]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame - sim/ppc/idecode_expression.h
Update sim copyright headers from GPLv2-or-later to GPLv3-or-later.
[thirdparty/binutils-gdb.git] / sim / ppc / idecode_expression.h
CommitLineData
c906108c
SS
1/* This file is part of the program psim.
2
345d88d9 3 Copyright 1994, 1995, 1996, 1997, 2003 Andrew Cagney
c906108c
SS
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
3fd725ef 7 the Free Software Foundation; either version 3 of the License, or
c906108c
SS
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18
19 */
20
345d88d9
AC
21/* Additional, and optional expressions. */
22#ifdef WITH_ALTIVEC
23#include "altivec_expression.h"
24#endif
25#ifdef WITH_E500
26#include "e500_expression.h"
27#endif
c906108c
SS
28
29/* 32bit target expressions:
30
31 Each calculation is performed three times using each of the
32 signed64, unsigned64 and long integer types. The macro ALU_END
33 (in _ALU_RESULT_VAL) then selects which of the three alternative
34 results will be used in the final assignment of the target
35 register. As this selection is determined at compile time by
36 fields in the instruction (OE, EA, Rc) the compiler has sufficient
37 information to firstly simplify the selection code into a single
38 case and then back anotate the equations and hence eliminate any
39 resulting dead code. That dead code being the calculations that,
40 as it turned out were not in the end needed.
41
42 64bit arrithemetic is used firstly because it allows the use of
43 gcc's efficient long long operators (typically efficiently output
44 inline) and secondly because the resultant answer will contain in
45 the low 32bits the answer while in the high 32bits is either carry
46 or status information. */
47
48/* 64bit target expressions:
49
50 Unfortunatly 128bit arrithemetic isn't that common. Consequently
51 the 32/64 bit trick can not be used. Instead all calculations are
52 required to retain carry/overflow information in separate
53 variables. Even with this restriction it is still possible for the
54 trick of letting the compiler discard the calculation of unneeded
55 values */
56
57
58/* Macro's to type cast 32bit constants to 64bits */
59#define SIGNED64(val) ((signed64)(signed32)(val))
60#define UNSIGNED64(val) ((unsigned64)(unsigned32)(val))
61
62
63/* Start a section of ALU code */
64
65#define ALU_BEGIN(val) \
66{ \
67 natural_word alu_val; \
68 unsigned64 alu_carry_val; \
69 signed64 alu_overflow_val; \
70 ALU_SET(val)
71
72
73/* assign the result to the target register */
74
75#define ALU_END(TARG,CA,OE,Rc) \
76{ /* select the result to use */ \
77 signed_word const alu_result = _ALU_RESULT_VAL(CA,OE,Rc); \
78 /* determine the overflow bit if needed */ \
79 if (OE) { \
80 if ((((unsigned64)(alu_overflow_val & BIT64(0))) \
81 >> 32) \
82 == (alu_overflow_val & BIT64(32))) \
83 XER &= (~xer_overflow); \
84 else \
85 XER |= (xer_summary_overflow | xer_overflow); \
86 } \
87 /* Update the carry bit if needed */ \
88 if (CA) { \
89 XER = ((XER & ~xer_carry) \
90 | SHUFFLED32((alu_carry_val >> 32), 31, xer_carry_bit)); \
91 /* if (alu_carry_val & BIT64(31)) \
92 XER |= (xer_carry); \
93 else \
94 XER &= (~xer_carry); */ \
95 } \
96 TRACE(trace_alu, (" Result = %ld (0x%lx), XER = %ld\n", \
97 (long)alu_result, (long)alu_result, (long)XER)); \
98 /* Update the Result Conditions if needed */ \
99 CR0_COMPARE(alu_result, 0, Rc); \
100 /* assign targ same */ \
101 TARG = alu_result; \
102}}
103
104/* select the result from the different options */
105
106#define _ALU_RESULT_VAL(CA,OE,Rc) (WITH_TARGET_WORD_BITSIZE == 64 \
107 ? alu_val \
108 : (OE \
109 ? alu_overflow_val \
110 : (CA \
111 ? alu_carry_val \
112 : alu_val)))
113
114
115/* More basic alu operations */
116#if (WITH_TARGET_WORD_BITSIZE == 64)
117#define ALU_SET(val) \
118do { \
119 alu_val = val; \
120 alu_carry_val = ((unsigned64)alu_val) >> 32; \
121 alu_overflow_val = ((signed64)alu_val) >> 32; \
122} while (0)
123#endif
124#if (WITH_TARGET_WORD_BITSIZE == 32)
125#define ALU_SET(val) \
126do { \
127 alu_val = val; \
128 alu_carry_val = (unsigned32)(alu_val); \
129 alu_overflow_val = (signed32)(alu_val); \
130} while (0)
131#endif
132
133#if (WITH_TARGET_WORD_BITSIZE == 64)
134#define ALU_ADD(val) \
135do { \
136 unsigned64 alu_lo = (UNSIGNED64(alu_val) \
137 + UNSIGNED64(val)); \
138 signed alu_carry = ((alu_lo & BIT(31)) != 0); \
139 alu_carry_val = (alu_carry_val \
140 + UNSIGNED64(EXTRACTED(val, 0, 31)) \
141 + alu_carry); \
142 alu_overflow_val = (alu_overflow_val \
143 + SIGNED64(EXTRACTED(val, 0, 31)) \
144 + alu_carry); \
145 alu_val = alu_val + val; \
146} while (0)
147#endif
148#if (WITH_TARGET_WORD_BITSIZE == 32)
149#define ALU_ADD(val) \
150do { \
151 alu_val += val; \
152 alu_carry_val += (unsigned32)(val); \
153 alu_overflow_val += (signed32)(val); \
154} while (0)
155#endif
156
157
158#if (WITH_TARGET_WORD_BITSIZE == 64)
159#define ALU_ADD_CA \
160do { \
161 signed carry = MASKED32(XER, xer_carry_bit, xer_carry_bit) != 0; \
162 ALU_ADD(carry); \
163} while (0)
164#endif
165#if (WITH_TARGET_WORD_BITSIZE == 32)
166#define ALU_ADD_CA \
167do { \
168 signed carry = MASKED32(XER, xer_carry_bit, xer_carry_bit) != 0; \
169 ALU_ADD(carry); \
170} while (0)
171#endif
172
173
174#if 0
175#if (WITH_TARGET_WORD_BITSIZE == 64)
176#endif
177#if (WITH_TARGET_WORD_BITSIZE == 32)
178#define ALU_SUB(val) \
179do { \
180 alu_val -= val; \
181 alu_carry_val -= (unsigned32)(val); \
182 alu_overflow_val -= (signed32)(val); \
183} while (0)
184#endif
185#endif
186
187#if (WITH_TARGET_WORD_BITSIZE == 64)
188#endif
189#if (WITH_TARGET_WORD_BITSIZE == 32)
190#define ALU_OR(val) \
191do { \
192 alu_val |= val; \
193 alu_carry_val = (unsigned32)(alu_val); \
194 alu_overflow_val = (signed32)(alu_val); \
195} while (0)
196#endif
197
198
199#if (WITH_TARGET_WORD_BITSIZE == 64)
200#endif
201#if (WITH_TARGET_WORD_BITSIZE == 32)
202#define ALU_XOR(val) \
203do { \
204 alu_val ^= val; \
205 alu_carry_val = (unsigned32)(alu_val); \
206 alu_overflow_val = (signed32)(alu_val); \
207} while (0)
208#endif
209
210
211#if 0
212#if (WITH_TARGET_WORD_BITSIZE == 64)
213#endif
214#if (WITH_TARGET_WORD_BITSIZE == 32)
215#define ALU_NEGATE \
216do { \
217 alu_val = -alu_val; \
218 alu_carry_val = -alu_carry_val; \
219 alu_overflow_val = -alu_overflow_val; \
220} while(0)
221#endif
222#endif
223
224
225#if (WITH_TARGET_WORD_BITSIZE == 64)
226#endif
227#if (WITH_TARGET_WORD_BITSIZE == 32)
228#define ALU_AND(val) \
229do { \
230 alu_val &= val; \
231 alu_carry_val = (unsigned32)(alu_val); \
232 alu_overflow_val = (signed32)(alu_val); \
233} while (0)
234#endif
235
236
237#if (WITH_TARGET_WORD_BITSIZE == 64)
238#define ALU_NOT \
239do { \
240 signed64 new_alu_val = ~alu_val; \
241 ALU_SET(new_alu_val); \
242} while (0)
243#endif
244#if (WITH_TARGET_WORD_BITSIZE == 32)
245#define ALU_NOT \
246do { \
247 signed new_alu_val = ~alu_val; \
248 ALU_SET(new_alu_val); \
249} while(0)
250#endif
251
252
253/* Macros for updating the condition register */
254
255#define CR1_UPDATE(Rc) \
256do { \
257 if (Rc) { \
258 CR_SET(1, EXTRACTED32(FPSCR, fpscr_fx_bit, fpscr_ox_bit)); \
259 } \
260} while (0)
261
262
263#define _DO_CR_COMPARE(LHS, RHS) \
264(((LHS) < (RHS)) \
265 ? cr_i_negative \
266 : (((LHS) > (RHS)) \
267 ? cr_i_positive \
268 : cr_i_zero))
269
270#define CR_SET(REG, VAL) MBLIT32(CR, REG*4, REG*4+3, VAL)
271#define CR_FIELD(REG) EXTRACTED32(CR, REG*4, REG*4+3)
272#define CR_SET_XER_SO(REG, VAL) \
273do { \
274 creg new_bits = ((XER & xer_summary_overflow) \
275 ? (cr_i_summary_overflow | VAL) \
276 : VAL); \
277 CR_SET(REG, new_bits); \
278} while(0)
279
280#define CR_COMPARE(REG, LHS, RHS) \
281do { \
282 creg new_bits = ((XER & xer_summary_overflow) \
283 ? (cr_i_summary_overflow | _DO_CR_COMPARE(LHS,RHS)) \
284 : _DO_CR_COMPARE(LHS,RHS)); \
285 CR_SET(REG, new_bits); \
286} while (0)
287
288#define CR0_COMPARE(LHS, RHS, Rc) \
289do { \
290 if (Rc) { \
291 CR_COMPARE(0, LHS, RHS); \
292 TRACE(trace_alu, \
293 ("CR=0x%08lx, LHS=%ld, RHS=%ld\n", \
294 (unsigned long)CR, (long)LHS, (long)RHS)); \
295 } \
296} while (0)
297
298
299
300/* Bring data in from the cold */
301
302#define MEM(SIGN, EA, NR_BYTES) \
303((SIGN##_##NR_BYTES) vm_data_map_read_##NR_BYTES(cpu_data_map(processor), EA, \
304 processor, cia)) \
305
306#define STORE(EA, NR_BYTES, VAL) \
307do { \
308 vm_data_map_write_##NR_BYTES(cpu_data_map(processor), EA, VAL, \
309 processor, cia); \
310} while (0)
311
312
313
314/* some FPSCR update macros. */
315
316#define FPSCR_BEGIN \
317{ \
318 fpscreg old_fpscr UNUSED = FPSCR
319
320#define FPSCR_END(Rc) { \
321 /* always update VX */ \
322 if ((FPSCR & fpscr_vx_bits)) \
323 FPSCR |= fpscr_vx; \
324 else \
325 FPSCR &= ~fpscr_vx; \
326 /* always update FEX */ \
327 if (((FPSCR & fpscr_vx) && (FPSCR & fpscr_ve)) \
328 || ((FPSCR & fpscr_ox) && (FPSCR & fpscr_oe)) \
329 || ((FPSCR & fpscr_ux) && (FPSCR & fpscr_ue)) \
330 || ((FPSCR & fpscr_zx) && (FPSCR & fpscr_ze)) \
331 || ((FPSCR & fpscr_xx) && (FPSCR & fpscr_xe))) \
332 FPSCR |= fpscr_fex; \
333 else \
334 FPSCR &= ~fpscr_fex; \
335 CR1_UPDATE(Rc); \
336 /* interrupt enabled? */ \
337 if ((MSR & (msr_floating_point_exception_mode_0 \
338 | msr_floating_point_exception_mode_1)) \
339 && (FPSCR & fpscr_fex)) \
340 program_interrupt(processor, cia, \
341 floating_point_enabled_program_interrupt); \
342}}
343
344#define FPSCR_SET(REG, VAL) MBLIT32(FPSCR, REG*4, REG*4+3, VAL)
345#define FPSCR_FIELD(REG) EXTRACTED32(FPSCR, REG*4, REG*4+3)
346
347#define FPSCR_SET_FPCC(VAL) MBLIT32(FPSCR, fpscr_fpcc_bit, fpscr_fpcc_bit+3, VAL)
348
349/* Handle various exceptions */
350
351#define FPSCR_OR_VX(VAL) \
352do { \
353 /* NOTE: VAL != 0 */ \
354 FPSCR |= (VAL); \
355 FPSCR |= fpscr_fx; \
356} while (0)
357
358#define FPSCR_SET_OX(COND) \
359do { \
360 if (COND) { \
361 FPSCR |= fpscr_ox; \
362 FPSCR |= fpscr_fx; \
363 } \
364 else \
365 FPSCR &= ~fpscr_ox; \
366} while (0)
367
368#define FPSCR_SET_UX(COND) \
369do { \
370 if (COND) { \
371 FPSCR |= fpscr_ux; \
372 FPSCR |= fpscr_fx; \
373 } \
374 else \
375 FPSCR &= ~fpscr_ux; \
376} while (0)
377
378#define FPSCR_SET_ZX(COND) \
379do { \
380 if (COND) { \
381 FPSCR |= fpscr_zx; \
382 FPSCR |= fpscr_fx; \
383 } \
384 else \
385 FPSCR &= ~fpscr_zx; \
386} while (0)
387
388#define FPSCR_SET_XX(COND) \
389do { \
390 if (COND) { \
391 FPSCR |= fpscr_xx; \
392 FPSCR |= fpscr_fx; \
393 } \
394} while (0)
395
396/* Note: code using SET_FI must also explicitly call SET_XX */
397
398#define FPSCR_SET_FR(COND) do { \
399 if (COND) \
400 FPSCR |= fpscr_fr; \
401 else \
402 FPSCR &= ~fpscr_fr; \
403} while (0)
404
405#define FPSCR_SET_FI(COND) \
406do { \
407 if (COND) { \
408 FPSCR |= fpscr_fi; \
409 } \
410 else \
411 FPSCR &= ~fpscr_fi; \
412} while (0)
413
414#define FPSCR_SET_FPRF(VAL) \
415do { \
416 FPSCR = (FPSCR & ~fpscr_fprf) | (VAL); \
417} while (0)