL_MEMORY)
6261 return;
6262
6263 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6264 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6265 if (populated_zone(zone)) {
4b0ef1fe
LJ
6266 node_set_state(nid, N_HIGH_MEMORY);
6267 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6268 zone_type <= ZONE_NORMAL)
6269 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6270 break;
6271 }
37b07e41 6272 }
37b07e41
LS
6273}
6274
c713216d
MG
6275/**
6276 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6277 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6278 *
6279 * This will call free_area_init_node() for each active node in the system.
7d018176 6280 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6281 * zone in each node and their holes is calculated. If the maximum PFN
6282 * between two adjacent zones match, it is assumed that the zone is empty.
6283 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6284 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6285 * starts where the previous one ended. For example, ZONE_DMA32 starts
6286 * at arch_max_dma_pfn.
6287 */
6288void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6289{
c13291a5
TH
6290 unsigned long start_pfn, end_pfn;
6291 int i, nid;
a6af2bc3 6292
c713216d
MG
6293 /* Record where the zone boundaries are */
6294 memset(arch_zone_lowest_possible_pfn, 0,
6295 sizeof(arch_zone_lowest_possible_pfn));
6296 memset(arch_zone_highest_possible_pfn, 0,
6297 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6298
6299 start_pfn = find_min_pfn_with_active_regions();
6300
6301 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6302 if (i == ZONE_MOVABLE)
6303 continue;
90cae1fe
OH
6304
6305 end_pfn = max(max_zone_pfn[i], start_pfn);
6306 arch_zone_lowest_possible_pfn[i] = start_pfn;
6307 arch_zone_highest_possible_pfn[i] = end_pfn;
6308
6309 start_pfn = end_pfn;
c713216d 6310 }
2a1e274a
MG
6311 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6312 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6313
6314 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6315 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6316 find_zone_movable_pfns_for_nodes();
c713216d 6317
c713216d 6318 /* Print out the zone ranges */
f88dfff5 6319 pr_info("Zone ranges:\n");
2a1e274a
MG
6320 for (i = 0; i < MAX_NR_ZONES; i++) {
6321 if (i == ZONE_MOVABLE)
6322 continue;
f88dfff5 6323 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6324 if (arch_zone_lowest_possible_pfn[i] ==
6325 arch_zone_highest_possible_pfn[i])
f88dfff5 6326 pr_cont("empty\n");
72f0ba02 6327 else
8d29e18a
JG
6328 pr_cont("[mem %#018Lx-%#018Lx]\n",
6329 (u64)arch_zone_lowest_possible_pfn[i]
6330 << PAGE_SHIFT,
6331 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6332 << PAGE_SHIFT) - 1);
2a1e274a
MG
6333 }
6334
6335 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6336 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6337 for (i = 0; i < MAX_NUMNODES; i++) {
6338 if (zone_movable_pfn[i])
8d29e18a
JG
6339 pr_info(" Node %d: %#018Lx\n", i,
6340 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6341 }
c713216d 6342
f2d52fe5 6343 /* Print out the early node map */
f88dfff5 6344 pr_info("Early memory node ranges\n");
c13291a5 6345 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6346 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6347 (u64)start_pfn << PAGE_SHIFT,
6348 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6349
6350 /* Initialise every node */
708614e6 6351 mminit_verify_pageflags_layout();
8ef82866 6352 setup_nr_node_ids();
c713216d
MG
6353 for_each_online_node(nid) {
6354 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6355 free_area_init_node(nid, NULL,
c713216d 6356 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6357
6358 /* Any memory on that node */
6359 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6360 node_set_state(nid, N_MEMORY);
6361 check_for_memory(pgdat, nid);
c713216d
MG
6362 }
6363}
2a1e274a 6364
7e63efef 6365static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6366{
6367 unsigned long long coremem;
6368 if (!p)
6369 return -EINVAL;
6370
6371 coremem = memparse(p, &p);
7e63efef 6372 *core = coremem >> PAGE_SHIFT;
2a1e274a 6373
7e63efef 6374 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6375 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6376
6377 return 0;
6378}
ed7ed365 6379
7e63efef
MG
6380/*
6381 * kernelcore=size sets the amount of memory for use for allocations that
6382 * cannot be reclaimed or migrated.
6383 */
6384static int __init cmdline_parse_kernelcore(char *p)
6385{
342332e6
TI
6386 /* parse kernelcore=mirror */
6387 if (parse_option_str(p, "mirror")) {
6388 mirrored_kernelcore = true;
6389 return 0;
6390 }
6391
7e63efef
MG
6392 return cmdline_parse_core(p, &required_kernelcore);
6393}
6394
6395/*
6396 * movablecore=size sets the amount of memory for use for allocations that
6397 * can be reclaimed or migrated.
6398 */
6399static int __init cmdline_parse_movablecore(char *p)
6400{
6401 return cmdline_parse_core(p, &required_movablecore);
6402}
6403
ed7ed365 6404early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6405early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6406
0ee332c1 6407#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6408
c3d5f5f0
JL
6409void adjust_managed_page_count(struct page *page, long count)
6410{
6411 spin_lock(&managed_page_count_lock);
6412 page_zone(page)->managed_pages += count;
6413 totalram_pages += count;
3dcc0571
JL
6414#ifdef CONFIG_HIGHMEM
6415 if (PageHighMem(page))
6416 totalhigh_pages += count;
6417#endif
c3d5f5f0
JL
6418 spin_unlock(&managed_page_count_lock);
6419}
3dcc0571 6420EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6421
11199692 6422unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6423{
11199692
JL
6424 void *pos;
6425 unsigned long pages = 0;
69afade7 6426
11199692
JL
6427 start = (void *)PAGE_ALIGN((unsigned long)start);
6428 end = (void *)((unsigned long)end & PAGE_MASK);
6429 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6430 if ((unsigned int)poison <= 0xFF)
11199692
JL
6431 memset(pos, poison, PAGE_SIZE);
6432 free_reserved_page(virt_to_page(pos));
69afade7
JL
6433 }
6434
6435 if (pages && s)
11199692 6436 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6437 s, pages << (PAGE_SHIFT - 10), start, end);
6438
6439 return pages;
6440}
11199692 6441EXPORT_SYMBOL(free_reserved_area);
69afade7 6442
cfa11e08
JL
6443#ifdef CONFIG_HIGHMEM
6444void free_highmem_page(struct page *page)
6445{
6446 __free_reserved_page(page);
6447 totalram_pages++;
7b4b2a0d 6448 page_zone(page)->managed_pages++;
cfa11e08
JL
6449 totalhigh_pages++;
6450}
6451#endif
6452
7ee3d4e8
JL
6453
6454void __init mem_init_print_info(const char *str)
6455{
6456 unsigned long physpages, codesize, datasize, rosize, bss_size;
6457 unsigned long init_code_size, init_data_size;
6458
6459 physpages = get_num_physpages();
6460 codesize = _etext - _stext;
6461 datasize = _edata - _sdata;
6462 rosize = __end_rodata - __start_rodata;
6463 bss_size = __bss_stop - __bss_start;
6464 init_data_size = __init_end - __init_begin;
6465 init_code_size = _einittext - _sinittext;
6466
6467 /*
6468 * Detect special cases and adjust section sizes accordingly:
6469 * 1) .init.* may be embedded into .data sections
6470 * 2) .init.text.* may be out of [__init_begin, __init_end],
6471 * please refer to arch/tile/kernel/vmlinux.lds.S.
6472 * 3) .rodata.* may be embedded into .text or .data sections.
6473 */
6474#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6475 do { \
6476 if (start <= pos && pos < end && size > adj) \
6477 size -= adj; \
6478 } while (0)
7ee3d4e8
JL
6479
6480 adj_init_size(__init_begin, __init_end, init_data_size,
6481 _sinittext, init_code_size);
6482 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6483 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6484 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6485 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6486
6487#undef adj_init_size
6488
756a025f 6489 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6490#ifdef CONFIG_HIGHMEM
756a025f 6491 ", %luK highmem"
7ee3d4e8 6492#endif
756a025f
JP
6493 "%s%s)\n",
6494 nr_free_pages() << (PAGE_SHIFT - 10),
6495 physpages << (PAGE_SHIFT - 10),
6496 codesize >> 10, datasize >> 10, rosize >> 10,
6497 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6498 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6499 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6500#ifdef CONFIG_HIGHMEM
756a025f 6501 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6502#endif
756a025f 6503 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6504}
6505
0e0b864e 6506/**
88ca3b94
RD
6507 * set_dma_reserve - set the specified number of pages reserved in the first zone
6508 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6509 *
013110a7 6510 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6511 * In the DMA zone, a significant percentage may be consumed by kernel image
6512 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6513 * function may optionally be used to account for unfreeable pages in the
6514 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6515 * smaller per-cpu batchsize.
0e0b864e
MG
6516 */
6517void __init set_dma_reserve(unsigned long new_dma_reserve)
6518{
6519 dma_reserve = new_dma_reserve;
6520}
6521
1da177e4
LT
6522void __init free_area_init(unsigned long *zones_size)
6523{
9109fb7b 6524 free_area_init_node(0, zones_size,
1da177e4
LT
6525 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6526}
1da177e4 6527
1da177e4
LT
6528static int page_alloc_cpu_notify(struct notifier_block *self,
6529 unsigned long action, void *hcpu)
6530{
6531 int cpu = (unsigned long)hcpu;
1da177e4 6532
8bb78442 6533 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6534 lru_add_drain_cpu(cpu);
9f8f2172
CL
6535 drain_pages(cpu);
6536
6537 /*
6538 * Spill the event counters of the dead processor
6539 * into the current processors event counters.
6540 * This artificially elevates the count of the current
6541 * processor.
6542 */
f8891e5e 6543 vm_events_fold_cpu(cpu);
9f8f2172
CL
6544
6545 /*
6546 * Zero the differential counters of the dead processor
6547 * so that the vm statistics are consistent.
6548 *
6549 * This is only okay since the processor is dead and cannot
6550 * race with what we are doing.
6551 */
2bb921e5 6552 cpu_vm_stats_fold(cpu);
1da177e4
LT
6553 }
6554 return NOTIFY_OK;
6555}
1da177e4
LT
6556
6557void __init page_alloc_init(void)
6558{
6559 hotcpu_notifier(page_alloc_cpu_notify, 0);
6560}
6561
cb45b0e9 6562/*
34b10060 6563 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6564 * or min_free_kbytes changes.
6565 */
6566static void calculate_totalreserve_pages(void)
6567{
6568 struct pglist_data *pgdat;
6569 unsigned long reserve_pages = 0;
2f6726e5 6570 enum zone_type i, j;
cb45b0e9
HA
6571
6572 for_each_online_pgdat(pgdat) {
281e3726
MG
6573
6574 pgdat->totalreserve_pages = 0;
6575
cb45b0e9
HA
6576 for (i = 0; i < MAX_NR_ZONES; i++) {
6577 struct zone *zone = pgdat->node_zones + i;
3484b2de 6578 long max = 0;
cb45b0e9
HA
6579
6580 /* Find valid and maximum lowmem_reserve in the zone */
6581 for (j = i; j < MAX_NR_ZONES; j++) {
6582 if (zone->lowmem_reserve[j] > max)
6583 max = zone->lowmem_reserve[j];
6584 }
6585
41858966
MG
6586 /* we treat the high watermark as reserved pages. */
6587 max += high_wmark_pages(zone);
cb45b0e9 6588
b40da049
JL
6589 if (max > zone->managed_pages)
6590 max = zone->managed_pages;
a8d01437 6591
281e3726 6592 pgdat->totalreserve_pages += max;
a8d01437 6593
cb45b0e9
HA
6594 reserve_pages += max;
6595 }
6596 }
6597 totalreserve_pages = reserve_pages;
6598}
6599
1da177e4
LT
6600/*
6601 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6602 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6603 * has a correct pages reserved value, so an adequate number of
6604 * pages are left in the zone after a successful __alloc_pages().
6605 */
6606static void setup_per_zone_lowmem_reserve(void)
6607{
6608 struct pglist_data *pgdat;
2f6726e5 6609 enum zone_type j, idx;
1da177e4 6610
ec936fc5 6611 for_each_online_pgdat(pgdat) {
1da177e4
LT
6612 for (j = 0; j < MAX_NR_ZONES; j++) {
6613 struct zone *zone = pgdat->node_zones + j;
b40da049 6614 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6615
6616 zone->lowmem_reserve[j] = 0;
6617
2f6726e5
CL
6618 idx = j;
6619 while (idx) {
1da177e4
LT
6620 struct zone *lower_zone;
6621
2f6726e5
CL
6622 idx--;
6623
1da177e4
LT
6624 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6625 sysctl_lowmem_reserve_ratio[idx] = 1;
6626
6627 lower_zone = pgdat->node_zones + idx;
b40da049 6628 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6629 sysctl_lowmem_reserve_ratio[idx];
b40da049 6630 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6631 }
6632 }
6633 }
cb45b0e9
HA
6634
6635 /* update totalreserve_pages */
6636 calculate_totalreserve_pages();
1da177e4
LT
6637}
6638
cfd3da1e 6639static void __setup_per_zone_wmarks(void)
1da177e4
LT
6640{
6641 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6642 unsigned long lowmem_pages = 0;
6643 struct zone *zone;
6644 unsigned long flags;
6645
6646 /* Calculate total number of !ZONE_HIGHMEM pages */
6647 for_each_zone(zone) {
6648 if (!is_highmem(zone))
b40da049 6649 lowmem_pages += zone->managed_pages;
1da177e4
LT
6650 }
6651
6652 for_each_zone(zone) {
ac924c60
AM
6653 u64 tmp;
6654
1125b4e3 6655 spin_lock_irqsave(&zone->lock, flags);
b40da049 6656 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6657 do_div(tmp, lowmem_pages);
1da177e4
LT
6658 if (is_highmem(zone)) {
6659 /*
669ed175
NP
6660 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6661 * need highmem pages, so cap pages_min to a small
6662 * value here.
6663 *
41858966 6664 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6665 * deltas control asynch page reclaim, and so should
669ed175 6666 * not be capped for highmem.
1da177e4 6667 */
90ae8d67 6668 unsigned long min_pages;
1da177e4 6669
b40da049 6670 min_pages = zone->managed_pages / 1024;
90ae8d67 6671 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6672 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6673 } else {
669ed175
NP
6674 /*
6675 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6676 * proportionate to the zone's size.
6677 */
41858966 6678 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6679 }
6680
795ae7a0
JW
6681 /*
6682 * Set the kswapd watermarks distance according to the
6683 * scale factor in proportion to available memory, but
6684 * ensure a minimum size on small systems.
6685 */
6686 tmp = max_t(u64, tmp >> 2,
6687 mult_frac(zone->managed_pages,
6688 watermark_scale_factor, 10000));
6689
6690 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6691 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6692
1125b4e3 6693 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6694 }
cb45b0e9
HA
6695
6696 /* update totalreserve_pages */
6697 calculate_totalreserve_pages();
1da177e4
LT
6698}
6699
cfd3da1e
MG
6700/**
6701 * setup_per_zone_wmarks - called when min_free_kbytes changes
6702 * or when memory is hot-{added|removed}
6703 *
6704 * Ensures that the watermark[min,low,high] values for each zone are set
6705 * correctly with respect to min_free_kbytes.
6706 */
6707void setup_per_zone_wmarks(void)
6708{
6709 mutex_lock(&zonelists_mutex);
6710 __setup_per_zone_wmarks();
6711 mutex_unlock(&zonelists_mutex);
6712}
6713
1da177e4
LT
6714/*
6715 * Initialise min_free_kbytes.
6716 *
6717 * For small machines we want it small (128k min). For large machines
6718 * we want it large (64MB max). But it is not linear, because network
6719 * bandwidth does not increase linearly with machine size. We use
6720 *
b8af2941 6721 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6722 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6723 *
6724 * which yields
6725 *
6726 * 16MB: 512k
6727 * 32MB: 724k
6728 * 64MB: 1024k
6729 * 128MB: 1448k
6730 * 256MB: 2048k
6731 * 512MB: 2896k
6732 * 1024MB: 4096k
6733 * 2048MB: 5792k
6734 * 4096MB: 8192k
6735 * 8192MB: 11584k
6736 * 16384MB: 16384k
6737 */
1b79acc9 6738int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6739{
6740 unsigned long lowmem_kbytes;
5f12733e 6741 int new_min_free_kbytes;
1da177e4
LT
6742
6743 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6744 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6745
6746 if (new_min_free_kbytes > user_min_free_kbytes) {
6747 min_free_kbytes = new_min_free_kbytes;
6748 if (min_free_kbytes < 128)
6749 min_free_kbytes = 128;
6750 if (min_free_kbytes > 65536)
6751 min_free_kbytes = 65536;
6752 } else {
6753 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6754 new_min_free_kbytes, user_min_free_kbytes);
6755 }
bc75d33f 6756 setup_per_zone_wmarks();
a6cccdc3 6757 refresh_zone_stat_thresholds();
1da177e4 6758 setup_per_zone_lowmem_reserve();
6423aa81
JK
6759
6760#ifdef CONFIG_NUMA
6761 setup_min_unmapped_ratio();
6762 setup_min_slab_ratio();
6763#endif
6764
1da177e4
LT
6765 return 0;
6766}
bc22af74 6767core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6768
6769/*
b8af2941 6770 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6771 * that we can call two helper functions whenever min_free_kbytes
6772 * changes.
6773 */
cccad5b9 6774int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6775 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6776{
da8c757b
HP
6777 int rc;
6778
6779 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6780 if (rc)
6781 return rc;
6782
5f12733e
MH
6783 if (write) {
6784 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6785 setup_per_zone_wmarks();
5f12733e 6786 }
1da177e4
LT
6787 return 0;
6788}
6789
795ae7a0
JW
6790int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6791 void __user *buffer, size_t *length, loff_t *ppos)
6792{
6793 int rc;
6794
6795 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6796 if (rc)
6797 return rc;
6798
6799 if (write)
6800 setup_per_zone_wmarks();
6801
6802 return 0;
6803}
6804
9614634f 6805#ifdef CONFIG_NUMA
6423aa81 6806static void setup_min_unmapped_ratio(void)
9614634f 6807{
6423aa81 6808 pg_data_t *pgdat;
9614634f 6809 struct zone *zone;
9614634f 6810
a5f5f91d 6811 for_each_online_pgdat(pgdat)
81cbcbc2 6812 pgdat->min_unmapped_pages = 0;
a5f5f91d 6813
9614634f 6814 for_each_zone(zone)
a5f5f91d 6815 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 6816 sysctl_min_unmapped_ratio) / 100;
9614634f 6817}
0ff38490 6818
6423aa81
JK
6819
6820int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6821 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 6822{
0ff38490
CL
6823 int rc;
6824
8d65af78 6825 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6826 if (rc)
6827 return rc;
6828
6423aa81
JK
6829 setup_min_unmapped_ratio();
6830
6831 return 0;
6832}
6833
6834static void setup_min_slab_ratio(void)
6835{
6836 pg_data_t *pgdat;
6837 struct zone *zone;
6838
a5f5f91d
MG
6839 for_each_online_pgdat(pgdat)
6840 pgdat->min_slab_pages = 0;
6841
0ff38490 6842 for_each_zone(zone)
a5f5f91d 6843 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 6844 sysctl_min_slab_ratio) / 100;
6423aa81
JK
6845}
6846
6847int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6848 void __user *buffer, size_t *length, loff_t *ppos)
6849{
6850 int rc;
6851
6852 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6853 if (rc)
6854 return rc;
6855
6856 setup_min_slab_ratio();
6857
0ff38490
CL
6858 return 0;
6859}
9614634f
CL
6860#endif
6861
1da177e4
LT
6862/*
6863 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6864 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6865 * whenever sysctl_lowmem_reserve_ratio changes.
6866 *
6867 * The reserve ratio obviously has absolutely no relation with the
41858966 6868 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6869 * if in function of the boot time zone sizes.
6870 */
cccad5b9 6871int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6872 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6873{
8d65af78 6874 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6875 setup_per_zone_lowmem_reserve();
6876 return 0;
6877}
6878
8ad4b1fb
RS
6879/*
6880 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6881 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6882 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6883 */
cccad5b9 6884int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6885 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6886{
6887 struct zone *zone;
7cd2b0a3 6888 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6889 int ret;
6890
7cd2b0a3
DR
6891 mutex_lock(&pcp_batch_high_lock);
6892 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6893
8d65af78 6894 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6895 if (!write || ret < 0)
6896 goto out;
6897
6898 /* Sanity checking to avoid pcp imbalance */
6899 if (percpu_pagelist_fraction &&
6900 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6901 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6902 ret = -EINVAL;
6903 goto out;
6904 }
6905
6906 /* No change? */
6907 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6908 goto out;
c8e251fa 6909
364df0eb 6910 for_each_populated_zone(zone) {
7cd2b0a3
DR
6911 unsigned int cpu;
6912
22a7f12b 6913 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6914 pageset_set_high_and_batch(zone,
6915 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6916 }
7cd2b0a3 6917out:
c8e251fa 6918 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6919 return ret;
8ad4b1fb
RS
6920}
6921
a9919c79 6922#ifdef CONFIG_NUMA
f034b5d4 6923int hashdist = HASHDIST_DEFAULT;
1da177e4 6924
1da177e4
LT
6925static int __init set_hashdist(char *str)
6926{
6927 if (!str)
6928 return 0;
6929 hashdist = simple_strtoul(str, &str, 0);
6930 return 1;
6931}
6932__setup("hashdist=", set_hashdist);
6933#endif
6934
6935/*
6936 * allocate a large system hash table from bootmem
6937 * - it is assumed that the hash table must contain an exact power-of-2
6938 * quantity of entries
6939 * - limit is the number of hash buckets, not the total allocation size
6940 */
6941void *__init alloc_large_system_hash(const char *tablename,
6942 unsigned long bucketsize,
6943 unsigned long numentries,
6944 int scale,
6945 int flags,
6946 unsigned int *_hash_shift,
6947 unsigned int *_hash_mask,
31fe62b9
TB
6948 unsigned long low_limit,
6949 unsigned long high_limit)
1da177e4 6950{
31fe62b9 6951 unsigned long long max = high_limit;
1da177e4
LT
6952 unsigned long log2qty, size;
6953 void *table = NULL;
6954
6955 /* allow the kernel cmdline to have a say */
6956 if (!numentries) {
6957 /* round applicable memory size up to nearest megabyte */
04903664 6958 numentries = nr_kernel_pages;
a7e83318
JZ
6959
6960 /* It isn't necessary when PAGE_SIZE >= 1MB */
6961 if (PAGE_SHIFT < 20)
6962 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6963
6964 /* limit to 1 bucket per 2^scale bytes of low memory */
6965 if (scale > PAGE_SHIFT)
6966 numentries >>= (scale - PAGE_SHIFT);
6967 else
6968 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6969
6970 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6971 if (unlikely(flags & HASH_SMALL)) {
6972 /* Makes no sense without HASH_EARLY */
6973 WARN_ON(!(flags & HASH_EARLY));
6974 if (!(numentries >> *_hash_shift)) {
6975 numentries = 1UL << *_hash_shift;
6976 BUG_ON(!numentries);
6977 }
6978 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6979 numentries = PAGE_SIZE / bucketsize;
1da177e4 6980 }
6e692ed3 6981 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6982
6983 /* limit allocation size to 1/16 total memory by default */
6984 if (max == 0) {
6985 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6986 do_div(max, bucketsize);
6987 }
074b8517 6988 max = min(max, 0x80000000ULL);
1da177e4 6989
31fe62b9
TB
6990 if (numentries < low_limit)
6991 numentries = low_limit;
1da177e4
LT
6992 if (numentries > max)
6993 numentries = max;
6994
f0d1b0b3 6995 log2qty = ilog2(numentries);
1da177e4
LT
6996
6997 do {
6998 size = bucketsize << log2qty;
6999 if (flags & HASH_EARLY)
6782832e 7000 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7001 else if (hashdist)
7002 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7003 else {
1037b83b
ED
7004 /*
7005 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7006 * some pages at the end of hash table which
7007 * alloc_pages_exact() automatically does
1037b83b 7008 */
264ef8a9 7009 if (get_order(size) < MAX_ORDER) {
a1dd268c 7010 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7011 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7012 }
1da177e4
LT
7013 }
7014 } while (!table && size > PAGE_SIZE && --log2qty);
7015
7016 if (!table)
7017 panic("Failed to allocate %s hash table\n", tablename);
7018
1170532b
JP
7019 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7020 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7021
7022 if (_hash_shift)
7023 *_hash_shift = log2qty;
7024 if (_hash_mask)
7025 *_hash_mask = (1 << log2qty) - 1;
7026
7027 return table;
7028}
a117e66e 7029
a5d76b54 7030/*
80934513
MK
7031 * This function checks whether pageblock includes unmovable pages or not.
7032 * If @count is not zero, it is okay to include less @count unmovable pages
7033 *
b8af2941 7034 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7035 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7036 * expect this function should be exact.
a5d76b54 7037 */
b023f468
WC
7038bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7039 bool skip_hwpoisoned_pages)
49ac8255
KH
7040{
7041 unsigned long pfn, iter, found;
47118af0
MN
7042 int mt;
7043
49ac8255
KH
7044 /*
7045 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7046 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7047 */
7048 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7049 return false;
47118af0
MN
7050 mt = get_pageblock_migratetype(page);
7051 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7052 return false;
49ac8255
KH
7053
7054 pfn = page_to_pfn(page);
7055 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7056 unsigned long check = pfn + iter;
7057
29723fcc 7058 if (!pfn_valid_within(check))
49ac8255 7059 continue;
29723fcc 7060
49ac8255 7061 page = pfn_to_page(check);
c8721bbb
NH
7062
7063 /*
7064 * Hugepages are not in LRU lists, but they're movable.
7065 * We need not scan over tail pages bacause we don't
7066 * handle each tail page individually in migration.
7067 */
7068 if (PageHuge(page)) {
7069 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7070 continue;
7071 }
7072
97d255c8
MK
7073 /*
7074 * We can't use page_count without pin a page
7075 * because another CPU can free compound page.
7076 * This check already skips compound tails of THP
0139aa7b 7077 * because their page->_refcount is zero at all time.
97d255c8 7078 */
fe896d18 7079 if (!page_ref_count(page)) {
49ac8255
KH
7080 if (PageBuddy(page))
7081 iter += (1 << page_order(page)) - 1;
7082 continue;
7083 }
97d255c8 7084
b023f468
WC
7085 /*
7086 * The HWPoisoned page may be not in buddy system, and
7087 * page_count() is not 0.
7088 */
7089 if (skip_hwpoisoned_pages && PageHWPoison(page))
7090 continue;
7091
49ac8255
KH
7092 if (!PageLRU(page))
7093 found++;
7094 /*
6b4f7799
JW
7095 * If there are RECLAIMABLE pages, we need to check
7096 * it. But now, memory offline itself doesn't call
7097 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7098 */
7099 /*
7100 * If the page is not RAM, page_count()should be 0.
7101 * we don't need more check. This is an _used_ not-movable page.
7102 *
7103 * The problematic thing here is PG_reserved pages. PG_reserved
7104 * is set to both of a memory hole page and a _used_ kernel
7105 * page at boot.
7106 */
7107 if (found > count)
80934513 7108 return true;
49ac8255 7109 }
80934513 7110 return false;
49ac8255
KH
7111}
7112
7113bool is_pageblock_removable_nolock(struct page *page)
7114{
656a0706
MH
7115 struct zone *zone;
7116 unsigned long pfn;
687875fb
MH
7117
7118 /*
7119 * We have to be careful here because we are iterating over memory
7120 * sections which are not zone aware so we might end up outside of
7121 * the zone but still within the section.
656a0706
MH
7122 * We have to take care about the node as well. If the node is offline
7123 * its NODE_DATA will be NULL - see page_zone.
687875fb 7124 */
656a0706
MH
7125 if (!node_online(page_to_nid(page)))
7126 return false;
7127
7128 zone = page_zone(page);
7129 pfn = page_to_pfn(page);
108bcc96 7130 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7131 return false;
7132
b023f468 7133 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7134}
0c0e6195 7135
080fe206 7136#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7137
7138static unsigned long pfn_max_align_down(unsigned long pfn)
7139{
7140 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7141 pageblock_nr_pages) - 1);
7142}
7143
7144static unsigned long pfn_max_align_up(unsigned long pfn)
7145{
7146 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7147 pageblock_nr_pages));
7148}
7149
041d3a8c 7150/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7151static int __alloc_contig_migrate_range(struct compact_control *cc,
7152 unsigned long start, unsigned long end)
041d3a8c
MN
7153{
7154 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7155 unsigned long nr_reclaimed;
041d3a8c
MN
7156 unsigned long pfn = start;
7157 unsigned int tries = 0;
7158 int ret = 0;
7159
be49a6e1 7160 migrate_prep();
041d3a8c 7161
bb13ffeb 7162 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7163 if (fatal_signal_pending(current)) {
7164 ret = -EINTR;
7165 break;
7166 }
7167
bb13ffeb
MG
7168 if (list_empty(&cc->migratepages)) {
7169 cc->nr_migratepages = 0;
edc2ca61 7170 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7171 if (!pfn) {
7172 ret = -EINTR;
7173 break;
7174 }
7175 tries = 0;
7176 } else if (++tries == 5) {
7177 ret = ret < 0 ? ret : -EBUSY;
7178 break;
7179 }
7180
beb51eaa
MK
7181 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7182 &cc->migratepages);
7183 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7184
9c620e2b 7185 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7186 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7187 }
2a6f5124
SP
7188 if (ret < 0) {
7189 putback_movable_pages(&cc->migratepages);
7190 return ret;
7191 }
7192 return 0;
041d3a8c
MN
7193}
7194
7195/**
7196 * alloc_contig_range() -- tries to allocate given range of pages
7197 * @start: start PFN to allocate
7198 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7199 * @migratetype: migratetype of the underlaying pageblocks (either
7200 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7201 * in range must have the same migratetype and it must
7202 * be either of the two.
041d3a8c
MN
7203 *
7204 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7205 * aligned, however it's the caller's responsibility to guarantee that
7206 * we are the only thread that changes migrate type of pageblocks the
7207 * pages fall in.
7208 *
7209 * The PFN range must belong to a single zone.
7210 *
7211 * Returns zero on success or negative error code. On success all
7212 * pages which PFN is in [start, end) are allocated for the caller and
7213 * need to be freed with free_contig_range().
7214 */
0815f3d8
MN
7215int alloc_contig_range(unsigned long start, unsigned long end,
7216 unsigned migratetype)
041d3a8c 7217{
041d3a8c 7218 unsigned long outer_start, outer_end;
d00181b9
KS
7219 unsigned int order;
7220 int ret = 0;
041d3a8c 7221
bb13ffeb
MG
7222 struct compact_control cc = {
7223 .nr_migratepages = 0,
7224 .order = -1,
7225 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7226 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7227 .ignore_skip_hint = true,
7228 };
7229 INIT_LIST_HEAD(&cc.migratepages);
7230
041d3a8c
MN
7231 /*
7232 * What we do here is we mark all pageblocks in range as
7233 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7234 * have different sizes, and due to the way page allocator
7235 * work, we align the range to biggest of the two pages so
7236 * that page allocator won't try to merge buddies from
7237 * different pageblocks and change MIGRATE_ISOLATE to some
7238 * other migration type.
7239 *
7240 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7241 * migrate the pages from an unaligned range (ie. pages that
7242 * we are interested in). This will put all the pages in
7243 * range back to page allocator as MIGRATE_ISOLATE.
7244 *
7245 * When this is done, we take the pages in range from page
7246 * allocator removing them from the buddy system. This way
7247 * page allocator will never consider using them.
7248 *
7249 * This lets us mark the pageblocks back as
7250 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7251 * aligned range but not in the unaligned, original range are
7252 * put back to page allocator so that buddy can use them.
7253 */
7254
7255 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7256 pfn_max_align_up(end), migratetype,
7257 false);
041d3a8c 7258 if (ret)
86a595f9 7259 return ret;
041d3a8c 7260
8ef5849f
JK
7261 /*
7262 * In case of -EBUSY, we'd like to know which page causes problem.
7263 * So, just fall through. We will check it in test_pages_isolated().
7264 */
bb13ffeb 7265 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7266 if (ret && ret != -EBUSY)
041d3a8c
MN
7267 goto done;
7268
7269 /*
7270 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7271 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7272 * more, all pages in [start, end) are free in page allocator.
7273 * What we are going to do is to allocate all pages from
7274 * [start, end) (that is remove them from page allocator).
7275 *
7276 * The only problem is that pages at the beginning and at the
7277 * end of interesting range may be not aligned with pages that
7278 * page allocator holds, ie. they can be part of higher order
7279 * pages. Because of this, we reserve the bigger range and
7280 * once this is done free the pages we are not interested in.
7281 *
7282 * We don't have to hold zone->lock here because the pages are
7283 * isolated thus they won't get removed from buddy.
7284 */
7285
7286 lru_add_drain_all();
510f5507 7287 drain_all_pages(cc.zone);
041d3a8c
MN
7288
7289 order = 0;
7290 outer_start = start;
7291 while (!PageBuddy(pfn_to_page(outer_start))) {
7292 if (++order >= MAX_ORDER) {
8ef5849f
JK
7293 outer_start = start;
7294 break;
041d3a8c
MN
7295 }
7296 outer_start &= ~0UL << order;
7297 }
7298
8ef5849f
JK
7299 if (outer_start != start) {
7300 order = page_order(pfn_to_page(outer_start));
7301
7302 /*
7303 * outer_start page could be small order buddy page and
7304 * it doesn't include start page. Adjust outer_start
7305 * in this case to report failed page properly
7306 * on tracepoint in test_pages_isolated()
7307 */
7308 if (outer_start + (1UL << order) <= start)
7309 outer_start = start;
7310 }
7311
041d3a8c 7312 /* Make sure the range is really isolated. */
b023f468 7313 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7314 pr_info("%s: [%lx, %lx) PFNs busy\n",
7315 __func__, outer_start, end);
041d3a8c
MN
7316 ret = -EBUSY;
7317 goto done;
7318 }
7319
49f223a9 7320 /* Grab isolated pages from freelists. */
bb13ffeb 7321 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7322 if (!outer_end) {
7323 ret = -EBUSY;
7324 goto done;
7325 }
7326
7327 /* Free head and tail (if any) */
7328 if (start != outer_start)
7329 free_contig_range(outer_start, start - outer_start);
7330 if (end != outer_end)
7331 free_contig_range(end, outer_end - end);
7332
7333done:
7334 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7335 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7336 return ret;
7337}
7338
7339void free_contig_range(unsigned long pfn, unsigned nr_pages)
7340{
bcc2b02f
MS
7341 unsigned int count = 0;
7342
7343 for (; nr_pages--; pfn++) {
7344 struct page *page = pfn_to_page(pfn);
7345
7346 count += page_count(page) != 1;
7347 __free_page(page);
7348 }
7349 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7350}
7351#endif
7352
4ed7e022 7353#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7354/*
7355 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7356 * page high values need to be recalulated.
7357 */
4ed7e022
JL
7358void __meminit zone_pcp_update(struct zone *zone)
7359{
0a647f38 7360 unsigned cpu;
c8e251fa 7361 mutex_lock(&pcp_batch_high_lock);
0a647f38 7362 for_each_possible_cpu(cpu)
169f6c19
CS
7363 pageset_set_high_and_batch(zone,
7364 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7365 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7366}
7367#endif
7368
340175b7
JL
7369void zone_pcp_reset(struct zone *zone)
7370{
7371 unsigned long flags;
5a883813
MK
7372 int cpu;
7373 struct per_cpu_pageset *pset;
340175b7
JL
7374
7375 /* avoid races with drain_pages() */
7376 local_irq_save(flags);
7377 if (zone->pageset != &boot_pageset) {
5a883813
MK
7378 for_each_online_cpu(cpu) {
7379 pset = per_cpu_ptr(zone->pageset, cpu);
7380 drain_zonestat(zone, pset);
7381 }
340175b7
JL
7382 free_percpu(zone->pageset);
7383 zone->pageset = &boot_pageset;
7384 }
7385 local_irq_restore(flags);
7386}
7387
6dcd73d7 7388#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7389/*
b9eb6319
JK
7390 * All pages in the range must be in a single zone and isolated
7391 * before calling this.
0c0e6195
KH
7392 */
7393void
7394__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7395{
7396 struct page *page;
7397 struct zone *zone;
7aeb09f9 7398 unsigned int order, i;
0c0e6195
KH
7399 unsigned long pfn;
7400 unsigned long flags;
7401 /* find the first valid pfn */
7402 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7403 if (pfn_valid(pfn))
7404 break;
7405 if (pfn == end_pfn)
7406 return;
7407 zone = page_zone(pfn_to_page(pfn));
7408 spin_lock_irqsave(&zone->lock, flags);
7409 pfn = start_pfn;
7410 while (pfn < end_pfn) {
7411 if (!pfn_valid(pfn)) {
7412 pfn++;
7413 continue;
7414 }
7415 page = pfn_to_page(pfn);
b023f468
WC
7416 /*
7417 * The HWPoisoned page may be not in buddy system, and
7418 * page_count() is not 0.
7419 */
7420 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7421 pfn++;
7422 SetPageReserved(page);
7423 continue;
7424 }
7425
0c0e6195
KH
7426 BUG_ON(page_count(page));
7427 BUG_ON(!PageBuddy(page));
7428 order = page_order(page);
7429#ifdef CONFIG_DEBUG_VM
1170532b
JP
7430 pr_info("remove from free list %lx %d %lx\n",
7431 pfn, 1 << order, end_pfn);
0c0e6195
KH
7432#endif
7433 list_del(&page->lru);
7434 rmv_page_order(page);
7435 zone->free_area[order].nr_free--;
0c0e6195
KH
7436 for (i = 0; i < (1 << order); i++)
7437 SetPageReserved((page+i));
7438 pfn += (1 << order);
7439 }
7440 spin_unlock_irqrestore(&zone->lock, flags);
7441}
7442#endif
8d22ba1b 7443
8d22ba1b
WF
7444bool is_free_buddy_page(struct page *page)
7445{
7446 struct zone *zone = page_zone(page);
7447 unsigned long pfn = page_to_pfn(page);
7448 unsigned long flags;
7aeb09f9 7449 unsigned int order;
8d22ba1b
WF
7450
7451 spin_lock_irqsave(&zone->lock, flags);
7452 for (order = 0; order < MAX_ORDER; order++) {
7453 struct page *page_head = page - (pfn & ((1 << order) - 1));
7454
7455 if (PageBuddy(page_head) && page_order(page_head) >= order)
7456 break;
7457 }
7458 spin_unlock_irqrestore(&zone->lock, flags);
7459
7460 return order < MAX_ORDER;
7461}