]>
Commit | Line | Data |
---|---|---|
1 | /* BFD back-end for HP PA-RISC ELF files. | |
2 | Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001 | |
3 | Free Software Foundation, Inc. | |
4 | ||
5 | Original code by | |
6 | Center for Software Science | |
7 | Department of Computer Science | |
8 | University of Utah | |
9 | Largely rewritten by Alan Modra <alan@linuxcare.com.au> | |
10 | ||
11 | This file is part of BFD, the Binary File Descriptor library. | |
12 | ||
13 | This program is free software; you can redistribute it and/or modify | |
14 | it under the terms of the GNU General Public License as published by | |
15 | the Free Software Foundation; either version 2 of the License, or | |
16 | (at your option) any later version. | |
17 | ||
18 | This program is distributed in the hope that it will be useful, | |
19 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
20 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
21 | GNU General Public License for more details. | |
22 | ||
23 | You should have received a copy of the GNU General Public License | |
24 | along with this program; if not, write to the Free Software | |
25 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
26 | ||
27 | #include "bfd.h" | |
28 | #include "sysdep.h" | |
29 | #include "libbfd.h" | |
30 | #include "elf-bfd.h" | |
31 | #include "elf/hppa.h" | |
32 | #include "libhppa.h" | |
33 | #include "elf32-hppa.h" | |
34 | #define ARCH_SIZE 32 | |
35 | #include "elf-hppa.h" | |
36 | #include "elf32-hppa.h" | |
37 | ||
38 | /* In order to gain some understanding of code in this file without | |
39 | knowing all the intricate details of the linker, note the | |
40 | following: | |
41 | ||
42 | Functions named elf32_hppa_* are called by external routines, other | |
43 | functions are only called locally. elf32_hppa_* functions appear | |
44 | in this file more or less in the order in which they are called | |
45 | from external routines. eg. elf32_hppa_check_relocs is called | |
46 | early in the link process, elf32_hppa_finish_dynamic_sections is | |
47 | one of the last functions. */ | |
48 | ||
49 | /* We use two hash tables to hold information for linking PA ELF objects. | |
50 | ||
51 | The first is the elf32_hppa_link_hash_table which is derived | |
52 | from the standard ELF linker hash table. We use this as a place to | |
53 | attach other hash tables and static information. | |
54 | ||
55 | The second is the stub hash table which is derived from the | |
56 | base BFD hash table. The stub hash table holds the information | |
57 | necessary to build the linker stubs during a link. | |
58 | ||
59 | There are a number of different stubs generated by the linker. | |
60 | ||
61 | Long branch stub: | |
62 | : ldil LR'X,%r1 | |
63 | : be,n RR'X(%sr4,%r1) | |
64 | ||
65 | PIC long branch stub: | |
66 | : b,l .+8,%r1 | |
67 | : addil LR'X - ($PIC_pcrel$0 - 4),%r1 | |
68 | : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1) | |
69 | ||
70 | Import stub to call shared library routine from normal object file | |
71 | (single sub-space version) | |
72 | : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point | |
73 | : ldw RR'lt_ptr+ltoff(%r1),%r21 | |
74 | : bv %r0(%r21) | |
75 | : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value. | |
76 | ||
77 | Import stub to call shared library routine from shared library | |
78 | (single sub-space version) | |
79 | : addil LR'ltoff,%r19 ; get procedure entry point | |
80 | : ldw RR'ltoff(%r1),%r21 | |
81 | : bv %r0(%r21) | |
82 | : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value. | |
83 | ||
84 | Import stub to call shared library routine from normal object file | |
85 | (multiple sub-space support) | |
86 | : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point | |
87 | : ldw RR'lt_ptr+ltoff(%r1),%r21 | |
88 | : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value. | |
89 | : ldsid (%r21),%r1 | |
90 | : mtsp %r1,%sr0 | |
91 | : be 0(%sr0,%r21) ; branch to target | |
92 | : stw %rp,-24(%sp) ; save rp | |
93 | ||
94 | Import stub to call shared library routine from shared library | |
95 | (multiple sub-space support) | |
96 | : addil LR'ltoff,%r19 ; get procedure entry point | |
97 | : ldw RR'ltoff(%r1),%r21 | |
98 | : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value. | |
99 | : ldsid (%r21),%r1 | |
100 | : mtsp %r1,%sr0 | |
101 | : be 0(%sr0,%r21) ; branch to target | |
102 | : stw %rp,-24(%sp) ; save rp | |
103 | ||
104 | Export stub to return from shared lib routine (multiple sub-space support) | |
105 | One of these is created for each exported procedure in a shared | |
106 | library (and stored in the shared lib). Shared lib routines are | |
107 | called via the first instruction in the export stub so that we can | |
108 | do an inter-space return. Not required for single sub-space. | |
109 | : bl,n X,%rp ; trap the return | |
110 | : nop | |
111 | : ldw -24(%sp),%rp ; restore the original rp | |
112 | : ldsid (%rp),%r1 | |
113 | : mtsp %r1,%sr0 | |
114 | : be,n 0(%sr0,%rp) ; inter-space return */ | |
115 | ||
116 | #define PLT_ENTRY_SIZE 8 | |
117 | #define GOT_ENTRY_SIZE 4 | |
118 | #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1" | |
119 | ||
120 | static const bfd_byte plt_stub[] = | |
121 | { | |
122 | 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */ | |
123 | 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */ | |
124 | 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */ | |
125 | #define PLT_STUB_ENTRY (3*4) | |
126 | 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */ | |
127 | 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */ | |
128 | 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */ | |
129 | 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */ | |
130 | }; | |
131 | ||
132 | /* Section name for stubs is the associated section name plus this | |
133 | string. */ | |
134 | #define STUB_SUFFIX ".stub" | |
135 | ||
136 | /* We don't need to copy certain PC- or GP-relative dynamic relocs | |
137 | into a shared object's dynamic section. All the relocs of the | |
138 | limited class we are interested in, are absolute. */ | |
139 | #ifndef RELATIVE_DYNRELOCS | |
140 | #define RELATIVE_DYNRELOCS 0 | |
141 | #define IS_ABSOLUTE_RELOC(r_type) 1 | |
142 | #endif | |
143 | ||
144 | enum elf32_hppa_stub_type { | |
145 | hppa_stub_long_branch, | |
146 | hppa_stub_long_branch_shared, | |
147 | hppa_stub_import, | |
148 | hppa_stub_import_shared, | |
149 | hppa_stub_export, | |
150 | hppa_stub_none | |
151 | }; | |
152 | ||
153 | struct elf32_hppa_stub_hash_entry { | |
154 | ||
155 | /* Base hash table entry structure. */ | |
156 | struct bfd_hash_entry root; | |
157 | ||
158 | /* The stub section. */ | |
159 | asection *stub_sec; | |
160 | ||
161 | /* Offset within stub_sec of the beginning of this stub. */ | |
162 | bfd_vma stub_offset; | |
163 | ||
164 | /* Given the symbol's value and its section we can determine its final | |
165 | value when building the stubs (so the stub knows where to jump. */ | |
166 | bfd_vma target_value; | |
167 | asection *target_section; | |
168 | ||
169 | enum elf32_hppa_stub_type stub_type; | |
170 | ||
171 | /* The symbol table entry, if any, that this was derived from. */ | |
172 | struct elf32_hppa_link_hash_entry *h; | |
173 | ||
174 | /* Where this stub is being called from, or, in the case of combined | |
175 | stub sections, the first input section in the group. */ | |
176 | asection *id_sec; | |
177 | }; | |
178 | ||
179 | struct elf32_hppa_link_hash_entry { | |
180 | ||
181 | struct elf_link_hash_entry elf; | |
182 | ||
183 | /* A pointer to the most recently used stub hash entry against this | |
184 | symbol. */ | |
185 | struct elf32_hppa_stub_hash_entry *stub_cache; | |
186 | ||
187 | /* Used to count relocations for delayed sizing of relocation | |
188 | sections. */ | |
189 | struct elf32_hppa_dyn_reloc_entry { | |
190 | ||
191 | /* Next relocation in the chain. */ | |
192 | struct elf32_hppa_dyn_reloc_entry *next; | |
193 | ||
194 | /* The input section of the reloc. */ | |
195 | asection *sec; | |
196 | ||
197 | /* Number of relocs copied in this section. */ | |
198 | bfd_size_type count; | |
199 | ||
200 | #if RELATIVE_DYNRELOCS | |
201 | /* Number of relative relocs copied for the input section. */ | |
202 | bfd_size_type relative_count; | |
203 | #endif | |
204 | } *dyn_relocs; | |
205 | ||
206 | /* Set during a static link if we detect a function is PIC. */ | |
207 | unsigned int maybe_pic_call:1; | |
208 | ||
209 | /* Set if the only reason we need a .plt entry is for a non-PIC to | |
210 | PIC function call. */ | |
211 | unsigned int pic_call:1; | |
212 | ||
213 | /* Set if this symbol is used by a plabel reloc. */ | |
214 | unsigned int plabel:1; | |
215 | }; | |
216 | ||
217 | struct elf32_hppa_link_hash_table { | |
218 | ||
219 | /* The main hash table. */ | |
220 | struct elf_link_hash_table elf; | |
221 | ||
222 | /* The stub hash table. */ | |
223 | struct bfd_hash_table stub_hash_table; | |
224 | ||
225 | /* Linker stub bfd. */ | |
226 | bfd *stub_bfd; | |
227 | ||
228 | /* Linker call-backs. */ | |
229 | asection * (*add_stub_section) PARAMS ((const char *, asection *)); | |
230 | void (*layout_sections_again) PARAMS ((void)); | |
231 | ||
232 | /* Array to keep track of which stub sections have been created, and | |
233 | information on stub grouping. */ | |
234 | struct map_stub { | |
235 | /* This is the section to which stubs in the group will be | |
236 | attached. */ | |
237 | asection *link_sec; | |
238 | /* The stub section. */ | |
239 | asection *stub_sec; | |
240 | } *stub_group; | |
241 | ||
242 | /* Short-cuts to get to dynamic linker sections. */ | |
243 | asection *sgot; | |
244 | asection *srelgot; | |
245 | asection *splt; | |
246 | asection *srelplt; | |
247 | asection *sdynbss; | |
248 | asection *srelbss; | |
249 | ||
250 | /* Used during a final link to store the base of the text and data | |
251 | segments so that we can perform SEGREL relocations. */ | |
252 | bfd_vma text_segment_base; | |
253 | bfd_vma data_segment_base; | |
254 | ||
255 | /* Whether we support multiple sub-spaces for shared libs. */ | |
256 | unsigned int multi_subspace:1; | |
257 | ||
258 | /* Flags set when PCREL12F and PCREL17F branches detected. Used to | |
259 | select suitable defaults for the stub group size. */ | |
260 | unsigned int has_12bit_branch:1; | |
261 | unsigned int has_17bit_branch:1; | |
262 | ||
263 | /* Set if we need a .plt stub to support lazy dynamic linking. */ | |
264 | unsigned int need_plt_stub:1; | |
265 | ||
266 | /* Small local sym to section mapping cache. */ | |
267 | struct sym_sec_cache sym_sec; | |
268 | }; | |
269 | ||
270 | /* Various hash macros and functions. */ | |
271 | #define hppa_link_hash_table(p) \ | |
272 | ((struct elf32_hppa_link_hash_table *) ((p)->hash)) | |
273 | ||
274 | #define hppa_stub_hash_lookup(table, string, create, copy) \ | |
275 | ((struct elf32_hppa_stub_hash_entry *) \ | |
276 | bfd_hash_lookup ((table), (string), (create), (copy))) | |
277 | ||
278 | static struct bfd_hash_entry *stub_hash_newfunc | |
279 | PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); | |
280 | ||
281 | static struct bfd_hash_entry *hppa_link_hash_newfunc | |
282 | PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); | |
283 | ||
284 | static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create | |
285 | PARAMS ((bfd *)); | |
286 | ||
287 | /* Stub handling functions. */ | |
288 | static char *hppa_stub_name | |
289 | PARAMS ((const asection *, const asection *, | |
290 | const struct elf32_hppa_link_hash_entry *, | |
291 | const Elf_Internal_Rela *)); | |
292 | ||
293 | static struct elf32_hppa_stub_hash_entry *hppa_get_stub_entry | |
294 | PARAMS ((const asection *, const asection *, | |
295 | struct elf32_hppa_link_hash_entry *, | |
296 | const Elf_Internal_Rela *, | |
297 | struct elf32_hppa_link_hash_table *)); | |
298 | ||
299 | static struct elf32_hppa_stub_hash_entry *hppa_add_stub | |
300 | PARAMS ((const char *, asection *, struct elf32_hppa_link_hash_table *)); | |
301 | ||
302 | static enum elf32_hppa_stub_type hppa_type_of_stub | |
303 | PARAMS ((asection *, const Elf_Internal_Rela *, | |
304 | struct elf32_hppa_link_hash_entry *, bfd_vma)); | |
305 | ||
306 | static boolean hppa_build_one_stub | |
307 | PARAMS ((struct bfd_hash_entry *, PTR)); | |
308 | ||
309 | static boolean hppa_size_one_stub | |
310 | PARAMS ((struct bfd_hash_entry *, PTR)); | |
311 | ||
312 | /* BFD and elf backend functions. */ | |
313 | static boolean elf32_hppa_object_p PARAMS ((bfd *)); | |
314 | ||
315 | static boolean elf32_hppa_add_symbol_hook | |
316 | PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *, | |
317 | const char **, flagword *, asection **, bfd_vma *)); | |
318 | ||
319 | static boolean elf32_hppa_create_dynamic_sections | |
320 | PARAMS ((bfd *, struct bfd_link_info *)); | |
321 | ||
322 | static void elf32_hppa_copy_indirect_symbol | |
323 | PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *)); | |
324 | ||
325 | static boolean elf32_hppa_check_relocs | |
326 | PARAMS ((bfd *, struct bfd_link_info *, | |
327 | asection *, const Elf_Internal_Rela *)); | |
328 | ||
329 | static asection *elf32_hppa_gc_mark_hook | |
330 | PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *, | |
331 | struct elf_link_hash_entry *, Elf_Internal_Sym *)); | |
332 | ||
333 | static boolean elf32_hppa_gc_sweep_hook | |
334 | PARAMS ((bfd *, struct bfd_link_info *, | |
335 | asection *, const Elf_Internal_Rela *)); | |
336 | ||
337 | static void elf32_hppa_hide_symbol | |
338 | PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); | |
339 | ||
340 | static boolean elf32_hppa_adjust_dynamic_symbol | |
341 | PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *)); | |
342 | ||
343 | static boolean mark_PIC_calls | |
344 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
345 | ||
346 | static boolean allocate_plt_static | |
347 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
348 | ||
349 | static boolean allocate_dynrelocs | |
350 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
351 | ||
352 | static boolean readonly_dynrelocs | |
353 | PARAMS ((struct elf_link_hash_entry *, PTR)); | |
354 | ||
355 | static boolean clobber_millicode_symbols | |
356 | PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *)); | |
357 | ||
358 | static boolean elf32_hppa_size_dynamic_sections | |
359 | PARAMS ((bfd *, struct bfd_link_info *)); | |
360 | ||
361 | static boolean elf32_hppa_final_link | |
362 | PARAMS ((bfd *, struct bfd_link_info *)); | |
363 | ||
364 | static void hppa_record_segment_addr | |
365 | PARAMS ((bfd *, asection *, PTR)); | |
366 | ||
367 | static bfd_reloc_status_type final_link_relocate | |
368 | PARAMS ((asection *, bfd_byte *, const Elf_Internal_Rela *, | |
369 | bfd_vma, struct elf32_hppa_link_hash_table *, asection *, | |
370 | struct elf32_hppa_link_hash_entry *)); | |
371 | ||
372 | static boolean elf32_hppa_relocate_section | |
373 | PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, | |
374 | bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **)); | |
375 | ||
376 | static int hppa_unwind_entry_compare | |
377 | PARAMS ((const PTR, const PTR)); | |
378 | ||
379 | static boolean elf32_hppa_finish_dynamic_symbol | |
380 | PARAMS ((bfd *, struct bfd_link_info *, | |
381 | struct elf_link_hash_entry *, Elf_Internal_Sym *)); | |
382 | ||
383 | static enum elf_reloc_type_class elf32_hppa_reloc_type_class | |
384 | PARAMS ((const Elf_Internal_Rela *)); | |
385 | ||
386 | static boolean elf32_hppa_finish_dynamic_sections | |
387 | PARAMS ((bfd *, struct bfd_link_info *)); | |
388 | ||
389 | static void elf32_hppa_post_process_headers | |
390 | PARAMS ((bfd *, struct bfd_link_info *)); | |
391 | ||
392 | static int elf32_hppa_elf_get_symbol_type | |
393 | PARAMS ((Elf_Internal_Sym *, int)); | |
394 | ||
395 | /* Assorted hash table functions. */ | |
396 | ||
397 | /* Initialize an entry in the stub hash table. */ | |
398 | ||
399 | static struct bfd_hash_entry * | |
400 | stub_hash_newfunc (entry, table, string) | |
401 | struct bfd_hash_entry *entry; | |
402 | struct bfd_hash_table *table; | |
403 | const char *string; | |
404 | { | |
405 | /* Allocate the structure if it has not already been allocated by a | |
406 | subclass. */ | |
407 | if (entry == NULL) | |
408 | { | |
409 | entry = bfd_hash_allocate (table, | |
410 | sizeof (struct elf32_hppa_stub_hash_entry)); | |
411 | if (entry == NULL) | |
412 | return entry; | |
413 | } | |
414 | ||
415 | /* Call the allocation method of the superclass. */ | |
416 | entry = bfd_hash_newfunc (entry, table, string); | |
417 | if (entry != NULL) | |
418 | { | |
419 | struct elf32_hppa_stub_hash_entry *eh; | |
420 | ||
421 | /* Initialize the local fields. */ | |
422 | eh = (struct elf32_hppa_stub_hash_entry *) entry; | |
423 | eh->stub_sec = NULL; | |
424 | eh->stub_offset = 0; | |
425 | eh->target_value = 0; | |
426 | eh->target_section = NULL; | |
427 | eh->stub_type = hppa_stub_long_branch; | |
428 | eh->h = NULL; | |
429 | eh->id_sec = NULL; | |
430 | } | |
431 | ||
432 | return entry; | |
433 | } | |
434 | ||
435 | /* Initialize an entry in the link hash table. */ | |
436 | ||
437 | static struct bfd_hash_entry * | |
438 | hppa_link_hash_newfunc (entry, table, string) | |
439 | struct bfd_hash_entry *entry; | |
440 | struct bfd_hash_table *table; | |
441 | const char *string; | |
442 | { | |
443 | /* Allocate the structure if it has not already been allocated by a | |
444 | subclass. */ | |
445 | if (entry == NULL) | |
446 | { | |
447 | entry = bfd_hash_allocate (table, | |
448 | sizeof (struct elf32_hppa_link_hash_entry)); | |
449 | if (entry == NULL) | |
450 | return entry; | |
451 | } | |
452 | ||
453 | /* Call the allocation method of the superclass. */ | |
454 | entry = _bfd_elf_link_hash_newfunc (entry, table, string); | |
455 | if (entry != NULL) | |
456 | { | |
457 | struct elf32_hppa_link_hash_entry *eh; | |
458 | ||
459 | /* Initialize the local fields. */ | |
460 | eh = (struct elf32_hppa_link_hash_entry *) entry; | |
461 | eh->stub_cache = NULL; | |
462 | eh->dyn_relocs = NULL; | |
463 | eh->maybe_pic_call = 0; | |
464 | eh->pic_call = 0; | |
465 | eh->plabel = 0; | |
466 | } | |
467 | ||
468 | return entry; | |
469 | } | |
470 | ||
471 | /* Create the derived linker hash table. The PA ELF port uses the derived | |
472 | hash table to keep information specific to the PA ELF linker (without | |
473 | using static variables). */ | |
474 | ||
475 | static struct bfd_link_hash_table * | |
476 | elf32_hppa_link_hash_table_create (abfd) | |
477 | bfd *abfd; | |
478 | { | |
479 | struct elf32_hppa_link_hash_table *ret; | |
480 | bfd_size_type amt = sizeof (*ret); | |
481 | ||
482 | ret = (struct elf32_hppa_link_hash_table *) bfd_alloc (abfd, amt); | |
483 | if (ret == NULL) | |
484 | return NULL; | |
485 | ||
486 | if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, hppa_link_hash_newfunc)) | |
487 | { | |
488 | bfd_release (abfd, ret); | |
489 | return NULL; | |
490 | } | |
491 | ||
492 | /* Init the stub hash table too. */ | |
493 | if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc)) | |
494 | return NULL; | |
495 | ||
496 | ret->stub_bfd = NULL; | |
497 | ret->add_stub_section = NULL; | |
498 | ret->layout_sections_again = NULL; | |
499 | ret->stub_group = NULL; | |
500 | ret->sgot = NULL; | |
501 | ret->srelgot = NULL; | |
502 | ret->splt = NULL; | |
503 | ret->srelplt = NULL; | |
504 | ret->sdynbss = NULL; | |
505 | ret->srelbss = NULL; | |
506 | ret->text_segment_base = (bfd_vma) -1; | |
507 | ret->data_segment_base = (bfd_vma) -1; | |
508 | ret->multi_subspace = 0; | |
509 | ret->has_12bit_branch = 0; | |
510 | ret->has_17bit_branch = 0; | |
511 | ret->need_plt_stub = 0; | |
512 | ret->sym_sec.abfd = NULL; | |
513 | ||
514 | return &ret->elf.root; | |
515 | } | |
516 | ||
517 | /* Build a name for an entry in the stub hash table. */ | |
518 | ||
519 | static char * | |
520 | hppa_stub_name (input_section, sym_sec, hash, rel) | |
521 | const asection *input_section; | |
522 | const asection *sym_sec; | |
523 | const struct elf32_hppa_link_hash_entry *hash; | |
524 | const Elf_Internal_Rela *rel; | |
525 | { | |
526 | char *stub_name; | |
527 | bfd_size_type len; | |
528 | ||
529 | if (hash) | |
530 | { | |
531 | len = 8 + 1 + strlen (hash->elf.root.root.string) + 1 + 8 + 1; | |
532 | stub_name = bfd_malloc (len); | |
533 | if (stub_name != NULL) | |
534 | { | |
535 | sprintf (stub_name, "%08x_%s+%x", | |
536 | input_section->id & 0xffffffff, | |
537 | hash->elf.root.root.string, | |
538 | (int) rel->r_addend & 0xffffffff); | |
539 | } | |
540 | } | |
541 | else | |
542 | { | |
543 | len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1; | |
544 | stub_name = bfd_malloc (len); | |
545 | if (stub_name != NULL) | |
546 | { | |
547 | sprintf (stub_name, "%08x_%x:%x+%x", | |
548 | input_section->id & 0xffffffff, | |
549 | sym_sec->id & 0xffffffff, | |
550 | (int) ELF32_R_SYM (rel->r_info) & 0xffffffff, | |
551 | (int) rel->r_addend & 0xffffffff); | |
552 | } | |
553 | } | |
554 | return stub_name; | |
555 | } | |
556 | ||
557 | /* Look up an entry in the stub hash. Stub entries are cached because | |
558 | creating the stub name takes a bit of time. */ | |
559 | ||
560 | static struct elf32_hppa_stub_hash_entry * | |
561 | hppa_get_stub_entry (input_section, sym_sec, hash, rel, htab) | |
562 | const asection *input_section; | |
563 | const asection *sym_sec; | |
564 | struct elf32_hppa_link_hash_entry *hash; | |
565 | const Elf_Internal_Rela *rel; | |
566 | struct elf32_hppa_link_hash_table *htab; | |
567 | { | |
568 | struct elf32_hppa_stub_hash_entry *stub_entry; | |
569 | const asection *id_sec; | |
570 | ||
571 | /* If this input section is part of a group of sections sharing one | |
572 | stub section, then use the id of the first section in the group. | |
573 | Stub names need to include a section id, as there may well be | |
574 | more than one stub used to reach say, printf, and we need to | |
575 | distinguish between them. */ | |
576 | id_sec = htab->stub_group[input_section->id].link_sec; | |
577 | ||
578 | if (hash != NULL && hash->stub_cache != NULL | |
579 | && hash->stub_cache->h == hash | |
580 | && hash->stub_cache->id_sec == id_sec) | |
581 | { | |
582 | stub_entry = hash->stub_cache; | |
583 | } | |
584 | else | |
585 | { | |
586 | char *stub_name; | |
587 | ||
588 | stub_name = hppa_stub_name (id_sec, sym_sec, hash, rel); | |
589 | if (stub_name == NULL) | |
590 | return NULL; | |
591 | ||
592 | stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, | |
593 | stub_name, false, false); | |
594 | if (hash != NULL) | |
595 | hash->stub_cache = stub_entry; | |
596 | ||
597 | free (stub_name); | |
598 | } | |
599 | ||
600 | return stub_entry; | |
601 | } | |
602 | ||
603 | /* Add a new stub entry to the stub hash. Not all fields of the new | |
604 | stub entry are initialised. */ | |
605 | ||
606 | static struct elf32_hppa_stub_hash_entry * | |
607 | hppa_add_stub (stub_name, section, htab) | |
608 | const char *stub_name; | |
609 | asection *section; | |
610 | struct elf32_hppa_link_hash_table *htab; | |
611 | { | |
612 | asection *link_sec; | |
613 | asection *stub_sec; | |
614 | struct elf32_hppa_stub_hash_entry *stub_entry; | |
615 | ||
616 | link_sec = htab->stub_group[section->id].link_sec; | |
617 | stub_sec = htab->stub_group[section->id].stub_sec; | |
618 | if (stub_sec == NULL) | |
619 | { | |
620 | stub_sec = htab->stub_group[link_sec->id].stub_sec; | |
621 | if (stub_sec == NULL) | |
622 | { | |
623 | bfd_size_type len; | |
624 | char *s_name; | |
625 | ||
626 | len = strlen (link_sec->name) + sizeof (STUB_SUFFIX); | |
627 | s_name = bfd_alloc (htab->stub_bfd, len); | |
628 | if (s_name == NULL) | |
629 | return NULL; | |
630 | ||
631 | strcpy (s_name, link_sec->name); | |
632 | strcpy (s_name + len - sizeof (STUB_SUFFIX), STUB_SUFFIX); | |
633 | stub_sec = (*htab->add_stub_section) (s_name, link_sec); | |
634 | if (stub_sec == NULL) | |
635 | return NULL; | |
636 | htab->stub_group[link_sec->id].stub_sec = stub_sec; | |
637 | } | |
638 | htab->stub_group[section->id].stub_sec = stub_sec; | |
639 | } | |
640 | ||
641 | /* Enter this entry into the linker stub hash table. */ | |
642 | stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, stub_name, | |
643 | true, false); | |
644 | if (stub_entry == NULL) | |
645 | { | |
646 | (*_bfd_error_handler) (_("%s: cannot create stub entry %s"), | |
647 | bfd_archive_filename (section->owner), | |
648 | stub_name); | |
649 | return NULL; | |
650 | } | |
651 | ||
652 | stub_entry->stub_sec = stub_sec; | |
653 | stub_entry->stub_offset = 0; | |
654 | stub_entry->id_sec = link_sec; | |
655 | return stub_entry; | |
656 | } | |
657 | ||
658 | /* Determine the type of stub needed, if any, for a call. */ | |
659 | ||
660 | static enum elf32_hppa_stub_type | |
661 | hppa_type_of_stub (input_sec, rel, hash, destination) | |
662 | asection *input_sec; | |
663 | const Elf_Internal_Rela *rel; | |
664 | struct elf32_hppa_link_hash_entry *hash; | |
665 | bfd_vma destination; | |
666 | { | |
667 | bfd_vma location; | |
668 | bfd_vma branch_offset; | |
669 | bfd_vma max_branch_offset; | |
670 | unsigned int r_type; | |
671 | ||
672 | if (hash != NULL | |
673 | && (((hash->elf.root.type == bfd_link_hash_defined | |
674 | || hash->elf.root.type == bfd_link_hash_defweak) | |
675 | && hash->elf.root.u.def.section->output_section == NULL) | |
676 | || (hash->elf.root.type == bfd_link_hash_defweak | |
677 | && hash->elf.dynindx != -1 | |
678 | && hash->elf.plt.offset != (bfd_vma) -1) | |
679 | || hash->elf.root.type == bfd_link_hash_undefweak | |
680 | || hash->elf.root.type == bfd_link_hash_undefined | |
681 | || (hash->maybe_pic_call && !(input_sec->flags & SEC_HAS_GOT_REF)))) | |
682 | { | |
683 | /* If output_section is NULL, then it's a symbol defined in a | |
684 | shared library. We will need an import stub. Decide between | |
685 | hppa_stub_import and hppa_stub_import_shared later. For | |
686 | shared links we need stubs for undefined or weak syms too; | |
687 | They will presumably be resolved by the dynamic linker. */ | |
688 | return hppa_stub_import; | |
689 | } | |
690 | ||
691 | /* Determine where the call point is. */ | |
692 | location = (input_sec->output_offset | |
693 | + input_sec->output_section->vma | |
694 | + rel->r_offset); | |
695 | ||
696 | branch_offset = destination - location - 8; | |
697 | r_type = ELF32_R_TYPE (rel->r_info); | |
698 | ||
699 | /* Determine if a long branch stub is needed. parisc branch offsets | |
700 | are relative to the second instruction past the branch, ie. +8 | |
701 | bytes on from the branch instruction location. The offset is | |
702 | signed and counts in units of 4 bytes. */ | |
703 | if (r_type == (unsigned int) R_PARISC_PCREL17F) | |
704 | { | |
705 | max_branch_offset = (1 << (17-1)) << 2; | |
706 | } | |
707 | else if (r_type == (unsigned int) R_PARISC_PCREL12F) | |
708 | { | |
709 | max_branch_offset = (1 << (12-1)) << 2; | |
710 | } | |
711 | else /* R_PARISC_PCREL22F. */ | |
712 | { | |
713 | max_branch_offset = (1 << (22-1)) << 2; | |
714 | } | |
715 | ||
716 | if (branch_offset + max_branch_offset >= 2*max_branch_offset) | |
717 | return hppa_stub_long_branch; | |
718 | ||
719 | return hppa_stub_none; | |
720 | } | |
721 | ||
722 | /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY. | |
723 | IN_ARG contains the link info pointer. */ | |
724 | ||
725 | #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */ | |
726 | #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */ | |
727 | ||
728 | #define BL_R1 0xe8200000 /* b,l .+8,%r1 */ | |
729 | #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */ | |
730 | #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */ | |
731 | ||
732 | #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */ | |
733 | #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */ | |
734 | #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */ | |
735 | #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */ | |
736 | ||
737 | #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */ | |
738 | #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */ | |
739 | ||
740 | #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */ | |
741 | #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */ | |
742 | #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */ | |
743 | #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */ | |
744 | ||
745 | #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */ | |
746 | #define NOP 0x08000240 /* nop */ | |
747 | #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */ | |
748 | #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */ | |
749 | #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */ | |
750 | ||
751 | #ifndef R19_STUBS | |
752 | #define R19_STUBS 1 | |
753 | #endif | |
754 | ||
755 | #if R19_STUBS | |
756 | #define LDW_R1_DLT LDW_R1_R19 | |
757 | #else | |
758 | #define LDW_R1_DLT LDW_R1_DP | |
759 | #endif | |
760 | ||
761 | static boolean | |
762 | hppa_build_one_stub (gen_entry, in_arg) | |
763 | struct bfd_hash_entry *gen_entry; | |
764 | PTR in_arg; | |
765 | { | |
766 | struct elf32_hppa_stub_hash_entry *stub_entry; | |
767 | struct bfd_link_info *info; | |
768 | struct elf32_hppa_link_hash_table *htab; | |
769 | asection *stub_sec; | |
770 | bfd *stub_bfd; | |
771 | bfd_byte *loc; | |
772 | bfd_vma sym_value; | |
773 | bfd_vma insn; | |
774 | bfd_vma off; | |
775 | int val; | |
776 | int size; | |
777 | ||
778 | /* Massage our args to the form they really have. */ | |
779 | stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry; | |
780 | info = (struct bfd_link_info *) in_arg; | |
781 | ||
782 | htab = hppa_link_hash_table (info); | |
783 | stub_sec = stub_entry->stub_sec; | |
784 | ||
785 | /* Make a note of the offset within the stubs for this entry. */ | |
786 | stub_entry->stub_offset = stub_sec->_raw_size; | |
787 | loc = stub_sec->contents + stub_entry->stub_offset; | |
788 | ||
789 | stub_bfd = stub_sec->owner; | |
790 | ||
791 | switch (stub_entry->stub_type) | |
792 | { | |
793 | case hppa_stub_long_branch: | |
794 | /* Create the long branch. A long branch is formed with "ldil" | |
795 | loading the upper bits of the target address into a register, | |
796 | then branching with "be" which adds in the lower bits. | |
797 | The "be" has its delay slot nullified. */ | |
798 | sym_value = (stub_entry->target_value | |
799 | + stub_entry->target_section->output_offset | |
800 | + stub_entry->target_section->output_section->vma); | |
801 | ||
802 | val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel); | |
803 | insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21); | |
804 | bfd_put_32 (stub_bfd, insn, loc); | |
805 | ||
806 | val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel) >> 2; | |
807 | insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17); | |
808 | bfd_put_32 (stub_bfd, insn, loc + 4); | |
809 | ||
810 | size = 8; | |
811 | break; | |
812 | ||
813 | case hppa_stub_long_branch_shared: | |
814 | /* Branches are relative. This is where we are going to. */ | |
815 | sym_value = (stub_entry->target_value | |
816 | + stub_entry->target_section->output_offset | |
817 | + stub_entry->target_section->output_section->vma); | |
818 | ||
819 | /* And this is where we are coming from, more or less. */ | |
820 | sym_value -= (stub_entry->stub_offset | |
821 | + stub_sec->output_offset | |
822 | + stub_sec->output_section->vma); | |
823 | ||
824 | bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc); | |
825 | val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel); | |
826 | insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21); | |
827 | bfd_put_32 (stub_bfd, insn, loc + 4); | |
828 | ||
829 | val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2; | |
830 | insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17); | |
831 | bfd_put_32 (stub_bfd, insn, loc + 8); | |
832 | size = 12; | |
833 | break; | |
834 | ||
835 | case hppa_stub_import: | |
836 | case hppa_stub_import_shared: | |
837 | off = stub_entry->h->elf.plt.offset; | |
838 | if (off >= (bfd_vma) -2) | |
839 | abort (); | |
840 | ||
841 | off &= ~ (bfd_vma) 1; | |
842 | sym_value = (off | |
843 | + htab->splt->output_offset | |
844 | + htab->splt->output_section->vma | |
845 | - elf_gp (htab->splt->output_section->owner)); | |
846 | ||
847 | insn = ADDIL_DP; | |
848 | #if R19_STUBS | |
849 | if (stub_entry->stub_type == hppa_stub_import_shared) | |
850 | insn = ADDIL_R19; | |
851 | #endif | |
852 | val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_lrsel), | |
853 | insn = hppa_rebuild_insn ((int) insn, val, 21); | |
854 | bfd_put_32 (stub_bfd, insn, loc); | |
855 | ||
856 | /* It is critical to use lrsel/rrsel here because we are using | |
857 | two different offsets (+0 and +4) from sym_value. If we use | |
858 | lsel/rsel then with unfortunate sym_values we will round | |
859 | sym_value+4 up to the next 2k block leading to a mis-match | |
860 | between the lsel and rsel value. */ | |
861 | val = hppa_field_adjust (sym_value, (bfd_signed_vma) 0, e_rrsel); | |
862 | insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14); | |
863 | bfd_put_32 (stub_bfd, insn, loc + 4); | |
864 | ||
865 | if (htab->multi_subspace) | |
866 | { | |
867 | val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel); | |
868 | insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14); | |
869 | bfd_put_32 (stub_bfd, insn, loc + 8); | |
870 | ||
871 | bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12); | |
872 | bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16); | |
873 | bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20); | |
874 | bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24); | |
875 | ||
876 | size = 28; | |
877 | } | |
878 | else | |
879 | { | |
880 | bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8); | |
881 | val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel); | |
882 | insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14); | |
883 | bfd_put_32 (stub_bfd, insn, loc + 12); | |
884 | ||
885 | size = 16; | |
886 | } | |
887 | ||
888 | if (!info->shared | |
889 | && stub_entry->h != NULL | |
890 | && stub_entry->h->pic_call) | |
891 | { | |
892 | /* Build the .plt entry needed to call a PIC function from | |
893 | statically linked code. We don't need any relocs. */ | |
894 | bfd *dynobj; | |
895 | struct elf32_hppa_link_hash_entry *eh; | |
896 | bfd_vma value; | |
897 | ||
898 | dynobj = htab->elf.dynobj; | |
899 | eh = (struct elf32_hppa_link_hash_entry *) stub_entry->h; | |
900 | ||
901 | if (eh->elf.root.type != bfd_link_hash_defined | |
902 | && eh->elf.root.type != bfd_link_hash_defweak) | |
903 | abort (); | |
904 | ||
905 | value = (eh->elf.root.u.def.value | |
906 | + eh->elf.root.u.def.section->output_offset | |
907 | + eh->elf.root.u.def.section->output_section->vma); | |
908 | ||
909 | /* Fill in the entry in the procedure linkage table. | |
910 | ||
911 | The format of a plt entry is | |
912 | <funcaddr> | |
913 | <__gp>. */ | |
914 | ||
915 | bfd_put_32 (htab->splt->owner, value, | |
916 | htab->splt->contents + off); | |
917 | value = elf_gp (htab->splt->output_section->owner); | |
918 | bfd_put_32 (htab->splt->owner, value, | |
919 | htab->splt->contents + off + 4); | |
920 | } | |
921 | break; | |
922 | ||
923 | case hppa_stub_export: | |
924 | /* Branches are relative. This is where we are going to. */ | |
925 | sym_value = (stub_entry->target_value | |
926 | + stub_entry->target_section->output_offset | |
927 | + stub_entry->target_section->output_section->vma); | |
928 | ||
929 | /* And this is where we are coming from. */ | |
930 | sym_value -= (stub_entry->stub_offset | |
931 | + stub_sec->output_offset | |
932 | + stub_sec->output_section->vma); | |
933 | ||
934 | if (sym_value - 8 + 0x40000 >= 0x80000) | |
935 | { | |
936 | (*_bfd_error_handler) | |
937 | (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"), | |
938 | bfd_archive_filename (stub_entry->target_section->owner), | |
939 | stub_sec->name, | |
940 | (long) stub_entry->stub_offset, | |
941 | stub_entry->root.string); | |
942 | bfd_set_error (bfd_error_bad_value); | |
943 | return false; | |
944 | } | |
945 | ||
946 | val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2; | |
947 | insn = hppa_rebuild_insn ((int) BL_RP, val, 17); | |
948 | bfd_put_32 (stub_bfd, insn, loc); | |
949 | ||
950 | bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4); | |
951 | bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8); | |
952 | bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12); | |
953 | bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16); | |
954 | bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20); | |
955 | ||
956 | /* Point the function symbol at the stub. */ | |
957 | stub_entry->h->elf.root.u.def.section = stub_sec; | |
958 | stub_entry->h->elf.root.u.def.value = stub_sec->_raw_size; | |
959 | ||
960 | size = 24; | |
961 | break; | |
962 | ||
963 | default: | |
964 | BFD_FAIL (); | |
965 | return false; | |
966 | } | |
967 | ||
968 | stub_sec->_raw_size += size; | |
969 | return true; | |
970 | } | |
971 | ||
972 | #undef LDIL_R1 | |
973 | #undef BE_SR4_R1 | |
974 | #undef BL_R1 | |
975 | #undef ADDIL_R1 | |
976 | #undef DEPI_R1 | |
977 | #undef ADDIL_DP | |
978 | #undef LDW_R1_R21 | |
979 | #undef LDW_R1_DLT | |
980 | #undef LDW_R1_R19 | |
981 | #undef ADDIL_R19 | |
982 | #undef LDW_R1_DP | |
983 | #undef LDSID_R21_R1 | |
984 | #undef MTSP_R1 | |
985 | #undef BE_SR0_R21 | |
986 | #undef STW_RP | |
987 | #undef BV_R0_R21 | |
988 | #undef BL_RP | |
989 | #undef NOP | |
990 | #undef LDW_RP | |
991 | #undef LDSID_RP_R1 | |
992 | #undef BE_SR0_RP | |
993 | ||
994 | /* As above, but don't actually build the stub. Just bump offset so | |
995 | we know stub section sizes. */ | |
996 | ||
997 | static boolean | |
998 | hppa_size_one_stub (gen_entry, in_arg) | |
999 | struct bfd_hash_entry *gen_entry; | |
1000 | PTR in_arg; | |
1001 | { | |
1002 | struct elf32_hppa_stub_hash_entry *stub_entry; | |
1003 | struct elf32_hppa_link_hash_table *htab; | |
1004 | int size; | |
1005 | ||
1006 | /* Massage our args to the form they really have. */ | |
1007 | stub_entry = (struct elf32_hppa_stub_hash_entry *) gen_entry; | |
1008 | htab = (struct elf32_hppa_link_hash_table *) in_arg; | |
1009 | ||
1010 | if (stub_entry->stub_type == hppa_stub_long_branch) | |
1011 | size = 8; | |
1012 | else if (stub_entry->stub_type == hppa_stub_long_branch_shared) | |
1013 | size = 12; | |
1014 | else if (stub_entry->stub_type == hppa_stub_export) | |
1015 | size = 24; | |
1016 | else /* hppa_stub_import or hppa_stub_import_shared. */ | |
1017 | { | |
1018 | if (htab->multi_subspace) | |
1019 | size = 28; | |
1020 | else | |
1021 | size = 16; | |
1022 | } | |
1023 | ||
1024 | stub_entry->stub_sec->_raw_size += size; | |
1025 | return true; | |
1026 | } | |
1027 | ||
1028 | /* Return nonzero if ABFD represents an HPPA ELF32 file. | |
1029 | Additionally we set the default architecture and machine. */ | |
1030 | ||
1031 | static boolean | |
1032 | elf32_hppa_object_p (abfd) | |
1033 | bfd *abfd; | |
1034 | { | |
1035 | Elf_Internal_Ehdr * i_ehdrp; | |
1036 | unsigned int flags; | |
1037 | ||
1038 | i_ehdrp = elf_elfheader (abfd); | |
1039 | if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0) | |
1040 | { | |
1041 | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX) | |
1042 | return false; | |
1043 | } | |
1044 | else | |
1045 | { | |
1046 | if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX) | |
1047 | return false; | |
1048 | } | |
1049 | ||
1050 | flags = i_ehdrp->e_flags; | |
1051 | switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE)) | |
1052 | { | |
1053 | case EFA_PARISC_1_0: | |
1054 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10); | |
1055 | case EFA_PARISC_1_1: | |
1056 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11); | |
1057 | case EFA_PARISC_2_0: | |
1058 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20); | |
1059 | case EFA_PARISC_2_0 | EF_PARISC_WIDE: | |
1060 | return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); | |
1061 | } | |
1062 | return true; | |
1063 | } | |
1064 | ||
1065 | /* Undo the generic ELF code's subtraction of section->vma from the | |
1066 | value of each external symbol. */ | |
1067 | ||
1068 | static boolean | |
1069 | elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp) | |
1070 | bfd *abfd ATTRIBUTE_UNUSED; | |
1071 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
1072 | const Elf_Internal_Sym *sym ATTRIBUTE_UNUSED; | |
1073 | const char **namep ATTRIBUTE_UNUSED; | |
1074 | flagword *flagsp ATTRIBUTE_UNUSED; | |
1075 | asection **secp; | |
1076 | bfd_vma *valp; | |
1077 | { | |
1078 | *valp += (*secp)->vma; | |
1079 | return true; | |
1080 | } | |
1081 | ||
1082 | /* Create the .plt and .got sections, and set up our hash table | |
1083 | short-cuts to various dynamic sections. */ | |
1084 | ||
1085 | static boolean | |
1086 | elf32_hppa_create_dynamic_sections (abfd, info) | |
1087 | bfd *abfd; | |
1088 | struct bfd_link_info *info; | |
1089 | { | |
1090 | struct elf32_hppa_link_hash_table *htab; | |
1091 | ||
1092 | /* Don't try to create the .plt and .got twice. */ | |
1093 | htab = hppa_link_hash_table (info); | |
1094 | if (htab->splt != NULL) | |
1095 | return true; | |
1096 | ||
1097 | /* Call the generic code to do most of the work. */ | |
1098 | if (! _bfd_elf_create_dynamic_sections (abfd, info)) | |
1099 | return false; | |
1100 | ||
1101 | htab->splt = bfd_get_section_by_name (abfd, ".plt"); | |
1102 | htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt"); | |
1103 | ||
1104 | htab->sgot = bfd_get_section_by_name (abfd, ".got"); | |
1105 | htab->srelgot = bfd_make_section (abfd, ".rela.got"); | |
1106 | if (htab->srelgot == NULL | |
1107 | || ! bfd_set_section_flags (abfd, htab->srelgot, | |
1108 | (SEC_ALLOC | |
1109 | | SEC_LOAD | |
1110 | | SEC_HAS_CONTENTS | |
1111 | | SEC_IN_MEMORY | |
1112 | | SEC_LINKER_CREATED | |
1113 | | SEC_READONLY)) | |
1114 | || ! bfd_set_section_alignment (abfd, htab->srelgot, 2)) | |
1115 | return false; | |
1116 | ||
1117 | htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss"); | |
1118 | htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss"); | |
1119 | ||
1120 | return true; | |
1121 | } | |
1122 | ||
1123 | /* Copy the extra info we tack onto an elf_link_hash_entry. */ | |
1124 | ||
1125 | static void | |
1126 | elf32_hppa_copy_indirect_symbol (dir, ind) | |
1127 | struct elf_link_hash_entry *dir, *ind; | |
1128 | { | |
1129 | struct elf32_hppa_link_hash_entry *edir, *eind; | |
1130 | ||
1131 | edir = (struct elf32_hppa_link_hash_entry *) dir; | |
1132 | eind = (struct elf32_hppa_link_hash_entry *) ind; | |
1133 | ||
1134 | if (eind->dyn_relocs != NULL) | |
1135 | { | |
1136 | if (edir->dyn_relocs != NULL) | |
1137 | { | |
1138 | struct elf32_hppa_dyn_reloc_entry **pp; | |
1139 | struct elf32_hppa_dyn_reloc_entry *p; | |
1140 | ||
1141 | if (ind->root.type == bfd_link_hash_indirect) | |
1142 | abort (); | |
1143 | ||
1144 | /* Add reloc counts against the weak sym to the strong sym | |
1145 | list. Merge any entries against the same section. */ | |
1146 | for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) | |
1147 | { | |
1148 | struct elf32_hppa_dyn_reloc_entry *q; | |
1149 | ||
1150 | for (q = edir->dyn_relocs; q != NULL; q = q->next) | |
1151 | if (q->sec == p->sec) | |
1152 | { | |
1153 | #if RELATIVE_DYNRELOCS | |
1154 | q->relative_count += p->relative_count; | |
1155 | #endif | |
1156 | q->count += p->count; | |
1157 | *pp = p->next; | |
1158 | break; | |
1159 | } | |
1160 | if (q == NULL) | |
1161 | pp = &p->next; | |
1162 | } | |
1163 | *pp = edir->dyn_relocs; | |
1164 | } | |
1165 | ||
1166 | edir->dyn_relocs = eind->dyn_relocs; | |
1167 | eind->dyn_relocs = NULL; | |
1168 | } | |
1169 | ||
1170 | _bfd_elf_link_hash_copy_indirect (dir, ind); | |
1171 | } | |
1172 | ||
1173 | /* Look through the relocs for a section during the first phase, and | |
1174 | calculate needed space in the global offset table, procedure linkage | |
1175 | table, and dynamic reloc sections. At this point we haven't | |
1176 | necessarily read all the input files. */ | |
1177 | ||
1178 | static boolean | |
1179 | elf32_hppa_check_relocs (abfd, info, sec, relocs) | |
1180 | bfd *abfd; | |
1181 | struct bfd_link_info *info; | |
1182 | asection *sec; | |
1183 | const Elf_Internal_Rela *relocs; | |
1184 | { | |
1185 | Elf_Internal_Shdr *symtab_hdr; | |
1186 | struct elf_link_hash_entry **sym_hashes; | |
1187 | const Elf_Internal_Rela *rel; | |
1188 | const Elf_Internal_Rela *rel_end; | |
1189 | struct elf32_hppa_link_hash_table *htab; | |
1190 | asection *sreloc; | |
1191 | asection *stubreloc; | |
1192 | ||
1193 | if (info->relocateable) | |
1194 | return true; | |
1195 | ||
1196 | htab = hppa_link_hash_table (info); | |
1197 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
1198 | sym_hashes = elf_sym_hashes (abfd); | |
1199 | sreloc = NULL; | |
1200 | stubreloc = NULL; | |
1201 | ||
1202 | rel_end = relocs + sec->reloc_count; | |
1203 | for (rel = relocs; rel < rel_end; rel++) | |
1204 | { | |
1205 | enum { | |
1206 | NEED_GOT = 1, | |
1207 | NEED_PLT = 2, | |
1208 | NEED_DYNREL = 4, | |
1209 | PLT_PLABEL = 8 | |
1210 | }; | |
1211 | ||
1212 | unsigned int r_symndx, r_type; | |
1213 | struct elf32_hppa_link_hash_entry *h; | |
1214 | int need_entry; | |
1215 | ||
1216 | r_symndx = ELF32_R_SYM (rel->r_info); | |
1217 | ||
1218 | if (r_symndx < symtab_hdr->sh_info) | |
1219 | h = NULL; | |
1220 | else | |
1221 | h = ((struct elf32_hppa_link_hash_entry *) | |
1222 | sym_hashes[r_symndx - symtab_hdr->sh_info]); | |
1223 | ||
1224 | r_type = ELF32_R_TYPE (rel->r_info); | |
1225 | ||
1226 | switch (r_type) | |
1227 | { | |
1228 | case R_PARISC_DLTIND14F: | |
1229 | case R_PARISC_DLTIND14R: | |
1230 | case R_PARISC_DLTIND21L: | |
1231 | /* This symbol requires a global offset table entry. */ | |
1232 | need_entry = NEED_GOT; | |
1233 | ||
1234 | /* Mark this section as containing PIC code. */ | |
1235 | sec->flags |= SEC_HAS_GOT_REF; | |
1236 | break; | |
1237 | ||
1238 | case R_PARISC_PLABEL14R: /* "Official" procedure labels. */ | |
1239 | case R_PARISC_PLABEL21L: | |
1240 | case R_PARISC_PLABEL32: | |
1241 | /* If the addend is non-zero, we break badly. */ | |
1242 | if (rel->r_addend != 0) | |
1243 | abort (); | |
1244 | ||
1245 | /* If we are creating a shared library, then we need to | |
1246 | create a PLT entry for all PLABELs, because PLABELs with | |
1247 | local symbols may be passed via a pointer to another | |
1248 | object. Additionally, output a dynamic relocation | |
1249 | pointing to the PLT entry. | |
1250 | For executables, the original 32-bit ABI allowed two | |
1251 | different styles of PLABELs (function pointers): For | |
1252 | global functions, the PLABEL word points into the .plt | |
1253 | two bytes past a (function address, gp) pair, and for | |
1254 | local functions the PLABEL points directly at the | |
1255 | function. The magic +2 for the first type allows us to | |
1256 | differentiate between the two. As you can imagine, this | |
1257 | is a real pain when it comes to generating code to call | |
1258 | functions indirectly or to compare function pointers. | |
1259 | We avoid the mess by always pointing a PLABEL into the | |
1260 | .plt, even for local functions. */ | |
1261 | need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL; | |
1262 | break; | |
1263 | ||
1264 | case R_PARISC_PCREL12F: | |
1265 | htab->has_12bit_branch = 1; | |
1266 | /* Fall thru. */ | |
1267 | case R_PARISC_PCREL17C: | |
1268 | case R_PARISC_PCREL17F: | |
1269 | htab->has_17bit_branch = 1; | |
1270 | /* Fall thru. */ | |
1271 | case R_PARISC_PCREL22F: | |
1272 | /* Function calls might need to go through the .plt, and | |
1273 | might require long branch stubs. */ | |
1274 | if (h == NULL) | |
1275 | { | |
1276 | /* We know local syms won't need a .plt entry, and if | |
1277 | they need a long branch stub we can't guarantee that | |
1278 | we can reach the stub. So just flag an error later | |
1279 | if we're doing a shared link and find we need a long | |
1280 | branch stub. */ | |
1281 | continue; | |
1282 | } | |
1283 | else | |
1284 | { | |
1285 | /* Global symbols will need a .plt entry if they remain | |
1286 | global, and in most cases won't need a long branch | |
1287 | stub. Unfortunately, we have to cater for the case | |
1288 | where a symbol is forced local by versioning, or due | |
1289 | to symbolic linking, and we lose the .plt entry. */ | |
1290 | need_entry = NEED_PLT; | |
1291 | if (h->elf.type == STT_PARISC_MILLI) | |
1292 | need_entry = 0; | |
1293 | } | |
1294 | break; | |
1295 | ||
1296 | case R_PARISC_SEGBASE: /* Used to set segment base. */ | |
1297 | case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */ | |
1298 | case R_PARISC_PCREL14F: /* PC relative load/store. */ | |
1299 | case R_PARISC_PCREL14R: | |
1300 | case R_PARISC_PCREL17R: /* External branches. */ | |
1301 | case R_PARISC_PCREL21L: /* As above, and for load/store too. */ | |
1302 | /* We don't need to propagate the relocation if linking a | |
1303 | shared object since these are section relative. */ | |
1304 | continue; | |
1305 | ||
1306 | case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */ | |
1307 | case R_PARISC_DPREL14R: | |
1308 | case R_PARISC_DPREL21L: | |
1309 | if (info->shared) | |
1310 | { | |
1311 | (*_bfd_error_handler) | |
1312 | (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"), | |
1313 | bfd_archive_filename (abfd), | |
1314 | elf_hppa_howto_table[r_type].name); | |
1315 | bfd_set_error (bfd_error_bad_value); | |
1316 | return false; | |
1317 | } | |
1318 | /* Fall through. */ | |
1319 | ||
1320 | case R_PARISC_DIR17F: /* Used for external branches. */ | |
1321 | case R_PARISC_DIR17R: | |
1322 | case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */ | |
1323 | case R_PARISC_DIR14R: | |
1324 | case R_PARISC_DIR21L: /* As above, and for ext branches too. */ | |
1325 | #if 1 | |
1326 | /* Help debug shared library creation. Any of the above | |
1327 | relocs can be used in shared libs, but they may cause | |
1328 | pages to become unshared. */ | |
1329 | if (info->shared) | |
1330 | { | |
1331 | (*_bfd_error_handler) | |
1332 | (_("%s: relocation %s should not be used when making a shared object; recompile with -fPIC"), | |
1333 | bfd_archive_filename (abfd), | |
1334 | elf_hppa_howto_table[r_type].name); | |
1335 | } | |
1336 | /* Fall through. */ | |
1337 | #endif | |
1338 | ||
1339 | case R_PARISC_DIR32: /* .word relocs. */ | |
1340 | /* We may want to output a dynamic relocation later. */ | |
1341 | need_entry = NEED_DYNREL; | |
1342 | break; | |
1343 | ||
1344 | /* This relocation describes the C++ object vtable hierarchy. | |
1345 | Reconstruct it for later use during GC. */ | |
1346 | case R_PARISC_GNU_VTINHERIT: | |
1347 | if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, | |
1348 | &h->elf, rel->r_offset)) | |
1349 | return false; | |
1350 | continue; | |
1351 | ||
1352 | /* This relocation describes which C++ vtable entries are actually | |
1353 | used. Record for later use during GC. */ | |
1354 | case R_PARISC_GNU_VTENTRY: | |
1355 | if (!_bfd_elf32_gc_record_vtentry (abfd, sec, | |
1356 | &h->elf, rel->r_addend)) | |
1357 | return false; | |
1358 | continue; | |
1359 | ||
1360 | default: | |
1361 | continue; | |
1362 | } | |
1363 | ||
1364 | /* Now carry out our orders. */ | |
1365 | if (need_entry & NEED_GOT) | |
1366 | { | |
1367 | /* Allocate space for a GOT entry, as well as a dynamic | |
1368 | relocation for this entry. */ | |
1369 | if (htab->sgot == NULL) | |
1370 | { | |
1371 | if (htab->elf.dynobj == NULL) | |
1372 | htab->elf.dynobj = abfd; | |
1373 | if (!elf32_hppa_create_dynamic_sections (htab->elf.dynobj, info)) | |
1374 | return false; | |
1375 | } | |
1376 | ||
1377 | if (h != NULL) | |
1378 | { | |
1379 | h->elf.got.refcount += 1; | |
1380 | } | |
1381 | else | |
1382 | { | |
1383 | bfd_signed_vma *local_got_refcounts; | |
1384 | ||
1385 | /* This is a global offset table entry for a local symbol. */ | |
1386 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
1387 | if (local_got_refcounts == NULL) | |
1388 | { | |
1389 | bfd_size_type size; | |
1390 | ||
1391 | /* Allocate space for local got offsets and local | |
1392 | plt offsets. Done this way to save polluting | |
1393 | elf_obj_tdata with another target specific | |
1394 | pointer. */ | |
1395 | size = symtab_hdr->sh_info; | |
1396 | size *= 2 * sizeof (bfd_signed_vma); | |
1397 | local_got_refcounts = ((bfd_signed_vma *) | |
1398 | bfd_zalloc (abfd, size)); | |
1399 | if (local_got_refcounts == NULL) | |
1400 | return false; | |
1401 | elf_local_got_refcounts (abfd) = local_got_refcounts; | |
1402 | } | |
1403 | local_got_refcounts[r_symndx] += 1; | |
1404 | } | |
1405 | } | |
1406 | ||
1407 | if (need_entry & NEED_PLT) | |
1408 | { | |
1409 | /* If we are creating a shared library, and this is a reloc | |
1410 | against a weak symbol or a global symbol in a dynamic | |
1411 | object, then we will be creating an import stub and a | |
1412 | .plt entry for the symbol. Similarly, on a normal link | |
1413 | to symbols defined in a dynamic object we'll need the | |
1414 | import stub and a .plt entry. We don't know yet whether | |
1415 | the symbol is defined or not, so make an entry anyway and | |
1416 | clean up later in adjust_dynamic_symbol. */ | |
1417 | if ((sec->flags & SEC_ALLOC) != 0) | |
1418 | { | |
1419 | if (h != NULL) | |
1420 | { | |
1421 | h->elf.elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; | |
1422 | h->elf.plt.refcount += 1; | |
1423 | ||
1424 | /* If this .plt entry is for a plabel, mark it so | |
1425 | that adjust_dynamic_symbol will keep the entry | |
1426 | even if it appears to be local. */ | |
1427 | if (need_entry & PLT_PLABEL) | |
1428 | h->plabel = 1; | |
1429 | } | |
1430 | else if (need_entry & PLT_PLABEL) | |
1431 | { | |
1432 | bfd_signed_vma *local_got_refcounts; | |
1433 | bfd_signed_vma *local_plt_refcounts; | |
1434 | ||
1435 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
1436 | if (local_got_refcounts == NULL) | |
1437 | { | |
1438 | bfd_size_type size; | |
1439 | ||
1440 | /* Allocate space for local got offsets and local | |
1441 | plt offsets. */ | |
1442 | size = symtab_hdr->sh_info; | |
1443 | size *= 2 * sizeof (bfd_signed_vma); | |
1444 | local_got_refcounts = ((bfd_signed_vma *) | |
1445 | bfd_zalloc (abfd, size)); | |
1446 | if (local_got_refcounts == NULL) | |
1447 | return false; | |
1448 | elf_local_got_refcounts (abfd) = local_got_refcounts; | |
1449 | } | |
1450 | local_plt_refcounts = (local_got_refcounts | |
1451 | + symtab_hdr->sh_info); | |
1452 | local_plt_refcounts[r_symndx] += 1; | |
1453 | } | |
1454 | } | |
1455 | } | |
1456 | ||
1457 | if (need_entry & NEED_DYNREL) | |
1458 | { | |
1459 | /* Flag this symbol as having a non-got, non-plt reference | |
1460 | so that we generate copy relocs if it turns out to be | |
1461 | dynamic. */ | |
1462 | if (h != NULL && !info->shared) | |
1463 | h->elf.elf_link_hash_flags |= ELF_LINK_NON_GOT_REF; | |
1464 | ||
1465 | /* If we are creating a shared library then we need to copy | |
1466 | the reloc into the shared library. However, if we are | |
1467 | linking with -Bsymbolic, we need only copy absolute | |
1468 | relocs or relocs against symbols that are not defined in | |
1469 | an object we are including in the link. PC- or DP- or | |
1470 | DLT-relative relocs against any local sym or global sym | |
1471 | with DEF_REGULAR set, can be discarded. At this point we | |
1472 | have not seen all the input files, so it is possible that | |
1473 | DEF_REGULAR is not set now but will be set later (it is | |
1474 | never cleared). We account for that possibility below by | |
1475 | storing information in the dyn_relocs field of the | |
1476 | hash table entry. | |
1477 | ||
1478 | A similar situation to the -Bsymbolic case occurs when | |
1479 | creating shared libraries and symbol visibility changes | |
1480 | render the symbol local. | |
1481 | ||
1482 | As it turns out, all the relocs we will be creating here | |
1483 | are absolute, so we cannot remove them on -Bsymbolic | |
1484 | links or visibility changes anyway. A STUB_REL reloc | |
1485 | is absolute too, as in that case it is the reloc in the | |
1486 | stub we will be creating, rather than copying the PCREL | |
1487 | reloc in the branch. | |
1488 | ||
1489 | If on the other hand, we are creating an executable, we | |
1490 | may need to keep relocations for symbols satisfied by a | |
1491 | dynamic library if we manage to avoid copy relocs for the | |
1492 | symbol. */ | |
1493 | if ((info->shared | |
1494 | && (sec->flags & SEC_ALLOC) != 0 | |
1495 | && (IS_ABSOLUTE_RELOC (r_type) | |
1496 | || (h != NULL | |
1497 | && (!info->symbolic | |
1498 | || h->elf.root.type == bfd_link_hash_defweak | |
1499 | || (h->elf.elf_link_hash_flags | |
1500 | & ELF_LINK_HASH_DEF_REGULAR) == 0)))) | |
1501 | || (!info->shared | |
1502 | && (sec->flags & SEC_ALLOC) != 0 | |
1503 | && h != NULL | |
1504 | && (h->elf.root.type == bfd_link_hash_defweak | |
1505 | || (h->elf.elf_link_hash_flags | |
1506 | & ELF_LINK_HASH_DEF_REGULAR) == 0))) | |
1507 | { | |
1508 | struct elf32_hppa_dyn_reloc_entry *p; | |
1509 | struct elf32_hppa_dyn_reloc_entry **head; | |
1510 | ||
1511 | /* Create a reloc section in dynobj and make room for | |
1512 | this reloc. */ | |
1513 | if (sreloc == NULL) | |
1514 | { | |
1515 | char *name; | |
1516 | bfd *dynobj; | |
1517 | ||
1518 | name = (bfd_elf_string_from_elf_section | |
1519 | (abfd, | |
1520 | elf_elfheader (abfd)->e_shstrndx, | |
1521 | elf_section_data (sec)->rel_hdr.sh_name)); | |
1522 | if (name == NULL) | |
1523 | { | |
1524 | (*_bfd_error_handler) | |
1525 | (_("Could not find relocation section for %s"), | |
1526 | sec->name); | |
1527 | bfd_set_error (bfd_error_bad_value); | |
1528 | return false; | |
1529 | } | |
1530 | ||
1531 | if (htab->elf.dynobj == NULL) | |
1532 | htab->elf.dynobj = abfd; | |
1533 | ||
1534 | dynobj = htab->elf.dynobj; | |
1535 | sreloc = bfd_get_section_by_name (dynobj, name); | |
1536 | if (sreloc == NULL) | |
1537 | { | |
1538 | flagword flags; | |
1539 | ||
1540 | sreloc = bfd_make_section (dynobj, name); | |
1541 | flags = (SEC_HAS_CONTENTS | SEC_READONLY | |
1542 | | SEC_IN_MEMORY | SEC_LINKER_CREATED); | |
1543 | if ((sec->flags & SEC_ALLOC) != 0) | |
1544 | flags |= SEC_ALLOC | SEC_LOAD; | |
1545 | if (sreloc == NULL | |
1546 | || !bfd_set_section_flags (dynobj, sreloc, flags) | |
1547 | || !bfd_set_section_alignment (dynobj, sreloc, 2)) | |
1548 | return false; | |
1549 | } | |
1550 | ||
1551 | elf_section_data (sec)->sreloc = sreloc; | |
1552 | } | |
1553 | ||
1554 | /* If this is a global symbol, we count the number of | |
1555 | relocations we need for this symbol. */ | |
1556 | if (h != NULL) | |
1557 | { | |
1558 | head = &h->dyn_relocs; | |
1559 | } | |
1560 | else | |
1561 | { | |
1562 | /* Track dynamic relocs needed for local syms too. | |
1563 | We really need local syms available to do this | |
1564 | easily. Oh well. */ | |
1565 | ||
1566 | asection *s; | |
1567 | s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, | |
1568 | sec, r_symndx); | |
1569 | if (s == NULL) | |
1570 | return false; | |
1571 | ||
1572 | head = ((struct elf32_hppa_dyn_reloc_entry **) | |
1573 | &elf_section_data (s)->local_dynrel); | |
1574 | } | |
1575 | ||
1576 | p = *head; | |
1577 | if (p == NULL || p->sec != sec) | |
1578 | { | |
1579 | p = ((struct elf32_hppa_dyn_reloc_entry *) | |
1580 | bfd_alloc (htab->elf.dynobj, | |
1581 | (bfd_size_type) sizeof *p)); | |
1582 | if (p == NULL) | |
1583 | return false; | |
1584 | p->next = *head; | |
1585 | *head = p; | |
1586 | p->sec = sec; | |
1587 | p->count = 0; | |
1588 | #if RELATIVE_DYNRELOCS | |
1589 | p->relative_count = 0; | |
1590 | #endif | |
1591 | } | |
1592 | ||
1593 | p->count += 1; | |
1594 | #if RELATIVE_DYNRELOCS | |
1595 | if (!IS_ABSOLUTE_RELOC (rtype)) | |
1596 | p->relative_count += 1; | |
1597 | #endif | |
1598 | } | |
1599 | } | |
1600 | } | |
1601 | ||
1602 | return true; | |
1603 | } | |
1604 | ||
1605 | /* Return the section that should be marked against garbage collection | |
1606 | for a given relocation. */ | |
1607 | ||
1608 | static asection * | |
1609 | elf32_hppa_gc_mark_hook (abfd, info, rel, h, sym) | |
1610 | bfd *abfd; | |
1611 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
1612 | Elf_Internal_Rela *rel; | |
1613 | struct elf_link_hash_entry *h; | |
1614 | Elf_Internal_Sym *sym; | |
1615 | { | |
1616 | if (h != NULL) | |
1617 | { | |
1618 | switch ((unsigned int) ELF32_R_TYPE (rel->r_info)) | |
1619 | { | |
1620 | case R_PARISC_GNU_VTINHERIT: | |
1621 | case R_PARISC_GNU_VTENTRY: | |
1622 | break; | |
1623 | ||
1624 | default: | |
1625 | switch (h->root.type) | |
1626 | { | |
1627 | case bfd_link_hash_defined: | |
1628 | case bfd_link_hash_defweak: | |
1629 | return h->root.u.def.section; | |
1630 | ||
1631 | case bfd_link_hash_common: | |
1632 | return h->root.u.c.p->section; | |
1633 | ||
1634 | default: | |
1635 | break; | |
1636 | } | |
1637 | } | |
1638 | } | |
1639 | else | |
1640 | { | |
1641 | return bfd_section_from_elf_index (abfd, sym->st_shndx); | |
1642 | } | |
1643 | ||
1644 | return NULL; | |
1645 | } | |
1646 | ||
1647 | /* Update the got and plt entry reference counts for the section being | |
1648 | removed. */ | |
1649 | ||
1650 | static boolean | |
1651 | elf32_hppa_gc_sweep_hook (abfd, info, sec, relocs) | |
1652 | bfd *abfd; | |
1653 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
1654 | asection *sec; | |
1655 | const Elf_Internal_Rela *relocs; | |
1656 | { | |
1657 | Elf_Internal_Shdr *symtab_hdr; | |
1658 | struct elf_link_hash_entry **sym_hashes; | |
1659 | bfd_signed_vma *local_got_refcounts; | |
1660 | bfd_signed_vma *local_plt_refcounts; | |
1661 | const Elf_Internal_Rela *rel, *relend; | |
1662 | unsigned long r_symndx; | |
1663 | struct elf_link_hash_entry *h; | |
1664 | struct elf32_hppa_link_hash_table *htab; | |
1665 | bfd *dynobj; | |
1666 | ||
1667 | elf_section_data (sec)->local_dynrel = NULL; | |
1668 | ||
1669 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
1670 | sym_hashes = elf_sym_hashes (abfd); | |
1671 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
1672 | local_plt_refcounts = local_got_refcounts; | |
1673 | if (local_plt_refcounts != NULL) | |
1674 | local_plt_refcounts += symtab_hdr->sh_info; | |
1675 | htab = hppa_link_hash_table (info); | |
1676 | dynobj = htab->elf.dynobj; | |
1677 | if (dynobj == NULL) | |
1678 | return true; | |
1679 | ||
1680 | relend = relocs + sec->reloc_count; | |
1681 | for (rel = relocs; rel < relend; rel++) | |
1682 | switch ((unsigned int) ELF32_R_TYPE (rel->r_info)) | |
1683 | { | |
1684 | case R_PARISC_DLTIND14F: | |
1685 | case R_PARISC_DLTIND14R: | |
1686 | case R_PARISC_DLTIND21L: | |
1687 | r_symndx = ELF32_R_SYM (rel->r_info); | |
1688 | if (r_symndx >= symtab_hdr->sh_info) | |
1689 | { | |
1690 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
1691 | if (h->got.refcount > 0) | |
1692 | h->got.refcount -= 1; | |
1693 | } | |
1694 | else if (local_got_refcounts != NULL) | |
1695 | { | |
1696 | if (local_got_refcounts[r_symndx] > 0) | |
1697 | local_got_refcounts[r_symndx] -= 1; | |
1698 | } | |
1699 | break; | |
1700 | ||
1701 | case R_PARISC_PCREL12F: | |
1702 | case R_PARISC_PCREL17C: | |
1703 | case R_PARISC_PCREL17F: | |
1704 | case R_PARISC_PCREL22F: | |
1705 | r_symndx = ELF32_R_SYM (rel->r_info); | |
1706 | if (r_symndx >= symtab_hdr->sh_info) | |
1707 | { | |
1708 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
1709 | if (h->plt.refcount > 0) | |
1710 | h->plt.refcount -= 1; | |
1711 | } | |
1712 | break; | |
1713 | ||
1714 | case R_PARISC_PLABEL14R: | |
1715 | case R_PARISC_PLABEL21L: | |
1716 | case R_PARISC_PLABEL32: | |
1717 | r_symndx = ELF32_R_SYM (rel->r_info); | |
1718 | if (r_symndx >= symtab_hdr->sh_info) | |
1719 | { | |
1720 | struct elf32_hppa_link_hash_entry *eh; | |
1721 | struct elf32_hppa_dyn_reloc_entry **pp; | |
1722 | struct elf32_hppa_dyn_reloc_entry *p; | |
1723 | ||
1724 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
1725 | ||
1726 | if (h->plt.refcount > 0) | |
1727 | h->plt.refcount -= 1; | |
1728 | ||
1729 | eh = (struct elf32_hppa_link_hash_entry *) h; | |
1730 | ||
1731 | for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) | |
1732 | if (p->sec == sec) | |
1733 | { | |
1734 | #if RELATIVE_DYNRELOCS | |
1735 | if (!IS_ABSOLUTE_RELOC (rtype)) | |
1736 | p->relative_count -= 1; | |
1737 | #endif | |
1738 | p->count -= 1; | |
1739 | if (p->count == 0) | |
1740 | *pp = p->next; | |
1741 | break; | |
1742 | } | |
1743 | } | |
1744 | else if (local_plt_refcounts != NULL) | |
1745 | { | |
1746 | if (local_plt_refcounts[r_symndx] > 0) | |
1747 | local_plt_refcounts[r_symndx] -= 1; | |
1748 | } | |
1749 | break; | |
1750 | ||
1751 | case R_PARISC_DIR32: | |
1752 | r_symndx = ELF32_R_SYM (rel->r_info); | |
1753 | if (r_symndx >= symtab_hdr->sh_info) | |
1754 | { | |
1755 | struct elf32_hppa_link_hash_entry *eh; | |
1756 | struct elf32_hppa_dyn_reloc_entry **pp; | |
1757 | struct elf32_hppa_dyn_reloc_entry *p; | |
1758 | ||
1759 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
1760 | ||
1761 | eh = (struct elf32_hppa_link_hash_entry *) h; | |
1762 | ||
1763 | for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) | |
1764 | if (p->sec == sec) | |
1765 | { | |
1766 | #if RELATIVE_DYNRELOCS | |
1767 | if (!IS_ABSOLUTE_RELOC (R_PARISC_DIR32)) | |
1768 | p->relative_count -= 1; | |
1769 | #endif | |
1770 | p->count -= 1; | |
1771 | if (p->count == 0) | |
1772 | *pp = p->next; | |
1773 | break; | |
1774 | } | |
1775 | } | |
1776 | break; | |
1777 | ||
1778 | default: | |
1779 | break; | |
1780 | } | |
1781 | ||
1782 | return true; | |
1783 | } | |
1784 | ||
1785 | /* Our own version of hide_symbol, so that we can keep plt entries for | |
1786 | plabels. */ | |
1787 | ||
1788 | static void | |
1789 | elf32_hppa_hide_symbol (info, h) | |
1790 | struct bfd_link_info *info ATTRIBUTE_UNUSED; | |
1791 | struct elf_link_hash_entry *h; | |
1792 | { | |
1793 | if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) | |
1794 | h->dynindx = -1; | |
1795 | if (! ((struct elf32_hppa_link_hash_entry *) h)->plabel) | |
1796 | { | |
1797 | h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT; | |
1798 | h->plt.offset = (bfd_vma) -1; | |
1799 | } | |
1800 | } | |
1801 | ||
1802 | /* This is the condition under which elf32_hppa_finish_dynamic_symbol | |
1803 | will be called from elflink.h. If elflink.h doesn't call our | |
1804 | finish_dynamic_symbol routine, we'll need to do something about | |
1805 | initializing any .plt and .got entries in elf32_hppa_relocate_section. */ | |
1806 | #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \ | |
1807 | ((DYN) \ | |
1808 | && ((INFO)->shared \ | |
1809 | || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \ | |
1810 | && ((H)->dynindx != -1 \ | |
1811 | || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)) | |
1812 | ||
1813 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
1814 | regular object. The current definition is in some section of the | |
1815 | dynamic object, but we're not including those sections. We have to | |
1816 | change the definition to something the rest of the link can | |
1817 | understand. */ | |
1818 | ||
1819 | static boolean | |
1820 | elf32_hppa_adjust_dynamic_symbol (info, h) | |
1821 | struct bfd_link_info *info; | |
1822 | struct elf_link_hash_entry *h; | |
1823 | { | |
1824 | struct elf32_hppa_link_hash_table *htab; | |
1825 | struct elf32_hppa_link_hash_entry *eh; | |
1826 | struct elf32_hppa_dyn_reloc_entry *p; | |
1827 | asection *s; | |
1828 | unsigned int power_of_two; | |
1829 | ||
1830 | /* If this is a function, put it in the procedure linkage table. We | |
1831 | will fill in the contents of the procedure linkage table later, | |
1832 | when we know the address of the .got section. */ | |
1833 | if (h->type == STT_FUNC | |
1834 | || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) | |
1835 | { | |
1836 | if (!info->shared | |
1837 | && h->plt.refcount > 0 | |
1838 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
1839 | && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0) | |
1840 | { | |
1841 | ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1; | |
1842 | } | |
1843 | ||
1844 | if (h->plt.refcount <= 0 | |
1845 | || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
1846 | && h->root.type != bfd_link_hash_defweak | |
1847 | && ! ((struct elf32_hppa_link_hash_entry *) h)->plabel | |
1848 | && (!info->shared || info->symbolic))) | |
1849 | { | |
1850 | /* The .plt entry is not needed when: | |
1851 | a) Garbage collection has removed all references to the | |
1852 | symbol, or | |
1853 | b) We know for certain the symbol is defined in this | |
1854 | object, and it's not a weak definition, nor is the symbol | |
1855 | used by a plabel relocation. Either this object is the | |
1856 | application or we are doing a shared symbolic link. */ | |
1857 | ||
1858 | /* As a special sop to the hppa ABI, we keep a .plt entry | |
1859 | for functions in sections containing PIC code. */ | |
1860 | if (((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call) | |
1861 | ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1; | |
1862 | else | |
1863 | { | |
1864 | h->plt.offset = (bfd_vma) -1; | |
1865 | h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT; | |
1866 | } | |
1867 | } | |
1868 | ||
1869 | return true; | |
1870 | } | |
1871 | else | |
1872 | h->plt.offset = (bfd_vma) -1; | |
1873 | ||
1874 | /* If this is a weak symbol, and there is a real definition, the | |
1875 | processor independent code will have arranged for us to see the | |
1876 | real definition first, and we can just use the same value. */ | |
1877 | if (h->weakdef != NULL) | |
1878 | { | |
1879 | if (h->weakdef->root.type != bfd_link_hash_defined | |
1880 | && h->weakdef->root.type != bfd_link_hash_defweak) | |
1881 | abort (); | |
1882 | h->root.u.def.section = h->weakdef->root.u.def.section; | |
1883 | h->root.u.def.value = h->weakdef->root.u.def.value; | |
1884 | return true; | |
1885 | } | |
1886 | ||
1887 | /* This is a reference to a symbol defined by a dynamic object which | |
1888 | is not a function. */ | |
1889 | ||
1890 | /* If we are creating a shared library, we must presume that the | |
1891 | only references to the symbol are via the global offset table. | |
1892 | For such cases we need not do anything here; the relocations will | |
1893 | be handled correctly by relocate_section. */ | |
1894 | if (info->shared) | |
1895 | return true; | |
1896 | ||
1897 | /* If there are no references to this symbol that do not use the | |
1898 | GOT, we don't need to generate a copy reloc. */ | |
1899 | if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0) | |
1900 | return true; | |
1901 | ||
1902 | eh = (struct elf32_hppa_link_hash_entry *) h; | |
1903 | for (p = eh->dyn_relocs; p != NULL; p = p->next) | |
1904 | { | |
1905 | s = p->sec->output_section; | |
1906 | if (s != NULL && (s->flags & SEC_READONLY) != 0) | |
1907 | break; | |
1908 | } | |
1909 | ||
1910 | /* If we didn't find any dynamic relocs in read-only sections, then | |
1911 | we'll be keeping the dynamic relocs and avoiding the copy reloc. */ | |
1912 | if (p == NULL) | |
1913 | { | |
1914 | h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF; | |
1915 | return true; | |
1916 | } | |
1917 | ||
1918 | /* We must allocate the symbol in our .dynbss section, which will | |
1919 | become part of the .bss section of the executable. There will be | |
1920 | an entry for this symbol in the .dynsym section. The dynamic | |
1921 | object will contain position independent code, so all references | |
1922 | from the dynamic object to this symbol will go through the global | |
1923 | offset table. The dynamic linker will use the .dynsym entry to | |
1924 | determine the address it must put in the global offset table, so | |
1925 | both the dynamic object and the regular object will refer to the | |
1926 | same memory location for the variable. */ | |
1927 | ||
1928 | htab = hppa_link_hash_table (info); | |
1929 | ||
1930 | /* We must generate a COPY reloc to tell the dynamic linker to | |
1931 | copy the initial value out of the dynamic object and into the | |
1932 | runtime process image. */ | |
1933 | if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) | |
1934 | { | |
1935 | htab->srelbss->_raw_size += sizeof (Elf32_External_Rela); | |
1936 | h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY; | |
1937 | } | |
1938 | ||
1939 | /* We need to figure out the alignment required for this symbol. I | |
1940 | have no idea how other ELF linkers handle this. */ | |
1941 | ||
1942 | power_of_two = bfd_log2 (h->size); | |
1943 | if (power_of_two > 3) | |
1944 | power_of_two = 3; | |
1945 | ||
1946 | /* Apply the required alignment. */ | |
1947 | s = htab->sdynbss; | |
1948 | s->_raw_size = BFD_ALIGN (s->_raw_size, | |
1949 | (bfd_size_type) (1 << power_of_two)); | |
1950 | if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s)) | |
1951 | { | |
1952 | if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two)) | |
1953 | return false; | |
1954 | } | |
1955 | ||
1956 | /* Define the symbol as being at this point in the section. */ | |
1957 | h->root.u.def.section = s; | |
1958 | h->root.u.def.value = s->_raw_size; | |
1959 | ||
1960 | /* Increment the section size to make room for the symbol. */ | |
1961 | s->_raw_size += h->size; | |
1962 | ||
1963 | return true; | |
1964 | } | |
1965 | ||
1966 | /* Called via elf_link_hash_traverse to create .plt entries for an | |
1967 | application that uses statically linked PIC functions. Similar to | |
1968 | the first part of elf32_hppa_adjust_dynamic_symbol. */ | |
1969 | ||
1970 | static boolean | |
1971 | mark_PIC_calls (h, inf) | |
1972 | struct elf_link_hash_entry *h; | |
1973 | PTR inf ATTRIBUTE_UNUSED; | |
1974 | { | |
1975 | if (! (h->plt.refcount > 0 | |
1976 | && (h->root.type == bfd_link_hash_defined | |
1977 | || h->root.type == bfd_link_hash_defweak) | |
1978 | && (h->root.u.def.section->flags & SEC_HAS_GOT_REF) != 0)) | |
1979 | { | |
1980 | h->plt.offset = (bfd_vma) -1; | |
1981 | h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT; | |
1982 | return true; | |
1983 | } | |
1984 | ||
1985 | h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; | |
1986 | ((struct elf32_hppa_link_hash_entry *) h)->maybe_pic_call = 1; | |
1987 | ((struct elf32_hppa_link_hash_entry *) h)->pic_call = 1; | |
1988 | ||
1989 | return true; | |
1990 | } | |
1991 | ||
1992 | /* Allocate space in the .plt for entries that won't have relocations. | |
1993 | ie. pic_call and plabel entries. */ | |
1994 | ||
1995 | static boolean | |
1996 | allocate_plt_static (h, inf) | |
1997 | struct elf_link_hash_entry *h; | |
1998 | PTR inf; | |
1999 | { | |
2000 | struct bfd_link_info *info; | |
2001 | struct elf32_hppa_link_hash_table *htab; | |
2002 | asection *s; | |
2003 | ||
2004 | if (h->root.type == bfd_link_hash_indirect | |
2005 | || h->root.type == bfd_link_hash_warning) | |
2006 | return true; | |
2007 | ||
2008 | info = (struct bfd_link_info *) inf; | |
2009 | htab = hppa_link_hash_table (info); | |
2010 | if (((struct elf32_hppa_link_hash_entry *) h)->pic_call) | |
2011 | { | |
2012 | /* Make an entry in the .plt section for non-pic code that is | |
2013 | calling pic code. */ | |
2014 | s = htab->splt; | |
2015 | h->plt.offset = s->_raw_size; | |
2016 | s->_raw_size += PLT_ENTRY_SIZE; | |
2017 | } | |
2018 | else if (htab->elf.dynamic_sections_created | |
2019 | && h->plt.refcount > 0) | |
2020 | { | |
2021 | /* Make sure this symbol is output as a dynamic symbol. | |
2022 | Undefined weak syms won't yet be marked as dynamic. */ | |
2023 | if (h->dynindx == -1 | |
2024 | && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0 | |
2025 | && h->type != STT_PARISC_MILLI) | |
2026 | { | |
2027 | if (! bfd_elf32_link_record_dynamic_symbol (info, h)) | |
2028 | return false; | |
2029 | } | |
2030 | ||
2031 | if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h)) | |
2032 | { | |
2033 | /* Allocate these later. */ | |
2034 | } | |
2035 | else if (((struct elf32_hppa_link_hash_entry *) h)->plabel) | |
2036 | { | |
2037 | /* Make an entry in the .plt section for plabel references | |
2038 | that won't have a .plt entry for other reasons. */ | |
2039 | s = htab->splt; | |
2040 | h->plt.offset = s->_raw_size; | |
2041 | s->_raw_size += PLT_ENTRY_SIZE; | |
2042 | } | |
2043 | else | |
2044 | { | |
2045 | /* No .plt entry needed. */ | |
2046 | h->plt.offset = (bfd_vma) -1; | |
2047 | h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT; | |
2048 | } | |
2049 | } | |
2050 | else | |
2051 | { | |
2052 | h->plt.offset = (bfd_vma) -1; | |
2053 | h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT; | |
2054 | } | |
2055 | ||
2056 | return true; | |
2057 | } | |
2058 | ||
2059 | /* Allocate space in .plt, .got and associated reloc sections for | |
2060 | global syms. */ | |
2061 | ||
2062 | static boolean | |
2063 | allocate_dynrelocs (h, inf) | |
2064 | struct elf_link_hash_entry *h; | |
2065 | PTR inf; | |
2066 | { | |
2067 | struct bfd_link_info *info; | |
2068 | struct elf32_hppa_link_hash_table *htab; | |
2069 | asection *s; | |
2070 | struct elf32_hppa_link_hash_entry *eh; | |
2071 | struct elf32_hppa_dyn_reloc_entry *p; | |
2072 | ||
2073 | if (h->root.type == bfd_link_hash_indirect | |
2074 | || h->root.type == bfd_link_hash_warning) | |
2075 | return true; | |
2076 | ||
2077 | info = (struct bfd_link_info *) inf; | |
2078 | htab = hppa_link_hash_table (info); | |
2079 | if (htab->elf.dynamic_sections_created | |
2080 | && h->plt.offset != (bfd_vma) -1 | |
2081 | && !((struct elf32_hppa_link_hash_entry *) h)->pic_call | |
2082 | && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h)) | |
2083 | { | |
2084 | /* Make an entry in the .plt section. */ | |
2085 | s = htab->splt; | |
2086 | h->plt.offset = s->_raw_size; | |
2087 | s->_raw_size += PLT_ENTRY_SIZE; | |
2088 | ||
2089 | /* We also need to make an entry in the .rela.plt section. */ | |
2090 | htab->srelplt->_raw_size += sizeof (Elf32_External_Rela); | |
2091 | htab->need_plt_stub = 1; | |
2092 | } | |
2093 | ||
2094 | if (h->got.refcount > 0) | |
2095 | { | |
2096 | /* Make sure this symbol is output as a dynamic symbol. | |
2097 | Undefined weak syms won't yet be marked as dynamic. */ | |
2098 | if (h->dynindx == -1 | |
2099 | && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0 | |
2100 | && h->type != STT_PARISC_MILLI) | |
2101 | { | |
2102 | if (! bfd_elf32_link_record_dynamic_symbol (info, h)) | |
2103 | return false; | |
2104 | } | |
2105 | ||
2106 | s = htab->sgot; | |
2107 | h->got.offset = s->_raw_size; | |
2108 | s->_raw_size += GOT_ENTRY_SIZE; | |
2109 | if (htab->elf.dynamic_sections_created | |
2110 | && (info->shared | |
2111 | || (h->dynindx != -1 | |
2112 | && h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)) | |
2113 | { | |
2114 | htab->srelgot->_raw_size += sizeof (Elf32_External_Rela); | |
2115 | } | |
2116 | } | |
2117 | else | |
2118 | h->got.offset = (bfd_vma) -1; | |
2119 | ||
2120 | eh = (struct elf32_hppa_link_hash_entry *) h; | |
2121 | if (eh->dyn_relocs == NULL) | |
2122 | return true; | |
2123 | ||
2124 | /* If this is a -Bsymbolic shared link, then we need to discard all | |
2125 | space allocated for dynamic pc-relative relocs against symbols | |
2126 | defined in a regular object. For the normal shared case, discard | |
2127 | space for relocs that have become local due to symbol visibility | |
2128 | changes. */ | |
2129 | if (info->shared) | |
2130 | { | |
2131 | #if RELATIVE_DYNRELOCS | |
2132 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0 | |
2133 | && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0 | |
2134 | || info->symbolic)) | |
2135 | { | |
2136 | struct elf32_hppa_dyn_reloc_entry **pp; | |
2137 | ||
2138 | for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) | |
2139 | { | |
2140 | p->count -= p->relative_count; | |
2141 | p->relative_count = 0; | |
2142 | if (p->count == 0) | |
2143 | *pp = p->next; | |
2144 | else | |
2145 | pp = &p->next; | |
2146 | } | |
2147 | } | |
2148 | #endif | |
2149 | } | |
2150 | else | |
2151 | { | |
2152 | /* For the non-shared case, discard space for relocs against | |
2153 | symbols which turn out to need copy relocs or are not | |
2154 | dynamic. */ | |
2155 | if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0 | |
2156 | && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
2157 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
2158 | || (htab->elf.dynamic_sections_created | |
2159 | && (h->root.type == bfd_link_hash_undefweak | |
2160 | || h->root.type == bfd_link_hash_undefined)))) | |
2161 | { | |
2162 | /* Make sure this symbol is output as a dynamic symbol. | |
2163 | Undefined weak syms won't yet be marked as dynamic. */ | |
2164 | if (h->dynindx == -1 | |
2165 | && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0 | |
2166 | && h->type != STT_PARISC_MILLI) | |
2167 | { | |
2168 | if (! bfd_elf32_link_record_dynamic_symbol (info, h)) | |
2169 | return false; | |
2170 | } | |
2171 | ||
2172 | /* If that succeeded, we know we'll be keeping all the | |
2173 | relocs. */ | |
2174 | if (h->dynindx != -1) | |
2175 | goto keep; | |
2176 | } | |
2177 | ||
2178 | eh->dyn_relocs = NULL; | |
2179 | return true; | |
2180 | ||
2181 | keep: ; | |
2182 | } | |
2183 | ||
2184 | /* Finally, allocate space. */ | |
2185 | for (p = eh->dyn_relocs; p != NULL; p = p->next) | |
2186 | { | |
2187 | asection *sreloc = elf_section_data (p->sec)->sreloc; | |
2188 | sreloc->_raw_size += p->count * sizeof (Elf32_External_Rela); | |
2189 | } | |
2190 | ||
2191 | return true; | |
2192 | } | |
2193 | ||
2194 | /* This function is called via elf_link_hash_traverse to force | |
2195 | millicode symbols local so they do not end up as globals in the | |
2196 | dynamic symbol table. We ought to be able to do this in | |
2197 | adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called | |
2198 | for all dynamic symbols. Arguably, this is a bug in | |
2199 | elf_adjust_dynamic_symbol. */ | |
2200 | ||
2201 | static boolean | |
2202 | clobber_millicode_symbols (h, info) | |
2203 | struct elf_link_hash_entry *h; | |
2204 | struct bfd_link_info *info; | |
2205 | { | |
2206 | if (h->type == STT_PARISC_MILLI | |
2207 | && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) | |
2208 | { | |
2209 | struct elf32_hppa_link_hash_table *htab; | |
2210 | ||
2211 | h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL; | |
2212 | elf32_hppa_hide_symbol (info, h); | |
2213 | htab = hppa_link_hash_table (info); | |
2214 | _bfd_elf_strtab_delref (htab->elf.dynstr, h->dynstr_index); | |
2215 | ||
2216 | /* ?!? We only want to remove these from the dynamic symbol table. | |
2217 | Therefore we do not leave ELF_LINK_FORCED_LOCAL set. */ | |
2218 | h->elf_link_hash_flags &= ~ELF_LINK_FORCED_LOCAL; | |
2219 | } | |
2220 | return true; | |
2221 | } | |
2222 | ||
2223 | /* Find any dynamic relocs that apply to read-only sections. */ | |
2224 | ||
2225 | static boolean | |
2226 | readonly_dynrelocs (h, inf) | |
2227 | struct elf_link_hash_entry *h; | |
2228 | PTR inf; | |
2229 | { | |
2230 | struct elf32_hppa_link_hash_entry *eh; | |
2231 | struct elf32_hppa_dyn_reloc_entry *p; | |
2232 | ||
2233 | eh = (struct elf32_hppa_link_hash_entry *) h; | |
2234 | for (p = eh->dyn_relocs; p != NULL; p = p->next) | |
2235 | { | |
2236 | asection *s = p->sec->output_section; | |
2237 | ||
2238 | if (s != NULL && (s->flags & SEC_READONLY) != 0) | |
2239 | { | |
2240 | struct bfd_link_info *info = (struct bfd_link_info *) inf; | |
2241 | ||
2242 | info->flags |= DF_TEXTREL; | |
2243 | ||
2244 | /* Not an error, just cut short the traversal. */ | |
2245 | return false; | |
2246 | } | |
2247 | } | |
2248 | return true; | |
2249 | } | |
2250 | ||
2251 | /* Set the sizes of the dynamic sections. */ | |
2252 | ||
2253 | static boolean | |
2254 | elf32_hppa_size_dynamic_sections (output_bfd, info) | |
2255 | bfd *output_bfd ATTRIBUTE_UNUSED; | |
2256 | struct bfd_link_info *info; | |
2257 | { | |
2258 | struct elf32_hppa_link_hash_table *htab; | |
2259 | bfd *dynobj; | |
2260 | bfd *ibfd; | |
2261 | asection *s; | |
2262 | boolean relocs; | |
2263 | ||
2264 | htab = hppa_link_hash_table (info); | |
2265 | dynobj = htab->elf.dynobj; | |
2266 | if (dynobj == NULL) | |
2267 | abort (); | |
2268 | ||
2269 | if (htab->elf.dynamic_sections_created) | |
2270 | { | |
2271 | /* Set the contents of the .interp section to the interpreter. */ | |
2272 | if (! info->shared) | |
2273 | { | |
2274 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
2275 | if (s == NULL) | |
2276 | abort (); | |
2277 | s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER; | |
2278 | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; | |
2279 | } | |
2280 | ||
2281 | /* Force millicode symbols local. */ | |
2282 | elf_link_hash_traverse (&htab->elf, | |
2283 | clobber_millicode_symbols, | |
2284 | info); | |
2285 | } | |
2286 | else | |
2287 | { | |
2288 | /* Run through the function symbols, looking for any that are | |
2289 | PIC, and mark them as needing .plt entries so that %r19 will | |
2290 | be set up. */ | |
2291 | if (! info->shared) | |
2292 | elf_link_hash_traverse (&htab->elf, mark_PIC_calls, (PTR) info); | |
2293 | } | |
2294 | ||
2295 | /* Set up .got and .plt offsets for local syms, and space for local | |
2296 | dynamic relocs. */ | |
2297 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) | |
2298 | { | |
2299 | bfd_signed_vma *local_got; | |
2300 | bfd_signed_vma *end_local_got; | |
2301 | bfd_signed_vma *local_plt; | |
2302 | bfd_signed_vma *end_local_plt; | |
2303 | bfd_size_type locsymcount; | |
2304 | Elf_Internal_Shdr *symtab_hdr; | |
2305 | asection *srel; | |
2306 | ||
2307 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) | |
2308 | continue; | |
2309 | ||
2310 | for (s = ibfd->sections; s != NULL; s = s->next) | |
2311 | { | |
2312 | struct elf32_hppa_dyn_reloc_entry *p; | |
2313 | ||
2314 | for (p = ((struct elf32_hppa_dyn_reloc_entry *) | |
2315 | elf_section_data (s)->local_dynrel); | |
2316 | p != NULL; | |
2317 | p = p->next) | |
2318 | { | |
2319 | if (!bfd_is_abs_section (p->sec) | |
2320 | && bfd_is_abs_section (p->sec->output_section)) | |
2321 | { | |
2322 | /* Input section has been discarded, either because | |
2323 | it is a copy of a linkonce section or due to | |
2324 | linker script /DISCARD/, so we'll be discarding | |
2325 | the relocs too. */ | |
2326 | } | |
2327 | else | |
2328 | { | |
2329 | srel = elf_section_data (p->sec)->sreloc; | |
2330 | srel->_raw_size += p->count * sizeof (Elf32_External_Rela); | |
2331 | } | |
2332 | } | |
2333 | } | |
2334 | ||
2335 | local_got = elf_local_got_refcounts (ibfd); | |
2336 | if (!local_got) | |
2337 | continue; | |
2338 | ||
2339 | symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; | |
2340 | locsymcount = symtab_hdr->sh_info; | |
2341 | end_local_got = local_got + locsymcount; | |
2342 | s = htab->sgot; | |
2343 | srel = htab->srelgot; | |
2344 | for (; local_got < end_local_got; ++local_got) | |
2345 | { | |
2346 | if (*local_got > 0) | |
2347 | { | |
2348 | *local_got = s->_raw_size; | |
2349 | s->_raw_size += GOT_ENTRY_SIZE; | |
2350 | if (info->shared) | |
2351 | srel->_raw_size += sizeof (Elf32_External_Rela); | |
2352 | } | |
2353 | else | |
2354 | *local_got = (bfd_vma) -1; | |
2355 | } | |
2356 | ||
2357 | local_plt = end_local_got; | |
2358 | end_local_plt = local_plt + locsymcount; | |
2359 | if (! htab->elf.dynamic_sections_created) | |
2360 | { | |
2361 | /* Won't be used, but be safe. */ | |
2362 | for (; local_plt < end_local_plt; ++local_plt) | |
2363 | *local_plt = (bfd_vma) -1; | |
2364 | } | |
2365 | else | |
2366 | { | |
2367 | s = htab->splt; | |
2368 | srel = htab->srelplt; | |
2369 | for (; local_plt < end_local_plt; ++local_plt) | |
2370 | { | |
2371 | if (*local_plt > 0) | |
2372 | { | |
2373 | *local_plt = s->_raw_size; | |
2374 | s->_raw_size += PLT_ENTRY_SIZE; | |
2375 | if (info->shared) | |
2376 | srel->_raw_size += sizeof (Elf32_External_Rela); | |
2377 | } | |
2378 | else | |
2379 | *local_plt = (bfd_vma) -1; | |
2380 | } | |
2381 | } | |
2382 | } | |
2383 | ||
2384 | /* Do all the .plt entries without relocs first. The dynamic linker | |
2385 | uses the last .plt reloc to find the end of the .plt (and hence | |
2386 | the start of the .got) for lazy linking. */ | |
2387 | elf_link_hash_traverse (&htab->elf, allocate_plt_static, (PTR) info); | |
2388 | ||
2389 | /* Allocate global sym .plt and .got entries, and space for global | |
2390 | sym dynamic relocs. */ | |
2391 | elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info); | |
2392 | ||
2393 | /* The check_relocs and adjust_dynamic_symbol entry points have | |
2394 | determined the sizes of the various dynamic sections. Allocate | |
2395 | memory for them. */ | |
2396 | relocs = false; | |
2397 | for (s = dynobj->sections; s != NULL; s = s->next) | |
2398 | { | |
2399 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
2400 | continue; | |
2401 | ||
2402 | if (s == htab->splt) | |
2403 | { | |
2404 | if (htab->need_plt_stub) | |
2405 | { | |
2406 | /* Make space for the plt stub at the end of the .plt | |
2407 | section. We want this stub right at the end, up | |
2408 | against the .got section. */ | |
2409 | int gotalign = bfd_section_alignment (dynobj, htab->sgot); | |
2410 | int pltalign = bfd_section_alignment (dynobj, s); | |
2411 | bfd_size_type mask; | |
2412 | ||
2413 | if (gotalign > pltalign) | |
2414 | bfd_set_section_alignment (dynobj, s, gotalign); | |
2415 | mask = ((bfd_size_type) 1 << gotalign) - 1; | |
2416 | s->_raw_size = (s->_raw_size + sizeof (plt_stub) + mask) & ~mask; | |
2417 | } | |
2418 | } | |
2419 | else if (s == htab->sgot) | |
2420 | ; | |
2421 | else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0) | |
2422 | { | |
2423 | if (s->_raw_size != 0) | |
2424 | { | |
2425 | /* Remember whether there are any reloc sections other | |
2426 | than .rela.plt. */ | |
2427 | if (s != htab->srelplt) | |
2428 | relocs = true; | |
2429 | ||
2430 | /* We use the reloc_count field as a counter if we need | |
2431 | to copy relocs into the output file. */ | |
2432 | s->reloc_count = 0; | |
2433 | } | |
2434 | } | |
2435 | else | |
2436 | { | |
2437 | /* It's not one of our sections, so don't allocate space. */ | |
2438 | continue; | |
2439 | } | |
2440 | ||
2441 | if (s->_raw_size == 0) | |
2442 | { | |
2443 | /* If we don't need this section, strip it from the | |
2444 | output file. This is mostly to handle .rela.bss and | |
2445 | .rela.plt. We must create both sections in | |
2446 | create_dynamic_sections, because they must be created | |
2447 | before the linker maps input sections to output | |
2448 | sections. The linker does that before | |
2449 | adjust_dynamic_symbol is called, and it is that | |
2450 | function which decides whether anything needs to go | |
2451 | into these sections. */ | |
2452 | _bfd_strip_section_from_output (info, s); | |
2453 | continue; | |
2454 | } | |
2455 | ||
2456 | /* Allocate memory for the section contents. Zero it, because | |
2457 | we may not fill in all the reloc sections. */ | |
2458 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size); | |
2459 | if (s->contents == NULL && s->_raw_size != 0) | |
2460 | return false; | |
2461 | } | |
2462 | ||
2463 | if (htab->elf.dynamic_sections_created) | |
2464 | { | |
2465 | /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It | |
2466 | actually has nothing to do with the PLT, it is how we | |
2467 | communicate the LTP value of a load module to the dynamic | |
2468 | linker. */ | |
2469 | #define add_dynamic_entry(TAG, VAL) \ | |
2470 | bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL)) | |
2471 | ||
2472 | if (!add_dynamic_entry (DT_PLTGOT, 0)) | |
2473 | return false; | |
2474 | ||
2475 | /* Add some entries to the .dynamic section. We fill in the | |
2476 | values later, in elf32_hppa_finish_dynamic_sections, but we | |
2477 | must add the entries now so that we get the correct size for | |
2478 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
2479 | dynamic linker and used by the debugger. */ | |
2480 | if (!info->shared) | |
2481 | { | |
2482 | if (!add_dynamic_entry (DT_DEBUG, 0)) | |
2483 | return false; | |
2484 | } | |
2485 | ||
2486 | if (htab->srelplt->_raw_size != 0) | |
2487 | { | |
2488 | if (!add_dynamic_entry (DT_PLTRELSZ, 0) | |
2489 | || !add_dynamic_entry (DT_PLTREL, DT_RELA) | |
2490 | || !add_dynamic_entry (DT_JMPREL, 0)) | |
2491 | return false; | |
2492 | } | |
2493 | ||
2494 | if (relocs) | |
2495 | { | |
2496 | if (!add_dynamic_entry (DT_RELA, 0) | |
2497 | || !add_dynamic_entry (DT_RELASZ, 0) | |
2498 | || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) | |
2499 | return false; | |
2500 | ||
2501 | /* If any dynamic relocs apply to a read-only section, | |
2502 | then we need a DT_TEXTREL entry. */ | |
2503 | elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, (PTR) info); | |
2504 | ||
2505 | if ((info->flags & DF_TEXTREL) != 0) | |
2506 | { | |
2507 | if (!add_dynamic_entry (DT_TEXTREL, 0)) | |
2508 | return false; | |
2509 | } | |
2510 | } | |
2511 | } | |
2512 | #undef add_dynamic_entry | |
2513 | ||
2514 | return true; | |
2515 | } | |
2516 | ||
2517 | /* External entry points for sizing and building linker stubs. */ | |
2518 | ||
2519 | /* Determine and set the size of the stub section for a final link. | |
2520 | ||
2521 | The basic idea here is to examine all the relocations looking for | |
2522 | PC-relative calls to a target that is unreachable with a "bl" | |
2523 | instruction. */ | |
2524 | ||
2525 | boolean | |
2526 | elf32_hppa_size_stubs (output_bfd, stub_bfd, info, multi_subspace, group_size, | |
2527 | add_stub_section, layout_sections_again) | |
2528 | bfd *output_bfd; | |
2529 | bfd *stub_bfd; | |
2530 | struct bfd_link_info *info; | |
2531 | boolean multi_subspace; | |
2532 | bfd_signed_vma group_size; | |
2533 | asection * (*add_stub_section) PARAMS ((const char *, asection *)); | |
2534 | void (*layout_sections_again) PARAMS ((void)); | |
2535 | { | |
2536 | bfd *input_bfd; | |
2537 | asection *section; | |
2538 | asection **input_list, **list; | |
2539 | Elf_Internal_Sym *local_syms, **all_local_syms; | |
2540 | unsigned int bfd_indx, bfd_count; | |
2541 | int top_id, top_index; | |
2542 | struct elf32_hppa_link_hash_table *htab; | |
2543 | bfd_size_type stub_group_size; | |
2544 | boolean stubs_always_before_branch; | |
2545 | boolean stub_changed = 0; | |
2546 | boolean ret = 0; | |
2547 | bfd_size_type amt; | |
2548 | ||
2549 | htab = hppa_link_hash_table (info); | |
2550 | ||
2551 | /* Stash our params away. */ | |
2552 | htab->stub_bfd = stub_bfd; | |
2553 | htab->multi_subspace = multi_subspace; | |
2554 | htab->add_stub_section = add_stub_section; | |
2555 | htab->layout_sections_again = layout_sections_again; | |
2556 | stubs_always_before_branch = group_size < 0; | |
2557 | if (group_size < 0) | |
2558 | stub_group_size = -group_size; | |
2559 | else | |
2560 | stub_group_size = group_size; | |
2561 | if (stub_group_size == 1) | |
2562 | { | |
2563 | /* Default values. */ | |
2564 | stub_group_size = 7680000; | |
2565 | if (htab->has_17bit_branch || htab->multi_subspace) | |
2566 | stub_group_size = 240000; | |
2567 | if (htab->has_12bit_branch) | |
2568 | stub_group_size = 7500; | |
2569 | } | |
2570 | ||
2571 | /* Count the number of input BFDs and find the top input section id. */ | |
2572 | for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; | |
2573 | input_bfd != NULL; | |
2574 | input_bfd = input_bfd->link_next) | |
2575 | { | |
2576 | bfd_count += 1; | |
2577 | for (section = input_bfd->sections; | |
2578 | section != NULL; | |
2579 | section = section->next) | |
2580 | { | |
2581 | if (top_id < section->id) | |
2582 | top_id = section->id; | |
2583 | } | |
2584 | } | |
2585 | ||
2586 | amt = sizeof (struct map_stub) * (top_id + 1); | |
2587 | htab->stub_group = (struct map_stub *) bfd_zmalloc (amt); | |
2588 | if (htab->stub_group == NULL) | |
2589 | return false; | |
2590 | ||
2591 | /* Make a list of input sections for each output section included in | |
2592 | the link. | |
2593 | ||
2594 | We can't use output_bfd->section_count here to find the top output | |
2595 | section index as some sections may have been removed, and | |
2596 | _bfd_strip_section_from_output doesn't renumber the indices. */ | |
2597 | for (section = output_bfd->sections, top_index = 0; | |
2598 | section != NULL; | |
2599 | section = section->next) | |
2600 | { | |
2601 | if (top_index < section->index) | |
2602 | top_index = section->index; | |
2603 | } | |
2604 | ||
2605 | amt = sizeof (asection *) * (top_index + 1); | |
2606 | input_list = (asection **) bfd_malloc (amt); | |
2607 | if (input_list == NULL) | |
2608 | return false; | |
2609 | ||
2610 | /* For sections we aren't interested in, mark their entries with a | |
2611 | value we can check later. */ | |
2612 | list = input_list + top_index; | |
2613 | do | |
2614 | *list = bfd_abs_section_ptr; | |
2615 | while (list-- != input_list); | |
2616 | ||
2617 | for (section = output_bfd->sections; | |
2618 | section != NULL; | |
2619 | section = section->next) | |
2620 | { | |
2621 | if ((section->flags & SEC_CODE) != 0) | |
2622 | input_list[section->index] = NULL; | |
2623 | } | |
2624 | ||
2625 | /* Now actually build the lists. */ | |
2626 | for (input_bfd = info->input_bfds; | |
2627 | input_bfd != NULL; | |
2628 | input_bfd = input_bfd->link_next) | |
2629 | { | |
2630 | for (section = input_bfd->sections; | |
2631 | section != NULL; | |
2632 | section = section->next) | |
2633 | { | |
2634 | if (section->output_section != NULL | |
2635 | && section->output_section->owner == output_bfd | |
2636 | && section->output_section->index <= top_index) | |
2637 | { | |
2638 | list = input_list + section->output_section->index; | |
2639 | if (*list != bfd_abs_section_ptr) | |
2640 | { | |
2641 | /* Steal the link_sec pointer for our list. */ | |
2642 | #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec) | |
2643 | /* This happens to make the list in reverse order, | |
2644 | which is what we want. */ | |
2645 | PREV_SEC (section) = *list; | |
2646 | *list = section; | |
2647 | } | |
2648 | } | |
2649 | } | |
2650 | } | |
2651 | ||
2652 | /* See whether we can group stub sections together. Grouping stub | |
2653 | sections may result in fewer stubs. More importantly, we need to | |
2654 | put all .init* and .fini* stubs at the beginning of the .init or | |
2655 | .fini output sections respectively, because glibc splits the | |
2656 | _init and _fini functions into multiple parts. Putting a stub in | |
2657 | the middle of a function is not a good idea. */ | |
2658 | list = input_list + top_index; | |
2659 | do | |
2660 | { | |
2661 | asection *tail = *list; | |
2662 | if (tail == bfd_abs_section_ptr) | |
2663 | continue; | |
2664 | while (tail != NULL) | |
2665 | { | |
2666 | asection *curr; | |
2667 | asection *prev; | |
2668 | bfd_size_type total; | |
2669 | ||
2670 | curr = tail; | |
2671 | if (tail->_cooked_size) | |
2672 | total = tail->_cooked_size; | |
2673 | else | |
2674 | total = tail->_raw_size; | |
2675 | while ((prev = PREV_SEC (curr)) != NULL | |
2676 | && ((total += curr->output_offset - prev->output_offset) | |
2677 | < stub_group_size)) | |
2678 | curr = prev; | |
2679 | ||
2680 | /* OK, the size from the start of CURR to the end is less | |
2681 | than 240000 bytes and thus can be handled by one stub | |
2682 | section. (or the tail section is itself larger than | |
2683 | 240000 bytes, in which case we may be toast.) | |
2684 | We should really be keeping track of the total size of | |
2685 | stubs added here, as stubs contribute to the final output | |
2686 | section size. That's a little tricky, and this way will | |
2687 | only break if stubs added total more than 22144 bytes, or | |
2688 | 2768 long branch stubs. It seems unlikely for more than | |
2689 | 2768 different functions to be called, especially from | |
2690 | code only 240000 bytes long. This limit used to be | |
2691 | 250000, but c++ code tends to generate lots of little | |
2692 | functions, and sometimes violated the assumption. */ | |
2693 | do | |
2694 | { | |
2695 | prev = PREV_SEC (tail); | |
2696 | /* Set up this stub group. */ | |
2697 | htab->stub_group[tail->id].link_sec = curr; | |
2698 | } | |
2699 | while (tail != curr && (tail = prev) != NULL); | |
2700 | ||
2701 | /* But wait, there's more! Input sections up to 240000 | |
2702 | bytes before the stub section can be handled by it too. */ | |
2703 | if (!stubs_always_before_branch) | |
2704 | { | |
2705 | total = 0; | |
2706 | while (prev != NULL | |
2707 | && ((total += tail->output_offset - prev->output_offset) | |
2708 | < stub_group_size)) | |
2709 | { | |
2710 | tail = prev; | |
2711 | prev = PREV_SEC (tail); | |
2712 | htab->stub_group[tail->id].link_sec = curr; | |
2713 | } | |
2714 | } | |
2715 | tail = prev; | |
2716 | } | |
2717 | } | |
2718 | while (list-- != input_list); | |
2719 | free (input_list); | |
2720 | #undef PREV_SEC | |
2721 | ||
2722 | /* We want to read in symbol extension records only once. To do this | |
2723 | we need to read in the local symbols in parallel and save them for | |
2724 | later use; so hold pointers to the local symbols in an array. */ | |
2725 | amt = sizeof (Elf_Internal_Sym *) * bfd_count; | |
2726 | all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt); | |
2727 | if (all_local_syms == NULL) | |
2728 | return false; | |
2729 | ||
2730 | /* Walk over all the input BFDs, swapping in local symbols. | |
2731 | If we are creating a shared library, create hash entries for the | |
2732 | export stubs. */ | |
2733 | for (input_bfd = info->input_bfds, bfd_indx = 0; | |
2734 | input_bfd != NULL; | |
2735 | input_bfd = input_bfd->link_next, bfd_indx++) | |
2736 | { | |
2737 | Elf_Internal_Shdr *symtab_hdr; | |
2738 | Elf_Internal_Shdr *shndx_hdr; | |
2739 | Elf_Internal_Sym *isym; | |
2740 | Elf32_External_Sym *ext_syms, *esym, *end_sy; | |
2741 | Elf_External_Sym_Shndx *shndx_buf, *shndx; | |
2742 | bfd_size_type sec_size; | |
2743 | ||
2744 | /* We'll need the symbol table in a second. */ | |
2745 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
2746 | if (symtab_hdr->sh_info == 0) | |
2747 | continue; | |
2748 | ||
2749 | /* We need an array of the local symbols attached to the input bfd. | |
2750 | Unfortunately, we're going to have to read & swap them in. */ | |
2751 | sec_size = symtab_hdr->sh_info; | |
2752 | sec_size *= sizeof (Elf_Internal_Sym); | |
2753 | local_syms = (Elf_Internal_Sym *) bfd_malloc (sec_size); | |
2754 | if (local_syms == NULL) | |
2755 | goto error_ret_free_local; | |
2756 | ||
2757 | all_local_syms[bfd_indx] = local_syms; | |
2758 | sec_size = symtab_hdr->sh_info; | |
2759 | sec_size *= sizeof (Elf32_External_Sym); | |
2760 | ext_syms = (Elf32_External_Sym *) bfd_malloc (sec_size); | |
2761 | if (ext_syms == NULL) | |
2762 | goto error_ret_free_local; | |
2763 | ||
2764 | if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0 | |
2765 | || bfd_bread ((PTR) ext_syms, sec_size, input_bfd) != sec_size) | |
2766 | { | |
2767 | error_ret_free_ext_syms: | |
2768 | free (ext_syms); | |
2769 | goto error_ret_free_local; | |
2770 | } | |
2771 | ||
2772 | shndx_buf = NULL; | |
2773 | shndx_hdr = &elf_tdata (input_bfd)->symtab_shndx_hdr; | |
2774 | if (shndx_hdr->sh_size != 0) | |
2775 | { | |
2776 | sec_size = symtab_hdr->sh_info; | |
2777 | sec_size *= sizeof (Elf_External_Sym_Shndx); | |
2778 | shndx_buf = (Elf_External_Sym_Shndx *) bfd_malloc (sec_size); | |
2779 | if (shndx_buf == NULL) | |
2780 | goto error_ret_free_ext_syms; | |
2781 | ||
2782 | if (bfd_seek (input_bfd, shndx_hdr->sh_offset, SEEK_SET) != 0 | |
2783 | || bfd_bread ((PTR) shndx_buf, sec_size, input_bfd) != sec_size) | |
2784 | { | |
2785 | free (shndx_buf); | |
2786 | goto error_ret_free_ext_syms; | |
2787 | } | |
2788 | } | |
2789 | ||
2790 | /* Swap the local symbols in. */ | |
2791 | for (esym = ext_syms, end_sy = esym + symtab_hdr->sh_info, | |
2792 | isym = local_syms, shndx = shndx_buf; | |
2793 | esym < end_sy; | |
2794 | esym++, isym++, shndx = (shndx ? shndx + 1 : NULL)) | |
2795 | bfd_elf32_swap_symbol_in (input_bfd, esym, shndx, isym); | |
2796 | ||
2797 | /* Now we can free the external symbols. */ | |
2798 | free (shndx_buf); | |
2799 | free (ext_syms); | |
2800 | ||
2801 | if (info->shared && htab->multi_subspace) | |
2802 | { | |
2803 | struct elf_link_hash_entry **sym_hashes; | |
2804 | struct elf_link_hash_entry **end_hashes; | |
2805 | unsigned int symcount; | |
2806 | ||
2807 | symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) | |
2808 | - symtab_hdr->sh_info); | |
2809 | sym_hashes = elf_sym_hashes (input_bfd); | |
2810 | end_hashes = sym_hashes + symcount; | |
2811 | ||
2812 | /* Look through the global syms for functions; We need to | |
2813 | build export stubs for all globally visible functions. */ | |
2814 | for (; sym_hashes < end_hashes; sym_hashes++) | |
2815 | { | |
2816 | struct elf32_hppa_link_hash_entry *hash; | |
2817 | ||
2818 | hash = (struct elf32_hppa_link_hash_entry *) *sym_hashes; | |
2819 | ||
2820 | while (hash->elf.root.type == bfd_link_hash_indirect | |
2821 | || hash->elf.root.type == bfd_link_hash_warning) | |
2822 | hash = ((struct elf32_hppa_link_hash_entry *) | |
2823 | hash->elf.root.u.i.link); | |
2824 | ||
2825 | /* At this point in the link, undefined syms have been | |
2826 | resolved, so we need to check that the symbol was | |
2827 | defined in this BFD. */ | |
2828 | if ((hash->elf.root.type == bfd_link_hash_defined | |
2829 | || hash->elf.root.type == bfd_link_hash_defweak) | |
2830 | && hash->elf.type == STT_FUNC | |
2831 | && hash->elf.root.u.def.section->output_section != NULL | |
2832 | && (hash->elf.root.u.def.section->output_section->owner | |
2833 | == output_bfd) | |
2834 | && hash->elf.root.u.def.section->owner == input_bfd | |
2835 | && (hash->elf.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) | |
2836 | && !(hash->elf.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) | |
2837 | && ELF_ST_VISIBILITY (hash->elf.other) == STV_DEFAULT) | |
2838 | { | |
2839 | asection *sec; | |
2840 | const char *stub_name; | |
2841 | struct elf32_hppa_stub_hash_entry *stub_entry; | |
2842 | ||
2843 | sec = hash->elf.root.u.def.section; | |
2844 | stub_name = hash->elf.root.root.string; | |
2845 | stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, | |
2846 | stub_name, | |
2847 | false, false); | |
2848 | if (stub_entry == NULL) | |
2849 | { | |
2850 | stub_entry = hppa_add_stub (stub_name, sec, htab); | |
2851 | if (!stub_entry) | |
2852 | goto error_ret_free_local; | |
2853 | ||
2854 | stub_entry->target_value = hash->elf.root.u.def.value; | |
2855 | stub_entry->target_section = hash->elf.root.u.def.section; | |
2856 | stub_entry->stub_type = hppa_stub_export; | |
2857 | stub_entry->h = hash; | |
2858 | stub_changed = 1; | |
2859 | } | |
2860 | else | |
2861 | { | |
2862 | (*_bfd_error_handler) (_("%s: duplicate export stub %s"), | |
2863 | bfd_archive_filename (input_bfd), | |
2864 | stub_name); | |
2865 | } | |
2866 | } | |
2867 | } | |
2868 | } | |
2869 | } | |
2870 | ||
2871 | while (1) | |
2872 | { | |
2873 | asection *stub_sec; | |
2874 | ||
2875 | for (input_bfd = info->input_bfds, bfd_indx = 0; | |
2876 | input_bfd != NULL; | |
2877 | input_bfd = input_bfd->link_next, bfd_indx++) | |
2878 | { | |
2879 | Elf_Internal_Shdr *symtab_hdr; | |
2880 | ||
2881 | /* We'll need the symbol table in a second. */ | |
2882 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
2883 | if (symtab_hdr->sh_info == 0) | |
2884 | continue; | |
2885 | ||
2886 | local_syms = all_local_syms[bfd_indx]; | |
2887 | ||
2888 | /* Walk over each section attached to the input bfd. */ | |
2889 | for (section = input_bfd->sections; | |
2890 | section != NULL; | |
2891 | section = section->next) | |
2892 | { | |
2893 | Elf_Internal_Shdr *input_rel_hdr; | |
2894 | Elf32_External_Rela *external_relocs, *erelaend, *erela; | |
2895 | Elf_Internal_Rela *internal_relocs, *irelaend, *irela; | |
2896 | ||
2897 | /* If there aren't any relocs, then there's nothing more | |
2898 | to do. */ | |
2899 | if ((section->flags & SEC_RELOC) == 0 | |
2900 | || section->reloc_count == 0) | |
2901 | continue; | |
2902 | ||
2903 | /* If this section is a link-once section that will be | |
2904 | discarded, then don't create any stubs. */ | |
2905 | if (section->output_section == NULL | |
2906 | || section->output_section->owner != output_bfd) | |
2907 | continue; | |
2908 | ||
2909 | /* Allocate space for the external relocations. */ | |
2910 | amt = section->reloc_count; | |
2911 | amt *= sizeof (Elf32_External_Rela); | |
2912 | external_relocs = (Elf32_External_Rela *) bfd_malloc (amt); | |
2913 | if (external_relocs == NULL) | |
2914 | { | |
2915 | goto error_ret_free_local; | |
2916 | } | |
2917 | ||
2918 | /* Likewise for the internal relocations. */ | |
2919 | amt = section->reloc_count; | |
2920 | amt *= sizeof (Elf_Internal_Rela); | |
2921 | internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt); | |
2922 | if (internal_relocs == NULL) | |
2923 | { | |
2924 | free (external_relocs); | |
2925 | goto error_ret_free_local; | |
2926 | } | |
2927 | ||
2928 | /* Read in the external relocs. */ | |
2929 | input_rel_hdr = &elf_section_data (section)->rel_hdr; | |
2930 | if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0 | |
2931 | || bfd_bread ((PTR) external_relocs, | |
2932 | input_rel_hdr->sh_size, | |
2933 | input_bfd) != input_rel_hdr->sh_size) | |
2934 | { | |
2935 | free (external_relocs); | |
2936 | error_ret_free_internal: | |
2937 | free (internal_relocs); | |
2938 | goto error_ret_free_local; | |
2939 | } | |
2940 | ||
2941 | /* Swap in the relocs. */ | |
2942 | erela = external_relocs; | |
2943 | erelaend = erela + section->reloc_count; | |
2944 | irela = internal_relocs; | |
2945 | for (; erela < erelaend; erela++, irela++) | |
2946 | bfd_elf32_swap_reloca_in (input_bfd, erela, irela); | |
2947 | ||
2948 | /* We're done with the external relocs, free them. */ | |
2949 | free (external_relocs); | |
2950 | ||
2951 | /* Now examine each relocation. */ | |
2952 | irela = internal_relocs; | |
2953 | irelaend = irela + section->reloc_count; | |
2954 | for (; irela < irelaend; irela++) | |
2955 | { | |
2956 | unsigned int r_type, r_indx; | |
2957 | enum elf32_hppa_stub_type stub_type; | |
2958 | struct elf32_hppa_stub_hash_entry *stub_entry; | |
2959 | asection *sym_sec; | |
2960 | bfd_vma sym_value; | |
2961 | bfd_vma destination; | |
2962 | struct elf32_hppa_link_hash_entry *hash; | |
2963 | char *stub_name; | |
2964 | const asection *id_sec; | |
2965 | ||
2966 | r_type = ELF32_R_TYPE (irela->r_info); | |
2967 | r_indx = ELF32_R_SYM (irela->r_info); | |
2968 | ||
2969 | if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED) | |
2970 | { | |
2971 | bfd_set_error (bfd_error_bad_value); | |
2972 | goto error_ret_free_internal; | |
2973 | } | |
2974 | ||
2975 | /* Only look for stubs on call instructions. */ | |
2976 | if (r_type != (unsigned int) R_PARISC_PCREL12F | |
2977 | && r_type != (unsigned int) R_PARISC_PCREL17F | |
2978 | && r_type != (unsigned int) R_PARISC_PCREL22F) | |
2979 | continue; | |
2980 | ||
2981 | /* Now determine the call target, its name, value, | |
2982 | section. */ | |
2983 | sym_sec = NULL; | |
2984 | sym_value = 0; | |
2985 | destination = 0; | |
2986 | hash = NULL; | |
2987 | if (r_indx < symtab_hdr->sh_info) | |
2988 | { | |
2989 | /* It's a local symbol. */ | |
2990 | Elf_Internal_Sym *sym; | |
2991 | Elf_Internal_Shdr *hdr; | |
2992 | ||
2993 | sym = local_syms + r_indx; | |
2994 | hdr = elf_elfsections (input_bfd)[sym->st_shndx]; | |
2995 | sym_sec = hdr->bfd_section; | |
2996 | if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) | |
2997 | sym_value = sym->st_value; | |
2998 | destination = (sym_value + irela->r_addend | |
2999 | + sym_sec->output_offset | |
3000 | + sym_sec->output_section->vma); | |
3001 | } | |
3002 | else | |
3003 | { | |
3004 | /* It's an external symbol. */ | |
3005 | int e_indx; | |
3006 | ||
3007 | e_indx = r_indx - symtab_hdr->sh_info; | |
3008 | hash = ((struct elf32_hppa_link_hash_entry *) | |
3009 | elf_sym_hashes (input_bfd)[e_indx]); | |
3010 | ||
3011 | while (hash->elf.root.type == bfd_link_hash_indirect | |
3012 | || hash->elf.root.type == bfd_link_hash_warning) | |
3013 | hash = ((struct elf32_hppa_link_hash_entry *) | |
3014 | hash->elf.root.u.i.link); | |
3015 | ||
3016 | if (hash->elf.root.type == bfd_link_hash_defined | |
3017 | || hash->elf.root.type == bfd_link_hash_defweak) | |
3018 | { | |
3019 | sym_sec = hash->elf.root.u.def.section; | |
3020 | sym_value = hash->elf.root.u.def.value; | |
3021 | if (sym_sec->output_section != NULL) | |
3022 | destination = (sym_value + irela->r_addend | |
3023 | + sym_sec->output_offset | |
3024 | + sym_sec->output_section->vma); | |
3025 | } | |
3026 | else if (hash->elf.root.type == bfd_link_hash_undefweak) | |
3027 | { | |
3028 | if (! info->shared) | |
3029 | continue; | |
3030 | } | |
3031 | else if (hash->elf.root.type == bfd_link_hash_undefined) | |
3032 | { | |
3033 | if (! (info->shared | |
3034 | && !info->no_undefined | |
3035 | && (ELF_ST_VISIBILITY (hash->elf.other) | |
3036 | == STV_DEFAULT) | |
3037 | && hash->elf.type != STT_PARISC_MILLI)) | |
3038 | continue; | |
3039 | } | |
3040 | else | |
3041 | { | |
3042 | bfd_set_error (bfd_error_bad_value); | |
3043 | goto error_ret_free_internal; | |
3044 | } | |
3045 | } | |
3046 | ||
3047 | /* Determine what (if any) linker stub is needed. */ | |
3048 | stub_type = hppa_type_of_stub (section, irela, hash, | |
3049 | destination); | |
3050 | if (stub_type == hppa_stub_none) | |
3051 | continue; | |
3052 | ||
3053 | /* Support for grouping stub sections. */ | |
3054 | id_sec = htab->stub_group[section->id].link_sec; | |
3055 | ||
3056 | /* Get the name of this stub. */ | |
3057 | stub_name = hppa_stub_name (id_sec, sym_sec, hash, irela); | |
3058 | if (!stub_name) | |
3059 | goto error_ret_free_internal; | |
3060 | ||
3061 | stub_entry = hppa_stub_hash_lookup (&htab->stub_hash_table, | |
3062 | stub_name, | |
3063 | false, false); | |
3064 | if (stub_entry != NULL) | |
3065 | { | |
3066 | /* The proper stub has already been created. */ | |
3067 | free (stub_name); | |
3068 | continue; | |
3069 | } | |
3070 | ||
3071 | stub_entry = hppa_add_stub (stub_name, section, htab); | |
3072 | if (stub_entry == NULL) | |
3073 | { | |
3074 | free (stub_name); | |
3075 | goto error_ret_free_local; | |
3076 | } | |
3077 | ||
3078 | stub_entry->target_value = sym_value; | |
3079 | stub_entry->target_section = sym_sec; | |
3080 | stub_entry->stub_type = stub_type; | |
3081 | if (info->shared) | |
3082 | { | |
3083 | if (stub_type == hppa_stub_import) | |
3084 | stub_entry->stub_type = hppa_stub_import_shared; | |
3085 | else if (stub_type == hppa_stub_long_branch) | |
3086 | stub_entry->stub_type = hppa_stub_long_branch_shared; | |
3087 | } | |
3088 | stub_entry->h = hash; | |
3089 | stub_changed = 1; | |
3090 | } | |
3091 | ||
3092 | /* We're done with the internal relocs, free them. */ | |
3093 | free (internal_relocs); | |
3094 | } | |
3095 | } | |
3096 | ||
3097 | if (!stub_changed) | |
3098 | break; | |
3099 | ||
3100 | /* OK, we've added some stubs. Find out the new size of the | |
3101 | stub sections. */ | |
3102 | for (stub_sec = htab->stub_bfd->sections; | |
3103 | stub_sec != NULL; | |
3104 | stub_sec = stub_sec->next) | |
3105 | { | |
3106 | stub_sec->_raw_size = 0; | |
3107 | stub_sec->_cooked_size = 0; | |
3108 | } | |
3109 | ||
3110 | bfd_hash_traverse (&htab->stub_hash_table, hppa_size_one_stub, htab); | |
3111 | ||
3112 | /* Ask the linker to do its stuff. */ | |
3113 | (*htab->layout_sections_again) (); | |
3114 | stub_changed = 0; | |
3115 | } | |
3116 | ||
3117 | ret = 1; | |
3118 | ||
3119 | error_ret_free_local: | |
3120 | while (bfd_count-- > 0) | |
3121 | if (all_local_syms[bfd_count]) | |
3122 | free (all_local_syms[bfd_count]); | |
3123 | free (all_local_syms); | |
3124 | ||
3125 | return ret; | |
3126 | } | |
3127 | ||
3128 | /* For a final link, this function is called after we have sized the | |
3129 | stubs to provide a value for __gp. */ | |
3130 | ||
3131 | boolean | |
3132 | elf32_hppa_set_gp (abfd, info) | |
3133 | bfd *abfd; | |
3134 | struct bfd_link_info *info; | |
3135 | { | |
3136 | struct elf32_hppa_link_hash_table *htab; | |
3137 | struct elf_link_hash_entry *h; | |
3138 | asection *sec; | |
3139 | bfd_vma gp_val; | |
3140 | ||
3141 | htab = hppa_link_hash_table (info); | |
3142 | h = elf_link_hash_lookup (&htab->elf, "$global$", false, false, false); | |
3143 | ||
3144 | if (h != NULL | |
3145 | && (h->root.type == bfd_link_hash_defined | |
3146 | || h->root.type == bfd_link_hash_defweak)) | |
3147 | { | |
3148 | gp_val = h->root.u.def.value; | |
3149 | sec = h->root.u.def.section; | |
3150 | } | |
3151 | else | |
3152 | { | |
3153 | /* Choose to point our LTP at, in this order, one of .plt, .got, | |
3154 | or .data, if these sections exist. In the case of choosing | |
3155 | .plt try to make the LTP ideal for addressing anywhere in the | |
3156 | .plt or .got with a 14 bit signed offset. Typically, the end | |
3157 | of the .plt is the start of the .got, so choose .plt + 0x2000 | |
3158 | if either the .plt or .got is larger than 0x2000. If both | |
3159 | the .plt and .got are smaller than 0x2000, choose the end of | |
3160 | the .plt section. */ | |
3161 | ||
3162 | sec = htab->splt; | |
3163 | if (sec != NULL) | |
3164 | { | |
3165 | gp_val = sec->_raw_size; | |
3166 | if (gp_val > 0x2000 | |
3167 | || (htab->sgot && htab->sgot->_raw_size > 0x2000)) | |
3168 | { | |
3169 | gp_val = 0x2000; | |
3170 | } | |
3171 | } | |
3172 | else | |
3173 | { | |
3174 | gp_val = 0; | |
3175 | sec = htab->sgot; | |
3176 | if (sec != NULL) | |
3177 | { | |
3178 | /* We know we don't have a .plt. If .got is large, | |
3179 | offset our LTP. */ | |
3180 | if (sec->_raw_size > 0x2000) | |
3181 | gp_val = 0x2000; | |
3182 | } | |
3183 | else | |
3184 | { | |
3185 | /* No .plt or .got. Who cares what the LTP is? */ | |
3186 | sec = bfd_get_section_by_name (abfd, ".data"); | |
3187 | } | |
3188 | } | |
3189 | ||
3190 | if (h != NULL) | |
3191 | { | |
3192 | h->root.type = bfd_link_hash_defined; | |
3193 | h->root.u.def.value = gp_val; | |
3194 | if (sec != NULL) | |
3195 | h->root.u.def.section = sec; | |
3196 | else | |
3197 | h->root.u.def.section = bfd_abs_section_ptr; | |
3198 | } | |
3199 | } | |
3200 | ||
3201 | if (sec != NULL && sec->output_section != NULL) | |
3202 | gp_val += sec->output_section->vma + sec->output_offset; | |
3203 | ||
3204 | elf_gp (abfd) = gp_val; | |
3205 | return true; | |
3206 | } | |
3207 | ||
3208 | /* Build all the stubs associated with the current output file. The | |
3209 | stubs are kept in a hash table attached to the main linker hash | |
3210 | table. We also set up the .plt entries for statically linked PIC | |
3211 | functions here. This function is called via hppaelf_finish in the | |
3212 | linker. */ | |
3213 | ||
3214 | boolean | |
3215 | elf32_hppa_build_stubs (info) | |
3216 | struct bfd_link_info *info; | |
3217 | { | |
3218 | asection *stub_sec; | |
3219 | struct bfd_hash_table *table; | |
3220 | struct elf32_hppa_link_hash_table *htab; | |
3221 | ||
3222 | htab = hppa_link_hash_table (info); | |
3223 | ||
3224 | for (stub_sec = htab->stub_bfd->sections; | |
3225 | stub_sec != NULL; | |
3226 | stub_sec = stub_sec->next) | |
3227 | { | |
3228 | bfd_size_type size; | |
3229 | ||
3230 | /* Allocate memory to hold the linker stubs. */ | |
3231 | size = stub_sec->_raw_size; | |
3232 | stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size); | |
3233 | if (stub_sec->contents == NULL && size != 0) | |
3234 | return false; | |
3235 | stub_sec->_raw_size = 0; | |
3236 | } | |
3237 | ||
3238 | /* Build the stubs as directed by the stub hash table. */ | |
3239 | table = &htab->stub_hash_table; | |
3240 | bfd_hash_traverse (table, hppa_build_one_stub, info); | |
3241 | ||
3242 | return true; | |
3243 | } | |
3244 | ||
3245 | /* Perform a final link. */ | |
3246 | ||
3247 | static boolean | |
3248 | elf32_hppa_final_link (abfd, info) | |
3249 | bfd *abfd; | |
3250 | struct bfd_link_info *info; | |
3251 | { | |
3252 | asection *s; | |
3253 | ||
3254 | /* Invoke the regular ELF linker to do all the work. */ | |
3255 | if (!bfd_elf32_bfd_final_link (abfd, info)) | |
3256 | return false; | |
3257 | ||
3258 | /* If we're producing a final executable, sort the contents of the | |
3259 | unwind section. Magic section names, but this is much safer than | |
3260 | having elf32_hppa_relocate_section remember where SEGREL32 relocs | |
3261 | occurred. Consider what happens if someone inept creates a | |
3262 | linker script that puts unwind information in .text. */ | |
3263 | s = bfd_get_section_by_name (abfd, ".PARISC.unwind"); | |
3264 | if (s != NULL) | |
3265 | { | |
3266 | bfd_size_type size; | |
3267 | char *contents; | |
3268 | ||
3269 | size = s->_raw_size; | |
3270 | contents = bfd_malloc (size); | |
3271 | if (contents == NULL) | |
3272 | return false; | |
3273 | ||
3274 | if (! bfd_get_section_contents (abfd, s, contents, (file_ptr) 0, size)) | |
3275 | return false; | |
3276 | ||
3277 | qsort (contents, (size_t) (size / 16), 16, hppa_unwind_entry_compare); | |
3278 | ||
3279 | if (! bfd_set_section_contents (abfd, s, contents, (file_ptr) 0, size)) | |
3280 | return false; | |
3281 | } | |
3282 | return true; | |
3283 | } | |
3284 | ||
3285 | /* Record the lowest address for the data and text segments. */ | |
3286 | ||
3287 | static void | |
3288 | hppa_record_segment_addr (abfd, section, data) | |
3289 | bfd *abfd ATTRIBUTE_UNUSED; | |
3290 | asection *section; | |
3291 | PTR data; | |
3292 | { | |
3293 | struct elf32_hppa_link_hash_table *htab; | |
3294 | ||
3295 | htab = (struct elf32_hppa_link_hash_table *) data; | |
3296 | ||
3297 | if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD)) | |
3298 | { | |
3299 | bfd_vma value = section->vma - section->filepos; | |
3300 | ||
3301 | if ((section->flags & SEC_READONLY) != 0) | |
3302 | { | |
3303 | if (value < htab->text_segment_base) | |
3304 | htab->text_segment_base = value; | |
3305 | } | |
3306 | else | |
3307 | { | |
3308 | if (value < htab->data_segment_base) | |
3309 | htab->data_segment_base = value; | |
3310 | } | |
3311 | } | |
3312 | } | |
3313 | ||
3314 | /* Perform a relocation as part of a final link. */ | |
3315 | ||
3316 | static bfd_reloc_status_type | |
3317 | final_link_relocate (input_section, contents, rel, value, htab, sym_sec, h) | |
3318 | asection *input_section; | |
3319 | bfd_byte *contents; | |
3320 | const Elf_Internal_Rela *rel; | |
3321 | bfd_vma value; | |
3322 | struct elf32_hppa_link_hash_table *htab; | |
3323 | asection *sym_sec; | |
3324 | struct elf32_hppa_link_hash_entry *h; | |
3325 | { | |
3326 | int insn; | |
3327 | unsigned int r_type = ELF32_R_TYPE (rel->r_info); | |
3328 | reloc_howto_type *howto = elf_hppa_howto_table + r_type; | |
3329 | int r_format = howto->bitsize; | |
3330 | enum hppa_reloc_field_selector_type_alt r_field; | |
3331 | bfd *input_bfd = input_section->owner; | |
3332 | bfd_vma offset = rel->r_offset; | |
3333 | bfd_vma max_branch_offset = 0; | |
3334 | bfd_byte *hit_data = contents + offset; | |
3335 | bfd_signed_vma addend = rel->r_addend; | |
3336 | bfd_vma location; | |
3337 | struct elf32_hppa_stub_hash_entry *stub_entry = NULL; | |
3338 | int val; | |
3339 | ||
3340 | if (r_type == R_PARISC_NONE) | |
3341 | return bfd_reloc_ok; | |
3342 | ||
3343 | insn = bfd_get_32 (input_bfd, hit_data); | |
3344 | ||
3345 | /* Find out where we are and where we're going. */ | |
3346 | location = (offset + | |
3347 | input_section->output_offset + | |
3348 | input_section->output_section->vma); | |
3349 | ||
3350 | switch (r_type) | |
3351 | { | |
3352 | case R_PARISC_PCREL12F: | |
3353 | case R_PARISC_PCREL17F: | |
3354 | case R_PARISC_PCREL22F: | |
3355 | /* If this is a call to a function defined in another dynamic | |
3356 | library, or if it is a call to a PIC function in the same | |
3357 | object, or if this is a shared link and it is a call to a | |
3358 | weak symbol which may or may not be in the same object, then | |
3359 | find the import stub in the stub hash. */ | |
3360 | if (sym_sec == NULL | |
3361 | || sym_sec->output_section == NULL | |
3362 | || (h != NULL | |
3363 | && ((h->maybe_pic_call | |
3364 | && !(input_section->flags & SEC_HAS_GOT_REF)) | |
3365 | || (h->elf.root.type == bfd_link_hash_defweak | |
3366 | && h->elf.dynindx != -1 | |
3367 | && h->elf.plt.offset != (bfd_vma) -1)))) | |
3368 | { | |
3369 | stub_entry = hppa_get_stub_entry (input_section, sym_sec, | |
3370 | h, rel, htab); | |
3371 | if (stub_entry != NULL) | |
3372 | { | |
3373 | value = (stub_entry->stub_offset | |
3374 | + stub_entry->stub_sec->output_offset | |
3375 | + stub_entry->stub_sec->output_section->vma); | |
3376 | addend = 0; | |
3377 | } | |
3378 | else if (sym_sec == NULL && h != NULL | |
3379 | && h->elf.root.type == bfd_link_hash_undefweak) | |
3380 | { | |
3381 | /* It's OK if undefined weak. Calls to undefined weak | |
3382 | symbols behave as if the "called" function | |
3383 | immediately returns. We can thus call to a weak | |
3384 | function without first checking whether the function | |
3385 | is defined. */ | |
3386 | value = location; | |
3387 | addend = 8; | |
3388 | } | |
3389 | else | |
3390 | return bfd_reloc_undefined; | |
3391 | } | |
3392 | /* Fall thru. */ | |
3393 | ||
3394 | case R_PARISC_PCREL21L: | |
3395 | case R_PARISC_PCREL17C: | |
3396 | case R_PARISC_PCREL17R: | |
3397 | case R_PARISC_PCREL14R: | |
3398 | case R_PARISC_PCREL14F: | |
3399 | /* Make it a pc relative offset. */ | |
3400 | value -= location; | |
3401 | addend -= 8; | |
3402 | break; | |
3403 | ||
3404 | case R_PARISC_DPREL21L: | |
3405 | case R_PARISC_DPREL14R: | |
3406 | case R_PARISC_DPREL14F: | |
3407 | /* For all the DP relative relocations, we need to examine the symbol's | |
3408 | section. If it's a code section, then "data pointer relative" makes | |
3409 | no sense. In that case we don't adjust the "value", and for 21 bit | |
3410 | addil instructions, we change the source addend register from %dp to | |
3411 | %r0. This situation commonly arises when a variable's "constness" | |
3412 | is declared differently from the way the variable is defined. For | |
3413 | instance: "extern int foo" with foo defined as "const int foo". */ | |
3414 | if (sym_sec == NULL) | |
3415 | break; | |
3416 | if ((sym_sec->flags & SEC_CODE) != 0) | |
3417 | { | |
3418 | if ((insn & ((0x3f << 26) | (0x1f << 21))) | |
3419 | == (((int) OP_ADDIL << 26) | (27 << 21))) | |
3420 | { | |
3421 | insn &= ~ (0x1f << 21); | |
3422 | #if 1 /* debug them. */ | |
3423 | (*_bfd_error_handler) | |
3424 | (_("%s(%s+0x%lx): fixing %s"), | |
3425 | bfd_archive_filename (input_bfd), | |
3426 | input_section->name, | |
3427 | (long) rel->r_offset, | |
3428 | howto->name); | |
3429 | #endif | |
3430 | } | |
3431 | /* Now try to make things easy for the dynamic linker. */ | |
3432 | ||
3433 | break; | |
3434 | } | |
3435 | /* Fall thru. */ | |
3436 | ||
3437 | case R_PARISC_DLTIND21L: | |
3438 | case R_PARISC_DLTIND14R: | |
3439 | case R_PARISC_DLTIND14F: | |
3440 | value -= elf_gp (input_section->output_section->owner); | |
3441 | break; | |
3442 | ||
3443 | case R_PARISC_SEGREL32: | |
3444 | if ((sym_sec->flags & SEC_CODE) != 0) | |
3445 | value -= htab->text_segment_base; | |
3446 | else | |
3447 | value -= htab->data_segment_base; | |
3448 | break; | |
3449 | ||
3450 | default: | |
3451 | break; | |
3452 | } | |
3453 | ||
3454 | switch (r_type) | |
3455 | { | |
3456 | case R_PARISC_DIR32: | |
3457 | case R_PARISC_DIR14F: | |
3458 | case R_PARISC_DIR17F: | |
3459 | case R_PARISC_PCREL17C: | |
3460 | case R_PARISC_PCREL14F: | |
3461 | case R_PARISC_DPREL14F: | |
3462 | case R_PARISC_PLABEL32: | |
3463 | case R_PARISC_DLTIND14F: | |
3464 | case R_PARISC_SEGBASE: | |
3465 | case R_PARISC_SEGREL32: | |
3466 | r_field = e_fsel; | |
3467 | break; | |
3468 | ||
3469 | case R_PARISC_DIR21L: | |
3470 | case R_PARISC_PCREL21L: | |
3471 | case R_PARISC_DPREL21L: | |
3472 | case R_PARISC_PLABEL21L: | |
3473 | case R_PARISC_DLTIND21L: | |
3474 | r_field = e_lrsel; | |
3475 | break; | |
3476 | ||
3477 | case R_PARISC_DIR17R: | |
3478 | case R_PARISC_PCREL17R: | |
3479 | case R_PARISC_DIR14R: | |
3480 | case R_PARISC_PCREL14R: | |
3481 | case R_PARISC_DPREL14R: | |
3482 | case R_PARISC_PLABEL14R: | |
3483 | case R_PARISC_DLTIND14R: | |
3484 | r_field = e_rrsel; | |
3485 | break; | |
3486 | ||
3487 | case R_PARISC_PCREL12F: | |
3488 | case R_PARISC_PCREL17F: | |
3489 | case R_PARISC_PCREL22F: | |
3490 | r_field = e_fsel; | |
3491 | ||
3492 | if (r_type == (unsigned int) R_PARISC_PCREL17F) | |
3493 | { | |
3494 | max_branch_offset = (1 << (17-1)) << 2; | |
3495 | } | |
3496 | else if (r_type == (unsigned int) R_PARISC_PCREL12F) | |
3497 | { | |
3498 | max_branch_offset = (1 << (12-1)) << 2; | |
3499 | } | |
3500 | else | |
3501 | { | |
3502 | max_branch_offset = (1 << (22-1)) << 2; | |
3503 | } | |
3504 | ||
3505 | /* sym_sec is NULL on undefined weak syms or when shared on | |
3506 | undefined syms. We've already checked for a stub for the | |
3507 | shared undefined case. */ | |
3508 | if (sym_sec == NULL) | |
3509 | break; | |
3510 | ||
3511 | /* If the branch is out of reach, then redirect the | |
3512 | call to the local stub for this function. */ | |
3513 | if (value + addend + max_branch_offset >= 2*max_branch_offset) | |
3514 | { | |
3515 | stub_entry = hppa_get_stub_entry (input_section, sym_sec, | |
3516 | h, rel, htab); | |
3517 | if (stub_entry == NULL) | |
3518 | return bfd_reloc_undefined; | |
3519 | ||
3520 | /* Munge up the value and addend so that we call the stub | |
3521 | rather than the procedure directly. */ | |
3522 | value = (stub_entry->stub_offset | |
3523 | + stub_entry->stub_sec->output_offset | |
3524 | + stub_entry->stub_sec->output_section->vma | |
3525 | - location); | |
3526 | addend = -8; | |
3527 | } | |
3528 | break; | |
3529 | ||
3530 | /* Something we don't know how to handle. */ | |
3531 | default: | |
3532 | return bfd_reloc_notsupported; | |
3533 | } | |
3534 | ||
3535 | /* Make sure we can reach the stub. */ | |
3536 | if (max_branch_offset != 0 | |
3537 | && value + addend + max_branch_offset >= 2*max_branch_offset) | |
3538 | { | |
3539 | (*_bfd_error_handler) | |
3540 | (_("%s(%s+0x%lx): cannot reach %s, recompile with -ffunction-sections"), | |
3541 | bfd_archive_filename (input_bfd), | |
3542 | input_section->name, | |
3543 | (long) rel->r_offset, | |
3544 | stub_entry->root.string); | |
3545 | bfd_set_error (bfd_error_bad_value); | |
3546 | return bfd_reloc_notsupported; | |
3547 | } | |
3548 | ||
3549 | val = hppa_field_adjust (value, addend, r_field); | |
3550 | ||
3551 | switch (r_type) | |
3552 | { | |
3553 | case R_PARISC_PCREL12F: | |
3554 | case R_PARISC_PCREL17C: | |
3555 | case R_PARISC_PCREL17F: | |
3556 | case R_PARISC_PCREL17R: | |
3557 | case R_PARISC_PCREL22F: | |
3558 | case R_PARISC_DIR17F: | |
3559 | case R_PARISC_DIR17R: | |
3560 | /* This is a branch. Divide the offset by four. | |
3561 | Note that we need to decide whether it's a branch or | |
3562 | otherwise by inspecting the reloc. Inspecting insn won't | |
3563 | work as insn might be from a .word directive. */ | |
3564 | val >>= 2; | |
3565 | break; | |
3566 | ||
3567 | default: | |
3568 | break; | |
3569 | } | |
3570 | ||
3571 | insn = hppa_rebuild_insn (insn, val, r_format); | |
3572 | ||
3573 | /* Update the instruction word. */ | |
3574 | bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data); | |
3575 | return bfd_reloc_ok; | |
3576 | } | |
3577 | ||
3578 | /* Relocate an HPPA ELF section. */ | |
3579 | ||
3580 | static boolean | |
3581 | elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section, | |
3582 | contents, relocs, local_syms, local_sections) | |
3583 | bfd *output_bfd; | |
3584 | struct bfd_link_info *info; | |
3585 | bfd *input_bfd; | |
3586 | asection *input_section; | |
3587 | bfd_byte *contents; | |
3588 | Elf_Internal_Rela *relocs; | |
3589 | Elf_Internal_Sym *local_syms; | |
3590 | asection **local_sections; | |
3591 | { | |
3592 | bfd_vma *local_got_offsets; | |
3593 | struct elf32_hppa_link_hash_table *htab; | |
3594 | Elf_Internal_Shdr *symtab_hdr; | |
3595 | Elf_Internal_Rela *rel; | |
3596 | Elf_Internal_Rela *relend; | |
3597 | ||
3598 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
3599 | ||
3600 | htab = hppa_link_hash_table (info); | |
3601 | local_got_offsets = elf_local_got_offsets (input_bfd); | |
3602 | ||
3603 | rel = relocs; | |
3604 | relend = relocs + input_section->reloc_count; | |
3605 | for (; rel < relend; rel++) | |
3606 | { | |
3607 | unsigned int r_type; | |
3608 | reloc_howto_type *howto; | |
3609 | unsigned int r_symndx; | |
3610 | struct elf32_hppa_link_hash_entry *h; | |
3611 | Elf_Internal_Sym *sym; | |
3612 | asection *sym_sec; | |
3613 | bfd_vma relocation; | |
3614 | bfd_reloc_status_type r; | |
3615 | const char *sym_name; | |
3616 | boolean plabel; | |
3617 | boolean warned_undef; | |
3618 | ||
3619 | r_type = ELF32_R_TYPE (rel->r_info); | |
3620 | if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED) | |
3621 | { | |
3622 | bfd_set_error (bfd_error_bad_value); | |
3623 | return false; | |
3624 | } | |
3625 | if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY | |
3626 | || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT) | |
3627 | continue; | |
3628 | ||
3629 | r_symndx = ELF32_R_SYM (rel->r_info); | |
3630 | ||
3631 | if (info->relocateable) | |
3632 | { | |
3633 | /* This is a relocatable link. We don't have to change | |
3634 | anything, unless the reloc is against a section symbol, | |
3635 | in which case we have to adjust according to where the | |
3636 | section symbol winds up in the output section. */ | |
3637 | if (r_symndx < symtab_hdr->sh_info) | |
3638 | { | |
3639 | sym = local_syms + r_symndx; | |
3640 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
3641 | { | |
3642 | sym_sec = local_sections[r_symndx]; | |
3643 | rel->r_addend += sym_sec->output_offset; | |
3644 | } | |
3645 | } | |
3646 | continue; | |
3647 | } | |
3648 | ||
3649 | /* This is a final link. */ | |
3650 | h = NULL; | |
3651 | sym = NULL; | |
3652 | sym_sec = NULL; | |
3653 | warned_undef = false; | |
3654 | if (r_symndx < symtab_hdr->sh_info) | |
3655 | { | |
3656 | /* This is a local symbol, h defaults to NULL. */ | |
3657 | sym = local_syms + r_symndx; | |
3658 | sym_sec = local_sections[r_symndx]; | |
3659 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sym_sec, rel); | |
3660 | } | |
3661 | else | |
3662 | { | |
3663 | int indx; | |
3664 | ||
3665 | /* It's a global; Find its entry in the link hash. */ | |
3666 | indx = r_symndx - symtab_hdr->sh_info; | |
3667 | h = ((struct elf32_hppa_link_hash_entry *) | |
3668 | elf_sym_hashes (input_bfd)[indx]); | |
3669 | while (h->elf.root.type == bfd_link_hash_indirect | |
3670 | || h->elf.root.type == bfd_link_hash_warning) | |
3671 | h = (struct elf32_hppa_link_hash_entry *) h->elf.root.u.i.link; | |
3672 | ||
3673 | relocation = 0; | |
3674 | if (h->elf.root.type == bfd_link_hash_defined | |
3675 | || h->elf.root.type == bfd_link_hash_defweak) | |
3676 | { | |
3677 | sym_sec = h->elf.root.u.def.section; | |
3678 | /* If sym_sec->output_section is NULL, then it's a | |
3679 | symbol defined in a shared library. */ | |
3680 | if (sym_sec->output_section != NULL) | |
3681 | relocation = (h->elf.root.u.def.value | |
3682 | + sym_sec->output_offset | |
3683 | + sym_sec->output_section->vma); | |
3684 | } | |
3685 | else if (h->elf.root.type == bfd_link_hash_undefweak) | |
3686 | ; | |
3687 | else if (info->shared && !info->no_undefined | |
3688 | && ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT | |
3689 | && h->elf.type != STT_PARISC_MILLI) | |
3690 | { | |
3691 | if (info->symbolic && !info->allow_shlib_undefined) | |
3692 | { | |
3693 | if (!((*info->callbacks->undefined_symbol) | |
3694 | (info, h->elf.root.root.string, input_bfd, | |
3695 | input_section, rel->r_offset, false))) | |
3696 | return false; | |
3697 | warned_undef = true; | |
3698 | } | |
3699 | } | |
3700 | else | |
3701 | { | |
3702 | if (!((*info->callbacks->undefined_symbol) | |
3703 | (info, h->elf.root.root.string, input_bfd, | |
3704 | input_section, rel->r_offset, true))) | |
3705 | return false; | |
3706 | warned_undef = true; | |
3707 | } | |
3708 | } | |
3709 | ||
3710 | /* Do any required modifications to the relocation value, and | |
3711 | determine what types of dynamic info we need to output, if | |
3712 | any. */ | |
3713 | plabel = 0; | |
3714 | switch (r_type) | |
3715 | { | |
3716 | case R_PARISC_DLTIND14F: | |
3717 | case R_PARISC_DLTIND14R: | |
3718 | case R_PARISC_DLTIND21L: | |
3719 | { | |
3720 | bfd_vma off; | |
3721 | boolean do_got = 0; | |
3722 | ||
3723 | /* Relocation is to the entry for this symbol in the | |
3724 | global offset table. */ | |
3725 | if (h != NULL) | |
3726 | { | |
3727 | boolean dyn; | |
3728 | ||
3729 | off = h->elf.got.offset; | |
3730 | dyn = htab->elf.dynamic_sections_created; | |
3731 | if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, &h->elf)) | |
3732 | { | |
3733 | /* If we aren't going to call finish_dynamic_symbol, | |
3734 | then we need to handle initialisation of the .got | |
3735 | entry and create needed relocs here. Since the | |
3736 | offset must always be a multiple of 4, we use the | |
3737 | least significant bit to record whether we have | |
3738 | initialised it already. */ | |
3739 | if ((off & 1) != 0) | |
3740 | off &= ~1; | |
3741 | else | |
3742 | { | |
3743 | h->elf.got.offset |= 1; | |
3744 | do_got = 1; | |
3745 | } | |
3746 | } | |
3747 | } | |
3748 | else | |
3749 | { | |
3750 | /* Local symbol case. */ | |
3751 | if (local_got_offsets == NULL) | |
3752 | abort (); | |
3753 | ||
3754 | off = local_got_offsets[r_symndx]; | |
3755 | ||
3756 | /* The offset must always be a multiple of 4. We use | |
3757 | the least significant bit to record whether we have | |
3758 | already generated the necessary reloc. */ | |
3759 | if ((off & 1) != 0) | |
3760 | off &= ~1; | |
3761 | else | |
3762 | { | |
3763 | local_got_offsets[r_symndx] |= 1; | |
3764 | do_got = 1; | |
3765 | } | |
3766 | } | |
3767 | ||
3768 | if (do_got) | |
3769 | { | |
3770 | if (info->shared) | |
3771 | { | |
3772 | /* Output a dynamic relocation for this GOT entry. | |
3773 | In this case it is relative to the base of the | |
3774 | object because the symbol index is zero. */ | |
3775 | Elf_Internal_Rela outrel; | |
3776 | asection *srelgot = htab->srelgot; | |
3777 | Elf32_External_Rela *loc; | |
3778 | ||
3779 | outrel.r_offset = (off | |
3780 | + htab->sgot->output_offset | |
3781 | + htab->sgot->output_section->vma); | |
3782 | outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32); | |
3783 | outrel.r_addend = relocation; | |
3784 | loc = (Elf32_External_Rela *) srelgot->contents; | |
3785 | loc += srelgot->reloc_count++; | |
3786 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
3787 | } | |
3788 | else | |
3789 | bfd_put_32 (output_bfd, relocation, | |
3790 | htab->sgot->contents + off); | |
3791 | } | |
3792 | ||
3793 | if (off >= (bfd_vma) -2) | |
3794 | abort (); | |
3795 | ||
3796 | /* Add the base of the GOT to the relocation value. */ | |
3797 | relocation = (off | |
3798 | + htab->sgot->output_offset | |
3799 | + htab->sgot->output_section->vma); | |
3800 | } | |
3801 | break; | |
3802 | ||
3803 | case R_PARISC_SEGREL32: | |
3804 | /* If this is the first SEGREL relocation, then initialize | |
3805 | the segment base values. */ | |
3806 | if (htab->text_segment_base == (bfd_vma) -1) | |
3807 | bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab); | |
3808 | break; | |
3809 | ||
3810 | case R_PARISC_PLABEL14R: | |
3811 | case R_PARISC_PLABEL21L: | |
3812 | case R_PARISC_PLABEL32: | |
3813 | if (htab->elf.dynamic_sections_created) | |
3814 | { | |
3815 | bfd_vma off; | |
3816 | boolean do_plt = 0; | |
3817 | ||
3818 | /* If we have a global symbol with a PLT slot, then | |
3819 | redirect this relocation to it. */ | |
3820 | if (h != NULL) | |
3821 | { | |
3822 | off = h->elf.plt.offset; | |
3823 | if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, &h->elf)) | |
3824 | { | |
3825 | /* In a non-shared link, adjust_dynamic_symbols | |
3826 | isn't called for symbols forced local. We | |
3827 | need to write out the plt entry here. */ | |
3828 | if ((off & 1) != 0) | |
3829 | off &= ~1; | |
3830 | else | |
3831 | { | |
3832 | h->elf.plt.offset |= 1; | |
3833 | do_plt = 1; | |
3834 | } | |
3835 | } | |
3836 | } | |
3837 | else | |
3838 | { | |
3839 | bfd_vma *local_plt_offsets; | |
3840 | ||
3841 | if (local_got_offsets == NULL) | |
3842 | abort (); | |
3843 | ||
3844 | local_plt_offsets = local_got_offsets + symtab_hdr->sh_info; | |
3845 | off = local_plt_offsets[r_symndx]; | |
3846 | ||
3847 | /* As for the local .got entry case, we use the last | |
3848 | bit to record whether we've already initialised | |
3849 | this local .plt entry. */ | |
3850 | if ((off & 1) != 0) | |
3851 | off &= ~1; | |
3852 | else | |
3853 | { | |
3854 | local_plt_offsets[r_symndx] |= 1; | |
3855 | do_plt = 1; | |
3856 | } | |
3857 | } | |
3858 | ||
3859 | if (do_plt) | |
3860 | { | |
3861 | if (info->shared) | |
3862 | { | |
3863 | /* Output a dynamic IPLT relocation for this | |
3864 | PLT entry. */ | |
3865 | Elf_Internal_Rela outrel; | |
3866 | asection *srelplt = htab->srelplt; | |
3867 | Elf32_External_Rela *loc; | |
3868 | ||
3869 | outrel.r_offset = (off | |
3870 | + htab->splt->output_offset | |
3871 | + htab->splt->output_section->vma); | |
3872 | outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT); | |
3873 | outrel.r_addend = relocation; | |
3874 | loc = (Elf32_External_Rela *) srelplt->contents; | |
3875 | loc += srelplt->reloc_count++; | |
3876 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
3877 | } | |
3878 | else | |
3879 | { | |
3880 | bfd_put_32 (output_bfd, | |
3881 | relocation, | |
3882 | htab->splt->contents + off); | |
3883 | bfd_put_32 (output_bfd, | |
3884 | elf_gp (htab->splt->output_section->owner), | |
3885 | htab->splt->contents + off + 4); | |
3886 | } | |
3887 | } | |
3888 | ||
3889 | if (off >= (bfd_vma) -2) | |
3890 | abort (); | |
3891 | ||
3892 | /* PLABELs contain function pointers. Relocation is to | |
3893 | the entry for the function in the .plt. The magic +2 | |
3894 | offset signals to $$dyncall that the function pointer | |
3895 | is in the .plt and thus has a gp pointer too. | |
3896 | Exception: Undefined PLABELs should have a value of | |
3897 | zero. */ | |
3898 | if (h == NULL | |
3899 | || (h->elf.root.type != bfd_link_hash_undefweak | |
3900 | && h->elf.root.type != bfd_link_hash_undefined)) | |
3901 | { | |
3902 | relocation = (off | |
3903 | + htab->splt->output_offset | |
3904 | + htab->splt->output_section->vma | |
3905 | + 2); | |
3906 | } | |
3907 | plabel = 1; | |
3908 | } | |
3909 | /* Fall through and possibly emit a dynamic relocation. */ | |
3910 | ||
3911 | case R_PARISC_DIR17F: | |
3912 | case R_PARISC_DIR17R: | |
3913 | case R_PARISC_DIR14F: | |
3914 | case R_PARISC_DIR14R: | |
3915 | case R_PARISC_DIR21L: | |
3916 | case R_PARISC_DPREL14F: | |
3917 | case R_PARISC_DPREL14R: | |
3918 | case R_PARISC_DPREL21L: | |
3919 | case R_PARISC_DIR32: | |
3920 | /* r_symndx will be zero only for relocs against symbols | |
3921 | from removed linkonce sections, or sections discarded by | |
3922 | a linker script. */ | |
3923 | if (r_symndx == 0 | |
3924 | || (input_section->flags & SEC_ALLOC) == 0) | |
3925 | break; | |
3926 | ||
3927 | /* The reloc types handled here and this conditional | |
3928 | expression must match the code in ..check_relocs and | |
3929 | allocate_dynrelocs. ie. We need exactly the same condition | |
3930 | as in ..check_relocs, with some extra conditions (dynindx | |
3931 | test in this case) to cater for relocs removed by | |
3932 | allocate_dynrelocs. If you squint, the non-shared test | |
3933 | here does indeed match the one in ..check_relocs, the | |
3934 | difference being that here we test DEF_DYNAMIC as well as | |
3935 | !DEF_REGULAR. All common syms end up with !DEF_REGULAR, | |
3936 | which is why we can't use just that test here. | |
3937 | Conversely, DEF_DYNAMIC can't be used in check_relocs as | |
3938 | there all files have not been loaded. */ | |
3939 | if ((info->shared | |
3940 | && (IS_ABSOLUTE_RELOC (r_type) | |
3941 | || (h != NULL | |
3942 | && h->elf.dynindx != -1 | |
3943 | && (!info->symbolic | |
3944 | || (h->elf.elf_link_hash_flags | |
3945 | & ELF_LINK_HASH_DEF_REGULAR) == 0)))) | |
3946 | || (!info->shared | |
3947 | && h != NULL | |
3948 | && h->elf.dynindx != -1 | |
3949 | && (h->elf.elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0 | |
3950 | && (((h->elf.elf_link_hash_flags | |
3951 | & ELF_LINK_HASH_DEF_DYNAMIC) != 0 | |
3952 | && (h->elf.elf_link_hash_flags | |
3953 | & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
3954 | || h->elf.root.type == bfd_link_hash_undefweak | |
3955 | || h->elf.root.type == bfd_link_hash_undefined))) | |
3956 | { | |
3957 | Elf_Internal_Rela outrel; | |
3958 | boolean skip; | |
3959 | asection *sreloc; | |
3960 | Elf32_External_Rela *loc; | |
3961 | ||
3962 | /* When generating a shared object, these relocations | |
3963 | are copied into the output file to be resolved at run | |
3964 | time. */ | |
3965 | ||
3966 | outrel.r_addend = rel->r_addend; | |
3967 | outrel.r_offset = | |
3968 | _bfd_elf_section_offset (output_bfd, info, input_section, | |
3969 | rel->r_offset); | |
3970 | skip = (outrel.r_offset == (bfd_vma) -1); | |
3971 | outrel.r_offset += (input_section->output_offset | |
3972 | + input_section->output_section->vma); | |
3973 | ||
3974 | if (skip) | |
3975 | { | |
3976 | memset (&outrel, 0, sizeof (outrel)); | |
3977 | } | |
3978 | else if (h != NULL | |
3979 | && h->elf.dynindx != -1 | |
3980 | && (plabel | |
3981 | || !IS_ABSOLUTE_RELOC (r_type) | |
3982 | || !info->shared | |
3983 | || !info->symbolic | |
3984 | || (h->elf.elf_link_hash_flags | |
3985 | & ELF_LINK_HASH_DEF_REGULAR) == 0)) | |
3986 | { | |
3987 | outrel.r_info = ELF32_R_INFO (h->elf.dynindx, r_type); | |
3988 | } | |
3989 | else /* It's a local symbol, or one marked to become local. */ | |
3990 | { | |
3991 | int indx = 0; | |
3992 | ||
3993 | /* Add the absolute offset of the symbol. */ | |
3994 | outrel.r_addend += relocation; | |
3995 | ||
3996 | /* Global plabels need to be processed by the | |
3997 | dynamic linker so that functions have at most one | |
3998 | fptr. For this reason, we need to differentiate | |
3999 | between global and local plabels, which we do by | |
4000 | providing the function symbol for a global plabel | |
4001 | reloc, and no symbol for local plabels. */ | |
4002 | if (! plabel | |
4003 | && sym_sec != NULL | |
4004 | && sym_sec->output_section != NULL | |
4005 | && ! bfd_is_abs_section (sym_sec)) | |
4006 | { | |
4007 | indx = elf_section_data (sym_sec->output_section)->dynindx; | |
4008 | /* We are turning this relocation into one | |
4009 | against a section symbol, so subtract out the | |
4010 | output section's address but not the offset | |
4011 | of the input section in the output section. */ | |
4012 | outrel.r_addend -= sym_sec->output_section->vma; | |
4013 | } | |
4014 | ||
4015 | outrel.r_info = ELF32_R_INFO (indx, r_type); | |
4016 | } | |
4017 | #if 0 | |
4018 | /* EH info can cause unaligned DIR32 relocs. | |
4019 | Tweak the reloc type for the dynamic linker. */ | |
4020 | if (r_type == R_PARISC_DIR32 && (outrel.r_offset & 3) != 0) | |
4021 | outrel.r_info = ELF32_R_INFO (ELF32_R_SYM (outrel.r_info), | |
4022 | R_PARISC_DIR32U); | |
4023 | #endif | |
4024 | sreloc = elf_section_data (input_section)->sreloc; | |
4025 | if (sreloc == NULL) | |
4026 | abort (); | |
4027 | ||
4028 | loc = (Elf32_External_Rela *) sreloc->contents; | |
4029 | loc += sreloc->reloc_count++; | |
4030 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
4031 | } | |
4032 | break; | |
4033 | ||
4034 | default: | |
4035 | break; | |
4036 | } | |
4037 | ||
4038 | r = final_link_relocate (input_section, contents, rel, relocation, | |
4039 | htab, sym_sec, h); | |
4040 | ||
4041 | if (r == bfd_reloc_ok) | |
4042 | continue; | |
4043 | ||
4044 | if (h != NULL) | |
4045 | sym_name = h->elf.root.root.string; | |
4046 | else | |
4047 | { | |
4048 | sym_name = bfd_elf_string_from_elf_section (input_bfd, | |
4049 | symtab_hdr->sh_link, | |
4050 | sym->st_name); | |
4051 | if (sym_name == NULL) | |
4052 | return false; | |
4053 | if (*sym_name == '\0') | |
4054 | sym_name = bfd_section_name (input_bfd, sym_sec); | |
4055 | } | |
4056 | ||
4057 | howto = elf_hppa_howto_table + r_type; | |
4058 | ||
4059 | if (r == bfd_reloc_undefined || r == bfd_reloc_notsupported) | |
4060 | { | |
4061 | if (r == bfd_reloc_notsupported || !warned_undef) | |
4062 | { | |
4063 | (*_bfd_error_handler) | |
4064 | (_("%s(%s+0x%lx): cannot handle %s for %s"), | |
4065 | bfd_archive_filename (input_bfd), | |
4066 | input_section->name, | |
4067 | (long) rel->r_offset, | |
4068 | howto->name, | |
4069 | sym_name); | |
4070 | bfd_set_error (bfd_error_bad_value); | |
4071 | return false; | |
4072 | } | |
4073 | } | |
4074 | else | |
4075 | { | |
4076 | if (!((*info->callbacks->reloc_overflow) | |
4077 | (info, sym_name, howto->name, (bfd_vma) 0, | |
4078 | input_bfd, input_section, rel->r_offset))) | |
4079 | return false; | |
4080 | } | |
4081 | } | |
4082 | ||
4083 | return true; | |
4084 | } | |
4085 | ||
4086 | /* Comparison function for qsort to sort unwind section during a | |
4087 | final link. */ | |
4088 | ||
4089 | static int | |
4090 | hppa_unwind_entry_compare (a, b) | |
4091 | const PTR a; | |
4092 | const PTR b; | |
4093 | { | |
4094 | const bfd_byte *ap, *bp; | |
4095 | unsigned long av, bv; | |
4096 | ||
4097 | ap = (const bfd_byte *) a; | |
4098 | av = (unsigned long) ap[0] << 24; | |
4099 | av |= (unsigned long) ap[1] << 16; | |
4100 | av |= (unsigned long) ap[2] << 8; | |
4101 | av |= (unsigned long) ap[3]; | |
4102 | ||
4103 | bp = (const bfd_byte *) b; | |
4104 | bv = (unsigned long) bp[0] << 24; | |
4105 | bv |= (unsigned long) bp[1] << 16; | |
4106 | bv |= (unsigned long) bp[2] << 8; | |
4107 | bv |= (unsigned long) bp[3]; | |
4108 | ||
4109 | return av < bv ? -1 : av > bv ? 1 : 0; | |
4110 | } | |
4111 | ||
4112 | /* Finish up dynamic symbol handling. We set the contents of various | |
4113 | dynamic sections here. */ | |
4114 | ||
4115 | static boolean | |
4116 | elf32_hppa_finish_dynamic_symbol (output_bfd, info, h, sym) | |
4117 | bfd *output_bfd; | |
4118 | struct bfd_link_info *info; | |
4119 | struct elf_link_hash_entry *h; | |
4120 | Elf_Internal_Sym *sym; | |
4121 | { | |
4122 | struct elf32_hppa_link_hash_table *htab; | |
4123 | ||
4124 | htab = hppa_link_hash_table (info); | |
4125 | ||
4126 | if (h->plt.offset != (bfd_vma) -1) | |
4127 | { | |
4128 | bfd_vma value; | |
4129 | ||
4130 | if (h->plt.offset & 1) | |
4131 | abort (); | |
4132 | ||
4133 | /* This symbol has an entry in the procedure linkage table. Set | |
4134 | it up. | |
4135 | ||
4136 | The format of a plt entry is | |
4137 | <funcaddr> | |
4138 | <__gp> | |
4139 | */ | |
4140 | value = 0; | |
4141 | if (h->root.type == bfd_link_hash_defined | |
4142 | || h->root.type == bfd_link_hash_defweak) | |
4143 | { | |
4144 | value = h->root.u.def.value; | |
4145 | if (h->root.u.def.section->output_section != NULL) | |
4146 | value += (h->root.u.def.section->output_offset | |
4147 | + h->root.u.def.section->output_section->vma); | |
4148 | } | |
4149 | ||
4150 | if (! ((struct elf32_hppa_link_hash_entry *) h)->pic_call) | |
4151 | { | |
4152 | Elf_Internal_Rela rel; | |
4153 | Elf32_External_Rela *loc; | |
4154 | ||
4155 | /* Create a dynamic IPLT relocation for this entry. */ | |
4156 | rel.r_offset = (h->plt.offset | |
4157 | + htab->splt->output_offset | |
4158 | + htab->splt->output_section->vma); | |
4159 | if (h->dynindx != -1) | |
4160 | { | |
4161 | rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_IPLT); | |
4162 | rel.r_addend = 0; | |
4163 | } | |
4164 | else | |
4165 | { | |
4166 | /* This symbol has been marked to become local, and is | |
4167 | used by a plabel so must be kept in the .plt. */ | |
4168 | rel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT); | |
4169 | rel.r_addend = value; | |
4170 | } | |
4171 | ||
4172 | loc = (Elf32_External_Rela *) htab->srelplt->contents; | |
4173 | loc += htab->srelplt->reloc_count++; | |
4174 | bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, | |
4175 | &rel, loc); | |
4176 | } | |
4177 | else | |
4178 | { | |
4179 | bfd_put_32 (htab->splt->owner, | |
4180 | value, | |
4181 | htab->splt->contents + h->plt.offset); | |
4182 | bfd_put_32 (htab->splt->owner, | |
4183 | elf_gp (htab->splt->output_section->owner), | |
4184 | htab->splt->contents + h->plt.offset + 4); | |
4185 | } | |
4186 | ||
4187 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) | |
4188 | { | |
4189 | /* Mark the symbol as undefined, rather than as defined in | |
4190 | the .plt section. Leave the value alone. */ | |
4191 | sym->st_shndx = SHN_UNDEF; | |
4192 | } | |
4193 | } | |
4194 | ||
4195 | if (h->got.offset != (bfd_vma) -1) | |
4196 | { | |
4197 | Elf_Internal_Rela rel; | |
4198 | Elf32_External_Rela *loc; | |
4199 | ||
4200 | /* This symbol has an entry in the global offset table. Set it | |
4201 | up. */ | |
4202 | ||
4203 | rel.r_offset = ((h->got.offset &~ (bfd_vma) 1) | |
4204 | + htab->sgot->output_offset | |
4205 | + htab->sgot->output_section->vma); | |
4206 | ||
4207 | /* If this is a -Bsymbolic link and the symbol is defined | |
4208 | locally or was forced to be local because of a version file, | |
4209 | we just want to emit a RELATIVE reloc. The entry in the | |
4210 | global offset table will already have been initialized in the | |
4211 | relocate_section function. */ | |
4212 | if (info->shared | |
4213 | && (info->symbolic || h->dynindx == -1) | |
4214 | && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)) | |
4215 | { | |
4216 | rel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32); | |
4217 | rel.r_addend = (h->root.u.def.value | |
4218 | + h->root.u.def.section->output_offset | |
4219 | + h->root.u.def.section->output_section->vma); | |
4220 | } | |
4221 | else | |
4222 | { | |
4223 | if ((h->got.offset & 1) != 0) | |
4224 | abort (); | |
4225 | bfd_put_32 (output_bfd, (bfd_vma) 0, | |
4226 | htab->sgot->contents + h->got.offset); | |
4227 | rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_DIR32); | |
4228 | rel.r_addend = 0; | |
4229 | } | |
4230 | ||
4231 | loc = (Elf32_External_Rela *) htab->srelgot->contents; | |
4232 | loc += htab->srelgot->reloc_count++; | |
4233 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
4234 | } | |
4235 | ||
4236 | if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0) | |
4237 | { | |
4238 | asection *s; | |
4239 | Elf_Internal_Rela rel; | |
4240 | Elf32_External_Rela *loc; | |
4241 | ||
4242 | /* This symbol needs a copy reloc. Set it up. */ | |
4243 | ||
4244 | if (! (h->dynindx != -1 | |
4245 | && (h->root.type == bfd_link_hash_defined | |
4246 | || h->root.type == bfd_link_hash_defweak))) | |
4247 | abort (); | |
4248 | ||
4249 | s = htab->srelbss; | |
4250 | ||
4251 | rel.r_offset = (h->root.u.def.value | |
4252 | + h->root.u.def.section->output_offset | |
4253 | + h->root.u.def.section->output_section->vma); | |
4254 | rel.r_addend = 0; | |
4255 | rel.r_info = ELF32_R_INFO (h->dynindx, R_PARISC_COPY); | |
4256 | loc = (Elf32_External_Rela *) s->contents + s->reloc_count++; | |
4257 | bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); | |
4258 | } | |
4259 | ||
4260 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ | |
4261 | if (h->root.root.string[0] == '_' | |
4262 | && (strcmp (h->root.root.string, "_DYNAMIC") == 0 | |
4263 | || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)) | |
4264 | { | |
4265 | sym->st_shndx = SHN_ABS; | |
4266 | } | |
4267 | ||
4268 | return true; | |
4269 | } | |
4270 | ||
4271 | /* Used to decide how to sort relocs in an optimal manner for the | |
4272 | dynamic linker, before writing them out. */ | |
4273 | ||
4274 | static enum elf_reloc_type_class | |
4275 | elf32_hppa_reloc_type_class (rela) | |
4276 | const Elf_Internal_Rela *rela; | |
4277 | { | |
4278 | if (ELF32_R_SYM (rela->r_info) == 0) | |
4279 | return reloc_class_relative; | |
4280 | ||
4281 | switch ((int) ELF32_R_TYPE (rela->r_info)) | |
4282 | { | |
4283 | case R_PARISC_IPLT: | |
4284 | return reloc_class_plt; | |
4285 | case R_PARISC_COPY: | |
4286 | return reloc_class_copy; | |
4287 | default: | |
4288 | return reloc_class_normal; | |
4289 | } | |
4290 | } | |
4291 | ||
4292 | /* Finish up the dynamic sections. */ | |
4293 | ||
4294 | static boolean | |
4295 | elf32_hppa_finish_dynamic_sections (output_bfd, info) | |
4296 | bfd *output_bfd; | |
4297 | struct bfd_link_info *info; | |
4298 | { | |
4299 | bfd *dynobj; | |
4300 | struct elf32_hppa_link_hash_table *htab; | |
4301 | asection *sdyn; | |
4302 | ||
4303 | htab = hppa_link_hash_table (info); | |
4304 | dynobj = htab->elf.dynobj; | |
4305 | ||
4306 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
4307 | ||
4308 | if (htab->elf.dynamic_sections_created) | |
4309 | { | |
4310 | Elf32_External_Dyn *dyncon, *dynconend; | |
4311 | ||
4312 | if (sdyn == NULL) | |
4313 | abort (); | |
4314 | ||
4315 | dyncon = (Elf32_External_Dyn *) sdyn->contents; | |
4316 | dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size); | |
4317 | for (; dyncon < dynconend; dyncon++) | |
4318 | { | |
4319 | Elf_Internal_Dyn dyn; | |
4320 | asection *s; | |
4321 | ||
4322 | bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); | |
4323 | ||
4324 | switch (dyn.d_tag) | |
4325 | { | |
4326 | default: | |
4327 | continue; | |
4328 | ||
4329 | case DT_PLTGOT: | |
4330 | /* Use PLTGOT to set the GOT register. */ | |
4331 | dyn.d_un.d_ptr = elf_gp (output_bfd); | |
4332 | break; | |
4333 | ||
4334 | case DT_JMPREL: | |
4335 | s = htab->srelplt; | |
4336 | dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; | |
4337 | break; | |
4338 | ||
4339 | case DT_PLTRELSZ: | |
4340 | s = htab->srelplt; | |
4341 | if (s->_cooked_size != 0) | |
4342 | dyn.d_un.d_val = s->_cooked_size; | |
4343 | else | |
4344 | dyn.d_un.d_val = s->_raw_size; | |
4345 | break; | |
4346 | ||
4347 | case DT_RELASZ: | |
4348 | /* Don't count procedure linkage table relocs in the | |
4349 | overall reloc count. */ | |
4350 | if (htab->srelplt != NULL) | |
4351 | { | |
4352 | s = htab->srelplt->output_section; | |
4353 | if (s->_cooked_size != 0) | |
4354 | dyn.d_un.d_val -= s->_cooked_size; | |
4355 | else | |
4356 | dyn.d_un.d_val -= s->_raw_size; | |
4357 | } | |
4358 | break; | |
4359 | } | |
4360 | ||
4361 | bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); | |
4362 | } | |
4363 | } | |
4364 | ||
4365 | if (htab->sgot != NULL && htab->sgot->_raw_size != 0) | |
4366 | { | |
4367 | /* Fill in the first entry in the global offset table. | |
4368 | We use it to point to our dynamic section, if we have one. */ | |
4369 | bfd_put_32 (output_bfd, | |
4370 | (sdyn != NULL | |
4371 | ? sdyn->output_section->vma + sdyn->output_offset | |
4372 | : (bfd_vma) 0), | |
4373 | htab->sgot->contents); | |
4374 | ||
4375 | /* The second entry is reserved for use by the dynamic linker. */ | |
4376 | memset (htab->sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE); | |
4377 | ||
4378 | /* Set .got entry size. */ | |
4379 | elf_section_data (htab->sgot->output_section) | |
4380 | ->this_hdr.sh_entsize = GOT_ENTRY_SIZE; | |
4381 | } | |
4382 | ||
4383 | if (htab->splt != NULL && htab->splt->_raw_size != 0) | |
4384 | { | |
4385 | /* Set plt entry size. */ | |
4386 | elf_section_data (htab->splt->output_section) | |
4387 | ->this_hdr.sh_entsize = PLT_ENTRY_SIZE; | |
4388 | ||
4389 | if (htab->need_plt_stub) | |
4390 | { | |
4391 | /* Set up the .plt stub. */ | |
4392 | memcpy (htab->splt->contents | |
4393 | + htab->splt->_raw_size - sizeof (plt_stub), | |
4394 | plt_stub, sizeof (plt_stub)); | |
4395 | ||
4396 | if ((htab->splt->output_offset | |
4397 | + htab->splt->output_section->vma | |
4398 | + htab->splt->_raw_size) | |
4399 | != (htab->sgot->output_offset | |
4400 | + htab->sgot->output_section->vma)) | |
4401 | { | |
4402 | (*_bfd_error_handler) | |
4403 | (_(".got section not immediately after .plt section")); | |
4404 | return false; | |
4405 | } | |
4406 | } | |
4407 | } | |
4408 | ||
4409 | return true; | |
4410 | } | |
4411 | ||
4412 | /* Tweak the OSABI field of the elf header. */ | |
4413 | ||
4414 | static void | |
4415 | elf32_hppa_post_process_headers (abfd, link_info) | |
4416 | bfd *abfd; | |
4417 | struct bfd_link_info *link_info ATTRIBUTE_UNUSED; | |
4418 | { | |
4419 | Elf_Internal_Ehdr * i_ehdrp; | |
4420 | ||
4421 | i_ehdrp = elf_elfheader (abfd); | |
4422 | ||
4423 | if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0) | |
4424 | { | |
4425 | i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX; | |
4426 | } | |
4427 | else | |
4428 | { | |
4429 | i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX; | |
4430 | } | |
4431 | } | |
4432 | ||
4433 | /* Called when writing out an object file to decide the type of a | |
4434 | symbol. */ | |
4435 | static int | |
4436 | elf32_hppa_elf_get_symbol_type (elf_sym, type) | |
4437 | Elf_Internal_Sym *elf_sym; | |
4438 | int type; | |
4439 | { | |
4440 | if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI) | |
4441 | return STT_PARISC_MILLI; | |
4442 | else | |
4443 | return type; | |
4444 | } | |
4445 | ||
4446 | /* Misc BFD support code. */ | |
4447 | #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name | |
4448 | #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup | |
4449 | #define elf_info_to_howto elf_hppa_info_to_howto | |
4450 | #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel | |
4451 | ||
4452 | /* Stuff for the BFD linker. */ | |
4453 | #define bfd_elf32_bfd_final_link elf32_hppa_final_link | |
4454 | #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create | |
4455 | #define elf_backend_add_symbol_hook elf32_hppa_add_symbol_hook | |
4456 | #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol | |
4457 | #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol | |
4458 | #define elf_backend_check_relocs elf32_hppa_check_relocs | |
4459 | #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections | |
4460 | #define elf_backend_fake_sections elf_hppa_fake_sections | |
4461 | #define elf_backend_relocate_section elf32_hppa_relocate_section | |
4462 | #define elf_backend_hide_symbol elf32_hppa_hide_symbol | |
4463 | #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol | |
4464 | #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections | |
4465 | #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections | |
4466 | #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook | |
4467 | #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook | |
4468 | #define elf_backend_object_p elf32_hppa_object_p | |
4469 | #define elf_backend_final_write_processing elf_hppa_final_write_processing | |
4470 | #define elf_backend_post_process_headers elf32_hppa_post_process_headers | |
4471 | #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type | |
4472 | #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class | |
4473 | ||
4474 | #define elf_backend_can_gc_sections 1 | |
4475 | #define elf_backend_can_refcount 1 | |
4476 | #define elf_backend_plt_alignment 2 | |
4477 | #define elf_backend_want_got_plt 0 | |
4478 | #define elf_backend_plt_readonly 0 | |
4479 | #define elf_backend_want_plt_sym 0 | |
4480 | #define elf_backend_got_header_size 8 | |
4481 | ||
4482 | #define TARGET_BIG_SYM bfd_elf32_hppa_vec | |
4483 | #define TARGET_BIG_NAME "elf32-hppa" | |
4484 | #define ELF_ARCH bfd_arch_hppa | |
4485 | #define ELF_MACHINE_CODE EM_PARISC | |
4486 | #define ELF_MAXPAGESIZE 0x1000 | |
4487 | ||
4488 | #include "elf32-target.h" | |
4489 | ||
4490 | #undef TARGET_BIG_SYM | |
4491 | #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec | |
4492 | #undef TARGET_BIG_NAME | |
4493 | #define TARGET_BIG_NAME "elf32-hppa-linux" | |
4494 | ||
4495 | #define INCLUDED_TARGET_FILE 1 | |
4496 | #include "elf32-target.h" |