]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame_incremental - bfd/elf.c
daily update
[thirdparty/binutils-gdb.git] / bfd / elf.c
... / ...
CommitLineData
1/* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22/* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34/* For sparc64-cross-sparc32. */
35#define _SYSCALL32
36#include "bfd.h"
37#include "sysdep.h"
38#include "bfdlink.h"
39#include "libbfd.h"
40#define ARCH_SIZE 0
41#include "elf-bfd.h"
42#include "libiberty.h"
43
44static int elf_sort_sections (const void *, const void *);
45static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46static bfd_boolean prep_headers (bfd *);
47static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50/* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54/* Swap in a Verdef structure. */
55
56void
57_bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60{
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68}
69
70/* Swap out a Verdef structure. */
71
72void
73_bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76{
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84}
85
86/* Swap in a Verdaux structure. */
87
88void
89_bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92{
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95}
96
97/* Swap out a Verdaux structure. */
98
99void
100_bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103{
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106}
107
108/* Swap in a Verneed structure. */
109
110void
111_bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114{
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120}
121
122/* Swap out a Verneed structure. */
123
124void
125_bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128{
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134}
135
136/* Swap in a Vernaux structure. */
137
138void
139_bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142{
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148}
149
150/* Swap out a Vernaux structure. */
151
152void
153_bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156{
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162}
163
164/* Swap in a Versym structure. */
165
166void
167_bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170{
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172}
173
174/* Swap out a Versym structure. */
175
176void
177_bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180{
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182}
183
184/* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187unsigned long
188bfd_elf_hash (const char *namearg)
189{
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207}
208
209/* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213static char *
214elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215{
216 char *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229}
230
231bfd_boolean
232bfd_elf_mkobject (bfd *abfd)
233{
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243}
244
245bfd_boolean
246bfd_elf_mkcorefile (bfd *abfd)
247{
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250}
251
252char *
253bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254{
255 Elf_Internal_Shdr **i_shdrp;
256 char *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return 0;
263
264 shstrtab = (char *) i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return shstrtab;
274}
275
276char *
277bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280{
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 (*_bfd_error_handler)
295 (_("%B: invalid string offset %u >= %lu for section `%s'"),
296 abfd, strindex, (unsigned long) hdr->sh_size,
297 ((shindex == elf_elfheader(abfd)->e_shstrndx
298 && strindex == hdr->sh_name)
299 ? ".shstrtab"
300 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305}
306
307/* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313Elf_Internal_Sym *
314bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321{
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404}
405
406/* Look up a symbol name. */
407const char *
408bfd_elf_local_sym_name (bfd *abfd, Elf_Internal_Sym *isym)
409{
410 unsigned int iname = isym->st_name;
411 unsigned int shindex = elf_tdata (abfd)->symtab_hdr.sh_link;
412 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION)
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
419}
420
421/* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
422 sections. The first element is the flags, the rest are section
423 pointers. */
424
425typedef union elf_internal_group {
426 Elf_Internal_Shdr *shdr;
427 unsigned int flags;
428} Elf_Internal_Group;
429
430/* Return the name of the group signature symbol. Why isn't the
431 signature just a string? */
432
433static const char *
434group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
435{
436 Elf_Internal_Shdr *hdr;
437 unsigned char esym[sizeof (Elf64_External_Sym)];
438 Elf_External_Sym_Shndx eshndx;
439 Elf_Internal_Sym isym;
440
441 /* First we need to ensure the symbol table is available. */
442 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
443 return NULL;
444
445 /* Go read the symbol. */
446 hdr = &elf_tdata (abfd)->symtab_hdr;
447 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
448 &isym, esym, &eshndx) == NULL)
449 return NULL;
450
451 return bfd_elf_local_sym_name (abfd, &isym);
452}
453
454/* Set next_in_group list pointer, and group name for NEWSECT. */
455
456static bfd_boolean
457setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
458{
459 unsigned int num_group = elf_tdata (abfd)->num_group;
460
461 /* If num_group is zero, read in all SHT_GROUP sections. The count
462 is set to -1 if there are no SHT_GROUP sections. */
463 if (num_group == 0)
464 {
465 unsigned int i, shnum;
466
467 /* First count the number of groups. If we have a SHT_GROUP
468 section with just a flag word (ie. sh_size is 4), ignore it. */
469 shnum = elf_numsections (abfd);
470 num_group = 0;
471 for (i = 0; i < shnum; i++)
472 {
473 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
474 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
475 num_group += 1;
476 }
477
478 if (num_group == 0)
479 num_group = (unsigned) -1;
480 elf_tdata (abfd)->num_group = num_group;
481
482 if (num_group > 0)
483 {
484 /* We keep a list of elf section headers for group sections,
485 so we can find them quickly. */
486 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
487 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
488 if (elf_tdata (abfd)->group_sect_ptr == NULL)
489 return FALSE;
490
491 num_group = 0;
492 for (i = 0; i < shnum; i++)
493 {
494 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
495 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
496 {
497 unsigned char *src;
498 Elf_Internal_Group *dest;
499
500 /* Add to list of sections. */
501 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
502 num_group += 1;
503
504 /* Read the raw contents. */
505 BFD_ASSERT (sizeof (*dest) >= 4);
506 amt = shdr->sh_size * sizeof (*dest) / 4;
507 shdr->contents = bfd_alloc (abfd, amt);
508 if (shdr->contents == NULL
509 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
510 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
511 != shdr->sh_size))
512 return FALSE;
513
514 /* Translate raw contents, a flag word followed by an
515 array of elf section indices all in target byte order,
516 to the flag word followed by an array of elf section
517 pointers. */
518 src = shdr->contents + shdr->sh_size;
519 dest = (Elf_Internal_Group *) (shdr->contents + amt);
520 while (1)
521 {
522 unsigned int idx;
523
524 src -= 4;
525 --dest;
526 idx = H_GET_32 (abfd, src);
527 if (src == shdr->contents)
528 {
529 dest->flags = idx;
530 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
531 shdr->bfd_section->flags
532 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
533 break;
534 }
535 if (idx >= shnum)
536 {
537 ((*_bfd_error_handler)
538 (_("%B: invalid SHT_GROUP entry"), abfd));
539 idx = 0;
540 }
541 dest->shdr = elf_elfsections (abfd)[idx];
542 }
543 }
544 }
545 }
546 }
547
548 if (num_group != (unsigned) -1)
549 {
550 unsigned int i;
551
552 for (i = 0; i < num_group; i++)
553 {
554 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
555 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
556 unsigned int n_elt = shdr->sh_size / 4;
557
558 /* Look through this group's sections to see if current
559 section is a member. */
560 while (--n_elt != 0)
561 if ((++idx)->shdr == hdr)
562 {
563 asection *s = NULL;
564
565 /* We are a member of this group. Go looking through
566 other members to see if any others are linked via
567 next_in_group. */
568 idx = (Elf_Internal_Group *) shdr->contents;
569 n_elt = shdr->sh_size / 4;
570 while (--n_elt != 0)
571 if ((s = (++idx)->shdr->bfd_section) != NULL
572 && elf_next_in_group (s) != NULL)
573 break;
574 if (n_elt != 0)
575 {
576 /* Snarf the group name from other member, and
577 insert current section in circular list. */
578 elf_group_name (newsect) = elf_group_name (s);
579 elf_next_in_group (newsect) = elf_next_in_group (s);
580 elf_next_in_group (s) = newsect;
581 }
582 else
583 {
584 const char *gname;
585
586 gname = group_signature (abfd, shdr);
587 if (gname == NULL)
588 return FALSE;
589 elf_group_name (newsect) = gname;
590
591 /* Start a circular list with one element. */
592 elf_next_in_group (newsect) = newsect;
593 }
594
595 /* If the group section has been created, point to the
596 new member. */
597 if (shdr->bfd_section != NULL)
598 elf_next_in_group (shdr->bfd_section) = newsect;
599
600 i = num_group - 1;
601 break;
602 }
603 }
604 }
605
606 if (elf_group_name (newsect) == NULL)
607 {
608 (*_bfd_error_handler) (_("%B: no group info for section %A"),
609 abfd, newsect);
610 }
611 return TRUE;
612}
613
614bfd_boolean
615_bfd_elf_setup_group_pointers (bfd *abfd)
616{
617 unsigned int i;
618 unsigned int num_group = elf_tdata (abfd)->num_group;
619 bfd_boolean result = TRUE;
620
621 if (num_group == (unsigned) -1)
622 return result;
623
624 for (i = 0; i < num_group; i++)
625 {
626 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
627 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
628 unsigned int n_elt = shdr->sh_size / 4;
629
630 while (--n_elt != 0)
631 if ((++idx)->shdr->bfd_section)
632 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
633 else if (idx->shdr->sh_type == SHT_RELA
634 || idx->shdr->sh_type == SHT_REL)
635 /* We won't include relocation sections in section groups in
636 output object files. We adjust the group section size here
637 so that relocatable link will work correctly when
638 relocation sections are in section group in input object
639 files. */
640 shdr->bfd_section->size -= 4;
641 else
642 {
643 /* There are some unknown sections in the group. */
644 (*_bfd_error_handler)
645 (_("%B: unknown [%d] section `%s' in group [%s]"),
646 abfd,
647 (unsigned int) idx->shdr->sh_type,
648 elf_string_from_elf_strtab (abfd, idx->shdr->sh_name),
649 shdr->bfd_section->name);
650 result = FALSE;
651 }
652 }
653 return result;
654}
655
656bfd_boolean
657bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
658{
659 return elf_next_in_group (sec) != NULL;
660}
661
662bfd_boolean
663bfd_elf_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
664 asection *group ATTRIBUTE_UNUSED)
665{
666#if 0
667 asection *first = elf_next_in_group (group);
668 asection *s = first;
669
670 while (s != NULL)
671 {
672 s->output_section = bfd_abs_section_ptr;
673 s = elf_next_in_group (s);
674 /* These lists are circular. */
675 if (s == first)
676 break;
677 }
678#else
679 /* FIXME: Never used. Remove it! */
680 abort ();
681#endif
682 return TRUE;
683}
684
685/* Make a BFD section from an ELF section. We store a pointer to the
686 BFD section in the bfd_section field of the header. */
687
688bfd_boolean
689_bfd_elf_make_section_from_shdr (bfd *abfd,
690 Elf_Internal_Shdr *hdr,
691 const char *name)
692{
693 asection *newsect;
694 flagword flags;
695 const struct elf_backend_data *bed;
696
697 if (hdr->bfd_section != NULL)
698 {
699 BFD_ASSERT (strcmp (name,
700 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
701 return TRUE;
702 }
703
704 newsect = bfd_make_section_anyway (abfd, name);
705 if (newsect == NULL)
706 return FALSE;
707
708 hdr->bfd_section = newsect;
709 elf_section_data (newsect)->this_hdr = *hdr;
710
711 /* Always use the real type/flags. */
712 elf_section_type (newsect) = hdr->sh_type;
713 elf_section_flags (newsect) = hdr->sh_flags;
714
715 newsect->filepos = hdr->sh_offset;
716
717 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
718 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
719 || ! bfd_set_section_alignment (abfd, newsect,
720 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
721 return FALSE;
722
723 flags = SEC_NO_FLAGS;
724 if (hdr->sh_type != SHT_NOBITS)
725 flags |= SEC_HAS_CONTENTS;
726 if (hdr->sh_type == SHT_GROUP)
727 flags |= SEC_GROUP | SEC_EXCLUDE;
728 if ((hdr->sh_flags & SHF_ALLOC) != 0)
729 {
730 flags |= SEC_ALLOC;
731 if (hdr->sh_type != SHT_NOBITS)
732 flags |= SEC_LOAD;
733 }
734 if ((hdr->sh_flags & SHF_WRITE) == 0)
735 flags |= SEC_READONLY;
736 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
737 flags |= SEC_CODE;
738 else if ((flags & SEC_LOAD) != 0)
739 flags |= SEC_DATA;
740 if ((hdr->sh_flags & SHF_MERGE) != 0)
741 {
742 flags |= SEC_MERGE;
743 newsect->entsize = hdr->sh_entsize;
744 if ((hdr->sh_flags & SHF_STRINGS) != 0)
745 flags |= SEC_STRINGS;
746 }
747 if (hdr->sh_flags & SHF_GROUP)
748 if (!setup_group (abfd, hdr, newsect))
749 return FALSE;
750 if ((hdr->sh_flags & SHF_TLS) != 0)
751 flags |= SEC_THREAD_LOCAL;
752
753 /* The debugging sections appear to be recognized only by name, not
754 any sort of flag. */
755 {
756 static const char *debug_sec_names [] =
757 {
758 ".debug",
759 ".gnu.linkonce.wi.",
760 ".line",
761 ".stab"
762 };
763 int i;
764
765 for (i = ARRAY_SIZE (debug_sec_names); i--;)
766 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
767 break;
768
769 if (i >= 0)
770 flags |= SEC_DEBUGGING;
771 }
772
773 /* As a GNU extension, if the name begins with .gnu.linkonce, we
774 only link a single copy of the section. This is used to support
775 g++. g++ will emit each template expansion in its own section.
776 The symbols will be defined as weak, so that multiple definitions
777 are permitted. The GNU linker extension is to actually discard
778 all but one of the sections. */
779 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
780 && elf_next_in_group (newsect) == NULL)
781 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
782
783 bed = get_elf_backend_data (abfd);
784 if (bed->elf_backend_section_flags)
785 if (! bed->elf_backend_section_flags (&flags, hdr))
786 return FALSE;
787
788 if (! bfd_set_section_flags (abfd, newsect, flags))
789 return FALSE;
790
791 if ((flags & SEC_ALLOC) != 0)
792 {
793 Elf_Internal_Phdr *phdr;
794 unsigned int i;
795
796 /* Look through the phdrs to see if we need to adjust the lma.
797 If all the p_paddr fields are zero, we ignore them, since
798 some ELF linkers produce such output. */
799 phdr = elf_tdata (abfd)->phdr;
800 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
801 {
802 if (phdr->p_paddr != 0)
803 break;
804 }
805 if (i < elf_elfheader (abfd)->e_phnum)
806 {
807 phdr = elf_tdata (abfd)->phdr;
808 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
809 {
810 /* This section is part of this segment if its file
811 offset plus size lies within the segment's memory
812 span and, if the section is loaded, the extent of the
813 loaded data lies within the extent of the segment.
814
815 Note - we used to check the p_paddr field as well, and
816 refuse to set the LMA if it was 0. This is wrong
817 though, as a perfectly valid initialised segment can
818 have a p_paddr of zero. Some architectures, eg ARM,
819 place special significance on the address 0 and
820 executables need to be able to have a segment which
821 covers this address. */
822 if (phdr->p_type == PT_LOAD
823 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
824 && (hdr->sh_offset + hdr->sh_size
825 <= phdr->p_offset + phdr->p_memsz)
826 && ((flags & SEC_LOAD) == 0
827 || (hdr->sh_offset + hdr->sh_size
828 <= phdr->p_offset + phdr->p_filesz)))
829 {
830 if ((flags & SEC_LOAD) == 0)
831 newsect->lma = (phdr->p_paddr
832 + hdr->sh_addr - phdr->p_vaddr);
833 else
834 /* We used to use the same adjustment for SEC_LOAD
835 sections, but that doesn't work if the segment
836 is packed with code from multiple VMAs.
837 Instead we calculate the section LMA based on
838 the segment LMA. It is assumed that the
839 segment will contain sections with contiguous
840 LMAs, even if the VMAs are not. */
841 newsect->lma = (phdr->p_paddr
842 + hdr->sh_offset - phdr->p_offset);
843
844 /* With contiguous segments, we can't tell from file
845 offsets whether a section with zero size should
846 be placed at the end of one segment or the
847 beginning of the next. Decide based on vaddr. */
848 if (hdr->sh_addr >= phdr->p_vaddr
849 && (hdr->sh_addr + hdr->sh_size
850 <= phdr->p_vaddr + phdr->p_memsz))
851 break;
852 }
853 }
854 }
855 }
856
857 return TRUE;
858}
859
860/*
861INTERNAL_FUNCTION
862 bfd_elf_find_section
863
864SYNOPSIS
865 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
866
867DESCRIPTION
868 Helper functions for GDB to locate the string tables.
869 Since BFD hides string tables from callers, GDB needs to use an
870 internal hook to find them. Sun's .stabstr, in particular,
871 isn't even pointed to by the .stab section, so ordinary
872 mechanisms wouldn't work to find it, even if we had some.
873*/
874
875struct elf_internal_shdr *
876bfd_elf_find_section (bfd *abfd, char *name)
877{
878 Elf_Internal_Shdr **i_shdrp;
879 char *shstrtab;
880 unsigned int max;
881 unsigned int i;
882
883 i_shdrp = elf_elfsections (abfd);
884 if (i_shdrp != NULL)
885 {
886 shstrtab = bfd_elf_get_str_section (abfd,
887 elf_elfheader (abfd)->e_shstrndx);
888 if (shstrtab != NULL)
889 {
890 max = elf_numsections (abfd);
891 for (i = 1; i < max; i++)
892 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
893 return i_shdrp[i];
894 }
895 }
896 return 0;
897}
898
899const char *const bfd_elf_section_type_names[] = {
900 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
901 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
902 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
903};
904
905/* ELF relocs are against symbols. If we are producing relocatable
906 output, and the reloc is against an external symbol, and nothing
907 has given us any additional addend, the resulting reloc will also
908 be against the same symbol. In such a case, we don't want to
909 change anything about the way the reloc is handled, since it will
910 all be done at final link time. Rather than put special case code
911 into bfd_perform_relocation, all the reloc types use this howto
912 function. It just short circuits the reloc if producing
913 relocatable output against an external symbol. */
914
915bfd_reloc_status_type
916bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
917 arelent *reloc_entry,
918 asymbol *symbol,
919 void *data ATTRIBUTE_UNUSED,
920 asection *input_section,
921 bfd *output_bfd,
922 char **error_message ATTRIBUTE_UNUSED)
923{
924 if (output_bfd != NULL
925 && (symbol->flags & BSF_SECTION_SYM) == 0
926 && (! reloc_entry->howto->partial_inplace
927 || reloc_entry->addend == 0))
928 {
929 reloc_entry->address += input_section->output_offset;
930 return bfd_reloc_ok;
931 }
932
933 return bfd_reloc_continue;
934}
935\f
936/* Make sure sec_info_type is cleared if sec_info is cleared too. */
937
938static void
939merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
940 asection *sec)
941{
942 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
943 sec->sec_info_type = ELF_INFO_TYPE_NONE;
944}
945
946/* Finish SHF_MERGE section merging. */
947
948bfd_boolean
949_bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
950{
951 bfd *ibfd;
952 asection *sec;
953
954 if (!is_elf_hash_table (info->hash))
955 return FALSE;
956
957 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
958 if ((ibfd->flags & DYNAMIC) == 0)
959 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
960 if ((sec->flags & SEC_MERGE) != 0
961 && !bfd_is_abs_section (sec->output_section))
962 {
963 struct bfd_elf_section_data *secdata;
964
965 secdata = elf_section_data (sec);
966 if (! _bfd_add_merge_section (abfd,
967 &elf_hash_table (info)->merge_info,
968 sec, &secdata->sec_info))
969 return FALSE;
970 else if (secdata->sec_info)
971 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
972 }
973
974 if (elf_hash_table (info)->merge_info != NULL)
975 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
976 merge_sections_remove_hook);
977 return TRUE;
978}
979
980void
981_bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
982{
983 sec->output_section = bfd_abs_section_ptr;
984 sec->output_offset = sec->vma;
985 if (!is_elf_hash_table (info->hash))
986 return;
987
988 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
989}
990\f
991/* Copy the program header and other data from one object module to
992 another. */
993
994bfd_boolean
995_bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
996{
997 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
998 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
999 return TRUE;
1000
1001 BFD_ASSERT (!elf_flags_init (obfd)
1002 || (elf_elfheader (obfd)->e_flags
1003 == elf_elfheader (ibfd)->e_flags));
1004
1005 elf_gp (obfd) = elf_gp (ibfd);
1006 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1007 elf_flags_init (obfd) = TRUE;
1008 return TRUE;
1009}
1010
1011/* Print out the program headers. */
1012
1013bfd_boolean
1014_bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1015{
1016 FILE *f = farg;
1017 Elf_Internal_Phdr *p;
1018 asection *s;
1019 bfd_byte *dynbuf = NULL;
1020
1021 p = elf_tdata (abfd)->phdr;
1022 if (p != NULL)
1023 {
1024 unsigned int i, c;
1025
1026 fprintf (f, _("\nProgram Header:\n"));
1027 c = elf_elfheader (abfd)->e_phnum;
1028 for (i = 0; i < c; i++, p++)
1029 {
1030 const char *pt;
1031 char buf[20];
1032
1033 switch (p->p_type)
1034 {
1035 case PT_NULL: pt = "NULL"; break;
1036 case PT_LOAD: pt = "LOAD"; break;
1037 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1038 case PT_INTERP: pt = "INTERP"; break;
1039 case PT_NOTE: pt = "NOTE"; break;
1040 case PT_SHLIB: pt = "SHLIB"; break;
1041 case PT_PHDR: pt = "PHDR"; break;
1042 case PT_TLS: pt = "TLS"; break;
1043 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1044 case PT_GNU_STACK: pt = "STACK"; break;
1045 case PT_GNU_RELRO: pt = "RELRO"; break;
1046 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1047 }
1048 fprintf (f, "%8s off 0x", pt);
1049 bfd_fprintf_vma (abfd, f, p->p_offset);
1050 fprintf (f, " vaddr 0x");
1051 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1052 fprintf (f, " paddr 0x");
1053 bfd_fprintf_vma (abfd, f, p->p_paddr);
1054 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1055 fprintf (f, " filesz 0x");
1056 bfd_fprintf_vma (abfd, f, p->p_filesz);
1057 fprintf (f, " memsz 0x");
1058 bfd_fprintf_vma (abfd, f, p->p_memsz);
1059 fprintf (f, " flags %c%c%c",
1060 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1061 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1062 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1063 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1064 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1065 fprintf (f, "\n");
1066 }
1067 }
1068
1069 s = bfd_get_section_by_name (abfd, ".dynamic");
1070 if (s != NULL)
1071 {
1072 int elfsec;
1073 unsigned long shlink;
1074 bfd_byte *extdyn, *extdynend;
1075 size_t extdynsize;
1076 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1077
1078 fprintf (f, _("\nDynamic Section:\n"));
1079
1080 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1081 goto error_return;
1082
1083 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1084 if (elfsec == -1)
1085 goto error_return;
1086 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1087
1088 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1089 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1090
1091 extdyn = dynbuf;
1092 extdynend = extdyn + s->size;
1093 for (; extdyn < extdynend; extdyn += extdynsize)
1094 {
1095 Elf_Internal_Dyn dyn;
1096 const char *name;
1097 char ab[20];
1098 bfd_boolean stringp;
1099
1100 (*swap_dyn_in) (abfd, extdyn, &dyn);
1101
1102 if (dyn.d_tag == DT_NULL)
1103 break;
1104
1105 stringp = FALSE;
1106 switch (dyn.d_tag)
1107 {
1108 default:
1109 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1110 name = ab;
1111 break;
1112
1113 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1114 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1115 case DT_PLTGOT: name = "PLTGOT"; break;
1116 case DT_HASH: name = "HASH"; break;
1117 case DT_STRTAB: name = "STRTAB"; break;
1118 case DT_SYMTAB: name = "SYMTAB"; break;
1119 case DT_RELA: name = "RELA"; break;
1120 case DT_RELASZ: name = "RELASZ"; break;
1121 case DT_RELAENT: name = "RELAENT"; break;
1122 case DT_STRSZ: name = "STRSZ"; break;
1123 case DT_SYMENT: name = "SYMENT"; break;
1124 case DT_INIT: name = "INIT"; break;
1125 case DT_FINI: name = "FINI"; break;
1126 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1127 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1128 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1129 case DT_REL: name = "REL"; break;
1130 case DT_RELSZ: name = "RELSZ"; break;
1131 case DT_RELENT: name = "RELENT"; break;
1132 case DT_PLTREL: name = "PLTREL"; break;
1133 case DT_DEBUG: name = "DEBUG"; break;
1134 case DT_TEXTREL: name = "TEXTREL"; break;
1135 case DT_JMPREL: name = "JMPREL"; break;
1136 case DT_BIND_NOW: name = "BIND_NOW"; break;
1137 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1138 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1139 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1140 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1141 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1142 case DT_FLAGS: name = "FLAGS"; break;
1143 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1144 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1145 case DT_CHECKSUM: name = "CHECKSUM"; break;
1146 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1147 case DT_MOVEENT: name = "MOVEENT"; break;
1148 case DT_MOVESZ: name = "MOVESZ"; break;
1149 case DT_FEATURE: name = "FEATURE"; break;
1150 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1151 case DT_SYMINSZ: name = "SYMINSZ"; break;
1152 case DT_SYMINENT: name = "SYMINENT"; break;
1153 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1154 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1155 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1156 case DT_PLTPAD: name = "PLTPAD"; break;
1157 case DT_MOVETAB: name = "MOVETAB"; break;
1158 case DT_SYMINFO: name = "SYMINFO"; break;
1159 case DT_RELACOUNT: name = "RELACOUNT"; break;
1160 case DT_RELCOUNT: name = "RELCOUNT"; break;
1161 case DT_FLAGS_1: name = "FLAGS_1"; break;
1162 case DT_VERSYM: name = "VERSYM"; break;
1163 case DT_VERDEF: name = "VERDEF"; break;
1164 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1165 case DT_VERNEED: name = "VERNEED"; break;
1166 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1167 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1168 case DT_USED: name = "USED"; break;
1169 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1170 }
1171
1172 fprintf (f, " %-11s ", name);
1173 if (! stringp)
1174 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1175 else
1176 {
1177 const char *string;
1178 unsigned int tagv = dyn.d_un.d_val;
1179
1180 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1181 if (string == NULL)
1182 goto error_return;
1183 fprintf (f, "%s", string);
1184 }
1185 fprintf (f, "\n");
1186 }
1187
1188 free (dynbuf);
1189 dynbuf = NULL;
1190 }
1191
1192 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1193 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1194 {
1195 if (! _bfd_elf_slurp_version_tables (abfd))
1196 return FALSE;
1197 }
1198
1199 if (elf_dynverdef (abfd) != 0)
1200 {
1201 Elf_Internal_Verdef *t;
1202
1203 fprintf (f, _("\nVersion definitions:\n"));
1204 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1205 {
1206 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1207 t->vd_flags, t->vd_hash, t->vd_nodename);
1208 if (t->vd_auxptr->vda_nextptr != NULL)
1209 {
1210 Elf_Internal_Verdaux *a;
1211
1212 fprintf (f, "\t");
1213 for (a = t->vd_auxptr->vda_nextptr;
1214 a != NULL;
1215 a = a->vda_nextptr)
1216 fprintf (f, "%s ", a->vda_nodename);
1217 fprintf (f, "\n");
1218 }
1219 }
1220 }
1221
1222 if (elf_dynverref (abfd) != 0)
1223 {
1224 Elf_Internal_Verneed *t;
1225
1226 fprintf (f, _("\nVersion References:\n"));
1227 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1228 {
1229 Elf_Internal_Vernaux *a;
1230
1231 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1232 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1233 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1234 a->vna_flags, a->vna_other, a->vna_nodename);
1235 }
1236 }
1237
1238 return TRUE;
1239
1240 error_return:
1241 if (dynbuf != NULL)
1242 free (dynbuf);
1243 return FALSE;
1244}
1245
1246/* Display ELF-specific fields of a symbol. */
1247
1248void
1249bfd_elf_print_symbol (bfd *abfd,
1250 void *filep,
1251 asymbol *symbol,
1252 bfd_print_symbol_type how)
1253{
1254 FILE *file = filep;
1255 switch (how)
1256 {
1257 case bfd_print_symbol_name:
1258 fprintf (file, "%s", symbol->name);
1259 break;
1260 case bfd_print_symbol_more:
1261 fprintf (file, "elf ");
1262 bfd_fprintf_vma (abfd, file, symbol->value);
1263 fprintf (file, " %lx", (long) symbol->flags);
1264 break;
1265 case bfd_print_symbol_all:
1266 {
1267 const char *section_name;
1268 const char *name = NULL;
1269 const struct elf_backend_data *bed;
1270 unsigned char st_other;
1271 bfd_vma val;
1272
1273 section_name = symbol->section ? symbol->section->name : "(*none*)";
1274
1275 bed = get_elf_backend_data (abfd);
1276 if (bed->elf_backend_print_symbol_all)
1277 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1278
1279 if (name == NULL)
1280 {
1281 name = symbol->name;
1282 bfd_print_symbol_vandf (abfd, file, symbol);
1283 }
1284
1285 fprintf (file, " %s\t", section_name);
1286 /* Print the "other" value for a symbol. For common symbols,
1287 we've already printed the size; now print the alignment.
1288 For other symbols, we have no specified alignment, and
1289 we've printed the address; now print the size. */
1290 if (bfd_is_com_section (symbol->section))
1291 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1292 else
1293 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1294 bfd_fprintf_vma (abfd, file, val);
1295
1296 /* If we have version information, print it. */
1297 if (elf_tdata (abfd)->dynversym_section != 0
1298 && (elf_tdata (abfd)->dynverdef_section != 0
1299 || elf_tdata (abfd)->dynverref_section != 0))
1300 {
1301 unsigned int vernum;
1302 const char *version_string;
1303
1304 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1305
1306 if (vernum == 0)
1307 version_string = "";
1308 else if (vernum == 1)
1309 version_string = "Base";
1310 else if (vernum <= elf_tdata (abfd)->cverdefs)
1311 version_string =
1312 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1313 else
1314 {
1315 Elf_Internal_Verneed *t;
1316
1317 version_string = "";
1318 for (t = elf_tdata (abfd)->verref;
1319 t != NULL;
1320 t = t->vn_nextref)
1321 {
1322 Elf_Internal_Vernaux *a;
1323
1324 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1325 {
1326 if (a->vna_other == vernum)
1327 {
1328 version_string = a->vna_nodename;
1329 break;
1330 }
1331 }
1332 }
1333 }
1334
1335 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1336 fprintf (file, " %-11s", version_string);
1337 else
1338 {
1339 int i;
1340
1341 fprintf (file, " (%s)", version_string);
1342 for (i = 10 - strlen (version_string); i > 0; --i)
1343 putc (' ', file);
1344 }
1345 }
1346
1347 /* If the st_other field is not zero, print it. */
1348 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1349
1350 switch (st_other)
1351 {
1352 case 0: break;
1353 case STV_INTERNAL: fprintf (file, " .internal"); break;
1354 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1355 case STV_PROTECTED: fprintf (file, " .protected"); break;
1356 default:
1357 /* Some other non-defined flags are also present, so print
1358 everything hex. */
1359 fprintf (file, " 0x%02x", (unsigned int) st_other);
1360 }
1361
1362 fprintf (file, " %s", name);
1363 }
1364 break;
1365 }
1366}
1367\f
1368/* Create an entry in an ELF linker hash table. */
1369
1370struct bfd_hash_entry *
1371_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1372 struct bfd_hash_table *table,
1373 const char *string)
1374{
1375 /* Allocate the structure if it has not already been allocated by a
1376 subclass. */
1377 if (entry == NULL)
1378 {
1379 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1380 if (entry == NULL)
1381 return entry;
1382 }
1383
1384 /* Call the allocation method of the superclass. */
1385 entry = _bfd_link_hash_newfunc (entry, table, string);
1386 if (entry != NULL)
1387 {
1388 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1389 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1390
1391 /* Set local fields. */
1392 ret->indx = -1;
1393 ret->dynindx = -1;
1394 ret->dynstr_index = 0;
1395 ret->elf_hash_value = 0;
1396 ret->weakdef = NULL;
1397 ret->verinfo.verdef = NULL;
1398 ret->vtable_entries_size = 0;
1399 ret->vtable_entries_used = NULL;
1400 ret->vtable_parent = NULL;
1401 ret->got = htab->init_refcount;
1402 ret->plt = htab->init_refcount;
1403 ret->size = 0;
1404 ret->type = STT_NOTYPE;
1405 ret->other = 0;
1406 /* Assume that we have been called by a non-ELF symbol reader.
1407 This flag is then reset by the code which reads an ELF input
1408 file. This ensures that a symbol created by a non-ELF symbol
1409 reader will have the flag set correctly. */
1410 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
1411 }
1412
1413 return entry;
1414}
1415
1416/* Copy data from an indirect symbol to its direct symbol, hiding the
1417 old indirect symbol. Also used for copying flags to a weakdef. */
1418
1419void
1420_bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1421 struct elf_link_hash_entry *dir,
1422 struct elf_link_hash_entry *ind)
1423{
1424 bfd_signed_vma tmp;
1425 bfd_signed_vma lowest_valid = bed->can_refcount;
1426
1427 /* Copy down any references that we may have already seen to the
1428 symbol which just became indirect. */
1429
1430 dir->elf_link_hash_flags
1431 |= ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
1432 | ELF_LINK_HASH_REF_REGULAR
1433 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1434 | ELF_LINK_NON_GOT_REF
1435 | ELF_LINK_HASH_NEEDS_PLT
1436 | ELF_LINK_POINTER_EQUALITY_NEEDED);
1437
1438 if (ind->root.type != bfd_link_hash_indirect)
1439 return;
1440
1441 /* Copy over the global and procedure linkage table refcount entries.
1442 These may have been already set up by a check_relocs routine. */
1443 tmp = dir->got.refcount;
1444 if (tmp < lowest_valid)
1445 {
1446 dir->got.refcount = ind->got.refcount;
1447 ind->got.refcount = tmp;
1448 }
1449 else
1450 BFD_ASSERT (ind->got.refcount < lowest_valid);
1451
1452 tmp = dir->plt.refcount;
1453 if (tmp < lowest_valid)
1454 {
1455 dir->plt.refcount = ind->plt.refcount;
1456 ind->plt.refcount = tmp;
1457 }
1458 else
1459 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1460
1461 if (dir->dynindx == -1)
1462 {
1463 dir->dynindx = ind->dynindx;
1464 dir->dynstr_index = ind->dynstr_index;
1465 ind->dynindx = -1;
1466 ind->dynstr_index = 0;
1467 }
1468 else
1469 BFD_ASSERT (ind->dynindx == -1);
1470}
1471
1472void
1473_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1474 struct elf_link_hash_entry *h,
1475 bfd_boolean force_local)
1476{
1477 h->plt = elf_hash_table (info)->init_offset;
1478 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1479 if (force_local)
1480 {
1481 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1482 if (h->dynindx != -1)
1483 {
1484 h->dynindx = -1;
1485 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1486 h->dynstr_index);
1487 }
1488 }
1489}
1490
1491/* Initialize an ELF linker hash table. */
1492
1493bfd_boolean
1494_bfd_elf_link_hash_table_init
1495 (struct elf_link_hash_table *table,
1496 bfd *abfd,
1497 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1498 struct bfd_hash_table *,
1499 const char *))
1500{
1501 bfd_boolean ret;
1502
1503 table->dynamic_sections_created = FALSE;
1504 table->dynobj = NULL;
1505 /* Make sure can_refcount is extended to the width and signedness of
1506 init_refcount before we subtract one from it. */
1507 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1508 table->init_refcount.refcount -= 1;
1509 table->init_offset.offset = -(bfd_vma) 1;
1510 /* The first dynamic symbol is a dummy. */
1511 table->dynsymcount = 1;
1512 table->dynstr = NULL;
1513 table->bucketcount = 0;
1514 table->needed = NULL;
1515 table->hgot = NULL;
1516 table->merge_info = NULL;
1517 memset (&table->stab_info, 0, sizeof (table->stab_info));
1518 memset (&table->eh_info, 0, sizeof (table->eh_info));
1519 table->dynlocal = NULL;
1520 table->runpath = NULL;
1521 table->tls_sec = NULL;
1522 table->tls_size = 0;
1523 table->loaded = NULL;
1524
1525 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1526 table->root.type = bfd_link_elf_hash_table;
1527
1528 return ret;
1529}
1530
1531/* Create an ELF linker hash table. */
1532
1533struct bfd_link_hash_table *
1534_bfd_elf_link_hash_table_create (bfd *abfd)
1535{
1536 struct elf_link_hash_table *ret;
1537 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1538
1539 ret = bfd_malloc (amt);
1540 if (ret == NULL)
1541 return NULL;
1542
1543 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1544 {
1545 free (ret);
1546 return NULL;
1547 }
1548
1549 return &ret->root;
1550}
1551
1552/* This is a hook for the ELF emulation code in the generic linker to
1553 tell the backend linker what file name to use for the DT_NEEDED
1554 entry for a dynamic object. */
1555
1556void
1557bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1558{
1559 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1560 && bfd_get_format (abfd) == bfd_object)
1561 elf_dt_name (abfd) = name;
1562}
1563
1564int
1565bfd_elf_get_dyn_lib_class (bfd *abfd)
1566{
1567 int lib_class;
1568 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1569 && bfd_get_format (abfd) == bfd_object)
1570 lib_class = elf_dyn_lib_class (abfd);
1571 else
1572 lib_class = 0;
1573 return lib_class;
1574}
1575
1576void
1577bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1578{
1579 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1580 && bfd_get_format (abfd) == bfd_object)
1581 elf_dyn_lib_class (abfd) = lib_class;
1582}
1583
1584/* Get the list of DT_NEEDED entries for a link. This is a hook for
1585 the linker ELF emulation code. */
1586
1587struct bfd_link_needed_list *
1588bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1589 struct bfd_link_info *info)
1590{
1591 if (! is_elf_hash_table (info->hash))
1592 return NULL;
1593 return elf_hash_table (info)->needed;
1594}
1595
1596/* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1597 hook for the linker ELF emulation code. */
1598
1599struct bfd_link_needed_list *
1600bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1601 struct bfd_link_info *info)
1602{
1603 if (! is_elf_hash_table (info->hash))
1604 return NULL;
1605 return elf_hash_table (info)->runpath;
1606}
1607
1608/* Get the name actually used for a dynamic object for a link. This
1609 is the SONAME entry if there is one. Otherwise, it is the string
1610 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1611
1612const char *
1613bfd_elf_get_dt_soname (bfd *abfd)
1614{
1615 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1616 && bfd_get_format (abfd) == bfd_object)
1617 return elf_dt_name (abfd);
1618 return NULL;
1619}
1620
1621/* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1622 the ELF linker emulation code. */
1623
1624bfd_boolean
1625bfd_elf_get_bfd_needed_list (bfd *abfd,
1626 struct bfd_link_needed_list **pneeded)
1627{
1628 asection *s;
1629 bfd_byte *dynbuf = NULL;
1630 int elfsec;
1631 unsigned long shlink;
1632 bfd_byte *extdyn, *extdynend;
1633 size_t extdynsize;
1634 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1635
1636 *pneeded = NULL;
1637
1638 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1639 || bfd_get_format (abfd) != bfd_object)
1640 return TRUE;
1641
1642 s = bfd_get_section_by_name (abfd, ".dynamic");
1643 if (s == NULL || s->size == 0)
1644 return TRUE;
1645
1646 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1647 goto error_return;
1648
1649 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1650 if (elfsec == -1)
1651 goto error_return;
1652
1653 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1654
1655 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1656 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1657
1658 extdyn = dynbuf;
1659 extdynend = extdyn + s->size;
1660 for (; extdyn < extdynend; extdyn += extdynsize)
1661 {
1662 Elf_Internal_Dyn dyn;
1663
1664 (*swap_dyn_in) (abfd, extdyn, &dyn);
1665
1666 if (dyn.d_tag == DT_NULL)
1667 break;
1668
1669 if (dyn.d_tag == DT_NEEDED)
1670 {
1671 const char *string;
1672 struct bfd_link_needed_list *l;
1673 unsigned int tagv = dyn.d_un.d_val;
1674 bfd_size_type amt;
1675
1676 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1677 if (string == NULL)
1678 goto error_return;
1679
1680 amt = sizeof *l;
1681 l = bfd_alloc (abfd, amt);
1682 if (l == NULL)
1683 goto error_return;
1684
1685 l->by = abfd;
1686 l->name = string;
1687 l->next = *pneeded;
1688 *pneeded = l;
1689 }
1690 }
1691
1692 free (dynbuf);
1693
1694 return TRUE;
1695
1696 error_return:
1697 if (dynbuf != NULL)
1698 free (dynbuf);
1699 return FALSE;
1700}
1701\f
1702/* Allocate an ELF string table--force the first byte to be zero. */
1703
1704struct bfd_strtab_hash *
1705_bfd_elf_stringtab_init (void)
1706{
1707 struct bfd_strtab_hash *ret;
1708
1709 ret = _bfd_stringtab_init ();
1710 if (ret != NULL)
1711 {
1712 bfd_size_type loc;
1713
1714 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1715 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1716 if (loc == (bfd_size_type) -1)
1717 {
1718 _bfd_stringtab_free (ret);
1719 ret = NULL;
1720 }
1721 }
1722 return ret;
1723}
1724\f
1725/* ELF .o/exec file reading */
1726
1727/* Create a new bfd section from an ELF section header. */
1728
1729bfd_boolean
1730bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1731{
1732 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1733 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1735 const char *name;
1736
1737 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1738
1739 switch (hdr->sh_type)
1740 {
1741 case SHT_NULL:
1742 /* Inactive section. Throw it away. */
1743 return TRUE;
1744
1745 case SHT_PROGBITS: /* Normal section with contents. */
1746 case SHT_NOBITS: /* .bss section. */
1747 case SHT_HASH: /* .hash section. */
1748 case SHT_NOTE: /* .note section. */
1749 case SHT_INIT_ARRAY: /* .init_array section. */
1750 case SHT_FINI_ARRAY: /* .fini_array section. */
1751 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1752 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1753
1754 case SHT_DYNAMIC: /* Dynamic linking information. */
1755 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1756 return FALSE;
1757 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1758 {
1759 Elf_Internal_Shdr *dynsymhdr;
1760
1761 /* The shared libraries distributed with hpux11 have a bogus
1762 sh_link field for the ".dynamic" section. Find the
1763 string table for the ".dynsym" section instead. */
1764 if (elf_dynsymtab (abfd) != 0)
1765 {
1766 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1767 hdr->sh_link = dynsymhdr->sh_link;
1768 }
1769 else
1770 {
1771 unsigned int i, num_sec;
1772
1773 num_sec = elf_numsections (abfd);
1774 for (i = 1; i < num_sec; i++)
1775 {
1776 dynsymhdr = elf_elfsections (abfd)[i];
1777 if (dynsymhdr->sh_type == SHT_DYNSYM)
1778 {
1779 hdr->sh_link = dynsymhdr->sh_link;
1780 break;
1781 }
1782 }
1783 }
1784 }
1785 break;
1786
1787 case SHT_SYMTAB: /* A symbol table */
1788 if (elf_onesymtab (abfd) == shindex)
1789 return TRUE;
1790
1791 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1792 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1793 elf_onesymtab (abfd) = shindex;
1794 elf_tdata (abfd)->symtab_hdr = *hdr;
1795 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1796 abfd->flags |= HAS_SYMS;
1797
1798 /* Sometimes a shared object will map in the symbol table. If
1799 SHF_ALLOC is set, and this is a shared object, then we also
1800 treat this section as a BFD section. We can not base the
1801 decision purely on SHF_ALLOC, because that flag is sometimes
1802 set in a relocatable object file, which would confuse the
1803 linker. */
1804 if ((hdr->sh_flags & SHF_ALLOC) != 0
1805 && (abfd->flags & DYNAMIC) != 0
1806 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1807 return FALSE;
1808
1809 return TRUE;
1810
1811 case SHT_DYNSYM: /* A dynamic symbol table */
1812 if (elf_dynsymtab (abfd) == shindex)
1813 return TRUE;
1814
1815 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1816 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1817 elf_dynsymtab (abfd) = shindex;
1818 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1819 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1820 abfd->flags |= HAS_SYMS;
1821
1822 /* Besides being a symbol table, we also treat this as a regular
1823 section, so that objcopy can handle it. */
1824 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1825
1826 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1827 if (elf_symtab_shndx (abfd) == shindex)
1828 return TRUE;
1829
1830 /* Get the associated symbol table. */
1831 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1832 || hdr->sh_link != elf_onesymtab (abfd))
1833 return FALSE;
1834
1835 elf_symtab_shndx (abfd) = shindex;
1836 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1837 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1838 return TRUE;
1839
1840 case SHT_STRTAB: /* A string table */
1841 if (hdr->bfd_section != NULL)
1842 return TRUE;
1843 if (ehdr->e_shstrndx == shindex)
1844 {
1845 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1846 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1847 return TRUE;
1848 }
1849 {
1850 unsigned int i, num_sec;
1851
1852 num_sec = elf_numsections (abfd);
1853 for (i = 1; i < num_sec; i++)
1854 {
1855 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1856 if (hdr2->sh_link == shindex)
1857 {
1858 if (! bfd_section_from_shdr (abfd, i))
1859 return FALSE;
1860 if (elf_onesymtab (abfd) == i)
1861 {
1862 elf_tdata (abfd)->strtab_hdr = *hdr;
1863 elf_elfsections (abfd)[shindex] =
1864 &elf_tdata (abfd)->strtab_hdr;
1865 return TRUE;
1866 }
1867 if (elf_dynsymtab (abfd) == i)
1868 {
1869 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1870 elf_elfsections (abfd)[shindex] = hdr =
1871 &elf_tdata (abfd)->dynstrtab_hdr;
1872 /* We also treat this as a regular section, so
1873 that objcopy can handle it. */
1874 break;
1875 }
1876#if 0 /* Not handling other string tables specially right now. */
1877 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1878 /* We have a strtab for some random other section. */
1879 newsect = (asection *) hdr2->bfd_section;
1880 if (!newsect)
1881 break;
1882 hdr->bfd_section = newsect;
1883 hdr2 = &elf_section_data (newsect)->str_hdr;
1884 *hdr2 = *hdr;
1885 elf_elfsections (abfd)[shindex] = hdr2;
1886#endif
1887 }
1888 }
1889 }
1890
1891 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1892
1893 case SHT_REL:
1894 case SHT_RELA:
1895 /* *These* do a lot of work -- but build no sections! */
1896 {
1897 asection *target_sect;
1898 Elf_Internal_Shdr *hdr2;
1899 unsigned int num_sec = elf_numsections (abfd);
1900
1901 /* Check for a bogus link to avoid crashing. */
1902 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1903 || hdr->sh_link >= num_sec)
1904 {
1905 ((*_bfd_error_handler)
1906 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1907 abfd, hdr->sh_link, name, shindex));
1908 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1909 }
1910
1911 /* For some incomprehensible reason Oracle distributes
1912 libraries for Solaris in which some of the objects have
1913 bogus sh_link fields. It would be nice if we could just
1914 reject them, but, unfortunately, some people need to use
1915 them. We scan through the section headers; if we find only
1916 one suitable symbol table, we clobber the sh_link to point
1917 to it. I hope this doesn't break anything. */
1918 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1919 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1920 {
1921 unsigned int scan;
1922 int found;
1923
1924 found = 0;
1925 for (scan = 1; scan < num_sec; scan++)
1926 {
1927 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1928 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1929 {
1930 if (found != 0)
1931 {
1932 found = 0;
1933 break;
1934 }
1935 found = scan;
1936 }
1937 }
1938 if (found != 0)
1939 hdr->sh_link = found;
1940 }
1941
1942 /* Get the symbol table. */
1943 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1944 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1945 return FALSE;
1946
1947 /* If this reloc section does not use the main symbol table we
1948 don't treat it as a reloc section. BFD can't adequately
1949 represent such a section, so at least for now, we don't
1950 try. We just present it as a normal section. We also
1951 can't use it as a reloc section if it points to the null
1952 section. */
1953 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1954 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1955
1956 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1957 return FALSE;
1958 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1959 if (target_sect == NULL)
1960 return FALSE;
1961
1962 if ((target_sect->flags & SEC_RELOC) == 0
1963 || target_sect->reloc_count == 0)
1964 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1965 else
1966 {
1967 bfd_size_type amt;
1968 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1969 amt = sizeof (*hdr2);
1970 hdr2 = bfd_alloc (abfd, amt);
1971 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1972 }
1973 *hdr2 = *hdr;
1974 elf_elfsections (abfd)[shindex] = hdr2;
1975 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1976 target_sect->flags |= SEC_RELOC;
1977 target_sect->relocation = NULL;
1978 target_sect->rel_filepos = hdr->sh_offset;
1979 /* In the section to which the relocations apply, mark whether
1980 its relocations are of the REL or RELA variety. */
1981 if (hdr->sh_size != 0)
1982 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1983 abfd->flags |= HAS_RELOC;
1984 return TRUE;
1985 }
1986 break;
1987
1988 case SHT_GNU_verdef:
1989 elf_dynverdef (abfd) = shindex;
1990 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1991 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1992 break;
1993
1994 case SHT_GNU_versym:
1995 elf_dynversym (abfd) = shindex;
1996 elf_tdata (abfd)->dynversym_hdr = *hdr;
1997 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1998 break;
1999
2000 case SHT_GNU_verneed:
2001 elf_dynverref (abfd) = shindex;
2002 elf_tdata (abfd)->dynverref_hdr = *hdr;
2003 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
2004 break;
2005
2006 case SHT_SHLIB:
2007 return TRUE;
2008
2009 case SHT_GROUP:
2010 /* We need a BFD section for objcopy and relocatable linking,
2011 and it's handy to have the signature available as the section
2012 name. */
2013 name = group_signature (abfd, hdr);
2014 if (name == NULL)
2015 return FALSE;
2016 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
2017 return FALSE;
2018 if (hdr->contents != NULL)
2019 {
2020 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2021 unsigned int n_elt = hdr->sh_size / 4;
2022 asection *s;
2023
2024 if (idx->flags & GRP_COMDAT)
2025 hdr->bfd_section->flags
2026 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2027
2028 /* We try to keep the same section order as it comes in. */
2029 idx += n_elt;
2030 while (--n_elt != 0)
2031 if ((s = (--idx)->shdr->bfd_section) != NULL
2032 && elf_next_in_group (s) != NULL)
2033 {
2034 elf_next_in_group (hdr->bfd_section) = s;
2035 break;
2036 }
2037 }
2038 break;
2039
2040 default:
2041 /* Check for any processor-specific section types. */
2042 {
2043 if (bed->elf_backend_section_from_shdr)
2044 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
2045 }
2046 break;
2047 }
2048
2049 return TRUE;
2050}
2051
2052/* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2053 Return SEC for sections that have no elf section, and NULL on error. */
2054
2055asection *
2056bfd_section_from_r_symndx (bfd *abfd,
2057 struct sym_sec_cache *cache,
2058 asection *sec,
2059 unsigned long r_symndx)
2060{
2061 Elf_Internal_Shdr *symtab_hdr;
2062 unsigned char esym[sizeof (Elf64_External_Sym)];
2063 Elf_External_Sym_Shndx eshndx;
2064 Elf_Internal_Sym isym;
2065 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2066
2067 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2068 return cache->sec[ent];
2069
2070 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2071 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2072 &isym, esym, &eshndx) == NULL)
2073 return NULL;
2074
2075 if (cache->abfd != abfd)
2076 {
2077 memset (cache->indx, -1, sizeof (cache->indx));
2078 cache->abfd = abfd;
2079 }
2080 cache->indx[ent] = r_symndx;
2081 cache->sec[ent] = sec;
2082 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2083 || isym.st_shndx > SHN_HIRESERVE)
2084 {
2085 asection *s;
2086 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2087 if (s != NULL)
2088 cache->sec[ent] = s;
2089 }
2090 return cache->sec[ent];
2091}
2092
2093/* Given an ELF section number, retrieve the corresponding BFD
2094 section. */
2095
2096asection *
2097bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2098{
2099 if (index >= elf_numsections (abfd))
2100 return NULL;
2101 return elf_elfsections (abfd)[index]->bfd_section;
2102}
2103
2104static struct bfd_elf_special_section const special_sections[] =
2105{
2106 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2107 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2108 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2109 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2110 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2111 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2112 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2113 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2114 { ".line", 5, 0, SHT_PROGBITS, 0 },
2115 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2116 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2117 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2118 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2119 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2120 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2121 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2122 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2123 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2124 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2125 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2126 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2127 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2128 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2129 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2130 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2131 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2132 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2133 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2134 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2135 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2136 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2137 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2138 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2139 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2140 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2141 { ".note", 5, -1, SHT_NOTE, 0 },
2142 { ".rela", 5, -1, SHT_RELA, 0 },
2143 { ".rel", 4, -1, SHT_REL, 0 },
2144 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2145 { NULL, 0, 0, 0, 0 }
2146};
2147
2148static const struct bfd_elf_special_section *
2149get_special_section (const char *name,
2150 const struct bfd_elf_special_section *special_sections,
2151 unsigned int rela)
2152{
2153 int i;
2154 int len = strlen (name);
2155
2156 for (i = 0; special_sections[i].prefix != NULL; i++)
2157 {
2158 int suffix_len;
2159 int prefix_len = special_sections[i].prefix_length;
2160
2161 if (len < prefix_len)
2162 continue;
2163 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2164 continue;
2165
2166 suffix_len = special_sections[i].suffix_length;
2167 if (suffix_len <= 0)
2168 {
2169 if (name[prefix_len] != 0)
2170 {
2171 if (suffix_len == 0)
2172 continue;
2173 if (name[prefix_len] != '.'
2174 && (suffix_len == -2
2175 || (rela && special_sections[i].type == SHT_REL)))
2176 continue;
2177 }
2178 }
2179 else
2180 {
2181 if (len < prefix_len + suffix_len)
2182 continue;
2183 if (memcmp (name + len - suffix_len,
2184 special_sections[i].prefix + prefix_len,
2185 suffix_len) != 0)
2186 continue;
2187 }
2188 return &special_sections[i];
2189 }
2190
2191 return NULL;
2192}
2193
2194const struct bfd_elf_special_section *
2195_bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2196{
2197 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2198 const struct bfd_elf_special_section *ssect = NULL;
2199
2200 /* See if this is one of the special sections. */
2201 if (name)
2202 {
2203 unsigned int rela = bed->default_use_rela_p;
2204
2205 if (bed->special_sections)
2206 ssect = get_special_section (name, bed->special_sections, rela);
2207
2208 if (! ssect)
2209 ssect = get_special_section (name, special_sections, rela);
2210 }
2211
2212 return ssect;
2213}
2214
2215bfd_boolean
2216_bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2217{
2218 struct bfd_elf_section_data *sdata;
2219 const struct bfd_elf_special_section *ssect;
2220
2221 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2222 if (sdata == NULL)
2223 {
2224 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2225 if (sdata == NULL)
2226 return FALSE;
2227 sec->used_by_bfd = sdata;
2228 }
2229
2230 elf_section_type (sec) = SHT_NULL;
2231 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2232 if (ssect != NULL)
2233 {
2234 elf_section_type (sec) = ssect->type;
2235 elf_section_flags (sec) = ssect->attr;
2236 }
2237
2238 /* Indicate whether or not this section should use RELA relocations. */
2239 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2240
2241 return TRUE;
2242}
2243
2244/* Create a new bfd section from an ELF program header.
2245
2246 Since program segments have no names, we generate a synthetic name
2247 of the form segment<NUM>, where NUM is generally the index in the
2248 program header table. For segments that are split (see below) we
2249 generate the names segment<NUM>a and segment<NUM>b.
2250
2251 Note that some program segments may have a file size that is different than
2252 (less than) the memory size. All this means is that at execution the
2253 system must allocate the amount of memory specified by the memory size,
2254 but only initialize it with the first "file size" bytes read from the
2255 file. This would occur for example, with program segments consisting
2256 of combined data+bss.
2257
2258 To handle the above situation, this routine generates TWO bfd sections
2259 for the single program segment. The first has the length specified by
2260 the file size of the segment, and the second has the length specified
2261 by the difference between the two sizes. In effect, the segment is split
2262 into it's initialized and uninitialized parts.
2263
2264 */
2265
2266bfd_boolean
2267_bfd_elf_make_section_from_phdr (bfd *abfd,
2268 Elf_Internal_Phdr *hdr,
2269 int index,
2270 const char *typename)
2271{
2272 asection *newsect;
2273 char *name;
2274 char namebuf[64];
2275 size_t len;
2276 int split;
2277
2278 split = ((hdr->p_memsz > 0)
2279 && (hdr->p_filesz > 0)
2280 && (hdr->p_memsz > hdr->p_filesz));
2281 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2282 len = strlen (namebuf) + 1;
2283 name = bfd_alloc (abfd, len);
2284 if (!name)
2285 return FALSE;
2286 memcpy (name, namebuf, len);
2287 newsect = bfd_make_section (abfd, name);
2288 if (newsect == NULL)
2289 return FALSE;
2290 newsect->vma = hdr->p_vaddr;
2291 newsect->lma = hdr->p_paddr;
2292 newsect->size = hdr->p_filesz;
2293 newsect->filepos = hdr->p_offset;
2294 newsect->flags |= SEC_HAS_CONTENTS;
2295 newsect->alignment_power = bfd_log2 (hdr->p_align);
2296 if (hdr->p_type == PT_LOAD)
2297 {
2298 newsect->flags |= SEC_ALLOC;
2299 newsect->flags |= SEC_LOAD;
2300 if (hdr->p_flags & PF_X)
2301 {
2302 /* FIXME: all we known is that it has execute PERMISSION,
2303 may be data. */
2304 newsect->flags |= SEC_CODE;
2305 }
2306 }
2307 if (!(hdr->p_flags & PF_W))
2308 {
2309 newsect->flags |= SEC_READONLY;
2310 }
2311
2312 if (split)
2313 {
2314 sprintf (namebuf, "%s%db", typename, index);
2315 len = strlen (namebuf) + 1;
2316 name = bfd_alloc (abfd, len);
2317 if (!name)
2318 return FALSE;
2319 memcpy (name, namebuf, len);
2320 newsect = bfd_make_section (abfd, name);
2321 if (newsect == NULL)
2322 return FALSE;
2323 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2324 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2325 newsect->size = hdr->p_memsz - hdr->p_filesz;
2326 if (hdr->p_type == PT_LOAD)
2327 {
2328 newsect->flags |= SEC_ALLOC;
2329 if (hdr->p_flags & PF_X)
2330 newsect->flags |= SEC_CODE;
2331 }
2332 if (!(hdr->p_flags & PF_W))
2333 newsect->flags |= SEC_READONLY;
2334 }
2335
2336 return TRUE;
2337}
2338
2339bfd_boolean
2340bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2341{
2342 const struct elf_backend_data *bed;
2343
2344 switch (hdr->p_type)
2345 {
2346 case PT_NULL:
2347 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2348
2349 case PT_LOAD:
2350 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2351
2352 case PT_DYNAMIC:
2353 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2354
2355 case PT_INTERP:
2356 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2357
2358 case PT_NOTE:
2359 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2360 return FALSE;
2361 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2362 return FALSE;
2363 return TRUE;
2364
2365 case PT_SHLIB:
2366 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2367
2368 case PT_PHDR:
2369 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2370
2371 case PT_GNU_EH_FRAME:
2372 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2373 "eh_frame_hdr");
2374
2375 case PT_GNU_STACK:
2376 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2377
2378 case PT_GNU_RELRO:
2379 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2380
2381 default:
2382 /* Check for any processor-specific program segment types.
2383 If no handler for them, default to making "segment" sections. */
2384 bed = get_elf_backend_data (abfd);
2385 if (bed->elf_backend_section_from_phdr)
2386 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2387 else
2388 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2389 }
2390}
2391
2392/* Initialize REL_HDR, the section-header for new section, containing
2393 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2394 relocations; otherwise, we use REL relocations. */
2395
2396bfd_boolean
2397_bfd_elf_init_reloc_shdr (bfd *abfd,
2398 Elf_Internal_Shdr *rel_hdr,
2399 asection *asect,
2400 bfd_boolean use_rela_p)
2401{
2402 char *name;
2403 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2404 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2405
2406 name = bfd_alloc (abfd, amt);
2407 if (name == NULL)
2408 return FALSE;
2409 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2410 rel_hdr->sh_name =
2411 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2412 FALSE);
2413 if (rel_hdr->sh_name == (unsigned int) -1)
2414 return FALSE;
2415 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2416 rel_hdr->sh_entsize = (use_rela_p
2417 ? bed->s->sizeof_rela
2418 : bed->s->sizeof_rel);
2419 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2420 rel_hdr->sh_flags = 0;
2421 rel_hdr->sh_addr = 0;
2422 rel_hdr->sh_size = 0;
2423 rel_hdr->sh_offset = 0;
2424
2425 return TRUE;
2426}
2427
2428/* Set up an ELF internal section header for a section. */
2429
2430static void
2431elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2432{
2433 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2434 bfd_boolean *failedptr = failedptrarg;
2435 Elf_Internal_Shdr *this_hdr;
2436
2437 if (*failedptr)
2438 {
2439 /* We already failed; just get out of the bfd_map_over_sections
2440 loop. */
2441 return;
2442 }
2443
2444 this_hdr = &elf_section_data (asect)->this_hdr;
2445
2446 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2447 asect->name, FALSE);
2448 if (this_hdr->sh_name == (unsigned int) -1)
2449 {
2450 *failedptr = TRUE;
2451 return;
2452 }
2453
2454 this_hdr->sh_flags = 0;
2455
2456 if ((asect->flags & SEC_ALLOC) != 0
2457 || asect->user_set_vma)
2458 this_hdr->sh_addr = asect->vma;
2459 else
2460 this_hdr->sh_addr = 0;
2461
2462 this_hdr->sh_offset = 0;
2463 this_hdr->sh_size = asect->size;
2464 this_hdr->sh_link = 0;
2465 this_hdr->sh_addralign = 1 << asect->alignment_power;
2466 /* The sh_entsize and sh_info fields may have been set already by
2467 copy_private_section_data. */
2468
2469 this_hdr->bfd_section = asect;
2470 this_hdr->contents = NULL;
2471
2472 /* If the section type is unspecified, we set it based on
2473 asect->flags. */
2474 if (this_hdr->sh_type == SHT_NULL)
2475 {
2476 if ((asect->flags & SEC_GROUP) != 0)
2477 {
2478 /* We also need to mark SHF_GROUP here for relocatable
2479 link. */
2480 struct bfd_link_order *l;
2481 asection *elt;
2482
2483 for (l = asect->link_order_head; l != NULL; l = l->next)
2484 if (l->type == bfd_indirect_link_order
2485 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2486 do
2487 {
2488 /* The name is not important. Anything will do. */
2489 elf_group_name (elt->output_section) = "G";
2490 elf_section_flags (elt->output_section) |= SHF_GROUP;
2491
2492 elt = elf_next_in_group (elt);
2493 /* During a relocatable link, the lists are
2494 circular. */
2495 }
2496 while (elt != elf_next_in_group (l->u.indirect.section));
2497
2498 this_hdr->sh_type = SHT_GROUP;
2499 }
2500 else if ((asect->flags & SEC_ALLOC) != 0
2501 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2502 || (asect->flags & SEC_NEVER_LOAD) != 0))
2503 this_hdr->sh_type = SHT_NOBITS;
2504 else
2505 this_hdr->sh_type = SHT_PROGBITS;
2506 }
2507
2508 switch (this_hdr->sh_type)
2509 {
2510 default:
2511 break;
2512
2513 case SHT_STRTAB:
2514 case SHT_INIT_ARRAY:
2515 case SHT_FINI_ARRAY:
2516 case SHT_PREINIT_ARRAY:
2517 case SHT_NOTE:
2518 case SHT_NOBITS:
2519 case SHT_PROGBITS:
2520 break;
2521
2522 case SHT_HASH:
2523 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2524 break;
2525
2526 case SHT_DYNSYM:
2527 this_hdr->sh_entsize = bed->s->sizeof_sym;
2528 break;
2529
2530 case SHT_DYNAMIC:
2531 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2532 break;
2533
2534 case SHT_RELA:
2535 if (get_elf_backend_data (abfd)->may_use_rela_p)
2536 this_hdr->sh_entsize = bed->s->sizeof_rela;
2537 break;
2538
2539 case SHT_REL:
2540 if (get_elf_backend_data (abfd)->may_use_rel_p)
2541 this_hdr->sh_entsize = bed->s->sizeof_rel;
2542 break;
2543
2544 case SHT_GNU_versym:
2545 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2546 break;
2547
2548 case SHT_GNU_verdef:
2549 this_hdr->sh_entsize = 0;
2550 /* objcopy or strip will copy over sh_info, but may not set
2551 cverdefs. The linker will set cverdefs, but sh_info will be
2552 zero. */
2553 if (this_hdr->sh_info == 0)
2554 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2555 else
2556 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2557 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2558 break;
2559
2560 case SHT_GNU_verneed:
2561 this_hdr->sh_entsize = 0;
2562 /* objcopy or strip will copy over sh_info, but may not set
2563 cverrefs. The linker will set cverrefs, but sh_info will be
2564 zero. */
2565 if (this_hdr->sh_info == 0)
2566 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2567 else
2568 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2569 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2570 break;
2571
2572 case SHT_GROUP:
2573 this_hdr->sh_entsize = 4;
2574 break;
2575 }
2576
2577 if ((asect->flags & SEC_ALLOC) != 0)
2578 this_hdr->sh_flags |= SHF_ALLOC;
2579 if ((asect->flags & SEC_READONLY) == 0)
2580 this_hdr->sh_flags |= SHF_WRITE;
2581 if ((asect->flags & SEC_CODE) != 0)
2582 this_hdr->sh_flags |= SHF_EXECINSTR;
2583 if ((asect->flags & SEC_MERGE) != 0)
2584 {
2585 this_hdr->sh_flags |= SHF_MERGE;
2586 this_hdr->sh_entsize = asect->entsize;
2587 if ((asect->flags & SEC_STRINGS) != 0)
2588 this_hdr->sh_flags |= SHF_STRINGS;
2589 }
2590 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2591 this_hdr->sh_flags |= SHF_GROUP;
2592 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2593 {
2594 this_hdr->sh_flags |= SHF_TLS;
2595 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2596 {
2597 struct bfd_link_order *o;
2598
2599 this_hdr->sh_size = 0;
2600 for (o = asect->link_order_head; o != NULL; o = o->next)
2601 if (this_hdr->sh_size < o->offset + o->size)
2602 this_hdr->sh_size = o->offset + o->size;
2603 if (this_hdr->sh_size)
2604 this_hdr->sh_type = SHT_NOBITS;
2605 }
2606 }
2607
2608 /* Check for processor-specific section types. */
2609 if (bed->elf_backend_fake_sections
2610 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2611 *failedptr = TRUE;
2612
2613 /* If the section has relocs, set up a section header for the
2614 SHT_REL[A] section. If two relocation sections are required for
2615 this section, it is up to the processor-specific back-end to
2616 create the other. */
2617 if ((asect->flags & SEC_RELOC) != 0
2618 && !_bfd_elf_init_reloc_shdr (abfd,
2619 &elf_section_data (asect)->rel_hdr,
2620 asect,
2621 asect->use_rela_p))
2622 *failedptr = TRUE;
2623}
2624
2625/* Fill in the contents of a SHT_GROUP section. */
2626
2627void
2628bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2629{
2630 bfd_boolean *failedptr = failedptrarg;
2631 unsigned long symindx;
2632 asection *elt, *first;
2633 unsigned char *loc;
2634 struct bfd_link_order *l;
2635 bfd_boolean gas;
2636
2637 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2638 || *failedptr)
2639 return;
2640
2641 symindx = 0;
2642 if (elf_group_id (sec) != NULL)
2643 symindx = elf_group_id (sec)->udata.i;
2644
2645 if (symindx == 0)
2646 {
2647 /* If called from the assembler, swap_out_syms will have set up
2648 elf_section_syms; If called for "ld -r", use target_index. */
2649 if (elf_section_syms (abfd) != NULL)
2650 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2651 else
2652 symindx = sec->target_index;
2653 }
2654 elf_section_data (sec)->this_hdr.sh_info = symindx;
2655
2656 /* The contents won't be allocated for "ld -r" or objcopy. */
2657 gas = TRUE;
2658 if (sec->contents == NULL)
2659 {
2660 gas = FALSE;
2661 sec->contents = bfd_alloc (abfd, sec->size);
2662
2663 /* Arrange for the section to be written out. */
2664 elf_section_data (sec)->this_hdr.contents = sec->contents;
2665 if (sec->contents == NULL)
2666 {
2667 *failedptr = TRUE;
2668 return;
2669 }
2670 }
2671
2672 loc = sec->contents + sec->size;
2673
2674 /* Get the pointer to the first section in the group that gas
2675 squirreled away here. objcopy arranges for this to be set to the
2676 start of the input section group. */
2677 first = elt = elf_next_in_group (sec);
2678
2679 /* First element is a flag word. Rest of section is elf section
2680 indices for all the sections of the group. Write them backwards
2681 just to keep the group in the same order as given in .section
2682 directives, not that it matters. */
2683 while (elt != NULL)
2684 {
2685 asection *s;
2686 unsigned int idx;
2687
2688 loc -= 4;
2689 s = elt;
2690 if (!gas)
2691 s = s->output_section;
2692 idx = 0;
2693 if (s != NULL)
2694 idx = elf_section_data (s)->this_idx;
2695 H_PUT_32 (abfd, idx, loc);
2696 elt = elf_next_in_group (elt);
2697 if (elt == first)
2698 break;
2699 }
2700
2701 /* If this is a relocatable link, then the above did nothing because
2702 SEC is the output section. Look through the input sections
2703 instead. */
2704 for (l = sec->link_order_head; l != NULL; l = l->next)
2705 if (l->type == bfd_indirect_link_order
2706 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2707 do
2708 {
2709 loc -= 4;
2710 H_PUT_32 (abfd,
2711 elf_section_data (elt->output_section)->this_idx, loc);
2712 elt = elf_next_in_group (elt);
2713 /* During a relocatable link, the lists are circular. */
2714 }
2715 while (elt != elf_next_in_group (l->u.indirect.section));
2716
2717 if ((loc -= 4) != sec->contents)
2718 abort ();
2719
2720 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2721}
2722
2723/* Assign all ELF section numbers. The dummy first section is handled here
2724 too. The link/info pointers for the standard section types are filled
2725 in here too, while we're at it. */
2726
2727static bfd_boolean
2728assign_section_numbers (bfd *abfd)
2729{
2730 struct elf_obj_tdata *t = elf_tdata (abfd);
2731 asection *sec;
2732 unsigned int section_number, secn;
2733 Elf_Internal_Shdr **i_shdrp;
2734 bfd_size_type amt;
2735
2736 section_number = 1;
2737
2738 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2739
2740 for (sec = abfd->sections; sec; sec = sec->next)
2741 {
2742 struct bfd_elf_section_data *d = elf_section_data (sec);
2743
2744 if (section_number == SHN_LORESERVE)
2745 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2746 d->this_idx = section_number++;
2747 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2748 if ((sec->flags & SEC_RELOC) == 0)
2749 d->rel_idx = 0;
2750 else
2751 {
2752 if (section_number == SHN_LORESERVE)
2753 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2754 d->rel_idx = section_number++;
2755 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2756 }
2757
2758 if (d->rel_hdr2)
2759 {
2760 if (section_number == SHN_LORESERVE)
2761 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2762 d->rel_idx2 = section_number++;
2763 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2764 }
2765 else
2766 d->rel_idx2 = 0;
2767 }
2768
2769 if (section_number == SHN_LORESERVE)
2770 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2771 t->shstrtab_section = section_number++;
2772 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2773 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2774
2775 if (bfd_get_symcount (abfd) > 0)
2776 {
2777 if (section_number == SHN_LORESERVE)
2778 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2779 t->symtab_section = section_number++;
2780 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2781 if (section_number > SHN_LORESERVE - 2)
2782 {
2783 if (section_number == SHN_LORESERVE)
2784 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2785 t->symtab_shndx_section = section_number++;
2786 t->symtab_shndx_hdr.sh_name
2787 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2788 ".symtab_shndx", FALSE);
2789 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2790 return FALSE;
2791 }
2792 if (section_number == SHN_LORESERVE)
2793 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2794 t->strtab_section = section_number++;
2795 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2796 }
2797
2798 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2799 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2800
2801 elf_numsections (abfd) = section_number;
2802 elf_elfheader (abfd)->e_shnum = section_number;
2803 if (section_number > SHN_LORESERVE)
2804 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2805
2806 /* Set up the list of section header pointers, in agreement with the
2807 indices. */
2808 amt = section_number * sizeof (Elf_Internal_Shdr *);
2809 i_shdrp = bfd_zalloc (abfd, amt);
2810 if (i_shdrp == NULL)
2811 return FALSE;
2812
2813 amt = sizeof (Elf_Internal_Shdr);
2814 i_shdrp[0] = bfd_zalloc (abfd, amt);
2815 if (i_shdrp[0] == NULL)
2816 {
2817 bfd_release (abfd, i_shdrp);
2818 return FALSE;
2819 }
2820
2821 elf_elfsections (abfd) = i_shdrp;
2822
2823 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2824 if (bfd_get_symcount (abfd) > 0)
2825 {
2826 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2827 if (elf_numsections (abfd) > SHN_LORESERVE)
2828 {
2829 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2830 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2831 }
2832 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2833 t->symtab_hdr.sh_link = t->strtab_section;
2834 }
2835
2836 for (sec = abfd->sections; sec; sec = sec->next)
2837 {
2838 struct bfd_elf_section_data *d = elf_section_data (sec);
2839 asection *s;
2840 const char *name;
2841
2842 i_shdrp[d->this_idx] = &d->this_hdr;
2843 if (d->rel_idx != 0)
2844 i_shdrp[d->rel_idx] = &d->rel_hdr;
2845 if (d->rel_idx2 != 0)
2846 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2847
2848 /* Fill in the sh_link and sh_info fields while we're at it. */
2849
2850 /* sh_link of a reloc section is the section index of the symbol
2851 table. sh_info is the section index of the section to which
2852 the relocation entries apply. */
2853 if (d->rel_idx != 0)
2854 {
2855 d->rel_hdr.sh_link = t->symtab_section;
2856 d->rel_hdr.sh_info = d->this_idx;
2857 }
2858 if (d->rel_idx2 != 0)
2859 {
2860 d->rel_hdr2->sh_link = t->symtab_section;
2861 d->rel_hdr2->sh_info = d->this_idx;
2862 }
2863
2864 /* We need to set up sh_link for SHF_LINK_ORDER. */
2865 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2866 {
2867 s = elf_linked_to_section (sec);
2868 if (s)
2869 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2870 else
2871 {
2872 struct bfd_link_order *p;
2873
2874 /* Find out what the corresponding section in output
2875 is. */
2876 for (p = sec->link_order_head; p != NULL; p = p->next)
2877 {
2878 s = p->u.indirect.section;
2879 if (p->type == bfd_indirect_link_order
2880 && (bfd_get_flavour (s->owner)
2881 == bfd_target_elf_flavour))
2882 {
2883 Elf_Internal_Shdr ** const elf_shdrp
2884 = elf_elfsections (s->owner);
2885 int elfsec
2886 = _bfd_elf_section_from_bfd_section (s->owner, s);
2887 elfsec = elf_shdrp[elfsec]->sh_link;
2888 /* PR 290:
2889 The Intel C compiler generates SHT_IA_64_UNWIND with
2890 SHF_LINK_ORDER. But it doesn't set theh sh_link or
2891 sh_info fields. Hence we could get the situation
2892 where elfsec is 0. */
2893 if (elfsec == 0)
2894 {
2895 const struct elf_backend_data *bed
2896 = get_elf_backend_data (abfd);
2897 if (bed->link_order_error_handler)
2898 bed->link_order_error_handler
2899 (_("%B: warning: sh_link not set for section `%S'"),
2900 abfd, s);
2901 }
2902 else
2903 {
2904 s = elf_shdrp[elfsec]->bfd_section->output_section;
2905 BFD_ASSERT (s != NULL);
2906 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2907 }
2908 break;
2909 }
2910 }
2911 }
2912 }
2913
2914 switch (d->this_hdr.sh_type)
2915 {
2916 case SHT_REL:
2917 case SHT_RELA:
2918 /* A reloc section which we are treating as a normal BFD
2919 section. sh_link is the section index of the symbol
2920 table. sh_info is the section index of the section to
2921 which the relocation entries apply. We assume that an
2922 allocated reloc section uses the dynamic symbol table.
2923 FIXME: How can we be sure? */
2924 s = bfd_get_section_by_name (abfd, ".dynsym");
2925 if (s != NULL)
2926 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2927
2928 /* We look up the section the relocs apply to by name. */
2929 name = sec->name;
2930 if (d->this_hdr.sh_type == SHT_REL)
2931 name += 4;
2932 else
2933 name += 5;
2934 s = bfd_get_section_by_name (abfd, name);
2935 if (s != NULL)
2936 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2937 break;
2938
2939 case SHT_STRTAB:
2940 /* We assume that a section named .stab*str is a stabs
2941 string section. We look for a section with the same name
2942 but without the trailing ``str'', and set its sh_link
2943 field to point to this section. */
2944 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2945 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2946 {
2947 size_t len;
2948 char *alc;
2949
2950 len = strlen (sec->name);
2951 alc = bfd_malloc (len - 2);
2952 if (alc == NULL)
2953 return FALSE;
2954 memcpy (alc, sec->name, len - 3);
2955 alc[len - 3] = '\0';
2956 s = bfd_get_section_by_name (abfd, alc);
2957 free (alc);
2958 if (s != NULL)
2959 {
2960 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2961
2962 /* This is a .stab section. */
2963 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2964 elf_section_data (s)->this_hdr.sh_entsize
2965 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2966 }
2967 }
2968 break;
2969
2970 case SHT_DYNAMIC:
2971 case SHT_DYNSYM:
2972 case SHT_GNU_verneed:
2973 case SHT_GNU_verdef:
2974 /* sh_link is the section header index of the string table
2975 used for the dynamic entries, or the symbol table, or the
2976 version strings. */
2977 s = bfd_get_section_by_name (abfd, ".dynstr");
2978 if (s != NULL)
2979 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2980 break;
2981
2982 case SHT_HASH:
2983 case SHT_GNU_versym:
2984 /* sh_link is the section header index of the symbol table
2985 this hash table or version table is for. */
2986 s = bfd_get_section_by_name (abfd, ".dynsym");
2987 if (s != NULL)
2988 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2989 break;
2990
2991 case SHT_GROUP:
2992 d->this_hdr.sh_link = t->symtab_section;
2993 }
2994 }
2995
2996 for (secn = 1; secn < section_number; ++secn)
2997 if (i_shdrp[secn] == NULL)
2998 i_shdrp[secn] = i_shdrp[0];
2999 else
3000 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3001 i_shdrp[secn]->sh_name);
3002 return TRUE;
3003}
3004
3005/* Map symbol from it's internal number to the external number, moving
3006 all local symbols to be at the head of the list. */
3007
3008static int
3009sym_is_global (bfd *abfd, asymbol *sym)
3010{
3011 /* If the backend has a special mapping, use it. */
3012 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3013 if (bed->elf_backend_sym_is_global)
3014 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3015
3016 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3017 || bfd_is_und_section (bfd_get_section (sym))
3018 || bfd_is_com_section (bfd_get_section (sym)));
3019}
3020
3021static bfd_boolean
3022elf_map_symbols (bfd *abfd)
3023{
3024 unsigned int symcount = bfd_get_symcount (abfd);
3025 asymbol **syms = bfd_get_outsymbols (abfd);
3026 asymbol **sect_syms;
3027 unsigned int num_locals = 0;
3028 unsigned int num_globals = 0;
3029 unsigned int num_locals2 = 0;
3030 unsigned int num_globals2 = 0;
3031 int max_index = 0;
3032 unsigned int idx;
3033 asection *asect;
3034 asymbol **new_syms;
3035 bfd_size_type amt;
3036
3037#ifdef DEBUG
3038 fprintf (stderr, "elf_map_symbols\n");
3039 fflush (stderr);
3040#endif
3041
3042 for (asect = abfd->sections; asect; asect = asect->next)
3043 {
3044 if (max_index < asect->index)
3045 max_index = asect->index;
3046 }
3047
3048 max_index++;
3049 amt = max_index * sizeof (asymbol *);
3050 sect_syms = bfd_zalloc (abfd, amt);
3051 if (sect_syms == NULL)
3052 return FALSE;
3053 elf_section_syms (abfd) = sect_syms;
3054 elf_num_section_syms (abfd) = max_index;
3055
3056 /* Init sect_syms entries for any section symbols we have already
3057 decided to output. */
3058 for (idx = 0; idx < symcount; idx++)
3059 {
3060 asymbol *sym = syms[idx];
3061
3062 if ((sym->flags & BSF_SECTION_SYM) != 0
3063 && sym->value == 0)
3064 {
3065 asection *sec;
3066
3067 sec = sym->section;
3068
3069 if (sec->owner != NULL)
3070 {
3071 if (sec->owner != abfd)
3072 {
3073 if (sec->output_offset != 0)
3074 continue;
3075
3076 sec = sec->output_section;
3077
3078 /* Empty sections in the input files may have had a
3079 section symbol created for them. (See the comment
3080 near the end of _bfd_generic_link_output_symbols in
3081 linker.c). If the linker script discards such
3082 sections then we will reach this point. Since we know
3083 that we cannot avoid this case, we detect it and skip
3084 the abort and the assignment to the sect_syms array.
3085 To reproduce this particular case try running the
3086 linker testsuite test ld-scripts/weak.exp for an ELF
3087 port that uses the generic linker. */
3088 if (sec->owner == NULL)
3089 continue;
3090
3091 BFD_ASSERT (sec->owner == abfd);
3092 }
3093 sect_syms[sec->index] = syms[idx];
3094 }
3095 }
3096 }
3097
3098 /* Classify all of the symbols. */
3099 for (idx = 0; idx < symcount; idx++)
3100 {
3101 if (!sym_is_global (abfd, syms[idx]))
3102 num_locals++;
3103 else
3104 num_globals++;
3105 }
3106
3107 /* We will be adding a section symbol for each BFD section. Most normal
3108 sections will already have a section symbol in outsymbols, but
3109 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3110 at least in that case. */
3111 for (asect = abfd->sections; asect; asect = asect->next)
3112 {
3113 if (sect_syms[asect->index] == NULL)
3114 {
3115 if (!sym_is_global (abfd, asect->symbol))
3116 num_locals++;
3117 else
3118 num_globals++;
3119 }
3120 }
3121
3122 /* Now sort the symbols so the local symbols are first. */
3123 amt = (num_locals + num_globals) * sizeof (asymbol *);
3124 new_syms = bfd_alloc (abfd, amt);
3125
3126 if (new_syms == NULL)
3127 return FALSE;
3128
3129 for (idx = 0; idx < symcount; idx++)
3130 {
3131 asymbol *sym = syms[idx];
3132 unsigned int i;
3133
3134 if (!sym_is_global (abfd, sym))
3135 i = num_locals2++;
3136 else
3137 i = num_locals + num_globals2++;
3138 new_syms[i] = sym;
3139 sym->udata.i = i + 1;
3140 }
3141 for (asect = abfd->sections; asect; asect = asect->next)
3142 {
3143 if (sect_syms[asect->index] == NULL)
3144 {
3145 asymbol *sym = asect->symbol;
3146 unsigned int i;
3147
3148 sect_syms[asect->index] = sym;
3149 if (!sym_is_global (abfd, sym))
3150 i = num_locals2++;
3151 else
3152 i = num_locals + num_globals2++;
3153 new_syms[i] = sym;
3154 sym->udata.i = i + 1;
3155 }
3156 }
3157
3158 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3159
3160 elf_num_locals (abfd) = num_locals;
3161 elf_num_globals (abfd) = num_globals;
3162 return TRUE;
3163}
3164
3165/* Align to the maximum file alignment that could be required for any
3166 ELF data structure. */
3167
3168static inline file_ptr
3169align_file_position (file_ptr off, int align)
3170{
3171 return (off + align - 1) & ~(align - 1);
3172}
3173
3174/* Assign a file position to a section, optionally aligning to the
3175 required section alignment. */
3176
3177file_ptr
3178_bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3179 file_ptr offset,
3180 bfd_boolean align)
3181{
3182 if (align)
3183 {
3184 unsigned int al;
3185
3186 al = i_shdrp->sh_addralign;
3187 if (al > 1)
3188 offset = BFD_ALIGN (offset, al);
3189 }
3190 i_shdrp->sh_offset = offset;
3191 if (i_shdrp->bfd_section != NULL)
3192 i_shdrp->bfd_section->filepos = offset;
3193 if (i_shdrp->sh_type != SHT_NOBITS)
3194 offset += i_shdrp->sh_size;
3195 return offset;
3196}
3197
3198/* Compute the file positions we are going to put the sections at, and
3199 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3200 is not NULL, this is being called by the ELF backend linker. */
3201
3202bfd_boolean
3203_bfd_elf_compute_section_file_positions (bfd *abfd,
3204 struct bfd_link_info *link_info)
3205{
3206 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3207 bfd_boolean failed;
3208 struct bfd_strtab_hash *strtab;
3209 Elf_Internal_Shdr *shstrtab_hdr;
3210
3211 if (abfd->output_has_begun)
3212 return TRUE;
3213
3214 /* Do any elf backend specific processing first. */
3215 if (bed->elf_backend_begin_write_processing)
3216 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3217
3218 if (! prep_headers (abfd))
3219 return FALSE;
3220
3221 /* Post process the headers if necessary. */
3222 if (bed->elf_backend_post_process_headers)
3223 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3224
3225 failed = FALSE;
3226 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3227 if (failed)
3228 return FALSE;
3229
3230 if (!assign_section_numbers (abfd))
3231 return FALSE;
3232
3233 /* The backend linker builds symbol table information itself. */
3234 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3235 {
3236 /* Non-zero if doing a relocatable link. */
3237 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3238
3239 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3240 return FALSE;
3241 }
3242
3243 if (link_info == NULL)
3244 {
3245 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3246 if (failed)
3247 return FALSE;
3248 }
3249
3250 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3251 /* sh_name was set in prep_headers. */
3252 shstrtab_hdr->sh_type = SHT_STRTAB;
3253 shstrtab_hdr->sh_flags = 0;
3254 shstrtab_hdr->sh_addr = 0;
3255 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3256 shstrtab_hdr->sh_entsize = 0;
3257 shstrtab_hdr->sh_link = 0;
3258 shstrtab_hdr->sh_info = 0;
3259 /* sh_offset is set in assign_file_positions_except_relocs. */
3260 shstrtab_hdr->sh_addralign = 1;
3261
3262 if (!assign_file_positions_except_relocs (abfd, link_info))
3263 return FALSE;
3264
3265 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3266 {
3267 file_ptr off;
3268 Elf_Internal_Shdr *hdr;
3269
3270 off = elf_tdata (abfd)->next_file_pos;
3271
3272 hdr = &elf_tdata (abfd)->symtab_hdr;
3273 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3274
3275 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3276 if (hdr->sh_size != 0)
3277 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3278
3279 hdr = &elf_tdata (abfd)->strtab_hdr;
3280 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3281
3282 elf_tdata (abfd)->next_file_pos = off;
3283
3284 /* Now that we know where the .strtab section goes, write it
3285 out. */
3286 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3287 || ! _bfd_stringtab_emit (abfd, strtab))
3288 return FALSE;
3289 _bfd_stringtab_free (strtab);
3290 }
3291
3292 abfd->output_has_begun = TRUE;
3293
3294 return TRUE;
3295}
3296
3297/* Create a mapping from a set of sections to a program segment. */
3298
3299static struct elf_segment_map *
3300make_mapping (bfd *abfd,
3301 asection **sections,
3302 unsigned int from,
3303 unsigned int to,
3304 bfd_boolean phdr)
3305{
3306 struct elf_segment_map *m;
3307 unsigned int i;
3308 asection **hdrpp;
3309 bfd_size_type amt;
3310
3311 amt = sizeof (struct elf_segment_map);
3312 amt += (to - from - 1) * sizeof (asection *);
3313 m = bfd_zalloc (abfd, amt);
3314 if (m == NULL)
3315 return NULL;
3316 m->next = NULL;
3317 m->p_type = PT_LOAD;
3318 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3319 m->sections[i - from] = *hdrpp;
3320 m->count = to - from;
3321
3322 if (from == 0 && phdr)
3323 {
3324 /* Include the headers in the first PT_LOAD segment. */
3325 m->includes_filehdr = 1;
3326 m->includes_phdrs = 1;
3327 }
3328
3329 return m;
3330}
3331
3332/* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3333 on failure. */
3334
3335struct elf_segment_map *
3336_bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3337{
3338 struct elf_segment_map *m;
3339
3340 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3341 if (m == NULL)
3342 return NULL;
3343 m->next = NULL;
3344 m->p_type = PT_DYNAMIC;
3345 m->count = 1;
3346 m->sections[0] = dynsec;
3347
3348 return m;
3349}
3350
3351/* Set up a mapping from BFD sections to program segments. */
3352
3353static bfd_boolean
3354map_sections_to_segments (bfd *abfd)
3355{
3356 asection **sections = NULL;
3357 asection *s;
3358 unsigned int i;
3359 unsigned int count;
3360 struct elf_segment_map *mfirst;
3361 struct elf_segment_map **pm;
3362 struct elf_segment_map *m;
3363 asection *last_hdr;
3364 bfd_vma last_size;
3365 unsigned int phdr_index;
3366 bfd_vma maxpagesize;
3367 asection **hdrpp;
3368 bfd_boolean phdr_in_segment = TRUE;
3369 bfd_boolean writable;
3370 int tls_count = 0;
3371 asection *first_tls = NULL;
3372 asection *dynsec, *eh_frame_hdr;
3373 bfd_size_type amt;
3374
3375 if (elf_tdata (abfd)->segment_map != NULL)
3376 return TRUE;
3377
3378 if (bfd_count_sections (abfd) == 0)
3379 return TRUE;
3380
3381 /* Select the allocated sections, and sort them. */
3382
3383 amt = bfd_count_sections (abfd) * sizeof (asection *);
3384 sections = bfd_malloc (amt);
3385 if (sections == NULL)
3386 goto error_return;
3387
3388 i = 0;
3389 for (s = abfd->sections; s != NULL; s = s->next)
3390 {
3391 if ((s->flags & SEC_ALLOC) != 0)
3392 {
3393 sections[i] = s;
3394 ++i;
3395 }
3396 }
3397 BFD_ASSERT (i <= bfd_count_sections (abfd));
3398 count = i;
3399
3400 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3401
3402 /* Build the mapping. */
3403
3404 mfirst = NULL;
3405 pm = &mfirst;
3406
3407 /* If we have a .interp section, then create a PT_PHDR segment for
3408 the program headers and a PT_INTERP segment for the .interp
3409 section. */
3410 s = bfd_get_section_by_name (abfd, ".interp");
3411 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3412 {
3413 amt = sizeof (struct elf_segment_map);
3414 m = bfd_zalloc (abfd, amt);
3415 if (m == NULL)
3416 goto error_return;
3417 m->next = NULL;
3418 m->p_type = PT_PHDR;
3419 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3420 m->p_flags = PF_R | PF_X;
3421 m->p_flags_valid = 1;
3422 m->includes_phdrs = 1;
3423
3424 *pm = m;
3425 pm = &m->next;
3426
3427 amt = sizeof (struct elf_segment_map);
3428 m = bfd_zalloc (abfd, amt);
3429 if (m == NULL)
3430 goto error_return;
3431 m->next = NULL;
3432 m->p_type = PT_INTERP;
3433 m->count = 1;
3434 m->sections[0] = s;
3435
3436 *pm = m;
3437 pm = &m->next;
3438 }
3439
3440 /* Look through the sections. We put sections in the same program
3441 segment when the start of the second section can be placed within
3442 a few bytes of the end of the first section. */
3443 last_hdr = NULL;
3444 last_size = 0;
3445 phdr_index = 0;
3446 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3447 writable = FALSE;
3448 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3449 if (dynsec != NULL
3450 && (dynsec->flags & SEC_LOAD) == 0)
3451 dynsec = NULL;
3452
3453 /* Deal with -Ttext or something similar such that the first section
3454 is not adjacent to the program headers. This is an
3455 approximation, since at this point we don't know exactly how many
3456 program headers we will need. */
3457 if (count > 0)
3458 {
3459 bfd_size_type phdr_size;
3460
3461 phdr_size = elf_tdata (abfd)->program_header_size;
3462 if (phdr_size == 0)
3463 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3464 if ((abfd->flags & D_PAGED) == 0
3465 || sections[0]->lma < phdr_size
3466 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3467 phdr_in_segment = FALSE;
3468 }
3469
3470 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3471 {
3472 asection *hdr;
3473 bfd_boolean new_segment;
3474
3475 hdr = *hdrpp;
3476
3477 /* See if this section and the last one will fit in the same
3478 segment. */
3479
3480 if (last_hdr == NULL)
3481 {
3482 /* If we don't have a segment yet, then we don't need a new
3483 one (we build the last one after this loop). */
3484 new_segment = FALSE;
3485 }
3486 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3487 {
3488 /* If this section has a different relation between the
3489 virtual address and the load address, then we need a new
3490 segment. */
3491 new_segment = TRUE;
3492 }
3493 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3494 < BFD_ALIGN (hdr->lma, maxpagesize))
3495 {
3496 /* If putting this section in this segment would force us to
3497 skip a page in the segment, then we need a new segment. */
3498 new_segment = TRUE;
3499 }
3500 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3501 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3502 {
3503 /* We don't want to put a loadable section after a
3504 nonloadable section in the same segment.
3505 Consider .tbss sections as loadable for this purpose. */
3506 new_segment = TRUE;
3507 }
3508 else if ((abfd->flags & D_PAGED) == 0)
3509 {
3510 /* If the file is not demand paged, which means that we
3511 don't require the sections to be correctly aligned in the
3512 file, then there is no other reason for a new segment. */
3513 new_segment = FALSE;
3514 }
3515 else if (! writable
3516 && (hdr->flags & SEC_READONLY) == 0
3517 && (((last_hdr->lma + last_size - 1)
3518 & ~(maxpagesize - 1))
3519 != (hdr->lma & ~(maxpagesize - 1))))
3520 {
3521 /* We don't want to put a writable section in a read only
3522 segment, unless they are on the same page in memory
3523 anyhow. We already know that the last section does not
3524 bring us past the current section on the page, so the
3525 only case in which the new section is not on the same
3526 page as the previous section is when the previous section
3527 ends precisely on a page boundary. */
3528 new_segment = TRUE;
3529 }
3530 else
3531 {
3532 /* Otherwise, we can use the same segment. */
3533 new_segment = FALSE;
3534 }
3535
3536 if (! new_segment)
3537 {
3538 if ((hdr->flags & SEC_READONLY) == 0)
3539 writable = TRUE;
3540 last_hdr = hdr;
3541 /* .tbss sections effectively have zero size. */
3542 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3543 last_size = hdr->size;
3544 else
3545 last_size = 0;
3546 continue;
3547 }
3548
3549 /* We need a new program segment. We must create a new program
3550 header holding all the sections from phdr_index until hdr. */
3551
3552 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3553 if (m == NULL)
3554 goto error_return;
3555
3556 *pm = m;
3557 pm = &m->next;
3558
3559 if ((hdr->flags & SEC_READONLY) == 0)
3560 writable = TRUE;
3561 else
3562 writable = FALSE;
3563
3564 last_hdr = hdr;
3565 /* .tbss sections effectively have zero size. */
3566 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3567 last_size = hdr->size;
3568 else
3569 last_size = 0;
3570 phdr_index = i;
3571 phdr_in_segment = FALSE;
3572 }
3573
3574 /* Create a final PT_LOAD program segment. */
3575 if (last_hdr != NULL)
3576 {
3577 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3578 if (m == NULL)
3579 goto error_return;
3580
3581 *pm = m;
3582 pm = &m->next;
3583 }
3584
3585 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3586 if (dynsec != NULL)
3587 {
3588 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3589 if (m == NULL)
3590 goto error_return;
3591 *pm = m;
3592 pm = &m->next;
3593 }
3594
3595 /* For each loadable .note section, add a PT_NOTE segment. We don't
3596 use bfd_get_section_by_name, because if we link together
3597 nonloadable .note sections and loadable .note sections, we will
3598 generate two .note sections in the output file. FIXME: Using
3599 names for section types is bogus anyhow. */
3600 for (s = abfd->sections; s != NULL; s = s->next)
3601 {
3602 if ((s->flags & SEC_LOAD) != 0
3603 && strncmp (s->name, ".note", 5) == 0)
3604 {
3605 amt = sizeof (struct elf_segment_map);
3606 m = bfd_zalloc (abfd, amt);
3607 if (m == NULL)
3608 goto error_return;
3609 m->next = NULL;
3610 m->p_type = PT_NOTE;
3611 m->count = 1;
3612 m->sections[0] = s;
3613
3614 *pm = m;
3615 pm = &m->next;
3616 }
3617 if (s->flags & SEC_THREAD_LOCAL)
3618 {
3619 if (! tls_count)
3620 first_tls = s;
3621 tls_count++;
3622 }
3623 }
3624
3625 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3626 if (tls_count > 0)
3627 {
3628 int i;
3629
3630 amt = sizeof (struct elf_segment_map);
3631 amt += (tls_count - 1) * sizeof (asection *);
3632 m = bfd_zalloc (abfd, amt);
3633 if (m == NULL)
3634 goto error_return;
3635 m->next = NULL;
3636 m->p_type = PT_TLS;
3637 m->count = tls_count;
3638 /* Mandated PF_R. */
3639 m->p_flags = PF_R;
3640 m->p_flags_valid = 1;
3641 for (i = 0; i < tls_count; ++i)
3642 {
3643 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3644 m->sections[i] = first_tls;
3645 first_tls = first_tls->next;
3646 }
3647
3648 *pm = m;
3649 pm = &m->next;
3650 }
3651
3652 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3653 segment. */
3654 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3655 if (eh_frame_hdr != NULL
3656 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3657 {
3658 amt = sizeof (struct elf_segment_map);
3659 m = bfd_zalloc (abfd, amt);
3660 if (m == NULL)
3661 goto error_return;
3662 m->next = NULL;
3663 m->p_type = PT_GNU_EH_FRAME;
3664 m->count = 1;
3665 m->sections[0] = eh_frame_hdr->output_section;
3666
3667 *pm = m;
3668 pm = &m->next;
3669 }
3670
3671 if (elf_tdata (abfd)->stack_flags)
3672 {
3673 amt = sizeof (struct elf_segment_map);
3674 m = bfd_zalloc (abfd, amt);
3675 if (m == NULL)
3676 goto error_return;
3677 m->next = NULL;
3678 m->p_type = PT_GNU_STACK;
3679 m->p_flags = elf_tdata (abfd)->stack_flags;
3680 m->p_flags_valid = 1;
3681
3682 *pm = m;
3683 pm = &m->next;
3684 }
3685
3686 if (elf_tdata (abfd)->relro)
3687 {
3688 amt = sizeof (struct elf_segment_map);
3689 m = bfd_zalloc (abfd, amt);
3690 if (m == NULL)
3691 goto error_return;
3692 m->next = NULL;
3693 m->p_type = PT_GNU_RELRO;
3694 m->p_flags = PF_R;
3695 m->p_flags_valid = 1;
3696
3697 *pm = m;
3698 pm = &m->next;
3699 }
3700
3701 free (sections);
3702 sections = NULL;
3703
3704 elf_tdata (abfd)->segment_map = mfirst;
3705 return TRUE;
3706
3707 error_return:
3708 if (sections != NULL)
3709 free (sections);
3710 return FALSE;
3711}
3712
3713/* Sort sections by address. */
3714
3715static int
3716elf_sort_sections (const void *arg1, const void *arg2)
3717{
3718 const asection *sec1 = *(const asection **) arg1;
3719 const asection *sec2 = *(const asection **) arg2;
3720 bfd_size_type size1, size2;
3721
3722 /* Sort by LMA first, since this is the address used to
3723 place the section into a segment. */
3724 if (sec1->lma < sec2->lma)
3725 return -1;
3726 else if (sec1->lma > sec2->lma)
3727 return 1;
3728
3729 /* Then sort by VMA. Normally the LMA and the VMA will be
3730 the same, and this will do nothing. */
3731 if (sec1->vma < sec2->vma)
3732 return -1;
3733 else if (sec1->vma > sec2->vma)
3734 return 1;
3735
3736 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3737
3738#define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3739
3740 if (TOEND (sec1))
3741 {
3742 if (TOEND (sec2))
3743 {
3744 /* If the indicies are the same, do not return 0
3745 here, but continue to try the next comparison. */
3746 if (sec1->target_index - sec2->target_index != 0)
3747 return sec1->target_index - sec2->target_index;
3748 }
3749 else
3750 return 1;
3751 }
3752 else if (TOEND (sec2))
3753 return -1;
3754
3755#undef TOEND
3756
3757 /* Sort by size, to put zero sized sections
3758 before others at the same address. */
3759
3760 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3761 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3762
3763 if (size1 < size2)
3764 return -1;
3765 if (size1 > size2)
3766 return 1;
3767
3768 return sec1->target_index - sec2->target_index;
3769}
3770
3771/* Ian Lance Taylor writes:
3772
3773 We shouldn't be using % with a negative signed number. That's just
3774 not good. We have to make sure either that the number is not
3775 negative, or that the number has an unsigned type. When the types
3776 are all the same size they wind up as unsigned. When file_ptr is a
3777 larger signed type, the arithmetic winds up as signed long long,
3778 which is wrong.
3779
3780 What we're trying to say here is something like ``increase OFF by
3781 the least amount that will cause it to be equal to the VMA modulo
3782 the page size.'' */
3783/* In other words, something like:
3784
3785 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3786 off_offset = off % bed->maxpagesize;
3787 if (vma_offset < off_offset)
3788 adjustment = vma_offset + bed->maxpagesize - off_offset;
3789 else
3790 adjustment = vma_offset - off_offset;
3791
3792 which can can be collapsed into the expression below. */
3793
3794static file_ptr
3795vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3796{
3797 return ((vma - off) % maxpagesize);
3798}
3799
3800/* Assign file positions to the sections based on the mapping from
3801 sections to segments. This function also sets up some fields in
3802 the file header, and writes out the program headers. */
3803
3804static bfd_boolean
3805assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3806{
3807 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3808 unsigned int count;
3809 struct elf_segment_map *m;
3810 unsigned int alloc;
3811 Elf_Internal_Phdr *phdrs;
3812 file_ptr off, voff;
3813 bfd_vma filehdr_vaddr, filehdr_paddr;
3814 bfd_vma phdrs_vaddr, phdrs_paddr;
3815 Elf_Internal_Phdr *p;
3816 bfd_size_type amt;
3817
3818 if (elf_tdata (abfd)->segment_map == NULL)
3819 {
3820 if (! map_sections_to_segments (abfd))
3821 return FALSE;
3822 }
3823 else
3824 {
3825 /* The placement algorithm assumes that non allocated sections are
3826 not in PT_LOAD segments. We ensure this here by removing such
3827 sections from the segment map. */
3828 for (m = elf_tdata (abfd)->segment_map;
3829 m != NULL;
3830 m = m->next)
3831 {
3832 unsigned int new_count;
3833 unsigned int i;
3834
3835 if (m->p_type != PT_LOAD)
3836 continue;
3837
3838 new_count = 0;
3839 for (i = 0; i < m->count; i ++)
3840 {
3841 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3842 {
3843 if (i != new_count)
3844 m->sections[new_count] = m->sections[i];
3845
3846 new_count ++;
3847 }
3848 }
3849
3850 if (new_count != m->count)
3851 m->count = new_count;
3852 }
3853 }
3854
3855 if (bed->elf_backend_modify_segment_map)
3856 {
3857 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3858 return FALSE;
3859 }
3860
3861 count = 0;
3862 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3863 ++count;
3864
3865 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3866 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3867 elf_elfheader (abfd)->e_phnum = count;
3868
3869 if (count == 0)
3870 return TRUE;
3871
3872 /* If we already counted the number of program segments, make sure
3873 that we allocated enough space. This happens when SIZEOF_HEADERS
3874 is used in a linker script. */
3875 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3876 if (alloc != 0 && count > alloc)
3877 {
3878 ((*_bfd_error_handler)
3879 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3880 bfd_get_filename (abfd), alloc, count));
3881 bfd_set_error (bfd_error_bad_value);
3882 return FALSE;
3883 }
3884
3885 if (alloc == 0)
3886 alloc = count;
3887
3888 amt = alloc * sizeof (Elf_Internal_Phdr);
3889 phdrs = bfd_alloc (abfd, amt);
3890 if (phdrs == NULL)
3891 return FALSE;
3892
3893 off = bed->s->sizeof_ehdr;
3894 off += alloc * bed->s->sizeof_phdr;
3895
3896 filehdr_vaddr = 0;
3897 filehdr_paddr = 0;
3898 phdrs_vaddr = 0;
3899 phdrs_paddr = 0;
3900
3901 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3902 m != NULL;
3903 m = m->next, p++)
3904 {
3905 unsigned int i;
3906 asection **secpp;
3907
3908 /* If elf_segment_map is not from map_sections_to_segments, the
3909 sections may not be correctly ordered. NOTE: sorting should
3910 not be done to the PT_NOTE section of a corefile, which may
3911 contain several pseudo-sections artificially created by bfd.
3912 Sorting these pseudo-sections breaks things badly. */
3913 if (m->count > 1
3914 && !(elf_elfheader (abfd)->e_type == ET_CORE
3915 && m->p_type == PT_NOTE))
3916 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3917 elf_sort_sections);
3918
3919 p->p_type = m->p_type;
3920 p->p_flags = m->p_flags;
3921
3922 if (p->p_type == PT_LOAD
3923 && m->count > 0
3924 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3925 {
3926 if ((abfd->flags & D_PAGED) != 0)
3927 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3928 bed->maxpagesize);
3929 else
3930 {
3931 bfd_size_type align;
3932
3933 align = 0;
3934 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3935 {
3936 bfd_size_type secalign;
3937
3938 secalign = bfd_get_section_alignment (abfd, *secpp);
3939 if (secalign > align)
3940 align = secalign;
3941 }
3942
3943 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3944 1 << align);
3945 }
3946 }
3947 /* Make sure the .dynamic section is the first section in the
3948 PT_DYNAMIC segment. */
3949 else if (p->p_type == PT_DYNAMIC
3950 && m->count > 1
3951 && strcmp (m->sections[0]->name, ".dynamic") != 0)
3952 {
3953 _bfd_error_handler
3954 (_("%s: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
3955 bfd_get_filename (abfd));
3956 bfd_set_error (bfd_error_bad_value);
3957 return FALSE;
3958 }
3959
3960 if (m->count == 0)
3961 p->p_vaddr = 0;
3962 else
3963 p->p_vaddr = m->sections[0]->vma;
3964
3965 if (m->p_paddr_valid)
3966 p->p_paddr = m->p_paddr;
3967 else if (m->count == 0)
3968 p->p_paddr = 0;
3969 else
3970 p->p_paddr = m->sections[0]->lma;
3971
3972 if (p->p_type == PT_LOAD
3973 && (abfd->flags & D_PAGED) != 0)
3974 p->p_align = bed->maxpagesize;
3975 else if (m->count == 0)
3976 p->p_align = 1 << bed->s->log_file_align;
3977 else
3978 p->p_align = 0;
3979
3980 p->p_offset = 0;
3981 p->p_filesz = 0;
3982 p->p_memsz = 0;
3983
3984 if (m->includes_filehdr)
3985 {
3986 if (! m->p_flags_valid)
3987 p->p_flags |= PF_R;
3988 p->p_offset = 0;
3989 p->p_filesz = bed->s->sizeof_ehdr;
3990 p->p_memsz = bed->s->sizeof_ehdr;
3991 if (m->count > 0)
3992 {
3993 BFD_ASSERT (p->p_type == PT_LOAD);
3994
3995 if (p->p_vaddr < (bfd_vma) off)
3996 {
3997 (*_bfd_error_handler)
3998 (_("%s: Not enough room for program headers, try linking with -N"),
3999 bfd_get_filename (abfd));
4000 bfd_set_error (bfd_error_bad_value);
4001 return FALSE;
4002 }
4003
4004 p->p_vaddr -= off;
4005 if (! m->p_paddr_valid)
4006 p->p_paddr -= off;
4007 }
4008 if (p->p_type == PT_LOAD)
4009 {
4010 filehdr_vaddr = p->p_vaddr;
4011 filehdr_paddr = p->p_paddr;
4012 }
4013 }
4014
4015 if (m->includes_phdrs)
4016 {
4017 if (! m->p_flags_valid)
4018 p->p_flags |= PF_R;
4019
4020 if (m->includes_filehdr)
4021 {
4022 if (p->p_type == PT_LOAD)
4023 {
4024 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4025 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4026 }
4027 }
4028 else
4029 {
4030 p->p_offset = bed->s->sizeof_ehdr;
4031
4032 if (m->count > 0)
4033 {
4034 BFD_ASSERT (p->p_type == PT_LOAD);
4035 p->p_vaddr -= off - p->p_offset;
4036 if (! m->p_paddr_valid)
4037 p->p_paddr -= off - p->p_offset;
4038 }
4039
4040 if (p->p_type == PT_LOAD)
4041 {
4042 phdrs_vaddr = p->p_vaddr;
4043 phdrs_paddr = p->p_paddr;
4044 }
4045 else
4046 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4047 }
4048
4049 p->p_filesz += alloc * bed->s->sizeof_phdr;
4050 p->p_memsz += alloc * bed->s->sizeof_phdr;
4051 }
4052
4053 if (p->p_type == PT_LOAD
4054 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4055 {
4056 if (! m->includes_filehdr && ! m->includes_phdrs)
4057 p->p_offset = off;
4058 else
4059 {
4060 file_ptr adjust;
4061
4062 adjust = off - (p->p_offset + p->p_filesz);
4063 p->p_filesz += adjust;
4064 p->p_memsz += adjust;
4065 }
4066 }
4067
4068 voff = off;
4069
4070 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4071 {
4072 asection *sec;
4073 flagword flags;
4074 bfd_size_type align;
4075
4076 sec = *secpp;
4077 flags = sec->flags;
4078 align = 1 << bfd_get_section_alignment (abfd, sec);
4079
4080 /* The section may have artificial alignment forced by a
4081 link script. Notice this case by the gap between the
4082 cumulative phdr lma and the section's lma. */
4083 if (p->p_paddr + p->p_memsz < sec->lma)
4084 {
4085 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
4086
4087 p->p_memsz += adjust;
4088 if (p->p_type == PT_LOAD
4089 || (p->p_type == PT_NOTE
4090 && bfd_get_format (abfd) == bfd_core))
4091 {
4092 off += adjust;
4093 voff += adjust;
4094 }
4095 if ((flags & SEC_LOAD) != 0
4096 || (flags & SEC_THREAD_LOCAL) != 0)
4097 p->p_filesz += adjust;
4098 }
4099
4100 if (p->p_type == PT_LOAD)
4101 {
4102 bfd_signed_vma adjust;
4103
4104 if ((flags & SEC_LOAD) != 0)
4105 {
4106 adjust = sec->lma - (p->p_paddr + p->p_memsz);
4107 if (adjust < 0)
4108 adjust = 0;
4109 }
4110 else if ((flags & SEC_ALLOC) != 0)
4111 {
4112 /* The section VMA must equal the file position
4113 modulo the page size. FIXME: I'm not sure if
4114 this adjustment is really necessary. We used to
4115 not have the SEC_LOAD case just above, and then
4116 this was necessary, but now I'm not sure. */
4117 if ((abfd->flags & D_PAGED) != 0)
4118 adjust = vma_page_aligned_bias (sec->vma, voff,
4119 bed->maxpagesize);
4120 else
4121 adjust = vma_page_aligned_bias (sec->vma, voff,
4122 align);
4123 }
4124 else
4125 adjust = 0;
4126
4127 if (adjust != 0)
4128 {
4129 if (i == 0)
4130 {
4131 (* _bfd_error_handler) (_("\
4132Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
4133 bfd_section_name (abfd, sec),
4134 sec->lma,
4135 p->p_paddr);
4136 return FALSE;
4137 }
4138 p->p_memsz += adjust;
4139 off += adjust;
4140 voff += adjust;
4141 if ((flags & SEC_LOAD) != 0)
4142 p->p_filesz += adjust;
4143 }
4144
4145 sec->filepos = off;
4146
4147 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
4148 used in a linker script we may have a section with
4149 SEC_LOAD clear but which is supposed to have
4150 contents. */
4151 if ((flags & SEC_LOAD) != 0
4152 || (flags & SEC_HAS_CONTENTS) != 0)
4153 off += sec->size;
4154
4155 if ((flags & SEC_ALLOC) != 0
4156 && ((flags & SEC_LOAD) != 0
4157 || (flags & SEC_THREAD_LOCAL) == 0))
4158 voff += sec->size;
4159 }
4160
4161 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4162 {
4163 /* The actual "note" segment has i == 0.
4164 This is the one that actually contains everything. */
4165 if (i == 0)
4166 {
4167 sec->filepos = off;
4168 p->p_filesz = sec->size;
4169 off += sec->size;
4170 voff = off;
4171 }
4172 else
4173 {
4174 /* Fake sections -- don't need to be written. */
4175 sec->filepos = 0;
4176 sec->size = 0;
4177 flags = sec->flags = 0;
4178 }
4179 p->p_memsz = 0;
4180 p->p_align = 1;
4181 }
4182 else
4183 {
4184 if ((sec->flags & SEC_LOAD) != 0
4185 || (sec->flags & SEC_THREAD_LOCAL) == 0
4186 || p->p_type == PT_TLS)
4187 p->p_memsz += sec->size;
4188
4189 if ((flags & SEC_LOAD) != 0)
4190 p->p_filesz += sec->size;
4191
4192 if (p->p_type == PT_TLS
4193 && sec->size == 0
4194 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4195 {
4196 struct bfd_link_order *o;
4197 bfd_vma tbss_size = 0;
4198
4199 for (o = sec->link_order_head; o != NULL; o = o->next)
4200 if (tbss_size < o->offset + o->size)
4201 tbss_size = o->offset + o->size;
4202
4203 p->p_memsz += tbss_size;
4204 }
4205
4206 if (align > p->p_align
4207 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4208 p->p_align = align;
4209 }
4210
4211 if (! m->p_flags_valid)
4212 {
4213 p->p_flags |= PF_R;
4214 if ((flags & SEC_CODE) != 0)
4215 p->p_flags |= PF_X;
4216 if ((flags & SEC_READONLY) == 0)
4217 p->p_flags |= PF_W;
4218 }
4219 }
4220 }
4221
4222 /* Now that we have set the section file positions, we can set up
4223 the file positions for the non PT_LOAD segments. */
4224 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4225 m != NULL;
4226 m = m->next, p++)
4227 {
4228 if (p->p_type != PT_LOAD && m->count > 0)
4229 {
4230 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4231 /* If the section has not yet been assigned a file position,
4232 do so now. The ARM BPABI requires that .dynamic section
4233 not be marked SEC_ALLOC because it is not part of any
4234 PT_LOAD segment, so it will not be processed above. */
4235 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4236 {
4237 unsigned int i;
4238 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4239
4240 i = 1;
4241 while (i_shdrpp[i]->bfd_section != m->sections[0])
4242 ++i;
4243 off = (_bfd_elf_assign_file_position_for_section
4244 (i_shdrpp[i], off, TRUE));
4245 p->p_filesz = m->sections[0]->size;
4246 }
4247 p->p_offset = m->sections[0]->filepos;
4248 }
4249 if (m->count == 0)
4250 {
4251 if (m->includes_filehdr)
4252 {
4253 p->p_vaddr = filehdr_vaddr;
4254 if (! m->p_paddr_valid)
4255 p->p_paddr = filehdr_paddr;
4256 }
4257 else if (m->includes_phdrs)
4258 {
4259 p->p_vaddr = phdrs_vaddr;
4260 if (! m->p_paddr_valid)
4261 p->p_paddr = phdrs_paddr;
4262 }
4263 else if (p->p_type == PT_GNU_RELRO)
4264 {
4265 Elf_Internal_Phdr *lp;
4266
4267 for (lp = phdrs; lp < phdrs + count; ++lp)
4268 {
4269 if (lp->p_type == PT_LOAD
4270 && lp->p_vaddr <= link_info->relro_end
4271 && lp->p_vaddr >= link_info->relro_start
4272 && lp->p_vaddr + lp->p_filesz
4273 >= link_info->relro_end)
4274 break;
4275 }
4276
4277 if (lp < phdrs + count
4278 && link_info->relro_end > lp->p_vaddr)
4279 {
4280 p->p_vaddr = lp->p_vaddr;
4281 p->p_paddr = lp->p_paddr;
4282 p->p_offset = lp->p_offset;
4283 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4284 p->p_memsz = p->p_filesz;
4285 p->p_align = 1;
4286 p->p_flags = (lp->p_flags & ~PF_W);
4287 }
4288 else
4289 {
4290 memset (p, 0, sizeof *p);
4291 p->p_type = PT_NULL;
4292 }
4293 }
4294 }
4295 }
4296
4297 /* Clear out any program headers we allocated but did not use. */
4298 for (; count < alloc; count++, p++)
4299 {
4300 memset (p, 0, sizeof *p);
4301 p->p_type = PT_NULL;
4302 }
4303
4304 elf_tdata (abfd)->phdr = phdrs;
4305
4306 elf_tdata (abfd)->next_file_pos = off;
4307
4308 /* Write out the program headers. */
4309 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4310 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4311 return FALSE;
4312
4313 return TRUE;
4314}
4315
4316/* Get the size of the program header.
4317
4318 If this is called by the linker before any of the section VMA's are set, it
4319 can't calculate the correct value for a strange memory layout. This only
4320 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4321 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4322 data segment (exclusive of .interp and .dynamic).
4323
4324 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4325 will be two segments. */
4326
4327static bfd_size_type
4328get_program_header_size (bfd *abfd)
4329{
4330 size_t segs;
4331 asection *s;
4332 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4333
4334 /* We can't return a different result each time we're called. */
4335 if (elf_tdata (abfd)->program_header_size != 0)
4336 return elf_tdata (abfd)->program_header_size;
4337
4338 if (elf_tdata (abfd)->segment_map != NULL)
4339 {
4340 struct elf_segment_map *m;
4341
4342 segs = 0;
4343 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4344 ++segs;
4345 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4346 return elf_tdata (abfd)->program_header_size;
4347 }
4348
4349 /* Assume we will need exactly two PT_LOAD segments: one for text
4350 and one for data. */
4351 segs = 2;
4352
4353 s = bfd_get_section_by_name (abfd, ".interp");
4354 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4355 {
4356 /* If we have a loadable interpreter section, we need a
4357 PT_INTERP segment. In this case, assume we also need a
4358 PT_PHDR segment, although that may not be true for all
4359 targets. */
4360 segs += 2;
4361 }
4362
4363 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4364 {
4365 /* We need a PT_DYNAMIC segment. */
4366 ++segs;
4367 }
4368
4369 if (elf_tdata (abfd)->eh_frame_hdr)
4370 {
4371 /* We need a PT_GNU_EH_FRAME segment. */
4372 ++segs;
4373 }
4374
4375 if (elf_tdata (abfd)->stack_flags)
4376 {
4377 /* We need a PT_GNU_STACK segment. */
4378 ++segs;
4379 }
4380
4381 if (elf_tdata (abfd)->relro)
4382 {
4383 /* We need a PT_GNU_RELRO segment. */
4384 ++segs;
4385 }
4386
4387 for (s = abfd->sections; s != NULL; s = s->next)
4388 {
4389 if ((s->flags & SEC_LOAD) != 0
4390 && strncmp (s->name, ".note", 5) == 0)
4391 {
4392 /* We need a PT_NOTE segment. */
4393 ++segs;
4394 }
4395 }
4396
4397 for (s = abfd->sections; s != NULL; s = s->next)
4398 {
4399 if (s->flags & SEC_THREAD_LOCAL)
4400 {
4401 /* We need a PT_TLS segment. */
4402 ++segs;
4403 break;
4404 }
4405 }
4406
4407 /* Let the backend count up any program headers it might need. */
4408 if (bed->elf_backend_additional_program_headers)
4409 {
4410 int a;
4411
4412 a = (*bed->elf_backend_additional_program_headers) (abfd);
4413 if (a == -1)
4414 abort ();
4415 segs += a;
4416 }
4417
4418 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4419 return elf_tdata (abfd)->program_header_size;
4420}
4421
4422/* Work out the file positions of all the sections. This is called by
4423 _bfd_elf_compute_section_file_positions. All the section sizes and
4424 VMAs must be known before this is called.
4425
4426 We do not consider reloc sections at this point, unless they form
4427 part of the loadable image. Reloc sections are assigned file
4428 positions in assign_file_positions_for_relocs, which is called by
4429 write_object_contents and final_link.
4430
4431 We also don't set the positions of the .symtab and .strtab here. */
4432
4433static bfd_boolean
4434assign_file_positions_except_relocs (bfd *abfd,
4435 struct bfd_link_info *link_info)
4436{
4437 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4438 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4439 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4440 unsigned int num_sec = elf_numsections (abfd);
4441 file_ptr off;
4442 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4443
4444 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4445 && bfd_get_format (abfd) != bfd_core)
4446 {
4447 Elf_Internal_Shdr **hdrpp;
4448 unsigned int i;
4449
4450 /* Start after the ELF header. */
4451 off = i_ehdrp->e_ehsize;
4452
4453 /* We are not creating an executable, which means that we are
4454 not creating a program header, and that the actual order of
4455 the sections in the file is unimportant. */
4456 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4457 {
4458 Elf_Internal_Shdr *hdr;
4459
4460 hdr = *hdrpp;
4461 if (hdr->sh_type == SHT_REL
4462 || hdr->sh_type == SHT_RELA
4463 || i == tdata->symtab_section
4464 || i == tdata->symtab_shndx_section
4465 || i == tdata->strtab_section)
4466 {
4467 hdr->sh_offset = -1;
4468 }
4469 else
4470 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4471
4472 if (i == SHN_LORESERVE - 1)
4473 {
4474 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4475 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4476 }
4477 }
4478 }
4479 else
4480 {
4481 unsigned int i;
4482 Elf_Internal_Shdr **hdrpp;
4483
4484 /* Assign file positions for the loaded sections based on the
4485 assignment of sections to segments. */
4486 if (! assign_file_positions_for_segments (abfd, link_info))
4487 return FALSE;
4488
4489 /* Assign file positions for the other sections. */
4490
4491 off = elf_tdata (abfd)->next_file_pos;
4492 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4493 {
4494 Elf_Internal_Shdr *hdr;
4495
4496 hdr = *hdrpp;
4497 if (hdr->bfd_section != NULL
4498 && hdr->bfd_section->filepos != 0)
4499 hdr->sh_offset = hdr->bfd_section->filepos;
4500 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4501 {
4502 ((*_bfd_error_handler)
4503 (_("%s: warning: allocated section `%s' not in segment"),
4504 bfd_get_filename (abfd),
4505 (hdr->bfd_section == NULL
4506 ? "*unknown*"
4507 : hdr->bfd_section->name)));
4508 if ((abfd->flags & D_PAGED) != 0)
4509 off += vma_page_aligned_bias (hdr->sh_addr, off,
4510 bed->maxpagesize);
4511 else
4512 off += vma_page_aligned_bias (hdr->sh_addr, off,
4513 hdr->sh_addralign);
4514 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4515 FALSE);
4516 }
4517 else if (hdr->sh_type == SHT_REL
4518 || hdr->sh_type == SHT_RELA
4519 || hdr == i_shdrpp[tdata->symtab_section]
4520 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4521 || hdr == i_shdrpp[tdata->strtab_section])
4522 hdr->sh_offset = -1;
4523 else
4524 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4525
4526 if (i == SHN_LORESERVE - 1)
4527 {
4528 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4529 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4530 }
4531 }
4532 }
4533
4534 /* Place the section headers. */
4535 off = align_file_position (off, 1 << bed->s->log_file_align);
4536 i_ehdrp->e_shoff = off;
4537 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4538
4539 elf_tdata (abfd)->next_file_pos = off;
4540
4541 return TRUE;
4542}
4543
4544static bfd_boolean
4545prep_headers (bfd *abfd)
4546{
4547 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4548 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4549 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4550 struct elf_strtab_hash *shstrtab;
4551 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4552
4553 i_ehdrp = elf_elfheader (abfd);
4554 i_shdrp = elf_elfsections (abfd);
4555
4556 shstrtab = _bfd_elf_strtab_init ();
4557 if (shstrtab == NULL)
4558 return FALSE;
4559
4560 elf_shstrtab (abfd) = shstrtab;
4561
4562 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4563 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4564 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4565 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4566
4567 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4568 i_ehdrp->e_ident[EI_DATA] =
4569 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4570 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4571
4572 if ((abfd->flags & DYNAMIC) != 0)
4573 i_ehdrp->e_type = ET_DYN;
4574 else if ((abfd->flags & EXEC_P) != 0)
4575 i_ehdrp->e_type = ET_EXEC;
4576 else if (bfd_get_format (abfd) == bfd_core)
4577 i_ehdrp->e_type = ET_CORE;
4578 else
4579 i_ehdrp->e_type = ET_REL;
4580
4581 switch (bfd_get_arch (abfd))
4582 {
4583 case bfd_arch_unknown:
4584 i_ehdrp->e_machine = EM_NONE;
4585 break;
4586
4587 /* There used to be a long list of cases here, each one setting
4588 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4589 in the corresponding bfd definition. To avoid duplication,
4590 the switch was removed. Machines that need special handling
4591 can generally do it in elf_backend_final_write_processing(),
4592 unless they need the information earlier than the final write.
4593 Such need can generally be supplied by replacing the tests for
4594 e_machine with the conditions used to determine it. */
4595 default:
4596 i_ehdrp->e_machine = bed->elf_machine_code;
4597 }
4598
4599 i_ehdrp->e_version = bed->s->ev_current;
4600 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4601
4602 /* No program header, for now. */
4603 i_ehdrp->e_phoff = 0;
4604 i_ehdrp->e_phentsize = 0;
4605 i_ehdrp->e_phnum = 0;
4606
4607 /* Each bfd section is section header entry. */
4608 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4609 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4610
4611 /* If we're building an executable, we'll need a program header table. */
4612 if (abfd->flags & EXEC_P)
4613 {
4614 /* It all happens later. */
4615#if 0
4616 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4617
4618 /* elf_build_phdrs() returns a (NULL-terminated) array of
4619 Elf_Internal_Phdrs. */
4620 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4621 i_ehdrp->e_phoff = outbase;
4622 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4623#endif
4624 }
4625 else
4626 {
4627 i_ehdrp->e_phentsize = 0;
4628 i_phdrp = 0;
4629 i_ehdrp->e_phoff = 0;
4630 }
4631
4632 elf_tdata (abfd)->symtab_hdr.sh_name =
4633 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4634 elf_tdata (abfd)->strtab_hdr.sh_name =
4635 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4636 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4637 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4638 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4639 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4640 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4641 return FALSE;
4642
4643 return TRUE;
4644}
4645
4646/* Assign file positions for all the reloc sections which are not part
4647 of the loadable file image. */
4648
4649void
4650_bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4651{
4652 file_ptr off;
4653 unsigned int i, num_sec;
4654 Elf_Internal_Shdr **shdrpp;
4655
4656 off = elf_tdata (abfd)->next_file_pos;
4657
4658 num_sec = elf_numsections (abfd);
4659 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4660 {
4661 Elf_Internal_Shdr *shdrp;
4662
4663 shdrp = *shdrpp;
4664 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4665 && shdrp->sh_offset == -1)
4666 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4667 }
4668
4669 elf_tdata (abfd)->next_file_pos = off;
4670}
4671
4672bfd_boolean
4673_bfd_elf_write_object_contents (bfd *abfd)
4674{
4675 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4676 Elf_Internal_Ehdr *i_ehdrp;
4677 Elf_Internal_Shdr **i_shdrp;
4678 bfd_boolean failed;
4679 unsigned int count, num_sec;
4680
4681 if (! abfd->output_has_begun
4682 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4683 return FALSE;
4684
4685 i_shdrp = elf_elfsections (abfd);
4686 i_ehdrp = elf_elfheader (abfd);
4687
4688 failed = FALSE;
4689 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4690 if (failed)
4691 return FALSE;
4692
4693 _bfd_elf_assign_file_positions_for_relocs (abfd);
4694
4695 /* After writing the headers, we need to write the sections too... */
4696 num_sec = elf_numsections (abfd);
4697 for (count = 1; count < num_sec; count++)
4698 {
4699 if (bed->elf_backend_section_processing)
4700 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4701 if (i_shdrp[count]->contents)
4702 {
4703 bfd_size_type amt = i_shdrp[count]->sh_size;
4704
4705 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4706 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4707 return FALSE;
4708 }
4709 if (count == SHN_LORESERVE - 1)
4710 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4711 }
4712
4713 /* Write out the section header names. */
4714 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4715 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4716 return FALSE;
4717
4718 if (bed->elf_backend_final_write_processing)
4719 (*bed->elf_backend_final_write_processing) (abfd,
4720 elf_tdata (abfd)->linker);
4721
4722 return bed->s->write_shdrs_and_ehdr (abfd);
4723}
4724
4725bfd_boolean
4726_bfd_elf_write_corefile_contents (bfd *abfd)
4727{
4728 /* Hopefully this can be done just like an object file. */
4729 return _bfd_elf_write_object_contents (abfd);
4730}
4731
4732/* Given a section, search the header to find them. */
4733
4734int
4735_bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4736{
4737 const struct elf_backend_data *bed;
4738 int index;
4739
4740 if (elf_section_data (asect) != NULL
4741 && elf_section_data (asect)->this_idx != 0)
4742 return elf_section_data (asect)->this_idx;
4743
4744 if (bfd_is_abs_section (asect))
4745 index = SHN_ABS;
4746 else if (bfd_is_com_section (asect))
4747 index = SHN_COMMON;
4748 else if (bfd_is_und_section (asect))
4749 index = SHN_UNDEF;
4750 else
4751 {
4752 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4753 int maxindex = elf_numsections (abfd);
4754
4755 for (index = 1; index < maxindex; index++)
4756 {
4757 Elf_Internal_Shdr *hdr = i_shdrp[index];
4758
4759 if (hdr != NULL && hdr->bfd_section == asect)
4760 return index;
4761 }
4762 index = -1;
4763 }
4764
4765 bed = get_elf_backend_data (abfd);
4766 if (bed->elf_backend_section_from_bfd_section)
4767 {
4768 int retval = index;
4769
4770 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4771 return retval;
4772 }
4773
4774 if (index == -1)
4775 bfd_set_error (bfd_error_nonrepresentable_section);
4776
4777 return index;
4778}
4779
4780/* Given a BFD symbol, return the index in the ELF symbol table, or -1
4781 on error. */
4782
4783int
4784_bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4785{
4786 asymbol *asym_ptr = *asym_ptr_ptr;
4787 int idx;
4788 flagword flags = asym_ptr->flags;
4789
4790 /* When gas creates relocations against local labels, it creates its
4791 own symbol for the section, but does put the symbol into the
4792 symbol chain, so udata is 0. When the linker is generating
4793 relocatable output, this section symbol may be for one of the
4794 input sections rather than the output section. */
4795 if (asym_ptr->udata.i == 0
4796 && (flags & BSF_SECTION_SYM)
4797 && asym_ptr->section)
4798 {
4799 int indx;
4800
4801 if (asym_ptr->section->output_section != NULL)
4802 indx = asym_ptr->section->output_section->index;
4803 else
4804 indx = asym_ptr->section->index;
4805 if (indx < elf_num_section_syms (abfd)
4806 && elf_section_syms (abfd)[indx] != NULL)
4807 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4808 }
4809
4810 idx = asym_ptr->udata.i;
4811
4812 if (idx == 0)
4813 {
4814 /* This case can occur when using --strip-symbol on a symbol
4815 which is used in a relocation entry. */
4816 (*_bfd_error_handler)
4817 (_("%B: symbol `%s' required but not present"),
4818 abfd, bfd_asymbol_name (asym_ptr));
4819 bfd_set_error (bfd_error_no_symbols);
4820 return -1;
4821 }
4822
4823#if DEBUG & 4
4824 {
4825 fprintf (stderr,
4826 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4827 (long) asym_ptr, asym_ptr->name, idx, flags,
4828 elf_symbol_flags (flags));
4829 fflush (stderr);
4830 }
4831#endif
4832
4833 return idx;
4834}
4835
4836/* Copy private BFD data. This copies any program header information. */
4837
4838static bfd_boolean
4839copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4840{
4841 Elf_Internal_Ehdr *iehdr;
4842 struct elf_segment_map *map;
4843 struct elf_segment_map *map_first;
4844 struct elf_segment_map **pointer_to_map;
4845 Elf_Internal_Phdr *segment;
4846 asection *section;
4847 unsigned int i;
4848 unsigned int num_segments;
4849 bfd_boolean phdr_included = FALSE;
4850 bfd_vma maxpagesize;
4851 struct elf_segment_map *phdr_adjust_seg = NULL;
4852 unsigned int phdr_adjust_num = 0;
4853 const struct elf_backend_data *bed;
4854
4855 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4856 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4857 return TRUE;
4858
4859 if (elf_tdata (ibfd)->phdr == NULL)
4860 return TRUE;
4861
4862 bed = get_elf_backend_data (ibfd);
4863 iehdr = elf_elfheader (ibfd);
4864
4865 map_first = NULL;
4866 pointer_to_map = &map_first;
4867
4868 num_segments = elf_elfheader (ibfd)->e_phnum;
4869 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4870
4871 /* Returns the end address of the segment + 1. */
4872#define SEGMENT_END(segment, start) \
4873 (start + (segment->p_memsz > segment->p_filesz \
4874 ? segment->p_memsz : segment->p_filesz))
4875
4876#define SECTION_SIZE(section, segment) \
4877 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4878 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4879 ? section->size : 0)
4880
4881 /* Returns TRUE if the given section is contained within
4882 the given segment. VMA addresses are compared. */
4883#define IS_CONTAINED_BY_VMA(section, segment) \
4884 (section->vma >= segment->p_vaddr \
4885 && (section->vma + SECTION_SIZE (section, segment) \
4886 <= (SEGMENT_END (segment, segment->p_vaddr))))
4887
4888 /* Returns TRUE if the given section is contained within
4889 the given segment. LMA addresses are compared. */
4890#define IS_CONTAINED_BY_LMA(section, segment, base) \
4891 (section->lma >= base \
4892 && (section->lma + SECTION_SIZE (section, segment) \
4893 <= SEGMENT_END (segment, base)))
4894
4895 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4896#define IS_COREFILE_NOTE(p, s) \
4897 (p->p_type == PT_NOTE \
4898 && bfd_get_format (ibfd) == bfd_core \
4899 && s->vma == 0 && s->lma == 0 \
4900 && (bfd_vma) s->filepos >= p->p_offset \
4901 && ((bfd_vma) s->filepos + s->size \
4902 <= p->p_offset + p->p_filesz))
4903
4904 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4905 linker, which generates a PT_INTERP section with p_vaddr and
4906 p_memsz set to 0. */
4907#define IS_SOLARIS_PT_INTERP(p, s) \
4908 (p->p_vaddr == 0 \
4909 && p->p_paddr == 0 \
4910 && p->p_memsz == 0 \
4911 && p->p_filesz > 0 \
4912 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4913 && s->size > 0 \
4914 && (bfd_vma) s->filepos >= p->p_offset \
4915 && ((bfd_vma) s->filepos + s->size \
4916 <= p->p_offset + p->p_filesz))
4917
4918 /* Decide if the given section should be included in the given segment.
4919 A section will be included if:
4920 1. It is within the address space of the segment -- we use the LMA
4921 if that is set for the segment and the VMA otherwise,
4922 2. It is an allocated segment,
4923 3. There is an output section associated with it,
4924 4. The section has not already been allocated to a previous segment.
4925 5. PT_GNU_STACK segments do not include any sections.
4926 6. PT_TLS segment includes only SHF_TLS sections.
4927 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4928#define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4929 ((((segment->p_paddr \
4930 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4931 : IS_CONTAINED_BY_VMA (section, segment)) \
4932 && (section->flags & SEC_ALLOC) != 0) \
4933 || IS_COREFILE_NOTE (segment, section)) \
4934 && section->output_section != NULL \
4935 && segment->p_type != PT_GNU_STACK \
4936 && (segment->p_type != PT_TLS \
4937 || (section->flags & SEC_THREAD_LOCAL)) \
4938 && (segment->p_type == PT_LOAD \
4939 || segment->p_type == PT_TLS \
4940 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4941 && ! section->segment_mark)
4942
4943 /* Returns TRUE iff seg1 starts after the end of seg2. */
4944#define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4945 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4946
4947 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4948 their VMA address ranges and their LMA address ranges overlap.
4949 It is possible to have overlapping VMA ranges without overlapping LMA
4950 ranges. RedBoot images for example can have both .data and .bss mapped
4951 to the same VMA range, but with the .data section mapped to a different
4952 LMA. */
4953#define SEGMENT_OVERLAPS(seg1, seg2) \
4954 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4955 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4956 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4957 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4958
4959 /* Initialise the segment mark field. */
4960 for (section = ibfd->sections; section != NULL; section = section->next)
4961 section->segment_mark = FALSE;
4962
4963 /* Scan through the segments specified in the program header
4964 of the input BFD. For this first scan we look for overlaps
4965 in the loadable segments. These can be created by weird
4966 parameters to objcopy. Also, fix some solaris weirdness. */
4967 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4968 i < num_segments;
4969 i++, segment++)
4970 {
4971 unsigned int j;
4972 Elf_Internal_Phdr *segment2;
4973
4974 if (segment->p_type == PT_INTERP)
4975 for (section = ibfd->sections; section; section = section->next)
4976 if (IS_SOLARIS_PT_INTERP (segment, section))
4977 {
4978 /* Mininal change so that the normal section to segment
4979 assignment code will work. */
4980 segment->p_vaddr = section->vma;
4981 break;
4982 }
4983
4984 if (segment->p_type != PT_LOAD)
4985 continue;
4986
4987 /* Determine if this segment overlaps any previous segments. */
4988 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4989 {
4990 bfd_signed_vma extra_length;
4991
4992 if (segment2->p_type != PT_LOAD
4993 || ! SEGMENT_OVERLAPS (segment, segment2))
4994 continue;
4995
4996 /* Merge the two segments together. */
4997 if (segment2->p_vaddr < segment->p_vaddr)
4998 {
4999 /* Extend SEGMENT2 to include SEGMENT and then delete
5000 SEGMENT. */
5001 extra_length =
5002 SEGMENT_END (segment, segment->p_vaddr)
5003 - SEGMENT_END (segment2, segment2->p_vaddr);
5004
5005 if (extra_length > 0)
5006 {
5007 segment2->p_memsz += extra_length;
5008 segment2->p_filesz += extra_length;
5009 }
5010
5011 segment->p_type = PT_NULL;
5012
5013 /* Since we have deleted P we must restart the outer loop. */
5014 i = 0;
5015 segment = elf_tdata (ibfd)->phdr;
5016 break;
5017 }
5018 else
5019 {
5020 /* Extend SEGMENT to include SEGMENT2 and then delete
5021 SEGMENT2. */
5022 extra_length =
5023 SEGMENT_END (segment2, segment2->p_vaddr)
5024 - SEGMENT_END (segment, segment->p_vaddr);
5025
5026 if (extra_length > 0)
5027 {
5028 segment->p_memsz += extra_length;
5029 segment->p_filesz += extra_length;
5030 }
5031
5032 segment2->p_type = PT_NULL;
5033 }
5034 }
5035 }
5036
5037 /* The second scan attempts to assign sections to segments. */
5038 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5039 i < num_segments;
5040 i ++, segment ++)
5041 {
5042 unsigned int section_count;
5043 asection ** sections;
5044 asection * output_section;
5045 unsigned int isec;
5046 bfd_vma matching_lma;
5047 bfd_vma suggested_lma;
5048 unsigned int j;
5049 bfd_size_type amt;
5050
5051 if (segment->p_type == PT_NULL)
5052 continue;
5053
5054 /* Compute how many sections might be placed into this segment. */
5055 for (section = ibfd->sections, section_count = 0;
5056 section != NULL;
5057 section = section->next)
5058 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5059 ++section_count;
5060
5061 /* Allocate a segment map big enough to contain
5062 all of the sections we have selected. */
5063 amt = sizeof (struct elf_segment_map);
5064 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5065 map = bfd_alloc (obfd, amt);
5066 if (map == NULL)
5067 return FALSE;
5068
5069 /* Initialise the fields of the segment map. Default to
5070 using the physical address of the segment in the input BFD. */
5071 map->next = NULL;
5072 map->p_type = segment->p_type;
5073 map->p_flags = segment->p_flags;
5074 map->p_flags_valid = 1;
5075 map->p_paddr = segment->p_paddr;
5076 map->p_paddr_valid = 1;
5077
5078 /* Determine if this segment contains the ELF file header
5079 and if it contains the program headers themselves. */
5080 map->includes_filehdr = (segment->p_offset == 0
5081 && segment->p_filesz >= iehdr->e_ehsize);
5082
5083 map->includes_phdrs = 0;
5084
5085 if (! phdr_included || segment->p_type != PT_LOAD)
5086 {
5087 map->includes_phdrs =
5088 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5089 && (segment->p_offset + segment->p_filesz
5090 >= ((bfd_vma) iehdr->e_phoff
5091 + iehdr->e_phnum * iehdr->e_phentsize)));
5092
5093 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5094 phdr_included = TRUE;
5095 }
5096
5097 if (section_count == 0)
5098 {
5099 /* Special segments, such as the PT_PHDR segment, may contain
5100 no sections, but ordinary, loadable segments should contain
5101 something. They are allowed by the ELF spec however, so only
5102 a warning is produced. */
5103 if (segment->p_type == PT_LOAD)
5104 (*_bfd_error_handler)
5105 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5106 ibfd);
5107
5108 map->count = 0;
5109 *pointer_to_map = map;
5110 pointer_to_map = &map->next;
5111
5112 continue;
5113 }
5114
5115 /* Now scan the sections in the input BFD again and attempt
5116 to add their corresponding output sections to the segment map.
5117 The problem here is how to handle an output section which has
5118 been moved (ie had its LMA changed). There are four possibilities:
5119
5120 1. None of the sections have been moved.
5121 In this case we can continue to use the segment LMA from the
5122 input BFD.
5123
5124 2. All of the sections have been moved by the same amount.
5125 In this case we can change the segment's LMA to match the LMA
5126 of the first section.
5127
5128 3. Some of the sections have been moved, others have not.
5129 In this case those sections which have not been moved can be
5130 placed in the current segment which will have to have its size,
5131 and possibly its LMA changed, and a new segment or segments will
5132 have to be created to contain the other sections.
5133
5134 4. The sections have been moved, but not by the same amount.
5135 In this case we can change the segment's LMA to match the LMA
5136 of the first section and we will have to create a new segment
5137 or segments to contain the other sections.
5138
5139 In order to save time, we allocate an array to hold the section
5140 pointers that we are interested in. As these sections get assigned
5141 to a segment, they are removed from this array. */
5142
5143 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5144 to work around this long long bug. */
5145 amt = section_count * sizeof (asection *);
5146 sections = bfd_malloc (amt);
5147 if (sections == NULL)
5148 return FALSE;
5149
5150 /* Step One: Scan for segment vs section LMA conflicts.
5151 Also add the sections to the section array allocated above.
5152 Also add the sections to the current segment. In the common
5153 case, where the sections have not been moved, this means that
5154 we have completely filled the segment, and there is nothing
5155 more to do. */
5156 isec = 0;
5157 matching_lma = 0;
5158 suggested_lma = 0;
5159
5160 for (j = 0, section = ibfd->sections;
5161 section != NULL;
5162 section = section->next)
5163 {
5164 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5165 {
5166 output_section = section->output_section;
5167
5168 sections[j ++] = section;
5169
5170 /* The Solaris native linker always sets p_paddr to 0.
5171 We try to catch that case here, and set it to the
5172 correct value. Note - some backends require that
5173 p_paddr be left as zero. */
5174 if (segment->p_paddr == 0
5175 && segment->p_vaddr != 0
5176 && (! bed->want_p_paddr_set_to_zero)
5177 && isec == 0
5178 && output_section->lma != 0
5179 && (output_section->vma == (segment->p_vaddr
5180 + (map->includes_filehdr
5181 ? iehdr->e_ehsize
5182 : 0)
5183 + (map->includes_phdrs
5184 ? (iehdr->e_phnum
5185 * iehdr->e_phentsize)
5186 : 0))))
5187 map->p_paddr = segment->p_vaddr;
5188
5189 /* Match up the physical address of the segment with the
5190 LMA address of the output section. */
5191 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5192 || IS_COREFILE_NOTE (segment, section)
5193 || (bed->want_p_paddr_set_to_zero &&
5194 IS_CONTAINED_BY_VMA (output_section, segment))
5195 )
5196 {
5197 if (matching_lma == 0)
5198 matching_lma = output_section->lma;
5199
5200 /* We assume that if the section fits within the segment
5201 then it does not overlap any other section within that
5202 segment. */
5203 map->sections[isec ++] = output_section;
5204 }
5205 else if (suggested_lma == 0)
5206 suggested_lma = output_section->lma;
5207 }
5208 }
5209
5210 BFD_ASSERT (j == section_count);
5211
5212 /* Step Two: Adjust the physical address of the current segment,
5213 if necessary. */
5214 if (isec == section_count)
5215 {
5216 /* All of the sections fitted within the segment as currently
5217 specified. This is the default case. Add the segment to
5218 the list of built segments and carry on to process the next
5219 program header in the input BFD. */
5220 map->count = section_count;
5221 *pointer_to_map = map;
5222 pointer_to_map = &map->next;
5223
5224 free (sections);
5225 continue;
5226 }
5227 else
5228 {
5229 if (matching_lma != 0)
5230 {
5231 /* At least one section fits inside the current segment.
5232 Keep it, but modify its physical address to match the
5233 LMA of the first section that fitted. */
5234 map->p_paddr = matching_lma;
5235 }
5236 else
5237 {
5238 /* None of the sections fitted inside the current segment.
5239 Change the current segment's physical address to match
5240 the LMA of the first section. */
5241 map->p_paddr = suggested_lma;
5242 }
5243
5244 /* Offset the segment physical address from the lma
5245 to allow for space taken up by elf headers. */
5246 if (map->includes_filehdr)
5247 map->p_paddr -= iehdr->e_ehsize;
5248
5249 if (map->includes_phdrs)
5250 {
5251 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5252
5253 /* iehdr->e_phnum is just an estimate of the number
5254 of program headers that we will need. Make a note
5255 here of the number we used and the segment we chose
5256 to hold these headers, so that we can adjust the
5257 offset when we know the correct value. */
5258 phdr_adjust_num = iehdr->e_phnum;
5259 phdr_adjust_seg = map;
5260 }
5261 }
5262
5263 /* Step Three: Loop over the sections again, this time assigning
5264 those that fit to the current segment and removing them from the
5265 sections array; but making sure not to leave large gaps. Once all
5266 possible sections have been assigned to the current segment it is
5267 added to the list of built segments and if sections still remain
5268 to be assigned, a new segment is constructed before repeating
5269 the loop. */
5270 isec = 0;
5271 do
5272 {
5273 map->count = 0;
5274 suggested_lma = 0;
5275
5276 /* Fill the current segment with sections that fit. */
5277 for (j = 0; j < section_count; j++)
5278 {
5279 section = sections[j];
5280
5281 if (section == NULL)
5282 continue;
5283
5284 output_section = section->output_section;
5285
5286 BFD_ASSERT (output_section != NULL);
5287
5288 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5289 || IS_COREFILE_NOTE (segment, section))
5290 {
5291 if (map->count == 0)
5292 {
5293 /* If the first section in a segment does not start at
5294 the beginning of the segment, then something is
5295 wrong. */
5296 if (output_section->lma !=
5297 (map->p_paddr
5298 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5299 + (map->includes_phdrs
5300 ? iehdr->e_phnum * iehdr->e_phentsize
5301 : 0)))
5302 abort ();
5303 }
5304 else
5305 {
5306 asection * prev_sec;
5307
5308 prev_sec = map->sections[map->count - 1];
5309
5310 /* If the gap between the end of the previous section
5311 and the start of this section is more than
5312 maxpagesize then we need to start a new segment. */
5313 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5314 maxpagesize)
5315 < BFD_ALIGN (output_section->lma, maxpagesize))
5316 || ((prev_sec->lma + prev_sec->size)
5317 > output_section->lma))
5318 {
5319 if (suggested_lma == 0)
5320 suggested_lma = output_section->lma;
5321
5322 continue;
5323 }
5324 }
5325
5326 map->sections[map->count++] = output_section;
5327 ++isec;
5328 sections[j] = NULL;
5329 section->segment_mark = TRUE;
5330 }
5331 else if (suggested_lma == 0)
5332 suggested_lma = output_section->lma;
5333 }
5334
5335 BFD_ASSERT (map->count > 0);
5336
5337 /* Add the current segment to the list of built segments. */
5338 *pointer_to_map = map;
5339 pointer_to_map = &map->next;
5340
5341 if (isec < section_count)
5342 {
5343 /* We still have not allocated all of the sections to
5344 segments. Create a new segment here, initialise it
5345 and carry on looping. */
5346 amt = sizeof (struct elf_segment_map);
5347 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5348 map = bfd_alloc (obfd, amt);
5349 if (map == NULL)
5350 {
5351 free (sections);
5352 return FALSE;
5353 }
5354
5355 /* Initialise the fields of the segment map. Set the physical
5356 physical address to the LMA of the first section that has
5357 not yet been assigned. */
5358 map->next = NULL;
5359 map->p_type = segment->p_type;
5360 map->p_flags = segment->p_flags;
5361 map->p_flags_valid = 1;
5362 map->p_paddr = suggested_lma;
5363 map->p_paddr_valid = 1;
5364 map->includes_filehdr = 0;
5365 map->includes_phdrs = 0;
5366 }
5367 }
5368 while (isec < section_count);
5369
5370 free (sections);
5371 }
5372
5373 /* The Solaris linker creates program headers in which all the
5374 p_paddr fields are zero. When we try to objcopy or strip such a
5375 file, we get confused. Check for this case, and if we find it
5376 reset the p_paddr_valid fields. */
5377 for (map = map_first; map != NULL; map = map->next)
5378 if (map->p_paddr != 0)
5379 break;
5380 if (map == NULL)
5381 for (map = map_first; map != NULL; map = map->next)
5382 map->p_paddr_valid = 0;
5383
5384 elf_tdata (obfd)->segment_map = map_first;
5385
5386 /* If we had to estimate the number of program headers that were
5387 going to be needed, then check our estimate now and adjust
5388 the offset if necessary. */
5389 if (phdr_adjust_seg != NULL)
5390 {
5391 unsigned int count;
5392
5393 for (count = 0, map = map_first; map != NULL; map = map->next)
5394 count++;
5395
5396 if (count > phdr_adjust_num)
5397 phdr_adjust_seg->p_paddr
5398 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5399 }
5400
5401#if 0
5402 /* Final Step: Sort the segments into ascending order of physical
5403 address. */
5404 if (map_first != NULL)
5405 {
5406 struct elf_segment_map *prev;
5407
5408 prev = map_first;
5409 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5410 {
5411 /* Yes I know - its a bubble sort.... */
5412 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5413 {
5414 /* Swap map and map->next. */
5415 prev->next = map->next;
5416 map->next = map->next->next;
5417 prev->next->next = map;
5418
5419 /* Restart loop. */
5420 map = map_first;
5421 }
5422 }
5423 }
5424#endif
5425
5426#undef SEGMENT_END
5427#undef SECTION_SIZE
5428#undef IS_CONTAINED_BY_VMA
5429#undef IS_CONTAINED_BY_LMA
5430#undef IS_COREFILE_NOTE
5431#undef IS_SOLARIS_PT_INTERP
5432#undef INCLUDE_SECTION_IN_SEGMENT
5433#undef SEGMENT_AFTER_SEGMENT
5434#undef SEGMENT_OVERLAPS
5435 return TRUE;
5436}
5437
5438/* Copy private section information. This copies over the entsize
5439 field, and sometimes the info field. */
5440
5441bfd_boolean
5442_bfd_elf_copy_private_section_data (bfd *ibfd,
5443 asection *isec,
5444 bfd *obfd,
5445 asection *osec)
5446{
5447 Elf_Internal_Shdr *ihdr, *ohdr;
5448
5449 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5450 || obfd->xvec->flavour != bfd_target_elf_flavour)
5451 return TRUE;
5452
5453 ihdr = &elf_section_data (isec)->this_hdr;
5454 ohdr = &elf_section_data (osec)->this_hdr;
5455
5456 ohdr->sh_entsize = ihdr->sh_entsize;
5457
5458 if (ihdr->sh_type == SHT_SYMTAB
5459 || ihdr->sh_type == SHT_DYNSYM
5460 || ihdr->sh_type == SHT_GNU_verneed
5461 || ihdr->sh_type == SHT_GNU_verdef)
5462 ohdr->sh_info = ihdr->sh_info;
5463
5464 /* Set things up for objcopy. The output SHT_GROUP section will
5465 have its elf_next_in_group pointing back to the input group
5466 members. */
5467 elf_next_in_group (osec) = elf_next_in_group (isec);
5468 elf_group_name (osec) = elf_group_name (isec);
5469
5470 osec->use_rela_p = isec->use_rela_p;
5471
5472 return TRUE;
5473}
5474
5475/* Copy private header information. */
5476
5477bfd_boolean
5478_bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5479{
5480 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5481 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5482 return TRUE;
5483
5484 /* Copy over private BFD data if it has not already been copied.
5485 This must be done here, rather than in the copy_private_bfd_data
5486 entry point, because the latter is called after the section
5487 contents have been set, which means that the program headers have
5488 already been worked out. */
5489 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5490 {
5491 if (! copy_private_bfd_data (ibfd, obfd))
5492 return FALSE;
5493 }
5494
5495 return TRUE;
5496}
5497
5498/* Copy private symbol information. If this symbol is in a section
5499 which we did not map into a BFD section, try to map the section
5500 index correctly. We use special macro definitions for the mapped
5501 section indices; these definitions are interpreted by the
5502 swap_out_syms function. */
5503
5504#define MAP_ONESYMTAB (SHN_HIOS + 1)
5505#define MAP_DYNSYMTAB (SHN_HIOS + 2)
5506#define MAP_STRTAB (SHN_HIOS + 3)
5507#define MAP_SHSTRTAB (SHN_HIOS + 4)
5508#define MAP_SYM_SHNDX (SHN_HIOS + 5)
5509
5510bfd_boolean
5511_bfd_elf_copy_private_symbol_data (bfd *ibfd,
5512 asymbol *isymarg,
5513 bfd *obfd,
5514 asymbol *osymarg)
5515{
5516 elf_symbol_type *isym, *osym;
5517
5518 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5519 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5520 return TRUE;
5521
5522 isym = elf_symbol_from (ibfd, isymarg);
5523 osym = elf_symbol_from (obfd, osymarg);
5524
5525 if (isym != NULL
5526 && osym != NULL
5527 && bfd_is_abs_section (isym->symbol.section))
5528 {
5529 unsigned int shndx;
5530
5531 shndx = isym->internal_elf_sym.st_shndx;
5532 if (shndx == elf_onesymtab (ibfd))
5533 shndx = MAP_ONESYMTAB;
5534 else if (shndx == elf_dynsymtab (ibfd))
5535 shndx = MAP_DYNSYMTAB;
5536 else if (shndx == elf_tdata (ibfd)->strtab_section)
5537 shndx = MAP_STRTAB;
5538 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5539 shndx = MAP_SHSTRTAB;
5540 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5541 shndx = MAP_SYM_SHNDX;
5542 osym->internal_elf_sym.st_shndx = shndx;
5543 }
5544
5545 return TRUE;
5546}
5547
5548/* Swap out the symbols. */
5549
5550static bfd_boolean
5551swap_out_syms (bfd *abfd,
5552 struct bfd_strtab_hash **sttp,
5553 int relocatable_p)
5554{
5555 const struct elf_backend_data *bed;
5556 int symcount;
5557 asymbol **syms;
5558 struct bfd_strtab_hash *stt;
5559 Elf_Internal_Shdr *symtab_hdr;
5560 Elf_Internal_Shdr *symtab_shndx_hdr;
5561 Elf_Internal_Shdr *symstrtab_hdr;
5562 char *outbound_syms;
5563 char *outbound_shndx;
5564 int idx;
5565 bfd_size_type amt;
5566 bfd_boolean name_local_sections;
5567
5568 if (!elf_map_symbols (abfd))
5569 return FALSE;
5570
5571 /* Dump out the symtabs. */
5572 stt = _bfd_elf_stringtab_init ();
5573 if (stt == NULL)
5574 return FALSE;
5575
5576 bed = get_elf_backend_data (abfd);
5577 symcount = bfd_get_symcount (abfd);
5578 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5579 symtab_hdr->sh_type = SHT_SYMTAB;
5580 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5581 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5582 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5583 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5584
5585 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5586 symstrtab_hdr->sh_type = SHT_STRTAB;
5587
5588 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5589 outbound_syms = bfd_alloc (abfd, amt);
5590 if (outbound_syms == NULL)
5591 {
5592 _bfd_stringtab_free (stt);
5593 return FALSE;
5594 }
5595 symtab_hdr->contents = outbound_syms;
5596
5597 outbound_shndx = NULL;
5598 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5599 if (symtab_shndx_hdr->sh_name != 0)
5600 {
5601 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5602 outbound_shndx = bfd_zalloc (abfd, amt);
5603 if (outbound_shndx == NULL)
5604 {
5605 _bfd_stringtab_free (stt);
5606 return FALSE;
5607 }
5608
5609 symtab_shndx_hdr->contents = outbound_shndx;
5610 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5611 symtab_shndx_hdr->sh_size = amt;
5612 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5613 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5614 }
5615
5616 /* Now generate the data (for "contents"). */
5617 {
5618 /* Fill in zeroth symbol and swap it out. */
5619 Elf_Internal_Sym sym;
5620 sym.st_name = 0;
5621 sym.st_value = 0;
5622 sym.st_size = 0;
5623 sym.st_info = 0;
5624 sym.st_other = 0;
5625 sym.st_shndx = SHN_UNDEF;
5626 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5627 outbound_syms += bed->s->sizeof_sym;
5628 if (outbound_shndx != NULL)
5629 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5630 }
5631
5632 name_local_sections
5633 = (bed->elf_backend_name_local_section_symbols
5634 && bed->elf_backend_name_local_section_symbols (abfd));
5635
5636 syms = bfd_get_outsymbols (abfd);
5637 for (idx = 0; idx < symcount; idx++)
5638 {
5639 Elf_Internal_Sym sym;
5640 bfd_vma value = syms[idx]->value;
5641 elf_symbol_type *type_ptr;
5642 flagword flags = syms[idx]->flags;
5643 int type;
5644
5645 if (!name_local_sections
5646 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5647 {
5648 /* Local section symbols have no name. */
5649 sym.st_name = 0;
5650 }
5651 else
5652 {
5653 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5654 syms[idx]->name,
5655 TRUE, FALSE);
5656 if (sym.st_name == (unsigned long) -1)
5657 {
5658 _bfd_stringtab_free (stt);
5659 return FALSE;
5660 }
5661 }
5662
5663 type_ptr = elf_symbol_from (abfd, syms[idx]);
5664
5665 if ((flags & BSF_SECTION_SYM) == 0
5666 && bfd_is_com_section (syms[idx]->section))
5667 {
5668 /* ELF common symbols put the alignment into the `value' field,
5669 and the size into the `size' field. This is backwards from
5670 how BFD handles it, so reverse it here. */
5671 sym.st_size = value;
5672 if (type_ptr == NULL
5673 || type_ptr->internal_elf_sym.st_value == 0)
5674 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5675 else
5676 sym.st_value = type_ptr->internal_elf_sym.st_value;
5677 sym.st_shndx = _bfd_elf_section_from_bfd_section
5678 (abfd, syms[idx]->section);
5679 }
5680 else
5681 {
5682 asection *sec = syms[idx]->section;
5683 int shndx;
5684
5685 if (sec->output_section)
5686 {
5687 value += sec->output_offset;
5688 sec = sec->output_section;
5689 }
5690
5691 /* Don't add in the section vma for relocatable output. */
5692 if (! relocatable_p)
5693 value += sec->vma;
5694 sym.st_value = value;
5695 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5696
5697 if (bfd_is_abs_section (sec)
5698 && type_ptr != NULL
5699 && type_ptr->internal_elf_sym.st_shndx != 0)
5700 {
5701 /* This symbol is in a real ELF section which we did
5702 not create as a BFD section. Undo the mapping done
5703 by copy_private_symbol_data. */
5704 shndx = type_ptr->internal_elf_sym.st_shndx;
5705 switch (shndx)
5706 {
5707 case MAP_ONESYMTAB:
5708 shndx = elf_onesymtab (abfd);
5709 break;
5710 case MAP_DYNSYMTAB:
5711 shndx = elf_dynsymtab (abfd);
5712 break;
5713 case MAP_STRTAB:
5714 shndx = elf_tdata (abfd)->strtab_section;
5715 break;
5716 case MAP_SHSTRTAB:
5717 shndx = elf_tdata (abfd)->shstrtab_section;
5718 break;
5719 case MAP_SYM_SHNDX:
5720 shndx = elf_tdata (abfd)->symtab_shndx_section;
5721 break;
5722 default:
5723 break;
5724 }
5725 }
5726 else
5727 {
5728 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5729
5730 if (shndx == -1)
5731 {
5732 asection *sec2;
5733
5734 /* Writing this would be a hell of a lot easier if
5735 we had some decent documentation on bfd, and
5736 knew what to expect of the library, and what to
5737 demand of applications. For example, it
5738 appears that `objcopy' might not set the
5739 section of a symbol to be a section that is
5740 actually in the output file. */
5741 sec2 = bfd_get_section_by_name (abfd, sec->name);
5742 if (sec2 == NULL)
5743 {
5744 _bfd_error_handler (_("\
5745Unable to find equivalent output section for symbol '%s' from section '%s'"),
5746 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5747 sec->name);
5748 bfd_set_error (bfd_error_invalid_operation);
5749 _bfd_stringtab_free (stt);
5750 return FALSE;
5751 }
5752
5753 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5754 BFD_ASSERT (shndx != -1);
5755 }
5756 }
5757
5758 sym.st_shndx = shndx;
5759 }
5760
5761 if ((flags & BSF_THREAD_LOCAL) != 0)
5762 type = STT_TLS;
5763 else if ((flags & BSF_FUNCTION) != 0)
5764 type = STT_FUNC;
5765 else if ((flags & BSF_OBJECT) != 0)
5766 type = STT_OBJECT;
5767 else
5768 type = STT_NOTYPE;
5769
5770 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5771 type = STT_TLS;
5772
5773 /* Processor-specific types. */
5774 if (type_ptr != NULL
5775 && bed->elf_backend_get_symbol_type)
5776 type = ((*bed->elf_backend_get_symbol_type)
5777 (&type_ptr->internal_elf_sym, type));
5778
5779 if (flags & BSF_SECTION_SYM)
5780 {
5781 if (flags & BSF_GLOBAL)
5782 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5783 else
5784 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5785 }
5786 else if (bfd_is_com_section (syms[idx]->section))
5787 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5788 else if (bfd_is_und_section (syms[idx]->section))
5789 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5790 ? STB_WEAK
5791 : STB_GLOBAL),
5792 type);
5793 else if (flags & BSF_FILE)
5794 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5795 else
5796 {
5797 int bind = STB_LOCAL;
5798
5799 if (flags & BSF_LOCAL)
5800 bind = STB_LOCAL;
5801 else if (flags & BSF_WEAK)
5802 bind = STB_WEAK;
5803 else if (flags & BSF_GLOBAL)
5804 bind = STB_GLOBAL;
5805
5806 sym.st_info = ELF_ST_INFO (bind, type);
5807 }
5808
5809 if (type_ptr != NULL)
5810 sym.st_other = type_ptr->internal_elf_sym.st_other;
5811 else
5812 sym.st_other = 0;
5813
5814 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5815 outbound_syms += bed->s->sizeof_sym;
5816 if (outbound_shndx != NULL)
5817 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5818 }
5819
5820 *sttp = stt;
5821 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5822 symstrtab_hdr->sh_type = SHT_STRTAB;
5823
5824 symstrtab_hdr->sh_flags = 0;
5825 symstrtab_hdr->sh_addr = 0;
5826 symstrtab_hdr->sh_entsize = 0;
5827 symstrtab_hdr->sh_link = 0;
5828 symstrtab_hdr->sh_info = 0;
5829 symstrtab_hdr->sh_addralign = 1;
5830
5831 return TRUE;
5832}
5833
5834/* Return the number of bytes required to hold the symtab vector.
5835
5836 Note that we base it on the count plus 1, since we will null terminate
5837 the vector allocated based on this size. However, the ELF symbol table
5838 always has a dummy entry as symbol #0, so it ends up even. */
5839
5840long
5841_bfd_elf_get_symtab_upper_bound (bfd *abfd)
5842{
5843 long symcount;
5844 long symtab_size;
5845 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5846
5847 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5848 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5849 if (symcount > 0)
5850 symtab_size -= sizeof (asymbol *);
5851
5852 return symtab_size;
5853}
5854
5855long
5856_bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5857{
5858 long symcount;
5859 long symtab_size;
5860 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5861
5862 if (elf_dynsymtab (abfd) == 0)
5863 {
5864 bfd_set_error (bfd_error_invalid_operation);
5865 return -1;
5866 }
5867
5868 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5869 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5870 if (symcount > 0)
5871 symtab_size -= sizeof (asymbol *);
5872
5873 return symtab_size;
5874}
5875
5876long
5877_bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5878 sec_ptr asect)
5879{
5880 return (asect->reloc_count + 1) * sizeof (arelent *);
5881}
5882
5883/* Canonicalize the relocs. */
5884
5885long
5886_bfd_elf_canonicalize_reloc (bfd *abfd,
5887 sec_ptr section,
5888 arelent **relptr,
5889 asymbol **symbols)
5890{
5891 arelent *tblptr;
5892 unsigned int i;
5893 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5894
5895 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5896 return -1;
5897
5898 tblptr = section->relocation;
5899 for (i = 0; i < section->reloc_count; i++)
5900 *relptr++ = tblptr++;
5901
5902 *relptr = NULL;
5903
5904 return section->reloc_count;
5905}
5906
5907long
5908_bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5909{
5910 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5911 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5912
5913 if (symcount >= 0)
5914 bfd_get_symcount (abfd) = symcount;
5915 return symcount;
5916}
5917
5918long
5919_bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5920 asymbol **allocation)
5921{
5922 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5923 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5924
5925 if (symcount >= 0)
5926 bfd_get_dynamic_symcount (abfd) = symcount;
5927 return symcount;
5928}
5929
5930/* Return the size required for the dynamic reloc entries. Any
5931 section that was actually installed in the BFD, and has type
5932 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5933 considered to be a dynamic reloc section. */
5934
5935long
5936_bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5937{
5938 long ret;
5939 asection *s;
5940
5941 if (elf_dynsymtab (abfd) == 0)
5942 {
5943 bfd_set_error (bfd_error_invalid_operation);
5944 return -1;
5945 }
5946
5947 ret = sizeof (arelent *);
5948 for (s = abfd->sections; s != NULL; s = s->next)
5949 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5950 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5951 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5952 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
5953 * sizeof (arelent *));
5954
5955 return ret;
5956}
5957
5958/* Canonicalize the dynamic relocation entries. Note that we return
5959 the dynamic relocations as a single block, although they are
5960 actually associated with particular sections; the interface, which
5961 was designed for SunOS style shared libraries, expects that there
5962 is only one set of dynamic relocs. Any section that was actually
5963 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5964 the dynamic symbol table, is considered to be a dynamic reloc
5965 section. */
5966
5967long
5968_bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
5969 arelent **storage,
5970 asymbol **syms)
5971{
5972 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5973 asection *s;
5974 long ret;
5975
5976 if (elf_dynsymtab (abfd) == 0)
5977 {
5978 bfd_set_error (bfd_error_invalid_operation);
5979 return -1;
5980 }
5981
5982 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5983 ret = 0;
5984 for (s = abfd->sections; s != NULL; s = s->next)
5985 {
5986 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5987 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5988 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5989 {
5990 arelent *p;
5991 long count, i;
5992
5993 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
5994 return -1;
5995 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
5996 p = s->relocation;
5997 for (i = 0; i < count; i++)
5998 *storage++ = p++;
5999 ret += count;
6000 }
6001 }
6002
6003 *storage = NULL;
6004
6005 return ret;
6006}
6007\f
6008/* Read in the version information. */
6009
6010bfd_boolean
6011_bfd_elf_slurp_version_tables (bfd *abfd)
6012{
6013 bfd_byte *contents = NULL;
6014 bfd_size_type amt;
6015
6016 if (elf_dynverdef (abfd) != 0)
6017 {
6018 Elf_Internal_Shdr *hdr;
6019 Elf_External_Verdef *everdef;
6020 Elf_Internal_Verdef *iverdef;
6021 Elf_Internal_Verdef *iverdefarr;
6022 Elf_Internal_Verdef iverdefmem;
6023 unsigned int i;
6024 unsigned int maxidx;
6025
6026 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6027
6028 contents = bfd_malloc (hdr->sh_size);
6029 if (contents == NULL)
6030 goto error_return;
6031 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6032 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6033 goto error_return;
6034
6035 /* We know the number of entries in the section but not the maximum
6036 index. Therefore we have to run through all entries and find
6037 the maximum. */
6038 everdef = (Elf_External_Verdef *) contents;
6039 maxidx = 0;
6040 for (i = 0; i < hdr->sh_info; ++i)
6041 {
6042 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6043
6044 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6045 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6046
6047 everdef = ((Elf_External_Verdef *)
6048 ((bfd_byte *) everdef + iverdefmem.vd_next));
6049 }
6050
6051 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
6052 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6053 if (elf_tdata (abfd)->verdef == NULL)
6054 goto error_return;
6055
6056 elf_tdata (abfd)->cverdefs = maxidx;
6057
6058 everdef = (Elf_External_Verdef *) contents;
6059 iverdefarr = elf_tdata (abfd)->verdef;
6060 for (i = 0; i < hdr->sh_info; i++)
6061 {
6062 Elf_External_Verdaux *everdaux;
6063 Elf_Internal_Verdaux *iverdaux;
6064 unsigned int j;
6065
6066 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6067
6068 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6069 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6070
6071 iverdef->vd_bfd = abfd;
6072
6073 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
6074 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6075 if (iverdef->vd_auxptr == NULL)
6076 goto error_return;
6077
6078 everdaux = ((Elf_External_Verdaux *)
6079 ((bfd_byte *) everdef + iverdef->vd_aux));
6080 iverdaux = iverdef->vd_auxptr;
6081 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6082 {
6083 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6084
6085 iverdaux->vda_nodename =
6086 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6087 iverdaux->vda_name);
6088 if (iverdaux->vda_nodename == NULL)
6089 goto error_return;
6090
6091 if (j + 1 < iverdef->vd_cnt)
6092 iverdaux->vda_nextptr = iverdaux + 1;
6093 else
6094 iverdaux->vda_nextptr = NULL;
6095
6096 everdaux = ((Elf_External_Verdaux *)
6097 ((bfd_byte *) everdaux + iverdaux->vda_next));
6098 }
6099
6100 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6101
6102 if (i + 1 < hdr->sh_info)
6103 iverdef->vd_nextdef = iverdef + 1;
6104 else
6105 iverdef->vd_nextdef = NULL;
6106
6107 everdef = ((Elf_External_Verdef *)
6108 ((bfd_byte *) everdef + iverdef->vd_next));
6109 }
6110
6111 free (contents);
6112 contents = NULL;
6113 }
6114
6115 if (elf_dynverref (abfd) != 0)
6116 {
6117 Elf_Internal_Shdr *hdr;
6118 Elf_External_Verneed *everneed;
6119 Elf_Internal_Verneed *iverneed;
6120 unsigned int i;
6121
6122 hdr = &elf_tdata (abfd)->dynverref_hdr;
6123
6124 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
6125 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
6126 if (elf_tdata (abfd)->verref == NULL)
6127 goto error_return;
6128
6129 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6130
6131 contents = bfd_malloc (hdr->sh_size);
6132 if (contents == NULL)
6133 goto error_return;
6134 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6135 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6136 goto error_return;
6137
6138 everneed = (Elf_External_Verneed *) contents;
6139 iverneed = elf_tdata (abfd)->verref;
6140 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6141 {
6142 Elf_External_Vernaux *evernaux;
6143 Elf_Internal_Vernaux *ivernaux;
6144 unsigned int j;
6145
6146 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6147
6148 iverneed->vn_bfd = abfd;
6149
6150 iverneed->vn_filename =
6151 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6152 iverneed->vn_file);
6153 if (iverneed->vn_filename == NULL)
6154 goto error_return;
6155
6156 amt = iverneed->vn_cnt;
6157 amt *= sizeof (Elf_Internal_Vernaux);
6158 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
6159
6160 evernaux = ((Elf_External_Vernaux *)
6161 ((bfd_byte *) everneed + iverneed->vn_aux));
6162 ivernaux = iverneed->vn_auxptr;
6163 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6164 {
6165 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6166
6167 ivernaux->vna_nodename =
6168 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6169 ivernaux->vna_name);
6170 if (ivernaux->vna_nodename == NULL)
6171 goto error_return;
6172
6173 if (j + 1 < iverneed->vn_cnt)
6174 ivernaux->vna_nextptr = ivernaux + 1;
6175 else
6176 ivernaux->vna_nextptr = NULL;
6177
6178 evernaux = ((Elf_External_Vernaux *)
6179 ((bfd_byte *) evernaux + ivernaux->vna_next));
6180 }
6181
6182 if (i + 1 < hdr->sh_info)
6183 iverneed->vn_nextref = iverneed + 1;
6184 else
6185 iverneed->vn_nextref = NULL;
6186
6187 everneed = ((Elf_External_Verneed *)
6188 ((bfd_byte *) everneed + iverneed->vn_next));
6189 }
6190
6191 free (contents);
6192 contents = NULL;
6193 }
6194
6195 return TRUE;
6196
6197 error_return:
6198 if (contents != NULL)
6199 free (contents);
6200 return FALSE;
6201}
6202\f
6203asymbol *
6204_bfd_elf_make_empty_symbol (bfd *abfd)
6205{
6206 elf_symbol_type *newsym;
6207 bfd_size_type amt = sizeof (elf_symbol_type);
6208
6209 newsym = bfd_zalloc (abfd, amt);
6210 if (!newsym)
6211 return NULL;
6212 else
6213 {
6214 newsym->symbol.the_bfd = abfd;
6215 return &newsym->symbol;
6216 }
6217}
6218
6219void
6220_bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6221 asymbol *symbol,
6222 symbol_info *ret)
6223{
6224 bfd_symbol_info (symbol, ret);
6225}
6226
6227/* Return whether a symbol name implies a local symbol. Most targets
6228 use this function for the is_local_label_name entry point, but some
6229 override it. */
6230
6231bfd_boolean
6232_bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6233 const char *name)
6234{
6235 /* Normal local symbols start with ``.L''. */
6236 if (name[0] == '.' && name[1] == 'L')
6237 return TRUE;
6238
6239 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6240 DWARF debugging symbols starting with ``..''. */
6241 if (name[0] == '.' && name[1] == '.')
6242 return TRUE;
6243
6244 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6245 emitting DWARF debugging output. I suspect this is actually a
6246 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6247 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6248 underscore to be emitted on some ELF targets). For ease of use,
6249 we treat such symbols as local. */
6250 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6251 return TRUE;
6252
6253 return FALSE;
6254}
6255
6256alent *
6257_bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6258 asymbol *symbol ATTRIBUTE_UNUSED)
6259{
6260 abort ();
6261 return NULL;
6262}
6263
6264bfd_boolean
6265_bfd_elf_set_arch_mach (bfd *abfd,
6266 enum bfd_architecture arch,
6267 unsigned long machine)
6268{
6269 /* If this isn't the right architecture for this backend, and this
6270 isn't the generic backend, fail. */
6271 if (arch != get_elf_backend_data (abfd)->arch
6272 && arch != bfd_arch_unknown
6273 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6274 return FALSE;
6275
6276 return bfd_default_set_arch_mach (abfd, arch, machine);
6277}
6278
6279/* Find the function to a particular section and offset,
6280 for error reporting. */
6281
6282static bfd_boolean
6283elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6284 asection *section,
6285 asymbol **symbols,
6286 bfd_vma offset,
6287 const char **filename_ptr,
6288 const char **functionname_ptr)
6289{
6290 const char *filename;
6291 asymbol *func;
6292 bfd_vma low_func;
6293 asymbol **p;
6294
6295 filename = NULL;
6296 func = NULL;
6297 low_func = 0;
6298
6299 for (p = symbols; *p != NULL; p++)
6300 {
6301 elf_symbol_type *q;
6302
6303 q = (elf_symbol_type *) *p;
6304
6305 if (bfd_get_section (&q->symbol) != section)
6306 continue;
6307
6308 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6309 {
6310 default:
6311 break;
6312 case STT_FILE:
6313 filename = bfd_asymbol_name (&q->symbol);
6314 break;
6315 case STT_NOTYPE:
6316 case STT_FUNC:
6317 if (q->symbol.section == section
6318 && q->symbol.value >= low_func
6319 && q->symbol.value <= offset)
6320 {
6321 func = (asymbol *) q;
6322 low_func = q->symbol.value;
6323 }
6324 break;
6325 }
6326 }
6327
6328 if (func == NULL)
6329 return FALSE;
6330
6331 if (filename_ptr)
6332 *filename_ptr = filename;
6333 if (functionname_ptr)
6334 *functionname_ptr = bfd_asymbol_name (func);
6335
6336 return TRUE;
6337}
6338
6339/* Find the nearest line to a particular section and offset,
6340 for error reporting. */
6341
6342bfd_boolean
6343_bfd_elf_find_nearest_line (bfd *abfd,
6344 asection *section,
6345 asymbol **symbols,
6346 bfd_vma offset,
6347 const char **filename_ptr,
6348 const char **functionname_ptr,
6349 unsigned int *line_ptr)
6350{
6351 bfd_boolean found;
6352
6353 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6354 filename_ptr, functionname_ptr,
6355 line_ptr))
6356 {
6357 if (!*functionname_ptr)
6358 elf_find_function (abfd, section, symbols, offset,
6359 *filename_ptr ? NULL : filename_ptr,
6360 functionname_ptr);
6361
6362 return TRUE;
6363 }
6364
6365 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6366 filename_ptr, functionname_ptr,
6367 line_ptr, 0,
6368 &elf_tdata (abfd)->dwarf2_find_line_info))
6369 {
6370 if (!*functionname_ptr)
6371 elf_find_function (abfd, section, symbols, offset,
6372 *filename_ptr ? NULL : filename_ptr,
6373 functionname_ptr);
6374
6375 return TRUE;
6376 }
6377
6378 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6379 &found, filename_ptr,
6380 functionname_ptr, line_ptr,
6381 &elf_tdata (abfd)->line_info))
6382 return FALSE;
6383 if (found && (*functionname_ptr || *line_ptr))
6384 return TRUE;
6385
6386 if (symbols == NULL)
6387 return FALSE;
6388
6389 if (! elf_find_function (abfd, section, symbols, offset,
6390 filename_ptr, functionname_ptr))
6391 return FALSE;
6392
6393 *line_ptr = 0;
6394 return TRUE;
6395}
6396
6397int
6398_bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6399{
6400 int ret;
6401
6402 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6403 if (! reloc)
6404 ret += get_program_header_size (abfd);
6405 return ret;
6406}
6407
6408bfd_boolean
6409_bfd_elf_set_section_contents (bfd *abfd,
6410 sec_ptr section,
6411 const void *location,
6412 file_ptr offset,
6413 bfd_size_type count)
6414{
6415 Elf_Internal_Shdr *hdr;
6416 bfd_signed_vma pos;
6417
6418 if (! abfd->output_has_begun
6419 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6420 return FALSE;
6421
6422 hdr = &elf_section_data (section)->this_hdr;
6423 pos = hdr->sh_offset + offset;
6424 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6425 || bfd_bwrite (location, count, abfd) != count)
6426 return FALSE;
6427
6428 return TRUE;
6429}
6430
6431void
6432_bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6433 arelent *cache_ptr ATTRIBUTE_UNUSED,
6434 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6435{
6436 abort ();
6437}
6438
6439/* Try to convert a non-ELF reloc into an ELF one. */
6440
6441bfd_boolean
6442_bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6443{
6444 /* Check whether we really have an ELF howto. */
6445
6446 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6447 {
6448 bfd_reloc_code_real_type code;
6449 reloc_howto_type *howto;
6450
6451 /* Alien reloc: Try to determine its type to replace it with an
6452 equivalent ELF reloc. */
6453
6454 if (areloc->howto->pc_relative)
6455 {
6456 switch (areloc->howto->bitsize)
6457 {
6458 case 8:
6459 code = BFD_RELOC_8_PCREL;
6460 break;
6461 case 12:
6462 code = BFD_RELOC_12_PCREL;
6463 break;
6464 case 16:
6465 code = BFD_RELOC_16_PCREL;
6466 break;
6467 case 24:
6468 code = BFD_RELOC_24_PCREL;
6469 break;
6470 case 32:
6471 code = BFD_RELOC_32_PCREL;
6472 break;
6473 case 64:
6474 code = BFD_RELOC_64_PCREL;
6475 break;
6476 default:
6477 goto fail;
6478 }
6479
6480 howto = bfd_reloc_type_lookup (abfd, code);
6481
6482 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6483 {
6484 if (howto->pcrel_offset)
6485 areloc->addend += areloc->address;
6486 else
6487 areloc->addend -= areloc->address; /* addend is unsigned!! */
6488 }
6489 }
6490 else
6491 {
6492 switch (areloc->howto->bitsize)
6493 {
6494 case 8:
6495 code = BFD_RELOC_8;
6496 break;
6497 case 14:
6498 code = BFD_RELOC_14;
6499 break;
6500 case 16:
6501 code = BFD_RELOC_16;
6502 break;
6503 case 26:
6504 code = BFD_RELOC_26;
6505 break;
6506 case 32:
6507 code = BFD_RELOC_32;
6508 break;
6509 case 64:
6510 code = BFD_RELOC_64;
6511 break;
6512 default:
6513 goto fail;
6514 }
6515
6516 howto = bfd_reloc_type_lookup (abfd, code);
6517 }
6518
6519 if (howto)
6520 areloc->howto = howto;
6521 else
6522 goto fail;
6523 }
6524
6525 return TRUE;
6526
6527 fail:
6528 (*_bfd_error_handler)
6529 (_("%B: unsupported relocation type %s"),
6530 abfd, areloc->howto->name);
6531 bfd_set_error (bfd_error_bad_value);
6532 return FALSE;
6533}
6534
6535bfd_boolean
6536_bfd_elf_close_and_cleanup (bfd *abfd)
6537{
6538 if (bfd_get_format (abfd) == bfd_object)
6539 {
6540 if (elf_shstrtab (abfd) != NULL)
6541 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6542 }
6543
6544 return _bfd_generic_close_and_cleanup (abfd);
6545}
6546
6547/* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6548 in the relocation's offset. Thus we cannot allow any sort of sanity
6549 range-checking to interfere. There is nothing else to do in processing
6550 this reloc. */
6551
6552bfd_reloc_status_type
6553_bfd_elf_rel_vtable_reloc_fn
6554 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6555 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6556 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6557 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6558{
6559 return bfd_reloc_ok;
6560}
6561\f
6562/* Elf core file support. Much of this only works on native
6563 toolchains, since we rely on knowing the
6564 machine-dependent procfs structure in order to pick
6565 out details about the corefile. */
6566
6567#ifdef HAVE_SYS_PROCFS_H
6568# include <sys/procfs.h>
6569#endif
6570
6571/* FIXME: this is kinda wrong, but it's what gdb wants. */
6572
6573static int
6574elfcore_make_pid (bfd *abfd)
6575{
6576 return ((elf_tdata (abfd)->core_lwpid << 16)
6577 + (elf_tdata (abfd)->core_pid));
6578}
6579
6580/* If there isn't a section called NAME, make one, using
6581 data from SECT. Note, this function will generate a
6582 reference to NAME, so you shouldn't deallocate or
6583 overwrite it. */
6584
6585static bfd_boolean
6586elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6587{
6588 asection *sect2;
6589
6590 if (bfd_get_section_by_name (abfd, name) != NULL)
6591 return TRUE;
6592
6593 sect2 = bfd_make_section (abfd, name);
6594 if (sect2 == NULL)
6595 return FALSE;
6596
6597 sect2->size = sect->size;
6598 sect2->filepos = sect->filepos;
6599 sect2->flags = sect->flags;
6600 sect2->alignment_power = sect->alignment_power;
6601 return TRUE;
6602}
6603
6604/* Create a pseudosection containing SIZE bytes at FILEPOS. This
6605 actually creates up to two pseudosections:
6606 - For the single-threaded case, a section named NAME, unless
6607 such a section already exists.
6608 - For the multi-threaded case, a section named "NAME/PID", where
6609 PID is elfcore_make_pid (abfd).
6610 Both pseudosections have identical contents. */
6611bfd_boolean
6612_bfd_elfcore_make_pseudosection (bfd *abfd,
6613 char *name,
6614 size_t size,
6615 ufile_ptr filepos)
6616{
6617 char buf[100];
6618 char *threaded_name;
6619 size_t len;
6620 asection *sect;
6621
6622 /* Build the section name. */
6623
6624 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6625 len = strlen (buf) + 1;
6626 threaded_name = bfd_alloc (abfd, len);
6627 if (threaded_name == NULL)
6628 return FALSE;
6629 memcpy (threaded_name, buf, len);
6630
6631 sect = bfd_make_section_anyway (abfd, threaded_name);
6632 if (sect == NULL)
6633 return FALSE;
6634 sect->size = size;
6635 sect->filepos = filepos;
6636 sect->flags = SEC_HAS_CONTENTS;
6637 sect->alignment_power = 2;
6638
6639 return elfcore_maybe_make_sect (abfd, name, sect);
6640}
6641
6642/* prstatus_t exists on:
6643 solaris 2.5+
6644 linux 2.[01] + glibc
6645 unixware 4.2
6646*/
6647
6648#if defined (HAVE_PRSTATUS_T)
6649
6650static bfd_boolean
6651elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6652{
6653 size_t size;
6654 int offset;
6655
6656 if (note->descsz == sizeof (prstatus_t))
6657 {
6658 prstatus_t prstat;
6659
6660 size = sizeof (prstat.pr_reg);
6661 offset = offsetof (prstatus_t, pr_reg);
6662 memcpy (&prstat, note->descdata, sizeof (prstat));
6663
6664 /* Do not overwrite the core signal if it
6665 has already been set by another thread. */
6666 if (elf_tdata (abfd)->core_signal == 0)
6667 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6668 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6669
6670 /* pr_who exists on:
6671 solaris 2.5+
6672 unixware 4.2
6673 pr_who doesn't exist on:
6674 linux 2.[01]
6675 */
6676#if defined (HAVE_PRSTATUS_T_PR_WHO)
6677 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6678#endif
6679 }
6680#if defined (HAVE_PRSTATUS32_T)
6681 else if (note->descsz == sizeof (prstatus32_t))
6682 {
6683 /* 64-bit host, 32-bit corefile */
6684 prstatus32_t prstat;
6685
6686 size = sizeof (prstat.pr_reg);
6687 offset = offsetof (prstatus32_t, pr_reg);
6688 memcpy (&prstat, note->descdata, sizeof (prstat));
6689
6690 /* Do not overwrite the core signal if it
6691 has already been set by another thread. */
6692 if (elf_tdata (abfd)->core_signal == 0)
6693 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6694 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6695
6696 /* pr_who exists on:
6697 solaris 2.5+
6698 unixware 4.2
6699 pr_who doesn't exist on:
6700 linux 2.[01]
6701 */
6702#if defined (HAVE_PRSTATUS32_T_PR_WHO)
6703 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6704#endif
6705 }
6706#endif /* HAVE_PRSTATUS32_T */
6707 else
6708 {
6709 /* Fail - we don't know how to handle any other
6710 note size (ie. data object type). */
6711 return TRUE;
6712 }
6713
6714 /* Make a ".reg/999" section and a ".reg" section. */
6715 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6716 size, note->descpos + offset);
6717}
6718#endif /* defined (HAVE_PRSTATUS_T) */
6719
6720/* Create a pseudosection containing the exact contents of NOTE. */
6721static bfd_boolean
6722elfcore_make_note_pseudosection (bfd *abfd,
6723 char *name,
6724 Elf_Internal_Note *note)
6725{
6726 return _bfd_elfcore_make_pseudosection (abfd, name,
6727 note->descsz, note->descpos);
6728}
6729
6730/* There isn't a consistent prfpregset_t across platforms,
6731 but it doesn't matter, because we don't have to pick this
6732 data structure apart. */
6733
6734static bfd_boolean
6735elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6736{
6737 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6738}
6739
6740/* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6741 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6742 literally. */
6743
6744static bfd_boolean
6745elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6746{
6747 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6748}
6749
6750#if defined (HAVE_PRPSINFO_T)
6751typedef prpsinfo_t elfcore_psinfo_t;
6752#if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6753typedef prpsinfo32_t elfcore_psinfo32_t;
6754#endif
6755#endif
6756
6757#if defined (HAVE_PSINFO_T)
6758typedef psinfo_t elfcore_psinfo_t;
6759#if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6760typedef psinfo32_t elfcore_psinfo32_t;
6761#endif
6762#endif
6763
6764/* return a malloc'ed copy of a string at START which is at
6765 most MAX bytes long, possibly without a terminating '\0'.
6766 the copy will always have a terminating '\0'. */
6767
6768char *
6769_bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6770{
6771 char *dups;
6772 char *end = memchr (start, '\0', max);
6773 size_t len;
6774
6775 if (end == NULL)
6776 len = max;
6777 else
6778 len = end - start;
6779
6780 dups = bfd_alloc (abfd, len + 1);
6781 if (dups == NULL)
6782 return NULL;
6783
6784 memcpy (dups, start, len);
6785 dups[len] = '\0';
6786
6787 return dups;
6788}
6789
6790#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6791static bfd_boolean
6792elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6793{
6794 if (note->descsz == sizeof (elfcore_psinfo_t))
6795 {
6796 elfcore_psinfo_t psinfo;
6797
6798 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6799
6800 elf_tdata (abfd)->core_program
6801 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6802 sizeof (psinfo.pr_fname));
6803
6804 elf_tdata (abfd)->core_command
6805 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6806 sizeof (psinfo.pr_psargs));
6807 }
6808#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6809 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6810 {
6811 /* 64-bit host, 32-bit corefile */
6812 elfcore_psinfo32_t psinfo;
6813
6814 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6815
6816 elf_tdata (abfd)->core_program
6817 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6818 sizeof (psinfo.pr_fname));
6819
6820 elf_tdata (abfd)->core_command
6821 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6822 sizeof (psinfo.pr_psargs));
6823 }
6824#endif
6825
6826 else
6827 {
6828 /* Fail - we don't know how to handle any other
6829 note size (ie. data object type). */
6830 return TRUE;
6831 }
6832
6833 /* Note that for some reason, a spurious space is tacked
6834 onto the end of the args in some (at least one anyway)
6835 implementations, so strip it off if it exists. */
6836
6837 {
6838 char *command = elf_tdata (abfd)->core_command;
6839 int n = strlen (command);
6840
6841 if (0 < n && command[n - 1] == ' ')
6842 command[n - 1] = '\0';
6843 }
6844
6845 return TRUE;
6846}
6847#endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6848
6849#if defined (HAVE_PSTATUS_T)
6850static bfd_boolean
6851elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6852{
6853 if (note->descsz == sizeof (pstatus_t)
6854#if defined (HAVE_PXSTATUS_T)
6855 || note->descsz == sizeof (pxstatus_t)
6856#endif
6857 )
6858 {
6859 pstatus_t pstat;
6860
6861 memcpy (&pstat, note->descdata, sizeof (pstat));
6862
6863 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6864 }
6865#if defined (HAVE_PSTATUS32_T)
6866 else if (note->descsz == sizeof (pstatus32_t))
6867 {
6868 /* 64-bit host, 32-bit corefile */
6869 pstatus32_t pstat;
6870
6871 memcpy (&pstat, note->descdata, sizeof (pstat));
6872
6873 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6874 }
6875#endif
6876 /* Could grab some more details from the "representative"
6877 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6878 NT_LWPSTATUS note, presumably. */
6879
6880 return TRUE;
6881}
6882#endif /* defined (HAVE_PSTATUS_T) */
6883
6884#if defined (HAVE_LWPSTATUS_T)
6885static bfd_boolean
6886elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6887{
6888 lwpstatus_t lwpstat;
6889 char buf[100];
6890 char *name;
6891 size_t len;
6892 asection *sect;
6893
6894 if (note->descsz != sizeof (lwpstat)
6895#if defined (HAVE_LWPXSTATUS_T)
6896 && note->descsz != sizeof (lwpxstatus_t)
6897#endif
6898 )
6899 return TRUE;
6900
6901 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6902
6903 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6904 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6905
6906 /* Make a ".reg/999" section. */
6907
6908 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6909 len = strlen (buf) + 1;
6910 name = bfd_alloc (abfd, len);
6911 if (name == NULL)
6912 return FALSE;
6913 memcpy (name, buf, len);
6914
6915 sect = bfd_make_section_anyway (abfd, name);
6916 if (sect == NULL)
6917 return FALSE;
6918
6919#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6920 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6921 sect->filepos = note->descpos
6922 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6923#endif
6924
6925#if defined (HAVE_LWPSTATUS_T_PR_REG)
6926 sect->size = sizeof (lwpstat.pr_reg);
6927 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6928#endif
6929
6930 sect->flags = SEC_HAS_CONTENTS;
6931 sect->alignment_power = 2;
6932
6933 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6934 return FALSE;
6935
6936 /* Make a ".reg2/999" section */
6937
6938 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6939 len = strlen (buf) + 1;
6940 name = bfd_alloc (abfd, len);
6941 if (name == NULL)
6942 return FALSE;
6943 memcpy (name, buf, len);
6944
6945 sect = bfd_make_section_anyway (abfd, name);
6946 if (sect == NULL)
6947 return FALSE;
6948
6949#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6950 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6951 sect->filepos = note->descpos
6952 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6953#endif
6954
6955#if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6956 sect->size = sizeof (lwpstat.pr_fpreg);
6957 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6958#endif
6959
6960 sect->flags = SEC_HAS_CONTENTS;
6961 sect->alignment_power = 2;
6962
6963 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6964}
6965#endif /* defined (HAVE_LWPSTATUS_T) */
6966
6967#if defined (HAVE_WIN32_PSTATUS_T)
6968static bfd_boolean
6969elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
6970{
6971 char buf[30];
6972 char *name;
6973 size_t len;
6974 asection *sect;
6975 win32_pstatus_t pstatus;
6976
6977 if (note->descsz < sizeof (pstatus))
6978 return TRUE;
6979
6980 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6981
6982 switch (pstatus.data_type)
6983 {
6984 case NOTE_INFO_PROCESS:
6985 /* FIXME: need to add ->core_command. */
6986 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6987 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6988 break;
6989
6990 case NOTE_INFO_THREAD:
6991 /* Make a ".reg/999" section. */
6992 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6993
6994 len = strlen (buf) + 1;
6995 name = bfd_alloc (abfd, len);
6996 if (name == NULL)
6997 return FALSE;
6998
6999 memcpy (name, buf, len);
7000
7001 sect = bfd_make_section_anyway (abfd, name);
7002 if (sect == NULL)
7003 return FALSE;
7004
7005 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7006 sect->filepos = (note->descpos
7007 + offsetof (struct win32_pstatus,
7008 data.thread_info.thread_context));
7009 sect->flags = SEC_HAS_CONTENTS;
7010 sect->alignment_power = 2;
7011
7012 if (pstatus.data.thread_info.is_active_thread)
7013 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7014 return FALSE;
7015 break;
7016
7017 case NOTE_INFO_MODULE:
7018 /* Make a ".module/xxxxxxxx" section. */
7019 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
7020
7021 len = strlen (buf) + 1;
7022 name = bfd_alloc (abfd, len);
7023 if (name == NULL)
7024 return FALSE;
7025
7026 memcpy (name, buf, len);
7027
7028 sect = bfd_make_section_anyway (abfd, name);
7029
7030 if (sect == NULL)
7031 return FALSE;
7032
7033 sect->size = note->descsz;
7034 sect->filepos = note->descpos;
7035 sect->flags = SEC_HAS_CONTENTS;
7036 sect->alignment_power = 2;
7037 break;
7038
7039 default:
7040 return TRUE;
7041 }
7042
7043 return TRUE;
7044}
7045#endif /* HAVE_WIN32_PSTATUS_T */
7046
7047static bfd_boolean
7048elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7049{
7050 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7051
7052 switch (note->type)
7053 {
7054 default:
7055 return TRUE;
7056
7057 case NT_PRSTATUS:
7058 if (bed->elf_backend_grok_prstatus)
7059 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7060 return TRUE;
7061#if defined (HAVE_PRSTATUS_T)
7062 return elfcore_grok_prstatus (abfd, note);
7063#else
7064 return TRUE;
7065#endif
7066
7067#if defined (HAVE_PSTATUS_T)
7068 case NT_PSTATUS:
7069 return elfcore_grok_pstatus (abfd, note);
7070#endif
7071
7072#if defined (HAVE_LWPSTATUS_T)
7073 case NT_LWPSTATUS:
7074 return elfcore_grok_lwpstatus (abfd, note);
7075#endif
7076
7077 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7078 return elfcore_grok_prfpreg (abfd, note);
7079
7080#if defined (HAVE_WIN32_PSTATUS_T)
7081 case NT_WIN32PSTATUS:
7082 return elfcore_grok_win32pstatus (abfd, note);
7083#endif
7084
7085 case NT_PRXFPREG: /* Linux SSE extension */
7086 if (note->namesz == 6
7087 && strcmp (note->namedata, "LINUX") == 0)
7088 return elfcore_grok_prxfpreg (abfd, note);
7089 else
7090 return TRUE;
7091
7092 case NT_PRPSINFO:
7093 case NT_PSINFO:
7094 if (bed->elf_backend_grok_psinfo)
7095 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7096 return TRUE;
7097#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7098 return elfcore_grok_psinfo (abfd, note);
7099#else
7100 return TRUE;
7101#endif
7102
7103 case NT_AUXV:
7104 {
7105 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7106
7107 if (sect == NULL)
7108 return FALSE;
7109 sect->size = note->descsz;
7110 sect->filepos = note->descpos;
7111 sect->flags = SEC_HAS_CONTENTS;
7112 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7113
7114 return TRUE;
7115 }
7116 }
7117}
7118
7119static bfd_boolean
7120elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7121{
7122 char *cp;
7123
7124 cp = strchr (note->namedata, '@');
7125 if (cp != NULL)
7126 {
7127 *lwpidp = atoi(cp + 1);
7128 return TRUE;
7129 }
7130 return FALSE;
7131}
7132
7133static bfd_boolean
7134elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7135{
7136
7137 /* Signal number at offset 0x08. */
7138 elf_tdata (abfd)->core_signal
7139 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7140
7141 /* Process ID at offset 0x50. */
7142 elf_tdata (abfd)->core_pid
7143 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7144
7145 /* Command name at 0x7c (max 32 bytes, including nul). */
7146 elf_tdata (abfd)->core_command
7147 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7148
7149 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7150 note);
7151}
7152
7153static bfd_boolean
7154elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7155{
7156 int lwp;
7157
7158 if (elfcore_netbsd_get_lwpid (note, &lwp))
7159 elf_tdata (abfd)->core_lwpid = lwp;
7160
7161 if (note->type == NT_NETBSDCORE_PROCINFO)
7162 {
7163 /* NetBSD-specific core "procinfo". Note that we expect to
7164 find this note before any of the others, which is fine,
7165 since the kernel writes this note out first when it
7166 creates a core file. */
7167
7168 return elfcore_grok_netbsd_procinfo (abfd, note);
7169 }
7170
7171 /* As of Jan 2002 there are no other machine-independent notes
7172 defined for NetBSD core files. If the note type is less
7173 than the start of the machine-dependent note types, we don't
7174 understand it. */
7175
7176 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7177 return TRUE;
7178
7179
7180 switch (bfd_get_arch (abfd))
7181 {
7182 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7183 PT_GETFPREGS == mach+2. */
7184
7185 case bfd_arch_alpha:
7186 case bfd_arch_sparc:
7187 switch (note->type)
7188 {
7189 case NT_NETBSDCORE_FIRSTMACH+0:
7190 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7191
7192 case NT_NETBSDCORE_FIRSTMACH+2:
7193 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7194
7195 default:
7196 return TRUE;
7197 }
7198
7199 /* On all other arch's, PT_GETREGS == mach+1 and
7200 PT_GETFPREGS == mach+3. */
7201
7202 default:
7203 switch (note->type)
7204 {
7205 case NT_NETBSDCORE_FIRSTMACH+1:
7206 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7207
7208 case NT_NETBSDCORE_FIRSTMACH+3:
7209 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7210
7211 default:
7212 return TRUE;
7213 }
7214 }
7215 /* NOTREACHED */
7216}
7217
7218static bfd_boolean
7219elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7220{
7221 void *ddata = note->descdata;
7222 char buf[100];
7223 char *name;
7224 asection *sect;
7225 short sig;
7226 unsigned flags;
7227
7228 /* nto_procfs_status 'pid' field is at offset 0. */
7229 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7230
7231 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7232 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7233
7234 /* nto_procfs_status 'flags' field is at offset 8. */
7235 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7236
7237 /* nto_procfs_status 'what' field is at offset 14. */
7238 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7239 {
7240 elf_tdata (abfd)->core_signal = sig;
7241 elf_tdata (abfd)->core_lwpid = *tid;
7242 }
7243
7244 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7245 do not come from signals so we make sure we set the current
7246 thread just in case. */
7247 if (flags & 0x00000080)
7248 elf_tdata (abfd)->core_lwpid = *tid;
7249
7250 /* Make a ".qnx_core_status/%d" section. */
7251 sprintf (buf, ".qnx_core_status/%d", *tid);
7252
7253 name = bfd_alloc (abfd, strlen (buf) + 1);
7254 if (name == NULL)
7255 return FALSE;
7256 strcpy (name, buf);
7257
7258 sect = bfd_make_section_anyway (abfd, name);
7259 if (sect == NULL)
7260 return FALSE;
7261
7262 sect->size = note->descsz;
7263 sect->filepos = note->descpos;
7264 sect->flags = SEC_HAS_CONTENTS;
7265 sect->alignment_power = 2;
7266
7267 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7268}
7269
7270static bfd_boolean
7271elfcore_grok_nto_gregs (bfd *abfd, Elf_Internal_Note *note, pid_t tid)
7272{
7273 char buf[100];
7274 char *name;
7275 asection *sect;
7276
7277 /* Make a ".reg/%d" section. */
7278 sprintf (buf, ".reg/%d", tid);
7279
7280 name = bfd_alloc (abfd, strlen (buf) + 1);
7281 if (name == NULL)
7282 return FALSE;
7283 strcpy (name, buf);
7284
7285 sect = bfd_make_section_anyway (abfd, name);
7286 if (sect == NULL)
7287 return FALSE;
7288
7289 sect->size = note->descsz;
7290 sect->filepos = note->descpos;
7291 sect->flags = SEC_HAS_CONTENTS;
7292 sect->alignment_power = 2;
7293
7294 /* This is the current thread. */
7295 if (elf_tdata (abfd)->core_lwpid == tid)
7296 return elfcore_maybe_make_sect (abfd, ".reg", sect);
7297
7298 return TRUE;
7299}
7300
7301#define BFD_QNT_CORE_INFO 7
7302#define BFD_QNT_CORE_STATUS 8
7303#define BFD_QNT_CORE_GREG 9
7304#define BFD_QNT_CORE_FPREG 10
7305
7306static bfd_boolean
7307elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7308{
7309 /* Every GREG section has a STATUS section before it. Store the
7310 tid from the previous call to pass down to the next gregs
7311 function. */
7312 static pid_t tid = 1;
7313
7314 switch (note->type)
7315 {
7316 case BFD_QNT_CORE_INFO: return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7317 case BFD_QNT_CORE_STATUS: return elfcore_grok_nto_status (abfd, note, &tid);
7318 case BFD_QNT_CORE_GREG: return elfcore_grok_nto_gregs (abfd, note, tid);
7319 case BFD_QNT_CORE_FPREG: return elfcore_grok_prfpreg (abfd, note);
7320 default: return TRUE;
7321 }
7322}
7323
7324/* Function: elfcore_write_note
7325
7326 Inputs:
7327 buffer to hold note
7328 name of note
7329 type of note
7330 data for note
7331 size of data for note
7332
7333 Return:
7334 End of buffer containing note. */
7335
7336char *
7337elfcore_write_note (bfd *abfd,
7338 char *buf,
7339 int *bufsiz,
7340 const char *name,
7341 int type,
7342 const void *input,
7343 int size)
7344{
7345 Elf_External_Note *xnp;
7346 size_t namesz;
7347 size_t pad;
7348 size_t newspace;
7349 char *p, *dest;
7350
7351 namesz = 0;
7352 pad = 0;
7353 if (name != NULL)
7354 {
7355 const struct elf_backend_data *bed;
7356
7357 namesz = strlen (name) + 1;
7358 bed = get_elf_backend_data (abfd);
7359 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7360 }
7361
7362 newspace = 12 + namesz + pad + size;
7363
7364 p = realloc (buf, *bufsiz + newspace);
7365 dest = p + *bufsiz;
7366 *bufsiz += newspace;
7367 xnp = (Elf_External_Note *) dest;
7368 H_PUT_32 (abfd, namesz, xnp->namesz);
7369 H_PUT_32 (abfd, size, xnp->descsz);
7370 H_PUT_32 (abfd, type, xnp->type);
7371 dest = xnp->name;
7372 if (name != NULL)
7373 {
7374 memcpy (dest, name, namesz);
7375 dest += namesz;
7376 while (pad != 0)
7377 {
7378 *dest++ = '\0';
7379 --pad;
7380 }
7381 }
7382 memcpy (dest, input, size);
7383 return p;
7384}
7385
7386#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7387char *
7388elfcore_write_prpsinfo (bfd *abfd,
7389 char *buf,
7390 int *bufsiz,
7391 const char *fname,
7392 const char *psargs)
7393{
7394 int note_type;
7395 char *note_name = "CORE";
7396
7397#if defined (HAVE_PSINFO_T)
7398 psinfo_t data;
7399 note_type = NT_PSINFO;
7400#else
7401 prpsinfo_t data;
7402 note_type = NT_PRPSINFO;
7403#endif
7404
7405 memset (&data, 0, sizeof (data));
7406 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7407 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7408 return elfcore_write_note (abfd, buf, bufsiz,
7409 note_name, note_type, &data, sizeof (data));
7410}
7411#endif /* PSINFO_T or PRPSINFO_T */
7412
7413#if defined (HAVE_PRSTATUS_T)
7414char *
7415elfcore_write_prstatus (bfd *abfd,
7416 char *buf,
7417 int *bufsiz,
7418 long pid,
7419 int cursig,
7420 const void *gregs)
7421{
7422 prstatus_t prstat;
7423 char *note_name = "CORE";
7424
7425 memset (&prstat, 0, sizeof (prstat));
7426 prstat.pr_pid = pid;
7427 prstat.pr_cursig = cursig;
7428 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7429 return elfcore_write_note (abfd, buf, bufsiz,
7430 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7431}
7432#endif /* HAVE_PRSTATUS_T */
7433
7434#if defined (HAVE_LWPSTATUS_T)
7435char *
7436elfcore_write_lwpstatus (bfd *abfd,
7437 char *buf,
7438 int *bufsiz,
7439 long pid,
7440 int cursig,
7441 const void *gregs)
7442{
7443 lwpstatus_t lwpstat;
7444 char *note_name = "CORE";
7445
7446 memset (&lwpstat, 0, sizeof (lwpstat));
7447 lwpstat.pr_lwpid = pid >> 16;
7448 lwpstat.pr_cursig = cursig;
7449#if defined (HAVE_LWPSTATUS_T_PR_REG)
7450 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7451#elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7452#if !defined(gregs)
7453 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7454 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7455#else
7456 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7457 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7458#endif
7459#endif
7460 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7461 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7462}
7463#endif /* HAVE_LWPSTATUS_T */
7464
7465#if defined (HAVE_PSTATUS_T)
7466char *
7467elfcore_write_pstatus (bfd *abfd,
7468 char *buf,
7469 int *bufsiz,
7470 long pid,
7471 int cursig,
7472 const void *gregs)
7473{
7474 pstatus_t pstat;
7475 char *note_name = "CORE";
7476
7477 memset (&pstat, 0, sizeof (pstat));
7478 pstat.pr_pid = pid & 0xffff;
7479 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7480 NT_PSTATUS, &pstat, sizeof (pstat));
7481 return buf;
7482}
7483#endif /* HAVE_PSTATUS_T */
7484
7485char *
7486elfcore_write_prfpreg (bfd *abfd,
7487 char *buf,
7488 int *bufsiz,
7489 const void *fpregs,
7490 int size)
7491{
7492 char *note_name = "CORE";
7493 return elfcore_write_note (abfd, buf, bufsiz,
7494 note_name, NT_FPREGSET, fpregs, size);
7495}
7496
7497char *
7498elfcore_write_prxfpreg (bfd *abfd,
7499 char *buf,
7500 int *bufsiz,
7501 const void *xfpregs,
7502 int size)
7503{
7504 char *note_name = "LINUX";
7505 return elfcore_write_note (abfd, buf, bufsiz,
7506 note_name, NT_PRXFPREG, xfpregs, size);
7507}
7508
7509static bfd_boolean
7510elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7511{
7512 char *buf;
7513 char *p;
7514
7515 if (size <= 0)
7516 return TRUE;
7517
7518 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7519 return FALSE;
7520
7521 buf = bfd_malloc (size);
7522 if (buf == NULL)
7523 return FALSE;
7524
7525 if (bfd_bread (buf, size, abfd) != size)
7526 {
7527 error:
7528 free (buf);
7529 return FALSE;
7530 }
7531
7532 p = buf;
7533 while (p < buf + size)
7534 {
7535 /* FIXME: bad alignment assumption. */
7536 Elf_External_Note *xnp = (Elf_External_Note *) p;
7537 Elf_Internal_Note in;
7538
7539 in.type = H_GET_32 (abfd, xnp->type);
7540
7541 in.namesz = H_GET_32 (abfd, xnp->namesz);
7542 in.namedata = xnp->name;
7543
7544 in.descsz = H_GET_32 (abfd, xnp->descsz);
7545 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7546 in.descpos = offset + (in.descdata - buf);
7547
7548 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7549 {
7550 if (! elfcore_grok_netbsd_note (abfd, &in))
7551 goto error;
7552 }
7553 else if (strncmp (in.namedata, "QNX", 3) == 0)
7554 {
7555 if (! elfcore_grok_nto_note (abfd, &in))
7556 goto error;
7557 }
7558 else
7559 {
7560 if (! elfcore_grok_note (abfd, &in))
7561 goto error;
7562 }
7563
7564 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7565 }
7566
7567 free (buf);
7568 return TRUE;
7569}
7570\f
7571/* Providing external access to the ELF program header table. */
7572
7573/* Return an upper bound on the number of bytes required to store a
7574 copy of ABFD's program header table entries. Return -1 if an error
7575 occurs; bfd_get_error will return an appropriate code. */
7576
7577long
7578bfd_get_elf_phdr_upper_bound (bfd *abfd)
7579{
7580 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7581 {
7582 bfd_set_error (bfd_error_wrong_format);
7583 return -1;
7584 }
7585
7586 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7587}
7588
7589/* Copy ABFD's program header table entries to *PHDRS. The entries
7590 will be stored as an array of Elf_Internal_Phdr structures, as
7591 defined in include/elf/internal.h. To find out how large the
7592 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7593
7594 Return the number of program header table entries read, or -1 if an
7595 error occurs; bfd_get_error will return an appropriate code. */
7596
7597int
7598bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7599{
7600 int num_phdrs;
7601
7602 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7603 {
7604 bfd_set_error (bfd_error_wrong_format);
7605 return -1;
7606 }
7607
7608 num_phdrs = elf_elfheader (abfd)->e_phnum;
7609 memcpy (phdrs, elf_tdata (abfd)->phdr,
7610 num_phdrs * sizeof (Elf_Internal_Phdr));
7611
7612 return num_phdrs;
7613}
7614
7615void
7616_bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7617{
7618#ifdef BFD64
7619 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7620
7621 i_ehdrp = elf_elfheader (abfd);
7622 if (i_ehdrp == NULL)
7623 sprintf_vma (buf, value);
7624 else
7625 {
7626 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7627 {
7628#if BFD_HOST_64BIT_LONG
7629 sprintf (buf, "%016lx", value);
7630#else
7631 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7632 _bfd_int64_low (value));
7633#endif
7634 }
7635 else
7636 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7637 }
7638#else
7639 sprintf_vma (buf, value);
7640#endif
7641}
7642
7643void
7644_bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7645{
7646#ifdef BFD64
7647 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7648
7649 i_ehdrp = elf_elfheader (abfd);
7650 if (i_ehdrp == NULL)
7651 fprintf_vma ((FILE *) stream, value);
7652 else
7653 {
7654 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7655 {
7656#if BFD_HOST_64BIT_LONG
7657 fprintf ((FILE *) stream, "%016lx", value);
7658#else
7659 fprintf ((FILE *) stream, "%08lx%08lx",
7660 _bfd_int64_high (value), _bfd_int64_low (value));
7661#endif
7662 }
7663 else
7664 fprintf ((FILE *) stream, "%08lx",
7665 (unsigned long) (value & 0xffffffff));
7666 }
7667#else
7668 fprintf_vma ((FILE *) stream, value);
7669#endif
7670}
7671
7672enum elf_reloc_type_class
7673_bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7674{
7675 return reloc_class_normal;
7676}
7677
7678/* For RELA architectures, return the relocation value for a
7679 relocation against a local symbol. */
7680
7681bfd_vma
7682_bfd_elf_rela_local_sym (bfd *abfd,
7683 Elf_Internal_Sym *sym,
7684 asection **psec,
7685 Elf_Internal_Rela *rel)
7686{
7687 asection *sec = *psec;
7688 bfd_vma relocation;
7689
7690 relocation = (sec->output_section->vma
7691 + sec->output_offset
7692 + sym->st_value);
7693 if ((sec->flags & SEC_MERGE)
7694 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7695 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7696 {
7697 rel->r_addend =
7698 _bfd_merged_section_offset (abfd, psec,
7699 elf_section_data (sec)->sec_info,
7700 sym->st_value + rel->r_addend);
7701 if (sec != *psec)
7702 {
7703 /* If we have changed the section, and our original section is
7704 marked with SEC_EXCLUDE, it means that the original
7705 SEC_MERGE section has been completely subsumed in some
7706 other SEC_MERGE section. In this case, we need to leave
7707 some info around for --emit-relocs. */
7708 if ((sec->flags & SEC_EXCLUDE) != 0)
7709 sec->kept_section = *psec;
7710 sec = *psec;
7711 }
7712 rel->r_addend -= relocation;
7713 rel->r_addend += sec->output_section->vma + sec->output_offset;
7714 }
7715 return relocation;
7716}
7717
7718bfd_vma
7719_bfd_elf_rel_local_sym (bfd *abfd,
7720 Elf_Internal_Sym *sym,
7721 asection **psec,
7722 bfd_vma addend)
7723{
7724 asection *sec = *psec;
7725
7726 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7727 return sym->st_value + addend;
7728
7729 return _bfd_merged_section_offset (abfd, psec,
7730 elf_section_data (sec)->sec_info,
7731 sym->st_value + addend);
7732}
7733
7734bfd_vma
7735_bfd_elf_section_offset (bfd *abfd,
7736 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7737 asection *sec,
7738 bfd_vma offset)
7739{
7740 switch (sec->sec_info_type)
7741 {
7742 case ELF_INFO_TYPE_STABS:
7743 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
7744 offset);
7745 case ELF_INFO_TYPE_EH_FRAME:
7746 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7747 default:
7748 return offset;
7749 }
7750}
7751\f
7752/* Create a new BFD as if by bfd_openr. Rather than opening a file,
7753 reconstruct an ELF file by reading the segments out of remote memory
7754 based on the ELF file header at EHDR_VMA and the ELF program headers it
7755 points to. If not null, *LOADBASEP is filled in with the difference
7756 between the VMAs from which the segments were read, and the VMAs the
7757 file headers (and hence BFD's idea of each section's VMA) put them at.
7758
7759 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7760 remote memory at target address VMA into the local buffer at MYADDR; it
7761 should return zero on success or an `errno' code on failure. TEMPL must
7762 be a BFD for an ELF target with the word size and byte order found in
7763 the remote memory. */
7764
7765bfd *
7766bfd_elf_bfd_from_remote_memory
7767 (bfd *templ,
7768 bfd_vma ehdr_vma,
7769 bfd_vma *loadbasep,
7770 int (*target_read_memory) (bfd_vma, char *, int))
7771{
7772 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7773 (templ, ehdr_vma, loadbasep, target_read_memory);
7774}
7775\f
7776long
7777_bfd_elf_get_synthetic_symtab (bfd *abfd,
7778 long symcount ATTRIBUTE_UNUSED,
7779 asymbol **syms ATTRIBUTE_UNUSED,
7780 long dynsymcount ATTRIBUTE_UNUSED,
7781 asymbol **dynsyms,
7782 asymbol **ret)
7783{
7784 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7785 asection *relplt;
7786 asymbol *s;
7787 const char *relplt_name;
7788 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7789 arelent *p;
7790 long count, i, n;
7791 size_t size;
7792 Elf_Internal_Shdr *hdr;
7793 char *names;
7794 asection *plt;
7795
7796 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
7797 return 0;
7798
7799 *ret = NULL;
7800 if (!bed->plt_sym_val)
7801 return 0;
7802
7803 relplt_name = bed->relplt_name;
7804 if (relplt_name == NULL)
7805 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
7806 relplt = bfd_get_section_by_name (abfd, relplt_name);
7807 if (relplt == NULL)
7808 return 0;
7809
7810 hdr = &elf_section_data (relplt)->this_hdr;
7811 if (hdr->sh_link != elf_dynsymtab (abfd)
7812 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
7813 return 0;
7814
7815 plt = bfd_get_section_by_name (abfd, ".plt");
7816 if (plt == NULL)
7817 return 0;
7818
7819 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7820 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
7821 return -1;
7822
7823 count = relplt->size / hdr->sh_entsize;
7824 size = count * sizeof (asymbol);
7825 p = relplt->relocation;
7826 for (i = 0; i < count; i++, s++, p++)
7827 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
7828
7829 s = *ret = bfd_malloc (size);
7830 if (s == NULL)
7831 return -1;
7832
7833 names = (char *) (s + count);
7834 p = relplt->relocation;
7835 n = 0;
7836 for (i = 0; i < count; i++, s++, p++)
7837 {
7838 size_t len;
7839 bfd_vma addr;
7840
7841 addr = bed->plt_sym_val (i, plt, p);
7842 if (addr == (bfd_vma) -1)
7843 continue;
7844
7845 *s = **p->sym_ptr_ptr;
7846 s->section = plt;
7847 s->value = addr - plt->vma;
7848 s->name = names;
7849 len = strlen ((*p->sym_ptr_ptr)->name);
7850 memcpy (names, (*p->sym_ptr_ptr)->name, len);
7851 names += len;
7852 memcpy (names, "@plt", sizeof ("@plt"));
7853 names += sizeof ("@plt");
7854 ++n;
7855 }
7856
7857 return n;
7858}
7859
7860/* Sort symbol by binding and section. We want to put definitions
7861 sorted by section at the beginning. */
7862
7863static int
7864elf_sort_elf_symbol (const void *arg1, const void *arg2)
7865{
7866 const Elf_Internal_Sym *s1;
7867 const Elf_Internal_Sym *s2;
7868 int shndx;
7869
7870 /* Make sure that undefined symbols are at the end. */
7871 s1 = (const Elf_Internal_Sym *) arg1;
7872 if (s1->st_shndx == SHN_UNDEF)
7873 return 1;
7874 s2 = (const Elf_Internal_Sym *) arg2;
7875 if (s2->st_shndx == SHN_UNDEF)
7876 return -1;
7877
7878 /* Sorted by section index. */
7879 shndx = s1->st_shndx - s2->st_shndx;
7880 if (shndx != 0)
7881 return shndx;
7882
7883 /* Sorted by binding. */
7884 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
7885}
7886
7887struct elf_symbol
7888{
7889 Elf_Internal_Sym *sym;
7890 const char *name;
7891};
7892
7893static int
7894elf_sym_name_compare (const void *arg1, const void *arg2)
7895{
7896 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7897 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7898 return strcmp (s1->name, s2->name);
7899}
7900
7901/* Check if 2 sections define the same set of local and global
7902 symbols. */
7903
7904bfd_boolean
7905bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
7906{
7907 bfd *bfd1, *bfd2;
7908 const struct elf_backend_data *bed1, *bed2;
7909 Elf_Internal_Shdr *hdr1, *hdr2;
7910 bfd_size_type symcount1, symcount2;
7911 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7912 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
7913 Elf_Internal_Sym *isymend;
7914 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
7915 bfd_size_type count1, count2, i;
7916 int shndx1, shndx2;
7917 bfd_boolean result;
7918
7919 bfd1 = sec1->owner;
7920 bfd2 = sec2->owner;
7921
7922 /* If both are .gnu.linkonce sections, they have to have the same
7923 section name. */
7924 if (strncmp (sec1->name, ".gnu.linkonce",
7925 sizeof ".gnu.linkonce" - 1) == 0
7926 && strncmp (sec2->name, ".gnu.linkonce",
7927 sizeof ".gnu.linkonce" - 1) == 0)
7928 return strcmp (sec1->name + sizeof ".gnu.linkonce",
7929 sec2->name + sizeof ".gnu.linkonce") == 0;
7930
7931 /* Both sections have to be in ELF. */
7932 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7933 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7934 return FALSE;
7935
7936 if (elf_section_type (sec1) != elf_section_type (sec2))
7937 return FALSE;
7938
7939 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
7940 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
7941 {
7942 /* If both are members of section groups, they have to have the
7943 same group name. */
7944 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
7945 return FALSE;
7946 }
7947
7948 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7949 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7950 if (shndx1 == -1 || shndx2 == -1)
7951 return FALSE;
7952
7953 bed1 = get_elf_backend_data (bfd1);
7954 bed2 = get_elf_backend_data (bfd2);
7955 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7956 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7957 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7958 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7959
7960 if (symcount1 == 0 || symcount2 == 0)
7961 return FALSE;
7962
7963 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7964 NULL, NULL, NULL);
7965 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7966 NULL, NULL, NULL);
7967
7968 result = FALSE;
7969 if (isymbuf1 == NULL || isymbuf2 == NULL)
7970 goto done;
7971
7972 /* Sort symbols by binding and section. Global definitions are at
7973 the beginning. */
7974 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
7975 elf_sort_elf_symbol);
7976 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
7977 elf_sort_elf_symbol);
7978
7979 /* Count definitions in the section. */
7980 count1 = 0;
7981 for (isym = isymbuf1, isymend = isym + symcount1;
7982 isym < isymend; isym++)
7983 {
7984 if (isym->st_shndx == (unsigned int) shndx1)
7985 {
7986 if (count1 == 0)
7987 isymstart1 = isym;
7988 count1++;
7989 }
7990
7991 if (count1 && isym->st_shndx != (unsigned int) shndx1)
7992 break;
7993 }
7994
7995 count2 = 0;
7996 for (isym = isymbuf2, isymend = isym + symcount2;
7997 isym < isymend; isym++)
7998 {
7999 if (isym->st_shndx == (unsigned int) shndx2)
8000 {
8001 if (count2 == 0)
8002 isymstart2 = isym;
8003 count2++;
8004 }
8005
8006 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8007 break;
8008 }
8009
8010 if (count1 == 0 || count2 == 0 || count1 != count2)
8011 goto done;
8012
8013 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8014 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8015
8016 if (symtable1 == NULL || symtable2 == NULL)
8017 goto done;
8018
8019 symp = symtable1;
8020 for (isym = isymstart1, isymend = isym + count1;
8021 isym < isymend; isym++)
8022 {
8023 symp->sym = isym;
8024 symp->name = bfd_elf_string_from_elf_section (bfd1,
8025 hdr1->sh_link,
8026 isym->st_name);
8027 symp++;
8028 }
8029
8030 symp = symtable2;
8031 for (isym = isymstart2, isymend = isym + count1;
8032 isym < isymend; isym++)
8033 {
8034 symp->sym = isym;
8035 symp->name = bfd_elf_string_from_elf_section (bfd2,
8036 hdr2->sh_link,
8037 isym->st_name);
8038 symp++;
8039 }
8040
8041 /* Sort symbol by name. */
8042 qsort (symtable1, count1, sizeof (struct elf_symbol),
8043 elf_sym_name_compare);
8044 qsort (symtable2, count1, sizeof (struct elf_symbol),
8045 elf_sym_name_compare);
8046
8047 for (i = 0; i < count1; i++)
8048 /* Two symbols must have the same binding, type and name. */
8049 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8050 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8051 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8052 goto done;
8053
8054 result = TRUE;
8055
8056done:
8057 if (symtable1)
8058 free (symtable1);
8059 if (symtable2)
8060 free (symtable2);
8061 if (isymbuf1)
8062 free (isymbuf1);
8063 if (isymbuf2)
8064 free (isymbuf2);
8065
8066 return result;
8067}