]> git.ipfire.org Git - thirdparty/qemu.git/blame - softmmu/physmem.c
target/ppc: Implement cntlzdm
[thirdparty/qemu.git] / softmmu / physmem.c
CommitLineData
54936004 1/*
d9f24bf5 2 * RAM allocation and memory access
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
61f3c91a 9 * version 2.1 of the License, or (at your option) any later version.
54936004
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
14a48c1d 19
7b31bbc2 20#include "qemu/osdep.h"
a8d25326 21#include "qemu-common.h"
da34e65c 22#include "qapi/error.h"
54936004 23
f348b6d1 24#include "qemu/cutils.h"
084cfca1 25#include "qemu/cacheflush.h"
78271684
CF
26
27#ifdef CONFIG_TCG
28#include "hw/core/tcg-cpu-ops.h"
29#endif /* CONFIG_TCG */
30
63c91552 31#include "exec/exec-all.h"
51180423 32#include "exec/target_page.h"
741da0d3 33#include "hw/qdev-core.h"
c7e002c5 34#include "hw/qdev-properties.h"
47c8ca53 35#include "hw/boards.h"
33c11879 36#include "hw/xen/xen.h"
9c17d615 37#include "sysemu/kvm.h"
14a48c1d 38#include "sysemu/tcg.h"
a028edea 39#include "sysemu/qtest.h"
1de7afc9
PB
40#include "qemu/timer.h"
41#include "qemu/config-file.h"
75a34036 42#include "qemu/error-report.h"
b6b71cb5 43#include "qemu/qemu-print.h"
741da0d3 44#include "exec/memory.h"
df43d49c 45#include "exec/ioport.h"
741da0d3 46#include "sysemu/dma.h"
b58c5c2d 47#include "sysemu/hostmem.h"
79ca7a1b 48#include "sysemu/hw_accel.h"
9c17d615 49#include "sysemu/xen-mapcache.h"
243af022 50#include "trace/trace-root.h"
d3a5038c 51
e2fa71f5 52#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
53#include <linux/falloc.h>
54#endif
55
0dc3f44a 56#include "qemu/rcu_queue.h"
4840f10e 57#include "qemu/main-loop.h"
3b9bd3f4 58#include "exec/translate-all.h"
7615936e 59#include "sysemu/replay.h"
0cac1b66 60
022c62cb 61#include "exec/memory-internal.h"
220c3ebd 62#include "exec/ram_addr.h"
508127e2 63#include "exec/log.h"
67d95c15 64
61c490e2
BM
65#include "qemu/pmem.h"
66
9dfeca7c
BR
67#include "migration/vmstate.h"
68
b35ba30f 69#include "qemu/range.h"
794e8f30
MT
70#ifndef _WIN32
71#include "qemu/mmap-alloc.h"
72#endif
b35ba30f 73
be9b23c4
PX
74#include "monitor/monitor.h"
75
ce317be9
JL
76#ifdef CONFIG_LIBDAXCTL
77#include <daxctl/libdaxctl.h>
78#endif
79
db7b5426 80//#define DEBUG_SUBPAGE
1196be37 81
0dc3f44a
MD
82/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
83 * are protected by the ramlist lock.
84 */
0d53d9fe 85RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
86
87static MemoryRegion *system_memory;
309cb471 88static MemoryRegion *system_io;
62152b8a 89
f6790af6
AK
90AddressSpace address_space_io;
91AddressSpace address_space_memory;
2673a5da 92
acc9d80b 93static MemoryRegion io_mem_unassigned;
4346ae3e 94
1db8abb1
PB
95typedef struct PhysPageEntry PhysPageEntry;
96
97struct PhysPageEntry {
9736e55b 98 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 99 uint32_t skip : 6;
9736e55b 100 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 101 uint32_t ptr : 26;
1db8abb1
PB
102};
103
8b795765
MT
104#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
105
03f49957 106/* Size of the L2 (and L3, etc) page tables. */
57271d63 107#define ADDR_SPACE_BITS 64
03f49957 108
026736ce 109#define P_L2_BITS 9
03f49957
PB
110#define P_L2_SIZE (1 << P_L2_BITS)
111
112#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
113
114typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 115
53cb28cb 116typedef struct PhysPageMap {
79e2b9ae
PB
117 struct rcu_head rcu;
118
53cb28cb
MA
119 unsigned sections_nb;
120 unsigned sections_nb_alloc;
121 unsigned nodes_nb;
122 unsigned nodes_nb_alloc;
123 Node *nodes;
124 MemoryRegionSection *sections;
125} PhysPageMap;
126
1db8abb1 127struct AddressSpaceDispatch {
729633c2 128 MemoryRegionSection *mru_section;
1db8abb1
PB
129 /* This is a multi-level map on the physical address space.
130 * The bottom level has pointers to MemoryRegionSections.
131 */
132 PhysPageEntry phys_map;
53cb28cb 133 PhysPageMap map;
1db8abb1
PB
134};
135
90260c6c
JK
136#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
137typedef struct subpage_t {
138 MemoryRegion iomem;
16620684 139 FlatView *fv;
90260c6c 140 hwaddr base;
2615fabd 141 uint16_t sub_section[];
90260c6c
JK
142} subpage_t;
143
b41aac4f 144#define PHYS_SECTION_UNASSIGNED 0
5312bd8b 145
e2eef170 146static void io_mem_init(void);
62152b8a 147static void memory_map_init(void);
9458a9a1 148static void tcg_log_global_after_sync(MemoryListener *listener);
09daed84 149static void tcg_commit(MemoryListener *listener);
e2eef170 150
32857f4d
PM
151/**
152 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
153 * @cpu: the CPU whose AddressSpace this is
154 * @as: the AddressSpace itself
155 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
156 * @tcg_as_listener: listener for tracking changes to the AddressSpace
157 */
158struct CPUAddressSpace {
159 CPUState *cpu;
160 AddressSpace *as;
161 struct AddressSpaceDispatch *memory_dispatch;
162 MemoryListener tcg_as_listener;
163};
164
8deaf12c
GH
165struct DirtyBitmapSnapshot {
166 ram_addr_t start;
167 ram_addr_t end;
168 unsigned long dirty[];
169};
170
53cb28cb 171static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 172{
101420b8 173 static unsigned alloc_hint = 16;
53cb28cb 174 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
c95cfd04 175 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
53cb28cb 176 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 177 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 178 }
f7bf5461
AK
179}
180
db94604b 181static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
182{
183 unsigned i;
8b795765 184 uint32_t ret;
db94604b
PB
185 PhysPageEntry e;
186 PhysPageEntry *p;
f7bf5461 187
53cb28cb 188 ret = map->nodes_nb++;
db94604b 189 p = map->nodes[ret];
f7bf5461 190 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 191 assert(ret != map->nodes_nb_alloc);
db94604b
PB
192
193 e.skip = leaf ? 0 : 1;
194 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 195 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 196 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 197 }
f7bf5461 198 return ret;
d6f2ea22
AK
199}
200
53cb28cb 201static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
56b15076 202 hwaddr *index, uint64_t *nb, uint16_t leaf,
2999097b 203 int level)
f7bf5461
AK
204{
205 PhysPageEntry *p;
03f49957 206 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 207
9736e55b 208 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 209 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 210 }
db94604b 211 p = map->nodes[lp->ptr];
03f49957 212 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 213
03f49957 214 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 215 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 216 lp->skip = 0;
c19e8800 217 lp->ptr = leaf;
07f07b31
AK
218 *index += step;
219 *nb -= step;
2999097b 220 } else {
53cb28cb 221 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
222 }
223 ++lp;
f7bf5461
AK
224 }
225}
226
ac1970fb 227static void phys_page_set(AddressSpaceDispatch *d,
56b15076 228 hwaddr index, uint64_t nb,
2999097b 229 uint16_t leaf)
f7bf5461 230{
2999097b 231 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 232 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 233
53cb28cb 234 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
235}
236
b35ba30f
MT
237/* Compact a non leaf page entry. Simply detect that the entry has a single child,
238 * and update our entry so we can skip it and go directly to the destination.
239 */
efee678d 240static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
241{
242 unsigned valid_ptr = P_L2_SIZE;
243 int valid = 0;
244 PhysPageEntry *p;
245 int i;
246
247 if (lp->ptr == PHYS_MAP_NODE_NIL) {
248 return;
249 }
250
251 p = nodes[lp->ptr];
252 for (i = 0; i < P_L2_SIZE; i++) {
253 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
254 continue;
255 }
256
257 valid_ptr = i;
258 valid++;
259 if (p[i].skip) {
efee678d 260 phys_page_compact(&p[i], nodes);
b35ba30f
MT
261 }
262 }
263
264 /* We can only compress if there's only one child. */
265 if (valid != 1) {
266 return;
267 }
268
269 assert(valid_ptr < P_L2_SIZE);
270
271 /* Don't compress if it won't fit in the # of bits we have. */
526ca236
WY
272 if (P_L2_LEVELS >= (1 << 6) &&
273 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
b35ba30f
MT
274 return;
275 }
276
277 lp->ptr = p[valid_ptr].ptr;
278 if (!p[valid_ptr].skip) {
279 /* If our only child is a leaf, make this a leaf. */
280 /* By design, we should have made this node a leaf to begin with so we
281 * should never reach here.
282 * But since it's so simple to handle this, let's do it just in case we
283 * change this rule.
284 */
285 lp->skip = 0;
286 } else {
287 lp->skip += p[valid_ptr].skip;
288 }
289}
290
8629d3fc 291void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 292{
b35ba30f 293 if (d->phys_map.skip) {
efee678d 294 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
295 }
296}
297
29cb533d
FZ
298static inline bool section_covers_addr(const MemoryRegionSection *section,
299 hwaddr addr)
300{
301 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
302 * the section must cover the entire address space.
303 */
258dfaaa 304 return int128_gethi(section->size) ||
29cb533d 305 range_covers_byte(section->offset_within_address_space,
258dfaaa 306 int128_getlo(section->size), addr);
29cb533d
FZ
307}
308
003a0cf2 309static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 310{
003a0cf2
PX
311 PhysPageEntry lp = d->phys_map, *p;
312 Node *nodes = d->map.nodes;
313 MemoryRegionSection *sections = d->map.sections;
97115a8d 314 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 315 int i;
f1f6e3b8 316
9736e55b 317 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 318 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 319 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 320 }
9affd6fc 321 p = nodes[lp.ptr];
03f49957 322 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 323 }
b35ba30f 324
29cb533d 325 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
326 return &sections[lp.ptr];
327 } else {
328 return &sections[PHYS_SECTION_UNASSIGNED];
329 }
f3705d53
AK
330}
331
79e2b9ae 332/* Called from RCU critical section */
c7086b4a 333static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
334 hwaddr addr,
335 bool resolve_subpage)
9f029603 336{
d73415a3 337 MemoryRegionSection *section = qatomic_read(&d->mru_section);
90260c6c
JK
338 subpage_t *subpage;
339
07c114bb
PB
340 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
341 !section_covers_addr(section, addr)) {
003a0cf2 342 section = phys_page_find(d, addr);
d73415a3 343 qatomic_set(&d->mru_section, section);
729633c2 344 }
90260c6c
JK
345 if (resolve_subpage && section->mr->subpage) {
346 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 347 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
348 }
349 return section;
9f029603
JK
350}
351
79e2b9ae 352/* Called from RCU critical section */
90260c6c 353static MemoryRegionSection *
c7086b4a 354address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 355 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
356{
357 MemoryRegionSection *section;
965eb2fc 358 MemoryRegion *mr;
a87f3954 359 Int128 diff;
149f54b5 360
c7086b4a 361 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
362 /* Compute offset within MemoryRegionSection */
363 addr -= section->offset_within_address_space;
364
365 /* Compute offset within MemoryRegion */
366 *xlat = addr + section->offset_within_region;
367
965eb2fc 368 mr = section->mr;
b242e0e0
PB
369
370 /* MMIO registers can be expected to perform full-width accesses based only
371 * on their address, without considering adjacent registers that could
372 * decode to completely different MemoryRegions. When such registers
373 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
374 * regions overlap wildly. For this reason we cannot clamp the accesses
375 * here.
376 *
377 * If the length is small (as is the case for address_space_ldl/stl),
378 * everything works fine. If the incoming length is large, however,
379 * the caller really has to do the clamping through memory_access_size.
380 */
965eb2fc 381 if (memory_region_is_ram(mr)) {
e4a511f8 382 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
383 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
384 }
149f54b5
PB
385 return section;
386}
90260c6c 387
a411c84b
PB
388/**
389 * address_space_translate_iommu - translate an address through an IOMMU
390 * memory region and then through the target address space.
391 *
392 * @iommu_mr: the IOMMU memory region that we start the translation from
393 * @addr: the address to be translated through the MMU
394 * @xlat: the translated address offset within the destination memory region.
395 * It cannot be %NULL.
396 * @plen_out: valid read/write length of the translated address. It
397 * cannot be %NULL.
398 * @page_mask_out: page mask for the translated address. This
399 * should only be meaningful for IOMMU translated
400 * addresses, since there may be huge pages that this bit
401 * would tell. It can be %NULL if we don't care about it.
402 * @is_write: whether the translation operation is for write
403 * @is_mmio: whether this can be MMIO, set true if it can
404 * @target_as: the address space targeted by the IOMMU
2f7b009c 405 * @attrs: transaction attributes
a411c84b
PB
406 *
407 * This function is called from RCU critical section. It is the common
408 * part of flatview_do_translate and address_space_translate_cached.
409 */
410static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
411 hwaddr *xlat,
412 hwaddr *plen_out,
413 hwaddr *page_mask_out,
414 bool is_write,
415 bool is_mmio,
2f7b009c
PM
416 AddressSpace **target_as,
417 MemTxAttrs attrs)
a411c84b
PB
418{
419 MemoryRegionSection *section;
420 hwaddr page_mask = (hwaddr)-1;
421
422 do {
423 hwaddr addr = *xlat;
424 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
425 int iommu_idx = 0;
426 IOMMUTLBEntry iotlb;
427
428 if (imrc->attrs_to_index) {
429 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
430 }
431
432 iotlb = imrc->translate(iommu_mr, addr, is_write ?
433 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
434
435 if (!(iotlb.perm & (1 << is_write))) {
436 goto unassigned;
437 }
438
439 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
440 | (addr & iotlb.addr_mask));
441 page_mask &= iotlb.addr_mask;
442 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
443 *target_as = iotlb.target_as;
444
445 section = address_space_translate_internal(
446 address_space_to_dispatch(iotlb.target_as), addr, xlat,
447 plen_out, is_mmio);
448
449 iommu_mr = memory_region_get_iommu(section->mr);
450 } while (unlikely(iommu_mr));
451
452 if (page_mask_out) {
453 *page_mask_out = page_mask;
454 }
455 return *section;
456
457unassigned:
458 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
459}
460
d5e5fafd
PX
461/**
462 * flatview_do_translate - translate an address in FlatView
463 *
464 * @fv: the flat view that we want to translate on
465 * @addr: the address to be translated in above address space
466 * @xlat: the translated address offset within memory region. It
467 * cannot be @NULL.
468 * @plen_out: valid read/write length of the translated address. It
469 * can be @NULL when we don't care about it.
470 * @page_mask_out: page mask for the translated address. This
471 * should only be meaningful for IOMMU translated
472 * addresses, since there may be huge pages that this bit
473 * would tell. It can be @NULL if we don't care about it.
474 * @is_write: whether the translation operation is for write
475 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 476 * @target_as: the address space targeted by the IOMMU
49e14aa8 477 * @attrs: memory transaction attributes
d5e5fafd
PX
478 *
479 * This function is called from RCU critical section
480 */
16620684
AK
481static MemoryRegionSection flatview_do_translate(FlatView *fv,
482 hwaddr addr,
483 hwaddr *xlat,
d5e5fafd
PX
484 hwaddr *plen_out,
485 hwaddr *page_mask_out,
16620684
AK
486 bool is_write,
487 bool is_mmio,
49e14aa8
PM
488 AddressSpace **target_as,
489 MemTxAttrs attrs)
052c8fa9 490{
052c8fa9 491 MemoryRegionSection *section;
3df9d748 492 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
493 hwaddr plen = (hwaddr)(-1);
494
ad2804d9
PB
495 if (!plen_out) {
496 plen_out = &plen;
d5e5fafd 497 }
052c8fa9 498
a411c84b
PB
499 section = address_space_translate_internal(
500 flatview_to_dispatch(fv), addr, xlat,
501 plen_out, is_mmio);
052c8fa9 502
a411c84b
PB
503 iommu_mr = memory_region_get_iommu(section->mr);
504 if (unlikely(iommu_mr)) {
505 return address_space_translate_iommu(iommu_mr, xlat,
506 plen_out, page_mask_out,
507 is_write, is_mmio,
2f7b009c 508 target_as, attrs);
052c8fa9 509 }
d5e5fafd 510 if (page_mask_out) {
a411c84b
PB
511 /* Not behind an IOMMU, use default page size. */
512 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
513 }
514
a764040c 515 return *section;
052c8fa9
JW
516}
517
518/* Called from RCU critical section */
a764040c 519IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 520 bool is_write, MemTxAttrs attrs)
90260c6c 521{
a764040c 522 MemoryRegionSection section;
076a93d7 523 hwaddr xlat, page_mask;
30951157 524
076a93d7
PX
525 /*
526 * This can never be MMIO, and we don't really care about plen,
527 * but page mask.
528 */
529 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
530 NULL, &page_mask, is_write, false, &as,
531 attrs);
30951157 532
a764040c
PX
533 /* Illegal translation */
534 if (section.mr == &io_mem_unassigned) {
535 goto iotlb_fail;
536 }
30951157 537
a764040c
PX
538 /* Convert memory region offset into address space offset */
539 xlat += section.offset_within_address_space -
540 section.offset_within_region;
541
a764040c 542 return (IOMMUTLBEntry) {
e76bb18f 543 .target_as = as,
076a93d7
PX
544 .iova = addr & ~page_mask,
545 .translated_addr = xlat & ~page_mask,
546 .addr_mask = page_mask,
a764040c
PX
547 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
548 .perm = IOMMU_RW,
549 };
550
551iotlb_fail:
552 return (IOMMUTLBEntry) {0};
553}
554
555/* Called from RCU critical section */
16620684 556MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
557 hwaddr *plen, bool is_write,
558 MemTxAttrs attrs)
a764040c
PX
559{
560 MemoryRegion *mr;
561 MemoryRegionSection section;
16620684 562 AddressSpace *as = NULL;
a764040c
PX
563
564 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 565 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 566 is_write, true, &as, attrs);
a764040c
PX
567 mr = section.mr;
568
fe680d0d 569 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 570 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 571 *plen = MIN(page, *plen);
a87f3954
PB
572 }
573
30951157 574 return mr;
90260c6c
JK
575}
576
1f871c5e
PM
577typedef struct TCGIOMMUNotifier {
578 IOMMUNotifier n;
579 MemoryRegion *mr;
580 CPUState *cpu;
581 int iommu_idx;
582 bool active;
583} TCGIOMMUNotifier;
584
585static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
586{
587 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
588
589 if (!notifier->active) {
590 return;
591 }
592 tlb_flush(notifier->cpu);
593 notifier->active = false;
594 /* We leave the notifier struct on the list to avoid reallocating it later.
595 * Generally the number of IOMMUs a CPU deals with will be small.
596 * In any case we can't unregister the iommu notifier from a notify
597 * callback.
598 */
599}
600
601static void tcg_register_iommu_notifier(CPUState *cpu,
602 IOMMUMemoryRegion *iommu_mr,
603 int iommu_idx)
604{
605 /* Make sure this CPU has an IOMMU notifier registered for this
606 * IOMMU/IOMMU index combination, so that we can flush its TLB
607 * when the IOMMU tells us the mappings we've cached have changed.
608 */
609 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
bbf90191 610 TCGIOMMUNotifier *notifier = NULL;
805d4496 611 int i;
1f871c5e
PM
612
613 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 614 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
615 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
616 break;
617 }
618 }
619 if (i == cpu->iommu_notifiers->len) {
620 /* Not found, add a new entry at the end of the array */
621 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
622 notifier = g_new0(TCGIOMMUNotifier, 1);
623 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
624
625 notifier->mr = mr;
626 notifier->iommu_idx = iommu_idx;
627 notifier->cpu = cpu;
628 /* Rather than trying to register interest in the specific part
629 * of the iommu's address space that we've accessed and then
630 * expand it later as subsequent accesses touch more of it, we
631 * just register interest in the whole thing, on the assumption
632 * that iommu reconfiguration will be rare.
633 */
634 iommu_notifier_init(&notifier->n,
635 tcg_iommu_unmap_notify,
636 IOMMU_NOTIFIER_UNMAP,
637 0,
638 HWADDR_MAX,
639 iommu_idx);
805d4496
MA
640 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
641 &error_fatal);
1f871c5e
PM
642 }
643
644 if (!notifier->active) {
645 notifier->active = true;
646 }
647}
648
d9f24bf5 649void tcg_iommu_free_notifier_list(CPUState *cpu)
1f871c5e
PM
650{
651 /* Destroy the CPU's notifier list */
652 int i;
653 TCGIOMMUNotifier *notifier;
654
655 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 656 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 657 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 658 g_free(notifier);
1f871c5e
PM
659 }
660 g_array_free(cpu->iommu_notifiers, true);
661}
662
d9f24bf5
PB
663void tcg_iommu_init_notifier_list(CPUState *cpu)
664{
665 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
666}
667
79e2b9ae 668/* Called from RCU critical section */
90260c6c 669MemoryRegionSection *
d7898cda 670address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
671 hwaddr *xlat, hwaddr *plen,
672 MemTxAttrs attrs, int *prot)
90260c6c 673{
30951157 674 MemoryRegionSection *section;
1f871c5e
PM
675 IOMMUMemoryRegion *iommu_mr;
676 IOMMUMemoryRegionClass *imrc;
677 IOMMUTLBEntry iotlb;
678 int iommu_idx;
d73415a3
SH
679 AddressSpaceDispatch *d =
680 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 681
1f871c5e
PM
682 for (;;) {
683 section = address_space_translate_internal(d, addr, &addr, plen, false);
684
685 iommu_mr = memory_region_get_iommu(section->mr);
686 if (!iommu_mr) {
687 break;
688 }
689
690 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
691
692 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
693 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
694 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
695 * doesn't short-cut its translation table walk.
696 */
697 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
698 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
699 | (addr & iotlb.addr_mask));
700 /* Update the caller's prot bits to remove permissions the IOMMU
701 * is giving us a failure response for. If we get down to no
702 * permissions left at all we can give up now.
703 */
704 if (!(iotlb.perm & IOMMU_RO)) {
705 *prot &= ~(PAGE_READ | PAGE_EXEC);
706 }
707 if (!(iotlb.perm & IOMMU_WO)) {
708 *prot &= ~PAGE_WRITE;
709 }
710
711 if (!*prot) {
712 goto translate_fail;
713 }
714
715 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
716 }
30951157 717
3df9d748 718 assert(!memory_region_is_iommu(section->mr));
1f871c5e 719 *xlat = addr;
30951157 720 return section;
1f871c5e
PM
721
722translate_fail:
723 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 724}
1a1562f5 725
80ceb07a
PX
726void cpu_address_space_init(CPUState *cpu, int asidx,
727 const char *prefix, MemoryRegion *mr)
09daed84 728{
12ebc9a7 729 CPUAddressSpace *newas;
80ceb07a 730 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 731 char *as_name;
80ceb07a
PX
732
733 assert(mr);
87a621d8
PX
734 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
735 address_space_init(as, mr, as_name);
736 g_free(as_name);
12ebc9a7
PM
737
738 /* Target code should have set num_ases before calling us */
739 assert(asidx < cpu->num_ases);
740
56943e8c
PM
741 if (asidx == 0) {
742 /* address space 0 gets the convenience alias */
743 cpu->as = as;
744 }
745
12ebc9a7
PM
746 /* KVM cannot currently support multiple address spaces. */
747 assert(asidx == 0 || !kvm_enabled());
09daed84 748
12ebc9a7
PM
749 if (!cpu->cpu_ases) {
750 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 751 }
32857f4d 752
12ebc9a7
PM
753 newas = &cpu->cpu_ases[asidx];
754 newas->cpu = cpu;
755 newas->as = as;
56943e8c 756 if (tcg_enabled()) {
9458a9a1 757 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
12ebc9a7 758 newas->tcg_as_listener.commit = tcg_commit;
142518bd 759 newas->tcg_as_listener.name = "tcg";
12ebc9a7 760 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 761 }
09daed84 762}
651a5bc0
PM
763
764AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
765{
766 /* Return the AddressSpace corresponding to the specified index */
767 return cpu->cpu_ases[asidx].as;
768}
8bca9a03 769
6658ffb8 770/* Add a watchpoint. */
75a34036 771int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 772 int flags, CPUWatchpoint **watchpoint)
6658ffb8 773{
c0ce998e 774 CPUWatchpoint *wp;
2e886a24 775 vaddr in_page;
6658ffb8 776
05068c0d 777 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 778 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
779 error_report("tried to set invalid watchpoint at %"
780 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
781 return -EINVAL;
782 }
7267c094 783 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
784
785 wp->vaddr = addr;
05068c0d 786 wp->len = len;
a1d1bb31
AL
787 wp->flags = flags;
788
2dc9f411 789 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
790 if (flags & BP_GDB) {
791 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
792 } else {
793 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
794 }
6658ffb8 795
2e886a24
AB
796 in_page = -(addr | TARGET_PAGE_MASK);
797 if (len <= in_page) {
798 tlb_flush_page(cpu, addr);
799 } else {
800 tlb_flush(cpu);
801 }
a1d1bb31
AL
802
803 if (watchpoint)
804 *watchpoint = wp;
805 return 0;
6658ffb8
PB
806}
807
a1d1bb31 808/* Remove a specific watchpoint. */
75a34036 809int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 810 int flags)
6658ffb8 811{
a1d1bb31 812 CPUWatchpoint *wp;
6658ffb8 813
ff4700b0 814 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 815 if (addr == wp->vaddr && len == wp->len
6e140f28 816 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 817 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
818 return 0;
819 }
820 }
a1d1bb31 821 return -ENOENT;
6658ffb8
PB
822}
823
a1d1bb31 824/* Remove a specific watchpoint by reference. */
75a34036 825void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 826{
ff4700b0 827 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 828
31b030d4 829 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 830
7267c094 831 g_free(watchpoint);
a1d1bb31
AL
832}
833
834/* Remove all matching watchpoints. */
75a34036 835void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 836{
c0ce998e 837 CPUWatchpoint *wp, *next;
a1d1bb31 838
ff4700b0 839 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
840 if (wp->flags & mask) {
841 cpu_watchpoint_remove_by_ref(cpu, wp);
842 }
c0ce998e 843 }
7d03f82f 844}
05068c0d 845
79fc8d45 846#ifdef CONFIG_TCG
05068c0d
PM
847/* Return true if this watchpoint address matches the specified
848 * access (ie the address range covered by the watchpoint overlaps
849 * partially or completely with the address range covered by the
850 * access).
851 */
56ad8b00
RH
852static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
853 vaddr addr, vaddr len)
05068c0d
PM
854{
855 /* We know the lengths are non-zero, but a little caution is
856 * required to avoid errors in the case where the range ends
857 * exactly at the top of the address space and so addr + len
858 * wraps round to zero.
859 */
860 vaddr wpend = wp->vaddr + wp->len - 1;
861 vaddr addrend = addr + len - 1;
862
863 return !(addr > wpend || wp->vaddr > addrend);
864}
865
56ad8b00
RH
866/* Return flags for watchpoints that match addr + prot. */
867int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
868{
869 CPUWatchpoint *wp;
870 int ret = 0;
871
872 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
9835936d 873 if (watchpoint_address_matches(wp, addr, len)) {
56ad8b00
RH
874 ret |= wp->flags;
875 }
876 }
877 return ret;
878}
7d03f82f 879
79fc8d45
CF
880/* Generate a debug exception if a watchpoint has been hit. */
881void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
882 MemTxAttrs attrs, int flags, uintptr_t ra)
883{
884 CPUClass *cc = CPU_GET_CLASS(cpu);
885 CPUWatchpoint *wp;
886
887 assert(tcg_enabled());
888 if (cpu->watchpoint_hit) {
889 /*
890 * We re-entered the check after replacing the TB.
891 * Now raise the debug interrupt so that it will
892 * trigger after the current instruction.
893 */
894 qemu_mutex_lock_iothread();
895 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
896 qemu_mutex_unlock_iothread();
897 return;
898 }
899
78271684 900 if (cc->tcg_ops->adjust_watchpoint_address) {
9ea9087b 901 /* this is currently used only by ARM BE32 */
78271684 902 addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
9ea9087b 903 }
79fc8d45
CF
904 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
905 if (watchpoint_address_matches(wp, addr, len)
906 && (wp->flags & flags)) {
907 if (replay_running_debug()) {
57dcb643
PD
908 /*
909 * replay_breakpoint reads icount.
910 * Force recompile to succeed, because icount may
911 * be read only at the end of the block.
912 */
913 if (!cpu->can_do_io) {
914 /* Force execution of one insn next time. */
915 cpu->cflags_next_tb = 1 | CF_LAST_IO | curr_cflags(cpu);
916 cpu_loop_exit_restore(cpu, ra);
917 }
79fc8d45
CF
918 /*
919 * Don't process the watchpoints when we are
920 * in a reverse debugging operation.
921 */
922 replay_breakpoint();
923 return;
924 }
925 if (flags == BP_MEM_READ) {
926 wp->flags |= BP_WATCHPOINT_HIT_READ;
927 } else {
928 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
929 }
930 wp->hitaddr = MAX(addr, wp->vaddr);
931 wp->hitattrs = attrs;
1ab0ba8a
PD
932
933 if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
934 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
935 wp->flags &= ~BP_WATCHPOINT_HIT;
936 continue;
937 }
938 cpu->watchpoint_hit = wp;
939
940 mmap_lock();
941 /* This call also restores vCPU state */
942 tb_check_watchpoint(cpu, ra);
943 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
944 cpu->exception_index = EXCP_DEBUG;
945 mmap_unlock();
946 cpu_loop_exit(cpu);
947 } else {
948 /* Force execution of one insn next time. */
efd629fb 949 cpu->cflags_next_tb = 1 | CF_LAST_IO | curr_cflags(cpu);
1ab0ba8a
PD
950 mmap_unlock();
951 cpu_loop_exit_noexc(cpu);
79fc8d45
CF
952 }
953 } else {
954 wp->flags &= ~BP_WATCHPOINT_HIT;
955 }
956 }
957}
958
959#endif /* CONFIG_TCG */
960
0dc3f44a 961/* Called from RCU critical section */
041603fe
PB
962static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
963{
964 RAMBlock *block;
965
d73415a3 966 block = qatomic_rcu_read(&ram_list.mru_block);
9b8424d5 967 if (block && addr - block->offset < block->max_length) {
68851b98 968 return block;
041603fe 969 }
99e15582 970 RAMBLOCK_FOREACH(block) {
9b8424d5 971 if (addr - block->offset < block->max_length) {
041603fe
PB
972 goto found;
973 }
974 }
975
976 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
977 abort();
978
979found:
43771539
PB
980 /* It is safe to write mru_block outside the iothread lock. This
981 * is what happens:
982 *
983 * mru_block = xxx
984 * rcu_read_unlock()
985 * xxx removed from list
986 * rcu_read_lock()
987 * read mru_block
988 * mru_block = NULL;
989 * call_rcu(reclaim_ramblock, xxx);
990 * rcu_read_unlock()
991 *
d73415a3 992 * qatomic_rcu_set is not needed here. The block was already published
43771539
PB
993 * when it was placed into the list. Here we're just making an extra
994 * copy of the pointer.
995 */
041603fe
PB
996 ram_list.mru_block = block;
997 return block;
998}
999
a2f4d5be 1000static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1001{
9a13565d 1002 CPUState *cpu;
041603fe 1003 ram_addr_t start1;
a2f4d5be
JQ
1004 RAMBlock *block;
1005 ram_addr_t end;
1006
f28d0dfd 1007 assert(tcg_enabled());
a2f4d5be
JQ
1008 end = TARGET_PAGE_ALIGN(start + length);
1009 start &= TARGET_PAGE_MASK;
d24981d3 1010
694ea274 1011 RCU_READ_LOCK_GUARD();
041603fe
PB
1012 block = qemu_get_ram_block(start);
1013 assert(block == qemu_get_ram_block(end - 1));
1240be24 1014 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1015 CPU_FOREACH(cpu) {
1016 tlb_reset_dirty(cpu, start1, length);
1017 }
d24981d3
JQ
1018}
1019
5579c7f3 1020/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1021bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1022 ram_addr_t length,
1023 unsigned client)
1ccde1cb 1024{
5b82b703 1025 DirtyMemoryBlocks *blocks;
25aa6b37 1026 unsigned long end, page, start_page;
5b82b703 1027 bool dirty = false;
077874e0
PX
1028 RAMBlock *ramblock;
1029 uint64_t mr_offset, mr_size;
03eebc9e
SH
1030
1031 if (length == 0) {
1032 return false;
1033 }
f23db169 1034
03eebc9e 1035 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
25aa6b37
MB
1036 start_page = start >> TARGET_PAGE_BITS;
1037 page = start_page;
5b82b703 1038
694ea274 1039 WITH_RCU_READ_LOCK_GUARD() {
d73415a3 1040 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
694ea274
DDAG
1041 ramblock = qemu_get_ram_block(start);
1042 /* Range sanity check on the ramblock */
1043 assert(start >= ramblock->offset &&
1044 start + length <= ramblock->offset + ramblock->used_length);
5b82b703 1045
694ea274
DDAG
1046 while (page < end) {
1047 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1048 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1049 unsigned long num = MIN(end - page,
1050 DIRTY_MEMORY_BLOCK_SIZE - offset);
5b82b703 1051
694ea274
DDAG
1052 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1053 offset, num);
1054 page += num;
1055 }
5b82b703 1056
25aa6b37
MB
1057 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1058 mr_size = (end - start_page) << TARGET_PAGE_BITS;
694ea274 1059 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
5b82b703
SH
1060 }
1061
03eebc9e 1062 if (dirty && tcg_enabled()) {
a2f4d5be 1063 tlb_reset_dirty_range_all(start, length);
5579c7f3 1064 }
03eebc9e
SH
1065
1066 return dirty;
1ccde1cb
FB
1067}
1068
8deaf12c 1069DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
5dea4079 1070 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
8deaf12c
GH
1071{
1072 DirtyMemoryBlocks *blocks;
5dea4079 1073 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
8deaf12c
GH
1074 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1075 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1076 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1077 DirtyBitmapSnapshot *snap;
1078 unsigned long page, end, dest;
1079
1080 snap = g_malloc0(sizeof(*snap) +
1081 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1082 snap->start = first;
1083 snap->end = last;
1084
1085 page = first >> TARGET_PAGE_BITS;
1086 end = last >> TARGET_PAGE_BITS;
1087 dest = 0;
1088
694ea274 1089 WITH_RCU_READ_LOCK_GUARD() {
d73415a3 1090 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
8deaf12c 1091
694ea274
DDAG
1092 while (page < end) {
1093 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1094 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1095 unsigned long num = MIN(end - page,
1096 DIRTY_MEMORY_BLOCK_SIZE - offset);
8deaf12c 1097
694ea274
DDAG
1098 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1099 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1100 offset >>= BITS_PER_LEVEL;
8deaf12c 1101
694ea274
DDAG
1102 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1103 blocks->blocks[idx] + offset,
1104 num);
1105 page += num;
1106 dest += num >> BITS_PER_LEVEL;
1107 }
8deaf12c
GH
1108 }
1109
8deaf12c
GH
1110 if (tcg_enabled()) {
1111 tlb_reset_dirty_range_all(start, length);
1112 }
1113
077874e0
PX
1114 memory_region_clear_dirty_bitmap(mr, offset, length);
1115
8deaf12c
GH
1116 return snap;
1117}
1118
1119bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1120 ram_addr_t start,
1121 ram_addr_t length)
1122{
1123 unsigned long page, end;
1124
1125 assert(start >= snap->start);
1126 assert(start + length <= snap->end);
1127
1128 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1129 page = (start - snap->start) >> TARGET_PAGE_BITS;
1130
1131 while (page < end) {
1132 if (test_bit(page, snap->dirty)) {
1133 return true;
1134 }
1135 page++;
1136 }
1137 return false;
1138}
1139
79e2b9ae 1140/* Called from RCU critical section */
bb0e627a 1141hwaddr memory_region_section_get_iotlb(CPUState *cpu,
8f5db641 1142 MemoryRegionSection *section)
e5548617 1143{
8f5db641
RH
1144 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1145 return section - d->map.sections;
e5548617 1146}
8da3ff18 1147
b797ab1a
WY
1148static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1149 uint16_t section);
16620684 1150static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1151
53cb28cb
MA
1152static uint16_t phys_section_add(PhysPageMap *map,
1153 MemoryRegionSection *section)
5312bd8b 1154{
68f3f65b
PB
1155 /* The physical section number is ORed with a page-aligned
1156 * pointer to produce the iotlb entries. Thus it should
1157 * never overflow into the page-aligned value.
1158 */
53cb28cb 1159 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1160
53cb28cb
MA
1161 if (map->sections_nb == map->sections_nb_alloc) {
1162 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1163 map->sections = g_renew(MemoryRegionSection, map->sections,
1164 map->sections_nb_alloc);
5312bd8b 1165 }
53cb28cb 1166 map->sections[map->sections_nb] = *section;
dfde4e6e 1167 memory_region_ref(section->mr);
53cb28cb 1168 return map->sections_nb++;
5312bd8b
AK
1169}
1170
058bc4b5
PB
1171static void phys_section_destroy(MemoryRegion *mr)
1172{
55b4e80b
DS
1173 bool have_sub_page = mr->subpage;
1174
dfde4e6e
PB
1175 memory_region_unref(mr);
1176
55b4e80b 1177 if (have_sub_page) {
058bc4b5 1178 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1179 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1180 g_free(subpage);
1181 }
1182}
1183
6092666e 1184static void phys_sections_free(PhysPageMap *map)
5312bd8b 1185{
9affd6fc
PB
1186 while (map->sections_nb > 0) {
1187 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1188 phys_section_destroy(section->mr);
1189 }
9affd6fc
PB
1190 g_free(map->sections);
1191 g_free(map->nodes);
5312bd8b
AK
1192}
1193
9950322a 1194static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1195{
9950322a 1196 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1197 subpage_t *subpage;
a8170e5e 1198 hwaddr base = section->offset_within_address_space
0f0cb164 1199 & TARGET_PAGE_MASK;
003a0cf2 1200 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1201 MemoryRegionSection subsection = {
1202 .offset_within_address_space = base,
052e87b0 1203 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1204 };
a8170e5e 1205 hwaddr start, end;
0f0cb164 1206
f3705d53 1207 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1208
f3705d53 1209 if (!(existing->mr->subpage)) {
16620684
AK
1210 subpage = subpage_init(fv, base);
1211 subsection.fv = fv;
0f0cb164 1212 subsection.mr = &subpage->iomem;
ac1970fb 1213 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1214 phys_section_add(&d->map, &subsection));
0f0cb164 1215 } else {
f3705d53 1216 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1217 }
1218 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1219 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1220 subpage_register(subpage, start, end,
1221 phys_section_add(&d->map, section));
0f0cb164
AK
1222}
1223
1224
9950322a 1225static void register_multipage(FlatView *fv,
052e87b0 1226 MemoryRegionSection *section)
33417e70 1227{
9950322a 1228 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1229 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1230 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1231 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1232 TARGET_PAGE_BITS));
dd81124b 1233
733d5ef5
PB
1234 assert(num_pages);
1235 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1236}
1237
494d1997
WY
1238/*
1239 * The range in *section* may look like this:
1240 *
1241 * |s|PPPPPPP|s|
1242 *
1243 * where s stands for subpage and P for page.
1244 */
8629d3fc 1245void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1246{
494d1997 1247 MemoryRegionSection remain = *section;
052e87b0 1248 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1249
494d1997
WY
1250 /* register first subpage */
1251 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1252 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1253 - remain.offset_within_address_space;
733d5ef5 1254
494d1997 1255 MemoryRegionSection now = remain;
052e87b0 1256 now.size = int128_min(int128_make64(left), now.size);
9950322a 1257 register_subpage(fv, &now);
494d1997
WY
1258 if (int128_eq(remain.size, now.size)) {
1259 return;
1260 }
052e87b0
PB
1261 remain.size = int128_sub(remain.size, now.size);
1262 remain.offset_within_address_space += int128_get64(now.size);
1263 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1264 }
1265
1266 /* register whole pages */
1267 if (int128_ge(remain.size, page_size)) {
1268 MemoryRegionSection now = remain;
1269 now.size = int128_and(now.size, int128_neg(page_size));
1270 register_multipage(fv, &now);
1271 if (int128_eq(remain.size, now.size)) {
1272 return;
69b67646 1273 }
494d1997
WY
1274 remain.size = int128_sub(remain.size, now.size);
1275 remain.offset_within_address_space += int128_get64(now.size);
1276 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1277 }
494d1997
WY
1278
1279 /* register last subpage */
1280 register_subpage(fv, &remain);
0f0cb164
AK
1281}
1282
62a2744c
SY
1283void qemu_flush_coalesced_mmio_buffer(void)
1284{
1285 if (kvm_enabled())
1286 kvm_flush_coalesced_mmio_buffer();
1287}
1288
b2a8658e
UD
1289void qemu_mutex_lock_ramlist(void)
1290{
1291 qemu_mutex_lock(&ram_list.mutex);
1292}
1293
1294void qemu_mutex_unlock_ramlist(void)
1295{
1296 qemu_mutex_unlock(&ram_list.mutex);
1297}
1298
ca411b7c 1299GString *ram_block_format(void)
be9b23c4
PX
1300{
1301 RAMBlock *block;
1302 char *psize;
ca411b7c 1303 GString *buf = g_string_new("");
be9b23c4 1304
694ea274 1305 RCU_READ_LOCK_GUARD();
ca411b7c
DB
1306 g_string_append_printf(buf, "%24s %8s %18s %18s %18s\n",
1307 "Block Name", "PSize", "Offset", "Used", "Total");
be9b23c4
PX
1308 RAMBLOCK_FOREACH(block) {
1309 psize = size_to_str(block->page_size);
ca411b7c
DB
1310 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1311 " 0x%016" PRIx64 "\n", block->idstr, psize,
1312 (uint64_t)block->offset,
1313 (uint64_t)block->used_length,
1314 (uint64_t)block->max_length);
be9b23c4
PX
1315 g_free(psize);
1316 }
ca411b7c
DB
1317
1318 return buf;
be9b23c4
PX
1319}
1320
9c607668
AK
1321#ifdef __linux__
1322/*
1323 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1324 * may or may not name the same files / on the same filesystem now as
1325 * when we actually open and map them. Iterate over the file
1326 * descriptors instead, and use qemu_fd_getpagesize().
1327 */
905b7ee4 1328static int find_min_backend_pagesize(Object *obj, void *opaque)
9c607668 1329{
9c607668
AK
1330 long *hpsize_min = opaque;
1331
1332 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1333 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1334 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1335
7d5489e6 1336 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1337 *hpsize_min = hpsize;
9c607668
AK
1338 }
1339 }
1340
1341 return 0;
1342}
1343
905b7ee4
DH
1344static int find_max_backend_pagesize(Object *obj, void *opaque)
1345{
1346 long *hpsize_max = opaque;
1347
1348 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1349 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1350 long hpsize = host_memory_backend_pagesize(backend);
1351
1352 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1353 *hpsize_max = hpsize;
1354 }
1355 }
1356
1357 return 0;
1358}
1359
1360/*
1361 * TODO: We assume right now that all mapped host memory backends are
1362 * used as RAM, however some might be used for different purposes.
1363 */
1364long qemu_minrampagesize(void)
9c607668
AK
1365{
1366 long hpsize = LONG_MAX;
ad1172d8 1367 Object *memdev_root = object_resolve_path("/objects", NULL);
9c607668 1368
ad1172d8 1369 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
9c607668
AK
1370 return hpsize;
1371}
905b7ee4
DH
1372
1373long qemu_maxrampagesize(void)
1374{
ad1172d8 1375 long pagesize = 0;
905b7ee4
DH
1376 Object *memdev_root = object_resolve_path("/objects", NULL);
1377
ad1172d8 1378 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
905b7ee4
DH
1379 return pagesize;
1380}
9c607668 1381#else
905b7ee4
DH
1382long qemu_minrampagesize(void)
1383{
038adc2f 1384 return qemu_real_host_page_size;
905b7ee4
DH
1385}
1386long qemu_maxrampagesize(void)
9c607668 1387{
038adc2f 1388 return qemu_real_host_page_size;
9c607668
AK
1389}
1390#endif
1391
d5dbde46 1392#ifdef CONFIG_POSIX
d6af99c9
HZ
1393static int64_t get_file_size(int fd)
1394{
72d41eb4
SH
1395 int64_t size;
1396#if defined(__linux__)
1397 struct stat st;
1398
1399 if (fstat(fd, &st) < 0) {
1400 return -errno;
1401 }
1402
1403 /* Special handling for devdax character devices */
1404 if (S_ISCHR(st.st_mode)) {
1405 g_autofree char *subsystem_path = NULL;
1406 g_autofree char *subsystem = NULL;
1407
1408 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1409 major(st.st_rdev), minor(st.st_rdev));
1410 subsystem = g_file_read_link(subsystem_path, NULL);
1411
1412 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1413 g_autofree char *size_path = NULL;
1414 g_autofree char *size_str = NULL;
1415
1416 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1417 major(st.st_rdev), minor(st.st_rdev));
1418
1419 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1420 return g_ascii_strtoll(size_str, NULL, 0);
1421 }
1422 }
1423 }
1424#endif /* defined(__linux__) */
1425
1426 /* st.st_size may be zero for special files yet lseek(2) works */
1427 size = lseek(fd, 0, SEEK_END);
d6af99c9
HZ
1428 if (size < 0) {
1429 return -errno;
1430 }
1431 return size;
1432}
1433
ce317be9
JL
1434static int64_t get_file_align(int fd)
1435{
1436 int64_t align = -1;
1437#if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1438 struct stat st;
1439
1440 if (fstat(fd, &st) < 0) {
1441 return -errno;
1442 }
1443
1444 /* Special handling for devdax character devices */
1445 if (S_ISCHR(st.st_mode)) {
1446 g_autofree char *path = NULL;
1447 g_autofree char *rpath = NULL;
1448 struct daxctl_ctx *ctx;
1449 struct daxctl_region *region;
1450 int rc = 0;
1451
1452 path = g_strdup_printf("/sys/dev/char/%d:%d",
1453 major(st.st_rdev), minor(st.st_rdev));
1454 rpath = realpath(path, NULL);
8efdb7ba
PM
1455 if (!rpath) {
1456 return -errno;
1457 }
ce317be9
JL
1458
1459 rc = daxctl_new(&ctx);
1460 if (rc) {
1461 return -1;
1462 }
1463
1464 daxctl_region_foreach(ctx, region) {
1465 if (strstr(rpath, daxctl_region_get_path(region))) {
1466 align = daxctl_region_get_align(region);
1467 break;
1468 }
1469 }
1470 daxctl_unref(ctx);
1471 }
1472#endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1473
1474 return align;
1475}
1476
8d37b030
MAL
1477static int file_ram_open(const char *path,
1478 const char *region_name,
369d6dc4 1479 bool readonly,
8d37b030
MAL
1480 bool *created,
1481 Error **errp)
c902760f
MT
1482{
1483 char *filename;
8ca761f6
PF
1484 char *sanitized_name;
1485 char *c;
5c3ece79 1486 int fd = -1;
c902760f 1487
8d37b030 1488 *created = false;
fd97fd44 1489 for (;;) {
369d6dc4 1490 fd = open(path, readonly ? O_RDONLY : O_RDWR);
fd97fd44
MA
1491 if (fd >= 0) {
1492 /* @path names an existing file, use it */
1493 break;
8d31d6b6 1494 }
fd97fd44
MA
1495 if (errno == ENOENT) {
1496 /* @path names a file that doesn't exist, create it */
1497 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1498 if (fd >= 0) {
8d37b030 1499 *created = true;
fd97fd44
MA
1500 break;
1501 }
1502 } else if (errno == EISDIR) {
1503 /* @path names a directory, create a file there */
1504 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1505 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1506 for (c = sanitized_name; *c != '\0'; c++) {
1507 if (*c == '/') {
1508 *c = '_';
1509 }
1510 }
8ca761f6 1511
fd97fd44
MA
1512 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1513 sanitized_name);
1514 g_free(sanitized_name);
8d31d6b6 1515
fd97fd44
MA
1516 fd = mkstemp(filename);
1517 if (fd >= 0) {
1518 unlink(filename);
1519 g_free(filename);
1520 break;
1521 }
1522 g_free(filename);
8d31d6b6 1523 }
fd97fd44
MA
1524 if (errno != EEXIST && errno != EINTR) {
1525 error_setg_errno(errp, errno,
1526 "can't open backing store %s for guest RAM",
1527 path);
8d37b030 1528 return -1;
fd97fd44
MA
1529 }
1530 /*
1531 * Try again on EINTR and EEXIST. The latter happens when
1532 * something else creates the file between our two open().
1533 */
8d31d6b6 1534 }
c902760f 1535
8d37b030
MAL
1536 return fd;
1537}
1538
1539static void *file_ram_alloc(RAMBlock *block,
1540 ram_addr_t memory,
1541 int fd,
369d6dc4 1542 bool readonly,
8d37b030 1543 bool truncate,
44a4ff31 1544 off_t offset,
8d37b030
MAL
1545 Error **errp)
1546{
b444f5c0 1547 uint32_t qemu_map_flags;
8d37b030
MAL
1548 void *area;
1549
863e9621 1550 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1551 if (block->mr->align % block->page_size) {
1552 error_setg(errp, "alignment 0x%" PRIx64
1553 " must be multiples of page size 0x%zx",
1554 block->mr->align, block->page_size);
1555 return NULL;
61362b71
DH
1556 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1557 error_setg(errp, "alignment 0x%" PRIx64
1558 " must be a power of two", block->mr->align);
1559 return NULL;
98376843
HZ
1560 }
1561 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1562#if defined(__s390x__)
1563 if (kvm_enabled()) {
1564 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1565 }
1566#endif
fd97fd44 1567
863e9621 1568 if (memory < block->page_size) {
fd97fd44 1569 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1570 "or larger than page size 0x%zx",
1571 memory, block->page_size);
8d37b030 1572 return NULL;
1775f111
HZ
1573 }
1574
863e9621 1575 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1576
1577 /*
1578 * ftruncate is not supported by hugetlbfs in older
1579 * hosts, so don't bother bailing out on errors.
1580 * If anything goes wrong with it under other filesystems,
1581 * mmap will fail.
d6af99c9
HZ
1582 *
1583 * Do not truncate the non-empty backend file to avoid corrupting
1584 * the existing data in the file. Disabling shrinking is not
1585 * enough. For example, the current vNVDIMM implementation stores
1586 * the guest NVDIMM labels at the end of the backend file. If the
1587 * backend file is later extended, QEMU will not be able to find
1588 * those labels. Therefore, extending the non-empty backend file
1589 * is disabled as well.
c902760f 1590 */
8d37b030 1591 if (truncate && ftruncate(fd, memory)) {
9742bf26 1592 perror("ftruncate");
7f56e740 1593 }
c902760f 1594
b444f5c0
DH
1595 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1596 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1597 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
8dbe22c6 1598 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
b444f5c0 1599 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
c902760f 1600 if (area == MAP_FAILED) {
7f56e740 1601 error_setg_errno(errp, errno,
fd97fd44 1602 "unable to map backing store for guest RAM");
8d37b030 1603 return NULL;
c902760f 1604 }
ef36fa14 1605
04b16653 1606 block->fd = fd;
c902760f
MT
1607 return area;
1608}
1609#endif
1610
154cc9ea
DDAG
1611/* Allocate space within the ram_addr_t space that governs the
1612 * dirty bitmaps.
1613 * Called with the ramlist lock held.
1614 */
d17b5288 1615static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1616{
1617 RAMBlock *block, *next_block;
3e837b2c 1618 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1619
49cd9ac6
SH
1620 assert(size != 0); /* it would hand out same offset multiple times */
1621
0dc3f44a 1622 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1623 return 0;
0d53d9fe 1624 }
04b16653 1625
99e15582 1626 RAMBLOCK_FOREACH(block) {
154cc9ea 1627 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1628
801110ab
DDAG
1629 /* Align blocks to start on a 'long' in the bitmap
1630 * which makes the bitmap sync'ing take the fast path.
1631 */
154cc9ea 1632 candidate = block->offset + block->max_length;
801110ab 1633 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1634
154cc9ea
DDAG
1635 /* Search for the closest following block
1636 * and find the gap.
1637 */
99e15582 1638 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1639 if (next_block->offset >= candidate) {
04b16653
AW
1640 next = MIN(next, next_block->offset);
1641 }
1642 }
154cc9ea
DDAG
1643
1644 /* If it fits remember our place and remember the size
1645 * of gap, but keep going so that we might find a smaller
1646 * gap to fill so avoiding fragmentation.
1647 */
1648 if (next - candidate >= size && next - candidate < mingap) {
1649 offset = candidate;
1650 mingap = next - candidate;
04b16653 1651 }
154cc9ea
DDAG
1652
1653 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1654 }
3e837b2c
AW
1655
1656 if (offset == RAM_ADDR_MAX) {
1657 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1658 (uint64_t)size);
1659 abort();
1660 }
1661
154cc9ea
DDAG
1662 trace_find_ram_offset(size, offset);
1663
04b16653
AW
1664 return offset;
1665}
1666
c136180c 1667static unsigned long last_ram_page(void)
d17b5288
AW
1668{
1669 RAMBlock *block;
1670 ram_addr_t last = 0;
1671
694ea274 1672 RCU_READ_LOCK_GUARD();
99e15582 1673 RAMBLOCK_FOREACH(block) {
62be4e3a 1674 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1675 }
b8c48993 1676 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1677}
1678
ddb97f1d
JB
1679static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1680{
1681 int ret;
ddb97f1d
JB
1682
1683 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1684 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1685 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1686 if (ret) {
1687 perror("qemu_madvise");
1688 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1689 "but dump_guest_core=off specified\n");
1690 }
1691 }
1692}
1693
422148d3
DDAG
1694const char *qemu_ram_get_idstr(RAMBlock *rb)
1695{
1696 return rb->idstr;
1697}
1698
754cb9c0
YK
1699void *qemu_ram_get_host_addr(RAMBlock *rb)
1700{
1701 return rb->host;
1702}
1703
1704ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1705{
1706 return rb->offset;
1707}
1708
1709ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1710{
1711 return rb->used_length;
1712}
1713
082851a3
DH
1714ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1715{
1716 return rb->max_length;
1717}
1718
463a4ac2
DDAG
1719bool qemu_ram_is_shared(RAMBlock *rb)
1720{
1721 return rb->flags & RAM_SHARED;
1722}
1723
8dbe22c6
DH
1724bool qemu_ram_is_noreserve(RAMBlock *rb)
1725{
1726 return rb->flags & RAM_NORESERVE;
1727}
1728
2ce16640
DDAG
1729/* Note: Only set at the start of postcopy */
1730bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1731{
1732 return rb->flags & RAM_UF_ZEROPAGE;
1733}
1734
1735void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1736{
1737 rb->flags |= RAM_UF_ZEROPAGE;
1738}
1739
b895de50
CLG
1740bool qemu_ram_is_migratable(RAMBlock *rb)
1741{
1742 return rb->flags & RAM_MIGRATABLE;
1743}
1744
1745void qemu_ram_set_migratable(RAMBlock *rb)
1746{
1747 rb->flags |= RAM_MIGRATABLE;
1748}
1749
1750void qemu_ram_unset_migratable(RAMBlock *rb)
1751{
1752 rb->flags &= ~RAM_MIGRATABLE;
1753}
1754
ae3a7047 1755/* Called with iothread lock held. */
fa53a0e5 1756void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1757{
fa53a0e5 1758 RAMBlock *block;
20cfe881 1759
c5705a77
AK
1760 assert(new_block);
1761 assert(!new_block->idstr[0]);
84b89d78 1762
09e5ab63
AL
1763 if (dev) {
1764 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1765 if (id) {
1766 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1767 g_free(id);
84b89d78
CM
1768 }
1769 }
1770 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1771
694ea274 1772 RCU_READ_LOCK_GUARD();
99e15582 1773 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
1774 if (block != new_block &&
1775 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1776 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1777 new_block->idstr);
1778 abort();
1779 }
1780 }
c5705a77
AK
1781}
1782
ae3a7047 1783/* Called with iothread lock held. */
fa53a0e5 1784void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1785{
ae3a7047
MD
1786 /* FIXME: arch_init.c assumes that this is not called throughout
1787 * migration. Ignore the problem since hot-unplug during migration
1788 * does not work anyway.
1789 */
20cfe881
HT
1790 if (block) {
1791 memset(block->idstr, 0, sizeof(block->idstr));
1792 }
1793}
1794
863e9621
DDAG
1795size_t qemu_ram_pagesize(RAMBlock *rb)
1796{
1797 return rb->page_size;
1798}
1799
67f11b5c
DDAG
1800/* Returns the largest size of page in use */
1801size_t qemu_ram_pagesize_largest(void)
1802{
1803 RAMBlock *block;
1804 size_t largest = 0;
1805
99e15582 1806 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
1807 largest = MAX(largest, qemu_ram_pagesize(block));
1808 }
1809
1810 return largest;
1811}
1812
8490fc78
LC
1813static int memory_try_enable_merging(void *addr, size_t len)
1814{
75cc7f01 1815 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1816 /* disabled by the user */
1817 return 0;
1818 }
1819
1820 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1821}
1822
c7c0e724
DH
1823/*
1824 * Resizing RAM while migrating can result in the migration being canceled.
1825 * Care has to be taken if the guest might have already detected the memory.
62be4e3a
MT
1826 *
1827 * As memory core doesn't know how is memory accessed, it is up to
1828 * resize callback to update device state and/or add assertions to detect
1829 * misuse, if necessary.
1830 */
fa53a0e5 1831int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1832{
8f44304c 1833 const ram_addr_t oldsize = block->used_length;
ce4adc0b
DH
1834 const ram_addr_t unaligned_size = newsize;
1835
62be4e3a
MT
1836 assert(block);
1837
4ed023ce 1838 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1839
62be4e3a 1840 if (block->used_length == newsize) {
ce4adc0b
DH
1841 /*
1842 * We don't have to resize the ram block (which only knows aligned
1843 * sizes), however, we have to notify if the unaligned size changed.
1844 */
1845 if (unaligned_size != memory_region_size(block->mr)) {
1846 memory_region_set_size(block->mr, unaligned_size);
1847 if (block->resized) {
1848 block->resized(block->idstr, unaligned_size, block->host);
1849 }
1850 }
62be4e3a
MT
1851 return 0;
1852 }
1853
1854 if (!(block->flags & RAM_RESIZEABLE)) {
1855 error_setg_errno(errp, EINVAL,
a3a92908
PG
1856 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1857 " != 0x" RAM_ADDR_FMT, block->idstr,
62be4e3a
MT
1858 newsize, block->used_length);
1859 return -EINVAL;
1860 }
1861
1862 if (block->max_length < newsize) {
1863 error_setg_errno(errp, EINVAL,
a3a92908 1864 "Size too large: %s: 0x" RAM_ADDR_FMT
62be4e3a
MT
1865 " > 0x" RAM_ADDR_FMT, block->idstr,
1866 newsize, block->max_length);
1867 return -EINVAL;
1868 }
1869
8f44304c
DH
1870 /* Notify before modifying the ram block and touching the bitmaps. */
1871 if (block->host) {
1872 ram_block_notify_resize(block->host, oldsize, newsize);
1873 }
1874
62be4e3a
MT
1875 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1876 block->used_length = newsize;
58d2707e
PB
1877 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1878 DIRTY_CLIENTS_ALL);
ce4adc0b 1879 memory_region_set_size(block->mr, unaligned_size);
62be4e3a 1880 if (block->resized) {
ce4adc0b 1881 block->resized(block->idstr, unaligned_size, block->host);
62be4e3a
MT
1882 }
1883 return 0;
1884}
1885
61c490e2
BM
1886/*
1887 * Trigger sync on the given ram block for range [start, start + length]
1888 * with the backing store if one is available.
1889 * Otherwise no-op.
1890 * @Note: this is supposed to be a synchronous op.
1891 */
ab7e41e6 1892void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
61c490e2 1893{
61c490e2
BM
1894 /* The requested range should fit in within the block range */
1895 g_assert((start + length) <= block->used_length);
1896
1897#ifdef CONFIG_LIBPMEM
1898 /* The lack of support for pmem should not block the sync */
1899 if (ramblock_is_pmem(block)) {
5d4c9549 1900 void *addr = ramblock_ptr(block, start);
61c490e2
BM
1901 pmem_persist(addr, length);
1902 return;
1903 }
1904#endif
1905 if (block->fd >= 0) {
1906 /**
1907 * Case there is no support for PMEM or the memory has not been
1908 * specified as persistent (or is not one) - use the msync.
1909 * Less optimal but still achieves the same goal
1910 */
5d4c9549 1911 void *addr = ramblock_ptr(block, start);
61c490e2
BM
1912 if (qemu_msync(addr, length, block->fd)) {
1913 warn_report("%s: failed to sync memory range: start: "
1914 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1915 __func__, start, length);
1916 }
1917 }
1918}
1919
5b82b703
SH
1920/* Called with ram_list.mutex held */
1921static void dirty_memory_extend(ram_addr_t old_ram_size,
1922 ram_addr_t new_ram_size)
1923{
1924 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1925 DIRTY_MEMORY_BLOCK_SIZE);
1926 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1927 DIRTY_MEMORY_BLOCK_SIZE);
1928 int i;
1929
1930 /* Only need to extend if block count increased */
1931 if (new_num_blocks <= old_num_blocks) {
1932 return;
1933 }
1934
1935 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1936 DirtyMemoryBlocks *old_blocks;
1937 DirtyMemoryBlocks *new_blocks;
1938 int j;
1939
d73415a3 1940 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
5b82b703
SH
1941 new_blocks = g_malloc(sizeof(*new_blocks) +
1942 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1943
1944 if (old_num_blocks) {
1945 memcpy(new_blocks->blocks, old_blocks->blocks,
1946 old_num_blocks * sizeof(old_blocks->blocks[0]));
1947 }
1948
1949 for (j = old_num_blocks; j < new_num_blocks; j++) {
1950 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1951 }
1952
d73415a3 1953 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
5b82b703
SH
1954
1955 if (old_blocks) {
1956 g_free_rcu(old_blocks, rcu);
1957 }
1958 }
1959}
1960
7ce18ca0 1961static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1962{
8dbe22c6 1963 const bool noreserve = qemu_ram_is_noreserve(new_block);
7ce18ca0 1964 const bool shared = qemu_ram_is_shared(new_block);
e1c57ab8 1965 RAMBlock *block;
0d53d9fe 1966 RAMBlock *last_block = NULL;
2152f5ca 1967 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1968 Error *err = NULL;
2152f5ca 1969
b8c48993 1970 old_ram_size = last_ram_page();
c5705a77 1971
b2a8658e 1972 qemu_mutex_lock_ramlist();
9b8424d5 1973 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1974
1975 if (!new_block->host) {
1976 if (xen_enabled()) {
9b8424d5 1977 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1978 new_block->mr, &err);
1979 if (err) {
1980 error_propagate(errp, err);
1981 qemu_mutex_unlock_ramlist();
39c350ee 1982 return;
37aa7a0e 1983 }
e1c57ab8 1984 } else {
25459eb7
DH
1985 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1986 &new_block->mr->align,
8dbe22c6 1987 shared, noreserve);
39228250 1988 if (!new_block->host) {
ef701d7b
HT
1989 error_setg_errno(errp, errno,
1990 "cannot set up guest memory '%s'",
1991 memory_region_name(new_block->mr));
1992 qemu_mutex_unlock_ramlist();
39c350ee 1993 return;
39228250 1994 }
9b8424d5 1995 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1996 }
c902760f 1997 }
94a6b54f 1998
dd631697
LZ
1999 new_ram_size = MAX(old_ram_size,
2000 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2001 if (new_ram_size > old_ram_size) {
5b82b703 2002 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2003 }
0d53d9fe
MD
2004 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2005 * QLIST (which has an RCU-friendly variant) does not have insertion at
2006 * tail, so save the last element in last_block.
2007 */
99e15582 2008 RAMBLOCK_FOREACH(block) {
0d53d9fe 2009 last_block = block;
9b8424d5 2010 if (block->max_length < new_block->max_length) {
abb26d63
PB
2011 break;
2012 }
2013 }
2014 if (block) {
0dc3f44a 2015 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2016 } else if (last_block) {
0dc3f44a 2017 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2018 } else { /* list is empty */
0dc3f44a 2019 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2020 }
0d6d3c87 2021 ram_list.mru_block = NULL;
94a6b54f 2022
0dc3f44a
MD
2023 /* Write list before version */
2024 smp_wmb();
f798b07f 2025 ram_list.version++;
b2a8658e 2026 qemu_mutex_unlock_ramlist();
f798b07f 2027
9b8424d5 2028 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2029 new_block->used_length,
2030 DIRTY_CLIENTS_ALL);
94a6b54f 2031
a904c911
PB
2032 if (new_block->host) {
2033 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2034 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
a028edea
AB
2035 /*
2036 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2037 * Configure it unless the machine is a qtest server, in which case
2038 * KVM is not used and it may be forked (eg for fuzzing purposes).
2039 */
2040 if (!qtest_enabled()) {
2041 qemu_madvise(new_block->host, new_block->max_length,
2042 QEMU_MADV_DONTFORK);
2043 }
8f44304c
DH
2044 ram_block_notify_add(new_block->host, new_block->used_length,
2045 new_block->max_length);
e1c57ab8 2046 }
94a6b54f 2047}
e9a1ab19 2048
d5dbde46 2049#ifdef CONFIG_POSIX
38b3362d 2050RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
44a4ff31
JR
2051 uint32_t ram_flags, int fd, off_t offset,
2052 bool readonly, Error **errp)
e1c57ab8
PB
2053{
2054 RAMBlock *new_block;
ef701d7b 2055 Error *local_err = NULL;
ce317be9 2056 int64_t file_size, file_align;
e1c57ab8 2057
a4de8552 2058 /* Just support these ram flags by now. */
56918a12
SC
2059 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
2060 RAM_PROTECTED)) == 0);
a4de8552 2061
e1c57ab8 2062 if (xen_enabled()) {
7f56e740 2063 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2064 return NULL;
e1c57ab8
PB
2065 }
2066
e45e7ae2
MAL
2067 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2068 error_setg(errp,
2069 "host lacks kvm mmu notifiers, -mem-path unsupported");
2070 return NULL;
2071 }
2072
4ed023ce 2073 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2074 file_size = get_file_size(fd);
2075 if (file_size > 0 && file_size < size) {
c001c3b3 2076 error_setg(errp, "backing store size 0x%" PRIx64
8d37b030 2077 " does not match 'size' option 0x" RAM_ADDR_FMT,
c001c3b3 2078 file_size, size);
8d37b030
MAL
2079 return NULL;
2080 }
2081
ce317be9 2082 file_align = get_file_align(fd);
8f1bdb0e 2083 if (file_align > 0 && file_align > mr->align) {
ce317be9 2084 error_setg(errp, "backing store align 0x%" PRIx64
5f509751 2085 " is larger than 'align' option 0x%" PRIx64,
ce317be9
JL
2086 file_align, mr->align);
2087 return NULL;
2088 }
2089
e1c57ab8
PB
2090 new_block = g_malloc0(sizeof(*new_block));
2091 new_block->mr = mr;
9b8424d5
MT
2092 new_block->used_length = size;
2093 new_block->max_length = size;
cbfc0171 2094 new_block->flags = ram_flags;
369d6dc4 2095 new_block->host = file_ram_alloc(new_block, size, fd, readonly,
44a4ff31 2096 !file_size, offset, errp);
7f56e740
PB
2097 if (!new_block->host) {
2098 g_free(new_block);
528f46af 2099 return NULL;
7f56e740
PB
2100 }
2101
7ce18ca0 2102 ram_block_add(new_block, &local_err);
ef701d7b
HT
2103 if (local_err) {
2104 g_free(new_block);
2105 error_propagate(errp, local_err);
528f46af 2106 return NULL;
ef701d7b 2107 }
528f46af 2108 return new_block;
38b3362d
MAL
2109
2110}
2111
2112
2113RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2114 uint32_t ram_flags, const char *mem_path,
369d6dc4 2115 bool readonly, Error **errp)
38b3362d
MAL
2116{
2117 int fd;
2118 bool created;
2119 RAMBlock *block;
2120
369d6dc4
SH
2121 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
2122 errp);
38b3362d
MAL
2123 if (fd < 0) {
2124 return NULL;
2125 }
2126
44a4ff31 2127 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
38b3362d
MAL
2128 if (!block) {
2129 if (created) {
2130 unlink(mem_path);
2131 }
2132 close(fd);
2133 return NULL;
2134 }
2135
2136 return block;
e1c57ab8 2137}
0b183fc8 2138#endif
e1c57ab8 2139
62be4e3a 2140static
528f46af
FZ
2141RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2142 void (*resized)(const char*,
2143 uint64_t length,
2144 void *host),
ebef62d0 2145 void *host, uint32_t ram_flags,
528f46af 2146 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2147{
2148 RAMBlock *new_block;
ef701d7b 2149 Error *local_err = NULL;
e1c57ab8 2150
8dbe22c6
DH
2151 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2152 RAM_NORESERVE)) == 0);
ebef62d0
DH
2153 assert(!host ^ (ram_flags & RAM_PREALLOC));
2154
4ed023ce
DDAG
2155 size = HOST_PAGE_ALIGN(size);
2156 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2157 new_block = g_malloc0(sizeof(*new_block));
2158 new_block->mr = mr;
62be4e3a 2159 new_block->resized = resized;
9b8424d5
MT
2160 new_block->used_length = size;
2161 new_block->max_length = max_size;
62be4e3a 2162 assert(max_size >= size);
e1c57ab8 2163 new_block->fd = -1;
038adc2f 2164 new_block->page_size = qemu_real_host_page_size;
e1c57ab8 2165 new_block->host = host;
ebef62d0 2166 new_block->flags = ram_flags;
7ce18ca0 2167 ram_block_add(new_block, &local_err);
ef701d7b
HT
2168 if (local_err) {
2169 g_free(new_block);
2170 error_propagate(errp, local_err);
528f46af 2171 return NULL;
ef701d7b 2172 }
528f46af 2173 return new_block;
e1c57ab8
PB
2174}
2175
528f46af 2176RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2177 MemoryRegion *mr, Error **errp)
2178{
ebef62d0
DH
2179 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2180 errp);
62be4e3a
MT
2181}
2182
ebef62d0 2183RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
06329cce 2184 MemoryRegion *mr, Error **errp)
6977dfe6 2185{
8dbe22c6 2186 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
ebef62d0 2187 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
62be4e3a
MT
2188}
2189
528f46af 2190RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2191 void (*resized)(const char*,
2192 uint64_t length,
2193 void *host),
2194 MemoryRegion *mr, Error **errp)
2195{
ebef62d0
DH
2196 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2197 RAM_RESIZEABLE, mr, errp);
6977dfe6
YT
2198}
2199
43771539
PB
2200static void reclaim_ramblock(RAMBlock *block)
2201{
2202 if (block->flags & RAM_PREALLOC) {
2203 ;
2204 } else if (xen_enabled()) {
2205 xen_invalidate_map_cache_entry(block->host);
2206#ifndef _WIN32
2207 } else if (block->fd >= 0) {
53adb9d4 2208 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2209 close(block->fd);
2210#endif
2211 } else {
2212 qemu_anon_ram_free(block->host, block->max_length);
2213 }
2214 g_free(block);
2215}
2216
f1060c55 2217void qemu_ram_free(RAMBlock *block)
e9a1ab19 2218{
85bc2a15
MAL
2219 if (!block) {
2220 return;
2221 }
2222
0987d735 2223 if (block->host) {
8f44304c
DH
2224 ram_block_notify_remove(block->host, block->used_length,
2225 block->max_length);
0987d735
PB
2226 }
2227
b2a8658e 2228 qemu_mutex_lock_ramlist();
f1060c55
FZ
2229 QLIST_REMOVE_RCU(block, next);
2230 ram_list.mru_block = NULL;
2231 /* Write list before version */
2232 smp_wmb();
2233 ram_list.version++;
2234 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2235 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2236}
2237
cd19cfa2
HY
2238#ifndef _WIN32
2239void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2240{
2241 RAMBlock *block;
2242 ram_addr_t offset;
2243 int flags;
2244 void *area, *vaddr;
2245
99e15582 2246 RAMBLOCK_FOREACH(block) {
cd19cfa2 2247 offset = addr - block->offset;
9b8424d5 2248 if (offset < block->max_length) {
1240be24 2249 vaddr = ramblock_ptr(block, offset);
7bd4f430 2250 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2251 ;
dfeaf2ab
MA
2252 } else if (xen_enabled()) {
2253 abort();
cd19cfa2
HY
2254 } else {
2255 flags = MAP_FIXED;
dbb92eea
DH
2256 flags |= block->flags & RAM_SHARED ?
2257 MAP_SHARED : MAP_PRIVATE;
d94e0bc9 2258 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
3435f395 2259 if (block->fd >= 0) {
3435f395
MA
2260 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2261 flags, block->fd, offset);
cd19cfa2 2262 } else {
dbb92eea 2263 flags |= MAP_ANONYMOUS;
cd19cfa2
HY
2264 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2265 flags, -1, 0);
cd19cfa2
HY
2266 }
2267 if (area != vaddr) {
493d89bf
AF
2268 error_report("Could not remap addr: "
2269 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2270 length, addr);
cd19cfa2
HY
2271 exit(1);
2272 }
8490fc78 2273 memory_try_enable_merging(vaddr, length);
ddb97f1d 2274 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2275 }
cd19cfa2
HY
2276 }
2277 }
2278}
2279#endif /* !_WIN32 */
2280
1b5ec234 2281/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2282 * This should not be used for general purpose DMA. Use address_space_map
2283 * or address_space_rw instead. For local memory (e.g. video ram) that the
2284 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2285 *
49b24afc 2286 * Called within RCU critical section.
1b5ec234 2287 */
0878d0e1 2288void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2289{
3655cb9c
GA
2290 RAMBlock *block = ram_block;
2291
2292 if (block == NULL) {
2293 block = qemu_get_ram_block(addr);
0878d0e1 2294 addr -= block->offset;
3655cb9c 2295 }
ae3a7047
MD
2296
2297 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2298 /* We need to check if the requested address is in the RAM
2299 * because we don't want to map the entire memory in QEMU.
2300 * In that case just map until the end of the page.
2301 */
2302 if (block->offset == 0) {
1ff7c598 2303 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2304 }
ae3a7047 2305
1ff7c598 2306 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2307 }
0878d0e1 2308 return ramblock_ptr(block, addr);
dc828ca1
PB
2309}
2310
0878d0e1 2311/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2312 * but takes a size argument.
0dc3f44a 2313 *
e81bcda5 2314 * Called within RCU critical section.
ae3a7047 2315 */
3655cb9c 2316static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2317 hwaddr *size, bool lock)
38bee5dc 2318{
3655cb9c 2319 RAMBlock *block = ram_block;
8ab934f9
SS
2320 if (*size == 0) {
2321 return NULL;
2322 }
e81bcda5 2323
3655cb9c
GA
2324 if (block == NULL) {
2325 block = qemu_get_ram_block(addr);
0878d0e1 2326 addr -= block->offset;
3655cb9c 2327 }
0878d0e1 2328 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2329
2330 if (xen_enabled() && block->host == NULL) {
2331 /* We need to check if the requested address is in the RAM
2332 * because we don't want to map the entire memory in QEMU.
2333 * In that case just map the requested area.
2334 */
2335 if (block->offset == 0) {
f5aa69bd 2336 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2337 }
2338
f5aa69bd 2339 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2340 }
e81bcda5 2341
0878d0e1 2342 return ramblock_ptr(block, addr);
38bee5dc
SS
2343}
2344
f90bb71b
DDAG
2345/* Return the offset of a hostpointer within a ramblock */
2346ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2347{
2348 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2349 assert((uintptr_t)host >= (uintptr_t)rb->host);
2350 assert(res < rb->max_length);
2351
2352 return res;
2353}
2354
422148d3
DDAG
2355/*
2356 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2357 * in that RAMBlock.
2358 *
2359 * ptr: Host pointer to look up
2360 * round_offset: If true round the result offset down to a page boundary
2361 * *ram_addr: set to result ram_addr
2362 * *offset: set to result offset within the RAMBlock
2363 *
2364 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2365 *
2366 * By the time this function returns, the returned pointer is not protected
2367 * by RCU anymore. If the caller is not within an RCU critical section and
2368 * does not hold the iothread lock, it must have other means of protecting the
2369 * pointer, such as a reference to the region that includes the incoming
2370 * ram_addr_t.
2371 */
422148d3 2372RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2373 ram_addr_t *offset)
5579c7f3 2374{
94a6b54f
PB
2375 RAMBlock *block;
2376 uint8_t *host = ptr;
2377
868bb33f 2378 if (xen_enabled()) {
f615f396 2379 ram_addr_t ram_addr;
694ea274 2380 RCU_READ_LOCK_GUARD();
f615f396
PB
2381 ram_addr = xen_ram_addr_from_mapcache(ptr);
2382 block = qemu_get_ram_block(ram_addr);
422148d3 2383 if (block) {
d6b6aec4 2384 *offset = ram_addr - block->offset;
422148d3 2385 }
422148d3 2386 return block;
712c2b41
SS
2387 }
2388
694ea274 2389 RCU_READ_LOCK_GUARD();
d73415a3 2390 block = qatomic_rcu_read(&ram_list.mru_block);
9b8424d5 2391 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2392 goto found;
2393 }
2394
99e15582 2395 RAMBLOCK_FOREACH(block) {
432d268c
JN
2396 /* This case append when the block is not mapped. */
2397 if (block->host == NULL) {
2398 continue;
2399 }
9b8424d5 2400 if (host - block->host < block->max_length) {
23887b79 2401 goto found;
f471a17e 2402 }
94a6b54f 2403 }
432d268c 2404
1b5ec234 2405 return NULL;
23887b79
PB
2406
2407found:
422148d3
DDAG
2408 *offset = (host - block->host);
2409 if (round_offset) {
2410 *offset &= TARGET_PAGE_MASK;
2411 }
422148d3
DDAG
2412 return block;
2413}
2414
e3dd7493
DDAG
2415/*
2416 * Finds the named RAMBlock
2417 *
2418 * name: The name of RAMBlock to find
2419 *
2420 * Returns: RAMBlock (or NULL if not found)
2421 */
2422RAMBlock *qemu_ram_block_by_name(const char *name)
2423{
2424 RAMBlock *block;
2425
99e15582 2426 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2427 if (!strcmp(name, block->idstr)) {
2428 return block;
2429 }
2430 }
2431
2432 return NULL;
2433}
2434
422148d3
DDAG
2435/* Some of the softmmu routines need to translate from a host pointer
2436 (typically a TLB entry) back to a ram offset. */
07bdaa41 2437ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2438{
2439 RAMBlock *block;
f615f396 2440 ram_addr_t offset;
422148d3 2441
f615f396 2442 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2443 if (!block) {
07bdaa41 2444 return RAM_ADDR_INVALID;
422148d3
DDAG
2445 }
2446
07bdaa41 2447 return block->offset + offset;
e890261f 2448}
f471a17e 2449
b2a44fca 2450static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 2451 MemTxAttrs attrs, void *buf, hwaddr len);
16620684 2452static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 2453 const void *buf, hwaddr len);
0c249ff7 2454static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2455 bool is_write, MemTxAttrs attrs);
16620684 2456
f25a49e0
PM
2457static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2458 unsigned len, MemTxAttrs attrs)
db7b5426 2459{
acc9d80b 2460 subpage_t *subpage = opaque;
ff6cff75 2461 uint8_t buf[8];
5c9eb028 2462 MemTxResult res;
791af8c8 2463
db7b5426 2464#if defined(DEBUG_SUBPAGE)
016e9d62 2465 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2466 subpage, len, addr);
db7b5426 2467#endif
16620684 2468 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2469 if (res) {
2470 return res;
f25a49e0 2471 }
6d3ede54
PM
2472 *data = ldn_p(buf, len);
2473 return MEMTX_OK;
db7b5426
BS
2474}
2475
f25a49e0
PM
2476static MemTxResult subpage_write(void *opaque, hwaddr addr,
2477 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2478{
acc9d80b 2479 subpage_t *subpage = opaque;
ff6cff75 2480 uint8_t buf[8];
acc9d80b 2481
db7b5426 2482#if defined(DEBUG_SUBPAGE)
016e9d62 2483 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2484 " value %"PRIx64"\n",
2485 __func__, subpage, len, addr, value);
db7b5426 2486#endif
6d3ede54 2487 stn_p(buf, len, value);
16620684 2488 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2489}
2490
c353e4cc 2491static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2492 unsigned len, bool is_write,
2493 MemTxAttrs attrs)
c353e4cc 2494{
acc9d80b 2495 subpage_t *subpage = opaque;
c353e4cc 2496#if defined(DEBUG_SUBPAGE)
016e9d62 2497 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2498 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2499#endif
2500
16620684 2501 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2502 len, is_write, attrs);
c353e4cc
PB
2503}
2504
70c68e44 2505static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2506 .read_with_attrs = subpage_read,
2507 .write_with_attrs = subpage_write,
ff6cff75
PB
2508 .impl.min_access_size = 1,
2509 .impl.max_access_size = 8,
2510 .valid.min_access_size = 1,
2511 .valid.max_access_size = 8,
c353e4cc 2512 .valid.accepts = subpage_accepts,
70c68e44 2513 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2514};
2515
b797ab1a
WY
2516static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2517 uint16_t section)
db7b5426
BS
2518{
2519 int idx, eidx;
2520
2521 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2522 return -1;
2523 idx = SUBPAGE_IDX(start);
2524 eidx = SUBPAGE_IDX(end);
2525#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2526 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2527 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2528#endif
db7b5426 2529 for (; idx <= eidx; idx++) {
5312bd8b 2530 mmio->sub_section[idx] = section;
db7b5426
BS
2531 }
2532
2533 return 0;
2534}
2535
16620684 2536static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2537{
c227f099 2538 subpage_t *mmio;
db7b5426 2539
b797ab1a 2540 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2615fabd 2541 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2542 mmio->fv = fv;
1eec614b 2543 mmio->base = base;
2c9b15ca 2544 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2545 NULL, TARGET_PAGE_SIZE);
b3b00c78 2546 mmio->iomem.subpage = true;
db7b5426 2547#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2548 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2549 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2550#endif
db7b5426
BS
2551
2552 return mmio;
2553}
2554
16620684 2555static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2556{
16620684 2557 assert(fv);
5312bd8b 2558 MemoryRegionSection section = {
16620684 2559 .fv = fv,
5312bd8b
AK
2560 .mr = mr,
2561 .offset_within_address_space = 0,
2562 .offset_within_region = 0,
052e87b0 2563 .size = int128_2_64(),
5312bd8b
AK
2564 };
2565
53cb28cb 2566 return phys_section_add(map, &section);
5312bd8b
AK
2567}
2568
2d54f194
PM
2569MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2570 hwaddr index, MemTxAttrs attrs)
aa102231 2571{
a54c87b6
PM
2572 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2573 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
d73415a3 2574 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2575 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 2576
2d54f194 2577 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
2578}
2579
e9179ce1
AK
2580static void io_mem_init(void)
2581{
2c9b15ca 2582 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2583 NULL, UINT64_MAX);
e9179ce1
AK
2584}
2585
8629d3fc 2586AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2587{
53cb28cb
MA
2588 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2589 uint16_t n;
2590
16620684 2591 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2592 assert(n == PHYS_SECTION_UNASSIGNED);
00752703 2593
9736e55b 2594 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2595
2596 return d;
00752703
PB
2597}
2598
66a6df1d 2599void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2600{
2601 phys_sections_free(&d->map);
2602 g_free(d);
2603}
2604
9458a9a1
PB
2605static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2606{
2607}
2608
2609static void tcg_log_global_after_sync(MemoryListener *listener)
2610{
2611 CPUAddressSpace *cpuas;
2612
2613 /* Wait for the CPU to end the current TB. This avoids the following
2614 * incorrect race:
2615 *
2616 * vCPU migration
2617 * ---------------------- -------------------------
2618 * TLB check -> slow path
2619 * notdirty_mem_write
2620 * write to RAM
2621 * mark dirty
2622 * clear dirty flag
2623 * TLB check -> fast path
2624 * read memory
2625 * write to RAM
2626 *
2627 * by pushing the migration thread's memory read after the vCPU thread has
2628 * written the memory.
2629 */
86cf9e15
PD
2630 if (replay_mode == REPLAY_MODE_NONE) {
2631 /*
2632 * VGA can make calls to this function while updating the screen.
2633 * In record/replay mode this causes a deadlock, because
2634 * run_on_cpu waits for rr mutex. Therefore no races are possible
2635 * in this case and no need for making run_on_cpu when
f18d403f 2636 * record/replay is enabled.
86cf9e15
PD
2637 */
2638 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2639 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2640 }
9458a9a1
PB
2641}
2642
1d71148e 2643static void tcg_commit(MemoryListener *listener)
50c1e149 2644{
32857f4d
PM
2645 CPUAddressSpace *cpuas;
2646 AddressSpaceDispatch *d;
117712c3 2647
f28d0dfd 2648 assert(tcg_enabled());
117712c3
AK
2649 /* since each CPU stores ram addresses in its TLB cache, we must
2650 reset the modified entries */
32857f4d
PM
2651 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2652 cpu_reloading_memory_map();
2653 /* The CPU and TLB are protected by the iothread lock.
2654 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2655 * may have split the RCU critical section.
2656 */
66a6df1d 2657 d = address_space_to_dispatch(cpuas->as);
d73415a3 2658 qatomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2659 tlb_flush(cpuas->cpu);
50c1e149
AK
2660}
2661
62152b8a
AK
2662static void memory_map_init(void)
2663{
7267c094 2664 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2665
57271d63 2666 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2667 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2668
7267c094 2669 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2670 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2671 65536);
7dca8043 2672 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2673}
2674
2675MemoryRegion *get_system_memory(void)
2676{
2677 return system_memory;
2678}
2679
309cb471
AK
2680MemoryRegion *get_system_io(void)
2681{
2682 return system_io;
2683}
2684
845b6214 2685static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2686 hwaddr length)
51d7a9eb 2687{
e87f7778 2688 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2689 addr += memory_region_get_ram_addr(mr);
2690
e87f7778
PB
2691 /* No early return if dirty_log_mask is or becomes 0, because
2692 * cpu_physical_memory_set_dirty_range will still call
2693 * xen_modified_memory.
2694 */
2695 if (dirty_log_mask) {
2696 dirty_log_mask =
2697 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2698 }
2699 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 2700 assert(tcg_enabled());
e87f7778
PB
2701 tb_invalidate_phys_range(addr, addr + length);
2702 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2703 }
e87f7778 2704 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2705}
2706
047be4ed
SH
2707void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2708{
2709 /*
2710 * In principle this function would work on other memory region types too,
2711 * but the ROM device use case is the only one where this operation is
2712 * necessary. Other memory regions should use the
2713 * address_space_read/write() APIs.
2714 */
2715 assert(memory_region_is_romd(mr));
2716
2717 invalidate_and_set_dirty(mr, addr, size);
2718}
2719
23326164 2720static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2721{
e1622f4b 2722 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2723
2724 /* Regions are assumed to support 1-4 byte accesses unless
2725 otherwise specified. */
23326164
RH
2726 if (access_size_max == 0) {
2727 access_size_max = 4;
2728 }
2729
2730 /* Bound the maximum access by the alignment of the address. */
2731 if (!mr->ops->impl.unaligned) {
2732 unsigned align_size_max = addr & -addr;
2733 if (align_size_max != 0 && align_size_max < access_size_max) {
2734 access_size_max = align_size_max;
2735 }
82f2563f 2736 }
23326164
RH
2737
2738 /* Don't attempt accesses larger than the maximum. */
2739 if (l > access_size_max) {
2740 l = access_size_max;
82f2563f 2741 }
6554f5c0 2742 l = pow2floor(l);
23326164
RH
2743
2744 return l;
82f2563f
PB
2745}
2746
4840f10e 2747static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2748{
4840f10e
JK
2749 bool release_lock = false;
2750
37921851 2751 if (!qemu_mutex_iothread_locked()) {
4840f10e 2752 qemu_mutex_lock_iothread();
4840f10e
JK
2753 release_lock = true;
2754 }
125b3806
PB
2755 if (mr->flush_coalesced_mmio) {
2756 qemu_flush_coalesced_mmio_buffer();
2757 }
4840f10e
JK
2758
2759 return release_lock;
125b3806
PB
2760}
2761
a203ac70 2762/* Called within RCU critical section. */
16620684
AK
2763static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2764 MemTxAttrs attrs,
a152be43 2765 const void *ptr,
0c249ff7 2766 hwaddr len, hwaddr addr1,
16620684 2767 hwaddr l, MemoryRegion *mr)
13eb76e0 2768{
20804676 2769 uint8_t *ram_ptr;
791af8c8 2770 uint64_t val;
3b643495 2771 MemTxResult result = MEMTX_OK;
4840f10e 2772 bool release_lock = false;
a152be43 2773 const uint8_t *buf = ptr;
3b46e624 2774
a203ac70 2775 for (;;) {
eb7eeb88
PB
2776 if (!memory_access_is_direct(mr, true)) {
2777 release_lock |= prepare_mmio_access(mr);
2778 l = memory_access_size(mr, l, addr1);
2779 /* XXX: could force current_cpu to NULL to avoid
2780 potential bugs */
9bf825bf 2781 val = ldn_he_p(buf, l);
3d9e7c3e 2782 result |= memory_region_dispatch_write(mr, addr1, val,
9bf825bf 2783 size_memop(l), attrs);
13eb76e0 2784 } else {
eb7eeb88 2785 /* RAM case */
20804676
PMD
2786 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2787 memcpy(ram_ptr, buf, l);
eb7eeb88 2788 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2789 }
4840f10e
JK
2790
2791 if (release_lock) {
2792 qemu_mutex_unlock_iothread();
2793 release_lock = false;
2794 }
2795
13eb76e0
FB
2796 len -= l;
2797 buf += l;
2798 addr += l;
a203ac70
PB
2799
2800 if (!len) {
2801 break;
2802 }
2803
2804 l = len;
efa99a2f 2805 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 2806 }
fd8aaa76 2807
3b643495 2808 return result;
13eb76e0 2809}
8df1cd07 2810
4c6ebbb3 2811/* Called from RCU critical section. */
16620684 2812static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 2813 const void *buf, hwaddr len)
ac1970fb 2814{
eb7eeb88 2815 hwaddr l;
eb7eeb88
PB
2816 hwaddr addr1;
2817 MemoryRegion *mr;
2818 MemTxResult result = MEMTX_OK;
eb7eeb88 2819
4c6ebbb3 2820 l = len;
efa99a2f 2821 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
2822 result = flatview_write_continue(fv, addr, attrs, buf, len,
2823 addr1, l, mr);
a203ac70
PB
2824
2825 return result;
2826}
2827
2828/* Called within RCU critical section. */
16620684 2829MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
a152be43 2830 MemTxAttrs attrs, void *ptr,
0c249ff7 2831 hwaddr len, hwaddr addr1, hwaddr l,
16620684 2832 MemoryRegion *mr)
a203ac70 2833{
20804676 2834 uint8_t *ram_ptr;
a203ac70
PB
2835 uint64_t val;
2836 MemTxResult result = MEMTX_OK;
2837 bool release_lock = false;
a152be43 2838 uint8_t *buf = ptr;
eb7eeb88 2839
7cac7fea 2840 fuzz_dma_read_cb(addr, len, mr);
a203ac70 2841 for (;;) {
eb7eeb88
PB
2842 if (!memory_access_is_direct(mr, false)) {
2843 /* I/O case */
2844 release_lock |= prepare_mmio_access(mr);
2845 l = memory_access_size(mr, l, addr1);
3d9e7c3e 2846 result |= memory_region_dispatch_read(mr, addr1, &val,
9bf825bf
TN
2847 size_memop(l), attrs);
2848 stn_he_p(buf, l, val);
eb7eeb88
PB
2849 } else {
2850 /* RAM case */
20804676
PMD
2851 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2852 memcpy(buf, ram_ptr, l);
eb7eeb88
PB
2853 }
2854
2855 if (release_lock) {
2856 qemu_mutex_unlock_iothread();
2857 release_lock = false;
2858 }
2859
2860 len -= l;
2861 buf += l;
2862 addr += l;
a203ac70
PB
2863
2864 if (!len) {
2865 break;
2866 }
2867
2868 l = len;
efa99a2f 2869 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
2870 }
2871
2872 return result;
2873}
2874
b2a44fca
PB
2875/* Called from RCU critical section. */
2876static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 2877 MemTxAttrs attrs, void *buf, hwaddr len)
a203ac70
PB
2878{
2879 hwaddr l;
2880 hwaddr addr1;
2881 MemoryRegion *mr;
eb7eeb88 2882
b2a44fca 2883 l = len;
efa99a2f 2884 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
2885 return flatview_read_continue(fv, addr, attrs, buf, len,
2886 addr1, l, mr);
ac1970fb
AK
2887}
2888
b2a44fca 2889MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
daa3dda4 2890 MemTxAttrs attrs, void *buf, hwaddr len)
b2a44fca
PB
2891{
2892 MemTxResult result = MEMTX_OK;
2893 FlatView *fv;
2894
2895 if (len > 0) {
694ea274 2896 RCU_READ_LOCK_GUARD();
b2a44fca
PB
2897 fv = address_space_to_flatview(as);
2898 result = flatview_read(fv, addr, attrs, buf, len);
b2a44fca
PB
2899 }
2900
2901 return result;
2902}
2903
4c6ebbb3
PB
2904MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2905 MemTxAttrs attrs,
daa3dda4 2906 const void *buf, hwaddr len)
4c6ebbb3
PB
2907{
2908 MemTxResult result = MEMTX_OK;
2909 FlatView *fv;
2910
2911 if (len > 0) {
694ea274 2912 RCU_READ_LOCK_GUARD();
4c6ebbb3
PB
2913 fv = address_space_to_flatview(as);
2914 result = flatview_write(fv, addr, attrs, buf, len);
4c6ebbb3
PB
2915 }
2916
2917 return result;
2918}
2919
db84fd97 2920MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
daa3dda4 2921 void *buf, hwaddr len, bool is_write)
db84fd97
PB
2922{
2923 if (is_write) {
2924 return address_space_write(as, addr, attrs, buf, len);
2925 } else {
2926 return address_space_read_full(as, addr, attrs, buf, len);
2927 }
2928}
2929
d7ef71ef 2930void cpu_physical_memory_rw(hwaddr addr, void *buf,
28c80bfe 2931 hwaddr len, bool is_write)
ac1970fb 2932{
5c9eb028
PM
2933 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2934 buf, len, is_write);
ac1970fb
AK
2935}
2936
582b55a9
AG
2937enum write_rom_type {
2938 WRITE_DATA,
2939 FLUSH_CACHE,
2940};
2941
75693e14
PM
2942static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2943 hwaddr addr,
2944 MemTxAttrs attrs,
daa3dda4 2945 const void *ptr,
0c249ff7 2946 hwaddr len,
75693e14 2947 enum write_rom_type type)
d0ecd2aa 2948{
149f54b5 2949 hwaddr l;
20804676 2950 uint8_t *ram_ptr;
149f54b5 2951 hwaddr addr1;
5c8a00ce 2952 MemoryRegion *mr;
daa3dda4 2953 const uint8_t *buf = ptr;
3b46e624 2954
694ea274 2955 RCU_READ_LOCK_GUARD();
d0ecd2aa 2956 while (len > 0) {
149f54b5 2957 l = len;
75693e14 2958 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 2959
5c8a00ce
PB
2960 if (!(memory_region_is_ram(mr) ||
2961 memory_region_is_romd(mr))) {
b242e0e0 2962 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2963 } else {
d0ecd2aa 2964 /* ROM/RAM case */
20804676 2965 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
2966 switch (type) {
2967 case WRITE_DATA:
20804676 2968 memcpy(ram_ptr, buf, l);
845b6214 2969 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2970 break;
2971 case FLUSH_CACHE:
1da8de39 2972 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
582b55a9
AG
2973 break;
2974 }
d0ecd2aa
FB
2975 }
2976 len -= l;
2977 buf += l;
2978 addr += l;
2979 }
75693e14 2980 return MEMTX_OK;
d0ecd2aa
FB
2981}
2982
582b55a9 2983/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
2984MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2985 MemTxAttrs attrs,
daa3dda4 2986 const void *buf, hwaddr len)
582b55a9 2987{
3c8133f9
PM
2988 return address_space_write_rom_internal(as, addr, attrs,
2989 buf, len, WRITE_DATA);
582b55a9
AG
2990}
2991
0c249ff7 2992void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
2993{
2994 /*
2995 * This function should do the same thing as an icache flush that was
2996 * triggered from within the guest. For TCG we are always cache coherent,
2997 * so there is no need to flush anything. For KVM / Xen we need to flush
2998 * the host's instruction cache at least.
2999 */
3000 if (tcg_enabled()) {
3001 return;
3002 }
3003
75693e14
PM
3004 address_space_write_rom_internal(&address_space_memory,
3005 start, MEMTXATTRS_UNSPECIFIED,
3006 NULL, len, FLUSH_CACHE);
582b55a9
AG
3007}
3008
6d16c2f8 3009typedef struct {
d3e71559 3010 MemoryRegion *mr;
6d16c2f8 3011 void *buffer;
a8170e5e
AK
3012 hwaddr addr;
3013 hwaddr len;
c2cba0ff 3014 bool in_use;
6d16c2f8
AL
3015} BounceBuffer;
3016
3017static BounceBuffer bounce;
3018
ba223c29 3019typedef struct MapClient {
e95205e1 3020 QEMUBH *bh;
72cf2d4f 3021 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3022} MapClient;
3023
38e047b5 3024QemuMutex map_client_list_lock;
b58deb34 3025static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3026 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3027
e95205e1
FZ
3028static void cpu_unregister_map_client_do(MapClient *client)
3029{
3030 QLIST_REMOVE(client, link);
3031 g_free(client);
3032}
3033
33b6c2ed
FZ
3034static void cpu_notify_map_clients_locked(void)
3035{
3036 MapClient *client;
3037
3038 while (!QLIST_EMPTY(&map_client_list)) {
3039 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3040 qemu_bh_schedule(client->bh);
3041 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3042 }
3043}
3044
e95205e1 3045void cpu_register_map_client(QEMUBH *bh)
ba223c29 3046{
7267c094 3047 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3048
38e047b5 3049 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3050 client->bh = bh;
72cf2d4f 3051 QLIST_INSERT_HEAD(&map_client_list, client, link);
d73415a3 3052 if (!qatomic_read(&bounce.in_use)) {
33b6c2ed
FZ
3053 cpu_notify_map_clients_locked();
3054 }
38e047b5 3055 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3056}
3057
38e047b5 3058void cpu_exec_init_all(void)
ba223c29 3059{
38e047b5 3060 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3061 /* The data structures we set up here depend on knowing the page size,
3062 * so no more changes can be made after this point.
3063 * In an ideal world, nothing we did before we had finished the
3064 * machine setup would care about the target page size, and we could
3065 * do this much later, rather than requiring board models to state
3066 * up front what their requirements are.
3067 */
3068 finalize_target_page_bits();
38e047b5 3069 io_mem_init();
680a4783 3070 memory_map_init();
38e047b5 3071 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3072}
3073
e95205e1 3074void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3075{
3076 MapClient *client;
3077
e95205e1
FZ
3078 qemu_mutex_lock(&map_client_list_lock);
3079 QLIST_FOREACH(client, &map_client_list, link) {
3080 if (client->bh == bh) {
3081 cpu_unregister_map_client_do(client);
3082 break;
3083 }
ba223c29 3084 }
e95205e1 3085 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3086}
3087
3088static void cpu_notify_map_clients(void)
3089{
38e047b5 3090 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3091 cpu_notify_map_clients_locked();
38e047b5 3092 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3093}
3094
0c249ff7 3095static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3096 bool is_write, MemTxAttrs attrs)
51644ab7 3097{
5c8a00ce 3098 MemoryRegion *mr;
51644ab7
PB
3099 hwaddr l, xlat;
3100
3101 while (len > 0) {
3102 l = len;
efa99a2f 3103 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3104 if (!memory_access_is_direct(mr, is_write)) {
3105 l = memory_access_size(mr, l, addr);
eace72b7 3106 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3107 return false;
3108 }
3109 }
3110
3111 len -= l;
3112 addr += l;
3113 }
3114 return true;
3115}
3116
16620684 3117bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3118 hwaddr len, bool is_write,
fddffa42 3119 MemTxAttrs attrs)
16620684 3120{
11e732a5
PB
3121 FlatView *fv;
3122 bool result;
3123
694ea274 3124 RCU_READ_LOCK_GUARD();
11e732a5 3125 fv = address_space_to_flatview(as);
eace72b7 3126 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5 3127 return result;
16620684
AK
3128}
3129
715c31ec 3130static hwaddr
16620684 3131flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3132 hwaddr target_len,
3133 MemoryRegion *mr, hwaddr base, hwaddr len,
3134 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3135{
3136 hwaddr done = 0;
3137 hwaddr xlat;
3138 MemoryRegion *this_mr;
3139
3140 for (;;) {
3141 target_len -= len;
3142 addr += len;
3143 done += len;
3144 if (target_len == 0) {
3145 return done;
3146 }
3147
3148 len = target_len;
16620684 3149 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3150 &len, is_write, attrs);
715c31ec
PB
3151 if (this_mr != mr || xlat != base + done) {
3152 return done;
3153 }
3154 }
3155}
3156
6d16c2f8
AL
3157/* Map a physical memory region into a host virtual address.
3158 * May map a subset of the requested range, given by and returned in *plen.
3159 * May return NULL if resources needed to perform the mapping are exhausted.
3160 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3161 * Use cpu_register_map_client() to know when retrying the map operation is
3162 * likely to succeed.
6d16c2f8 3163 */
ac1970fb 3164void *address_space_map(AddressSpace *as,
a8170e5e
AK
3165 hwaddr addr,
3166 hwaddr *plen,
f26404fb
PM
3167 bool is_write,
3168 MemTxAttrs attrs)
6d16c2f8 3169{
a8170e5e 3170 hwaddr len = *plen;
715c31ec
PB
3171 hwaddr l, xlat;
3172 MemoryRegion *mr;
e81bcda5 3173 void *ptr;
ad0c60fa 3174 FlatView *fv;
6d16c2f8 3175
e3127ae0
PB
3176 if (len == 0) {
3177 return NULL;
3178 }
38bee5dc 3179
e3127ae0 3180 l = len;
694ea274 3181 RCU_READ_LOCK_GUARD();
ad0c60fa 3182 fv = address_space_to_flatview(as);
efa99a2f 3183 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3184
e3127ae0 3185 if (!memory_access_is_direct(mr, is_write)) {
d73415a3 3186 if (qatomic_xchg(&bounce.in_use, true)) {
77f55eac 3187 *plen = 0;
e3127ae0 3188 return NULL;
6d16c2f8 3189 }
e85d9db5
KW
3190 /* Avoid unbounded allocations */
3191 l = MIN(l, TARGET_PAGE_SIZE);
3192 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3193 bounce.addr = addr;
3194 bounce.len = l;
d3e71559
PB
3195
3196 memory_region_ref(mr);
3197 bounce.mr = mr;
e3127ae0 3198 if (!is_write) {
16620684 3199 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3200 bounce.buffer, l);
8ab934f9 3201 }
6d16c2f8 3202
e3127ae0
PB
3203 *plen = l;
3204 return bounce.buffer;
3205 }
3206
e3127ae0 3207
d3e71559 3208 memory_region_ref(mr);
16620684 3209 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3210 l, is_write, attrs);
fc1c8344 3211 fuzz_dma_read_cb(addr, *plen, mr);
f5aa69bd 3212 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3213
3214 return ptr;
6d16c2f8
AL
3215}
3216
ac1970fb 3217/* Unmaps a memory region previously mapped by address_space_map().
ae5883ab 3218 * Will also mark the memory as dirty if is_write is true. access_len gives
6d16c2f8
AL
3219 * the amount of memory that was actually read or written by the caller.
3220 */
a8170e5e 3221void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
ae5883ab 3222 bool is_write, hwaddr access_len)
6d16c2f8
AL
3223{
3224 if (buffer != bounce.buffer) {
d3e71559
PB
3225 MemoryRegion *mr;
3226 ram_addr_t addr1;
3227
07bdaa41 3228 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3229 assert(mr != NULL);
6d16c2f8 3230 if (is_write) {
845b6214 3231 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3232 }
868bb33f 3233 if (xen_enabled()) {
e41d7c69 3234 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3235 }
d3e71559 3236 memory_region_unref(mr);
6d16c2f8
AL
3237 return;
3238 }
3239 if (is_write) {
5c9eb028
PM
3240 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3241 bounce.buffer, access_len);
6d16c2f8 3242 }
f8a83245 3243 qemu_vfree(bounce.buffer);
6d16c2f8 3244 bounce.buffer = NULL;
d3e71559 3245 memory_region_unref(bounce.mr);
d73415a3 3246 qatomic_mb_set(&bounce.in_use, false);
ba223c29 3247 cpu_notify_map_clients();
6d16c2f8 3248}
d0ecd2aa 3249
a8170e5e
AK
3250void *cpu_physical_memory_map(hwaddr addr,
3251 hwaddr *plen,
28c80bfe 3252 bool is_write)
ac1970fb 3253{
f26404fb
PM
3254 return address_space_map(&address_space_memory, addr, plen, is_write,
3255 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3256}
3257
a8170e5e 3258void cpu_physical_memory_unmap(void *buffer, hwaddr len,
28c80bfe 3259 bool is_write, hwaddr access_len)
ac1970fb
AK
3260{
3261 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3262}
3263
0ce265ff
PB
3264#define ARG1_DECL AddressSpace *as
3265#define ARG1 as
3266#define SUFFIX
3267#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3268#define RCU_READ_LOCK(...) rcu_read_lock()
3269#define RCU_READ_UNLOCK(...) rcu_read_unlock()
139c1837 3270#include "memory_ldst.c.inc"
1e78bcc1 3271
1f4e496e
PB
3272int64_t address_space_cache_init(MemoryRegionCache *cache,
3273 AddressSpace *as,
3274 hwaddr addr,
3275 hwaddr len,
3276 bool is_write)
3277{
48564041
PB
3278 AddressSpaceDispatch *d;
3279 hwaddr l;
3280 MemoryRegion *mr;
4bfb024b 3281 Int128 diff;
48564041
PB
3282
3283 assert(len > 0);
3284
3285 l = len;
3286 cache->fv = address_space_get_flatview(as);
3287 d = flatview_to_dispatch(cache->fv);
3288 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3289
4bfb024b
PB
3290 /*
3291 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3292 * Take that into account to compute how many bytes are there between
3293 * cache->xlat and the end of the section.
3294 */
3295 diff = int128_sub(cache->mrs.size,
3296 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3297 l = int128_get64(int128_min(diff, int128_make64(l)));
3298
48564041
PB
3299 mr = cache->mrs.mr;
3300 memory_region_ref(mr);
3301 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3302 /* We don't care about the memory attributes here as we're only
3303 * doing this if we found actual RAM, which behaves the same
3304 * regardless of attributes; so UNSPECIFIED is fine.
3305 */
48564041 3306 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3307 cache->xlat, l, is_write,
3308 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3309 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3310 } else {
3311 cache->ptr = NULL;
3312 }
3313
3314 cache->len = l;
3315 cache->is_write = is_write;
3316 return l;
1f4e496e
PB
3317}
3318
3319void address_space_cache_invalidate(MemoryRegionCache *cache,
3320 hwaddr addr,
3321 hwaddr access_len)
3322{
48564041
PB
3323 assert(cache->is_write);
3324 if (likely(cache->ptr)) {
3325 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3326 }
1f4e496e
PB
3327}
3328
3329void address_space_cache_destroy(MemoryRegionCache *cache)
3330{
48564041
PB
3331 if (!cache->mrs.mr) {
3332 return;
3333 }
3334
3335 if (xen_enabled()) {
3336 xen_invalidate_map_cache_entry(cache->ptr);
3337 }
3338 memory_region_unref(cache->mrs.mr);
3339 flatview_unref(cache->fv);
3340 cache->mrs.mr = NULL;
3341 cache->fv = NULL;
3342}
3343
3344/* Called from RCU critical section. This function has the same
3345 * semantics as address_space_translate, but it only works on a
3346 * predefined range of a MemoryRegion that was mapped with
3347 * address_space_cache_init.
3348 */
3349static inline MemoryRegion *address_space_translate_cached(
3350 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3351 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3352{
3353 MemoryRegionSection section;
3354 MemoryRegion *mr;
3355 IOMMUMemoryRegion *iommu_mr;
3356 AddressSpace *target_as;
3357
3358 assert(!cache->ptr);
3359 *xlat = addr + cache->xlat;
3360
3361 mr = cache->mrs.mr;
3362 iommu_mr = memory_region_get_iommu(mr);
3363 if (!iommu_mr) {
3364 /* MMIO region. */
3365 return mr;
3366 }
3367
3368 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3369 NULL, is_write, true,
2f7b009c 3370 &target_as, attrs);
48564041
PB
3371 return section.mr;
3372}
3373
3374/* Called from RCU critical section. address_space_read_cached uses this
3375 * out of line function when the target is an MMIO or IOMMU region.
3376 */
38df19fa 3377MemTxResult
48564041 3378address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3379 void *buf, hwaddr len)
48564041
PB
3380{
3381 hwaddr addr1, l;
3382 MemoryRegion *mr;
3383
3384 l = len;
bc6b1cec
PM
3385 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3386 MEMTXATTRS_UNSPECIFIED);
38df19fa
PMD
3387 return flatview_read_continue(cache->fv,
3388 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3389 addr1, l, mr);
48564041
PB
3390}
3391
3392/* Called from RCU critical section. address_space_write_cached uses this
3393 * out of line function when the target is an MMIO or IOMMU region.
3394 */
38df19fa 3395MemTxResult
48564041 3396address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3397 const void *buf, hwaddr len)
48564041
PB
3398{
3399 hwaddr addr1, l;
3400 MemoryRegion *mr;
3401
3402 l = len;
bc6b1cec
PM
3403 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3404 MEMTXATTRS_UNSPECIFIED);
38df19fa
PMD
3405 return flatview_write_continue(cache->fv,
3406 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3407 addr1, l, mr);
1f4e496e
PB
3408}
3409
3410#define ARG1_DECL MemoryRegionCache *cache
3411#define ARG1 cache
48564041
PB
3412#define SUFFIX _cached_slow
3413#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3414#define RCU_READ_LOCK() ((void)0)
3415#define RCU_READ_UNLOCK() ((void)0)
139c1837 3416#include "memory_ldst.c.inc"
1f4e496e 3417
5e2972fd 3418/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3419int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
28c80bfe 3420 void *ptr, target_ulong len, bool is_write)
13eb76e0 3421{
a8170e5e 3422 hwaddr phys_addr;
0c249ff7 3423 target_ulong l, page;
d7ef71ef 3424 uint8_t *buf = ptr;
13eb76e0 3425
79ca7a1b 3426 cpu_synchronize_state(cpu);
13eb76e0 3427 while (len > 0) {
5232e4c7
PM
3428 int asidx;
3429 MemTxAttrs attrs;
ddfc8b96 3430 MemTxResult res;
5232e4c7 3431
13eb76e0 3432 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3433 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3434 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3435 /* if no physical page mapped, return an error */
3436 if (phys_addr == -1)
3437 return -1;
3438 l = (page + TARGET_PAGE_SIZE) - addr;
3439 if (l > len)
3440 l = len;
5e2972fd 3441 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3442 if (is_write) {
ddfc8b96
PMD
3443 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3444 attrs, buf, l);
2e38847b 3445 } else {
ddfc8b96
PMD
3446 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3447 attrs, buf, l);
3448 }
3449 if (res != MEMTX_OK) {
3450 return -1;
2e38847b 3451 }
13eb76e0
FB
3452 len -= l;
3453 buf += l;
3454 addr += l;
3455 }
3456 return 0;
3457}
038629a6
DDAG
3458
3459/*
3460 * Allows code that needs to deal with migration bitmaps etc to still be built
3461 * target independent.
3462 */
20afaed9 3463size_t qemu_target_page_size(void)
038629a6 3464{
20afaed9 3465 return TARGET_PAGE_SIZE;
038629a6
DDAG
3466}
3467
46d702b1
JQ
3468int qemu_target_page_bits(void)
3469{
3470 return TARGET_PAGE_BITS;
3471}
3472
3473int qemu_target_page_bits_min(void)
3474{
3475 return TARGET_PAGE_BITS_MIN;
3476}
8e4a424b 3477
a8170e5e 3478bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3479{
5c8a00ce 3480 MemoryRegion*mr;
149f54b5 3481 hwaddr l = 1;
41063e1e 3482 bool res;
76f35538 3483
694ea274 3484 RCU_READ_LOCK_GUARD();
5c8a00ce 3485 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
3486 phys_addr, &phys_addr, &l, false,
3487 MEMTXATTRS_UNSPECIFIED);
76f35538 3488
41063e1e 3489 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
41063e1e 3490 return res;
76f35538 3491}
bd2fa51f 3492
e3807054 3493int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3494{
3495 RAMBlock *block;
e3807054 3496 int ret = 0;
bd2fa51f 3497
694ea274 3498 RCU_READ_LOCK_GUARD();
99e15582 3499 RAMBLOCK_FOREACH(block) {
754cb9c0 3500 ret = func(block, opaque);
e3807054
DDAG
3501 if (ret) {
3502 break;
3503 }
bd2fa51f 3504 }
e3807054 3505 return ret;
bd2fa51f 3506}
d3a5038c
DDAG
3507
3508/*
3509 * Unmap pages of memory from start to start+length such that
3510 * they a) read as 0, b) Trigger whatever fault mechanism
3511 * the OS provides for postcopy.
3512 * The pages must be unmapped by the end of the function.
3513 * Returns: 0 on success, none-0 on failure
3514 *
3515 */
3516int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3517{
3518 int ret = -1;
3519
3520 uint8_t *host_startaddr = rb->host + start;
3521
619bd31d 3522 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
d3a5038c
DDAG
3523 error_report("ram_block_discard_range: Unaligned start address: %p",
3524 host_startaddr);
3525 goto err;
3526 }
3527
dcdc4607 3528 if ((start + length) <= rb->max_length) {
db144f70 3529 bool need_madvise, need_fallocate;
619bd31d 3530 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
72821d93
WY
3531 error_report("ram_block_discard_range: Unaligned length: %zx",
3532 length);
d3a5038c
DDAG
3533 goto err;
3534 }
3535
3536 errno = ENOTSUP; /* If we are missing MADVISE etc */
3537
db144f70
DDAG
3538 /* The logic here is messy;
3539 * madvise DONTNEED fails for hugepages
3540 * fallocate works on hugepages and shmem
cdfa56c5 3541 * shared anonymous memory requires madvise REMOVE
db144f70
DDAG
3542 */
3543 need_madvise = (rb->page_size == qemu_host_page_size);
3544 need_fallocate = rb->fd != -1;
3545 if (need_fallocate) {
3546 /* For a file, this causes the area of the file to be zero'd
3547 * if read, and for hugetlbfs also causes it to be unmapped
3548 * so a userfault will trigger.
e2fa71f5
DDAG
3549 */
3550#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3551 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3552 start, length);
db144f70
DDAG
3553 if (ret) {
3554 ret = -errno;
3555 error_report("ram_block_discard_range: Failed to fallocate "
3556 "%s:%" PRIx64 " +%zx (%d)",
3557 rb->idstr, start, length, ret);
3558 goto err;
3559 }
3560#else
3561 ret = -ENOSYS;
3562 error_report("ram_block_discard_range: fallocate not available/file"
3563 "%s:%" PRIx64 " +%zx (%d)",
3564 rb->idstr, start, length, ret);
3565 goto err;
e2fa71f5
DDAG
3566#endif
3567 }
db144f70
DDAG
3568 if (need_madvise) {
3569 /* For normal RAM this causes it to be unmapped,
3570 * for shared memory it causes the local mapping to disappear
3571 * and to fall back on the file contents (which we just
3572 * fallocate'd away).
3573 */
3574#if defined(CONFIG_MADVISE)
cdfa56c5
DH
3575 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3576 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3577 } else {
3578 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3579 }
db144f70
DDAG
3580 if (ret) {
3581 ret = -errno;
3582 error_report("ram_block_discard_range: Failed to discard range "
3583 "%s:%" PRIx64 " +%zx (%d)",
3584 rb->idstr, start, length, ret);
3585 goto err;
3586 }
3587#else
3588 ret = -ENOSYS;
3589 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
3590 "%s:%" PRIx64 " +%zx (%d)",
3591 rb->idstr, start, length, ret);
db144f70
DDAG
3592 goto err;
3593#endif
d3a5038c 3594 }
db144f70
DDAG
3595 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3596 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
3597 } else {
3598 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3599 "/%zx/" RAM_ADDR_FMT")",
dcdc4607 3600 rb->idstr, start, length, rb->max_length);
d3a5038c
DDAG
3601 }
3602
3603err:
3604 return ret;
3605}
3606
a4de8552
JH
3607bool ramblock_is_pmem(RAMBlock *rb)
3608{
3609 return rb->flags & RAM_PMEM;
3610}
3611
b6b71cb5 3612static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
5e8fd947
AK
3613{
3614 if (start == end - 1) {
b6b71cb5 3615 qemu_printf("\t%3d ", start);
5e8fd947 3616 } else {
b6b71cb5 3617 qemu_printf("\t%3d..%-3d ", start, end - 1);
5e8fd947 3618 }
b6b71cb5 3619 qemu_printf(" skip=%d ", skip);
5e8fd947 3620 if (ptr == PHYS_MAP_NODE_NIL) {
b6b71cb5 3621 qemu_printf(" ptr=NIL");
5e8fd947 3622 } else if (!skip) {
b6b71cb5 3623 qemu_printf(" ptr=#%d", ptr);
5e8fd947 3624 } else {
b6b71cb5 3625 qemu_printf(" ptr=[%d]", ptr);
5e8fd947 3626 }
b6b71cb5 3627 qemu_printf("\n");
5e8fd947
AK
3628}
3629
3630#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3631 int128_sub((size), int128_one())) : 0)
3632
b6b71cb5 3633void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
5e8fd947
AK
3634{
3635 int i;
3636
b6b71cb5
MA
3637 qemu_printf(" Dispatch\n");
3638 qemu_printf(" Physical sections\n");
5e8fd947
AK
3639
3640 for (i = 0; i < d->map.sections_nb; ++i) {
3641 MemoryRegionSection *s = d->map.sections + i;
3642 const char *names[] = { " [unassigned]", " [not dirty]",
3643 " [ROM]", " [watch]" };
3644
b6b71cb5
MA
3645 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3646 " %s%s%s%s%s",
5e8fd947
AK
3647 i,
3648 s->offset_within_address_space,
3649 s->offset_within_address_space + MR_SIZE(s->mr->size),
3650 s->mr->name ? s->mr->name : "(noname)",
3651 i < ARRAY_SIZE(names) ? names[i] : "",
3652 s->mr == root ? " [ROOT]" : "",
3653 s == d->mru_section ? " [MRU]" : "",
3654 s->mr->is_iommu ? " [iommu]" : "");
3655
3656 if (s->mr->alias) {
b6b71cb5 3657 qemu_printf(" alias=%s", s->mr->alias->name ?
5e8fd947
AK
3658 s->mr->alias->name : "noname");
3659 }
b6b71cb5 3660 qemu_printf("\n");
5e8fd947
AK
3661 }
3662
b6b71cb5 3663 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
5e8fd947
AK
3664 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3665 for (i = 0; i < d->map.nodes_nb; ++i) {
3666 int j, jprev;
3667 PhysPageEntry prev;
3668 Node *n = d->map.nodes + i;
3669
b6b71cb5 3670 qemu_printf(" [%d]\n", i);
5e8fd947
AK
3671
3672 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3673 PhysPageEntry *pe = *n + j;
3674
3675 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3676 continue;
3677 }
3678
b6b71cb5 3679 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
3680
3681 jprev = j;
3682 prev = *pe;
3683 }
3684
3685 if (jprev != ARRAY_SIZE(*n)) {
b6b71cb5 3686 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
3687 }
3688 }
3689}
3690
7e6d32eb 3691/* Require any discards to work. */
98da491d 3692static unsigned int ram_block_discard_required_cnt;
7e6d32eb
DH
3693/* Require only coordinated discards to work. */
3694static unsigned int ram_block_coordinated_discard_required_cnt;
3695/* Disable any discards. */
98da491d 3696static unsigned int ram_block_discard_disabled_cnt;
7e6d32eb
DH
3697/* Disable only uncoordinated discards. */
3698static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
98da491d
DH
3699static QemuMutex ram_block_discard_disable_mutex;
3700
3701static void ram_block_discard_disable_mutex_lock(void)
3702{
3703 static gsize initialized;
3704
3705 if (g_once_init_enter(&initialized)) {
3706 qemu_mutex_init(&ram_block_discard_disable_mutex);
3707 g_once_init_leave(&initialized, 1);
3708 }
3709 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3710}
3711
3712static void ram_block_discard_disable_mutex_unlock(void)
3713{
3714 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3715}
d24f31db
DH
3716
3717int ram_block_discard_disable(bool state)
3718{
98da491d 3719 int ret = 0;
d24f31db 3720
98da491d 3721 ram_block_discard_disable_mutex_lock();
d24f31db 3722 if (!state) {
98da491d 3723 ram_block_discard_disabled_cnt--;
7e6d32eb
DH
3724 } else if (ram_block_discard_required_cnt ||
3725 ram_block_coordinated_discard_required_cnt) {
3726 ret = -EBUSY;
98da491d 3727 } else {
7e6d32eb
DH
3728 ram_block_discard_disabled_cnt++;
3729 }
3730 ram_block_discard_disable_mutex_unlock();
3731 return ret;
3732}
3733
3734int ram_block_uncoordinated_discard_disable(bool state)
3735{
3736 int ret = 0;
3737
3738 ram_block_discard_disable_mutex_lock();
3739 if (!state) {
3740 ram_block_uncoordinated_discard_disabled_cnt--;
3741 } else if (ram_block_discard_required_cnt) {
98da491d 3742 ret = -EBUSY;
7e6d32eb
DH
3743 } else {
3744 ram_block_uncoordinated_discard_disabled_cnt++;
d24f31db 3745 }
98da491d
DH
3746 ram_block_discard_disable_mutex_unlock();
3747 return ret;
d24f31db
DH
3748}
3749
3750int ram_block_discard_require(bool state)
3751{
98da491d 3752 int ret = 0;
d24f31db 3753
98da491d 3754 ram_block_discard_disable_mutex_lock();
d24f31db 3755 if (!state) {
98da491d 3756 ram_block_discard_required_cnt--;
7e6d32eb
DH
3757 } else if (ram_block_discard_disabled_cnt ||
3758 ram_block_uncoordinated_discard_disabled_cnt) {
3759 ret = -EBUSY;
98da491d 3760 } else {
7e6d32eb
DH
3761 ram_block_discard_required_cnt++;
3762 }
3763 ram_block_discard_disable_mutex_unlock();
3764 return ret;
3765}
3766
3767int ram_block_coordinated_discard_require(bool state)
3768{
3769 int ret = 0;
3770
3771 ram_block_discard_disable_mutex_lock();
3772 if (!state) {
3773 ram_block_coordinated_discard_required_cnt--;
3774 } else if (ram_block_discard_disabled_cnt) {
98da491d 3775 ret = -EBUSY;
7e6d32eb
DH
3776 } else {
3777 ram_block_coordinated_discard_required_cnt++;
d24f31db 3778 }
98da491d
DH
3779 ram_block_discard_disable_mutex_unlock();
3780 return ret;
d24f31db
DH
3781}
3782
3783bool ram_block_discard_is_disabled(void)
3784{
7e6d32eb
DH
3785 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3786 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
d24f31db
DH
3787}
3788
3789bool ram_block_discard_is_required(void)
3790{
7e6d32eb
DH
3791 return qatomic_read(&ram_block_discard_required_cnt) ||
3792 qatomic_read(&ram_block_coordinated_discard_required_cnt);
d24f31db 3793}