]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - sim/frv/frv.c
Copyright year update in most files of the GDB Project.
[thirdparty/binutils-gdb.git] / sim / frv / frv.c
CommitLineData
b34f6357 1/* frv simulator support code
c5a57081
JB
2 Copyright (C) 1998-2001, 2003-2004, 2007-2012 Free Software
3 Foundation, Inc.
b34f6357
DB
4 Contributed by Red Hat.
5
6This file is part of the GNU simulators.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
4744ac1b
JB
10the Free Software Foundation; either version 3 of the License, or
11(at your option) any later version.
b34f6357
DB
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
4744ac1b
JB
18You should have received a copy of the GNU General Public License
19along with this program. If not, see <http://www.gnu.org/licenses/>. */
b34f6357
DB
20
21#define WANT_CPU
22#define WANT_CPU_FRVBF
23
24#include "sim-main.h"
25#include "cgen-mem.h"
26#include "cgen-ops.h"
27#include "cgen-engine.h"
28#include "cgen-par.h"
29#include "bfd.h"
d74c4203 30#include "gdb/sim-frv.h"
b34f6357
DB
31#include <math.h>
32
33/* Maintain a flag in order to know when to write the address of the next
34 VLIW instruction into the LR register. Used by JMPL. JMPIL, and CALL
35 insns. */
36int frvbf_write_next_vliw_addr_to_LR;
37
38/* The contents of BUF are in target byte order. */
39int
40frvbf_fetch_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
41{
d74c4203
KB
42 if (SIM_FRV_GR0_REGNUM <= rn && rn <= SIM_FRV_GR63_REGNUM)
43 {
44 int hi_available, lo_available;
45 int grn = rn - SIM_FRV_GR0_REGNUM;
46
47 frv_gr_registers_available (current_cpu, &hi_available, &lo_available);
48
49 if ((grn < 32 && !lo_available) || (grn >= 32 && !hi_available))
50 return 0;
51 else
52 SETTSI (buf, GET_H_GR (grn));
53 }
54 else if (SIM_FRV_FR0_REGNUM <= rn && rn <= SIM_FRV_FR63_REGNUM)
55 {
56 int hi_available, lo_available;
57 int frn = rn - SIM_FRV_FR0_REGNUM;
58
59 frv_fr_registers_available (current_cpu, &hi_available, &lo_available);
60
61 if ((frn < 32 && !lo_available) || (frn >= 32 && !hi_available))
62 return 0;
63 else
64 SETTSI (buf, GET_H_FR (frn));
65 }
66 else if (rn == SIM_FRV_PC_REGNUM)
b34f6357 67 SETTSI (buf, GET_H_PC ());
d74c4203 68 else if (SIM_FRV_SPR0_REGNUM <= rn && rn <= SIM_FRV_SPR4095_REGNUM)
9a29f3ca
DB
69 {
70 /* Make sure the register is implemented. */
71 FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
d74c4203 72 int spr = rn - SIM_FRV_SPR0_REGNUM;
9a29f3ca
DB
73 if (! control->spr[spr].implemented)
74 return 0;
75 SETTSI (buf, GET_H_SPR (spr));
76 }
b34f6357 77 else
9a29f3ca
DB
78 {
79 SETTSI (buf, 0xdeadbeef);
80 return 0;
81 }
b34f6357 82
9a29f3ca 83 return len;
b34f6357
DB
84}
85
86/* The contents of BUF are in target byte order. */
87
88int
89frvbf_store_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
90{
d74c4203
KB
91 if (SIM_FRV_GR0_REGNUM <= rn && rn <= SIM_FRV_GR63_REGNUM)
92 {
93 int hi_available, lo_available;
94 int grn = rn - SIM_FRV_GR0_REGNUM;
95
96 frv_gr_registers_available (current_cpu, &hi_available, &lo_available);
97
98 if ((grn < 32 && !lo_available) || (grn >= 32 && !hi_available))
99 return 0;
100 else
101 SET_H_GR (grn, GETTSI (buf));
102 }
103 else if (SIM_FRV_FR0_REGNUM <= rn && rn <= SIM_FRV_FR63_REGNUM)
104 {
105 int hi_available, lo_available;
106 int frn = rn - SIM_FRV_FR0_REGNUM;
107
108 frv_fr_registers_available (current_cpu, &hi_available, &lo_available);
109
110 if ((frn < 32 && !lo_available) || (frn >= 32 && !hi_available))
111 return 0;
112 else
113 SET_H_FR (frn, GETTSI (buf));
114 }
115 else if (rn == SIM_FRV_PC_REGNUM)
b34f6357 116 SET_H_PC (GETTSI (buf));
d74c4203 117 else if (SIM_FRV_SPR0_REGNUM <= rn && rn <= SIM_FRV_SPR4095_REGNUM)
9a29f3ca
DB
118 {
119 /* Make sure the register is implemented. */
120 FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
d74c4203 121 int spr = rn - SIM_FRV_SPR0_REGNUM;
9a29f3ca
DB
122 if (! control->spr[spr].implemented)
123 return 0;
124 SET_H_SPR (spr, GETTSI (buf));
125 }
126 else
127 return 0;
b34f6357 128
9a29f3ca 129 return len;
b34f6357
DB
130}
131\f
132/* Cover fns to access the general registers. */
133USI
134frvbf_h_gr_get_handler (SIM_CPU *current_cpu, UINT gr)
135{
136 frv_check_gr_access (current_cpu, gr);
137 return CPU (h_gr[gr]);
138}
139
140void
141frvbf_h_gr_set_handler (SIM_CPU *current_cpu, UINT gr, USI newval)
142{
143 frv_check_gr_access (current_cpu, gr);
144
145 if (gr == 0)
146 return; /* Storing into gr0 has no effect. */
147
148 CPU (h_gr[gr]) = newval;
149}
150\f
151/* Cover fns to access the floating point registers. */
152SF
153frvbf_h_fr_get_handler (SIM_CPU *current_cpu, UINT fr)
154{
155 frv_check_fr_access (current_cpu, fr);
156 return CPU (h_fr[fr]);
157}
158
159void
160frvbf_h_fr_set_handler (SIM_CPU *current_cpu, UINT fr, SF newval)
161{
162 frv_check_fr_access (current_cpu, fr);
163 CPU (h_fr[fr]) = newval;
164}
165\f
166/* Cover fns to access the general registers as double words. */
167static UINT
168check_register_alignment (SIM_CPU *current_cpu, UINT reg, int align_mask)
169{
170 if (reg & align_mask)
171 {
172 SIM_DESC sd = CPU_STATE (current_cpu);
173 switch (STATE_ARCHITECTURE (sd)->mach)
174 {
676a64f4
RS
175 /* Note: there is a discrepancy between V2.2 of the FR400
176 instruction manual and the various FR4xx LSI specs.
177 The former claims that unaligned registers cause a
178 register_exception while the latter say it's an
179 illegal_instruction. The LSI specs appear to be
180 correct; in fact, the FR4xx series is not documented
181 as having a register_exception. */
b34f6357 182 case bfd_mach_fr400:
676a64f4 183 case bfd_mach_fr450:
e930b1f5 184 case bfd_mach_fr550:
b34f6357
DB
185 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
186 break;
187 case bfd_mach_frvtomcat:
188 case bfd_mach_fr500:
189 case bfd_mach_frv:
190 frv_queue_register_exception_interrupt (current_cpu,
191 FRV_REC_UNALIGNED);
192 break;
193 default:
194 break;
195 }
196
197 reg &= ~align_mask;
198 }
199
200 return reg;
201}
202
203static UINT
204check_fr_register_alignment (SIM_CPU *current_cpu, UINT reg, int align_mask)
205{
206 if (reg & align_mask)
207 {
208 SIM_DESC sd = CPU_STATE (current_cpu);
209 switch (STATE_ARCHITECTURE (sd)->mach)
210 {
676a64f4 211 /* See comment in check_register_alignment(). */
b34f6357 212 case bfd_mach_fr400:
676a64f4 213 case bfd_mach_fr450:
e930b1f5 214 case bfd_mach_fr550:
b34f6357
DB
215 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
216 break;
217 case bfd_mach_frvtomcat:
218 case bfd_mach_fr500:
219 case bfd_mach_frv:
220 {
221 struct frv_fp_exception_info fp_info = {
222 FSR_NO_EXCEPTION, FTT_INVALID_FR
223 };
224 frv_queue_fp_exception_interrupt (current_cpu, & fp_info);
225 }
226 break;
227 default:
228 break;
229 }
230
231 reg &= ~align_mask;
232 }
233
234 return reg;
235}
236
237static UINT
238check_memory_alignment (SIM_CPU *current_cpu, SI address, int align_mask)
239{
240 if (address & align_mask)
241 {
242 SIM_DESC sd = CPU_STATE (current_cpu);
243 switch (STATE_ARCHITECTURE (sd)->mach)
244 {
676a64f4 245 /* See comment in check_register_alignment(). */
b34f6357 246 case bfd_mach_fr400:
676a64f4 247 case bfd_mach_fr450:
b34f6357
DB
248 frv_queue_data_access_error_interrupt (current_cpu, address);
249 break;
250 case bfd_mach_frvtomcat:
251 case bfd_mach_fr500:
252 case bfd_mach_frv:
253 frv_queue_mem_address_not_aligned_interrupt (current_cpu, address);
254 break;
255 default:
256 break;
257 }
258
259 address &= ~align_mask;
260 }
261
262 return address;
263}
264
265DI
266frvbf_h_gr_double_get_handler (SIM_CPU *current_cpu, UINT gr)
267{
268 DI value;
269
270 if (gr == 0)
271 return 0; /* gr0 is always 0. */
272
273 /* Check the register alignment. */
274 gr = check_register_alignment (current_cpu, gr, 1);
275
276 value = GET_H_GR (gr);
277 value <<= 32;
278 value |= (USI) GET_H_GR (gr + 1);
279 return value;
280}
281
282void
283frvbf_h_gr_double_set_handler (SIM_CPU *current_cpu, UINT gr, DI newval)
284{
285 if (gr == 0)
286 return; /* Storing into gr0 has no effect. */
287
288 /* Check the register alignment. */
289 gr = check_register_alignment (current_cpu, gr, 1);
290
291 SET_H_GR (gr , (newval >> 32) & 0xffffffff);
292 SET_H_GR (gr + 1, (newval ) & 0xffffffff);
293}
294\f
295/* Cover fns to access the floating point register as double words. */
296DF
297frvbf_h_fr_double_get_handler (SIM_CPU *current_cpu, UINT fr)
298{
299 union {
300 SF as_sf[2];
301 DF as_df;
302 } value;
303
304 /* Check the register alignment. */
305 fr = check_fr_register_alignment (current_cpu, fr, 1);
306
307 if (CURRENT_HOST_BYTE_ORDER == LITTLE_ENDIAN)
308 {
309 value.as_sf[1] = GET_H_FR (fr);
310 value.as_sf[0] = GET_H_FR (fr + 1);
311 }
312 else
313 {
314 value.as_sf[0] = GET_H_FR (fr);
315 value.as_sf[1] = GET_H_FR (fr + 1);
316 }
317
318 return value.as_df;
319}
320
321void
322frvbf_h_fr_double_set_handler (SIM_CPU *current_cpu, UINT fr, DF newval)
323{
324 union {
325 SF as_sf[2];
326 DF as_df;
327 } value;
328
329 /* Check the register alignment. */
330 fr = check_fr_register_alignment (current_cpu, fr, 1);
331
332 value.as_df = newval;
333 if (CURRENT_HOST_BYTE_ORDER == LITTLE_ENDIAN)
334 {
335 SET_H_FR (fr , value.as_sf[1]);
336 SET_H_FR (fr + 1, value.as_sf[0]);
337 }
338 else
339 {
340 SET_H_FR (fr , value.as_sf[0]);
341 SET_H_FR (fr + 1, value.as_sf[1]);
342 }
343}
344\f
345/* Cover fns to access the floating point register as integer words. */
346USI
347frvbf_h_fr_int_get_handler (SIM_CPU *current_cpu, UINT fr)
348{
349 union {
350 SF as_sf;
351 USI as_usi;
352 } value;
353
354 value.as_sf = GET_H_FR (fr);
355 return value.as_usi;
356}
357
358void
359frvbf_h_fr_int_set_handler (SIM_CPU *current_cpu, UINT fr, USI newval)
360{
361 union {
362 SF as_sf;
363 USI as_usi;
364 } value;
365
366 value.as_usi = newval;
367 SET_H_FR (fr, value.as_sf);
368}
369\f
370/* Cover fns to access the coprocessor registers as double words. */
371DI
372frvbf_h_cpr_double_get_handler (SIM_CPU *current_cpu, UINT cpr)
373{
374 DI value;
375
376 /* Check the register alignment. */
377 cpr = check_register_alignment (current_cpu, cpr, 1);
378
379 value = GET_H_CPR (cpr);
380 value <<= 32;
381 value |= (USI) GET_H_CPR (cpr + 1);
382 return value;
383}
384
385void
386frvbf_h_cpr_double_set_handler (SIM_CPU *current_cpu, UINT cpr, DI newval)
387{
388 /* Check the register alignment. */
389 cpr = check_register_alignment (current_cpu, cpr, 1);
390
391 SET_H_CPR (cpr , (newval >> 32) & 0xffffffff);
392 SET_H_CPR (cpr + 1, (newval ) & 0xffffffff);
393}
394\f
395/* Cover fns to write registers as quad words. */
396void
397frvbf_h_gr_quad_set_handler (SIM_CPU *current_cpu, UINT gr, SI *newval)
398{
399 if (gr == 0)
400 return; /* Storing into gr0 has no effect. */
401
402 /* Check the register alignment. */
403 gr = check_register_alignment (current_cpu, gr, 3);
404
405 SET_H_GR (gr , newval[0]);
406 SET_H_GR (gr + 1, newval[1]);
407 SET_H_GR (gr + 2, newval[2]);
408 SET_H_GR (gr + 3, newval[3]);
409}
410
411void
412frvbf_h_fr_quad_set_handler (SIM_CPU *current_cpu, UINT fr, SI *newval)
413{
414 /* Check the register alignment. */
415 fr = check_fr_register_alignment (current_cpu, fr, 3);
416
417 SET_H_FR (fr , newval[0]);
418 SET_H_FR (fr + 1, newval[1]);
419 SET_H_FR (fr + 2, newval[2]);
420 SET_H_FR (fr + 3, newval[3]);
421}
422
423void
424frvbf_h_cpr_quad_set_handler (SIM_CPU *current_cpu, UINT cpr, SI *newval)
425{
426 /* Check the register alignment. */
427 cpr = check_register_alignment (current_cpu, cpr, 3);
428
429 SET_H_CPR (cpr , newval[0]);
430 SET_H_CPR (cpr + 1, newval[1]);
431 SET_H_CPR (cpr + 2, newval[2]);
432 SET_H_CPR (cpr + 3, newval[3]);
433}
434\f
435/* Cover fns to access the special purpose registers. */
436USI
437frvbf_h_spr_get_handler (SIM_CPU *current_cpu, UINT spr)
438{
439 /* Check access restrictions. */
440 frv_check_spr_read_access (current_cpu, spr);
441
442 switch (spr)
443 {
444 case H_SPR_PSR:
445 return spr_psr_get_handler (current_cpu);
446 case H_SPR_TBR:
447 return spr_tbr_get_handler (current_cpu);
448 case H_SPR_BPSR:
449 return spr_bpsr_get_handler (current_cpu);
450 case H_SPR_CCR:
451 return spr_ccr_get_handler (current_cpu);
452 case H_SPR_CCCR:
453 return spr_cccr_get_handler (current_cpu);
454 case H_SPR_SR0:
455 case H_SPR_SR1:
456 case H_SPR_SR2:
457 case H_SPR_SR3:
458 return spr_sr_get_handler (current_cpu, spr);
459 break;
460 default:
461 return CPU (h_spr[spr]);
462 }
463 return 0;
464}
465
466void
467frvbf_h_spr_set_handler (SIM_CPU *current_cpu, UINT spr, USI newval)
468{
469 FRV_REGISTER_CONTROL *control;
470 USI mask;
471 USI oldval;
472
473 /* Check access restrictions. */
474 frv_check_spr_write_access (current_cpu, spr);
475
476 /* Only set those fields which are writeable. */
477 control = CPU_REGISTER_CONTROL (current_cpu);
478 mask = control->spr[spr].read_only_mask;
479 oldval = GET_H_SPR (spr);
480
481 newval = (newval & ~mask) | (oldval & mask);
482
483 /* Some registers are represented by individual components which are
484 referenced more often than the register itself. */
485 switch (spr)
486 {
487 case H_SPR_PSR:
488 spr_psr_set_handler (current_cpu, newval);
489 break;
490 case H_SPR_TBR:
491 spr_tbr_set_handler (current_cpu, newval);
492 break;
493 case H_SPR_BPSR:
494 spr_bpsr_set_handler (current_cpu, newval);
495 break;
496 case H_SPR_CCR:
497 spr_ccr_set_handler (current_cpu, newval);
498 break;
499 case H_SPR_CCCR:
500 spr_cccr_set_handler (current_cpu, newval);
501 break;
502 case H_SPR_SR0:
503 case H_SPR_SR1:
504 case H_SPR_SR2:
505 case H_SPR_SR3:
506 spr_sr_set_handler (current_cpu, spr, newval);
507 break;
e930b1f5
DB
508 case H_SPR_IHSR8:
509 frv_cache_reconfigure (current_cpu, CPU_INSN_CACHE (current_cpu));
510 break;
b34f6357
DB
511 default:
512 CPU (h_spr[spr]) = newval;
513 break;
514 }
515}
516\f
517/* Cover fns to access the gr_hi and gr_lo registers. */
518UHI
519frvbf_h_gr_hi_get_handler (SIM_CPU *current_cpu, UINT gr)
520{
521 return (GET_H_GR(gr) >> 16) & 0xffff;
522}
523
524void
525frvbf_h_gr_hi_set_handler (SIM_CPU *current_cpu, UINT gr, UHI newval)
526{
527 USI value = (GET_H_GR (gr) & 0xffff) | (newval << 16);
528 SET_H_GR (gr, value);
529}
530
531UHI
532frvbf_h_gr_lo_get_handler (SIM_CPU *current_cpu, UINT gr)
533{
534 return GET_H_GR(gr) & 0xffff;
535}
536
537void
538frvbf_h_gr_lo_set_handler (SIM_CPU *current_cpu, UINT gr, UHI newval)
539{
540 USI value = (GET_H_GR (gr) & 0xffff0000) | (newval & 0xffff);
541 SET_H_GR (gr, value);
542}
543\f
544/* Cover fns to access the tbr bits. */
545USI
546spr_tbr_get_handler (SIM_CPU *current_cpu)
547{
548 int tbr = ((GET_H_TBR_TBA () & 0xfffff) << 12) |
549 ((GET_H_TBR_TT () & 0xff) << 4);
550
551 return tbr;
552}
553
554void
555spr_tbr_set_handler (SIM_CPU *current_cpu, USI newval)
556{
557 int tbr = newval;
558
559 SET_H_TBR_TBA ((tbr >> 12) & 0xfffff) ;
560 SET_H_TBR_TT ((tbr >> 4) & 0xff) ;
561}
562\f
563/* Cover fns to access the bpsr bits. */
564USI
565spr_bpsr_get_handler (SIM_CPU *current_cpu)
566{
567 int bpsr = ((GET_H_BPSR_BS () & 0x1) << 12) |
568 ((GET_H_BPSR_BET () & 0x1) );
569
570 return bpsr;
571}
572
573void
574spr_bpsr_set_handler (SIM_CPU *current_cpu, USI newval)
575{
576 int bpsr = newval;
577
578 SET_H_BPSR_BS ((bpsr >> 12) & 1);
579 SET_H_BPSR_BET ((bpsr ) & 1);
580}
581\f
582/* Cover fns to access the psr bits. */
583USI
584spr_psr_get_handler (SIM_CPU *current_cpu)
585{
586 int psr = ((GET_H_PSR_IMPLE () & 0xf) << 28) |
587 ((GET_H_PSR_VER () & 0xf) << 24) |
588 ((GET_H_PSR_ICE () & 0x1) << 16) |
589 ((GET_H_PSR_NEM () & 0x1) << 14) |
590 ((GET_H_PSR_CM () & 0x1) << 13) |
591 ((GET_H_PSR_BE () & 0x1) << 12) |
592 ((GET_H_PSR_ESR () & 0x1) << 11) |
593 ((GET_H_PSR_EF () & 0x1) << 8) |
594 ((GET_H_PSR_EM () & 0x1) << 7) |
595 ((GET_H_PSR_PIL () & 0xf) << 3) |
596 ((GET_H_PSR_S () & 0x1) << 2) |
597 ((GET_H_PSR_PS () & 0x1) << 1) |
598 ((GET_H_PSR_ET () & 0x1) );
599
600 return psr;
601}
602
603void
604spr_psr_set_handler (SIM_CPU *current_cpu, USI newval)
605{
606 /* The handler for PSR.S references the value of PSR.ESR, so set PSR.S
607 first. */
608 SET_H_PSR_S ((newval >> 2) & 1);
609
610 SET_H_PSR_IMPLE ((newval >> 28) & 0xf);
611 SET_H_PSR_VER ((newval >> 24) & 0xf);
612 SET_H_PSR_ICE ((newval >> 16) & 1);
613 SET_H_PSR_NEM ((newval >> 14) & 1);
614 SET_H_PSR_CM ((newval >> 13) & 1);
615 SET_H_PSR_BE ((newval >> 12) & 1);
616 SET_H_PSR_ESR ((newval >> 11) & 1);
617 SET_H_PSR_EF ((newval >> 8) & 1);
618 SET_H_PSR_EM ((newval >> 7) & 1);
619 SET_H_PSR_PIL ((newval >> 3) & 0xf);
620 SET_H_PSR_PS ((newval >> 1) & 1);
621 SET_H_PSR_ET ((newval ) & 1);
622}
623
624void
625frvbf_h_psr_s_set_handler (SIM_CPU *current_cpu, BI newval)
626{
627 /* If switching from user to supervisor mode, or vice-versa, then switch
628 the supervisor/user context. */
629 int psr_s = GET_H_PSR_S ();
630 if (psr_s != (newval & 1))
631 {
632 frvbf_switch_supervisor_user_context (current_cpu);
633 CPU (h_psr_s) = newval & 1;
634 }
635}
636\f
637/* Cover fns to access the ccr bits. */
638USI
639spr_ccr_get_handler (SIM_CPU *current_cpu)
640{
641 int ccr = ((GET_H_ICCR (H_ICCR_ICC3) & 0xf) << 28) |
642 ((GET_H_ICCR (H_ICCR_ICC2) & 0xf) << 24) |
643 ((GET_H_ICCR (H_ICCR_ICC1) & 0xf) << 20) |
644 ((GET_H_ICCR (H_ICCR_ICC0) & 0xf) << 16) |
645 ((GET_H_FCCR (H_FCCR_FCC3) & 0xf) << 12) |
646 ((GET_H_FCCR (H_FCCR_FCC2) & 0xf) << 8) |
647 ((GET_H_FCCR (H_FCCR_FCC1) & 0xf) << 4) |
648 ((GET_H_FCCR (H_FCCR_FCC0) & 0xf) );
649
650 return ccr;
651}
652
653void
654spr_ccr_set_handler (SIM_CPU *current_cpu, USI newval)
655{
656 int ccr = newval;
657
658 SET_H_ICCR (H_ICCR_ICC3, (newval >> 28) & 0xf);
659 SET_H_ICCR (H_ICCR_ICC2, (newval >> 24) & 0xf);
660 SET_H_ICCR (H_ICCR_ICC1, (newval >> 20) & 0xf);
661 SET_H_ICCR (H_ICCR_ICC0, (newval >> 16) & 0xf);
662 SET_H_FCCR (H_FCCR_FCC3, (newval >> 12) & 0xf);
663 SET_H_FCCR (H_FCCR_FCC2, (newval >> 8) & 0xf);
664 SET_H_FCCR (H_FCCR_FCC1, (newval >> 4) & 0xf);
665 SET_H_FCCR (H_FCCR_FCC0, (newval ) & 0xf);
666}
667\f
668QI
669frvbf_set_icc_for_shift_right (
670 SIM_CPU *current_cpu, SI value, SI shift, QI icc
671)
672{
673 /* Set the C flag of the given icc to the logical OR of the bits shifted
674 out. */
675 int mask = (1 << shift) - 1;
676 if ((value & mask) != 0)
677 return icc | 0x1;
678
679 return icc & 0xe;
680}
681
682QI
683frvbf_set_icc_for_shift_left (
684 SIM_CPU *current_cpu, SI value, SI shift, QI icc
685)
686{
687 /* Set the V flag of the given icc to the logical OR of the bits shifted
688 out. */
689 int mask = ((1 << shift) - 1) << (32 - shift);
690 if ((value & mask) != 0)
691 return icc | 0x2;
692
693 return icc & 0xd;
694}
695\f
696/* Cover fns to access the cccr bits. */
697USI
698spr_cccr_get_handler (SIM_CPU *current_cpu)
699{
700 int cccr = ((GET_H_CCCR (H_CCCR_CC7) & 0x3) << 14) |
701 ((GET_H_CCCR (H_CCCR_CC6) & 0x3) << 12) |
702 ((GET_H_CCCR (H_CCCR_CC5) & 0x3) << 10) |
703 ((GET_H_CCCR (H_CCCR_CC4) & 0x3) << 8) |
704 ((GET_H_CCCR (H_CCCR_CC3) & 0x3) << 6) |
705 ((GET_H_CCCR (H_CCCR_CC2) & 0x3) << 4) |
706 ((GET_H_CCCR (H_CCCR_CC1) & 0x3) << 2) |
707 ((GET_H_CCCR (H_CCCR_CC0) & 0x3) );
708
709 return cccr;
710}
711
712void
713spr_cccr_set_handler (SIM_CPU *current_cpu, USI newval)
714{
715 int cccr = newval;
716
717 SET_H_CCCR (H_CCCR_CC7, (newval >> 14) & 0x3);
718 SET_H_CCCR (H_CCCR_CC6, (newval >> 12) & 0x3);
719 SET_H_CCCR (H_CCCR_CC5, (newval >> 10) & 0x3);
720 SET_H_CCCR (H_CCCR_CC4, (newval >> 8) & 0x3);
721 SET_H_CCCR (H_CCCR_CC3, (newval >> 6) & 0x3);
722 SET_H_CCCR (H_CCCR_CC2, (newval >> 4) & 0x3);
723 SET_H_CCCR (H_CCCR_CC1, (newval >> 2) & 0x3);
724 SET_H_CCCR (H_CCCR_CC0, (newval ) & 0x3);
725}
726\f
727/* Cover fns to access the sr bits. */
728USI
729spr_sr_get_handler (SIM_CPU *current_cpu, UINT spr)
730{
731 /* If PSR.ESR is not set, then SR0-3 map onto SGR4-7 which will be GR4-7,
732 otherwise the correct mapping of USG4-7 or SGR4-7 will be in SR0-3. */
733 int psr_esr = GET_H_PSR_ESR ();
734 if (! psr_esr)
735 return GET_H_GR (4 + (spr - H_SPR_SR0));
736
737 return CPU (h_spr[spr]);
738}
739
740void
741spr_sr_set_handler (SIM_CPU *current_cpu, UINT spr, USI newval)
742{
743 /* If PSR.ESR is not set, then SR0-3 map onto SGR4-7 which will be GR4-7,
744 otherwise the correct mapping of USG4-7 or SGR4-7 will be in SR0-3. */
745 int psr_esr = GET_H_PSR_ESR ();
746 if (! psr_esr)
747 SET_H_GR (4 + (spr - H_SPR_SR0), newval);
748 else
749 CPU (h_spr[spr]) = newval;
750}
751\f
752/* Switch SR0-SR4 with GR4-GR7 if PSR.ESR is set. */
753void
754frvbf_switch_supervisor_user_context (SIM_CPU *current_cpu)
755{
756 if (GET_H_PSR_ESR ())
757 {
758 /* We need to be in supervisor mode to swap the registers. Access the
759 PSR.S directly in order to avoid recursive context switches. */
760 int i;
761 int save_psr_s = CPU (h_psr_s);
762 CPU (h_psr_s) = 1;
763 for (i = 0; i < 4; ++i)
764 {
765 int gr = i + 4;
766 int spr = i + H_SPR_SR0;
767 SI tmp = GET_H_SPR (spr);
768 SET_H_SPR (spr, GET_H_GR (gr));
769 SET_H_GR (gr, tmp);
770 }
771 CPU (h_psr_s) = save_psr_s;
772 }
773}
774\f
775/* Handle load/store of quad registers. */
776void
777frvbf_load_quad_GR (SIM_CPU *current_cpu, PCADDR pc, SI address, SI targ_ix)
778{
779 int i;
780 SI value[4];
781
782 /* Check memory alignment */
783 address = check_memory_alignment (current_cpu, address, 0xf);
784
785 /* If we need to count cycles, then the cache operation will be
786 initiated from the model profiling functions.
787 See frvbf_model_.... */
788 if (model_insn)
789 {
790 CPU_LOAD_ADDRESS (current_cpu) = address;
791 CPU_LOAD_LENGTH (current_cpu) = 16;
792 }
793 else
794 {
795 for (i = 0; i < 4; ++i)
796 {
797 value[i] = frvbf_read_mem_SI (current_cpu, pc, address);
798 address += 4;
799 }
800 sim_queue_fn_xi_write (current_cpu, frvbf_h_gr_quad_set_handler, targ_ix,
801 value);
802 }
803}
804
805void
806frvbf_store_quad_GR (SIM_CPU *current_cpu, PCADDR pc, SI address, SI src_ix)
807{
808 int i;
809 SI value[4];
810 USI hsr0;
811
812 /* Check register and memory alignment. */
813 src_ix = check_register_alignment (current_cpu, src_ix, 3);
814 address = check_memory_alignment (current_cpu, address, 0xf);
815
816 for (i = 0; i < 4; ++i)
817 {
818 /* GR0 is always 0. */
819 if (src_ix == 0)
820 value[i] = 0;
821 else
822 value[i] = GET_H_GR (src_ix + i);
823 }
824 hsr0 = GET_HSR0 ();
825 if (GET_HSR0_DCE (hsr0))
826 sim_queue_fn_mem_xi_write (current_cpu, frvbf_mem_set_XI, address, value);
827 else
828 sim_queue_mem_xi_write (current_cpu, address, value);
829}
830
831void
832frvbf_load_quad_FRint (SIM_CPU *current_cpu, PCADDR pc, SI address, SI targ_ix)
833{
834 int i;
835 SI value[4];
836
837 /* Check memory alignment */
838 address = check_memory_alignment (current_cpu, address, 0xf);
839
840 /* If we need to count cycles, then the cache operation will be
841 initiated from the model profiling functions.
842 See frvbf_model_.... */
843 if (model_insn)
844 {
845 CPU_LOAD_ADDRESS (current_cpu) = address;
846 CPU_LOAD_LENGTH (current_cpu) = 16;
847 }
848 else
849 {
850 for (i = 0; i < 4; ++i)
851 {
852 value[i] = frvbf_read_mem_SI (current_cpu, pc, address);
853 address += 4;
854 }
855 sim_queue_fn_xi_write (current_cpu, frvbf_h_fr_quad_set_handler, targ_ix,
856 value);
857 }
858}
859
860void
861frvbf_store_quad_FRint (SIM_CPU *current_cpu, PCADDR pc, SI address, SI src_ix)
862{
863 int i;
864 SI value[4];
865 USI hsr0;
866
867 /* Check register and memory alignment. */
868 src_ix = check_fr_register_alignment (current_cpu, src_ix, 3);
869 address = check_memory_alignment (current_cpu, address, 0xf);
870
871 for (i = 0; i < 4; ++i)
872 value[i] = GET_H_FR (src_ix + i);
873
874 hsr0 = GET_HSR0 ();
875 if (GET_HSR0_DCE (hsr0))
876 sim_queue_fn_mem_xi_write (current_cpu, frvbf_mem_set_XI, address, value);
877 else
878 sim_queue_mem_xi_write (current_cpu, address, value);
879}
880
881void
882frvbf_load_quad_CPR (SIM_CPU *current_cpu, PCADDR pc, SI address, SI targ_ix)
883{
884 int i;
885 SI value[4];
886
887 /* Check memory alignment */
888 address = check_memory_alignment (current_cpu, address, 0xf);
889
890 /* If we need to count cycles, then the cache operation will be
891 initiated from the model profiling functions.
892 See frvbf_model_.... */
893 if (model_insn)
894 {
895 CPU_LOAD_ADDRESS (current_cpu) = address;
896 CPU_LOAD_LENGTH (current_cpu) = 16;
897 }
898 else
899 {
900 for (i = 0; i < 4; ++i)
901 {
902 value[i] = frvbf_read_mem_SI (current_cpu, pc, address);
903 address += 4;
904 }
905 sim_queue_fn_xi_write (current_cpu, frvbf_h_cpr_quad_set_handler, targ_ix,
906 value);
907 }
908}
909
910void
911frvbf_store_quad_CPR (SIM_CPU *current_cpu, PCADDR pc, SI address, SI src_ix)
912{
913 int i;
914 SI value[4];
915 USI hsr0;
916
917 /* Check register and memory alignment. */
918 src_ix = check_register_alignment (current_cpu, src_ix, 3);
919 address = check_memory_alignment (current_cpu, address, 0xf);
920
921 for (i = 0; i < 4; ++i)
922 value[i] = GET_H_CPR (src_ix + i);
923
924 hsr0 = GET_HSR0 ();
925 if (GET_HSR0_DCE (hsr0))
926 sim_queue_fn_mem_xi_write (current_cpu, frvbf_mem_set_XI, address, value);
927 else
928 sim_queue_mem_xi_write (current_cpu, address, value);
929}
930\f
931void
932frvbf_signed_integer_divide (
933 SIM_CPU *current_cpu, SI arg1, SI arg2, int target_index, int non_excepting
934)
935{
936 enum frv_dtt dtt = FRV_DTT_NO_EXCEPTION;
937 if (arg1 == 0x80000000 && arg2 == -1)
938 {
939 /* 0x80000000/(-1) must result in 0x7fffffff when ISR.EDE is set
940 otherwise it may result in 0x7fffffff (sparc compatibility) or
941 0x80000000 (C language compatibility). */
942 USI isr;
943 dtt = FRV_DTT_OVERFLOW;
944
945 isr = GET_ISR ();
946 if (GET_ISR_EDE (isr))
947 sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, target_index,
948 0x7fffffff);
949 else
950 sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, target_index,
951 0x80000000);
952 frvbf_force_update (current_cpu); /* Force update of target register. */
953 }
954 else if (arg2 == 0)
955 dtt = FRV_DTT_DIVISION_BY_ZERO;
956 else
957 sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, target_index,
958 arg1 / arg2);
959
960 /* Check for exceptions. */
961 if (dtt != FRV_DTT_NO_EXCEPTION)
962 dtt = frvbf_division_exception (current_cpu, dtt, target_index,
963 non_excepting);
964 if (non_excepting && dtt == FRV_DTT_NO_EXCEPTION)
965 {
966 /* Non excepting instruction. Clear the NE flag for the target
967 register. */
968 SI NE_flags[2];
969 GET_NE_FLAGS (NE_flags, H_SPR_GNER0);
970 CLEAR_NE_FLAG (NE_flags, target_index);
971 SET_NE_FLAGS (H_SPR_GNER0, NE_flags);
972 }
973}
974
975void
976frvbf_unsigned_integer_divide (
977 SIM_CPU *current_cpu, USI arg1, USI arg2, int target_index, int non_excepting
978)
979{
980 if (arg2 == 0)
981 frvbf_division_exception (current_cpu, FRV_DTT_DIVISION_BY_ZERO,
982 target_index, non_excepting);
983 else
984 {
985 sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, target_index,
986 arg1 / arg2);
987 if (non_excepting)
988 {
989 /* Non excepting instruction. Clear the NE flag for the target
990 register. */
991 SI NE_flags[2];
992 GET_NE_FLAGS (NE_flags, H_SPR_GNER0);
993 CLEAR_NE_FLAG (NE_flags, target_index);
994 SET_NE_FLAGS (H_SPR_GNER0, NE_flags);
995 }
996 }
997}
998\f
999/* Clear accumulators. */
1000void
1001frvbf_clear_accumulators (SIM_CPU *current_cpu, SI acc_ix, int A)
1002{
1003 SIM_DESC sd = CPU_STATE (current_cpu);
676a64f4
RS
1004 int acc_mask =
1005 (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr500) ? 7 :
1006 (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550) ? 7 :
1007 (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr450) ? 11 :
1008 (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400) ? 3 :
b34f6357 1009 63;
e930b1f5 1010 FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu);
b34f6357 1011
e930b1f5
DB
1012 ps->mclracc_acc = acc_ix;
1013 ps->mclracc_A = A;
b34f6357
DB
1014 if (A == 0 || acc_ix != 0) /* Clear 1 accumuator? */
1015 {
1016 /* This instruction is a nop if the referenced accumulator is not
1017 implemented. */
676a64f4 1018 if ((acc_ix & acc_mask) == acc_ix)
b34f6357
DB
1019 sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, acc_ix, 0);
1020 }
1021 else
1022 {
1023 /* Clear all implemented accumulators. */
1024 int i;
676a64f4
RS
1025 for (i = 0; i <= acc_mask; ++i)
1026 if ((i & acc_mask) == i)
1027 sim_queue_fn_di_write (current_cpu, frvbf_h_acc40S_set, i, 0);
b34f6357
DB
1028 }
1029}
1030\f
1031/* Functions to aid insn semantics. */
1032
1033/* Compute the result of the SCAN and SCANI insns after the shift and xor. */
1034SI
1035frvbf_scan_result (SIM_CPU *current_cpu, SI value)
1036{
1037 SI i;
1038 SI mask;
1039
1040 if (value == 0)
1041 return 63;
1042
1043 /* Find the position of the first non-zero bit.
1044 The loop will terminate since there is guaranteed to be at least one
1045 non-zero bit. */
1046 mask = 1 << (sizeof (mask) * 8 - 1);
1047 for (i = 0; (value & mask) == 0; ++i)
1048 value <<= 1;
1049
1050 return i;
1051}
1052
1053/* Compute the result of the cut insns. */
1054SI
1055frvbf_cut (SIM_CPU *current_cpu, SI reg1, SI reg2, SI cut_point)
1056{
1057 SI result;
beb7a883 1058 cut_point &= 0x3f;
b34f6357
DB
1059 if (cut_point < 32)
1060 {
1061 result = reg1 << cut_point;
1062 result |= (reg2 >> (32 - cut_point)) & ((1 << cut_point) - 1);
1063 }
1064 else
1065 result = reg2 << (cut_point - 32);
1066
1067 return result;
1068}
1069
1070/* Compute the result of the cut insns. */
1071SI
1072frvbf_media_cut (SIM_CPU *current_cpu, DI acc, SI cut_point)
1073{
1074 /* The cut point is the lower 6 bits (signed) of what we are passed. */
1075 cut_point = cut_point << 26 >> 26;
1076
1077 /* The cut_point is relative to bit 40 of 64 bits. */
1078 if (cut_point >= 0)
1079 return (acc << (cut_point + 24)) >> 32;
1080
1081 /* Extend the sign bit (bit 40) for negative cuts. */
1082 if (cut_point == -32)
1083 return (acc << 24) >> 63; /* Special case for full shiftout. */
1084
1085 return (acc << 24) >> (32 + -cut_point);
1086}
1087
1088/* Compute the result of the cut insns. */
1089SI
1090frvbf_media_cut_ss (SIM_CPU *current_cpu, DI acc, SI cut_point)
1091{
1092 /* The cut point is the lower 6 bits (signed) of what we are passed. */
1093 cut_point = cut_point << 26 >> 26;
1094
1095 if (cut_point >= 0)
1096 {
1097 /* The cut_point is relative to bit 40 of 64 bits. */
1098 DI shifted = acc << (cut_point + 24);
1099 DI unshifted = shifted >> (cut_point + 24);
1100
1101 /* The result will be saturated if significant bits are shifted out. */
1102 if (unshifted != acc)
1103 {
1104 if (acc < 0)
1105 return 0x80000000;
1106 return 0x7fffffff;
1107 }
1108 }
1109
1110 /* The result will not be saturated, so use the code for the normal cut. */
1111 return frvbf_media_cut (current_cpu, acc, cut_point);
1112}
1113
e930b1f5
DB
1114/* Compute the result of int accumulator cut (SCUTSS). */
1115SI
1116frvbf_iacc_cut (SIM_CPU *current_cpu, DI acc, SI cut_point)
1117{
8b73069f
RS
1118 DI lower, upper;
1119
1120 /* The cut point is the lower 7 bits (signed) of what we are passed. */
e930b1f5
DB
1121 cut_point = cut_point << 25 >> 25;
1122
8b73069f
RS
1123 /* Conceptually, the operation is on a 128-bit sign-extension of ACC.
1124 The top bit of the return value corresponds to bit (63 - CUT_POINT)
1125 of this 128-bit value.
e930b1f5 1126
8b73069f
RS
1127 Since we can't deal with 128-bit values very easily, convert the
1128 operation into an equivalent 64-bit one. */
e930b1f5 1129 if (cut_point < 0)
8b73069f
RS
1130 {
1131 /* Avoid an undefined shift operation. */
1132 if (cut_point == -64)
1133 acc >>= 63;
1134 else
1135 acc >>= -cut_point;
1136 cut_point = 0;
1137 }
e930b1f5 1138
8b73069f
RS
1139 /* Get the shifted but unsaturated result. Set LOWER to the lowest
1140 32 bits of the result and UPPER to the result >> 31. */
1141 if (cut_point < 32)
1142 {
1143 /* The cut loses the (32 - CUT_POINT) least significant bits.
1144 Round the result up if the most significant of these lost bits
1145 is 1. */
1146 lower = acc >> (32 - cut_point);
1147 if (lower < 0x7fffffff)
1148 if (acc & LSBIT64 (32 - cut_point - 1))
1149 lower++;
1150 upper = lower >> 31;
1151 }
1152 else
1153 {
1154 lower = acc << (cut_point - 32);
1155 upper = acc >> (63 - cut_point);
1156 }
e930b1f5 1157
8b73069f
RS
1158 /* Saturate the result. */
1159 if (upper < -1)
1160 return ~0x7fffffff;
1161 else if (upper > 0)
1162 return 0x7fffffff;
1163 else
1164 return lower;
e930b1f5
DB
1165}
1166
1167/* Compute the result of shift-left-arithmetic-with-saturation (SLASS). */
1168SI
1169frvbf_shift_left_arith_saturate (SIM_CPU *current_cpu, SI arg1, SI arg2)
1170{
1171 int neg_arg1;
1172
1173 /* FIXME: what to do with negative shift amt? */
1174 if (arg2 <= 0)
1175 return arg1;
1176
1177 if (arg1 == 0)
1178 return 0;
1179
1180 /* Signed shift by 31 or greater saturates by definition. */
1181 if (arg2 >= 31)
1182 if (arg1 > 0)
1183 return (SI) 0x7fffffff;
1184 else
1185 return (SI) 0x80000000;
1186
1187 /* OK, arg2 is between 1 and 31. */
1188 neg_arg1 = (arg1 < 0);
1189 do {
1190 arg1 <<= 1;
1191 /* Check for sign bit change (saturation). */
1192 if (neg_arg1 && (arg1 >= 0))
1193 return (SI) 0x80000000;
1194 else if (!neg_arg1 && (arg1 < 0))
1195 return (SI) 0x7fffffff;
1196 } while (--arg2 > 0);
1197
1198 return arg1;
1199}
1200
b34f6357
DB
1201/* Simulate the media custom insns. */
1202void
1203frvbf_media_cop (SIM_CPU *current_cpu, int cop_num)
1204{
1205 /* The semantics of the insn are a nop, since it is implementation defined.
1206 We do need to check whether it's implemented and set up for MTRAP
1207 if it's not. */
1208 USI msr0 = GET_MSR (0);
1209 if (GET_MSR_EMCI (msr0) == 0)
1210 {
1211 /* no interrupt queued at this time. */
1212 frv_set_mp_exception_registers (current_cpu, MTT_UNIMPLEMENTED_MPOP, 0);
1213 }
1214}
1215
1216/* Simulate the media average (MAVEH) insn. */
1217static HI
1218do_media_average (SIM_CPU *current_cpu, HI arg1, HI arg2)
1219{
1220 SIM_DESC sd = CPU_STATE (current_cpu);
1221 SI sum = (arg1 + arg2);
1222 HI result = sum >> 1;
f9e18f5a 1223 int rounding_value;
b34f6357 1224
676a64f4
RS
1225 /* On fr4xx and fr550, check the rounding mode. On other machines
1226 rounding is always toward negative infinity and the result is
1227 already correctly rounded. */
f9e18f5a 1228 switch (STATE_ARCHITECTURE (sd)->mach)
b34f6357 1229 {
f9e18f5a
DB
1230 /* Need to check rounding mode. */
1231 case bfd_mach_fr400:
676a64f4 1232 case bfd_mach_fr450:
e930b1f5 1233 case bfd_mach_fr550:
b34f6357
DB
1234 /* Check whether rounding will be required. Rounding will be required
1235 if the sum is an odd number. */
f9e18f5a 1236 rounding_value = sum & 1;
b34f6357
DB
1237 if (rounding_value)
1238 {
1239 USI msr0 = GET_MSR (0);
1240 /* Check MSR0.SRDAV to determine which bits control the rounding. */
1241 if (GET_MSR_SRDAV (msr0))
1242 {
1243 /* MSR0.RD controls rounding. */
1244 switch (GET_MSR_RD (msr0))
1245 {
1246 case 0:
1247 /* Round to nearest. */
1248 if (result >= 0)
1249 ++result;
1250 break;
1251 case 1:
1252 /* Round toward 0. */
1253 if (result < 0)
1254 ++result;
1255 break;
1256 case 2:
1257 /* Round toward positive infinity. */
1258 ++result;
1259 break;
1260 case 3:
1261 /* Round toward negative infinity. The result is already
1262 correctly rounded. */
1263 break;
1264 default:
1265 abort ();
1266 break;
1267 }
1268 }
1269 else
1270 {
1271 /* MSR0.RDAV controls rounding. If set, round toward positive
1272 infinity. Otherwise the result is already rounded correctly
1273 toward negative infinity. */
1274 if (GET_MSR_RDAV (msr0))
1275 ++result;
1276 }
1277 }
f9e18f5a
DB
1278 break;
1279 default:
1280 break;
b34f6357
DB
1281 }
1282
1283 return result;
1284}
1285
1286SI
1287frvbf_media_average (SIM_CPU *current_cpu, SI reg1, SI reg2)
1288{
1289 SI result;
1290 result = do_media_average (current_cpu, reg1 & 0xffff, reg2 & 0xffff);
1291 result &= 0xffff;
1292 result |= do_media_average (current_cpu, (reg1 >> 16) & 0xffff,
1293 (reg2 >> 16) & 0xffff) << 16;
1294 return result;
1295}
1296
1297/* Maintain a flag in order to know when to write the address of the next
1298 VLIW instruction into the LR register. Used by JMPL. JMPIL, and CALL. */
1299void
1300frvbf_set_write_next_vliw_addr_to_LR (SIM_CPU *current_cpu, int value)
1301{
1302 frvbf_write_next_vliw_addr_to_LR = value;
1303}
1304
1305void
1306frvbf_set_ne_index (SIM_CPU *current_cpu, int index)
1307{
1308 USI NE_flags[2];
1309
1310 /* Save the target register so interrupt processing can set its NE flag
1311 in the event of an exception. */
1312 frv_interrupt_state.ne_index = index;
1313
1314 /* Clear the NE flag of the target register. It will be reset if necessary
1315 in the event of an exception. */
1316 GET_NE_FLAGS (NE_flags, H_SPR_FNER0);
1317 CLEAR_NE_FLAG (NE_flags, index);
1318 SET_NE_FLAGS (H_SPR_FNER0, NE_flags);
1319}
1320
1321void
1322frvbf_force_update (SIM_CPU *current_cpu)
1323{
1324 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (current_cpu);
1325 int ix = CGEN_WRITE_QUEUE_INDEX (q);
1326 if (ix > 0)
1327 {
1328 CGEN_WRITE_QUEUE_ELEMENT *item = CGEN_WRITE_QUEUE_ELEMENT (q, ix - 1);
1329 item->flags |= FRV_WRITE_QUEUE_FORCE_WRITE;
1330 }
1331}
1332\f
1333/* Condition code logic. */
1334enum cr_ops {
1335 andcr, orcr, xorcr, nandcr, norcr, andncr, orncr, nandncr, norncr,
1336 num_cr_ops
1337};
1338
1339enum cr_result {cr_undefined, cr_undefined1, cr_false, cr_true};
1340
1341static enum cr_result
1342cr_logic[num_cr_ops][4][4] = {
1343 /* andcr */
1344 {
1345 /* undefined undefined false true */
1346 /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined},
1347 /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined},
1348 /* false */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined},
1349 /* true */ {cr_undefined, cr_undefined, cr_false, cr_true }
1350 },
1351 /* orcr */
1352 {
1353 /* undefined undefined false true */
1354 /* undefined */ {cr_undefined, cr_undefined, cr_false, cr_true },
1355 /* undefined */ {cr_undefined, cr_undefined, cr_false, cr_true },
1356 /* false */ {cr_false, cr_false, cr_false, cr_true },
1357 /* true */ {cr_true, cr_true, cr_true, cr_true }
1358 },
1359 /* xorcr */
1360 {
1361 /* undefined undefined false true */
1362 /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined},
1363 /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined},
1364 /* false */ {cr_undefined, cr_undefined, cr_false, cr_true },
1365 /* true */ {cr_true, cr_true, cr_true, cr_false }
1366 },
1367 /* nandcr */
1368 {
1369 /* undefined undefined false true */
1370 /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined},
1371 /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined},
1372 /* false */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined},
1373 /* true */ {cr_undefined, cr_undefined, cr_true, cr_false }
1374 },
1375 /* norcr */
1376 {
1377 /* undefined undefined false true */
1378 /* undefined */ {cr_undefined, cr_undefined, cr_true, cr_false },
1379 /* undefined */ {cr_undefined, cr_undefined, cr_true, cr_false },
1380 /* false */ {cr_true, cr_true, cr_true, cr_false },
1381 /* true */ {cr_false, cr_false, cr_false, cr_false }
1382 },
1383 /* andncr */
1384 {
1385 /* undefined undefined false true */
1386 /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined},
1387 /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined},
1388 /* false */ {cr_undefined, cr_undefined, cr_false, cr_true },
1389 /* true */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}
1390 },
1391 /* orncr */
1392 {
1393 /* undefined undefined false true */
1394 /* undefined */ {cr_undefined, cr_undefined, cr_false, cr_true },
1395 /* undefined */ {cr_undefined, cr_undefined, cr_false, cr_true },
1396 /* false */ {cr_true, cr_true, cr_true, cr_true },
1397 /* true */ {cr_false, cr_false, cr_false, cr_true }
1398 },
1399 /* nandncr */
1400 {
1401 /* undefined undefined false true */
1402 /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined},
1403 /* undefined */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined},
1404 /* false */ {cr_undefined, cr_undefined, cr_true, cr_false },
1405 /* true */ {cr_undefined, cr_undefined, cr_undefined, cr_undefined}
1406 },
1407 /* norncr */
1408 {
1409 /* undefined undefined false true */
1410 /* undefined */ {cr_undefined, cr_undefined, cr_true, cr_false },
1411 /* undefined */ {cr_undefined, cr_undefined, cr_true, cr_false },
1412 /* false */ {cr_false, cr_false, cr_false, cr_false },
1413 /* true */ {cr_true, cr_true, cr_true, cr_false }
1414 }
1415};
1416
1417UQI
1418frvbf_cr_logic (SIM_CPU *current_cpu, SI operation, UQI arg1, UQI arg2)
1419{
1420 return cr_logic[operation][arg1][arg2];
1421}
1422\f
1423/* Cache Manipulation. */
1424void
1425frvbf_insn_cache_preload (SIM_CPU *current_cpu, SI address, USI length, int lock)
1426{
1427 /* If we need to count cycles, then the cache operation will be
1428 initiated from the model profiling functions.
1429 See frvbf_model_.... */
1430 int hsr0 = GET_HSR0 ();
1431 if (GET_HSR0_ICE (hsr0))
1432 {
1433 if (model_insn)
1434 {
1435 CPU_LOAD_ADDRESS (current_cpu) = address;
1436 CPU_LOAD_LENGTH (current_cpu) = length;
1437 CPU_LOAD_LOCK (current_cpu) = lock;
1438 }
1439 else
1440 {
1441 FRV_CACHE *cache = CPU_INSN_CACHE (current_cpu);
1442 frv_cache_preload (cache, address, length, lock);
1443 }
1444 }
1445}
1446
1447void
1448frvbf_data_cache_preload (SIM_CPU *current_cpu, SI address, USI length, int lock)
1449{
1450 /* If we need to count cycles, then the cache operation will be
1451 initiated from the model profiling functions.
1452 See frvbf_model_.... */
1453 int hsr0 = GET_HSR0 ();
1454 if (GET_HSR0_DCE (hsr0))
1455 {
1456 if (model_insn)
1457 {
1458 CPU_LOAD_ADDRESS (current_cpu) = address;
1459 CPU_LOAD_LENGTH (current_cpu) = length;
1460 CPU_LOAD_LOCK (current_cpu) = lock;
1461 }
1462 else
1463 {
1464 FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
1465 frv_cache_preload (cache, address, length, lock);
1466 }
1467 }
1468}
1469
1470void
1471frvbf_insn_cache_unlock (SIM_CPU *current_cpu, SI address)
1472{
1473 /* If we need to count cycles, then the cache operation will be
1474 initiated from the model profiling functions.
1475 See frvbf_model_.... */
1476 int hsr0 = GET_HSR0 ();
1477 if (GET_HSR0_ICE (hsr0))
1478 {
1479 if (model_insn)
1480 CPU_LOAD_ADDRESS (current_cpu) = address;
1481 else
1482 {
1483 FRV_CACHE *cache = CPU_INSN_CACHE (current_cpu);
1484 frv_cache_unlock (cache, address);
1485 }
1486 }
1487}
1488
1489void
1490frvbf_data_cache_unlock (SIM_CPU *current_cpu, SI address)
1491{
1492 /* If we need to count cycles, then the cache operation will be
1493 initiated from the model profiling functions.
1494 See frvbf_model_.... */
1495 int hsr0 = GET_HSR0 ();
1496 if (GET_HSR0_DCE (hsr0))
1497 {
1498 if (model_insn)
1499 CPU_LOAD_ADDRESS (current_cpu) = address;
1500 else
1501 {
1502 FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
1503 frv_cache_unlock (cache, address);
1504 }
1505 }
1506}
1507
1508void
1509frvbf_insn_cache_invalidate (SIM_CPU *current_cpu, SI address, int all)
1510{
1511 /* Make sure the insn was specified properly. -1 will be passed for ALL
1512 for a icei with A=0. */
1513 if (all == -1)
1514 {
1515 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
1516 return;
1517 }
1518
1519 /* If we need to count cycles, then the cache operation will be
1520 initiated from the model profiling functions.
1521 See frvbf_model_.... */
1522 if (model_insn)
1523 {
1524 /* Record the all-entries flag for use in profiling. */
1525 FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu);
1526 ps->all_cache_entries = all;
1527 CPU_LOAD_ADDRESS (current_cpu) = address;
1528 }
1529 else
1530 {
1531 FRV_CACHE *cache = CPU_INSN_CACHE (current_cpu);
1532 if (all)
1533 frv_cache_invalidate_all (cache, 0/* flush? */);
1534 else
1535 frv_cache_invalidate (cache, address, 0/* flush? */);
1536 }
1537}
1538
1539void
1540frvbf_data_cache_invalidate (SIM_CPU *current_cpu, SI address, int all)
1541{
1542 /* Make sure the insn was specified properly. -1 will be passed for ALL
1543 for a dcei with A=0. */
1544 if (all == -1)
1545 {
1546 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
1547 return;
1548 }
1549
1550 /* If we need to count cycles, then the cache operation will be
1551 initiated from the model profiling functions.
1552 See frvbf_model_.... */
1553 if (model_insn)
1554 {
1555 /* Record the all-entries flag for use in profiling. */
1556 FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu);
1557 ps->all_cache_entries = all;
1558 CPU_LOAD_ADDRESS (current_cpu) = address;
1559 }
1560 else
1561 {
1562 FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
1563 if (all)
1564 frv_cache_invalidate_all (cache, 0/* flush? */);
1565 else
1566 frv_cache_invalidate (cache, address, 0/* flush? */);
1567 }
1568}
1569
1570void
1571frvbf_data_cache_flush (SIM_CPU *current_cpu, SI address, int all)
1572{
1573 /* Make sure the insn was specified properly. -1 will be passed for ALL
1574 for a dcef with A=0. */
1575 if (all == -1)
1576 {
1577 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
1578 return;
1579 }
1580
1581 /* If we need to count cycles, then the cache operation will be
1582 initiated from the model profiling functions.
1583 See frvbf_model_.... */
1584 if (model_insn)
1585 {
1586 /* Record the all-entries flag for use in profiling. */
1587 FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu);
1588 ps->all_cache_entries = all;
1589 CPU_LOAD_ADDRESS (current_cpu) = address;
1590 }
1591 else
1592 {
1593 FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
1594 if (all)
1595 frv_cache_invalidate_all (cache, 1/* flush? */);
1596 else
1597 frv_cache_invalidate (cache, address, 1/* flush? */);
1598 }
1599}