]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame_incremental - bfd/elf.c
bfd/
[thirdparty/binutils-gdb.git] / bfd / elf.c
... / ...
CommitLineData
1/* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22/*
23SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34/* For sparc64-cross-sparc32. */
35#define _SYSCALL32
36#include "bfd.h"
37#include "sysdep.h"
38#include "bfdlink.h"
39#include "libbfd.h"
40#define ARCH_SIZE 0
41#include "elf-bfd.h"
42#include "libiberty.h"
43
44static int elf_sort_sections (const void *, const void *);
45static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46static bfd_boolean prep_headers (bfd *);
47static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50/* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54/* Swap in a Verdef structure. */
55
56void
57_bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60{
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68}
69
70/* Swap out a Verdef structure. */
71
72void
73_bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76{
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84}
85
86/* Swap in a Verdaux structure. */
87
88void
89_bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92{
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95}
96
97/* Swap out a Verdaux structure. */
98
99void
100_bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103{
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106}
107
108/* Swap in a Verneed structure. */
109
110void
111_bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114{
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120}
121
122/* Swap out a Verneed structure. */
123
124void
125_bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128{
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134}
135
136/* Swap in a Vernaux structure. */
137
138void
139_bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142{
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148}
149
150/* Swap out a Vernaux structure. */
151
152void
153_bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156{
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162}
163
164/* Swap in a Versym structure. */
165
166void
167_bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170{
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172}
173
174/* Swap out a Versym structure. */
175
176void
177_bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180{
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182}
183
184/* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187unsigned long
188bfd_elf_hash (const char *namearg)
189{
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207}
208
209/* DT_GNU_HASH hash function. Do not change this function; you will
210 cause invalid hash tables to be generated. */
211
212unsigned long
213bfd_elf_gnu_hash (const char *namearg)
214{
215 const unsigned char *name = (const unsigned char *) namearg;
216 unsigned long h = 5381;
217 unsigned char ch;
218
219 while ((ch = *name++) != '\0')
220 h = (h << 5) + h + ch;
221 return h & 0xffffffff;
222}
223
224bfd_boolean
225bfd_elf_mkobject (bfd *abfd)
226{
227 if (abfd->tdata.any == NULL)
228 {
229 abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
230 if (abfd->tdata.any == NULL)
231 return FALSE;
232 }
233
234 elf_tdata (abfd)->program_header_size = (bfd_size_type) -1;
235
236 return TRUE;
237}
238
239bfd_boolean
240bfd_elf_mkcorefile (bfd *abfd)
241{
242 /* I think this can be done just like an object file. */
243 return bfd_elf_mkobject (abfd);
244}
245
246char *
247bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
248{
249 Elf_Internal_Shdr **i_shdrp;
250 bfd_byte *shstrtab = NULL;
251 file_ptr offset;
252 bfd_size_type shstrtabsize;
253
254 i_shdrp = elf_elfsections (abfd);
255 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
256 return NULL;
257
258 shstrtab = i_shdrp[shindex]->contents;
259 if (shstrtab == NULL)
260 {
261 /* No cached one, attempt to read, and cache what we read. */
262 offset = i_shdrp[shindex]->sh_offset;
263 shstrtabsize = i_shdrp[shindex]->sh_size;
264
265 /* Allocate and clear an extra byte at the end, to prevent crashes
266 in case the string table is not terminated. */
267 if (shstrtabsize + 1 == 0
268 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
269 || bfd_seek (abfd, offset, SEEK_SET) != 0)
270 shstrtab = NULL;
271 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
272 {
273 if (bfd_get_error () != bfd_error_system_call)
274 bfd_set_error (bfd_error_file_truncated);
275 shstrtab = NULL;
276 }
277 else
278 shstrtab[shstrtabsize] = '\0';
279 i_shdrp[shindex]->contents = shstrtab;
280 }
281 return (char *) shstrtab;
282}
283
284char *
285bfd_elf_string_from_elf_section (bfd *abfd,
286 unsigned int shindex,
287 unsigned int strindex)
288{
289 Elf_Internal_Shdr *hdr;
290
291 if (strindex == 0)
292 return "";
293
294 hdr = elf_elfsections (abfd)[shindex];
295
296 if (hdr->contents == NULL
297 && bfd_elf_get_str_section (abfd, shindex) == NULL)
298 return NULL;
299
300 if (strindex >= hdr->sh_size)
301 {
302 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
303 (*_bfd_error_handler)
304 (_("%B: invalid string offset %u >= %lu for section `%s'"),
305 abfd, strindex, (unsigned long) hdr->sh_size,
306 (shindex == shstrndx && strindex == hdr->sh_name
307 ? ".shstrtab"
308 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
309 return "";
310 }
311
312 return ((char *) hdr->contents) + strindex;
313}
314
315/* Read and convert symbols to internal format.
316 SYMCOUNT specifies the number of symbols to read, starting from
317 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
318 are non-NULL, they are used to store the internal symbols, external
319 symbols, and symbol section index extensions, respectively. */
320
321Elf_Internal_Sym *
322bfd_elf_get_elf_syms (bfd *ibfd,
323 Elf_Internal_Shdr *symtab_hdr,
324 size_t symcount,
325 size_t symoffset,
326 Elf_Internal_Sym *intsym_buf,
327 void *extsym_buf,
328 Elf_External_Sym_Shndx *extshndx_buf)
329{
330 Elf_Internal_Shdr *shndx_hdr;
331 void *alloc_ext;
332 const bfd_byte *esym;
333 Elf_External_Sym_Shndx *alloc_extshndx;
334 Elf_External_Sym_Shndx *shndx;
335 Elf_Internal_Sym *isym;
336 Elf_Internal_Sym *isymend;
337 const struct elf_backend_data *bed;
338 size_t extsym_size;
339 bfd_size_type amt;
340 file_ptr pos;
341
342 if (symcount == 0)
343 return intsym_buf;
344
345 /* Normal syms might have section extension entries. */
346 shndx_hdr = NULL;
347 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
348 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
349
350 /* Read the symbols. */
351 alloc_ext = NULL;
352 alloc_extshndx = NULL;
353 bed = get_elf_backend_data (ibfd);
354 extsym_size = bed->s->sizeof_sym;
355 amt = symcount * extsym_size;
356 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
357 if (extsym_buf == NULL)
358 {
359 alloc_ext = bfd_malloc2 (symcount, extsym_size);
360 extsym_buf = alloc_ext;
361 }
362 if (extsym_buf == NULL
363 || bfd_seek (ibfd, pos, SEEK_SET) != 0
364 || bfd_bread (extsym_buf, amt, ibfd) != amt)
365 {
366 intsym_buf = NULL;
367 goto out;
368 }
369
370 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
371 extshndx_buf = NULL;
372 else
373 {
374 amt = symcount * sizeof (Elf_External_Sym_Shndx);
375 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
376 if (extshndx_buf == NULL)
377 {
378 alloc_extshndx = bfd_malloc2 (symcount,
379 sizeof (Elf_External_Sym_Shndx));
380 extshndx_buf = alloc_extshndx;
381 }
382 if (extshndx_buf == NULL
383 || bfd_seek (ibfd, pos, SEEK_SET) != 0
384 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
385 {
386 intsym_buf = NULL;
387 goto out;
388 }
389 }
390
391 if (intsym_buf == NULL)
392 {
393 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
394 if (intsym_buf == NULL)
395 goto out;
396 }
397
398 /* Convert the symbols to internal form. */
399 isymend = intsym_buf + symcount;
400 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
401 isym < isymend;
402 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
403 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
404 {
405 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
406 (*_bfd_error_handler) (_("%B symbol number %lu references "
407 "nonexistent SHT_SYMTAB_SHNDX section"),
408 ibfd, (unsigned long) symoffset);
409 intsym_buf = NULL;
410 goto out;
411 }
412
413 out:
414 if (alloc_ext != NULL)
415 free (alloc_ext);
416 if (alloc_extshndx != NULL)
417 free (alloc_extshndx);
418
419 return intsym_buf;
420}
421
422/* Look up a symbol name. */
423const char *
424bfd_elf_sym_name (bfd *abfd,
425 Elf_Internal_Shdr *symtab_hdr,
426 Elf_Internal_Sym *isym,
427 asection *sym_sec)
428{
429 const char *name;
430 unsigned int iname = isym->st_name;
431 unsigned int shindex = symtab_hdr->sh_link;
432
433 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
434 /* Check for a bogus st_shndx to avoid crashing. */
435 && isym->st_shndx < elf_numsections (abfd)
436 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
437 {
438 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
439 shindex = elf_elfheader (abfd)->e_shstrndx;
440 }
441
442 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
443 if (name == NULL)
444 name = "(null)";
445 else if (sym_sec && *name == '\0')
446 name = bfd_section_name (abfd, sym_sec);
447
448 return name;
449}
450
451/* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
452 sections. The first element is the flags, the rest are section
453 pointers. */
454
455typedef union elf_internal_group {
456 Elf_Internal_Shdr *shdr;
457 unsigned int flags;
458} Elf_Internal_Group;
459
460/* Return the name of the group signature symbol. Why isn't the
461 signature just a string? */
462
463static const char *
464group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
465{
466 Elf_Internal_Shdr *hdr;
467 unsigned char esym[sizeof (Elf64_External_Sym)];
468 Elf_External_Sym_Shndx eshndx;
469 Elf_Internal_Sym isym;
470
471 /* First we need to ensure the symbol table is available. Make sure
472 that it is a symbol table section. */
473 hdr = elf_elfsections (abfd) [ghdr->sh_link];
474 if (hdr->sh_type != SHT_SYMTAB
475 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
476 return NULL;
477
478 /* Go read the symbol. */
479 hdr = &elf_tdata (abfd)->symtab_hdr;
480 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
481 &isym, esym, &eshndx) == NULL)
482 return NULL;
483
484 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
485}
486
487/* Set next_in_group list pointer, and group name for NEWSECT. */
488
489static bfd_boolean
490setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
491{
492 unsigned int num_group = elf_tdata (abfd)->num_group;
493
494 /* If num_group is zero, read in all SHT_GROUP sections. The count
495 is set to -1 if there are no SHT_GROUP sections. */
496 if (num_group == 0)
497 {
498 unsigned int i, shnum;
499
500 /* First count the number of groups. If we have a SHT_GROUP
501 section with just a flag word (ie. sh_size is 4), ignore it. */
502 shnum = elf_numsections (abfd);
503 num_group = 0;
504 for (i = 0; i < shnum; i++)
505 {
506 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
507 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
508 num_group += 1;
509 }
510
511 if (num_group == 0)
512 {
513 num_group = (unsigned) -1;
514 elf_tdata (abfd)->num_group = num_group;
515 }
516 else
517 {
518 /* We keep a list of elf section headers for group sections,
519 so we can find them quickly. */
520 bfd_size_type amt;
521
522 elf_tdata (abfd)->num_group = num_group;
523 elf_tdata (abfd)->group_sect_ptr
524 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
525 if (elf_tdata (abfd)->group_sect_ptr == NULL)
526 return FALSE;
527
528 num_group = 0;
529 for (i = 0; i < shnum; i++)
530 {
531 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
532 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
533 {
534 unsigned char *src;
535 Elf_Internal_Group *dest;
536
537 /* Add to list of sections. */
538 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
539 num_group += 1;
540
541 /* Read the raw contents. */
542 BFD_ASSERT (sizeof (*dest) >= 4);
543 amt = shdr->sh_size * sizeof (*dest) / 4;
544 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
545 sizeof (*dest) / 4);
546 if (shdr->contents == NULL
547 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
548 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
549 != shdr->sh_size))
550 return FALSE;
551
552 /* Translate raw contents, a flag word followed by an
553 array of elf section indices all in target byte order,
554 to the flag word followed by an array of elf section
555 pointers. */
556 src = shdr->contents + shdr->sh_size;
557 dest = (Elf_Internal_Group *) (shdr->contents + amt);
558 while (1)
559 {
560 unsigned int idx;
561
562 src -= 4;
563 --dest;
564 idx = H_GET_32 (abfd, src);
565 if (src == shdr->contents)
566 {
567 dest->flags = idx;
568 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
569 shdr->bfd_section->flags
570 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
571 break;
572 }
573 if (idx >= shnum)
574 {
575 ((*_bfd_error_handler)
576 (_("%B: invalid SHT_GROUP entry"), abfd));
577 idx = 0;
578 }
579 dest->shdr = elf_elfsections (abfd)[idx];
580 }
581 }
582 }
583 }
584 }
585
586 if (num_group != (unsigned) -1)
587 {
588 unsigned int i;
589
590 for (i = 0; i < num_group; i++)
591 {
592 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
593 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
594 unsigned int n_elt = shdr->sh_size / 4;
595
596 /* Look through this group's sections to see if current
597 section is a member. */
598 while (--n_elt != 0)
599 if ((++idx)->shdr == hdr)
600 {
601 asection *s = NULL;
602
603 /* We are a member of this group. Go looking through
604 other members to see if any others are linked via
605 next_in_group. */
606 idx = (Elf_Internal_Group *) shdr->contents;
607 n_elt = shdr->sh_size / 4;
608 while (--n_elt != 0)
609 if ((s = (++idx)->shdr->bfd_section) != NULL
610 && elf_next_in_group (s) != NULL)
611 break;
612 if (n_elt != 0)
613 {
614 /* Snarf the group name from other member, and
615 insert current section in circular list. */
616 elf_group_name (newsect) = elf_group_name (s);
617 elf_next_in_group (newsect) = elf_next_in_group (s);
618 elf_next_in_group (s) = newsect;
619 }
620 else
621 {
622 const char *gname;
623
624 gname = group_signature (abfd, shdr);
625 if (gname == NULL)
626 return FALSE;
627 elf_group_name (newsect) = gname;
628
629 /* Start a circular list with one element. */
630 elf_next_in_group (newsect) = newsect;
631 }
632
633 /* If the group section has been created, point to the
634 new member. */
635 if (shdr->bfd_section != NULL)
636 elf_next_in_group (shdr->bfd_section) = newsect;
637
638 i = num_group - 1;
639 break;
640 }
641 }
642 }
643
644 if (elf_group_name (newsect) == NULL)
645 {
646 (*_bfd_error_handler) (_("%B: no group info for section %A"),
647 abfd, newsect);
648 }
649 return TRUE;
650}
651
652bfd_boolean
653_bfd_elf_setup_sections (bfd *abfd)
654{
655 unsigned int i;
656 unsigned int num_group = elf_tdata (abfd)->num_group;
657 bfd_boolean result = TRUE;
658 asection *s;
659
660 /* Process SHF_LINK_ORDER. */
661 for (s = abfd->sections; s != NULL; s = s->next)
662 {
663 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
664 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
665 {
666 unsigned int elfsec = this_hdr->sh_link;
667 /* FIXME: The old Intel compiler and old strip/objcopy may
668 not set the sh_link or sh_info fields. Hence we could
669 get the situation where elfsec is 0. */
670 if (elfsec == 0)
671 {
672 const struct elf_backend_data *bed
673 = get_elf_backend_data (abfd);
674 if (bed->link_order_error_handler)
675 bed->link_order_error_handler
676 (_("%B: warning: sh_link not set for section `%A'"),
677 abfd, s);
678 }
679 else
680 {
681 asection *link;
682
683 this_hdr = elf_elfsections (abfd)[elfsec];
684
685 /* PR 1991, 2008:
686 Some strip/objcopy may leave an incorrect value in
687 sh_link. We don't want to proceed. */
688 link = this_hdr->bfd_section;
689 if (link == NULL)
690 {
691 (*_bfd_error_handler)
692 (_("%B: sh_link [%d] in section `%A' is incorrect"),
693 s->owner, s, elfsec);
694 result = FALSE;
695 }
696
697 elf_linked_to_section (s) = link;
698 }
699 }
700 }
701
702 /* Process section groups. */
703 if (num_group == (unsigned) -1)
704 return result;
705
706 for (i = 0; i < num_group; i++)
707 {
708 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
709 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
710 unsigned int n_elt = shdr->sh_size / 4;
711
712 while (--n_elt != 0)
713 if ((++idx)->shdr->bfd_section)
714 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
715 else if (idx->shdr->sh_type == SHT_RELA
716 || idx->shdr->sh_type == SHT_REL)
717 /* We won't include relocation sections in section groups in
718 output object files. We adjust the group section size here
719 so that relocatable link will work correctly when
720 relocation sections are in section group in input object
721 files. */
722 shdr->bfd_section->size -= 4;
723 else
724 {
725 /* There are some unknown sections in the group. */
726 (*_bfd_error_handler)
727 (_("%B: unknown [%d] section `%s' in group [%s]"),
728 abfd,
729 (unsigned int) idx->shdr->sh_type,
730 bfd_elf_string_from_elf_section (abfd,
731 (elf_elfheader (abfd)
732 ->e_shstrndx),
733 idx->shdr->sh_name),
734 shdr->bfd_section->name);
735 result = FALSE;
736 }
737 }
738 return result;
739}
740
741bfd_boolean
742bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
743{
744 return elf_next_in_group (sec) != NULL;
745}
746
747/* Make a BFD section from an ELF section. We store a pointer to the
748 BFD section in the bfd_section field of the header. */
749
750bfd_boolean
751_bfd_elf_make_section_from_shdr (bfd *abfd,
752 Elf_Internal_Shdr *hdr,
753 const char *name,
754 int shindex)
755{
756 asection *newsect;
757 flagword flags;
758 const struct elf_backend_data *bed;
759
760 if (hdr->bfd_section != NULL)
761 {
762 BFD_ASSERT (strcmp (name,
763 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
764 return TRUE;
765 }
766
767 newsect = bfd_make_section_anyway (abfd, name);
768 if (newsect == NULL)
769 return FALSE;
770
771 hdr->bfd_section = newsect;
772 elf_section_data (newsect)->this_hdr = *hdr;
773 elf_section_data (newsect)->this_idx = shindex;
774
775 /* Always use the real type/flags. */
776 elf_section_type (newsect) = hdr->sh_type;
777 elf_section_flags (newsect) = hdr->sh_flags;
778
779 newsect->filepos = hdr->sh_offset;
780
781 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
782 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
783 || ! bfd_set_section_alignment (abfd, newsect,
784 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
785 return FALSE;
786
787 flags = SEC_NO_FLAGS;
788 if (hdr->sh_type != SHT_NOBITS)
789 flags |= SEC_HAS_CONTENTS;
790 if (hdr->sh_type == SHT_GROUP)
791 flags |= SEC_GROUP | SEC_EXCLUDE;
792 if ((hdr->sh_flags & SHF_ALLOC) != 0)
793 {
794 flags |= SEC_ALLOC;
795 if (hdr->sh_type != SHT_NOBITS)
796 flags |= SEC_LOAD;
797 }
798 if ((hdr->sh_flags & SHF_WRITE) == 0)
799 flags |= SEC_READONLY;
800 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
801 flags |= SEC_CODE;
802 else if ((flags & SEC_LOAD) != 0)
803 flags |= SEC_DATA;
804 if ((hdr->sh_flags & SHF_MERGE) != 0)
805 {
806 flags |= SEC_MERGE;
807 newsect->entsize = hdr->sh_entsize;
808 if ((hdr->sh_flags & SHF_STRINGS) != 0)
809 flags |= SEC_STRINGS;
810 }
811 if (hdr->sh_flags & SHF_GROUP)
812 if (!setup_group (abfd, hdr, newsect))
813 return FALSE;
814 if ((hdr->sh_flags & SHF_TLS) != 0)
815 flags |= SEC_THREAD_LOCAL;
816
817 if ((flags & SEC_ALLOC) == 0)
818 {
819 /* The debugging sections appear to be recognized only by name,
820 not any sort of flag. Their SEC_ALLOC bits are cleared. */
821 static const struct
822 {
823 const char *name;
824 int len;
825 } debug_sections [] =
826 {
827 { STRING_COMMA_LEN ("debug") }, /* 'd' */
828 { NULL, 0 }, /* 'e' */
829 { NULL, 0 }, /* 'f' */
830 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
831 { NULL, 0 }, /* 'h' */
832 { NULL, 0 }, /* 'i' */
833 { NULL, 0 }, /* 'j' */
834 { NULL, 0 }, /* 'k' */
835 { STRING_COMMA_LEN ("line") }, /* 'l' */
836 { NULL, 0 }, /* 'm' */
837 { NULL, 0 }, /* 'n' */
838 { NULL, 0 }, /* 'o' */
839 { NULL, 0 }, /* 'p' */
840 { NULL, 0 }, /* 'q' */
841 { NULL, 0 }, /* 'r' */
842 { STRING_COMMA_LEN ("stab") } /* 's' */
843 };
844
845 if (name [0] == '.')
846 {
847 int i = name [1] - 'd';
848 if (i >= 0
849 && i < (int) ARRAY_SIZE (debug_sections)
850 && debug_sections [i].name != NULL
851 && strncmp (&name [1], debug_sections [i].name,
852 debug_sections [i].len) == 0)
853 flags |= SEC_DEBUGGING;
854 }
855 }
856
857 /* As a GNU extension, if the name begins with .gnu.linkonce, we
858 only link a single copy of the section. This is used to support
859 g++. g++ will emit each template expansion in its own section.
860 The symbols will be defined as weak, so that multiple definitions
861 are permitted. The GNU linker extension is to actually discard
862 all but one of the sections. */
863 if (CONST_STRNEQ (name, ".gnu.linkonce")
864 && elf_next_in_group (newsect) == NULL)
865 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
866
867 bed = get_elf_backend_data (abfd);
868 if (bed->elf_backend_section_flags)
869 if (! bed->elf_backend_section_flags (&flags, hdr))
870 return FALSE;
871
872 if (! bfd_set_section_flags (abfd, newsect, flags))
873 return FALSE;
874
875 if ((flags & SEC_ALLOC) != 0)
876 {
877 Elf_Internal_Phdr *phdr;
878 unsigned int i;
879
880 /* Look through the phdrs to see if we need to adjust the lma.
881 If all the p_paddr fields are zero, we ignore them, since
882 some ELF linkers produce such output. */
883 phdr = elf_tdata (abfd)->phdr;
884 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
885 {
886 if (phdr->p_paddr != 0)
887 break;
888 }
889 if (i < elf_elfheader (abfd)->e_phnum)
890 {
891 phdr = elf_tdata (abfd)->phdr;
892 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
893 {
894 /* This section is part of this segment if its file
895 offset plus size lies within the segment's memory
896 span and, if the section is loaded, the extent of the
897 loaded data lies within the extent of the segment.
898
899 Note - we used to check the p_paddr field as well, and
900 refuse to set the LMA if it was 0. This is wrong
901 though, as a perfectly valid initialised segment can
902 have a p_paddr of zero. Some architectures, eg ARM,
903 place special significance on the address 0 and
904 executables need to be able to have a segment which
905 covers this address. */
906 if (phdr->p_type == PT_LOAD
907 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
908 && (hdr->sh_offset + hdr->sh_size
909 <= phdr->p_offset + phdr->p_memsz)
910 && ((flags & SEC_LOAD) == 0
911 || (hdr->sh_offset + hdr->sh_size
912 <= phdr->p_offset + phdr->p_filesz)))
913 {
914 if ((flags & SEC_LOAD) == 0)
915 newsect->lma = (phdr->p_paddr
916 + hdr->sh_addr - phdr->p_vaddr);
917 else
918 /* We used to use the same adjustment for SEC_LOAD
919 sections, but that doesn't work if the segment
920 is packed with code from multiple VMAs.
921 Instead we calculate the section LMA based on
922 the segment LMA. It is assumed that the
923 segment will contain sections with contiguous
924 LMAs, even if the VMAs are not. */
925 newsect->lma = (phdr->p_paddr
926 + hdr->sh_offset - phdr->p_offset);
927
928 /* With contiguous segments, we can't tell from file
929 offsets whether a section with zero size should
930 be placed at the end of one segment or the
931 beginning of the next. Decide based on vaddr. */
932 if (hdr->sh_addr >= phdr->p_vaddr
933 && (hdr->sh_addr + hdr->sh_size
934 <= phdr->p_vaddr + phdr->p_memsz))
935 break;
936 }
937 }
938 }
939 }
940
941 return TRUE;
942}
943
944/*
945INTERNAL_FUNCTION
946 bfd_elf_find_section
947
948SYNOPSIS
949 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
950
951DESCRIPTION
952 Helper functions for GDB to locate the string tables.
953 Since BFD hides string tables from callers, GDB needs to use an
954 internal hook to find them. Sun's .stabstr, in particular,
955 isn't even pointed to by the .stab section, so ordinary
956 mechanisms wouldn't work to find it, even if we had some.
957*/
958
959struct elf_internal_shdr *
960bfd_elf_find_section (bfd *abfd, char *name)
961{
962 Elf_Internal_Shdr **i_shdrp;
963 char *shstrtab;
964 unsigned int max;
965 unsigned int i;
966
967 i_shdrp = elf_elfsections (abfd);
968 if (i_shdrp != NULL)
969 {
970 shstrtab = bfd_elf_get_str_section (abfd,
971 elf_elfheader (abfd)->e_shstrndx);
972 if (shstrtab != NULL)
973 {
974 max = elf_numsections (abfd);
975 for (i = 1; i < max; i++)
976 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
977 return i_shdrp[i];
978 }
979 }
980 return 0;
981}
982
983const char *const bfd_elf_section_type_names[] = {
984 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
985 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
986 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
987};
988
989/* ELF relocs are against symbols. If we are producing relocatable
990 output, and the reloc is against an external symbol, and nothing
991 has given us any additional addend, the resulting reloc will also
992 be against the same symbol. In such a case, we don't want to
993 change anything about the way the reloc is handled, since it will
994 all be done at final link time. Rather than put special case code
995 into bfd_perform_relocation, all the reloc types use this howto
996 function. It just short circuits the reloc if producing
997 relocatable output against an external symbol. */
998
999bfd_reloc_status_type
1000bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1001 arelent *reloc_entry,
1002 asymbol *symbol,
1003 void *data ATTRIBUTE_UNUSED,
1004 asection *input_section,
1005 bfd *output_bfd,
1006 char **error_message ATTRIBUTE_UNUSED)
1007{
1008 if (output_bfd != NULL
1009 && (symbol->flags & BSF_SECTION_SYM) == 0
1010 && (! reloc_entry->howto->partial_inplace
1011 || reloc_entry->addend == 0))
1012 {
1013 reloc_entry->address += input_section->output_offset;
1014 return bfd_reloc_ok;
1015 }
1016
1017 return bfd_reloc_continue;
1018}
1019\f
1020/* Make sure sec_info_type is cleared if sec_info is cleared too. */
1021
1022static void
1023merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1024 asection *sec)
1025{
1026 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1027 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1028}
1029
1030/* Finish SHF_MERGE section merging. */
1031
1032bfd_boolean
1033_bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1034{
1035 bfd *ibfd;
1036 asection *sec;
1037
1038 if (!is_elf_hash_table (info->hash))
1039 return FALSE;
1040
1041 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1042 if ((ibfd->flags & DYNAMIC) == 0)
1043 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1044 if ((sec->flags & SEC_MERGE) != 0
1045 && !bfd_is_abs_section (sec->output_section))
1046 {
1047 struct bfd_elf_section_data *secdata;
1048
1049 secdata = elf_section_data (sec);
1050 if (! _bfd_add_merge_section (abfd,
1051 &elf_hash_table (info)->merge_info,
1052 sec, &secdata->sec_info))
1053 return FALSE;
1054 else if (secdata->sec_info)
1055 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1056 }
1057
1058 if (elf_hash_table (info)->merge_info != NULL)
1059 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1060 merge_sections_remove_hook);
1061 return TRUE;
1062}
1063
1064void
1065_bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1066{
1067 sec->output_section = bfd_abs_section_ptr;
1068 sec->output_offset = sec->vma;
1069 if (!is_elf_hash_table (info->hash))
1070 return;
1071
1072 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1073}
1074\f
1075/* Copy the program header and other data from one object module to
1076 another. */
1077
1078bfd_boolean
1079_bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1080{
1081 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1082 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1083 return TRUE;
1084
1085 BFD_ASSERT (!elf_flags_init (obfd)
1086 || (elf_elfheader (obfd)->e_flags
1087 == elf_elfheader (ibfd)->e_flags));
1088
1089 elf_gp (obfd) = elf_gp (ibfd);
1090 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1091 elf_flags_init (obfd) = TRUE;
1092 return TRUE;
1093}
1094
1095static const char *
1096get_segment_type (unsigned int p_type)
1097{
1098 const char *pt;
1099 switch (p_type)
1100 {
1101 case PT_NULL: pt = "NULL"; break;
1102 case PT_LOAD: pt = "LOAD"; break;
1103 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1104 case PT_INTERP: pt = "INTERP"; break;
1105 case PT_NOTE: pt = "NOTE"; break;
1106 case PT_SHLIB: pt = "SHLIB"; break;
1107 case PT_PHDR: pt = "PHDR"; break;
1108 case PT_TLS: pt = "TLS"; break;
1109 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1110 case PT_GNU_STACK: pt = "STACK"; break;
1111 case PT_GNU_RELRO: pt = "RELRO"; break;
1112 default: pt = NULL; break;
1113 }
1114 return pt;
1115}
1116
1117/* Print out the program headers. */
1118
1119bfd_boolean
1120_bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1121{
1122 FILE *f = farg;
1123 Elf_Internal_Phdr *p;
1124 asection *s;
1125 bfd_byte *dynbuf = NULL;
1126
1127 p = elf_tdata (abfd)->phdr;
1128 if (p != NULL)
1129 {
1130 unsigned int i, c;
1131
1132 fprintf (f, _("\nProgram Header:\n"));
1133 c = elf_elfheader (abfd)->e_phnum;
1134 for (i = 0; i < c; i++, p++)
1135 {
1136 const char *pt = get_segment_type (p->p_type);
1137 char buf[20];
1138
1139 if (pt == NULL)
1140 {
1141 sprintf (buf, "0x%lx", p->p_type);
1142 pt = buf;
1143 }
1144 fprintf (f, "%8s off 0x", pt);
1145 bfd_fprintf_vma (abfd, f, p->p_offset);
1146 fprintf (f, " vaddr 0x");
1147 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1148 fprintf (f, " paddr 0x");
1149 bfd_fprintf_vma (abfd, f, p->p_paddr);
1150 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1151 fprintf (f, " filesz 0x");
1152 bfd_fprintf_vma (abfd, f, p->p_filesz);
1153 fprintf (f, " memsz 0x");
1154 bfd_fprintf_vma (abfd, f, p->p_memsz);
1155 fprintf (f, " flags %c%c%c",
1156 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1157 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1158 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1159 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1160 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1161 fprintf (f, "\n");
1162 }
1163 }
1164
1165 s = bfd_get_section_by_name (abfd, ".dynamic");
1166 if (s != NULL)
1167 {
1168 int elfsec;
1169 unsigned long shlink;
1170 bfd_byte *extdyn, *extdynend;
1171 size_t extdynsize;
1172 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1173
1174 fprintf (f, _("\nDynamic Section:\n"));
1175
1176 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1177 goto error_return;
1178
1179 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1180 if (elfsec == -1)
1181 goto error_return;
1182 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1183
1184 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1185 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1186
1187 extdyn = dynbuf;
1188 extdynend = extdyn + s->size;
1189 for (; extdyn < extdynend; extdyn += extdynsize)
1190 {
1191 Elf_Internal_Dyn dyn;
1192 const char *name;
1193 char ab[20];
1194 bfd_boolean stringp;
1195
1196 (*swap_dyn_in) (abfd, extdyn, &dyn);
1197
1198 if (dyn.d_tag == DT_NULL)
1199 break;
1200
1201 stringp = FALSE;
1202 switch (dyn.d_tag)
1203 {
1204 default:
1205 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1206 name = ab;
1207 break;
1208
1209 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1210 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1211 case DT_PLTGOT: name = "PLTGOT"; break;
1212 case DT_HASH: name = "HASH"; break;
1213 case DT_STRTAB: name = "STRTAB"; break;
1214 case DT_SYMTAB: name = "SYMTAB"; break;
1215 case DT_RELA: name = "RELA"; break;
1216 case DT_RELASZ: name = "RELASZ"; break;
1217 case DT_RELAENT: name = "RELAENT"; break;
1218 case DT_STRSZ: name = "STRSZ"; break;
1219 case DT_SYMENT: name = "SYMENT"; break;
1220 case DT_INIT: name = "INIT"; break;
1221 case DT_FINI: name = "FINI"; break;
1222 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1223 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1224 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1225 case DT_REL: name = "REL"; break;
1226 case DT_RELSZ: name = "RELSZ"; break;
1227 case DT_RELENT: name = "RELENT"; break;
1228 case DT_PLTREL: name = "PLTREL"; break;
1229 case DT_DEBUG: name = "DEBUG"; break;
1230 case DT_TEXTREL: name = "TEXTREL"; break;
1231 case DT_JMPREL: name = "JMPREL"; break;
1232 case DT_BIND_NOW: name = "BIND_NOW"; break;
1233 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1234 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1235 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1236 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1237 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1238 case DT_FLAGS: name = "FLAGS"; break;
1239 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1240 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1241 case DT_CHECKSUM: name = "CHECKSUM"; break;
1242 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1243 case DT_MOVEENT: name = "MOVEENT"; break;
1244 case DT_MOVESZ: name = "MOVESZ"; break;
1245 case DT_FEATURE: name = "FEATURE"; break;
1246 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1247 case DT_SYMINSZ: name = "SYMINSZ"; break;
1248 case DT_SYMINENT: name = "SYMINENT"; break;
1249 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1250 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1251 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1252 case DT_PLTPAD: name = "PLTPAD"; break;
1253 case DT_MOVETAB: name = "MOVETAB"; break;
1254 case DT_SYMINFO: name = "SYMINFO"; break;
1255 case DT_RELACOUNT: name = "RELACOUNT"; break;
1256 case DT_RELCOUNT: name = "RELCOUNT"; break;
1257 case DT_FLAGS_1: name = "FLAGS_1"; break;
1258 case DT_VERSYM: name = "VERSYM"; break;
1259 case DT_VERDEF: name = "VERDEF"; break;
1260 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1261 case DT_VERNEED: name = "VERNEED"; break;
1262 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1263 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1264 case DT_USED: name = "USED"; break;
1265 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1266 case DT_GNU_HASH: name = "GNU_HASH"; break;
1267 }
1268
1269 fprintf (f, " %-11s ", name);
1270 if (! stringp)
1271 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1272 else
1273 {
1274 const char *string;
1275 unsigned int tagv = dyn.d_un.d_val;
1276
1277 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1278 if (string == NULL)
1279 goto error_return;
1280 fprintf (f, "%s", string);
1281 }
1282 fprintf (f, "\n");
1283 }
1284
1285 free (dynbuf);
1286 dynbuf = NULL;
1287 }
1288
1289 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1290 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1291 {
1292 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1293 return FALSE;
1294 }
1295
1296 if (elf_dynverdef (abfd) != 0)
1297 {
1298 Elf_Internal_Verdef *t;
1299
1300 fprintf (f, _("\nVersion definitions:\n"));
1301 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1302 {
1303 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1304 t->vd_flags, t->vd_hash,
1305 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1306 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1307 {
1308 Elf_Internal_Verdaux *a;
1309
1310 fprintf (f, "\t");
1311 for (a = t->vd_auxptr->vda_nextptr;
1312 a != NULL;
1313 a = a->vda_nextptr)
1314 fprintf (f, "%s ",
1315 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1316 fprintf (f, "\n");
1317 }
1318 }
1319 }
1320
1321 if (elf_dynverref (abfd) != 0)
1322 {
1323 Elf_Internal_Verneed *t;
1324
1325 fprintf (f, _("\nVersion References:\n"));
1326 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1327 {
1328 Elf_Internal_Vernaux *a;
1329
1330 fprintf (f, _(" required from %s:\n"),
1331 t->vn_filename ? t->vn_filename : "<corrupt>");
1332 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1333 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1334 a->vna_flags, a->vna_other,
1335 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1336 }
1337 }
1338
1339 return TRUE;
1340
1341 error_return:
1342 if (dynbuf != NULL)
1343 free (dynbuf);
1344 return FALSE;
1345}
1346
1347/* Display ELF-specific fields of a symbol. */
1348
1349void
1350bfd_elf_print_symbol (bfd *abfd,
1351 void *filep,
1352 asymbol *symbol,
1353 bfd_print_symbol_type how)
1354{
1355 FILE *file = filep;
1356 switch (how)
1357 {
1358 case bfd_print_symbol_name:
1359 fprintf (file, "%s", symbol->name);
1360 break;
1361 case bfd_print_symbol_more:
1362 fprintf (file, "elf ");
1363 bfd_fprintf_vma (abfd, file, symbol->value);
1364 fprintf (file, " %lx", (long) symbol->flags);
1365 break;
1366 case bfd_print_symbol_all:
1367 {
1368 const char *section_name;
1369 const char *name = NULL;
1370 const struct elf_backend_data *bed;
1371 unsigned char st_other;
1372 bfd_vma val;
1373
1374 section_name = symbol->section ? symbol->section->name : "(*none*)";
1375
1376 bed = get_elf_backend_data (abfd);
1377 if (bed->elf_backend_print_symbol_all)
1378 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1379
1380 if (name == NULL)
1381 {
1382 name = symbol->name;
1383 bfd_print_symbol_vandf (abfd, file, symbol);
1384 }
1385
1386 fprintf (file, " %s\t", section_name);
1387 /* Print the "other" value for a symbol. For common symbols,
1388 we've already printed the size; now print the alignment.
1389 For other symbols, we have no specified alignment, and
1390 we've printed the address; now print the size. */
1391 if (bfd_is_com_section (symbol->section))
1392 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1393 else
1394 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1395 bfd_fprintf_vma (abfd, file, val);
1396
1397 /* If we have version information, print it. */
1398 if (elf_tdata (abfd)->dynversym_section != 0
1399 && (elf_tdata (abfd)->dynverdef_section != 0
1400 || elf_tdata (abfd)->dynverref_section != 0))
1401 {
1402 unsigned int vernum;
1403 const char *version_string;
1404
1405 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1406
1407 if (vernum == 0)
1408 version_string = "";
1409 else if (vernum == 1)
1410 version_string = "Base";
1411 else if (vernum <= elf_tdata (abfd)->cverdefs)
1412 version_string =
1413 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1414 else
1415 {
1416 Elf_Internal_Verneed *t;
1417
1418 version_string = "";
1419 for (t = elf_tdata (abfd)->verref;
1420 t != NULL;
1421 t = t->vn_nextref)
1422 {
1423 Elf_Internal_Vernaux *a;
1424
1425 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1426 {
1427 if (a->vna_other == vernum)
1428 {
1429 version_string = a->vna_nodename;
1430 break;
1431 }
1432 }
1433 }
1434 }
1435
1436 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1437 fprintf (file, " %-11s", version_string);
1438 else
1439 {
1440 int i;
1441
1442 fprintf (file, " (%s)", version_string);
1443 for (i = 10 - strlen (version_string); i > 0; --i)
1444 putc (' ', file);
1445 }
1446 }
1447
1448 /* If the st_other field is not zero, print it. */
1449 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1450
1451 switch (st_other)
1452 {
1453 case 0: break;
1454 case STV_INTERNAL: fprintf (file, " .internal"); break;
1455 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1456 case STV_PROTECTED: fprintf (file, " .protected"); break;
1457 default:
1458 /* Some other non-defined flags are also present, so print
1459 everything hex. */
1460 fprintf (file, " 0x%02x", (unsigned int) st_other);
1461 }
1462
1463 fprintf (file, " %s", name);
1464 }
1465 break;
1466 }
1467}
1468\f
1469/* Create an entry in an ELF linker hash table. */
1470
1471struct bfd_hash_entry *
1472_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1473 struct bfd_hash_table *table,
1474 const char *string)
1475{
1476 /* Allocate the structure if it has not already been allocated by a
1477 subclass. */
1478 if (entry == NULL)
1479 {
1480 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1481 if (entry == NULL)
1482 return entry;
1483 }
1484
1485 /* Call the allocation method of the superclass. */
1486 entry = _bfd_link_hash_newfunc (entry, table, string);
1487 if (entry != NULL)
1488 {
1489 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1490 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1491
1492 /* Set local fields. */
1493 ret->indx = -1;
1494 ret->dynindx = -1;
1495 ret->got = htab->init_got_refcount;
1496 ret->plt = htab->init_plt_refcount;
1497 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1498 - offsetof (struct elf_link_hash_entry, size)));
1499 /* Assume that we have been called by a non-ELF symbol reader.
1500 This flag is then reset by the code which reads an ELF input
1501 file. This ensures that a symbol created by a non-ELF symbol
1502 reader will have the flag set correctly. */
1503 ret->non_elf = 1;
1504 }
1505
1506 return entry;
1507}
1508
1509/* Copy data from an indirect symbol to its direct symbol, hiding the
1510 old indirect symbol. Also used for copying flags to a weakdef. */
1511
1512void
1513_bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1514 struct elf_link_hash_entry *dir,
1515 struct elf_link_hash_entry *ind)
1516{
1517 struct elf_link_hash_table *htab;
1518
1519 /* Copy down any references that we may have already seen to the
1520 symbol which just became indirect. */
1521
1522 dir->ref_dynamic |= ind->ref_dynamic;
1523 dir->ref_regular |= ind->ref_regular;
1524 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1525 dir->non_got_ref |= ind->non_got_ref;
1526 dir->needs_plt |= ind->needs_plt;
1527 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1528
1529 if (ind->root.type != bfd_link_hash_indirect)
1530 return;
1531
1532 /* Copy over the global and procedure linkage table refcount entries.
1533 These may have been already set up by a check_relocs routine. */
1534 htab = elf_hash_table (info);
1535 if (ind->got.refcount > htab->init_got_refcount.refcount)
1536 {
1537 if (dir->got.refcount < 0)
1538 dir->got.refcount = 0;
1539 dir->got.refcount += ind->got.refcount;
1540 ind->got.refcount = htab->init_got_refcount.refcount;
1541 }
1542
1543 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1544 {
1545 if (dir->plt.refcount < 0)
1546 dir->plt.refcount = 0;
1547 dir->plt.refcount += ind->plt.refcount;
1548 ind->plt.refcount = htab->init_plt_refcount.refcount;
1549 }
1550
1551 if (ind->dynindx != -1)
1552 {
1553 if (dir->dynindx != -1)
1554 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1555 dir->dynindx = ind->dynindx;
1556 dir->dynstr_index = ind->dynstr_index;
1557 ind->dynindx = -1;
1558 ind->dynstr_index = 0;
1559 }
1560}
1561
1562void
1563_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1564 struct elf_link_hash_entry *h,
1565 bfd_boolean force_local)
1566{
1567 h->plt = elf_hash_table (info)->init_plt_offset;
1568 h->needs_plt = 0;
1569 if (force_local)
1570 {
1571 h->forced_local = 1;
1572 if (h->dynindx != -1)
1573 {
1574 h->dynindx = -1;
1575 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1576 h->dynstr_index);
1577 }
1578 }
1579}
1580
1581/* Initialize an ELF linker hash table. */
1582
1583bfd_boolean
1584_bfd_elf_link_hash_table_init
1585 (struct elf_link_hash_table *table,
1586 bfd *abfd,
1587 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1588 struct bfd_hash_table *,
1589 const char *),
1590 unsigned int entsize)
1591{
1592 bfd_boolean ret;
1593 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1594
1595 table->dynamic_sections_created = FALSE;
1596 table->dynobj = NULL;
1597 table->init_got_refcount.refcount = can_refcount - 1;
1598 table->init_plt_refcount.refcount = can_refcount - 1;
1599 table->init_got_offset.offset = -(bfd_vma) 1;
1600 table->init_plt_offset.offset = -(bfd_vma) 1;
1601 /* The first dynamic symbol is a dummy. */
1602 table->dynsymcount = 1;
1603 table->dynstr = NULL;
1604 table->bucketcount = 0;
1605 table->needed = NULL;
1606 table->hgot = NULL;
1607 table->hplt = NULL;
1608 table->merge_info = NULL;
1609 memset (&table->stab_info, 0, sizeof (table->stab_info));
1610 memset (&table->eh_info, 0, sizeof (table->eh_info));
1611 table->dynlocal = NULL;
1612 table->runpath = NULL;
1613 table->tls_sec = NULL;
1614 table->tls_size = 0;
1615 table->loaded = NULL;
1616 table->is_relocatable_executable = FALSE;
1617
1618 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1619 table->root.type = bfd_link_elf_hash_table;
1620
1621 return ret;
1622}
1623
1624/* Create an ELF linker hash table. */
1625
1626struct bfd_link_hash_table *
1627_bfd_elf_link_hash_table_create (bfd *abfd)
1628{
1629 struct elf_link_hash_table *ret;
1630 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1631
1632 ret = bfd_malloc (amt);
1633 if (ret == NULL)
1634 return NULL;
1635
1636 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1637 sizeof (struct elf_link_hash_entry)))
1638 {
1639 free (ret);
1640 return NULL;
1641 }
1642
1643 return &ret->root;
1644}
1645
1646/* This is a hook for the ELF emulation code in the generic linker to
1647 tell the backend linker what file name to use for the DT_NEEDED
1648 entry for a dynamic object. */
1649
1650void
1651bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1652{
1653 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1654 && bfd_get_format (abfd) == bfd_object)
1655 elf_dt_name (abfd) = name;
1656}
1657
1658int
1659bfd_elf_get_dyn_lib_class (bfd *abfd)
1660{
1661 int lib_class;
1662 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1663 && bfd_get_format (abfd) == bfd_object)
1664 lib_class = elf_dyn_lib_class (abfd);
1665 else
1666 lib_class = 0;
1667 return lib_class;
1668}
1669
1670void
1671bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
1672{
1673 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1674 && bfd_get_format (abfd) == bfd_object)
1675 elf_dyn_lib_class (abfd) = lib_class;
1676}
1677
1678/* Get the list of DT_NEEDED entries for a link. This is a hook for
1679 the linker ELF emulation code. */
1680
1681struct bfd_link_needed_list *
1682bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1683 struct bfd_link_info *info)
1684{
1685 if (! is_elf_hash_table (info->hash))
1686 return NULL;
1687 return elf_hash_table (info)->needed;
1688}
1689
1690/* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1691 hook for the linker ELF emulation code. */
1692
1693struct bfd_link_needed_list *
1694bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1695 struct bfd_link_info *info)
1696{
1697 if (! is_elf_hash_table (info->hash))
1698 return NULL;
1699 return elf_hash_table (info)->runpath;
1700}
1701
1702/* Get the name actually used for a dynamic object for a link. This
1703 is the SONAME entry if there is one. Otherwise, it is the string
1704 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1705
1706const char *
1707bfd_elf_get_dt_soname (bfd *abfd)
1708{
1709 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1710 && bfd_get_format (abfd) == bfd_object)
1711 return elf_dt_name (abfd);
1712 return NULL;
1713}
1714
1715/* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1716 the ELF linker emulation code. */
1717
1718bfd_boolean
1719bfd_elf_get_bfd_needed_list (bfd *abfd,
1720 struct bfd_link_needed_list **pneeded)
1721{
1722 asection *s;
1723 bfd_byte *dynbuf = NULL;
1724 int elfsec;
1725 unsigned long shlink;
1726 bfd_byte *extdyn, *extdynend;
1727 size_t extdynsize;
1728 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1729
1730 *pneeded = NULL;
1731
1732 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1733 || bfd_get_format (abfd) != bfd_object)
1734 return TRUE;
1735
1736 s = bfd_get_section_by_name (abfd, ".dynamic");
1737 if (s == NULL || s->size == 0)
1738 return TRUE;
1739
1740 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1741 goto error_return;
1742
1743 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1744 if (elfsec == -1)
1745 goto error_return;
1746
1747 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1748
1749 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1750 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1751
1752 extdyn = dynbuf;
1753 extdynend = extdyn + s->size;
1754 for (; extdyn < extdynend; extdyn += extdynsize)
1755 {
1756 Elf_Internal_Dyn dyn;
1757
1758 (*swap_dyn_in) (abfd, extdyn, &dyn);
1759
1760 if (dyn.d_tag == DT_NULL)
1761 break;
1762
1763 if (dyn.d_tag == DT_NEEDED)
1764 {
1765 const char *string;
1766 struct bfd_link_needed_list *l;
1767 unsigned int tagv = dyn.d_un.d_val;
1768 bfd_size_type amt;
1769
1770 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1771 if (string == NULL)
1772 goto error_return;
1773
1774 amt = sizeof *l;
1775 l = bfd_alloc (abfd, amt);
1776 if (l == NULL)
1777 goto error_return;
1778
1779 l->by = abfd;
1780 l->name = string;
1781 l->next = *pneeded;
1782 *pneeded = l;
1783 }
1784 }
1785
1786 free (dynbuf);
1787
1788 return TRUE;
1789
1790 error_return:
1791 if (dynbuf != NULL)
1792 free (dynbuf);
1793 return FALSE;
1794}
1795\f
1796/* Allocate an ELF string table--force the first byte to be zero. */
1797
1798struct bfd_strtab_hash *
1799_bfd_elf_stringtab_init (void)
1800{
1801 struct bfd_strtab_hash *ret;
1802
1803 ret = _bfd_stringtab_init ();
1804 if (ret != NULL)
1805 {
1806 bfd_size_type loc;
1807
1808 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1809 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1810 if (loc == (bfd_size_type) -1)
1811 {
1812 _bfd_stringtab_free (ret);
1813 ret = NULL;
1814 }
1815 }
1816 return ret;
1817}
1818\f
1819/* ELF .o/exec file reading */
1820
1821/* Create a new bfd section from an ELF section header. */
1822
1823bfd_boolean
1824bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1825{
1826 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1827 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1828 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1829 const char *name;
1830
1831 name = bfd_elf_string_from_elf_section (abfd,
1832 elf_elfheader (abfd)->e_shstrndx,
1833 hdr->sh_name);
1834 if (name == NULL)
1835 return FALSE;
1836
1837 switch (hdr->sh_type)
1838 {
1839 case SHT_NULL:
1840 /* Inactive section. Throw it away. */
1841 return TRUE;
1842
1843 case SHT_PROGBITS: /* Normal section with contents. */
1844 case SHT_NOBITS: /* .bss section. */
1845 case SHT_HASH: /* .hash section. */
1846 case SHT_NOTE: /* .note section. */
1847 case SHT_INIT_ARRAY: /* .init_array section. */
1848 case SHT_FINI_ARRAY: /* .fini_array section. */
1849 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1850 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1851 case SHT_GNU_HASH: /* .gnu.hash section. */
1852 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1853
1854 case SHT_DYNAMIC: /* Dynamic linking information. */
1855 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1856 return FALSE;
1857 if (hdr->sh_link > elf_numsections (abfd)
1858 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1859 return FALSE;
1860 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1861 {
1862 Elf_Internal_Shdr *dynsymhdr;
1863
1864 /* The shared libraries distributed with hpux11 have a bogus
1865 sh_link field for the ".dynamic" section. Find the
1866 string table for the ".dynsym" section instead. */
1867 if (elf_dynsymtab (abfd) != 0)
1868 {
1869 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1870 hdr->sh_link = dynsymhdr->sh_link;
1871 }
1872 else
1873 {
1874 unsigned int i, num_sec;
1875
1876 num_sec = elf_numsections (abfd);
1877 for (i = 1; i < num_sec; i++)
1878 {
1879 dynsymhdr = elf_elfsections (abfd)[i];
1880 if (dynsymhdr->sh_type == SHT_DYNSYM)
1881 {
1882 hdr->sh_link = dynsymhdr->sh_link;
1883 break;
1884 }
1885 }
1886 }
1887 }
1888 break;
1889
1890 case SHT_SYMTAB: /* A symbol table */
1891 if (elf_onesymtab (abfd) == shindex)
1892 return TRUE;
1893
1894 if (hdr->sh_entsize != bed->s->sizeof_sym)
1895 return FALSE;
1896 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1897 elf_onesymtab (abfd) = shindex;
1898 elf_tdata (abfd)->symtab_hdr = *hdr;
1899 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1900 abfd->flags |= HAS_SYMS;
1901
1902 /* Sometimes a shared object will map in the symbol table. If
1903 SHF_ALLOC is set, and this is a shared object, then we also
1904 treat this section as a BFD section. We can not base the
1905 decision purely on SHF_ALLOC, because that flag is sometimes
1906 set in a relocatable object file, which would confuse the
1907 linker. */
1908 if ((hdr->sh_flags & SHF_ALLOC) != 0
1909 && (abfd->flags & DYNAMIC) != 0
1910 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1911 shindex))
1912 return FALSE;
1913
1914 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1915 can't read symbols without that section loaded as well. It
1916 is most likely specified by the next section header. */
1917 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1918 {
1919 unsigned int i, num_sec;
1920
1921 num_sec = elf_numsections (abfd);
1922 for (i = shindex + 1; i < num_sec; i++)
1923 {
1924 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1925 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1926 && hdr2->sh_link == shindex)
1927 break;
1928 }
1929 if (i == num_sec)
1930 for (i = 1; i < shindex; i++)
1931 {
1932 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1933 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1934 && hdr2->sh_link == shindex)
1935 break;
1936 }
1937 if (i != shindex)
1938 return bfd_section_from_shdr (abfd, i);
1939 }
1940 return TRUE;
1941
1942 case SHT_DYNSYM: /* A dynamic symbol table */
1943 if (elf_dynsymtab (abfd) == shindex)
1944 return TRUE;
1945
1946 if (hdr->sh_entsize != bed->s->sizeof_sym)
1947 return FALSE;
1948 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1949 elf_dynsymtab (abfd) = shindex;
1950 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1951 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1952 abfd->flags |= HAS_SYMS;
1953
1954 /* Besides being a symbol table, we also treat this as a regular
1955 section, so that objcopy can handle it. */
1956 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1957
1958 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1959 if (elf_symtab_shndx (abfd) == shindex)
1960 return TRUE;
1961
1962 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1963 elf_symtab_shndx (abfd) = shindex;
1964 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1965 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1966 return TRUE;
1967
1968 case SHT_STRTAB: /* A string table */
1969 if (hdr->bfd_section != NULL)
1970 return TRUE;
1971 if (ehdr->e_shstrndx == shindex)
1972 {
1973 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1974 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1975 return TRUE;
1976 }
1977 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1978 {
1979 symtab_strtab:
1980 elf_tdata (abfd)->strtab_hdr = *hdr;
1981 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1982 return TRUE;
1983 }
1984 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1985 {
1986 dynsymtab_strtab:
1987 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1988 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1989 elf_elfsections (abfd)[shindex] = hdr;
1990 /* We also treat this as a regular section, so that objcopy
1991 can handle it. */
1992 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1993 shindex);
1994 }
1995
1996 /* If the string table isn't one of the above, then treat it as a
1997 regular section. We need to scan all the headers to be sure,
1998 just in case this strtab section appeared before the above. */
1999 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2000 {
2001 unsigned int i, num_sec;
2002
2003 num_sec = elf_numsections (abfd);
2004 for (i = 1; i < num_sec; i++)
2005 {
2006 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2007 if (hdr2->sh_link == shindex)
2008 {
2009 /* Prevent endless recursion on broken objects. */
2010 if (i == shindex)
2011 return FALSE;
2012 if (! bfd_section_from_shdr (abfd, i))
2013 return FALSE;
2014 if (elf_onesymtab (abfd) == i)
2015 goto symtab_strtab;
2016 if (elf_dynsymtab (abfd) == i)
2017 goto dynsymtab_strtab;
2018 }
2019 }
2020 }
2021 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2022
2023 case SHT_REL:
2024 case SHT_RELA:
2025 /* *These* do a lot of work -- but build no sections! */
2026 {
2027 asection *target_sect;
2028 Elf_Internal_Shdr *hdr2;
2029 unsigned int num_sec = elf_numsections (abfd);
2030
2031 if (hdr->sh_entsize
2032 != (bfd_size_type) (hdr->sh_type == SHT_REL
2033 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2034 return FALSE;
2035
2036 /* Check for a bogus link to avoid crashing. */
2037 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2038 || hdr->sh_link >= num_sec)
2039 {
2040 ((*_bfd_error_handler)
2041 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2042 abfd, hdr->sh_link, name, shindex));
2043 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2044 shindex);
2045 }
2046
2047 /* For some incomprehensible reason Oracle distributes
2048 libraries for Solaris in which some of the objects have
2049 bogus sh_link fields. It would be nice if we could just
2050 reject them, but, unfortunately, some people need to use
2051 them. We scan through the section headers; if we find only
2052 one suitable symbol table, we clobber the sh_link to point
2053 to it. I hope this doesn't break anything. */
2054 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2055 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2056 {
2057 unsigned int scan;
2058 int found;
2059
2060 found = 0;
2061 for (scan = 1; scan < num_sec; scan++)
2062 {
2063 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2064 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2065 {
2066 if (found != 0)
2067 {
2068 found = 0;
2069 break;
2070 }
2071 found = scan;
2072 }
2073 }
2074 if (found != 0)
2075 hdr->sh_link = found;
2076 }
2077
2078 /* Get the symbol table. */
2079 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2080 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2081 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2082 return FALSE;
2083
2084 /* If this reloc section does not use the main symbol table we
2085 don't treat it as a reloc section. BFD can't adequately
2086 represent such a section, so at least for now, we don't
2087 try. We just present it as a normal section. We also
2088 can't use it as a reloc section if it points to the null
2089 section, an invalid section, or another reloc section. */
2090 if (hdr->sh_link != elf_onesymtab (abfd)
2091 || hdr->sh_info == SHN_UNDEF
2092 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2093 || hdr->sh_info >= num_sec
2094 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2095 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2096 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2097 shindex);
2098
2099 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2100 return FALSE;
2101 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2102 if (target_sect == NULL)
2103 return FALSE;
2104
2105 if ((target_sect->flags & SEC_RELOC) == 0
2106 || target_sect->reloc_count == 0)
2107 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2108 else
2109 {
2110 bfd_size_type amt;
2111 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2112 amt = sizeof (*hdr2);
2113 hdr2 = bfd_alloc (abfd, amt);
2114 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2115 }
2116 *hdr2 = *hdr;
2117 elf_elfsections (abfd)[shindex] = hdr2;
2118 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2119 target_sect->flags |= SEC_RELOC;
2120 target_sect->relocation = NULL;
2121 target_sect->rel_filepos = hdr->sh_offset;
2122 /* In the section to which the relocations apply, mark whether
2123 its relocations are of the REL or RELA variety. */
2124 if (hdr->sh_size != 0)
2125 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2126 abfd->flags |= HAS_RELOC;
2127 return TRUE;
2128 }
2129
2130 case SHT_GNU_verdef:
2131 elf_dynverdef (abfd) = shindex;
2132 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2133 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2134
2135 case SHT_GNU_versym:
2136 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2137 return FALSE;
2138 elf_dynversym (abfd) = shindex;
2139 elf_tdata (abfd)->dynversym_hdr = *hdr;
2140 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2141
2142 case SHT_GNU_verneed:
2143 elf_dynverref (abfd) = shindex;
2144 elf_tdata (abfd)->dynverref_hdr = *hdr;
2145 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2146
2147 case SHT_SHLIB:
2148 return TRUE;
2149
2150 case SHT_GROUP:
2151 /* We need a BFD section for objcopy and relocatable linking,
2152 and it's handy to have the signature available as the section
2153 name. */
2154 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2155 return FALSE;
2156 name = group_signature (abfd, hdr);
2157 if (name == NULL)
2158 return FALSE;
2159 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2160 return FALSE;
2161 if (hdr->contents != NULL)
2162 {
2163 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2164 unsigned int n_elt = hdr->sh_size / 4;
2165 asection *s;
2166
2167 if (idx->flags & GRP_COMDAT)
2168 hdr->bfd_section->flags
2169 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2170
2171 /* We try to keep the same section order as it comes in. */
2172 idx += n_elt;
2173 while (--n_elt != 0)
2174 if ((s = (--idx)->shdr->bfd_section) != NULL
2175 && elf_next_in_group (s) != NULL)
2176 {
2177 elf_next_in_group (hdr->bfd_section) = s;
2178 break;
2179 }
2180 }
2181 break;
2182
2183 default:
2184 /* Check for any processor-specific section types. */
2185 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2186 return TRUE;
2187
2188 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2189 {
2190 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2191 /* FIXME: How to properly handle allocated section reserved
2192 for applications? */
2193 (*_bfd_error_handler)
2194 (_("%B: don't know how to handle allocated, application "
2195 "specific section `%s' [0x%8x]"),
2196 abfd, name, hdr->sh_type);
2197 else
2198 /* Allow sections reserved for applications. */
2199 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2200 shindex);
2201 }
2202 else if (hdr->sh_type >= SHT_LOPROC
2203 && hdr->sh_type <= SHT_HIPROC)
2204 /* FIXME: We should handle this section. */
2205 (*_bfd_error_handler)
2206 (_("%B: don't know how to handle processor specific section "
2207 "`%s' [0x%8x]"),
2208 abfd, name, hdr->sh_type);
2209 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2210 {
2211 /* Unrecognised OS-specific sections. */
2212 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2213 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2214 required to correctly process the section and the file should
2215 be rejected with an error message. */
2216 (*_bfd_error_handler)
2217 (_("%B: don't know how to handle OS specific section "
2218 "`%s' [0x%8x]"),
2219 abfd, name, hdr->sh_type);
2220 else
2221 /* Otherwise it should be processed. */
2222 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2223 }
2224 else
2225 /* FIXME: We should handle this section. */
2226 (*_bfd_error_handler)
2227 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2228 abfd, name, hdr->sh_type);
2229
2230 return FALSE;
2231 }
2232
2233 return TRUE;
2234}
2235
2236/* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2237 Return SEC for sections that have no elf section, and NULL on error. */
2238
2239asection *
2240bfd_section_from_r_symndx (bfd *abfd,
2241 struct sym_sec_cache *cache,
2242 asection *sec,
2243 unsigned long r_symndx)
2244{
2245 Elf_Internal_Shdr *symtab_hdr;
2246 unsigned char esym[sizeof (Elf64_External_Sym)];
2247 Elf_External_Sym_Shndx eshndx;
2248 Elf_Internal_Sym isym;
2249 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2250
2251 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2252 return cache->sec[ent];
2253
2254 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2255 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2256 &isym, esym, &eshndx) == NULL)
2257 return NULL;
2258
2259 if (cache->abfd != abfd)
2260 {
2261 memset (cache->indx, -1, sizeof (cache->indx));
2262 cache->abfd = abfd;
2263 }
2264 cache->indx[ent] = r_symndx;
2265 cache->sec[ent] = sec;
2266 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2267 || isym.st_shndx > SHN_HIRESERVE)
2268 {
2269 asection *s;
2270 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2271 if (s != NULL)
2272 cache->sec[ent] = s;
2273 }
2274 return cache->sec[ent];
2275}
2276
2277/* Given an ELF section number, retrieve the corresponding BFD
2278 section. */
2279
2280asection *
2281bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2282{
2283 if (index >= elf_numsections (abfd))
2284 return NULL;
2285 return elf_elfsections (abfd)[index]->bfd_section;
2286}
2287
2288static const struct bfd_elf_special_section special_sections_b[] =
2289{
2290 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2291 { NULL, 0, 0, 0, 0 }
2292};
2293
2294static const struct bfd_elf_special_section special_sections_c[] =
2295{
2296 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2297 { NULL, 0, 0, 0, 0 }
2298};
2299
2300static const struct bfd_elf_special_section special_sections_d[] =
2301{
2302 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2303 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2304 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2305 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2306 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2307 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2308 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2309 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2310 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2311 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2312 { NULL, 0, 0, 0, 0 }
2313};
2314
2315static const struct bfd_elf_special_section special_sections_f[] =
2316{
2317 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2318 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2319 { NULL, 0, 0, 0, 0 }
2320};
2321
2322static const struct bfd_elf_special_section special_sections_g[] =
2323{
2324 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2325 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2326 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2327 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2328 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2329 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2330 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2331 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2332 { NULL, 0, 0, 0, 0 }
2333};
2334
2335static const struct bfd_elf_special_section special_sections_h[] =
2336{
2337 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2338 { NULL, 0, 0, 0, 0 }
2339};
2340
2341static const struct bfd_elf_special_section special_sections_i[] =
2342{
2343 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2344 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2345 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2346 { NULL, 0, 0, 0, 0 }
2347};
2348
2349static const struct bfd_elf_special_section special_sections_l[] =
2350{
2351 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2352 { NULL, 0, 0, 0, 0 }
2353};
2354
2355static const struct bfd_elf_special_section special_sections_n[] =
2356{
2357 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2358 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2359 { NULL, 0, 0, 0, 0 }
2360};
2361
2362static const struct bfd_elf_special_section special_sections_p[] =
2363{
2364 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2365 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2366 { NULL, 0, 0, 0, 0 }
2367};
2368
2369static const struct bfd_elf_special_section special_sections_r[] =
2370{
2371 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2372 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2373 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2374 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2375 { NULL, 0, 0, 0, 0 }
2376};
2377
2378static const struct bfd_elf_special_section special_sections_s[] =
2379{
2380 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2381 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2382 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2383 /* See struct bfd_elf_special_section declaration for the semantics of
2384 this special case where .prefix_length != strlen (.prefix). */
2385 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2386 { NULL, 0, 0, 0, 0 }
2387};
2388
2389static const struct bfd_elf_special_section special_sections_t[] =
2390{
2391 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2392 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2393 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2394 { NULL, 0, 0, 0, 0 }
2395};
2396
2397static const struct bfd_elf_special_section *special_sections[] =
2398{
2399 special_sections_b, /* 'b' */
2400 special_sections_c, /* 'b' */
2401 special_sections_d, /* 'd' */
2402 NULL, /* 'e' */
2403 special_sections_f, /* 'f' */
2404 special_sections_g, /* 'g' */
2405 special_sections_h, /* 'h' */
2406 special_sections_i, /* 'i' */
2407 NULL, /* 'j' */
2408 NULL, /* 'k' */
2409 special_sections_l, /* 'l' */
2410 NULL, /* 'm' */
2411 special_sections_n, /* 'n' */
2412 NULL, /* 'o' */
2413 special_sections_p, /* 'p' */
2414 NULL, /* 'q' */
2415 special_sections_r, /* 'r' */
2416 special_sections_s, /* 's' */
2417 special_sections_t, /* 't' */
2418};
2419
2420const struct bfd_elf_special_section *
2421_bfd_elf_get_special_section (const char *name,
2422 const struct bfd_elf_special_section *spec,
2423 unsigned int rela)
2424{
2425 int i;
2426 int len;
2427
2428 len = strlen (name);
2429
2430 for (i = 0; spec[i].prefix != NULL; i++)
2431 {
2432 int suffix_len;
2433 int prefix_len = spec[i].prefix_length;
2434
2435 if (len < prefix_len)
2436 continue;
2437 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2438 continue;
2439
2440 suffix_len = spec[i].suffix_length;
2441 if (suffix_len <= 0)
2442 {
2443 if (name[prefix_len] != 0)
2444 {
2445 if (suffix_len == 0)
2446 continue;
2447 if (name[prefix_len] != '.'
2448 && (suffix_len == -2
2449 || (rela && spec[i].type == SHT_REL)))
2450 continue;
2451 }
2452 }
2453 else
2454 {
2455 if (len < prefix_len + suffix_len)
2456 continue;
2457 if (memcmp (name + len - suffix_len,
2458 spec[i].prefix + prefix_len,
2459 suffix_len) != 0)
2460 continue;
2461 }
2462 return &spec[i];
2463 }
2464
2465 return NULL;
2466}
2467
2468const struct bfd_elf_special_section *
2469_bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2470{
2471 int i;
2472 const struct bfd_elf_special_section *spec;
2473 const struct elf_backend_data *bed;
2474
2475 /* See if this is one of the special sections. */
2476 if (sec->name == NULL)
2477 return NULL;
2478
2479 bed = get_elf_backend_data (abfd);
2480 spec = bed->special_sections;
2481 if (spec)
2482 {
2483 spec = _bfd_elf_get_special_section (sec->name,
2484 bed->special_sections,
2485 sec->use_rela_p);
2486 if (spec != NULL)
2487 return spec;
2488 }
2489
2490 if (sec->name[0] != '.')
2491 return NULL;
2492
2493 i = sec->name[1] - 'b';
2494 if (i < 0 || i > 't' - 'b')
2495 return NULL;
2496
2497 spec = special_sections[i];
2498
2499 if (spec == NULL)
2500 return NULL;
2501
2502 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2503}
2504
2505bfd_boolean
2506_bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2507{
2508 struct bfd_elf_section_data *sdata;
2509 const struct elf_backend_data *bed;
2510 const struct bfd_elf_special_section *ssect;
2511
2512 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2513 if (sdata == NULL)
2514 {
2515 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2516 if (sdata == NULL)
2517 return FALSE;
2518 sec->used_by_bfd = sdata;
2519 }
2520
2521 /* Indicate whether or not this section should use RELA relocations. */
2522 bed = get_elf_backend_data (abfd);
2523 sec->use_rela_p = bed->default_use_rela_p;
2524
2525 /* When we read a file, we don't need to set ELF section type and
2526 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2527 anyway. We will set ELF section type and flags for all linker
2528 created sections. If user specifies BFD section flags, we will
2529 set ELF section type and flags based on BFD section flags in
2530 elf_fake_sections. */
2531 if ((!sec->flags && abfd->direction != read_direction)
2532 || (sec->flags & SEC_LINKER_CREATED) != 0)
2533 {
2534 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2535 if (ssect != NULL)
2536 {
2537 elf_section_type (sec) = ssect->type;
2538 elf_section_flags (sec) = ssect->attr;
2539 }
2540 }
2541
2542 return _bfd_generic_new_section_hook (abfd, sec);
2543}
2544
2545/* Create a new bfd section from an ELF program header.
2546
2547 Since program segments have no names, we generate a synthetic name
2548 of the form segment<NUM>, where NUM is generally the index in the
2549 program header table. For segments that are split (see below) we
2550 generate the names segment<NUM>a and segment<NUM>b.
2551
2552 Note that some program segments may have a file size that is different than
2553 (less than) the memory size. All this means is that at execution the
2554 system must allocate the amount of memory specified by the memory size,
2555 but only initialize it with the first "file size" bytes read from the
2556 file. This would occur for example, with program segments consisting
2557 of combined data+bss.
2558
2559 To handle the above situation, this routine generates TWO bfd sections
2560 for the single program segment. The first has the length specified by
2561 the file size of the segment, and the second has the length specified
2562 by the difference between the two sizes. In effect, the segment is split
2563 into it's initialized and uninitialized parts.
2564
2565 */
2566
2567bfd_boolean
2568_bfd_elf_make_section_from_phdr (bfd *abfd,
2569 Elf_Internal_Phdr *hdr,
2570 int index,
2571 const char *typename)
2572{
2573 asection *newsect;
2574 char *name;
2575 char namebuf[64];
2576 size_t len;
2577 int split;
2578
2579 split = ((hdr->p_memsz > 0)
2580 && (hdr->p_filesz > 0)
2581 && (hdr->p_memsz > hdr->p_filesz));
2582 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2583 len = strlen (namebuf) + 1;
2584 name = bfd_alloc (abfd, len);
2585 if (!name)
2586 return FALSE;
2587 memcpy (name, namebuf, len);
2588 newsect = bfd_make_section (abfd, name);
2589 if (newsect == NULL)
2590 return FALSE;
2591 newsect->vma = hdr->p_vaddr;
2592 newsect->lma = hdr->p_paddr;
2593 newsect->size = hdr->p_filesz;
2594 newsect->filepos = hdr->p_offset;
2595 newsect->flags |= SEC_HAS_CONTENTS;
2596 newsect->alignment_power = bfd_log2 (hdr->p_align);
2597 if (hdr->p_type == PT_LOAD)
2598 {
2599 newsect->flags |= SEC_ALLOC;
2600 newsect->flags |= SEC_LOAD;
2601 if (hdr->p_flags & PF_X)
2602 {
2603 /* FIXME: all we known is that it has execute PERMISSION,
2604 may be data. */
2605 newsect->flags |= SEC_CODE;
2606 }
2607 }
2608 if (!(hdr->p_flags & PF_W))
2609 {
2610 newsect->flags |= SEC_READONLY;
2611 }
2612
2613 if (split)
2614 {
2615 sprintf (namebuf, "%s%db", typename, index);
2616 len = strlen (namebuf) + 1;
2617 name = bfd_alloc (abfd, len);
2618 if (!name)
2619 return FALSE;
2620 memcpy (name, namebuf, len);
2621 newsect = bfd_make_section (abfd, name);
2622 if (newsect == NULL)
2623 return FALSE;
2624 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2625 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2626 newsect->size = hdr->p_memsz - hdr->p_filesz;
2627 if (hdr->p_type == PT_LOAD)
2628 {
2629 newsect->flags |= SEC_ALLOC;
2630 if (hdr->p_flags & PF_X)
2631 newsect->flags |= SEC_CODE;
2632 }
2633 if (!(hdr->p_flags & PF_W))
2634 newsect->flags |= SEC_READONLY;
2635 }
2636
2637 return TRUE;
2638}
2639
2640bfd_boolean
2641bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2642{
2643 const struct elf_backend_data *bed;
2644
2645 switch (hdr->p_type)
2646 {
2647 case PT_NULL:
2648 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2649
2650 case PT_LOAD:
2651 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2652
2653 case PT_DYNAMIC:
2654 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2655
2656 case PT_INTERP:
2657 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2658
2659 case PT_NOTE:
2660 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2661 return FALSE;
2662 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2663 return FALSE;
2664 return TRUE;
2665
2666 case PT_SHLIB:
2667 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2668
2669 case PT_PHDR:
2670 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2671
2672 case PT_GNU_EH_FRAME:
2673 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2674 "eh_frame_hdr");
2675
2676 case PT_GNU_STACK:
2677 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2678
2679 case PT_GNU_RELRO:
2680 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2681
2682 default:
2683 /* Check for any processor-specific program segment types. */
2684 bed = get_elf_backend_data (abfd);
2685 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2686 }
2687}
2688
2689/* Initialize REL_HDR, the section-header for new section, containing
2690 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2691 relocations; otherwise, we use REL relocations. */
2692
2693bfd_boolean
2694_bfd_elf_init_reloc_shdr (bfd *abfd,
2695 Elf_Internal_Shdr *rel_hdr,
2696 asection *asect,
2697 bfd_boolean use_rela_p)
2698{
2699 char *name;
2700 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2701 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2702
2703 name = bfd_alloc (abfd, amt);
2704 if (name == NULL)
2705 return FALSE;
2706 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2707 rel_hdr->sh_name =
2708 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2709 FALSE);
2710 if (rel_hdr->sh_name == (unsigned int) -1)
2711 return FALSE;
2712 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2713 rel_hdr->sh_entsize = (use_rela_p
2714 ? bed->s->sizeof_rela
2715 : bed->s->sizeof_rel);
2716 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2717 rel_hdr->sh_flags = 0;
2718 rel_hdr->sh_addr = 0;
2719 rel_hdr->sh_size = 0;
2720 rel_hdr->sh_offset = 0;
2721
2722 return TRUE;
2723}
2724
2725/* Set up an ELF internal section header for a section. */
2726
2727static void
2728elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2729{
2730 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2731 bfd_boolean *failedptr = failedptrarg;
2732 Elf_Internal_Shdr *this_hdr;
2733
2734 if (*failedptr)
2735 {
2736 /* We already failed; just get out of the bfd_map_over_sections
2737 loop. */
2738 return;
2739 }
2740
2741 this_hdr = &elf_section_data (asect)->this_hdr;
2742
2743 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2744 asect->name, FALSE);
2745 if (this_hdr->sh_name == (unsigned int) -1)
2746 {
2747 *failedptr = TRUE;
2748 return;
2749 }
2750
2751 /* Don't clear sh_flags. Assembler may set additional bits. */
2752
2753 if ((asect->flags & SEC_ALLOC) != 0
2754 || asect->user_set_vma)
2755 this_hdr->sh_addr = asect->vma;
2756 else
2757 this_hdr->sh_addr = 0;
2758
2759 this_hdr->sh_offset = 0;
2760 this_hdr->sh_size = asect->size;
2761 this_hdr->sh_link = 0;
2762 this_hdr->sh_addralign = 1 << asect->alignment_power;
2763 /* The sh_entsize and sh_info fields may have been set already by
2764 copy_private_section_data. */
2765
2766 this_hdr->bfd_section = asect;
2767 this_hdr->contents = NULL;
2768
2769 /* If the section type is unspecified, we set it based on
2770 asect->flags. */
2771 if (this_hdr->sh_type == SHT_NULL)
2772 {
2773 if ((asect->flags & SEC_GROUP) != 0)
2774 this_hdr->sh_type = SHT_GROUP;
2775 else if ((asect->flags & SEC_ALLOC) != 0
2776 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2777 || (asect->flags & SEC_NEVER_LOAD) != 0))
2778 this_hdr->sh_type = SHT_NOBITS;
2779 else
2780 this_hdr->sh_type = SHT_PROGBITS;
2781 }
2782
2783 switch (this_hdr->sh_type)
2784 {
2785 default:
2786 break;
2787
2788 case SHT_STRTAB:
2789 case SHT_INIT_ARRAY:
2790 case SHT_FINI_ARRAY:
2791 case SHT_PREINIT_ARRAY:
2792 case SHT_NOTE:
2793 case SHT_NOBITS:
2794 case SHT_PROGBITS:
2795 break;
2796
2797 case SHT_HASH:
2798 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2799 break;
2800
2801 case SHT_DYNSYM:
2802 this_hdr->sh_entsize = bed->s->sizeof_sym;
2803 break;
2804
2805 case SHT_DYNAMIC:
2806 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2807 break;
2808
2809 case SHT_RELA:
2810 if (get_elf_backend_data (abfd)->may_use_rela_p)
2811 this_hdr->sh_entsize = bed->s->sizeof_rela;
2812 break;
2813
2814 case SHT_REL:
2815 if (get_elf_backend_data (abfd)->may_use_rel_p)
2816 this_hdr->sh_entsize = bed->s->sizeof_rel;
2817 break;
2818
2819 case SHT_GNU_versym:
2820 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2821 break;
2822
2823 case SHT_GNU_verdef:
2824 this_hdr->sh_entsize = 0;
2825 /* objcopy or strip will copy over sh_info, but may not set
2826 cverdefs. The linker will set cverdefs, but sh_info will be
2827 zero. */
2828 if (this_hdr->sh_info == 0)
2829 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2830 else
2831 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2832 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2833 break;
2834
2835 case SHT_GNU_verneed:
2836 this_hdr->sh_entsize = 0;
2837 /* objcopy or strip will copy over sh_info, but may not set
2838 cverrefs. The linker will set cverrefs, but sh_info will be
2839 zero. */
2840 if (this_hdr->sh_info == 0)
2841 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2842 else
2843 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2844 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2845 break;
2846
2847 case SHT_GROUP:
2848 this_hdr->sh_entsize = 4;
2849 break;
2850
2851 case SHT_GNU_HASH:
2852 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2853 break;
2854 }
2855
2856 if ((asect->flags & SEC_ALLOC) != 0)
2857 this_hdr->sh_flags |= SHF_ALLOC;
2858 if ((asect->flags & SEC_READONLY) == 0)
2859 this_hdr->sh_flags |= SHF_WRITE;
2860 if ((asect->flags & SEC_CODE) != 0)
2861 this_hdr->sh_flags |= SHF_EXECINSTR;
2862 if ((asect->flags & SEC_MERGE) != 0)
2863 {
2864 this_hdr->sh_flags |= SHF_MERGE;
2865 this_hdr->sh_entsize = asect->entsize;
2866 if ((asect->flags & SEC_STRINGS) != 0)
2867 this_hdr->sh_flags |= SHF_STRINGS;
2868 }
2869 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2870 this_hdr->sh_flags |= SHF_GROUP;
2871 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2872 {
2873 this_hdr->sh_flags |= SHF_TLS;
2874 if (asect->size == 0
2875 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2876 {
2877 struct bfd_link_order *o = asect->map_tail.link_order;
2878
2879 this_hdr->sh_size = 0;
2880 if (o != NULL)
2881 {
2882 this_hdr->sh_size = o->offset + o->size;
2883 if (this_hdr->sh_size != 0)
2884 this_hdr->sh_type = SHT_NOBITS;
2885 }
2886 }
2887 }
2888
2889 /* Check for processor-specific section types. */
2890 if (bed->elf_backend_fake_sections
2891 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2892 *failedptr = TRUE;
2893
2894 /* If the section has relocs, set up a section header for the
2895 SHT_REL[A] section. If two relocation sections are required for
2896 this section, it is up to the processor-specific back-end to
2897 create the other. */
2898 if ((asect->flags & SEC_RELOC) != 0
2899 && !_bfd_elf_init_reloc_shdr (abfd,
2900 &elf_section_data (asect)->rel_hdr,
2901 asect,
2902 asect->use_rela_p))
2903 *failedptr = TRUE;
2904}
2905
2906/* Fill in the contents of a SHT_GROUP section. */
2907
2908void
2909bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2910{
2911 bfd_boolean *failedptr = failedptrarg;
2912 unsigned long symindx;
2913 asection *elt, *first;
2914 unsigned char *loc;
2915 bfd_boolean gas;
2916
2917 /* Ignore linker created group section. See elfNN_ia64_object_p in
2918 elfxx-ia64.c. */
2919 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2920 || *failedptr)
2921 return;
2922
2923 symindx = 0;
2924 if (elf_group_id (sec) != NULL)
2925 symindx = elf_group_id (sec)->udata.i;
2926
2927 if (symindx == 0)
2928 {
2929 /* If called from the assembler, swap_out_syms will have set up
2930 elf_section_syms; If called for "ld -r", use target_index. */
2931 if (elf_section_syms (abfd) != NULL)
2932 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2933 else
2934 symindx = sec->target_index;
2935 }
2936 elf_section_data (sec)->this_hdr.sh_info = symindx;
2937
2938 /* The contents won't be allocated for "ld -r" or objcopy. */
2939 gas = TRUE;
2940 if (sec->contents == NULL)
2941 {
2942 gas = FALSE;
2943 sec->contents = bfd_alloc (abfd, sec->size);
2944
2945 /* Arrange for the section to be written out. */
2946 elf_section_data (sec)->this_hdr.contents = sec->contents;
2947 if (sec->contents == NULL)
2948 {
2949 *failedptr = TRUE;
2950 return;
2951 }
2952 }
2953
2954 loc = sec->contents + sec->size;
2955
2956 /* Get the pointer to the first section in the group that gas
2957 squirreled away here. objcopy arranges for this to be set to the
2958 start of the input section group. */
2959 first = elt = elf_next_in_group (sec);
2960
2961 /* First element is a flag word. Rest of section is elf section
2962 indices for all the sections of the group. Write them backwards
2963 just to keep the group in the same order as given in .section
2964 directives, not that it matters. */
2965 while (elt != NULL)
2966 {
2967 asection *s;
2968 unsigned int idx;
2969
2970 loc -= 4;
2971 s = elt;
2972 if (!gas)
2973 s = s->output_section;
2974 idx = 0;
2975 if (s != NULL)
2976 idx = elf_section_data (s)->this_idx;
2977 H_PUT_32 (abfd, idx, loc);
2978 elt = elf_next_in_group (elt);
2979 if (elt == first)
2980 break;
2981 }
2982
2983 if ((loc -= 4) != sec->contents)
2984 abort ();
2985
2986 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2987}
2988
2989/* Assign all ELF section numbers. The dummy first section is handled here
2990 too. The link/info pointers for the standard section types are filled
2991 in here too, while we're at it. */
2992
2993static bfd_boolean
2994assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2995{
2996 struct elf_obj_tdata *t = elf_tdata (abfd);
2997 asection *sec;
2998 unsigned int section_number, secn;
2999 Elf_Internal_Shdr **i_shdrp;
3000 struct bfd_elf_section_data *d;
3001
3002 section_number = 1;
3003
3004 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3005
3006 /* SHT_GROUP sections are in relocatable files only. */
3007 if (link_info == NULL || link_info->relocatable)
3008 {
3009 /* Put SHT_GROUP sections first. */
3010 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3011 {
3012 d = elf_section_data (sec);
3013
3014 if (d->this_hdr.sh_type == SHT_GROUP)
3015 {
3016 if (sec->flags & SEC_LINKER_CREATED)
3017 {
3018 /* Remove the linker created SHT_GROUP sections. */
3019 bfd_section_list_remove (abfd, sec);
3020 abfd->section_count--;
3021 }
3022 else
3023 {
3024 if (section_number == SHN_LORESERVE)
3025 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3026 d->this_idx = section_number++;
3027 }
3028 }
3029 }
3030 }
3031
3032 for (sec = abfd->sections; sec; sec = sec->next)
3033 {
3034 d = elf_section_data (sec);
3035
3036 if (d->this_hdr.sh_type != SHT_GROUP)
3037 {
3038 if (section_number == SHN_LORESERVE)
3039 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3040 d->this_idx = section_number++;
3041 }
3042 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3043 if ((sec->flags & SEC_RELOC) == 0)
3044 d->rel_idx = 0;
3045 else
3046 {
3047 if (section_number == SHN_LORESERVE)
3048 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3049 d->rel_idx = section_number++;
3050 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3051 }
3052
3053 if (d->rel_hdr2)
3054 {
3055 if (section_number == SHN_LORESERVE)
3056 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3057 d->rel_idx2 = section_number++;
3058 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3059 }
3060 else
3061 d->rel_idx2 = 0;
3062 }
3063
3064 if (section_number == SHN_LORESERVE)
3065 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3066 t->shstrtab_section = section_number++;
3067 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3068 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3069
3070 if (bfd_get_symcount (abfd) > 0)
3071 {
3072 if (section_number == SHN_LORESERVE)
3073 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3074 t->symtab_section = section_number++;
3075 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3076 if (section_number > SHN_LORESERVE - 2)
3077 {
3078 if (section_number == SHN_LORESERVE)
3079 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3080 t->symtab_shndx_section = section_number++;
3081 t->symtab_shndx_hdr.sh_name
3082 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3083 ".symtab_shndx", FALSE);
3084 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3085 return FALSE;
3086 }
3087 if (section_number == SHN_LORESERVE)
3088 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3089 t->strtab_section = section_number++;
3090 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3091 }
3092
3093 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3094 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3095
3096 elf_numsections (abfd) = section_number;
3097 elf_elfheader (abfd)->e_shnum = section_number;
3098 if (section_number > SHN_LORESERVE)
3099 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3100
3101 /* Set up the list of section header pointers, in agreement with the
3102 indices. */
3103 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3104 if (i_shdrp == NULL)
3105 return FALSE;
3106
3107 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3108 if (i_shdrp[0] == NULL)
3109 {
3110 bfd_release (abfd, i_shdrp);
3111 return FALSE;
3112 }
3113
3114 elf_elfsections (abfd) = i_shdrp;
3115
3116 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3117 if (bfd_get_symcount (abfd) > 0)
3118 {
3119 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3120 if (elf_numsections (abfd) > SHN_LORESERVE)
3121 {
3122 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3123 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3124 }
3125 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3126 t->symtab_hdr.sh_link = t->strtab_section;
3127 }
3128
3129 for (sec = abfd->sections; sec; sec = sec->next)
3130 {
3131 struct bfd_elf_section_data *d = elf_section_data (sec);
3132 asection *s;
3133 const char *name;
3134
3135 i_shdrp[d->this_idx] = &d->this_hdr;
3136 if (d->rel_idx != 0)
3137 i_shdrp[d->rel_idx] = &d->rel_hdr;
3138 if (d->rel_idx2 != 0)
3139 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3140
3141 /* Fill in the sh_link and sh_info fields while we're at it. */
3142
3143 /* sh_link of a reloc section is the section index of the symbol
3144 table. sh_info is the section index of the section to which
3145 the relocation entries apply. */
3146 if (d->rel_idx != 0)
3147 {
3148 d->rel_hdr.sh_link = t->symtab_section;
3149 d->rel_hdr.sh_info = d->this_idx;
3150 }
3151 if (d->rel_idx2 != 0)
3152 {
3153 d->rel_hdr2->sh_link = t->symtab_section;
3154 d->rel_hdr2->sh_info = d->this_idx;
3155 }
3156
3157 /* We need to set up sh_link for SHF_LINK_ORDER. */
3158 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3159 {
3160 s = elf_linked_to_section (sec);
3161 if (s)
3162 {
3163 /* elf_linked_to_section points to the input section. */
3164 if (link_info != NULL)
3165 {
3166 /* Check discarded linkonce section. */
3167 if (elf_discarded_section (s))
3168 {
3169 asection *kept;
3170 (*_bfd_error_handler)
3171 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3172 abfd, d->this_hdr.bfd_section,
3173 s, s->owner);
3174 /* Point to the kept section if it has the same
3175 size as the discarded one. */
3176 kept = _bfd_elf_check_kept_section (s);
3177 if (kept == NULL)
3178 {
3179 bfd_set_error (bfd_error_bad_value);
3180 return FALSE;
3181 }
3182 s = kept;
3183 }
3184
3185 s = s->output_section;
3186 BFD_ASSERT (s != NULL);
3187 }
3188 else
3189 {
3190 /* Handle objcopy. */
3191 if (s->output_section == NULL)
3192 {
3193 (*_bfd_error_handler)
3194 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3195 abfd, d->this_hdr.bfd_section, s, s->owner);
3196 bfd_set_error (bfd_error_bad_value);
3197 return FALSE;
3198 }
3199 s = s->output_section;
3200 }
3201 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3202 }
3203 else
3204 {
3205 /* PR 290:
3206 The Intel C compiler generates SHT_IA_64_UNWIND with
3207 SHF_LINK_ORDER. But it doesn't set the sh_link or
3208 sh_info fields. Hence we could get the situation
3209 where s is NULL. */
3210 const struct elf_backend_data *bed
3211 = get_elf_backend_data (abfd);
3212 if (bed->link_order_error_handler)
3213 bed->link_order_error_handler
3214 (_("%B: warning: sh_link not set for section `%A'"),
3215 abfd, sec);
3216 }
3217 }
3218
3219 switch (d->this_hdr.sh_type)
3220 {
3221 case SHT_REL:
3222 case SHT_RELA:
3223 /* A reloc section which we are treating as a normal BFD
3224 section. sh_link is the section index of the symbol
3225 table. sh_info is the section index of the section to
3226 which the relocation entries apply. We assume that an
3227 allocated reloc section uses the dynamic symbol table.
3228 FIXME: How can we be sure? */
3229 s = bfd_get_section_by_name (abfd, ".dynsym");
3230 if (s != NULL)
3231 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3232
3233 /* We look up the section the relocs apply to by name. */
3234 name = sec->name;
3235 if (d->this_hdr.sh_type == SHT_REL)
3236 name += 4;
3237 else
3238 name += 5;
3239 s = bfd_get_section_by_name (abfd, name);
3240 if (s != NULL)
3241 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3242 break;
3243
3244 case SHT_STRTAB:
3245 /* We assume that a section named .stab*str is a stabs
3246 string section. We look for a section with the same name
3247 but without the trailing ``str'', and set its sh_link
3248 field to point to this section. */
3249 if (CONST_STRNEQ (sec->name, ".stab")
3250 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3251 {
3252 size_t len;
3253 char *alc;
3254
3255 len = strlen (sec->name);
3256 alc = bfd_malloc (len - 2);
3257 if (alc == NULL)
3258 return FALSE;
3259 memcpy (alc, sec->name, len - 3);
3260 alc[len - 3] = '\0';
3261 s = bfd_get_section_by_name (abfd, alc);
3262 free (alc);
3263 if (s != NULL)
3264 {
3265 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3266
3267 /* This is a .stab section. */
3268 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3269 elf_section_data (s)->this_hdr.sh_entsize
3270 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3271 }
3272 }
3273 break;
3274
3275 case SHT_DYNAMIC:
3276 case SHT_DYNSYM:
3277 case SHT_GNU_verneed:
3278 case SHT_GNU_verdef:
3279 /* sh_link is the section header index of the string table
3280 used for the dynamic entries, or the symbol table, or the
3281 version strings. */
3282 s = bfd_get_section_by_name (abfd, ".dynstr");
3283 if (s != NULL)
3284 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3285 break;
3286
3287 case SHT_GNU_LIBLIST:
3288 /* sh_link is the section header index of the prelink library
3289 list
3290 used for the dynamic entries, or the symbol table, or the
3291 version strings. */
3292 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3293 ? ".dynstr" : ".gnu.libstr");
3294 if (s != NULL)
3295 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3296 break;
3297
3298 case SHT_HASH:
3299 case SHT_GNU_HASH:
3300 case SHT_GNU_versym:
3301 /* sh_link is the section header index of the symbol table
3302 this hash table or version table is for. */
3303 s = bfd_get_section_by_name (abfd, ".dynsym");
3304 if (s != NULL)
3305 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3306 break;
3307
3308 case SHT_GROUP:
3309 d->this_hdr.sh_link = t->symtab_section;
3310 }
3311 }
3312
3313 for (secn = 1; secn < section_number; ++secn)
3314 if (i_shdrp[secn] == NULL)
3315 i_shdrp[secn] = i_shdrp[0];
3316 else
3317 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3318 i_shdrp[secn]->sh_name);
3319 return TRUE;
3320}
3321
3322/* Map symbol from it's internal number to the external number, moving
3323 all local symbols to be at the head of the list. */
3324
3325static bfd_boolean
3326sym_is_global (bfd *abfd, asymbol *sym)
3327{
3328 /* If the backend has a special mapping, use it. */
3329 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3330 if (bed->elf_backend_sym_is_global)
3331 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3332
3333 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3334 || bfd_is_und_section (bfd_get_section (sym))
3335 || bfd_is_com_section (bfd_get_section (sym)));
3336}
3337
3338/* Don't output section symbols for sections that are not going to be
3339 output. Also, don't output section symbols for reloc and other
3340 special sections. */
3341
3342static bfd_boolean
3343ignore_section_sym (bfd *abfd, asymbol *sym)
3344{
3345 return ((sym->flags & BSF_SECTION_SYM) != 0
3346 && (sym->value != 0
3347 || (sym->section->owner != abfd
3348 && (sym->section->output_section->owner != abfd
3349 || sym->section->output_offset != 0))));
3350}
3351
3352static bfd_boolean
3353elf_map_symbols (bfd *abfd)
3354{
3355 unsigned int symcount = bfd_get_symcount (abfd);
3356 asymbol **syms = bfd_get_outsymbols (abfd);
3357 asymbol **sect_syms;
3358 unsigned int num_locals = 0;
3359 unsigned int num_globals = 0;
3360 unsigned int num_locals2 = 0;
3361 unsigned int num_globals2 = 0;
3362 int max_index = 0;
3363 unsigned int idx;
3364 asection *asect;
3365 asymbol **new_syms;
3366
3367#ifdef DEBUG
3368 fprintf (stderr, "elf_map_symbols\n");
3369 fflush (stderr);
3370#endif
3371
3372 for (asect = abfd->sections; asect; asect = asect->next)
3373 {
3374 if (max_index < asect->index)
3375 max_index = asect->index;
3376 }
3377
3378 max_index++;
3379 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3380 if (sect_syms == NULL)
3381 return FALSE;
3382 elf_section_syms (abfd) = sect_syms;
3383 elf_num_section_syms (abfd) = max_index;
3384
3385 /* Init sect_syms entries for any section symbols we have already
3386 decided to output. */
3387 for (idx = 0; idx < symcount; idx++)
3388 {
3389 asymbol *sym = syms[idx];
3390
3391 if ((sym->flags & BSF_SECTION_SYM) != 0
3392 && !ignore_section_sym (abfd, sym))
3393 {
3394 asection *sec = sym->section;
3395
3396 if (sec->owner != abfd)
3397 sec = sec->output_section;
3398
3399 sect_syms[sec->index] = syms[idx];
3400 }
3401 }
3402
3403 /* Classify all of the symbols. */
3404 for (idx = 0; idx < symcount; idx++)
3405 {
3406 if (ignore_section_sym (abfd, syms[idx]))
3407 continue;
3408 if (!sym_is_global (abfd, syms[idx]))
3409 num_locals++;
3410 else
3411 num_globals++;
3412 }
3413
3414 /* We will be adding a section symbol for each normal BFD section. Most
3415 sections will already have a section symbol in outsymbols, but
3416 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3417 at least in that case. */
3418 for (asect = abfd->sections; asect; asect = asect->next)
3419 {
3420 if (sect_syms[asect->index] == NULL)
3421 {
3422 if (!sym_is_global (abfd, asect->symbol))
3423 num_locals++;
3424 else
3425 num_globals++;
3426 }
3427 }
3428
3429 /* Now sort the symbols so the local symbols are first. */
3430 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3431
3432 if (new_syms == NULL)
3433 return FALSE;
3434
3435 for (idx = 0; idx < symcount; idx++)
3436 {
3437 asymbol *sym = syms[idx];
3438 unsigned int i;
3439
3440 if (ignore_section_sym (abfd, sym))
3441 continue;
3442 if (!sym_is_global (abfd, sym))
3443 i = num_locals2++;
3444 else
3445 i = num_locals + num_globals2++;
3446 new_syms[i] = sym;
3447 sym->udata.i = i + 1;
3448 }
3449 for (asect = abfd->sections; asect; asect = asect->next)
3450 {
3451 if (sect_syms[asect->index] == NULL)
3452 {
3453 asymbol *sym = asect->symbol;
3454 unsigned int i;
3455
3456 sect_syms[asect->index] = sym;
3457 if (!sym_is_global (abfd, sym))
3458 i = num_locals2++;
3459 else
3460 i = num_locals + num_globals2++;
3461 new_syms[i] = sym;
3462 sym->udata.i = i + 1;
3463 }
3464 }
3465
3466 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3467
3468 elf_num_locals (abfd) = num_locals;
3469 elf_num_globals (abfd) = num_globals;
3470 return TRUE;
3471}
3472
3473/* Align to the maximum file alignment that could be required for any
3474 ELF data structure. */
3475
3476static inline file_ptr
3477align_file_position (file_ptr off, int align)
3478{
3479 return (off + align - 1) & ~(align - 1);
3480}
3481
3482/* Assign a file position to a section, optionally aligning to the
3483 required section alignment. */
3484
3485file_ptr
3486_bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3487 file_ptr offset,
3488 bfd_boolean align)
3489{
3490 if (align)
3491 {
3492 unsigned int al;
3493
3494 al = i_shdrp->sh_addralign;
3495 if (al > 1)
3496 offset = BFD_ALIGN (offset, al);
3497 }
3498 i_shdrp->sh_offset = offset;
3499 if (i_shdrp->bfd_section != NULL)
3500 i_shdrp->bfd_section->filepos = offset;
3501 if (i_shdrp->sh_type != SHT_NOBITS)
3502 offset += i_shdrp->sh_size;
3503 return offset;
3504}
3505
3506/* Compute the file positions we are going to put the sections at, and
3507 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3508 is not NULL, this is being called by the ELF backend linker. */
3509
3510bfd_boolean
3511_bfd_elf_compute_section_file_positions (bfd *abfd,
3512 struct bfd_link_info *link_info)
3513{
3514 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3515 bfd_boolean failed;
3516 struct bfd_strtab_hash *strtab = NULL;
3517 Elf_Internal_Shdr *shstrtab_hdr;
3518
3519 if (abfd->output_has_begun)
3520 return TRUE;
3521
3522 /* Do any elf backend specific processing first. */
3523 if (bed->elf_backend_begin_write_processing)
3524 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3525
3526 if (! prep_headers (abfd))
3527 return FALSE;
3528
3529 /* Post process the headers if necessary. */
3530 if (bed->elf_backend_post_process_headers)
3531 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3532
3533 failed = FALSE;
3534 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3535 if (failed)
3536 return FALSE;
3537
3538 if (!assign_section_numbers (abfd, link_info))
3539 return FALSE;
3540
3541 /* The backend linker builds symbol table information itself. */
3542 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3543 {
3544 /* Non-zero if doing a relocatable link. */
3545 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3546
3547 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3548 return FALSE;
3549 }
3550
3551 if (link_info == NULL)
3552 {
3553 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3554 if (failed)
3555 return FALSE;
3556 }
3557
3558 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3559 /* sh_name was set in prep_headers. */
3560 shstrtab_hdr->sh_type = SHT_STRTAB;
3561 shstrtab_hdr->sh_flags = 0;
3562 shstrtab_hdr->sh_addr = 0;
3563 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3564 shstrtab_hdr->sh_entsize = 0;
3565 shstrtab_hdr->sh_link = 0;
3566 shstrtab_hdr->sh_info = 0;
3567 /* sh_offset is set in assign_file_positions_except_relocs. */
3568 shstrtab_hdr->sh_addralign = 1;
3569
3570 if (!assign_file_positions_except_relocs (abfd, link_info))
3571 return FALSE;
3572
3573 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3574 {
3575 file_ptr off;
3576 Elf_Internal_Shdr *hdr;
3577
3578 off = elf_tdata (abfd)->next_file_pos;
3579
3580 hdr = &elf_tdata (abfd)->symtab_hdr;
3581 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3582
3583 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3584 if (hdr->sh_size != 0)
3585 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3586
3587 hdr = &elf_tdata (abfd)->strtab_hdr;
3588 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3589
3590 elf_tdata (abfd)->next_file_pos = off;
3591
3592 /* Now that we know where the .strtab section goes, write it
3593 out. */
3594 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3595 || ! _bfd_stringtab_emit (abfd, strtab))
3596 return FALSE;
3597 _bfd_stringtab_free (strtab);
3598 }
3599
3600 abfd->output_has_begun = TRUE;
3601
3602 return TRUE;
3603}
3604
3605/* Make an initial estimate of the size of the program header. If we
3606 get the number wrong here, we'll redo section placement. */
3607
3608static bfd_size_type
3609get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3610{
3611 size_t segs;
3612 asection *s;
3613 const struct elf_backend_data *bed;
3614
3615 /* Assume we will need exactly two PT_LOAD segments: one for text
3616 and one for data. */
3617 segs = 2;
3618
3619 s = bfd_get_section_by_name (abfd, ".interp");
3620 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3621 {
3622 /* If we have a loadable interpreter section, we need a
3623 PT_INTERP segment. In this case, assume we also need a
3624 PT_PHDR segment, although that may not be true for all
3625 targets. */
3626 segs += 2;
3627 }
3628
3629 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3630 {
3631 /* We need a PT_DYNAMIC segment. */
3632 ++segs;
3633
3634 if (elf_tdata (abfd)->relro)
3635 {
3636 /* We need a PT_GNU_RELRO segment only when there is a
3637 PT_DYNAMIC segment. */
3638 ++segs;
3639 }
3640 }
3641
3642 if (elf_tdata (abfd)->eh_frame_hdr)
3643 {
3644 /* We need a PT_GNU_EH_FRAME segment. */
3645 ++segs;
3646 }
3647
3648 if (elf_tdata (abfd)->stack_flags)
3649 {
3650 /* We need a PT_GNU_STACK segment. */
3651 ++segs;
3652 }
3653
3654 for (s = abfd->sections; s != NULL; s = s->next)
3655 {
3656 if ((s->flags & SEC_LOAD) != 0
3657 && CONST_STRNEQ (s->name, ".note"))
3658 {
3659 /* We need a PT_NOTE segment. */
3660 ++segs;
3661 }
3662 }
3663
3664 for (s = abfd->sections; s != NULL; s = s->next)
3665 {
3666 if (s->flags & SEC_THREAD_LOCAL)
3667 {
3668 /* We need a PT_TLS segment. */
3669 ++segs;
3670 break;
3671 }
3672 }
3673
3674 /* Let the backend count up any program headers it might need. */
3675 bed = get_elf_backend_data (abfd);
3676 if (bed->elf_backend_additional_program_headers)
3677 {
3678 int a;
3679
3680 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3681 if (a == -1)
3682 abort ();
3683 segs += a;
3684 }
3685
3686 return segs * bed->s->sizeof_phdr;
3687}
3688
3689/* Create a mapping from a set of sections to a program segment. */
3690
3691static struct elf_segment_map *
3692make_mapping (bfd *abfd,
3693 asection **sections,
3694 unsigned int from,
3695 unsigned int to,
3696 bfd_boolean phdr)
3697{
3698 struct elf_segment_map *m;
3699 unsigned int i;
3700 asection **hdrpp;
3701 bfd_size_type amt;
3702
3703 amt = sizeof (struct elf_segment_map);
3704 amt += (to - from - 1) * sizeof (asection *);
3705 m = bfd_zalloc (abfd, amt);
3706 if (m == NULL)
3707 return NULL;
3708 m->next = NULL;
3709 m->p_type = PT_LOAD;
3710 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3711 m->sections[i - from] = *hdrpp;
3712 m->count = to - from;
3713
3714 if (from == 0 && phdr)
3715 {
3716 /* Include the headers in the first PT_LOAD segment. */
3717 m->includes_filehdr = 1;
3718 m->includes_phdrs = 1;
3719 }
3720
3721 return m;
3722}
3723
3724/* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3725 on failure. */
3726
3727struct elf_segment_map *
3728_bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3729{
3730 struct elf_segment_map *m;
3731
3732 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3733 if (m == NULL)
3734 return NULL;
3735 m->next = NULL;
3736 m->p_type = PT_DYNAMIC;
3737 m->count = 1;
3738 m->sections[0] = dynsec;
3739
3740 return m;
3741}
3742
3743/* Possibly add or remove segments from the segment map. */
3744
3745static bfd_boolean
3746elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
3747{
3748 struct elf_segment_map **m;
3749 const struct elf_backend_data *bed;
3750
3751 /* The placement algorithm assumes that non allocated sections are
3752 not in PT_LOAD segments. We ensure this here by removing such
3753 sections from the segment map. We also remove excluded
3754 sections. Finally, any PT_LOAD segment without sections is
3755 removed. */
3756 m = &elf_tdata (abfd)->segment_map;
3757 while (*m)
3758 {
3759 unsigned int i, new_count;
3760
3761 for (new_count = 0, i = 0; i < (*m)->count; i++)
3762 {
3763 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3764 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3765 || (*m)->p_type != PT_LOAD))
3766 {
3767 (*m)->sections[new_count] = (*m)->sections[i];
3768 new_count++;
3769 }
3770 }
3771 (*m)->count = new_count;
3772
3773 if ((*m)->p_type == PT_LOAD && (*m)->count == 0)
3774 *m = (*m)->next;
3775 else
3776 m = &(*m)->next;
3777 }
3778
3779 bed = get_elf_backend_data (abfd);
3780 if (bed->elf_backend_modify_segment_map != NULL)
3781 {
3782 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3783 return FALSE;
3784 }
3785
3786 return TRUE;
3787}
3788
3789/* Set up a mapping from BFD sections to program segments. */
3790
3791bfd_boolean
3792_bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3793{
3794 unsigned int count;
3795 struct elf_segment_map *m;
3796 asection **sections = NULL;
3797 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3798
3799 if (elf_tdata (abfd)->segment_map == NULL
3800 && bfd_count_sections (abfd) != 0)
3801 {
3802 asection *s;
3803 unsigned int i;
3804 struct elf_segment_map *mfirst;
3805 struct elf_segment_map **pm;
3806 asection *last_hdr;
3807 bfd_vma last_size;
3808 unsigned int phdr_index;
3809 bfd_vma maxpagesize;
3810 asection **hdrpp;
3811 bfd_boolean phdr_in_segment = TRUE;
3812 bfd_boolean writable;
3813 int tls_count = 0;
3814 asection *first_tls = NULL;
3815 asection *dynsec, *eh_frame_hdr;
3816 bfd_size_type amt;
3817
3818 /* Select the allocated sections, and sort them. */
3819
3820 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3821 if (sections == NULL)
3822 goto error_return;
3823
3824 i = 0;
3825 for (s = abfd->sections; s != NULL; s = s->next)
3826 {
3827 if ((s->flags & SEC_ALLOC) != 0)
3828 {
3829 sections[i] = s;
3830 ++i;
3831 }
3832 }
3833 BFD_ASSERT (i <= bfd_count_sections (abfd));
3834 count = i;
3835
3836 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3837
3838 /* Build the mapping. */
3839
3840 mfirst = NULL;
3841 pm = &mfirst;
3842
3843 /* If we have a .interp section, then create a PT_PHDR segment for
3844 the program headers and a PT_INTERP segment for the .interp
3845 section. */
3846 s = bfd_get_section_by_name (abfd, ".interp");
3847 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3848 {
3849 amt = sizeof (struct elf_segment_map);
3850 m = bfd_zalloc (abfd, amt);
3851 if (m == NULL)
3852 goto error_return;
3853 m->next = NULL;
3854 m->p_type = PT_PHDR;
3855 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3856 m->p_flags = PF_R | PF_X;
3857 m->p_flags_valid = 1;
3858 m->includes_phdrs = 1;
3859
3860 *pm = m;
3861 pm = &m->next;
3862
3863 amt = sizeof (struct elf_segment_map);
3864 m = bfd_zalloc (abfd, amt);
3865 if (m == NULL)
3866 goto error_return;
3867 m->next = NULL;
3868 m->p_type = PT_INTERP;
3869 m->count = 1;
3870 m->sections[0] = s;
3871
3872 *pm = m;
3873 pm = &m->next;
3874 }
3875
3876 /* Look through the sections. We put sections in the same program
3877 segment when the start of the second section can be placed within
3878 a few bytes of the end of the first section. */
3879 last_hdr = NULL;
3880 last_size = 0;
3881 phdr_index = 0;
3882 maxpagesize = bed->maxpagesize;
3883 writable = FALSE;
3884 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3885 if (dynsec != NULL
3886 && (dynsec->flags & SEC_LOAD) == 0)
3887 dynsec = NULL;
3888
3889 /* Deal with -Ttext or something similar such that the first section
3890 is not adjacent to the program headers. This is an
3891 approximation, since at this point we don't know exactly how many
3892 program headers we will need. */
3893 if (count > 0)
3894 {
3895 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3896
3897 if (phdr_size == (bfd_size_type) -1)
3898 phdr_size = get_program_header_size (abfd, info);
3899 if ((abfd->flags & D_PAGED) == 0
3900 || sections[0]->lma < phdr_size
3901 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3902 phdr_in_segment = FALSE;
3903 }
3904
3905 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3906 {
3907 asection *hdr;
3908 bfd_boolean new_segment;
3909
3910 hdr = *hdrpp;
3911
3912 /* See if this section and the last one will fit in the same
3913 segment. */
3914
3915 if (last_hdr == NULL)
3916 {
3917 /* If we don't have a segment yet, then we don't need a new
3918 one (we build the last one after this loop). */
3919 new_segment = FALSE;
3920 }
3921 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3922 {
3923 /* If this section has a different relation between the
3924 virtual address and the load address, then we need a new
3925 segment. */
3926 new_segment = TRUE;
3927 }
3928 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3929 < BFD_ALIGN (hdr->lma, maxpagesize))
3930 {
3931 /* If putting this section in this segment would force us to
3932 skip a page in the segment, then we need a new segment. */
3933 new_segment = TRUE;
3934 }
3935 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3936 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3937 {
3938 /* We don't want to put a loadable section after a
3939 nonloadable section in the same segment.
3940 Consider .tbss sections as loadable for this purpose. */
3941 new_segment = TRUE;
3942 }
3943 else if ((abfd->flags & D_PAGED) == 0)
3944 {
3945 /* If the file is not demand paged, which means that we
3946 don't require the sections to be correctly aligned in the
3947 file, then there is no other reason for a new segment. */
3948 new_segment = FALSE;
3949 }
3950 else if (! writable
3951 && (hdr->flags & SEC_READONLY) == 0
3952 && (((last_hdr->lma + last_size - 1)
3953 & ~(maxpagesize - 1))
3954 != (hdr->lma & ~(maxpagesize - 1))))
3955 {
3956 /* We don't want to put a writable section in a read only
3957 segment, unless they are on the same page in memory
3958 anyhow. We already know that the last section does not
3959 bring us past the current section on the page, so the
3960 only case in which the new section is not on the same
3961 page as the previous section is when the previous section
3962 ends precisely on a page boundary. */
3963 new_segment = TRUE;
3964 }
3965 else
3966 {
3967 /* Otherwise, we can use the same segment. */
3968 new_segment = FALSE;
3969 }
3970
3971 if (! new_segment)
3972 {
3973 if ((hdr->flags & SEC_READONLY) == 0)
3974 writable = TRUE;
3975 last_hdr = hdr;
3976 /* .tbss sections effectively have zero size. */
3977 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3978 != SEC_THREAD_LOCAL)
3979 last_size = hdr->size;
3980 else
3981 last_size = 0;
3982 continue;
3983 }
3984
3985 /* We need a new program segment. We must create a new program
3986 header holding all the sections from phdr_index until hdr. */
3987
3988 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3989 if (m == NULL)
3990 goto error_return;
3991
3992 *pm = m;
3993 pm = &m->next;
3994
3995 if ((hdr->flags & SEC_READONLY) == 0)
3996 writable = TRUE;
3997 else
3998 writable = FALSE;
3999
4000 last_hdr = hdr;
4001 /* .tbss sections effectively have zero size. */
4002 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4003 last_size = hdr->size;
4004 else
4005 last_size = 0;
4006 phdr_index = i;
4007 phdr_in_segment = FALSE;
4008 }
4009
4010 /* Create a final PT_LOAD program segment. */
4011 if (last_hdr != NULL)
4012 {
4013 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4014 if (m == NULL)
4015 goto error_return;
4016
4017 *pm = m;
4018 pm = &m->next;
4019 }
4020
4021 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4022 if (dynsec != NULL)
4023 {
4024 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4025 if (m == NULL)
4026 goto error_return;
4027 *pm = m;
4028 pm = &m->next;
4029 }
4030
4031 /* For each loadable .note section, add a PT_NOTE segment. We don't
4032 use bfd_get_section_by_name, because if we link together
4033 nonloadable .note sections and loadable .note sections, we will
4034 generate two .note sections in the output file. FIXME: Using
4035 names for section types is bogus anyhow. */
4036 for (s = abfd->sections; s != NULL; s = s->next)
4037 {
4038 if ((s->flags & SEC_LOAD) != 0
4039 && CONST_STRNEQ (s->name, ".note"))
4040 {
4041 amt = sizeof (struct elf_segment_map);
4042 m = bfd_zalloc (abfd, amt);
4043 if (m == NULL)
4044 goto error_return;
4045 m->next = NULL;
4046 m->p_type = PT_NOTE;
4047 m->count = 1;
4048 m->sections[0] = s;
4049
4050 *pm = m;
4051 pm = &m->next;
4052 }
4053 if (s->flags & SEC_THREAD_LOCAL)
4054 {
4055 if (! tls_count)
4056 first_tls = s;
4057 tls_count++;
4058 }
4059 }
4060
4061 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4062 if (tls_count > 0)
4063 {
4064 int i;
4065
4066 amt = sizeof (struct elf_segment_map);
4067 amt += (tls_count - 1) * sizeof (asection *);
4068 m = bfd_zalloc (abfd, amt);
4069 if (m == NULL)
4070 goto error_return;
4071 m->next = NULL;
4072 m->p_type = PT_TLS;
4073 m->count = tls_count;
4074 /* Mandated PF_R. */
4075 m->p_flags = PF_R;
4076 m->p_flags_valid = 1;
4077 for (i = 0; i < tls_count; ++i)
4078 {
4079 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4080 m->sections[i] = first_tls;
4081 first_tls = first_tls->next;
4082 }
4083
4084 *pm = m;
4085 pm = &m->next;
4086 }
4087
4088 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4089 segment. */
4090 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4091 if (eh_frame_hdr != NULL
4092 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4093 {
4094 amt = sizeof (struct elf_segment_map);
4095 m = bfd_zalloc (abfd, amt);
4096 if (m == NULL)
4097 goto error_return;
4098 m->next = NULL;
4099 m->p_type = PT_GNU_EH_FRAME;
4100 m->count = 1;
4101 m->sections[0] = eh_frame_hdr->output_section;
4102
4103 *pm = m;
4104 pm = &m->next;
4105 }
4106
4107 if (elf_tdata (abfd)->stack_flags)
4108 {
4109 amt = sizeof (struct elf_segment_map);
4110 m = bfd_zalloc (abfd, amt);
4111 if (m == NULL)
4112 goto error_return;
4113 m->next = NULL;
4114 m->p_type = PT_GNU_STACK;
4115 m->p_flags = elf_tdata (abfd)->stack_flags;
4116 m->p_flags_valid = 1;
4117
4118 *pm = m;
4119 pm = &m->next;
4120 }
4121
4122 if (dynsec != NULL && elf_tdata (abfd)->relro)
4123 {
4124 /* We make a PT_GNU_RELRO segment only when there is a
4125 PT_DYNAMIC segment. */
4126 amt = sizeof (struct elf_segment_map);
4127 m = bfd_zalloc (abfd, amt);
4128 if (m == NULL)
4129 goto error_return;
4130 m->next = NULL;
4131 m->p_type = PT_GNU_RELRO;
4132 m->p_flags = PF_R;
4133 m->p_flags_valid = 1;
4134
4135 *pm = m;
4136 pm = &m->next;
4137 }
4138
4139 free (sections);
4140 elf_tdata (abfd)->segment_map = mfirst;
4141 }
4142
4143 if (!elf_modify_segment_map (abfd, info))
4144 return FALSE;
4145
4146 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4147 ++count;
4148 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4149
4150 return TRUE;
4151
4152 error_return:
4153 if (sections != NULL)
4154 free (sections);
4155 return FALSE;
4156}
4157
4158/* Sort sections by address. */
4159
4160static int
4161elf_sort_sections (const void *arg1, const void *arg2)
4162{
4163 const asection *sec1 = *(const asection **) arg1;
4164 const asection *sec2 = *(const asection **) arg2;
4165 bfd_size_type size1, size2;
4166
4167 /* Sort by LMA first, since this is the address used to
4168 place the section into a segment. */
4169 if (sec1->lma < sec2->lma)
4170 return -1;
4171 else if (sec1->lma > sec2->lma)
4172 return 1;
4173
4174 /* Then sort by VMA. Normally the LMA and the VMA will be
4175 the same, and this will do nothing. */
4176 if (sec1->vma < sec2->vma)
4177 return -1;
4178 else if (sec1->vma > sec2->vma)
4179 return 1;
4180
4181 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4182
4183#define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4184
4185 if (TOEND (sec1))
4186 {
4187 if (TOEND (sec2))
4188 {
4189 /* If the indicies are the same, do not return 0
4190 here, but continue to try the next comparison. */
4191 if (sec1->target_index - sec2->target_index != 0)
4192 return sec1->target_index - sec2->target_index;
4193 }
4194 else
4195 return 1;
4196 }
4197 else if (TOEND (sec2))
4198 return -1;
4199
4200#undef TOEND
4201
4202 /* Sort by size, to put zero sized sections
4203 before others at the same address. */
4204
4205 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4206 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4207
4208 if (size1 < size2)
4209 return -1;
4210 if (size1 > size2)
4211 return 1;
4212
4213 return sec1->target_index - sec2->target_index;
4214}
4215
4216/* Ian Lance Taylor writes:
4217
4218 We shouldn't be using % with a negative signed number. That's just
4219 not good. We have to make sure either that the number is not
4220 negative, or that the number has an unsigned type. When the types
4221 are all the same size they wind up as unsigned. When file_ptr is a
4222 larger signed type, the arithmetic winds up as signed long long,
4223 which is wrong.
4224
4225 What we're trying to say here is something like ``increase OFF by
4226 the least amount that will cause it to be equal to the VMA modulo
4227 the page size.'' */
4228/* In other words, something like:
4229
4230 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4231 off_offset = off % bed->maxpagesize;
4232 if (vma_offset < off_offset)
4233 adjustment = vma_offset + bed->maxpagesize - off_offset;
4234 else
4235 adjustment = vma_offset - off_offset;
4236
4237 which can can be collapsed into the expression below. */
4238
4239static file_ptr
4240vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4241{
4242 return ((vma - off) % maxpagesize);
4243}
4244
4245/* Assign file positions to the sections based on the mapping from
4246 sections to segments. This function also sets up some fields in
4247 the file header. */
4248
4249static bfd_boolean
4250assign_file_positions_for_load_sections (bfd *abfd,
4251 struct bfd_link_info *link_info)
4252{
4253 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4254 struct elf_segment_map *m;
4255 Elf_Internal_Phdr *phdrs;
4256 Elf_Internal_Phdr *p;
4257 file_ptr off, voff;
4258 bfd_size_type maxpagesize;
4259 unsigned int alloc;
4260 unsigned int i;
4261
4262 if (link_info == NULL
4263 && !elf_modify_segment_map (abfd, link_info))
4264 return FALSE;
4265
4266 alloc = 0;
4267 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4268 ++alloc;
4269
4270 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4271 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4272 elf_elfheader (abfd)->e_phnum = alloc;
4273
4274 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4275 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4276 else
4277 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4278 == alloc * bed->s->sizeof_phdr);
4279
4280 if (alloc == 0)
4281 {
4282 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4283 return TRUE;
4284 }
4285
4286 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4287 elf_tdata (abfd)->phdr = phdrs;
4288 if (phdrs == NULL)
4289 return FALSE;
4290
4291 maxpagesize = 1;
4292 if ((abfd->flags & D_PAGED) != 0)
4293 maxpagesize = bed->maxpagesize;
4294
4295 off = bed->s->sizeof_ehdr;
4296 off += alloc * bed->s->sizeof_phdr;
4297
4298 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4299 m != NULL;
4300 m = m->next, p++)
4301 {
4302 asection **secpp;
4303
4304 /* If elf_segment_map is not from map_sections_to_segments, the
4305 sections may not be correctly ordered. NOTE: sorting should
4306 not be done to the PT_NOTE section of a corefile, which may
4307 contain several pseudo-sections artificially created by bfd.
4308 Sorting these pseudo-sections breaks things badly. */
4309 if (m->count > 1
4310 && !(elf_elfheader (abfd)->e_type == ET_CORE
4311 && m->p_type == PT_NOTE))
4312 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4313 elf_sort_sections);
4314
4315 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4316 number of sections with contents contributing to both p_filesz
4317 and p_memsz, followed by a number of sections with no contents
4318 that just contribute to p_memsz. In this loop, OFF tracks next
4319 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4320 an adjustment we use for segments that have no file contents
4321 but need zero filled memory allocation. */
4322 voff = 0;
4323 p->p_type = m->p_type;
4324 p->p_flags = m->p_flags;
4325
4326 if (m->count == 0)
4327 p->p_vaddr = 0;
4328 else
4329 p->p_vaddr = m->sections[0]->vma;
4330
4331 if (m->p_paddr_valid)
4332 p->p_paddr = m->p_paddr;
4333 else if (m->count == 0)
4334 p->p_paddr = 0;
4335 else
4336 p->p_paddr = m->sections[0]->lma;
4337
4338 if (p->p_type == PT_LOAD
4339 && (abfd->flags & D_PAGED) != 0)
4340 {
4341 /* p_align in demand paged PT_LOAD segments effectively stores
4342 the maximum page size. When copying an executable with
4343 objcopy, we set m->p_align from the input file. Use this
4344 value for maxpagesize rather than bed->maxpagesize, which
4345 may be different. Note that we use maxpagesize for PT_TLS
4346 segment alignment later in this function, so we are relying
4347 on at least one PT_LOAD segment appearing before a PT_TLS
4348 segment. */
4349 if (m->p_align_valid)
4350 maxpagesize = m->p_align;
4351
4352 p->p_align = maxpagesize;
4353 }
4354 else if (m->count == 0)
4355 p->p_align = 1 << bed->s->log_file_align;
4356 else
4357 p->p_align = 0;
4358
4359 if (p->p_type == PT_LOAD
4360 && m->count > 0)
4361 {
4362 bfd_size_type align;
4363 bfd_vma adjust;
4364 unsigned int align_power = 0;
4365
4366 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4367 {
4368 unsigned int secalign;
4369
4370 secalign = bfd_get_section_alignment (abfd, *secpp);
4371 if (secalign > align_power)
4372 align_power = secalign;
4373 }
4374 align = (bfd_size_type) 1 << align_power;
4375
4376 if (align < maxpagesize)
4377 align = maxpagesize;
4378
4379 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4380 off += adjust;
4381 if (adjust != 0
4382 && !m->includes_filehdr
4383 && !m->includes_phdrs
4384 && (ufile_ptr) off >= align)
4385 {
4386 /* If the first section isn't loadable, the same holds for
4387 any other sections. Since the segment won't need file
4388 space, we can make p_offset overlap some prior segment.
4389 However, .tbss is special. If a segment starts with
4390 .tbss, we need to look at the next section to decide
4391 whether the segment has any loadable sections. */
4392 i = 0;
4393 while ((m->sections[i]->flags & SEC_LOAD) == 0
4394 && (m->sections[i]->flags & SEC_HAS_CONTENTS) == 0)
4395 {
4396 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4397 || ++i >= m->count)
4398 {
4399 off -= adjust;
4400 voff = adjust - align;
4401 break;
4402 }
4403 }
4404 }
4405 }
4406 /* Make sure the .dynamic section is the first section in the
4407 PT_DYNAMIC segment. */
4408 else if (p->p_type == PT_DYNAMIC
4409 && m->count > 1
4410 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4411 {
4412 _bfd_error_handler
4413 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4414 abfd);
4415 bfd_set_error (bfd_error_bad_value);
4416 return FALSE;
4417 }
4418
4419 p->p_offset = 0;
4420 p->p_filesz = 0;
4421 p->p_memsz = 0;
4422
4423 if (m->includes_filehdr)
4424 {
4425 if (! m->p_flags_valid)
4426 p->p_flags |= PF_R;
4427 p->p_offset = 0;
4428 p->p_filesz = bed->s->sizeof_ehdr;
4429 p->p_memsz = bed->s->sizeof_ehdr;
4430 if (m->count > 0)
4431 {
4432 BFD_ASSERT (p->p_type == PT_LOAD);
4433
4434 if (p->p_vaddr < (bfd_vma) off)
4435 {
4436 (*_bfd_error_handler)
4437 (_("%B: Not enough room for program headers, try linking with -N"),
4438 abfd);
4439 bfd_set_error (bfd_error_bad_value);
4440 return FALSE;
4441 }
4442
4443 p->p_vaddr -= off;
4444 if (! m->p_paddr_valid)
4445 p->p_paddr -= off;
4446 }
4447 }
4448
4449 if (m->includes_phdrs)
4450 {
4451 if (! m->p_flags_valid)
4452 p->p_flags |= PF_R;
4453
4454 if (!m->includes_filehdr)
4455 {
4456 p->p_offset = bed->s->sizeof_ehdr;
4457
4458 if (m->count > 0)
4459 {
4460 BFD_ASSERT (p->p_type == PT_LOAD);
4461 p->p_vaddr -= off - p->p_offset;
4462 if (! m->p_paddr_valid)
4463 p->p_paddr -= off - p->p_offset;
4464 }
4465 }
4466
4467 p->p_filesz += alloc * bed->s->sizeof_phdr;
4468 p->p_memsz += alloc * bed->s->sizeof_phdr;
4469 }
4470
4471 if (p->p_type == PT_LOAD
4472 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4473 {
4474 if (! m->includes_filehdr && ! m->includes_phdrs)
4475 p->p_offset = off + voff;
4476 else
4477 {
4478 file_ptr adjust;
4479
4480 adjust = off - (p->p_offset + p->p_filesz);
4481 p->p_filesz += adjust;
4482 p->p_memsz += adjust;
4483 }
4484 }
4485
4486 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4487 maps. Set filepos for sections in PT_LOAD segments, and in
4488 core files, for sections in PT_NOTE segments.
4489 assign_file_positions_for_non_load_sections will set filepos
4490 for other sections and update p_filesz for other segments. */
4491 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4492 {
4493 asection *sec;
4494 flagword flags;
4495 bfd_size_type align;
4496
4497 sec = *secpp;
4498 flags = sec->flags;
4499 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4500
4501 if (p->p_type == PT_LOAD
4502 || p->p_type == PT_TLS)
4503 {
4504 bfd_signed_vma adjust;
4505
4506 if ((flags & SEC_LOAD) != 0)
4507 {
4508 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4509 if (adjust < 0)
4510 {
4511 (*_bfd_error_handler)
4512 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4513 abfd, sec, (unsigned long) sec->lma);
4514 adjust = 0;
4515 }
4516 off += adjust;
4517 p->p_filesz += adjust;
4518 p->p_memsz += adjust;
4519 }
4520 /* .tbss is special. It doesn't contribute to p_memsz of
4521 normal segments. */
4522 else if ((flags & SEC_ALLOC) != 0
4523 && ((flags & SEC_THREAD_LOCAL) == 0
4524 || p->p_type == PT_TLS))
4525 {
4526 /* The section VMA must equal the file position
4527 modulo the page size. */
4528 bfd_size_type page = align;
4529 if (page < maxpagesize)
4530 page = maxpagesize;
4531 adjust = vma_page_aligned_bias (sec->vma,
4532 p->p_vaddr + p->p_memsz,
4533 page);
4534 p->p_memsz += adjust;
4535 }
4536 }
4537
4538 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4539 {
4540 /* The section at i == 0 is the one that actually contains
4541 everything. */
4542 if (i == 0)
4543 {
4544 sec->filepos = off;
4545 off += sec->size;
4546 p->p_filesz = sec->size;
4547 p->p_memsz = 0;
4548 p->p_align = 1;
4549 }
4550 else
4551 {
4552 /* The rest are fake sections that shouldn't be written. */
4553 sec->filepos = 0;
4554 sec->size = 0;
4555 sec->flags = 0;
4556 continue;
4557 }
4558 }
4559 else
4560 {
4561 if (p->p_type == PT_LOAD)
4562 {
4563 sec->filepos = off + voff;
4564 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4565 1997, and the exact reason for it isn't clear. One
4566 plausible explanation is that it is to work around
4567 a problem we have with linker scripts using data
4568 statements in NOLOAD sections. I don't think it
4569 makes a great deal of sense to have such a section
4570 assigned to a PT_LOAD segment, but apparently
4571 people do this. The data statement results in a
4572 bfd_data_link_order being built, and these need
4573 section contents to write into. Eventually, we get
4574 to _bfd_elf_write_object_contents which writes any
4575 section with contents to the output. Make room
4576 here for the write, so that following segments are
4577 not trashed. */
4578 if ((flags & SEC_LOAD) != 0
4579 || (flags & SEC_HAS_CONTENTS) != 0)
4580 off += sec->size;
4581 }
4582
4583 if ((flags & SEC_LOAD) != 0)
4584 {
4585 p->p_filesz += sec->size;
4586 p->p_memsz += sec->size;
4587 }
4588
4589 /* .tbss is special. It doesn't contribute to p_memsz of
4590 normal segments. */
4591 else if ((flags & SEC_ALLOC) != 0
4592 && ((flags & SEC_THREAD_LOCAL) == 0
4593 || p->p_type == PT_TLS))
4594 p->p_memsz += sec->size;
4595
4596 if (p->p_type == PT_TLS
4597 && sec->size == 0
4598 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4599 {
4600 struct bfd_link_order *o = sec->map_tail.link_order;
4601 if (o != NULL)
4602 p->p_memsz += o->offset + o->size;
4603 }
4604
4605 if (p->p_type == PT_GNU_RELRO)
4606 p->p_align = 1;
4607 else if (align > p->p_align
4608 && (p->p_type != PT_LOAD
4609 || (abfd->flags & D_PAGED) == 0))
4610 p->p_align = align;
4611 }
4612
4613 if (! m->p_flags_valid)
4614 {
4615 p->p_flags |= PF_R;
4616 if ((flags & SEC_CODE) != 0)
4617 p->p_flags |= PF_X;
4618 if ((flags & SEC_READONLY) == 0)
4619 p->p_flags |= PF_W;
4620 }
4621 }
4622 }
4623
4624 elf_tdata (abfd)->next_file_pos = off;
4625 return TRUE;
4626}
4627
4628/* Assign file positions for the other sections. */
4629
4630static bfd_boolean
4631assign_file_positions_for_non_load_sections (bfd *abfd,
4632 struct bfd_link_info *link_info)
4633{
4634 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4635 Elf_Internal_Shdr **i_shdrpp;
4636 Elf_Internal_Shdr **hdrpp;
4637 Elf_Internal_Phdr *phdrs;
4638 Elf_Internal_Phdr *p;
4639 struct elf_segment_map *m;
4640 bfd_vma filehdr_vaddr, filehdr_paddr;
4641 bfd_vma phdrs_vaddr, phdrs_paddr;
4642 file_ptr off;
4643 unsigned int num_sec;
4644 unsigned int i;
4645 unsigned int count;
4646
4647 i_shdrpp = elf_elfsections (abfd);
4648 num_sec = elf_numsections (abfd);
4649 off = elf_tdata (abfd)->next_file_pos;
4650 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4651 {
4652 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4653 Elf_Internal_Shdr *hdr;
4654
4655 hdr = *hdrpp;
4656 if (hdr->bfd_section != NULL
4657 && (hdr->bfd_section->filepos != 0
4658 || (hdr->sh_type == SHT_NOBITS
4659 && hdr->contents == NULL)))
4660 hdr->sh_offset = hdr->bfd_section->filepos;
4661 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4662 {
4663 if (hdr->sh_size != 0)
4664 ((*_bfd_error_handler)
4665 (_("%B: warning: allocated section `%s' not in segment"),
4666 abfd,
4667 (hdr->bfd_section == NULL
4668 ? "*unknown*"
4669 : hdr->bfd_section->name)));
4670 /* We don't need to page align empty sections. */
4671 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4672 off += vma_page_aligned_bias (hdr->sh_addr, off,
4673 bed->maxpagesize);
4674 else
4675 off += vma_page_aligned_bias (hdr->sh_addr, off,
4676 hdr->sh_addralign);
4677 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4678 FALSE);
4679 }
4680 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4681 && hdr->bfd_section == NULL)
4682 || hdr == i_shdrpp[tdata->symtab_section]
4683 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4684 || hdr == i_shdrpp[tdata->strtab_section])
4685 hdr->sh_offset = -1;
4686 else
4687 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4688
4689 if (i == SHN_LORESERVE - 1)
4690 {
4691 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4692 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4693 }
4694 }
4695
4696 /* Now that we have set the section file positions, we can set up
4697 the file positions for the non PT_LOAD segments. */
4698 count = 0;
4699 filehdr_vaddr = 0;
4700 filehdr_paddr = 0;
4701 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4702 phdrs_paddr = 0;
4703 phdrs = elf_tdata (abfd)->phdr;
4704 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4705 m != NULL;
4706 m = m->next, p++)
4707 {
4708 ++count;
4709 if (p->p_type != PT_LOAD)
4710 continue;
4711
4712 if (m->includes_filehdr)
4713 {
4714 filehdr_vaddr = p->p_vaddr;
4715 filehdr_paddr = p->p_paddr;
4716 }
4717 if (m->includes_phdrs)
4718 {
4719 phdrs_vaddr = p->p_vaddr;
4720 phdrs_paddr = p->p_paddr;
4721 if (m->includes_filehdr)
4722 {
4723 phdrs_vaddr += bed->s->sizeof_ehdr;
4724 phdrs_paddr += bed->s->sizeof_ehdr;
4725 }
4726 }
4727 }
4728
4729 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4730 m != NULL;
4731 m = m->next, p++)
4732 {
4733 if (m->count != 0)
4734 {
4735 if (p->p_type != PT_LOAD
4736 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4737 {
4738 Elf_Internal_Shdr *hdr;
4739 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4740
4741 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4742 p->p_filesz = (m->sections[m->count - 1]->filepos
4743 - m->sections[0]->filepos);
4744 if (hdr->sh_type != SHT_NOBITS)
4745 p->p_filesz += hdr->sh_size;
4746
4747 p->p_offset = m->sections[0]->filepos;
4748 }
4749 }
4750 else
4751 {
4752 if (m->includes_filehdr)
4753 {
4754 p->p_vaddr = filehdr_vaddr;
4755 if (! m->p_paddr_valid)
4756 p->p_paddr = filehdr_paddr;
4757 }
4758 else if (m->includes_phdrs)
4759 {
4760 p->p_vaddr = phdrs_vaddr;
4761 if (! m->p_paddr_valid)
4762 p->p_paddr = phdrs_paddr;
4763 }
4764 else if (p->p_type == PT_GNU_RELRO)
4765 {
4766 Elf_Internal_Phdr *lp;
4767
4768 for (lp = phdrs; lp < phdrs + count; ++lp)
4769 {
4770 if (lp->p_type == PT_LOAD
4771 && lp->p_vaddr <= link_info->relro_end
4772 && lp->p_vaddr >= link_info->relro_start
4773 && (lp->p_vaddr + lp->p_filesz
4774 >= link_info->relro_end))
4775 break;
4776 }
4777
4778 if (lp < phdrs + count
4779 && link_info->relro_end > lp->p_vaddr)
4780 {
4781 p->p_vaddr = lp->p_vaddr;
4782 p->p_paddr = lp->p_paddr;
4783 p->p_offset = lp->p_offset;
4784 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4785 p->p_memsz = p->p_filesz;
4786 p->p_align = 1;
4787 p->p_flags = (lp->p_flags & ~PF_W);
4788 }
4789 else
4790 {
4791 memset (p, 0, sizeof *p);
4792 p->p_type = PT_NULL;
4793 }
4794 }
4795 }
4796 }
4797
4798 elf_tdata (abfd)->next_file_pos = off;
4799
4800 return TRUE;
4801}
4802
4803/* Work out the file positions of all the sections. This is called by
4804 _bfd_elf_compute_section_file_positions. All the section sizes and
4805 VMAs must be known before this is called.
4806
4807 Reloc sections come in two flavours: Those processed specially as
4808 "side-channel" data attached to a section to which they apply, and
4809 those that bfd doesn't process as relocations. The latter sort are
4810 stored in a normal bfd section by bfd_section_from_shdr. We don't
4811 consider the former sort here, unless they form part of the loadable
4812 image. Reloc sections not assigned here will be handled later by
4813 assign_file_positions_for_relocs.
4814
4815 We also don't set the positions of the .symtab and .strtab here. */
4816
4817static bfd_boolean
4818assign_file_positions_except_relocs (bfd *abfd,
4819 struct bfd_link_info *link_info)
4820{
4821 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4822 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4823 file_ptr off;
4824 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4825
4826 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4827 && bfd_get_format (abfd) != bfd_core)
4828 {
4829 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4830 unsigned int num_sec = elf_numsections (abfd);
4831 Elf_Internal_Shdr **hdrpp;
4832 unsigned int i;
4833
4834 /* Start after the ELF header. */
4835 off = i_ehdrp->e_ehsize;
4836
4837 /* We are not creating an executable, which means that we are
4838 not creating a program header, and that the actual order of
4839 the sections in the file is unimportant. */
4840 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4841 {
4842 Elf_Internal_Shdr *hdr;
4843
4844 hdr = *hdrpp;
4845 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4846 && hdr->bfd_section == NULL)
4847 || i == tdata->symtab_section
4848 || i == tdata->symtab_shndx_section
4849 || i == tdata->strtab_section)
4850 {
4851 hdr->sh_offset = -1;
4852 }
4853 else
4854 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4855
4856 if (i == SHN_LORESERVE - 1)
4857 {
4858 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4859 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4860 }
4861 }
4862 }
4863 else
4864 {
4865 unsigned int alloc;
4866
4867 /* Assign file positions for the loaded sections based on the
4868 assignment of sections to segments. */
4869 if (!assign_file_positions_for_load_sections (abfd, link_info))
4870 return FALSE;
4871
4872 /* And for non-load sections. */
4873 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4874 return FALSE;
4875
4876 if (bed->elf_backend_modify_program_headers != NULL)
4877 {
4878 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4879 return FALSE;
4880 }
4881
4882 /* Write out the program headers. */
4883 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4884 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4885 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4886 return FALSE;
4887
4888 off = tdata->next_file_pos;
4889 }
4890
4891 /* Place the section headers. */
4892 off = align_file_position (off, 1 << bed->s->log_file_align);
4893 i_ehdrp->e_shoff = off;
4894 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4895
4896 tdata->next_file_pos = off;
4897
4898 return TRUE;
4899}
4900
4901static bfd_boolean
4902prep_headers (bfd *abfd)
4903{
4904 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4905 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4906 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4907 struct elf_strtab_hash *shstrtab;
4908 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4909
4910 i_ehdrp = elf_elfheader (abfd);
4911 i_shdrp = elf_elfsections (abfd);
4912
4913 shstrtab = _bfd_elf_strtab_init ();
4914 if (shstrtab == NULL)
4915 return FALSE;
4916
4917 elf_shstrtab (abfd) = shstrtab;
4918
4919 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4920 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4921 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4922 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4923
4924 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4925 i_ehdrp->e_ident[EI_DATA] =
4926 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4927 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4928
4929 if ((abfd->flags & DYNAMIC) != 0)
4930 i_ehdrp->e_type = ET_DYN;
4931 else if ((abfd->flags & EXEC_P) != 0)
4932 i_ehdrp->e_type = ET_EXEC;
4933 else if (bfd_get_format (abfd) == bfd_core)
4934 i_ehdrp->e_type = ET_CORE;
4935 else
4936 i_ehdrp->e_type = ET_REL;
4937
4938 switch (bfd_get_arch (abfd))
4939 {
4940 case bfd_arch_unknown:
4941 i_ehdrp->e_machine = EM_NONE;
4942 break;
4943
4944 /* There used to be a long list of cases here, each one setting
4945 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4946 in the corresponding bfd definition. To avoid duplication,
4947 the switch was removed. Machines that need special handling
4948 can generally do it in elf_backend_final_write_processing(),
4949 unless they need the information earlier than the final write.
4950 Such need can generally be supplied by replacing the tests for
4951 e_machine with the conditions used to determine it. */
4952 default:
4953 i_ehdrp->e_machine = bed->elf_machine_code;
4954 }
4955
4956 i_ehdrp->e_version = bed->s->ev_current;
4957 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4958
4959 /* No program header, for now. */
4960 i_ehdrp->e_phoff = 0;
4961 i_ehdrp->e_phentsize = 0;
4962 i_ehdrp->e_phnum = 0;
4963
4964 /* Each bfd section is section header entry. */
4965 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4966 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4967
4968 /* If we're building an executable, we'll need a program header table. */
4969 if (abfd->flags & EXEC_P)
4970 /* It all happens later. */
4971 ;
4972 else
4973 {
4974 i_ehdrp->e_phentsize = 0;
4975 i_phdrp = 0;
4976 i_ehdrp->e_phoff = 0;
4977 }
4978
4979 elf_tdata (abfd)->symtab_hdr.sh_name =
4980 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4981 elf_tdata (abfd)->strtab_hdr.sh_name =
4982 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4983 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4984 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4985 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4986 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4987 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4988 return FALSE;
4989
4990 return TRUE;
4991}
4992
4993/* Assign file positions for all the reloc sections which are not part
4994 of the loadable file image. */
4995
4996void
4997_bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4998{
4999 file_ptr off;
5000 unsigned int i, num_sec;
5001 Elf_Internal_Shdr **shdrpp;
5002
5003 off = elf_tdata (abfd)->next_file_pos;
5004
5005 num_sec = elf_numsections (abfd);
5006 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5007 {
5008 Elf_Internal_Shdr *shdrp;
5009
5010 shdrp = *shdrpp;
5011 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5012 && shdrp->sh_offset == -1)
5013 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5014 }
5015
5016 elf_tdata (abfd)->next_file_pos = off;
5017}
5018
5019bfd_boolean
5020_bfd_elf_write_object_contents (bfd *abfd)
5021{
5022 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5023 Elf_Internal_Ehdr *i_ehdrp;
5024 Elf_Internal_Shdr **i_shdrp;
5025 bfd_boolean failed;
5026 unsigned int count, num_sec;
5027
5028 if (! abfd->output_has_begun
5029 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5030 return FALSE;
5031
5032 i_shdrp = elf_elfsections (abfd);
5033 i_ehdrp = elf_elfheader (abfd);
5034
5035 failed = FALSE;
5036 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5037 if (failed)
5038 return FALSE;
5039
5040 _bfd_elf_assign_file_positions_for_relocs (abfd);
5041
5042 /* After writing the headers, we need to write the sections too... */
5043 num_sec = elf_numsections (abfd);
5044 for (count = 1; count < num_sec; count++)
5045 {
5046 if (bed->elf_backend_section_processing)
5047 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5048 if (i_shdrp[count]->contents)
5049 {
5050 bfd_size_type amt = i_shdrp[count]->sh_size;
5051
5052 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5053 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5054 return FALSE;
5055 }
5056 if (count == SHN_LORESERVE - 1)
5057 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5058 }
5059
5060 /* Write out the section header names. */
5061 if (elf_shstrtab (abfd) != NULL
5062 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5063 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5064 return FALSE;
5065
5066 if (bed->elf_backend_final_write_processing)
5067 (*bed->elf_backend_final_write_processing) (abfd,
5068 elf_tdata (abfd)->linker);
5069
5070 return bed->s->write_shdrs_and_ehdr (abfd);
5071}
5072
5073bfd_boolean
5074_bfd_elf_write_corefile_contents (bfd *abfd)
5075{
5076 /* Hopefully this can be done just like an object file. */
5077 return _bfd_elf_write_object_contents (abfd);
5078}
5079
5080/* Given a section, search the header to find them. */
5081
5082int
5083_bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5084{
5085 const struct elf_backend_data *bed;
5086 int index;
5087
5088 if (elf_section_data (asect) != NULL
5089 && elf_section_data (asect)->this_idx != 0)
5090 return elf_section_data (asect)->this_idx;
5091
5092 if (bfd_is_abs_section (asect))
5093 index = SHN_ABS;
5094 else if (bfd_is_com_section (asect))
5095 index = SHN_COMMON;
5096 else if (bfd_is_und_section (asect))
5097 index = SHN_UNDEF;
5098 else
5099 index = -1;
5100
5101 bed = get_elf_backend_data (abfd);
5102 if (bed->elf_backend_section_from_bfd_section)
5103 {
5104 int retval = index;
5105
5106 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5107 return retval;
5108 }
5109
5110 if (index == -1)
5111 bfd_set_error (bfd_error_nonrepresentable_section);
5112
5113 return index;
5114}
5115
5116/* Given a BFD symbol, return the index in the ELF symbol table, or -1
5117 on error. */
5118
5119int
5120_bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5121{
5122 asymbol *asym_ptr = *asym_ptr_ptr;
5123 int idx;
5124 flagword flags = asym_ptr->flags;
5125
5126 /* When gas creates relocations against local labels, it creates its
5127 own symbol for the section, but does put the symbol into the
5128 symbol chain, so udata is 0. When the linker is generating
5129 relocatable output, this section symbol may be for one of the
5130 input sections rather than the output section. */
5131 if (asym_ptr->udata.i == 0
5132 && (flags & BSF_SECTION_SYM)
5133 && asym_ptr->section)
5134 {
5135 asection *sec;
5136 int indx;
5137
5138 sec = asym_ptr->section;
5139 if (sec->owner != abfd && sec->output_section != NULL)
5140 sec = sec->output_section;
5141 if (sec->owner == abfd
5142 && (indx = sec->index) < elf_num_section_syms (abfd)
5143 && elf_section_syms (abfd)[indx] != NULL)
5144 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5145 }
5146
5147 idx = asym_ptr->udata.i;
5148
5149 if (idx == 0)
5150 {
5151 /* This case can occur when using --strip-symbol on a symbol
5152 which is used in a relocation entry. */
5153 (*_bfd_error_handler)
5154 (_("%B: symbol `%s' required but not present"),
5155 abfd, bfd_asymbol_name (asym_ptr));
5156 bfd_set_error (bfd_error_no_symbols);
5157 return -1;
5158 }
5159
5160#if DEBUG & 4
5161 {
5162 fprintf (stderr,
5163 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5164 (long) asym_ptr, asym_ptr->name, idx, flags,
5165 elf_symbol_flags (flags));
5166 fflush (stderr);
5167 }
5168#endif
5169
5170 return idx;
5171}
5172
5173/* Rewrite program header information. */
5174
5175static bfd_boolean
5176rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5177{
5178 Elf_Internal_Ehdr *iehdr;
5179 struct elf_segment_map *map;
5180 struct elf_segment_map *map_first;
5181 struct elf_segment_map **pointer_to_map;
5182 Elf_Internal_Phdr *segment;
5183 asection *section;
5184 unsigned int i;
5185 unsigned int num_segments;
5186 bfd_boolean phdr_included = FALSE;
5187 bfd_vma maxpagesize;
5188 struct elf_segment_map *phdr_adjust_seg = NULL;
5189 unsigned int phdr_adjust_num = 0;
5190 const struct elf_backend_data *bed;
5191
5192 bed = get_elf_backend_data (ibfd);
5193 iehdr = elf_elfheader (ibfd);
5194
5195 map_first = NULL;
5196 pointer_to_map = &map_first;
5197
5198 num_segments = elf_elfheader (ibfd)->e_phnum;
5199 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5200
5201 /* Returns the end address of the segment + 1. */
5202#define SEGMENT_END(segment, start) \
5203 (start + (segment->p_memsz > segment->p_filesz \
5204 ? segment->p_memsz : segment->p_filesz))
5205
5206#define SECTION_SIZE(section, segment) \
5207 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5208 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5209 ? section->size : 0)
5210
5211 /* Returns TRUE if the given section is contained within
5212 the given segment. VMA addresses are compared. */
5213#define IS_CONTAINED_BY_VMA(section, segment) \
5214 (section->vma >= segment->p_vaddr \
5215 && (section->vma + SECTION_SIZE (section, segment) \
5216 <= (SEGMENT_END (segment, segment->p_vaddr))))
5217
5218 /* Returns TRUE if the given section is contained within
5219 the given segment. LMA addresses are compared. */
5220#define IS_CONTAINED_BY_LMA(section, segment, base) \
5221 (section->lma >= base \
5222 && (section->lma + SECTION_SIZE (section, segment) \
5223 <= SEGMENT_END (segment, base)))
5224
5225 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5226#define IS_COREFILE_NOTE(p, s) \
5227 (p->p_type == PT_NOTE \
5228 && bfd_get_format (ibfd) == bfd_core \
5229 && s->vma == 0 && s->lma == 0 \
5230 && (bfd_vma) s->filepos >= p->p_offset \
5231 && ((bfd_vma) s->filepos + s->size \
5232 <= p->p_offset + p->p_filesz))
5233
5234 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5235 linker, which generates a PT_INTERP section with p_vaddr and
5236 p_memsz set to 0. */
5237#define IS_SOLARIS_PT_INTERP(p, s) \
5238 (p->p_vaddr == 0 \
5239 && p->p_paddr == 0 \
5240 && p->p_memsz == 0 \
5241 && p->p_filesz > 0 \
5242 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5243 && s->size > 0 \
5244 && (bfd_vma) s->filepos >= p->p_offset \
5245 && ((bfd_vma) s->filepos + s->size \
5246 <= p->p_offset + p->p_filesz))
5247
5248 /* Decide if the given section should be included in the given segment.
5249 A section will be included if:
5250 1. It is within the address space of the segment -- we use the LMA
5251 if that is set for the segment and the VMA otherwise,
5252 2. It is an allocated segment,
5253 3. There is an output section associated with it,
5254 4. The section has not already been allocated to a previous segment.
5255 5. PT_GNU_STACK segments do not include any sections.
5256 6. PT_TLS segment includes only SHF_TLS sections.
5257 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5258 8. PT_DYNAMIC should not contain empty sections at the beginning
5259 (with the possible exception of .dynamic). */
5260#define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5261 ((((segment->p_paddr \
5262 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5263 : IS_CONTAINED_BY_VMA (section, segment)) \
5264 && (section->flags & SEC_ALLOC) != 0) \
5265 || IS_COREFILE_NOTE (segment, section)) \
5266 && section->output_section != NULL \
5267 && segment->p_type != PT_GNU_STACK \
5268 && (segment->p_type != PT_TLS \
5269 || (section->flags & SEC_THREAD_LOCAL)) \
5270 && (segment->p_type == PT_LOAD \
5271 || segment->p_type == PT_TLS \
5272 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5273 && (segment->p_type != PT_DYNAMIC \
5274 || SECTION_SIZE (section, segment) > 0 \
5275 || (segment->p_paddr \
5276 ? segment->p_paddr != section->lma \
5277 : segment->p_vaddr != section->vma) \
5278 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5279 == 0)) \
5280 && ! section->segment_mark)
5281
5282 /* Returns TRUE iff seg1 starts after the end of seg2. */
5283#define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5284 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5285
5286 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5287 their VMA address ranges and their LMA address ranges overlap.
5288 It is possible to have overlapping VMA ranges without overlapping LMA
5289 ranges. RedBoot images for example can have both .data and .bss mapped
5290 to the same VMA range, but with the .data section mapped to a different
5291 LMA. */
5292#define SEGMENT_OVERLAPS(seg1, seg2) \
5293 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5294 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5295 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5296 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5297
5298 /* Initialise the segment mark field. */
5299 for (section = ibfd->sections; section != NULL; section = section->next)
5300 section->segment_mark = FALSE;
5301
5302 /* Scan through the segments specified in the program header
5303 of the input BFD. For this first scan we look for overlaps
5304 in the loadable segments. These can be created by weird
5305 parameters to objcopy. Also, fix some solaris weirdness. */
5306 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5307 i < num_segments;
5308 i++, segment++)
5309 {
5310 unsigned int j;
5311 Elf_Internal_Phdr *segment2;
5312
5313 if (segment->p_type == PT_INTERP)
5314 for (section = ibfd->sections; section; section = section->next)
5315 if (IS_SOLARIS_PT_INTERP (segment, section))
5316 {
5317 /* Mininal change so that the normal section to segment
5318 assignment code will work. */
5319 segment->p_vaddr = section->vma;
5320 break;
5321 }
5322
5323 if (segment->p_type != PT_LOAD)
5324 continue;
5325
5326 /* Determine if this segment overlaps any previous segments. */
5327 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5328 {
5329 bfd_signed_vma extra_length;
5330
5331 if (segment2->p_type != PT_LOAD
5332 || ! SEGMENT_OVERLAPS (segment, segment2))
5333 continue;
5334
5335 /* Merge the two segments together. */
5336 if (segment2->p_vaddr < segment->p_vaddr)
5337 {
5338 /* Extend SEGMENT2 to include SEGMENT and then delete
5339 SEGMENT. */
5340 extra_length =
5341 SEGMENT_END (segment, segment->p_vaddr)
5342 - SEGMENT_END (segment2, segment2->p_vaddr);
5343
5344 if (extra_length > 0)
5345 {
5346 segment2->p_memsz += extra_length;
5347 segment2->p_filesz += extra_length;
5348 }
5349
5350 segment->p_type = PT_NULL;
5351
5352 /* Since we have deleted P we must restart the outer loop. */
5353 i = 0;
5354 segment = elf_tdata (ibfd)->phdr;
5355 break;
5356 }
5357 else
5358 {
5359 /* Extend SEGMENT to include SEGMENT2 and then delete
5360 SEGMENT2. */
5361 extra_length =
5362 SEGMENT_END (segment2, segment2->p_vaddr)
5363 - SEGMENT_END (segment, segment->p_vaddr);
5364
5365 if (extra_length > 0)
5366 {
5367 segment->p_memsz += extra_length;
5368 segment->p_filesz += extra_length;
5369 }
5370
5371 segment2->p_type = PT_NULL;
5372 }
5373 }
5374 }
5375
5376 /* The second scan attempts to assign sections to segments. */
5377 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5378 i < num_segments;
5379 i ++, segment ++)
5380 {
5381 unsigned int section_count;
5382 asection ** sections;
5383 asection * output_section;
5384 unsigned int isec;
5385 bfd_vma matching_lma;
5386 bfd_vma suggested_lma;
5387 unsigned int j;
5388 bfd_size_type amt;
5389
5390 if (segment->p_type == PT_NULL)
5391 continue;
5392
5393 /* Compute how many sections might be placed into this segment. */
5394 for (section = ibfd->sections, section_count = 0;
5395 section != NULL;
5396 section = section->next)
5397 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5398 ++section_count;
5399
5400 /* Allocate a segment map big enough to contain
5401 all of the sections we have selected. */
5402 amt = sizeof (struct elf_segment_map);
5403 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5404 map = bfd_zalloc (obfd, amt);
5405 if (map == NULL)
5406 return FALSE;
5407
5408 /* Initialise the fields of the segment map. Default to
5409 using the physical address of the segment in the input BFD. */
5410 map->next = NULL;
5411 map->p_type = segment->p_type;
5412 map->p_flags = segment->p_flags;
5413 map->p_flags_valid = 1;
5414 map->p_paddr = segment->p_paddr;
5415 map->p_paddr_valid = 1;
5416
5417 /* Determine if this segment contains the ELF file header
5418 and if it contains the program headers themselves. */
5419 map->includes_filehdr = (segment->p_offset == 0
5420 && segment->p_filesz >= iehdr->e_ehsize);
5421
5422 map->includes_phdrs = 0;
5423
5424 if (! phdr_included || segment->p_type != PT_LOAD)
5425 {
5426 map->includes_phdrs =
5427 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5428 && (segment->p_offset + segment->p_filesz
5429 >= ((bfd_vma) iehdr->e_phoff
5430 + iehdr->e_phnum * iehdr->e_phentsize)));
5431
5432 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5433 phdr_included = TRUE;
5434 }
5435
5436 if (section_count == 0)
5437 {
5438 /* Special segments, such as the PT_PHDR segment, may contain
5439 no sections, but ordinary, loadable segments should contain
5440 something. They are allowed by the ELF spec however, so only
5441 a warning is produced. */
5442 if (segment->p_type == PT_LOAD)
5443 (*_bfd_error_handler)
5444 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5445 ibfd);
5446
5447 map->count = 0;
5448 *pointer_to_map = map;
5449 pointer_to_map = &map->next;
5450
5451 continue;
5452 }
5453
5454 /* Now scan the sections in the input BFD again and attempt
5455 to add their corresponding output sections to the segment map.
5456 The problem here is how to handle an output section which has
5457 been moved (ie had its LMA changed). There are four possibilities:
5458
5459 1. None of the sections have been moved.
5460 In this case we can continue to use the segment LMA from the
5461 input BFD.
5462
5463 2. All of the sections have been moved by the same amount.
5464 In this case we can change the segment's LMA to match the LMA
5465 of the first section.
5466
5467 3. Some of the sections have been moved, others have not.
5468 In this case those sections which have not been moved can be
5469 placed in the current segment which will have to have its size,
5470 and possibly its LMA changed, and a new segment or segments will
5471 have to be created to contain the other sections.
5472
5473 4. The sections have been moved, but not by the same amount.
5474 In this case we can change the segment's LMA to match the LMA
5475 of the first section and we will have to create a new segment
5476 or segments to contain the other sections.
5477
5478 In order to save time, we allocate an array to hold the section
5479 pointers that we are interested in. As these sections get assigned
5480 to a segment, they are removed from this array. */
5481
5482 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5483 to work around this long long bug. */
5484 sections = bfd_malloc2 (section_count, sizeof (asection *));
5485 if (sections == NULL)
5486 return FALSE;
5487
5488 /* Step One: Scan for segment vs section LMA conflicts.
5489 Also add the sections to the section array allocated above.
5490 Also add the sections to the current segment. In the common
5491 case, where the sections have not been moved, this means that
5492 we have completely filled the segment, and there is nothing
5493 more to do. */
5494 isec = 0;
5495 matching_lma = 0;
5496 suggested_lma = 0;
5497
5498 for (j = 0, section = ibfd->sections;
5499 section != NULL;
5500 section = section->next)
5501 {
5502 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5503 {
5504 output_section = section->output_section;
5505
5506 sections[j ++] = section;
5507
5508 /* The Solaris native linker always sets p_paddr to 0.
5509 We try to catch that case here, and set it to the
5510 correct value. Note - some backends require that
5511 p_paddr be left as zero. */
5512 if (segment->p_paddr == 0
5513 && segment->p_vaddr != 0
5514 && (! bed->want_p_paddr_set_to_zero)
5515 && isec == 0
5516 && output_section->lma != 0
5517 && (output_section->vma == (segment->p_vaddr
5518 + (map->includes_filehdr
5519 ? iehdr->e_ehsize
5520 : 0)
5521 + (map->includes_phdrs
5522 ? (iehdr->e_phnum
5523 * iehdr->e_phentsize)
5524 : 0))))
5525 map->p_paddr = segment->p_vaddr;
5526
5527 /* Match up the physical address of the segment with the
5528 LMA address of the output section. */
5529 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5530 || IS_COREFILE_NOTE (segment, section)
5531 || (bed->want_p_paddr_set_to_zero &&
5532 IS_CONTAINED_BY_VMA (output_section, segment))
5533 )
5534 {
5535 if (matching_lma == 0)
5536 matching_lma = output_section->lma;
5537
5538 /* We assume that if the section fits within the segment
5539 then it does not overlap any other section within that
5540 segment. */
5541 map->sections[isec ++] = output_section;
5542 }
5543 else if (suggested_lma == 0)
5544 suggested_lma = output_section->lma;
5545 }
5546 }
5547
5548 BFD_ASSERT (j == section_count);
5549
5550 /* Step Two: Adjust the physical address of the current segment,
5551 if necessary. */
5552 if (isec == section_count)
5553 {
5554 /* All of the sections fitted within the segment as currently
5555 specified. This is the default case. Add the segment to
5556 the list of built segments and carry on to process the next
5557 program header in the input BFD. */
5558 map->count = section_count;
5559 *pointer_to_map = map;
5560 pointer_to_map = &map->next;
5561
5562 free (sections);
5563 continue;
5564 }
5565 else
5566 {
5567 if (matching_lma != 0)
5568 {
5569 /* At least one section fits inside the current segment.
5570 Keep it, but modify its physical address to match the
5571 LMA of the first section that fitted. */
5572 map->p_paddr = matching_lma;
5573 }
5574 else
5575 {
5576 /* None of the sections fitted inside the current segment.
5577 Change the current segment's physical address to match
5578 the LMA of the first section. */
5579 map->p_paddr = suggested_lma;
5580 }
5581
5582 /* Offset the segment physical address from the lma
5583 to allow for space taken up by elf headers. */
5584 if (map->includes_filehdr)
5585 map->p_paddr -= iehdr->e_ehsize;
5586
5587 if (map->includes_phdrs)
5588 {
5589 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5590
5591 /* iehdr->e_phnum is just an estimate of the number
5592 of program headers that we will need. Make a note
5593 here of the number we used and the segment we chose
5594 to hold these headers, so that we can adjust the
5595 offset when we know the correct value. */
5596 phdr_adjust_num = iehdr->e_phnum;
5597 phdr_adjust_seg = map;
5598 }
5599 }
5600
5601 /* Step Three: Loop over the sections again, this time assigning
5602 those that fit to the current segment and removing them from the
5603 sections array; but making sure not to leave large gaps. Once all
5604 possible sections have been assigned to the current segment it is
5605 added to the list of built segments and if sections still remain
5606 to be assigned, a new segment is constructed before repeating
5607 the loop. */
5608 isec = 0;
5609 do
5610 {
5611 map->count = 0;
5612 suggested_lma = 0;
5613
5614 /* Fill the current segment with sections that fit. */
5615 for (j = 0; j < section_count; j++)
5616 {
5617 section = sections[j];
5618
5619 if (section == NULL)
5620 continue;
5621
5622 output_section = section->output_section;
5623
5624 BFD_ASSERT (output_section != NULL);
5625
5626 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5627 || IS_COREFILE_NOTE (segment, section))
5628 {
5629 if (map->count == 0)
5630 {
5631 /* If the first section in a segment does not start at
5632 the beginning of the segment, then something is
5633 wrong. */
5634 if (output_section->lma !=
5635 (map->p_paddr
5636 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5637 + (map->includes_phdrs
5638 ? iehdr->e_phnum * iehdr->e_phentsize
5639 : 0)))
5640 abort ();
5641 }
5642 else
5643 {
5644 asection * prev_sec;
5645
5646 prev_sec = map->sections[map->count - 1];
5647
5648 /* If the gap between the end of the previous section
5649 and the start of this section is more than
5650 maxpagesize then we need to start a new segment. */
5651 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5652 maxpagesize)
5653 < BFD_ALIGN (output_section->lma, maxpagesize))
5654 || ((prev_sec->lma + prev_sec->size)
5655 > output_section->lma))
5656 {
5657 if (suggested_lma == 0)
5658 suggested_lma = output_section->lma;
5659
5660 continue;
5661 }
5662 }
5663
5664 map->sections[map->count++] = output_section;
5665 ++isec;
5666 sections[j] = NULL;
5667 section->segment_mark = TRUE;
5668 }
5669 else if (suggested_lma == 0)
5670 suggested_lma = output_section->lma;
5671 }
5672
5673 BFD_ASSERT (map->count > 0);
5674
5675 /* Add the current segment to the list of built segments. */
5676 *pointer_to_map = map;
5677 pointer_to_map = &map->next;
5678
5679 if (isec < section_count)
5680 {
5681 /* We still have not allocated all of the sections to
5682 segments. Create a new segment here, initialise it
5683 and carry on looping. */
5684 amt = sizeof (struct elf_segment_map);
5685 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5686 map = bfd_alloc (obfd, amt);
5687 if (map == NULL)
5688 {
5689 free (sections);
5690 return FALSE;
5691 }
5692
5693 /* Initialise the fields of the segment map. Set the physical
5694 physical address to the LMA of the first section that has
5695 not yet been assigned. */
5696 map->next = NULL;
5697 map->p_type = segment->p_type;
5698 map->p_flags = segment->p_flags;
5699 map->p_flags_valid = 1;
5700 map->p_paddr = suggested_lma;
5701 map->p_paddr_valid = 1;
5702 map->includes_filehdr = 0;
5703 map->includes_phdrs = 0;
5704 }
5705 }
5706 while (isec < section_count);
5707
5708 free (sections);
5709 }
5710
5711 /* The Solaris linker creates program headers in which all the
5712 p_paddr fields are zero. When we try to objcopy or strip such a
5713 file, we get confused. Check for this case, and if we find it
5714 reset the p_paddr_valid fields. */
5715 for (map = map_first; map != NULL; map = map->next)
5716 if (map->p_paddr != 0)
5717 break;
5718 if (map == NULL)
5719 for (map = map_first; map != NULL; map = map->next)
5720 map->p_paddr_valid = 0;
5721
5722 elf_tdata (obfd)->segment_map = map_first;
5723
5724 /* If we had to estimate the number of program headers that were
5725 going to be needed, then check our estimate now and adjust
5726 the offset if necessary. */
5727 if (phdr_adjust_seg != NULL)
5728 {
5729 unsigned int count;
5730
5731 for (count = 0, map = map_first; map != NULL; map = map->next)
5732 count++;
5733
5734 if (count > phdr_adjust_num)
5735 phdr_adjust_seg->p_paddr
5736 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5737 }
5738
5739#undef SEGMENT_END
5740#undef SECTION_SIZE
5741#undef IS_CONTAINED_BY_VMA
5742#undef IS_CONTAINED_BY_LMA
5743#undef IS_COREFILE_NOTE
5744#undef IS_SOLARIS_PT_INTERP
5745#undef INCLUDE_SECTION_IN_SEGMENT
5746#undef SEGMENT_AFTER_SEGMENT
5747#undef SEGMENT_OVERLAPS
5748 return TRUE;
5749}
5750
5751/* Copy ELF program header information. */
5752
5753static bfd_boolean
5754copy_elf_program_header (bfd *ibfd, bfd *obfd)
5755{
5756 Elf_Internal_Ehdr *iehdr;
5757 struct elf_segment_map *map;
5758 struct elf_segment_map *map_first;
5759 struct elf_segment_map **pointer_to_map;
5760 Elf_Internal_Phdr *segment;
5761 unsigned int i;
5762 unsigned int num_segments;
5763 bfd_boolean phdr_included = FALSE;
5764
5765 iehdr = elf_elfheader (ibfd);
5766
5767 map_first = NULL;
5768 pointer_to_map = &map_first;
5769
5770 num_segments = elf_elfheader (ibfd)->e_phnum;
5771 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5772 i < num_segments;
5773 i++, segment++)
5774 {
5775 asection *section;
5776 unsigned int section_count;
5777 bfd_size_type amt;
5778 Elf_Internal_Shdr *this_hdr;
5779
5780 /* FIXME: Do we need to copy PT_NULL segment? */
5781 if (segment->p_type == PT_NULL)
5782 continue;
5783
5784 /* Compute how many sections are in this segment. */
5785 for (section = ibfd->sections, section_count = 0;
5786 section != NULL;
5787 section = section->next)
5788 {
5789 this_hdr = &(elf_section_data(section)->this_hdr);
5790 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5791 section_count++;
5792 }
5793
5794 /* Allocate a segment map big enough to contain
5795 all of the sections we have selected. */
5796 amt = sizeof (struct elf_segment_map);
5797 if (section_count != 0)
5798 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5799 map = bfd_zalloc (obfd, amt);
5800 if (map == NULL)
5801 return FALSE;
5802
5803 /* Initialize the fields of the output segment map with the
5804 input segment. */
5805 map->next = NULL;
5806 map->p_type = segment->p_type;
5807 map->p_flags = segment->p_flags;
5808 map->p_flags_valid = 1;
5809 map->p_paddr = segment->p_paddr;
5810 map->p_paddr_valid = 1;
5811 map->p_align = segment->p_align;
5812 map->p_align_valid = 1;
5813
5814 /* Determine if this segment contains the ELF file header
5815 and if it contains the program headers themselves. */
5816 map->includes_filehdr = (segment->p_offset == 0
5817 && segment->p_filesz >= iehdr->e_ehsize);
5818
5819 map->includes_phdrs = 0;
5820 if (! phdr_included || segment->p_type != PT_LOAD)
5821 {
5822 map->includes_phdrs =
5823 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5824 && (segment->p_offset + segment->p_filesz
5825 >= ((bfd_vma) iehdr->e_phoff
5826 + iehdr->e_phnum * iehdr->e_phentsize)));
5827
5828 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5829 phdr_included = TRUE;
5830 }
5831
5832 if (section_count != 0)
5833 {
5834 unsigned int isec = 0;
5835
5836 for (section = ibfd->sections;
5837 section != NULL;
5838 section = section->next)
5839 {
5840 this_hdr = &(elf_section_data(section)->this_hdr);
5841 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5842 map->sections[isec++] = section->output_section;
5843 }
5844 }
5845
5846 map->count = section_count;
5847 *pointer_to_map = map;
5848 pointer_to_map = &map->next;
5849 }
5850
5851 elf_tdata (obfd)->segment_map = map_first;
5852 return TRUE;
5853}
5854
5855/* Copy private BFD data. This copies or rewrites ELF program header
5856 information. */
5857
5858static bfd_boolean
5859copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5860{
5861 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5862 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5863 return TRUE;
5864
5865 if (elf_tdata (ibfd)->phdr == NULL)
5866 return TRUE;
5867
5868 if (ibfd->xvec == obfd->xvec)
5869 {
5870 /* Check if any sections in the input BFD covered by ELF program
5871 header are changed. */
5872 Elf_Internal_Phdr *segment;
5873 asection *section, *osec;
5874 unsigned int i, num_segments;
5875 Elf_Internal_Shdr *this_hdr;
5876
5877 /* Initialize the segment mark field. */
5878 for (section = obfd->sections; section != NULL;
5879 section = section->next)
5880 section->segment_mark = FALSE;
5881
5882 num_segments = elf_elfheader (ibfd)->e_phnum;
5883 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5884 i < num_segments;
5885 i++, segment++)
5886 {
5887 for (section = ibfd->sections;
5888 section != NULL; section = section->next)
5889 {
5890 /* We mark the output section so that we know it comes
5891 from the input BFD. */
5892 osec = section->output_section;
5893 if (osec)
5894 osec->segment_mark = TRUE;
5895
5896 /* Check if this section is covered by the segment. */
5897 this_hdr = &(elf_section_data(section)->this_hdr);
5898 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5899 {
5900 /* FIXME: Check if its output section is changed or
5901 removed. What else do we need to check? */
5902 if (osec == NULL
5903 || section->flags != osec->flags
5904 || section->lma != osec->lma
5905 || section->vma != osec->vma
5906 || section->size != osec->size
5907 || section->rawsize != osec->rawsize
5908 || section->alignment_power != osec->alignment_power)
5909 goto rewrite;
5910 }
5911 }
5912 }
5913
5914 /* Check to see if any output section doesn't come from the
5915 input BFD. */
5916 for (section = obfd->sections; section != NULL;
5917 section = section->next)
5918 {
5919 if (section->segment_mark == FALSE)
5920 goto rewrite;
5921 else
5922 section->segment_mark = FALSE;
5923 }
5924
5925 return copy_elf_program_header (ibfd, obfd);
5926 }
5927
5928rewrite:
5929 return rewrite_elf_program_header (ibfd, obfd);
5930}
5931
5932/* Initialize private output section information from input section. */
5933
5934bfd_boolean
5935_bfd_elf_init_private_section_data (bfd *ibfd,
5936 asection *isec,
5937 bfd *obfd,
5938 asection *osec,
5939 struct bfd_link_info *link_info)
5940
5941{
5942 Elf_Internal_Shdr *ihdr, *ohdr;
5943 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5944
5945 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5946 || obfd->xvec->flavour != bfd_target_elf_flavour)
5947 return TRUE;
5948
5949 /* Don't copy the output ELF section type from input if the
5950 output BFD section flags have been set to something different.
5951 elf_fake_sections will set ELF section type based on BFD
5952 section flags. */
5953 if (osec->flags == isec->flags
5954 || (osec->flags == 0 && elf_section_type (osec) == SHT_NULL))
5955 elf_section_type (osec) = elf_section_type (isec);
5956
5957 /* Set things up for objcopy and relocatable link. The output
5958 SHT_GROUP section will have its elf_next_in_group pointing back
5959 to the input group members. Ignore linker created group section.
5960 See elfNN_ia64_object_p in elfxx-ia64.c. */
5961 if (need_group)
5962 {
5963 if (elf_sec_group (isec) == NULL
5964 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5965 {
5966 if (elf_section_flags (isec) & SHF_GROUP)
5967 elf_section_flags (osec) |= SHF_GROUP;
5968 elf_next_in_group (osec) = elf_next_in_group (isec);
5969 elf_group_name (osec) = elf_group_name (isec);
5970 }
5971 }
5972
5973 ihdr = &elf_section_data (isec)->this_hdr;
5974
5975 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5976 don't use the output section of the linked-to section since it
5977 may be NULL at this point. */
5978 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5979 {
5980 ohdr = &elf_section_data (osec)->this_hdr;
5981 ohdr->sh_flags |= SHF_LINK_ORDER;
5982 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5983 }
5984
5985 osec->use_rela_p = isec->use_rela_p;
5986
5987 return TRUE;
5988}
5989
5990/* Copy private section information. This copies over the entsize
5991 field, and sometimes the info field. */
5992
5993bfd_boolean
5994_bfd_elf_copy_private_section_data (bfd *ibfd,
5995 asection *isec,
5996 bfd *obfd,
5997 asection *osec)
5998{
5999 Elf_Internal_Shdr *ihdr, *ohdr;
6000
6001 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6002 || obfd->xvec->flavour != bfd_target_elf_flavour)
6003 return TRUE;
6004
6005 ihdr = &elf_section_data (isec)->this_hdr;
6006 ohdr = &elf_section_data (osec)->this_hdr;
6007
6008 ohdr->sh_entsize = ihdr->sh_entsize;
6009
6010 if (ihdr->sh_type == SHT_SYMTAB
6011 || ihdr->sh_type == SHT_DYNSYM
6012 || ihdr->sh_type == SHT_GNU_verneed
6013 || ihdr->sh_type == SHT_GNU_verdef)
6014 ohdr->sh_info = ihdr->sh_info;
6015
6016 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6017 NULL);
6018}
6019
6020/* Copy private header information. */
6021
6022bfd_boolean
6023_bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6024{
6025 asection *isec;
6026
6027 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6028 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6029 return TRUE;
6030
6031 /* Copy over private BFD data if it has not already been copied.
6032 This must be done here, rather than in the copy_private_bfd_data
6033 entry point, because the latter is called after the section
6034 contents have been set, which means that the program headers have
6035 already been worked out. */
6036 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6037 {
6038 if (! copy_private_bfd_data (ibfd, obfd))
6039 return FALSE;
6040 }
6041
6042 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6043 but this might be wrong if we deleted the group section. */
6044 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6045 if (elf_section_type (isec) == SHT_GROUP
6046 && isec->output_section == NULL)
6047 {
6048 asection *first = elf_next_in_group (isec);
6049 asection *s = first;
6050 while (s != NULL)
6051 {
6052 if (s->output_section != NULL)
6053 {
6054 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6055 elf_group_name (s->output_section) = NULL;
6056 }
6057 s = elf_next_in_group (s);
6058 if (s == first)
6059 break;
6060 }
6061 }
6062
6063 return TRUE;
6064}
6065
6066/* Copy private symbol information. If this symbol is in a section
6067 which we did not map into a BFD section, try to map the section
6068 index correctly. We use special macro definitions for the mapped
6069 section indices; these definitions are interpreted by the
6070 swap_out_syms function. */
6071
6072#define MAP_ONESYMTAB (SHN_HIOS + 1)
6073#define MAP_DYNSYMTAB (SHN_HIOS + 2)
6074#define MAP_STRTAB (SHN_HIOS + 3)
6075#define MAP_SHSTRTAB (SHN_HIOS + 4)
6076#define MAP_SYM_SHNDX (SHN_HIOS + 5)
6077
6078bfd_boolean
6079_bfd_elf_copy_private_symbol_data (bfd *ibfd,
6080 asymbol *isymarg,
6081 bfd *obfd,
6082 asymbol *osymarg)
6083{
6084 elf_symbol_type *isym, *osym;
6085
6086 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6087 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6088 return TRUE;
6089
6090 isym = elf_symbol_from (ibfd, isymarg);
6091 osym = elf_symbol_from (obfd, osymarg);
6092
6093 if (isym != NULL
6094 && osym != NULL
6095 && bfd_is_abs_section (isym->symbol.section))
6096 {
6097 unsigned int shndx;
6098
6099 shndx = isym->internal_elf_sym.st_shndx;
6100 if (shndx == elf_onesymtab (ibfd))
6101 shndx = MAP_ONESYMTAB;
6102 else if (shndx == elf_dynsymtab (ibfd))
6103 shndx = MAP_DYNSYMTAB;
6104 else if (shndx == elf_tdata (ibfd)->strtab_section)
6105 shndx = MAP_STRTAB;
6106 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6107 shndx = MAP_SHSTRTAB;
6108 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6109 shndx = MAP_SYM_SHNDX;
6110 osym->internal_elf_sym.st_shndx = shndx;
6111 }
6112
6113 return TRUE;
6114}
6115
6116/* Swap out the symbols. */
6117
6118static bfd_boolean
6119swap_out_syms (bfd *abfd,
6120 struct bfd_strtab_hash **sttp,
6121 int relocatable_p)
6122{
6123 const struct elf_backend_data *bed;
6124 int symcount;
6125 asymbol **syms;
6126 struct bfd_strtab_hash *stt;
6127 Elf_Internal_Shdr *symtab_hdr;
6128 Elf_Internal_Shdr *symtab_shndx_hdr;
6129 Elf_Internal_Shdr *symstrtab_hdr;
6130 bfd_byte *outbound_syms;
6131 bfd_byte *outbound_shndx;
6132 int idx;
6133 bfd_size_type amt;
6134 bfd_boolean name_local_sections;
6135
6136 if (!elf_map_symbols (abfd))
6137 return FALSE;
6138
6139 /* Dump out the symtabs. */
6140 stt = _bfd_elf_stringtab_init ();
6141 if (stt == NULL)
6142 return FALSE;
6143
6144 bed = get_elf_backend_data (abfd);
6145 symcount = bfd_get_symcount (abfd);
6146 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6147 symtab_hdr->sh_type = SHT_SYMTAB;
6148 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6149 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6150 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6151 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6152
6153 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6154 symstrtab_hdr->sh_type = SHT_STRTAB;
6155
6156 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6157 if (outbound_syms == NULL)
6158 {
6159 _bfd_stringtab_free (stt);
6160 return FALSE;
6161 }
6162 symtab_hdr->contents = outbound_syms;
6163
6164 outbound_shndx = NULL;
6165 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6166 if (symtab_shndx_hdr->sh_name != 0)
6167 {
6168 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6169 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6170 sizeof (Elf_External_Sym_Shndx));
6171 if (outbound_shndx == NULL)
6172 {
6173 _bfd_stringtab_free (stt);
6174 return FALSE;
6175 }
6176
6177 symtab_shndx_hdr->contents = outbound_shndx;
6178 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6179 symtab_shndx_hdr->sh_size = amt;
6180 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6181 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6182 }
6183
6184 /* Now generate the data (for "contents"). */
6185 {
6186 /* Fill in zeroth symbol and swap it out. */
6187 Elf_Internal_Sym sym;
6188 sym.st_name = 0;
6189 sym.st_value = 0;
6190 sym.st_size = 0;
6191 sym.st_info = 0;
6192 sym.st_other = 0;
6193 sym.st_shndx = SHN_UNDEF;
6194 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6195 outbound_syms += bed->s->sizeof_sym;
6196 if (outbound_shndx != NULL)
6197 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6198 }
6199
6200 name_local_sections
6201 = (bed->elf_backend_name_local_section_symbols
6202 && bed->elf_backend_name_local_section_symbols (abfd));
6203
6204 syms = bfd_get_outsymbols (abfd);
6205 for (idx = 0; idx < symcount; idx++)
6206 {
6207 Elf_Internal_Sym sym;
6208 bfd_vma value = syms[idx]->value;
6209 elf_symbol_type *type_ptr;
6210 flagword flags = syms[idx]->flags;
6211 int type;
6212
6213 if (!name_local_sections
6214 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6215 {
6216 /* Local section symbols have no name. */
6217 sym.st_name = 0;
6218 }
6219 else
6220 {
6221 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6222 syms[idx]->name,
6223 TRUE, FALSE);
6224 if (sym.st_name == (unsigned long) -1)
6225 {
6226 _bfd_stringtab_free (stt);
6227 return FALSE;
6228 }
6229 }
6230
6231 type_ptr = elf_symbol_from (abfd, syms[idx]);
6232
6233 if ((flags & BSF_SECTION_SYM) == 0
6234 && bfd_is_com_section (syms[idx]->section))
6235 {
6236 /* ELF common symbols put the alignment into the `value' field,
6237 and the size into the `size' field. This is backwards from
6238 how BFD handles it, so reverse it here. */
6239 sym.st_size = value;
6240 if (type_ptr == NULL
6241 || type_ptr->internal_elf_sym.st_value == 0)
6242 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6243 else
6244 sym.st_value = type_ptr->internal_elf_sym.st_value;
6245 sym.st_shndx = _bfd_elf_section_from_bfd_section
6246 (abfd, syms[idx]->section);
6247 }
6248 else
6249 {
6250 asection *sec = syms[idx]->section;
6251 int shndx;
6252
6253 if (sec->output_section)
6254 {
6255 value += sec->output_offset;
6256 sec = sec->output_section;
6257 }
6258
6259 /* Don't add in the section vma for relocatable output. */
6260 if (! relocatable_p)
6261 value += sec->vma;
6262 sym.st_value = value;
6263 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6264
6265 if (bfd_is_abs_section (sec)
6266 && type_ptr != NULL
6267 && type_ptr->internal_elf_sym.st_shndx != 0)
6268 {
6269 /* This symbol is in a real ELF section which we did
6270 not create as a BFD section. Undo the mapping done
6271 by copy_private_symbol_data. */
6272 shndx = type_ptr->internal_elf_sym.st_shndx;
6273 switch (shndx)
6274 {
6275 case MAP_ONESYMTAB:
6276 shndx = elf_onesymtab (abfd);
6277 break;
6278 case MAP_DYNSYMTAB:
6279 shndx = elf_dynsymtab (abfd);
6280 break;
6281 case MAP_STRTAB:
6282 shndx = elf_tdata (abfd)->strtab_section;
6283 break;
6284 case MAP_SHSTRTAB:
6285 shndx = elf_tdata (abfd)->shstrtab_section;
6286 break;
6287 case MAP_SYM_SHNDX:
6288 shndx = elf_tdata (abfd)->symtab_shndx_section;
6289 break;
6290 default:
6291 break;
6292 }
6293 }
6294 else
6295 {
6296 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6297
6298 if (shndx == -1)
6299 {
6300 asection *sec2;
6301
6302 /* Writing this would be a hell of a lot easier if
6303 we had some decent documentation on bfd, and
6304 knew what to expect of the library, and what to
6305 demand of applications. For example, it
6306 appears that `objcopy' might not set the
6307 section of a symbol to be a section that is
6308 actually in the output file. */
6309 sec2 = bfd_get_section_by_name (abfd, sec->name);
6310 if (sec2 == NULL)
6311 {
6312 _bfd_error_handler (_("\
6313Unable to find equivalent output section for symbol '%s' from section '%s'"),
6314 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6315 sec->name);
6316 bfd_set_error (bfd_error_invalid_operation);
6317 _bfd_stringtab_free (stt);
6318 return FALSE;
6319 }
6320
6321 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6322 BFD_ASSERT (shndx != -1);
6323 }
6324 }
6325
6326 sym.st_shndx = shndx;
6327 }
6328
6329 if ((flags & BSF_THREAD_LOCAL) != 0)
6330 type = STT_TLS;
6331 else if ((flags & BSF_FUNCTION) != 0)
6332 type = STT_FUNC;
6333 else if ((flags & BSF_OBJECT) != 0)
6334 type = STT_OBJECT;
6335 else
6336 type = STT_NOTYPE;
6337
6338 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6339 type = STT_TLS;
6340
6341 /* Processor-specific types. */
6342 if (type_ptr != NULL
6343 && bed->elf_backend_get_symbol_type)
6344 type = ((*bed->elf_backend_get_symbol_type)
6345 (&type_ptr->internal_elf_sym, type));
6346
6347 if (flags & BSF_SECTION_SYM)
6348 {
6349 if (flags & BSF_GLOBAL)
6350 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6351 else
6352 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6353 }
6354 else if (bfd_is_com_section (syms[idx]->section))
6355 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6356 else if (bfd_is_und_section (syms[idx]->section))
6357 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6358 ? STB_WEAK
6359 : STB_GLOBAL),
6360 type);
6361 else if (flags & BSF_FILE)
6362 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6363 else
6364 {
6365 int bind = STB_LOCAL;
6366
6367 if (flags & BSF_LOCAL)
6368 bind = STB_LOCAL;
6369 else if (flags & BSF_WEAK)
6370 bind = STB_WEAK;
6371 else if (flags & BSF_GLOBAL)
6372 bind = STB_GLOBAL;
6373
6374 sym.st_info = ELF_ST_INFO (bind, type);
6375 }
6376
6377 if (type_ptr != NULL)
6378 sym.st_other = type_ptr->internal_elf_sym.st_other;
6379 else
6380 sym.st_other = 0;
6381
6382 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6383 outbound_syms += bed->s->sizeof_sym;
6384 if (outbound_shndx != NULL)
6385 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6386 }
6387
6388 *sttp = stt;
6389 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6390 symstrtab_hdr->sh_type = SHT_STRTAB;
6391
6392 symstrtab_hdr->sh_flags = 0;
6393 symstrtab_hdr->sh_addr = 0;
6394 symstrtab_hdr->sh_entsize = 0;
6395 symstrtab_hdr->sh_link = 0;
6396 symstrtab_hdr->sh_info = 0;
6397 symstrtab_hdr->sh_addralign = 1;
6398
6399 return TRUE;
6400}
6401
6402/* Return the number of bytes required to hold the symtab vector.
6403
6404 Note that we base it on the count plus 1, since we will null terminate
6405 the vector allocated based on this size. However, the ELF symbol table
6406 always has a dummy entry as symbol #0, so it ends up even. */
6407
6408long
6409_bfd_elf_get_symtab_upper_bound (bfd *abfd)
6410{
6411 long symcount;
6412 long symtab_size;
6413 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6414
6415 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6416 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6417 if (symcount > 0)
6418 symtab_size -= sizeof (asymbol *);
6419
6420 return symtab_size;
6421}
6422
6423long
6424_bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6425{
6426 long symcount;
6427 long symtab_size;
6428 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6429
6430 if (elf_dynsymtab (abfd) == 0)
6431 {
6432 bfd_set_error (bfd_error_invalid_operation);
6433 return -1;
6434 }
6435
6436 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6437 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6438 if (symcount > 0)
6439 symtab_size -= sizeof (asymbol *);
6440
6441 return symtab_size;
6442}
6443
6444long
6445_bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6446 sec_ptr asect)
6447{
6448 return (asect->reloc_count + 1) * sizeof (arelent *);
6449}
6450
6451/* Canonicalize the relocs. */
6452
6453long
6454_bfd_elf_canonicalize_reloc (bfd *abfd,
6455 sec_ptr section,
6456 arelent **relptr,
6457 asymbol **symbols)
6458{
6459 arelent *tblptr;
6460 unsigned int i;
6461 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6462
6463 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6464 return -1;
6465
6466 tblptr = section->relocation;
6467 for (i = 0; i < section->reloc_count; i++)
6468 *relptr++ = tblptr++;
6469
6470 *relptr = NULL;
6471
6472 return section->reloc_count;
6473}
6474
6475long
6476_bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6477{
6478 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6479 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6480
6481 if (symcount >= 0)
6482 bfd_get_symcount (abfd) = symcount;
6483 return symcount;
6484}
6485
6486long
6487_bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6488 asymbol **allocation)
6489{
6490 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6491 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6492
6493 if (symcount >= 0)
6494 bfd_get_dynamic_symcount (abfd) = symcount;
6495 return symcount;
6496}
6497
6498/* Return the size required for the dynamic reloc entries. Any loadable
6499 section that was actually installed in the BFD, and has type SHT_REL
6500 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6501 dynamic reloc section. */
6502
6503long
6504_bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6505{
6506 long ret;
6507 asection *s;
6508
6509 if (elf_dynsymtab (abfd) == 0)
6510 {
6511 bfd_set_error (bfd_error_invalid_operation);
6512 return -1;
6513 }
6514
6515 ret = sizeof (arelent *);
6516 for (s = abfd->sections; s != NULL; s = s->next)
6517 if ((s->flags & SEC_LOAD) != 0
6518 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6519 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6520 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6521 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6522 * sizeof (arelent *));
6523
6524 return ret;
6525}
6526
6527/* Canonicalize the dynamic relocation entries. Note that we return the
6528 dynamic relocations as a single block, although they are actually
6529 associated with particular sections; the interface, which was
6530 designed for SunOS style shared libraries, expects that there is only
6531 one set of dynamic relocs. Any loadable section that was actually
6532 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6533 dynamic symbol table, is considered to be a dynamic reloc section. */
6534
6535long
6536_bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6537 arelent **storage,
6538 asymbol **syms)
6539{
6540 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6541 asection *s;
6542 long ret;
6543
6544 if (elf_dynsymtab (abfd) == 0)
6545 {
6546 bfd_set_error (bfd_error_invalid_operation);
6547 return -1;
6548 }
6549
6550 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6551 ret = 0;
6552 for (s = abfd->sections; s != NULL; s = s->next)
6553 {
6554 if ((s->flags & SEC_LOAD) != 0
6555 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6556 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6557 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6558 {
6559 arelent *p;
6560 long count, i;
6561
6562 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6563 return -1;
6564 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6565 p = s->relocation;
6566 for (i = 0; i < count; i++)
6567 *storage++ = p++;
6568 ret += count;
6569 }
6570 }
6571
6572 *storage = NULL;
6573
6574 return ret;
6575}
6576\f
6577/* Read in the version information. */
6578
6579bfd_boolean
6580_bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6581{
6582 bfd_byte *contents = NULL;
6583 unsigned int freeidx = 0;
6584
6585 if (elf_dynverref (abfd) != 0)
6586 {
6587 Elf_Internal_Shdr *hdr;
6588 Elf_External_Verneed *everneed;
6589 Elf_Internal_Verneed *iverneed;
6590 unsigned int i;
6591 bfd_byte *contents_end;
6592
6593 hdr = &elf_tdata (abfd)->dynverref_hdr;
6594
6595 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6596 sizeof (Elf_Internal_Verneed));
6597 if (elf_tdata (abfd)->verref == NULL)
6598 goto error_return;
6599
6600 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6601
6602 contents = bfd_malloc (hdr->sh_size);
6603 if (contents == NULL)
6604 {
6605error_return_verref:
6606 elf_tdata (abfd)->verref = NULL;
6607 elf_tdata (abfd)->cverrefs = 0;
6608 goto error_return;
6609 }
6610 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6611 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6612 goto error_return_verref;
6613
6614 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6615 goto error_return_verref;
6616
6617 BFD_ASSERT (sizeof (Elf_External_Verneed)
6618 == sizeof (Elf_External_Vernaux));
6619 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6620 everneed = (Elf_External_Verneed *) contents;
6621 iverneed = elf_tdata (abfd)->verref;
6622 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6623 {
6624 Elf_External_Vernaux *evernaux;
6625 Elf_Internal_Vernaux *ivernaux;
6626 unsigned int j;
6627
6628 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6629
6630 iverneed->vn_bfd = abfd;
6631
6632 iverneed->vn_filename =
6633 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6634 iverneed->vn_file);
6635 if (iverneed->vn_filename == NULL)
6636 goto error_return_verref;
6637
6638 if (iverneed->vn_cnt == 0)
6639 iverneed->vn_auxptr = NULL;
6640 else
6641 {
6642 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6643 sizeof (Elf_Internal_Vernaux));
6644 if (iverneed->vn_auxptr == NULL)
6645 goto error_return_verref;
6646 }
6647
6648 if (iverneed->vn_aux
6649 > (size_t) (contents_end - (bfd_byte *) everneed))
6650 goto error_return_verref;
6651
6652 evernaux = ((Elf_External_Vernaux *)
6653 ((bfd_byte *) everneed + iverneed->vn_aux));
6654 ivernaux = iverneed->vn_auxptr;
6655 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6656 {
6657 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6658
6659 ivernaux->vna_nodename =
6660 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6661 ivernaux->vna_name);
6662 if (ivernaux->vna_nodename == NULL)
6663 goto error_return_verref;
6664
6665 if (j + 1 < iverneed->vn_cnt)
6666 ivernaux->vna_nextptr = ivernaux + 1;
6667 else
6668 ivernaux->vna_nextptr = NULL;
6669
6670 if (ivernaux->vna_next
6671 > (size_t) (contents_end - (bfd_byte *) evernaux))
6672 goto error_return_verref;
6673
6674 evernaux = ((Elf_External_Vernaux *)
6675 ((bfd_byte *) evernaux + ivernaux->vna_next));
6676
6677 if (ivernaux->vna_other > freeidx)
6678 freeidx = ivernaux->vna_other;
6679 }
6680
6681 if (i + 1 < hdr->sh_info)
6682 iverneed->vn_nextref = iverneed + 1;
6683 else
6684 iverneed->vn_nextref = NULL;
6685
6686 if (iverneed->vn_next
6687 > (size_t) (contents_end - (bfd_byte *) everneed))
6688 goto error_return_verref;
6689
6690 everneed = ((Elf_External_Verneed *)
6691 ((bfd_byte *) everneed + iverneed->vn_next));
6692 }
6693
6694 free (contents);
6695 contents = NULL;
6696 }
6697
6698 if (elf_dynverdef (abfd) != 0)
6699 {
6700 Elf_Internal_Shdr *hdr;
6701 Elf_External_Verdef *everdef;
6702 Elf_Internal_Verdef *iverdef;
6703 Elf_Internal_Verdef *iverdefarr;
6704 Elf_Internal_Verdef iverdefmem;
6705 unsigned int i;
6706 unsigned int maxidx;
6707 bfd_byte *contents_end_def, *contents_end_aux;
6708
6709 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6710
6711 contents = bfd_malloc (hdr->sh_size);
6712 if (contents == NULL)
6713 goto error_return;
6714 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6715 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6716 goto error_return;
6717
6718 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6719 goto error_return;
6720
6721 BFD_ASSERT (sizeof (Elf_External_Verdef)
6722 >= sizeof (Elf_External_Verdaux));
6723 contents_end_def = contents + hdr->sh_size
6724 - sizeof (Elf_External_Verdef);
6725 contents_end_aux = contents + hdr->sh_size
6726 - sizeof (Elf_External_Verdaux);
6727
6728 /* We know the number of entries in the section but not the maximum
6729 index. Therefore we have to run through all entries and find
6730 the maximum. */
6731 everdef = (Elf_External_Verdef *) contents;
6732 maxidx = 0;
6733 for (i = 0; i < hdr->sh_info; ++i)
6734 {
6735 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6736
6737 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6738 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6739
6740 if (iverdefmem.vd_next
6741 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6742 goto error_return;
6743
6744 everdef = ((Elf_External_Verdef *)
6745 ((bfd_byte *) everdef + iverdefmem.vd_next));
6746 }
6747
6748 if (default_imported_symver)
6749 {
6750 if (freeidx > maxidx)
6751 maxidx = ++freeidx;
6752 else
6753 freeidx = ++maxidx;
6754 }
6755 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6756 sizeof (Elf_Internal_Verdef));
6757 if (elf_tdata (abfd)->verdef == NULL)
6758 goto error_return;
6759
6760 elf_tdata (abfd)->cverdefs = maxidx;
6761
6762 everdef = (Elf_External_Verdef *) contents;
6763 iverdefarr = elf_tdata (abfd)->verdef;
6764 for (i = 0; i < hdr->sh_info; i++)
6765 {
6766 Elf_External_Verdaux *everdaux;
6767 Elf_Internal_Verdaux *iverdaux;
6768 unsigned int j;
6769
6770 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6771
6772 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6773 {
6774error_return_verdef:
6775 elf_tdata (abfd)->verdef = NULL;
6776 elf_tdata (abfd)->cverdefs = 0;
6777 goto error_return;
6778 }
6779
6780 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6781 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6782
6783 iverdef->vd_bfd = abfd;
6784
6785 if (iverdef->vd_cnt == 0)
6786 iverdef->vd_auxptr = NULL;
6787 else
6788 {
6789 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6790 sizeof (Elf_Internal_Verdaux));
6791 if (iverdef->vd_auxptr == NULL)
6792 goto error_return_verdef;
6793 }
6794
6795 if (iverdef->vd_aux
6796 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6797 goto error_return_verdef;
6798
6799 everdaux = ((Elf_External_Verdaux *)
6800 ((bfd_byte *) everdef + iverdef->vd_aux));
6801 iverdaux = iverdef->vd_auxptr;
6802 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6803 {
6804 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6805
6806 iverdaux->vda_nodename =
6807 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6808 iverdaux->vda_name);
6809 if (iverdaux->vda_nodename == NULL)
6810 goto error_return_verdef;
6811
6812 if (j + 1 < iverdef->vd_cnt)
6813 iverdaux->vda_nextptr = iverdaux + 1;
6814 else
6815 iverdaux->vda_nextptr = NULL;
6816
6817 if (iverdaux->vda_next
6818 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6819 goto error_return_verdef;
6820
6821 everdaux = ((Elf_External_Verdaux *)
6822 ((bfd_byte *) everdaux + iverdaux->vda_next));
6823 }
6824
6825 if (iverdef->vd_cnt)
6826 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6827
6828 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6829 iverdef->vd_nextdef = iverdef + 1;
6830 else
6831 iverdef->vd_nextdef = NULL;
6832
6833 everdef = ((Elf_External_Verdef *)
6834 ((bfd_byte *) everdef + iverdef->vd_next));
6835 }
6836
6837 free (contents);
6838 contents = NULL;
6839 }
6840 else if (default_imported_symver)
6841 {
6842 if (freeidx < 3)
6843 freeidx = 3;
6844 else
6845 freeidx++;
6846
6847 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6848 sizeof (Elf_Internal_Verdef));
6849 if (elf_tdata (abfd)->verdef == NULL)
6850 goto error_return;
6851
6852 elf_tdata (abfd)->cverdefs = freeidx;
6853 }
6854
6855 /* Create a default version based on the soname. */
6856 if (default_imported_symver)
6857 {
6858 Elf_Internal_Verdef *iverdef;
6859 Elf_Internal_Verdaux *iverdaux;
6860
6861 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6862
6863 iverdef->vd_version = VER_DEF_CURRENT;
6864 iverdef->vd_flags = 0;
6865 iverdef->vd_ndx = freeidx;
6866 iverdef->vd_cnt = 1;
6867
6868 iverdef->vd_bfd = abfd;
6869
6870 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6871 if (iverdef->vd_nodename == NULL)
6872 goto error_return_verdef;
6873 iverdef->vd_nextdef = NULL;
6874 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6875 if (iverdef->vd_auxptr == NULL)
6876 goto error_return_verdef;
6877
6878 iverdaux = iverdef->vd_auxptr;
6879 iverdaux->vda_nodename = iverdef->vd_nodename;
6880 iverdaux->vda_nextptr = NULL;
6881 }
6882
6883 return TRUE;
6884
6885 error_return:
6886 if (contents != NULL)
6887 free (contents);
6888 return FALSE;
6889}
6890\f
6891asymbol *
6892_bfd_elf_make_empty_symbol (bfd *abfd)
6893{
6894 elf_symbol_type *newsym;
6895 bfd_size_type amt = sizeof (elf_symbol_type);
6896
6897 newsym = bfd_zalloc (abfd, amt);
6898 if (!newsym)
6899 return NULL;
6900 else
6901 {
6902 newsym->symbol.the_bfd = abfd;
6903 return &newsym->symbol;
6904 }
6905}
6906
6907void
6908_bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6909 asymbol *symbol,
6910 symbol_info *ret)
6911{
6912 bfd_symbol_info (symbol, ret);
6913}
6914
6915/* Return whether a symbol name implies a local symbol. Most targets
6916 use this function for the is_local_label_name entry point, but some
6917 override it. */
6918
6919bfd_boolean
6920_bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6921 const char *name)
6922{
6923 /* Normal local symbols start with ``.L''. */
6924 if (name[0] == '.' && name[1] == 'L')
6925 return TRUE;
6926
6927 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6928 DWARF debugging symbols starting with ``..''. */
6929 if (name[0] == '.' && name[1] == '.')
6930 return TRUE;
6931
6932 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6933 emitting DWARF debugging output. I suspect this is actually a
6934 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6935 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6936 underscore to be emitted on some ELF targets). For ease of use,
6937 we treat such symbols as local. */
6938 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6939 return TRUE;
6940
6941 return FALSE;
6942}
6943
6944alent *
6945_bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6946 asymbol *symbol ATTRIBUTE_UNUSED)
6947{
6948 abort ();
6949 return NULL;
6950}
6951
6952bfd_boolean
6953_bfd_elf_set_arch_mach (bfd *abfd,
6954 enum bfd_architecture arch,
6955 unsigned long machine)
6956{
6957 /* If this isn't the right architecture for this backend, and this
6958 isn't the generic backend, fail. */
6959 if (arch != get_elf_backend_data (abfd)->arch
6960 && arch != bfd_arch_unknown
6961 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6962 return FALSE;
6963
6964 return bfd_default_set_arch_mach (abfd, arch, machine);
6965}
6966
6967/* Find the function to a particular section and offset,
6968 for error reporting. */
6969
6970static bfd_boolean
6971elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6972 asection *section,
6973 asymbol **symbols,
6974 bfd_vma offset,
6975 const char **filename_ptr,
6976 const char **functionname_ptr)
6977{
6978 const char *filename;
6979 asymbol *func, *file;
6980 bfd_vma low_func;
6981 asymbol **p;
6982 /* ??? Given multiple file symbols, it is impossible to reliably
6983 choose the right file name for global symbols. File symbols are
6984 local symbols, and thus all file symbols must sort before any
6985 global symbols. The ELF spec may be interpreted to say that a
6986 file symbol must sort before other local symbols, but currently
6987 ld -r doesn't do this. So, for ld -r output, it is possible to
6988 make a better choice of file name for local symbols by ignoring
6989 file symbols appearing after a given local symbol. */
6990 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6991
6992 filename = NULL;
6993 func = NULL;
6994 file = NULL;
6995 low_func = 0;
6996 state = nothing_seen;
6997
6998 for (p = symbols; *p != NULL; p++)
6999 {
7000 elf_symbol_type *q;
7001
7002 q = (elf_symbol_type *) *p;
7003
7004 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7005 {
7006 default:
7007 break;
7008 case STT_FILE:
7009 file = &q->symbol;
7010 if (state == symbol_seen)
7011 state = file_after_symbol_seen;
7012 continue;
7013 case STT_NOTYPE:
7014 case STT_FUNC:
7015 if (bfd_get_section (&q->symbol) == section
7016 && q->symbol.value >= low_func
7017 && q->symbol.value <= offset)
7018 {
7019 func = (asymbol *) q;
7020 low_func = q->symbol.value;
7021 filename = NULL;
7022 if (file != NULL
7023 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7024 || state != file_after_symbol_seen))
7025 filename = bfd_asymbol_name (file);
7026 }
7027 break;
7028 }
7029 if (state == nothing_seen)
7030 state = symbol_seen;
7031 }
7032
7033 if (func == NULL)
7034 return FALSE;
7035
7036 if (filename_ptr)
7037 *filename_ptr = filename;
7038 if (functionname_ptr)
7039 *functionname_ptr = bfd_asymbol_name (func);
7040
7041 return TRUE;
7042}
7043
7044/* Find the nearest line to a particular section and offset,
7045 for error reporting. */
7046
7047bfd_boolean
7048_bfd_elf_find_nearest_line (bfd *abfd,
7049 asection *section,
7050 asymbol **symbols,
7051 bfd_vma offset,
7052 const char **filename_ptr,
7053 const char **functionname_ptr,
7054 unsigned int *line_ptr)
7055{
7056 bfd_boolean found;
7057
7058 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7059 filename_ptr, functionname_ptr,
7060 line_ptr))
7061 {
7062 if (!*functionname_ptr)
7063 elf_find_function (abfd, section, symbols, offset,
7064 *filename_ptr ? NULL : filename_ptr,
7065 functionname_ptr);
7066
7067 return TRUE;
7068 }
7069
7070 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7071 filename_ptr, functionname_ptr,
7072 line_ptr, 0,
7073 &elf_tdata (abfd)->dwarf2_find_line_info))
7074 {
7075 if (!*functionname_ptr)
7076 elf_find_function (abfd, section, symbols, offset,
7077 *filename_ptr ? NULL : filename_ptr,
7078 functionname_ptr);
7079
7080 return TRUE;
7081 }
7082
7083 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7084 &found, filename_ptr,
7085 functionname_ptr, line_ptr,
7086 &elf_tdata (abfd)->line_info))
7087 return FALSE;
7088 if (found && (*functionname_ptr || *line_ptr))
7089 return TRUE;
7090
7091 if (symbols == NULL)
7092 return FALSE;
7093
7094 if (! elf_find_function (abfd, section, symbols, offset,
7095 filename_ptr, functionname_ptr))
7096 return FALSE;
7097
7098 *line_ptr = 0;
7099 return TRUE;
7100}
7101
7102/* Find the line for a symbol. */
7103
7104bfd_boolean
7105_bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7106 const char **filename_ptr, unsigned int *line_ptr)
7107{
7108 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7109 filename_ptr, line_ptr, 0,
7110 &elf_tdata (abfd)->dwarf2_find_line_info);
7111}
7112
7113/* After a call to bfd_find_nearest_line, successive calls to
7114 bfd_find_inliner_info can be used to get source information about
7115 each level of function inlining that terminated at the address
7116 passed to bfd_find_nearest_line. Currently this is only supported
7117 for DWARF2 with appropriate DWARF3 extensions. */
7118
7119bfd_boolean
7120_bfd_elf_find_inliner_info (bfd *abfd,
7121 const char **filename_ptr,
7122 const char **functionname_ptr,
7123 unsigned int *line_ptr)
7124{
7125 bfd_boolean found;
7126 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7127 functionname_ptr, line_ptr,
7128 & elf_tdata (abfd)->dwarf2_find_line_info);
7129 return found;
7130}
7131
7132int
7133_bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7134{
7135 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7136 int ret = bed->s->sizeof_ehdr;
7137
7138 if (!info->relocatable)
7139 {
7140 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7141
7142 if (phdr_size == (bfd_size_type) -1)
7143 {
7144 struct elf_segment_map *m;
7145
7146 phdr_size = 0;
7147 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7148 phdr_size += bed->s->sizeof_phdr;
7149
7150 if (phdr_size == 0)
7151 phdr_size = get_program_header_size (abfd, info);
7152 }
7153
7154 elf_tdata (abfd)->program_header_size = phdr_size;
7155 ret += phdr_size;
7156 }
7157
7158 return ret;
7159}
7160
7161bfd_boolean
7162_bfd_elf_set_section_contents (bfd *abfd,
7163 sec_ptr section,
7164 const void *location,
7165 file_ptr offset,
7166 bfd_size_type count)
7167{
7168 Elf_Internal_Shdr *hdr;
7169 bfd_signed_vma pos;
7170
7171 if (! abfd->output_has_begun
7172 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7173 return FALSE;
7174
7175 hdr = &elf_section_data (section)->this_hdr;
7176 pos = hdr->sh_offset + offset;
7177 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7178 || bfd_bwrite (location, count, abfd) != count)
7179 return FALSE;
7180
7181 return TRUE;
7182}
7183
7184void
7185_bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7186 arelent *cache_ptr ATTRIBUTE_UNUSED,
7187 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7188{
7189 abort ();
7190}
7191
7192/* Try to convert a non-ELF reloc into an ELF one. */
7193
7194bfd_boolean
7195_bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7196{
7197 /* Check whether we really have an ELF howto. */
7198
7199 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7200 {
7201 bfd_reloc_code_real_type code;
7202 reloc_howto_type *howto;
7203
7204 /* Alien reloc: Try to determine its type to replace it with an
7205 equivalent ELF reloc. */
7206
7207 if (areloc->howto->pc_relative)
7208 {
7209 switch (areloc->howto->bitsize)
7210 {
7211 case 8:
7212 code = BFD_RELOC_8_PCREL;
7213 break;
7214 case 12:
7215 code = BFD_RELOC_12_PCREL;
7216 break;
7217 case 16:
7218 code = BFD_RELOC_16_PCREL;
7219 break;
7220 case 24:
7221 code = BFD_RELOC_24_PCREL;
7222 break;
7223 case 32:
7224 code = BFD_RELOC_32_PCREL;
7225 break;
7226 case 64:
7227 code = BFD_RELOC_64_PCREL;
7228 break;
7229 default:
7230 goto fail;
7231 }
7232
7233 howto = bfd_reloc_type_lookup (abfd, code);
7234
7235 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7236 {
7237 if (howto->pcrel_offset)
7238 areloc->addend += areloc->address;
7239 else
7240 areloc->addend -= areloc->address; /* addend is unsigned!! */
7241 }
7242 }
7243 else
7244 {
7245 switch (areloc->howto->bitsize)
7246 {
7247 case 8:
7248 code = BFD_RELOC_8;
7249 break;
7250 case 14:
7251 code = BFD_RELOC_14;
7252 break;
7253 case 16:
7254 code = BFD_RELOC_16;
7255 break;
7256 case 26:
7257 code = BFD_RELOC_26;
7258 break;
7259 case 32:
7260 code = BFD_RELOC_32;
7261 break;
7262 case 64:
7263 code = BFD_RELOC_64;
7264 break;
7265 default:
7266 goto fail;
7267 }
7268
7269 howto = bfd_reloc_type_lookup (abfd, code);
7270 }
7271
7272 if (howto)
7273 areloc->howto = howto;
7274 else
7275 goto fail;
7276 }
7277
7278 return TRUE;
7279
7280 fail:
7281 (*_bfd_error_handler)
7282 (_("%B: unsupported relocation type %s"),
7283 abfd, areloc->howto->name);
7284 bfd_set_error (bfd_error_bad_value);
7285 return FALSE;
7286}
7287
7288bfd_boolean
7289_bfd_elf_close_and_cleanup (bfd *abfd)
7290{
7291 if (bfd_get_format (abfd) == bfd_object)
7292 {
7293 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7294 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7295 _bfd_dwarf2_cleanup_debug_info (abfd);
7296 }
7297
7298 return _bfd_generic_close_and_cleanup (abfd);
7299}
7300
7301/* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7302 in the relocation's offset. Thus we cannot allow any sort of sanity
7303 range-checking to interfere. There is nothing else to do in processing
7304 this reloc. */
7305
7306bfd_reloc_status_type
7307_bfd_elf_rel_vtable_reloc_fn
7308 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7309 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7310 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7311 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7312{
7313 return bfd_reloc_ok;
7314}
7315\f
7316/* Elf core file support. Much of this only works on native
7317 toolchains, since we rely on knowing the
7318 machine-dependent procfs structure in order to pick
7319 out details about the corefile. */
7320
7321#ifdef HAVE_SYS_PROCFS_H
7322# include <sys/procfs.h>
7323#endif
7324
7325/* FIXME: this is kinda wrong, but it's what gdb wants. */
7326
7327static int
7328elfcore_make_pid (bfd *abfd)
7329{
7330 return ((elf_tdata (abfd)->core_lwpid << 16)
7331 + (elf_tdata (abfd)->core_pid));
7332}
7333
7334/* If there isn't a section called NAME, make one, using
7335 data from SECT. Note, this function will generate a
7336 reference to NAME, so you shouldn't deallocate or
7337 overwrite it. */
7338
7339static bfd_boolean
7340elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7341{
7342 asection *sect2;
7343
7344 if (bfd_get_section_by_name (abfd, name) != NULL)
7345 return TRUE;
7346
7347 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7348 if (sect2 == NULL)
7349 return FALSE;
7350
7351 sect2->size = sect->size;
7352 sect2->filepos = sect->filepos;
7353 sect2->alignment_power = sect->alignment_power;
7354 return TRUE;
7355}
7356
7357/* Create a pseudosection containing SIZE bytes at FILEPOS. This
7358 actually creates up to two pseudosections:
7359 - For the single-threaded case, a section named NAME, unless
7360 such a section already exists.
7361 - For the multi-threaded case, a section named "NAME/PID", where
7362 PID is elfcore_make_pid (abfd).
7363 Both pseudosections have identical contents. */
7364bfd_boolean
7365_bfd_elfcore_make_pseudosection (bfd *abfd,
7366 char *name,
7367 size_t size,
7368 ufile_ptr filepos)
7369{
7370 char buf[100];
7371 char *threaded_name;
7372 size_t len;
7373 asection *sect;
7374
7375 /* Build the section name. */
7376
7377 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7378 len = strlen (buf) + 1;
7379 threaded_name = bfd_alloc (abfd, len);
7380 if (threaded_name == NULL)
7381 return FALSE;
7382 memcpy (threaded_name, buf, len);
7383
7384 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7385 SEC_HAS_CONTENTS);
7386 if (sect == NULL)
7387 return FALSE;
7388 sect->size = size;
7389 sect->filepos = filepos;
7390 sect->alignment_power = 2;
7391
7392 return elfcore_maybe_make_sect (abfd, name, sect);
7393}
7394
7395/* prstatus_t exists on:
7396 solaris 2.5+
7397 linux 2.[01] + glibc
7398 unixware 4.2
7399*/
7400
7401#if defined (HAVE_PRSTATUS_T)
7402
7403static bfd_boolean
7404elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7405{
7406 size_t size;
7407 int offset;
7408
7409 if (note->descsz == sizeof (prstatus_t))
7410 {
7411 prstatus_t prstat;
7412
7413 size = sizeof (prstat.pr_reg);
7414 offset = offsetof (prstatus_t, pr_reg);
7415 memcpy (&prstat, note->descdata, sizeof (prstat));
7416
7417 /* Do not overwrite the core signal if it
7418 has already been set by another thread. */
7419 if (elf_tdata (abfd)->core_signal == 0)
7420 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7421 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7422
7423 /* pr_who exists on:
7424 solaris 2.5+
7425 unixware 4.2
7426 pr_who doesn't exist on:
7427 linux 2.[01]
7428 */
7429#if defined (HAVE_PRSTATUS_T_PR_WHO)
7430 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7431#endif
7432 }
7433#if defined (HAVE_PRSTATUS32_T)
7434 else if (note->descsz == sizeof (prstatus32_t))
7435 {
7436 /* 64-bit host, 32-bit corefile */
7437 prstatus32_t prstat;
7438
7439 size = sizeof (prstat.pr_reg);
7440 offset = offsetof (prstatus32_t, pr_reg);
7441 memcpy (&prstat, note->descdata, sizeof (prstat));
7442
7443 /* Do not overwrite the core signal if it
7444 has already been set by another thread. */
7445 if (elf_tdata (abfd)->core_signal == 0)
7446 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7447 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7448
7449 /* pr_who exists on:
7450 solaris 2.5+
7451 unixware 4.2
7452 pr_who doesn't exist on:
7453 linux 2.[01]
7454 */
7455#if defined (HAVE_PRSTATUS32_T_PR_WHO)
7456 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7457#endif
7458 }
7459#endif /* HAVE_PRSTATUS32_T */
7460 else
7461 {
7462 /* Fail - we don't know how to handle any other
7463 note size (ie. data object type). */
7464 return TRUE;
7465 }
7466
7467 /* Make a ".reg/999" section and a ".reg" section. */
7468 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7469 size, note->descpos + offset);
7470}
7471#endif /* defined (HAVE_PRSTATUS_T) */
7472
7473/* Create a pseudosection containing the exact contents of NOTE. */
7474static bfd_boolean
7475elfcore_make_note_pseudosection (bfd *abfd,
7476 char *name,
7477 Elf_Internal_Note *note)
7478{
7479 return _bfd_elfcore_make_pseudosection (abfd, name,
7480 note->descsz, note->descpos);
7481}
7482
7483/* There isn't a consistent prfpregset_t across platforms,
7484 but it doesn't matter, because we don't have to pick this
7485 data structure apart. */
7486
7487static bfd_boolean
7488elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7489{
7490 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7491}
7492
7493/* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7494 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7495 literally. */
7496
7497static bfd_boolean
7498elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7499{
7500 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7501}
7502
7503#if defined (HAVE_PRPSINFO_T)
7504typedef prpsinfo_t elfcore_psinfo_t;
7505#if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7506typedef prpsinfo32_t elfcore_psinfo32_t;
7507#endif
7508#endif
7509
7510#if defined (HAVE_PSINFO_T)
7511typedef psinfo_t elfcore_psinfo_t;
7512#if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7513typedef psinfo32_t elfcore_psinfo32_t;
7514#endif
7515#endif
7516
7517/* return a malloc'ed copy of a string at START which is at
7518 most MAX bytes long, possibly without a terminating '\0'.
7519 the copy will always have a terminating '\0'. */
7520
7521char *
7522_bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7523{
7524 char *dups;
7525 char *end = memchr (start, '\0', max);
7526 size_t len;
7527
7528 if (end == NULL)
7529 len = max;
7530 else
7531 len = end - start;
7532
7533 dups = bfd_alloc (abfd, len + 1);
7534 if (dups == NULL)
7535 return NULL;
7536
7537 memcpy (dups, start, len);
7538 dups[len] = '\0';
7539
7540 return dups;
7541}
7542
7543#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7544static bfd_boolean
7545elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7546{
7547 if (note->descsz == sizeof (elfcore_psinfo_t))
7548 {
7549 elfcore_psinfo_t psinfo;
7550
7551 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7552
7553 elf_tdata (abfd)->core_program
7554 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7555 sizeof (psinfo.pr_fname));
7556
7557 elf_tdata (abfd)->core_command
7558 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7559 sizeof (psinfo.pr_psargs));
7560 }
7561#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7562 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7563 {
7564 /* 64-bit host, 32-bit corefile */
7565 elfcore_psinfo32_t psinfo;
7566
7567 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7568
7569 elf_tdata (abfd)->core_program
7570 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7571 sizeof (psinfo.pr_fname));
7572
7573 elf_tdata (abfd)->core_command
7574 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7575 sizeof (psinfo.pr_psargs));
7576 }
7577#endif
7578
7579 else
7580 {
7581 /* Fail - we don't know how to handle any other
7582 note size (ie. data object type). */
7583 return TRUE;
7584 }
7585
7586 /* Note that for some reason, a spurious space is tacked
7587 onto the end of the args in some (at least one anyway)
7588 implementations, so strip it off if it exists. */
7589
7590 {
7591 char *command = elf_tdata (abfd)->core_command;
7592 int n = strlen (command);
7593
7594 if (0 < n && command[n - 1] == ' ')
7595 command[n - 1] = '\0';
7596 }
7597
7598 return TRUE;
7599}
7600#endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7601
7602#if defined (HAVE_PSTATUS_T)
7603static bfd_boolean
7604elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7605{
7606 if (note->descsz == sizeof (pstatus_t)
7607#if defined (HAVE_PXSTATUS_T)
7608 || note->descsz == sizeof (pxstatus_t)
7609#endif
7610 )
7611 {
7612 pstatus_t pstat;
7613
7614 memcpy (&pstat, note->descdata, sizeof (pstat));
7615
7616 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7617 }
7618#if defined (HAVE_PSTATUS32_T)
7619 else if (note->descsz == sizeof (pstatus32_t))
7620 {
7621 /* 64-bit host, 32-bit corefile */
7622 pstatus32_t pstat;
7623
7624 memcpy (&pstat, note->descdata, sizeof (pstat));
7625
7626 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7627 }
7628#endif
7629 /* Could grab some more details from the "representative"
7630 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7631 NT_LWPSTATUS note, presumably. */
7632
7633 return TRUE;
7634}
7635#endif /* defined (HAVE_PSTATUS_T) */
7636
7637#if defined (HAVE_LWPSTATUS_T)
7638static bfd_boolean
7639elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7640{
7641 lwpstatus_t lwpstat;
7642 char buf[100];
7643 char *name;
7644 size_t len;
7645 asection *sect;
7646
7647 if (note->descsz != sizeof (lwpstat)
7648#if defined (HAVE_LWPXSTATUS_T)
7649 && note->descsz != sizeof (lwpxstatus_t)
7650#endif
7651 )
7652 return TRUE;
7653
7654 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7655
7656 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7657 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7658
7659 /* Make a ".reg/999" section. */
7660
7661 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7662 len = strlen (buf) + 1;
7663 name = bfd_alloc (abfd, len);
7664 if (name == NULL)
7665 return FALSE;
7666 memcpy (name, buf, len);
7667
7668 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7669 if (sect == NULL)
7670 return FALSE;
7671
7672#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7673 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7674 sect->filepos = note->descpos
7675 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7676#endif
7677
7678#if defined (HAVE_LWPSTATUS_T_PR_REG)
7679 sect->size = sizeof (lwpstat.pr_reg);
7680 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7681#endif
7682
7683 sect->alignment_power = 2;
7684
7685 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7686 return FALSE;
7687
7688 /* Make a ".reg2/999" section */
7689
7690 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7691 len = strlen (buf) + 1;
7692 name = bfd_alloc (abfd, len);
7693 if (name == NULL)
7694 return FALSE;
7695 memcpy (name, buf, len);
7696
7697 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7698 if (sect == NULL)
7699 return FALSE;
7700
7701#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7702 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7703 sect->filepos = note->descpos
7704 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7705#endif
7706
7707#if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7708 sect->size = sizeof (lwpstat.pr_fpreg);
7709 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7710#endif
7711
7712 sect->alignment_power = 2;
7713
7714 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7715}
7716#endif /* defined (HAVE_LWPSTATUS_T) */
7717
7718#if defined (HAVE_WIN32_PSTATUS_T)
7719static bfd_boolean
7720elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7721{
7722 char buf[30];
7723 char *name;
7724 size_t len;
7725 asection *sect;
7726 win32_pstatus_t pstatus;
7727
7728 if (note->descsz < sizeof (pstatus))
7729 return TRUE;
7730
7731 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7732
7733 switch (pstatus.data_type)
7734 {
7735 case NOTE_INFO_PROCESS:
7736 /* FIXME: need to add ->core_command. */
7737 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7738 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7739 break;
7740
7741 case NOTE_INFO_THREAD:
7742 /* Make a ".reg/999" section. */
7743 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7744
7745 len = strlen (buf) + 1;
7746 name = bfd_alloc (abfd, len);
7747 if (name == NULL)
7748 return FALSE;
7749
7750 memcpy (name, buf, len);
7751
7752 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7753 if (sect == NULL)
7754 return FALSE;
7755
7756 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7757 sect->filepos = (note->descpos
7758 + offsetof (struct win32_pstatus,
7759 data.thread_info.thread_context));
7760 sect->alignment_power = 2;
7761
7762 if (pstatus.data.thread_info.is_active_thread)
7763 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7764 return FALSE;
7765 break;
7766
7767 case NOTE_INFO_MODULE:
7768 /* Make a ".module/xxxxxxxx" section. */
7769 sprintf (buf, ".module/%08lx",
7770 (long) pstatus.data.module_info.base_address);
7771
7772 len = strlen (buf) + 1;
7773 name = bfd_alloc (abfd, len);
7774 if (name == NULL)
7775 return FALSE;
7776
7777 memcpy (name, buf, len);
7778
7779 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7780
7781 if (sect == NULL)
7782 return FALSE;
7783
7784 sect->size = note->descsz;
7785 sect->filepos = note->descpos;
7786 sect->alignment_power = 2;
7787 break;
7788
7789 default:
7790 return TRUE;
7791 }
7792
7793 return TRUE;
7794}
7795#endif /* HAVE_WIN32_PSTATUS_T */
7796
7797static bfd_boolean
7798elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7799{
7800 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7801
7802 switch (note->type)
7803 {
7804 default:
7805 return TRUE;
7806
7807 case NT_PRSTATUS:
7808 if (bed->elf_backend_grok_prstatus)
7809 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7810 return TRUE;
7811#if defined (HAVE_PRSTATUS_T)
7812 return elfcore_grok_prstatus (abfd, note);
7813#else
7814 return TRUE;
7815#endif
7816
7817#if defined (HAVE_PSTATUS_T)
7818 case NT_PSTATUS:
7819 return elfcore_grok_pstatus (abfd, note);
7820#endif
7821
7822#if defined (HAVE_LWPSTATUS_T)
7823 case NT_LWPSTATUS:
7824 return elfcore_grok_lwpstatus (abfd, note);
7825#endif
7826
7827 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7828 return elfcore_grok_prfpreg (abfd, note);
7829
7830#if defined (HAVE_WIN32_PSTATUS_T)
7831 case NT_WIN32PSTATUS:
7832 return elfcore_grok_win32pstatus (abfd, note);
7833#endif
7834
7835 case NT_PRXFPREG: /* Linux SSE extension */
7836 if (note->namesz == 6
7837 && strcmp (note->namedata, "LINUX") == 0)
7838 return elfcore_grok_prxfpreg (abfd, note);
7839 else
7840 return TRUE;
7841
7842 case NT_PRPSINFO:
7843 case NT_PSINFO:
7844 if (bed->elf_backend_grok_psinfo)
7845 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7846 return TRUE;
7847#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7848 return elfcore_grok_psinfo (abfd, note);
7849#else
7850 return TRUE;
7851#endif
7852
7853 case NT_AUXV:
7854 {
7855 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7856 SEC_HAS_CONTENTS);
7857
7858 if (sect == NULL)
7859 return FALSE;
7860 sect->size = note->descsz;
7861 sect->filepos = note->descpos;
7862 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7863
7864 return TRUE;
7865 }
7866 }
7867}
7868
7869static bfd_boolean
7870elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7871{
7872 char *cp;
7873
7874 cp = strchr (note->namedata, '@');
7875 if (cp != NULL)
7876 {
7877 *lwpidp = atoi(cp + 1);
7878 return TRUE;
7879 }
7880 return FALSE;
7881}
7882
7883static bfd_boolean
7884elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7885{
7886
7887 /* Signal number at offset 0x08. */
7888 elf_tdata (abfd)->core_signal
7889 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7890
7891 /* Process ID at offset 0x50. */
7892 elf_tdata (abfd)->core_pid
7893 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7894
7895 /* Command name at 0x7c (max 32 bytes, including nul). */
7896 elf_tdata (abfd)->core_command
7897 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7898
7899 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7900 note);
7901}
7902
7903static bfd_boolean
7904elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7905{
7906 int lwp;
7907
7908 if (elfcore_netbsd_get_lwpid (note, &lwp))
7909 elf_tdata (abfd)->core_lwpid = lwp;
7910
7911 if (note->type == NT_NETBSDCORE_PROCINFO)
7912 {
7913 /* NetBSD-specific core "procinfo". Note that we expect to
7914 find this note before any of the others, which is fine,
7915 since the kernel writes this note out first when it
7916 creates a core file. */
7917
7918 return elfcore_grok_netbsd_procinfo (abfd, note);
7919 }
7920
7921 /* As of Jan 2002 there are no other machine-independent notes
7922 defined for NetBSD core files. If the note type is less
7923 than the start of the machine-dependent note types, we don't
7924 understand it. */
7925
7926 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7927 return TRUE;
7928
7929
7930 switch (bfd_get_arch (abfd))
7931 {
7932 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7933 PT_GETFPREGS == mach+2. */
7934
7935 case bfd_arch_alpha:
7936 case bfd_arch_sparc:
7937 switch (note->type)
7938 {
7939 case NT_NETBSDCORE_FIRSTMACH+0:
7940 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7941
7942 case NT_NETBSDCORE_FIRSTMACH+2:
7943 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7944
7945 default:
7946 return TRUE;
7947 }
7948
7949 /* On all other arch's, PT_GETREGS == mach+1 and
7950 PT_GETFPREGS == mach+3. */
7951
7952 default:
7953 switch (note->type)
7954 {
7955 case NT_NETBSDCORE_FIRSTMACH+1:
7956 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7957
7958 case NT_NETBSDCORE_FIRSTMACH+3:
7959 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7960
7961 default:
7962 return TRUE;
7963 }
7964 }
7965 /* NOTREACHED */
7966}
7967
7968static bfd_boolean
7969elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
7970{
7971 void *ddata = note->descdata;
7972 char buf[100];
7973 char *name;
7974 asection *sect;
7975 short sig;
7976 unsigned flags;
7977
7978 /* nto_procfs_status 'pid' field is at offset 0. */
7979 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7980
7981 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7982 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7983
7984 /* nto_procfs_status 'flags' field is at offset 8. */
7985 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7986
7987 /* nto_procfs_status 'what' field is at offset 14. */
7988 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7989 {
7990 elf_tdata (abfd)->core_signal = sig;
7991 elf_tdata (abfd)->core_lwpid = *tid;
7992 }
7993
7994 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7995 do not come from signals so we make sure we set the current
7996 thread just in case. */
7997 if (flags & 0x00000080)
7998 elf_tdata (abfd)->core_lwpid = *tid;
7999
8000 /* Make a ".qnx_core_status/%d" section. */
8001 sprintf (buf, ".qnx_core_status/%ld", *tid);
8002
8003 name = bfd_alloc (abfd, strlen (buf) + 1);
8004 if (name == NULL)
8005 return FALSE;
8006 strcpy (name, buf);
8007
8008 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8009 if (sect == NULL)
8010 return FALSE;
8011
8012 sect->size = note->descsz;
8013 sect->filepos = note->descpos;
8014 sect->alignment_power = 2;
8015
8016 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8017}
8018
8019static bfd_boolean
8020elfcore_grok_nto_regs (bfd *abfd,
8021 Elf_Internal_Note *note,
8022 long tid,
8023 char *base)
8024{
8025 char buf[100];
8026 char *name;
8027 asection *sect;
8028
8029 /* Make a "(base)/%d" section. */
8030 sprintf (buf, "%s/%ld", base, tid);
8031
8032 name = bfd_alloc (abfd, strlen (buf) + 1);
8033 if (name == NULL)
8034 return FALSE;
8035 strcpy (name, buf);
8036
8037 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8038 if (sect == NULL)
8039 return FALSE;
8040
8041 sect->size = note->descsz;
8042 sect->filepos = note->descpos;
8043 sect->alignment_power = 2;
8044
8045 /* This is the current thread. */
8046 if (elf_tdata (abfd)->core_lwpid == tid)
8047 return elfcore_maybe_make_sect (abfd, base, sect);
8048
8049 return TRUE;
8050}
8051
8052#define BFD_QNT_CORE_INFO 7
8053#define BFD_QNT_CORE_STATUS 8
8054#define BFD_QNT_CORE_GREG 9
8055#define BFD_QNT_CORE_FPREG 10
8056
8057static bfd_boolean
8058elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8059{
8060 /* Every GREG section has a STATUS section before it. Store the
8061 tid from the previous call to pass down to the next gregs
8062 function. */
8063 static long tid = 1;
8064
8065 switch (note->type)
8066 {
8067 case BFD_QNT_CORE_INFO:
8068 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8069 case BFD_QNT_CORE_STATUS:
8070 return elfcore_grok_nto_status (abfd, note, &tid);
8071 case BFD_QNT_CORE_GREG:
8072 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8073 case BFD_QNT_CORE_FPREG:
8074 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8075 default:
8076 return TRUE;
8077 }
8078}
8079
8080/* Function: elfcore_write_note
8081
8082 Inputs:
8083 buffer to hold note
8084 name of note
8085 type of note
8086 data for note
8087 size of data for note
8088
8089 Return:
8090 End of buffer containing note. */
8091
8092char *
8093elfcore_write_note (bfd *abfd,
8094 char *buf,
8095 int *bufsiz,
8096 const char *name,
8097 int type,
8098 const void *input,
8099 int size)
8100{
8101 Elf_External_Note *xnp;
8102 size_t namesz;
8103 size_t pad;
8104 size_t newspace;
8105 char *p, *dest;
8106
8107 namesz = 0;
8108 pad = 0;
8109 if (name != NULL)
8110 {
8111 const struct elf_backend_data *bed;
8112
8113 namesz = strlen (name) + 1;
8114 bed = get_elf_backend_data (abfd);
8115 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
8116 }
8117
8118 newspace = 12 + namesz + pad + size;
8119
8120 p = realloc (buf, *bufsiz + newspace);
8121 dest = p + *bufsiz;
8122 *bufsiz += newspace;
8123 xnp = (Elf_External_Note *) dest;
8124 H_PUT_32 (abfd, namesz, xnp->namesz);
8125 H_PUT_32 (abfd, size, xnp->descsz);
8126 H_PUT_32 (abfd, type, xnp->type);
8127 dest = xnp->name;
8128 if (name != NULL)
8129 {
8130 memcpy (dest, name, namesz);
8131 dest += namesz;
8132 while (pad != 0)
8133 {
8134 *dest++ = '\0';
8135 --pad;
8136 }
8137 }
8138 memcpy (dest, input, size);
8139 return p;
8140}
8141
8142#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8143char *
8144elfcore_write_prpsinfo (bfd *abfd,
8145 char *buf,
8146 int *bufsiz,
8147 const char *fname,
8148 const char *psargs)
8149{
8150 int note_type;
8151 char *note_name = "CORE";
8152
8153#if defined (HAVE_PSINFO_T)
8154 psinfo_t data;
8155 note_type = NT_PSINFO;
8156#else
8157 prpsinfo_t data;
8158 note_type = NT_PRPSINFO;
8159#endif
8160
8161 memset (&data, 0, sizeof (data));
8162 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8163 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8164 return elfcore_write_note (abfd, buf, bufsiz,
8165 note_name, note_type, &data, sizeof (data));
8166}
8167#endif /* PSINFO_T or PRPSINFO_T */
8168
8169#if defined (HAVE_PRSTATUS_T)
8170char *
8171elfcore_write_prstatus (bfd *abfd,
8172 char *buf,
8173 int *bufsiz,
8174 long pid,
8175 int cursig,
8176 const void *gregs)
8177{
8178 prstatus_t prstat;
8179 char *note_name = "CORE";
8180
8181 memset (&prstat, 0, sizeof (prstat));
8182 prstat.pr_pid = pid;
8183 prstat.pr_cursig = cursig;
8184 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8185 return elfcore_write_note (abfd, buf, bufsiz,
8186 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8187}
8188#endif /* HAVE_PRSTATUS_T */
8189
8190#if defined (HAVE_LWPSTATUS_T)
8191char *
8192elfcore_write_lwpstatus (bfd *abfd,
8193 char *buf,
8194 int *bufsiz,
8195 long pid,
8196 int cursig,
8197 const void *gregs)
8198{
8199 lwpstatus_t lwpstat;
8200 char *note_name = "CORE";
8201
8202 memset (&lwpstat, 0, sizeof (lwpstat));
8203 lwpstat.pr_lwpid = pid >> 16;
8204 lwpstat.pr_cursig = cursig;
8205#if defined (HAVE_LWPSTATUS_T_PR_REG)
8206 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8207#elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8208#if !defined(gregs)
8209 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8210 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8211#else
8212 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8213 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8214#endif
8215#endif
8216 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8217 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8218}
8219#endif /* HAVE_LWPSTATUS_T */
8220
8221#if defined (HAVE_PSTATUS_T)
8222char *
8223elfcore_write_pstatus (bfd *abfd,
8224 char *buf,
8225 int *bufsiz,
8226 long pid,
8227 int cursig ATTRIBUTE_UNUSED,
8228 const void *gregs ATTRIBUTE_UNUSED)
8229{
8230 pstatus_t pstat;
8231 char *note_name = "CORE";
8232
8233 memset (&pstat, 0, sizeof (pstat));
8234 pstat.pr_pid = pid & 0xffff;
8235 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8236 NT_PSTATUS, &pstat, sizeof (pstat));
8237 return buf;
8238}
8239#endif /* HAVE_PSTATUS_T */
8240
8241char *
8242elfcore_write_prfpreg (bfd *abfd,
8243 char *buf,
8244 int *bufsiz,
8245 const void *fpregs,
8246 int size)
8247{
8248 char *note_name = "CORE";
8249 return elfcore_write_note (abfd, buf, bufsiz,
8250 note_name, NT_FPREGSET, fpregs, size);
8251}
8252
8253char *
8254elfcore_write_prxfpreg (bfd *abfd,
8255 char *buf,
8256 int *bufsiz,
8257 const void *xfpregs,
8258 int size)
8259{
8260 char *note_name = "LINUX";
8261 return elfcore_write_note (abfd, buf, bufsiz,
8262 note_name, NT_PRXFPREG, xfpregs, size);
8263}
8264
8265static bfd_boolean
8266elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8267{
8268 char *buf;
8269 char *p;
8270
8271 if (size <= 0)
8272 return TRUE;
8273
8274 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8275 return FALSE;
8276
8277 buf = bfd_malloc (size);
8278 if (buf == NULL)
8279 return FALSE;
8280
8281 if (bfd_bread (buf, size, abfd) != size)
8282 {
8283 error:
8284 free (buf);
8285 return FALSE;
8286 }
8287
8288 p = buf;
8289 while (p < buf + size)
8290 {
8291 /* FIXME: bad alignment assumption. */
8292 Elf_External_Note *xnp = (Elf_External_Note *) p;
8293 Elf_Internal_Note in;
8294
8295 in.type = H_GET_32 (abfd, xnp->type);
8296
8297 in.namesz = H_GET_32 (abfd, xnp->namesz);
8298 in.namedata = xnp->name;
8299
8300 in.descsz = H_GET_32 (abfd, xnp->descsz);
8301 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8302 in.descpos = offset + (in.descdata - buf);
8303
8304 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8305 {
8306 if (! elfcore_grok_netbsd_note (abfd, &in))
8307 goto error;
8308 }
8309 else if (CONST_STRNEQ (in.namedata, "QNX"))
8310 {
8311 if (! elfcore_grok_nto_note (abfd, &in))
8312 goto error;
8313 }
8314 else
8315 {
8316 if (! elfcore_grok_note (abfd, &in))
8317 goto error;
8318 }
8319
8320 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8321 }
8322
8323 free (buf);
8324 return TRUE;
8325}
8326\f
8327/* Providing external access to the ELF program header table. */
8328
8329/* Return an upper bound on the number of bytes required to store a
8330 copy of ABFD's program header table entries. Return -1 if an error
8331 occurs; bfd_get_error will return an appropriate code. */
8332
8333long
8334bfd_get_elf_phdr_upper_bound (bfd *abfd)
8335{
8336 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8337 {
8338 bfd_set_error (bfd_error_wrong_format);
8339 return -1;
8340 }
8341
8342 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8343}
8344
8345/* Copy ABFD's program header table entries to *PHDRS. The entries
8346 will be stored as an array of Elf_Internal_Phdr structures, as
8347 defined in include/elf/internal.h. To find out how large the
8348 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8349
8350 Return the number of program header table entries read, or -1 if an
8351 error occurs; bfd_get_error will return an appropriate code. */
8352
8353int
8354bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8355{
8356 int num_phdrs;
8357
8358 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8359 {
8360 bfd_set_error (bfd_error_wrong_format);
8361 return -1;
8362 }
8363
8364 num_phdrs = elf_elfheader (abfd)->e_phnum;
8365 memcpy (phdrs, elf_tdata (abfd)->phdr,
8366 num_phdrs * sizeof (Elf_Internal_Phdr));
8367
8368 return num_phdrs;
8369}
8370
8371void
8372_bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8373{
8374#ifdef BFD64
8375 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8376
8377 i_ehdrp = elf_elfheader (abfd);
8378 if (i_ehdrp == NULL)
8379 sprintf_vma (buf, value);
8380 else
8381 {
8382 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8383 {
8384#if BFD_HOST_64BIT_LONG
8385 sprintf (buf, "%016lx", value);
8386#else
8387 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8388 _bfd_int64_low (value));
8389#endif
8390 }
8391 else
8392 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8393 }
8394#else
8395 sprintf_vma (buf, value);
8396#endif
8397}
8398
8399void
8400_bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8401{
8402#ifdef BFD64
8403 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8404
8405 i_ehdrp = elf_elfheader (abfd);
8406 if (i_ehdrp == NULL)
8407 fprintf_vma ((FILE *) stream, value);
8408 else
8409 {
8410 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8411 {
8412#if BFD_HOST_64BIT_LONG
8413 fprintf ((FILE *) stream, "%016lx", value);
8414#else
8415 fprintf ((FILE *) stream, "%08lx%08lx",
8416 _bfd_int64_high (value), _bfd_int64_low (value));
8417#endif
8418 }
8419 else
8420 fprintf ((FILE *) stream, "%08lx",
8421 (unsigned long) (value & 0xffffffff));
8422 }
8423#else
8424 fprintf_vma ((FILE *) stream, value);
8425#endif
8426}
8427
8428enum elf_reloc_type_class
8429_bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8430{
8431 return reloc_class_normal;
8432}
8433
8434/* For RELA architectures, return the relocation value for a
8435 relocation against a local symbol. */
8436
8437bfd_vma
8438_bfd_elf_rela_local_sym (bfd *abfd,
8439 Elf_Internal_Sym *sym,
8440 asection **psec,
8441 Elf_Internal_Rela *rel)
8442{
8443 asection *sec = *psec;
8444 bfd_vma relocation;
8445
8446 relocation = (sec->output_section->vma
8447 + sec->output_offset
8448 + sym->st_value);
8449 if ((sec->flags & SEC_MERGE)
8450 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8451 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8452 {
8453 rel->r_addend =
8454 _bfd_merged_section_offset (abfd, psec,
8455 elf_section_data (sec)->sec_info,
8456 sym->st_value + rel->r_addend);
8457 if (sec != *psec)
8458 {
8459 /* If we have changed the section, and our original section is
8460 marked with SEC_EXCLUDE, it means that the original
8461 SEC_MERGE section has been completely subsumed in some
8462 other SEC_MERGE section. In this case, we need to leave
8463 some info around for --emit-relocs. */
8464 if ((sec->flags & SEC_EXCLUDE) != 0)
8465 sec->kept_section = *psec;
8466 sec = *psec;
8467 }
8468 rel->r_addend -= relocation;
8469 rel->r_addend += sec->output_section->vma + sec->output_offset;
8470 }
8471 return relocation;
8472}
8473
8474bfd_vma
8475_bfd_elf_rel_local_sym (bfd *abfd,
8476 Elf_Internal_Sym *sym,
8477 asection **psec,
8478 bfd_vma addend)
8479{
8480 asection *sec = *psec;
8481
8482 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8483 return sym->st_value + addend;
8484
8485 return _bfd_merged_section_offset (abfd, psec,
8486 elf_section_data (sec)->sec_info,
8487 sym->st_value + addend);
8488}
8489
8490bfd_vma
8491_bfd_elf_section_offset (bfd *abfd,
8492 struct bfd_link_info *info,
8493 asection *sec,
8494 bfd_vma offset)
8495{
8496 switch (sec->sec_info_type)
8497 {
8498 case ELF_INFO_TYPE_STABS:
8499 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8500 offset);
8501 case ELF_INFO_TYPE_EH_FRAME:
8502 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8503 default:
8504 return offset;
8505 }
8506}
8507\f
8508/* Create a new BFD as if by bfd_openr. Rather than opening a file,
8509 reconstruct an ELF file by reading the segments out of remote memory
8510 based on the ELF file header at EHDR_VMA and the ELF program headers it
8511 points to. If not null, *LOADBASEP is filled in with the difference
8512 between the VMAs from which the segments were read, and the VMAs the
8513 file headers (and hence BFD's idea of each section's VMA) put them at.
8514
8515 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8516 remote memory at target address VMA into the local buffer at MYADDR; it
8517 should return zero on success or an `errno' code on failure. TEMPL must
8518 be a BFD for an ELF target with the word size and byte order found in
8519 the remote memory. */
8520
8521bfd *
8522bfd_elf_bfd_from_remote_memory
8523 (bfd *templ,
8524 bfd_vma ehdr_vma,
8525 bfd_vma *loadbasep,
8526 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8527{
8528 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8529 (templ, ehdr_vma, loadbasep, target_read_memory);
8530}
8531\f
8532long
8533_bfd_elf_get_synthetic_symtab (bfd *abfd,
8534 long symcount ATTRIBUTE_UNUSED,
8535 asymbol **syms ATTRIBUTE_UNUSED,
8536 long dynsymcount,
8537 asymbol **dynsyms,
8538 asymbol **ret)
8539{
8540 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8541 asection *relplt;
8542 asymbol *s;
8543 const char *relplt_name;
8544 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8545 arelent *p;
8546 long count, i, n;
8547 size_t size;
8548 Elf_Internal_Shdr *hdr;
8549 char *names;
8550 asection *plt;
8551
8552 *ret = NULL;
8553
8554 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8555 return 0;
8556
8557 if (dynsymcount <= 0)
8558 return 0;
8559
8560 if (!bed->plt_sym_val)
8561 return 0;
8562
8563 relplt_name = bed->relplt_name;
8564 if (relplt_name == NULL)
8565 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8566 relplt = bfd_get_section_by_name (abfd, relplt_name);
8567 if (relplt == NULL)
8568 return 0;
8569
8570 hdr = &elf_section_data (relplt)->this_hdr;
8571 if (hdr->sh_link != elf_dynsymtab (abfd)
8572 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8573 return 0;
8574
8575 plt = bfd_get_section_by_name (abfd, ".plt");
8576 if (plt == NULL)
8577 return 0;
8578
8579 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8580 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8581 return -1;
8582
8583 count = relplt->size / hdr->sh_entsize;
8584 size = count * sizeof (asymbol);
8585 p = relplt->relocation;
8586 for (i = 0; i < count; i++, s++, p++)
8587 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8588
8589 s = *ret = bfd_malloc (size);
8590 if (s == NULL)
8591 return -1;
8592
8593 names = (char *) (s + count);
8594 p = relplt->relocation;
8595 n = 0;
8596 for (i = 0; i < count; i++, s++, p++)
8597 {
8598 size_t len;
8599 bfd_vma addr;
8600
8601 addr = bed->plt_sym_val (i, plt, p);
8602 if (addr == (bfd_vma) -1)
8603 continue;
8604
8605 *s = **p->sym_ptr_ptr;
8606 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8607 we are defining a symbol, ensure one of them is set. */
8608 if ((s->flags & BSF_LOCAL) == 0)
8609 s->flags |= BSF_GLOBAL;
8610 s->section = plt;
8611 s->value = addr - plt->vma;
8612 s->name = names;
8613 len = strlen ((*p->sym_ptr_ptr)->name);
8614 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8615 names += len;
8616 memcpy (names, "@plt", sizeof ("@plt"));
8617 names += sizeof ("@plt");
8618 ++n;
8619 }
8620
8621 return n;
8622}
8623
8624/* Sort symbol by binding and section. We want to put definitions
8625 sorted by section at the beginning. */
8626
8627static int
8628elf_sort_elf_symbol (const void *arg1, const void *arg2)
8629{
8630 const Elf_Internal_Sym *s1;
8631 const Elf_Internal_Sym *s2;
8632 int shndx;
8633
8634 /* Make sure that undefined symbols are at the end. */
8635 s1 = (const Elf_Internal_Sym *) arg1;
8636 if (s1->st_shndx == SHN_UNDEF)
8637 return 1;
8638 s2 = (const Elf_Internal_Sym *) arg2;
8639 if (s2->st_shndx == SHN_UNDEF)
8640 return -1;
8641
8642 /* Sorted by section index. */
8643 shndx = s1->st_shndx - s2->st_shndx;
8644 if (shndx != 0)
8645 return shndx;
8646
8647 /* Sorted by binding. */
8648 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8649}
8650
8651struct elf_symbol
8652{
8653 Elf_Internal_Sym *sym;
8654 const char *name;
8655};
8656
8657static int
8658elf_sym_name_compare (const void *arg1, const void *arg2)
8659{
8660 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8661 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8662 return strcmp (s1->name, s2->name);
8663}
8664
8665/* Check if 2 sections define the same set of local and global
8666 symbols. */
8667
8668bfd_boolean
8669bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8670{
8671 bfd *bfd1, *bfd2;
8672 const struct elf_backend_data *bed1, *bed2;
8673 Elf_Internal_Shdr *hdr1, *hdr2;
8674 bfd_size_type symcount1, symcount2;
8675 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8676 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8677 Elf_Internal_Sym *isymend;
8678 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8679 bfd_size_type count1, count2, i;
8680 int shndx1, shndx2;
8681 bfd_boolean result;
8682
8683 bfd1 = sec1->owner;
8684 bfd2 = sec2->owner;
8685
8686 /* If both are .gnu.linkonce sections, they have to have the same
8687 section name. */
8688 if (CONST_STRNEQ (sec1->name, ".gnu.linkonce")
8689 && CONST_STRNEQ (sec2->name, ".gnu.linkonce"))
8690 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8691 sec2->name + sizeof ".gnu.linkonce") == 0;
8692
8693 /* Both sections have to be in ELF. */
8694 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8695 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8696 return FALSE;
8697
8698 if (elf_section_type (sec1) != elf_section_type (sec2))
8699 return FALSE;
8700
8701 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8702 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8703 {
8704 /* If both are members of section groups, they have to have the
8705 same group name. */
8706 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8707 return FALSE;
8708 }
8709
8710 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8711 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8712 if (shndx1 == -1 || shndx2 == -1)
8713 return FALSE;
8714
8715 bed1 = get_elf_backend_data (bfd1);
8716 bed2 = get_elf_backend_data (bfd2);
8717 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8718 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8719 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8720 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8721
8722 if (symcount1 == 0 || symcount2 == 0)
8723 return FALSE;
8724
8725 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8726 NULL, NULL, NULL);
8727 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8728 NULL, NULL, NULL);
8729
8730 result = FALSE;
8731 if (isymbuf1 == NULL || isymbuf2 == NULL)
8732 goto done;
8733
8734 /* Sort symbols by binding and section. Global definitions are at
8735 the beginning. */
8736 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8737 elf_sort_elf_symbol);
8738 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8739 elf_sort_elf_symbol);
8740
8741 /* Count definitions in the section. */
8742 count1 = 0;
8743 for (isym = isymbuf1, isymend = isym + symcount1;
8744 isym < isymend; isym++)
8745 {
8746 if (isym->st_shndx == (unsigned int) shndx1)
8747 {
8748 if (count1 == 0)
8749 isymstart1 = isym;
8750 count1++;
8751 }
8752
8753 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8754 break;
8755 }
8756
8757 count2 = 0;
8758 for (isym = isymbuf2, isymend = isym + symcount2;
8759 isym < isymend; isym++)
8760 {
8761 if (isym->st_shndx == (unsigned int) shndx2)
8762 {
8763 if (count2 == 0)
8764 isymstart2 = isym;
8765 count2++;
8766 }
8767
8768 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8769 break;
8770 }
8771
8772 if (count1 == 0 || count2 == 0 || count1 != count2)
8773 goto done;
8774
8775 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8776 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8777
8778 if (symtable1 == NULL || symtable2 == NULL)
8779 goto done;
8780
8781 symp = symtable1;
8782 for (isym = isymstart1, isymend = isym + count1;
8783 isym < isymend; isym++)
8784 {
8785 symp->sym = isym;
8786 symp->name = bfd_elf_string_from_elf_section (bfd1,
8787 hdr1->sh_link,
8788 isym->st_name);
8789 symp++;
8790 }
8791
8792 symp = symtable2;
8793 for (isym = isymstart2, isymend = isym + count1;
8794 isym < isymend; isym++)
8795 {
8796 symp->sym = isym;
8797 symp->name = bfd_elf_string_from_elf_section (bfd2,
8798 hdr2->sh_link,
8799 isym->st_name);
8800 symp++;
8801 }
8802
8803 /* Sort symbol by name. */
8804 qsort (symtable1, count1, sizeof (struct elf_symbol),
8805 elf_sym_name_compare);
8806 qsort (symtable2, count1, sizeof (struct elf_symbol),
8807 elf_sym_name_compare);
8808
8809 for (i = 0; i < count1; i++)
8810 /* Two symbols must have the same binding, type and name. */
8811 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8812 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8813 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8814 goto done;
8815
8816 result = TRUE;
8817
8818done:
8819 if (symtable1)
8820 free (symtable1);
8821 if (symtable2)
8822 free (symtable2);
8823 if (isymbuf1)
8824 free (isymbuf1);
8825 if (isymbuf2)
8826 free (isymbuf2);
8827
8828 return result;
8829}
8830
8831/* It is only used by x86-64 so far. */
8832asection _bfd_elf_large_com_section
8833 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8834 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8835
8836/* Return TRUE if 2 section types are compatible. */
8837
8838bfd_boolean
8839_bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8840 bfd *bbfd, const asection *bsec)
8841{
8842 if (asec == NULL
8843 || bsec == NULL
8844 || abfd->xvec->flavour != bfd_target_elf_flavour
8845 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8846 return TRUE;
8847
8848 return elf_section_type (asec) == elf_section_type (bsec);
8849}