]>
Commit | Line | Data |
---|---|---|
1 | /* ELF linking support for BFD. | |
2 | Copyright (C) 1995-2025 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of BFD, the Binary File Descriptor library. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 3 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | |
19 | MA 02110-1301, USA. */ | |
20 | ||
21 | #include "sysdep.h" | |
22 | #include "bfd.h" | |
23 | #include "bfdlink.h" | |
24 | #include "libbfd.h" | |
25 | #define ARCH_SIZE 0 | |
26 | #include "elf-bfd.h" | |
27 | #include "safe-ctype.h" | |
28 | #include "libiberty.h" | |
29 | #include "objalloc.h" | |
30 | #if BFD_SUPPORTS_PLUGINS | |
31 | #include "plugin-api.h" | |
32 | #include "plugin.h" | |
33 | #endif | |
34 | ||
35 | #include <limits.h> | |
36 | #ifndef CHAR_BIT | |
37 | #define CHAR_BIT 8 | |
38 | #endif | |
39 | ||
40 | /* This struct is used to pass information to routines called via | |
41 | elf_link_hash_traverse which must return failure. */ | |
42 | ||
43 | struct elf_info_failed | |
44 | { | |
45 | struct bfd_link_info *info; | |
46 | bool failed; | |
47 | }; | |
48 | ||
49 | static bool _bfd_elf_fix_symbol_flags | |
50 | (struct elf_link_hash_entry *, struct elf_info_failed *); | |
51 | ||
52 | /* Return false if linker should avoid caching relocation information | |
53 | and symbol tables of input files in memory. */ | |
54 | ||
55 | static bool | |
56 | _bfd_elf_link_keep_memory (struct bfd_link_info *info) | |
57 | { | |
58 | #ifdef USE_MMAP | |
59 | /* Don't cache symbol nor relocation tables if they are mapped in. | |
60 | NB: Since the --no-keep-memory linker option causes: | |
61 | ||
62 | https://sourceware.org/bugzilla/show_bug.cgi?id=31458 | |
63 | ||
64 | this is opt-in by each backend. */ | |
65 | const struct elf_backend_data *bed | |
66 | = get_elf_backend_data (info->output_bfd); | |
67 | if (bed != NULL && bed->use_mmap) | |
68 | return false; | |
69 | #endif | |
70 | bfd *abfd; | |
71 | bfd_size_type size; | |
72 | ||
73 | if (!info->keep_memory) | |
74 | return false; | |
75 | ||
76 | if (info->max_cache_size == (bfd_size_type) -1) | |
77 | return true; | |
78 | ||
79 | abfd = info->input_bfds; | |
80 | size = info->cache_size; | |
81 | do | |
82 | { | |
83 | if (size >= info->max_cache_size) | |
84 | { | |
85 | /* Over the limit. Reduce the memory usage. */ | |
86 | info->keep_memory = false; | |
87 | return false; | |
88 | } | |
89 | if (!abfd) | |
90 | break; | |
91 | size += abfd->alloc_size; | |
92 | abfd = abfd->link.next; | |
93 | } | |
94 | while (1); | |
95 | ||
96 | return true; | |
97 | } | |
98 | ||
99 | static struct elf_link_hash_entry * | |
100 | get_link_hash_entry (struct elf_link_hash_entry ** sym_hashes, | |
101 | unsigned int symndx, | |
102 | unsigned int ext_sym_start) | |
103 | { | |
104 | if (sym_hashes == NULL | |
105 | /* Guard against corrupt input. See PR 32636 for an example. */ | |
106 | || symndx < ext_sym_start) | |
107 | return NULL; | |
108 | ||
109 | struct elf_link_hash_entry *h = sym_hashes[symndx - ext_sym_start]; | |
110 | ||
111 | /* The hash might be empty. See PR 32641 for an example of this. */ | |
112 | if (h == NULL) | |
113 | return NULL; | |
114 | ||
115 | while (h->root.type == bfd_link_hash_indirect | |
116 | || h->root.type == bfd_link_hash_warning) | |
117 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
118 | ||
119 | return h; | |
120 | } | |
121 | ||
122 | struct elf_link_hash_entry * | |
123 | _bfd_elf_get_link_hash_entry (struct elf_link_hash_entry ** sym_hashes, | |
124 | unsigned int symndx, | |
125 | Elf_Internal_Shdr * symtab_hdr) | |
126 | { | |
127 | if (symtab_hdr == NULL) | |
128 | return NULL; | |
129 | ||
130 | return get_link_hash_entry (sym_hashes, symndx, symtab_hdr->sh_info); | |
131 | } | |
132 | ||
133 | static struct elf_link_hash_entry * | |
134 | get_ext_sym_hash_from_cookie (struct elf_reloc_cookie *cookie, unsigned long r_symndx) | |
135 | { | |
136 | if (cookie == NULL || cookie->sym_hashes == NULL) | |
137 | return NULL; | |
138 | ||
139 | if (r_symndx >= cookie->locsymcount | |
140 | || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL) | |
141 | return get_link_hash_entry (cookie->sym_hashes, r_symndx, cookie->extsymoff); | |
142 | ||
143 | return NULL; | |
144 | } | |
145 | ||
146 | asection * | |
147 | _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie, | |
148 | unsigned long r_symndx, | |
149 | bool discard) | |
150 | { | |
151 | struct elf_link_hash_entry *h; | |
152 | ||
153 | h = get_ext_sym_hash_from_cookie (cookie, r_symndx); | |
154 | ||
155 | if (h != NULL) | |
156 | { | |
157 | if ((h->root.type == bfd_link_hash_defined | |
158 | || h->root.type == bfd_link_hash_defweak) | |
159 | && discarded_section (h->root.u.def.section)) | |
160 | return h->root.u.def.section; | |
161 | else | |
162 | return NULL; | |
163 | } | |
164 | ||
165 | /* It's not a relocation against a global symbol, | |
166 | but it could be a relocation against a local | |
167 | symbol for a discarded section. */ | |
168 | asection *isec; | |
169 | Elf_Internal_Sym *isym; | |
170 | ||
171 | /* Need to: get the symbol; get the section. */ | |
172 | isym = &cookie->locsyms[r_symndx]; | |
173 | isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx); | |
174 | if (isec != NULL | |
175 | && discard ? discarded_section (isec) : 1) | |
176 | return isec; | |
177 | ||
178 | return NULL; | |
179 | } | |
180 | ||
181 | /* Define a symbol in a dynamic linkage section. */ | |
182 | ||
183 | struct elf_link_hash_entry * | |
184 | _bfd_elf_define_linkage_sym (bfd *abfd, | |
185 | struct bfd_link_info *info, | |
186 | asection *sec, | |
187 | const char *name) | |
188 | { | |
189 | struct elf_link_hash_entry *h; | |
190 | struct bfd_link_hash_entry *bh; | |
191 | const struct elf_backend_data *bed; | |
192 | ||
193 | h = elf_link_hash_lookup (elf_hash_table (info), name, false, false, false); | |
194 | if (h != NULL) | |
195 | { | |
196 | /* Zap symbol defined in an as-needed lib that wasn't linked. | |
197 | This is a symptom of a larger problem: Absolute symbols | |
198 | defined in shared libraries can't be overridden, because we | |
199 | lose the link to the bfd which is via the symbol section. */ | |
200 | h->root.type = bfd_link_hash_new; | |
201 | bh = &h->root; | |
202 | } | |
203 | else | |
204 | bh = NULL; | |
205 | ||
206 | bed = get_elf_backend_data (abfd); | |
207 | if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL, | |
208 | sec, 0, NULL, false, bed->collect, | |
209 | &bh)) | |
210 | return NULL; | |
211 | h = (struct elf_link_hash_entry *) bh; | |
212 | BFD_ASSERT (h != NULL); | |
213 | h->def_regular = 1; | |
214 | h->non_elf = 0; | |
215 | h->root.linker_def = 1; | |
216 | h->type = STT_OBJECT; | |
217 | if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL) | |
218 | h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; | |
219 | ||
220 | (*bed->elf_backend_hide_symbol) (info, h, true); | |
221 | return h; | |
222 | } | |
223 | ||
224 | bool | |
225 | _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) | |
226 | { | |
227 | flagword flags; | |
228 | asection *s; | |
229 | struct elf_link_hash_entry *h; | |
230 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
231 | struct elf_link_hash_table *htab = elf_hash_table (info); | |
232 | ||
233 | /* This function may be called more than once. */ | |
234 | if (htab->sgot != NULL) | |
235 | return true; | |
236 | ||
237 | flags = bed->dynamic_sec_flags; | |
238 | ||
239 | s = bfd_make_section_anyway_with_flags (abfd, | |
240 | (bed->rela_plts_and_copies_p | |
241 | ? ".rela.got" : ".rel.got"), | |
242 | flags | SEC_READONLY); | |
243 | if (s == NULL | |
244 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) | |
245 | return false; | |
246 | htab->srelgot = s; | |
247 | ||
248 | s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); | |
249 | if (s == NULL | |
250 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) | |
251 | return false; | |
252 | htab->sgot = s; | |
253 | ||
254 | if (bed->want_got_plt) | |
255 | { | |
256 | s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); | |
257 | if (s == NULL | |
258 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) | |
259 | return false; | |
260 | htab->sgotplt = s; | |
261 | } | |
262 | ||
263 | /* The first bit of the global offset table is the header. */ | |
264 | s->size += bed->got_header_size; | |
265 | ||
266 | if (bed->want_got_sym) | |
267 | { | |
268 | /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got | |
269 | (or .got.plt) section. We don't do this in the linker script | |
270 | because we don't want to define the symbol if we are not creating | |
271 | a global offset table. */ | |
272 | h = _bfd_elf_define_linkage_sym (abfd, info, s, | |
273 | "_GLOBAL_OFFSET_TABLE_"); | |
274 | elf_hash_table (info)->hgot = h; | |
275 | if (h == NULL) | |
276 | return false; | |
277 | } | |
278 | ||
279 | return true; | |
280 | } | |
281 | \f | |
282 | /* Create a strtab to hold the dynamic symbol names. */ | |
283 | static bool | |
284 | _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info) | |
285 | { | |
286 | struct elf_link_hash_table *hash_table; | |
287 | ||
288 | hash_table = elf_hash_table (info); | |
289 | if (hash_table->dynobj == NULL) | |
290 | { | |
291 | /* We may not set dynobj, an input file holding linker created | |
292 | dynamic sections to abfd, which may be a dynamic object with | |
293 | its own dynamic sections. We need to find a normal input file | |
294 | to hold linker created sections if possible. */ | |
295 | if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0) | |
296 | { | |
297 | bfd *ibfd; | |
298 | asection *s; | |
299 | for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) | |
300 | if ((ibfd->flags | |
301 | & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0 | |
302 | && bfd_get_flavour (ibfd) == bfd_target_elf_flavour | |
303 | && elf_object_id (ibfd) == elf_hash_table_id (hash_table) | |
304 | && !((s = ibfd->sections) != NULL | |
305 | && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)) | |
306 | { | |
307 | abfd = ibfd; | |
308 | break; | |
309 | } | |
310 | } | |
311 | hash_table->dynobj = abfd; | |
312 | } | |
313 | ||
314 | if (hash_table->dynstr == NULL) | |
315 | { | |
316 | hash_table->dynstr = _bfd_elf_strtab_init (); | |
317 | if (hash_table->dynstr == NULL) | |
318 | return false; | |
319 | } | |
320 | return true; | |
321 | } | |
322 | ||
323 | /* Create some sections which will be filled in with dynamic linking | |
324 | information. ABFD is an input file which requires dynamic sections | |
325 | to be created. The dynamic sections take up virtual memory space | |
326 | when the final executable is run, so we need to create them before | |
327 | addresses are assigned to the output sections. We work out the | |
328 | actual contents and size of these sections later. */ | |
329 | ||
330 | bool | |
331 | _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) | |
332 | { | |
333 | flagword flags; | |
334 | asection *s; | |
335 | const struct elf_backend_data *bed; | |
336 | struct elf_link_hash_entry *h; | |
337 | ||
338 | if (! is_elf_hash_table (info->hash)) | |
339 | return false; | |
340 | ||
341 | if (elf_hash_table (info)->dynamic_sections_created) | |
342 | return true; | |
343 | ||
344 | if (!_bfd_elf_link_create_dynstrtab (abfd, info)) | |
345 | return false; | |
346 | ||
347 | abfd = elf_hash_table (info)->dynobj; | |
348 | bed = get_elf_backend_data (abfd); | |
349 | ||
350 | flags = bed->dynamic_sec_flags; | |
351 | ||
352 | /* A dynamically linked executable has a .interp section, but a | |
353 | shared library does not. */ | |
354 | if (bfd_link_executable (info) && !info->nointerp) | |
355 | { | |
356 | s = bfd_make_section_anyway_with_flags (abfd, ".interp", | |
357 | flags | SEC_READONLY); | |
358 | if (s == NULL) | |
359 | return false; | |
360 | } | |
361 | ||
362 | /* Create sections to hold version informations. These are removed | |
363 | if they are not needed. */ | |
364 | s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d", | |
365 | flags | SEC_READONLY); | |
366 | if (s == NULL | |
367 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) | |
368 | return false; | |
369 | ||
370 | s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version", | |
371 | flags | SEC_READONLY); | |
372 | if (s == NULL | |
373 | || !bfd_set_section_alignment (s, 1)) | |
374 | return false; | |
375 | ||
376 | s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r", | |
377 | flags | SEC_READONLY); | |
378 | if (s == NULL | |
379 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) | |
380 | return false; | |
381 | ||
382 | s = bfd_make_section_anyway_with_flags (abfd, ".dynsym", | |
383 | flags | SEC_READONLY); | |
384 | if (s == NULL | |
385 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) | |
386 | return false; | |
387 | elf_hash_table (info)->dynsym = s; | |
388 | ||
389 | s = bfd_make_section_anyway_with_flags (abfd, ".dynstr", | |
390 | flags | SEC_READONLY); | |
391 | if (s == NULL) | |
392 | return false; | |
393 | ||
394 | s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags); | |
395 | if (s == NULL | |
396 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) | |
397 | return false; | |
398 | elf_hash_table (info)->dynamic = s; | |
399 | ||
400 | /* The special symbol _DYNAMIC is always set to the start of the | |
401 | .dynamic section. We could set _DYNAMIC in a linker script, but we | |
402 | only want to define it if we are, in fact, creating a .dynamic | |
403 | section. We don't want to define it if there is no .dynamic | |
404 | section, since on some ELF platforms the start up code examines it | |
405 | to decide how to initialize the process. */ | |
406 | h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"); | |
407 | elf_hash_table (info)->hdynamic = h; | |
408 | if (h == NULL) | |
409 | return false; | |
410 | ||
411 | if (info->emit_hash) | |
412 | { | |
413 | s = bfd_make_section_anyway_with_flags (abfd, ".hash", | |
414 | flags | SEC_READONLY); | |
415 | if (s == NULL | |
416 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) | |
417 | return false; | |
418 | elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry; | |
419 | } | |
420 | ||
421 | if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL) | |
422 | { | |
423 | s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash", | |
424 | flags | SEC_READONLY); | |
425 | if (s == NULL | |
426 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) | |
427 | return false; | |
428 | /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section: | |
429 | 4 32-bit words followed by variable count of 64-bit words, then | |
430 | variable count of 32-bit words. */ | |
431 | if (bed->s->arch_size == 64) | |
432 | elf_section_data (s)->this_hdr.sh_entsize = 0; | |
433 | else | |
434 | elf_section_data (s)->this_hdr.sh_entsize = 4; | |
435 | } | |
436 | ||
437 | if (info->enable_dt_relr) | |
438 | { | |
439 | s = bfd_make_section_anyway_with_flags (abfd, ".relr.dyn", | |
440 | flags | SEC_READONLY); | |
441 | if (s == NULL | |
442 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) | |
443 | return false; | |
444 | elf_hash_table (info)->srelrdyn = s; | |
445 | } | |
446 | ||
447 | /* Let the backend create the rest of the sections. This lets the | |
448 | backend set the right flags. The backend will normally create | |
449 | the .got and .plt sections. */ | |
450 | if (bed->elf_backend_create_dynamic_sections == NULL | |
451 | || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) | |
452 | return false; | |
453 | ||
454 | elf_hash_table (info)->dynamic_sections_created = true; | |
455 | ||
456 | return true; | |
457 | } | |
458 | ||
459 | /* Create dynamic sections when linking against a dynamic object. */ | |
460 | ||
461 | bool | |
462 | _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) | |
463 | { | |
464 | flagword flags, pltflags; | |
465 | struct elf_link_hash_entry *h; | |
466 | asection *s; | |
467 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
468 | struct elf_link_hash_table *htab = elf_hash_table (info); | |
469 | ||
470 | /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and | |
471 | .rel[a].bss sections. */ | |
472 | flags = bed->dynamic_sec_flags; | |
473 | ||
474 | pltflags = flags; | |
475 | if (bed->plt_not_loaded) | |
476 | /* We do not clear SEC_ALLOC here because we still want the OS to | |
477 | allocate space for the section; it's just that there's nothing | |
478 | to read in from the object file. */ | |
479 | pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS); | |
480 | else | |
481 | pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD; | |
482 | if (bed->plt_readonly) | |
483 | pltflags |= SEC_READONLY; | |
484 | ||
485 | s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags); | |
486 | if (s == NULL | |
487 | || !bfd_set_section_alignment (s, bed->plt_alignment)) | |
488 | return false; | |
489 | htab->splt = s; | |
490 | ||
491 | /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the | |
492 | .plt section. */ | |
493 | if (bed->want_plt_sym) | |
494 | { | |
495 | h = _bfd_elf_define_linkage_sym (abfd, info, s, | |
496 | "_PROCEDURE_LINKAGE_TABLE_"); | |
497 | elf_hash_table (info)->hplt = h; | |
498 | if (h == NULL) | |
499 | return false; | |
500 | } | |
501 | ||
502 | s = bfd_make_section_anyway_with_flags (abfd, | |
503 | (bed->rela_plts_and_copies_p | |
504 | ? ".rela.plt" : ".rel.plt"), | |
505 | flags | SEC_READONLY); | |
506 | if (s == NULL | |
507 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) | |
508 | return false; | |
509 | htab->srelplt = s; | |
510 | ||
511 | if (! _bfd_elf_create_got_section (abfd, info)) | |
512 | return false; | |
513 | ||
514 | if (bed->want_dynbss) | |
515 | { | |
516 | /* The .dynbss section is a place to put symbols which are defined | |
517 | by dynamic objects, are referenced by regular objects, and are | |
518 | not functions. We must allocate space for them in the process | |
519 | image and use a R_*_COPY reloc to tell the dynamic linker to | |
520 | initialize them at run time. The linker script puts the .dynbss | |
521 | section into the .bss section of the final image. */ | |
522 | s = bfd_make_section_anyway_with_flags (abfd, ".dynbss", | |
523 | SEC_ALLOC | SEC_LINKER_CREATED); | |
524 | if (s == NULL) | |
525 | return false; | |
526 | htab->sdynbss = s; | |
527 | ||
528 | if (bed->want_dynrelro) | |
529 | { | |
530 | /* Similarly, but for symbols that were originally in read-only | |
531 | sections. This section doesn't really need to have contents, | |
532 | but make it like other .data.rel.ro sections. */ | |
533 | s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro", | |
534 | flags); | |
535 | if (s == NULL) | |
536 | return false; | |
537 | htab->sdynrelro = s; | |
538 | } | |
539 | ||
540 | /* The .rel[a].bss section holds copy relocs. This section is not | |
541 | normally needed. We need to create it here, though, so that the | |
542 | linker will map it to an output section. We can't just create it | |
543 | only if we need it, because we will not know whether we need it | |
544 | until we have seen all the input files, and the first time the | |
545 | main linker code calls BFD after examining all the input files | |
546 | (size_dynamic_sections) the input sections have already been | |
547 | mapped to the output sections. If the section turns out not to | |
548 | be needed, we can discard it later. We will never need this | |
549 | section when generating a shared object, since they do not use | |
550 | copy relocs. */ | |
551 | if (bfd_link_executable (info)) | |
552 | { | |
553 | s = bfd_make_section_anyway_with_flags (abfd, | |
554 | (bed->rela_plts_and_copies_p | |
555 | ? ".rela.bss" : ".rel.bss"), | |
556 | flags | SEC_READONLY); | |
557 | if (s == NULL | |
558 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) | |
559 | return false; | |
560 | htab->srelbss = s; | |
561 | ||
562 | if (bed->want_dynrelro) | |
563 | { | |
564 | s = (bfd_make_section_anyway_with_flags | |
565 | (abfd, (bed->rela_plts_and_copies_p | |
566 | ? ".rela.data.rel.ro" : ".rel.data.rel.ro"), | |
567 | flags | SEC_READONLY)); | |
568 | if (s == NULL | |
569 | || !bfd_set_section_alignment (s, bed->s->log_file_align)) | |
570 | return false; | |
571 | htab->sreldynrelro = s; | |
572 | } | |
573 | } | |
574 | } | |
575 | ||
576 | return true; | |
577 | } | |
578 | \f | |
579 | /* Record a new dynamic symbol. We record the dynamic symbols as we | |
580 | read the input files, since we need to have a list of all of them | |
581 | before we can determine the final sizes of the output sections. | |
582 | Note that we may actually call this function even though we are not | |
583 | going to output any dynamic symbols; in some cases we know that a | |
584 | symbol should be in the dynamic symbol table, but only if there is | |
585 | one. */ | |
586 | ||
587 | bool | |
588 | bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info, | |
589 | struct elf_link_hash_entry *h) | |
590 | { | |
591 | if (h->dynindx == -1) | |
592 | { | |
593 | struct elf_strtab_hash *dynstr; | |
594 | char *p; | |
595 | const char *name; | |
596 | size_t indx; | |
597 | ||
598 | if (h->root.type == bfd_link_hash_defined | |
599 | || h->root.type == bfd_link_hash_defweak) | |
600 | { | |
601 | /* An IR symbol should not be made dynamic. */ | |
602 | if (h->root.u.def.section != NULL | |
603 | && h->root.u.def.section->owner != NULL | |
604 | && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0) | |
605 | return true; | |
606 | } | |
607 | ||
608 | /* XXX: The ABI draft says the linker must turn hidden and | |
609 | internal symbols into STB_LOCAL symbols when producing the | |
610 | DSO. However, if ld.so honors st_other in the dynamic table, | |
611 | this would not be necessary. */ | |
612 | switch (ELF_ST_VISIBILITY (h->other)) | |
613 | { | |
614 | case STV_INTERNAL: | |
615 | case STV_HIDDEN: | |
616 | if (h->root.type != bfd_link_hash_undefined | |
617 | && h->root.type != bfd_link_hash_undefweak) | |
618 | { | |
619 | h->forced_local = 1; | |
620 | return true; | |
621 | } | |
622 | ||
623 | default: | |
624 | break; | |
625 | } | |
626 | ||
627 | h->dynindx = elf_hash_table (info)->dynsymcount; | |
628 | ++elf_hash_table (info)->dynsymcount; | |
629 | ||
630 | dynstr = elf_hash_table (info)->dynstr; | |
631 | if (dynstr == NULL) | |
632 | { | |
633 | /* Create a strtab to hold the dynamic symbol names. */ | |
634 | elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); | |
635 | if (dynstr == NULL) | |
636 | return false; | |
637 | } | |
638 | ||
639 | char *unversioned_name = NULL; | |
640 | ||
641 | /* We don't put any version information in the dynamic string | |
642 | table. */ | |
643 | name = h->root.root.string; | |
644 | p = strchr (name, ELF_VER_CHR); | |
645 | if (p != NULL) | |
646 | { | |
647 | unversioned_name = bfd_malloc (p - name + 1); | |
648 | memcpy (unversioned_name, name, p - name); | |
649 | unversioned_name[p - name] = 0; | |
650 | name = unversioned_name; | |
651 | } | |
652 | ||
653 | indx = _bfd_elf_strtab_add (dynstr, name, p != NULL); | |
654 | ||
655 | if (p != NULL) | |
656 | free (unversioned_name); | |
657 | ||
658 | if (indx == (size_t) -1) | |
659 | return false; | |
660 | h->dynstr_index = indx; | |
661 | } | |
662 | ||
663 | return true; | |
664 | } | |
665 | \f | |
666 | /* Mark a symbol dynamic. */ | |
667 | ||
668 | static void | |
669 | bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info, | |
670 | struct elf_link_hash_entry *h, | |
671 | Elf_Internal_Sym *sym) | |
672 | { | |
673 | struct bfd_elf_dynamic_list *d = info->dynamic_list; | |
674 | ||
675 | /* It may be called more than once on the same H. */ | |
676 | if(h->dynamic || bfd_link_relocatable (info)) | |
677 | return; | |
678 | ||
679 | if ((info->dynamic_data | |
680 | && (h->type == STT_OBJECT | |
681 | || h->type == STT_COMMON | |
682 | || (sym != NULL | |
683 | && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT | |
684 | || ELF_ST_TYPE (sym->st_info) == STT_COMMON)))) | |
685 | || (d != NULL | |
686 | && h->non_elf | |
687 | && (*d->match) (&d->head, NULL, h->root.root.string))) | |
688 | { | |
689 | h->dynamic = 1; | |
690 | /* NB: If a symbol is made dynamic by --dynamic-list, it has | |
691 | non-IR reference. */ | |
692 | h->root.non_ir_ref_dynamic = 1; | |
693 | } | |
694 | } | |
695 | ||
696 | /* Record an assignment to a symbol made by a linker script. We need | |
697 | this in case some dynamic object refers to this symbol. */ | |
698 | ||
699 | bool | |
700 | bfd_elf_record_link_assignment (bfd *output_bfd, | |
701 | struct bfd_link_info *info, | |
702 | const char *name, | |
703 | bool provide, | |
704 | bool hidden) | |
705 | { | |
706 | struct elf_link_hash_entry *h, *hv; | |
707 | struct elf_link_hash_table *htab; | |
708 | const struct elf_backend_data *bed; | |
709 | ||
710 | if (!is_elf_hash_table (info->hash)) | |
711 | return true; | |
712 | ||
713 | htab = elf_hash_table (info); | |
714 | h = elf_link_hash_lookup (htab, name, !provide, true, false); | |
715 | if (h == NULL) | |
716 | return provide; | |
717 | ||
718 | if (h->root.type == bfd_link_hash_warning) | |
719 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
720 | ||
721 | if (h->versioned == unknown) | |
722 | { | |
723 | /* Set versioned if symbol version is unknown. */ | |
724 | char *version = strrchr (name, ELF_VER_CHR); | |
725 | if (version) | |
726 | { | |
727 | if (version > name && version[-1] != ELF_VER_CHR) | |
728 | h->versioned = versioned_hidden; | |
729 | else | |
730 | h->versioned = versioned; | |
731 | } | |
732 | } | |
733 | ||
734 | /* Symbols defined in a linker script but not referenced anywhere | |
735 | else will have non_elf set. */ | |
736 | if (h->non_elf) | |
737 | { | |
738 | bfd_elf_link_mark_dynamic_symbol (info, h, NULL); | |
739 | h->non_elf = 0; | |
740 | } | |
741 | ||
742 | switch (h->root.type) | |
743 | { | |
744 | case bfd_link_hash_defined: | |
745 | case bfd_link_hash_defweak: | |
746 | case bfd_link_hash_common: | |
747 | break; | |
748 | case bfd_link_hash_undefweak: | |
749 | case bfd_link_hash_undefined: | |
750 | /* Since we're defining the symbol, don't let it seem to have not | |
751 | been defined. record_dynamic_symbol and size_dynamic_sections | |
752 | may depend on this. */ | |
753 | h->root.type = bfd_link_hash_new; | |
754 | if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root) | |
755 | bfd_link_repair_undef_list (&htab->root); | |
756 | break; | |
757 | case bfd_link_hash_new: | |
758 | break; | |
759 | case bfd_link_hash_indirect: | |
760 | /* We had a versioned symbol in a dynamic library. We make the | |
761 | the versioned symbol point to this one. */ | |
762 | bed = get_elf_backend_data (output_bfd); | |
763 | hv = h; | |
764 | while (hv->root.type == bfd_link_hash_indirect | |
765 | || hv->root.type == bfd_link_hash_warning) | |
766 | hv = (struct elf_link_hash_entry *) hv->root.u.i.link; | |
767 | /* We don't need to update h->root.u since linker will set them | |
768 | later. */ | |
769 | h->root.type = bfd_link_hash_undefined; | |
770 | hv->root.type = bfd_link_hash_indirect; | |
771 | hv->root.u.i.link = (struct bfd_link_hash_entry *) h; | |
772 | (*bed->elf_backend_copy_indirect_symbol) (info, h, hv); | |
773 | break; | |
774 | default: | |
775 | BFD_FAIL (); | |
776 | return false; | |
777 | } | |
778 | ||
779 | /* If this symbol is being provided by the linker script, and it is | |
780 | currently defined by a dynamic object, but not by a regular | |
781 | object, then mark it as undefined so that the generic linker will | |
782 | force the correct value. */ | |
783 | if (provide | |
784 | && h->def_dynamic | |
785 | && !h->def_regular) | |
786 | h->root.type = bfd_link_hash_undefined; | |
787 | ||
788 | /* If this symbol is currently defined by a dynamic object, but not | |
789 | by a regular object, then clear out any version information because | |
790 | the symbol will not be associated with the dynamic object any | |
791 | more. */ | |
792 | if (h->def_dynamic && !h->def_regular) | |
793 | h->verinfo.verdef = NULL; | |
794 | ||
795 | /* Make sure this symbol is not garbage collected. */ | |
796 | h->mark = 1; | |
797 | ||
798 | h->def_regular = 1; | |
799 | ||
800 | if (hidden) | |
801 | { | |
802 | bed = get_elf_backend_data (output_bfd); | |
803 | if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL) | |
804 | h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; | |
805 | (*bed->elf_backend_hide_symbol) (info, h, true); | |
806 | } | |
807 | ||
808 | /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects | |
809 | and executables. */ | |
810 | if (!bfd_link_relocatable (info) | |
811 | && h->dynindx != -1 | |
812 | && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN | |
813 | || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)) | |
814 | h->forced_local = 1; | |
815 | ||
816 | if ((h->def_dynamic | |
817 | || h->ref_dynamic | |
818 | || bfd_link_dll (info)) | |
819 | && !h->forced_local | |
820 | && h->dynindx == -1) | |
821 | { | |
822 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
823 | return false; | |
824 | ||
825 | /* If this is a weak defined symbol, and we know a corresponding | |
826 | real symbol from the same dynamic object, make sure the real | |
827 | symbol is also made into a dynamic symbol. */ | |
828 | if (h->is_weakalias) | |
829 | { | |
830 | struct elf_link_hash_entry *def = weakdef (h); | |
831 | ||
832 | if (def->dynindx == -1 | |
833 | && !bfd_elf_link_record_dynamic_symbol (info, def)) | |
834 | return false; | |
835 | } | |
836 | } | |
837 | ||
838 | return true; | |
839 | } | |
840 | ||
841 | /* Record a new local dynamic symbol. Returns 0 on failure, 1 on | |
842 | success, and 2 on a failure caused by attempting to record a symbol | |
843 | in a discarded section, eg. a discarded link-once section symbol. */ | |
844 | ||
845 | int | |
846 | bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info, | |
847 | bfd *input_bfd, | |
848 | long input_indx) | |
849 | { | |
850 | size_t amt; | |
851 | struct elf_link_local_dynamic_entry *entry; | |
852 | struct elf_link_hash_table *eht; | |
853 | struct elf_strtab_hash *dynstr; | |
854 | size_t dynstr_index; | |
855 | char *name; | |
856 | Elf_External_Sym_Shndx eshndx; | |
857 | char esym[sizeof (Elf64_External_Sym)]; | |
858 | ||
859 | if (! is_elf_hash_table (info->hash)) | |
860 | return 0; | |
861 | ||
862 | /* See if the entry exists already. */ | |
863 | for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next) | |
864 | if (entry->input_bfd == input_bfd && entry->input_indx == input_indx) | |
865 | return 1; | |
866 | ||
867 | amt = sizeof (*entry); | |
868 | entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt); | |
869 | if (entry == NULL) | |
870 | return 0; | |
871 | ||
872 | /* Go find the symbol, so that we can find it's name. */ | |
873 | if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr, | |
874 | 1, input_indx, &entry->isym, esym, &eshndx)) | |
875 | { | |
876 | bfd_release (input_bfd, entry); | |
877 | return 0; | |
878 | } | |
879 | ||
880 | if (entry->isym.st_shndx != SHN_UNDEF | |
881 | && entry->isym.st_shndx < SHN_LORESERVE) | |
882 | { | |
883 | asection *s; | |
884 | ||
885 | s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx); | |
886 | if (s == NULL || bfd_is_abs_section (s->output_section)) | |
887 | { | |
888 | /* We can still bfd_release here as nothing has done another | |
889 | bfd_alloc. We can't do this later in this function. */ | |
890 | bfd_release (input_bfd, entry); | |
891 | return 2; | |
892 | } | |
893 | } | |
894 | ||
895 | name = (bfd_elf_string_from_elf_section | |
896 | (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link, | |
897 | entry->isym.st_name)); | |
898 | ||
899 | dynstr = elf_hash_table (info)->dynstr; | |
900 | if (dynstr == NULL) | |
901 | { | |
902 | /* Create a strtab to hold the dynamic symbol names. */ | |
903 | elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); | |
904 | if (dynstr == NULL) | |
905 | return 0; | |
906 | } | |
907 | ||
908 | dynstr_index = _bfd_elf_strtab_add (dynstr, name, false); | |
909 | if (dynstr_index == (size_t) -1) | |
910 | return 0; | |
911 | entry->isym.st_name = dynstr_index; | |
912 | ||
913 | eht = elf_hash_table (info); | |
914 | ||
915 | entry->next = eht->dynlocal; | |
916 | eht->dynlocal = entry; | |
917 | entry->input_bfd = input_bfd; | |
918 | entry->input_indx = input_indx; | |
919 | eht->dynsymcount++; | |
920 | ||
921 | /* Whatever binding the symbol had before, it's now local. */ | |
922 | entry->isym.st_info | |
923 | = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info)); | |
924 | ||
925 | /* The dynindx will be set at the end of size_dynamic_sections. */ | |
926 | ||
927 | return 1; | |
928 | } | |
929 | ||
930 | /* Return the dynindex of a local dynamic symbol. */ | |
931 | ||
932 | long | |
933 | _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info, | |
934 | bfd *input_bfd, | |
935 | long input_indx) | |
936 | { | |
937 | struct elf_link_local_dynamic_entry *e; | |
938 | ||
939 | for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) | |
940 | if (e->input_bfd == input_bfd && e->input_indx == input_indx) | |
941 | return e->dynindx; | |
942 | return -1; | |
943 | } | |
944 | ||
945 | /* This function is used to renumber the dynamic symbols, if some of | |
946 | them are removed because they are marked as local. This is called | |
947 | via elf_link_hash_traverse. */ | |
948 | ||
949 | static bool | |
950 | elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h, | |
951 | void *data) | |
952 | { | |
953 | size_t *count = (size_t *) data; | |
954 | ||
955 | if (h->forced_local) | |
956 | return true; | |
957 | ||
958 | if (h->dynindx != -1) | |
959 | h->dynindx = ++(*count); | |
960 | ||
961 | return true; | |
962 | } | |
963 | ||
964 | ||
965 | /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with | |
966 | STB_LOCAL binding. */ | |
967 | ||
968 | static bool | |
969 | elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h, | |
970 | void *data) | |
971 | { | |
972 | size_t *count = (size_t *) data; | |
973 | ||
974 | if (!h->forced_local) | |
975 | return true; | |
976 | ||
977 | if (h->dynindx != -1) | |
978 | h->dynindx = ++(*count); | |
979 | ||
980 | return true; | |
981 | } | |
982 | ||
983 | /* Return true if the dynamic symbol for a given section should be | |
984 | omitted when creating a shared library. */ | |
985 | bool | |
986 | _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED, | |
987 | struct bfd_link_info *info, | |
988 | asection *p) | |
989 | { | |
990 | struct elf_link_hash_table *htab; | |
991 | asection *ip; | |
992 | ||
993 | switch (elf_section_data (p)->this_hdr.sh_type) | |
994 | { | |
995 | case SHT_PROGBITS: | |
996 | case SHT_NOBITS: | |
997 | /* If sh_type is yet undecided, assume it could be | |
998 | SHT_PROGBITS/SHT_NOBITS. */ | |
999 | case SHT_NULL: | |
1000 | htab = elf_hash_table (info); | |
1001 | if (htab->text_index_section != NULL) | |
1002 | return p != htab->text_index_section && p != htab->data_index_section; | |
1003 | ||
1004 | return (htab->dynobj != NULL | |
1005 | && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL | |
1006 | && ip->output_section == p); | |
1007 | ||
1008 | /* There shouldn't be section relative relocations | |
1009 | against any other section. */ | |
1010 | default: | |
1011 | return true; | |
1012 | } | |
1013 | } | |
1014 | ||
1015 | bool | |
1016 | _bfd_elf_omit_section_dynsym_all | |
1017 | (bfd *output_bfd ATTRIBUTE_UNUSED, | |
1018 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
1019 | asection *p ATTRIBUTE_UNUSED) | |
1020 | { | |
1021 | return true; | |
1022 | } | |
1023 | ||
1024 | /* Assign dynsym indices. In a shared library we generate a section | |
1025 | symbol for each output section, which come first. Next come symbols | |
1026 | which have been forced to local binding. Then all of the back-end | |
1027 | allocated local dynamic syms, followed by the rest of the global | |
1028 | symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set. | |
1029 | (This prevents the early call before elf_backend_init_index_section | |
1030 | and strip_excluded_output_sections setting dynindx for sections | |
1031 | that are stripped.) */ | |
1032 | ||
1033 | static unsigned long | |
1034 | _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, | |
1035 | struct bfd_link_info *info, | |
1036 | unsigned long *section_sym_count) | |
1037 | { | |
1038 | unsigned long dynsymcount = 0; | |
1039 | bool do_sec = section_sym_count != NULL; | |
1040 | ||
1041 | if (bfd_link_pic (info) | |
1042 | || elf_hash_table (info)->is_relocatable_executable) | |
1043 | { | |
1044 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | |
1045 | asection *p; | |
1046 | for (p = output_bfd->sections; p ; p = p->next) | |
1047 | if ((p->flags & SEC_EXCLUDE) == 0 | |
1048 | && (p->flags & SEC_ALLOC) != 0 | |
1049 | && elf_hash_table (info)->dynamic_relocs | |
1050 | && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) | |
1051 | { | |
1052 | ++dynsymcount; | |
1053 | if (do_sec) | |
1054 | elf_section_data (p)->dynindx = dynsymcount; | |
1055 | } | |
1056 | else if (do_sec) | |
1057 | elf_section_data (p)->dynindx = 0; | |
1058 | } | |
1059 | if (do_sec) | |
1060 | *section_sym_count = dynsymcount; | |
1061 | ||
1062 | elf_link_hash_traverse (elf_hash_table (info), | |
1063 | elf_link_renumber_local_hash_table_dynsyms, | |
1064 | &dynsymcount); | |
1065 | ||
1066 | if (elf_hash_table (info)->dynlocal) | |
1067 | { | |
1068 | struct elf_link_local_dynamic_entry *p; | |
1069 | for (p = elf_hash_table (info)->dynlocal; p ; p = p->next) | |
1070 | p->dynindx = ++dynsymcount; | |
1071 | } | |
1072 | elf_hash_table (info)->local_dynsymcount = dynsymcount; | |
1073 | ||
1074 | elf_link_hash_traverse (elf_hash_table (info), | |
1075 | elf_link_renumber_hash_table_dynsyms, | |
1076 | &dynsymcount); | |
1077 | ||
1078 | /* There is an unused NULL entry at the head of the table which we | |
1079 | must account for in our count even if the table is empty since it | |
1080 | is intended for the mandatory DT_SYMTAB tag (.dynsym section) in | |
1081 | .dynamic section. */ | |
1082 | dynsymcount++; | |
1083 | ||
1084 | elf_hash_table (info)->dynsymcount = dynsymcount; | |
1085 | return dynsymcount; | |
1086 | } | |
1087 | ||
1088 | /* Merge st_other field. */ | |
1089 | ||
1090 | static void | |
1091 | elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h, | |
1092 | unsigned int st_other, asection *sec, | |
1093 | bool definition, bool dynamic) | |
1094 | { | |
1095 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
1096 | ||
1097 | /* If st_other has a processor-specific meaning, specific | |
1098 | code might be needed here. */ | |
1099 | if (bed->elf_backend_merge_symbol_attribute) | |
1100 | (*bed->elf_backend_merge_symbol_attribute) (h, st_other, definition, | |
1101 | dynamic); | |
1102 | ||
1103 | if (!dynamic) | |
1104 | { | |
1105 | unsigned symvis = ELF_ST_VISIBILITY (st_other); | |
1106 | unsigned hvis = ELF_ST_VISIBILITY (h->other); | |
1107 | ||
1108 | /* Keep the most constraining visibility. Leave the remainder | |
1109 | of the st_other field to elf_backend_merge_symbol_attribute. */ | |
1110 | if (symvis - 1 < hvis - 1) | |
1111 | h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1)); | |
1112 | } | |
1113 | else if (definition | |
1114 | && ELF_ST_VISIBILITY (st_other) != STV_DEFAULT | |
1115 | && (sec->flags & SEC_READONLY) == 0) | |
1116 | h->protected_def = 1; | |
1117 | } | |
1118 | ||
1119 | /* This function is called when we want to merge a new symbol with an | |
1120 | existing symbol. It handles the various cases which arise when we | |
1121 | find a definition in a dynamic object, or when there is already a | |
1122 | definition in a dynamic object. The new symbol is described by | |
1123 | NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table | |
1124 | entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK | |
1125 | if the old symbol was weak. We set POLD_ALIGNMENT to the alignment | |
1126 | of an old common symbol. We set OVERRIDE if the old symbol is | |
1127 | overriding a new definition. We set TYPE_CHANGE_OK if it is OK for | |
1128 | the type to change. We set SIZE_CHANGE_OK if it is OK for the size | |
1129 | to change. By OK to change, we mean that we shouldn't warn if the | |
1130 | type or size does change. */ | |
1131 | ||
1132 | static bool | |
1133 | _bfd_elf_merge_symbol (bfd *abfd, | |
1134 | struct bfd_link_info *info, | |
1135 | const char *name, | |
1136 | Elf_Internal_Sym *sym, | |
1137 | asection **psec, | |
1138 | bfd_vma *pvalue, | |
1139 | struct elf_link_hash_entry **sym_hash, | |
1140 | bfd **poldbfd, | |
1141 | bool *pold_weak, | |
1142 | unsigned int *pold_alignment, | |
1143 | bool *skip, | |
1144 | bfd **override, | |
1145 | bool *type_change_ok, | |
1146 | bool *size_change_ok, | |
1147 | bool *matched) | |
1148 | { | |
1149 | asection *sec, *oldsec; | |
1150 | struct elf_link_hash_entry *h; | |
1151 | struct elf_link_hash_entry *hi; | |
1152 | struct elf_link_hash_entry *flip; | |
1153 | int bind; | |
1154 | bfd *oldbfd; | |
1155 | bool newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; | |
1156 | bool newweak, oldweak, newfunc, oldfunc; | |
1157 | const struct elf_backend_data *bed; | |
1158 | char *new_version; | |
1159 | bool default_sym = *matched; | |
1160 | struct elf_link_hash_table *htab; | |
1161 | ||
1162 | *skip = false; | |
1163 | *override = NULL; | |
1164 | ||
1165 | sec = *psec; | |
1166 | bind = ELF_ST_BIND (sym->st_info); | |
1167 | ||
1168 | if (! bfd_is_und_section (sec)) | |
1169 | h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false); | |
1170 | else | |
1171 | h = ((struct elf_link_hash_entry *) | |
1172 | bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false)); | |
1173 | if (h == NULL) | |
1174 | return false; | |
1175 | *sym_hash = h; | |
1176 | ||
1177 | bed = get_elf_backend_data (abfd); | |
1178 | ||
1179 | /* NEW_VERSION is the symbol version of the new symbol. */ | |
1180 | if (h->versioned != unversioned) | |
1181 | { | |
1182 | /* Symbol version is unknown or versioned. */ | |
1183 | new_version = strrchr (name, ELF_VER_CHR); | |
1184 | if (new_version) | |
1185 | { | |
1186 | if (h->versioned == unknown) | |
1187 | { | |
1188 | if (new_version > name && new_version[-1] != ELF_VER_CHR) | |
1189 | h->versioned = versioned_hidden; | |
1190 | else | |
1191 | h->versioned = versioned; | |
1192 | } | |
1193 | new_version += 1; | |
1194 | if (new_version[0] == '\0') | |
1195 | new_version = NULL; | |
1196 | } | |
1197 | else | |
1198 | h->versioned = unversioned; | |
1199 | } | |
1200 | else | |
1201 | new_version = NULL; | |
1202 | ||
1203 | /* For merging, we only care about real symbols. But we need to make | |
1204 | sure that indirect symbol dynamic flags are updated. */ | |
1205 | hi = h; | |
1206 | while (h->root.type == bfd_link_hash_indirect | |
1207 | || h->root.type == bfd_link_hash_warning) | |
1208 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1209 | ||
1210 | if (!*matched) | |
1211 | { | |
1212 | if (hi == h || h->root.type == bfd_link_hash_new) | |
1213 | *matched = true; | |
1214 | else | |
1215 | { | |
1216 | /* OLD_HIDDEN is true if the existing symbol is only visible | |
1217 | to the symbol with the same symbol version. NEW_HIDDEN is | |
1218 | true if the new symbol is only visible to the symbol with | |
1219 | the same symbol version. */ | |
1220 | bool old_hidden = h->versioned == versioned_hidden; | |
1221 | bool new_hidden = hi->versioned == versioned_hidden; | |
1222 | if (!old_hidden && !new_hidden) | |
1223 | /* The new symbol matches the existing symbol if both | |
1224 | aren't hidden. */ | |
1225 | *matched = true; | |
1226 | else | |
1227 | { | |
1228 | /* OLD_VERSION is the symbol version of the existing | |
1229 | symbol. */ | |
1230 | char *old_version; | |
1231 | ||
1232 | if (h->versioned >= versioned) | |
1233 | old_version = strrchr (h->root.root.string, | |
1234 | ELF_VER_CHR) + 1; | |
1235 | else | |
1236 | old_version = NULL; | |
1237 | ||
1238 | /* The new symbol matches the existing symbol if they | |
1239 | have the same symbol version. */ | |
1240 | *matched = (old_version == new_version | |
1241 | || (old_version != NULL | |
1242 | && new_version != NULL | |
1243 | && strcmp (old_version, new_version) == 0)); | |
1244 | } | |
1245 | } | |
1246 | } | |
1247 | ||
1248 | /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the | |
1249 | existing symbol. */ | |
1250 | ||
1251 | oldbfd = NULL; | |
1252 | oldsec = NULL; | |
1253 | switch (h->root.type) | |
1254 | { | |
1255 | default: | |
1256 | break; | |
1257 | ||
1258 | case bfd_link_hash_undefined: | |
1259 | case bfd_link_hash_undefweak: | |
1260 | oldbfd = h->root.u.undef.abfd; | |
1261 | break; | |
1262 | ||
1263 | case bfd_link_hash_defined: | |
1264 | case bfd_link_hash_defweak: | |
1265 | oldbfd = h->root.u.def.section->owner; | |
1266 | oldsec = h->root.u.def.section; | |
1267 | break; | |
1268 | ||
1269 | case bfd_link_hash_common: | |
1270 | oldbfd = h->root.u.c.p->section->owner; | |
1271 | oldsec = h->root.u.c.p->section; | |
1272 | if (pold_alignment) | |
1273 | *pold_alignment = h->root.u.c.p->alignment_power; | |
1274 | break; | |
1275 | } | |
1276 | if (poldbfd && *poldbfd == NULL) | |
1277 | *poldbfd = oldbfd; | |
1278 | ||
1279 | /* Differentiate strong and weak symbols. */ | |
1280 | newweak = bind == STB_WEAK; | |
1281 | oldweak = (h->root.type == bfd_link_hash_defweak | |
1282 | || h->root.type == bfd_link_hash_undefweak); | |
1283 | if (pold_weak) | |
1284 | *pold_weak = oldweak; | |
1285 | ||
1286 | /* We have to check it for every instance since the first few may be | |
1287 | references and not all compilers emit symbol type for undefined | |
1288 | symbols. */ | |
1289 | bfd_elf_link_mark_dynamic_symbol (info, h, sym); | |
1290 | ||
1291 | htab = elf_hash_table (info); | |
1292 | ||
1293 | /* NEWDYN and OLDDYN indicate whether the new or old symbol, | |
1294 | respectively, is from a dynamic object. */ | |
1295 | ||
1296 | newdyn = (abfd->flags & DYNAMIC) != 0; | |
1297 | ||
1298 | /* ref_dynamic_nonweak and dynamic_def flags track actual undefined | |
1299 | syms and defined syms in dynamic libraries respectively. | |
1300 | ref_dynamic on the other hand can be set for a symbol defined in | |
1301 | a dynamic library, and def_dynamic may not be set; When the | |
1302 | definition in a dynamic lib is overridden by a definition in the | |
1303 | executable use of the symbol in the dynamic lib becomes a | |
1304 | reference to the executable symbol. */ | |
1305 | if (newdyn) | |
1306 | { | |
1307 | if (bfd_is_und_section (sec)) | |
1308 | { | |
1309 | if (bind != STB_WEAK) | |
1310 | { | |
1311 | h->ref_dynamic_nonweak = 1; | |
1312 | hi->ref_dynamic_nonweak = 1; | |
1313 | } | |
1314 | } | |
1315 | else | |
1316 | { | |
1317 | /* Update the existing symbol only if they match. */ | |
1318 | if (*matched) | |
1319 | h->dynamic_def = 1; | |
1320 | hi->dynamic_def = 1; | |
1321 | } | |
1322 | } | |
1323 | ||
1324 | /* If we just created the symbol, mark it as being an ELF symbol. | |
1325 | Other than that, there is nothing to do--there is no merge issue | |
1326 | with a newly defined symbol--so we just return. */ | |
1327 | ||
1328 | if (h->root.type == bfd_link_hash_new) | |
1329 | { | |
1330 | h->non_elf = 0; | |
1331 | return true; | |
1332 | } | |
1333 | ||
1334 | /* In cases involving weak versioned symbols, we may wind up trying | |
1335 | to merge a symbol with itself. Catch that here, to avoid the | |
1336 | confusion that results if we try to override a symbol with | |
1337 | itself. The additional tests catch cases like | |
1338 | _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a | |
1339 | dynamic object, which we do want to handle here. */ | |
1340 | if (abfd == oldbfd | |
1341 | && (newweak || oldweak) | |
1342 | && ((abfd->flags & DYNAMIC) == 0 | |
1343 | || !h->def_regular)) | |
1344 | return true; | |
1345 | ||
1346 | olddyn = false; | |
1347 | if (oldbfd != NULL) | |
1348 | olddyn = (oldbfd->flags & DYNAMIC) != 0; | |
1349 | else if (oldsec != NULL) | |
1350 | { | |
1351 | /* This handles the special SHN_MIPS_{TEXT,DATA} section | |
1352 | indices used by MIPS ELF. */ | |
1353 | olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0; | |
1354 | } | |
1355 | ||
1356 | /* Set non_ir_ref_dynamic only when not handling DT_NEEDED entries. */ | |
1357 | if (!htab->handling_dt_needed | |
1358 | && oldbfd != NULL | |
1359 | && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)) | |
1360 | { | |
1361 | if (newdyn != olddyn) | |
1362 | { | |
1363 | /* Handle a case where plugin_notice won't be called and thus | |
1364 | won't set the non_ir_ref flags on the first pass over | |
1365 | symbols. */ | |
1366 | h->root.non_ir_ref_dynamic = true; | |
1367 | hi->root.non_ir_ref_dynamic = true; | |
1368 | } | |
1369 | else if ((oldbfd->flags & BFD_PLUGIN) != 0 | |
1370 | && hi->root.type == bfd_link_hash_indirect) | |
1371 | { | |
1372 | /* Change indirect symbol from IR to undefined. */ | |
1373 | hi->root.type = bfd_link_hash_undefined; | |
1374 | hi->root.u.undef.abfd = oldbfd; | |
1375 | } | |
1376 | } | |
1377 | ||
1378 | /* NEWDEF and OLDDEF indicate whether the new or old symbol, | |
1379 | respectively, appear to be a definition rather than reference. */ | |
1380 | ||
1381 | newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec); | |
1382 | ||
1383 | olddef = (h->root.type != bfd_link_hash_undefined | |
1384 | && h->root.type != bfd_link_hash_undefweak | |
1385 | && h->root.type != bfd_link_hash_common); | |
1386 | ||
1387 | /* NEWFUNC and OLDFUNC indicate whether the new or old symbol, | |
1388 | respectively, appear to be a function. */ | |
1389 | ||
1390 | newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE | |
1391 | && bed->is_function_type (ELF_ST_TYPE (sym->st_info))); | |
1392 | ||
1393 | oldfunc = (h->type != STT_NOTYPE | |
1394 | && bed->is_function_type (h->type)); | |
1395 | ||
1396 | if (!(newfunc && oldfunc) | |
1397 | && ELF_ST_TYPE (sym->st_info) != h->type | |
1398 | && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE | |
1399 | && h->type != STT_NOTYPE | |
1400 | && (newdef || bfd_is_com_section (sec)) | |
1401 | && (olddef || h->root.type == bfd_link_hash_common)) | |
1402 | { | |
1403 | /* If creating a default indirect symbol ("foo" or "foo@") from | |
1404 | a dynamic versioned definition ("foo@@") skip doing so if | |
1405 | there is an existing regular definition with a different | |
1406 | type. We don't want, for example, a "time" variable in the | |
1407 | executable overriding a "time" function in a shared library. */ | |
1408 | if (newdyn | |
1409 | && !olddyn) | |
1410 | { | |
1411 | *skip = true; | |
1412 | return true; | |
1413 | } | |
1414 | ||
1415 | /* When adding a symbol from a regular object file after we have | |
1416 | created indirect symbols, undo the indirection and any | |
1417 | dynamic state. */ | |
1418 | if (hi != h | |
1419 | && !newdyn | |
1420 | && olddyn) | |
1421 | { | |
1422 | h = hi; | |
1423 | (*bed->elf_backend_hide_symbol) (info, h, true); | |
1424 | h->forced_local = 0; | |
1425 | h->ref_dynamic = 0; | |
1426 | h->def_dynamic = 0; | |
1427 | h->dynamic_def = 0; | |
1428 | if (h->root.u.undef.next || info->hash->undefs_tail == &h->root) | |
1429 | { | |
1430 | h->root.type = bfd_link_hash_undefined; | |
1431 | h->root.u.undef.abfd = abfd; | |
1432 | } | |
1433 | else | |
1434 | { | |
1435 | h->root.type = bfd_link_hash_new; | |
1436 | h->root.u.undef.abfd = NULL; | |
1437 | } | |
1438 | return true; | |
1439 | } | |
1440 | } | |
1441 | ||
1442 | /* Check TLS symbols. We don't check undefined symbols introduced | |
1443 | by "ld -u" which have no type (and oldbfd NULL), and we don't | |
1444 | check symbols from plugins because they also have no type. */ | |
1445 | if (oldbfd != NULL | |
1446 | && (oldbfd->flags & BFD_PLUGIN) == 0 | |
1447 | && (abfd->flags & BFD_PLUGIN) == 0 | |
1448 | && ELF_ST_TYPE (sym->st_info) != h->type | |
1449 | && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)) | |
1450 | { | |
1451 | bfd *ntbfd, *tbfd; | |
1452 | bool ntdef, tdef; | |
1453 | asection *ntsec, *tsec; | |
1454 | ||
1455 | if (h->type == STT_TLS) | |
1456 | { | |
1457 | ntbfd = abfd; | |
1458 | ntsec = sec; | |
1459 | ntdef = newdef; | |
1460 | tbfd = oldbfd; | |
1461 | tsec = oldsec; | |
1462 | tdef = olddef; | |
1463 | } | |
1464 | else | |
1465 | { | |
1466 | ntbfd = oldbfd; | |
1467 | ntsec = oldsec; | |
1468 | ntdef = olddef; | |
1469 | tbfd = abfd; | |
1470 | tsec = sec; | |
1471 | tdef = newdef; | |
1472 | } | |
1473 | ||
1474 | if (tdef && ntdef) | |
1475 | _bfd_error_handler | |
1476 | /* xgettext:c-format */ | |
1477 | (_("%s: TLS definition in %pB section %pA " | |
1478 | "mismatches non-TLS definition in %pB section %pA"), | |
1479 | h->root.root.string, tbfd, tsec, ntbfd, ntsec); | |
1480 | else if (!tdef && !ntdef) | |
1481 | _bfd_error_handler | |
1482 | /* xgettext:c-format */ | |
1483 | (_("%s: TLS reference in %pB " | |
1484 | "mismatches non-TLS reference in %pB"), | |
1485 | h->root.root.string, tbfd, ntbfd); | |
1486 | else if (tdef) | |
1487 | _bfd_error_handler | |
1488 | /* xgettext:c-format */ | |
1489 | (_("%s: TLS definition in %pB section %pA " | |
1490 | "mismatches non-TLS reference in %pB"), | |
1491 | h->root.root.string, tbfd, tsec, ntbfd); | |
1492 | else | |
1493 | _bfd_error_handler | |
1494 | /* xgettext:c-format */ | |
1495 | (_("%s: TLS reference in %pB " | |
1496 | "mismatches non-TLS definition in %pB section %pA"), | |
1497 | h->root.root.string, tbfd, ntbfd, ntsec); | |
1498 | ||
1499 | bfd_set_error (bfd_error_bad_value); | |
1500 | return false; | |
1501 | } | |
1502 | ||
1503 | /* If the old symbol has non-default visibility, we ignore the new | |
1504 | definition from a dynamic object. */ | |
1505 | if (newdyn | |
1506 | && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT | |
1507 | && !bfd_is_und_section (sec)) | |
1508 | { | |
1509 | *skip = true; | |
1510 | /* Make sure this symbol is dynamic. */ | |
1511 | h->ref_dynamic = 1; | |
1512 | hi->ref_dynamic = 1; | |
1513 | /* A protected symbol has external availability. Make sure it is | |
1514 | recorded as dynamic. | |
1515 | ||
1516 | FIXME: Should we check type and size for protected symbol? */ | |
1517 | if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) | |
1518 | return bfd_elf_link_record_dynamic_symbol (info, h); | |
1519 | else | |
1520 | return true; | |
1521 | } | |
1522 | else if (!newdyn | |
1523 | && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT | |
1524 | && h->def_dynamic) | |
1525 | { | |
1526 | /* If the new symbol with non-default visibility comes from a | |
1527 | relocatable file and the old definition comes from a dynamic | |
1528 | object, we remove the old definition. */ | |
1529 | if (hi->root.type == bfd_link_hash_indirect) | |
1530 | { | |
1531 | /* Handle the case where the old dynamic definition is | |
1532 | default versioned. We need to copy the symbol info from | |
1533 | the symbol with default version to the normal one if it | |
1534 | was referenced before. */ | |
1535 | if (h->ref_regular) | |
1536 | { | |
1537 | hi->root.type = h->root.type; | |
1538 | h->root.type = bfd_link_hash_indirect; | |
1539 | (*bed->elf_backend_copy_indirect_symbol) (info, hi, h); | |
1540 | ||
1541 | h->root.u.i.link = (struct bfd_link_hash_entry *) hi; | |
1542 | if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED) | |
1543 | { | |
1544 | /* If the new symbol is hidden or internal, completely undo | |
1545 | any dynamic link state. */ | |
1546 | (*bed->elf_backend_hide_symbol) (info, h, true); | |
1547 | h->forced_local = 0; | |
1548 | h->ref_dynamic = 0; | |
1549 | } | |
1550 | else | |
1551 | h->ref_dynamic = 1; | |
1552 | ||
1553 | h->def_dynamic = 0; | |
1554 | /* FIXME: Should we check type and size for protected symbol? */ | |
1555 | h->size = 0; | |
1556 | h->type = 0; | |
1557 | ||
1558 | h = hi; | |
1559 | } | |
1560 | else | |
1561 | h = hi; | |
1562 | } | |
1563 | ||
1564 | /* If the old symbol was undefined before, then it will still be | |
1565 | on the undefs list. If the new symbol is undefined or | |
1566 | common, we can't make it bfd_link_hash_new here, because new | |
1567 | undefined or common symbols will be added to the undefs list | |
1568 | by _bfd_generic_link_add_one_symbol. Symbols may not be | |
1569 | added twice to the undefs list. Also, if the new symbol is | |
1570 | undefweak then we don't want to lose the strong undef. */ | |
1571 | if (h->root.u.undef.next || info->hash->undefs_tail == &h->root) | |
1572 | { | |
1573 | h->root.type = bfd_link_hash_undefined; | |
1574 | h->root.u.undef.abfd = abfd; | |
1575 | } | |
1576 | else | |
1577 | { | |
1578 | h->root.type = bfd_link_hash_new; | |
1579 | h->root.u.undef.abfd = NULL; | |
1580 | } | |
1581 | ||
1582 | if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED) | |
1583 | { | |
1584 | /* If the new symbol is hidden or internal, completely undo | |
1585 | any dynamic link state. */ | |
1586 | (*bed->elf_backend_hide_symbol) (info, h, true); | |
1587 | h->forced_local = 0; | |
1588 | h->ref_dynamic = 0; | |
1589 | } | |
1590 | else | |
1591 | h->ref_dynamic = 1; | |
1592 | h->def_dynamic = 0; | |
1593 | /* FIXME: Should we check type and size for protected symbol? */ | |
1594 | h->size = 0; | |
1595 | h->type = 0; | |
1596 | return true; | |
1597 | } | |
1598 | ||
1599 | /* If a new weak symbol definition comes from a regular file and the | |
1600 | old symbol comes from a dynamic library, we treat the new one as | |
1601 | strong. Similarly, an old weak symbol definition from a regular | |
1602 | file is treated as strong when the new symbol comes from a dynamic | |
1603 | library. Further, an old weak symbol from a dynamic library is | |
1604 | treated as strong if the new symbol is from a dynamic library. | |
1605 | This reflects the way glibc's ld.so works. | |
1606 | ||
1607 | Also allow a weak symbol to override a linker script symbol | |
1608 | defined by an early pass over the script. This is done so the | |
1609 | linker knows the symbol is defined in an object file, for the | |
1610 | DEFINED script function. | |
1611 | ||
1612 | Do this before setting *type_change_ok or *size_change_ok so that | |
1613 | we warn properly when dynamic library symbols are overridden. */ | |
1614 | ||
1615 | if (newdef && !newdyn && (olddyn || h->root.ldscript_def)) | |
1616 | newweak = false; | |
1617 | if (olddef && newdyn) | |
1618 | oldweak = false; | |
1619 | ||
1620 | /* Allow changes between different types of function symbol. */ | |
1621 | if (newfunc && oldfunc) | |
1622 | *type_change_ok = true; | |
1623 | ||
1624 | /* It's OK to change the type if either the existing symbol or the | |
1625 | new symbol is weak. A type change is also OK if the old symbol | |
1626 | is undefined and the new symbol is defined. */ | |
1627 | ||
1628 | if (oldweak | |
1629 | || newweak | |
1630 | || (newdef | |
1631 | && h->root.type == bfd_link_hash_undefined)) | |
1632 | *type_change_ok = true; | |
1633 | ||
1634 | /* It's OK to change the size if either the existing symbol or the | |
1635 | new symbol is weak, or if the old symbol is undefined. */ | |
1636 | ||
1637 | if (*type_change_ok | |
1638 | || h->root.type == bfd_link_hash_undefined) | |
1639 | *size_change_ok = true; | |
1640 | ||
1641 | /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old | |
1642 | symbol, respectively, appears to be a common symbol in a dynamic | |
1643 | object. If a symbol appears in an uninitialized section, and is | |
1644 | not weak, and is not a function, then it may be a common symbol | |
1645 | which was resolved when the dynamic object was created. We want | |
1646 | to treat such symbols specially, because they raise special | |
1647 | considerations when setting the symbol size: if the symbol | |
1648 | appears as a common symbol in a regular object, and the size in | |
1649 | the regular object is larger, we must make sure that we use the | |
1650 | larger size. This problematic case can always be avoided in C, | |
1651 | but it must be handled correctly when using Fortran shared | |
1652 | libraries. | |
1653 | ||
1654 | Note that if NEWDYNCOMMON is set, NEWDEF will be set, and | |
1655 | likewise for OLDDYNCOMMON and OLDDEF. | |
1656 | ||
1657 | Note that this test is just a heuristic, and that it is quite | |
1658 | possible to have an uninitialized symbol in a shared object which | |
1659 | is really a definition, rather than a common symbol. This could | |
1660 | lead to some minor confusion when the symbol really is a common | |
1661 | symbol in some regular object. However, I think it will be | |
1662 | harmless. */ | |
1663 | ||
1664 | if (newdyn | |
1665 | && newdef | |
1666 | && !newweak | |
1667 | && (sec->flags & SEC_ALLOC) != 0 | |
1668 | && (sec->flags & SEC_LOAD) == 0 | |
1669 | && sym->st_size > 0 | |
1670 | && !newfunc) | |
1671 | newdyncommon = true; | |
1672 | else | |
1673 | newdyncommon = false; | |
1674 | ||
1675 | if (olddyn | |
1676 | && olddef | |
1677 | && h->root.type == bfd_link_hash_defined | |
1678 | && h->def_dynamic | |
1679 | && (h->root.u.def.section->flags & SEC_ALLOC) != 0 | |
1680 | && (h->root.u.def.section->flags & SEC_LOAD) == 0 | |
1681 | && h->size > 0 | |
1682 | && !oldfunc) | |
1683 | olddyncommon = true; | |
1684 | else | |
1685 | olddyncommon = false; | |
1686 | ||
1687 | /* We now know everything about the old and new symbols. We ask the | |
1688 | backend to check if we can merge them. */ | |
1689 | if (bed->merge_symbol != NULL) | |
1690 | { | |
1691 | if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec)) | |
1692 | return false; | |
1693 | sec = *psec; | |
1694 | } | |
1695 | ||
1696 | /* There are multiple definitions of a normal symbol. Skip the | |
1697 | default symbol as well as definition from an IR object. */ | |
1698 | if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak | |
1699 | && !default_sym && h->def_regular | |
1700 | && !(oldbfd != NULL | |
1701 | && (oldbfd->flags & BFD_PLUGIN) != 0 | |
1702 | && (abfd->flags & BFD_PLUGIN) == 0)) | |
1703 | { | |
1704 | /* Handle a multiple definition. */ | |
1705 | (*info->callbacks->multiple_definition) (info, &h->root, | |
1706 | abfd, sec, *pvalue); | |
1707 | *skip = true; | |
1708 | return true; | |
1709 | } | |
1710 | ||
1711 | /* If both the old and the new symbols look like common symbols in a | |
1712 | dynamic object, set the size of the symbol to the larger of the | |
1713 | two. */ | |
1714 | ||
1715 | if (olddyncommon | |
1716 | && newdyncommon | |
1717 | && sym->st_size != h->size) | |
1718 | { | |
1719 | /* Since we think we have two common symbols, issue a multiple | |
1720 | common warning if desired. Note that we only warn if the | |
1721 | size is different. If the size is the same, we simply let | |
1722 | the old symbol override the new one as normally happens with | |
1723 | symbols defined in dynamic objects. */ | |
1724 | ||
1725 | (*info->callbacks->multiple_common) (info, &h->root, abfd, | |
1726 | bfd_link_hash_common, sym->st_size); | |
1727 | if (sym->st_size > h->size) | |
1728 | h->size = sym->st_size; | |
1729 | ||
1730 | *size_change_ok = true; | |
1731 | } | |
1732 | ||
1733 | /* If we are looking at a dynamic object, and we have found a | |
1734 | definition, we need to see if the symbol was already defined by | |
1735 | some other object. If so, we want to use the existing | |
1736 | definition, and we do not want to report a multiple symbol | |
1737 | definition error; we do this by clobbering *PSEC to be | |
1738 | bfd_und_section_ptr. | |
1739 | ||
1740 | We treat a common symbol as a definition if the symbol in the | |
1741 | shared library is a function, since common symbols always | |
1742 | represent variables; this can cause confusion in principle, but | |
1743 | any such confusion would seem to indicate an erroneous program or | |
1744 | shared library. We also permit a common symbol in a regular | |
1745 | object to override a weak symbol in a shared object. */ | |
1746 | ||
1747 | if (newdyn | |
1748 | && newdef | |
1749 | && (olddef | |
1750 | || (h->root.type == bfd_link_hash_common | |
1751 | && (newweak || newfunc)))) | |
1752 | { | |
1753 | *override = abfd; | |
1754 | newdef = false; | |
1755 | newdyncommon = false; | |
1756 | ||
1757 | *psec = sec = bfd_und_section_ptr; | |
1758 | *size_change_ok = true; | |
1759 | ||
1760 | /* If we get here when the old symbol is a common symbol, then | |
1761 | we are explicitly letting it override a weak symbol or | |
1762 | function in a dynamic object, and we don't want to warn about | |
1763 | a type change. If the old symbol is a defined symbol, a type | |
1764 | change warning may still be appropriate. */ | |
1765 | ||
1766 | if (h->root.type == bfd_link_hash_common) | |
1767 | *type_change_ok = true; | |
1768 | } | |
1769 | ||
1770 | /* Handle the special case of an old common symbol merging with a | |
1771 | new symbol which looks like a common symbol in a shared object. | |
1772 | We change *PSEC and *PVALUE to make the new symbol look like a | |
1773 | common symbol, and let _bfd_generic_link_add_one_symbol do the | |
1774 | right thing. */ | |
1775 | ||
1776 | if (newdyncommon | |
1777 | && h->root.type == bfd_link_hash_common) | |
1778 | { | |
1779 | *override = oldbfd; | |
1780 | newdef = false; | |
1781 | newdyncommon = false; | |
1782 | *pvalue = sym->st_size; | |
1783 | *psec = sec = bed->common_section (oldsec); | |
1784 | *size_change_ok = true; | |
1785 | } | |
1786 | ||
1787 | /* Skip weak definitions of symbols that are already defined. */ | |
1788 | if (newdef && olddef && newweak) | |
1789 | { | |
1790 | /* Don't skip new non-IR weak syms. */ | |
1791 | if (!(oldbfd != NULL | |
1792 | && (oldbfd->flags & BFD_PLUGIN) != 0 | |
1793 | && (abfd->flags & BFD_PLUGIN) == 0)) | |
1794 | { | |
1795 | newdef = false; | |
1796 | *skip = true; | |
1797 | } | |
1798 | ||
1799 | /* Merge st_other. If the symbol already has a dynamic index, | |
1800 | but visibility says it should not be visible, turn it into a | |
1801 | local symbol. */ | |
1802 | elf_merge_st_other (abfd, h, sym->st_other, sec, newdef, newdyn); | |
1803 | if (h->dynindx != -1) | |
1804 | switch (ELF_ST_VISIBILITY (h->other)) | |
1805 | { | |
1806 | case STV_INTERNAL: | |
1807 | case STV_HIDDEN: | |
1808 | (*bed->elf_backend_hide_symbol) (info, h, true); | |
1809 | break; | |
1810 | } | |
1811 | } | |
1812 | ||
1813 | /* If the old symbol is from a dynamic object, and the new symbol is | |
1814 | a definition which is not from a dynamic object, then the new | |
1815 | symbol overrides the old symbol. Symbols from regular files | |
1816 | always take precedence over symbols from dynamic objects, even if | |
1817 | they are defined after the dynamic object in the link. | |
1818 | ||
1819 | As above, we again permit a common symbol in a regular object to | |
1820 | override a definition in a shared object if the shared object | |
1821 | symbol is a function or is weak. */ | |
1822 | ||
1823 | flip = NULL; | |
1824 | if (!newdyn | |
1825 | && (newdef | |
1826 | || (bfd_is_com_section (sec) | |
1827 | && (oldweak || oldfunc))) | |
1828 | && olddyn | |
1829 | && olddef | |
1830 | && h->def_dynamic) | |
1831 | { | |
1832 | /* Change the hash table entry to undefined, and let | |
1833 | _bfd_generic_link_add_one_symbol do the right thing with the | |
1834 | new definition. */ | |
1835 | ||
1836 | h->root.type = bfd_link_hash_undefined; | |
1837 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
1838 | *size_change_ok = true; | |
1839 | ||
1840 | olddef = false; | |
1841 | olddyncommon = false; | |
1842 | ||
1843 | /* We again permit a type change when a common symbol may be | |
1844 | overriding a function. */ | |
1845 | ||
1846 | if (bfd_is_com_section (sec)) | |
1847 | { | |
1848 | if (oldfunc) | |
1849 | { | |
1850 | /* If a common symbol overrides a function, make sure | |
1851 | that it isn't defined dynamically nor has type | |
1852 | function. */ | |
1853 | h->def_dynamic = 0; | |
1854 | h->type = STT_NOTYPE; | |
1855 | } | |
1856 | *type_change_ok = true; | |
1857 | } | |
1858 | ||
1859 | if (hi->root.type == bfd_link_hash_indirect) | |
1860 | flip = hi; | |
1861 | else | |
1862 | /* This union may have been set to be non-NULL when this symbol | |
1863 | was seen in a dynamic object. We must force the union to be | |
1864 | NULL, so that it is correct for a regular symbol. */ | |
1865 | h->verinfo.vertree = NULL; | |
1866 | } | |
1867 | ||
1868 | /* Handle the special case of a new common symbol merging with an | |
1869 | old symbol that looks like it might be a common symbol defined in | |
1870 | a shared object. Note that we have already handled the case in | |
1871 | which a new common symbol should simply override the definition | |
1872 | in the shared library. */ | |
1873 | ||
1874 | if (! newdyn | |
1875 | && bfd_is_com_section (sec) | |
1876 | && olddyncommon) | |
1877 | { | |
1878 | /* It would be best if we could set the hash table entry to a | |
1879 | common symbol, but we don't know what to use for the section | |
1880 | or the alignment. */ | |
1881 | (*info->callbacks->multiple_common) (info, &h->root, abfd, | |
1882 | bfd_link_hash_common, sym->st_size); | |
1883 | ||
1884 | /* If the presumed common symbol in the dynamic object is | |
1885 | larger, pretend that the new symbol has its size. */ | |
1886 | ||
1887 | if (h->size > *pvalue) | |
1888 | *pvalue = h->size; | |
1889 | ||
1890 | /* We need to remember the alignment required by the symbol | |
1891 | in the dynamic object. */ | |
1892 | BFD_ASSERT (pold_alignment); | |
1893 | *pold_alignment = h->root.u.def.section->alignment_power; | |
1894 | ||
1895 | olddef = false; | |
1896 | olddyncommon = false; | |
1897 | ||
1898 | h->root.type = bfd_link_hash_undefined; | |
1899 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
1900 | ||
1901 | *size_change_ok = true; | |
1902 | *type_change_ok = true; | |
1903 | ||
1904 | if (hi->root.type == bfd_link_hash_indirect) | |
1905 | flip = hi; | |
1906 | else | |
1907 | h->verinfo.vertree = NULL; | |
1908 | } | |
1909 | ||
1910 | if (flip != NULL) | |
1911 | { | |
1912 | /* Handle the case where we had a versioned symbol in a dynamic | |
1913 | library and now find a definition in a normal object. In this | |
1914 | case, we make the versioned symbol point to the normal one. */ | |
1915 | flip->root.type = h->root.type; | |
1916 | flip->root.u.undef.abfd = h->root.u.undef.abfd; | |
1917 | h->root.type = bfd_link_hash_indirect; | |
1918 | h->root.u.i.link = (struct bfd_link_hash_entry *) flip; | |
1919 | (*bed->elf_backend_copy_indirect_symbol) (info, flip, h); | |
1920 | if (h->def_dynamic) | |
1921 | { | |
1922 | h->def_dynamic = 0; | |
1923 | flip->ref_dynamic = 1; | |
1924 | } | |
1925 | } | |
1926 | ||
1927 | return true; | |
1928 | } | |
1929 | ||
1930 | /* This function is called to create an indirect symbol from the | |
1931 | default for the symbol with the default version if needed. The | |
1932 | symbol is described by H, NAME, SYM, SEC, and VALUE. We | |
1933 | set DYNSYM if the new indirect symbol is dynamic. */ | |
1934 | ||
1935 | static bool | |
1936 | _bfd_elf_add_default_symbol (bfd *abfd, | |
1937 | struct bfd_link_info *info, | |
1938 | struct elf_link_hash_entry *h, | |
1939 | const char *name, | |
1940 | Elf_Internal_Sym *sym, | |
1941 | asection *sec, | |
1942 | bfd_vma value, | |
1943 | bfd **poldbfd, | |
1944 | bool *dynsym) | |
1945 | { | |
1946 | bool type_change_ok; | |
1947 | bool size_change_ok; | |
1948 | bool skip; | |
1949 | char *shortname; | |
1950 | struct elf_link_hash_entry *hi; | |
1951 | struct bfd_link_hash_entry *bh; | |
1952 | const struct elf_backend_data *bed; | |
1953 | bool collect; | |
1954 | bool dynamic; | |
1955 | bfd *override; | |
1956 | char *p; | |
1957 | size_t len, shortlen; | |
1958 | asection *tmp_sec; | |
1959 | bool matched; | |
1960 | ||
1961 | if (h->versioned == unversioned || h->versioned == versioned_hidden) | |
1962 | return true; | |
1963 | ||
1964 | /* If this symbol has a version, and it is the default version, we | |
1965 | create an indirect symbol from the default name to the fully | |
1966 | decorated name. This will cause external references which do not | |
1967 | specify a version to be bound to this version of the symbol. */ | |
1968 | p = strchr (name, ELF_VER_CHR); | |
1969 | if (h->versioned == unknown) | |
1970 | { | |
1971 | if (p == NULL) | |
1972 | { | |
1973 | h->versioned = unversioned; | |
1974 | return true; | |
1975 | } | |
1976 | else | |
1977 | { | |
1978 | if (p[1] != ELF_VER_CHR) | |
1979 | { | |
1980 | h->versioned = versioned_hidden; | |
1981 | return true; | |
1982 | } | |
1983 | else | |
1984 | h->versioned = versioned; | |
1985 | } | |
1986 | } | |
1987 | else | |
1988 | { | |
1989 | /* PR ld/19073: We may see an unversioned definition after the | |
1990 | default version. */ | |
1991 | if (p == NULL) | |
1992 | return true; | |
1993 | } | |
1994 | ||
1995 | bed = get_elf_backend_data (abfd); | |
1996 | collect = bed->collect; | |
1997 | dynamic = (abfd->flags & DYNAMIC) != 0; | |
1998 | ||
1999 | shortlen = p - name; | |
2000 | shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1); | |
2001 | if (shortname == NULL) | |
2002 | return false; | |
2003 | memcpy (shortname, name, shortlen); | |
2004 | shortname[shortlen] = '\0'; | |
2005 | ||
2006 | /* We are going to create a new symbol. Merge it with any existing | |
2007 | symbol with this name. For the purposes of the merge, act as | |
2008 | though we were defining the symbol we just defined, although we | |
2009 | actually going to define an indirect symbol. */ | |
2010 | type_change_ok = false; | |
2011 | size_change_ok = false; | |
2012 | matched = true; | |
2013 | tmp_sec = sec; | |
2014 | if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value, | |
2015 | &hi, poldbfd, NULL, NULL, &skip, &override, | |
2016 | &type_change_ok, &size_change_ok, &matched)) | |
2017 | return false; | |
2018 | ||
2019 | if (skip) | |
2020 | goto nondefault; | |
2021 | ||
2022 | if (hi->def_regular || ELF_COMMON_DEF_P (hi)) | |
2023 | { | |
2024 | /* If the undecorated symbol will have a version added by a | |
2025 | script different to H, then don't indirect to/from the | |
2026 | undecorated symbol. This isn't ideal because we may not yet | |
2027 | have seen symbol versions, if given by a script on the | |
2028 | command line rather than via --version-script. */ | |
2029 | if (hi->verinfo.vertree == NULL && info->version_info != NULL) | |
2030 | { | |
2031 | bool hide; | |
2032 | ||
2033 | hi->verinfo.vertree | |
2034 | = bfd_find_version_for_sym (info->version_info, | |
2035 | hi->root.root.string, &hide); | |
2036 | if (hi->verinfo.vertree != NULL && hide) | |
2037 | { | |
2038 | (*bed->elf_backend_hide_symbol) (info, hi, true); | |
2039 | goto nondefault; | |
2040 | } | |
2041 | } | |
2042 | if (hi->verinfo.vertree != NULL | |
2043 | && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0) | |
2044 | goto nondefault; | |
2045 | } | |
2046 | ||
2047 | if (! override) | |
2048 | { | |
2049 | /* Add the default symbol if not performing a relocatable link. */ | |
2050 | if (! bfd_link_relocatable (info)) | |
2051 | { | |
2052 | bh = &hi->root; | |
2053 | if (bh->type == bfd_link_hash_defined | |
2054 | && bh->u.def.section->owner != NULL | |
2055 | && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0) | |
2056 | { | |
2057 | /* Mark the previous definition from IR object as | |
2058 | undefined so that the generic linker will override | |
2059 | it. */ | |
2060 | bh->type = bfd_link_hash_undefined; | |
2061 | bh->u.undef.abfd = bh->u.def.section->owner; | |
2062 | } | |
2063 | if (! (_bfd_generic_link_add_one_symbol | |
2064 | (info, abfd, shortname, BSF_INDIRECT, | |
2065 | bfd_ind_section_ptr, | |
2066 | 0, name, false, collect, &bh))) | |
2067 | return false; | |
2068 | hi = (struct elf_link_hash_entry *) bh; | |
2069 | } | |
2070 | } | |
2071 | else | |
2072 | { | |
2073 | /* In this case the symbol named SHORTNAME is overriding the | |
2074 | indirect symbol we want to add. We were planning on making | |
2075 | SHORTNAME an indirect symbol referring to NAME. SHORTNAME | |
2076 | is the name without a version. NAME is the fully versioned | |
2077 | name, and it is the default version. | |
2078 | ||
2079 | Overriding means that we already saw a definition for the | |
2080 | symbol SHORTNAME in a regular object, and it is overriding | |
2081 | the symbol defined in the dynamic object. | |
2082 | ||
2083 | When this happens, we actually want to change NAME, the | |
2084 | symbol we just added, to refer to SHORTNAME. This will cause | |
2085 | references to NAME in the shared object to become references | |
2086 | to SHORTNAME in the regular object. This is what we expect | |
2087 | when we override a function in a shared object: that the | |
2088 | references in the shared object will be mapped to the | |
2089 | definition in the regular object. */ | |
2090 | ||
2091 | while (hi->root.type == bfd_link_hash_indirect | |
2092 | || hi->root.type == bfd_link_hash_warning) | |
2093 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
2094 | ||
2095 | h->root.type = bfd_link_hash_indirect; | |
2096 | h->root.u.i.link = (struct bfd_link_hash_entry *) hi; | |
2097 | if (h->def_dynamic) | |
2098 | { | |
2099 | h->def_dynamic = 0; | |
2100 | hi->ref_dynamic = 1; | |
2101 | if (hi->ref_regular | |
2102 | || hi->def_regular) | |
2103 | { | |
2104 | if (! bfd_elf_link_record_dynamic_symbol (info, hi)) | |
2105 | return false; | |
2106 | } | |
2107 | } | |
2108 | ||
2109 | /* Now set HI to H, so that the following code will set the | |
2110 | other fields correctly. */ | |
2111 | hi = h; | |
2112 | } | |
2113 | ||
2114 | /* Check if HI is a warning symbol. */ | |
2115 | if (hi->root.type == bfd_link_hash_warning) | |
2116 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
2117 | ||
2118 | /* If there is a duplicate definition somewhere, then HI may not | |
2119 | point to an indirect symbol. We will have reported an error to | |
2120 | the user in that case. */ | |
2121 | ||
2122 | if (hi->root.type == bfd_link_hash_indirect) | |
2123 | { | |
2124 | struct elf_link_hash_entry *ht; | |
2125 | ||
2126 | ht = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
2127 | (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi); | |
2128 | ||
2129 | /* If we first saw a reference to SHORTNAME with non-default | |
2130 | visibility, merge that visibility to the @@VER symbol. */ | |
2131 | elf_merge_st_other (abfd, ht, hi->other, sec, true, dynamic); | |
2132 | ||
2133 | /* A reference to the SHORTNAME symbol from a dynamic library | |
2134 | will be satisfied by the versioned symbol at runtime. In | |
2135 | effect, we have a reference to the versioned symbol. */ | |
2136 | ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak; | |
2137 | hi->dynamic_def |= ht->dynamic_def; | |
2138 | ||
2139 | /* See if the new flags lead us to realize that the symbol must | |
2140 | be dynamic. */ | |
2141 | if (! *dynsym) | |
2142 | { | |
2143 | if (! dynamic) | |
2144 | { | |
2145 | if (! bfd_link_executable (info) | |
2146 | || hi->def_dynamic | |
2147 | || hi->ref_dynamic) | |
2148 | *dynsym = true; | |
2149 | } | |
2150 | else | |
2151 | { | |
2152 | if (hi->ref_regular) | |
2153 | *dynsym = true; | |
2154 | } | |
2155 | } | |
2156 | } | |
2157 | ||
2158 | /* We also need to define an indirection from the nondefault version | |
2159 | of the symbol. */ | |
2160 | ||
2161 | nondefault: | |
2162 | len = strlen (name); | |
2163 | shortname = (char *) bfd_hash_allocate (&info->hash->table, len); | |
2164 | if (shortname == NULL) | |
2165 | return false; | |
2166 | memcpy (shortname, name, shortlen); | |
2167 | memcpy (shortname + shortlen, p + 1, len - shortlen); | |
2168 | ||
2169 | /* Once again, merge with any existing symbol. */ | |
2170 | type_change_ok = false; | |
2171 | size_change_ok = false; | |
2172 | tmp_sec = sec; | |
2173 | if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value, | |
2174 | &hi, poldbfd, NULL, NULL, &skip, &override, | |
2175 | &type_change_ok, &size_change_ok, &matched)) | |
2176 | return false; | |
2177 | ||
2178 | if (skip) | |
2179 | { | |
2180 | if (!dynamic | |
2181 | && h->root.type == bfd_link_hash_defweak | |
2182 | && hi->root.type == bfd_link_hash_defined) | |
2183 | { | |
2184 | /* We are handling a weak sym@@ver and attempting to define | |
2185 | a weak sym@ver, but _bfd_elf_merge_symbol said to skip the | |
2186 | new weak sym@ver because there is already a strong sym@ver. | |
2187 | However, sym@ver and sym@@ver are really the same symbol. | |
2188 | The existing strong sym@ver ought to override sym@@ver. */ | |
2189 | h->root.type = bfd_link_hash_defined; | |
2190 | h->root.u.def.section = hi->root.u.def.section; | |
2191 | h->root.u.def.value = hi->root.u.def.value; | |
2192 | hi->root.type = bfd_link_hash_indirect; | |
2193 | hi->root.u.i.link = &h->root; | |
2194 | } | |
2195 | else | |
2196 | return true; | |
2197 | } | |
2198 | else if (override) | |
2199 | { | |
2200 | /* Here SHORTNAME is a versioned name, so we don't expect to see | |
2201 | the type of override we do in the case above unless it is | |
2202 | overridden by a versioned definition. */ | |
2203 | if (hi->root.type != bfd_link_hash_defined | |
2204 | && hi->root.type != bfd_link_hash_defweak) | |
2205 | _bfd_error_handler | |
2206 | /* xgettext:c-format */ | |
2207 | (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"), | |
2208 | abfd, shortname); | |
2209 | return true; | |
2210 | } | |
2211 | else | |
2212 | { | |
2213 | bh = &hi->root; | |
2214 | if (! (_bfd_generic_link_add_one_symbol | |
2215 | (info, abfd, shortname, BSF_INDIRECT, | |
2216 | bfd_ind_section_ptr, 0, name, false, collect, &bh))) | |
2217 | return false; | |
2218 | hi = (struct elf_link_hash_entry *) bh; | |
2219 | } | |
2220 | ||
2221 | /* If there is a duplicate definition somewhere, then HI may not | |
2222 | point to an indirect symbol. We will have reported an error | |
2223 | to the user in that case. */ | |
2224 | if (hi->root.type == bfd_link_hash_indirect) | |
2225 | { | |
2226 | (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); | |
2227 | h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak; | |
2228 | hi->dynamic_def |= h->dynamic_def; | |
2229 | ||
2230 | /* If we first saw a reference to @VER symbol with | |
2231 | non-default visibility, merge that visibility to the | |
2232 | @@VER symbol. */ | |
2233 | elf_merge_st_other (abfd, h, hi->other, sec, true, dynamic); | |
2234 | ||
2235 | /* See if the new flags lead us to realize that the symbol | |
2236 | must be dynamic. */ | |
2237 | if (! *dynsym) | |
2238 | { | |
2239 | if (! dynamic) | |
2240 | { | |
2241 | if (! bfd_link_executable (info) | |
2242 | || hi->ref_dynamic) | |
2243 | *dynsym = true; | |
2244 | } | |
2245 | else | |
2246 | { | |
2247 | if (hi->ref_regular) | |
2248 | *dynsym = true; | |
2249 | } | |
2250 | } | |
2251 | } | |
2252 | ||
2253 | return true; | |
2254 | } | |
2255 | \f | |
2256 | /* This routine is used to export all defined symbols into the dynamic | |
2257 | symbol table. It is called via elf_link_hash_traverse. */ | |
2258 | ||
2259 | static bool | |
2260 | _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data) | |
2261 | { | |
2262 | struct elf_info_failed *eif = (struct elf_info_failed *) data; | |
2263 | ||
2264 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
2265 | if (h->root.type == bfd_link_hash_indirect) | |
2266 | return true; | |
2267 | ||
2268 | /* Ignore this if we won't export it. */ | |
2269 | if (!eif->info->export_dynamic && !h->dynamic) | |
2270 | return true; | |
2271 | ||
2272 | if (h->dynindx == -1 | |
2273 | && (h->def_regular || h->ref_regular) | |
2274 | && ! bfd_hide_sym_by_version (eif->info->version_info, | |
2275 | h->root.root.string)) | |
2276 | { | |
2277 | if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
2278 | { | |
2279 | eif->failed = true; | |
2280 | return false; | |
2281 | } | |
2282 | } | |
2283 | ||
2284 | return true; | |
2285 | } | |
2286 | \f | |
2287 | /* Return the glibc version reference if VERSION_DEP is added to the | |
2288 | list of glibc version dependencies successfully. VERSION_DEP will | |
2289 | be put into the .gnu.version_r section. GLIBC_MINOR_BASE is the | |
2290 | pointer to the glibc minor base version. */ | |
2291 | ||
2292 | static Elf_Internal_Verneed * | |
2293 | elf_link_add_glibc_verneed (struct elf_find_verdep_info *rinfo, | |
2294 | Elf_Internal_Verneed *glibc_verref, | |
2295 | const char *version_dep, | |
2296 | int *glibc_minor_base) | |
2297 | { | |
2298 | Elf_Internal_Verneed *t; | |
2299 | Elf_Internal_Vernaux *a; | |
2300 | size_t amt; | |
2301 | int minor_version = -1; | |
2302 | ||
2303 | if (glibc_verref != NULL) | |
2304 | { | |
2305 | t = glibc_verref; | |
2306 | ||
2307 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
2308 | { | |
2309 | /* Return if VERSION_DEP dependency has been added. */ | |
2310 | if (a->vna_nodename == version_dep | |
2311 | || strcmp (a->vna_nodename, version_dep) == 0) | |
2312 | return t; | |
2313 | } | |
2314 | } | |
2315 | else | |
2316 | { | |
2317 | for (t = elf_tdata (rinfo->info->output_bfd)->verref; | |
2318 | t != NULL; | |
2319 | t = t->vn_nextref) | |
2320 | { | |
2321 | const char *soname = bfd_elf_get_dt_soname (t->vn_bfd); | |
2322 | if (soname != NULL && startswith (soname, "libc.so.")) | |
2323 | break; | |
2324 | } | |
2325 | ||
2326 | /* Skip the shared library if it isn't libc.so. */ | |
2327 | if (t == NULL) | |
2328 | return t; | |
2329 | ||
2330 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
2331 | { | |
2332 | /* Return if VERSION_DEP dependency has been added. */ | |
2333 | if (a->vna_nodename == version_dep | |
2334 | || strcmp (a->vna_nodename, version_dep) == 0) | |
2335 | return t; | |
2336 | ||
2337 | /* Check if libc.so provides GLIBC_2.XX version. */ | |
2338 | if (startswith (a->vna_nodename, "GLIBC_2.")) | |
2339 | { | |
2340 | minor_version = strtol (a->vna_nodename + 8, NULL, 10); | |
2341 | if (minor_version < *glibc_minor_base) | |
2342 | *glibc_minor_base = minor_version; | |
2343 | } | |
2344 | } | |
2345 | ||
2346 | /* Skip if it isn't linked against glibc. */ | |
2347 | if (minor_version < 0) | |
2348 | return NULL; | |
2349 | } | |
2350 | ||
2351 | /* Skip if 2.GLIBC_MINOR_BASE includes VERSION_DEP. */ | |
2352 | if (startswith (version_dep, "GLIBC_2.")) | |
2353 | { | |
2354 | minor_version = strtol (version_dep + 8, NULL, 10); | |
2355 | if (minor_version <= *glibc_minor_base) | |
2356 | return NULL; | |
2357 | } | |
2358 | ||
2359 | amt = sizeof *a; | |
2360 | a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt); | |
2361 | if (a == NULL) | |
2362 | { | |
2363 | rinfo->failed = true; | |
2364 | return NULL; | |
2365 | } | |
2366 | ||
2367 | a->vna_nodename = version_dep; | |
2368 | a->vna_flags = 0; | |
2369 | a->vna_nextptr = t->vn_auxptr; | |
2370 | a->vna_other = rinfo->vers + 1; | |
2371 | ++rinfo->vers; | |
2372 | ||
2373 | t->vn_auxptr = a; | |
2374 | ||
2375 | return t; | |
2376 | } | |
2377 | ||
2378 | /* Add VERSION_DEP to the list of version dependencies when linked | |
2379 | against glibc. */ | |
2380 | ||
2381 | void | |
2382 | _bfd_elf_link_add_glibc_version_dependency | |
2383 | (struct elf_find_verdep_info *rinfo, | |
2384 | const char *version_dep[]) | |
2385 | { | |
2386 | Elf_Internal_Verneed *t = NULL; | |
2387 | int glibc_minor_base = INT_MAX; | |
2388 | ||
2389 | do | |
2390 | { | |
2391 | t = elf_link_add_glibc_verneed (rinfo, t, *version_dep, | |
2392 | &glibc_minor_base); | |
2393 | /* Return if there is no glibc version reference. */ | |
2394 | if (t == NULL) | |
2395 | return; | |
2396 | version_dep++; | |
2397 | } | |
2398 | while (*version_dep != NULL); | |
2399 | } | |
2400 | ||
2401 | /* Add GLIBC_ABI_DT_RELR to the list of version dependencies when | |
2402 | linked against glibc. */ | |
2403 | ||
2404 | void | |
2405 | _bfd_elf_link_add_dt_relr_dependency (struct elf_find_verdep_info *rinfo) | |
2406 | { | |
2407 | if (rinfo->info->enable_dt_relr) | |
2408 | { | |
2409 | const char *version[] = | |
2410 | { | |
2411 | "GLIBC_ABI_DT_RELR", | |
2412 | NULL | |
2413 | }; | |
2414 | _bfd_elf_link_add_glibc_version_dependency (rinfo, version); | |
2415 | } | |
2416 | } | |
2417 | ||
2418 | /* Look through the symbols which are defined in other shared | |
2419 | libraries and referenced here. Update the list of version | |
2420 | dependencies. This will be put into the .gnu.version_r section. | |
2421 | This function is called via elf_link_hash_traverse. */ | |
2422 | ||
2423 | static bool | |
2424 | _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h, | |
2425 | void *data) | |
2426 | { | |
2427 | struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data; | |
2428 | Elf_Internal_Verneed *t; | |
2429 | Elf_Internal_Vernaux *a; | |
2430 | size_t amt; | |
2431 | ||
2432 | /* We only care about symbols defined in shared objects with version | |
2433 | information. */ | |
2434 | if (!h->def_dynamic | |
2435 | || h->def_regular | |
2436 | || h->dynindx == -1 | |
2437 | || h->verinfo.verdef == NULL | |
2438 | || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd) | |
2439 | & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED))) | |
2440 | return true; | |
2441 | ||
2442 | /* See if we already know about this version. */ | |
2443 | for (t = elf_tdata (rinfo->info->output_bfd)->verref; | |
2444 | t != NULL; | |
2445 | t = t->vn_nextref) | |
2446 | { | |
2447 | if (t->vn_bfd != h->verinfo.verdef->vd_bfd) | |
2448 | continue; | |
2449 | ||
2450 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
2451 | if (a->vna_nodename == h->verinfo.verdef->vd_nodename) | |
2452 | return true; | |
2453 | ||
2454 | break; | |
2455 | } | |
2456 | ||
2457 | /* This is a new version. Add it to tree we are building. */ | |
2458 | ||
2459 | if (t == NULL) | |
2460 | { | |
2461 | amt = sizeof *t; | |
2462 | t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt); | |
2463 | if (t == NULL) | |
2464 | { | |
2465 | rinfo->failed = true; | |
2466 | return false; | |
2467 | } | |
2468 | ||
2469 | t->vn_bfd = h->verinfo.verdef->vd_bfd; | |
2470 | t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref; | |
2471 | elf_tdata (rinfo->info->output_bfd)->verref = t; | |
2472 | } | |
2473 | ||
2474 | amt = sizeof *a; | |
2475 | a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt); | |
2476 | if (a == NULL) | |
2477 | { | |
2478 | rinfo->failed = true; | |
2479 | return false; | |
2480 | } | |
2481 | ||
2482 | /* Note that we are copying a string pointer here, and testing it | |
2483 | above. If bfd_elf_string_from_elf_section is ever changed to | |
2484 | discard the string data when low in memory, this will have to be | |
2485 | fixed. */ | |
2486 | a->vna_nodename = h->verinfo.verdef->vd_nodename; | |
2487 | ||
2488 | a->vna_flags = h->verinfo.verdef->vd_flags; | |
2489 | a->vna_nextptr = t->vn_auxptr; | |
2490 | ||
2491 | h->verinfo.verdef->vd_exp_refno = rinfo->vers; | |
2492 | ++rinfo->vers; | |
2493 | ||
2494 | a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; | |
2495 | ||
2496 | t->vn_auxptr = a; | |
2497 | ||
2498 | return true; | |
2499 | } | |
2500 | ||
2501 | /* Return TRUE and set *HIDE to TRUE if the versioned symbol is | |
2502 | hidden. Set *T_P to NULL if there is no match. */ | |
2503 | ||
2504 | static bool | |
2505 | _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info, | |
2506 | struct elf_link_hash_entry *h, | |
2507 | const char *version_p, | |
2508 | struct bfd_elf_version_tree **t_p, | |
2509 | bool *hide) | |
2510 | { | |
2511 | struct bfd_elf_version_tree *t; | |
2512 | ||
2513 | /* Look for the version. If we find it, it is no longer weak. */ | |
2514 | for (t = info->version_info; t != NULL; t = t->next) | |
2515 | { | |
2516 | if (strcmp (t->name, version_p) == 0) | |
2517 | { | |
2518 | size_t len; | |
2519 | char *alc; | |
2520 | struct bfd_elf_version_expr *d; | |
2521 | ||
2522 | len = version_p - h->root.root.string; | |
2523 | alc = (char *) bfd_malloc (len); | |
2524 | if (alc == NULL) | |
2525 | return false; | |
2526 | memcpy (alc, h->root.root.string, len - 1); | |
2527 | alc[len - 1] = '\0'; | |
2528 | if (alc[len - 2] == ELF_VER_CHR) | |
2529 | alc[len - 2] = '\0'; | |
2530 | ||
2531 | h->verinfo.vertree = t; | |
2532 | t->used = true; | |
2533 | d = NULL; | |
2534 | ||
2535 | if (t->globals.list != NULL) | |
2536 | d = (*t->match) (&t->globals, NULL, alc); | |
2537 | ||
2538 | /* See if there is anything to force this symbol to | |
2539 | local scope. */ | |
2540 | if (d == NULL && t->locals.list != NULL) | |
2541 | { | |
2542 | d = (*t->match) (&t->locals, NULL, alc); | |
2543 | if (d != NULL | |
2544 | && h->dynindx != -1 | |
2545 | && ! info->export_dynamic) | |
2546 | *hide = true; | |
2547 | } | |
2548 | ||
2549 | free (alc); | |
2550 | break; | |
2551 | } | |
2552 | } | |
2553 | ||
2554 | *t_p = t; | |
2555 | ||
2556 | return true; | |
2557 | } | |
2558 | ||
2559 | /* Return TRUE if the symbol H is hidden by version script. */ | |
2560 | ||
2561 | bool | |
2562 | _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info, | |
2563 | struct elf_link_hash_entry *h) | |
2564 | { | |
2565 | const char *p; | |
2566 | bool hide = false; | |
2567 | const struct elf_backend_data *bed | |
2568 | = get_elf_backend_data (info->output_bfd); | |
2569 | ||
2570 | /* Version script only hides symbols defined in regular objects. */ | |
2571 | if (!h->def_regular && !ELF_COMMON_DEF_P (h)) | |
2572 | return true; | |
2573 | ||
2574 | p = strchr (h->root.root.string, ELF_VER_CHR); | |
2575 | if (p != NULL && h->verinfo.vertree == NULL) | |
2576 | { | |
2577 | struct bfd_elf_version_tree *t; | |
2578 | ||
2579 | ++p; | |
2580 | if (*p == ELF_VER_CHR) | |
2581 | ++p; | |
2582 | ||
2583 | if (*p != '\0' | |
2584 | && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide) | |
2585 | && hide) | |
2586 | { | |
2587 | if (hide) | |
2588 | (*bed->elf_backend_hide_symbol) (info, h, true); | |
2589 | return true; | |
2590 | } | |
2591 | } | |
2592 | ||
2593 | /* If we don't have a version for this symbol, see if we can find | |
2594 | something. */ | |
2595 | if (h->verinfo.vertree == NULL && info->version_info != NULL) | |
2596 | { | |
2597 | h->verinfo.vertree | |
2598 | = bfd_find_version_for_sym (info->version_info, | |
2599 | h->root.root.string, &hide); | |
2600 | if (h->verinfo.vertree != NULL && hide) | |
2601 | { | |
2602 | (*bed->elf_backend_hide_symbol) (info, h, true); | |
2603 | return true; | |
2604 | } | |
2605 | } | |
2606 | ||
2607 | return false; | |
2608 | } | |
2609 | ||
2610 | /* Figure out appropriate versions for all the symbols. We may not | |
2611 | have the version number script until we have read all of the input | |
2612 | files, so until that point we don't know which symbols should be | |
2613 | local. This function is called via elf_link_hash_traverse. */ | |
2614 | ||
2615 | static bool | |
2616 | _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data) | |
2617 | { | |
2618 | struct elf_info_failed *sinfo; | |
2619 | struct bfd_link_info *info; | |
2620 | const struct elf_backend_data *bed; | |
2621 | struct elf_info_failed eif; | |
2622 | char *p; | |
2623 | bool hide; | |
2624 | ||
2625 | sinfo = (struct elf_info_failed *) data; | |
2626 | info = sinfo->info; | |
2627 | ||
2628 | /* Fix the symbol flags. */ | |
2629 | eif.failed = false; | |
2630 | eif.info = info; | |
2631 | if (! _bfd_elf_fix_symbol_flags (h, &eif)) | |
2632 | { | |
2633 | if (eif.failed) | |
2634 | sinfo->failed = true; | |
2635 | return false; | |
2636 | } | |
2637 | ||
2638 | bed = get_elf_backend_data (info->output_bfd); | |
2639 | ||
2640 | /* We only need version numbers for symbols defined in regular | |
2641 | objects. */ | |
2642 | if (!h->def_regular && !ELF_COMMON_DEF_P (h)) | |
2643 | { | |
2644 | /* Hide symbols defined in discarded input sections. */ | |
2645 | if ((h->root.type == bfd_link_hash_defined | |
2646 | || h->root.type == bfd_link_hash_defweak) | |
2647 | && discarded_section (h->root.u.def.section)) | |
2648 | (*bed->elf_backend_hide_symbol) (info, h, true); | |
2649 | return true; | |
2650 | } | |
2651 | ||
2652 | hide = false; | |
2653 | p = strchr (h->root.root.string, ELF_VER_CHR); | |
2654 | if (p != NULL && h->verinfo.vertree == NULL) | |
2655 | { | |
2656 | struct bfd_elf_version_tree *t; | |
2657 | ||
2658 | ++p; | |
2659 | if (*p == ELF_VER_CHR) | |
2660 | ++p; | |
2661 | ||
2662 | /* If there is no version string, we can just return out. */ | |
2663 | if (*p == '\0') | |
2664 | return true; | |
2665 | ||
2666 | if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)) | |
2667 | { | |
2668 | sinfo->failed = true; | |
2669 | return false; | |
2670 | } | |
2671 | ||
2672 | if (hide) | |
2673 | (*bed->elf_backend_hide_symbol) (info, h, true); | |
2674 | ||
2675 | /* If we are building an application, we need to create a | |
2676 | version node for this version. */ | |
2677 | if (t == NULL && bfd_link_executable (info)) | |
2678 | { | |
2679 | struct bfd_elf_version_tree **pp; | |
2680 | int version_index; | |
2681 | ||
2682 | /* If we aren't going to export this symbol, we don't need | |
2683 | to worry about it. */ | |
2684 | if (h->dynindx == -1) | |
2685 | return true; | |
2686 | ||
2687 | t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, | |
2688 | sizeof *t); | |
2689 | if (t == NULL) | |
2690 | { | |
2691 | sinfo->failed = true; | |
2692 | return false; | |
2693 | } | |
2694 | ||
2695 | t->name = p; | |
2696 | t->name_indx = (unsigned int) -1; | |
2697 | t->used = true; | |
2698 | ||
2699 | version_index = 1; | |
2700 | /* Don't count anonymous version tag. */ | |
2701 | if (sinfo->info->version_info != NULL | |
2702 | && sinfo->info->version_info->vernum == 0) | |
2703 | version_index = 0; | |
2704 | for (pp = &sinfo->info->version_info; | |
2705 | *pp != NULL; | |
2706 | pp = &(*pp)->next) | |
2707 | ++version_index; | |
2708 | t->vernum = version_index; | |
2709 | ||
2710 | *pp = t; | |
2711 | ||
2712 | h->verinfo.vertree = t; | |
2713 | } | |
2714 | else if (t == NULL) | |
2715 | { | |
2716 | /* We could not find the version for a symbol when | |
2717 | generating a shared archive. Return an error. */ | |
2718 | _bfd_error_handler | |
2719 | /* xgettext:c-format */ | |
2720 | (_("%pB: version node not found for symbol %s"), | |
2721 | info->output_bfd, h->root.root.string); | |
2722 | bfd_set_error (bfd_error_bad_value); | |
2723 | sinfo->failed = true; | |
2724 | return false; | |
2725 | } | |
2726 | } | |
2727 | ||
2728 | /* If we don't have a version for this symbol, see if we can find | |
2729 | something. */ | |
2730 | if (!hide | |
2731 | && h->verinfo.vertree == NULL | |
2732 | && sinfo->info->version_info != NULL) | |
2733 | { | |
2734 | h->verinfo.vertree | |
2735 | = bfd_find_version_for_sym (sinfo->info->version_info, | |
2736 | h->root.root.string, &hide); | |
2737 | if (h->verinfo.vertree != NULL && hide) | |
2738 | (*bed->elf_backend_hide_symbol) (info, h, true); | |
2739 | } | |
2740 | ||
2741 | return true; | |
2742 | } | |
2743 | \f | |
2744 | /* Read and swap the relocs from the section indicated by SHDR. This | |
2745 | may be either a REL or a RELA section. The relocations are | |
2746 | translated into RELA relocations and stored in INTERNAL_RELOCS, | |
2747 | which should have already been allocated to contain enough space. | |
2748 | The *EXTERNAL_RELOCS_P are a buffer where the external form of the | |
2749 | relocations should be stored. If *EXTERNAL_RELOCS_ADDR is NULL, | |
2750 | *EXTERNAL_RELOCS_ADDR and *EXTERNAL_RELOCS_SIZE returns the mmap | |
2751 | memory address and size. Otherwise, *EXTERNAL_RELOCS_ADDR is | |
2752 | unchanged and *EXTERNAL_RELOCS_SIZE returns 0. | |
2753 | ||
2754 | Returns FALSE if something goes wrong. */ | |
2755 | ||
2756 | static bool | |
2757 | elf_link_read_relocs_from_section (bfd *abfd, | |
2758 | const asection *sec, | |
2759 | Elf_Internal_Shdr *shdr, | |
2760 | void **external_relocs_addr, | |
2761 | size_t *external_relocs_size, | |
2762 | Elf_Internal_Rela *internal_relocs) | |
2763 | { | |
2764 | const struct elf_backend_data *bed; | |
2765 | void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); | |
2766 | const bfd_byte *erela; | |
2767 | const bfd_byte *erelaend; | |
2768 | Elf_Internal_Rela *irela; | |
2769 | Elf_Internal_Shdr *symtab_hdr; | |
2770 | size_t nsyms; | |
2771 | void *external_relocs = *external_relocs_addr; | |
2772 | ||
2773 | /* Position ourselves at the start of the section. */ | |
2774 | if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0) | |
2775 | return false; | |
2776 | ||
2777 | /* Read the relocations. */ | |
2778 | *external_relocs_size = shdr->sh_size; | |
2779 | if (!_bfd_mmap_read_temporary (&external_relocs, | |
2780 | external_relocs_size, | |
2781 | external_relocs_addr, abfd, true)) | |
2782 | return false; | |
2783 | ||
2784 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
2785 | nsyms = NUM_SHDR_ENTRIES (symtab_hdr); | |
2786 | ||
2787 | bed = get_elf_backend_data (abfd); | |
2788 | ||
2789 | /* Convert the external relocations to the internal format. */ | |
2790 | if (shdr->sh_entsize == bed->s->sizeof_rel) | |
2791 | swap_in = bed->s->swap_reloc_in; | |
2792 | else if (shdr->sh_entsize == bed->s->sizeof_rela) | |
2793 | swap_in = bed->s->swap_reloca_in; | |
2794 | else | |
2795 | { | |
2796 | bfd_set_error (bfd_error_wrong_format); | |
2797 | return false; | |
2798 | } | |
2799 | ||
2800 | erela = (const bfd_byte *) external_relocs; | |
2801 | /* Setting erelaend like this and comparing with <= handles case of | |
2802 | a fuzzed object with sh_size not a multiple of sh_entsize. */ | |
2803 | erelaend = erela + shdr->sh_size - shdr->sh_entsize; | |
2804 | irela = internal_relocs; | |
2805 | while (erela <= erelaend) | |
2806 | { | |
2807 | bfd_vma r_symndx; | |
2808 | ||
2809 | (*swap_in) (abfd, erela, irela); | |
2810 | r_symndx = ELF32_R_SYM (irela->r_info); | |
2811 | if (bed->s->arch_size == 64) | |
2812 | r_symndx >>= 24; | |
2813 | if (nsyms > 0) | |
2814 | { | |
2815 | if ((size_t) r_symndx >= nsyms) | |
2816 | { | |
2817 | _bfd_error_handler | |
2818 | /* xgettext:c-format */ | |
2819 | (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)" | |
2820 | " for offset %#" PRIx64 " in section `%pA'"), | |
2821 | abfd, (uint64_t) r_symndx, (unsigned long) nsyms, | |
2822 | (uint64_t) irela->r_offset, sec); | |
2823 | bfd_set_error (bfd_error_bad_value); | |
2824 | return false; | |
2825 | } | |
2826 | } | |
2827 | else if (r_symndx != STN_UNDEF) | |
2828 | { | |
2829 | _bfd_error_handler | |
2830 | /* xgettext:c-format */ | |
2831 | (_("%pB: non-zero symbol index (%#" PRIx64 ")" | |
2832 | " for offset %#" PRIx64 " in section `%pA'" | |
2833 | " when the object file has no symbol table"), | |
2834 | abfd, (uint64_t) r_symndx, | |
2835 | (uint64_t) irela->r_offset, sec); | |
2836 | bfd_set_error (bfd_error_bad_value); | |
2837 | return false; | |
2838 | } | |
2839 | irela += bed->s->int_rels_per_ext_rel; | |
2840 | erela += shdr->sh_entsize; | |
2841 | } | |
2842 | ||
2843 | return true; | |
2844 | } | |
2845 | ||
2846 | /* Read and swap the relocs for a section O. They may have been | |
2847 | cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are | |
2848 | not NULL, they are used as buffers to read into. They are known to | |
2849 | be large enough. If the INTERNAL_RELOCS relocs argument is NULL, | |
2850 | the return value is allocated using either malloc or bfd_alloc, | |
2851 | according to the KEEP_MEMORY argument. If O has two relocation | |
2852 | sections (both REL and RELA relocations), then the REL_HDR | |
2853 | relocations will appear first in INTERNAL_RELOCS, followed by the | |
2854 | RELA_HDR relocations. If INFO isn't NULL and KEEP_MEMORY is true, | |
2855 | update cache_size. */ | |
2856 | ||
2857 | Elf_Internal_Rela * | |
2858 | _bfd_elf_link_info_read_relocs (bfd *abfd, | |
2859 | struct bfd_link_info *info, | |
2860 | const asection *o, | |
2861 | void *external_relocs, | |
2862 | Elf_Internal_Rela *internal_relocs, | |
2863 | bool keep_memory) | |
2864 | { | |
2865 | void *alloc1 = NULL; | |
2866 | size_t alloc1_size; | |
2867 | Elf_Internal_Rela *alloc2 = NULL; | |
2868 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
2869 | struct bfd_elf_section_data *esdo = elf_section_data (o); | |
2870 | Elf_Internal_Rela *internal_rela_relocs; | |
2871 | ||
2872 | if (esdo->relocs != NULL) | |
2873 | return esdo->relocs; | |
2874 | ||
2875 | if (o->reloc_count == 0) | |
2876 | return NULL; | |
2877 | ||
2878 | if (internal_relocs == NULL) | |
2879 | { | |
2880 | bfd_size_type size; | |
2881 | ||
2882 | size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela); | |
2883 | if (keep_memory && info) | |
2884 | info->cache_size += size; | |
2885 | internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size); | |
2886 | if (internal_relocs == NULL) | |
2887 | return NULL; | |
2888 | } | |
2889 | ||
2890 | alloc1 = external_relocs; | |
2891 | internal_rela_relocs = internal_relocs; | |
2892 | if (esdo->rel.hdr) | |
2893 | { | |
2894 | if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr, | |
2895 | &alloc1, &alloc1_size, | |
2896 | internal_relocs)) | |
2897 | goto error_return; | |
2898 | external_relocs = (((bfd_byte *) external_relocs) | |
2899 | + esdo->rel.hdr->sh_size); | |
2900 | internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr) | |
2901 | * bed->s->int_rels_per_ext_rel); | |
2902 | } | |
2903 | ||
2904 | if (esdo->rela.hdr | |
2905 | && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr, | |
2906 | &alloc1, &alloc1_size, | |
2907 | internal_rela_relocs))) | |
2908 | goto error_return; | |
2909 | ||
2910 | /* Cache the results for next time, if we can. */ | |
2911 | if (keep_memory) | |
2912 | esdo->relocs = internal_relocs; | |
2913 | ||
2914 | _bfd_munmap_temporary (alloc1, alloc1_size); | |
2915 | ||
2916 | /* Don't free alloc2, since if it was allocated we are passing it | |
2917 | back (under the name of internal_relocs). */ | |
2918 | ||
2919 | return internal_relocs; | |
2920 | ||
2921 | error_return: | |
2922 | _bfd_munmap_temporary (alloc1, alloc1_size); | |
2923 | free (alloc2); | |
2924 | return NULL; | |
2925 | } | |
2926 | ||
2927 | /* This is similar to _bfd_elf_link_info_read_relocs, except for that | |
2928 | NULL is passed to _bfd_elf_link_info_read_relocs for pointer to | |
2929 | struct bfd_link_info. */ | |
2930 | ||
2931 | Elf_Internal_Rela * | |
2932 | _bfd_elf_link_read_relocs (bfd *abfd, | |
2933 | const asection *o, | |
2934 | void *external_relocs, | |
2935 | Elf_Internal_Rela *internal_relocs, | |
2936 | bool keep_memory) | |
2937 | { | |
2938 | return _bfd_elf_link_info_read_relocs (abfd, NULL, o, external_relocs, | |
2939 | internal_relocs, keep_memory); | |
2940 | ||
2941 | } | |
2942 | ||
2943 | /* Compute the size of, and allocate space for, REL_HDR which is the | |
2944 | section header for a section containing relocations for O. */ | |
2945 | ||
2946 | static bool | |
2947 | _bfd_elf_link_size_reloc_section (bfd *abfd, | |
2948 | struct bfd_elf_section_reloc_data *reldata) | |
2949 | { | |
2950 | Elf_Internal_Shdr *rel_hdr = reldata->hdr; | |
2951 | ||
2952 | /* That allows us to calculate the size of the section. */ | |
2953 | rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count; | |
2954 | ||
2955 | /* The contents field must last into write_object_contents, so we | |
2956 | allocate it with bfd_alloc rather than malloc. Also since we | |
2957 | cannot be sure that the contents will actually be filled in, | |
2958 | we zero the allocated space. */ | |
2959 | rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size); | |
2960 | if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) | |
2961 | return false; | |
2962 | ||
2963 | if (reldata->hashes == NULL && reldata->count) | |
2964 | { | |
2965 | struct elf_link_hash_entry **p; | |
2966 | ||
2967 | p = ((struct elf_link_hash_entry **) | |
2968 | bfd_zmalloc (reldata->count * sizeof (*p))); | |
2969 | if (p == NULL) | |
2970 | return false; | |
2971 | ||
2972 | reldata->hashes = p; | |
2973 | } | |
2974 | ||
2975 | return true; | |
2976 | } | |
2977 | ||
2978 | /* Copy the relocations indicated by the INTERNAL_RELOCS (which | |
2979 | originated from the section given by INPUT_REL_HDR) to the | |
2980 | OUTPUT_BFD. */ | |
2981 | ||
2982 | bool | |
2983 | _bfd_elf_link_output_relocs (bfd *output_bfd, | |
2984 | asection *input_section, | |
2985 | Elf_Internal_Shdr *input_rel_hdr, | |
2986 | Elf_Internal_Rela *internal_relocs, | |
2987 | struct elf_link_hash_entry **rel_hash) | |
2988 | { | |
2989 | Elf_Internal_Rela *irela; | |
2990 | Elf_Internal_Rela *irelaend; | |
2991 | bfd_byte *erel; | |
2992 | struct bfd_elf_section_reloc_data *output_reldata; | |
2993 | asection *output_section; | |
2994 | const struct elf_backend_data *bed; | |
2995 | void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); | |
2996 | struct bfd_elf_section_data *esdo; | |
2997 | ||
2998 | output_section = input_section->output_section; | |
2999 | ||
3000 | bed = get_elf_backend_data (output_bfd); | |
3001 | esdo = elf_section_data (output_section); | |
3002 | if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize) | |
3003 | { | |
3004 | output_reldata = &esdo->rel; | |
3005 | swap_out = bed->s->swap_reloc_out; | |
3006 | } | |
3007 | else if (esdo->rela.hdr | |
3008 | && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize) | |
3009 | { | |
3010 | output_reldata = &esdo->rela; | |
3011 | swap_out = bed->s->swap_reloca_out; | |
3012 | } | |
3013 | else | |
3014 | { | |
3015 | _bfd_error_handler | |
3016 | /* xgettext:c-format */ | |
3017 | (_("%pB: relocation size mismatch in %pB section %pA"), | |
3018 | output_bfd, input_section->owner, input_section); | |
3019 | bfd_set_error (bfd_error_wrong_format); | |
3020 | return false; | |
3021 | } | |
3022 | ||
3023 | erel = output_reldata->hdr->contents; | |
3024 | erel += output_reldata->count * input_rel_hdr->sh_entsize; | |
3025 | irela = internal_relocs; | |
3026 | irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr) | |
3027 | * bed->s->int_rels_per_ext_rel); | |
3028 | while (irela < irelaend) | |
3029 | { | |
3030 | if (rel_hash && *rel_hash) | |
3031 | (*rel_hash)->has_reloc = 1; | |
3032 | (*swap_out) (output_bfd, irela, erel); | |
3033 | irela += bed->s->int_rels_per_ext_rel; | |
3034 | erel += input_rel_hdr->sh_entsize; | |
3035 | if (rel_hash) | |
3036 | rel_hash++; | |
3037 | } | |
3038 | ||
3039 | /* Bump the counter, so that we know where to add the next set of | |
3040 | relocations. */ | |
3041 | output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr); | |
3042 | ||
3043 | return true; | |
3044 | } | |
3045 | \f | |
3046 | /* Make weak undefined symbols in PIE dynamic. */ | |
3047 | ||
3048 | bool | |
3049 | _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info, | |
3050 | struct elf_link_hash_entry *h) | |
3051 | { | |
3052 | if (bfd_link_pie (info) | |
3053 | && h->dynindx == -1 | |
3054 | && h->root.type == bfd_link_hash_undefweak) | |
3055 | return bfd_elf_link_record_dynamic_symbol (info, h); | |
3056 | ||
3057 | return true; | |
3058 | } | |
3059 | ||
3060 | /* Fix up the flags for a symbol. This handles various cases which | |
3061 | can only be fixed after all the input files are seen. This is | |
3062 | currently called by both adjust_dynamic_symbol and | |
3063 | assign_sym_version, which is unnecessary but perhaps more robust in | |
3064 | the face of future changes. */ | |
3065 | ||
3066 | static bool | |
3067 | _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h, | |
3068 | struct elf_info_failed *eif) | |
3069 | { | |
3070 | const struct elf_backend_data *bed; | |
3071 | ||
3072 | /* If this symbol was mentioned in a non-ELF file, try to set | |
3073 | DEF_REGULAR and REF_REGULAR correctly. This is the only way to | |
3074 | permit a non-ELF file to correctly refer to a symbol defined in | |
3075 | an ELF dynamic object. */ | |
3076 | if (h->non_elf) | |
3077 | { | |
3078 | while (h->root.type == bfd_link_hash_indirect) | |
3079 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
3080 | ||
3081 | if (h->root.type != bfd_link_hash_defined | |
3082 | && h->root.type != bfd_link_hash_defweak) | |
3083 | { | |
3084 | h->ref_regular = 1; | |
3085 | h->ref_regular_nonweak = 1; | |
3086 | } | |
3087 | else | |
3088 | { | |
3089 | if (h->root.u.def.section->owner != NULL | |
3090 | && (bfd_get_flavour (h->root.u.def.section->owner) | |
3091 | == bfd_target_elf_flavour)) | |
3092 | { | |
3093 | h->ref_regular = 1; | |
3094 | h->ref_regular_nonweak = 1; | |
3095 | } | |
3096 | else | |
3097 | h->def_regular = 1; | |
3098 | } | |
3099 | ||
3100 | if (h->dynindx == -1 | |
3101 | && (h->def_dynamic | |
3102 | || h->ref_dynamic)) | |
3103 | { | |
3104 | if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
3105 | { | |
3106 | eif->failed = true; | |
3107 | return false; | |
3108 | } | |
3109 | } | |
3110 | } | |
3111 | else | |
3112 | { | |
3113 | /* Unfortunately, NON_ELF is only correct if the symbol | |
3114 | was first seen in a non-ELF file. Fortunately, if the symbol | |
3115 | was first seen in an ELF file, we're probably OK unless the | |
3116 | symbol was defined in a non-ELF file. Catch that case here. | |
3117 | FIXME: We're still in trouble if the symbol was first seen in | |
3118 | a dynamic object, and then later in a non-ELF regular object. */ | |
3119 | if ((h->root.type == bfd_link_hash_defined | |
3120 | || h->root.type == bfd_link_hash_defweak) | |
3121 | && !h->def_regular | |
3122 | && (h->root.u.def.section->owner != NULL | |
3123 | ? (bfd_get_flavour (h->root.u.def.section->owner) | |
3124 | != bfd_target_elf_flavour) | |
3125 | : (bfd_is_abs_section (h->root.u.def.section) | |
3126 | && !h->def_dynamic))) | |
3127 | h->def_regular = 1; | |
3128 | } | |
3129 | ||
3130 | /* Backend specific symbol fixup. */ | |
3131 | bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); | |
3132 | if (bed->elf_backend_fixup_symbol | |
3133 | && !(*bed->elf_backend_fixup_symbol) (eif->info, h)) | |
3134 | return false; | |
3135 | ||
3136 | /* If this is a final link, and the symbol was defined as a common | |
3137 | symbol in a regular object file, and there was no definition in | |
3138 | any dynamic object, then the linker will have allocated space for | |
3139 | the symbol in a common section but the DEF_REGULAR | |
3140 | flag will not have been set. */ | |
3141 | if (h->root.type == bfd_link_hash_defined | |
3142 | && !h->def_regular | |
3143 | && h->ref_regular | |
3144 | && !h->def_dynamic | |
3145 | && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0) | |
3146 | h->def_regular = 1; | |
3147 | ||
3148 | /* Symbols defined in discarded sections shouldn't be dynamic. */ | |
3149 | if (h->root.type == bfd_link_hash_undefined && h->indx == -3) | |
3150 | (*bed->elf_backend_hide_symbol) (eif->info, h, true); | |
3151 | ||
3152 | /* If a weak undefined symbol has non-default visibility, we also | |
3153 | hide it from the dynamic linker. */ | |
3154 | else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT | |
3155 | && h->root.type == bfd_link_hash_undefweak) | |
3156 | (*bed->elf_backend_hide_symbol) (eif->info, h, true); | |
3157 | ||
3158 | /* A hidden versioned symbol in executable should be forced local if | |
3159 | it is is locally defined, not referenced by shared library and not | |
3160 | exported. */ | |
3161 | else if (bfd_link_executable (eif->info) | |
3162 | && h->versioned == versioned_hidden | |
3163 | && !eif->info->export_dynamic | |
3164 | && !h->dynamic | |
3165 | && !h->ref_dynamic | |
3166 | && h->def_regular) | |
3167 | (*bed->elf_backend_hide_symbol) (eif->info, h, true); | |
3168 | ||
3169 | /* If -Bsymbolic was used (which means to bind references to global | |
3170 | symbols to the definition within the shared object), and this | |
3171 | symbol was defined in a regular object, then it actually doesn't | |
3172 | need a PLT entry. Likewise, if the symbol has non-default | |
3173 | visibility. If the symbol has hidden or internal visibility, we | |
3174 | will force it local. */ | |
3175 | else if (h->needs_plt | |
3176 | && bfd_link_pic (eif->info) | |
3177 | && is_elf_hash_table (eif->info->hash) | |
3178 | && (SYMBOLIC_BIND (eif->info, h) | |
3179 | || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) | |
3180 | && h->def_regular) | |
3181 | { | |
3182 | bool force_local; | |
3183 | ||
3184 | force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL | |
3185 | || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN); | |
3186 | (*bed->elf_backend_hide_symbol) (eif->info, h, force_local); | |
3187 | } | |
3188 | ||
3189 | /* If this is a weak defined symbol in a dynamic object, and we know | |
3190 | the real definition in the dynamic object, copy interesting flags | |
3191 | over to the real definition. */ | |
3192 | if (h->is_weakalias) | |
3193 | { | |
3194 | struct elf_link_hash_entry *def = weakdef (h); | |
3195 | ||
3196 | /* If the real definition is defined by a regular object file, | |
3197 | don't do anything special. See the longer description in | |
3198 | _bfd_elf_adjust_dynamic_symbol, below. If the def is not | |
3199 | bfd_link_hash_defined as it was when put on the alias list | |
3200 | then it must have originally been a versioned symbol (for | |
3201 | which a non-versioned indirect symbol is created) and later | |
3202 | a definition for the non-versioned symbol is found. In that | |
3203 | case the indirection is flipped with the versioned symbol | |
3204 | becoming an indirect pointing at the non-versioned symbol. | |
3205 | Thus, not an alias any more. */ | |
3206 | if (def->def_regular | |
3207 | || def->root.type != bfd_link_hash_defined) | |
3208 | { | |
3209 | h = def; | |
3210 | while ((h = h->u.alias) != def) | |
3211 | h->is_weakalias = 0; | |
3212 | } | |
3213 | else | |
3214 | { | |
3215 | while (h->root.type == bfd_link_hash_indirect) | |
3216 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
3217 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
3218 | || h->root.type == bfd_link_hash_defweak); | |
3219 | BFD_ASSERT (def->def_dynamic); | |
3220 | (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h); | |
3221 | } | |
3222 | } | |
3223 | ||
3224 | return true; | |
3225 | } | |
3226 | ||
3227 | /* Make the backend pick a good value for a dynamic symbol. This is | |
3228 | called via elf_link_hash_traverse, and also calls itself | |
3229 | recursively. */ | |
3230 | ||
3231 | static bool | |
3232 | _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data) | |
3233 | { | |
3234 | struct elf_info_failed *eif = (struct elf_info_failed *) data; | |
3235 | struct elf_link_hash_table *htab; | |
3236 | const struct elf_backend_data *bed; | |
3237 | ||
3238 | if (! is_elf_hash_table (eif->info->hash)) | |
3239 | return false; | |
3240 | ||
3241 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
3242 | if (h->root.type == bfd_link_hash_indirect) | |
3243 | return true; | |
3244 | ||
3245 | /* Fix the symbol flags. */ | |
3246 | if (! _bfd_elf_fix_symbol_flags (h, eif)) | |
3247 | return false; | |
3248 | ||
3249 | htab = elf_hash_table (eif->info); | |
3250 | bed = get_elf_backend_data (htab->dynobj); | |
3251 | ||
3252 | if (h->root.type == bfd_link_hash_undefweak) | |
3253 | { | |
3254 | if (eif->info->dynamic_undefined_weak == 0) | |
3255 | (*bed->elf_backend_hide_symbol) (eif->info, h, true); | |
3256 | else if (eif->info->dynamic_undefined_weak > 0 | |
3257 | && h->ref_regular | |
3258 | && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | |
3259 | && !bfd_hide_sym_by_version (eif->info->version_info, | |
3260 | h->root.root.string)) | |
3261 | { | |
3262 | if (!bfd_elf_link_record_dynamic_symbol (eif->info, h)) | |
3263 | { | |
3264 | eif->failed = true; | |
3265 | return false; | |
3266 | } | |
3267 | } | |
3268 | } | |
3269 | ||
3270 | /* If this symbol does not require a PLT entry, and it is not | |
3271 | defined by a dynamic object, or is not referenced by a regular | |
3272 | object, ignore it. We do have to handle a weak defined symbol, | |
3273 | even if no regular object refers to it, if we decided to add it | |
3274 | to the dynamic symbol table. FIXME: Do we normally need to worry | |
3275 | about symbols which are defined by one dynamic object and | |
3276 | referenced by another one? */ | |
3277 | if (!h->needs_plt | |
3278 | && h->type != STT_GNU_IFUNC | |
3279 | && (h->def_regular | |
3280 | || !h->def_dynamic | |
3281 | || (!h->ref_regular | |
3282 | && (!h->is_weakalias || weakdef (h)->dynindx == -1)))) | |
3283 | { | |
3284 | h->plt = elf_hash_table (eif->info)->init_plt_offset; | |
3285 | return true; | |
3286 | } | |
3287 | ||
3288 | /* If we've already adjusted this symbol, don't do it again. This | |
3289 | can happen via a recursive call. */ | |
3290 | if (h->dynamic_adjusted) | |
3291 | return true; | |
3292 | ||
3293 | /* Don't look at this symbol again. Note that we must set this | |
3294 | after checking the above conditions, because we may look at a | |
3295 | symbol once, decide not to do anything, and then get called | |
3296 | recursively later after REF_REGULAR is set below. */ | |
3297 | h->dynamic_adjusted = 1; | |
3298 | ||
3299 | /* If this is a weak definition, and we know a real definition, and | |
3300 | the real symbol is not itself defined by a regular object file, | |
3301 | then get a good value for the real definition. We handle the | |
3302 | real symbol first, for the convenience of the backend routine. | |
3303 | ||
3304 | Note that there is a confusing case here. If the real definition | |
3305 | is defined by a regular object file, we don't get the real symbol | |
3306 | from the dynamic object, but we do get the weak symbol. If the | |
3307 | processor backend uses a COPY reloc, then if some routine in the | |
3308 | dynamic object changes the real symbol, we will not see that | |
3309 | change in the corresponding weak symbol. This is the way other | |
3310 | ELF linkers work as well, and seems to be a result of the shared | |
3311 | library model. | |
3312 | ||
3313 | I will clarify this issue. Most SVR4 shared libraries define the | |
3314 | variable _timezone and define timezone as a weak synonym. The | |
3315 | tzset call changes _timezone. If you write | |
3316 | extern int timezone; | |
3317 | int _timezone = 5; | |
3318 | int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } | |
3319 | you might expect that, since timezone is a synonym for _timezone, | |
3320 | the same number will print both times. However, if the processor | |
3321 | backend uses a COPY reloc, then actually timezone will be copied | |
3322 | into your process image, and, since you define _timezone | |
3323 | yourself, _timezone will not. Thus timezone and _timezone will | |
3324 | wind up at different memory locations. The tzset call will set | |
3325 | _timezone, leaving timezone unchanged. */ | |
3326 | ||
3327 | if (h->is_weakalias) | |
3328 | { | |
3329 | struct elf_link_hash_entry *def = weakdef (h); | |
3330 | ||
3331 | /* If we get to this point, there is an implicit reference to | |
3332 | the alias by a regular object file via the weak symbol H. */ | |
3333 | def->ref_regular = 1; | |
3334 | ||
3335 | /* Ensure that the backend adjust_dynamic_symbol function sees | |
3336 | the strong alias before H by recursively calling ourselves. */ | |
3337 | if (!_bfd_elf_adjust_dynamic_symbol (def, eif)) | |
3338 | return false; | |
3339 | } | |
3340 | ||
3341 | /* If a symbol has no type and no size and does not require a PLT | |
3342 | entry, then we are probably about to do the wrong thing here: we | |
3343 | are probably going to create a COPY reloc for an empty object. | |
3344 | This case can arise when a shared object is built with assembly | |
3345 | code, and the assembly code fails to set the symbol type. */ | |
3346 | if (h->size == 0 | |
3347 | && h->type == STT_NOTYPE | |
3348 | && !h->needs_plt) | |
3349 | _bfd_error_handler | |
3350 | (_("warning: type and size of dynamic symbol `%s' are not defined"), | |
3351 | h->root.root.string); | |
3352 | ||
3353 | if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) | |
3354 | { | |
3355 | eif->failed = true; | |
3356 | return false; | |
3357 | } | |
3358 | ||
3359 | return true; | |
3360 | } | |
3361 | ||
3362 | /* Adjust the dynamic symbol, H, for copy in the dynamic bss section, | |
3363 | DYNBSS. */ | |
3364 | ||
3365 | bool | |
3366 | _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info, | |
3367 | struct elf_link_hash_entry *h, | |
3368 | asection *dynbss) | |
3369 | { | |
3370 | unsigned int power_of_two; | |
3371 | bfd_vma mask; | |
3372 | asection *sec = h->root.u.def.section; | |
3373 | ||
3374 | /* The section alignment of the definition is the maximum alignment | |
3375 | requirement of symbols defined in the section. Since we don't | |
3376 | know the symbol alignment requirement, we start with the | |
3377 | maximum alignment and check low bits of the symbol address | |
3378 | for the minimum alignment. */ | |
3379 | power_of_two = bfd_section_alignment (sec); | |
3380 | mask = ((bfd_vma) 1 << power_of_two) - 1; | |
3381 | while ((h->root.u.def.value & mask) != 0) | |
3382 | { | |
3383 | mask >>= 1; | |
3384 | --power_of_two; | |
3385 | } | |
3386 | ||
3387 | /* Adjust the section alignment if needed. */ | |
3388 | if (!bfd_link_align_section (dynbss, power_of_two)) | |
3389 | return false; | |
3390 | ||
3391 | /* We make sure that the symbol will be aligned properly. */ | |
3392 | dynbss->size = BFD_ALIGN (dynbss->size, mask + 1); | |
3393 | ||
3394 | /* Define the symbol as being at this point in DYNBSS. */ | |
3395 | h->root.u.def.section = dynbss; | |
3396 | h->root.u.def.value = dynbss->size; | |
3397 | ||
3398 | /* Increment the size of DYNBSS to make room for the symbol. */ | |
3399 | dynbss->size += h->size; | |
3400 | ||
3401 | /* No error if extern_protected_data is true. */ | |
3402 | if (h->protected_def | |
3403 | && (!info->extern_protected_data | |
3404 | || (info->extern_protected_data < 0 | |
3405 | && !get_elf_backend_data (dynbss->owner)->extern_protected_data))) | |
3406 | info->callbacks->einfo | |
3407 | (_("%P: copy reloc against protected `%pT' is dangerous\n"), | |
3408 | h->root.root.string); | |
3409 | ||
3410 | return true; | |
3411 | } | |
3412 | ||
3413 | /* Adjust all external symbols pointing into SEC_MERGE sections | |
3414 | to reflect the object merging within the sections. */ | |
3415 | ||
3416 | static bool | |
3417 | _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data) | |
3418 | { | |
3419 | asection *sec; | |
3420 | ||
3421 | if ((h->root.type == bfd_link_hash_defined | |
3422 | || h->root.type == bfd_link_hash_defweak) | |
3423 | && ((sec = h->root.u.def.section)->flags & SEC_MERGE) | |
3424 | && sec->sec_info_type == SEC_INFO_TYPE_MERGE) | |
3425 | { | |
3426 | bfd *output_bfd = (bfd *) data; | |
3427 | ||
3428 | h->root.u.def.value = | |
3429 | _bfd_merged_section_offset (output_bfd, | |
3430 | &h->root.u.def.section, | |
3431 | elf_section_data (sec)->sec_info, | |
3432 | h->root.u.def.value); | |
3433 | } | |
3434 | ||
3435 | return true; | |
3436 | } | |
3437 | ||
3438 | /* Returns false if the symbol referred to by H should be considered | |
3439 | to resolve local to the current module, and true if it should be | |
3440 | considered to bind dynamically. */ | |
3441 | ||
3442 | bool | |
3443 | _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h, | |
3444 | struct bfd_link_info *info, | |
3445 | bool not_local_protected) | |
3446 | { | |
3447 | bool binding_stays_local_p; | |
3448 | const struct elf_backend_data *bed; | |
3449 | struct elf_link_hash_table *hash_table; | |
3450 | ||
3451 | if (h == NULL) | |
3452 | return false; | |
3453 | ||
3454 | while (h->root.type == bfd_link_hash_indirect | |
3455 | || h->root.type == bfd_link_hash_warning) | |
3456 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
3457 | ||
3458 | /* If it was forced local, then clearly it's not dynamic. */ | |
3459 | if (h->dynindx == -1) | |
3460 | return false; | |
3461 | if (h->forced_local) | |
3462 | return false; | |
3463 | ||
3464 | /* Identify the cases where name binding rules say that a | |
3465 | visible symbol resolves locally. */ | |
3466 | binding_stays_local_p = (bfd_link_executable (info) | |
3467 | || SYMBOLIC_BIND (info, h)); | |
3468 | ||
3469 | switch (ELF_ST_VISIBILITY (h->other)) | |
3470 | { | |
3471 | case STV_INTERNAL: | |
3472 | case STV_HIDDEN: | |
3473 | return false; | |
3474 | ||
3475 | case STV_PROTECTED: | |
3476 | hash_table = elf_hash_table (info); | |
3477 | if (!is_elf_hash_table (&hash_table->root)) | |
3478 | return false; | |
3479 | ||
3480 | bed = get_elf_backend_data (hash_table->dynobj); | |
3481 | ||
3482 | /* Proper resolution for function pointer equality may require | |
3483 | that these symbols perhaps be resolved dynamically, even though | |
3484 | we should be resolving them to the current module. */ | |
3485 | if (!not_local_protected || !bed->is_function_type (h->type)) | |
3486 | binding_stays_local_p = true; | |
3487 | break; | |
3488 | ||
3489 | default: | |
3490 | break; | |
3491 | } | |
3492 | ||
3493 | /* If it isn't defined locally, then clearly it's dynamic. */ | |
3494 | if (!h->def_regular && !ELF_COMMON_DEF_P (h)) | |
3495 | return true; | |
3496 | ||
3497 | /* Otherwise, the symbol is dynamic if binding rules don't tell | |
3498 | us that it remains local. */ | |
3499 | return !binding_stays_local_p; | |
3500 | } | |
3501 | ||
3502 | /* Return true if the symbol referred to by H should be considered | |
3503 | to resolve local to the current module, and false otherwise. Differs | |
3504 | from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of | |
3505 | undefined symbols. The two functions are virtually identical except | |
3506 | for the place where dynindx == -1 is tested. If that test is true, | |
3507 | _bfd_elf_dynamic_symbol_p will say the symbol is local, while | |
3508 | _bfd_elf_symbol_refs_local_p will say the symbol is local only for | |
3509 | defined symbols. | |
3510 | It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as | |
3511 | !_bfd_elf_symbol_refs_local_p, except that targets differ in their | |
3512 | treatment of undefined weak symbols. For those that do not make | |
3513 | undefined weak symbols dynamic, both functions may return false. */ | |
3514 | ||
3515 | bool | |
3516 | _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h, | |
3517 | struct bfd_link_info *info, | |
3518 | bool local_protected) | |
3519 | { | |
3520 | const struct elf_backend_data *bed; | |
3521 | struct elf_link_hash_table *hash_table; | |
3522 | ||
3523 | /* If it's a local sym, of course we resolve locally. */ | |
3524 | if (h == NULL) | |
3525 | return true; | |
3526 | ||
3527 | /* STV_HIDDEN or STV_INTERNAL ones must be local. */ | |
3528 | if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN | |
3529 | || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) | |
3530 | return true; | |
3531 | ||
3532 | /* Forced local symbols resolve locally. */ | |
3533 | if (h->forced_local) | |
3534 | return true; | |
3535 | ||
3536 | /* Common symbols that become definitions don't get the DEF_REGULAR | |
3537 | flag set, so test it first, and don't bail out. */ | |
3538 | if (ELF_COMMON_DEF_P (h)) | |
3539 | /* Do nothing. */; | |
3540 | /* If we don't have a definition in a regular file, then we can't | |
3541 | resolve locally. The sym is either undefined or dynamic. */ | |
3542 | else if (!h->def_regular) | |
3543 | return false; | |
3544 | ||
3545 | /* Non-dynamic symbols resolve locally. */ | |
3546 | if (h->dynindx == -1) | |
3547 | return true; | |
3548 | ||
3549 | /* At this point, we know the symbol is defined and dynamic. In an | |
3550 | executable it must resolve locally, likewise when building symbolic | |
3551 | shared libraries. */ | |
3552 | if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h)) | |
3553 | return true; | |
3554 | ||
3555 | /* Now deal with defined dynamic symbols in shared libraries. Ones | |
3556 | with default visibility might not resolve locally. */ | |
3557 | if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) | |
3558 | return false; | |
3559 | ||
3560 | hash_table = elf_hash_table (info); | |
3561 | if (!is_elf_hash_table (&hash_table->root)) | |
3562 | return true; | |
3563 | ||
3564 | /* STV_PROTECTED symbols with indirect external access are local. */ | |
3565 | if (info->indirect_extern_access > 0) | |
3566 | return true; | |
3567 | ||
3568 | bed = get_elf_backend_data (hash_table->dynobj); | |
3569 | ||
3570 | /* If extern_protected_data is false, STV_PROTECTED non-function | |
3571 | symbols are local. */ | |
3572 | if ((!info->extern_protected_data | |
3573 | || (info->extern_protected_data < 0 | |
3574 | && !bed->extern_protected_data)) | |
3575 | && !bed->is_function_type (h->type)) | |
3576 | return true; | |
3577 | ||
3578 | /* Function pointer equality tests may require that STV_PROTECTED | |
3579 | symbols be treated as dynamic symbols. If the address of a | |
3580 | function not defined in an executable is set to that function's | |
3581 | plt entry in the executable, then the address of the function in | |
3582 | a shared library must also be the plt entry in the executable. */ | |
3583 | return local_protected; | |
3584 | } | |
3585 | ||
3586 | /* Caches some TLS segment info, and ensures that the TLS segment vma is | |
3587 | aligned. Returns the first TLS output section. */ | |
3588 | ||
3589 | struct bfd_section * | |
3590 | _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info) | |
3591 | { | |
3592 | struct bfd_section *sec, *tls; | |
3593 | unsigned int align = 0; | |
3594 | ||
3595 | for (sec = obfd->sections; sec != NULL; sec = sec->next) | |
3596 | if ((sec->flags & SEC_THREAD_LOCAL) != 0) | |
3597 | break; | |
3598 | tls = sec; | |
3599 | ||
3600 | for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next) | |
3601 | if (sec->alignment_power > align) | |
3602 | align = sec->alignment_power; | |
3603 | ||
3604 | elf_hash_table (info)->tls_sec = tls; | |
3605 | ||
3606 | /* Ensure the alignment of the first section (usually .tdata) is the largest | |
3607 | alignment, so that the tls segment starts aligned. */ | |
3608 | if (tls != NULL) | |
3609 | (void) bfd_link_align_section (tls, align); | |
3610 | ||
3611 | return tls; | |
3612 | } | |
3613 | ||
3614 | /* Return TRUE iff this is a non-common, definition of a non-function symbol. */ | |
3615 | static bool | |
3616 | is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED, | |
3617 | Elf_Internal_Sym *sym) | |
3618 | { | |
3619 | const struct elf_backend_data *bed; | |
3620 | ||
3621 | /* Local symbols do not count, but target specific ones might. */ | |
3622 | if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL | |
3623 | && ELF_ST_BIND (sym->st_info) < STB_LOOS) | |
3624 | return false; | |
3625 | ||
3626 | bed = get_elf_backend_data (abfd); | |
3627 | /* Function symbols do not count. */ | |
3628 | if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))) | |
3629 | return false; | |
3630 | ||
3631 | /* If the section is undefined, then so is the symbol. */ | |
3632 | if (sym->st_shndx == SHN_UNDEF) | |
3633 | return false; | |
3634 | ||
3635 | /* If the symbol is defined in the common section, then | |
3636 | it is a common definition and so does not count. */ | |
3637 | if (bed->common_definition (sym)) | |
3638 | return false; | |
3639 | ||
3640 | /* If the symbol is in a target specific section then we | |
3641 | must rely upon the backend to tell us what it is. */ | |
3642 | if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS) | |
3643 | /* FIXME - this function is not coded yet: | |
3644 | ||
3645 | return _bfd_is_global_symbol_definition (abfd, sym); | |
3646 | ||
3647 | Instead for now assume that the definition is not global, | |
3648 | Even if this is wrong, at least the linker will behave | |
3649 | in the same way that it used to do. */ | |
3650 | return false; | |
3651 | ||
3652 | return true; | |
3653 | } | |
3654 | ||
3655 | /* Search the symbol table of the archive element of the archive ABFD | |
3656 | whose archive map contains a mention of SYMDEF, and determine if | |
3657 | the symbol is defined in this element. */ | |
3658 | static bool | |
3659 | elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef) | |
3660 | { | |
3661 | Elf_Internal_Shdr * hdr; | |
3662 | size_t symcount; | |
3663 | size_t extsymcount; | |
3664 | size_t extsymoff; | |
3665 | Elf_Internal_Sym *isymbuf; | |
3666 | Elf_Internal_Sym *isym; | |
3667 | Elf_Internal_Sym *isymend; | |
3668 | bool result; | |
3669 | ||
3670 | abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset, NULL); | |
3671 | if (abfd == NULL) | |
3672 | return false; | |
3673 | ||
3674 | if (! bfd_check_format (abfd, bfd_object)) | |
3675 | return false; | |
3676 | ||
3677 | /* Select the appropriate symbol table. If we don't know if the | |
3678 | object file is an IR object, give linker LTO plugin a chance to | |
3679 | get the correct symbol table. */ | |
3680 | if (abfd->plugin_format == bfd_plugin_yes | |
3681 | || abfd->plugin_format == bfd_plugin_yes_unused | |
3682 | #if BFD_SUPPORTS_PLUGINS | |
3683 | || (abfd->plugin_format == bfd_plugin_unknown | |
3684 | && bfd_link_plugin_object_p (abfd)) | |
3685 | #endif | |
3686 | ) | |
3687 | { | |
3688 | /* Use the IR symbol table if the object has been claimed by | |
3689 | plugin. */ | |
3690 | abfd = abfd->plugin_dummy_bfd; | |
3691 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
3692 | } | |
3693 | else | |
3694 | { | |
3695 | if (elf_use_dt_symtab_p (abfd)) | |
3696 | { | |
3697 | bfd_set_error (bfd_error_wrong_format); | |
3698 | return false; | |
3699 | } | |
3700 | ||
3701 | if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0) | |
3702 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
3703 | else | |
3704 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
3705 | } | |
3706 | ||
3707 | symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; | |
3708 | ||
3709 | /* The sh_info field of the symtab header tells us where the | |
3710 | external symbols start. We don't care about the local symbols. */ | |
3711 | if (elf_bad_symtab (abfd)) | |
3712 | { | |
3713 | extsymcount = symcount; | |
3714 | extsymoff = 0; | |
3715 | } | |
3716 | else | |
3717 | { | |
3718 | extsymcount = symcount - hdr->sh_info; | |
3719 | extsymoff = hdr->sh_info; | |
3720 | } | |
3721 | ||
3722 | if (extsymcount == 0) | |
3723 | return false; | |
3724 | ||
3725 | /* Read in the symbol table. */ | |
3726 | isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, | |
3727 | NULL, NULL, NULL); | |
3728 | if (isymbuf == NULL) | |
3729 | return false; | |
3730 | ||
3731 | /* Scan the symbol table looking for SYMDEF. */ | |
3732 | result = false; | |
3733 | for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++) | |
3734 | { | |
3735 | const char *name; | |
3736 | ||
3737 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, | |
3738 | isym->st_name); | |
3739 | if (name == NULL) | |
3740 | break; | |
3741 | ||
3742 | if (strcmp (name, symdef->name) == 0) | |
3743 | { | |
3744 | result = is_global_data_symbol_definition (abfd, isym); | |
3745 | break; | |
3746 | } | |
3747 | } | |
3748 | ||
3749 | free (isymbuf); | |
3750 | ||
3751 | return result; | |
3752 | } | |
3753 | \f | |
3754 | /* Add an entry to the .dynamic table. */ | |
3755 | ||
3756 | bool | |
3757 | _bfd_elf_add_dynamic_entry (struct bfd_link_info *info, | |
3758 | bfd_vma tag, | |
3759 | bfd_vma val) | |
3760 | { | |
3761 | struct elf_link_hash_table *hash_table; | |
3762 | const struct elf_backend_data *bed; | |
3763 | asection *s; | |
3764 | bfd_size_type newsize; | |
3765 | bfd_byte *newcontents; | |
3766 | Elf_Internal_Dyn dyn; | |
3767 | ||
3768 | hash_table = elf_hash_table (info); | |
3769 | if (! is_elf_hash_table (&hash_table->root)) | |
3770 | return false; | |
3771 | ||
3772 | if (tag == DT_RELA || tag == DT_REL) | |
3773 | hash_table->dynamic_relocs = true; | |
3774 | ||
3775 | bed = get_elf_backend_data (hash_table->dynobj); | |
3776 | s = hash_table->dynamic; | |
3777 | BFD_ASSERT (s != NULL); | |
3778 | ||
3779 | newsize = s->size + bed->s->sizeof_dyn; | |
3780 | newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize); | |
3781 | if (newcontents == NULL) | |
3782 | return false; | |
3783 | ||
3784 | dyn.d_tag = tag; | |
3785 | dyn.d_un.d_val = val; | |
3786 | bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size); | |
3787 | ||
3788 | s->size = newsize; | |
3789 | s->contents = newcontents; | |
3790 | ||
3791 | return true; | |
3792 | } | |
3793 | ||
3794 | /* Strip zero-sized dynamic sections. */ | |
3795 | ||
3796 | bool | |
3797 | _bfd_elf_strip_zero_sized_dynamic_sections (struct bfd_link_info *info) | |
3798 | { | |
3799 | struct elf_link_hash_table *hash_table; | |
3800 | const struct elf_backend_data *bed; | |
3801 | asection *s, *sdynamic, **pp; | |
3802 | asection *rela_dyn, *rel_dyn; | |
3803 | Elf_Internal_Dyn dyn; | |
3804 | bfd_byte *extdyn, *next; | |
3805 | void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); | |
3806 | bool strip_zero_sized; | |
3807 | bool strip_zero_sized_plt; | |
3808 | ||
3809 | if (bfd_link_relocatable (info)) | |
3810 | return true; | |
3811 | ||
3812 | hash_table = elf_hash_table (info); | |
3813 | if (!is_elf_hash_table (&hash_table->root)) | |
3814 | return false; | |
3815 | ||
3816 | if (!hash_table->dynobj) | |
3817 | return true; | |
3818 | ||
3819 | sdynamic= hash_table->dynamic; | |
3820 | if (!sdynamic) | |
3821 | return true; | |
3822 | ||
3823 | bed = get_elf_backend_data (hash_table->dynobj); | |
3824 | swap_dyn_in = bed->s->swap_dyn_in; | |
3825 | ||
3826 | strip_zero_sized = false; | |
3827 | strip_zero_sized_plt = false; | |
3828 | ||
3829 | /* Strip zero-sized dynamic sections. */ | |
3830 | rela_dyn = bfd_get_section_by_name (info->output_bfd, ".rela.dyn"); | |
3831 | rel_dyn = bfd_get_section_by_name (info->output_bfd, ".rel.dyn"); | |
3832 | for (pp = &info->output_bfd->sections; (s = *pp) != NULL;) | |
3833 | if (s->size == 0 | |
3834 | && (s == rela_dyn | |
3835 | || s == rel_dyn | |
3836 | || s == hash_table->srelplt->output_section | |
3837 | || s == hash_table->splt->output_section)) | |
3838 | { | |
3839 | *pp = s->next; | |
3840 | info->output_bfd->section_count--; | |
3841 | strip_zero_sized = true; | |
3842 | if (s == rela_dyn) | |
3843 | s = rela_dyn; | |
3844 | if (s == rel_dyn) | |
3845 | s = rel_dyn; | |
3846 | else if (s == hash_table->splt->output_section) | |
3847 | { | |
3848 | s = hash_table->splt; | |
3849 | strip_zero_sized_plt = true; | |
3850 | } | |
3851 | else | |
3852 | s = hash_table->srelplt; | |
3853 | s->flags |= SEC_EXCLUDE; | |
3854 | s->output_section = bfd_abs_section_ptr; | |
3855 | } | |
3856 | else | |
3857 | pp = &s->next; | |
3858 | ||
3859 | if (strip_zero_sized_plt && sdynamic->size != 0) | |
3860 | for (extdyn = sdynamic->contents; | |
3861 | extdyn < sdynamic->contents + sdynamic->size; | |
3862 | extdyn = next) | |
3863 | { | |
3864 | next = extdyn + bed->s->sizeof_dyn; | |
3865 | swap_dyn_in (hash_table->dynobj, extdyn, &dyn); | |
3866 | switch (dyn.d_tag) | |
3867 | { | |
3868 | default: | |
3869 | break; | |
3870 | case DT_JMPREL: | |
3871 | case DT_PLTRELSZ: | |
3872 | case DT_PLTREL: | |
3873 | /* Strip DT_PLTRELSZ, DT_JMPREL and DT_PLTREL entries if | |
3874 | the procedure linkage table (the .plt section) has been | |
3875 | removed. */ | |
3876 | memmove (extdyn, next, | |
3877 | sdynamic->size - (next - sdynamic->contents)); | |
3878 | next = extdyn; | |
3879 | } | |
3880 | } | |
3881 | ||
3882 | if (strip_zero_sized) | |
3883 | { | |
3884 | /* Regenerate program headers. */ | |
3885 | elf_seg_map (info->output_bfd) = NULL; | |
3886 | return _bfd_elf_map_sections_to_segments (info->output_bfd, info, | |
3887 | NULL); | |
3888 | } | |
3889 | ||
3890 | return true; | |
3891 | } | |
3892 | ||
3893 | /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error, | |
3894 | 1 if a DT_NEEDED tag already exists, and 0 on success. */ | |
3895 | ||
3896 | int | |
3897 | bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info) | |
3898 | { | |
3899 | struct elf_link_hash_table *hash_table; | |
3900 | size_t strindex; | |
3901 | const char *soname; | |
3902 | ||
3903 | if (!_bfd_elf_link_create_dynstrtab (abfd, info)) | |
3904 | return -1; | |
3905 | ||
3906 | hash_table = elf_hash_table (info); | |
3907 | soname = elf_dt_name (abfd); | |
3908 | strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, false); | |
3909 | if (strindex == (size_t) -1) | |
3910 | return -1; | |
3911 | ||
3912 | if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1) | |
3913 | { | |
3914 | asection *sdyn; | |
3915 | const struct elf_backend_data *bed; | |
3916 | bfd_byte *extdyn; | |
3917 | ||
3918 | bed = get_elf_backend_data (hash_table->dynobj); | |
3919 | sdyn = hash_table->dynamic; | |
3920 | if (sdyn != NULL && sdyn->size != 0) | |
3921 | for (extdyn = sdyn->contents; | |
3922 | extdyn < sdyn->contents + sdyn->size; | |
3923 | extdyn += bed->s->sizeof_dyn) | |
3924 | { | |
3925 | Elf_Internal_Dyn dyn; | |
3926 | ||
3927 | bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn); | |
3928 | if (dyn.d_tag == DT_NEEDED | |
3929 | && dyn.d_un.d_val == strindex) | |
3930 | { | |
3931 | _bfd_elf_strtab_delref (hash_table->dynstr, strindex); | |
3932 | return 1; | |
3933 | } | |
3934 | } | |
3935 | } | |
3936 | ||
3937 | if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info)) | |
3938 | return -1; | |
3939 | ||
3940 | if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex)) | |
3941 | return -1; | |
3942 | ||
3943 | return 0; | |
3944 | } | |
3945 | ||
3946 | /* Return true if SONAME is on the needed list between NEEDED and STOP | |
3947 | (or the end of list if STOP is NULL), and needed by a library that | |
3948 | will be loaded. */ | |
3949 | ||
3950 | static bool | |
3951 | on_needed_list (const char *soname, | |
3952 | struct bfd_link_needed_list *needed, | |
3953 | struct bfd_link_needed_list *stop) | |
3954 | { | |
3955 | struct bfd_link_needed_list *look; | |
3956 | for (look = needed; look != stop; look = look->next) | |
3957 | if (strcmp (soname, look->name) == 0 | |
3958 | && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0 | |
3959 | /* If needed by a library that itself is not directly | |
3960 | needed, recursively check whether that library is | |
3961 | indirectly needed. Since we add DT_NEEDED entries to | |
3962 | the end of the list, library dependencies appear after | |
3963 | the library. Therefore search prior to the current | |
3964 | LOOK, preventing possible infinite recursion. */ | |
3965 | || on_needed_list (elf_dt_name (look->by), needed, look))) | |
3966 | return true; | |
3967 | ||
3968 | return false; | |
3969 | } | |
3970 | ||
3971 | /* Sort symbol by value, section, size, and type. */ | |
3972 | static int | |
3973 | elf_sort_symbol (const void *arg1, const void *arg2) | |
3974 | { | |
3975 | const struct elf_link_hash_entry *h1; | |
3976 | const struct elf_link_hash_entry *h2; | |
3977 | bfd_signed_vma vdiff; | |
3978 | int sdiff; | |
3979 | const char *n1; | |
3980 | const char *n2; | |
3981 | ||
3982 | h1 = *(const struct elf_link_hash_entry **) arg1; | |
3983 | h2 = *(const struct elf_link_hash_entry **) arg2; | |
3984 | vdiff = h1->root.u.def.value - h2->root.u.def.value; | |
3985 | if (vdiff != 0) | |
3986 | return vdiff > 0 ? 1 : -1; | |
3987 | ||
3988 | sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id; | |
3989 | if (sdiff != 0) | |
3990 | return sdiff; | |
3991 | ||
3992 | /* Sort so that sized symbols are selected over zero size symbols. */ | |
3993 | vdiff = h1->size - h2->size; | |
3994 | if (vdiff != 0) | |
3995 | return vdiff > 0 ? 1 : -1; | |
3996 | ||
3997 | /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */ | |
3998 | if (h1->type != h2->type) | |
3999 | return h1->type - h2->type; | |
4000 | ||
4001 | /* If symbols are properly sized and typed, and multiple strong | |
4002 | aliases are not defined in a shared library by the user we | |
4003 | shouldn't get here. Unfortunately linker script symbols like | |
4004 | __bss_start sometimes match a user symbol defined at the start of | |
4005 | .bss without proper size and type. We'd like to preference the | |
4006 | user symbol over reserved system symbols. Sort on leading | |
4007 | underscores. */ | |
4008 | n1 = h1->root.root.string; | |
4009 | n2 = h2->root.root.string; | |
4010 | while (*n1 == *n2) | |
4011 | { | |
4012 | if (*n1 == 0) | |
4013 | break; | |
4014 | ++n1; | |
4015 | ++n2; | |
4016 | } | |
4017 | if (*n1 == '_') | |
4018 | return -1; | |
4019 | if (*n2 == '_') | |
4020 | return 1; | |
4021 | ||
4022 | /* Final sort on name selects user symbols like '_u' over reserved | |
4023 | system symbols like '_Z' and also will avoid qsort instability. */ | |
4024 | return *n1 - *n2; | |
4025 | } | |
4026 | ||
4027 | /* This function is used to adjust offsets into .dynstr for | |
4028 | dynamic symbols. This is called via elf_link_hash_traverse. */ | |
4029 | ||
4030 | static bool | |
4031 | elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data) | |
4032 | { | |
4033 | struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data; | |
4034 | ||
4035 | if (h->dynindx != -1) | |
4036 | h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index); | |
4037 | return true; | |
4038 | } | |
4039 | ||
4040 | /* Assign string offsets in .dynstr, update all structures referencing | |
4041 | them. */ | |
4042 | ||
4043 | static bool | |
4044 | elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info) | |
4045 | { | |
4046 | struct elf_link_hash_table *hash_table = elf_hash_table (info); | |
4047 | struct elf_link_local_dynamic_entry *entry; | |
4048 | struct elf_strtab_hash *dynstr = hash_table->dynstr; | |
4049 | bfd *dynobj = hash_table->dynobj; | |
4050 | asection *sdyn; | |
4051 | bfd_size_type size; | |
4052 | const struct elf_backend_data *bed; | |
4053 | bfd_byte *extdyn; | |
4054 | ||
4055 | _bfd_elf_strtab_finalize (dynstr); | |
4056 | size = _bfd_elf_strtab_size (dynstr); | |
4057 | ||
4058 | /* Allow the linker to examine the dynsymtab now it's fully populated. */ | |
4059 | ||
4060 | if (info->callbacks->examine_strtab) | |
4061 | info->callbacks->examine_strtab (dynstr); | |
4062 | ||
4063 | bed = get_elf_backend_data (dynobj); | |
4064 | sdyn = hash_table->dynamic; | |
4065 | BFD_ASSERT (sdyn != NULL); | |
4066 | ||
4067 | /* Update all .dynamic entries referencing .dynstr strings. */ | |
4068 | for (extdyn = sdyn->contents; | |
4069 | extdyn < PTR_ADD (sdyn->contents, sdyn->size); | |
4070 | extdyn += bed->s->sizeof_dyn) | |
4071 | { | |
4072 | Elf_Internal_Dyn dyn; | |
4073 | ||
4074 | bed->s->swap_dyn_in (dynobj, extdyn, &dyn); | |
4075 | switch (dyn.d_tag) | |
4076 | { | |
4077 | case DT_STRSZ: | |
4078 | dyn.d_un.d_val = size; | |
4079 | break; | |
4080 | case DT_NEEDED: | |
4081 | case DT_SONAME: | |
4082 | case DT_RPATH: | |
4083 | case DT_RUNPATH: | |
4084 | case DT_FILTER: | |
4085 | case DT_AUXILIARY: | |
4086 | case DT_AUDIT: | |
4087 | case DT_DEPAUDIT: | |
4088 | dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val); | |
4089 | break; | |
4090 | default: | |
4091 | continue; | |
4092 | } | |
4093 | bed->s->swap_dyn_out (dynobj, &dyn, extdyn); | |
4094 | } | |
4095 | ||
4096 | /* Now update local dynamic symbols. */ | |
4097 | for (entry = hash_table->dynlocal; entry ; entry = entry->next) | |
4098 | entry->isym.st_name = _bfd_elf_strtab_offset (dynstr, | |
4099 | entry->isym.st_name); | |
4100 | ||
4101 | /* And the rest of dynamic symbols. */ | |
4102 | elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr); | |
4103 | ||
4104 | /* Adjust version definitions. */ | |
4105 | if (elf_tdata (output_bfd)->cverdefs) | |
4106 | { | |
4107 | asection *s; | |
4108 | bfd_byte *p; | |
4109 | size_t i; | |
4110 | Elf_Internal_Verdef def; | |
4111 | Elf_Internal_Verdaux defaux; | |
4112 | ||
4113 | s = bfd_get_linker_section (dynobj, ".gnu.version_d"); | |
4114 | p = s->contents; | |
4115 | do | |
4116 | { | |
4117 | _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p, | |
4118 | &def); | |
4119 | p += sizeof (Elf_External_Verdef); | |
4120 | if (def.vd_aux != sizeof (Elf_External_Verdef)) | |
4121 | continue; | |
4122 | for (i = 0; i < def.vd_cnt; ++i) | |
4123 | { | |
4124 | _bfd_elf_swap_verdaux_in (output_bfd, | |
4125 | (Elf_External_Verdaux *) p, &defaux); | |
4126 | defaux.vda_name = _bfd_elf_strtab_offset (dynstr, | |
4127 | defaux.vda_name); | |
4128 | _bfd_elf_swap_verdaux_out (output_bfd, | |
4129 | &defaux, (Elf_External_Verdaux *) p); | |
4130 | p += sizeof (Elf_External_Verdaux); | |
4131 | } | |
4132 | } | |
4133 | while (def.vd_next); | |
4134 | } | |
4135 | ||
4136 | /* Adjust version references. */ | |
4137 | if (elf_tdata (output_bfd)->verref) | |
4138 | { | |
4139 | asection *s; | |
4140 | bfd_byte *p; | |
4141 | size_t i; | |
4142 | Elf_Internal_Verneed need; | |
4143 | Elf_Internal_Vernaux needaux; | |
4144 | ||
4145 | s = bfd_get_linker_section (dynobj, ".gnu.version_r"); | |
4146 | p = s->contents; | |
4147 | do | |
4148 | { | |
4149 | _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p, | |
4150 | &need); | |
4151 | need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file); | |
4152 | _bfd_elf_swap_verneed_out (output_bfd, &need, | |
4153 | (Elf_External_Verneed *) p); | |
4154 | p += sizeof (Elf_External_Verneed); | |
4155 | for (i = 0; i < need.vn_cnt; ++i) | |
4156 | { | |
4157 | _bfd_elf_swap_vernaux_in (output_bfd, | |
4158 | (Elf_External_Vernaux *) p, &needaux); | |
4159 | needaux.vna_name = _bfd_elf_strtab_offset (dynstr, | |
4160 | needaux.vna_name); | |
4161 | _bfd_elf_swap_vernaux_out (output_bfd, | |
4162 | &needaux, | |
4163 | (Elf_External_Vernaux *) p); | |
4164 | p += sizeof (Elf_External_Vernaux); | |
4165 | } | |
4166 | } | |
4167 | while (need.vn_next); | |
4168 | } | |
4169 | ||
4170 | return true; | |
4171 | } | |
4172 | \f | |
4173 | /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. | |
4174 | The default is to only match when the INPUT and OUTPUT are exactly | |
4175 | the same target. */ | |
4176 | ||
4177 | bool | |
4178 | _bfd_elf_default_relocs_compatible (const bfd_target *input, | |
4179 | const bfd_target *output) | |
4180 | { | |
4181 | return input == output; | |
4182 | } | |
4183 | ||
4184 | /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. | |
4185 | This version is used when different targets for the same architecture | |
4186 | are virtually identical. */ | |
4187 | ||
4188 | bool | |
4189 | _bfd_elf_relocs_compatible (const bfd_target *input, | |
4190 | const bfd_target *output) | |
4191 | { | |
4192 | const struct elf_backend_data *obed, *ibed; | |
4193 | ||
4194 | if (input == output) | |
4195 | return true; | |
4196 | ||
4197 | ibed = xvec_get_elf_backend_data (input); | |
4198 | obed = xvec_get_elf_backend_data (output); | |
4199 | ||
4200 | if (ibed->arch != obed->arch) | |
4201 | return false; | |
4202 | ||
4203 | /* If both backends are using this function, deem them compatible. */ | |
4204 | return ibed->relocs_compatible == obed->relocs_compatible; | |
4205 | } | |
4206 | ||
4207 | /* Make a special call to the linker "notice" function to tell it that | |
4208 | we are about to handle an as-needed lib, or have finished | |
4209 | processing the lib. */ | |
4210 | ||
4211 | bool | |
4212 | _bfd_elf_notice_as_needed (bfd *ibfd, | |
4213 | struct bfd_link_info *info, | |
4214 | enum notice_asneeded_action act) | |
4215 | { | |
4216 | return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0); | |
4217 | } | |
4218 | ||
4219 | /* Call ACTION on each relocation in an ELF object file. */ | |
4220 | ||
4221 | bool | |
4222 | _bfd_elf_link_iterate_on_relocs | |
4223 | (bfd *abfd, struct bfd_link_info *info, | |
4224 | bool (*action) (bfd *, struct bfd_link_info *, asection *, | |
4225 | const Elf_Internal_Rela *)) | |
4226 | { | |
4227 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
4228 | struct elf_link_hash_table *htab = elf_hash_table (info); | |
4229 | ||
4230 | /* If this object is the same format as the output object, and it is | |
4231 | not a shared library, then let the backend look through the | |
4232 | relocs. | |
4233 | ||
4234 | This is required to build global offset table entries and to | |
4235 | arrange for dynamic relocs. It is not required for the | |
4236 | particular common case of linking non PIC code, even when linking | |
4237 | against shared libraries, but unfortunately there is no way of | |
4238 | knowing whether an object file has been compiled PIC or not. | |
4239 | Looking through the relocs is not particularly time consuming. | |
4240 | The problem is that we must either (1) keep the relocs in memory, | |
4241 | which causes the linker to require additional runtime memory or | |
4242 | (2) read the relocs twice from the input file, which wastes time. | |
4243 | This would be a good case for using mmap. | |
4244 | ||
4245 | I have no idea how to handle linking PIC code into a file of a | |
4246 | different format. It probably can't be done. */ | |
4247 | if ((abfd->flags & DYNAMIC) == 0 | |
4248 | && is_elf_hash_table (&htab->root) | |
4249 | && elf_object_id (abfd) == elf_hash_table_id (htab) | |
4250 | && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec)) | |
4251 | { | |
4252 | asection *o; | |
4253 | ||
4254 | for (o = abfd->sections; o != NULL; o = o->next) | |
4255 | { | |
4256 | Elf_Internal_Rela *internal_relocs; | |
4257 | bool ok; | |
4258 | ||
4259 | /* Don't check relocations in excluded sections. Don't do | |
4260 | anything special with non-loaded, non-alloced sections. | |
4261 | In particular, any relocs in such sections should not | |
4262 | affect GOT and PLT reference counting (ie. we don't | |
4263 | allow them to create GOT or PLT entries), there's no | |
4264 | possibility or desire to optimize TLS relocs, and | |
4265 | there's not much point in propagating relocs to shared | |
4266 | libs that the dynamic linker won't relocate. */ | |
4267 | if ((o->flags & SEC_ALLOC) == 0 | |
4268 | || (o->flags & SEC_RELOC) == 0 | |
4269 | || (o->flags & SEC_EXCLUDE) != 0 | |
4270 | || o->reloc_count == 0 | |
4271 | || ((info->strip == strip_all || info->strip == strip_debugger) | |
4272 | && (o->flags & SEC_DEBUGGING) != 0) | |
4273 | || bfd_is_abs_section (o->output_section)) | |
4274 | continue; | |
4275 | ||
4276 | internal_relocs = _bfd_elf_link_info_read_relocs | |
4277 | (abfd, info, o, NULL, NULL, | |
4278 | _bfd_elf_link_keep_memory (info)); | |
4279 | if (internal_relocs == NULL) | |
4280 | return false; | |
4281 | ||
4282 | ok = action (abfd, info, o, internal_relocs); | |
4283 | ||
4284 | if (elf_section_data (o)->relocs != internal_relocs) | |
4285 | free (internal_relocs); | |
4286 | ||
4287 | if (! ok) | |
4288 | return false; | |
4289 | } | |
4290 | } | |
4291 | ||
4292 | return true; | |
4293 | } | |
4294 | ||
4295 | /* Check relocations in an ELF object file. This is called after | |
4296 | all input files have been opened. */ | |
4297 | ||
4298 | bool | |
4299 | _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info) | |
4300 | { | |
4301 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
4302 | if (bed->check_relocs != NULL) | |
4303 | return _bfd_elf_link_iterate_on_relocs (abfd, info, | |
4304 | bed->check_relocs); | |
4305 | return true; | |
4306 | } | |
4307 | ||
4308 | /* An entry in the first definition hash table. */ | |
4309 | ||
4310 | struct elf_link_first_hash_entry | |
4311 | { | |
4312 | struct bfd_hash_entry root; | |
4313 | /* The object of the first definition. */ | |
4314 | bfd *abfd; | |
4315 | }; | |
4316 | ||
4317 | /* The function to create a new entry in the first definition hash | |
4318 | table. */ | |
4319 | ||
4320 | static struct bfd_hash_entry * | |
4321 | elf_link_first_hash_newfunc (struct bfd_hash_entry *entry, | |
4322 | struct bfd_hash_table *table, | |
4323 | const char *string) | |
4324 | { | |
4325 | struct elf_link_first_hash_entry *ret = | |
4326 | (struct elf_link_first_hash_entry *) entry; | |
4327 | ||
4328 | /* Allocate the structure if it has not already been allocated by a | |
4329 | subclass. */ | |
4330 | if (ret == NULL) | |
4331 | ret = (struct elf_link_first_hash_entry *) | |
4332 | bfd_hash_allocate (table, | |
4333 | sizeof (struct elf_link_first_hash_entry)); | |
4334 | if (ret == NULL) | |
4335 | return NULL; | |
4336 | ||
4337 | /* Call the allocation method of the superclass. */ | |
4338 | ret = ((struct elf_link_first_hash_entry *) | |
4339 | bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, | |
4340 | string)); | |
4341 | if (ret != NULL) | |
4342 | ret->abfd = NULL; | |
4343 | ||
4344 | return (struct bfd_hash_entry *) ret; | |
4345 | } | |
4346 | ||
4347 | /* Add the symbol NAME from ABFD to first hash. */ | |
4348 | ||
4349 | static void | |
4350 | elf_link_add_to_first_hash (bfd *abfd, struct bfd_link_info *info, | |
4351 | const char *name, bool copy) | |
4352 | { | |
4353 | struct elf_link_hash_table *htab = elf_hash_table (info); | |
4354 | /* Skip if there is no first hash. */ | |
4355 | if (htab->first_hash == NULL) | |
4356 | return; | |
4357 | ||
4358 | struct elf_link_first_hash_entry *e | |
4359 | = ((struct elf_link_first_hash_entry *) | |
4360 | bfd_hash_lookup (htab->first_hash, name, true, copy)); | |
4361 | if (e == NULL) | |
4362 | info->callbacks->fatal | |
4363 | (_("%P: %pB: failed to add %s to first hash\n"), abfd, name); | |
4364 | ||
4365 | if (e->abfd == NULL) | |
4366 | /* Store ABFD in abfd. */ | |
4367 | e->abfd = abfd; | |
4368 | } | |
4369 | ||
4370 | /* Add symbols from an ELF object file to the linker hash table. */ | |
4371 | ||
4372 | static bool | |
4373 | elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info) | |
4374 | { | |
4375 | Elf_Internal_Ehdr *ehdr; | |
4376 | Elf_Internal_Shdr *hdr; | |
4377 | size_t symcount; | |
4378 | size_t extsymcount; | |
4379 | size_t extsymoff; | |
4380 | struct elf_link_hash_entry **sym_hash; | |
4381 | bool dynamic; | |
4382 | Elf_External_Versym *extversym = NULL; | |
4383 | Elf_External_Versym *extversym_end = NULL; | |
4384 | Elf_External_Versym *ever; | |
4385 | struct elf_link_hash_entry *weaks; | |
4386 | struct elf_link_hash_entry **nondeflt_vers = NULL; | |
4387 | size_t nondeflt_vers_cnt = 0; | |
4388 | Elf_Internal_Sym *isymbuf = NULL; | |
4389 | Elf_Internal_Sym *isym; | |
4390 | Elf_Internal_Sym *isymend; | |
4391 | const struct elf_backend_data *bed; | |
4392 | bool add_needed; | |
4393 | struct elf_link_hash_table *htab; | |
4394 | void *alloc_mark = NULL; | |
4395 | struct bfd_hash_entry **old_table = NULL; | |
4396 | unsigned int old_size = 0; | |
4397 | unsigned int old_count = 0; | |
4398 | void *old_tab = NULL; | |
4399 | void *old_ent; | |
4400 | struct bfd_link_hash_entry *old_undefs = NULL; | |
4401 | struct bfd_link_hash_entry *old_undefs_tail = NULL; | |
4402 | void *old_strtab = NULL; | |
4403 | size_t tabsize = 0; | |
4404 | asection *s; | |
4405 | bool just_syms; | |
4406 | ||
4407 | htab = elf_hash_table (info); | |
4408 | bed = get_elf_backend_data (abfd); | |
4409 | ||
4410 | if (elf_use_dt_symtab_p (abfd)) | |
4411 | { | |
4412 | bfd_set_error (bfd_error_wrong_format); | |
4413 | return false; | |
4414 | } | |
4415 | ||
4416 | if ((abfd->flags & DYNAMIC) == 0) | |
4417 | { | |
4418 | dynamic = false; | |
4419 | if ((abfd->flags & BFD_PLUGIN) != 0 | |
4420 | && is_elf_hash_table (&htab->root) | |
4421 | && htab->first_hash == NULL) | |
4422 | { | |
4423 | /* Initialize first_hash for an IR input. */ | |
4424 | htab->first_hash = (struct bfd_hash_table *) | |
4425 | bfd_malloc (sizeof (struct bfd_hash_table)); | |
4426 | if (htab->first_hash == NULL | |
4427 | || !bfd_hash_table_init | |
4428 | (htab->first_hash, elf_link_first_hash_newfunc, | |
4429 | sizeof (struct elf_link_first_hash_entry))) | |
4430 | info->callbacks->fatal | |
4431 | (_("%P: first_hash failed to create: %E\n")); | |
4432 | } | |
4433 | } | |
4434 | else | |
4435 | { | |
4436 | dynamic = true; | |
4437 | ||
4438 | /* You can't use -r against a dynamic object. Also, there's no | |
4439 | hope of using a dynamic object which does not exactly match | |
4440 | the format of the output file. */ | |
4441 | if (bfd_link_relocatable (info) | |
4442 | || !is_elf_hash_table (&htab->root) | |
4443 | || info->output_bfd->xvec != abfd->xvec) | |
4444 | { | |
4445 | if (bfd_link_relocatable (info)) | |
4446 | bfd_set_error (bfd_error_invalid_operation); | |
4447 | else | |
4448 | bfd_set_error (bfd_error_wrong_format); | |
4449 | goto error_return; | |
4450 | } | |
4451 | } | |
4452 | ||
4453 | ehdr = elf_elfheader (abfd); | |
4454 | if (info->warn_alternate_em | |
4455 | && bed->elf_machine_code != ehdr->e_machine | |
4456 | && ((bed->elf_machine_alt1 != 0 | |
4457 | && ehdr->e_machine == bed->elf_machine_alt1) | |
4458 | || (bed->elf_machine_alt2 != 0 | |
4459 | && ehdr->e_machine == bed->elf_machine_alt2))) | |
4460 | _bfd_error_handler | |
4461 | /* xgettext:c-format */ | |
4462 | (_("alternate ELF machine code found (%d) in %pB, expecting %d"), | |
4463 | ehdr->e_machine, abfd, bed->elf_machine_code); | |
4464 | ||
4465 | /* As a GNU extension, any input sections which are named | |
4466 | .gnu.warning.SYMBOL are treated as warning symbols for the given | |
4467 | symbol. This differs from .gnu.warning sections, which generate | |
4468 | warnings when they are included in an output file. */ | |
4469 | /* PR 12761: Also generate this warning when building shared libraries. */ | |
4470 | for (s = abfd->sections; s != NULL; s = s->next) | |
4471 | { | |
4472 | const char *name; | |
4473 | ||
4474 | name = bfd_section_name (s); | |
4475 | if (startswith (name, ".gnu.warning.")) | |
4476 | { | |
4477 | char *msg; | |
4478 | bfd_size_type sz; | |
4479 | ||
4480 | name += sizeof ".gnu.warning." - 1; | |
4481 | ||
4482 | /* If this is a shared object, then look up the symbol | |
4483 | in the hash table. If it is there, and it is already | |
4484 | been defined, then we will not be using the entry | |
4485 | from this shared object, so we don't need to warn. | |
4486 | FIXME: If we see the definition in a regular object | |
4487 | later on, we will warn, but we shouldn't. The only | |
4488 | fix is to keep track of what warnings we are supposed | |
4489 | to emit, and then handle them all at the end of the | |
4490 | link. */ | |
4491 | if (dynamic) | |
4492 | { | |
4493 | struct elf_link_hash_entry *h; | |
4494 | ||
4495 | h = elf_link_hash_lookup (htab, name, false, false, true); | |
4496 | ||
4497 | /* FIXME: What about bfd_link_hash_common? */ | |
4498 | if (h != NULL | |
4499 | && (h->root.type == bfd_link_hash_defined | |
4500 | || h->root.type == bfd_link_hash_defweak)) | |
4501 | continue; | |
4502 | } | |
4503 | ||
4504 | sz = s->size; | |
4505 | msg = (char *) bfd_alloc (abfd, sz + 1); | |
4506 | if (msg == NULL) | |
4507 | goto error_return; | |
4508 | ||
4509 | if (! bfd_get_section_contents (abfd, s, msg, 0, sz)) | |
4510 | goto error_return; | |
4511 | ||
4512 | msg[sz] = '\0'; | |
4513 | ||
4514 | if (! (_bfd_generic_link_add_one_symbol | |
4515 | (info, abfd, name, BSF_WARNING, s, 0, msg, | |
4516 | false, bed->collect, NULL))) | |
4517 | goto error_return; | |
4518 | ||
4519 | if (bfd_link_executable (info)) | |
4520 | { | |
4521 | /* Clobber the section size so that the warning does | |
4522 | not get copied into the output file. */ | |
4523 | s->size = 0; | |
4524 | ||
4525 | /* Also set SEC_EXCLUDE, so that symbols defined in | |
4526 | the warning section don't get copied to the output. */ | |
4527 | s->flags |= SEC_EXCLUDE; | |
4528 | } | |
4529 | } | |
4530 | } | |
4531 | ||
4532 | just_syms = ((s = abfd->sections) != NULL | |
4533 | && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS); | |
4534 | ||
4535 | add_needed = true; | |
4536 | if (! dynamic) | |
4537 | { | |
4538 | /* If we are creating a shared library, create all the dynamic | |
4539 | sections immediately. We need to attach them to something, | |
4540 | so we attach them to this BFD, provided it is the right | |
4541 | format and is not from ld --just-symbols. Always create the | |
4542 | dynamic sections for -E/--dynamic-list. FIXME: If there | |
4543 | are no input BFD's of the same format as the output, we can't | |
4544 | make a shared library. */ | |
4545 | if (!just_syms | |
4546 | && (bfd_link_pic (info) | |
4547 | || (!bfd_link_relocatable (info) | |
4548 | && info->nointerp | |
4549 | && (info->export_dynamic || info->dynamic))) | |
4550 | && is_elf_hash_table (&htab->root) | |
4551 | && info->output_bfd->xvec == abfd->xvec | |
4552 | && !htab->dynamic_sections_created) | |
4553 | { | |
4554 | if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) | |
4555 | goto error_return; | |
4556 | } | |
4557 | } | |
4558 | else if (!is_elf_hash_table (&htab->root)) | |
4559 | goto error_return; | |
4560 | else | |
4561 | { | |
4562 | const char *soname = NULL; | |
4563 | char *audit = NULL; | |
4564 | struct bfd_link_needed_list *rpath = NULL, *runpath = NULL; | |
4565 | const Elf_Internal_Phdr *phdr; | |
4566 | struct elf_link_loaded_list *loaded_lib; | |
4567 | ||
4568 | /* ld --just-symbols and dynamic objects don't mix very well. | |
4569 | ld shouldn't allow it. */ | |
4570 | if (just_syms) | |
4571 | abort (); | |
4572 | ||
4573 | /* If this dynamic lib was specified on the command line with | |
4574 | --as-needed in effect, then we don't want to add a DT_NEEDED | |
4575 | tag unless the lib is actually used. Similary for libs brought | |
4576 | in by another lib's DT_NEEDED. When --no-add-needed is used | |
4577 | on a dynamic lib, we don't want to add a DT_NEEDED entry for | |
4578 | any dynamic library in DT_NEEDED tags in the dynamic lib at | |
4579 | all. */ | |
4580 | add_needed = (elf_dyn_lib_class (abfd) | |
4581 | & (DYN_AS_NEEDED | DYN_DT_NEEDED | |
4582 | | DYN_NO_NEEDED)) == 0; | |
4583 | ||
4584 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
4585 | if (s != NULL && s->size != 0 && (s->flags & SEC_HAS_CONTENTS) != 0) | |
4586 | { | |
4587 | bfd_byte *dynbuf; | |
4588 | bfd_byte *extdyn; | |
4589 | unsigned int elfsec; | |
4590 | unsigned long shlink; | |
4591 | ||
4592 | if (!_bfd_elf_mmap_section_contents (abfd, s, &dynbuf)) | |
4593 | { | |
4594 | error_free_dyn: | |
4595 | _bfd_elf_munmap_section_contents (s, dynbuf); | |
4596 | goto error_return; | |
4597 | } | |
4598 | ||
4599 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | |
4600 | if (elfsec == SHN_BAD) | |
4601 | goto error_free_dyn; | |
4602 | shlink = elf_elfsections (abfd)[elfsec]->sh_link; | |
4603 | ||
4604 | for (extdyn = dynbuf; | |
4605 | (size_t) (dynbuf + s->size - extdyn) >= bed->s->sizeof_dyn; | |
4606 | extdyn += bed->s->sizeof_dyn) | |
4607 | { | |
4608 | Elf_Internal_Dyn dyn; | |
4609 | ||
4610 | bed->s->swap_dyn_in (abfd, extdyn, &dyn); | |
4611 | if (dyn.d_tag == DT_SONAME) | |
4612 | { | |
4613 | unsigned int tagv = dyn.d_un.d_val; | |
4614 | soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
4615 | if (soname == NULL) | |
4616 | goto error_free_dyn; | |
4617 | } | |
4618 | if (dyn.d_tag == DT_NEEDED) | |
4619 | { | |
4620 | struct bfd_link_needed_list *n, **pn; | |
4621 | char *fnm, *anm; | |
4622 | unsigned int tagv = dyn.d_un.d_val; | |
4623 | size_t amt = sizeof (struct bfd_link_needed_list); | |
4624 | ||
4625 | n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); | |
4626 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
4627 | if (n == NULL || fnm == NULL) | |
4628 | goto error_free_dyn; | |
4629 | amt = strlen (fnm) + 1; | |
4630 | anm = (char *) bfd_alloc (abfd, amt); | |
4631 | if (anm == NULL) | |
4632 | goto error_free_dyn; | |
4633 | memcpy (anm, fnm, amt); | |
4634 | n->name = anm; | |
4635 | n->by = abfd; | |
4636 | n->next = NULL; | |
4637 | for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next) | |
4638 | ; | |
4639 | *pn = n; | |
4640 | } | |
4641 | if (dyn.d_tag == DT_RUNPATH) | |
4642 | { | |
4643 | struct bfd_link_needed_list *n, **pn; | |
4644 | char *fnm, *anm; | |
4645 | unsigned int tagv = dyn.d_un.d_val; | |
4646 | size_t amt = sizeof (struct bfd_link_needed_list); | |
4647 | ||
4648 | n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); | |
4649 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
4650 | if (n == NULL || fnm == NULL) | |
4651 | goto error_free_dyn; | |
4652 | amt = strlen (fnm) + 1; | |
4653 | anm = (char *) bfd_alloc (abfd, amt); | |
4654 | if (anm == NULL) | |
4655 | goto error_free_dyn; | |
4656 | memcpy (anm, fnm, amt); | |
4657 | n->name = anm; | |
4658 | n->by = abfd; | |
4659 | n->next = NULL; | |
4660 | for (pn = & runpath; | |
4661 | *pn != NULL; | |
4662 | pn = &(*pn)->next) | |
4663 | ; | |
4664 | *pn = n; | |
4665 | } | |
4666 | /* Ignore DT_RPATH if we have seen DT_RUNPATH. */ | |
4667 | if (!runpath && dyn.d_tag == DT_RPATH) | |
4668 | { | |
4669 | struct bfd_link_needed_list *n, **pn; | |
4670 | char *fnm, *anm; | |
4671 | unsigned int tagv = dyn.d_un.d_val; | |
4672 | size_t amt = sizeof (struct bfd_link_needed_list); | |
4673 | ||
4674 | n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); | |
4675 | fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
4676 | if (n == NULL || fnm == NULL) | |
4677 | goto error_free_dyn; | |
4678 | amt = strlen (fnm) + 1; | |
4679 | anm = (char *) bfd_alloc (abfd, amt); | |
4680 | if (anm == NULL) | |
4681 | goto error_free_dyn; | |
4682 | memcpy (anm, fnm, amt); | |
4683 | n->name = anm; | |
4684 | n->by = abfd; | |
4685 | n->next = NULL; | |
4686 | for (pn = & rpath; | |
4687 | *pn != NULL; | |
4688 | pn = &(*pn)->next) | |
4689 | ; | |
4690 | *pn = n; | |
4691 | } | |
4692 | if (dyn.d_tag == DT_AUDIT) | |
4693 | { | |
4694 | unsigned int tagv = dyn.d_un.d_val; | |
4695 | audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
4696 | } | |
4697 | if (dyn.d_tag == DT_FLAGS_1) | |
4698 | elf_tdata (abfd)->is_pie = (dyn.d_un.d_val & DF_1_PIE) != 0; | |
4699 | } | |
4700 | ||
4701 | _bfd_elf_munmap_section_contents (s, dynbuf); | |
4702 | } | |
4703 | ||
4704 | /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that | |
4705 | frees all more recently bfd_alloc'd blocks as well. */ | |
4706 | if (runpath) | |
4707 | rpath = runpath; | |
4708 | ||
4709 | if (rpath) | |
4710 | { | |
4711 | struct bfd_link_needed_list **pn; | |
4712 | for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next) | |
4713 | ; | |
4714 | *pn = rpath; | |
4715 | } | |
4716 | ||
4717 | /* If we have a PT_GNU_RELRO program header, mark as read-only | |
4718 | all sections contained fully therein. This makes relro | |
4719 | shared library sections appear as they will at run-time. */ | |
4720 | phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum; | |
4721 | while (phdr-- > elf_tdata (abfd)->phdr) | |
4722 | if (phdr->p_type == PT_GNU_RELRO) | |
4723 | { | |
4724 | for (s = abfd->sections; s != NULL; s = s->next) | |
4725 | { | |
4726 | unsigned int opb = bfd_octets_per_byte (abfd, s); | |
4727 | ||
4728 | if ((s->flags & SEC_ALLOC) != 0 | |
4729 | && s->vma * opb >= phdr->p_vaddr | |
4730 | && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz) | |
4731 | s->flags |= SEC_READONLY; | |
4732 | } | |
4733 | break; | |
4734 | } | |
4735 | ||
4736 | /* We do not want to include any of the sections in a dynamic | |
4737 | object in the output file. We hack by simply clobbering the | |
4738 | list of sections in the BFD. This could be handled more | |
4739 | cleanly by, say, a new section flag; the existing | |
4740 | SEC_NEVER_LOAD flag is not the one we want, because that one | |
4741 | still implies that the section takes up space in the output | |
4742 | file. */ | |
4743 | bfd_section_list_clear (abfd); | |
4744 | ||
4745 | /* Find the name to use in a DT_NEEDED entry that refers to this | |
4746 | object. If the object has a DT_SONAME entry, we use it. | |
4747 | Otherwise, if the generic linker stuck something in | |
4748 | elf_dt_name, we use that. Otherwise, we just use the file | |
4749 | name. */ | |
4750 | if (soname == NULL || *soname == '\0') | |
4751 | { | |
4752 | soname = elf_dt_name (abfd); | |
4753 | if (soname == NULL || *soname == '\0') | |
4754 | soname = bfd_get_filename (abfd); | |
4755 | } | |
4756 | ||
4757 | /* Save the SONAME because sometimes the linker emulation code | |
4758 | will need to know it. */ | |
4759 | elf_dt_name (abfd) = soname; | |
4760 | ||
4761 | /* If we have already included this dynamic object in the | |
4762 | link, just ignore it. There is no reason to include a | |
4763 | particular dynamic object more than once. */ | |
4764 | for (loaded_lib = htab->dyn_loaded; | |
4765 | loaded_lib != NULL; | |
4766 | loaded_lib = loaded_lib->next) | |
4767 | { | |
4768 | if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0) | |
4769 | return true; | |
4770 | } | |
4771 | ||
4772 | /* Create dynamic sections for backends that require that be done | |
4773 | before setup_gnu_properties. */ | |
4774 | if (add_needed | |
4775 | && !_bfd_elf_link_create_dynamic_sections (abfd, info)) | |
4776 | return false; | |
4777 | ||
4778 | /* Save the DT_AUDIT entry for the linker emulation code. */ | |
4779 | elf_dt_audit (abfd) = audit; | |
4780 | } | |
4781 | ||
4782 | /* If this is a dynamic object, we always link against the .dynsym | |
4783 | symbol table, not the .symtab symbol table. The dynamic linker | |
4784 | will only see the .dynsym symbol table, so there is no reason to | |
4785 | look at .symtab for a dynamic object. */ | |
4786 | ||
4787 | if (! dynamic || elf_dynsymtab (abfd) == 0) | |
4788 | hdr = &elf_tdata (abfd)->symtab_hdr; | |
4789 | else | |
4790 | hdr = &elf_tdata (abfd)->dynsymtab_hdr; | |
4791 | ||
4792 | symcount = hdr->sh_size / bed->s->sizeof_sym; | |
4793 | ||
4794 | /* The sh_info field of the symtab header tells us where the | |
4795 | external symbols start. We don't care about the local symbols at | |
4796 | this point. */ | |
4797 | if (elf_bad_symtab (abfd)) | |
4798 | { | |
4799 | extsymcount = symcount; | |
4800 | extsymoff = 0; | |
4801 | } | |
4802 | else | |
4803 | { | |
4804 | extsymcount = symcount - hdr->sh_info; | |
4805 | extsymoff = hdr->sh_info; | |
4806 | } | |
4807 | ||
4808 | sym_hash = elf_sym_hashes (abfd); | |
4809 | if (extsymcount != 0) | |
4810 | { | |
4811 | isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, | |
4812 | NULL, NULL, NULL); | |
4813 | if (isymbuf == NULL) | |
4814 | goto error_return; | |
4815 | ||
4816 | if (sym_hash == NULL) | |
4817 | { | |
4818 | /* We store a pointer to the hash table entry for each | |
4819 | external symbol. */ | |
4820 | size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *); | |
4821 | sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt); | |
4822 | if (sym_hash == NULL) | |
4823 | goto error_free_sym; | |
4824 | elf_sym_hashes (abfd) = sym_hash; | |
4825 | } | |
4826 | } | |
4827 | ||
4828 | if (dynamic) | |
4829 | { | |
4830 | /* Read in any version definitions. */ | |
4831 | if (!_bfd_elf_slurp_version_tables (abfd, | |
4832 | info->default_imported_symver)) | |
4833 | goto error_free_sym; | |
4834 | ||
4835 | /* Read in the symbol versions, but don't bother to convert them | |
4836 | to internal format. */ | |
4837 | if (elf_dynversym (abfd) != 0) | |
4838 | { | |
4839 | Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr; | |
4840 | bfd_size_type amt = versymhdr->sh_size; | |
4841 | ||
4842 | if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0) | |
4843 | goto error_free_sym; | |
4844 | extversym = (Elf_External_Versym *) | |
4845 | _bfd_malloc_and_read (abfd, amt, amt); | |
4846 | if (extversym == NULL) | |
4847 | goto error_free_sym; | |
4848 | extversym_end = extversym + amt / sizeof (*extversym); | |
4849 | } | |
4850 | } | |
4851 | ||
4852 | /* If we are loading an as-needed shared lib, save the symbol table | |
4853 | state before we start adding symbols. If the lib turns out | |
4854 | to be unneeded, restore the state. */ | |
4855 | if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) | |
4856 | { | |
4857 | unsigned int i; | |
4858 | size_t entsize; | |
4859 | ||
4860 | for (entsize = 0, i = 0; i < htab->root.table.size; i++) | |
4861 | { | |
4862 | struct bfd_hash_entry *p; | |
4863 | struct elf_link_hash_entry *h; | |
4864 | ||
4865 | for (p = htab->root.table.table[i]; p != NULL; p = p->next) | |
4866 | { | |
4867 | h = (struct elf_link_hash_entry *) p; | |
4868 | entsize += htab->root.table.entsize; | |
4869 | if (h->root.type == bfd_link_hash_warning) | |
4870 | { | |
4871 | entsize += htab->root.table.entsize; | |
4872 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
4873 | } | |
4874 | if (h->root.type == bfd_link_hash_common) | |
4875 | entsize += sizeof (*h->root.u.c.p); | |
4876 | } | |
4877 | } | |
4878 | ||
4879 | tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *); | |
4880 | old_tab = bfd_malloc (tabsize + entsize); | |
4881 | if (old_tab == NULL) | |
4882 | goto error_free_vers; | |
4883 | ||
4884 | /* Remember the current objalloc pointer, so that all mem for | |
4885 | symbols added can later be reclaimed. */ | |
4886 | alloc_mark = bfd_hash_allocate (&htab->root.table, 1); | |
4887 | if (alloc_mark == NULL) | |
4888 | goto error_free_vers; | |
4889 | ||
4890 | /* Make a special call to the linker "notice" function to | |
4891 | tell it that we are about to handle an as-needed lib. */ | |
4892 | if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed)) | |
4893 | goto error_free_vers; | |
4894 | ||
4895 | /* Clone the symbol table. Remember some pointers into the | |
4896 | symbol table, and dynamic symbol count. */ | |
4897 | old_ent = (char *) old_tab + tabsize; | |
4898 | memcpy (old_tab, htab->root.table.table, tabsize); | |
4899 | old_undefs = htab->root.undefs; | |
4900 | old_undefs_tail = htab->root.undefs_tail; | |
4901 | old_table = htab->root.table.table; | |
4902 | old_size = htab->root.table.size; | |
4903 | old_count = htab->root.table.count; | |
4904 | old_strtab = NULL; | |
4905 | if (htab->dynstr != NULL) | |
4906 | { | |
4907 | old_strtab = _bfd_elf_strtab_save (htab->dynstr); | |
4908 | if (old_strtab == NULL) | |
4909 | goto error_free_vers; | |
4910 | } | |
4911 | ||
4912 | for (i = 0; i < htab->root.table.size; i++) | |
4913 | { | |
4914 | struct bfd_hash_entry *p; | |
4915 | struct elf_link_hash_entry *h; | |
4916 | ||
4917 | for (p = htab->root.table.table[i]; p != NULL; p = p->next) | |
4918 | { | |
4919 | h = (struct elf_link_hash_entry *) p; | |
4920 | memcpy (old_ent, h, htab->root.table.entsize); | |
4921 | old_ent = (char *) old_ent + htab->root.table.entsize; | |
4922 | if (h->root.type == bfd_link_hash_warning) | |
4923 | { | |
4924 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
4925 | memcpy (old_ent, h, htab->root.table.entsize); | |
4926 | old_ent = (char *) old_ent + htab->root.table.entsize; | |
4927 | } | |
4928 | if (h->root.type == bfd_link_hash_common) | |
4929 | { | |
4930 | memcpy (old_ent, h->root.u.c.p, sizeof (*h->root.u.c.p)); | |
4931 | old_ent = (char *) old_ent + sizeof (*h->root.u.c.p); | |
4932 | } | |
4933 | } | |
4934 | } | |
4935 | } | |
4936 | ||
4937 | weaks = NULL; | |
4938 | if (extversym == NULL) | |
4939 | ever = NULL; | |
4940 | else if (extversym + extsymoff < extversym_end) | |
4941 | ever = extversym + extsymoff; | |
4942 | else | |
4943 | { | |
4944 | /* xgettext:c-format */ | |
4945 | _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"), | |
4946 | abfd, (long) extsymoff, | |
4947 | (long) (extversym_end - extversym) / sizeof (* extversym)); | |
4948 | bfd_set_error (bfd_error_bad_value); | |
4949 | goto error_free_vers; | |
4950 | } | |
4951 | ||
4952 | if (!bfd_link_relocatable (info) | |
4953 | && bfd_get_lto_type (abfd) == lto_slim_ir_object) | |
4954 | { | |
4955 | _bfd_error_handler | |
4956 | (_("%pB: plugin needed to handle lto object"), abfd); | |
4957 | } | |
4958 | ||
4959 | for (isym = isymbuf, isymend = PTR_ADD (isymbuf, extsymcount); | |
4960 | isym < isymend; | |
4961 | isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL)) | |
4962 | { | |
4963 | int bind; | |
4964 | bfd_vma value; | |
4965 | asection *sec, *new_sec; | |
4966 | flagword flags; | |
4967 | const char *name; | |
4968 | const char *defvername; | |
4969 | bool must_copy_name = false; | |
4970 | struct elf_link_hash_entry *h; | |
4971 | struct elf_link_hash_entry *hi; | |
4972 | bool definition; | |
4973 | bool size_change_ok; | |
4974 | bool type_change_ok; | |
4975 | bool new_weak; | |
4976 | bool old_weak; | |
4977 | bfd *override; | |
4978 | bool common; | |
4979 | bool discarded; | |
4980 | unsigned int old_alignment; | |
4981 | unsigned int shindex; | |
4982 | bfd *old_bfd; | |
4983 | bool matched; | |
4984 | ||
4985 | override = NULL; | |
4986 | ||
4987 | flags = BSF_NO_FLAGS; | |
4988 | sec = NULL; | |
4989 | value = isym->st_value; | |
4990 | common = bed->common_definition (isym); | |
4991 | if (common && info->inhibit_common_definition) | |
4992 | { | |
4993 | /* Treat common symbol as undefined for --no-define-common. */ | |
4994 | isym->st_shndx = SHN_UNDEF; | |
4995 | common = false; | |
4996 | } | |
4997 | discarded = false; | |
4998 | ||
4999 | bind = ELF_ST_BIND (isym->st_info); | |
5000 | switch (bind) | |
5001 | { | |
5002 | case STB_LOCAL: | |
5003 | /* This should be impossible, since ELF requires that all | |
5004 | global symbols follow all local symbols, and that sh_info | |
5005 | point to the first global symbol. Unfortunately, Irix 5 | |
5006 | screws this up. */ | |
5007 | if (elf_bad_symtab (abfd)) | |
5008 | continue; | |
5009 | ||
5010 | /* If we aren't prepared to handle locals within the globals | |
5011 | then we'll likely segfault on a NULL symbol hash if the | |
5012 | symbol is ever referenced in relocations. */ | |
5013 | shindex = elf_elfheader (abfd)->e_shstrndx; | |
5014 | name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name); | |
5015 | _bfd_error_handler (_("%pB: %s local symbol at index %lu" | |
5016 | " (>= sh_info of %lu)"), | |
5017 | abfd, name, (long) (isym - isymbuf + extsymoff), | |
5018 | (long) extsymoff); | |
5019 | ||
5020 | /* Dynamic object relocations are not processed by ld, so | |
5021 | ld won't run into the problem mentioned above. */ | |
5022 | if (dynamic) | |
5023 | continue; | |
5024 | bfd_set_error (bfd_error_bad_value); | |
5025 | goto error_free_vers; | |
5026 | ||
5027 | case STB_GLOBAL: | |
5028 | if (isym->st_shndx != SHN_UNDEF && !common) | |
5029 | flags = BSF_GLOBAL; | |
5030 | break; | |
5031 | ||
5032 | case STB_WEAK: | |
5033 | flags = BSF_WEAK; | |
5034 | break; | |
5035 | ||
5036 | case STB_GNU_UNIQUE: | |
5037 | flags = BSF_GNU_UNIQUE; | |
5038 | break; | |
5039 | ||
5040 | default: | |
5041 | /* Leave it up to the processor backend. */ | |
5042 | break; | |
5043 | } | |
5044 | ||
5045 | if (isym->st_shndx == SHN_UNDEF) | |
5046 | sec = bfd_und_section_ptr; | |
5047 | else if (isym->st_shndx == SHN_ABS) | |
5048 | sec = bfd_abs_section_ptr; | |
5049 | else if (isym->st_shndx == SHN_COMMON) | |
5050 | { | |
5051 | sec = bfd_com_section_ptr; | |
5052 | /* What ELF calls the size we call the value. What ELF | |
5053 | calls the value we call the alignment. */ | |
5054 | value = isym->st_size; | |
5055 | } | |
5056 | else | |
5057 | { | |
5058 | sec = bfd_section_from_elf_index (abfd, isym->st_shndx); | |
5059 | if (sec == NULL) | |
5060 | sec = bfd_abs_section_ptr; | |
5061 | else if (discarded_section (sec)) | |
5062 | { | |
5063 | /* Symbols from discarded section are undefined. We keep | |
5064 | its visibility. */ | |
5065 | sec = bfd_und_section_ptr; | |
5066 | discarded = true; | |
5067 | isym->st_shndx = SHN_UNDEF; | |
5068 | } | |
5069 | else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) | |
5070 | value -= sec->vma; | |
5071 | } | |
5072 | ||
5073 | name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, | |
5074 | isym->st_name); | |
5075 | if (name == NULL) | |
5076 | goto error_free_vers; | |
5077 | ||
5078 | if (isym->st_shndx == SHN_COMMON | |
5079 | && (abfd->flags & BFD_PLUGIN) != 0) | |
5080 | { | |
5081 | asection *xc = bfd_get_section_by_name (abfd, "COMMON"); | |
5082 | ||
5083 | if (xc == NULL) | |
5084 | { | |
5085 | flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP | |
5086 | | SEC_EXCLUDE); | |
5087 | xc = bfd_make_section_with_flags (abfd, "COMMON", sflags); | |
5088 | if (xc == NULL) | |
5089 | goto error_free_vers; | |
5090 | } | |
5091 | sec = xc; | |
5092 | } | |
5093 | else if (isym->st_shndx == SHN_COMMON | |
5094 | && ELF_ST_TYPE (isym->st_info) == STT_TLS | |
5095 | && !bfd_link_relocatable (info)) | |
5096 | { | |
5097 | asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon"); | |
5098 | ||
5099 | if (tcomm == NULL) | |
5100 | { | |
5101 | flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON | |
5102 | | SEC_LINKER_CREATED); | |
5103 | tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags); | |
5104 | if (tcomm == NULL) | |
5105 | goto error_free_vers; | |
5106 | } | |
5107 | sec = tcomm; | |
5108 | } | |
5109 | else if (bed->elf_add_symbol_hook) | |
5110 | { | |
5111 | if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags, | |
5112 | &sec, &value)) | |
5113 | goto error_free_vers; | |
5114 | ||
5115 | /* The hook function sets the name to NULL if this symbol | |
5116 | should be skipped for some reason. */ | |
5117 | if (name == NULL) | |
5118 | continue; | |
5119 | } | |
5120 | ||
5121 | /* Sanity check that all possibilities were handled. */ | |
5122 | if (sec == NULL) | |
5123 | abort (); | |
5124 | ||
5125 | /* Silently discard TLS symbols from --just-syms. There's | |
5126 | no way to combine a static TLS block with a new TLS block | |
5127 | for this executable. */ | |
5128 | if (ELF_ST_TYPE (isym->st_info) == STT_TLS | |
5129 | && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) | |
5130 | continue; | |
5131 | ||
5132 | if (bfd_is_und_section (sec) | |
5133 | || bfd_is_com_section (sec)) | |
5134 | definition = false; | |
5135 | else | |
5136 | definition = true; | |
5137 | ||
5138 | size_change_ok = false; | |
5139 | type_change_ok = bed->type_change_ok; | |
5140 | old_weak = false; | |
5141 | matched = false; | |
5142 | old_alignment = 0; | |
5143 | old_bfd = NULL; | |
5144 | new_sec = sec; | |
5145 | defvername = NULL; | |
5146 | ||
5147 | if (is_elf_hash_table (&htab->root)) | |
5148 | { | |
5149 | Elf_Internal_Versym iver; | |
5150 | unsigned int vernum = 0; | |
5151 | bool skip; | |
5152 | ||
5153 | if (ever == NULL) | |
5154 | { | |
5155 | if (info->default_imported_symver) | |
5156 | /* Use the default symbol version created earlier. */ | |
5157 | iver.vs_vers = elf_tdata (abfd)->cverdefs; | |
5158 | else | |
5159 | iver.vs_vers = 0; | |
5160 | } | |
5161 | else if (ever >= extversym_end) | |
5162 | { | |
5163 | /* xgettext:c-format */ | |
5164 | _bfd_error_handler (_("%pB: not enough version information"), | |
5165 | abfd); | |
5166 | bfd_set_error (bfd_error_bad_value); | |
5167 | goto error_free_vers; | |
5168 | } | |
5169 | else | |
5170 | _bfd_elf_swap_versym_in (abfd, ever, &iver); | |
5171 | ||
5172 | vernum = iver.vs_vers & VERSYM_VERSION; | |
5173 | ||
5174 | /* If this is a hidden symbol, or if it is not version | |
5175 | 1, we append the version name to the symbol name. | |
5176 | However, we do not modify a non-hidden absolute symbol | |
5177 | if it is not a function, because it might be the version | |
5178 | symbol itself. FIXME: What if it isn't? */ | |
5179 | if ((iver.vs_vers & VERSYM_HIDDEN) != 0 | |
5180 | || (vernum > 1 | |
5181 | && (!bfd_is_abs_section (sec) | |
5182 | || bed->is_function_type (ELF_ST_TYPE (isym->st_info))))) | |
5183 | { | |
5184 | const char *verstr; | |
5185 | size_t namelen, verlen, newlen; | |
5186 | char *newname, *p; | |
5187 | ||
5188 | if (isym->st_shndx != SHN_UNDEF) | |
5189 | { | |
5190 | if (vernum > elf_tdata (abfd)->cverdefs) | |
5191 | verstr = NULL; | |
5192 | else if (vernum > 1) | |
5193 | verstr = | |
5194 | elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; | |
5195 | else | |
5196 | verstr = ""; | |
5197 | ||
5198 | if (verstr == NULL) | |
5199 | { | |
5200 | _bfd_error_handler | |
5201 | /* xgettext:c-format */ | |
5202 | (_("%pB: %s: invalid version %u (max %d)"), | |
5203 | abfd, name, vernum, | |
5204 | elf_tdata (abfd)->cverdefs); | |
5205 | bfd_set_error (bfd_error_bad_value); | |
5206 | goto error_free_vers; | |
5207 | } | |
5208 | } | |
5209 | else | |
5210 | { | |
5211 | /* We cannot simply test for the number of | |
5212 | entries in the VERNEED section since the | |
5213 | numbers for the needed versions do not start | |
5214 | at 0. */ | |
5215 | Elf_Internal_Verneed *t; | |
5216 | ||
5217 | verstr = NULL; | |
5218 | for (t = elf_tdata (abfd)->verref; | |
5219 | t != NULL; | |
5220 | t = t->vn_nextref) | |
5221 | { | |
5222 | Elf_Internal_Vernaux *a; | |
5223 | ||
5224 | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
5225 | { | |
5226 | if (a->vna_other == vernum) | |
5227 | { | |
5228 | verstr = a->vna_nodename; | |
5229 | break; | |
5230 | } | |
5231 | } | |
5232 | if (a != NULL) | |
5233 | break; | |
5234 | } | |
5235 | if (verstr == NULL) | |
5236 | { | |
5237 | _bfd_error_handler | |
5238 | /* xgettext:c-format */ | |
5239 | (_("%pB: %s: invalid needed version %d"), | |
5240 | abfd, name, vernum); | |
5241 | bfd_set_error (bfd_error_bad_value); | |
5242 | goto error_free_vers; | |
5243 | } | |
5244 | } | |
5245 | ||
5246 | namelen = strlen (name); | |
5247 | verlen = strlen (verstr); | |
5248 | newlen = namelen + verlen + 2; | |
5249 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0 | |
5250 | && isym->st_shndx != SHN_UNDEF) | |
5251 | ++newlen; | |
5252 | ||
5253 | newname = (char *) bfd_hash_allocate (&htab->root.table, newlen); | |
5254 | if (newname == NULL) | |
5255 | goto error_free_vers; | |
5256 | memcpy (newname, name, namelen); | |
5257 | p = newname + namelen; | |
5258 | *p++ = ELF_VER_CHR; | |
5259 | /* If this is a defined non-hidden version symbol, | |
5260 | we add another @ to the name. This indicates the | |
5261 | default version of the symbol. */ | |
5262 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0 | |
5263 | && isym->st_shndx != SHN_UNDEF) | |
5264 | *p++ = ELF_VER_CHR, defvername = name; | |
5265 | memcpy (p, verstr, verlen + 1); | |
5266 | ||
5267 | name = newname; | |
5268 | /* Since bfd_hash_alloc is used for "name", the string | |
5269 | must be copied if added to first_hash. The string | |
5270 | memory can be freed when an --as-needed library is | |
5271 | not needed. */ | |
5272 | must_copy_name = true; | |
5273 | } | |
5274 | ||
5275 | /* If this symbol has default visibility and the user has | |
5276 | requested we not re-export it, then mark it as hidden. */ | |
5277 | if (!bfd_is_und_section (sec) | |
5278 | && !dynamic | |
5279 | && abfd->no_export | |
5280 | && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL) | |
5281 | isym->st_other = (STV_HIDDEN | |
5282 | | (isym->st_other & ~ELF_ST_VISIBILITY (-1))); | |
5283 | ||
5284 | if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value, | |
5285 | sym_hash, &old_bfd, &old_weak, | |
5286 | &old_alignment, &skip, &override, | |
5287 | &type_change_ok, &size_change_ok, | |
5288 | &matched)) | |
5289 | goto error_free_vers; | |
5290 | ||
5291 | if (skip) | |
5292 | continue; | |
5293 | ||
5294 | h = *sym_hash; | |
5295 | while (h->root.type == bfd_link_hash_indirect | |
5296 | || h->root.type == bfd_link_hash_warning) | |
5297 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
5298 | ||
5299 | /* Override a definition only if the new symbol matches the | |
5300 | existing one. */ | |
5301 | if (override && matched) | |
5302 | { | |
5303 | definition = false; | |
5304 | if (htab->first_hash != NULL | |
5305 | && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0 | |
5306 | && h->root.non_ir_ref_regular) | |
5307 | { | |
5308 | /* When reloading --as-needed shared objects for new | |
5309 | symbols added from IR inputs, if this shared object | |
5310 | has the first definition, use it. */ | |
5311 | struct elf_link_first_hash_entry *e | |
5312 | = ((struct elf_link_first_hash_entry *) | |
5313 | bfd_hash_lookup (htab->first_hash, name, false, | |
5314 | false)); | |
5315 | if (e != NULL && e->abfd == abfd) | |
5316 | definition = true; | |
5317 | } | |
5318 | } | |
5319 | ||
5320 | if (h->versioned != unversioned | |
5321 | && elf_tdata (abfd)->verdef != NULL | |
5322 | && vernum > 1 | |
5323 | && definition) | |
5324 | h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1]; | |
5325 | } | |
5326 | ||
5327 | if (! (_bfd_generic_link_add_one_symbol | |
5328 | (info, override ? override : abfd, name, flags, sec, value, | |
5329 | NULL, false, bed->collect, | |
5330 | (struct bfd_link_hash_entry **) sym_hash))) | |
5331 | goto error_free_vers; | |
5332 | ||
5333 | h = *sym_hash; | |
5334 | /* We need to make sure that indirect symbol dynamic flags are | |
5335 | updated. */ | |
5336 | hi = h; | |
5337 | while (h->root.type == bfd_link_hash_indirect | |
5338 | || h->root.type == bfd_link_hash_warning) | |
5339 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
5340 | ||
5341 | *sym_hash = h; | |
5342 | ||
5343 | /* Setting the index to -3 tells elf_link_output_extsym that | |
5344 | this symbol is defined in a discarded section. */ | |
5345 | if (discarded && is_elf_hash_table (&htab->root)) | |
5346 | h->indx = -3; | |
5347 | ||
5348 | new_weak = (flags & BSF_WEAK) != 0; | |
5349 | if (dynamic | |
5350 | && definition | |
5351 | && new_weak | |
5352 | && !bed->is_function_type (ELF_ST_TYPE (isym->st_info)) | |
5353 | && is_elf_hash_table (&htab->root) | |
5354 | && h->u.alias == NULL) | |
5355 | { | |
5356 | /* Keep a list of all weak defined non function symbols from | |
5357 | a dynamic object, using the alias field. Later in this | |
5358 | function we will set the alias field to the correct | |
5359 | value. We only put non-function symbols from dynamic | |
5360 | objects on this list, because that happens to be the only | |
5361 | time we need to know the normal symbol corresponding to a | |
5362 | weak symbol, and the information is time consuming to | |
5363 | figure out. If the alias field is not already NULL, | |
5364 | then this symbol was already defined by some previous | |
5365 | dynamic object, and we will be using that previous | |
5366 | definition anyhow. */ | |
5367 | ||
5368 | h->u.alias = weaks; | |
5369 | weaks = h; | |
5370 | } | |
5371 | ||
5372 | /* Set the alignment of a common symbol. */ | |
5373 | if ((common || bfd_is_com_section (sec)) | |
5374 | && h->root.type == bfd_link_hash_common) | |
5375 | { | |
5376 | unsigned int align; | |
5377 | ||
5378 | if (common) | |
5379 | align = bfd_log2 (isym->st_value); | |
5380 | else | |
5381 | { | |
5382 | /* The new symbol is a common symbol in a shared object. | |
5383 | We need to get the alignment from the section. */ | |
5384 | align = new_sec->alignment_power; | |
5385 | } | |
5386 | if (align > old_alignment) | |
5387 | h->root.u.c.p->alignment_power = align; | |
5388 | else | |
5389 | h->root.u.c.p->alignment_power = old_alignment; | |
5390 | } | |
5391 | ||
5392 | if (is_elf_hash_table (&htab->root)) | |
5393 | { | |
5394 | /* Set a flag in the hash table entry indicating the type of | |
5395 | reference or definition we just found. A dynamic symbol | |
5396 | is one which is referenced or defined by both a regular | |
5397 | object and a shared object. */ | |
5398 | bool dynsym = false; | |
5399 | ||
5400 | /* Plugin symbols aren't normal. Don't set def/ref flags. */ | |
5401 | if ((abfd->flags & BFD_PLUGIN) != 0) | |
5402 | { | |
5403 | /* Except for this flag to track nonweak references. */ | |
5404 | if (!definition | |
5405 | && bind != STB_WEAK) | |
5406 | h->ref_ir_nonweak = 1; | |
5407 | } | |
5408 | else if (!dynamic) | |
5409 | { | |
5410 | if (! definition) | |
5411 | { | |
5412 | h->ref_regular = 1; | |
5413 | if (bind != STB_WEAK) | |
5414 | h->ref_regular_nonweak = 1; | |
5415 | } | |
5416 | else | |
5417 | { | |
5418 | h->def_regular = 1; | |
5419 | if (h->def_dynamic) | |
5420 | { | |
5421 | h->def_dynamic = 0; | |
5422 | h->ref_dynamic = 1; | |
5423 | } | |
5424 | } | |
5425 | } | |
5426 | else | |
5427 | { | |
5428 | if (! definition) | |
5429 | { | |
5430 | h->ref_dynamic = 1; | |
5431 | hi->ref_dynamic = 1; | |
5432 | } | |
5433 | else | |
5434 | { | |
5435 | h->def_dynamic = 1; | |
5436 | hi->def_dynamic = 1; | |
5437 | } | |
5438 | } | |
5439 | ||
5440 | /* If an indirect symbol has been forced local, don't | |
5441 | make the real symbol dynamic. */ | |
5442 | if (h != hi && hi->forced_local) | |
5443 | ; | |
5444 | else if (!dynamic) | |
5445 | { | |
5446 | if (bfd_link_dll (info) | |
5447 | || h->def_dynamic | |
5448 | || h->ref_dynamic) | |
5449 | dynsym = true; | |
5450 | } | |
5451 | else | |
5452 | { | |
5453 | if (h->def_regular | |
5454 | || h->ref_regular | |
5455 | || (h->is_weakalias | |
5456 | && weakdef (h)->dynindx != -1)) | |
5457 | dynsym = true; | |
5458 | } | |
5459 | ||
5460 | /* Check to see if we need to add an indirect symbol for | |
5461 | the default name. */ | |
5462 | if ((definition | |
5463 | || (!override && h->root.type == bfd_link_hash_common)) | |
5464 | && !(hi != h | |
5465 | && hi->versioned == versioned_hidden)) | |
5466 | if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym, | |
5467 | sec, value, &old_bfd, &dynsym)) | |
5468 | goto error_free_vers; | |
5469 | ||
5470 | /* Check the alignment when a common symbol is involved. This | |
5471 | can change when a common symbol is overridden by a normal | |
5472 | definition or a common symbol is ignored due to the old | |
5473 | normal definition. We need to make sure the maximum | |
5474 | alignment is maintained. */ | |
5475 | if ((old_alignment || common) | |
5476 | && h->root.type != bfd_link_hash_common) | |
5477 | { | |
5478 | unsigned int common_align; | |
5479 | unsigned int normal_align; | |
5480 | unsigned int symbol_align; | |
5481 | bfd *normal_bfd; | |
5482 | bfd *common_bfd; | |
5483 | ||
5484 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
5485 | || h->root.type == bfd_link_hash_defweak); | |
5486 | ||
5487 | symbol_align = ffs (h->root.u.def.value) - 1; | |
5488 | if (h->root.u.def.section->owner != NULL | |
5489 | && (h->root.u.def.section->owner->flags | |
5490 | & (DYNAMIC | BFD_PLUGIN)) == 0) | |
5491 | { | |
5492 | normal_align = h->root.u.def.section->alignment_power; | |
5493 | if (normal_align > symbol_align) | |
5494 | normal_align = symbol_align; | |
5495 | } | |
5496 | else | |
5497 | normal_align = symbol_align; | |
5498 | ||
5499 | if (old_alignment) | |
5500 | { | |
5501 | common_align = old_alignment; | |
5502 | common_bfd = old_bfd; | |
5503 | normal_bfd = abfd; | |
5504 | } | |
5505 | else | |
5506 | { | |
5507 | common_align = bfd_log2 (isym->st_value); | |
5508 | common_bfd = abfd; | |
5509 | normal_bfd = old_bfd; | |
5510 | } | |
5511 | ||
5512 | if (normal_align < common_align) | |
5513 | { | |
5514 | /* PR binutils/2735 */ | |
5515 | if (normal_bfd == NULL) | |
5516 | _bfd_error_handler | |
5517 | /* xgettext:c-format */ | |
5518 | (_("warning: alignment %u of common symbol `%s' in %pB is" | |
5519 | " greater than the alignment (%u) of its section %pA"), | |
5520 | 1 << common_align, name, common_bfd, | |
5521 | 1 << normal_align, h->root.u.def.section); | |
5522 | else | |
5523 | _bfd_error_handler | |
5524 | /* xgettext:c-format */ | |
5525 | (_("warning: alignment %u of normal symbol `%s' in %pB" | |
5526 | " is smaller than %u used by the common definition in %pB"), | |
5527 | 1 << normal_align, name, normal_bfd, | |
5528 | 1 << common_align, common_bfd); | |
5529 | ||
5530 | /* PR 30499: make sure that users understand that this warning is serious. */ | |
5531 | _bfd_error_handler | |
5532 | (_("warning: NOTE: alignment discrepancies can cause real problems. Investigation is advised.")); | |
5533 | } | |
5534 | } | |
5535 | ||
5536 | /* Remember the symbol size if it isn't undefined. */ | |
5537 | if (isym->st_size != 0 | |
5538 | && isym->st_shndx != SHN_UNDEF | |
5539 | && (definition || h->size == 0)) | |
5540 | { | |
5541 | if (h->size != 0 | |
5542 | && h->size != isym->st_size | |
5543 | && ! size_change_ok) | |
5544 | { | |
5545 | _bfd_error_handler | |
5546 | /* xgettext:c-format */ | |
5547 | (_("warning: size of symbol `%s' changed" | |
5548 | " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"), | |
5549 | name, (uint64_t) h->size, old_bfd, | |
5550 | (uint64_t) isym->st_size, abfd); | |
5551 | ||
5552 | /* PR 30499: make sure that users understand that this warning is serious. */ | |
5553 | _bfd_error_handler | |
5554 | (_("warning: NOTE: size discrepancies can cause real problems. Investigation is advised.")); | |
5555 | } | |
5556 | ||
5557 | h->size = isym->st_size; | |
5558 | } | |
5559 | ||
5560 | /* If this is a common symbol, then we always want H->SIZE | |
5561 | to be the size of the common symbol. The code just above | |
5562 | won't fix the size if a common symbol becomes larger. We | |
5563 | don't warn about a size change here, because that is | |
5564 | covered by --warn-common. Allow changes between different | |
5565 | function types. */ | |
5566 | if (h->root.type == bfd_link_hash_common) | |
5567 | h->size = h->root.u.c.size; | |
5568 | ||
5569 | if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE | |
5570 | && ((definition && !new_weak) | |
5571 | || (old_weak && h->root.type == bfd_link_hash_common) | |
5572 | || h->type == STT_NOTYPE)) | |
5573 | { | |
5574 | unsigned int type = ELF_ST_TYPE (isym->st_info); | |
5575 | ||
5576 | /* Turn an IFUNC symbol from a DSO into a normal FUNC | |
5577 | symbol. */ | |
5578 | if (type == STT_GNU_IFUNC | |
5579 | && (abfd->flags & DYNAMIC) != 0) | |
5580 | type = STT_FUNC; | |
5581 | ||
5582 | if (h->type != type) | |
5583 | { | |
5584 | if (h->type != STT_NOTYPE && ! type_change_ok) | |
5585 | /* xgettext:c-format */ | |
5586 | _bfd_error_handler | |
5587 | (_("warning: type of symbol `%s' changed" | |
5588 | " from %d to %d in %pB"), | |
5589 | name, h->type, type, abfd); | |
5590 | ||
5591 | h->type = type; | |
5592 | } | |
5593 | } | |
5594 | ||
5595 | /* Merge st_other field. */ | |
5596 | elf_merge_st_other (abfd, h, isym->st_other, sec, | |
5597 | definition, dynamic); | |
5598 | ||
5599 | /* We don't want to make debug symbol dynamic. */ | |
5600 | if (definition | |
5601 | && (sec->flags & SEC_DEBUGGING) | |
5602 | && !bfd_link_relocatable (info)) | |
5603 | dynsym = false; | |
5604 | ||
5605 | /* Nor should we make plugin symbols dynamic. */ | |
5606 | if ((abfd->flags & BFD_PLUGIN) != 0) | |
5607 | dynsym = false; | |
5608 | ||
5609 | if (definition) | |
5610 | { | |
5611 | h->target_internal = isym->st_target_internal; | |
5612 | h->unique_global = (flags & BSF_GNU_UNIQUE) != 0; | |
5613 | } | |
5614 | ||
5615 | /* Don't add indirect symbols for .symver x, x@FOO aliases | |
5616 | in IR. Since all data or text symbols in IR have the | |
5617 | same type, value and section, we can't tell if a symbol | |
5618 | is an alias of another symbol by their types, values and | |
5619 | sections. */ | |
5620 | if (definition | |
5621 | && !dynamic | |
5622 | && (abfd->flags & BFD_PLUGIN) == 0) | |
5623 | { | |
5624 | char *p = strchr (name, ELF_VER_CHR); | |
5625 | if (p != NULL && p[1] != ELF_VER_CHR) | |
5626 | { | |
5627 | /* Queue non-default versions so that .symver x, x@FOO | |
5628 | aliases can be checked. */ | |
5629 | if (!nondeflt_vers) | |
5630 | { | |
5631 | size_t amt = ((isymend - isym + 1) | |
5632 | * sizeof (struct elf_link_hash_entry *)); | |
5633 | nondeflt_vers | |
5634 | = (struct elf_link_hash_entry **) bfd_malloc (amt); | |
5635 | if (!nondeflt_vers) | |
5636 | goto error_free_vers; | |
5637 | } | |
5638 | nondeflt_vers[nondeflt_vers_cnt++] = h; | |
5639 | } | |
5640 | } | |
5641 | ||
5642 | if (dynsym && h->dynindx == -1) | |
5643 | { | |
5644 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
5645 | goto error_free_vers; | |
5646 | if (h->is_weakalias | |
5647 | && weakdef (h)->dynindx == -1) | |
5648 | { | |
5649 | if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h))) | |
5650 | goto error_free_vers; | |
5651 | } | |
5652 | } | |
5653 | else if (h->dynindx != -1) | |
5654 | /* If the symbol already has a dynamic index, but | |
5655 | visibility says it should not be visible, turn it into | |
5656 | a local symbol. */ | |
5657 | switch (ELF_ST_VISIBILITY (h->other)) | |
5658 | { | |
5659 | case STV_INTERNAL: | |
5660 | case STV_HIDDEN: | |
5661 | (*bed->elf_backend_hide_symbol) (info, h, true); | |
5662 | dynsym = false; | |
5663 | break; | |
5664 | } | |
5665 | ||
5666 | if (!add_needed | |
5667 | && matched | |
5668 | && definition | |
5669 | && h->root.type != bfd_link_hash_indirect) | |
5670 | { | |
5671 | if ((dynsym | |
5672 | && h->ref_regular_nonweak) | |
5673 | || (old_bfd != NULL | |
5674 | && (old_bfd->flags & BFD_PLUGIN) != 0 | |
5675 | && h->ref_ir_nonweak | |
5676 | && !info->lto_all_symbols_read) | |
5677 | || (h->ref_dynamic_nonweak | |
5678 | && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0 | |
5679 | && !on_needed_list (elf_dt_name (abfd), | |
5680 | htab->needed, NULL))) | |
5681 | { | |
5682 | const char *soname = elf_dt_name (abfd); | |
5683 | ||
5684 | info->callbacks->minfo ("%!", soname, old_bfd, | |
5685 | h->root.root.string); | |
5686 | ||
5687 | /* A symbol from a library loaded via DT_NEEDED of some | |
5688 | other library is referenced by a regular object. | |
5689 | Add a DT_NEEDED entry for it. Issue an error if | |
5690 | --no-add-needed is used and the reference was not | |
5691 | a weak one. */ | |
5692 | if (old_bfd != NULL | |
5693 | && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0) | |
5694 | { | |
5695 | _bfd_error_handler | |
5696 | /* xgettext:c-format */ | |
5697 | (_("%pB: undefined reference to symbol '%s'"), | |
5698 | old_bfd, name); | |
5699 | bfd_set_error (bfd_error_missing_dso); | |
5700 | goto error_free_vers; | |
5701 | } | |
5702 | ||
5703 | elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class) | |
5704 | (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED); | |
5705 | ||
5706 | /* Create dynamic sections for backends that require | |
5707 | that be done before setup_gnu_properties. */ | |
5708 | if (!_bfd_elf_link_create_dynamic_sections (abfd, info)) | |
5709 | goto error_free_vers; | |
5710 | add_needed = true; | |
5711 | } | |
5712 | else if (dynamic | |
5713 | && h->root.u.def.section->owner == abfd) | |
5714 | { | |
5715 | /* Add this symbol to first hash if this shared | |
5716 | object has the first definition. */ | |
5717 | elf_link_add_to_first_hash (abfd, info, name, must_copy_name); | |
5718 | /* And if it was the default symbol version definition, | |
5719 | also add the short name. */ | |
5720 | if (defvername) | |
5721 | elf_link_add_to_first_hash (abfd, info, defvername, false); | |
5722 | } | |
5723 | } | |
5724 | } | |
5725 | } | |
5726 | ||
5727 | if (info->lto_plugin_active | |
5728 | && !bfd_link_relocatable (info) | |
5729 | && (abfd->flags & BFD_PLUGIN) == 0 | |
5730 | && !just_syms | |
5731 | && extsymcount != 0 | |
5732 | && is_elf_hash_table (&htab->root)) | |
5733 | { | |
5734 | int r_sym_shift; | |
5735 | ||
5736 | if (bed->s->arch_size == 32) | |
5737 | r_sym_shift = 8; | |
5738 | else | |
5739 | r_sym_shift = 32; | |
5740 | ||
5741 | /* If linker plugin is enabled, set non_ir_ref_regular on symbols | |
5742 | referenced in regular objects so that linker plugin will get | |
5743 | the correct symbol resolution. */ | |
5744 | ||
5745 | sym_hash = elf_sym_hashes (abfd); | |
5746 | for (s = abfd->sections; s != NULL; s = s->next) | |
5747 | { | |
5748 | Elf_Internal_Rela *internal_relocs; | |
5749 | Elf_Internal_Rela *rel, *relend; | |
5750 | ||
5751 | /* Don't check relocations in excluded sections. */ | |
5752 | if ((s->flags & SEC_RELOC) == 0 | |
5753 | || s->reloc_count == 0 | |
5754 | || (s->flags & SEC_EXCLUDE) != 0 | |
5755 | || (s->flags & SEC_DEBUGGING) != 0) | |
5756 | continue; | |
5757 | ||
5758 | internal_relocs = _bfd_elf_link_info_read_relocs | |
5759 | (abfd, info, s, NULL, NULL, | |
5760 | _bfd_elf_link_keep_memory (info)); | |
5761 | if (internal_relocs == NULL) | |
5762 | goto error_free_vers; | |
5763 | ||
5764 | rel = internal_relocs; | |
5765 | relend = rel + s->reloc_count; | |
5766 | for ( ; rel < relend; rel++) | |
5767 | { | |
5768 | unsigned long r_symndx = rel->r_info >> r_sym_shift; | |
5769 | struct elf_link_hash_entry *h; | |
5770 | ||
5771 | /* Skip local symbols. */ | |
5772 | if (r_symndx < extsymoff) | |
5773 | continue; | |
5774 | ||
5775 | h = sym_hash[r_symndx - extsymoff]; | |
5776 | if (h != NULL) | |
5777 | h->root.non_ir_ref_regular = 1; | |
5778 | } | |
5779 | ||
5780 | if (elf_section_data (s)->relocs != internal_relocs) | |
5781 | free (internal_relocs); | |
5782 | } | |
5783 | } | |
5784 | ||
5785 | free (extversym); | |
5786 | extversym = NULL; | |
5787 | free (isymbuf); | |
5788 | isymbuf = NULL; | |
5789 | ||
5790 | if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) | |
5791 | { | |
5792 | unsigned int i; | |
5793 | ||
5794 | /* Restore the symbol table. */ | |
5795 | old_ent = (char *) old_tab + tabsize; | |
5796 | memset (elf_sym_hashes (abfd), 0, | |
5797 | extsymcount * sizeof (struct elf_link_hash_entry *)); | |
5798 | htab->root.table.table = old_table; | |
5799 | htab->root.table.size = old_size; | |
5800 | htab->root.table.count = old_count; | |
5801 | memcpy (htab->root.table.table, old_tab, tabsize); | |
5802 | htab->root.undefs = old_undefs; | |
5803 | htab->root.undefs_tail = old_undefs_tail; | |
5804 | if (htab->dynstr != NULL) | |
5805 | _bfd_elf_strtab_restore (htab->dynstr, old_strtab); | |
5806 | free (old_strtab); | |
5807 | old_strtab = NULL; | |
5808 | for (i = 0; i < htab->root.table.size; i++) | |
5809 | { | |
5810 | struct bfd_hash_entry *p; | |
5811 | struct elf_link_hash_entry *h; | |
5812 | unsigned int non_ir_ref_dynamic; | |
5813 | ||
5814 | for (p = htab->root.table.table[i]; p != NULL; p = p->next) | |
5815 | { | |
5816 | /* Preserve non_ir_ref_dynamic so that this symbol | |
5817 | will be exported when the dynamic lib becomes needed | |
5818 | in the second pass. */ | |
5819 | h = (struct elf_link_hash_entry *) p; | |
5820 | if (h->root.type == bfd_link_hash_warning) | |
5821 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
5822 | non_ir_ref_dynamic = h->root.non_ir_ref_dynamic; | |
5823 | ||
5824 | h = (struct elf_link_hash_entry *) p; | |
5825 | memcpy (h, old_ent, htab->root.table.entsize); | |
5826 | old_ent = (char *) old_ent + htab->root.table.entsize; | |
5827 | if (h->root.type == bfd_link_hash_warning) | |
5828 | { | |
5829 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
5830 | memcpy (h, old_ent, htab->root.table.entsize); | |
5831 | old_ent = (char *) old_ent + htab->root.table.entsize; | |
5832 | } | |
5833 | if (h->root.type == bfd_link_hash_common) | |
5834 | { | |
5835 | memcpy (h->root.u.c.p, old_ent, sizeof (*h->root.u.c.p)); | |
5836 | old_ent = (char *) old_ent + sizeof (*h->root.u.c.p); | |
5837 | } | |
5838 | h->root.non_ir_ref_dynamic = non_ir_ref_dynamic; | |
5839 | } | |
5840 | } | |
5841 | ||
5842 | /* Make a special call to the linker "notice" function to | |
5843 | tell it that symbols added for crefs may need to be removed. */ | |
5844 | if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed)) | |
5845 | goto error_free_vers; | |
5846 | ||
5847 | free (old_tab); | |
5848 | objalloc_free_block ((struct objalloc *) htab->root.table.memory, | |
5849 | alloc_mark); | |
5850 | free (nondeflt_vers); | |
5851 | return true; | |
5852 | } | |
5853 | ||
5854 | free (old_strtab); | |
5855 | old_strtab = NULL; | |
5856 | if (old_tab != NULL) | |
5857 | { | |
5858 | if (!(*bed->notice_as_needed) (abfd, info, notice_needed)) | |
5859 | goto error_free_vers; | |
5860 | free (old_tab); | |
5861 | old_tab = NULL; | |
5862 | } | |
5863 | ||
5864 | /* Now that all the symbols from this input file are created, if | |
5865 | not performing a relocatable link, handle .symver foo, foo@BAR | |
5866 | such that any relocs against foo become foo@BAR. */ | |
5867 | if (!bfd_link_relocatable (info) && nondeflt_vers != NULL) | |
5868 | { | |
5869 | size_t cnt, symidx; | |
5870 | ||
5871 | for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt) | |
5872 | { | |
5873 | struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi; | |
5874 | char *shortname, *p; | |
5875 | size_t amt; | |
5876 | ||
5877 | p = strchr (h->root.root.string, ELF_VER_CHR); | |
5878 | if (p == NULL | |
5879 | || (h->root.type != bfd_link_hash_defined | |
5880 | && h->root.type != bfd_link_hash_defweak)) | |
5881 | continue; | |
5882 | ||
5883 | amt = p - h->root.root.string; | |
5884 | shortname = (char *) bfd_malloc (amt + 1); | |
5885 | if (!shortname) | |
5886 | goto error_free_vers; | |
5887 | memcpy (shortname, h->root.root.string, amt); | |
5888 | shortname[amt] = '\0'; | |
5889 | ||
5890 | hi = (struct elf_link_hash_entry *) | |
5891 | bfd_link_hash_lookup (&htab->root, shortname, | |
5892 | false, false, false); | |
5893 | if (hi != NULL | |
5894 | && hi->root.type == h->root.type | |
5895 | && hi->root.u.def.value == h->root.u.def.value | |
5896 | && hi->root.u.def.section == h->root.u.def.section) | |
5897 | { | |
5898 | (*bed->elf_backend_hide_symbol) (info, hi, true); | |
5899 | hi->root.type = bfd_link_hash_indirect; | |
5900 | hi->root.u.i.link = (struct bfd_link_hash_entry *) h; | |
5901 | (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); | |
5902 | sym_hash = elf_sym_hashes (abfd); | |
5903 | if (sym_hash) | |
5904 | for (symidx = 0; symidx < extsymcount; ++symidx) | |
5905 | if (sym_hash[symidx] == hi) | |
5906 | { | |
5907 | sym_hash[symidx] = h; | |
5908 | break; | |
5909 | } | |
5910 | } | |
5911 | free (shortname); | |
5912 | } | |
5913 | } | |
5914 | free (nondeflt_vers); | |
5915 | nondeflt_vers = NULL; | |
5916 | ||
5917 | /* Now set the alias field correctly for all the weak defined | |
5918 | symbols we found. The only way to do this is to search all the | |
5919 | symbols. Since we only need the information for non functions in | |
5920 | dynamic objects, that's the only time we actually put anything on | |
5921 | the list WEAKS. We need this information so that if a regular | |
5922 | object refers to a symbol defined weakly in a dynamic object, the | |
5923 | real symbol in the dynamic object is also put in the dynamic | |
5924 | symbols; we also must arrange for both symbols to point to the | |
5925 | same memory location. We could handle the general case of symbol | |
5926 | aliasing, but a general symbol alias can only be generated in | |
5927 | assembler code, handling it correctly would be very time | |
5928 | consuming, and other ELF linkers don't handle general aliasing | |
5929 | either. */ | |
5930 | if (weaks != NULL) | |
5931 | { | |
5932 | struct elf_link_hash_entry **hpp; | |
5933 | struct elf_link_hash_entry **hppend; | |
5934 | struct elf_link_hash_entry **sorted_sym_hash; | |
5935 | struct elf_link_hash_entry *h; | |
5936 | size_t sym_count, amt; | |
5937 | ||
5938 | /* Since we have to search the whole symbol list for each weak | |
5939 | defined symbol, search time for N weak defined symbols will be | |
5940 | O(N^2). Binary search will cut it down to O(NlogN). */ | |
5941 | amt = extsymcount * sizeof (*sorted_sym_hash); | |
5942 | sorted_sym_hash = bfd_malloc (amt); | |
5943 | if (sorted_sym_hash == NULL) | |
5944 | goto error_return; | |
5945 | sym_hash = sorted_sym_hash; | |
5946 | hpp = elf_sym_hashes (abfd); | |
5947 | hppend = hpp + extsymcount; | |
5948 | sym_count = 0; | |
5949 | for (; hpp < hppend; hpp++) | |
5950 | { | |
5951 | h = *hpp; | |
5952 | if (h != NULL | |
5953 | && h->root.type == bfd_link_hash_defined | |
5954 | && !bed->is_function_type (h->type)) | |
5955 | { | |
5956 | *sym_hash = h; | |
5957 | sym_hash++; | |
5958 | sym_count++; | |
5959 | } | |
5960 | } | |
5961 | ||
5962 | qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash), | |
5963 | elf_sort_symbol); | |
5964 | ||
5965 | while (weaks != NULL) | |
5966 | { | |
5967 | struct elf_link_hash_entry *hlook; | |
5968 | asection *slook; | |
5969 | bfd_vma vlook; | |
5970 | size_t i, j, idx = 0; | |
5971 | ||
5972 | hlook = weaks; | |
5973 | weaks = hlook->u.alias; | |
5974 | hlook->u.alias = NULL; | |
5975 | ||
5976 | if (hlook->root.type != bfd_link_hash_defined | |
5977 | && hlook->root.type != bfd_link_hash_defweak) | |
5978 | continue; | |
5979 | ||
5980 | slook = hlook->root.u.def.section; | |
5981 | vlook = hlook->root.u.def.value; | |
5982 | ||
5983 | i = 0; | |
5984 | j = sym_count; | |
5985 | while (i != j) | |
5986 | { | |
5987 | bfd_signed_vma vdiff; | |
5988 | idx = (i + j) / 2; | |
5989 | h = sorted_sym_hash[idx]; | |
5990 | vdiff = vlook - h->root.u.def.value; | |
5991 | if (vdiff < 0) | |
5992 | j = idx; | |
5993 | else if (vdiff > 0) | |
5994 | i = idx + 1; | |
5995 | else | |
5996 | { | |
5997 | int sdiff = slook->id - h->root.u.def.section->id; | |
5998 | if (sdiff < 0) | |
5999 | j = idx; | |
6000 | else if (sdiff > 0) | |
6001 | i = idx + 1; | |
6002 | else | |
6003 | break; | |
6004 | } | |
6005 | } | |
6006 | ||
6007 | /* We didn't find a value/section match. */ | |
6008 | if (i == j) | |
6009 | continue; | |
6010 | ||
6011 | /* With multiple aliases, or when the weak symbol is already | |
6012 | strongly defined, we have multiple matching symbols and | |
6013 | the binary search above may land on any of them. Step | |
6014 | one past the matching symbol(s). */ | |
6015 | while (++idx != j) | |
6016 | { | |
6017 | h = sorted_sym_hash[idx]; | |
6018 | if (h->root.u.def.section != slook | |
6019 | || h->root.u.def.value != vlook) | |
6020 | break; | |
6021 | } | |
6022 | ||
6023 | /* Now look back over the aliases. Since we sorted by size | |
6024 | as well as value and section, we'll choose the one with | |
6025 | the largest size. */ | |
6026 | while (idx-- != i) | |
6027 | { | |
6028 | h = sorted_sym_hash[idx]; | |
6029 | ||
6030 | /* Stop if value or section doesn't match. */ | |
6031 | if (h->root.u.def.section != slook | |
6032 | || h->root.u.def.value != vlook) | |
6033 | break; | |
6034 | else if (h != hlook) | |
6035 | { | |
6036 | struct elf_link_hash_entry *t; | |
6037 | ||
6038 | hlook->u.alias = h; | |
6039 | hlook->is_weakalias = 1; | |
6040 | t = h; | |
6041 | if (t->u.alias != NULL) | |
6042 | while (t->u.alias != h) | |
6043 | t = t->u.alias; | |
6044 | t->u.alias = hlook; | |
6045 | ||
6046 | /* If the weak definition is in the list of dynamic | |
6047 | symbols, make sure the real definition is put | |
6048 | there as well. */ | |
6049 | if (hlook->dynindx != -1 && h->dynindx == -1) | |
6050 | { | |
6051 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
6052 | { | |
6053 | err_free_sym_hash: | |
6054 | free (sorted_sym_hash); | |
6055 | goto error_return; | |
6056 | } | |
6057 | } | |
6058 | ||
6059 | /* If the real definition is in the list of dynamic | |
6060 | symbols, make sure the weak definition is put | |
6061 | there as well. If we don't do this, then the | |
6062 | dynamic loader might not merge the entries for the | |
6063 | real definition and the weak definition. */ | |
6064 | if (h->dynindx != -1 && hlook->dynindx == -1) | |
6065 | { | |
6066 | if (! bfd_elf_link_record_dynamic_symbol (info, hlook)) | |
6067 | goto err_free_sym_hash; | |
6068 | } | |
6069 | break; | |
6070 | } | |
6071 | } | |
6072 | } | |
6073 | ||
6074 | free (sorted_sym_hash); | |
6075 | } | |
6076 | ||
6077 | if (bed->check_directives | |
6078 | && !(*bed->check_directives) (abfd, info)) | |
6079 | goto error_return; | |
6080 | ||
6081 | /* If this is a non-traditional link, try to optimize the handling | |
6082 | of the .stab/.stabstr sections. */ | |
6083 | if (! dynamic | |
6084 | && ! info->traditional_format | |
6085 | && is_elf_hash_table (&htab->root) | |
6086 | && (info->strip != strip_all && info->strip != strip_debugger)) | |
6087 | { | |
6088 | asection *stabstr; | |
6089 | ||
6090 | stabstr = bfd_get_section_by_name (abfd, ".stabstr"); | |
6091 | if (stabstr != NULL) | |
6092 | { | |
6093 | bfd_size_type string_offset = 0; | |
6094 | asection *stab; | |
6095 | ||
6096 | for (stab = abfd->sections; stab; stab = stab->next) | |
6097 | if (startswith (stab->name, ".stab") | |
6098 | && (!stab->name[5] || | |
6099 | (stab->name[5] == '.' && ISDIGIT (stab->name[6]))) | |
6100 | && (stab->flags & SEC_MERGE) == 0 | |
6101 | && !bfd_is_abs_section (stab->output_section)) | |
6102 | { | |
6103 | struct bfd_elf_section_data *secdata; | |
6104 | ||
6105 | secdata = elf_section_data (stab); | |
6106 | if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab, | |
6107 | stabstr, &secdata->sec_info, | |
6108 | &string_offset)) | |
6109 | goto error_return; | |
6110 | if (secdata->sec_info) | |
6111 | stab->sec_info_type = SEC_INFO_TYPE_STABS; | |
6112 | } | |
6113 | } | |
6114 | } | |
6115 | ||
6116 | if (dynamic && add_needed) | |
6117 | { | |
6118 | /* Add this bfd to the loaded list. */ | |
6119 | struct elf_link_loaded_list *n; | |
6120 | ||
6121 | n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n)); | |
6122 | if (n == NULL) | |
6123 | goto error_return; | |
6124 | n->abfd = abfd; | |
6125 | n->next = htab->dyn_loaded; | |
6126 | htab->dyn_loaded = n; | |
6127 | } | |
6128 | if (dynamic && !add_needed | |
6129 | && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0) | |
6130 | elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED; | |
6131 | ||
6132 | return true; | |
6133 | ||
6134 | error_free_vers: | |
6135 | free (old_tab); | |
6136 | free (old_strtab); | |
6137 | free (nondeflt_vers); | |
6138 | free (extversym); | |
6139 | error_free_sym: | |
6140 | free (isymbuf); | |
6141 | error_return: | |
6142 | return false; | |
6143 | } | |
6144 | ||
6145 | /* Return the linker hash table entry of a symbol that might be | |
6146 | satisfied by an archive symbol. Return -1 on error. */ | |
6147 | ||
6148 | struct bfd_link_hash_entry * | |
6149 | _bfd_elf_archive_symbol_lookup (bfd *abfd, | |
6150 | struct bfd_link_info *info, | |
6151 | const char *name) | |
6152 | { | |
6153 | struct bfd_link_hash_entry *h; | |
6154 | char *p, *copy; | |
6155 | size_t len, first; | |
6156 | ||
6157 | h = bfd_link_hash_lookup (info->hash, name, false, false, true); | |
6158 | if (h != NULL) | |
6159 | return h; | |
6160 | ||
6161 | /* If this is a default version (the name contains @@), look up the | |
6162 | symbol again with only one `@' as well as without the version. | |
6163 | The effect is that references to the symbol with and without the | |
6164 | version will be matched by the default symbol in the archive. */ | |
6165 | ||
6166 | p = strchr (name, ELF_VER_CHR); | |
6167 | if (p == NULL || p[1] != ELF_VER_CHR) | |
6168 | { | |
6169 | /* Add this symbol to first hash if this archive has the first | |
6170 | definition. */ | |
6171 | if (is_elf_hash_table (info->hash)) | |
6172 | elf_link_add_to_first_hash (abfd, info, name, false); | |
6173 | return h; | |
6174 | } | |
6175 | ||
6176 | /* First check with only one `@'. */ | |
6177 | len = strlen (name); | |
6178 | copy = (char *) bfd_alloc (abfd, len); | |
6179 | if (copy == NULL) | |
6180 | return (struct bfd_link_hash_entry *) -1; | |
6181 | ||
6182 | first = p - name + 1; | |
6183 | memcpy (copy, name, first); | |
6184 | memcpy (copy + first, name + first + 1, len - first); | |
6185 | ||
6186 | h = bfd_link_hash_lookup (info->hash, copy, false, false, true); | |
6187 | if (h == NULL) | |
6188 | { | |
6189 | /* We also need to check references to the symbol without the | |
6190 | version. */ | |
6191 | copy[first - 1] = '\0'; | |
6192 | h = bfd_link_hash_lookup (info->hash, copy, false, false, true); | |
6193 | } | |
6194 | ||
6195 | bfd_release (abfd, copy); | |
6196 | return h; | |
6197 | } | |
6198 | ||
6199 | /* Add symbols from an ELF archive file to the linker hash table. We | |
6200 | don't use _bfd_generic_link_add_archive_symbols because we need to | |
6201 | handle versioned symbols. | |
6202 | ||
6203 | Fortunately, ELF archive handling is simpler than that done by | |
6204 | _bfd_generic_link_add_archive_symbols, which has to allow for a.out | |
6205 | oddities. In ELF, if we find a symbol in the archive map, and the | |
6206 | symbol is currently undefined, we know that we must pull in that | |
6207 | object file. | |
6208 | ||
6209 | Unfortunately, we do have to make multiple passes over the symbol | |
6210 | table until nothing further is resolved. */ | |
6211 | ||
6212 | static bool | |
6213 | elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info) | |
6214 | { | |
6215 | symindex c; | |
6216 | unsigned char *included = NULL; | |
6217 | carsym *symdefs; | |
6218 | bool loop; | |
6219 | size_t amt; | |
6220 | const struct elf_backend_data *bed; | |
6221 | struct bfd_link_hash_entry * (*archive_symbol_lookup) | |
6222 | (bfd *, struct bfd_link_info *, const char *); | |
6223 | ||
6224 | if (! bfd_has_map (abfd)) | |
6225 | { | |
6226 | /* An empty archive is a special case. */ | |
6227 | if (bfd_openr_next_archived_file (abfd, NULL) == NULL) | |
6228 | return true; | |
6229 | bfd_set_error (bfd_error_no_armap); | |
6230 | return false; | |
6231 | } | |
6232 | ||
6233 | /* Keep track of all symbols we know to be already defined, and all | |
6234 | files we know to be already included. This is to speed up the | |
6235 | second and subsequent passes. */ | |
6236 | c = bfd_ardata (abfd)->symdef_count; | |
6237 | if (c == 0) | |
6238 | return true; | |
6239 | amt = c * sizeof (*included); | |
6240 | included = (unsigned char *) bfd_zmalloc (amt); | |
6241 | if (included == NULL) | |
6242 | return false; | |
6243 | ||
6244 | symdefs = bfd_ardata (abfd)->symdefs; | |
6245 | bed = get_elf_backend_data (abfd); | |
6246 | archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup; | |
6247 | ||
6248 | do | |
6249 | { | |
6250 | file_ptr last; | |
6251 | symindex i; | |
6252 | carsym *symdef; | |
6253 | carsym *symdefend; | |
6254 | ||
6255 | loop = false; | |
6256 | last = -1; | |
6257 | ||
6258 | symdef = symdefs; | |
6259 | symdefend = symdef + c; | |
6260 | for (i = 0; symdef < symdefend; symdef++, i++) | |
6261 | { | |
6262 | struct bfd_link_hash_entry *h; | |
6263 | bfd *element; | |
6264 | struct bfd_link_hash_entry *undefs_tail; | |
6265 | symindex mark; | |
6266 | ||
6267 | if (included[i]) | |
6268 | continue; | |
6269 | if (symdef->file_offset == last) | |
6270 | { | |
6271 | included[i] = true; | |
6272 | continue; | |
6273 | } | |
6274 | ||
6275 | h = archive_symbol_lookup (abfd, info, symdef->name); | |
6276 | if (h == (struct bfd_link_hash_entry *) -1) | |
6277 | goto error_return; | |
6278 | ||
6279 | if (h == NULL) | |
6280 | continue; | |
6281 | ||
6282 | if (h->type == bfd_link_hash_undefined) | |
6283 | { | |
6284 | if (is_elf_hash_table (info->hash)) | |
6285 | { | |
6286 | /* If the archive element has already been loaded then one | |
6287 | of the symbols defined by that element might have been | |
6288 | made undefined due to being in a discarded section. */ | |
6289 | if (((struct elf_link_hash_entry *) h)->indx == -3) | |
6290 | continue; | |
6291 | ||
6292 | /* In the pre-LTO-plugin pass we must not mistakenly | |
6293 | include this archive member if an earlier shared | |
6294 | library defined this symbol. */ | |
6295 | struct elf_link_hash_table *htab = elf_hash_table (info); | |
6296 | if (htab->first_hash) | |
6297 | { | |
6298 | struct elf_link_first_hash_entry *e | |
6299 | = ((struct elf_link_first_hash_entry *) | |
6300 | bfd_hash_lookup (htab->first_hash, symdef->name, | |
6301 | false, false)); | |
6302 | if (e | |
6303 | && (e->abfd->flags & DYNAMIC) != 0 | |
6304 | && e->abfd != abfd) | |
6305 | continue; | |
6306 | } | |
6307 | } | |
6308 | } | |
6309 | else if (h->type == bfd_link_hash_common) | |
6310 | { | |
6311 | /* We currently have a common symbol. The archive map contains | |
6312 | a reference to this symbol, so we may want to include it. We | |
6313 | only want to include it however, if this archive element | |
6314 | contains a definition of the symbol, not just another common | |
6315 | declaration of it. | |
6316 | ||
6317 | Unfortunately some archivers (including GNU ar) will put | |
6318 | declarations of common symbols into their archive maps, as | |
6319 | well as real definitions, so we cannot just go by the archive | |
6320 | map alone. Instead we must read in the element's symbol | |
6321 | table and check that to see what kind of symbol definition | |
6322 | this is. */ | |
6323 | if (! elf_link_is_defined_archive_symbol (abfd, symdef)) | |
6324 | continue; | |
6325 | } | |
6326 | else | |
6327 | { | |
6328 | if (h->type != bfd_link_hash_undefweak) | |
6329 | /* Symbol must be defined. Don't check it again. */ | |
6330 | included[i] = true; | |
6331 | ||
6332 | if (!is_elf_hash_table (info->hash)) | |
6333 | continue; | |
6334 | struct elf_link_hash_entry *eh | |
6335 | = (struct elf_link_hash_entry *) h; | |
6336 | /* Ignore the archive if the symbol isn't referenced by a | |
6337 | regular object or isn't defined in a shared object. */ | |
6338 | if (!eh->ref_regular || !eh->def_dynamic) | |
6339 | continue; | |
6340 | /* Ignore the dynamic definition if symbol is first | |
6341 | defined in this archive. */ | |
6342 | struct elf_link_hash_table *htab = elf_hash_table (info); | |
6343 | if (htab->first_hash == NULL) | |
6344 | continue; | |
6345 | struct elf_link_first_hash_entry *e | |
6346 | = ((struct elf_link_first_hash_entry *) | |
6347 | bfd_hash_lookup (htab->first_hash, symdef->name, | |
6348 | false, false)); | |
6349 | if (e == NULL || e->abfd != abfd) | |
6350 | continue; | |
6351 | } | |
6352 | ||
6353 | /* We need to include this archive member. */ | |
6354 | element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset, | |
6355 | info); | |
6356 | if (element == NULL) | |
6357 | goto error_return; | |
6358 | ||
6359 | if (! bfd_check_format (element, bfd_object)) | |
6360 | goto error_return; | |
6361 | ||
6362 | undefs_tail = info->hash->undefs_tail; | |
6363 | ||
6364 | if (!(*info->callbacks | |
6365 | ->add_archive_element) (info, element, symdef->name, &element)) | |
6366 | continue; | |
6367 | if (!bfd_link_add_symbols (element, info)) | |
6368 | goto error_return; | |
6369 | ||
6370 | /* If there are any new undefined symbols, we need to make | |
6371 | another pass through the archive in order to see whether | |
6372 | they can be defined. FIXME: This isn't perfect, because | |
6373 | common symbols wind up on undefs_tail and because an | |
6374 | undefined symbol which is defined later on in this pass | |
6375 | does not require another pass. This isn't a bug, but it | |
6376 | does make the code less efficient than it could be. */ | |
6377 | if (undefs_tail != info->hash->undefs_tail) | |
6378 | loop = true; | |
6379 | ||
6380 | /* Look backward to mark all symbols from this object file | |
6381 | which we have already seen in this pass. */ | |
6382 | mark = i; | |
6383 | do | |
6384 | { | |
6385 | included[mark] = true; | |
6386 | if (mark == 0) | |
6387 | break; | |
6388 | --mark; | |
6389 | } | |
6390 | while (symdefs[mark].file_offset == symdef->file_offset); | |
6391 | ||
6392 | /* We mark subsequent symbols from this object file as we go | |
6393 | on through the loop. */ | |
6394 | last = symdef->file_offset; | |
6395 | } | |
6396 | } | |
6397 | while (loop); | |
6398 | ||
6399 | free (included); | |
6400 | return true; | |
6401 | ||
6402 | error_return: | |
6403 | free (included); | |
6404 | return false; | |
6405 | } | |
6406 | ||
6407 | /* Given an ELF BFD, add symbols to the global hash table as | |
6408 | appropriate. */ | |
6409 | ||
6410 | bool | |
6411 | bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info) | |
6412 | { | |
6413 | switch (bfd_get_format (abfd)) | |
6414 | { | |
6415 | case bfd_object: | |
6416 | return elf_link_add_object_symbols (abfd, info); | |
6417 | case bfd_archive: | |
6418 | return elf_link_add_archive_symbols (abfd, info); | |
6419 | default: | |
6420 | bfd_set_error (bfd_error_wrong_format); | |
6421 | return false; | |
6422 | } | |
6423 | } | |
6424 | \f | |
6425 | struct hash_codes_info | |
6426 | { | |
6427 | unsigned long *hashcodes; | |
6428 | bool error; | |
6429 | }; | |
6430 | ||
6431 | /* This function will be called though elf_link_hash_traverse to store | |
6432 | all hash value of the exported symbols in an array. */ | |
6433 | ||
6434 | static bool | |
6435 | elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data) | |
6436 | { | |
6437 | struct hash_codes_info *inf = (struct hash_codes_info *) data; | |
6438 | const char *name; | |
6439 | unsigned long ha; | |
6440 | char *alc = NULL; | |
6441 | ||
6442 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
6443 | if (h->dynindx == -1) | |
6444 | return true; | |
6445 | ||
6446 | name = h->root.root.string; | |
6447 | if (h->versioned >= versioned) | |
6448 | { | |
6449 | char *p = strchr (name, ELF_VER_CHR); | |
6450 | if (p != NULL) | |
6451 | { | |
6452 | alc = (char *) bfd_malloc (p - name + 1); | |
6453 | if (alc == NULL) | |
6454 | { | |
6455 | inf->error = true; | |
6456 | return false; | |
6457 | } | |
6458 | memcpy (alc, name, p - name); | |
6459 | alc[p - name] = '\0'; | |
6460 | name = alc; | |
6461 | } | |
6462 | } | |
6463 | ||
6464 | /* Compute the hash value. */ | |
6465 | ha = bfd_elf_hash (name); | |
6466 | ||
6467 | /* Store the found hash value in the array given as the argument. */ | |
6468 | *(inf->hashcodes)++ = ha; | |
6469 | ||
6470 | /* And store it in the struct so that we can put it in the hash table | |
6471 | later. */ | |
6472 | h->u.elf_hash_value = ha; | |
6473 | ||
6474 | free (alc); | |
6475 | return true; | |
6476 | } | |
6477 | ||
6478 | struct collect_gnu_hash_codes | |
6479 | { | |
6480 | bfd *output_bfd; | |
6481 | const struct elf_backend_data *bed; | |
6482 | unsigned long int nsyms; | |
6483 | unsigned long int maskbits; | |
6484 | unsigned long int *hashcodes; | |
6485 | unsigned long int *hashval; | |
6486 | unsigned long int *indx; | |
6487 | unsigned long int *counts; | |
6488 | bfd_vma *bitmask; | |
6489 | bfd_byte *contents; | |
6490 | bfd_size_type xlat; | |
6491 | long int min_dynindx; | |
6492 | unsigned long int bucketcount; | |
6493 | unsigned long int symindx; | |
6494 | long int local_indx; | |
6495 | long int shift1, shift2; | |
6496 | unsigned long int mask; | |
6497 | bool error; | |
6498 | }; | |
6499 | ||
6500 | /* This function will be called though elf_link_hash_traverse to store | |
6501 | all hash value of the exported symbols in an array. */ | |
6502 | ||
6503 | static bool | |
6504 | elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data) | |
6505 | { | |
6506 | struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; | |
6507 | const char *name; | |
6508 | unsigned long ha; | |
6509 | char *alc = NULL; | |
6510 | ||
6511 | /* Ignore indirect symbols. These are added by the versioning code. */ | |
6512 | if (h->dynindx == -1) | |
6513 | return true; | |
6514 | ||
6515 | /* Ignore also local symbols and undefined symbols. */ | |
6516 | if (! (*s->bed->elf_hash_symbol) (h)) | |
6517 | return true; | |
6518 | ||
6519 | name = h->root.root.string; | |
6520 | if (h->versioned >= versioned) | |
6521 | { | |
6522 | char *p = strchr (name, ELF_VER_CHR); | |
6523 | if (p != NULL) | |
6524 | { | |
6525 | alc = (char *) bfd_malloc (p - name + 1); | |
6526 | if (alc == NULL) | |
6527 | { | |
6528 | s->error = true; | |
6529 | return false; | |
6530 | } | |
6531 | memcpy (alc, name, p - name); | |
6532 | alc[p - name] = '\0'; | |
6533 | name = alc; | |
6534 | } | |
6535 | } | |
6536 | ||
6537 | /* Compute the hash value. */ | |
6538 | ha = bfd_elf_gnu_hash (name); | |
6539 | ||
6540 | /* Store the found hash value in the array for compute_bucket_count, | |
6541 | and also for .dynsym reordering purposes. */ | |
6542 | s->hashcodes[s->nsyms] = ha; | |
6543 | s->hashval[h->dynindx] = ha; | |
6544 | ++s->nsyms; | |
6545 | if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx) | |
6546 | s->min_dynindx = h->dynindx; | |
6547 | ||
6548 | free (alc); | |
6549 | return true; | |
6550 | } | |
6551 | ||
6552 | /* This function will be called though elf_link_hash_traverse to do | |
6553 | final dynamic symbol renumbering in case of .gnu.hash. | |
6554 | If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index | |
6555 | to the translation table. */ | |
6556 | ||
6557 | static bool | |
6558 | elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data) | |
6559 | { | |
6560 | struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; | |
6561 | unsigned long int bucket; | |
6562 | unsigned long int val; | |
6563 | ||
6564 | /* Ignore indirect symbols. */ | |
6565 | if (h->dynindx == -1) | |
6566 | return true; | |
6567 | ||
6568 | /* Ignore also local symbols and undefined symbols. */ | |
6569 | if (! (*s->bed->elf_hash_symbol) (h)) | |
6570 | { | |
6571 | if (h->dynindx >= s->min_dynindx) | |
6572 | { | |
6573 | if (s->bed->record_xhash_symbol != NULL) | |
6574 | { | |
6575 | (*s->bed->record_xhash_symbol) (h, 0); | |
6576 | s->local_indx++; | |
6577 | } | |
6578 | else | |
6579 | h->dynindx = s->local_indx++; | |
6580 | } | |
6581 | return true; | |
6582 | } | |
6583 | ||
6584 | bucket = s->hashval[h->dynindx] % s->bucketcount; | |
6585 | val = (s->hashval[h->dynindx] >> s->shift1) | |
6586 | & ((s->maskbits >> s->shift1) - 1); | |
6587 | s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask); | |
6588 | s->bitmask[val] | |
6589 | |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask); | |
6590 | val = s->hashval[h->dynindx] & ~(unsigned long int) 1; | |
6591 | if (s->counts[bucket] == 1) | |
6592 | /* Last element terminates the chain. */ | |
6593 | val |= 1; | |
6594 | bfd_put_32 (s->output_bfd, val, | |
6595 | s->contents + (s->indx[bucket] - s->symindx) * 4); | |
6596 | --s->counts[bucket]; | |
6597 | if (s->bed->record_xhash_symbol != NULL) | |
6598 | { | |
6599 | bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4; | |
6600 | ||
6601 | (*s->bed->record_xhash_symbol) (h, xlat_loc); | |
6602 | } | |
6603 | else | |
6604 | h->dynindx = s->indx[bucket]++; | |
6605 | return true; | |
6606 | } | |
6607 | ||
6608 | /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */ | |
6609 | ||
6610 | bool | |
6611 | _bfd_elf_hash_symbol (struct elf_link_hash_entry *h) | |
6612 | { | |
6613 | return !(h->forced_local | |
6614 | || h->root.type == bfd_link_hash_undefined | |
6615 | || h->root.type == bfd_link_hash_undefweak | |
6616 | || ((h->root.type == bfd_link_hash_defined | |
6617 | || h->root.type == bfd_link_hash_defweak) | |
6618 | && h->root.u.def.section->output_section == NULL)); | |
6619 | } | |
6620 | ||
6621 | /* Array used to determine the number of hash table buckets to use | |
6622 | based on the number of symbols there are. If there are fewer than | |
6623 | 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, | |
6624 | fewer than 37 we use 17 buckets, and so forth. We never use more | |
6625 | than 32771 buckets. */ | |
6626 | ||
6627 | static const size_t elf_buckets[] = | |
6628 | { | |
6629 | 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, | |
6630 | 16411, 32771, 0 | |
6631 | }; | |
6632 | ||
6633 | /* Compute bucket count for hashing table. We do not use a static set | |
6634 | of possible tables sizes anymore. Instead we determine for all | |
6635 | possible reasonable sizes of the table the outcome (i.e., the | |
6636 | number of collisions etc) and choose the best solution. The | |
6637 | weighting functions are not too simple to allow the table to grow | |
6638 | without bounds. Instead one of the weighting factors is the size. | |
6639 | Therefore the result is always a good payoff between few collisions | |
6640 | (= short chain lengths) and table size. */ | |
6641 | static size_t | |
6642 | compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
6643 | unsigned long int *hashcodes ATTRIBUTE_UNUSED, | |
6644 | unsigned long int nsyms, | |
6645 | int gnu_hash) | |
6646 | { | |
6647 | size_t best_size = 0; | |
6648 | unsigned long int i; | |
6649 | ||
6650 | if (info->optimize) | |
6651 | { | |
6652 | size_t minsize; | |
6653 | size_t maxsize; | |
6654 | uint64_t best_chlen = ~((uint64_t) 0); | |
6655 | bfd *dynobj = elf_hash_table (info)->dynobj; | |
6656 | size_t dynsymcount = elf_hash_table (info)->dynsymcount; | |
6657 | const struct elf_backend_data *bed = get_elf_backend_data (dynobj); | |
6658 | unsigned long int *counts; | |
6659 | bfd_size_type amt; | |
6660 | unsigned int no_improvement_count = 0; | |
6661 | ||
6662 | /* Possible optimization parameters: if we have NSYMS symbols we say | |
6663 | that the hashing table must at least have NSYMS/4 and at most | |
6664 | 2*NSYMS buckets. */ | |
6665 | minsize = nsyms / 4; | |
6666 | if (minsize == 0) | |
6667 | minsize = 1; | |
6668 | best_size = maxsize = nsyms * 2; | |
6669 | if (gnu_hash) | |
6670 | { | |
6671 | if (minsize < 2) | |
6672 | minsize = 2; | |
6673 | if ((best_size & 31) == 0) | |
6674 | ++best_size; | |
6675 | } | |
6676 | ||
6677 | /* Create array where we count the collisions in. We must use bfd_malloc | |
6678 | since the size could be large. */ | |
6679 | amt = maxsize; | |
6680 | amt *= sizeof (unsigned long int); | |
6681 | counts = (unsigned long int *) bfd_malloc (amt); | |
6682 | if (counts == NULL) | |
6683 | return 0; | |
6684 | ||
6685 | /* Compute the "optimal" size for the hash table. The criteria is a | |
6686 | minimal chain length. The minor criteria is (of course) the size | |
6687 | of the table. */ | |
6688 | for (i = minsize; i < maxsize; ++i) | |
6689 | { | |
6690 | /* Walk through the array of hashcodes and count the collisions. */ | |
6691 | uint64_t max; | |
6692 | unsigned long int j; | |
6693 | unsigned long int fact; | |
6694 | ||
6695 | if (gnu_hash && (i & 31) == 0) | |
6696 | continue; | |
6697 | ||
6698 | memset (counts, '\0', i * sizeof (unsigned long int)); | |
6699 | ||
6700 | /* Determine how often each hash bucket is used. */ | |
6701 | for (j = 0; j < nsyms; ++j) | |
6702 | ++counts[hashcodes[j] % i]; | |
6703 | ||
6704 | /* For the weight function we need some information about the | |
6705 | pagesize on the target. This is information need not be 100% | |
6706 | accurate. Since this information is not available (so far) we | |
6707 | define it here to a reasonable default value. If it is crucial | |
6708 | to have a better value some day simply define this value. */ | |
6709 | # ifndef BFD_TARGET_PAGESIZE | |
6710 | # define BFD_TARGET_PAGESIZE (4096) | |
6711 | # endif | |
6712 | ||
6713 | /* We in any case need 2 + DYNSYMCOUNT entries for the size values | |
6714 | and the chains. */ | |
6715 | max = (2 + dynsymcount) * bed->s->sizeof_hash_entry; | |
6716 | ||
6717 | # if 1 | |
6718 | /* Variant 1: optimize for short chains. We add the squares | |
6719 | of all the chain lengths (which favors many small chain | |
6720 | over a few long chains). */ | |
6721 | for (j = 0; j < i; ++j) | |
6722 | max += counts[j] * counts[j]; | |
6723 | ||
6724 | /* This adds penalties for the overall size of the table. */ | |
6725 | fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; | |
6726 | max *= fact * fact; | |
6727 | # else | |
6728 | /* Variant 2: Optimize a lot more for small table. Here we | |
6729 | also add squares of the size but we also add penalties for | |
6730 | empty slots (the +1 term). */ | |
6731 | for (j = 0; j < i; ++j) | |
6732 | max += (1 + counts[j]) * (1 + counts[j]); | |
6733 | ||
6734 | /* The overall size of the table is considered, but not as | |
6735 | strong as in variant 1, where it is squared. */ | |
6736 | fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; | |
6737 | max *= fact; | |
6738 | # endif | |
6739 | ||
6740 | /* Compare with current best results. */ | |
6741 | if (max < best_chlen) | |
6742 | { | |
6743 | best_chlen = max; | |
6744 | best_size = i; | |
6745 | no_improvement_count = 0; | |
6746 | } | |
6747 | /* PR 11843: Avoid futile long searches for the best bucket size | |
6748 | when there are a large number of symbols. */ | |
6749 | else if (++no_improvement_count == 100) | |
6750 | break; | |
6751 | } | |
6752 | ||
6753 | free (counts); | |
6754 | } | |
6755 | else | |
6756 | { | |
6757 | for (i = 0; elf_buckets[i] != 0; i++) | |
6758 | { | |
6759 | best_size = elf_buckets[i]; | |
6760 | if (nsyms < elf_buckets[i + 1]) | |
6761 | break; | |
6762 | } | |
6763 | if (gnu_hash && best_size < 2) | |
6764 | best_size = 2; | |
6765 | } | |
6766 | ||
6767 | return best_size; | |
6768 | } | |
6769 | ||
6770 | /* Size any SHT_GROUP section for ld -r. */ | |
6771 | ||
6772 | bool | |
6773 | _bfd_elf_size_group_sections (struct bfd_link_info *info) | |
6774 | { | |
6775 | bfd *ibfd; | |
6776 | asection *s; | |
6777 | ||
6778 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) | |
6779 | if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour | |
6780 | && (s = ibfd->sections) != NULL | |
6781 | && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS | |
6782 | && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr)) | |
6783 | return false; | |
6784 | return true; | |
6785 | } | |
6786 | ||
6787 | /* Set a default stack segment size. The value in INFO wins. If it | |
6788 | is unset, LEGACY_SYMBOL's value is used, and if that symbol is | |
6789 | undefined it is initialized. */ | |
6790 | ||
6791 | bool | |
6792 | bfd_elf_stack_segment_size (bfd *output_bfd, | |
6793 | struct bfd_link_info *info, | |
6794 | const char *legacy_symbol, | |
6795 | bfd_vma default_size) | |
6796 | { | |
6797 | struct elf_link_hash_entry *h = NULL; | |
6798 | ||
6799 | /* Look for legacy symbol. */ | |
6800 | if (legacy_symbol) | |
6801 | h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol, | |
6802 | false, false, false); | |
6803 | if (h && (h->root.type == bfd_link_hash_defined | |
6804 | || h->root.type == bfd_link_hash_defweak) | |
6805 | && h->def_regular | |
6806 | && (h->type == STT_NOTYPE || h->type == STT_OBJECT)) | |
6807 | { | |
6808 | /* The symbol has no type if specified on the command line. */ | |
6809 | h->type = STT_OBJECT; | |
6810 | if (info->stacksize) | |
6811 | /* xgettext:c-format */ | |
6812 | _bfd_error_handler (_("%pB: stack size specified and %s set"), | |
6813 | output_bfd, legacy_symbol); | |
6814 | else if (h->root.u.def.section != bfd_abs_section_ptr) | |
6815 | /* xgettext:c-format */ | |
6816 | _bfd_error_handler (_("%pB: %s not absolute"), | |
6817 | output_bfd, legacy_symbol); | |
6818 | else | |
6819 | info->stacksize = h->root.u.def.value; | |
6820 | } | |
6821 | ||
6822 | if (!info->stacksize) | |
6823 | /* If the user didn't set a size, or explicitly inhibit the | |
6824 | size, set it now. */ | |
6825 | info->stacksize = default_size; | |
6826 | ||
6827 | /* Provide the legacy symbol, if it is referenced. */ | |
6828 | if (h && (h->root.type == bfd_link_hash_undefined | |
6829 | || h->root.type == bfd_link_hash_undefweak)) | |
6830 | { | |
6831 | struct bfd_link_hash_entry *bh = NULL; | |
6832 | ||
6833 | if (!(_bfd_generic_link_add_one_symbol | |
6834 | (info, output_bfd, legacy_symbol, | |
6835 | BSF_GLOBAL, bfd_abs_section_ptr, | |
6836 | info->stacksize >= 0 ? info->stacksize : 0, | |
6837 | NULL, false, get_elf_backend_data (output_bfd)->collect, &bh))) | |
6838 | return false; | |
6839 | ||
6840 | h = (struct elf_link_hash_entry *) bh; | |
6841 | h->def_regular = 1; | |
6842 | h->type = STT_OBJECT; | |
6843 | } | |
6844 | ||
6845 | return true; | |
6846 | } | |
6847 | ||
6848 | /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */ | |
6849 | ||
6850 | struct elf_gc_sweep_symbol_info | |
6851 | { | |
6852 | struct bfd_link_info *info; | |
6853 | void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *, | |
6854 | bool); | |
6855 | }; | |
6856 | ||
6857 | static bool | |
6858 | elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data) | |
6859 | { | |
6860 | if (!h->mark | |
6861 | && (((h->root.type == bfd_link_hash_defined | |
6862 | || h->root.type == bfd_link_hash_defweak) | |
6863 | && !((h->def_regular || ELF_COMMON_DEF_P (h)) | |
6864 | && h->root.u.def.section->gc_mark)) | |
6865 | || h->root.type == bfd_link_hash_undefined | |
6866 | || h->root.type == bfd_link_hash_undefweak)) | |
6867 | { | |
6868 | struct elf_gc_sweep_symbol_info *inf; | |
6869 | ||
6870 | inf = (struct elf_gc_sweep_symbol_info *) data; | |
6871 | (*inf->hide_symbol) (inf->info, h, true); | |
6872 | h->def_regular = 0; | |
6873 | h->ref_regular = 0; | |
6874 | h->ref_regular_nonweak = 0; | |
6875 | } | |
6876 | ||
6877 | return true; | |
6878 | } | |
6879 | ||
6880 | /* Set up the sizes and contents of the ELF dynamic sections. This is | |
6881 | called by the ELF linker emulation before_allocation routine. We | |
6882 | must set the sizes of the sections before the linker sets the | |
6883 | addresses of the various sections. */ | |
6884 | ||
6885 | bool | |
6886 | bfd_elf_size_dynamic_sections (bfd *output_bfd, | |
6887 | const char *soname, | |
6888 | const char *rpath, | |
6889 | const char *filter_shlib, | |
6890 | const char *audit, | |
6891 | const char *depaudit, | |
6892 | const char * const *auxiliary_filters, | |
6893 | struct bfd_link_info *info, | |
6894 | asection **sinterpptr) | |
6895 | { | |
6896 | bfd *dynobj; | |
6897 | const struct elf_backend_data *bed; | |
6898 | ||
6899 | *sinterpptr = NULL; | |
6900 | ||
6901 | if (!is_elf_hash_table (info->hash)) | |
6902 | return true; | |
6903 | ||
6904 | /* Any syms created from now on start with -1 in | |
6905 | got.refcount/offset and plt.refcount/offset. */ | |
6906 | elf_hash_table (info)->init_got_refcount | |
6907 | = elf_hash_table (info)->init_got_offset; | |
6908 | elf_hash_table (info)->init_plt_refcount | |
6909 | = elf_hash_table (info)->init_plt_offset; | |
6910 | ||
6911 | bed = get_elf_backend_data (output_bfd); | |
6912 | ||
6913 | /* The backend may have to create some sections regardless of whether | |
6914 | we're dynamic or not. */ | |
6915 | if (bed->elf_backend_early_size_sections | |
6916 | && !bed->elf_backend_early_size_sections (output_bfd, info)) | |
6917 | return false; | |
6918 | ||
6919 | dynobj = elf_hash_table (info)->dynobj; | |
6920 | ||
6921 | if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) | |
6922 | { | |
6923 | struct bfd_elf_version_tree *verdefs; | |
6924 | struct elf_info_failed asvinfo; | |
6925 | struct bfd_elf_version_tree *t; | |
6926 | struct bfd_elf_version_expr *d; | |
6927 | asection *s; | |
6928 | size_t soname_indx; | |
6929 | ||
6930 | /* If we are supposed to export all symbols into the dynamic symbol | |
6931 | table (this is not the normal case), then do so. */ | |
6932 | if (info->export_dynamic | |
6933 | || (bfd_link_executable (info) && info->dynamic)) | |
6934 | { | |
6935 | struct elf_info_failed eif; | |
6936 | ||
6937 | eif.info = info; | |
6938 | eif.failed = false; | |
6939 | elf_link_hash_traverse (elf_hash_table (info), | |
6940 | _bfd_elf_export_symbol, | |
6941 | &eif); | |
6942 | if (eif.failed) | |
6943 | return false; | |
6944 | } | |
6945 | ||
6946 | if (soname != NULL) | |
6947 | { | |
6948 | soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
6949 | soname, true); | |
6950 | if (soname_indx == (size_t) -1 | |
6951 | || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx)) | |
6952 | return false; | |
6953 | } | |
6954 | else | |
6955 | soname_indx = (size_t) -1; | |
6956 | ||
6957 | /* Make all global versions with definition. */ | |
6958 | for (t = info->version_info; t != NULL; t = t->next) | |
6959 | for (d = t->globals.list; d != NULL; d = d->next) | |
6960 | if (!d->symver && d->literal) | |
6961 | { | |
6962 | const char *verstr, *name; | |
6963 | size_t namelen, verlen, newlen; | |
6964 | char *newname, *p, leading_char; | |
6965 | struct elf_link_hash_entry *newh; | |
6966 | ||
6967 | leading_char = bfd_get_symbol_leading_char (output_bfd); | |
6968 | name = d->pattern; | |
6969 | namelen = strlen (name) + (leading_char != '\0'); | |
6970 | verstr = t->name; | |
6971 | verlen = strlen (verstr); | |
6972 | newlen = namelen + verlen + 3; | |
6973 | ||
6974 | newname = (char *) bfd_malloc (newlen); | |
6975 | if (newname == NULL) | |
6976 | return false; | |
6977 | newname[0] = leading_char; | |
6978 | memcpy (newname + (leading_char != '\0'), name, namelen); | |
6979 | ||
6980 | /* Check the hidden versioned definition. */ | |
6981 | p = newname + namelen; | |
6982 | *p++ = ELF_VER_CHR; | |
6983 | memcpy (p, verstr, verlen + 1); | |
6984 | newh = elf_link_hash_lookup (elf_hash_table (info), | |
6985 | newname, false, false, | |
6986 | false); | |
6987 | if (newh == NULL | |
6988 | || (newh->root.type != bfd_link_hash_defined | |
6989 | && newh->root.type != bfd_link_hash_defweak)) | |
6990 | { | |
6991 | /* Check the default versioned definition. */ | |
6992 | *p++ = ELF_VER_CHR; | |
6993 | memcpy (p, verstr, verlen + 1); | |
6994 | newh = elf_link_hash_lookup (elf_hash_table (info), | |
6995 | newname, false, false, | |
6996 | false); | |
6997 | } | |
6998 | free (newname); | |
6999 | ||
7000 | /* Mark this version if there is a definition and it is | |
7001 | not defined in a shared object. */ | |
7002 | if (newh != NULL | |
7003 | && !newh->def_dynamic | |
7004 | && (newh->root.type == bfd_link_hash_defined | |
7005 | || newh->root.type == bfd_link_hash_defweak)) | |
7006 | d->symver = 1; | |
7007 | } | |
7008 | ||
7009 | /* Attach all the symbols to their version information. */ | |
7010 | asvinfo.info = info; | |
7011 | asvinfo.failed = false; | |
7012 | ||
7013 | elf_link_hash_traverse (elf_hash_table (info), | |
7014 | _bfd_elf_link_assign_sym_version, | |
7015 | &asvinfo); | |
7016 | if (asvinfo.failed) | |
7017 | return false; | |
7018 | ||
7019 | if (!info->allow_undefined_version) | |
7020 | { | |
7021 | /* Check if all global versions have a definition. */ | |
7022 | bool all_defined = true; | |
7023 | for (t = info->version_info; t != NULL; t = t->next) | |
7024 | for (d = t->globals.list; d != NULL; d = d->next) | |
7025 | if (d->literal && !d->symver && !d->script) | |
7026 | { | |
7027 | _bfd_error_handler | |
7028 | (_("%s: undefined version: %s"), | |
7029 | d->pattern, t->name); | |
7030 | all_defined = false; | |
7031 | } | |
7032 | ||
7033 | if (!all_defined) | |
7034 | { | |
7035 | bfd_set_error (bfd_error_bad_value); | |
7036 | return false; | |
7037 | } | |
7038 | } | |
7039 | ||
7040 | /* Set up the version definition section. */ | |
7041 | s = bfd_get_linker_section (dynobj, ".gnu.version_d"); | |
7042 | BFD_ASSERT (s != NULL); | |
7043 | ||
7044 | /* We may have created additional version definitions if we are | |
7045 | just linking a regular application. */ | |
7046 | verdefs = info->version_info; | |
7047 | ||
7048 | /* Skip anonymous version tag. */ | |
7049 | if (verdefs != NULL && verdefs->vernum == 0) | |
7050 | verdefs = verdefs->next; | |
7051 | ||
7052 | if (verdefs == NULL && !info->create_default_symver) | |
7053 | s->flags |= SEC_EXCLUDE; | |
7054 | else | |
7055 | { | |
7056 | unsigned int cdefs; | |
7057 | bfd_size_type size; | |
7058 | bfd_byte *p; | |
7059 | Elf_Internal_Verdef def; | |
7060 | Elf_Internal_Verdaux defaux; | |
7061 | struct bfd_link_hash_entry *bh; | |
7062 | struct elf_link_hash_entry *h; | |
7063 | const char *name; | |
7064 | ||
7065 | cdefs = 0; | |
7066 | size = 0; | |
7067 | ||
7068 | /* Make space for the base version. */ | |
7069 | size += sizeof (Elf_External_Verdef); | |
7070 | size += sizeof (Elf_External_Verdaux); | |
7071 | ++cdefs; | |
7072 | ||
7073 | /* Make space for the default version. */ | |
7074 | if (info->create_default_symver) | |
7075 | { | |
7076 | size += sizeof (Elf_External_Verdef); | |
7077 | ++cdefs; | |
7078 | } | |
7079 | ||
7080 | for (t = verdefs; t != NULL; t = t->next) | |
7081 | { | |
7082 | struct bfd_elf_version_deps *n; | |
7083 | ||
7084 | /* Don't emit base version twice. */ | |
7085 | if (t->vernum == 0) | |
7086 | continue; | |
7087 | ||
7088 | size += sizeof (Elf_External_Verdef); | |
7089 | size += sizeof (Elf_External_Verdaux); | |
7090 | ++cdefs; | |
7091 | ||
7092 | for (n = t->deps; n != NULL; n = n->next) | |
7093 | size += sizeof (Elf_External_Verdaux); | |
7094 | } | |
7095 | ||
7096 | s->size = size; | |
7097 | s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); | |
7098 | if (s->contents == NULL && s->size != 0) | |
7099 | return false; | |
7100 | s->alloced = 1; | |
7101 | ||
7102 | /* Fill in the version definition section. */ | |
7103 | ||
7104 | p = s->contents; | |
7105 | ||
7106 | def.vd_version = VER_DEF_CURRENT; | |
7107 | def.vd_flags = VER_FLG_BASE; | |
7108 | def.vd_ndx = 1; | |
7109 | def.vd_cnt = 1; | |
7110 | if (info->create_default_symver) | |
7111 | { | |
7112 | def.vd_aux = 2 * sizeof (Elf_External_Verdef); | |
7113 | def.vd_next = sizeof (Elf_External_Verdef); | |
7114 | } | |
7115 | else | |
7116 | { | |
7117 | def.vd_aux = sizeof (Elf_External_Verdef); | |
7118 | def.vd_next = (sizeof (Elf_External_Verdef) | |
7119 | + sizeof (Elf_External_Verdaux)); | |
7120 | } | |
7121 | ||
7122 | if (soname_indx != (size_t) -1) | |
7123 | { | |
7124 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, | |
7125 | soname_indx); | |
7126 | def.vd_hash = bfd_elf_hash (soname); | |
7127 | defaux.vda_name = soname_indx; | |
7128 | name = soname; | |
7129 | } | |
7130 | else | |
7131 | { | |
7132 | size_t indx; | |
7133 | ||
7134 | name = lbasename (bfd_get_filename (output_bfd)); | |
7135 | def.vd_hash = bfd_elf_hash (name); | |
7136 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
7137 | name, false); | |
7138 | if (indx == (size_t) -1) | |
7139 | return false; | |
7140 | defaux.vda_name = indx; | |
7141 | } | |
7142 | defaux.vda_next = 0; | |
7143 | ||
7144 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |
7145 | (Elf_External_Verdef *) p); | |
7146 | p += sizeof (Elf_External_Verdef); | |
7147 | if (info->create_default_symver) | |
7148 | { | |
7149 | /* Add a symbol representing this version. */ | |
7150 | bh = NULL; | |
7151 | if (! (_bfd_generic_link_add_one_symbol | |
7152 | (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr, | |
7153 | 0, NULL, false, | |
7154 | get_elf_backend_data (dynobj)->collect, &bh))) | |
7155 | return false; | |
7156 | h = (struct elf_link_hash_entry *) bh; | |
7157 | h->non_elf = 0; | |
7158 | h->def_regular = 1; | |
7159 | h->type = STT_OBJECT; | |
7160 | h->verinfo.vertree = NULL; | |
7161 | ||
7162 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
7163 | return false; | |
7164 | ||
7165 | /* Create a duplicate of the base version with the same | |
7166 | aux block, but different flags. */ | |
7167 | def.vd_flags = 0; | |
7168 | def.vd_ndx = 2; | |
7169 | def.vd_aux = sizeof (Elf_External_Verdef); | |
7170 | if (verdefs) | |
7171 | def.vd_next = (sizeof (Elf_External_Verdef) | |
7172 | + sizeof (Elf_External_Verdaux)); | |
7173 | else | |
7174 | def.vd_next = 0; | |
7175 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |
7176 | (Elf_External_Verdef *) p); | |
7177 | p += sizeof (Elf_External_Verdef); | |
7178 | } | |
7179 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
7180 | (Elf_External_Verdaux *) p); | |
7181 | p += sizeof (Elf_External_Verdaux); | |
7182 | ||
7183 | for (t = verdefs; t != NULL; t = t->next) | |
7184 | { | |
7185 | unsigned int cdeps; | |
7186 | struct bfd_elf_version_deps *n; | |
7187 | ||
7188 | /* Don't emit the base version twice. */ | |
7189 | if (t->vernum == 0) | |
7190 | continue; | |
7191 | ||
7192 | cdeps = 0; | |
7193 | for (n = t->deps; n != NULL; n = n->next) | |
7194 | ++cdeps; | |
7195 | ||
7196 | /* Add a symbol representing this version. */ | |
7197 | bh = NULL; | |
7198 | if (! (_bfd_generic_link_add_one_symbol | |
7199 | (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr, | |
7200 | 0, NULL, false, | |
7201 | get_elf_backend_data (dynobj)->collect, &bh))) | |
7202 | return false; | |
7203 | h = (struct elf_link_hash_entry *) bh; | |
7204 | h->non_elf = 0; | |
7205 | h->def_regular = 1; | |
7206 | h->type = STT_OBJECT; | |
7207 | h->verinfo.vertree = t; | |
7208 | ||
7209 | if (! bfd_elf_link_record_dynamic_symbol (info, h)) | |
7210 | return false; | |
7211 | ||
7212 | def.vd_version = VER_DEF_CURRENT; | |
7213 | def.vd_flags = 0; | |
7214 | if (t->globals.list == NULL | |
7215 | && t->locals.list == NULL | |
7216 | && ! t->used) | |
7217 | def.vd_flags |= VER_FLG_WEAK; | |
7218 | def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1); | |
7219 | def.vd_cnt = cdeps + 1; | |
7220 | def.vd_hash = bfd_elf_hash (t->name); | |
7221 | def.vd_aux = sizeof (Elf_External_Verdef); | |
7222 | def.vd_next = 0; | |
7223 | ||
7224 | /* If a basever node is next, it *must* be the last node in | |
7225 | the chain, otherwise Verdef construction breaks. */ | |
7226 | if (t->next != NULL && t->next->vernum == 0) | |
7227 | BFD_ASSERT (t->next->next == NULL); | |
7228 | ||
7229 | if (t->next != NULL && t->next->vernum != 0) | |
7230 | def.vd_next = (sizeof (Elf_External_Verdef) | |
7231 | + (cdeps + 1) * sizeof (Elf_External_Verdaux)); | |
7232 | ||
7233 | _bfd_elf_swap_verdef_out (output_bfd, &def, | |
7234 | (Elf_External_Verdef *) p); | |
7235 | p += sizeof (Elf_External_Verdef); | |
7236 | ||
7237 | defaux.vda_name = h->dynstr_index; | |
7238 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, | |
7239 | h->dynstr_index); | |
7240 | defaux.vda_next = 0; | |
7241 | if (t->deps != NULL) | |
7242 | defaux.vda_next = sizeof (Elf_External_Verdaux); | |
7243 | t->name_indx = defaux.vda_name; | |
7244 | ||
7245 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
7246 | (Elf_External_Verdaux *) p); | |
7247 | p += sizeof (Elf_External_Verdaux); | |
7248 | ||
7249 | for (n = t->deps; n != NULL; n = n->next) | |
7250 | { | |
7251 | if (n->version_needed == NULL) | |
7252 | { | |
7253 | /* This can happen if there was an error in the | |
7254 | version script. */ | |
7255 | defaux.vda_name = 0; | |
7256 | } | |
7257 | else | |
7258 | { | |
7259 | defaux.vda_name = n->version_needed->name_indx; | |
7260 | _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, | |
7261 | defaux.vda_name); | |
7262 | } | |
7263 | if (n->next == NULL) | |
7264 | defaux.vda_next = 0; | |
7265 | else | |
7266 | defaux.vda_next = sizeof (Elf_External_Verdaux); | |
7267 | ||
7268 | _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | |
7269 | (Elf_External_Verdaux *) p); | |
7270 | p += sizeof (Elf_External_Verdaux); | |
7271 | } | |
7272 | } | |
7273 | ||
7274 | elf_tdata (output_bfd)->cverdefs = cdefs; | |
7275 | } | |
7276 | } | |
7277 | ||
7278 | if (info->gc_sections && bed->can_gc_sections) | |
7279 | { | |
7280 | struct elf_gc_sweep_symbol_info sweep_info; | |
7281 | ||
7282 | /* Remove the symbols that were in the swept sections from the | |
7283 | dynamic symbol table. */ | |
7284 | sweep_info.info = info; | |
7285 | sweep_info.hide_symbol = bed->elf_backend_hide_symbol; | |
7286 | elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, | |
7287 | &sweep_info); | |
7288 | } | |
7289 | ||
7290 | if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) | |
7291 | { | |
7292 | asection *s; | |
7293 | struct elf_find_verdep_info sinfo; | |
7294 | ||
7295 | /* Work out the size of the version reference section. */ | |
7296 | ||
7297 | s = bfd_get_linker_section (dynobj, ".gnu.version_r"); | |
7298 | BFD_ASSERT (s != NULL); | |
7299 | ||
7300 | sinfo.info = info; | |
7301 | sinfo.vers = elf_tdata (output_bfd)->cverdefs; | |
7302 | if (sinfo.vers == 0) | |
7303 | sinfo.vers = 1; | |
7304 | sinfo.failed = false; | |
7305 | ||
7306 | elf_link_hash_traverse (elf_hash_table (info), | |
7307 | _bfd_elf_link_find_version_dependencies, | |
7308 | &sinfo); | |
7309 | if (sinfo.failed) | |
7310 | return false; | |
7311 | ||
7312 | bed->elf_backend_add_glibc_version_dependency (&sinfo); | |
7313 | if (sinfo.failed) | |
7314 | return false; | |
7315 | ||
7316 | if (elf_tdata (output_bfd)->verref == NULL) | |
7317 | s->flags |= SEC_EXCLUDE; | |
7318 | else | |
7319 | { | |
7320 | Elf_Internal_Verneed *vn; | |
7321 | unsigned int size; | |
7322 | unsigned int crefs; | |
7323 | bfd_byte *p; | |
7324 | ||
7325 | /* Build the version dependency section. */ | |
7326 | size = 0; | |
7327 | crefs = 0; | |
7328 | for (vn = elf_tdata (output_bfd)->verref; | |
7329 | vn != NULL; | |
7330 | vn = vn->vn_nextref) | |
7331 | { | |
7332 | Elf_Internal_Vernaux *a; | |
7333 | ||
7334 | size += sizeof (Elf_External_Verneed); | |
7335 | ++crefs; | |
7336 | for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
7337 | size += sizeof (Elf_External_Vernaux); | |
7338 | } | |
7339 | ||
7340 | s->size = size; | |
7341 | s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); | |
7342 | if (s->contents == NULL) | |
7343 | return false; | |
7344 | s->alloced = 1; | |
7345 | ||
7346 | p = s->contents; | |
7347 | for (vn = elf_tdata (output_bfd)->verref; | |
7348 | vn != NULL; | |
7349 | vn = vn->vn_nextref) | |
7350 | { | |
7351 | unsigned int caux; | |
7352 | Elf_Internal_Vernaux *a; | |
7353 | size_t indx; | |
7354 | ||
7355 | caux = 0; | |
7356 | for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
7357 | ++caux; | |
7358 | ||
7359 | vn->vn_version = VER_NEED_CURRENT; | |
7360 | vn->vn_cnt = caux; | |
7361 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
7362 | elf_dt_name (vn->vn_bfd) != NULL | |
7363 | ? elf_dt_name (vn->vn_bfd) | |
7364 | : lbasename (bfd_get_filename | |
7365 | (vn->vn_bfd)), | |
7366 | false); | |
7367 | if (indx == (size_t) -1) | |
7368 | return false; | |
7369 | vn->vn_file = indx; | |
7370 | vn->vn_aux = sizeof (Elf_External_Verneed); | |
7371 | if (vn->vn_nextref == NULL) | |
7372 | vn->vn_next = 0; | |
7373 | else | |
7374 | vn->vn_next = (sizeof (Elf_External_Verneed) | |
7375 | + caux * sizeof (Elf_External_Vernaux)); | |
7376 | ||
7377 | _bfd_elf_swap_verneed_out (output_bfd, vn, | |
7378 | (Elf_External_Verneed *) p); | |
7379 | p += sizeof (Elf_External_Verneed); | |
7380 | ||
7381 | for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) | |
7382 | { | |
7383 | a->vna_hash = bfd_elf_hash (a->vna_nodename); | |
7384 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
7385 | a->vna_nodename, false); | |
7386 | if (indx == (size_t) -1) | |
7387 | return false; | |
7388 | a->vna_name = indx; | |
7389 | if (a->vna_nextptr == NULL) | |
7390 | a->vna_next = 0; | |
7391 | else | |
7392 | a->vna_next = sizeof (Elf_External_Vernaux); | |
7393 | ||
7394 | _bfd_elf_swap_vernaux_out (output_bfd, a, | |
7395 | (Elf_External_Vernaux *) p); | |
7396 | p += sizeof (Elf_External_Vernaux); | |
7397 | } | |
7398 | } | |
7399 | ||
7400 | elf_tdata (output_bfd)->cverrefs = crefs; | |
7401 | } | |
7402 | } | |
7403 | ||
7404 | if (bfd_link_relocatable (info) | |
7405 | && !_bfd_elf_size_group_sections (info)) | |
7406 | return false; | |
7407 | ||
7408 | /* Determine any GNU_STACK segment requirements, after the backend | |
7409 | has had a chance to set a default segment size. */ | |
7410 | if (info->execstack) | |
7411 | { | |
7412 | /* If the user has explicitly requested warnings, then generate one even | |
7413 | though the choice is the result of another command line option. */ | |
7414 | if (info->warn_execstack == 1) | |
7415 | { | |
7416 | if (info->error_execstack) | |
7417 | { | |
7418 | _bfd_error_handler | |
7419 | (_("\ | |
7420 | error: creating an executable stack because of -z execstack command line option")); | |
7421 | return false; | |
7422 | } | |
7423 | ||
7424 | _bfd_error_handler | |
7425 | (_("\ | |
7426 | warning: enabling an executable stack because of -z execstack command line option")); | |
7427 | } | |
7428 | ||
7429 | elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X; | |
7430 | } | |
7431 | else if (info->noexecstack) | |
7432 | elf_stack_flags (output_bfd) = PF_R | PF_W; | |
7433 | else | |
7434 | { | |
7435 | bfd *inputobj; | |
7436 | asection *notesec = NULL; | |
7437 | bfd *noteobj = NULL; | |
7438 | bfd *emptyobj = NULL; | |
7439 | int exec = 0; | |
7440 | ||
7441 | for (inputobj = info->input_bfds; | |
7442 | inputobj; | |
7443 | inputobj = inputobj->link.next) | |
7444 | { | |
7445 | asection *s; | |
7446 | ||
7447 | if (inputobj->flags | |
7448 | & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED)) | |
7449 | continue; | |
7450 | s = inputobj->sections; | |
7451 | if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) | |
7452 | continue; | |
7453 | ||
7454 | s = bfd_get_section_by_name (inputobj, ".note.GNU-stack"); | |
7455 | if (s) | |
7456 | { | |
7457 | notesec = s; | |
7458 | if (s->flags & SEC_CODE) | |
7459 | { | |
7460 | noteobj = inputobj; | |
7461 | exec = PF_X; | |
7462 | /* There is no point in scanning the remaining bfds. */ | |
7463 | break; | |
7464 | } | |
7465 | } | |
7466 | else if (bed->default_execstack && info->default_execstack) | |
7467 | { | |
7468 | exec = PF_X; | |
7469 | emptyobj = inputobj; | |
7470 | } | |
7471 | } | |
7472 | ||
7473 | if (notesec || info->stacksize > 0) | |
7474 | { | |
7475 | if (exec) | |
7476 | { | |
7477 | if (info->warn_execstack != 0) | |
7478 | { | |
7479 | /* PR 29072: Because an executable stack is a serious | |
7480 | security risk, make sure that the user knows that it is | |
7481 | being enabled despite the fact that it was not requested | |
7482 | on the command line. */ | |
7483 | if (noteobj) | |
7484 | { | |
7485 | if (info->error_execstack) | |
7486 | { | |
7487 | _bfd_error_handler (_("\ | |
7488 | error: %s: is triggering the generation of an executable stack (because it has an executable .note.GNU-stack section)"), | |
7489 | bfd_get_filename (noteobj)); | |
7490 | return false; | |
7491 | } | |
7492 | ||
7493 | _bfd_error_handler (_("\ | |
7494 | warning: %s: requires executable stack (because the .note.GNU-stack section is executable)"), | |
7495 | bfd_get_filename (noteobj)); | |
7496 | } | |
7497 | else if (emptyobj) | |
7498 | { | |
7499 | if (info->error_execstack) | |
7500 | { | |
7501 | _bfd_error_handler (_("\ | |
7502 | error: %s: is triggering the generation of an executable stack because it does not have a .note.GNU-stack section"), | |
7503 | bfd_get_filename (emptyobj)); | |
7504 | return false; | |
7505 | } | |
7506 | ||
7507 | _bfd_error_handler (_("\ | |
7508 | warning: %s: missing .note.GNU-stack section implies executable stack"), | |
7509 | bfd_get_filename (emptyobj)); | |
7510 | _bfd_error_handler (_("\ | |
7511 | NOTE: This behaviour is deprecated and will be removed in a future version of the linker")); | |
7512 | } | |
7513 | } | |
7514 | } | |
7515 | elf_stack_flags (output_bfd) = PF_R | PF_W | exec; | |
7516 | } | |
7517 | ||
7518 | if (notesec && exec && bfd_link_relocatable (info) | |
7519 | && notesec->output_section != bfd_abs_section_ptr) | |
7520 | notesec->output_section->flags |= SEC_CODE; | |
7521 | } | |
7522 | ||
7523 | if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) | |
7524 | { | |
7525 | struct elf_info_failed eif; | |
7526 | struct elf_link_hash_entry *h; | |
7527 | asection *dynstr; | |
7528 | asection *s; | |
7529 | ||
7530 | *sinterpptr = bfd_get_linker_section (dynobj, ".interp"); | |
7531 | BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp); | |
7532 | ||
7533 | if (info->symbolic) | |
7534 | { | |
7535 | if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) | |
7536 | return false; | |
7537 | info->flags |= DF_SYMBOLIC; | |
7538 | } | |
7539 | ||
7540 | if (rpath != NULL) | |
7541 | { | |
7542 | size_t indx; | |
7543 | bfd_vma tag; | |
7544 | ||
7545 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath, | |
7546 | true); | |
7547 | if (indx == (size_t) -1) | |
7548 | return false; | |
7549 | ||
7550 | tag = info->new_dtags ? DT_RUNPATH : DT_RPATH; | |
7551 | if (!_bfd_elf_add_dynamic_entry (info, tag, indx)) | |
7552 | return false; | |
7553 | } | |
7554 | ||
7555 | if (filter_shlib != NULL) | |
7556 | { | |
7557 | size_t indx; | |
7558 | ||
7559 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
7560 | filter_shlib, true); | |
7561 | if (indx == (size_t) -1 | |
7562 | || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx)) | |
7563 | return false; | |
7564 | } | |
7565 | ||
7566 | if (auxiliary_filters != NULL) | |
7567 | { | |
7568 | const char * const *p; | |
7569 | ||
7570 | for (p = auxiliary_filters; *p != NULL; p++) | |
7571 | { | |
7572 | size_t indx; | |
7573 | ||
7574 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | |
7575 | *p, true); | |
7576 | if (indx == (size_t) -1 | |
7577 | || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx)) | |
7578 | return false; | |
7579 | } | |
7580 | } | |
7581 | ||
7582 | if (audit != NULL) | |
7583 | { | |
7584 | size_t indx; | |
7585 | ||
7586 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit, | |
7587 | true); | |
7588 | if (indx == (size_t) -1 | |
7589 | || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx)) | |
7590 | return false; | |
7591 | } | |
7592 | ||
7593 | if (depaudit != NULL) | |
7594 | { | |
7595 | size_t indx; | |
7596 | ||
7597 | indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit, | |
7598 | true); | |
7599 | if (indx == (size_t) -1 | |
7600 | || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx)) | |
7601 | return false; | |
7602 | } | |
7603 | ||
7604 | eif.info = info; | |
7605 | eif.failed = false; | |
7606 | ||
7607 | /* Find all symbols which were defined in a dynamic object and make | |
7608 | the backend pick a reasonable value for them. */ | |
7609 | elf_link_hash_traverse (elf_hash_table (info), | |
7610 | _bfd_elf_adjust_dynamic_symbol, | |
7611 | &eif); | |
7612 | if (eif.failed) | |
7613 | return false; | |
7614 | ||
7615 | /* Add some entries to the .dynamic section. We fill in some of the | |
7616 | values later, in bfd_elf_final_link, but we must add the entries | |
7617 | now so that we know the final size of the .dynamic section. */ | |
7618 | ||
7619 | /* If there are initialization and/or finalization functions to | |
7620 | call then add the corresponding DT_INIT/DT_FINI entries. */ | |
7621 | h = (info->init_function | |
7622 | ? elf_link_hash_lookup (elf_hash_table (info), | |
7623 | info->init_function, false, | |
7624 | false, false) | |
7625 | : NULL); | |
7626 | if (h != NULL | |
7627 | && (h->ref_regular | |
7628 | || h->def_regular)) | |
7629 | { | |
7630 | if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0)) | |
7631 | return false; | |
7632 | } | |
7633 | h = (info->fini_function | |
7634 | ? elf_link_hash_lookup (elf_hash_table (info), | |
7635 | info->fini_function, false, | |
7636 | false, false) | |
7637 | : NULL); | |
7638 | if (h != NULL | |
7639 | && (h->ref_regular | |
7640 | || h->def_regular)) | |
7641 | { | |
7642 | if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0)) | |
7643 | return false; | |
7644 | } | |
7645 | ||
7646 | s = bfd_get_section_by_name (output_bfd, ".preinit_array"); | |
7647 | if (s != NULL && s->linker_has_input) | |
7648 | { | |
7649 | /* DT_PREINIT_ARRAY is not allowed in shared library. */ | |
7650 | if (! bfd_link_executable (info)) | |
7651 | { | |
7652 | bfd *sub; | |
7653 | asection *o; | |
7654 | ||
7655 | for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) | |
7656 | if (bfd_get_flavour (sub) == bfd_target_elf_flavour | |
7657 | && (o = sub->sections) != NULL | |
7658 | && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS) | |
7659 | for (o = sub->sections; o != NULL; o = o->next) | |
7660 | if (elf_section_data (o)->this_hdr.sh_type | |
7661 | == SHT_PREINIT_ARRAY) | |
7662 | { | |
7663 | _bfd_error_handler | |
7664 | (_("%pB: .preinit_array section is not allowed in DSO"), | |
7665 | sub); | |
7666 | break; | |
7667 | } | |
7668 | ||
7669 | bfd_set_error (bfd_error_nonrepresentable_section); | |
7670 | return false; | |
7671 | } | |
7672 | ||
7673 | if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0) | |
7674 | || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0)) | |
7675 | return false; | |
7676 | } | |
7677 | s = bfd_get_section_by_name (output_bfd, ".init_array"); | |
7678 | if (s != NULL && s->linker_has_input) | |
7679 | { | |
7680 | if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0) | |
7681 | || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0)) | |
7682 | return false; | |
7683 | } | |
7684 | s = bfd_get_section_by_name (output_bfd, ".fini_array"); | |
7685 | if (s != NULL && s->linker_has_input) | |
7686 | { | |
7687 | if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0) | |
7688 | || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0)) | |
7689 | return false; | |
7690 | } | |
7691 | ||
7692 | dynstr = bfd_get_linker_section (dynobj, ".dynstr"); | |
7693 | /* If .dynstr is excluded from the link, we don't want any of | |
7694 | these tags. Strictly, we should be checking each section | |
7695 | individually; This quick check covers for the case where | |
7696 | someone does a /DISCARD/ : { *(*) }. */ | |
7697 | if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr) | |
7698 | { | |
7699 | bfd_size_type strsize; | |
7700 | ||
7701 | strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | |
7702 | if ((info->emit_hash | |
7703 | && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)) | |
7704 | || (info->emit_gnu_hash | |
7705 | && (bed->record_xhash_symbol == NULL | |
7706 | && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))) | |
7707 | || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0) | |
7708 | || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0) | |
7709 | || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize) | |
7710 | || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT, | |
7711 | bed->s->sizeof_sym) | |
7712 | || (info->gnu_flags_1 | |
7713 | && !_bfd_elf_add_dynamic_entry (info, DT_GNU_FLAGS_1, | |
7714 | info->gnu_flags_1))) | |
7715 | return false; | |
7716 | } | |
7717 | } | |
7718 | ||
7719 | if (! _bfd_elf_maybe_strip_eh_frame_hdr (info)) | |
7720 | return false; | |
7721 | ||
7722 | /* The backend must work out the sizes of all the other dynamic | |
7723 | sections. */ | |
7724 | if (bed->elf_backend_late_size_sections != NULL | |
7725 | && !bed->elf_backend_late_size_sections (output_bfd, info)) | |
7726 | return false; | |
7727 | ||
7728 | if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) | |
7729 | { | |
7730 | if (elf_tdata (output_bfd)->cverdefs) | |
7731 | { | |
7732 | unsigned int crefs = elf_tdata (output_bfd)->cverdefs; | |
7733 | ||
7734 | if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0) | |
7735 | || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs)) | |
7736 | return false; | |
7737 | } | |
7738 | ||
7739 | if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS)) | |
7740 | { | |
7741 | if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags)) | |
7742 | return false; | |
7743 | } | |
7744 | else if (info->flags & DF_BIND_NOW) | |
7745 | { | |
7746 | if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0)) | |
7747 | return false; | |
7748 | } | |
7749 | ||
7750 | if (info->flags_1) | |
7751 | { | |
7752 | if (bfd_link_executable (info)) | |
7753 | info->flags_1 &= ~ (DF_1_INITFIRST | |
7754 | | DF_1_NODELETE | |
7755 | | DF_1_NOOPEN); | |
7756 | if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1)) | |
7757 | return false; | |
7758 | } | |
7759 | ||
7760 | if (elf_tdata (output_bfd)->cverrefs) | |
7761 | { | |
7762 | unsigned int crefs = elf_tdata (output_bfd)->cverrefs; | |
7763 | ||
7764 | if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0) | |
7765 | || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs)) | |
7766 | return false; | |
7767 | } | |
7768 | ||
7769 | if ((elf_tdata (output_bfd)->cverrefs == 0 | |
7770 | && elf_tdata (output_bfd)->cverdefs == 0) | |
7771 | || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1) | |
7772 | { | |
7773 | asection *s; | |
7774 | ||
7775 | s = bfd_get_linker_section (dynobj, ".gnu.version"); | |
7776 | s->flags |= SEC_EXCLUDE; | |
7777 | } | |
7778 | } | |
7779 | return true; | |
7780 | } | |
7781 | ||
7782 | /* Find the first non-excluded output section. We'll use its | |
7783 | section symbol for some emitted relocs. */ | |
7784 | void | |
7785 | _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info) | |
7786 | { | |
7787 | asection *s; | |
7788 | asection *found = NULL; | |
7789 | ||
7790 | for (s = output_bfd->sections; s != NULL; s = s->next) | |
7791 | if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC | |
7792 | && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) | |
7793 | { | |
7794 | found = s; | |
7795 | if ((s->flags & SEC_THREAD_LOCAL) == 0) | |
7796 | break; | |
7797 | } | |
7798 | elf_hash_table (info)->text_index_section = found; | |
7799 | } | |
7800 | ||
7801 | /* Find two non-excluded output sections, one for code, one for data. | |
7802 | We'll use their section symbols for some emitted relocs. */ | |
7803 | void | |
7804 | _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info) | |
7805 | { | |
7806 | asection *s; | |
7807 | asection *found = NULL; | |
7808 | ||
7809 | /* Data first, since setting text_index_section changes | |
7810 | _bfd_elf_omit_section_dynsym_default. */ | |
7811 | for (s = output_bfd->sections; s != NULL; s = s->next) | |
7812 | if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC | |
7813 | && !(s->flags & SEC_READONLY) | |
7814 | && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) | |
7815 | { | |
7816 | found = s; | |
7817 | if ((s->flags & SEC_THREAD_LOCAL) == 0) | |
7818 | break; | |
7819 | } | |
7820 | elf_hash_table (info)->data_index_section = found; | |
7821 | ||
7822 | for (s = output_bfd->sections; s != NULL; s = s->next) | |
7823 | if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC | |
7824 | && (s->flags & SEC_READONLY) | |
7825 | && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) | |
7826 | { | |
7827 | found = s; | |
7828 | break; | |
7829 | } | |
7830 | elf_hash_table (info)->text_index_section = found; | |
7831 | } | |
7832 | ||
7833 | #define GNU_HASH_SECTION_NAME(bed) \ | |
7834 | (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash" | |
7835 | ||
7836 | bool | |
7837 | bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info) | |
7838 | { | |
7839 | const struct elf_backend_data *bed; | |
7840 | unsigned long section_sym_count; | |
7841 | bfd_size_type dynsymcount = 0; | |
7842 | ||
7843 | if (!is_elf_hash_table (info->hash)) | |
7844 | return true; | |
7845 | ||
7846 | bed = get_elf_backend_data (output_bfd); | |
7847 | (*bed->elf_backend_init_index_section) (output_bfd, info); | |
7848 | ||
7849 | /* Assign dynsym indices. In a shared library we generate a section | |
7850 | symbol for each output section, which come first. Next come all | |
7851 | of the back-end allocated local dynamic syms, followed by the rest | |
7852 | of the global symbols. | |
7853 | ||
7854 | This is usually not needed for static binaries, however backends | |
7855 | can request to always do it, e.g. the MIPS backend uses dynamic | |
7856 | symbol counts to lay out GOT, which will be produced in the | |
7857 | presence of GOT relocations even in static binaries (holding fixed | |
7858 | data in that case, to satisfy those relocations). */ | |
7859 | ||
7860 | if (elf_hash_table (info)->dynamic_sections_created | |
7861 | || bed->always_renumber_dynsyms) | |
7862 | dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info, | |
7863 | §ion_sym_count); | |
7864 | ||
7865 | if (elf_hash_table (info)->dynamic_sections_created) | |
7866 | { | |
7867 | bfd *dynobj; | |
7868 | asection *s; | |
7869 | unsigned int dtagcount; | |
7870 | ||
7871 | dynobj = elf_hash_table (info)->dynobj; | |
7872 | ||
7873 | /* Work out the size of the symbol version section. */ | |
7874 | s = bfd_get_linker_section (dynobj, ".gnu.version"); | |
7875 | BFD_ASSERT (s != NULL); | |
7876 | if ((s->flags & SEC_EXCLUDE) == 0) | |
7877 | { | |
7878 | s->size = dynsymcount * sizeof (Elf_External_Versym); | |
7879 | s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); | |
7880 | if (s->contents == NULL) | |
7881 | return false; | |
7882 | s->alloced = 1; | |
7883 | ||
7884 | if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0)) | |
7885 | return false; | |
7886 | } | |
7887 | ||
7888 | /* Set the size of the .dynsym and .hash sections. We counted | |
7889 | the number of dynamic symbols in elf_link_add_object_symbols. | |
7890 | We will build the contents of .dynsym and .hash when we build | |
7891 | the final symbol table, because until then we do not know the | |
7892 | correct value to give the symbols. We built the .dynstr | |
7893 | section as we went along in elf_link_add_object_symbols. */ | |
7894 | s = elf_hash_table (info)->dynsym; | |
7895 | BFD_ASSERT (s != NULL); | |
7896 | s->size = dynsymcount * bed->s->sizeof_sym; | |
7897 | ||
7898 | s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); | |
7899 | if (s->contents == NULL) | |
7900 | return false; | |
7901 | s->alloced = 1; | |
7902 | ||
7903 | /* The first entry in .dynsym is a dummy symbol. Clear all the | |
7904 | section syms, in case we don't output them all. */ | |
7905 | ++section_sym_count; | |
7906 | memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym); | |
7907 | ||
7908 | elf_hash_table (info)->bucketcount = 0; | |
7909 | ||
7910 | /* Compute the size of the hashing table. As a side effect this | |
7911 | computes the hash values for all the names we export. */ | |
7912 | if (info->emit_hash) | |
7913 | { | |
7914 | unsigned long int *hashcodes; | |
7915 | struct hash_codes_info hashinf; | |
7916 | bfd_size_type amt; | |
7917 | unsigned long int nsyms; | |
7918 | size_t bucketcount; | |
7919 | size_t hash_entry_size; | |
7920 | ||
7921 | /* Compute the hash values for all exported symbols. At the same | |
7922 | time store the values in an array so that we could use them for | |
7923 | optimizations. */ | |
7924 | amt = dynsymcount * sizeof (unsigned long int); | |
7925 | hashcodes = (unsigned long int *) bfd_malloc (amt); | |
7926 | if (hashcodes == NULL) | |
7927 | return false; | |
7928 | hashinf.hashcodes = hashcodes; | |
7929 | hashinf.error = false; | |
7930 | ||
7931 | /* Put all hash values in HASHCODES. */ | |
7932 | elf_link_hash_traverse (elf_hash_table (info), | |
7933 | elf_collect_hash_codes, &hashinf); | |
7934 | if (hashinf.error) | |
7935 | { | |
7936 | free (hashcodes); | |
7937 | return false; | |
7938 | } | |
7939 | ||
7940 | nsyms = hashinf.hashcodes - hashcodes; | |
7941 | bucketcount | |
7942 | = compute_bucket_count (info, hashcodes, nsyms, 0); | |
7943 | free (hashcodes); | |
7944 | ||
7945 | if (bucketcount == 0 && nsyms > 0) | |
7946 | return false; | |
7947 | ||
7948 | elf_hash_table (info)->bucketcount = bucketcount; | |
7949 | ||
7950 | s = bfd_get_linker_section (dynobj, ".hash"); | |
7951 | BFD_ASSERT (s != NULL); | |
7952 | hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize; | |
7953 | s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size); | |
7954 | s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); | |
7955 | if (s->contents == NULL) | |
7956 | return false; | |
7957 | s->alloced = 1; | |
7958 | ||
7959 | bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents); | |
7960 | bfd_put (8 * hash_entry_size, output_bfd, dynsymcount, | |
7961 | s->contents + hash_entry_size); | |
7962 | } | |
7963 | ||
7964 | if (info->emit_gnu_hash) | |
7965 | { | |
7966 | size_t i, cnt; | |
7967 | unsigned char *contents; | |
7968 | struct collect_gnu_hash_codes cinfo; | |
7969 | bfd_size_type amt; | |
7970 | size_t bucketcount; | |
7971 | ||
7972 | memset (&cinfo, 0, sizeof (cinfo)); | |
7973 | ||
7974 | /* Compute the hash values for all exported symbols. At the same | |
7975 | time store the values in an array so that we could use them for | |
7976 | optimizations. */ | |
7977 | amt = dynsymcount * 2 * sizeof (unsigned long int); | |
7978 | cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt); | |
7979 | if (cinfo.hashcodes == NULL) | |
7980 | return false; | |
7981 | ||
7982 | cinfo.hashval = cinfo.hashcodes + dynsymcount; | |
7983 | cinfo.min_dynindx = -1; | |
7984 | cinfo.output_bfd = output_bfd; | |
7985 | cinfo.bed = bed; | |
7986 | ||
7987 | /* Put all hash values in HASHCODES. */ | |
7988 | elf_link_hash_traverse (elf_hash_table (info), | |
7989 | elf_collect_gnu_hash_codes, &cinfo); | |
7990 | if (cinfo.error) | |
7991 | { | |
7992 | free (cinfo.hashcodes); | |
7993 | return false; | |
7994 | } | |
7995 | ||
7996 | bucketcount | |
7997 | = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1); | |
7998 | ||
7999 | if (bucketcount == 0) | |
8000 | { | |
8001 | free (cinfo.hashcodes); | |
8002 | return false; | |
8003 | } | |
8004 | ||
8005 | s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed)); | |
8006 | BFD_ASSERT (s != NULL); | |
8007 | ||
8008 | if (cinfo.nsyms == 0) | |
8009 | { | |
8010 | /* Empty .gnu.hash or .MIPS.xhash section is special. */ | |
8011 | BFD_ASSERT (cinfo.min_dynindx == -1); | |
8012 | free (cinfo.hashcodes); | |
8013 | s->size = 5 * 4 + bed->s->arch_size / 8; | |
8014 | contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); | |
8015 | if (contents == NULL) | |
8016 | return false; | |
8017 | s->contents = contents; | |
8018 | s->alloced = 1; | |
8019 | /* 1 empty bucket. */ | |
8020 | bfd_put_32 (output_bfd, 1, contents); | |
8021 | /* SYMIDX above the special symbol 0. */ | |
8022 | bfd_put_32 (output_bfd, 1, contents + 4); | |
8023 | /* Just one word for bitmask. */ | |
8024 | bfd_put_32 (output_bfd, 1, contents + 8); | |
8025 | /* Only hash fn bloom filter. */ | |
8026 | bfd_put_32 (output_bfd, 0, contents + 12); | |
8027 | /* No hashes are valid - empty bitmask. */ | |
8028 | bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16); | |
8029 | /* No hashes in the only bucket. */ | |
8030 | bfd_put_32 (output_bfd, 0, | |
8031 | contents + 16 + bed->s->arch_size / 8); | |
8032 | } | |
8033 | else | |
8034 | { | |
8035 | unsigned long int maskwords, maskbitslog2, x; | |
8036 | BFD_ASSERT (cinfo.min_dynindx != -1); | |
8037 | ||
8038 | x = cinfo.nsyms; | |
8039 | maskbitslog2 = 1; | |
8040 | while ((x >>= 1) != 0) | |
8041 | ++maskbitslog2; | |
8042 | if (maskbitslog2 < 3) | |
8043 | maskbitslog2 = 5; | |
8044 | else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms) | |
8045 | maskbitslog2 = maskbitslog2 + 3; | |
8046 | else | |
8047 | maskbitslog2 = maskbitslog2 + 2; | |
8048 | if (bed->s->arch_size == 64) | |
8049 | { | |
8050 | if (maskbitslog2 == 5) | |
8051 | maskbitslog2 = 6; | |
8052 | cinfo.shift1 = 6; | |
8053 | } | |
8054 | else | |
8055 | cinfo.shift1 = 5; | |
8056 | cinfo.mask = (1 << cinfo.shift1) - 1; | |
8057 | cinfo.shift2 = maskbitslog2; | |
8058 | cinfo.maskbits = 1 << maskbitslog2; | |
8059 | maskwords = 1 << (maskbitslog2 - cinfo.shift1); | |
8060 | amt = bucketcount * sizeof (unsigned long int) * 2; | |
8061 | amt += maskwords * sizeof (bfd_vma); | |
8062 | cinfo.bitmask = (bfd_vma *) bfd_malloc (amt); | |
8063 | if (cinfo.bitmask == NULL) | |
8064 | { | |
8065 | free (cinfo.hashcodes); | |
8066 | return false; | |
8067 | } | |
8068 | ||
8069 | cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords); | |
8070 | cinfo.indx = cinfo.counts + bucketcount; | |
8071 | cinfo.symindx = dynsymcount - cinfo.nsyms; | |
8072 | memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma)); | |
8073 | ||
8074 | /* Determine how often each hash bucket is used. */ | |
8075 | memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0])); | |
8076 | for (i = 0; i < cinfo.nsyms; ++i) | |
8077 | ++cinfo.counts[cinfo.hashcodes[i] % bucketcount]; | |
8078 | ||
8079 | for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i) | |
8080 | if (cinfo.counts[i] != 0) | |
8081 | { | |
8082 | cinfo.indx[i] = cnt; | |
8083 | cnt += cinfo.counts[i]; | |
8084 | } | |
8085 | BFD_ASSERT (cnt == dynsymcount); | |
8086 | cinfo.bucketcount = bucketcount; | |
8087 | cinfo.local_indx = cinfo.min_dynindx; | |
8088 | ||
8089 | s->size = (4 + bucketcount + cinfo.nsyms) * 4; | |
8090 | s->size += cinfo.maskbits / 8; | |
8091 | if (bed->record_xhash_symbol != NULL) | |
8092 | s->size += cinfo.nsyms * 4; | |
8093 | contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); | |
8094 | if (contents == NULL) | |
8095 | { | |
8096 | free (cinfo.bitmask); | |
8097 | free (cinfo.hashcodes); | |
8098 | return false; | |
8099 | } | |
8100 | ||
8101 | s->contents = contents; | |
8102 | s->alloced = 1; | |
8103 | bfd_put_32 (output_bfd, bucketcount, contents); | |
8104 | bfd_put_32 (output_bfd, cinfo.symindx, contents + 4); | |
8105 | bfd_put_32 (output_bfd, maskwords, contents + 8); | |
8106 | bfd_put_32 (output_bfd, cinfo.shift2, contents + 12); | |
8107 | contents += 16 + cinfo.maskbits / 8; | |
8108 | ||
8109 | for (i = 0; i < bucketcount; ++i) | |
8110 | { | |
8111 | if (cinfo.counts[i] == 0) | |
8112 | bfd_put_32 (output_bfd, 0, contents); | |
8113 | else | |
8114 | bfd_put_32 (output_bfd, cinfo.indx[i], contents); | |
8115 | contents += 4; | |
8116 | } | |
8117 | ||
8118 | cinfo.contents = contents; | |
8119 | ||
8120 | cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents; | |
8121 | /* Renumber dynamic symbols, if populating .gnu.hash section. | |
8122 | If using .MIPS.xhash, populate the translation table. */ | |
8123 | elf_link_hash_traverse (elf_hash_table (info), | |
8124 | elf_gnu_hash_process_symidx, &cinfo); | |
8125 | ||
8126 | contents = s->contents + 16; | |
8127 | for (i = 0; i < maskwords; ++i) | |
8128 | { | |
8129 | bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i], | |
8130 | contents); | |
8131 | contents += bed->s->arch_size / 8; | |
8132 | } | |
8133 | ||
8134 | free (cinfo.bitmask); | |
8135 | free (cinfo.hashcodes); | |
8136 | } | |
8137 | } | |
8138 | ||
8139 | s = bfd_get_linker_section (dynobj, ".dynstr"); | |
8140 | BFD_ASSERT (s != NULL); | |
8141 | ||
8142 | elf_finalize_dynstr (output_bfd, info); | |
8143 | ||
8144 | s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | |
8145 | ||
8146 | for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount) | |
8147 | if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0)) | |
8148 | return false; | |
8149 | } | |
8150 | ||
8151 | return true; | |
8152 | } | |
8153 | \f | |
8154 | /* Make sure sec_info_type is cleared if sec_info is cleared too. */ | |
8155 | ||
8156 | static void | |
8157 | merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED, | |
8158 | asection *sec) | |
8159 | { | |
8160 | BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE); | |
8161 | sec->sec_info_type = SEC_INFO_TYPE_NONE; | |
8162 | } | |
8163 | ||
8164 | /* Finish SHF_MERGE section merging. */ | |
8165 | ||
8166 | bool | |
8167 | _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info) | |
8168 | { | |
8169 | bfd *ibfd; | |
8170 | asection *sec; | |
8171 | ||
8172 | if (ENABLE_CHECKING && !is_elf_hash_table (info->hash)) | |
8173 | abort (); | |
8174 | ||
8175 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) | |
8176 | if ((ibfd->flags & DYNAMIC) == 0 | |
8177 | && bfd_get_flavour (ibfd) == bfd_target_elf_flavour | |
8178 | && (elf_elfheader (ibfd)->e_ident[EI_CLASS] | |
8179 | == get_elf_backend_data (obfd)->s->elfclass)) | |
8180 | for (sec = ibfd->sections; sec != NULL; sec = sec->next) | |
8181 | if ((sec->flags & SEC_MERGE) != 0 | |
8182 | && !bfd_is_abs_section (sec->output_section)) | |
8183 | { | |
8184 | struct bfd_elf_section_data *secdata; | |
8185 | ||
8186 | secdata = elf_section_data (sec); | |
8187 | if (! _bfd_add_merge_section (obfd, | |
8188 | &elf_hash_table (info)->merge_info, | |
8189 | sec, &secdata->sec_info)) | |
8190 | return false; | |
8191 | else if (secdata->sec_info) | |
8192 | sec->sec_info_type = SEC_INFO_TYPE_MERGE; | |
8193 | } | |
8194 | ||
8195 | if (elf_hash_table (info)->merge_info != NULL) | |
8196 | return _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info, | |
8197 | merge_sections_remove_hook); | |
8198 | return true; | |
8199 | } | |
8200 | ||
8201 | /* Create an entry in an ELF linker hash table. */ | |
8202 | ||
8203 | struct bfd_hash_entry * | |
8204 | _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry, | |
8205 | struct bfd_hash_table *table, | |
8206 | const char *string) | |
8207 | { | |
8208 | /* Allocate the structure if it has not already been allocated by a | |
8209 | subclass. */ | |
8210 | if (entry == NULL) | |
8211 | { | |
8212 | entry = (struct bfd_hash_entry *) | |
8213 | bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry)); | |
8214 | if (entry == NULL) | |
8215 | return entry; | |
8216 | } | |
8217 | ||
8218 | /* Call the allocation method of the superclass. */ | |
8219 | entry = _bfd_link_hash_newfunc (entry, table, string); | |
8220 | if (entry != NULL) | |
8221 | { | |
8222 | struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry; | |
8223 | struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table; | |
8224 | ||
8225 | /* Set local fields. */ | |
8226 | ret->indx = -1; | |
8227 | ret->dynindx = -1; | |
8228 | ret->got = htab->init_got_refcount; | |
8229 | ret->plt = htab->init_plt_refcount; | |
8230 | memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry) | |
8231 | - offsetof (struct elf_link_hash_entry, size))); | |
8232 | /* Assume that we have been called by a non-ELF symbol reader. | |
8233 | This flag is then reset by the code which reads an ELF input | |
8234 | file. This ensures that a symbol created by a non-ELF symbol | |
8235 | reader will have the flag set correctly. */ | |
8236 | ret->non_elf = 1; | |
8237 | } | |
8238 | ||
8239 | return entry; | |
8240 | } | |
8241 | ||
8242 | /* Copy data from an indirect symbol to its direct symbol, hiding the | |
8243 | old indirect symbol. Also used for copying flags to a weakdef. */ | |
8244 | ||
8245 | void | |
8246 | _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info, | |
8247 | struct elf_link_hash_entry *dir, | |
8248 | struct elf_link_hash_entry *ind) | |
8249 | { | |
8250 | struct elf_link_hash_table *htab; | |
8251 | ||
8252 | if (ind->dyn_relocs != NULL) | |
8253 | { | |
8254 | if (dir->dyn_relocs != NULL) | |
8255 | { | |
8256 | struct elf_dyn_relocs **pp; | |
8257 | struct elf_dyn_relocs *p; | |
8258 | ||
8259 | /* Add reloc counts against the indirect sym to the direct sym | |
8260 | list. Merge any entries against the same section. */ | |
8261 | for (pp = &ind->dyn_relocs; (p = *pp) != NULL; ) | |
8262 | { | |
8263 | struct elf_dyn_relocs *q; | |
8264 | ||
8265 | for (q = dir->dyn_relocs; q != NULL; q = q->next) | |
8266 | if (q->sec == p->sec) | |
8267 | { | |
8268 | q->pc_count += p->pc_count; | |
8269 | q->count += p->count; | |
8270 | *pp = p->next; | |
8271 | break; | |
8272 | } | |
8273 | if (q == NULL) | |
8274 | pp = &p->next; | |
8275 | } | |
8276 | *pp = dir->dyn_relocs; | |
8277 | } | |
8278 | ||
8279 | dir->dyn_relocs = ind->dyn_relocs; | |
8280 | ind->dyn_relocs = NULL; | |
8281 | } | |
8282 | ||
8283 | /* Copy down any references that we may have already seen to the | |
8284 | symbol which just became indirect. */ | |
8285 | ||
8286 | if (dir->versioned != versioned_hidden) | |
8287 | dir->ref_dynamic |= ind->ref_dynamic; | |
8288 | dir->ref_regular |= ind->ref_regular; | |
8289 | dir->ref_regular_nonweak |= ind->ref_regular_nonweak; | |
8290 | dir->non_got_ref |= ind->non_got_ref; | |
8291 | dir->needs_plt |= ind->needs_plt; | |
8292 | dir->pointer_equality_needed |= ind->pointer_equality_needed; | |
8293 | ||
8294 | if (ind->root.type != bfd_link_hash_indirect) | |
8295 | return; | |
8296 | ||
8297 | /* Copy over the global and procedure linkage table refcount entries. | |
8298 | These may have been already set up by a check_relocs routine. */ | |
8299 | htab = elf_hash_table (info); | |
8300 | if (ind->got.refcount > htab->init_got_refcount.refcount) | |
8301 | { | |
8302 | if (dir->got.refcount < 0) | |
8303 | dir->got.refcount = 0; | |
8304 | dir->got.refcount += ind->got.refcount; | |
8305 | ind->got.refcount = htab->init_got_refcount.refcount; | |
8306 | } | |
8307 | ||
8308 | if (ind->plt.refcount > htab->init_plt_refcount.refcount) | |
8309 | { | |
8310 | if (dir->plt.refcount < 0) | |
8311 | dir->plt.refcount = 0; | |
8312 | dir->plt.refcount += ind->plt.refcount; | |
8313 | ind->plt.refcount = htab->init_plt_refcount.refcount; | |
8314 | } | |
8315 | ||
8316 | if (ind->dynindx != -1) | |
8317 | { | |
8318 | if (dir->dynindx != -1) | |
8319 | _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index); | |
8320 | dir->dynindx = ind->dynindx; | |
8321 | dir->dynstr_index = ind->dynstr_index; | |
8322 | ind->dynindx = -1; | |
8323 | ind->dynstr_index = 0; | |
8324 | } | |
8325 | } | |
8326 | ||
8327 | void | |
8328 | _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info, | |
8329 | struct elf_link_hash_entry *h, | |
8330 | bool force_local) | |
8331 | { | |
8332 | /* STT_GNU_IFUNC symbol must go through PLT. */ | |
8333 | if (h->type != STT_GNU_IFUNC) | |
8334 | { | |
8335 | h->plt = elf_hash_table (info)->init_plt_offset; | |
8336 | h->needs_plt = 0; | |
8337 | } | |
8338 | if (force_local) | |
8339 | { | |
8340 | h->forced_local = 1; | |
8341 | if (h->dynindx != -1) | |
8342 | { | |
8343 | _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, | |
8344 | h->dynstr_index); | |
8345 | h->dynindx = -1; | |
8346 | h->dynstr_index = 0; | |
8347 | } | |
8348 | } | |
8349 | } | |
8350 | ||
8351 | /* Hide a symbol. */ | |
8352 | ||
8353 | void | |
8354 | _bfd_elf_link_hide_symbol (bfd *output_bfd, | |
8355 | struct bfd_link_info *info, | |
8356 | struct bfd_link_hash_entry *h) | |
8357 | { | |
8358 | if (is_elf_hash_table (info->hash)) | |
8359 | { | |
8360 | const struct elf_backend_data *bed | |
8361 | = get_elf_backend_data (output_bfd); | |
8362 | struct elf_link_hash_entry *eh | |
8363 | = (struct elf_link_hash_entry *) h; | |
8364 | bed->elf_backend_hide_symbol (info, eh, true); | |
8365 | eh->def_dynamic = 0; | |
8366 | eh->ref_dynamic = 0; | |
8367 | eh->dynamic_def = 0; | |
8368 | } | |
8369 | } | |
8370 | ||
8371 | /* Initialize an ELF linker hash table. *TABLE has been zeroed by our | |
8372 | caller. */ | |
8373 | ||
8374 | bool | |
8375 | _bfd_elf_link_hash_table_init | |
8376 | (struct elf_link_hash_table *table, | |
8377 | bfd *abfd, | |
8378 | struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *, | |
8379 | struct bfd_hash_table *, | |
8380 | const char *), | |
8381 | unsigned int entsize) | |
8382 | { | |
8383 | bool ret; | |
8384 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
8385 | int can_refcount = bed->can_refcount; | |
8386 | ||
8387 | table->init_got_refcount.refcount = can_refcount - 1; | |
8388 | table->init_plt_refcount.refcount = can_refcount - 1; | |
8389 | table->init_got_offset.offset = -(bfd_vma) 1; | |
8390 | table->init_plt_offset.offset = -(bfd_vma) 1; | |
8391 | /* The first dynamic symbol is a dummy. */ | |
8392 | table->dynsymcount = 1; | |
8393 | ||
8394 | ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize); | |
8395 | ||
8396 | table->root.type = bfd_link_elf_hash_table; | |
8397 | table->hash_table_id = bed->target_id; | |
8398 | table->target_os = bed->target_os; | |
8399 | table->root.hash_table_free = _bfd_elf_link_hash_table_free; | |
8400 | ||
8401 | return ret; | |
8402 | } | |
8403 | ||
8404 | /* Create an ELF linker hash table. */ | |
8405 | ||
8406 | struct bfd_link_hash_table * | |
8407 | _bfd_elf_link_hash_table_create (bfd *abfd) | |
8408 | { | |
8409 | struct elf_link_hash_table *ret; | |
8410 | size_t amt = sizeof (struct elf_link_hash_table); | |
8411 | ||
8412 | ret = (struct elf_link_hash_table *) bfd_zmalloc (amt); | |
8413 | if (ret == NULL) | |
8414 | return NULL; | |
8415 | ||
8416 | if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc, | |
8417 | sizeof (struct elf_link_hash_entry))) | |
8418 | { | |
8419 | free (ret); | |
8420 | return NULL; | |
8421 | } | |
8422 | ||
8423 | return &ret->root; | |
8424 | } | |
8425 | ||
8426 | /* Destroy an ELF linker hash table. */ | |
8427 | ||
8428 | void | |
8429 | _bfd_elf_link_hash_table_free (bfd *obfd) | |
8430 | { | |
8431 | struct elf_link_hash_table *htab; | |
8432 | ||
8433 | htab = (struct elf_link_hash_table *) obfd->link.hash; | |
8434 | if (htab->dynstr != NULL) | |
8435 | _bfd_elf_strtab_free (htab->dynstr); | |
8436 | _bfd_merge_sections_free (htab->merge_info); | |
8437 | /* NB: htab->dynamic->contents is always allocated by bfd_realloc. */ | |
8438 | if (htab->dynamic != NULL) | |
8439 | { | |
8440 | free (htab->dynamic->contents); | |
8441 | htab->dynamic->contents = NULL; | |
8442 | } | |
8443 | if (htab->first_hash != NULL) | |
8444 | { | |
8445 | bfd_hash_table_free (htab->first_hash); | |
8446 | free (htab->first_hash); | |
8447 | } | |
8448 | if (htab->eh_info.frame_hdr_is_compact) | |
8449 | free (htab->eh_info.u.compact.entries); | |
8450 | else | |
8451 | free (htab->eh_info.u.dwarf.array); | |
8452 | _bfd_generic_link_hash_table_free (obfd); | |
8453 | } | |
8454 | ||
8455 | /* This is a hook for the ELF emulation code in the generic linker to | |
8456 | tell the backend linker what file name to use for the DT_NEEDED | |
8457 | entry for a dynamic object. */ | |
8458 | ||
8459 | void | |
8460 | bfd_elf_set_dt_needed_name (bfd *abfd, const char *name) | |
8461 | { | |
8462 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour | |
8463 | && bfd_get_format (abfd) == bfd_object) | |
8464 | elf_dt_name (abfd) = name; | |
8465 | } | |
8466 | ||
8467 | int | |
8468 | bfd_elf_get_dyn_lib_class (bfd *abfd) | |
8469 | { | |
8470 | int lib_class; | |
8471 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour | |
8472 | && bfd_get_format (abfd) == bfd_object) | |
8473 | lib_class = elf_dyn_lib_class (abfd); | |
8474 | else | |
8475 | lib_class = 0; | |
8476 | return lib_class; | |
8477 | } | |
8478 | ||
8479 | void | |
8480 | bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class) | |
8481 | { | |
8482 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour | |
8483 | && bfd_get_format (abfd) == bfd_object) | |
8484 | elf_dyn_lib_class (abfd) = lib_class; | |
8485 | } | |
8486 | ||
8487 | /* Get the list of DT_NEEDED entries for a link. This is a hook for | |
8488 | the linker ELF emulation code. */ | |
8489 | ||
8490 | struct bfd_link_needed_list * | |
8491 | bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED, | |
8492 | struct bfd_link_info *info) | |
8493 | { | |
8494 | if (! is_elf_hash_table (info->hash)) | |
8495 | return NULL; | |
8496 | return elf_hash_table (info)->needed; | |
8497 | } | |
8498 | ||
8499 | /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a | |
8500 | hook for the linker ELF emulation code. */ | |
8501 | ||
8502 | struct bfd_link_needed_list * | |
8503 | bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED, | |
8504 | struct bfd_link_info *info) | |
8505 | { | |
8506 | if (! is_elf_hash_table (info->hash)) | |
8507 | return NULL; | |
8508 | return elf_hash_table (info)->runpath; | |
8509 | } | |
8510 | ||
8511 | /* Get the name actually used for a dynamic object for a link. This | |
8512 | is the SONAME entry if there is one. Otherwise, it is the string | |
8513 | passed to bfd_elf_set_dt_needed_name, or it is the filename. */ | |
8514 | ||
8515 | const char * | |
8516 | bfd_elf_get_dt_soname (bfd *abfd) | |
8517 | { | |
8518 | if (bfd_get_flavour (abfd) == bfd_target_elf_flavour | |
8519 | && bfd_get_format (abfd) == bfd_object) | |
8520 | return elf_dt_name (abfd); | |
8521 | return NULL; | |
8522 | } | |
8523 | ||
8524 | /* Get the list of DT_NEEDED entries from a BFD. This is a hook for | |
8525 | the ELF linker emulation code. */ | |
8526 | ||
8527 | bool | |
8528 | bfd_elf_get_bfd_needed_list (bfd *abfd, | |
8529 | struct bfd_link_needed_list **pneeded) | |
8530 | { | |
8531 | asection *s; | |
8532 | bfd_byte *dynbuf = NULL; | |
8533 | unsigned int elfsec; | |
8534 | unsigned long shlink; | |
8535 | bfd_byte *extdyn, *extdynend; | |
8536 | size_t extdynsize; | |
8537 | void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); | |
8538 | ||
8539 | *pneeded = NULL; | |
8540 | ||
8541 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour | |
8542 | || bfd_get_format (abfd) != bfd_object) | |
8543 | return true; | |
8544 | ||
8545 | s = bfd_get_section_by_name (abfd, ".dynamic"); | |
8546 | if (s == NULL || s->size == 0 || (s->flags & SEC_HAS_CONTENTS) == 0) | |
8547 | return true; | |
8548 | ||
8549 | if (!_bfd_elf_mmap_section_contents (abfd, s, &dynbuf)) | |
8550 | goto error_return; | |
8551 | ||
8552 | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | |
8553 | if (elfsec == SHN_BAD) | |
8554 | goto error_return; | |
8555 | ||
8556 | shlink = elf_elfsections (abfd)[elfsec]->sh_link; | |
8557 | ||
8558 | extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; | |
8559 | swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; | |
8560 | ||
8561 | for (extdyn = dynbuf, extdynend = dynbuf + s->size; | |
8562 | (size_t) (extdynend - extdyn) >= extdynsize; | |
8563 | extdyn += extdynsize) | |
8564 | { | |
8565 | Elf_Internal_Dyn dyn; | |
8566 | ||
8567 | (*swap_dyn_in) (abfd, extdyn, &dyn); | |
8568 | ||
8569 | if (dyn.d_tag == DT_NULL) | |
8570 | break; | |
8571 | ||
8572 | if (dyn.d_tag == DT_NEEDED) | |
8573 | { | |
8574 | const char *string; | |
8575 | struct bfd_link_needed_list *l; | |
8576 | unsigned int tagv = dyn.d_un.d_val; | |
8577 | size_t amt; | |
8578 | ||
8579 | string = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | |
8580 | if (string == NULL) | |
8581 | goto error_return; | |
8582 | ||
8583 | amt = sizeof *l; | |
8584 | l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); | |
8585 | if (l == NULL) | |
8586 | goto error_return; | |
8587 | ||
8588 | l->by = abfd; | |
8589 | l->name = string; | |
8590 | l->next = *pneeded; | |
8591 | *pneeded = l; | |
8592 | } | |
8593 | } | |
8594 | ||
8595 | _bfd_elf_munmap_section_contents (s, dynbuf); | |
8596 | ||
8597 | return true; | |
8598 | ||
8599 | error_return: | |
8600 | _bfd_elf_munmap_section_contents (s, dynbuf); | |
8601 | return false; | |
8602 | } | |
8603 | ||
8604 | struct elf_symbuf_symbol | |
8605 | { | |
8606 | unsigned long st_name; /* Symbol name, index in string tbl */ | |
8607 | unsigned char st_info; /* Type and binding attributes */ | |
8608 | unsigned char st_other; /* Visibilty, and target specific */ | |
8609 | }; | |
8610 | ||
8611 | struct elf_symbuf_head | |
8612 | { | |
8613 | struct elf_symbuf_symbol *ssym; | |
8614 | size_t count; | |
8615 | unsigned int st_shndx; | |
8616 | }; | |
8617 | ||
8618 | struct elf_symbol | |
8619 | { | |
8620 | union | |
8621 | { | |
8622 | Elf_Internal_Sym *isym; | |
8623 | struct elf_symbuf_symbol *ssym; | |
8624 | void *p; | |
8625 | } u; | |
8626 | const char *name; | |
8627 | }; | |
8628 | ||
8629 | /* Sort references to symbols by ascending section number. */ | |
8630 | ||
8631 | static int | |
8632 | elf_sort_elf_symbol (const void *arg1, const void *arg2) | |
8633 | { | |
8634 | const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1; | |
8635 | const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2; | |
8636 | ||
8637 | if (s1->st_shndx != s2->st_shndx) | |
8638 | return s1->st_shndx > s2->st_shndx ? 1 : -1; | |
8639 | /* Final sort by the address of the sym in the symbuf ensures | |
8640 | a stable sort. */ | |
8641 | if (s1 != s2) | |
8642 | return s1 > s2 ? 1 : -1; | |
8643 | return 0; | |
8644 | } | |
8645 | ||
8646 | static int | |
8647 | elf_sym_name_compare (const void *arg1, const void *arg2) | |
8648 | { | |
8649 | const struct elf_symbol *s1 = (const struct elf_symbol *) arg1; | |
8650 | const struct elf_symbol *s2 = (const struct elf_symbol *) arg2; | |
8651 | int ret = strcmp (s1->name, s2->name); | |
8652 | if (ret != 0) | |
8653 | return ret; | |
8654 | if (s1->u.p != s2->u.p) | |
8655 | return s1->u.p > s2->u.p ? 1 : -1; | |
8656 | return 0; | |
8657 | } | |
8658 | ||
8659 | static struct elf_symbuf_head * | |
8660 | elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf) | |
8661 | { | |
8662 | Elf_Internal_Sym **ind, **indbufend, **indbuf; | |
8663 | struct elf_symbuf_symbol *ssym; | |
8664 | struct elf_symbuf_head *ssymbuf, *ssymhead; | |
8665 | size_t i, shndx_count, total_size, amt; | |
8666 | ||
8667 | amt = symcount * sizeof (*indbuf); | |
8668 | indbuf = (Elf_Internal_Sym **) bfd_malloc (amt); | |
8669 | if (indbuf == NULL) | |
8670 | return NULL; | |
8671 | ||
8672 | for (ind = indbuf, i = 0; i < symcount; i++) | |
8673 | if (isymbuf[i].st_shndx != SHN_UNDEF) | |
8674 | *ind++ = &isymbuf[i]; | |
8675 | indbufend = ind; | |
8676 | ||
8677 | qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *), | |
8678 | elf_sort_elf_symbol); | |
8679 | ||
8680 | shndx_count = 0; | |
8681 | if (indbufend > indbuf) | |
8682 | for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++) | |
8683 | if (ind[0]->st_shndx != ind[1]->st_shndx) | |
8684 | shndx_count++; | |
8685 | ||
8686 | total_size = ((shndx_count + 1) * sizeof (*ssymbuf) | |
8687 | + (indbufend - indbuf) * sizeof (*ssym)); | |
8688 | ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size); | |
8689 | if (ssymbuf == NULL) | |
8690 | { | |
8691 | free (indbuf); | |
8692 | return NULL; | |
8693 | } | |
8694 | ||
8695 | ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1); | |
8696 | ssymbuf->ssym = NULL; | |
8697 | ssymbuf->count = shndx_count; | |
8698 | ssymbuf->st_shndx = 0; | |
8699 | for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++) | |
8700 | { | |
8701 | if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx) | |
8702 | { | |
8703 | ssymhead++; | |
8704 | ssymhead->ssym = ssym; | |
8705 | ssymhead->count = 0; | |
8706 | ssymhead->st_shndx = (*ind)->st_shndx; | |
8707 | } | |
8708 | ssym->st_name = (*ind)->st_name; | |
8709 | ssym->st_info = (*ind)->st_info; | |
8710 | ssym->st_other = (*ind)->st_other; | |
8711 | ssymhead->count++; | |
8712 | } | |
8713 | BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count | |
8714 | && (uintptr_t) ssym - (uintptr_t) ssymbuf == total_size); | |
8715 | ||
8716 | free (indbuf); | |
8717 | return ssymbuf; | |
8718 | } | |
8719 | ||
8720 | /* Check if 2 sections define the same set of local and global | |
8721 | symbols. */ | |
8722 | ||
8723 | static bool | |
8724 | bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2, | |
8725 | struct bfd_link_info *info) | |
8726 | { | |
8727 | bfd *bfd1, *bfd2; | |
8728 | const struct elf_backend_data *bed1, *bed2; | |
8729 | Elf_Internal_Shdr *hdr1, *hdr2; | |
8730 | size_t symcount1, symcount2; | |
8731 | Elf_Internal_Sym *isymbuf1, *isymbuf2; | |
8732 | struct elf_symbuf_head *ssymbuf1, *ssymbuf2; | |
8733 | Elf_Internal_Sym *isym, *isymend; | |
8734 | struct elf_symbol *symtable1 = NULL, *symtable2 = NULL; | |
8735 | size_t count1, count2, sec_count1, sec_count2, i; | |
8736 | unsigned int shndx1, shndx2; | |
8737 | bool result; | |
8738 | bool ignore_section_symbol_p; | |
8739 | ||
8740 | bfd1 = sec1->owner; | |
8741 | bfd2 = sec2->owner; | |
8742 | ||
8743 | /* Both sections have to be in ELF. */ | |
8744 | if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour | |
8745 | || bfd_get_flavour (bfd2) != bfd_target_elf_flavour) | |
8746 | return false; | |
8747 | ||
8748 | if (elf_section_type (sec1) != elf_section_type (sec2)) | |
8749 | return false; | |
8750 | ||
8751 | shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1); | |
8752 | shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2); | |
8753 | if (shndx1 == SHN_BAD || shndx2 == SHN_BAD) | |
8754 | return false; | |
8755 | ||
8756 | bed1 = get_elf_backend_data (bfd1); | |
8757 | bed2 = get_elf_backend_data (bfd2); | |
8758 | hdr1 = &elf_tdata (bfd1)->symtab_hdr; | |
8759 | symcount1 = hdr1->sh_size / bed1->s->sizeof_sym; | |
8760 | hdr2 = &elf_tdata (bfd2)->symtab_hdr; | |
8761 | symcount2 = hdr2->sh_size / bed2->s->sizeof_sym; | |
8762 | ||
8763 | if (symcount1 == 0 || symcount2 == 0) | |
8764 | return false; | |
8765 | ||
8766 | result = false; | |
8767 | isymbuf1 = NULL; | |
8768 | isymbuf2 = NULL; | |
8769 | ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf; | |
8770 | ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf; | |
8771 | ||
8772 | /* Ignore section symbols only when matching non-debugging sections | |
8773 | or linkonce section with comdat section. */ | |
8774 | ignore_section_symbol_p | |
8775 | = ((sec1->flags & SEC_DEBUGGING) == 0 | |
8776 | || ((elf_section_flags (sec1) & SHF_GROUP) | |
8777 | != (elf_section_flags (sec2) & SHF_GROUP))); | |
8778 | ||
8779 | if (ssymbuf1 == NULL) | |
8780 | { | |
8781 | isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0, | |
8782 | NULL, NULL, NULL); | |
8783 | if (isymbuf1 == NULL) | |
8784 | goto done; | |
8785 | ||
8786 | if (info != NULL && !info->reduce_memory_overheads) | |
8787 | { | |
8788 | ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1); | |
8789 | elf_tdata (bfd1)->symbuf = ssymbuf1; | |
8790 | } | |
8791 | } | |
8792 | ||
8793 | if (ssymbuf1 == NULL || ssymbuf2 == NULL) | |
8794 | { | |
8795 | isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0, | |
8796 | NULL, NULL, NULL); | |
8797 | if (isymbuf2 == NULL) | |
8798 | goto done; | |
8799 | ||
8800 | if (ssymbuf1 != NULL && info != NULL && !info->reduce_memory_overheads) | |
8801 | { | |
8802 | ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2); | |
8803 | elf_tdata (bfd2)->symbuf = ssymbuf2; | |
8804 | } | |
8805 | } | |
8806 | ||
8807 | if (ssymbuf1 != NULL && ssymbuf2 != NULL) | |
8808 | { | |
8809 | /* Optimized faster version. */ | |
8810 | size_t lo, hi, mid; | |
8811 | struct elf_symbol *symp; | |
8812 | struct elf_symbuf_symbol *ssym, *ssymend; | |
8813 | ||
8814 | lo = 0; | |
8815 | hi = ssymbuf1->count; | |
8816 | ssymbuf1++; | |
8817 | count1 = 0; | |
8818 | sec_count1 = 0; | |
8819 | while (lo < hi) | |
8820 | { | |
8821 | mid = (lo + hi) / 2; | |
8822 | if (shndx1 < ssymbuf1[mid].st_shndx) | |
8823 | hi = mid; | |
8824 | else if (shndx1 > ssymbuf1[mid].st_shndx) | |
8825 | lo = mid + 1; | |
8826 | else | |
8827 | { | |
8828 | count1 = ssymbuf1[mid].count; | |
8829 | ssymbuf1 += mid; | |
8830 | break; | |
8831 | } | |
8832 | } | |
8833 | if (ignore_section_symbol_p) | |
8834 | { | |
8835 | for (i = 0; i < count1; i++) | |
8836 | if (ELF_ST_TYPE (ssymbuf1->ssym[i].st_info) == STT_SECTION) | |
8837 | sec_count1++; | |
8838 | count1 -= sec_count1; | |
8839 | } | |
8840 | ||
8841 | lo = 0; | |
8842 | hi = ssymbuf2->count; | |
8843 | ssymbuf2++; | |
8844 | count2 = 0; | |
8845 | sec_count2 = 0; | |
8846 | while (lo < hi) | |
8847 | { | |
8848 | mid = (lo + hi) / 2; | |
8849 | if (shndx2 < ssymbuf2[mid].st_shndx) | |
8850 | hi = mid; | |
8851 | else if (shndx2 > ssymbuf2[mid].st_shndx) | |
8852 | lo = mid + 1; | |
8853 | else | |
8854 | { | |
8855 | count2 = ssymbuf2[mid].count; | |
8856 | ssymbuf2 += mid; | |
8857 | break; | |
8858 | } | |
8859 | } | |
8860 | if (ignore_section_symbol_p) | |
8861 | { | |
8862 | for (i = 0; i < count2; i++) | |
8863 | if (ELF_ST_TYPE (ssymbuf2->ssym[i].st_info) == STT_SECTION) | |
8864 | sec_count2++; | |
8865 | count2 -= sec_count2; | |
8866 | } | |
8867 | ||
8868 | if (count1 == 0 || count2 == 0 || count1 != count2) | |
8869 | goto done; | |
8870 | ||
8871 | symtable1 | |
8872 | = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1)); | |
8873 | symtable2 | |
8874 | = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2)); | |
8875 | if (symtable1 == NULL || symtable2 == NULL) | |
8876 | goto done; | |
8877 | ||
8878 | symp = symtable1; | |
8879 | for (ssym = ssymbuf1->ssym, ssymend = ssym + count1 + sec_count1; | |
8880 | ssym < ssymend; ssym++) | |
8881 | if (sec_count1 == 0 | |
8882 | || ELF_ST_TYPE (ssym->st_info) != STT_SECTION) | |
8883 | { | |
8884 | symp->u.ssym = ssym; | |
8885 | symp->name = bfd_elf_string_from_elf_section (bfd1, | |
8886 | hdr1->sh_link, | |
8887 | ssym->st_name); | |
8888 | if (symp->name == NULL) | |
8889 | goto done; | |
8890 | symp++; | |
8891 | } | |
8892 | ||
8893 | symp = symtable2; | |
8894 | for (ssym = ssymbuf2->ssym, ssymend = ssym + count2 + sec_count2; | |
8895 | ssym < ssymend; ssym++) | |
8896 | if (sec_count2 == 0 | |
8897 | || ELF_ST_TYPE (ssym->st_info) != STT_SECTION) | |
8898 | { | |
8899 | symp->u.ssym = ssym; | |
8900 | symp->name = bfd_elf_string_from_elf_section (bfd2, | |
8901 | hdr2->sh_link, | |
8902 | ssym->st_name); | |
8903 | if (symp->name == NULL) | |
8904 | goto done; | |
8905 | symp++; | |
8906 | } | |
8907 | ||
8908 | /* Sort symbol by name. */ | |
8909 | qsort (symtable1, count1, sizeof (struct elf_symbol), | |
8910 | elf_sym_name_compare); | |
8911 | qsort (symtable2, count1, sizeof (struct elf_symbol), | |
8912 | elf_sym_name_compare); | |
8913 | ||
8914 | for (i = 0; i < count1; i++) | |
8915 | /* Two symbols must have the same binding, type and name. */ | |
8916 | if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info | |
8917 | || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other | |
8918 | || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) | |
8919 | goto done; | |
8920 | ||
8921 | result = true; | |
8922 | goto done; | |
8923 | } | |
8924 | ||
8925 | symtable1 = (struct elf_symbol *) | |
8926 | bfd_malloc (symcount1 * sizeof (struct elf_symbol)); | |
8927 | symtable2 = (struct elf_symbol *) | |
8928 | bfd_malloc (symcount2 * sizeof (struct elf_symbol)); | |
8929 | if (symtable1 == NULL || symtable2 == NULL) | |
8930 | goto done; | |
8931 | ||
8932 | /* Count definitions in the section. */ | |
8933 | count1 = 0; | |
8934 | for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++) | |
8935 | if (isym->st_shndx == shndx1 | |
8936 | && (!ignore_section_symbol_p | |
8937 | || ELF_ST_TYPE (isym->st_info) != STT_SECTION)) | |
8938 | symtable1[count1++].u.isym = isym; | |
8939 | ||
8940 | count2 = 0; | |
8941 | for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++) | |
8942 | if (isym->st_shndx == shndx2 | |
8943 | && (!ignore_section_symbol_p | |
8944 | || ELF_ST_TYPE (isym->st_info) != STT_SECTION)) | |
8945 | symtable2[count2++].u.isym = isym; | |
8946 | ||
8947 | if (count1 == 0 || count2 == 0 || count1 != count2) | |
8948 | goto done; | |
8949 | ||
8950 | for (i = 0; i < count1; i++) | |
8951 | { | |
8952 | symtable1[i].name | |
8953 | = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link, | |
8954 | symtable1[i].u.isym->st_name); | |
8955 | if (symtable1[i].name == NULL) | |
8956 | goto done; | |
8957 | } | |
8958 | ||
8959 | for (i = 0; i < count2; i++) | |
8960 | { | |
8961 | symtable2[i].name | |
8962 | = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link, | |
8963 | symtable2[i].u.isym->st_name); | |
8964 | if (symtable2[i].name == NULL) | |
8965 | goto done; | |
8966 | } | |
8967 | ||
8968 | /* Sort symbol by name. */ | |
8969 | qsort (symtable1, count1, sizeof (struct elf_symbol), | |
8970 | elf_sym_name_compare); | |
8971 | qsort (symtable2, count1, sizeof (struct elf_symbol), | |
8972 | elf_sym_name_compare); | |
8973 | ||
8974 | for (i = 0; i < count1; i++) | |
8975 | /* Two symbols must have the same binding, type and name. */ | |
8976 | if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info | |
8977 | || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other | |
8978 | || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) | |
8979 | goto done; | |
8980 | ||
8981 | result = true; | |
8982 | ||
8983 | done: | |
8984 | free (symtable1); | |
8985 | free (symtable2); | |
8986 | free (isymbuf1); | |
8987 | free (isymbuf2); | |
8988 | ||
8989 | return result; | |
8990 | } | |
8991 | ||
8992 | /* Return TRUE if 2 section types are compatible. */ | |
8993 | ||
8994 | bool | |
8995 | _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec, | |
8996 | bfd *bbfd, const asection *bsec) | |
8997 | { | |
8998 | if (asec == NULL | |
8999 | || bsec == NULL | |
9000 | || abfd->xvec->flavour != bfd_target_elf_flavour | |
9001 | || bbfd->xvec->flavour != bfd_target_elf_flavour) | |
9002 | return true; | |
9003 | ||
9004 | return elf_section_type (asec) == elf_section_type (bsec); | |
9005 | } | |
9006 | \f | |
9007 | /* Final phase of ELF linker. */ | |
9008 | ||
9009 | /* A structure we use to avoid passing large numbers of arguments. */ | |
9010 | ||
9011 | struct elf_final_link_info | |
9012 | { | |
9013 | /* General link information. */ | |
9014 | struct bfd_link_info *info; | |
9015 | /* Output BFD. */ | |
9016 | bfd *output_bfd; | |
9017 | /* Symbol string table. */ | |
9018 | struct elf_strtab_hash *symstrtab; | |
9019 | /* .hash section. */ | |
9020 | asection *hash_sec; | |
9021 | /* symbol version section (.gnu.version). */ | |
9022 | asection *symver_sec; | |
9023 | /* Buffer large enough to hold contents of any section. */ | |
9024 | bfd_byte *contents; | |
9025 | /* Buffer large enough to hold external relocs of any section. */ | |
9026 | void *external_relocs; | |
9027 | /* Buffer large enough to hold internal relocs of any section. */ | |
9028 | Elf_Internal_Rela *internal_relocs; | |
9029 | /* Buffer large enough to hold external local symbols of any input | |
9030 | BFD. */ | |
9031 | bfd_byte *external_syms; | |
9032 | /* And a buffer for symbol section indices. */ | |
9033 | Elf_External_Sym_Shndx *locsym_shndx; | |
9034 | /* Buffer large enough to hold internal local symbols of any input | |
9035 | BFD. */ | |
9036 | Elf_Internal_Sym *internal_syms; | |
9037 | /* Array large enough to hold a symbol index for each local symbol | |
9038 | of any input BFD. */ | |
9039 | long *indices; | |
9040 | /* Array large enough to hold a section pointer for each local | |
9041 | symbol of any input BFD. */ | |
9042 | asection **sections; | |
9043 | /* Buffer for SHT_SYMTAB_SHNDX section. */ | |
9044 | Elf_External_Sym_Shndx *symshndxbuf; | |
9045 | /* Number of STT_FILE syms seen. */ | |
9046 | size_t filesym_count; | |
9047 | /* Local symbol hash table. */ | |
9048 | struct bfd_hash_table local_hash_table; | |
9049 | }; | |
9050 | ||
9051 | struct local_hash_entry | |
9052 | { | |
9053 | /* Base hash table entry structure. */ | |
9054 | struct bfd_hash_entry root; | |
9055 | /* Size of the local symbol name. */ | |
9056 | size_t size; | |
9057 | /* Number of the duplicated local symbol names. */ | |
9058 | long count; | |
9059 | }; | |
9060 | ||
9061 | /* Create an entry in the local symbol hash table. */ | |
9062 | ||
9063 | static struct bfd_hash_entry * | |
9064 | local_hash_newfunc (struct bfd_hash_entry *entry, | |
9065 | struct bfd_hash_table *table, | |
9066 | const char *string) | |
9067 | { | |
9068 | ||
9069 | /* Allocate the structure if it has not already been allocated by a | |
9070 | subclass. */ | |
9071 | if (entry == NULL) | |
9072 | { | |
9073 | entry = bfd_hash_allocate (table, | |
9074 | sizeof (struct local_hash_entry)); | |
9075 | if (entry == NULL) | |
9076 | return entry; | |
9077 | } | |
9078 | ||
9079 | /* Call the allocation method of the superclass. */ | |
9080 | entry = bfd_hash_newfunc (entry, table, string); | |
9081 | if (entry != NULL) | |
9082 | { | |
9083 | ((struct local_hash_entry *) entry)->count = 0; | |
9084 | ((struct local_hash_entry *) entry)->size = 0; | |
9085 | } | |
9086 | ||
9087 | return entry; | |
9088 | } | |
9089 | ||
9090 | /* This struct is used to pass information to elf_link_output_extsym. */ | |
9091 | ||
9092 | struct elf_outext_info | |
9093 | { | |
9094 | bool failed; | |
9095 | bool localsyms; | |
9096 | bool file_sym_done; | |
9097 | struct elf_final_link_info *flinfo; | |
9098 | }; | |
9099 | ||
9100 | ||
9101 | /* Support for evaluating a complex relocation. | |
9102 | ||
9103 | Complex relocations are generalized, self-describing relocations. The | |
9104 | implementation of them consists of two parts: complex symbols, and the | |
9105 | relocations themselves. | |
9106 | ||
9107 | The relocations use a reserved elf-wide relocation type code (R_RELC | |
9108 | external / BFD_RELOC_RELC internal) and an encoding of relocation field | |
9109 | information (start bit, end bit, word width, etc) into the addend. This | |
9110 | information is extracted from CGEN-generated operand tables within gas. | |
9111 | ||
9112 | Complex symbols are mangled symbols (STT_RELC external / BSF_RELC | |
9113 | internal) representing prefix-notation expressions, including but not | |
9114 | limited to those sorts of expressions normally encoded as addends in the | |
9115 | addend field. The symbol mangling format is: | |
9116 | ||
9117 | <node> := <literal> | |
9118 | | <unary-operator> ':' <node> | |
9119 | | <binary-operator> ':' <node> ':' <node> | |
9120 | ; | |
9121 | ||
9122 | <literal> := 's' <digits=N> ':' <N character symbol name> | |
9123 | | 'S' <digits=N> ':' <N character section name> | |
9124 | | '#' <hexdigits> | |
9125 | ; | |
9126 | ||
9127 | <binary-operator> := as in C | |
9128 | <unary-operator> := as in C, plus "0-" for unambiguous negation. */ | |
9129 | ||
9130 | static void | |
9131 | set_symbol_value (bfd *bfd_with_globals, | |
9132 | Elf_Internal_Sym *isymbuf, | |
9133 | size_t locsymcount, | |
9134 | size_t symidx, | |
9135 | bfd_vma val) | |
9136 | { | |
9137 | struct elf_link_hash_entry *h; | |
9138 | size_t extsymoff = locsymcount; | |
9139 | ||
9140 | if (symidx < locsymcount) | |
9141 | { | |
9142 | Elf_Internal_Sym *sym; | |
9143 | ||
9144 | sym = isymbuf + symidx; | |
9145 | if (ELF_ST_BIND (sym->st_info) == STB_LOCAL) | |
9146 | { | |
9147 | /* It is a local symbol: move it to the | |
9148 | "absolute" section and give it a value. */ | |
9149 | sym->st_shndx = SHN_ABS; | |
9150 | sym->st_value = val; | |
9151 | return; | |
9152 | } | |
9153 | BFD_ASSERT (elf_bad_symtab (bfd_with_globals)); | |
9154 | extsymoff = 0; | |
9155 | } | |
9156 | ||
9157 | /* It is a global symbol: set its link type | |
9158 | to "defined" and give it a value. */ | |
9159 | h = get_link_hash_entry (elf_sym_hashes (bfd_with_globals), symidx, extsymoff); | |
9160 | if (h == NULL) | |
9161 | { | |
9162 | /* FIXMEL What should we do ? */ | |
9163 | return; | |
9164 | } | |
9165 | h->root.type = bfd_link_hash_defined; | |
9166 | h->root.u.def.value = val; | |
9167 | h->root.u.def.section = bfd_abs_section_ptr; | |
9168 | } | |
9169 | ||
9170 | static bool | |
9171 | resolve_symbol (const char *name, | |
9172 | bfd *input_bfd, | |
9173 | struct elf_final_link_info *flinfo, | |
9174 | bfd_vma *result, | |
9175 | Elf_Internal_Sym *isymbuf, | |
9176 | size_t locsymcount) | |
9177 | { | |
9178 | Elf_Internal_Sym *sym; | |
9179 | struct bfd_link_hash_entry *global_entry; | |
9180 | const char *candidate = NULL; | |
9181 | Elf_Internal_Shdr *symtab_hdr; | |
9182 | size_t i; | |
9183 | ||
9184 | symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; | |
9185 | ||
9186 | for (i = 0; i < locsymcount; ++ i) | |
9187 | { | |
9188 | sym = isymbuf + i; | |
9189 | ||
9190 | if (ELF_ST_BIND (sym->st_info) != STB_LOCAL) | |
9191 | continue; | |
9192 | ||
9193 | candidate = bfd_elf_string_from_elf_section (input_bfd, | |
9194 | symtab_hdr->sh_link, | |
9195 | sym->st_name); | |
9196 | #ifdef DEBUG | |
9197 | printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n", | |
9198 | name, candidate, (unsigned long) sym->st_value); | |
9199 | #endif | |
9200 | if (candidate && strcmp (candidate, name) == 0) | |
9201 | { | |
9202 | asection *sec = flinfo->sections [i]; | |
9203 | ||
9204 | *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0); | |
9205 | *result += sec->output_offset + sec->output_section->vma; | |
9206 | #ifdef DEBUG | |
9207 | printf ("Found symbol with value %8.8lx\n", | |
9208 | (unsigned long) *result); | |
9209 | #endif | |
9210 | return true; | |
9211 | } | |
9212 | } | |
9213 | ||
9214 | /* Hmm, haven't found it yet. perhaps it is a global. */ | |
9215 | global_entry = bfd_link_hash_lookup (flinfo->info->hash, name, | |
9216 | false, false, true); | |
9217 | if (!global_entry) | |
9218 | return false; | |
9219 | ||
9220 | if (global_entry->type == bfd_link_hash_defined | |
9221 | || global_entry->type == bfd_link_hash_defweak) | |
9222 | { | |
9223 | *result = (global_entry->u.def.value | |
9224 | + global_entry->u.def.section->output_section->vma | |
9225 | + global_entry->u.def.section->output_offset); | |
9226 | #ifdef DEBUG | |
9227 | printf ("Found GLOBAL symbol '%s' with value %8.8lx\n", | |
9228 | global_entry->root.string, (unsigned long) *result); | |
9229 | #endif | |
9230 | return true; | |
9231 | } | |
9232 | ||
9233 | return false; | |
9234 | } | |
9235 | ||
9236 | /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in | |
9237 | bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section | |
9238 | names like "foo.end" which is the end address of section "foo". */ | |
9239 | ||
9240 | static bool | |
9241 | resolve_section (const char *name, | |
9242 | asection *sections, | |
9243 | bfd_vma *result, | |
9244 | bfd * abfd) | |
9245 | { | |
9246 | asection *curr; | |
9247 | unsigned int len; | |
9248 | ||
9249 | for (curr = sections; curr; curr = curr->next) | |
9250 | if (strcmp (curr->name, name) == 0) | |
9251 | { | |
9252 | *result = curr->vma; | |
9253 | return true; | |
9254 | } | |
9255 | ||
9256 | /* Hmm. still haven't found it. try pseudo-section names. */ | |
9257 | /* FIXME: This could be coded more efficiently... */ | |
9258 | for (curr = sections; curr; curr = curr->next) | |
9259 | { | |
9260 | len = strlen (curr->name); | |
9261 | if (len > strlen (name)) | |
9262 | continue; | |
9263 | ||
9264 | if (strncmp (curr->name, name, len) == 0) | |
9265 | { | |
9266 | if (startswith (name + len, ".end")) | |
9267 | { | |
9268 | *result = (curr->vma | |
9269 | + curr->size / bfd_octets_per_byte (abfd, curr)); | |
9270 | return true; | |
9271 | } | |
9272 | ||
9273 | /* Insert more pseudo-section names here, if you like. */ | |
9274 | } | |
9275 | } | |
9276 | ||
9277 | return false; | |
9278 | } | |
9279 | ||
9280 | static void | |
9281 | undefined_reference (const char *reftype, const char *name) | |
9282 | { | |
9283 | /* xgettext:c-format */ | |
9284 | _bfd_error_handler (_("undefined %s reference in complex symbol: %s"), | |
9285 | reftype, name); | |
9286 | bfd_set_error (bfd_error_bad_value); | |
9287 | } | |
9288 | ||
9289 | static bool | |
9290 | eval_symbol (bfd_vma *result, | |
9291 | const char **symp, | |
9292 | bfd *input_bfd, | |
9293 | struct elf_final_link_info *flinfo, | |
9294 | bfd_vma dot, | |
9295 | Elf_Internal_Sym *isymbuf, | |
9296 | size_t locsymcount, | |
9297 | int signed_p) | |
9298 | { | |
9299 | size_t len; | |
9300 | size_t symlen; | |
9301 | bfd_vma a; | |
9302 | bfd_vma b; | |
9303 | char symbuf[4096]; | |
9304 | const char *sym = *symp; | |
9305 | const char *symend; | |
9306 | bool symbol_is_section = false; | |
9307 | ||
9308 | len = strlen (sym); | |
9309 | symend = sym + len; | |
9310 | ||
9311 | if (len < 1 || len > sizeof (symbuf)) | |
9312 | { | |
9313 | bfd_set_error (bfd_error_invalid_operation); | |
9314 | return false; | |
9315 | } | |
9316 | ||
9317 | switch (* sym) | |
9318 | { | |
9319 | case '.': | |
9320 | *result = dot; | |
9321 | *symp = sym + 1; | |
9322 | return true; | |
9323 | ||
9324 | case '#': | |
9325 | ++sym; | |
9326 | *result = strtoul (sym, (char **) symp, 16); | |
9327 | return true; | |
9328 | ||
9329 | case 'S': | |
9330 | symbol_is_section = true; | |
9331 | /* Fall through. */ | |
9332 | case 's': | |
9333 | ++sym; | |
9334 | symlen = strtol (sym, (char **) symp, 10); | |
9335 | sym = *symp + 1; /* Skip the trailing ':'. */ | |
9336 | ||
9337 | if (symend < sym || symlen + 1 > sizeof (symbuf)) | |
9338 | { | |
9339 | bfd_set_error (bfd_error_invalid_operation); | |
9340 | return false; | |
9341 | } | |
9342 | ||
9343 | memcpy (symbuf, sym, symlen); | |
9344 | symbuf[symlen] = '\0'; | |
9345 | *symp = sym + symlen; | |
9346 | ||
9347 | /* Is it always possible, with complex symbols, that gas "mis-guessed" | |
9348 | the symbol as a section, or vice-versa. so we're pretty liberal in our | |
9349 | interpretation here; section means "try section first", not "must be a | |
9350 | section", and likewise with symbol. */ | |
9351 | ||
9352 | if (symbol_is_section) | |
9353 | { | |
9354 | if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd) | |
9355 | && !resolve_symbol (symbuf, input_bfd, flinfo, result, | |
9356 | isymbuf, locsymcount)) | |
9357 | { | |
9358 | undefined_reference ("section", symbuf); | |
9359 | return false; | |
9360 | } | |
9361 | } | |
9362 | else | |
9363 | { | |
9364 | if (!resolve_symbol (symbuf, input_bfd, flinfo, result, | |
9365 | isymbuf, locsymcount) | |
9366 | && !resolve_section (symbuf, flinfo->output_bfd->sections, | |
9367 | result, input_bfd)) | |
9368 | { | |
9369 | undefined_reference ("symbol", symbuf); | |
9370 | return false; | |
9371 | } | |
9372 | } | |
9373 | ||
9374 | return true; | |
9375 | ||
9376 | /* All that remains are operators. */ | |
9377 | ||
9378 | #define UNARY_OP(op) \ | |
9379 | if (startswith (sym, #op)) \ | |
9380 | { \ | |
9381 | sym += strlen (#op); \ | |
9382 | if (*sym == ':') \ | |
9383 | ++sym; \ | |
9384 | *symp = sym; \ | |
9385 | if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \ | |
9386 | isymbuf, locsymcount, signed_p)) \ | |
9387 | return false; \ | |
9388 | if (signed_p) \ | |
9389 | *result = op ((bfd_signed_vma) a); \ | |
9390 | else \ | |
9391 | *result = op a; \ | |
9392 | return true; \ | |
9393 | } | |
9394 | ||
9395 | #define BINARY_OP_HEAD(op) \ | |
9396 | if (startswith (sym, #op)) \ | |
9397 | { \ | |
9398 | sym += strlen (#op); \ | |
9399 | if (*sym == ':') \ | |
9400 | ++sym; \ | |
9401 | *symp = sym; \ | |
9402 | if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \ | |
9403 | isymbuf, locsymcount, signed_p)) \ | |
9404 | return false; \ | |
9405 | ++*symp; \ | |
9406 | if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \ | |
9407 | isymbuf, locsymcount, signed_p)) \ | |
9408 | return false; | |
9409 | #define BINARY_OP_TAIL(op) \ | |
9410 | if (signed_p) \ | |
9411 | *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \ | |
9412 | else \ | |
9413 | *result = a op b; \ | |
9414 | return true; \ | |
9415 | } | |
9416 | #define BINARY_OP(op) BINARY_OP_HEAD(op) BINARY_OP_TAIL(op) | |
9417 | ||
9418 | default: | |
9419 | UNARY_OP (0-); | |
9420 | BINARY_OP_HEAD (<<); | |
9421 | if (b >= sizeof (a) * CHAR_BIT) | |
9422 | { | |
9423 | *result = 0; | |
9424 | return true; | |
9425 | } | |
9426 | signed_p = 0; | |
9427 | BINARY_OP_TAIL (<<); | |
9428 | BINARY_OP_HEAD (>>); | |
9429 | if (b >= sizeof (a) * CHAR_BIT) | |
9430 | { | |
9431 | *result = signed_p && (bfd_signed_vma) a < 0 ? -1 : 0; | |
9432 | return true; | |
9433 | } | |
9434 | BINARY_OP_TAIL (>>); | |
9435 | BINARY_OP (==); | |
9436 | BINARY_OP (!=); | |
9437 | BINARY_OP (<=); | |
9438 | BINARY_OP (>=); | |
9439 | BINARY_OP (&&); | |
9440 | BINARY_OP (||); | |
9441 | UNARY_OP (~); | |
9442 | UNARY_OP (!); | |
9443 | BINARY_OP (*); | |
9444 | BINARY_OP_HEAD (/); | |
9445 | if (b == 0) | |
9446 | { | |
9447 | _bfd_error_handler (_("division by zero")); | |
9448 | bfd_set_error (bfd_error_bad_value); | |
9449 | return false; | |
9450 | } | |
9451 | BINARY_OP_TAIL (/); | |
9452 | BINARY_OP_HEAD (%); | |
9453 | if (b == 0) | |
9454 | { | |
9455 | _bfd_error_handler (_("division by zero")); | |
9456 | bfd_set_error (bfd_error_bad_value); | |
9457 | return false; | |
9458 | } | |
9459 | BINARY_OP_TAIL (%); | |
9460 | BINARY_OP (^); | |
9461 | BINARY_OP (|); | |
9462 | BINARY_OP (&); | |
9463 | BINARY_OP (+); | |
9464 | BINARY_OP (-); | |
9465 | BINARY_OP (<); | |
9466 | BINARY_OP (>); | |
9467 | #undef UNARY_OP | |
9468 | #undef BINARY_OP | |
9469 | _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym); | |
9470 | bfd_set_error (bfd_error_invalid_operation); | |
9471 | return false; | |
9472 | } | |
9473 | } | |
9474 | ||
9475 | static void | |
9476 | put_value (bfd_vma size, | |
9477 | unsigned long chunksz, | |
9478 | bfd *input_bfd, | |
9479 | bfd_vma x, | |
9480 | bfd_byte *location) | |
9481 | { | |
9482 | location += (size - chunksz); | |
9483 | ||
9484 | for (; size; size -= chunksz, location -= chunksz) | |
9485 | { | |
9486 | switch (chunksz) | |
9487 | { | |
9488 | case 1: | |
9489 | bfd_put_8 (input_bfd, x, location); | |
9490 | x >>= 8; | |
9491 | break; | |
9492 | case 2: | |
9493 | bfd_put_16 (input_bfd, x, location); | |
9494 | x >>= 16; | |
9495 | break; | |
9496 | case 4: | |
9497 | bfd_put_32 (input_bfd, x, location); | |
9498 | /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */ | |
9499 | x >>= 16; | |
9500 | x >>= 16; | |
9501 | break; | |
9502 | #ifdef BFD64 | |
9503 | case 8: | |
9504 | bfd_put_64 (input_bfd, x, location); | |
9505 | /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */ | |
9506 | x >>= 32; | |
9507 | x >>= 32; | |
9508 | break; | |
9509 | #endif | |
9510 | default: | |
9511 | abort (); | |
9512 | break; | |
9513 | } | |
9514 | } | |
9515 | } | |
9516 | ||
9517 | static bfd_vma | |
9518 | get_value (bfd_vma size, | |
9519 | unsigned long chunksz, | |
9520 | bfd *input_bfd, | |
9521 | bfd_byte *location) | |
9522 | { | |
9523 | int shift; | |
9524 | bfd_vma x = 0; | |
9525 | ||
9526 | /* Sanity checks. */ | |
9527 | BFD_ASSERT (chunksz <= sizeof (x) | |
9528 | && size >= chunksz | |
9529 | && chunksz != 0 | |
9530 | && (size % chunksz) == 0 | |
9531 | && input_bfd != NULL | |
9532 | && location != NULL); | |
9533 | ||
9534 | if (chunksz == sizeof (x)) | |
9535 | { | |
9536 | BFD_ASSERT (size == chunksz); | |
9537 | ||
9538 | /* Make sure that we do not perform an undefined shift operation. | |
9539 | We know that size == chunksz so there will only be one iteration | |
9540 | of the loop below. */ | |
9541 | shift = 0; | |
9542 | } | |
9543 | else | |
9544 | shift = 8 * chunksz; | |
9545 | ||
9546 | for (; size; size -= chunksz, location += chunksz) | |
9547 | { | |
9548 | switch (chunksz) | |
9549 | { | |
9550 | case 1: | |
9551 | x = (x << shift) | bfd_get_8 (input_bfd, location); | |
9552 | break; | |
9553 | case 2: | |
9554 | x = (x << shift) | bfd_get_16 (input_bfd, location); | |
9555 | break; | |
9556 | case 4: | |
9557 | x = (x << shift) | bfd_get_32 (input_bfd, location); | |
9558 | break; | |
9559 | #ifdef BFD64 | |
9560 | case 8: | |
9561 | x = (x << shift) | bfd_get_64 (input_bfd, location); | |
9562 | break; | |
9563 | #endif | |
9564 | default: | |
9565 | abort (); | |
9566 | } | |
9567 | } | |
9568 | return x; | |
9569 | } | |
9570 | ||
9571 | static void | |
9572 | decode_complex_addend (unsigned long *start, /* in bits */ | |
9573 | unsigned long *oplen, /* in bits */ | |
9574 | unsigned long *len, /* in bits */ | |
9575 | unsigned long *wordsz, /* in bytes */ | |
9576 | unsigned long *chunksz, /* in bytes */ | |
9577 | unsigned long *lsb0_p, | |
9578 | unsigned long *signed_p, | |
9579 | unsigned long *trunc_p, | |
9580 | unsigned long encoded) | |
9581 | { | |
9582 | * start = encoded & 0x3F; | |
9583 | * len = (encoded >> 6) & 0x3F; | |
9584 | * oplen = (encoded >> 12) & 0x3F; | |
9585 | * wordsz = (encoded >> 18) & 0xF; | |
9586 | * chunksz = (encoded >> 22) & 0xF; | |
9587 | * lsb0_p = (encoded >> 27) & 1; | |
9588 | * signed_p = (encoded >> 28) & 1; | |
9589 | * trunc_p = (encoded >> 29) & 1; | |
9590 | } | |
9591 | ||
9592 | bfd_reloc_status_type | |
9593 | bfd_elf_perform_complex_relocation (bfd *input_bfd, | |
9594 | asection *input_section, | |
9595 | bfd_byte *contents, | |
9596 | Elf_Internal_Rela *rel, | |
9597 | bfd_vma relocation) | |
9598 | { | |
9599 | bfd_vma shift, x, mask; | |
9600 | unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p; | |
9601 | bfd_reloc_status_type r; | |
9602 | bfd_size_type octets; | |
9603 | ||
9604 | /* Perform this reloc, since it is complex. | |
9605 | (this is not to say that it necessarily refers to a complex | |
9606 | symbol; merely that it is a self-describing CGEN based reloc. | |
9607 | i.e. the addend has the complete reloc information (bit start, end, | |
9608 | word size, etc) encoded within it.). */ | |
9609 | ||
9610 | decode_complex_addend (&start, &oplen, &len, &wordsz, | |
9611 | &chunksz, &lsb0_p, &signed_p, | |
9612 | &trunc_p, rel->r_addend); | |
9613 | ||
9614 | mask = (((1L << (len - 1)) - 1) << 1) | 1; | |
9615 | ||
9616 | if (lsb0_p) | |
9617 | shift = (start + 1) - len; | |
9618 | else | |
9619 | shift = (8 * wordsz) - (start + len); | |
9620 | ||
9621 | octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section); | |
9622 | x = get_value (wordsz, chunksz, input_bfd, contents + octets); | |
9623 | ||
9624 | #ifdef DEBUG | |
9625 | printf ("Doing complex reloc: " | |
9626 | "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, " | |
9627 | "chunksz %ld, start %ld, len %ld, oplen %ld\n" | |
9628 | " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n", | |
9629 | lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len, | |
9630 | oplen, (unsigned long) x, (unsigned long) mask, | |
9631 | (unsigned long) relocation); | |
9632 | #endif | |
9633 | ||
9634 | r = bfd_reloc_ok; | |
9635 | if (! trunc_p) | |
9636 | /* Now do an overflow check. */ | |
9637 | r = bfd_check_overflow ((signed_p | |
9638 | ? complain_overflow_signed | |
9639 | : complain_overflow_unsigned), | |
9640 | len, 0, (8 * wordsz), | |
9641 | relocation); | |
9642 | ||
9643 | /* Do the deed. */ | |
9644 | x = (x & ~(mask << shift)) | ((relocation & mask) << shift); | |
9645 | ||
9646 | #ifdef DEBUG | |
9647 | printf (" relocation: %8.8lx\n" | |
9648 | " shifted mask: %8.8lx\n" | |
9649 | " shifted/masked reloc: %8.8lx\n" | |
9650 | " result: %8.8lx\n", | |
9651 | (unsigned long) relocation, (unsigned long) (mask << shift), | |
9652 | (unsigned long) ((relocation & mask) << shift), (unsigned long) x); | |
9653 | #endif | |
9654 | put_value (wordsz, chunksz, input_bfd, x, contents + octets); | |
9655 | return r; | |
9656 | } | |
9657 | ||
9658 | /* Functions to read r_offset from external (target order) reloc | |
9659 | entry. Faster than bfd_getl32 et al, because we let the compiler | |
9660 | know the value is aligned. */ | |
9661 | ||
9662 | static bfd_vma | |
9663 | ext32l_r_offset (const void *p) | |
9664 | { | |
9665 | union aligned32 | |
9666 | { | |
9667 | uint32_t v; | |
9668 | unsigned char c[4]; | |
9669 | }; | |
9670 | const union aligned32 *a | |
9671 | = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset; | |
9672 | ||
9673 | uint32_t aval = ( (uint32_t) a->c[0] | |
9674 | | (uint32_t) a->c[1] << 8 | |
9675 | | (uint32_t) a->c[2] << 16 | |
9676 | | (uint32_t) a->c[3] << 24); | |
9677 | return aval; | |
9678 | } | |
9679 | ||
9680 | static bfd_vma | |
9681 | ext32b_r_offset (const void *p) | |
9682 | { | |
9683 | union aligned32 | |
9684 | { | |
9685 | uint32_t v; | |
9686 | unsigned char c[4]; | |
9687 | }; | |
9688 | const union aligned32 *a | |
9689 | = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset; | |
9690 | ||
9691 | uint32_t aval = ( (uint32_t) a->c[0] << 24 | |
9692 | | (uint32_t) a->c[1] << 16 | |
9693 | | (uint32_t) a->c[2] << 8 | |
9694 | | (uint32_t) a->c[3]); | |
9695 | return aval; | |
9696 | } | |
9697 | ||
9698 | static bfd_vma | |
9699 | ext64l_r_offset (const void *p) | |
9700 | { | |
9701 | union aligned64 | |
9702 | { | |
9703 | uint64_t v; | |
9704 | unsigned char c[8]; | |
9705 | }; | |
9706 | const union aligned64 *a | |
9707 | = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset; | |
9708 | ||
9709 | uint64_t aval = ( (uint64_t) a->c[0] | |
9710 | | (uint64_t) a->c[1] << 8 | |
9711 | | (uint64_t) a->c[2] << 16 | |
9712 | | (uint64_t) a->c[3] << 24 | |
9713 | | (uint64_t) a->c[4] << 32 | |
9714 | | (uint64_t) a->c[5] << 40 | |
9715 | | (uint64_t) a->c[6] << 48 | |
9716 | | (uint64_t) a->c[7] << 56); | |
9717 | return aval; | |
9718 | } | |
9719 | ||
9720 | static bfd_vma | |
9721 | ext64b_r_offset (const void *p) | |
9722 | { | |
9723 | union aligned64 | |
9724 | { | |
9725 | uint64_t v; | |
9726 | unsigned char c[8]; | |
9727 | }; | |
9728 | const union aligned64 *a | |
9729 | = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset; | |
9730 | ||
9731 | uint64_t aval = ( (uint64_t) a->c[0] << 56 | |
9732 | | (uint64_t) a->c[1] << 48 | |
9733 | | (uint64_t) a->c[2] << 40 | |
9734 | | (uint64_t) a->c[3] << 32 | |
9735 | | (uint64_t) a->c[4] << 24 | |
9736 | | (uint64_t) a->c[5] << 16 | |
9737 | | (uint64_t) a->c[6] << 8 | |
9738 | | (uint64_t) a->c[7]); | |
9739 | return aval; | |
9740 | } | |
9741 | ||
9742 | /* When performing a relocatable link, the input relocations are | |
9743 | preserved. But, if they reference global symbols, the indices | |
9744 | referenced must be updated. Update all the relocations found in | |
9745 | RELDATA. */ | |
9746 | ||
9747 | static bool | |
9748 | elf_link_adjust_relocs (bfd *abfd, | |
9749 | asection *sec, | |
9750 | struct bfd_elf_section_reloc_data *reldata, | |
9751 | bool sort, | |
9752 | struct bfd_link_info *info) | |
9753 | { | |
9754 | unsigned int i; | |
9755 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
9756 | bfd_byte *erela; | |
9757 | void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); | |
9758 | void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); | |
9759 | bfd_vma r_type_mask; | |
9760 | int r_sym_shift; | |
9761 | unsigned int count = reldata->count; | |
9762 | struct elf_link_hash_entry **rel_hash = reldata->hashes; | |
9763 | ||
9764 | if (reldata->hdr->sh_entsize == bed->s->sizeof_rel) | |
9765 | { | |
9766 | swap_in = bed->s->swap_reloc_in; | |
9767 | swap_out = bed->s->swap_reloc_out; | |
9768 | } | |
9769 | else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela) | |
9770 | { | |
9771 | swap_in = bed->s->swap_reloca_in; | |
9772 | swap_out = bed->s->swap_reloca_out; | |
9773 | } | |
9774 | else | |
9775 | abort (); | |
9776 | ||
9777 | if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL) | |
9778 | abort (); | |
9779 | ||
9780 | if (bed->s->arch_size == 32) | |
9781 | { | |
9782 | r_type_mask = 0xff; | |
9783 | r_sym_shift = 8; | |
9784 | } | |
9785 | else | |
9786 | { | |
9787 | r_type_mask = 0xffffffff; | |
9788 | r_sym_shift = 32; | |
9789 | } | |
9790 | ||
9791 | erela = reldata->hdr->contents; | |
9792 | for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize) | |
9793 | { | |
9794 | Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL]; | |
9795 | unsigned int j; | |
9796 | ||
9797 | if (*rel_hash == NULL) | |
9798 | continue; | |
9799 | ||
9800 | if ((*rel_hash)->indx == -2 | |
9801 | && info->gc_sections | |
9802 | && ! info->gc_keep_exported) | |
9803 | { | |
9804 | /* PR 21524: Let the user know if a symbol was removed by garbage collection. */ | |
9805 | _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"), | |
9806 | abfd, sec, | |
9807 | (*rel_hash)->root.root.string); | |
9808 | _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"), | |
9809 | abfd, sec); | |
9810 | bfd_set_error (bfd_error_invalid_operation); | |
9811 | return false; | |
9812 | } | |
9813 | BFD_ASSERT ((*rel_hash)->indx >= 0); | |
9814 | ||
9815 | (*swap_in) (abfd, erela, irela); | |
9816 | for (j = 0; j < bed->s->int_rels_per_ext_rel; j++) | |
9817 | irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift | |
9818 | | (irela[j].r_info & r_type_mask)); | |
9819 | (*swap_out) (abfd, irela, erela); | |
9820 | } | |
9821 | ||
9822 | if (bed->elf_backend_update_relocs) | |
9823 | (*bed->elf_backend_update_relocs) (sec, reldata); | |
9824 | ||
9825 | if (sort && count != 0) | |
9826 | { | |
9827 | bfd_vma (*ext_r_off) (const void *); | |
9828 | bfd_vma r_off; | |
9829 | size_t elt_size; | |
9830 | bfd_byte *base, *end, *p, *loc; | |
9831 | bfd_byte *buf = NULL; | |
9832 | ||
9833 | if (bed->s->arch_size == 32) | |
9834 | { | |
9835 | if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE) | |
9836 | ext_r_off = ext32l_r_offset; | |
9837 | else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG) | |
9838 | ext_r_off = ext32b_r_offset; | |
9839 | else | |
9840 | abort (); | |
9841 | } | |
9842 | else | |
9843 | { | |
9844 | if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE) | |
9845 | ext_r_off = ext64l_r_offset; | |
9846 | else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG) | |
9847 | ext_r_off = ext64b_r_offset; | |
9848 | else | |
9849 | abort (); | |
9850 | } | |
9851 | ||
9852 | /* Must use a stable sort here. A modified insertion sort, | |
9853 | since the relocs are mostly sorted already. */ | |
9854 | elt_size = reldata->hdr->sh_entsize; | |
9855 | base = reldata->hdr->contents; | |
9856 | end = base + count * elt_size; | |
9857 | if (elt_size > sizeof (Elf64_External_Rela)) | |
9858 | abort (); | |
9859 | ||
9860 | /* Ensure the first element is lowest. This acts as a sentinel, | |
9861 | speeding the main loop below. */ | |
9862 | r_off = (*ext_r_off) (base); | |
9863 | for (p = loc = base; (p += elt_size) < end; ) | |
9864 | { | |
9865 | bfd_vma r_off2 = (*ext_r_off) (p); | |
9866 | if (r_off > r_off2) | |
9867 | { | |
9868 | r_off = r_off2; | |
9869 | loc = p; | |
9870 | } | |
9871 | } | |
9872 | if (loc != base) | |
9873 | { | |
9874 | /* Don't just swap *base and *loc as that changes the order | |
9875 | of the original base[0] and base[1] if they happen to | |
9876 | have the same r_offset. */ | |
9877 | bfd_byte onebuf[sizeof (Elf64_External_Rela)]; | |
9878 | memcpy (onebuf, loc, elt_size); | |
9879 | memmove (base + elt_size, base, loc - base); | |
9880 | memcpy (base, onebuf, elt_size); | |
9881 | } | |
9882 | ||
9883 | for (p = base + elt_size; (p += elt_size) < end; ) | |
9884 | { | |
9885 | /* base to p is sorted, *p is next to insert. */ | |
9886 | r_off = (*ext_r_off) (p); | |
9887 | /* Search the sorted region for location to insert. */ | |
9888 | loc = p - elt_size; | |
9889 | while (r_off < (*ext_r_off) (loc)) | |
9890 | loc -= elt_size; | |
9891 | loc += elt_size; | |
9892 | if (loc != p) | |
9893 | { | |
9894 | /* Chances are there is a run of relocs to insert here, | |
9895 | from one of more input files. Files are not always | |
9896 | linked in order due to the way elf_link_input_bfd is | |
9897 | called. See pr17666. */ | |
9898 | size_t sortlen = p - loc; | |
9899 | bfd_vma r_off2 = (*ext_r_off) (loc); | |
9900 | size_t runlen = elt_size; | |
9901 | bfd_vma r_off_runend = r_off; | |
9902 | bfd_vma r_off_runend_next; | |
9903 | size_t buf_size = 96 * 1024; | |
9904 | while (p + runlen < end | |
9905 | && (sortlen <= buf_size | |
9906 | || runlen + elt_size <= buf_size) | |
9907 | /* run must not break the ordering of base..loc+1 */ | |
9908 | && r_off2 > (r_off_runend_next = (*ext_r_off) (p + runlen)) | |
9909 | /* run must be already sorted */ | |
9910 | && r_off_runend_next >= r_off_runend) | |
9911 | { | |
9912 | runlen += elt_size; | |
9913 | r_off_runend = r_off_runend_next; | |
9914 | } | |
9915 | if (buf == NULL) | |
9916 | { | |
9917 | buf = bfd_malloc (buf_size); | |
9918 | if (buf == NULL) | |
9919 | return false; | |
9920 | } | |
9921 | if (runlen < sortlen) | |
9922 | { | |
9923 | memcpy (buf, p, runlen); | |
9924 | memmove (loc + runlen, loc, sortlen); | |
9925 | memcpy (loc, buf, runlen); | |
9926 | } | |
9927 | else | |
9928 | { | |
9929 | memcpy (buf, loc, sortlen); | |
9930 | memmove (loc, p, runlen); | |
9931 | memcpy (loc + runlen, buf, sortlen); | |
9932 | } | |
9933 | p += runlen - elt_size; | |
9934 | } | |
9935 | } | |
9936 | /* Hashes are no longer valid. */ | |
9937 | free (reldata->hashes); | |
9938 | reldata->hashes = NULL; | |
9939 | free (buf); | |
9940 | } | |
9941 | return true; | |
9942 | } | |
9943 | ||
9944 | struct elf_link_sort_rela | |
9945 | { | |
9946 | union { | |
9947 | bfd_vma offset; | |
9948 | bfd_vma sym_mask; | |
9949 | } u; | |
9950 | enum elf_reloc_type_class type; | |
9951 | /* We use this as an array of size int_rels_per_ext_rel. */ | |
9952 | Elf_Internal_Rela rela[1]; | |
9953 | }; | |
9954 | ||
9955 | /* qsort stability here and for cmp2 is only an issue if multiple | |
9956 | dynamic relocations are emitted at the same address. But targets | |
9957 | that apply a series of dynamic relocations each operating on the | |
9958 | result of the prior relocation can't use -z combreloc as | |
9959 | implemented anyway. Such schemes tend to be broken by sorting on | |
9960 | symbol index. That leaves dynamic NONE relocs as the only other | |
9961 | case where ld might emit multiple relocs at the same address, and | |
9962 | those are only emitted due to target bugs. */ | |
9963 | ||
9964 | static int | |
9965 | elf_link_sort_cmp1 (const void *A, const void *B) | |
9966 | { | |
9967 | const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; | |
9968 | const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; | |
9969 | int relativea, relativeb; | |
9970 | ||
9971 | relativea = a->type == reloc_class_relative; | |
9972 | relativeb = b->type == reloc_class_relative; | |
9973 | ||
9974 | if (relativea < relativeb) | |
9975 | return 1; | |
9976 | if (relativea > relativeb) | |
9977 | return -1; | |
9978 | if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask)) | |
9979 | return -1; | |
9980 | if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask)) | |
9981 | return 1; | |
9982 | if (a->rela->r_offset < b->rela->r_offset) | |
9983 | return -1; | |
9984 | if (a->rela->r_offset > b->rela->r_offset) | |
9985 | return 1; | |
9986 | return 0; | |
9987 | } | |
9988 | ||
9989 | static int | |
9990 | elf_link_sort_cmp2 (const void *A, const void *B) | |
9991 | { | |
9992 | const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; | |
9993 | const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; | |
9994 | ||
9995 | if (a->type < b->type) | |
9996 | return -1; | |
9997 | if (a->type > b->type) | |
9998 | return 1; | |
9999 | if (a->u.offset < b->u.offset) | |
10000 | return -1; | |
10001 | if (a->u.offset > b->u.offset) | |
10002 | return 1; | |
10003 | if (a->rela->r_offset < b->rela->r_offset) | |
10004 | return -1; | |
10005 | if (a->rela->r_offset > b->rela->r_offset) | |
10006 | return 1; | |
10007 | return 0; | |
10008 | } | |
10009 | ||
10010 | static size_t | |
10011 | elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec) | |
10012 | { | |
10013 | asection *dynamic_relocs; | |
10014 | asection *rela_dyn; | |
10015 | asection *rel_dyn; | |
10016 | bfd_size_type count, size; | |
10017 | size_t i, ret, sort_elt, ext_size; | |
10018 | bfd_byte *sort, *s_non_relative, *p; | |
10019 | struct elf_link_sort_rela *sq; | |
10020 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
10021 | int i2e = bed->s->int_rels_per_ext_rel; | |
10022 | unsigned int opb = bfd_octets_per_byte (abfd, NULL); | |
10023 | void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); | |
10024 | void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); | |
10025 | struct bfd_link_order *lo; | |
10026 | bfd_vma r_sym_mask; | |
10027 | bool use_rela; | |
10028 | ||
10029 | /* Find a dynamic reloc section. */ | |
10030 | rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn"); | |
10031 | rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn"); | |
10032 | if (rela_dyn != NULL && rela_dyn->size > 0 | |
10033 | && rel_dyn != NULL && rel_dyn->size > 0) | |
10034 | { | |
10035 | bool use_rela_initialised = false; | |
10036 | ||
10037 | /* This is just here to stop gcc from complaining. | |
10038 | Its initialization checking code is not perfect. */ | |
10039 | use_rela = true; | |
10040 | ||
10041 | /* Both sections are present. Examine the sizes | |
10042 | of the indirect sections to help us choose. */ | |
10043 | for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next) | |
10044 | if (lo->type == bfd_indirect_link_order) | |
10045 | { | |
10046 | asection *o = lo->u.indirect.section; | |
10047 | ||
10048 | if ((o->size % bed->s->sizeof_rela) == 0) | |
10049 | { | |
10050 | if ((o->size % bed->s->sizeof_rel) == 0) | |
10051 | /* Section size is divisible by both rel and rela sizes. | |
10052 | It is of no help to us. */ | |
10053 | ; | |
10054 | else | |
10055 | { | |
10056 | /* Section size is only divisible by rela. */ | |
10057 | if (use_rela_initialised && !use_rela) | |
10058 | { | |
10059 | _bfd_error_handler (_("%pB: unable to sort relocs - " | |
10060 | "they are in more than one size"), | |
10061 | abfd); | |
10062 | bfd_set_error (bfd_error_invalid_operation); | |
10063 | return 0; | |
10064 | } | |
10065 | else | |
10066 | { | |
10067 | use_rela = true; | |
10068 | use_rela_initialised = true; | |
10069 | } | |
10070 | } | |
10071 | } | |
10072 | else if ((o->size % bed->s->sizeof_rel) == 0) | |
10073 | { | |
10074 | /* Section size is only divisible by rel. */ | |
10075 | if (use_rela_initialised && use_rela) | |
10076 | { | |
10077 | _bfd_error_handler (_("%pB: unable to sort relocs - " | |
10078 | "they are in more than one size"), | |
10079 | abfd); | |
10080 | bfd_set_error (bfd_error_invalid_operation); | |
10081 | return 0; | |
10082 | } | |
10083 | else | |
10084 | { | |
10085 | use_rela = false; | |
10086 | use_rela_initialised = true; | |
10087 | } | |
10088 | } | |
10089 | else | |
10090 | { | |
10091 | /* The section size is not divisible by either - | |
10092 | something is wrong. */ | |
10093 | _bfd_error_handler (_("%pB: unable to sort relocs - " | |
10094 | "they are of an unknown size"), abfd); | |
10095 | bfd_set_error (bfd_error_invalid_operation); | |
10096 | return 0; | |
10097 | } | |
10098 | } | |
10099 | ||
10100 | for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next) | |
10101 | if (lo->type == bfd_indirect_link_order) | |
10102 | { | |
10103 | asection *o = lo->u.indirect.section; | |
10104 | ||
10105 | if ((o->size % bed->s->sizeof_rela) == 0) | |
10106 | { | |
10107 | if ((o->size % bed->s->sizeof_rel) == 0) | |
10108 | /* Section size is divisible by both rel and rela sizes. | |
10109 | It is of no help to us. */ | |
10110 | ; | |
10111 | else | |
10112 | { | |
10113 | /* Section size is only divisible by rela. */ | |
10114 | if (use_rela_initialised && !use_rela) | |
10115 | { | |
10116 | _bfd_error_handler (_("%pB: unable to sort relocs - " | |
10117 | "they are in more than one size"), | |
10118 | abfd); | |
10119 | bfd_set_error (bfd_error_invalid_operation); | |
10120 | return 0; | |
10121 | } | |
10122 | else | |
10123 | { | |
10124 | use_rela = true; | |
10125 | use_rela_initialised = true; | |
10126 | } | |
10127 | } | |
10128 | } | |
10129 | else if ((o->size % bed->s->sizeof_rel) == 0) | |
10130 | { | |
10131 | /* Section size is only divisible by rel. */ | |
10132 | if (use_rela_initialised && use_rela) | |
10133 | { | |
10134 | _bfd_error_handler (_("%pB: unable to sort relocs - " | |
10135 | "they are in more than one size"), | |
10136 | abfd); | |
10137 | bfd_set_error (bfd_error_invalid_operation); | |
10138 | return 0; | |
10139 | } | |
10140 | else | |
10141 | { | |
10142 | use_rela = false; | |
10143 | use_rela_initialised = true; | |
10144 | } | |
10145 | } | |
10146 | else | |
10147 | { | |
10148 | /* The section size is not divisible by either - | |
10149 | something is wrong. */ | |
10150 | _bfd_error_handler (_("%pB: unable to sort relocs - " | |
10151 | "they are of an unknown size"), abfd); | |
10152 | bfd_set_error (bfd_error_invalid_operation); | |
10153 | return 0; | |
10154 | } | |
10155 | } | |
10156 | ||
10157 | if (! use_rela_initialised) | |
10158 | /* Make a guess. */ | |
10159 | use_rela = true; | |
10160 | } | |
10161 | else if (rela_dyn != NULL && rela_dyn->size > 0) | |
10162 | use_rela = true; | |
10163 | else if (rel_dyn != NULL && rel_dyn->size > 0) | |
10164 | use_rela = false; | |
10165 | else | |
10166 | return 0; | |
10167 | ||
10168 | if (use_rela) | |
10169 | { | |
10170 | dynamic_relocs = rela_dyn; | |
10171 | ext_size = bed->s->sizeof_rela; | |
10172 | swap_in = bed->s->swap_reloca_in; | |
10173 | swap_out = bed->s->swap_reloca_out; | |
10174 | } | |
10175 | else | |
10176 | { | |
10177 | dynamic_relocs = rel_dyn; | |
10178 | ext_size = bed->s->sizeof_rel; | |
10179 | swap_in = bed->s->swap_reloc_in; | |
10180 | swap_out = bed->s->swap_reloc_out; | |
10181 | } | |
10182 | ||
10183 | size = 0; | |
10184 | for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) | |
10185 | if (lo->type == bfd_indirect_link_order) | |
10186 | size += lo->u.indirect.section->size; | |
10187 | ||
10188 | if (size != dynamic_relocs->size) | |
10189 | return 0; | |
10190 | ||
10191 | sort_elt = (sizeof (struct elf_link_sort_rela) | |
10192 | + (i2e - 1) * sizeof (Elf_Internal_Rela)); | |
10193 | ||
10194 | count = dynamic_relocs->size / ext_size; | |
10195 | if (count == 0) | |
10196 | return 0; | |
10197 | sort = (bfd_byte *) bfd_zmalloc (sort_elt * count); | |
10198 | ||
10199 | if (sort == NULL) | |
10200 | { | |
10201 | (*info->callbacks->warning) | |
10202 | (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0); | |
10203 | return 0; | |
10204 | } | |
10205 | ||
10206 | if (bed->s->arch_size == 32) | |
10207 | r_sym_mask = ~(bfd_vma) 0xff; | |
10208 | else | |
10209 | r_sym_mask = ~(bfd_vma) 0xffffffff; | |
10210 | ||
10211 | for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) | |
10212 | if (lo->type == bfd_indirect_link_order) | |
10213 | { | |
10214 | bfd_byte *erel, *erelend; | |
10215 | asection *o = lo->u.indirect.section; | |
10216 | ||
10217 | if (o->contents == NULL && o->size != 0) | |
10218 | { | |
10219 | /* This is a reloc section that is being handled as a normal | |
10220 | section. See bfd_section_from_shdr. We can't combine | |
10221 | relocs in this case. */ | |
10222 | free (sort); | |
10223 | return 0; | |
10224 | } | |
10225 | erel = o->contents; | |
10226 | erelend = o->contents + o->size; | |
10227 | p = sort + o->output_offset * opb / ext_size * sort_elt; | |
10228 | ||
10229 | while (erel < erelend) | |
10230 | { | |
10231 | struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; | |
10232 | ||
10233 | (*swap_in) (abfd, erel, s->rela); | |
10234 | s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela); | |
10235 | s->u.sym_mask = r_sym_mask; | |
10236 | p += sort_elt; | |
10237 | erel += ext_size; | |
10238 | } | |
10239 | } | |
10240 | ||
10241 | qsort (sort, count, sort_elt, elf_link_sort_cmp1); | |
10242 | ||
10243 | for (i = 0, p = sort; i < count; i++, p += sort_elt) | |
10244 | { | |
10245 | struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; | |
10246 | if (s->type != reloc_class_relative) | |
10247 | break; | |
10248 | } | |
10249 | ret = i; | |
10250 | s_non_relative = p; | |
10251 | ||
10252 | sq = (struct elf_link_sort_rela *) s_non_relative; | |
10253 | for (; i < count; i++, p += sort_elt) | |
10254 | { | |
10255 | struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p; | |
10256 | if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0) | |
10257 | sq = sp; | |
10258 | sp->u.offset = sq->rela->r_offset; | |
10259 | } | |
10260 | ||
10261 | qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2); | |
10262 | ||
10263 | struct elf_link_hash_table *htab = elf_hash_table (info); | |
10264 | if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs) | |
10265 | { | |
10266 | /* We have plt relocs in .rela.dyn. */ | |
10267 | sq = (struct elf_link_sort_rela *) sort; | |
10268 | for (i = 0; i < count; i++) | |
10269 | if (sq[count - i - 1].type != reloc_class_plt) | |
10270 | break; | |
10271 | if (i != 0 && htab->srelplt->size == i * ext_size) | |
10272 | { | |
10273 | struct bfd_link_order **plo; | |
10274 | /* Put srelplt link_order last. This is so the output_offset | |
10275 | set in the next loop is correct for DT_JMPREL. */ | |
10276 | for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; ) | |
10277 | if ((*plo)->type == bfd_indirect_link_order | |
10278 | && (*plo)->u.indirect.section == htab->srelplt) | |
10279 | { | |
10280 | lo = *plo; | |
10281 | *plo = lo->next; | |
10282 | } | |
10283 | else | |
10284 | plo = &(*plo)->next; | |
10285 | *plo = lo; | |
10286 | lo->next = NULL; | |
10287 | dynamic_relocs->map_tail.link_order = lo; | |
10288 | } | |
10289 | } | |
10290 | ||
10291 | p = sort; | |
10292 | for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) | |
10293 | if (lo->type == bfd_indirect_link_order) | |
10294 | { | |
10295 | bfd_byte *erel, *erelend; | |
10296 | asection *o = lo->u.indirect.section; | |
10297 | ||
10298 | erel = o->contents; | |
10299 | erelend = o->contents + o->size; | |
10300 | o->output_offset = (p - sort) / sort_elt * ext_size / opb; | |
10301 | while (erel < erelend) | |
10302 | { | |
10303 | struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; | |
10304 | (*swap_out) (abfd, s->rela, erel); | |
10305 | p += sort_elt; | |
10306 | erel += ext_size; | |
10307 | } | |
10308 | } | |
10309 | ||
10310 | free (sort); | |
10311 | *psec = dynamic_relocs; | |
10312 | return ret; | |
10313 | } | |
10314 | ||
10315 | /* Add a symbol to the output symbol string table. */ | |
10316 | ||
10317 | static int | |
10318 | elf_link_output_symstrtab (void *finf, | |
10319 | const char *name, | |
10320 | Elf_Internal_Sym *elfsym, | |
10321 | asection *input_sec, | |
10322 | struct elf_link_hash_entry *h) | |
10323 | { | |
10324 | struct elf_final_link_info *flinfo = finf; | |
10325 | int (*output_symbol_hook) | |
10326 | (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *, | |
10327 | struct elf_link_hash_entry *); | |
10328 | struct elf_link_hash_table *hash_table; | |
10329 | const struct elf_backend_data *bed; | |
10330 | bfd_size_type strtabsize; | |
10331 | ||
10332 | BFD_ASSERT (elf_onesymtab (flinfo->output_bfd)); | |
10333 | ||
10334 | bed = get_elf_backend_data (flinfo->output_bfd); | |
10335 | output_symbol_hook = bed->elf_backend_link_output_symbol_hook; | |
10336 | if (output_symbol_hook != NULL) | |
10337 | { | |
10338 | int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h); | |
10339 | if (ret != 1) | |
10340 | return ret; | |
10341 | } | |
10342 | ||
10343 | if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC) | |
10344 | elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc; | |
10345 | if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE) | |
10346 | elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique; | |
10347 | ||
10348 | if (name == NULL || *name == '\0') | |
10349 | elfsym->st_name = (unsigned long) -1; | |
10350 | else | |
10351 | { | |
10352 | /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize | |
10353 | to get the final offset for st_name. */ | |
10354 | char *versioned_name = (char *) name; | |
10355 | if (h != NULL) | |
10356 | { | |
10357 | if (h->versioned == versioned && h->def_dynamic) | |
10358 | { | |
10359 | /* Keep only one '@' for versioned symbols defined in | |
10360 | shared objects. */ | |
10361 | char *version = strrchr (name, ELF_VER_CHR); | |
10362 | char *base_end = strchr (name, ELF_VER_CHR); | |
10363 | if (version != base_end) | |
10364 | { | |
10365 | size_t base_len; | |
10366 | size_t len = strlen (name); | |
10367 | versioned_name = bfd_alloc (flinfo->output_bfd, len); | |
10368 | if (versioned_name == NULL) | |
10369 | return 0; | |
10370 | base_len = base_end - name; | |
10371 | memcpy (versioned_name, name, base_len); | |
10372 | memcpy (versioned_name + base_len, version, | |
10373 | len - base_len); | |
10374 | } | |
10375 | } | |
10376 | } | |
10377 | else if (flinfo->info->unique_symbol | |
10378 | && ELF_ST_BIND (elfsym->st_info) == STB_LOCAL) | |
10379 | { | |
10380 | struct local_hash_entry *lh; | |
10381 | size_t count_len; | |
10382 | size_t base_len; | |
10383 | char buf[30]; | |
10384 | switch (ELF_ST_TYPE (elfsym->st_info)) | |
10385 | { | |
10386 | case STT_FILE: | |
10387 | case STT_SECTION: | |
10388 | break; | |
10389 | default: | |
10390 | lh = (struct local_hash_entry *) bfd_hash_lookup | |
10391 | (&flinfo->local_hash_table, name, true, false); | |
10392 | if (lh == NULL) | |
10393 | return 0; | |
10394 | /* Always append ".COUNT" to local symbols to avoid | |
10395 | potential conflicts with local symbol "XXX.COUNT". */ | |
10396 | sprintf (buf, "%lx", lh->count); | |
10397 | base_len = lh->size; | |
10398 | if (!base_len) | |
10399 | { | |
10400 | base_len = strlen (name); | |
10401 | lh->size = base_len; | |
10402 | } | |
10403 | count_len = strlen (buf); | |
10404 | versioned_name = bfd_alloc (flinfo->output_bfd, | |
10405 | base_len + count_len + 2); | |
10406 | if (versioned_name == NULL) | |
10407 | return 0; | |
10408 | memcpy (versioned_name, name, base_len); | |
10409 | versioned_name[base_len] = '.'; | |
10410 | memcpy (versioned_name + base_len + 1, buf, | |
10411 | count_len + 1); | |
10412 | lh->count++; | |
10413 | break; | |
10414 | } | |
10415 | } | |
10416 | elfsym->st_name | |
10417 | = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab, | |
10418 | versioned_name, false); | |
10419 | if (elfsym->st_name == (unsigned long) -1) | |
10420 | return 0; | |
10421 | } | |
10422 | ||
10423 | hash_table = elf_hash_table (flinfo->info); | |
10424 | strtabsize = hash_table->strtabsize; | |
10425 | if (strtabsize <= flinfo->output_bfd->symcount) | |
10426 | { | |
10427 | strtabsize += strtabsize; | |
10428 | hash_table->strtabsize = strtabsize; | |
10429 | strtabsize *= sizeof (*hash_table->strtab); | |
10430 | hash_table->strtab | |
10431 | = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab, | |
10432 | strtabsize); | |
10433 | if (hash_table->strtab == NULL) | |
10434 | return 0; | |
10435 | } | |
10436 | hash_table->strtab[flinfo->output_bfd->symcount].sym = *elfsym; | |
10437 | hash_table->strtab[flinfo->output_bfd->symcount].dest_index | |
10438 | = flinfo->output_bfd->symcount; | |
10439 | flinfo->output_bfd->symcount += 1; | |
10440 | ||
10441 | return 1; | |
10442 | } | |
10443 | ||
10444 | /* Swap symbols out to the symbol table and flush the output symbols to | |
10445 | the file. */ | |
10446 | ||
10447 | static bool | |
10448 | elf_link_swap_symbols_out (struct elf_final_link_info *flinfo) | |
10449 | { | |
10450 | struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info); | |
10451 | size_t amt; | |
10452 | size_t i; | |
10453 | const struct elf_backend_data *bed; | |
10454 | bfd_byte *symbuf; | |
10455 | Elf_Internal_Shdr *hdr; | |
10456 | file_ptr pos; | |
10457 | bool ret; | |
10458 | ||
10459 | if (flinfo->output_bfd->symcount == 0) | |
10460 | return true; | |
10461 | ||
10462 | BFD_ASSERT (elf_onesymtab (flinfo->output_bfd)); | |
10463 | ||
10464 | bed = get_elf_backend_data (flinfo->output_bfd); | |
10465 | ||
10466 | amt = bed->s->sizeof_sym * flinfo->output_bfd->symcount; | |
10467 | symbuf = (bfd_byte *) bfd_malloc (amt); | |
10468 | if (symbuf == NULL) | |
10469 | return false; | |
10470 | ||
10471 | if (flinfo->symshndxbuf) | |
10472 | { | |
10473 | amt = sizeof (Elf_External_Sym_Shndx); | |
10474 | amt *= bfd_get_symcount (flinfo->output_bfd); | |
10475 | flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt); | |
10476 | if (flinfo->symshndxbuf == NULL) | |
10477 | { | |
10478 | free (symbuf); | |
10479 | return false; | |
10480 | } | |
10481 | } | |
10482 | ||
10483 | /* Now swap out the symbols. */ | |
10484 | for (i = 0; i < flinfo->output_bfd->symcount; i++) | |
10485 | { | |
10486 | struct elf_sym_strtab *elfsym = &hash_table->strtab[i]; | |
10487 | if (elfsym->sym.st_name == (unsigned long) -1) | |
10488 | elfsym->sym.st_name = 0; | |
10489 | else | |
10490 | elfsym->sym.st_name | |
10491 | = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab, | |
10492 | elfsym->sym.st_name); | |
10493 | ||
10494 | /* Inform the linker of the addition of this symbol. */ | |
10495 | ||
10496 | if (flinfo->info->callbacks->ctf_new_symbol) | |
10497 | flinfo->info->callbacks->ctf_new_symbol (elfsym->dest_index, | |
10498 | &elfsym->sym); | |
10499 | ||
10500 | bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym, | |
10501 | ((bfd_byte *) symbuf | |
10502 | + (elfsym->dest_index | |
10503 | * bed->s->sizeof_sym)), | |
10504 | NPTR_ADD (flinfo->symshndxbuf, | |
10505 | elfsym->dest_index)); | |
10506 | } | |
10507 | ||
10508 | hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr; | |
10509 | pos = hdr->sh_offset + hdr->sh_size; | |
10510 | amt = bed->s->sizeof_sym * flinfo->output_bfd->symcount; | |
10511 | if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0 | |
10512 | && bfd_write (symbuf, amt, flinfo->output_bfd) == amt) | |
10513 | { | |
10514 | hdr->sh_size += amt; | |
10515 | ret = true; | |
10516 | } | |
10517 | else | |
10518 | ret = false; | |
10519 | ||
10520 | free (symbuf); | |
10521 | return ret; | |
10522 | } | |
10523 | ||
10524 | /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */ | |
10525 | ||
10526 | static bool | |
10527 | check_dynsym (bfd *abfd, Elf_Internal_Sym *sym) | |
10528 | { | |
10529 | if (sym->st_shndx >= (SHN_LORESERVE & 0xffff) | |
10530 | && sym->st_shndx < SHN_LORESERVE) | |
10531 | { | |
10532 | /* The gABI doesn't support dynamic symbols in output sections | |
10533 | beyond 64k. */ | |
10534 | _bfd_error_handler | |
10535 | /* xgettext:c-format */ | |
10536 | (_("%pB: too many sections: %d (>= %d)"), | |
10537 | abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff); | |
10538 | bfd_set_error (bfd_error_nonrepresentable_section); | |
10539 | return false; | |
10540 | } | |
10541 | return true; | |
10542 | } | |
10543 | ||
10544 | /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in | |
10545 | allowing an unsatisfied unversioned symbol in the DSO to match a | |
10546 | versioned symbol that would normally require an explicit version. | |
10547 | We also handle the case that a DSO references a hidden symbol | |
10548 | which may be satisfied by a versioned symbol in another DSO. */ | |
10549 | ||
10550 | static bool | |
10551 | elf_link_check_versioned_symbol (struct bfd_link_info *info, | |
10552 | const struct elf_backend_data *bed, | |
10553 | struct elf_link_hash_entry *h) | |
10554 | { | |
10555 | bfd *abfd; | |
10556 | struct elf_link_loaded_list *loaded; | |
10557 | ||
10558 | if (!is_elf_hash_table (info->hash)) | |
10559 | return false; | |
10560 | ||
10561 | /* Check indirect symbol. */ | |
10562 | while (h->root.type == bfd_link_hash_indirect) | |
10563 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
10564 | ||
10565 | switch (h->root.type) | |
10566 | { | |
10567 | default: | |
10568 | abfd = NULL; | |
10569 | break; | |
10570 | ||
10571 | case bfd_link_hash_undefined: | |
10572 | case bfd_link_hash_undefweak: | |
10573 | abfd = h->root.u.undef.abfd; | |
10574 | if (abfd == NULL | |
10575 | || (abfd->flags & DYNAMIC) == 0 | |
10576 | || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0) | |
10577 | return false; | |
10578 | break; | |
10579 | ||
10580 | case bfd_link_hash_defined: | |
10581 | case bfd_link_hash_defweak: | |
10582 | abfd = h->root.u.def.section->owner; | |
10583 | break; | |
10584 | ||
10585 | case bfd_link_hash_common: | |
10586 | abfd = h->root.u.c.p->section->owner; | |
10587 | break; | |
10588 | } | |
10589 | BFD_ASSERT (abfd != NULL); | |
10590 | ||
10591 | for (loaded = elf_hash_table (info)->dyn_loaded; | |
10592 | loaded != NULL; | |
10593 | loaded = loaded->next) | |
10594 | { | |
10595 | bfd *input; | |
10596 | Elf_Internal_Shdr *hdr; | |
10597 | size_t symcount; | |
10598 | size_t extsymcount; | |
10599 | size_t extsymoff; | |
10600 | Elf_Internal_Shdr *versymhdr; | |
10601 | Elf_Internal_Sym *isym; | |
10602 | Elf_Internal_Sym *isymend; | |
10603 | Elf_Internal_Sym *isymbuf; | |
10604 | Elf_External_Versym *ever; | |
10605 | Elf_External_Versym *extversym; | |
10606 | ||
10607 | input = loaded->abfd; | |
10608 | ||
10609 | /* We check each DSO for a possible hidden versioned definition. */ | |
10610 | if (input == abfd | |
10611 | || elf_dynversym (input) == 0) | |
10612 | continue; | |
10613 | ||
10614 | hdr = &elf_tdata (input)->dynsymtab_hdr; | |
10615 | ||
10616 | symcount = hdr->sh_size / bed->s->sizeof_sym; | |
10617 | if (elf_bad_symtab (input)) | |
10618 | { | |
10619 | extsymcount = symcount; | |
10620 | extsymoff = 0; | |
10621 | } | |
10622 | else | |
10623 | { | |
10624 | extsymcount = symcount - hdr->sh_info; | |
10625 | extsymoff = hdr->sh_info; | |
10626 | } | |
10627 | ||
10628 | if (extsymcount == 0) | |
10629 | continue; | |
10630 | ||
10631 | isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff, | |
10632 | NULL, NULL, NULL); | |
10633 | if (isymbuf == NULL) | |
10634 | return false; | |
10635 | ||
10636 | /* Read in any version definitions. */ | |
10637 | versymhdr = &elf_tdata (input)->dynversym_hdr; | |
10638 | if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0 | |
10639 | || (extversym = (Elf_External_Versym *) | |
10640 | _bfd_malloc_and_read (input, versymhdr->sh_size, | |
10641 | versymhdr->sh_size)) == NULL) | |
10642 | { | |
10643 | free (isymbuf); | |
10644 | return false; | |
10645 | } | |
10646 | ||
10647 | ever = extversym + extsymoff; | |
10648 | isymend = isymbuf + extsymcount; | |
10649 | for (isym = isymbuf; isym < isymend; isym++, ever++) | |
10650 | { | |
10651 | const char *name; | |
10652 | Elf_Internal_Versym iver; | |
10653 | unsigned short version_index; | |
10654 | ||
10655 | if (ELF_ST_BIND (isym->st_info) == STB_LOCAL | |
10656 | || isym->st_shndx == SHN_UNDEF) | |
10657 | continue; | |
10658 | ||
10659 | name = bfd_elf_string_from_elf_section (input, | |
10660 | hdr->sh_link, | |
10661 | isym->st_name); | |
10662 | if (strcmp (name, h->root.root.string) != 0) | |
10663 | continue; | |
10664 | ||
10665 | _bfd_elf_swap_versym_in (input, ever, &iver); | |
10666 | ||
10667 | if ((iver.vs_vers & VERSYM_HIDDEN) == 0 | |
10668 | && !(h->def_regular | |
10669 | && h->forced_local)) | |
10670 | { | |
10671 | /* If we have a non-hidden versioned sym, then it should | |
10672 | have provided a definition for the undefined sym unless | |
10673 | it is defined in a non-shared object and forced local. | |
10674 | */ | |
10675 | abort (); | |
10676 | } | |
10677 | ||
10678 | version_index = iver.vs_vers & VERSYM_VERSION; | |
10679 | if (version_index == 1 || version_index == 2) | |
10680 | { | |
10681 | /* This is the base or first version. We can use it. */ | |
10682 | free (extversym); | |
10683 | free (isymbuf); | |
10684 | return true; | |
10685 | } | |
10686 | } | |
10687 | ||
10688 | free (extversym); | |
10689 | free (isymbuf); | |
10690 | } | |
10691 | ||
10692 | return false; | |
10693 | } | |
10694 | ||
10695 | /* Convert ELF common symbol TYPE. */ | |
10696 | ||
10697 | static int | |
10698 | elf_link_convert_common_type (struct bfd_link_info *info, int type) | |
10699 | { | |
10700 | /* Commom symbol can only appear in relocatable link. */ | |
10701 | if (!bfd_link_relocatable (info)) | |
10702 | abort (); | |
10703 | switch (info->elf_stt_common) | |
10704 | { | |
10705 | case unchanged: | |
10706 | break; | |
10707 | case elf_stt_common: | |
10708 | type = STT_COMMON; | |
10709 | break; | |
10710 | case no_elf_stt_common: | |
10711 | type = STT_OBJECT; | |
10712 | break; | |
10713 | } | |
10714 | return type; | |
10715 | } | |
10716 | ||
10717 | /* Add an external symbol to the symbol table. This is called from | |
10718 | the hash table traversal routine. When generating a shared object, | |
10719 | we go through the symbol table twice. The first time we output | |
10720 | anything that might have been forced to local scope in a version | |
10721 | script. The second time we output the symbols that are still | |
10722 | global symbols. */ | |
10723 | ||
10724 | static bool | |
10725 | elf_link_output_extsym (struct bfd_hash_entry *bh, void *data) | |
10726 | { | |
10727 | struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh; | |
10728 | struct elf_outext_info *eoinfo = (struct elf_outext_info *) data; | |
10729 | struct elf_final_link_info *flinfo = eoinfo->flinfo; | |
10730 | bool strip; | |
10731 | Elf_Internal_Sym sym; | |
10732 | asection *input_sec; | |
10733 | const struct elf_backend_data *bed; | |
10734 | long indx; | |
10735 | int ret; | |
10736 | unsigned int type; | |
10737 | ||
10738 | if (h->root.type == bfd_link_hash_warning) | |
10739 | { | |
10740 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
10741 | if (h->root.type == bfd_link_hash_new) | |
10742 | return true; | |
10743 | } | |
10744 | ||
10745 | /* Decide whether to output this symbol in this pass. */ | |
10746 | if (eoinfo->localsyms) | |
10747 | { | |
10748 | if (!h->forced_local) | |
10749 | return true; | |
10750 | } | |
10751 | else | |
10752 | { | |
10753 | if (h->forced_local) | |
10754 | return true; | |
10755 | } | |
10756 | ||
10757 | bed = get_elf_backend_data (flinfo->output_bfd); | |
10758 | ||
10759 | if (h->root.type == bfd_link_hash_undefined) | |
10760 | { | |
10761 | /* If we have an undefined symbol reference here then it must have | |
10762 | come from a shared library that is being linked in. (Undefined | |
10763 | references in regular files have already been handled unless | |
10764 | they are in unreferenced sections which are removed by garbage | |
10765 | collection). */ | |
10766 | bool ignore_undef = false; | |
10767 | ||
10768 | /* Some symbols may be special in that the fact that they're | |
10769 | undefined can be safely ignored - let backend determine that. */ | |
10770 | if (bed->elf_backend_ignore_undef_symbol) | |
10771 | ignore_undef = bed->elf_backend_ignore_undef_symbol (h); | |
10772 | ||
10773 | /* If we are reporting errors for this situation then do so now. */ | |
10774 | if (!ignore_undef | |
10775 | && h->ref_dynamic_nonweak | |
10776 | && (!h->ref_regular || flinfo->info->gc_sections) | |
10777 | && !elf_link_check_versioned_symbol (flinfo->info, bed, h) | |
10778 | && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE) | |
10779 | { | |
10780 | flinfo->info->callbacks->undefined_symbol | |
10781 | (flinfo->info, h->root.root.string, | |
10782 | h->ref_regular ? NULL : h->root.u.undef.abfd, NULL, 0, | |
10783 | flinfo->info->unresolved_syms_in_shared_libs == RM_DIAGNOSE | |
10784 | && !flinfo->info->warn_unresolved_syms); | |
10785 | } | |
10786 | ||
10787 | /* Strip a global symbol defined in a discarded section. */ | |
10788 | if (h->indx == -3) | |
10789 | return true; | |
10790 | } | |
10791 | ||
10792 | /* We should also warn if a forced local symbol is referenced from | |
10793 | shared libraries. */ | |
10794 | if (bfd_link_executable (flinfo->info) | |
10795 | && h->forced_local | |
10796 | && h->ref_dynamic | |
10797 | && h->def_regular | |
10798 | && !h->dynamic_def | |
10799 | && h->ref_dynamic_nonweak | |
10800 | && !elf_link_check_versioned_symbol (flinfo->info, bed, h)) | |
10801 | { | |
10802 | bfd *def_bfd; | |
10803 | const char *msg; | |
10804 | struct elf_link_hash_entry *hi = h; | |
10805 | ||
10806 | /* Check indirect symbol. */ | |
10807 | while (hi->root.type == bfd_link_hash_indirect) | |
10808 | hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | |
10809 | ||
10810 | if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) | |
10811 | /* xgettext:c-format */ | |
10812 | msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO"); | |
10813 | else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) | |
10814 | /* xgettext:c-format */ | |
10815 | msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO"); | |
10816 | else | |
10817 | /* xgettext:c-format */ | |
10818 | msg = _("%pB: local symbol `%s' in %pB is referenced by DSO"); | |
10819 | def_bfd = flinfo->output_bfd; | |
10820 | if (hi->root.u.def.section != bfd_abs_section_ptr) | |
10821 | def_bfd = hi->root.u.def.section->owner; | |
10822 | _bfd_error_handler (msg, flinfo->output_bfd, | |
10823 | h->root.root.string, def_bfd); | |
10824 | bfd_set_error (bfd_error_bad_value); | |
10825 | eoinfo->failed = true; | |
10826 | return false; | |
10827 | } | |
10828 | ||
10829 | /* We don't want to output symbols that have never been mentioned by | |
10830 | a regular file, or that we have been told to strip. However, if | |
10831 | h->indx is set to -2, the symbol is used by a reloc and we must | |
10832 | output it. */ | |
10833 | strip = false; | |
10834 | if (h->indx == -2) | |
10835 | ; | |
10836 | else if ((h->def_dynamic | |
10837 | || h->ref_dynamic | |
10838 | || h->root.type == bfd_link_hash_new) | |
10839 | && !h->def_regular | |
10840 | && !h->ref_regular) | |
10841 | strip = true; | |
10842 | else if (flinfo->info->strip == strip_all) | |
10843 | strip = true; | |
10844 | else if (flinfo->info->strip == strip_some | |
10845 | && bfd_hash_lookup (flinfo->info->keep_hash, | |
10846 | h->root.root.string, false, false) == NULL) | |
10847 | strip = true; | |
10848 | else if ((h->root.type == bfd_link_hash_defined | |
10849 | || h->root.type == bfd_link_hash_defweak) | |
10850 | && ((flinfo->info->strip_discarded | |
10851 | && discarded_section (h->root.u.def.section)) | |
10852 | || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0 | |
10853 | && h->root.u.def.section->owner != NULL | |
10854 | && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0))) | |
10855 | strip = true; | |
10856 | else if ((h->root.type == bfd_link_hash_undefined | |
10857 | || h->root.type == bfd_link_hash_undefweak) | |
10858 | && h->root.u.undef.abfd != NULL | |
10859 | && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0) | |
10860 | strip = true; | |
10861 | ||
10862 | /* Remember if this symbol should be stripped. */ | |
10863 | bool should_strip = strip; | |
10864 | ||
10865 | /* Strip undefined weak symbols link if they don't have relocation. */ | |
10866 | if (!strip) | |
10867 | strip = !h->has_reloc && h->root.type == bfd_link_hash_undefweak; | |
10868 | ||
10869 | type = h->type; | |
10870 | ||
10871 | /* If we're stripping it, and it's not a dynamic symbol, there's | |
10872 | nothing else to do. However, if it is a forced local symbol or | |
10873 | an ifunc symbol we need to give the backend finish_dynamic_symbol | |
10874 | function a chance to make it dynamic. */ | |
10875 | if (strip | |
10876 | && h->dynindx == -1 | |
10877 | && type != STT_GNU_IFUNC | |
10878 | && !h->forced_local) | |
10879 | return true; | |
10880 | ||
10881 | sym.st_value = 0; | |
10882 | sym.st_size = h->size; | |
10883 | sym.st_other = h->other; | |
10884 | switch (h->root.type) | |
10885 | { | |
10886 | default: | |
10887 | case bfd_link_hash_new: | |
10888 | case bfd_link_hash_warning: | |
10889 | abort (); | |
10890 | return false; | |
10891 | ||
10892 | case bfd_link_hash_undefined: | |
10893 | case bfd_link_hash_undefweak: | |
10894 | input_sec = bfd_und_section_ptr; | |
10895 | sym.st_shndx = SHN_UNDEF; | |
10896 | break; | |
10897 | ||
10898 | case bfd_link_hash_defined: | |
10899 | case bfd_link_hash_defweak: | |
10900 | { | |
10901 | input_sec = h->root.u.def.section; | |
10902 | if (input_sec->output_section != NULL) | |
10903 | { | |
10904 | sym.st_shndx = | |
10905 | _bfd_elf_section_from_bfd_section (flinfo->output_bfd, | |
10906 | input_sec->output_section); | |
10907 | if (sym.st_shndx == SHN_BAD) | |
10908 | { | |
10909 | _bfd_error_handler | |
10910 | /* xgettext:c-format */ | |
10911 | (_("%pB: could not find output section %pA for input section %pA"), | |
10912 | flinfo->output_bfd, input_sec->output_section, input_sec); | |
10913 | bfd_set_error (bfd_error_nonrepresentable_section); | |
10914 | eoinfo->failed = true; | |
10915 | return false; | |
10916 | } | |
10917 | ||
10918 | /* ELF symbols in relocatable files are section relative, | |
10919 | but in nonrelocatable files they are virtual | |
10920 | addresses. */ | |
10921 | sym.st_value = h->root.u.def.value + input_sec->output_offset; | |
10922 | if (!bfd_link_relocatable (flinfo->info)) | |
10923 | { | |
10924 | sym.st_value += input_sec->output_section->vma; | |
10925 | if (h->type == STT_TLS) | |
10926 | { | |
10927 | asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec; | |
10928 | if (tls_sec != NULL) | |
10929 | sym.st_value -= tls_sec->vma; | |
10930 | } | |
10931 | } | |
10932 | } | |
10933 | else | |
10934 | { | |
10935 | BFD_ASSERT (input_sec->owner == NULL | |
10936 | || (input_sec->owner->flags & DYNAMIC) != 0); | |
10937 | sym.st_shndx = SHN_UNDEF; | |
10938 | input_sec = bfd_und_section_ptr; | |
10939 | } | |
10940 | } | |
10941 | break; | |
10942 | ||
10943 | case bfd_link_hash_common: | |
10944 | input_sec = h->root.u.c.p->section; | |
10945 | sym.st_shndx = bed->common_section_index (input_sec); | |
10946 | sym.st_value = 1 << h->root.u.c.p->alignment_power; | |
10947 | break; | |
10948 | ||
10949 | case bfd_link_hash_indirect: | |
10950 | /* These symbols are created by symbol versioning. They point | |
10951 | to the decorated version of the name. For example, if the | |
10952 | symbol foo@@GNU_1.2 is the default, which should be used when | |
10953 | foo is used with no version, then we add an indirect symbol | |
10954 | foo which points to foo@@GNU_1.2. We ignore these symbols, | |
10955 | since the indirected symbol is already in the hash table. */ | |
10956 | return true; | |
10957 | } | |
10958 | ||
10959 | if (type == STT_COMMON || type == STT_OBJECT) | |
10960 | switch (h->root.type) | |
10961 | { | |
10962 | case bfd_link_hash_common: | |
10963 | type = elf_link_convert_common_type (flinfo->info, type); | |
10964 | break; | |
10965 | case bfd_link_hash_defined: | |
10966 | case bfd_link_hash_defweak: | |
10967 | if (bed->common_definition (&sym)) | |
10968 | type = elf_link_convert_common_type (flinfo->info, type); | |
10969 | else | |
10970 | type = STT_OBJECT; | |
10971 | break; | |
10972 | case bfd_link_hash_undefined: | |
10973 | case bfd_link_hash_undefweak: | |
10974 | break; | |
10975 | default: | |
10976 | abort (); | |
10977 | } | |
10978 | ||
10979 | if (h->forced_local) | |
10980 | { | |
10981 | sym.st_info = ELF_ST_INFO (STB_LOCAL, type); | |
10982 | /* Turn off visibility on local symbol. */ | |
10983 | sym.st_other &= ~ELF_ST_VISIBILITY (-1); | |
10984 | } | |
10985 | /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */ | |
10986 | else if (h->unique_global && h->def_regular) | |
10987 | sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type); | |
10988 | else if (h->root.type == bfd_link_hash_undefweak | |
10989 | || h->root.type == bfd_link_hash_defweak) | |
10990 | sym.st_info = ELF_ST_INFO (STB_WEAK, type); | |
10991 | else | |
10992 | sym.st_info = ELF_ST_INFO (STB_GLOBAL, type); | |
10993 | sym.st_target_internal = h->target_internal; | |
10994 | ||
10995 | /* Give the processor backend a chance to tweak the symbol value, | |
10996 | and also to finish up anything that needs to be done for this | |
10997 | symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for | |
10998 | forced local syms when non-shared is due to a historical quirk. | |
10999 | STT_GNU_IFUNC symbol must go through PLT. */ | |
11000 | if ((h->type == STT_GNU_IFUNC | |
11001 | && h->def_regular | |
11002 | && !bfd_link_relocatable (flinfo->info)) | |
11003 | || ((h->dynindx != -1 | |
11004 | || h->forced_local) | |
11005 | && ((bfd_link_pic (flinfo->info) | |
11006 | && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | |
11007 | || h->root.type != bfd_link_hash_undefweak)) | |
11008 | || !h->forced_local) | |
11009 | && elf_hash_table (flinfo->info)->dynamic_sections_created)) | |
11010 | { | |
11011 | if (! ((*bed->elf_backend_finish_dynamic_symbol) | |
11012 | (flinfo->output_bfd, flinfo->info, h, &sym))) | |
11013 | { | |
11014 | eoinfo->failed = true; | |
11015 | return false; | |
11016 | } | |
11017 | /* If a symbol is in the dynamic symbol table and isn't a | |
11018 | should-strip symbol, also keep it in the symbol table. */ | |
11019 | if (!should_strip) | |
11020 | strip = false; | |
11021 | } | |
11022 | ||
11023 | /* If we are marking the symbol as undefined, and there are no | |
11024 | non-weak references to this symbol from a regular object, then | |
11025 | mark the symbol as weak undefined; if there are non-weak | |
11026 | references, mark the symbol as strong. We can't do this earlier, | |
11027 | because it might not be marked as undefined until the | |
11028 | finish_dynamic_symbol routine gets through with it. */ | |
11029 | if (sym.st_shndx == SHN_UNDEF | |
11030 | && h->ref_regular | |
11031 | && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL | |
11032 | || ELF_ST_BIND (sym.st_info) == STB_WEAK)) | |
11033 | { | |
11034 | int bindtype; | |
11035 | type = ELF_ST_TYPE (sym.st_info); | |
11036 | ||
11037 | /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */ | |
11038 | if (type == STT_GNU_IFUNC) | |
11039 | type = STT_FUNC; | |
11040 | ||
11041 | if (h->ref_regular_nonweak) | |
11042 | bindtype = STB_GLOBAL; | |
11043 | else | |
11044 | bindtype = STB_WEAK; | |
11045 | sym.st_info = ELF_ST_INFO (bindtype, type); | |
11046 | } | |
11047 | ||
11048 | /* If this is a symbol defined in a dynamic library, don't use the | |
11049 | symbol size from the dynamic library. Relinking an executable | |
11050 | against a new library may introduce gratuitous changes in the | |
11051 | executable's symbols if we keep the size. */ | |
11052 | if (sym.st_shndx == SHN_UNDEF | |
11053 | && !h->def_regular | |
11054 | && h->def_dynamic) | |
11055 | sym.st_size = 0; | |
11056 | ||
11057 | /* If a non-weak symbol with non-default visibility is not defined | |
11058 | locally, it is a fatal error. */ | |
11059 | if (!bfd_link_relocatable (flinfo->info) | |
11060 | && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT | |
11061 | && ELF_ST_BIND (sym.st_info) != STB_WEAK | |
11062 | && h->root.type == bfd_link_hash_undefined | |
11063 | && !h->def_regular) | |
11064 | { | |
11065 | const char *msg; | |
11066 | ||
11067 | if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED) | |
11068 | /* xgettext:c-format */ | |
11069 | msg = _("%pB: protected symbol `%s' isn't defined"); | |
11070 | else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL) | |
11071 | /* xgettext:c-format */ | |
11072 | msg = _("%pB: internal symbol `%s' isn't defined"); | |
11073 | else | |
11074 | /* xgettext:c-format */ | |
11075 | msg = _("%pB: hidden symbol `%s' isn't defined"); | |
11076 | _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string); | |
11077 | bfd_set_error (bfd_error_bad_value); | |
11078 | eoinfo->failed = true; | |
11079 | return false; | |
11080 | } | |
11081 | ||
11082 | /* If this symbol should be put in the .dynsym section, then put it | |
11083 | there now. We already know the symbol index. We also fill in | |
11084 | the entry in the .hash section. */ | |
11085 | if (h->dynindx != -1 | |
11086 | && elf_hash_table (flinfo->info)->dynamic_sections_created | |
11087 | && elf_hash_table (flinfo->info)->dynsym != NULL | |
11088 | && !discarded_section (elf_hash_table (flinfo->info)->dynsym)) | |
11089 | { | |
11090 | bfd_byte *esym; | |
11091 | ||
11092 | /* Since there is no version information in the dynamic string, | |
11093 | if there is no version info in symbol version section, we will | |
11094 | have a run-time problem if not linking executable, referenced | |
11095 | by shared library, or not bound locally. */ | |
11096 | if (h->verinfo.verdef == NULL | |
11097 | && (!bfd_link_executable (flinfo->info) | |
11098 | || h->ref_dynamic | |
11099 | || !h->def_regular)) | |
11100 | { | |
11101 | char *p = strrchr (h->root.root.string, ELF_VER_CHR); | |
11102 | ||
11103 | if (p && p [1] != '\0') | |
11104 | { | |
11105 | _bfd_error_handler | |
11106 | /* xgettext:c-format */ | |
11107 | (_("%pB: no symbol version section for versioned symbol `%s'"), | |
11108 | flinfo->output_bfd, h->root.root.string); | |
11109 | eoinfo->failed = true; | |
11110 | return false; | |
11111 | } | |
11112 | } | |
11113 | ||
11114 | sym.st_name = h->dynstr_index; | |
11115 | esym = (elf_hash_table (flinfo->info)->dynsym->contents | |
11116 | + h->dynindx * bed->s->sizeof_sym); | |
11117 | if (!check_dynsym (flinfo->output_bfd, &sym)) | |
11118 | { | |
11119 | eoinfo->failed = true; | |
11120 | return false; | |
11121 | } | |
11122 | ||
11123 | /* Inform the linker of the addition of this symbol. */ | |
11124 | ||
11125 | if (flinfo->info->callbacks->ctf_new_dynsym) | |
11126 | flinfo->info->callbacks->ctf_new_dynsym (h->dynindx, &sym); | |
11127 | ||
11128 | bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0); | |
11129 | ||
11130 | if (flinfo->hash_sec != NULL) | |
11131 | { | |
11132 | size_t hash_entry_size; | |
11133 | bfd_byte *bucketpos; | |
11134 | bfd_vma chain; | |
11135 | size_t bucketcount; | |
11136 | size_t bucket; | |
11137 | ||
11138 | bucketcount = elf_hash_table (flinfo->info)->bucketcount; | |
11139 | bucket = h->u.elf_hash_value % bucketcount; | |
11140 | ||
11141 | hash_entry_size | |
11142 | = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize; | |
11143 | bucketpos = ((bfd_byte *) flinfo->hash_sec->contents | |
11144 | + (bucket + 2) * hash_entry_size); | |
11145 | chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos); | |
11146 | bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx, | |
11147 | bucketpos); | |
11148 | bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain, | |
11149 | ((bfd_byte *) flinfo->hash_sec->contents | |
11150 | + (bucketcount + 2 + h->dynindx) * hash_entry_size)); | |
11151 | } | |
11152 | ||
11153 | if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL) | |
11154 | { | |
11155 | Elf_Internal_Versym iversym; | |
11156 | Elf_External_Versym *eversym; | |
11157 | ||
11158 | if (!h->def_regular && !ELF_COMMON_DEF_P (h)) | |
11159 | { | |
11160 | if (h->verinfo.verdef == NULL | |
11161 | || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd) | |
11162 | & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED))) | |
11163 | iversym.vs_vers = 1; | |
11164 | else | |
11165 | iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1; | |
11166 | } | |
11167 | else | |
11168 | { | |
11169 | if (h->verinfo.vertree == NULL) | |
11170 | iversym.vs_vers = 1; | |
11171 | else | |
11172 | iversym.vs_vers = h->verinfo.vertree->vernum + 1; | |
11173 | if (flinfo->info->create_default_symver) | |
11174 | iversym.vs_vers++; | |
11175 | } | |
11176 | ||
11177 | /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is | |
11178 | defined locally. */ | |
11179 | if (h->versioned == versioned_hidden && h->def_regular) | |
11180 | iversym.vs_vers |= VERSYM_HIDDEN; | |
11181 | ||
11182 | eversym = (Elf_External_Versym *) flinfo->symver_sec->contents; | |
11183 | eversym += h->dynindx; | |
11184 | _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym); | |
11185 | } | |
11186 | } | |
11187 | ||
11188 | /* If the symbol is undefined, and we didn't output it to .dynsym, | |
11189 | strip it from .symtab too. Obviously we can't do this for | |
11190 | relocatable output or when needed for --emit-relocs. */ | |
11191 | else if (input_sec == bfd_und_section_ptr | |
11192 | && h->indx != -2 | |
11193 | /* PR 22319 Do not strip global undefined symbols marked as being needed. */ | |
11194 | && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL) | |
11195 | && !bfd_link_relocatable (flinfo->info)) | |
11196 | return true; | |
11197 | ||
11198 | /* Also strip others that we couldn't earlier due to dynamic symbol | |
11199 | processing. */ | |
11200 | if (strip) | |
11201 | return true; | |
11202 | if ((input_sec->flags & SEC_EXCLUDE) != 0) | |
11203 | return true; | |
11204 | ||
11205 | /* Output a FILE symbol so that following locals are not associated | |
11206 | with the wrong input file. We need one for forced local symbols | |
11207 | if we've seen more than one FILE symbol or when we have exactly | |
11208 | one FILE symbol but global symbols are present in a file other | |
11209 | than the one with the FILE symbol. We also need one if linker | |
11210 | defined symbols are present. In practice these conditions are | |
11211 | always met, so just emit the FILE symbol unconditionally. */ | |
11212 | if (eoinfo->localsyms | |
11213 | && !eoinfo->file_sym_done | |
11214 | && eoinfo->flinfo->filesym_count != 0) | |
11215 | { | |
11216 | Elf_Internal_Sym fsym; | |
11217 | ||
11218 | memset (&fsym, 0, sizeof (fsym)); | |
11219 | fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | |
11220 | fsym.st_shndx = SHN_ABS; | |
11221 | if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym, | |
11222 | bfd_und_section_ptr, NULL)) | |
11223 | return false; | |
11224 | ||
11225 | eoinfo->file_sym_done = true; | |
11226 | } | |
11227 | ||
11228 | indx = bfd_get_symcount (flinfo->output_bfd); | |
11229 | ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym, | |
11230 | input_sec, h); | |
11231 | if (ret == 0) | |
11232 | { | |
11233 | eoinfo->failed = true; | |
11234 | return false; | |
11235 | } | |
11236 | else if (ret == 1) | |
11237 | h->indx = indx; | |
11238 | else if (h->indx == -2) | |
11239 | abort(); | |
11240 | ||
11241 | return true; | |
11242 | } | |
11243 | ||
11244 | /* Return TRUE if special handling is done for relocs in SEC against | |
11245 | symbols defined in discarded sections. */ | |
11246 | ||
11247 | static bool | |
11248 | elf_section_ignore_discarded_relocs (asection *sec) | |
11249 | { | |
11250 | const struct elf_backend_data *bed; | |
11251 | ||
11252 | switch (sec->sec_info_type) | |
11253 | { | |
11254 | case SEC_INFO_TYPE_STABS: | |
11255 | case SEC_INFO_TYPE_EH_FRAME: | |
11256 | case SEC_INFO_TYPE_EH_FRAME_ENTRY: | |
11257 | case SEC_INFO_TYPE_SFRAME: | |
11258 | return true; | |
11259 | default: | |
11260 | break; | |
11261 | } | |
11262 | ||
11263 | bed = get_elf_backend_data (sec->owner); | |
11264 | if (bed->elf_backend_ignore_discarded_relocs != NULL | |
11265 | && (*bed->elf_backend_ignore_discarded_relocs) (sec)) | |
11266 | return true; | |
11267 | ||
11268 | return false; | |
11269 | } | |
11270 | ||
11271 | /* Return a mask saying how ld should treat relocations in SEC against | |
11272 | symbols defined in discarded sections. If this function returns | |
11273 | COMPLAIN set, ld will issue a warning message. If this function | |
11274 | returns PRETEND set, and the discarded section was link-once and the | |
11275 | same size as the kept link-once section, ld will pretend that the | |
11276 | symbol was actually defined in the kept section. Otherwise ld will | |
11277 | zero the reloc (at least that is the intent, but some cooperation by | |
11278 | the target dependent code is needed, particularly for REL targets). */ | |
11279 | ||
11280 | unsigned int | |
11281 | _bfd_elf_default_action_discarded (asection *sec) | |
11282 | { | |
11283 | const struct elf_backend_data *bed; | |
11284 | bed = get_elf_backend_data (sec->owner); | |
11285 | ||
11286 | if (sec->flags & SEC_DEBUGGING) | |
11287 | return PRETEND; | |
11288 | ||
11289 | if (strcmp (".eh_frame", sec->name) == 0) | |
11290 | return 0; | |
11291 | ||
11292 | if (bed->elf_backend_can_make_multiple_eh_frame | |
11293 | && strncmp (sec->name, ".eh_frame.", 10) == 0) | |
11294 | return 0; | |
11295 | ||
11296 | if (strcmp (".sframe", sec->name) == 0) | |
11297 | return 0; | |
11298 | ||
11299 | if (strcmp (".gcc_except_table", sec->name) == 0) | |
11300 | return 0; | |
11301 | ||
11302 | return COMPLAIN | PRETEND; | |
11303 | } | |
11304 | ||
11305 | /* Find a match between a section and a member of a section group. */ | |
11306 | ||
11307 | static asection * | |
11308 | match_group_member (asection *sec, asection *group, | |
11309 | struct bfd_link_info *info) | |
11310 | { | |
11311 | asection *first = elf_next_in_group (group); | |
11312 | asection *s = first; | |
11313 | ||
11314 | while (s != NULL) | |
11315 | { | |
11316 | if (bfd_elf_match_symbols_in_sections (s, sec, info)) | |
11317 | return s; | |
11318 | ||
11319 | s = elf_next_in_group (s); | |
11320 | if (s == first) | |
11321 | break; | |
11322 | } | |
11323 | ||
11324 | return NULL; | |
11325 | } | |
11326 | ||
11327 | /* Check if the kept section of a discarded section SEC can be used | |
11328 | to replace it. Return the replacement if it is OK. Otherwise return | |
11329 | NULL. */ | |
11330 | ||
11331 | asection * | |
11332 | _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info) | |
11333 | { | |
11334 | asection *kept; | |
11335 | ||
11336 | kept = sec->kept_section; | |
11337 | if (kept != NULL) | |
11338 | { | |
11339 | if ((kept->flags & SEC_GROUP) != 0) | |
11340 | kept = match_group_member (sec, kept, info); | |
11341 | if (kept != NULL) | |
11342 | { | |
11343 | if ((sec->rawsize != 0 ? sec->rawsize : sec->size) | |
11344 | != (kept->rawsize != 0 ? kept->rawsize : kept->size)) | |
11345 | kept = NULL; | |
11346 | else | |
11347 | { | |
11348 | /* Get the real kept section. */ | |
11349 | asection *next; | |
11350 | for (next = kept->kept_section; | |
11351 | next != NULL; | |
11352 | next = next->kept_section) | |
11353 | kept = next; | |
11354 | } | |
11355 | } | |
11356 | sec->kept_section = kept; | |
11357 | } | |
11358 | return kept; | |
11359 | } | |
11360 | ||
11361 | /* Link an input file into the linker output file. This function | |
11362 | handles all the sections and relocations of the input file at once. | |
11363 | This is so that we only have to read the local symbols once, and | |
11364 | don't have to keep them in memory. */ | |
11365 | ||
11366 | static bool | |
11367 | elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd) | |
11368 | { | |
11369 | int (*relocate_section) | |
11370 | (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, | |
11371 | Elf_Internal_Rela *, Elf_Internal_Sym *, asection **); | |
11372 | bfd *output_bfd; | |
11373 | Elf_Internal_Shdr *symtab_hdr; | |
11374 | size_t locsymcount; | |
11375 | size_t extsymoff; | |
11376 | Elf_Internal_Sym *isymbuf; | |
11377 | Elf_Internal_Sym *isym; | |
11378 | Elf_Internal_Sym *isymend; | |
11379 | long *pindex; | |
11380 | asection **ppsection; | |
11381 | asection *o; | |
11382 | const struct elf_backend_data *bed; | |
11383 | struct elf_link_hash_entry **sym_hashes; | |
11384 | bfd_size_type address_size; | |
11385 | bfd_vma r_type_mask; | |
11386 | int r_sym_shift; | |
11387 | bool have_file_sym = false; | |
11388 | ||
11389 | output_bfd = flinfo->output_bfd; | |
11390 | bed = get_elf_backend_data (output_bfd); | |
11391 | relocate_section = bed->elf_backend_relocate_section; | |
11392 | ||
11393 | /* If this is a dynamic object, we don't want to do anything here: | |
11394 | we don't want the local symbols, and we don't want the section | |
11395 | contents. */ | |
11396 | if ((input_bfd->flags & DYNAMIC) != 0) | |
11397 | return true; | |
11398 | ||
11399 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
11400 | if (elf_bad_symtab (input_bfd)) | |
11401 | { | |
11402 | locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; | |
11403 | extsymoff = 0; | |
11404 | } | |
11405 | else | |
11406 | { | |
11407 | locsymcount = symtab_hdr->sh_info; | |
11408 | extsymoff = symtab_hdr->sh_info; | |
11409 | } | |
11410 | ||
11411 | /* Enable GNU OSABI features in the output BFD that are used in the input | |
11412 | BFD. */ | |
11413 | if (bed->elf_osabi == ELFOSABI_NONE | |
11414 | || bed->elf_osabi == ELFOSABI_GNU | |
11415 | || bed->elf_osabi == ELFOSABI_FREEBSD) | |
11416 | elf_tdata (output_bfd)->has_gnu_osabi | |
11417 | |= (elf_tdata (input_bfd)->has_gnu_osabi | |
11418 | & (bfd_link_relocatable (flinfo->info) | |
11419 | ? -1 : ~elf_gnu_osabi_retain)); | |
11420 | ||
11421 | /* Read the local symbols. */ | |
11422 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
11423 | if (isymbuf == NULL && locsymcount != 0) | |
11424 | { | |
11425 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, | |
11426 | flinfo->internal_syms, | |
11427 | flinfo->external_syms, | |
11428 | flinfo->locsym_shndx); | |
11429 | if (isymbuf == NULL) | |
11430 | return false; | |
11431 | } | |
11432 | ||
11433 | /* Find local symbol sections and adjust values of symbols in | |
11434 | SEC_MERGE sections. Write out those local symbols we know are | |
11435 | going into the output file. */ | |
11436 | isymend = PTR_ADD (isymbuf, locsymcount); | |
11437 | for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections; | |
11438 | isym < isymend; | |
11439 | isym++, pindex++, ppsection++) | |
11440 | { | |
11441 | asection *isec; | |
11442 | const char *name; | |
11443 | Elf_Internal_Sym osym; | |
11444 | long indx; | |
11445 | int ret; | |
11446 | ||
11447 | *pindex = -1; | |
11448 | ||
11449 | if (elf_bad_symtab (input_bfd)) | |
11450 | { | |
11451 | if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) | |
11452 | { | |
11453 | *ppsection = NULL; | |
11454 | continue; | |
11455 | } | |
11456 | } | |
11457 | ||
11458 | if (isym->st_shndx == SHN_UNDEF) | |
11459 | isec = bfd_und_section_ptr; | |
11460 | else if (isym->st_shndx == SHN_ABS) | |
11461 | isec = bfd_abs_section_ptr; | |
11462 | else if (isym->st_shndx == SHN_COMMON) | |
11463 | isec = bfd_com_section_ptr; | |
11464 | else | |
11465 | { | |
11466 | isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx); | |
11467 | if (isec == NULL) | |
11468 | { | |
11469 | /* Don't attempt to output symbols with st_shnx in the | |
11470 | reserved range other than SHN_ABS and SHN_COMMON. */ | |
11471 | isec = bfd_und_section_ptr; | |
11472 | } | |
11473 | else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE | |
11474 | && ELF_ST_TYPE (isym->st_info) != STT_SECTION) | |
11475 | isym->st_value = | |
11476 | _bfd_merged_section_offset (output_bfd, &isec, | |
11477 | elf_section_data (isec)->sec_info, | |
11478 | isym->st_value); | |
11479 | } | |
11480 | ||
11481 | *ppsection = isec; | |
11482 | ||
11483 | /* Don't output the first, undefined, symbol. In fact, don't | |
11484 | output any undefined local symbol. */ | |
11485 | if (isec == bfd_und_section_ptr) | |
11486 | continue; | |
11487 | ||
11488 | if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | |
11489 | { | |
11490 | /* We never output section symbols. Instead, we use the | |
11491 | section symbol of the corresponding section in the output | |
11492 | file. */ | |
11493 | continue; | |
11494 | } | |
11495 | ||
11496 | /* If we are stripping all symbols, we don't want to output this | |
11497 | one. */ | |
11498 | if (flinfo->info->strip == strip_all) | |
11499 | continue; | |
11500 | ||
11501 | /* If we are discarding all local symbols, we don't want to | |
11502 | output this one. If we are generating a relocatable output | |
11503 | file, then some of the local symbols may be required by | |
11504 | relocs; we output them below as we discover that they are | |
11505 | needed. */ | |
11506 | if (flinfo->info->discard == discard_all) | |
11507 | continue; | |
11508 | ||
11509 | /* If this symbol is defined in a section which we are | |
11510 | discarding, we don't need to keep it. */ | |
11511 | if (isym->st_shndx < SHN_LORESERVE | |
11512 | && (isec->output_section == NULL | |
11513 | || bfd_section_removed_from_list (output_bfd, | |
11514 | isec->output_section))) | |
11515 | continue; | |
11516 | ||
11517 | /* Get the name of the symbol. */ | |
11518 | name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, | |
11519 | isym->st_name); | |
11520 | if (name == NULL) | |
11521 | return false; | |
11522 | ||
11523 | /* See if we are discarding symbols with this name. */ | |
11524 | if ((flinfo->info->strip == strip_some | |
11525 | && (bfd_hash_lookup (flinfo->info->keep_hash, name, false, false) | |
11526 | == NULL)) | |
11527 | || (((flinfo->info->discard == discard_sec_merge | |
11528 | && (isec->flags & SEC_MERGE) | |
11529 | && !bfd_link_relocatable (flinfo->info)) | |
11530 | || flinfo->info->discard == discard_l) | |
11531 | && bfd_is_local_label_name (input_bfd, name))) | |
11532 | continue; | |
11533 | ||
11534 | if (ELF_ST_TYPE (isym->st_info) == STT_FILE) | |
11535 | { | |
11536 | if (input_bfd->lto_output) | |
11537 | /* -flto puts a temp file name here. This means builds | |
11538 | are not reproducible. Discard the symbol. */ | |
11539 | continue; | |
11540 | have_file_sym = true; | |
11541 | flinfo->filesym_count += 1; | |
11542 | } | |
11543 | if (!have_file_sym) | |
11544 | { | |
11545 | /* In the absence of debug info, bfd_find_nearest_line uses | |
11546 | FILE symbols to determine the source file for local | |
11547 | function symbols. Provide a FILE symbol here if input | |
11548 | files lack such, so that their symbols won't be | |
11549 | associated with a previous input file. It's not the | |
11550 | source file, but the best we can do. */ | |
11551 | const char *filename; | |
11552 | have_file_sym = true; | |
11553 | flinfo->filesym_count += 1; | |
11554 | memset (&osym, 0, sizeof (osym)); | |
11555 | osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | |
11556 | osym.st_shndx = SHN_ABS; | |
11557 | if (input_bfd->lto_output) | |
11558 | filename = NULL; | |
11559 | else | |
11560 | filename = lbasename (bfd_get_filename (input_bfd)); | |
11561 | if (!elf_link_output_symstrtab (flinfo, filename, &osym, | |
11562 | bfd_abs_section_ptr, NULL)) | |
11563 | return false; | |
11564 | } | |
11565 | ||
11566 | osym = *isym; | |
11567 | ||
11568 | /* Adjust the section index for the output file. */ | |
11569 | osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |
11570 | isec->output_section); | |
11571 | if (osym.st_shndx == SHN_BAD) | |
11572 | return false; | |
11573 | ||
11574 | /* ELF symbols in relocatable files are section relative, but | |
11575 | in executable files they are virtual addresses. Note that | |
11576 | this code assumes that all ELF sections have an associated | |
11577 | BFD section with a reasonable value for output_offset; below | |
11578 | we assume that they also have a reasonable value for | |
11579 | output_section. Any special sections must be set up to meet | |
11580 | these requirements. */ | |
11581 | osym.st_value += isec->output_offset; | |
11582 | if (!bfd_link_relocatable (flinfo->info)) | |
11583 | { | |
11584 | osym.st_value += isec->output_section->vma; | |
11585 | if (ELF_ST_TYPE (osym.st_info) == STT_TLS) | |
11586 | { | |
11587 | /* STT_TLS symbols are relative to PT_TLS segment base. */ | |
11588 | if (elf_hash_table (flinfo->info)->tls_sec != NULL) | |
11589 | osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma; | |
11590 | else | |
11591 | osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info), | |
11592 | STT_NOTYPE); | |
11593 | } | |
11594 | } | |
11595 | ||
11596 | indx = bfd_get_symcount (output_bfd); | |
11597 | ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL); | |
11598 | if (ret == 0) | |
11599 | return false; | |
11600 | else if (ret == 1) | |
11601 | *pindex = indx; | |
11602 | } | |
11603 | ||
11604 | if (bed->s->arch_size == 32) | |
11605 | { | |
11606 | r_type_mask = 0xff; | |
11607 | r_sym_shift = 8; | |
11608 | address_size = 4; | |
11609 | } | |
11610 | else | |
11611 | { | |
11612 | r_type_mask = 0xffffffff; | |
11613 | r_sym_shift = 32; | |
11614 | address_size = 8; | |
11615 | } | |
11616 | ||
11617 | /* Relocate the contents of each section. */ | |
11618 | sym_hashes = elf_sym_hashes (input_bfd); | |
11619 | for (o = input_bfd->sections; o != NULL; o = o->next) | |
11620 | { | |
11621 | bfd_byte *contents; | |
11622 | ||
11623 | if (! o->linker_mark) | |
11624 | { | |
11625 | /* This section was omitted from the link. */ | |
11626 | continue; | |
11627 | } | |
11628 | ||
11629 | if (!flinfo->info->resolve_section_groups | |
11630 | && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP) | |
11631 | { | |
11632 | /* Deal with the group signature symbol. */ | |
11633 | struct bfd_elf_section_data *sec_data = elf_section_data (o); | |
11634 | unsigned long symndx = sec_data->this_hdr.sh_info; | |
11635 | asection *osec = o->output_section; | |
11636 | ||
11637 | BFD_ASSERT (bfd_link_relocatable (flinfo->info)); | |
11638 | if (symndx >= locsymcount | |
11639 | || (elf_bad_symtab (input_bfd) | |
11640 | && flinfo->sections[symndx] == NULL)) | |
11641 | { | |
11642 | struct elf_link_hash_entry *h; | |
11643 | ||
11644 | h = get_link_hash_entry (sym_hashes, symndx, extsymoff); | |
11645 | if (h == NULL) | |
11646 | { | |
11647 | _bfd_error_handler | |
11648 | /* xgettext:c-format */ | |
11649 | (_("error: %pB: unable to create group section symbol"), | |
11650 | input_bfd); | |
11651 | bfd_set_error (bfd_error_bad_value); | |
11652 | return false; | |
11653 | } | |
11654 | ||
11655 | /* Arrange for symbol to be output. */ | |
11656 | h->indx = -2; | |
11657 | elf_section_data (osec)->this_hdr.sh_info = -2; | |
11658 | } | |
11659 | else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION) | |
11660 | { | |
11661 | /* We'll use the output section target_index. */ | |
11662 | asection *sec = flinfo->sections[symndx]->output_section; | |
11663 | elf_section_data (osec)->this_hdr.sh_info = sec->target_index; | |
11664 | } | |
11665 | else | |
11666 | { | |
11667 | if (flinfo->indices[symndx] == -1) | |
11668 | { | |
11669 | /* Otherwise output the local symbol now. */ | |
11670 | Elf_Internal_Sym sym = isymbuf[symndx]; | |
11671 | asection *sec = flinfo->sections[symndx]->output_section; | |
11672 | const char *name; | |
11673 | long indx; | |
11674 | int ret; | |
11675 | ||
11676 | name = bfd_elf_string_from_elf_section (input_bfd, | |
11677 | symtab_hdr->sh_link, | |
11678 | sym.st_name); | |
11679 | if (name == NULL) | |
11680 | return false; | |
11681 | ||
11682 | sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | |
11683 | sec); | |
11684 | if (sym.st_shndx == SHN_BAD) | |
11685 | return false; | |
11686 | ||
11687 | sym.st_value += o->output_offset; | |
11688 | ||
11689 | indx = bfd_get_symcount (output_bfd); | |
11690 | ret = elf_link_output_symstrtab (flinfo, name, &sym, o, | |
11691 | NULL); | |
11692 | if (ret == 0) | |
11693 | return false; | |
11694 | else if (ret == 1) | |
11695 | flinfo->indices[symndx] = indx; | |
11696 | else | |
11697 | abort (); | |
11698 | } | |
11699 | elf_section_data (osec)->this_hdr.sh_info | |
11700 | = flinfo->indices[symndx]; | |
11701 | } | |
11702 | } | |
11703 | ||
11704 | if ((o->flags & SEC_HAS_CONTENTS) == 0 | |
11705 | || (o->size == 0 && (o->flags & SEC_RELOC) == 0)) | |
11706 | continue; | |
11707 | ||
11708 | if ((o->flags & SEC_LINKER_CREATED) != 0) | |
11709 | { | |
11710 | /* Section was created by _bfd_elf_link_create_dynamic_sections | |
11711 | or somesuch. */ | |
11712 | continue; | |
11713 | } | |
11714 | ||
11715 | /* Get the contents of the section. They have been cached by a | |
11716 | relaxation routine. Note that o is a section in an input | |
11717 | file, so the contents field will not have been set by any of | |
11718 | the routines which work on output files. */ | |
11719 | if (elf_section_data (o)->this_hdr.contents != NULL) | |
11720 | { | |
11721 | contents = elf_section_data (o)->this_hdr.contents; | |
11722 | if (bed->caches_rawsize | |
11723 | && o->rawsize != 0 | |
11724 | && o->rawsize < o->size) | |
11725 | { | |
11726 | memcpy (flinfo->contents, contents, o->rawsize); | |
11727 | contents = flinfo->contents; | |
11728 | } | |
11729 | } | |
11730 | else if (!(o->flags & SEC_RELOC) | |
11731 | && !bed->elf_backend_write_section | |
11732 | && o->sec_info_type == SEC_INFO_TYPE_MERGE) | |
11733 | /* A MERGE section that has no relocations doesn't need the | |
11734 | contents anymore, they have been recorded earlier. Except | |
11735 | if the backend has special provisions for writing sections. */ | |
11736 | contents = NULL; | |
11737 | else | |
11738 | { | |
11739 | contents = flinfo->contents; | |
11740 | if (! _bfd_elf_link_mmap_section_contents (input_bfd, o, | |
11741 | &contents)) | |
11742 | return false; | |
11743 | } | |
11744 | ||
11745 | if ((o->flags & SEC_RELOC) != 0) | |
11746 | { | |
11747 | Elf_Internal_Rela *internal_relocs; | |
11748 | Elf_Internal_Rela *rel, *relend; | |
11749 | int action_discarded; | |
11750 | int ret; | |
11751 | ||
11752 | /* Get the swapped relocs. */ | |
11753 | internal_relocs | |
11754 | = _bfd_elf_link_info_read_relocs (input_bfd, flinfo->info, o, | |
11755 | flinfo->external_relocs, | |
11756 | flinfo->internal_relocs, | |
11757 | false); | |
11758 | if (internal_relocs == NULL | |
11759 | && o->reloc_count > 0) | |
11760 | return false; | |
11761 | ||
11762 | action_discarded = -1; | |
11763 | if (!elf_section_ignore_discarded_relocs (o)) | |
11764 | action_discarded = (*bed->action_discarded) (o); | |
11765 | ||
11766 | /* Run through the relocs evaluating complex reloc symbols and | |
11767 | looking for relocs against symbols from discarded sections | |
11768 | or section symbols from removed link-once sections. | |
11769 | Complain about relocs against discarded sections. Zero | |
11770 | relocs against removed link-once sections. */ | |
11771 | ||
11772 | rel = internal_relocs; | |
11773 | relend = rel + o->reloc_count; | |
11774 | for ( ; rel < relend; rel++) | |
11775 | { | |
11776 | unsigned long r_symndx = rel->r_info >> r_sym_shift; | |
11777 | unsigned int s_type; | |
11778 | asection **ps, *sec; | |
11779 | struct elf_link_hash_entry *h = NULL; | |
11780 | const char *sym_name; | |
11781 | ||
11782 | if (r_symndx == STN_UNDEF) | |
11783 | continue; | |
11784 | ||
11785 | if (r_symndx >= locsymcount | |
11786 | || (elf_bad_symtab (input_bfd) | |
11787 | && flinfo->sections[r_symndx] == NULL)) | |
11788 | { | |
11789 | h = get_link_hash_entry (sym_hashes, r_symndx, extsymoff); | |
11790 | ||
11791 | /* Badly formatted input files can contain relocs that | |
11792 | reference non-existant symbols. Check here so that | |
11793 | we do not seg fault. */ | |
11794 | if (h == NULL) | |
11795 | { | |
11796 | _bfd_error_handler | |
11797 | /* xgettext:c-format */ | |
11798 | (_("error: %pB contains a reloc (%#" PRIx64 ") for section '%pA' " | |
11799 | "that references a non-existent global symbol"), | |
11800 | input_bfd, (uint64_t) rel->r_info, o); | |
11801 | bfd_set_error (bfd_error_bad_value); | |
11802 | return false; | |
11803 | } | |
11804 | ||
11805 | s_type = h->type; | |
11806 | ||
11807 | /* If a plugin symbol is referenced from a non-IR file, | |
11808 | mark the symbol as undefined. Note that the | |
11809 | linker may attach linker created dynamic sections | |
11810 | to the plugin bfd. Symbols defined in linker | |
11811 | created sections are not plugin symbols. */ | |
11812 | if ((h->root.non_ir_ref_regular | |
11813 | || h->root.non_ir_ref_dynamic) | |
11814 | && (h->root.type == bfd_link_hash_defined | |
11815 | || h->root.type == bfd_link_hash_defweak) | |
11816 | && (h->root.u.def.section->flags | |
11817 | & SEC_LINKER_CREATED) == 0 | |
11818 | && h->root.u.def.section->owner != NULL | |
11819 | && (h->root.u.def.section->owner->flags | |
11820 | & BFD_PLUGIN) != 0) | |
11821 | { | |
11822 | h->root.type = bfd_link_hash_undefined; | |
11823 | h->root.u.undef.abfd = h->root.u.def.section->owner; | |
11824 | } | |
11825 | ||
11826 | ps = NULL; | |
11827 | if (h->root.type == bfd_link_hash_defined | |
11828 | || h->root.type == bfd_link_hash_defweak) | |
11829 | ps = &h->root.u.def.section; | |
11830 | ||
11831 | sym_name = h->root.root.string; | |
11832 | } | |
11833 | else | |
11834 | { | |
11835 | Elf_Internal_Sym *sym = isymbuf + r_symndx; | |
11836 | ||
11837 | s_type = ELF_ST_TYPE (sym->st_info); | |
11838 | ps = &flinfo->sections[r_symndx]; | |
11839 | sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, | |
11840 | sym, *ps); | |
11841 | } | |
11842 | ||
11843 | if ((s_type == STT_RELC || s_type == STT_SRELC) | |
11844 | && !bfd_link_relocatable (flinfo->info)) | |
11845 | { | |
11846 | bfd_vma val; | |
11847 | bfd_vma dot = (rel->r_offset | |
11848 | + o->output_offset + o->output_section->vma); | |
11849 | #ifdef DEBUG | |
11850 | printf ("Encountered a complex symbol!"); | |
11851 | printf (" (input_bfd %s, section %s, reloc %ld\n", | |
11852 | bfd_get_filename (input_bfd), o->name, | |
11853 | (long) (rel - internal_relocs)); | |
11854 | printf (" symbol: idx %8.8lx, name %s\n", | |
11855 | r_symndx, sym_name); | |
11856 | printf (" reloc : info %8.8lx, addr %8.8lx\n", | |
11857 | (unsigned long) rel->r_info, | |
11858 | (unsigned long) rel->r_offset); | |
11859 | #endif | |
11860 | if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot, | |
11861 | isymbuf, locsymcount, s_type == STT_SRELC)) | |
11862 | return false; | |
11863 | ||
11864 | /* Symbol evaluated OK. Update to absolute value. */ | |
11865 | set_symbol_value (input_bfd, isymbuf, locsymcount, | |
11866 | r_symndx, val); | |
11867 | continue; | |
11868 | } | |
11869 | ||
11870 | if (action_discarded != -1 && ps != NULL) | |
11871 | { | |
11872 | /* Complain if the definition comes from a | |
11873 | discarded section. */ | |
11874 | if ((sec = *ps) != NULL && discarded_section (sec)) | |
11875 | { | |
11876 | BFD_ASSERT (r_symndx != STN_UNDEF); | |
11877 | if (action_discarded & COMPLAIN) | |
11878 | (*flinfo->info->callbacks->einfo) | |
11879 | /* xgettext:c-format */ | |
11880 | (_("%X`%s' referenced in section `%pA' of %pB: " | |
11881 | "defined in discarded section `%pA' of %pB\n"), | |
11882 | sym_name, o, input_bfd, sec, sec->owner); | |
11883 | ||
11884 | /* Try to do the best we can to support buggy old | |
11885 | versions of gcc. Pretend that the symbol is | |
11886 | really defined in the kept linkonce section. | |
11887 | FIXME: This is quite broken. Modifying the | |
11888 | symbol here means we will be changing all later | |
11889 | uses of the symbol, not just in this section. */ | |
11890 | if (action_discarded & PRETEND) | |
11891 | { | |
11892 | asection *kept; | |
11893 | ||
11894 | kept = _bfd_elf_check_kept_section (sec, | |
11895 | flinfo->info); | |
11896 | if (kept != NULL) | |
11897 | { | |
11898 | *ps = kept; | |
11899 | continue; | |
11900 | } | |
11901 | } | |
11902 | } | |
11903 | } | |
11904 | } | |
11905 | ||
11906 | /* Relocate the section by invoking a back end routine. | |
11907 | ||
11908 | The back end routine is responsible for adjusting the | |
11909 | section contents as necessary, and (if using Rela relocs | |
11910 | and generating a relocatable output file) adjusting the | |
11911 | reloc addend as necessary. | |
11912 | ||
11913 | The back end routine does not have to worry about setting | |
11914 | the reloc address or the reloc symbol index. | |
11915 | ||
11916 | The back end routine is given a pointer to the swapped in | |
11917 | internal symbols, and can access the hash table entries | |
11918 | for the external symbols via elf_sym_hashes (input_bfd). | |
11919 | ||
11920 | When generating relocatable output, the back end routine | |
11921 | must handle STB_LOCAL/STT_SECTION symbols specially. The | |
11922 | output symbol is going to be a section symbol | |
11923 | corresponding to the output section, which will require | |
11924 | the addend to be adjusted. */ | |
11925 | ||
11926 | ret = (*relocate_section) (output_bfd, flinfo->info, | |
11927 | input_bfd, o, contents, | |
11928 | internal_relocs, | |
11929 | isymbuf, | |
11930 | flinfo->sections); | |
11931 | if (!ret) | |
11932 | return false; | |
11933 | ||
11934 | if (ret == 2 | |
11935 | || bfd_link_relocatable (flinfo->info) | |
11936 | || flinfo->info->emitrelocations) | |
11937 | { | |
11938 | Elf_Internal_Rela *irela; | |
11939 | Elf_Internal_Rela *irelaend, *irelamid; | |
11940 | bfd_vma last_offset; | |
11941 | struct elf_link_hash_entry **rel_hash; | |
11942 | struct elf_link_hash_entry **rel_hash_list, **rela_hash_list; | |
11943 | Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr; | |
11944 | unsigned int next_erel; | |
11945 | bool rela_normal; | |
11946 | struct bfd_elf_section_data *esdi, *esdo; | |
11947 | ||
11948 | esdi = elf_section_data (o); | |
11949 | esdo = elf_section_data (o->output_section); | |
11950 | rela_normal = false; | |
11951 | ||
11952 | /* Adjust the reloc addresses and symbol indices. */ | |
11953 | ||
11954 | irela = internal_relocs; | |
11955 | irelaend = irela + o->reloc_count; | |
11956 | rel_hash = PTR_ADD (esdo->rel.hashes, esdo->rel.count); | |
11957 | /* We start processing the REL relocs, if any. When we reach | |
11958 | IRELAMID in the loop, we switch to the RELA relocs. */ | |
11959 | irelamid = irela; | |
11960 | if (esdi->rel.hdr != NULL) | |
11961 | irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr) | |
11962 | * bed->s->int_rels_per_ext_rel); | |
11963 | rel_hash_list = rel_hash; | |
11964 | rela_hash_list = NULL; | |
11965 | last_offset = o->output_offset; | |
11966 | if (!bfd_link_relocatable (flinfo->info)) | |
11967 | last_offset += o->output_section->vma; | |
11968 | for (next_erel = 0; irela < irelaend; irela++, next_erel++) | |
11969 | { | |
11970 | unsigned long r_symndx; | |
11971 | asection *sec; | |
11972 | Elf_Internal_Sym sym; | |
11973 | ||
11974 | if (next_erel == bed->s->int_rels_per_ext_rel) | |
11975 | { | |
11976 | rel_hash++; | |
11977 | next_erel = 0; | |
11978 | } | |
11979 | ||
11980 | if (irela == irelamid) | |
11981 | { | |
11982 | rel_hash = PTR_ADD (esdo->rela.hashes, esdo->rela.count); | |
11983 | rela_hash_list = rel_hash; | |
11984 | rela_normal = bed->rela_normal; | |
11985 | } | |
11986 | ||
11987 | irela->r_offset = _bfd_elf_section_offset (output_bfd, | |
11988 | flinfo->info, o, | |
11989 | irela->r_offset); | |
11990 | if (irela->r_offset >= (bfd_vma) -2) | |
11991 | { | |
11992 | /* This is a reloc for a deleted entry or somesuch. | |
11993 | Turn it into an R_*_NONE reloc, at the same | |
11994 | offset as the last reloc. elf_eh_frame.c and | |
11995 | bfd_elf_discard_info rely on reloc offsets | |
11996 | being ordered. */ | |
11997 | irela->r_offset = last_offset; | |
11998 | irela->r_info = 0; | |
11999 | irela->r_addend = 0; | |
12000 | continue; | |
12001 | } | |
12002 | ||
12003 | irela->r_offset += o->output_offset; | |
12004 | ||
12005 | /* Relocs in an executable have to be virtual addresses. */ | |
12006 | if (!bfd_link_relocatable (flinfo->info)) | |
12007 | irela->r_offset += o->output_section->vma; | |
12008 | ||
12009 | last_offset = irela->r_offset; | |
12010 | ||
12011 | r_symndx = irela->r_info >> r_sym_shift; | |
12012 | if (r_symndx == STN_UNDEF) | |
12013 | continue; | |
12014 | ||
12015 | if (r_symndx >= locsymcount | |
12016 | || (elf_bad_symtab (input_bfd) | |
12017 | && flinfo->sections[r_symndx] == NULL)) | |
12018 | { | |
12019 | struct elf_link_hash_entry *rh; | |
12020 | ||
12021 | /* This is a reloc against a global symbol. We | |
12022 | have not yet output all the local symbols, so | |
12023 | we do not know the symbol index of any global | |
12024 | symbol. We set the rel_hash entry for this | |
12025 | reloc to point to the global hash table entry | |
12026 | for this symbol. The symbol index is then | |
12027 | set at the end of bfd_elf_final_link. */ | |
12028 | rh = get_link_hash_entry (elf_sym_hashes (input_bfd), | |
12029 | r_symndx, extsymoff); | |
12030 | if (rh == NULL) | |
12031 | { | |
12032 | /* FIXME: Generate an error ? */ | |
12033 | continue; | |
12034 | } | |
12035 | ||
12036 | /* Setting the index to -2 tells elf_link_output_extsym | |
12037 | that this symbol is used by a reloc. */ | |
12038 | BFD_ASSERT (rh->indx < 0); | |
12039 | rh->indx = -2; | |
12040 | *rel_hash = rh; | |
12041 | ||
12042 | continue; | |
12043 | } | |
12044 | ||
12045 | /* This is a reloc against a local symbol. */ | |
12046 | ||
12047 | *rel_hash = NULL; | |
12048 | sym = isymbuf[r_symndx]; | |
12049 | sec = flinfo->sections[r_symndx]; | |
12050 | if (ELF_ST_TYPE (sym.st_info) == STT_SECTION) | |
12051 | { | |
12052 | /* I suppose the backend ought to fill in the | |
12053 | section of any STT_SECTION symbol against a | |
12054 | processor specific section. */ | |
12055 | r_symndx = STN_UNDEF; | |
12056 | if (bfd_is_abs_section (sec)) | |
12057 | ; | |
12058 | else if (sec == NULL || sec->owner == NULL) | |
12059 | { | |
12060 | bfd_set_error (bfd_error_bad_value); | |
12061 | return false; | |
12062 | } | |
12063 | else | |
12064 | { | |
12065 | asection *osec = sec->output_section; | |
12066 | ||
12067 | /* If we have discarded a section, the output | |
12068 | section will be the absolute section. In | |
12069 | case of discarded SEC_MERGE sections, use | |
12070 | the kept section. relocate_section should | |
12071 | have already handled discarded linkonce | |
12072 | sections. */ | |
12073 | if (bfd_is_abs_section (osec) | |
12074 | && sec->kept_section != NULL | |
12075 | && sec->kept_section->output_section != NULL) | |
12076 | { | |
12077 | osec = sec->kept_section->output_section; | |
12078 | irela->r_addend -= osec->vma; | |
12079 | } | |
12080 | ||
12081 | if (!bfd_is_abs_section (osec)) | |
12082 | { | |
12083 | r_symndx = osec->target_index; | |
12084 | if (r_symndx == STN_UNDEF) | |
12085 | { | |
12086 | irela->r_addend += osec->vma; | |
12087 | osec = _bfd_nearby_section (output_bfd, osec, | |
12088 | osec->vma); | |
12089 | irela->r_addend -= osec->vma; | |
12090 | r_symndx = osec->target_index; | |
12091 | } | |
12092 | } | |
12093 | } | |
12094 | ||
12095 | /* Adjust the addend according to where the | |
12096 | section winds up in the output section. */ | |
12097 | if (rela_normal) | |
12098 | irela->r_addend += sec->output_offset; | |
12099 | } | |
12100 | else | |
12101 | { | |
12102 | if (flinfo->indices[r_symndx] == -1) | |
12103 | { | |
12104 | unsigned long shlink; | |
12105 | const char *name; | |
12106 | asection *osec; | |
12107 | long indx; | |
12108 | ||
12109 | if (flinfo->info->strip == strip_all) | |
12110 | { | |
12111 | /* You can't do ld -r -s. */ | |
12112 | bfd_set_error (bfd_error_invalid_operation); | |
12113 | return false; | |
12114 | } | |
12115 | ||
12116 | /* This symbol was skipped earlier, but | |
12117 | since it is needed by a reloc, we | |
12118 | must output it now. */ | |
12119 | shlink = symtab_hdr->sh_link; | |
12120 | name = (bfd_elf_string_from_elf_section | |
12121 | (input_bfd, shlink, sym.st_name)); | |
12122 | if (name == NULL) | |
12123 | return false; | |
12124 | ||
12125 | osec = sec->output_section; | |
12126 | sym.st_shndx = | |
12127 | _bfd_elf_section_from_bfd_section (output_bfd, | |
12128 | osec); | |
12129 | if (sym.st_shndx == SHN_BAD) | |
12130 | return false; | |
12131 | ||
12132 | sym.st_value += sec->output_offset; | |
12133 | if (!bfd_link_relocatable (flinfo->info)) | |
12134 | { | |
12135 | sym.st_value += osec->vma; | |
12136 | if (ELF_ST_TYPE (sym.st_info) == STT_TLS) | |
12137 | { | |
12138 | struct elf_link_hash_table *htab | |
12139 | = elf_hash_table (flinfo->info); | |
12140 | ||
12141 | /* STT_TLS symbols are relative to PT_TLS | |
12142 | segment base. */ | |
12143 | if (htab->tls_sec != NULL) | |
12144 | sym.st_value -= htab->tls_sec->vma; | |
12145 | else | |
12146 | sym.st_info | |
12147 | = ELF_ST_INFO (ELF_ST_BIND (sym.st_info), | |
12148 | STT_NOTYPE); | |
12149 | } | |
12150 | } | |
12151 | ||
12152 | indx = bfd_get_symcount (output_bfd); | |
12153 | ret = elf_link_output_symstrtab (flinfo, name, | |
12154 | &sym, sec, | |
12155 | NULL); | |
12156 | if (ret == 0) | |
12157 | return false; | |
12158 | else if (ret == 1) | |
12159 | flinfo->indices[r_symndx] = indx; | |
12160 | else | |
12161 | abort (); | |
12162 | } | |
12163 | ||
12164 | r_symndx = flinfo->indices[r_symndx]; | |
12165 | } | |
12166 | ||
12167 | irela->r_info = ((bfd_vma) r_symndx << r_sym_shift | |
12168 | | (irela->r_info & r_type_mask)); | |
12169 | } | |
12170 | ||
12171 | /* Swap out the relocs. */ | |
12172 | input_rel_hdr = esdi->rel.hdr; | |
12173 | if (input_rel_hdr && input_rel_hdr->sh_size != 0) | |
12174 | { | |
12175 | if (!bed->elf_backend_emit_relocs (output_bfd, o, | |
12176 | input_rel_hdr, | |
12177 | internal_relocs, | |
12178 | rel_hash_list)) | |
12179 | return false; | |
12180 | internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr) | |
12181 | * bed->s->int_rels_per_ext_rel); | |
12182 | rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr); | |
12183 | } | |
12184 | ||
12185 | input_rela_hdr = esdi->rela.hdr; | |
12186 | if (input_rela_hdr && input_rela_hdr->sh_size != 0) | |
12187 | { | |
12188 | if (!bed->elf_backend_emit_relocs (output_bfd, o, | |
12189 | input_rela_hdr, | |
12190 | internal_relocs, | |
12191 | rela_hash_list)) | |
12192 | return false; | |
12193 | } | |
12194 | } | |
12195 | } | |
12196 | ||
12197 | /* Write out the modified section contents. */ | |
12198 | if (bed->elf_backend_write_section | |
12199 | && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o, | |
12200 | contents)) | |
12201 | { | |
12202 | /* Section written out. */ | |
12203 | } | |
12204 | else switch (o->sec_info_type) | |
12205 | { | |
12206 | case SEC_INFO_TYPE_STABS: | |
12207 | if (! (_bfd_write_section_stabs | |
12208 | (output_bfd, | |
12209 | &elf_hash_table (flinfo->info)->stab_info, | |
12210 | o, &elf_section_data (o)->sec_info, contents))) | |
12211 | return false; | |
12212 | break; | |
12213 | case SEC_INFO_TYPE_MERGE: | |
12214 | if (! _bfd_write_merged_section (output_bfd, o, | |
12215 | elf_section_data (o)->sec_info)) | |
12216 | return false; | |
12217 | break; | |
12218 | case SEC_INFO_TYPE_EH_FRAME: | |
12219 | { | |
12220 | if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info, | |
12221 | o, contents)) | |
12222 | return false; | |
12223 | } | |
12224 | break; | |
12225 | case SEC_INFO_TYPE_EH_FRAME_ENTRY: | |
12226 | { | |
12227 | if (! _bfd_elf_write_section_eh_frame_entry (output_bfd, | |
12228 | flinfo->info, | |
12229 | o, contents)) | |
12230 | return false; | |
12231 | } | |
12232 | break; | |
12233 | case SEC_INFO_TYPE_SFRAME: | |
12234 | { | |
12235 | /* Merge SFrame section into the SFrame encoder context of the | |
12236 | output_bfd's section. The final .sframe output section will | |
12237 | be written out later. */ | |
12238 | if (!_bfd_elf_merge_section_sframe (output_bfd, flinfo->info, | |
12239 | o, contents)) | |
12240 | return false; | |
12241 | } | |
12242 | break; | |
12243 | default: | |
12244 | { | |
12245 | if (! (o->flags & SEC_EXCLUDE)) | |
12246 | { | |
12247 | file_ptr offset = (file_ptr) o->output_offset; | |
12248 | bfd_size_type todo = o->size; | |
12249 | ||
12250 | offset *= bfd_octets_per_byte (output_bfd, o); | |
12251 | ||
12252 | if ((o->flags & SEC_ELF_REVERSE_COPY) | |
12253 | && o->size > address_size) | |
12254 | { | |
12255 | /* Reverse-copy input section to output. */ | |
12256 | ||
12257 | if ((o->size & (address_size - 1)) != 0 | |
12258 | || (o->reloc_count != 0 | |
12259 | && (o->size * bed->s->int_rels_per_ext_rel | |
12260 | != o->reloc_count * address_size))) | |
12261 | { | |
12262 | _bfd_error_handler | |
12263 | /* xgettext:c-format */ | |
12264 | (_("error: %pB: size of section %pA is not " | |
12265 | "multiple of address size"), | |
12266 | input_bfd, o); | |
12267 | bfd_set_error (bfd_error_bad_value); | |
12268 | return false; | |
12269 | } | |
12270 | ||
12271 | do | |
12272 | { | |
12273 | todo -= address_size; | |
12274 | if (! bfd_set_section_contents (output_bfd, | |
12275 | o->output_section, | |
12276 | contents + todo, | |
12277 | offset, | |
12278 | address_size)) | |
12279 | return false; | |
12280 | if (todo == 0) | |
12281 | break; | |
12282 | offset += address_size; | |
12283 | } | |
12284 | while (1); | |
12285 | } | |
12286 | else if (! bfd_set_section_contents (output_bfd, | |
12287 | o->output_section, | |
12288 | contents, | |
12289 | offset, todo)) | |
12290 | return false; | |
12291 | } | |
12292 | } | |
12293 | break; | |
12294 | } | |
12295 | ||
12296 | /* Munmap the section contents for each input section. */ | |
12297 | _bfd_elf_link_munmap_section_contents (o); | |
12298 | } | |
12299 | ||
12300 | return true; | |
12301 | } | |
12302 | ||
12303 | /* Generate a reloc when linking an ELF file. This is a reloc | |
12304 | requested by the linker, and does not come from any input file. This | |
12305 | is used to build constructor and destructor tables when linking | |
12306 | with -Ur. */ | |
12307 | ||
12308 | static bool | |
12309 | elf_reloc_link_order (bfd *output_bfd, | |
12310 | struct bfd_link_info *info, | |
12311 | asection *output_section, | |
12312 | struct bfd_link_order *link_order) | |
12313 | { | |
12314 | reloc_howto_type *howto; | |
12315 | long indx; | |
12316 | bfd_vma offset; | |
12317 | bfd_vma addend; | |
12318 | struct bfd_elf_section_reloc_data *reldata; | |
12319 | struct elf_link_hash_entry **rel_hash_ptr; | |
12320 | Elf_Internal_Shdr *rel_hdr; | |
12321 | const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | |
12322 | Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL]; | |
12323 | bfd_byte *erel; | |
12324 | unsigned int i; | |
12325 | struct bfd_elf_section_data *esdo = elf_section_data (output_section); | |
12326 | ||
12327 | howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); | |
12328 | if (howto == NULL) | |
12329 | { | |
12330 | bfd_set_error (bfd_error_bad_value); | |
12331 | return false; | |
12332 | } | |
12333 | ||
12334 | addend = link_order->u.reloc.p->addend; | |
12335 | ||
12336 | if (esdo->rel.hdr) | |
12337 | reldata = &esdo->rel; | |
12338 | else if (esdo->rela.hdr) | |
12339 | reldata = &esdo->rela; | |
12340 | else | |
12341 | { | |
12342 | reldata = NULL; | |
12343 | BFD_ASSERT (0); | |
12344 | } | |
12345 | ||
12346 | /* Figure out the symbol index. */ | |
12347 | rel_hash_ptr = reldata->hashes + reldata->count; | |
12348 | if (link_order->type == bfd_section_reloc_link_order) | |
12349 | { | |
12350 | indx = link_order->u.reloc.p->u.section->target_index; | |
12351 | BFD_ASSERT (indx != 0); | |
12352 | *rel_hash_ptr = NULL; | |
12353 | } | |
12354 | else | |
12355 | { | |
12356 | struct elf_link_hash_entry *h; | |
12357 | ||
12358 | /* Treat a reloc against a defined symbol as though it were | |
12359 | actually against the section. */ | |
12360 | h = ((struct elf_link_hash_entry *) | |
12361 | bfd_wrapped_link_hash_lookup (output_bfd, info, | |
12362 | link_order->u.reloc.p->u.name, | |
12363 | false, false, true)); | |
12364 | if (h != NULL | |
12365 | && (h->root.type == bfd_link_hash_defined | |
12366 | || h->root.type == bfd_link_hash_defweak)) | |
12367 | { | |
12368 | asection *section; | |
12369 | ||
12370 | section = h->root.u.def.section; | |
12371 | indx = section->output_section->target_index; | |
12372 | *rel_hash_ptr = NULL; | |
12373 | /* It seems that we ought to add the symbol value to the | |
12374 | addend here, but in practice it has already been added | |
12375 | because it was passed to constructor_callback. */ | |
12376 | addend += section->output_section->vma + section->output_offset; | |
12377 | } | |
12378 | else if (h != NULL) | |
12379 | { | |
12380 | /* Setting the index to -2 tells elf_link_output_extsym that | |
12381 | this symbol is used by a reloc. */ | |
12382 | h->indx = -2; | |
12383 | *rel_hash_ptr = h; | |
12384 | indx = 0; | |
12385 | } | |
12386 | else | |
12387 | { | |
12388 | (*info->callbacks->unattached_reloc) | |
12389 | (info, link_order->u.reloc.p->u.name, NULL, NULL, 0); | |
12390 | indx = 0; | |
12391 | } | |
12392 | } | |
12393 | ||
12394 | /* If this is an inplace reloc, we must write the addend into the | |
12395 | object file. */ | |
12396 | if (howto->partial_inplace && addend != 0) | |
12397 | { | |
12398 | bfd_size_type size; | |
12399 | bfd_reloc_status_type rstat; | |
12400 | bfd_byte *buf; | |
12401 | bool ok; | |
12402 | const char *sym_name; | |
12403 | bfd_size_type octets; | |
12404 | ||
12405 | size = (bfd_size_type) bfd_get_reloc_size (howto); | |
12406 | buf = (bfd_byte *) bfd_zmalloc (size); | |
12407 | if (buf == NULL && size != 0) | |
12408 | return false; | |
12409 | rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf); | |
12410 | switch (rstat) | |
12411 | { | |
12412 | case bfd_reloc_ok: | |
12413 | break; | |
12414 | ||
12415 | default: | |
12416 | case bfd_reloc_outofrange: | |
12417 | abort (); | |
12418 | ||
12419 | case bfd_reloc_overflow: | |
12420 | if (link_order->type == bfd_section_reloc_link_order) | |
12421 | sym_name = bfd_section_name (link_order->u.reloc.p->u.section); | |
12422 | else | |
12423 | sym_name = link_order->u.reloc.p->u.name; | |
12424 | (*info->callbacks->reloc_overflow) (info, NULL, sym_name, | |
12425 | howto->name, addend, NULL, NULL, | |
12426 | (bfd_vma) 0); | |
12427 | break; | |
12428 | } | |
12429 | ||
12430 | octets = link_order->offset * bfd_octets_per_byte (output_bfd, | |
12431 | output_section); | |
12432 | ok = bfd_set_section_contents (output_bfd, output_section, buf, | |
12433 | octets, size); | |
12434 | free (buf); | |
12435 | if (! ok) | |
12436 | return false; | |
12437 | } | |
12438 | ||
12439 | /* The address of a reloc is relative to the section in a | |
12440 | relocatable file, and is a virtual address in an executable | |
12441 | file. */ | |
12442 | offset = link_order->offset; | |
12443 | if (! bfd_link_relocatable (info)) | |
12444 | offset += output_section->vma; | |
12445 | ||
12446 | for (i = 0; i < bed->s->int_rels_per_ext_rel; i++) | |
12447 | { | |
12448 | irel[i].r_offset = offset; | |
12449 | irel[i].r_info = 0; | |
12450 | irel[i].r_addend = 0; | |
12451 | } | |
12452 | if (bed->s->arch_size == 32) | |
12453 | irel[0].r_info = ELF32_R_INFO (indx, howto->type); | |
12454 | else | |
12455 | irel[0].r_info = ELF64_R_INFO (indx, howto->type); | |
12456 | ||
12457 | rel_hdr = reldata->hdr; | |
12458 | erel = rel_hdr->contents; | |
12459 | if (rel_hdr->sh_type == SHT_REL) | |
12460 | { | |
12461 | erel += reldata->count * bed->s->sizeof_rel; | |
12462 | (*bed->s->swap_reloc_out) (output_bfd, irel, erel); | |
12463 | } | |
12464 | else | |
12465 | { | |
12466 | irel[0].r_addend = addend; | |
12467 | erel += reldata->count * bed->s->sizeof_rela; | |
12468 | (*bed->s->swap_reloca_out) (output_bfd, irel, erel); | |
12469 | } | |
12470 | ||
12471 | ++reldata->count; | |
12472 | ||
12473 | return true; | |
12474 | } | |
12475 | ||
12476 | /* Generate an import library in INFO->implib_bfd from symbols in ABFD. | |
12477 | Returns TRUE upon success, FALSE otherwise. */ | |
12478 | ||
12479 | static bool | |
12480 | elf_output_implib (bfd *abfd, struct bfd_link_info *info) | |
12481 | { | |
12482 | bool ret = false; | |
12483 | bfd *implib_bfd; | |
12484 | const struct elf_backend_data *bed; | |
12485 | flagword flags; | |
12486 | enum bfd_architecture arch; | |
12487 | unsigned int mach; | |
12488 | asymbol **sympp = NULL; | |
12489 | long symsize; | |
12490 | long symcount; | |
12491 | long src_count; | |
12492 | elf_symbol_type *osymbuf; | |
12493 | size_t amt; | |
12494 | ||
12495 | implib_bfd = info->out_implib_bfd; | |
12496 | bed = get_elf_backend_data (abfd); | |
12497 | ||
12498 | if (!bfd_set_format (implib_bfd, bfd_object)) | |
12499 | return false; | |
12500 | ||
12501 | /* Use flag from executable but make it a relocatable object. */ | |
12502 | flags = bfd_get_file_flags (abfd); | |
12503 | flags &= ~HAS_RELOC; | |
12504 | if (!bfd_set_start_address (implib_bfd, 0) | |
12505 | || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P)) | |
12506 | return false; | |
12507 | ||
12508 | /* Copy architecture of output file to import library file. */ | |
12509 | arch = bfd_get_arch (abfd); | |
12510 | mach = bfd_get_mach (abfd); | |
12511 | if (!bfd_set_arch_mach (implib_bfd, arch, mach) | |
12512 | && (abfd->target_defaulted | |
12513 | || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd))) | |
12514 | return false; | |
12515 | ||
12516 | /* Get symbol table size. */ | |
12517 | symsize = bfd_get_symtab_upper_bound (abfd); | |
12518 | if (symsize < 0) | |
12519 | return false; | |
12520 | ||
12521 | /* Read in the symbol table. */ | |
12522 | sympp = (asymbol **) bfd_malloc (symsize); | |
12523 | if (sympp == NULL) | |
12524 | return false; | |
12525 | ||
12526 | symcount = bfd_canonicalize_symtab (abfd, sympp); | |
12527 | if (symcount < 0) | |
12528 | goto free_sym_buf; | |
12529 | ||
12530 | /* Allow the BFD backend to copy any private header data it | |
12531 | understands from the output BFD to the import library BFD. */ | |
12532 | if (! bfd_copy_private_header_data (abfd, implib_bfd)) | |
12533 | goto free_sym_buf; | |
12534 | ||
12535 | /* Filter symbols to appear in the import library. */ | |
12536 | if (bed->elf_backend_filter_implib_symbols) | |
12537 | symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp, | |
12538 | symcount); | |
12539 | else | |
12540 | symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount); | |
12541 | if (symcount == 0) | |
12542 | { | |
12543 | bfd_set_error (bfd_error_no_symbols); | |
12544 | _bfd_error_handler (_("%pB: no symbol found for import library"), | |
12545 | implib_bfd); | |
12546 | goto free_sym_buf; | |
12547 | } | |
12548 | ||
12549 | ||
12550 | /* Make symbols absolute. */ | |
12551 | amt = symcount * sizeof (*osymbuf); | |
12552 | osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt); | |
12553 | if (osymbuf == NULL) | |
12554 | goto free_sym_buf; | |
12555 | ||
12556 | for (src_count = 0; src_count < symcount; src_count++) | |
12557 | { | |
12558 | memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count], | |
12559 | sizeof (*osymbuf)); | |
12560 | osymbuf[src_count].symbol.section = bfd_abs_section_ptr; | |
12561 | osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS; | |
12562 | osymbuf[src_count].symbol.value += sympp[src_count]->section->vma; | |
12563 | osymbuf[src_count].internal_elf_sym.st_value = | |
12564 | osymbuf[src_count].symbol.value; | |
12565 | sympp[src_count] = &osymbuf[src_count].symbol; | |
12566 | } | |
12567 | ||
12568 | bfd_set_symtab (implib_bfd, sympp, symcount); | |
12569 | ||
12570 | /* Allow the BFD backend to copy any private data it understands | |
12571 | from the output BFD to the import library BFD. This is done last | |
12572 | to permit the routine to look at the filtered symbol table. */ | |
12573 | if (! bfd_copy_private_bfd_data (abfd, implib_bfd)) | |
12574 | goto free_sym_buf; | |
12575 | ||
12576 | if (!bfd_close (implib_bfd)) | |
12577 | goto free_sym_buf; | |
12578 | ||
12579 | ret = true; | |
12580 | ||
12581 | free_sym_buf: | |
12582 | free (sympp); | |
12583 | return ret; | |
12584 | } | |
12585 | ||
12586 | static void | |
12587 | elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo) | |
12588 | { | |
12589 | asection *o; | |
12590 | ||
12591 | if (flinfo->symstrtab != NULL) | |
12592 | _bfd_elf_strtab_free (flinfo->symstrtab); | |
12593 | free (flinfo->contents); | |
12594 | free (flinfo->external_relocs); | |
12595 | free (flinfo->internal_relocs); | |
12596 | free (flinfo->external_syms); | |
12597 | free (flinfo->locsym_shndx); | |
12598 | free (flinfo->internal_syms); | |
12599 | free (flinfo->indices); | |
12600 | free (flinfo->sections); | |
12601 | if (flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1) | |
12602 | free (flinfo->symshndxbuf); | |
12603 | for (o = obfd->sections; o != NULL; o = o->next) | |
12604 | { | |
12605 | struct bfd_elf_section_data *esdo = elf_section_data (o); | |
12606 | free (esdo->rel.hashes); | |
12607 | free (esdo->rela.hashes); | |
12608 | } | |
12609 | } | |
12610 | ||
12611 | /* Do the final step of an ELF link. */ | |
12612 | ||
12613 | bool | |
12614 | bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info) | |
12615 | { | |
12616 | bool dynamic; | |
12617 | bool emit_relocs; | |
12618 | bfd *dynobj; | |
12619 | struct elf_final_link_info flinfo; | |
12620 | asection *o; | |
12621 | struct bfd_link_order *p; | |
12622 | bfd *sub; | |
12623 | bfd_size_type max_contents_size; | |
12624 | bfd_size_type max_external_reloc_size; | |
12625 | bfd_size_type max_internal_reloc_count; | |
12626 | bfd_size_type max_sym_count; | |
12627 | bfd_size_type max_sym_shndx_count; | |
12628 | Elf_Internal_Sym elfsym; | |
12629 | unsigned int i; | |
12630 | Elf_Internal_Shdr *symtab_hdr; | |
12631 | Elf_Internal_Shdr *symtab_shndx_hdr; | |
12632 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
12633 | struct elf_outext_info eoinfo; | |
12634 | bool merged; | |
12635 | size_t relativecount; | |
12636 | size_t relr_entsize; | |
12637 | asection *reldyn = 0; | |
12638 | bfd_size_type amt; | |
12639 | struct elf_link_hash_table *htab = elf_hash_table (info); | |
12640 | bool sections_removed; | |
12641 | ||
12642 | if (!is_elf_hash_table (&htab->root)) | |
12643 | return false; | |
12644 | ||
12645 | if (bfd_link_pic (info)) | |
12646 | abfd->flags |= DYNAMIC; | |
12647 | ||
12648 | dynamic = htab->dynamic_sections_created; | |
12649 | dynobj = htab->dynobj; | |
12650 | ||
12651 | emit_relocs = (bfd_link_relocatable (info) | |
12652 | || info->emitrelocations); | |
12653 | ||
12654 | memset (&flinfo, 0, sizeof (flinfo)); | |
12655 | flinfo.info = info; | |
12656 | flinfo.output_bfd = abfd; | |
12657 | flinfo.symstrtab = _bfd_elf_strtab_init (); | |
12658 | if (flinfo.symstrtab == NULL) | |
12659 | return false; | |
12660 | ||
12661 | if (! dynamic) | |
12662 | { | |
12663 | flinfo.hash_sec = NULL; | |
12664 | flinfo.symver_sec = NULL; | |
12665 | } | |
12666 | else | |
12667 | { | |
12668 | flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash"); | |
12669 | /* Note that dynsym_sec can be NULL (on VMS). */ | |
12670 | flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version"); | |
12671 | /* Note that it is OK if symver_sec is NULL. */ | |
12672 | } | |
12673 | ||
12674 | if (info->unique_symbol | |
12675 | && !bfd_hash_table_init (&flinfo.local_hash_table, | |
12676 | local_hash_newfunc, | |
12677 | sizeof (struct local_hash_entry))) | |
12678 | return false; | |
12679 | ||
12680 | /* The object attributes have been merged. Remove the input | |
12681 | sections from the link, and set the contents of the output | |
12682 | section. */ | |
12683 | sections_removed = false; | |
12684 | const char *obj_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section; | |
12685 | for (o = abfd->sections; o != NULL; o = o->next) | |
12686 | { | |
12687 | bool remove_section = false; | |
12688 | ||
12689 | if ((obj_attrs_section && strcmp (o->name, obj_attrs_section) == 0) | |
12690 | || strcmp (o->name, ".gnu.attributes") == 0) | |
12691 | { | |
12692 | for (p = o->map_head.link_order; p != NULL; p = p->next) | |
12693 | { | |
12694 | asection *input_section; | |
12695 | ||
12696 | if (p->type != bfd_indirect_link_order) | |
12697 | continue; | |
12698 | input_section = p->u.indirect.section; | |
12699 | /* Hack: reset the SEC_HAS_CONTENTS flag so that | |
12700 | elf_link_input_bfd ignores this section. */ | |
12701 | input_section->flags &= ~SEC_HAS_CONTENTS; | |
12702 | } | |
12703 | ||
12704 | /* Skip this section later on. */ | |
12705 | o->map_head.link_order = NULL; | |
12706 | ||
12707 | bfd_vma attr_size = bfd_elf_obj_attr_size (abfd); | |
12708 | /* Once ELF headers have been written, the size of a section is | |
12709 | frozen. We need to set the size of the attribute section before | |
12710 | _bfd_elf_compute_section_file_positions. */ | |
12711 | bfd_set_section_size (o, attr_size); | |
12712 | if (attr_size > 0) | |
12713 | elf_obj_build_attributes (abfd) = o; | |
12714 | else | |
12715 | remove_section = true; | |
12716 | } | |
12717 | else if ((o->flags & SEC_GROUP) != 0 && o->size == 0) | |
12718 | { | |
12719 | /* Remove empty group section from linker output. */ | |
12720 | remove_section = true; | |
12721 | } | |
12722 | if (remove_section) | |
12723 | { | |
12724 | o->flags |= SEC_EXCLUDE; | |
12725 | bfd_section_list_remove (abfd, o); | |
12726 | abfd->section_count--; | |
12727 | sections_removed = true; | |
12728 | } | |
12729 | } | |
12730 | if (sections_removed) | |
12731 | _bfd_fix_excluded_sec_syms (abfd, info); | |
12732 | ||
12733 | /* Count up the number of relocations we will output for each output | |
12734 | section, so that we know the sizes of the reloc sections. We | |
12735 | also figure out some maximum sizes. */ | |
12736 | #ifdef USE_MMAP | |
12737 | if (bed->use_mmap) | |
12738 | { | |
12739 | /* Mmap is used only if section size >= the minimum mmap section | |
12740 | size. The initial max_contents_size value covers all sections | |
12741 | smaller than the minimum mmap section size. It may be increased | |
12742 | for compressed or linker created sections or sections whose | |
12743 | rawsize != size. max_external_reloc_size covers all relocation | |
12744 | sections smaller than the minimum mmap section size. */ | |
12745 | max_contents_size = _bfd_minimum_mmap_size; | |
12746 | max_external_reloc_size = _bfd_minimum_mmap_size; | |
12747 | } | |
12748 | else | |
12749 | #endif | |
12750 | { | |
12751 | max_contents_size = 0; | |
12752 | max_external_reloc_size = 0; | |
12753 | } | |
12754 | max_internal_reloc_count = 0; | |
12755 | max_sym_count = 0; | |
12756 | max_sym_shndx_count = 0; | |
12757 | merged = false; | |
12758 | for (o = abfd->sections; o != NULL; o = o->next) | |
12759 | { | |
12760 | struct bfd_elf_section_data *esdo = elf_section_data (o); | |
12761 | o->reloc_count = 0; | |
12762 | ||
12763 | for (p = o->map_head.link_order; p != NULL; p = p->next) | |
12764 | { | |
12765 | unsigned int reloc_count = 0; | |
12766 | unsigned int additional_reloc_count = 0; | |
12767 | struct bfd_elf_section_data *esdi = NULL; | |
12768 | ||
12769 | if (p->type == bfd_section_reloc_link_order | |
12770 | || p->type == bfd_symbol_reloc_link_order) | |
12771 | reloc_count = 1; | |
12772 | else if (p->type == bfd_indirect_link_order) | |
12773 | { | |
12774 | asection *sec; | |
12775 | ||
12776 | sec = p->u.indirect.section; | |
12777 | ||
12778 | /* Mark all sections which are to be included in the | |
12779 | link. This will normally be every section. We need | |
12780 | to do this so that we can identify any sections which | |
12781 | the linker has decided to not include. */ | |
12782 | sec->linker_mark = true; | |
12783 | ||
12784 | if (sec->flags & SEC_MERGE) | |
12785 | merged = true; | |
12786 | ||
12787 | #ifdef USE_MMAP | |
12788 | /* Mmap is used only on non-compressed, non-linker created | |
12789 | sections whose rawsize == size. */ | |
12790 | if (!bed->use_mmap | |
12791 | || sec->compress_status != COMPRESS_SECTION_NONE | |
12792 | || (sec->flags & SEC_LINKER_CREATED) != 0 | |
12793 | || sec->rawsize != sec->size) | |
12794 | #endif | |
12795 | { | |
12796 | if (sec->rawsize > max_contents_size) | |
12797 | max_contents_size = sec->rawsize; | |
12798 | if (sec->size > max_contents_size) | |
12799 | max_contents_size = sec->size; | |
12800 | } | |
12801 | ||
12802 | if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour | |
12803 | && (sec->owner->flags & DYNAMIC) == 0) | |
12804 | { | |
12805 | size_t sym_count; | |
12806 | ||
12807 | /* We are interested in just local symbols, not all | |
12808 | symbols. */ | |
12809 | if (elf_bad_symtab (sec->owner)) | |
12810 | sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size | |
12811 | / bed->s->sizeof_sym); | |
12812 | else | |
12813 | sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; | |
12814 | ||
12815 | if (sym_count > max_sym_count) | |
12816 | max_sym_count = sym_count; | |
12817 | ||
12818 | if (sym_count > max_sym_shndx_count | |
12819 | && elf_symtab_shndx_list (sec->owner) != NULL) | |
12820 | max_sym_shndx_count = sym_count; | |
12821 | ||
12822 | esdi = elf_section_data (sec); | |
12823 | ||
12824 | if (esdi->this_hdr.sh_type == SHT_REL | |
12825 | || esdi->this_hdr.sh_type == SHT_RELA) | |
12826 | /* Some backends use reloc_count in relocation sections | |
12827 | to count particular types of relocs. Of course, | |
12828 | reloc sections themselves can't have relocations. */ | |
12829 | ; | |
12830 | else if (emit_relocs) | |
12831 | { | |
12832 | reloc_count = sec->reloc_count; | |
12833 | if (bed->elf_backend_count_additional_relocs) | |
12834 | { | |
12835 | int c; | |
12836 | c = (*bed->elf_backend_count_additional_relocs) (sec); | |
12837 | additional_reloc_count += c; | |
12838 | } | |
12839 | } | |
12840 | else if (bed->elf_backend_count_relocs) | |
12841 | reloc_count = (*bed->elf_backend_count_relocs) (info, sec); | |
12842 | ||
12843 | if ((sec->flags & SEC_RELOC) != 0) | |
12844 | { | |
12845 | #ifdef USE_MMAP | |
12846 | if (!bed->use_mmap) | |
12847 | #endif | |
12848 | { | |
12849 | size_t ext_size = 0; | |
12850 | ||
12851 | if (esdi->rel.hdr != NULL) | |
12852 | ext_size = esdi->rel.hdr->sh_size; | |
12853 | if (esdi->rela.hdr != NULL) | |
12854 | ext_size += esdi->rela.hdr->sh_size; | |
12855 | ||
12856 | if (ext_size > max_external_reloc_size) | |
12857 | max_external_reloc_size = ext_size; | |
12858 | } | |
12859 | if (sec->reloc_count > max_internal_reloc_count) | |
12860 | max_internal_reloc_count = sec->reloc_count; | |
12861 | } | |
12862 | } | |
12863 | } | |
12864 | ||
12865 | if (reloc_count == 0) | |
12866 | continue; | |
12867 | ||
12868 | reloc_count += additional_reloc_count; | |
12869 | o->reloc_count += reloc_count; | |
12870 | ||
12871 | if (p->type == bfd_indirect_link_order && emit_relocs) | |
12872 | { | |
12873 | if (esdi->rel.hdr) | |
12874 | { | |
12875 | esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr); | |
12876 | esdo->rel.count += additional_reloc_count; | |
12877 | } | |
12878 | if (esdi->rela.hdr) | |
12879 | { | |
12880 | esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr); | |
12881 | esdo->rela.count += additional_reloc_count; | |
12882 | } | |
12883 | } | |
12884 | else | |
12885 | { | |
12886 | if (o->use_rela_p) | |
12887 | esdo->rela.count += reloc_count; | |
12888 | else | |
12889 | esdo->rel.count += reloc_count; | |
12890 | } | |
12891 | } | |
12892 | ||
12893 | if (o->reloc_count > 0) | |
12894 | o->flags |= SEC_RELOC; | |
12895 | else | |
12896 | { | |
12897 | /* Explicitly clear the SEC_RELOC flag. The linker tends to | |
12898 | set it (this is probably a bug) and if it is set | |
12899 | assign_section_numbers will create a reloc section. */ | |
12900 | o->flags &=~ SEC_RELOC; | |
12901 | } | |
12902 | ||
12903 | /* If the SEC_ALLOC flag is not set, force the section VMA to | |
12904 | zero. This is done in elf_fake_sections as well, but forcing | |
12905 | the VMA to 0 here will ensure that relocs against these | |
12906 | sections are handled correctly. */ | |
12907 | if ((o->flags & SEC_ALLOC) == 0 | |
12908 | && ! o->user_set_vma) | |
12909 | o->vma = 0; | |
12910 | } | |
12911 | ||
12912 | if (! bfd_link_relocatable (info) && merged) | |
12913 | elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd); | |
12914 | ||
12915 | /* Figure out the file positions for everything but the symbol table | |
12916 | and the relocs. We set symcount to force assign_section_numbers | |
12917 | to create a symbol table. */ | |
12918 | abfd->symcount = info->strip != strip_all || emit_relocs; | |
12919 | BFD_ASSERT (! abfd->output_has_begun); | |
12920 | if (! _bfd_elf_compute_section_file_positions (abfd, info)) | |
12921 | goto error_return; | |
12922 | ||
12923 | /* Set sizes, and assign file positions for reloc sections. */ | |
12924 | for (o = abfd->sections; o != NULL; o = o->next) | |
12925 | { | |
12926 | struct bfd_elf_section_data *esdo = elf_section_data (o); | |
12927 | if ((o->flags & SEC_RELOC) != 0) | |
12928 | { | |
12929 | if (esdo->rel.hdr | |
12930 | && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel))) | |
12931 | goto error_return; | |
12932 | ||
12933 | if (esdo->rela.hdr | |
12934 | && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela))) | |
12935 | goto error_return; | |
12936 | } | |
12937 | ||
12938 | /* _bfd_elf_compute_section_file_positions makes temporary use | |
12939 | of target_index. Reset it. */ | |
12940 | o->target_index = 0; | |
12941 | ||
12942 | /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them | |
12943 | to count upwards while actually outputting the relocations. */ | |
12944 | esdo->rel.count = 0; | |
12945 | esdo->rela.count = 0; | |
12946 | ||
12947 | if ((esdo->this_hdr.sh_offset == (file_ptr) -1) | |
12948 | && !bfd_section_is_ctf (o)) | |
12949 | { | |
12950 | /* Cache the section contents so that they can be compressed | |
12951 | later. Use bfd_malloc since it will be freed by | |
12952 | bfd_compress_section_contents. */ | |
12953 | unsigned char *contents = esdo->this_hdr.contents; | |
12954 | if (contents != NULL) | |
12955 | abort (); | |
12956 | contents | |
12957 | = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size); | |
12958 | if (contents == NULL) | |
12959 | goto error_return; | |
12960 | esdo->this_hdr.contents = contents; | |
12961 | } | |
12962 | } | |
12963 | ||
12964 | /* We have now assigned file positions for all the sections except .symtab, | |
12965 | .strtab, and non-loaded reloc and compressed debugging sections. We start | |
12966 | the .symtab section at the current file position, and write directly to it. | |
12967 | We build the .strtab section in memory. */ | |
12968 | abfd->symcount = 0; | |
12969 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
12970 | /* sh_name is set in prep_headers. */ | |
12971 | symtab_hdr->sh_type = SHT_SYMTAB; | |
12972 | /* sh_flags, sh_addr and sh_size all start off zero. */ | |
12973 | symtab_hdr->sh_entsize = bed->s->sizeof_sym; | |
12974 | /* sh_link is set in assign_section_numbers. */ | |
12975 | /* sh_info is set below. */ | |
12976 | /* sh_offset is set just below. */ | |
12977 | symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; | |
12978 | ||
12979 | if (max_sym_count < 20) | |
12980 | max_sym_count = 20; | |
12981 | htab->strtabsize = max_sym_count; | |
12982 | amt = max_sym_count * sizeof (struct elf_sym_strtab); | |
12983 | htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt); | |
12984 | if (htab->strtab == NULL) | |
12985 | goto error_return; | |
12986 | /* The real buffer will be allocated in elf_link_swap_symbols_out. */ | |
12987 | flinfo.symshndxbuf | |
12988 | = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF) | |
12989 | ? (Elf_External_Sym_Shndx *) -1 : NULL); | |
12990 | ||
12991 | if (info->strip != strip_all || emit_relocs) | |
12992 | { | |
12993 | file_ptr off = elf_next_file_pos (abfd); | |
12994 | ||
12995 | _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true, 0); | |
12996 | ||
12997 | /* Note that at this point elf_next_file_pos (abfd) is | |
12998 | incorrect. We do not yet know the size of the .symtab section. | |
12999 | We correct next_file_pos below, after we do know the size. */ | |
13000 | ||
13001 | /* Start writing out the symbol table. The first symbol is always a | |
13002 | dummy symbol. */ | |
13003 | elfsym.st_value = 0; | |
13004 | elfsym.st_size = 0; | |
13005 | elfsym.st_info = 0; | |
13006 | elfsym.st_other = 0; | |
13007 | elfsym.st_shndx = SHN_UNDEF; | |
13008 | elfsym.st_target_internal = 0; | |
13009 | if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, | |
13010 | bfd_und_section_ptr, NULL) != 1) | |
13011 | goto error_return; | |
13012 | ||
13013 | /* Output a symbol for each section if asked or they are used for | |
13014 | relocs. These symbols usually have no names. We store the | |
13015 | index of each one in the index field of the section, so that | |
13016 | we can find it again when outputting relocs. */ | |
13017 | ||
13018 | if (bfd_keep_unused_section_symbols (abfd) || emit_relocs) | |
13019 | { | |
13020 | bool name_local_sections | |
13021 | = (bed->elf_backend_name_local_section_symbols | |
13022 | && bed->elf_backend_name_local_section_symbols (abfd)); | |
13023 | const char *name = NULL; | |
13024 | ||
13025 | elfsym.st_size = 0; | |
13026 | elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
13027 | elfsym.st_other = 0; | |
13028 | elfsym.st_value = 0; | |
13029 | elfsym.st_target_internal = 0; | |
13030 | for (i = 1; i < elf_numsections (abfd); i++) | |
13031 | { | |
13032 | o = bfd_section_from_elf_index (abfd, i); | |
13033 | if (o != NULL) | |
13034 | { | |
13035 | o->target_index = bfd_get_symcount (abfd); | |
13036 | elfsym.st_shndx = i; | |
13037 | if (!bfd_link_relocatable (info)) | |
13038 | elfsym.st_value = o->vma; | |
13039 | if (name_local_sections) | |
13040 | name = o->name; | |
13041 | if (elf_link_output_symstrtab (&flinfo, name, &elfsym, o, | |
13042 | NULL) != 1) | |
13043 | goto error_return; | |
13044 | } | |
13045 | } | |
13046 | } | |
13047 | } | |
13048 | ||
13049 | /* On some targets like Irix 5 the symbol split between local and global | |
13050 | ones recorded in the sh_info field needs to be done between section | |
13051 | and all other symbols. */ | |
13052 | if (bed->elf_backend_elfsym_local_is_section | |
13053 | && bed->elf_backend_elfsym_local_is_section (abfd)) | |
13054 | symtab_hdr->sh_info = bfd_get_symcount (abfd); | |
13055 | ||
13056 | /* Allocate some memory to hold information read in from the input | |
13057 | files. */ | |
13058 | if (max_contents_size != 0) | |
13059 | { | |
13060 | flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size); | |
13061 | if (flinfo.contents == NULL) | |
13062 | goto error_return; | |
13063 | } | |
13064 | ||
13065 | if (max_external_reloc_size != 0) | |
13066 | { | |
13067 | flinfo.external_relocs = bfd_malloc (max_external_reloc_size); | |
13068 | if (flinfo.external_relocs == NULL) | |
13069 | goto error_return; | |
13070 | } | |
13071 | ||
13072 | if (max_internal_reloc_count != 0) | |
13073 | { | |
13074 | amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela); | |
13075 | flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt); | |
13076 | if (flinfo.internal_relocs == NULL) | |
13077 | goto error_return; | |
13078 | } | |
13079 | ||
13080 | if (max_sym_count != 0) | |
13081 | { | |
13082 | amt = max_sym_count * bed->s->sizeof_sym; | |
13083 | flinfo.external_syms = (bfd_byte *) bfd_malloc (amt); | |
13084 | if (flinfo.external_syms == NULL) | |
13085 | goto error_return; | |
13086 | ||
13087 | amt = max_sym_count * sizeof (Elf_Internal_Sym); | |
13088 | flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt); | |
13089 | if (flinfo.internal_syms == NULL) | |
13090 | goto error_return; | |
13091 | ||
13092 | amt = max_sym_count * sizeof (long); | |
13093 | flinfo.indices = (long int *) bfd_malloc (amt); | |
13094 | if (flinfo.indices == NULL) | |
13095 | goto error_return; | |
13096 | ||
13097 | amt = max_sym_count * sizeof (asection *); | |
13098 | flinfo.sections = (asection **) bfd_malloc (amt); | |
13099 | if (flinfo.sections == NULL) | |
13100 | goto error_return; | |
13101 | } | |
13102 | ||
13103 | if (max_sym_shndx_count != 0) | |
13104 | { | |
13105 | amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx); | |
13106 | flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt); | |
13107 | if (flinfo.locsym_shndx == NULL) | |
13108 | goto error_return; | |
13109 | } | |
13110 | ||
13111 | if (htab->tls_sec) | |
13112 | { | |
13113 | bfd_vma base, end = 0; /* Both bytes. */ | |
13114 | asection *sec; | |
13115 | ||
13116 | for (sec = htab->tls_sec; | |
13117 | sec && (sec->flags & SEC_THREAD_LOCAL); | |
13118 | sec = sec->next) | |
13119 | { | |
13120 | bfd_size_type size = sec->size; | |
13121 | unsigned int opb = bfd_octets_per_byte (abfd, sec); | |
13122 | ||
13123 | if (size == 0 | |
13124 | && (sec->flags & SEC_HAS_CONTENTS) == 0) | |
13125 | { | |
13126 | struct bfd_link_order *ord = sec->map_tail.link_order; | |
13127 | ||
13128 | if (ord != NULL) | |
13129 | size = ord->offset * opb + ord->size; | |
13130 | } | |
13131 | end = sec->vma + size / opb; | |
13132 | } | |
13133 | base = htab->tls_sec->vma; | |
13134 | /* Only align end of TLS section if static TLS doesn't have special | |
13135 | alignment requirements. */ | |
13136 | if (bed->static_tls_alignment == 1) | |
13137 | end = align_power (end, htab->tls_sec->alignment_power); | |
13138 | htab->tls_size = end - base; | |
13139 | } | |
13140 | ||
13141 | if (!_bfd_elf_fixup_eh_frame_hdr (info)) | |
13142 | return false; | |
13143 | ||
13144 | /* Finish relative relocations here after regular symbol processing | |
13145 | is finished if DT_RELR is enabled. */ | |
13146 | if (info->enable_dt_relr | |
13147 | && bed->finish_relative_relocs | |
13148 | && !bed->finish_relative_relocs (info)) | |
13149 | info->callbacks->fatal | |
13150 | (_("%P: %pB: failed to finish relative relocations\n"), abfd); | |
13151 | ||
13152 | /* Since ELF permits relocations to be against local symbols, we | |
13153 | must have the local symbols available when we do the relocations. | |
13154 | Since we would rather only read the local symbols once, and we | |
13155 | would rather not keep them in memory, we handle all the | |
13156 | relocations for a single input file at the same time. | |
13157 | ||
13158 | Unfortunately, there is no way to know the total number of local | |
13159 | symbols until we have seen all of them, and the local symbol | |
13160 | indices precede the global symbol indices. This means that when | |
13161 | we are generating relocatable output, and we see a reloc against | |
13162 | a global symbol, we can not know the symbol index until we have | |
13163 | finished examining all the local symbols to see which ones we are | |
13164 | going to output. To deal with this, we keep the relocations in | |
13165 | memory, and don't output them until the end of the link. This is | |
13166 | an unfortunate waste of memory, but I don't see a good way around | |
13167 | it. Fortunately, it only happens when performing a relocatable | |
13168 | link, which is not the common case. FIXME: If keep_memory is set | |
13169 | we could write the relocs out and then read them again; I don't | |
13170 | know how bad the memory loss will be. */ | |
13171 | ||
13172 | for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) | |
13173 | sub->output_has_begun = false; | |
13174 | for (o = abfd->sections; o != NULL; o = o->next) | |
13175 | { | |
13176 | for (p = o->map_head.link_order; p != NULL; p = p->next) | |
13177 | { | |
13178 | if (p->type == bfd_indirect_link_order | |
13179 | && (bfd_get_flavour ((sub = p->u.indirect.section->owner)) | |
13180 | == bfd_target_elf_flavour) | |
13181 | && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass) | |
13182 | { | |
13183 | if (! sub->output_has_begun) | |
13184 | { | |
13185 | if (! elf_link_input_bfd (&flinfo, sub)) | |
13186 | goto error_return; | |
13187 | sub->output_has_begun = true; | |
13188 | } | |
13189 | } | |
13190 | else if (p->type == bfd_section_reloc_link_order | |
13191 | || p->type == bfd_symbol_reloc_link_order) | |
13192 | { | |
13193 | if (! elf_reloc_link_order (abfd, info, o, p)) | |
13194 | goto error_return; | |
13195 | } | |
13196 | else | |
13197 | { | |
13198 | if (! _bfd_default_link_order (abfd, info, o, p)) | |
13199 | { | |
13200 | if (p->type == bfd_indirect_link_order | |
13201 | && (bfd_get_flavour (sub) | |
13202 | == bfd_target_elf_flavour) | |
13203 | && (elf_elfheader (sub)->e_ident[EI_CLASS] | |
13204 | != bed->s->elfclass)) | |
13205 | { | |
13206 | const char *iclass, *oclass; | |
13207 | ||
13208 | switch (bed->s->elfclass) | |
13209 | { | |
13210 | case ELFCLASS64: oclass = "ELFCLASS64"; break; | |
13211 | case ELFCLASS32: oclass = "ELFCLASS32"; break; | |
13212 | case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break; | |
13213 | default: abort (); | |
13214 | } | |
13215 | ||
13216 | switch (elf_elfheader (sub)->e_ident[EI_CLASS]) | |
13217 | { | |
13218 | case ELFCLASS64: iclass = "ELFCLASS64"; break; | |
13219 | case ELFCLASS32: iclass = "ELFCLASS32"; break; | |
13220 | case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break; | |
13221 | default: abort (); | |
13222 | } | |
13223 | ||
13224 | bfd_set_error (bfd_error_wrong_format); | |
13225 | _bfd_error_handler | |
13226 | /* xgettext:c-format */ | |
13227 | (_("%pB: file class %s incompatible with %s"), | |
13228 | sub, iclass, oclass); | |
13229 | } | |
13230 | ||
13231 | goto error_return; | |
13232 | } | |
13233 | } | |
13234 | } | |
13235 | } | |
13236 | ||
13237 | /* Free symbol buffer if needed. */ | |
13238 | if (!info->reduce_memory_overheads) | |
13239 | { | |
13240 | for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) | |
13241 | if (bfd_get_flavour (sub) == bfd_target_elf_flavour) | |
13242 | { | |
13243 | free (elf_tdata (sub)->symbuf); | |
13244 | elf_tdata (sub)->symbuf = NULL; | |
13245 | } | |
13246 | } | |
13247 | ||
13248 | /* Output any global symbols that got converted to local in a | |
13249 | version script or due to symbol visibility. We do this in a | |
13250 | separate step since ELF requires all local symbols to appear | |
13251 | prior to any global symbols. FIXME: We should only do this if | |
13252 | some global symbols were, in fact, converted to become local. | |
13253 | FIXME: Will this work correctly with the Irix 5 linker? */ | |
13254 | eoinfo.failed = false; | |
13255 | eoinfo.flinfo = &flinfo; | |
13256 | eoinfo.localsyms = true; | |
13257 | eoinfo.file_sym_done = false; | |
13258 | bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo); | |
13259 | if (eoinfo.failed) | |
13260 | goto error_return; | |
13261 | ||
13262 | /* If backend needs to output some local symbols not present in the hash | |
13263 | table, do it now. */ | |
13264 | if (bed->elf_backend_output_arch_local_syms) | |
13265 | { | |
13266 | if (! ((*bed->elf_backend_output_arch_local_syms) | |
13267 | (abfd, info, &flinfo, elf_link_output_symstrtab))) | |
13268 | goto error_return; | |
13269 | } | |
13270 | ||
13271 | /* That wrote out all the local symbols. Finish up the symbol table | |
13272 | with the global symbols. Even if we want to strip everything we | |
13273 | can, we still need to deal with those global symbols that got | |
13274 | converted to local in a version script. */ | |
13275 | ||
13276 | /* The sh_info field records the index of the first non local symbol. */ | |
13277 | if (!symtab_hdr->sh_info) | |
13278 | symtab_hdr->sh_info = bfd_get_symcount (abfd); | |
13279 | ||
13280 | if (dynamic | |
13281 | && htab->dynsym != NULL | |
13282 | && htab->dynsym->output_section != bfd_abs_section_ptr) | |
13283 | { | |
13284 | Elf_Internal_Sym sym; | |
13285 | bfd_byte *dynsym = htab->dynsym->contents; | |
13286 | ||
13287 | o = htab->dynsym->output_section; | |
13288 | elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1; | |
13289 | ||
13290 | /* Write out the section symbols for the output sections. */ | |
13291 | if (bfd_link_pic (info) | |
13292 | || htab->is_relocatable_executable) | |
13293 | { | |
13294 | asection *s; | |
13295 | ||
13296 | sym.st_size = 0; | |
13297 | sym.st_name = 0; | |
13298 | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | |
13299 | sym.st_other = 0; | |
13300 | sym.st_target_internal = 0; | |
13301 | ||
13302 | for (s = abfd->sections; s != NULL; s = s->next) | |
13303 | { | |
13304 | int indx; | |
13305 | bfd_byte *dest; | |
13306 | long dynindx; | |
13307 | ||
13308 | dynindx = elf_section_data (s)->dynindx; | |
13309 | if (dynindx <= 0) | |
13310 | continue; | |
13311 | indx = elf_section_data (s)->this_idx; | |
13312 | BFD_ASSERT (indx > 0); | |
13313 | sym.st_shndx = indx; | |
13314 | if (! check_dynsym (abfd, &sym)) | |
13315 | goto error_return; | |
13316 | sym.st_value = s->vma; | |
13317 | dest = dynsym + dynindx * bed->s->sizeof_sym; | |
13318 | ||
13319 | /* Inform the linker of the addition of this symbol. */ | |
13320 | ||
13321 | if (info->callbacks->ctf_new_dynsym) | |
13322 | info->callbacks->ctf_new_dynsym (dynindx, &sym); | |
13323 | ||
13324 | bed->s->swap_symbol_out (abfd, &sym, dest, 0); | |
13325 | } | |
13326 | } | |
13327 | ||
13328 | /* Write out the local dynsyms. */ | |
13329 | if (htab->dynlocal) | |
13330 | { | |
13331 | struct elf_link_local_dynamic_entry *e; | |
13332 | for (e = htab->dynlocal; e ; e = e->next) | |
13333 | { | |
13334 | asection *s; | |
13335 | bfd_byte *dest; | |
13336 | ||
13337 | /* Copy the internal symbol and turn off visibility. | |
13338 | Note that we saved a word of storage and overwrote | |
13339 | the original st_name with the dynstr_index. */ | |
13340 | sym = e->isym; | |
13341 | sym.st_other &= ~ELF_ST_VISIBILITY (-1); | |
13342 | sym.st_shndx = SHN_UNDEF; | |
13343 | ||
13344 | s = bfd_section_from_elf_index (e->input_bfd, | |
13345 | e->isym.st_shndx); | |
13346 | if (s != NULL | |
13347 | && s->output_section != NULL | |
13348 | && elf_section_data (s->output_section) != NULL) | |
13349 | { | |
13350 | sym.st_shndx = | |
13351 | elf_section_data (s->output_section)->this_idx; | |
13352 | if (! check_dynsym (abfd, &sym)) | |
13353 | goto error_return; | |
13354 | sym.st_value = (s->output_section->vma | |
13355 | + s->output_offset | |
13356 | + e->isym.st_value); | |
13357 | } | |
13358 | ||
13359 | /* Inform the linker of the addition of this symbol. */ | |
13360 | ||
13361 | if (info->callbacks->ctf_new_dynsym) | |
13362 | info->callbacks->ctf_new_dynsym (e->dynindx, &sym); | |
13363 | ||
13364 | dest = dynsym + e->dynindx * bed->s->sizeof_sym; | |
13365 | bed->s->swap_symbol_out (abfd, &sym, dest, 0); | |
13366 | } | |
13367 | } | |
13368 | } | |
13369 | ||
13370 | /* We get the global symbols from the hash table. */ | |
13371 | eoinfo.failed = false; | |
13372 | eoinfo.localsyms = false; | |
13373 | eoinfo.flinfo = &flinfo; | |
13374 | bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo); | |
13375 | if (eoinfo.failed) | |
13376 | goto error_return; | |
13377 | ||
13378 | /* If backend needs to output some symbols not present in the hash | |
13379 | table, do it now. */ | |
13380 | if (bed->elf_backend_output_arch_syms | |
13381 | && (info->strip != strip_all || emit_relocs)) | |
13382 | { | |
13383 | if (! ((*bed->elf_backend_output_arch_syms) | |
13384 | (abfd, info, &flinfo, elf_link_output_symstrtab))) | |
13385 | goto error_return; | |
13386 | } | |
13387 | ||
13388 | /* Finalize the .strtab section. */ | |
13389 | _bfd_elf_strtab_finalize (flinfo.symstrtab); | |
13390 | ||
13391 | /* Swap out the .strtab section. */ | |
13392 | if (!elf_link_swap_symbols_out (&flinfo)) | |
13393 | goto error_return; | |
13394 | free (htab->strtab); | |
13395 | htab->strtab = NULL; | |
13396 | ||
13397 | /* Now we know the size of the symtab section. */ | |
13398 | if (bfd_get_symcount (abfd) > 0) | |
13399 | { | |
13400 | /* Finish up and write out the symbol string table (.strtab) | |
13401 | section. */ | |
13402 | Elf_Internal_Shdr *symstrtab_hdr = NULL; | |
13403 | file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size; | |
13404 | ||
13405 | if (elf_symtab_shndx_list (abfd)) | |
13406 | { | |
13407 | symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr; | |
13408 | ||
13409 | if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0) | |
13410 | { | |
13411 | symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX; | |
13412 | symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx); | |
13413 | symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx); | |
13414 | amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx); | |
13415 | symtab_shndx_hdr->sh_size = amt; | |
13416 | ||
13417 | off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr, | |
13418 | off, true, 0); | |
13419 | ||
13420 | if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0 | |
13421 | || (bfd_write (flinfo.symshndxbuf, amt, abfd) != amt)) | |
13422 | goto error_return; | |
13423 | } | |
13424 | } | |
13425 | ||
13426 | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; | |
13427 | /* sh_name was set in prep_headers. */ | |
13428 | symstrtab_hdr->sh_type = SHT_STRTAB; | |
13429 | symstrtab_hdr->sh_flags = bed->elf_strtab_flags; | |
13430 | symstrtab_hdr->sh_addr = 0; | |
13431 | symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab); | |
13432 | symstrtab_hdr->sh_entsize = 0; | |
13433 | symstrtab_hdr->sh_link = 0; | |
13434 | symstrtab_hdr->sh_info = 0; | |
13435 | /* sh_offset is set just below. */ | |
13436 | symstrtab_hdr->sh_addralign = 1; | |
13437 | ||
13438 | off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, | |
13439 | off, true, 0); | |
13440 | elf_next_file_pos (abfd) = off; | |
13441 | ||
13442 | if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 | |
13443 | || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab)) | |
13444 | goto error_return; | |
13445 | } | |
13446 | ||
13447 | if (info->out_implib_bfd && !elf_output_implib (abfd, info)) | |
13448 | { | |
13449 | _bfd_error_handler (_("%pB: failed to generate import library"), | |
13450 | info->out_implib_bfd); | |
13451 | goto error_return; | |
13452 | } | |
13453 | ||
13454 | /* Adjust the relocs to have the correct symbol indices. */ | |
13455 | for (o = abfd->sections; o != NULL; o = o->next) | |
13456 | { | |
13457 | struct bfd_elf_section_data *esdo = elf_section_data (o); | |
13458 | bool sort; | |
13459 | ||
13460 | if ((o->flags & SEC_RELOC) == 0) | |
13461 | continue; | |
13462 | ||
13463 | sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o); | |
13464 | if (esdo->rel.hdr != NULL | |
13465 | && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info)) | |
13466 | goto error_return; | |
13467 | if (esdo->rela.hdr != NULL | |
13468 | && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info)) | |
13469 | goto error_return; | |
13470 | ||
13471 | /* Set the reloc_count field to 0 to prevent write_relocs from | |
13472 | trying to swap the relocs out itself. */ | |
13473 | o->reloc_count = 0; | |
13474 | } | |
13475 | ||
13476 | relativecount = 0; | |
13477 | if (dynamic && info->combreloc && dynobj != NULL) | |
13478 | relativecount = elf_link_sort_relocs (abfd, info, &reldyn); | |
13479 | ||
13480 | relr_entsize = 0; | |
13481 | if (htab->srelrdyn != NULL | |
13482 | && htab->srelrdyn->output_section != NULL | |
13483 | && htab->srelrdyn->size != 0) | |
13484 | { | |
13485 | asection *s = htab->srelrdyn->output_section; | |
13486 | relr_entsize = elf_section_data (s)->this_hdr.sh_entsize; | |
13487 | if (relr_entsize == 0) | |
13488 | { | |
13489 | relr_entsize = bed->s->arch_size / 8; | |
13490 | elf_section_data (s)->this_hdr.sh_entsize = relr_entsize; | |
13491 | } | |
13492 | } | |
13493 | ||
13494 | /* If we are linking against a dynamic object, or generating a | |
13495 | shared library, finish up the dynamic linking information. */ | |
13496 | if (dynamic) | |
13497 | { | |
13498 | bfd_byte *dyncon, *dynconend; | |
13499 | ||
13500 | /* Fix up .dynamic entries. */ | |
13501 | o = htab->dynamic; | |
13502 | BFD_ASSERT (o != NULL); | |
13503 | ||
13504 | dyncon = o->contents; | |
13505 | dynconend = PTR_ADD (o->contents, o->size); | |
13506 | for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) | |
13507 | { | |
13508 | Elf_Internal_Dyn dyn; | |
13509 | const char *name; | |
13510 | unsigned int type; | |
13511 | bfd_size_type sh_size; | |
13512 | bfd_vma sh_addr; | |
13513 | ||
13514 | bed->s->swap_dyn_in (dynobj, dyncon, &dyn); | |
13515 | ||
13516 | switch (dyn.d_tag) | |
13517 | { | |
13518 | default: | |
13519 | continue; | |
13520 | case DT_NULL: | |
13521 | if (relativecount != 0) | |
13522 | { | |
13523 | switch (elf_section_data (reldyn)->this_hdr.sh_type) | |
13524 | { | |
13525 | case SHT_REL: dyn.d_tag = DT_RELCOUNT; break; | |
13526 | case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break; | |
13527 | } | |
13528 | if (dyn.d_tag != DT_NULL | |
13529 | && dynconend - dyncon >= bed->s->sizeof_dyn) | |
13530 | { | |
13531 | dyn.d_un.d_val = relativecount; | |
13532 | relativecount = 0; | |
13533 | break; | |
13534 | } | |
13535 | relativecount = 0; | |
13536 | } | |
13537 | if (relr_entsize != 0) | |
13538 | { | |
13539 | if (dynconend - dyncon >= 3 * bed->s->sizeof_dyn) | |
13540 | { | |
13541 | asection *s = htab->srelrdyn; | |
13542 | dyn.d_tag = DT_RELR; | |
13543 | dyn.d_un.d_ptr | |
13544 | = s->output_section->vma + s->output_offset; | |
13545 | bed->s->swap_dyn_out (dynobj, &dyn, dyncon); | |
13546 | dyncon += bed->s->sizeof_dyn; | |
13547 | ||
13548 | dyn.d_tag = DT_RELRSZ; | |
13549 | dyn.d_un.d_val = s->size; | |
13550 | bed->s->swap_dyn_out (dynobj, &dyn, dyncon); | |
13551 | dyncon += bed->s->sizeof_dyn; | |
13552 | ||
13553 | dyn.d_tag = DT_RELRENT; | |
13554 | dyn.d_un.d_val = relr_entsize; | |
13555 | relr_entsize = 0; | |
13556 | break; | |
13557 | } | |
13558 | relr_entsize = 0; | |
13559 | } | |
13560 | continue; | |
13561 | ||
13562 | case DT_INIT: | |
13563 | name = info->init_function; | |
13564 | goto get_sym; | |
13565 | case DT_FINI: | |
13566 | name = info->fini_function; | |
13567 | get_sym: | |
13568 | { | |
13569 | struct elf_link_hash_entry *h; | |
13570 | ||
13571 | h = elf_link_hash_lookup (htab, name, false, false, true); | |
13572 | if (h != NULL | |
13573 | && (h->root.type == bfd_link_hash_defined | |
13574 | || h->root.type == bfd_link_hash_defweak)) | |
13575 | { | |
13576 | dyn.d_un.d_ptr = h->root.u.def.value; | |
13577 | o = h->root.u.def.section; | |
13578 | if (o->output_section != NULL) | |
13579 | dyn.d_un.d_ptr += (o->output_section->vma | |
13580 | + o->output_offset); | |
13581 | else | |
13582 | { | |
13583 | /* The symbol is imported from another shared | |
13584 | library and does not apply to this one. */ | |
13585 | dyn.d_un.d_ptr = 0; | |
13586 | } | |
13587 | break; | |
13588 | } | |
13589 | } | |
13590 | continue; | |
13591 | ||
13592 | case DT_PREINIT_ARRAYSZ: | |
13593 | name = ".preinit_array"; | |
13594 | goto get_out_size; | |
13595 | case DT_INIT_ARRAYSZ: | |
13596 | name = ".init_array"; | |
13597 | goto get_out_size; | |
13598 | case DT_FINI_ARRAYSZ: | |
13599 | name = ".fini_array"; | |
13600 | get_out_size: | |
13601 | o = bfd_get_section_by_name (abfd, name); | |
13602 | if (o == NULL) | |
13603 | { | |
13604 | _bfd_error_handler | |
13605 | (_("could not find section %s"), name); | |
13606 | goto error_return; | |
13607 | } | |
13608 | if (o->size == 0) | |
13609 | _bfd_error_handler | |
13610 | (_("warning: %s section has zero size"), name); | |
13611 | dyn.d_un.d_val = o->size; | |
13612 | break; | |
13613 | ||
13614 | case DT_PREINIT_ARRAY: | |
13615 | name = ".preinit_array"; | |
13616 | goto get_out_vma; | |
13617 | case DT_INIT_ARRAY: | |
13618 | name = ".init_array"; | |
13619 | goto get_out_vma; | |
13620 | case DT_FINI_ARRAY: | |
13621 | name = ".fini_array"; | |
13622 | get_out_vma: | |
13623 | o = bfd_get_section_by_name (abfd, name); | |
13624 | goto do_vma; | |
13625 | ||
13626 | case DT_HASH: | |
13627 | name = ".hash"; | |
13628 | goto get_vma; | |
13629 | case DT_GNU_HASH: | |
13630 | name = ".gnu.hash"; | |
13631 | goto get_vma; | |
13632 | case DT_STRTAB: | |
13633 | name = ".dynstr"; | |
13634 | goto get_vma; | |
13635 | case DT_SYMTAB: | |
13636 | name = ".dynsym"; | |
13637 | goto get_vma; | |
13638 | case DT_VERDEF: | |
13639 | name = ".gnu.version_d"; | |
13640 | goto get_vma; | |
13641 | case DT_VERNEED: | |
13642 | name = ".gnu.version_r"; | |
13643 | goto get_vma; | |
13644 | case DT_VERSYM: | |
13645 | name = ".gnu.version"; | |
13646 | get_vma: | |
13647 | o = bfd_get_linker_section (dynobj, name); | |
13648 | do_vma: | |
13649 | if (o == NULL || bfd_is_abs_section (o->output_section)) | |
13650 | { | |
13651 | _bfd_error_handler | |
13652 | (_("could not find section %s"), name); | |
13653 | goto error_return; | |
13654 | } | |
13655 | if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE) | |
13656 | { | |
13657 | _bfd_error_handler | |
13658 | (_("warning: section '%s' is being made into a note"), name); | |
13659 | bfd_set_error (bfd_error_nonrepresentable_section); | |
13660 | goto error_return; | |
13661 | } | |
13662 | dyn.d_un.d_ptr = o->output_section->vma + o->output_offset; | |
13663 | break; | |
13664 | ||
13665 | case DT_REL: | |
13666 | case DT_RELA: | |
13667 | case DT_RELSZ: | |
13668 | case DT_RELASZ: | |
13669 | if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) | |
13670 | type = SHT_REL; | |
13671 | else | |
13672 | type = SHT_RELA; | |
13673 | sh_size = 0; | |
13674 | sh_addr = 0; | |
13675 | for (i = 1; i < elf_numsections (abfd); i++) | |
13676 | { | |
13677 | Elf_Internal_Shdr *hdr; | |
13678 | ||
13679 | hdr = elf_elfsections (abfd)[i]; | |
13680 | if (hdr->sh_type == type | |
13681 | && (hdr->sh_flags & SHF_ALLOC) != 0) | |
13682 | { | |
13683 | sh_size += hdr->sh_size; | |
13684 | if (sh_addr == 0 | |
13685 | || sh_addr > hdr->sh_addr) | |
13686 | sh_addr = hdr->sh_addr; | |
13687 | } | |
13688 | } | |
13689 | ||
13690 | if (bed->dtrel_excludes_plt && htab->srelplt != NULL) | |
13691 | { | |
13692 | unsigned int opb = bfd_octets_per_byte (abfd, o); | |
13693 | ||
13694 | /* Don't count procedure linkage table relocs in the | |
13695 | overall reloc count. */ | |
13696 | sh_size -= htab->srelplt->size; | |
13697 | if (sh_size == 0) | |
13698 | /* If the size is zero, make the address zero too. | |
13699 | This is to avoid a glibc bug. If the backend | |
13700 | emits DT_RELA/DT_RELASZ even when DT_RELASZ is | |
13701 | zero, then we'll put DT_RELA at the end of | |
13702 | DT_JMPREL. glibc will interpret the end of | |
13703 | DT_RELA matching the end of DT_JMPREL as the | |
13704 | case where DT_RELA includes DT_JMPREL, and for | |
13705 | LD_BIND_NOW will decide that processing DT_RELA | |
13706 | will process the PLT relocs too. Net result: | |
13707 | No PLT relocs applied. */ | |
13708 | sh_addr = 0; | |
13709 | ||
13710 | /* If .rela.plt is the first .rela section, exclude | |
13711 | it from DT_RELA. */ | |
13712 | else if (sh_addr == (htab->srelplt->output_section->vma | |
13713 | + htab->srelplt->output_offset) * opb) | |
13714 | sh_addr += htab->srelplt->size; | |
13715 | } | |
13716 | ||
13717 | if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) | |
13718 | dyn.d_un.d_val = sh_size; | |
13719 | else | |
13720 | dyn.d_un.d_ptr = sh_addr; | |
13721 | break; | |
13722 | } | |
13723 | bed->s->swap_dyn_out (dynobj, &dyn, dyncon); | |
13724 | } | |
13725 | } | |
13726 | ||
13727 | /* If we have created any dynamic sections, then output them. */ | |
13728 | if (dynobj != NULL) | |
13729 | { | |
13730 | if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) | |
13731 | goto error_return; | |
13732 | ||
13733 | /* Check for DT_TEXTREL (late, in case the backend removes it). */ | |
13734 | if (bfd_link_textrel_check (info) | |
13735 | && (o = htab->dynamic) != NULL | |
13736 | && o->size != 0) | |
13737 | { | |
13738 | bfd_byte *dyncon, *dynconend; | |
13739 | ||
13740 | dyncon = o->contents; | |
13741 | dynconend = o->contents + o->size; | |
13742 | for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) | |
13743 | { | |
13744 | Elf_Internal_Dyn dyn; | |
13745 | ||
13746 | bed->s->swap_dyn_in (dynobj, dyncon, &dyn); | |
13747 | ||
13748 | if (dyn.d_tag == DT_TEXTREL) | |
13749 | { | |
13750 | if (info->textrel_check == textrel_check_error) | |
13751 | info->callbacks->einfo | |
13752 | (_("%P%X: read-only segment has dynamic relocations\n")); | |
13753 | else if (bfd_link_dll (info)) | |
13754 | info->callbacks->einfo | |
13755 | (_("%P: warning: creating DT_TEXTREL in a shared object\n")); | |
13756 | else if (bfd_link_pde (info)) | |
13757 | info->callbacks->einfo | |
13758 | (_("%P: warning: creating DT_TEXTREL in a PDE\n")); | |
13759 | else | |
13760 | info->callbacks->einfo | |
13761 | (_("%P: warning: creating DT_TEXTREL in a PIE\n")); | |
13762 | break; | |
13763 | } | |
13764 | } | |
13765 | } | |
13766 | ||
13767 | for (o = dynobj->sections; o != NULL; o = o->next) | |
13768 | { | |
13769 | if ((o->flags & SEC_HAS_CONTENTS) == 0 | |
13770 | || o->size == 0 | |
13771 | || o->output_section == bfd_abs_section_ptr) | |
13772 | continue; | |
13773 | if ((o->flags & SEC_LINKER_CREATED) == 0) | |
13774 | { | |
13775 | /* At this point, we are only interested in sections | |
13776 | created by _bfd_elf_link_create_dynamic_sections. */ | |
13777 | continue; | |
13778 | } | |
13779 | if (htab->stab_info.stabstr == o) | |
13780 | continue; | |
13781 | if (htab->eh_info.hdr_sec == o) | |
13782 | continue; | |
13783 | if (strcmp (o->name, ".dynstr") != 0) | |
13784 | { | |
13785 | bfd_size_type octets = ((file_ptr) o->output_offset | |
13786 | * bfd_octets_per_byte (abfd, o)); | |
13787 | if (!bfd_set_section_contents (abfd, o->output_section, | |
13788 | o->contents, octets, o->size)) | |
13789 | goto error_return; | |
13790 | } | |
13791 | else | |
13792 | { | |
13793 | /* The contents of the .dynstr section are actually in a | |
13794 | stringtab. */ | |
13795 | file_ptr off; | |
13796 | ||
13797 | off = elf_section_data (o->output_section)->this_hdr.sh_offset; | |
13798 | if (bfd_seek (abfd, off, SEEK_SET) != 0 | |
13799 | || !_bfd_elf_strtab_emit (abfd, htab->dynstr)) | |
13800 | goto error_return; | |
13801 | } | |
13802 | } | |
13803 | } | |
13804 | ||
13805 | if (!info->resolve_section_groups) | |
13806 | { | |
13807 | bool failed = false; | |
13808 | ||
13809 | BFD_ASSERT (bfd_link_relocatable (info)); | |
13810 | bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed); | |
13811 | if (failed) | |
13812 | goto error_return; | |
13813 | } | |
13814 | ||
13815 | /* If we have optimized stabs strings, output them. */ | |
13816 | if (htab->stab_info.stabstr != NULL) | |
13817 | { | |
13818 | if (!_bfd_write_stab_strings (abfd, &htab->stab_info)) | |
13819 | goto error_return; | |
13820 | } | |
13821 | ||
13822 | if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info)) | |
13823 | goto error_return; | |
13824 | ||
13825 | if (! _bfd_elf_write_section_sframe (abfd, info)) | |
13826 | goto error_return; | |
13827 | ||
13828 | if (! _bfd_elf_write_section_build_attributes (abfd, info)) | |
13829 | goto error_ret2; | |
13830 | ||
13831 | if (info->callbacks->emit_ctf) | |
13832 | info->callbacks->emit_ctf (); | |
13833 | ||
13834 | elf_final_link_free (abfd, &flinfo); | |
13835 | ||
13836 | if (info->unique_symbol) | |
13837 | bfd_hash_table_free (&flinfo.local_hash_table); | |
13838 | return true; | |
13839 | ||
13840 | error_return: | |
13841 | free (htab->strtab); | |
13842 | htab->strtab = NULL; | |
13843 | elf_final_link_free (abfd, &flinfo); | |
13844 | error_ret2: | |
13845 | if (info->unique_symbol) | |
13846 | bfd_hash_table_free (&flinfo.local_hash_table); | |
13847 | return false; | |
13848 | } | |
13849 | \f | |
13850 | /* Initialize COOKIE for input bfd ABFD. */ | |
13851 | ||
13852 | static bool | |
13853 | init_reloc_cookie (struct elf_reloc_cookie *cookie, | |
13854 | struct bfd_link_info *info, bfd *abfd, | |
13855 | bool keep_memory) | |
13856 | { | |
13857 | Elf_Internal_Shdr *symtab_hdr; | |
13858 | const struct elf_backend_data *bed; | |
13859 | ||
13860 | bed = get_elf_backend_data (abfd); | |
13861 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
13862 | ||
13863 | cookie->abfd = abfd; | |
13864 | cookie->sym_hashes = elf_sym_hashes (abfd); | |
13865 | cookie->bad_symtab = elf_bad_symtab (abfd); | |
13866 | if (cookie->bad_symtab) | |
13867 | { | |
13868 | cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; | |
13869 | cookie->extsymoff = 0; | |
13870 | } | |
13871 | else | |
13872 | { | |
13873 | cookie->locsymcount = symtab_hdr->sh_info; | |
13874 | cookie->extsymoff = symtab_hdr->sh_info; | |
13875 | } | |
13876 | ||
13877 | if (bed->s->arch_size == 32) | |
13878 | cookie->r_sym_shift = 8; | |
13879 | else | |
13880 | cookie->r_sym_shift = 32; | |
13881 | ||
13882 | cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents; | |
13883 | if (cookie->locsyms == NULL && cookie->locsymcount != 0) | |
13884 | { | |
13885 | cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, | |
13886 | cookie->locsymcount, 0, | |
13887 | NULL, NULL, NULL); | |
13888 | if (cookie->locsyms == NULL) | |
13889 | { | |
13890 | info->callbacks->einfo (_("%P%X: can not read symbols: %E\n")); | |
13891 | return false; | |
13892 | } | |
13893 | if (keep_memory || _bfd_elf_link_keep_memory (info)) | |
13894 | { | |
13895 | symtab_hdr->contents = (bfd_byte *) cookie->locsyms; | |
13896 | info->cache_size += (cookie->locsymcount | |
13897 | * sizeof (Elf_Internal_Sym)); | |
13898 | } | |
13899 | } | |
13900 | return true; | |
13901 | } | |
13902 | ||
13903 | /* Free the memory allocated by init_reloc_cookie, if appropriate. */ | |
13904 | ||
13905 | static void | |
13906 | fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd) | |
13907 | { | |
13908 | Elf_Internal_Shdr *symtab_hdr; | |
13909 | ||
13910 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
13911 | if (symtab_hdr->contents != (unsigned char *) cookie->locsyms) | |
13912 | free (cookie->locsyms); | |
13913 | } | |
13914 | ||
13915 | /* Initialize the relocation information in COOKIE for input section SEC | |
13916 | of input bfd ABFD. */ | |
13917 | ||
13918 | static bool | |
13919 | init_reloc_cookie_rels (struct elf_reloc_cookie *cookie, | |
13920 | struct bfd_link_info *info, bfd *abfd, | |
13921 | asection *sec, bool keep_memory) | |
13922 | { | |
13923 | if (sec->reloc_count == 0) | |
13924 | { | |
13925 | cookie->rels = NULL; | |
13926 | cookie->relend = NULL; | |
13927 | } | |
13928 | else | |
13929 | { | |
13930 | cookie->rels = _bfd_elf_link_info_read_relocs | |
13931 | (abfd, info, sec, NULL, NULL, | |
13932 | keep_memory || _bfd_elf_link_keep_memory (info)); | |
13933 | if (cookie->rels == NULL) | |
13934 | return false; | |
13935 | cookie->rel = cookie->rels; | |
13936 | cookie->relend = cookie->rels + sec->reloc_count; | |
13937 | } | |
13938 | cookie->rel = cookie->rels; | |
13939 | return true; | |
13940 | } | |
13941 | ||
13942 | /* Free the memory allocated by init_reloc_cookie_rels, | |
13943 | if appropriate. */ | |
13944 | ||
13945 | static void | |
13946 | fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie, | |
13947 | asection *sec) | |
13948 | { | |
13949 | if (elf_section_data (sec)->relocs != cookie->rels) | |
13950 | free (cookie->rels); | |
13951 | } | |
13952 | ||
13953 | /* Initialize the whole of COOKIE for input section SEC. */ | |
13954 | ||
13955 | static bool | |
13956 | init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, | |
13957 | struct bfd_link_info *info, | |
13958 | asection *sec, bool keep_memory) | |
13959 | { | |
13960 | if (!init_reloc_cookie (cookie, info, sec->owner, keep_memory)) | |
13961 | goto error1; | |
13962 | if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec, | |
13963 | keep_memory)) | |
13964 | goto error2; | |
13965 | return true; | |
13966 | ||
13967 | error2: | |
13968 | fini_reloc_cookie (cookie, sec->owner); | |
13969 | error1: | |
13970 | return false; | |
13971 | } | |
13972 | ||
13973 | /* Free the memory allocated by init_reloc_cookie_for_section, | |
13974 | if appropriate. */ | |
13975 | ||
13976 | static void | |
13977 | fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, | |
13978 | asection *sec) | |
13979 | { | |
13980 | fini_reloc_cookie_rels (cookie, sec); | |
13981 | fini_reloc_cookie (cookie, sec->owner); | |
13982 | } | |
13983 | \f | |
13984 | /* Garbage collect unused sections. */ | |
13985 | ||
13986 | /* Default gc_mark_hook. */ | |
13987 | ||
13988 | asection * | |
13989 | _bfd_elf_gc_mark_hook (asection *sec, | |
13990 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
13991 | Elf_Internal_Rela *rel ATTRIBUTE_UNUSED, | |
13992 | struct elf_link_hash_entry *h, | |
13993 | Elf_Internal_Sym *sym) | |
13994 | { | |
13995 | if (h == NULL) | |
13996 | return bfd_section_from_elf_index (sec->owner, sym->st_shndx); | |
13997 | ||
13998 | switch (h->root.type) | |
13999 | { | |
14000 | case bfd_link_hash_defined: | |
14001 | case bfd_link_hash_defweak: | |
14002 | return h->root.u.def.section; | |
14003 | ||
14004 | case bfd_link_hash_common: | |
14005 | return h->root.u.c.p->section; | |
14006 | ||
14007 | default: | |
14008 | return NULL; | |
14009 | } | |
14010 | } | |
14011 | ||
14012 | /* Return the debug definition section. */ | |
14013 | ||
14014 | static asection * | |
14015 | elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED, | |
14016 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
14017 | Elf_Internal_Rela *rel ATTRIBUTE_UNUSED, | |
14018 | struct elf_link_hash_entry *h, | |
14019 | Elf_Internal_Sym *sym) | |
14020 | { | |
14021 | if (h != NULL) | |
14022 | { | |
14023 | /* Return the global debug definition section. */ | |
14024 | if ((h->root.type == bfd_link_hash_defined | |
14025 | || h->root.type == bfd_link_hash_defweak) | |
14026 | && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0) | |
14027 | return h->root.u.def.section; | |
14028 | } | |
14029 | else | |
14030 | { | |
14031 | /* Return the local debug definition section. */ | |
14032 | asection *isec = bfd_section_from_elf_index (sec->owner, | |
14033 | sym->st_shndx); | |
14034 | if (isec != NULL && (isec->flags & SEC_DEBUGGING) != 0) | |
14035 | return isec; | |
14036 | } | |
14037 | ||
14038 | return NULL; | |
14039 | } | |
14040 | ||
14041 | /* COOKIE->rel describes a relocation against section SEC, which is | |
14042 | a section we've decided to keep. Return the section that contains | |
14043 | the relocation symbol, or NULL if no section contains it. */ | |
14044 | ||
14045 | asection * | |
14046 | _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec, | |
14047 | elf_gc_mark_hook_fn gc_mark_hook, | |
14048 | struct elf_reloc_cookie *cookie, | |
14049 | bool *start_stop) | |
14050 | { | |
14051 | unsigned long r_symndx; | |
14052 | struct elf_link_hash_entry *h, *hw; | |
14053 | ||
14054 | r_symndx = cookie->rel->r_info >> cookie->r_sym_shift; | |
14055 | if (r_symndx == STN_UNDEF) | |
14056 | return NULL; | |
14057 | ||
14058 | h = get_ext_sym_hash_from_cookie (cookie, r_symndx); | |
14059 | if (h == NULL) | |
14060 | { | |
14061 | /* A corrupt input file can lead to a situation where the index | |
14062 | does not reference either a local or an external symbol. */ | |
14063 | if (r_symndx >= cookie->locsymcount) | |
14064 | return NULL; | |
14065 | ||
14066 | return (*gc_mark_hook) (sec, info, cookie->rel, NULL, | |
14067 | &cookie->locsyms[r_symndx]); | |
14068 | } | |
14069 | ||
14070 | bool was_marked = h->mark; | |
14071 | ||
14072 | h->mark = 1; | |
14073 | /* Keep all aliases of the symbol too. If an object symbol | |
14074 | needs to be copied into .dynbss then all of its aliases | |
14075 | should be present as dynamic symbols, not just the one used | |
14076 | on the copy relocation. */ | |
14077 | hw = h; | |
14078 | while (hw->is_weakalias) | |
14079 | { | |
14080 | hw = hw->u.alias; | |
14081 | hw->mark = 1; | |
14082 | } | |
14083 | ||
14084 | if (!was_marked && h->start_stop && !h->root.ldscript_def) | |
14085 | { | |
14086 | if (info->start_stop_gc) | |
14087 | return NULL; | |
14088 | ||
14089 | /* To work around a glibc bug, mark XXX input sections | |
14090 | when there is a reference to __start_XXX or __stop_XXX | |
14091 | symbols. */ | |
14092 | else if (start_stop != NULL) | |
14093 | { | |
14094 | asection *s = h->u2.start_stop_section; | |
14095 | *start_stop = true; | |
14096 | return s; | |
14097 | } | |
14098 | } | |
14099 | ||
14100 | return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL); | |
14101 | } | |
14102 | ||
14103 | /* COOKIE->rel describes a relocation against section SEC, which is | |
14104 | a section we've decided to keep. Mark the section that contains | |
14105 | the relocation symbol. */ | |
14106 | ||
14107 | bool | |
14108 | _bfd_elf_gc_mark_reloc (struct bfd_link_info *info, | |
14109 | asection *sec, | |
14110 | elf_gc_mark_hook_fn gc_mark_hook, | |
14111 | struct elf_reloc_cookie *cookie) | |
14112 | { | |
14113 | asection *rsec; | |
14114 | bool start_stop = false; | |
14115 | ||
14116 | rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop); | |
14117 | while (rsec != NULL) | |
14118 | { | |
14119 | if (!rsec->gc_mark) | |
14120 | { | |
14121 | if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour | |
14122 | || (rsec->owner->flags & DYNAMIC) != 0) | |
14123 | rsec->gc_mark = 1; | |
14124 | else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook)) | |
14125 | return false; | |
14126 | } | |
14127 | if (!start_stop) | |
14128 | break; | |
14129 | rsec = bfd_get_next_section_by_name (rsec->owner, rsec); | |
14130 | } | |
14131 | return true; | |
14132 | } | |
14133 | ||
14134 | /* The mark phase of garbage collection. For a given section, mark | |
14135 | it and any sections in this section's group, and all the sections | |
14136 | which define symbols to which it refers. */ | |
14137 | ||
14138 | bool | |
14139 | _bfd_elf_gc_mark (struct bfd_link_info *info, | |
14140 | asection *sec, | |
14141 | elf_gc_mark_hook_fn gc_mark_hook) | |
14142 | { | |
14143 | bool ret; | |
14144 | asection *group_sec, *eh_frame; | |
14145 | ||
14146 | sec->gc_mark = 1; | |
14147 | ||
14148 | /* Mark all the sections in the group. */ | |
14149 | group_sec = elf_section_data (sec)->next_in_group; | |
14150 | if (group_sec && !group_sec->gc_mark) | |
14151 | if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook)) | |
14152 | return false; | |
14153 | ||
14154 | /* Look through the section relocs. */ | |
14155 | ret = true; | |
14156 | eh_frame = elf_eh_frame_section (sec->owner); | |
14157 | if ((sec->flags & SEC_RELOC) != 0 | |
14158 | && sec->reloc_count > 0 | |
14159 | && sec != eh_frame) | |
14160 | { | |
14161 | struct elf_reloc_cookie cookie; | |
14162 | ||
14163 | if (!init_reloc_cookie_for_section (&cookie, info, sec, false)) | |
14164 | ret = false; | |
14165 | else | |
14166 | { | |
14167 | for (; cookie.rel < cookie.relend; cookie.rel++) | |
14168 | if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie)) | |
14169 | { | |
14170 | ret = false; | |
14171 | break; | |
14172 | } | |
14173 | fini_reloc_cookie_for_section (&cookie, sec); | |
14174 | } | |
14175 | } | |
14176 | ||
14177 | if (ret && eh_frame && elf_fde_list (sec)) | |
14178 | { | |
14179 | struct elf_reloc_cookie cookie; | |
14180 | ||
14181 | /* NB: When --no-keep-memory is used, the symbol table and | |
14182 | relocation info for eh_frame are freed after they are retrieved | |
14183 | for each text section in the input object. If an input object | |
14184 | has many text sections, the same data is retrieved and freed | |
14185 | many times which can take a very long time. Always keep the | |
14186 | symbol table and relocation info for eh_frame to avoid it. */ | |
14187 | if (!init_reloc_cookie_for_section (&cookie, info, eh_frame, | |
14188 | true)) | |
14189 | ret = false; | |
14190 | else | |
14191 | { | |
14192 | if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame, | |
14193 | gc_mark_hook, &cookie)) | |
14194 | ret = false; | |
14195 | fini_reloc_cookie_for_section (&cookie, eh_frame); | |
14196 | } | |
14197 | } | |
14198 | ||
14199 | eh_frame = elf_section_eh_frame_entry (sec); | |
14200 | if (ret && eh_frame && !eh_frame->gc_mark) | |
14201 | if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook)) | |
14202 | ret = false; | |
14203 | ||
14204 | return ret; | |
14205 | } | |
14206 | ||
14207 | /* Scan and mark sections in a special or debug section group. */ | |
14208 | ||
14209 | static void | |
14210 | _bfd_elf_gc_mark_debug_special_section_group (asection *grp) | |
14211 | { | |
14212 | /* Point to first section of section group. */ | |
14213 | asection *ssec; | |
14214 | /* Used to iterate the section group. */ | |
14215 | asection *msec; | |
14216 | ||
14217 | bool is_special_grp = true; | |
14218 | bool is_debug_grp = true; | |
14219 | ||
14220 | /* First scan to see if group contains any section other than debug | |
14221 | and special section. */ | |
14222 | ssec = msec = elf_next_in_group (grp); | |
14223 | do | |
14224 | { | |
14225 | if ((msec->flags & SEC_DEBUGGING) == 0) | |
14226 | is_debug_grp = false; | |
14227 | ||
14228 | if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0) | |
14229 | is_special_grp = false; | |
14230 | ||
14231 | msec = elf_next_in_group (msec); | |
14232 | } | |
14233 | while (msec != ssec); | |
14234 | ||
14235 | /* If this is a pure debug section group or pure special section group, | |
14236 | keep all sections in this group. */ | |
14237 | if (is_debug_grp || is_special_grp) | |
14238 | { | |
14239 | do | |
14240 | { | |
14241 | msec->gc_mark = 1; | |
14242 | msec = elf_next_in_group (msec); | |
14243 | } | |
14244 | while (msec != ssec); | |
14245 | } | |
14246 | } | |
14247 | ||
14248 | /* Keep debug and special sections. */ | |
14249 | ||
14250 | bool | |
14251 | _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info, | |
14252 | elf_gc_mark_hook_fn mark_hook) | |
14253 | { | |
14254 | bfd *ibfd; | |
14255 | ||
14256 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) | |
14257 | { | |
14258 | asection *isec; | |
14259 | bool some_kept; | |
14260 | bool debug_frag_seen; | |
14261 | bool has_kept_debug_info; | |
14262 | ||
14263 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) | |
14264 | continue; | |
14265 | isec = ibfd->sections; | |
14266 | if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) | |
14267 | continue; | |
14268 | ||
14269 | /* Ensure all linker created sections are kept, | |
14270 | see if any other section is already marked, | |
14271 | and note if we have any fragmented debug sections. */ | |
14272 | debug_frag_seen = some_kept = has_kept_debug_info = false; | |
14273 | for (isec = ibfd->sections; isec != NULL; isec = isec->next) | |
14274 | { | |
14275 | if ((isec->flags & SEC_LINKER_CREATED) != 0) | |
14276 | isec->gc_mark = 1; | |
14277 | else if (isec->gc_mark | |
14278 | && (isec->flags & SEC_ALLOC) != 0 | |
14279 | && elf_section_type (isec) != SHT_NOTE) | |
14280 | some_kept = true; | |
14281 | else | |
14282 | { | |
14283 | /* Since all sections, except for backend specific ones, | |
14284 | have been garbage collected, call mark_hook on this | |
14285 | section if any of its linked-to sections is marked. */ | |
14286 | asection *linked_to_sec; | |
14287 | for (linked_to_sec = elf_linked_to_section (isec); | |
14288 | linked_to_sec != NULL && !linked_to_sec->linker_mark; | |
14289 | linked_to_sec = elf_linked_to_section (linked_to_sec)) | |
14290 | { | |
14291 | if (linked_to_sec->gc_mark) | |
14292 | { | |
14293 | if (!_bfd_elf_gc_mark (info, isec, mark_hook)) | |
14294 | return false; | |
14295 | break; | |
14296 | } | |
14297 | linked_to_sec->linker_mark = 1; | |
14298 | } | |
14299 | for (linked_to_sec = elf_linked_to_section (isec); | |
14300 | linked_to_sec != NULL && linked_to_sec->linker_mark; | |
14301 | linked_to_sec = elf_linked_to_section (linked_to_sec)) | |
14302 | linked_to_sec->linker_mark = 0; | |
14303 | } | |
14304 | ||
14305 | if (!debug_frag_seen | |
14306 | && (isec->flags & SEC_DEBUGGING) | |
14307 | && startswith (isec->name, ".debug_line.")) | |
14308 | debug_frag_seen = true; | |
14309 | else if (strcmp (bfd_section_name (isec), | |
14310 | "__patchable_function_entries") == 0 | |
14311 | && elf_linked_to_section (isec) == NULL) | |
14312 | info->callbacks->fatal (_("%P: %pB(%pA): error: " | |
14313 | "need linked-to section " | |
14314 | "for --gc-sections\n"), | |
14315 | isec->owner, isec); | |
14316 | } | |
14317 | ||
14318 | /* If no non-note alloc section in this file will be kept, then | |
14319 | we can toss out the debug and special sections. */ | |
14320 | if (!some_kept) | |
14321 | continue; | |
14322 | ||
14323 | /* Keep debug and special sections like .comment when they are | |
14324 | not part of a group. Also keep section groups that contain | |
14325 | just debug sections or special sections. NB: Sections with | |
14326 | linked-to section has been handled above. */ | |
14327 | for (isec = ibfd->sections; isec != NULL; isec = isec->next) | |
14328 | { | |
14329 | if ((isec->flags & SEC_GROUP) != 0) | |
14330 | _bfd_elf_gc_mark_debug_special_section_group (isec); | |
14331 | else if (((isec->flags & SEC_DEBUGGING) != 0 | |
14332 | || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0) | |
14333 | && elf_next_in_group (isec) == NULL | |
14334 | && elf_linked_to_section (isec) == NULL) | |
14335 | isec->gc_mark = 1; | |
14336 | if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0) | |
14337 | has_kept_debug_info = true; | |
14338 | } | |
14339 | ||
14340 | /* Look for CODE sections which are going to be discarded, | |
14341 | and find and discard any fragmented debug sections which | |
14342 | are associated with that code section. */ | |
14343 | if (debug_frag_seen) | |
14344 | for (isec = ibfd->sections; isec != NULL; isec = isec->next) | |
14345 | if ((isec->flags & SEC_CODE) != 0 | |
14346 | && isec->gc_mark == 0) | |
14347 | { | |
14348 | unsigned int ilen; | |
14349 | asection *dsec; | |
14350 | ||
14351 | ilen = strlen (isec->name); | |
14352 | ||
14353 | /* Association is determined by the name of the debug | |
14354 | section containing the name of the code section as | |
14355 | a suffix. For example .debug_line.text.foo is a | |
14356 | debug section associated with .text.foo. */ | |
14357 | for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next) | |
14358 | { | |
14359 | unsigned int dlen; | |
14360 | ||
14361 | if (dsec->gc_mark == 0 | |
14362 | || (dsec->flags & SEC_DEBUGGING) == 0) | |
14363 | continue; | |
14364 | ||
14365 | dlen = strlen (dsec->name); | |
14366 | ||
14367 | if (dlen > ilen | |
14368 | && strncmp (dsec->name + (dlen - ilen), | |
14369 | isec->name, ilen) == 0) | |
14370 | dsec->gc_mark = 0; | |
14371 | } | |
14372 | } | |
14373 | ||
14374 | /* Mark debug sections referenced by kept debug sections. */ | |
14375 | if (has_kept_debug_info) | |
14376 | for (isec = ibfd->sections; isec != NULL; isec = isec->next) | |
14377 | if (isec->gc_mark | |
14378 | && (isec->flags & SEC_DEBUGGING) != 0) | |
14379 | if (!_bfd_elf_gc_mark (info, isec, | |
14380 | elf_gc_mark_debug_section)) | |
14381 | return false; | |
14382 | } | |
14383 | return true; | |
14384 | } | |
14385 | ||
14386 | static bool | |
14387 | elf_gc_sweep (bfd *abfd, struct bfd_link_info *info) | |
14388 | { | |
14389 | bfd *sub; | |
14390 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
14391 | ||
14392 | for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) | |
14393 | { | |
14394 | asection *o; | |
14395 | ||
14396 | if (bfd_get_flavour (sub) != bfd_target_elf_flavour | |
14397 | || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info)) | |
14398 | || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec)) | |
14399 | continue; | |
14400 | o = sub->sections; | |
14401 | if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) | |
14402 | continue; | |
14403 | ||
14404 | for (o = sub->sections; o != NULL; o = o->next) | |
14405 | { | |
14406 | /* When any section in a section group is kept, we keep all | |
14407 | sections in the section group. If the first member of | |
14408 | the section group is excluded, we will also exclude the | |
14409 | group section. */ | |
14410 | if (o->flags & SEC_GROUP) | |
14411 | { | |
14412 | asection *first = elf_next_in_group (o); | |
14413 | if (first != NULL) | |
14414 | o->gc_mark = first->gc_mark; | |
14415 | } | |
14416 | ||
14417 | if (o->gc_mark) | |
14418 | continue; | |
14419 | ||
14420 | /* Skip sweeping sections already excluded. */ | |
14421 | if (o->flags & SEC_EXCLUDE) | |
14422 | continue; | |
14423 | ||
14424 | /* Since this is early in the link process, it is simple | |
14425 | to remove a section from the output. */ | |
14426 | o->flags |= SEC_EXCLUDE; | |
14427 | ||
14428 | if (info->print_gc_sections && o->size != 0) | |
14429 | /* xgettext:c-format */ | |
14430 | _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"), | |
14431 | o, sub); | |
14432 | } | |
14433 | } | |
14434 | ||
14435 | return true; | |
14436 | } | |
14437 | ||
14438 | /* Propagate collected vtable information. This is called through | |
14439 | elf_link_hash_traverse. */ | |
14440 | ||
14441 | static bool | |
14442 | elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp) | |
14443 | { | |
14444 | /* Those that are not vtables. */ | |
14445 | if (h->start_stop | |
14446 | || h->u2.vtable == NULL | |
14447 | || h->u2.vtable->parent == NULL) | |
14448 | return true; | |
14449 | ||
14450 | /* Those vtables that do not have parents, we cannot merge. */ | |
14451 | if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1) | |
14452 | return true; | |
14453 | ||
14454 | /* If we've already been done, exit. */ | |
14455 | if (h->u2.vtable->used && h->u2.vtable->used[-1]) | |
14456 | return true; | |
14457 | ||
14458 | /* Make sure the parent's table is up to date. */ | |
14459 | elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp); | |
14460 | ||
14461 | if (h->u2.vtable->used == NULL) | |
14462 | { | |
14463 | /* None of this table's entries were referenced. Re-use the | |
14464 | parent's table. */ | |
14465 | h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used; | |
14466 | h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size; | |
14467 | } | |
14468 | else | |
14469 | { | |
14470 | size_t n; | |
14471 | bool *cu, *pu; | |
14472 | ||
14473 | /* Or the parent's entries into ours. */ | |
14474 | cu = h->u2.vtable->used; | |
14475 | cu[-1] = true; | |
14476 | pu = h->u2.vtable->parent->u2.vtable->used; | |
14477 | if (pu != NULL) | |
14478 | { | |
14479 | const struct elf_backend_data *bed; | |
14480 | unsigned int log_file_align; | |
14481 | ||
14482 | bed = get_elf_backend_data (h->root.u.def.section->owner); | |
14483 | log_file_align = bed->s->log_file_align; | |
14484 | n = h->u2.vtable->parent->u2.vtable->size >> log_file_align; | |
14485 | while (n--) | |
14486 | { | |
14487 | if (*pu) | |
14488 | *cu = true; | |
14489 | pu++; | |
14490 | cu++; | |
14491 | } | |
14492 | } | |
14493 | } | |
14494 | ||
14495 | return true; | |
14496 | } | |
14497 | ||
14498 | struct link_info_ok | |
14499 | { | |
14500 | struct bfd_link_info *info; | |
14501 | bool ok; | |
14502 | }; | |
14503 | ||
14504 | static bool | |
14505 | elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, | |
14506 | void *ptr) | |
14507 | { | |
14508 | asection *sec; | |
14509 | bfd_vma hstart, hend; | |
14510 | Elf_Internal_Rela *relstart, *relend, *rel; | |
14511 | const struct elf_backend_data *bed; | |
14512 | unsigned int log_file_align; | |
14513 | struct link_info_ok *info = (struct link_info_ok *) ptr; | |
14514 | ||
14515 | /* Take care of both those symbols that do not describe vtables as | |
14516 | well as those that are not loaded. */ | |
14517 | if (h->start_stop | |
14518 | || h->u2.vtable == NULL | |
14519 | || h->u2.vtable->parent == NULL) | |
14520 | return true; | |
14521 | ||
14522 | BFD_ASSERT (h->root.type == bfd_link_hash_defined | |
14523 | || h->root.type == bfd_link_hash_defweak); | |
14524 | ||
14525 | sec = h->root.u.def.section; | |
14526 | hstart = h->root.u.def.value; | |
14527 | hend = hstart + h->size; | |
14528 | ||
14529 | relstart = _bfd_elf_link_info_read_relocs (sec->owner, info->info, | |
14530 | sec, NULL, NULL, true); | |
14531 | if (!relstart) | |
14532 | return info->ok = false; | |
14533 | bed = get_elf_backend_data (sec->owner); | |
14534 | log_file_align = bed->s->log_file_align; | |
14535 | ||
14536 | relend = relstart + sec->reloc_count; | |
14537 | ||
14538 | for (rel = relstart; rel < relend; ++rel) | |
14539 | if (rel->r_offset >= hstart && rel->r_offset < hend) | |
14540 | { | |
14541 | /* If the entry is in use, do nothing. */ | |
14542 | if (h->u2.vtable->used | |
14543 | && (rel->r_offset - hstart) < h->u2.vtable->size) | |
14544 | { | |
14545 | bfd_vma entry = (rel->r_offset - hstart) >> log_file_align; | |
14546 | if (h->u2.vtable->used[entry]) | |
14547 | continue; | |
14548 | } | |
14549 | /* Otherwise, kill it. */ | |
14550 | rel->r_offset = rel->r_info = rel->r_addend = 0; | |
14551 | } | |
14552 | ||
14553 | return true; | |
14554 | } | |
14555 | ||
14556 | /* Mark sections containing dynamically referenced symbols. When | |
14557 | building shared libraries, we must assume that any visible symbol is | |
14558 | referenced. */ | |
14559 | ||
14560 | bool | |
14561 | bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf) | |
14562 | { | |
14563 | struct bfd_link_info *info = (struct bfd_link_info *) inf; | |
14564 | struct bfd_elf_dynamic_list *d = info->dynamic_list; | |
14565 | ||
14566 | if ((h->root.type == bfd_link_hash_defined | |
14567 | || h->root.type == bfd_link_hash_defweak) | |
14568 | && (!h->start_stop | |
14569 | || h->root.ldscript_def | |
14570 | || !info->start_stop_gc) | |
14571 | && ((h->ref_dynamic && !h->forced_local) | |
14572 | || ((h->def_regular || ELF_COMMON_DEF_P (h)) | |
14573 | && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL | |
14574 | && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN | |
14575 | && (!bfd_link_executable (info) | |
14576 | || info->gc_keep_exported | |
14577 | || info->export_dynamic | |
14578 | || (h->dynamic | |
14579 | && d != NULL | |
14580 | && (*d->match) (&d->head, NULL, h->root.root.string))) | |
14581 | && (h->versioned >= versioned | |
14582 | || !bfd_hide_sym_by_version (info->version_info, | |
14583 | h->root.root.string))))) | |
14584 | h->root.u.def.section->flags |= SEC_KEEP; | |
14585 | ||
14586 | return true; | |
14587 | } | |
14588 | ||
14589 | /* Keep all sections containing symbols undefined on the command-line, | |
14590 | and the section containing the entry symbol. */ | |
14591 | ||
14592 | void | |
14593 | _bfd_elf_gc_keep (struct bfd_link_info *info) | |
14594 | { | |
14595 | struct bfd_sym_chain *sym; | |
14596 | ||
14597 | for (sym = info->gc_sym_list; sym != NULL; sym = sym->next) | |
14598 | { | |
14599 | struct elf_link_hash_entry *h; | |
14600 | ||
14601 | h = elf_link_hash_lookup (elf_hash_table (info), sym->name, | |
14602 | false, false, false); | |
14603 | ||
14604 | if (h != NULL | |
14605 | && (h->root.type == bfd_link_hash_defined | |
14606 | || h->root.type == bfd_link_hash_defweak) | |
14607 | && !bfd_is_const_section (h->root.u.def.section)) | |
14608 | h->root.u.def.section->flags |= SEC_KEEP; | |
14609 | } | |
14610 | } | |
14611 | ||
14612 | bool | |
14613 | bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED, | |
14614 | struct bfd_link_info *info) | |
14615 | { | |
14616 | bfd *ibfd = info->input_bfds; | |
14617 | ||
14618 | for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) | |
14619 | { | |
14620 | asection *sec; | |
14621 | struct elf_reloc_cookie cookie; | |
14622 | ||
14623 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) | |
14624 | continue; | |
14625 | sec = ibfd->sections; | |
14626 | if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) | |
14627 | continue; | |
14628 | ||
14629 | if (!init_reloc_cookie (&cookie, info, ibfd, false)) | |
14630 | return false; | |
14631 | ||
14632 | for (sec = ibfd->sections; sec; sec = sec->next) | |
14633 | { | |
14634 | if (startswith (bfd_section_name (sec), ".eh_frame_entry") | |
14635 | && init_reloc_cookie_rels (&cookie, info, ibfd, sec, | |
14636 | false)) | |
14637 | { | |
14638 | _bfd_elf_parse_eh_frame_entry (info, sec, &cookie); | |
14639 | fini_reloc_cookie_rels (&cookie, sec); | |
14640 | } | |
14641 | } | |
14642 | } | |
14643 | return true; | |
14644 | } | |
14645 | ||
14646 | /* Do mark and sweep of unused sections. */ | |
14647 | ||
14648 | bool | |
14649 | bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info) | |
14650 | { | |
14651 | bool ok = true; | |
14652 | bfd *sub; | |
14653 | elf_gc_mark_hook_fn gc_mark_hook; | |
14654 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
14655 | struct elf_link_hash_table *htab; | |
14656 | struct link_info_ok info_ok; | |
14657 | ||
14658 | if (!bed->can_gc_sections | |
14659 | || !is_elf_hash_table (info->hash)) | |
14660 | { | |
14661 | _bfd_error_handler(_("warning: gc-sections option ignored")); | |
14662 | return true; | |
14663 | } | |
14664 | ||
14665 | bed->gc_keep (info); | |
14666 | htab = elf_hash_table (info); | |
14667 | ||
14668 | /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section | |
14669 | at the .eh_frame section if we can mark the FDEs individually. */ | |
14670 | for (sub = info->input_bfds; | |
14671 | info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL; | |
14672 | sub = sub->link.next) | |
14673 | { | |
14674 | asection *sec; | |
14675 | struct elf_reloc_cookie cookie; | |
14676 | ||
14677 | sec = sub->sections; | |
14678 | if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) | |
14679 | continue; | |
14680 | sec = bfd_get_section_by_name (sub, ".eh_frame"); | |
14681 | while (sec && init_reloc_cookie_for_section (&cookie, info, sec, | |
14682 | false)) | |
14683 | { | |
14684 | _bfd_elf_parse_eh_frame (sub, info, sec, &cookie); | |
14685 | if (elf_section_data (sec)->sec_info | |
14686 | && (sec->flags & SEC_LINKER_CREATED) == 0) | |
14687 | elf_eh_frame_section (sub) = sec; | |
14688 | fini_reloc_cookie_for_section (&cookie, sec); | |
14689 | sec = bfd_get_next_section_by_name (NULL, sec); | |
14690 | } | |
14691 | } | |
14692 | ||
14693 | /* Apply transitive closure to the vtable entry usage info. */ | |
14694 | elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok); | |
14695 | if (!ok) | |
14696 | return false; | |
14697 | ||
14698 | /* Kill the vtable relocations that were not used. */ | |
14699 | info_ok.info = info; | |
14700 | info_ok.ok = true; | |
14701 | elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &info_ok); | |
14702 | if (!info_ok.ok) | |
14703 | return false; | |
14704 | ||
14705 | /* Mark dynamically referenced symbols. */ | |
14706 | if (htab->dynamic_sections_created || info->gc_keep_exported) | |
14707 | elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info); | |
14708 | ||
14709 | /* Grovel through relocs to find out who stays ... */ | |
14710 | gc_mark_hook = bed->gc_mark_hook; | |
14711 | for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) | |
14712 | { | |
14713 | asection *o; | |
14714 | ||
14715 | if (bfd_get_flavour (sub) != bfd_target_elf_flavour | |
14716 | || elf_object_id (sub) != elf_hash_table_id (htab) | |
14717 | || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec)) | |
14718 | continue; | |
14719 | ||
14720 | o = sub->sections; | |
14721 | if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) | |
14722 | continue; | |
14723 | ||
14724 | /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep). | |
14725 | Also treat note sections as a root, if the section is not part | |
14726 | of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as | |
14727 | well as FINI_ARRAY sections for ld -r. */ | |
14728 | for (o = sub->sections; o != NULL; o = o->next) | |
14729 | if (!o->gc_mark | |
14730 | && (o->flags & SEC_EXCLUDE) == 0 | |
14731 | && ((o->flags & SEC_KEEP) != 0 | |
14732 | || (bfd_link_relocatable (info) | |
14733 | && ((elf_section_data (o)->this_hdr.sh_type | |
14734 | == SHT_PREINIT_ARRAY) | |
14735 | || (elf_section_data (o)->this_hdr.sh_type | |
14736 | == SHT_INIT_ARRAY) | |
14737 | || (elf_section_data (o)->this_hdr.sh_type | |
14738 | == SHT_FINI_ARRAY))) | |
14739 | || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE | |
14740 | && elf_next_in_group (o) == NULL | |
14741 | && elf_linked_to_section (o) == NULL) | |
14742 | || ((elf_tdata (sub)->has_gnu_osabi & elf_gnu_osabi_retain) | |
14743 | && (elf_section_flags (o) & SHF_GNU_RETAIN)))) | |
14744 | { | |
14745 | if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) | |
14746 | return false; | |
14747 | } | |
14748 | } | |
14749 | ||
14750 | /* Allow the backend to mark additional target specific sections. */ | |
14751 | bed->gc_mark_extra_sections (info, gc_mark_hook); | |
14752 | ||
14753 | /* ... and mark SEC_EXCLUDE for those that go. */ | |
14754 | return elf_gc_sweep (abfd, info); | |
14755 | } | |
14756 | \f | |
14757 | /* Called from check_relocs to record the existence of a VTINHERIT reloc. */ | |
14758 | ||
14759 | bool | |
14760 | bfd_elf_gc_record_vtinherit (bfd *abfd, | |
14761 | asection *sec, | |
14762 | struct elf_link_hash_entry *h, | |
14763 | bfd_vma offset) | |
14764 | { | |
14765 | struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; | |
14766 | struct elf_link_hash_entry **search, *child; | |
14767 | size_t extsymcount; | |
14768 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
14769 | ||
14770 | /* The sh_info field of the symtab header tells us where the | |
14771 | external symbols start. We don't care about the local symbols at | |
14772 | this point. */ | |
14773 | extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym; | |
14774 | if (!elf_bad_symtab (abfd)) | |
14775 | extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info; | |
14776 | ||
14777 | sym_hashes = elf_sym_hashes (abfd); | |
14778 | sym_hashes_end = PTR_ADD (sym_hashes, extsymcount); | |
14779 | ||
14780 | /* Hunt down the child symbol, which is in this section at the same | |
14781 | offset as the relocation. */ | |
14782 | for (search = sym_hashes; search != sym_hashes_end; ++search) | |
14783 | { | |
14784 | if ((child = *search) != NULL | |
14785 | && (child->root.type == bfd_link_hash_defined | |
14786 | || child->root.type == bfd_link_hash_defweak) | |
14787 | && child->root.u.def.section == sec | |
14788 | && child->root.u.def.value == offset) | |
14789 | goto win; | |
14790 | } | |
14791 | ||
14792 | /* xgettext:c-format */ | |
14793 | _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"), | |
14794 | abfd, sec, (uint64_t) offset); | |
14795 | bfd_set_error (bfd_error_invalid_operation); | |
14796 | return false; | |
14797 | ||
14798 | win: | |
14799 | if (!child->u2.vtable) | |
14800 | { | |
14801 | child->u2.vtable = ((struct elf_link_virtual_table_entry *) | |
14802 | bfd_zalloc (abfd, sizeof (*child->u2.vtable))); | |
14803 | if (!child->u2.vtable) | |
14804 | return false; | |
14805 | } | |
14806 | if (!h) | |
14807 | { | |
14808 | /* This *should* only be the absolute section. It could potentially | |
14809 | be that someone has defined a non-global vtable though, which | |
14810 | would be bad. It isn't worth paging in the local symbols to be | |
14811 | sure though; that case should simply be handled by the assembler. */ | |
14812 | ||
14813 | child->u2.vtable->parent = (struct elf_link_hash_entry *) -1; | |
14814 | } | |
14815 | else | |
14816 | child->u2.vtable->parent = h; | |
14817 | ||
14818 | return true; | |
14819 | } | |
14820 | ||
14821 | /* Called from check_relocs to record the existence of a VTENTRY reloc. */ | |
14822 | ||
14823 | bool | |
14824 | bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec, | |
14825 | struct elf_link_hash_entry *h, | |
14826 | bfd_vma addend) | |
14827 | { | |
14828 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
14829 | unsigned int log_file_align = bed->s->log_file_align; | |
14830 | ||
14831 | if (!h) | |
14832 | { | |
14833 | /* xgettext:c-format */ | |
14834 | _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"), | |
14835 | abfd, sec); | |
14836 | bfd_set_error (bfd_error_bad_value); | |
14837 | return false; | |
14838 | } | |
14839 | ||
14840 | if (!h->u2.vtable) | |
14841 | { | |
14842 | h->u2.vtable = ((struct elf_link_virtual_table_entry *) | |
14843 | bfd_zalloc (abfd, sizeof (*h->u2.vtable))); | |
14844 | if (!h->u2.vtable) | |
14845 | return false; | |
14846 | } | |
14847 | ||
14848 | if (addend >= h->u2.vtable->size) | |
14849 | { | |
14850 | size_t size, bytes, file_align; | |
14851 | bool *ptr = h->u2.vtable->used; | |
14852 | ||
14853 | /* While the symbol is undefined, we have to be prepared to handle | |
14854 | a zero size. */ | |
14855 | file_align = 1 << log_file_align; | |
14856 | if (h->root.type == bfd_link_hash_undefined) | |
14857 | size = addend + file_align; | |
14858 | else | |
14859 | { | |
14860 | size = h->size; | |
14861 | if (addend >= size) | |
14862 | { | |
14863 | /* Oops! We've got a reference past the defined end of | |
14864 | the table. This is probably a bug -- shall we warn? */ | |
14865 | size = addend + file_align; | |
14866 | } | |
14867 | } | |
14868 | size = (size + file_align - 1) & -file_align; | |
14869 | ||
14870 | /* Allocate one extra entry for use as a "done" flag for the | |
14871 | consolidation pass. */ | |
14872 | bytes = ((size >> log_file_align) + 1) * sizeof (bool); | |
14873 | ||
14874 | if (ptr) | |
14875 | { | |
14876 | ptr = (bool *) bfd_realloc (ptr - 1, bytes); | |
14877 | ||
14878 | if (ptr != NULL) | |
14879 | { | |
14880 | size_t oldbytes; | |
14881 | ||
14882 | oldbytes = (((h->u2.vtable->size >> log_file_align) + 1) | |
14883 | * sizeof (bool)); | |
14884 | memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes); | |
14885 | } | |
14886 | } | |
14887 | else | |
14888 | ptr = (bool *) bfd_zmalloc (bytes); | |
14889 | ||
14890 | if (ptr == NULL) | |
14891 | return false; | |
14892 | ||
14893 | /* And arrange for that done flag to be at index -1. */ | |
14894 | h->u2.vtable->used = ptr + 1; | |
14895 | h->u2.vtable->size = size; | |
14896 | } | |
14897 | ||
14898 | h->u2.vtable->used[addend >> log_file_align] = true; | |
14899 | ||
14900 | return true; | |
14901 | } | |
14902 | ||
14903 | /* Map an ELF section header flag to its corresponding string. */ | |
14904 | typedef struct | |
14905 | { | |
14906 | char *flag_name; | |
14907 | flagword flag_value; | |
14908 | } elf_flags_to_name_table; | |
14909 | ||
14910 | static const elf_flags_to_name_table elf_flags_to_names [] = | |
14911 | { | |
14912 | { "SHF_WRITE", SHF_WRITE }, | |
14913 | { "SHF_ALLOC", SHF_ALLOC }, | |
14914 | { "SHF_EXECINSTR", SHF_EXECINSTR }, | |
14915 | { "SHF_MERGE", SHF_MERGE }, | |
14916 | { "SHF_STRINGS", SHF_STRINGS }, | |
14917 | { "SHF_INFO_LINK", SHF_INFO_LINK}, | |
14918 | { "SHF_LINK_ORDER", SHF_LINK_ORDER}, | |
14919 | { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING}, | |
14920 | { "SHF_GROUP", SHF_GROUP }, | |
14921 | { "SHF_TLS", SHF_TLS }, | |
14922 | { "SHF_MASKOS", SHF_MASKOS }, | |
14923 | { "SHF_EXCLUDE", SHF_EXCLUDE }, | |
14924 | }; | |
14925 | ||
14926 | /* Returns TRUE if the section is to be included, otherwise FALSE. */ | |
14927 | bool | |
14928 | bfd_elf_lookup_section_flags (struct bfd_link_info *info, | |
14929 | struct flag_info *flaginfo, | |
14930 | asection *section) | |
14931 | { | |
14932 | const bfd_vma sh_flags = elf_section_flags (section); | |
14933 | ||
14934 | if (!flaginfo->flags_initialized) | |
14935 | { | |
14936 | bfd *obfd = info->output_bfd; | |
14937 | const struct elf_backend_data *bed = get_elf_backend_data (obfd); | |
14938 | struct flag_info_list *tf = flaginfo->flag_list; | |
14939 | int with_hex = 0; | |
14940 | int without_hex = 0; | |
14941 | ||
14942 | for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next) | |
14943 | { | |
14944 | unsigned i; | |
14945 | flagword (*lookup) (char *); | |
14946 | ||
14947 | lookup = bed->elf_backend_lookup_section_flags_hook; | |
14948 | if (lookup != NULL) | |
14949 | { | |
14950 | flagword hexval = (*lookup) ((char *) tf->name); | |
14951 | ||
14952 | if (hexval != 0) | |
14953 | { | |
14954 | if (tf->with == with_flags) | |
14955 | with_hex |= hexval; | |
14956 | else if (tf->with == without_flags) | |
14957 | without_hex |= hexval; | |
14958 | tf->valid = true; | |
14959 | continue; | |
14960 | } | |
14961 | } | |
14962 | for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i) | |
14963 | { | |
14964 | if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0) | |
14965 | { | |
14966 | if (tf->with == with_flags) | |
14967 | with_hex |= elf_flags_to_names[i].flag_value; | |
14968 | else if (tf->with == without_flags) | |
14969 | without_hex |= elf_flags_to_names[i].flag_value; | |
14970 | tf->valid = true; | |
14971 | break; | |
14972 | } | |
14973 | } | |
14974 | if (!tf->valid) | |
14975 | { | |
14976 | info->callbacks->einfo | |
14977 | (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name); | |
14978 | return false; | |
14979 | } | |
14980 | } | |
14981 | flaginfo->flags_initialized = true; | |
14982 | flaginfo->only_with_flags |= with_hex; | |
14983 | flaginfo->not_with_flags |= without_hex; | |
14984 | } | |
14985 | ||
14986 | if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags) | |
14987 | return false; | |
14988 | ||
14989 | if ((flaginfo->not_with_flags & sh_flags) != 0) | |
14990 | return false; | |
14991 | ||
14992 | return true; | |
14993 | } | |
14994 | ||
14995 | struct alloc_got_off_arg { | |
14996 | bfd_vma gotoff; | |
14997 | struct bfd_link_info *info; | |
14998 | }; | |
14999 | ||
15000 | /* We need a special top-level link routine to convert got reference counts | |
15001 | to real got offsets. */ | |
15002 | ||
15003 | static bool | |
15004 | elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg) | |
15005 | { | |
15006 | struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg; | |
15007 | bfd *obfd = gofarg->info->output_bfd; | |
15008 | const struct elf_backend_data *bed = get_elf_backend_data (obfd); | |
15009 | ||
15010 | if (h->got.refcount > 0) | |
15011 | { | |
15012 | h->got.offset = gofarg->gotoff; | |
15013 | gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0); | |
15014 | } | |
15015 | else | |
15016 | h->got.offset = (bfd_vma) -1; | |
15017 | ||
15018 | return true; | |
15019 | } | |
15020 | ||
15021 | /* And an accompanying bit to work out final got entry offsets once | |
15022 | we're done. Should be called from final_link. */ | |
15023 | ||
15024 | bool | |
15025 | bfd_elf_gc_common_finalize_got_offsets (bfd *abfd, | |
15026 | struct bfd_link_info *info) | |
15027 | { | |
15028 | bfd *i; | |
15029 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
15030 | bfd_vma gotoff; | |
15031 | struct alloc_got_off_arg gofarg; | |
15032 | ||
15033 | BFD_ASSERT (abfd == info->output_bfd); | |
15034 | ||
15035 | if (! is_elf_hash_table (info->hash)) | |
15036 | return false; | |
15037 | ||
15038 | /* The GOT offset is relative to the .got section, but the GOT header is | |
15039 | put into the .got.plt section, if the backend uses it. */ | |
15040 | if (bed->want_got_plt) | |
15041 | gotoff = 0; | |
15042 | else | |
15043 | gotoff = bed->got_header_size; | |
15044 | ||
15045 | /* Do the local .got entries first. */ | |
15046 | for (i = info->input_bfds; i; i = i->link.next) | |
15047 | { | |
15048 | bfd_signed_vma *local_got; | |
15049 | size_t j, locsymcount; | |
15050 | Elf_Internal_Shdr *symtab_hdr; | |
15051 | ||
15052 | if (bfd_get_flavour (i) != bfd_target_elf_flavour) | |
15053 | continue; | |
15054 | ||
15055 | local_got = elf_local_got_refcounts (i); | |
15056 | if (!local_got) | |
15057 | continue; | |
15058 | ||
15059 | symtab_hdr = &elf_tdata (i)->symtab_hdr; | |
15060 | if (elf_bad_symtab (i)) | |
15061 | locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; | |
15062 | else | |
15063 | locsymcount = symtab_hdr->sh_info; | |
15064 | ||
15065 | for (j = 0; j < locsymcount; ++j) | |
15066 | { | |
15067 | if (local_got[j] > 0) | |
15068 | { | |
15069 | local_got[j] = gotoff; | |
15070 | gotoff += bed->got_elt_size (abfd, info, NULL, i, j); | |
15071 | } | |
15072 | else | |
15073 | local_got[j] = (bfd_vma) -1; | |
15074 | } | |
15075 | } | |
15076 | ||
15077 | /* Then the global .got entries. .plt refcounts are handled by | |
15078 | adjust_dynamic_symbol */ | |
15079 | gofarg.gotoff = gotoff; | |
15080 | gofarg.info = info; | |
15081 | elf_link_hash_traverse (elf_hash_table (info), | |
15082 | elf_gc_allocate_got_offsets, | |
15083 | &gofarg); | |
15084 | return true; | |
15085 | } | |
15086 | ||
15087 | /* Many folk need no more in the way of final link than this, once | |
15088 | got entry reference counting is enabled. */ | |
15089 | ||
15090 | bool | |
15091 | bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info) | |
15092 | { | |
15093 | if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info)) | |
15094 | return false; | |
15095 | ||
15096 | /* Invoke the regular ELF backend linker to do all the work. */ | |
15097 | return bfd_elf_final_link (abfd, info); | |
15098 | } | |
15099 | ||
15100 | bool | |
15101 | bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie) | |
15102 | { | |
15103 | struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie; | |
15104 | ||
15105 | if (rcookie->bad_symtab) | |
15106 | rcookie->rel = rcookie->rels; | |
15107 | ||
15108 | for (; rcookie->rel < rcookie->relend; rcookie->rel++) | |
15109 | { | |
15110 | unsigned long r_symndx; | |
15111 | ||
15112 | if (! rcookie->bad_symtab) | |
15113 | if (rcookie->rel->r_offset > offset) | |
15114 | return false; | |
15115 | if (rcookie->rel->r_offset != offset) | |
15116 | continue; | |
15117 | ||
15118 | r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift; | |
15119 | if (r_symndx == STN_UNDEF) | |
15120 | return true; | |
15121 | ||
15122 | struct elf_link_hash_entry *h; | |
15123 | ||
15124 | h = get_ext_sym_hash_from_cookie (rcookie, r_symndx); | |
15125 | ||
15126 | if (h != NULL) | |
15127 | { | |
15128 | if ((h->root.type == bfd_link_hash_defined | |
15129 | || h->root.type == bfd_link_hash_defweak) | |
15130 | && (h->root.u.def.section->owner != rcookie->abfd | |
15131 | || h->root.u.def.section->kept_section != NULL | |
15132 | || discarded_section (h->root.u.def.section))) | |
15133 | return true; | |
15134 | } | |
15135 | else | |
15136 | { | |
15137 | if (r_symndx >= rcookie->locsymcount) | |
15138 | /* This can happen with corrupt input. */ | |
15139 | return false; | |
15140 | ||
15141 | /* It's not a relocation against a global symbol, | |
15142 | but it could be a relocation against a local | |
15143 | symbol for a discarded section. */ | |
15144 | asection *isec; | |
15145 | Elf_Internal_Sym *isym; | |
15146 | ||
15147 | /* Need to: get the symbol; get the section. */ | |
15148 | isym = &rcookie->locsyms[r_symndx]; | |
15149 | isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx); | |
15150 | if (isec != NULL | |
15151 | && (isec->kept_section != NULL | |
15152 | || discarded_section (isec))) | |
15153 | return true; | |
15154 | } | |
15155 | ||
15156 | return false; | |
15157 | } | |
15158 | return false; | |
15159 | } | |
15160 | ||
15161 | /* Discard unneeded references to discarded sections. | |
15162 | Returns -1 on error, 1 if any section's size was changed, 0 if | |
15163 | nothing changed. This function assumes that the relocations are in | |
15164 | sorted order, which is true for all known assemblers. */ | |
15165 | ||
15166 | int | |
15167 | bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info) | |
15168 | { | |
15169 | struct elf_reloc_cookie cookie; | |
15170 | asection *o; | |
15171 | bfd *abfd; | |
15172 | int changed = 0; | |
15173 | ||
15174 | if (info->traditional_format | |
15175 | || !is_elf_hash_table (info->hash)) | |
15176 | return 0; | |
15177 | ||
15178 | o = bfd_get_section_by_name (output_bfd, ".stab"); | |
15179 | if (o != NULL) | |
15180 | { | |
15181 | asection *i; | |
15182 | ||
15183 | for (i = o->map_head.s; i != NULL; i = i->map_head.s) | |
15184 | { | |
15185 | if (i->size == 0 | |
15186 | || i->reloc_count == 0 | |
15187 | || i->sec_info_type != SEC_INFO_TYPE_STABS) | |
15188 | continue; | |
15189 | ||
15190 | abfd = i->owner; | |
15191 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | |
15192 | continue; | |
15193 | ||
15194 | if (!init_reloc_cookie_for_section (&cookie, info, i, false)) | |
15195 | return -1; | |
15196 | ||
15197 | if (_bfd_discard_section_stabs (abfd, i, | |
15198 | elf_section_data (i)->sec_info, | |
15199 | bfd_elf_reloc_symbol_deleted_p, | |
15200 | &cookie)) | |
15201 | changed = 1; | |
15202 | ||
15203 | fini_reloc_cookie_for_section (&cookie, i); | |
15204 | } | |
15205 | } | |
15206 | ||
15207 | o = NULL; | |
15208 | if (info->eh_frame_hdr_type != COMPACT_EH_HDR) | |
15209 | o = bfd_get_section_by_name (output_bfd, ".eh_frame"); | |
15210 | if (o != NULL) | |
15211 | { | |
15212 | asection *i; | |
15213 | int eh_changed = 0; | |
15214 | unsigned int eh_alignment; /* Octets. */ | |
15215 | ||
15216 | for (i = o->map_head.s; i != NULL; i = i->map_head.s) | |
15217 | { | |
15218 | if (i->size == 0) | |
15219 | continue; | |
15220 | ||
15221 | abfd = i->owner; | |
15222 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | |
15223 | continue; | |
15224 | ||
15225 | if (!init_reloc_cookie_for_section (&cookie, info, i, false)) | |
15226 | return -1; | |
15227 | ||
15228 | _bfd_elf_parse_eh_frame (abfd, info, i, &cookie); | |
15229 | if (_bfd_elf_discard_section_eh_frame (abfd, info, i, | |
15230 | bfd_elf_reloc_symbol_deleted_p, | |
15231 | &cookie)) | |
15232 | { | |
15233 | eh_changed = 1; | |
15234 | if (i->size != i->rawsize) | |
15235 | changed = 1; | |
15236 | } | |
15237 | ||
15238 | fini_reloc_cookie_for_section (&cookie, i); | |
15239 | } | |
15240 | ||
15241 | eh_alignment = ((1 << o->alignment_power) | |
15242 | * bfd_octets_per_byte (output_bfd, o)); | |
15243 | /* Skip over zero terminator, and prevent empty sections from | |
15244 | adding alignment padding at the end. */ | |
15245 | for (i = o->map_tail.s; i != NULL; i = i->map_tail.s) | |
15246 | if (i->size == 0) | |
15247 | i->flags |= SEC_EXCLUDE; | |
15248 | else if (i->size > 4) | |
15249 | break; | |
15250 | /* The last non-empty eh_frame section doesn't need padding. */ | |
15251 | if (i != NULL) | |
15252 | i = i->map_tail.s; | |
15253 | /* Any prior sections must pad the last FDE out to the output | |
15254 | section alignment. Otherwise we might have zero padding | |
15255 | between sections, which would be seen as a terminator. */ | |
15256 | for (; i != NULL; i = i->map_tail.s) | |
15257 | if (i->size == 4) | |
15258 | /* All but the last zero terminator should have been removed. */ | |
15259 | BFD_FAIL (); | |
15260 | else | |
15261 | { | |
15262 | bfd_size_type size | |
15263 | = (i->size + eh_alignment - 1) & -eh_alignment; | |
15264 | if (i->size != size) | |
15265 | { | |
15266 | i->size = size; | |
15267 | changed = 1; | |
15268 | eh_changed = 1; | |
15269 | } | |
15270 | } | |
15271 | if (eh_changed) | |
15272 | elf_link_hash_traverse (elf_hash_table (info), | |
15273 | _bfd_elf_adjust_eh_frame_global_symbol, NULL); | |
15274 | } | |
15275 | ||
15276 | o = bfd_get_section_by_name (output_bfd, ".sframe"); | |
15277 | if (o != NULL) | |
15278 | { | |
15279 | asection *i; | |
15280 | ||
15281 | for (i = o->map_head.s; i != NULL; i = i->map_head.s) | |
15282 | { | |
15283 | if (i->size == 0) | |
15284 | continue; | |
15285 | ||
15286 | abfd = i->owner; | |
15287 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | |
15288 | continue; | |
15289 | ||
15290 | if (!init_reloc_cookie_for_section (&cookie, info, i, false)) | |
15291 | return -1; | |
15292 | ||
15293 | if (_bfd_elf_parse_sframe (abfd, info, i, &cookie)) | |
15294 | { | |
15295 | if (_bfd_elf_discard_section_sframe (i, | |
15296 | bfd_elf_reloc_symbol_deleted_p, | |
15297 | &cookie)) | |
15298 | { | |
15299 | if (i->size != i->rawsize) | |
15300 | changed = 1; | |
15301 | } | |
15302 | } | |
15303 | fini_reloc_cookie_for_section (&cookie, i); | |
15304 | } | |
15305 | /* Update the reference to the output .sframe section. Used to | |
15306 | determine later if PT_GNU_SFRAME segment is to be generated. */ | |
15307 | if (!_bfd_elf_set_section_sframe (output_bfd, info)) | |
15308 | return -1; | |
15309 | } | |
15310 | ||
15311 | for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) | |
15312 | { | |
15313 | const struct elf_backend_data *bed; | |
15314 | asection *s; | |
15315 | ||
15316 | if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | |
15317 | continue; | |
15318 | s = abfd->sections; | |
15319 | if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) | |
15320 | continue; | |
15321 | ||
15322 | bed = get_elf_backend_data (abfd); | |
15323 | ||
15324 | if (bed->elf_backend_discard_info != NULL) | |
15325 | { | |
15326 | if (!init_reloc_cookie (&cookie, info, abfd, false)) | |
15327 | return -1; | |
15328 | ||
15329 | if ((*bed->elf_backend_discard_info) (abfd, &cookie, info)) | |
15330 | changed = 1; | |
15331 | ||
15332 | fini_reloc_cookie (&cookie, abfd); | |
15333 | } | |
15334 | } | |
15335 | ||
15336 | if (info->eh_frame_hdr_type == COMPACT_EH_HDR) | |
15337 | _bfd_elf_end_eh_frame_parsing (info); | |
15338 | ||
15339 | if (_bfd_elf_discard_section_eh_frame_hdr (info)) | |
15340 | changed = 1; | |
15341 | ||
15342 | return changed; | |
15343 | } | |
15344 | ||
15345 | bool | |
15346 | _bfd_elf_section_already_linked (bfd *abfd, | |
15347 | asection *sec, | |
15348 | struct bfd_link_info *info) | |
15349 | { | |
15350 | flagword flags; | |
15351 | const char *name, *key; | |
15352 | struct bfd_section_already_linked *l; | |
15353 | struct bfd_section_already_linked_hash_entry *already_linked_list; | |
15354 | ||
15355 | if (sec->output_section == bfd_abs_section_ptr) | |
15356 | return false; | |
15357 | ||
15358 | flags = sec->flags; | |
15359 | ||
15360 | /* Return if it isn't a linkonce section. A comdat group section | |
15361 | also has SEC_LINK_ONCE set. */ | |
15362 | if ((flags & SEC_LINK_ONCE) == 0) | |
15363 | return false; | |
15364 | ||
15365 | /* Don't put group member sections on our list of already linked | |
15366 | sections. They are handled as a group via their group section. */ | |
15367 | if (elf_sec_group (sec) != NULL) | |
15368 | return false; | |
15369 | ||
15370 | /* For a SHT_GROUP section, use the group signature as the key. */ | |
15371 | name = sec->name; | |
15372 | if ((flags & SEC_GROUP) != 0 | |
15373 | && elf_next_in_group (sec) != NULL | |
15374 | && elf_group_name (elf_next_in_group (sec)) != NULL) | |
15375 | key = elf_group_name (elf_next_in_group (sec)); | |
15376 | else | |
15377 | { | |
15378 | /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */ | |
15379 | if (startswith (name, ".gnu.linkonce.") | |
15380 | && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL) | |
15381 | key++; | |
15382 | else | |
15383 | /* Must be a user linkonce section that doesn't follow gcc's | |
15384 | naming convention. In this case we won't be matching | |
15385 | single member groups. */ | |
15386 | key = name; | |
15387 | } | |
15388 | ||
15389 | already_linked_list = bfd_section_already_linked_table_lookup (key); | |
15390 | ||
15391 | for (l = already_linked_list->entry; l != NULL; l = l->next) | |
15392 | { | |
15393 | /* We may have 2 different types of sections on the list: group | |
15394 | sections with a signature of <key> (<key> is some string), | |
15395 | and linkonce sections named .gnu.linkonce.<type>.<key>. | |
15396 | Match like sections. LTO plugin sections are an exception. | |
15397 | They are always named .gnu.linkonce.t.<key> and match either | |
15398 | type of section. */ | |
15399 | if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP) | |
15400 | && ((flags & SEC_GROUP) != 0 | |
15401 | || strcmp (name, l->sec->name) == 0)) | |
15402 | || (l->sec->owner->flags & BFD_PLUGIN) != 0 | |
15403 | || (sec->owner->flags & BFD_PLUGIN) != 0) | |
15404 | { | |
15405 | /* The section has already been linked. See if we should | |
15406 | issue a warning. */ | |
15407 | if (!_bfd_handle_already_linked (sec, l, info)) | |
15408 | return false; | |
15409 | ||
15410 | if (flags & SEC_GROUP) | |
15411 | { | |
15412 | asection *first = elf_next_in_group (sec); | |
15413 | asection *s = first; | |
15414 | ||
15415 | while (s != NULL) | |
15416 | { | |
15417 | s->output_section = bfd_abs_section_ptr; | |
15418 | /* Record which group discards it. */ | |
15419 | s->kept_section = l->sec; | |
15420 | s = elf_next_in_group (s); | |
15421 | /* These lists are circular. */ | |
15422 | if (s == first) | |
15423 | break; | |
15424 | } | |
15425 | } | |
15426 | ||
15427 | return true; | |
15428 | } | |
15429 | } | |
15430 | ||
15431 | /* A single member comdat group section may be discarded by a | |
15432 | linkonce section and vice versa. */ | |
15433 | if ((flags & SEC_GROUP) != 0) | |
15434 | { | |
15435 | asection *first = elf_next_in_group (sec); | |
15436 | ||
15437 | if (first != NULL && elf_next_in_group (first) == first) | |
15438 | /* Check this single member group against linkonce sections. */ | |
15439 | for (l = already_linked_list->entry; l != NULL; l = l->next) | |
15440 | if ((l->sec->flags & SEC_GROUP) == 0 | |
15441 | && bfd_elf_match_symbols_in_sections (l->sec, first, info)) | |
15442 | { | |
15443 | first->output_section = bfd_abs_section_ptr; | |
15444 | first->kept_section = l->sec; | |
15445 | sec->output_section = bfd_abs_section_ptr; | |
15446 | break; | |
15447 | } | |
15448 | } | |
15449 | else | |
15450 | /* Check this linkonce section against single member groups. */ | |
15451 | for (l = already_linked_list->entry; l != NULL; l = l->next) | |
15452 | if (l->sec->flags & SEC_GROUP) | |
15453 | { | |
15454 | asection *first = elf_next_in_group (l->sec); | |
15455 | ||
15456 | if (first != NULL | |
15457 | && elf_next_in_group (first) == first | |
15458 | && bfd_elf_match_symbols_in_sections (first, sec, info)) | |
15459 | { | |
15460 | sec->output_section = bfd_abs_section_ptr; | |
15461 | sec->kept_section = first; | |
15462 | break; | |
15463 | } | |
15464 | } | |
15465 | ||
15466 | /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F' | |
15467 | referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4 | |
15468 | specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce' | |
15469 | prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its | |
15470 | matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded | |
15471 | but its `.gnu.linkonce.t.F' is discarded means we chose one-only | |
15472 | `.gnu.linkonce.t.F' section from a different bfd not requiring any | |
15473 | `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded. | |
15474 | The reverse order cannot happen as there is never a bfd with only the | |
15475 | `.gnu.linkonce.r.F' section. The order of sections in a bfd does not | |
15476 | matter as here were are looking only for cross-bfd sections. */ | |
15477 | ||
15478 | if ((flags & SEC_GROUP) == 0 && startswith (name, ".gnu.linkonce.r.")) | |
15479 | for (l = already_linked_list->entry; l != NULL; l = l->next) | |
15480 | if ((l->sec->flags & SEC_GROUP) == 0 | |
15481 | && startswith (l->sec->name, ".gnu.linkonce.t.")) | |
15482 | { | |
15483 | if (abfd != l->sec->owner) | |
15484 | sec->output_section = bfd_abs_section_ptr; | |
15485 | break; | |
15486 | } | |
15487 | ||
15488 | /* This is the first section with this name. Record it. */ | |
15489 | if (!bfd_section_already_linked_table_insert (already_linked_list, sec)) | |
15490 | info->callbacks->fatal (_("%P: already_linked_table: %E\n")); | |
15491 | return sec->output_section == bfd_abs_section_ptr; | |
15492 | } | |
15493 | ||
15494 | bool | |
15495 | _bfd_elf_common_definition (Elf_Internal_Sym *sym) | |
15496 | { | |
15497 | return sym->st_shndx == SHN_COMMON; | |
15498 | } | |
15499 | ||
15500 | unsigned int | |
15501 | _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED) | |
15502 | { | |
15503 | return SHN_COMMON; | |
15504 | } | |
15505 | ||
15506 | asection * | |
15507 | _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED) | |
15508 | { | |
15509 | return bfd_com_section_ptr; | |
15510 | } | |
15511 | ||
15512 | bfd_vma | |
15513 | _bfd_elf_default_got_elt_size (bfd *abfd, | |
15514 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
15515 | struct elf_link_hash_entry *h ATTRIBUTE_UNUSED, | |
15516 | bfd *ibfd ATTRIBUTE_UNUSED, | |
15517 | unsigned long symndx ATTRIBUTE_UNUSED) | |
15518 | { | |
15519 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
15520 | return bed->s->arch_size / 8; | |
15521 | } | |
15522 | ||
15523 | /* Routines to support the creation of dynamic relocs. */ | |
15524 | ||
15525 | /* Returns the name of the dynamic reloc section associated with SEC. */ | |
15526 | ||
15527 | static const char * | |
15528 | get_dynamic_reloc_section_name (bfd * abfd, | |
15529 | asection * sec, | |
15530 | bool is_rela) | |
15531 | { | |
15532 | char *name; | |
15533 | const char *old_name = bfd_section_name (sec); | |
15534 | const char *prefix = is_rela ? ".rela" : ".rel"; | |
15535 | ||
15536 | if (old_name == NULL) | |
15537 | return NULL; | |
15538 | ||
15539 | name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1); | |
15540 | sprintf (name, "%s%s", prefix, old_name); | |
15541 | ||
15542 | return name; | |
15543 | } | |
15544 | ||
15545 | /* Returns the dynamic reloc section associated with SEC. | |
15546 | If necessary compute the name of the dynamic reloc section based | |
15547 | on SEC's name (looked up in ABFD's string table) and the setting | |
15548 | of IS_RELA. */ | |
15549 | ||
15550 | asection * | |
15551 | _bfd_elf_get_dynamic_reloc_section (bfd *abfd, | |
15552 | asection *sec, | |
15553 | bool is_rela) | |
15554 | { | |
15555 | asection *reloc_sec = elf_section_data (sec)->sreloc; | |
15556 | ||
15557 | if (reloc_sec == NULL) | |
15558 | { | |
15559 | const char *name = get_dynamic_reloc_section_name (abfd, sec, is_rela); | |
15560 | ||
15561 | if (name != NULL) | |
15562 | { | |
15563 | reloc_sec = bfd_get_linker_section (abfd, name); | |
15564 | ||
15565 | if (reloc_sec != NULL) | |
15566 | elf_section_data (sec)->sreloc = reloc_sec; | |
15567 | } | |
15568 | } | |
15569 | ||
15570 | return reloc_sec; | |
15571 | } | |
15572 | ||
15573 | /* Returns the dynamic reloc section associated with SEC. If the | |
15574 | section does not exist it is created and attached to the DYNOBJ | |
15575 | bfd and stored in the SRELOC field of SEC's elf_section_data | |
15576 | structure. | |
15577 | ||
15578 | ALIGNMENT is the alignment for the newly created section and | |
15579 | IS_RELA defines whether the name should be .rela.<SEC's name> | |
15580 | or .rel.<SEC's name>. The section name is looked up in the | |
15581 | string table associated with ABFD. */ | |
15582 | ||
15583 | asection * | |
15584 | _bfd_elf_make_dynamic_reloc_section (asection *sec, | |
15585 | bfd *dynobj, | |
15586 | unsigned int alignment, | |
15587 | bfd *abfd, | |
15588 | bool is_rela) | |
15589 | { | |
15590 | asection * reloc_sec = elf_section_data (sec)->sreloc; | |
15591 | ||
15592 | if (reloc_sec == NULL) | |
15593 | { | |
15594 | const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela); | |
15595 | ||
15596 | if (name == NULL) | |
15597 | return NULL; | |
15598 | ||
15599 | reloc_sec = bfd_get_linker_section (dynobj, name); | |
15600 | ||
15601 | if (reloc_sec == NULL) | |
15602 | { | |
15603 | flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY | |
15604 | | SEC_IN_MEMORY | SEC_LINKER_CREATED); | |
15605 | if ((sec->flags & SEC_ALLOC) != 0) | |
15606 | flags |= SEC_ALLOC | SEC_LOAD; | |
15607 | ||
15608 | reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags); | |
15609 | if (reloc_sec != NULL) | |
15610 | { | |
15611 | /* _bfd_elf_get_sec_type_attr chooses a section type by | |
15612 | name. Override as it may be wrong, eg. for a user | |
15613 | section named "auto" we'll get ".relauto" which is | |
15614 | seen to be a .rela section. */ | |
15615 | elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL; | |
15616 | if (!bfd_set_section_alignment (reloc_sec, alignment)) | |
15617 | reloc_sec = NULL; | |
15618 | } | |
15619 | } | |
15620 | ||
15621 | elf_section_data (sec)->sreloc = reloc_sec; | |
15622 | } | |
15623 | ||
15624 | return reloc_sec; | |
15625 | } | |
15626 | ||
15627 | /* Copy the ELF symbol type and other attributes for a linker script | |
15628 | assignment from HSRC to HDEST. Generally this should be treated as | |
15629 | if we found a strong non-dynamic definition for HDEST (except that | |
15630 | ld ignores multiple definition errors). */ | |
15631 | void | |
15632 | _bfd_elf_copy_link_hash_symbol_type (bfd *abfd, | |
15633 | struct bfd_link_hash_entry *hdest, | |
15634 | struct bfd_link_hash_entry *hsrc) | |
15635 | { | |
15636 | struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest; | |
15637 | struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc; | |
15638 | Elf_Internal_Sym isym; | |
15639 | ||
15640 | ehdest->type = ehsrc->type; | |
15641 | ehdest->target_internal = ehsrc->target_internal; | |
15642 | ||
15643 | isym.st_other = ehsrc->other; | |
15644 | elf_merge_st_other (abfd, ehdest, isym.st_other, NULL, true, false); | |
15645 | } | |
15646 | ||
15647 | /* Append a RELA relocation REL to section S in BFD. */ | |
15648 | ||
15649 | void | |
15650 | elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel) | |
15651 | { | |
15652 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
15653 | bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela); | |
15654 | BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size); | |
15655 | bed->s->swap_reloca_out (abfd, rel, loc); | |
15656 | } | |
15657 | ||
15658 | /* Append a REL relocation REL to section S in BFD. */ | |
15659 | ||
15660 | void | |
15661 | elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel) | |
15662 | { | |
15663 | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | |
15664 | bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel); | |
15665 | BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size); | |
15666 | bed->s->swap_reloc_out (abfd, rel, loc); | |
15667 | } | |
15668 | ||
15669 | /* Define __start, __stop, .startof. or .sizeof. symbol. */ | |
15670 | ||
15671 | struct bfd_link_hash_entry * | |
15672 | bfd_elf_define_start_stop (struct bfd_link_info *info, | |
15673 | const char *symbol, asection *sec) | |
15674 | { | |
15675 | struct elf_link_hash_entry *h; | |
15676 | ||
15677 | h = elf_link_hash_lookup (elf_hash_table (info), symbol, | |
15678 | false, false, true); | |
15679 | /* NB: Common symbols will be turned into definition later. */ | |
15680 | if (h != NULL | |
15681 | && !h->root.ldscript_def | |
15682 | && (h->root.type == bfd_link_hash_undefined | |
15683 | || h->root.type == bfd_link_hash_undefweak | |
15684 | || ((h->ref_regular || h->def_dynamic) | |
15685 | && !h->def_regular | |
15686 | && h->root.type != bfd_link_hash_common))) | |
15687 | { | |
15688 | bool was_dynamic = h->ref_dynamic || h->def_dynamic; | |
15689 | h->verinfo.verdef = NULL; | |
15690 | h->root.type = bfd_link_hash_defined; | |
15691 | h->root.u.def.section = sec; | |
15692 | h->root.u.def.value = 0; | |
15693 | h->def_regular = 1; | |
15694 | h->def_dynamic = 0; | |
15695 | h->start_stop = 1; | |
15696 | h->u2.start_stop_section = sec; | |
15697 | if (symbol[0] == '.') | |
15698 | { | |
15699 | /* .startof. and .sizeof. symbols are local. */ | |
15700 | const struct elf_backend_data *bed; | |
15701 | bed = get_elf_backend_data (info->output_bfd); | |
15702 | (*bed->elf_backend_hide_symbol) (info, h, true); | |
15703 | } | |
15704 | else | |
15705 | { | |
15706 | if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) | |
15707 | h->other = ((h->other & ~ELF_ST_VISIBILITY (-1)) | |
15708 | | info->start_stop_visibility); | |
15709 | if (was_dynamic) | |
15710 | bfd_elf_link_record_dynamic_symbol (info, h); | |
15711 | } | |
15712 | return &h->root; | |
15713 | } | |
15714 | return NULL; | |
15715 | } | |
15716 | ||
15717 | /* Find dynamic relocs for H that apply to read-only sections. */ | |
15718 | ||
15719 | asection * | |
15720 | _bfd_elf_readonly_dynrelocs (struct elf_link_hash_entry *h) | |
15721 | { | |
15722 | struct elf_dyn_relocs *p; | |
15723 | ||
15724 | for (p = h->dyn_relocs; p != NULL; p = p->next) | |
15725 | { | |
15726 | asection *s = p->sec->output_section; | |
15727 | ||
15728 | if (s != NULL && (s->flags & SEC_READONLY) != 0) | |
15729 | return p->sec; | |
15730 | } | |
15731 | return NULL; | |
15732 | } | |
15733 | ||
15734 | /* Set DF_TEXTREL if we find any dynamic relocs that apply to | |
15735 | read-only sections. */ | |
15736 | ||
15737 | bool | |
15738 | _bfd_elf_maybe_set_textrel (struct elf_link_hash_entry *h, void *inf) | |
15739 | { | |
15740 | asection *sec; | |
15741 | ||
15742 | if (h->root.type == bfd_link_hash_indirect) | |
15743 | return true; | |
15744 | ||
15745 | sec = _bfd_elf_readonly_dynrelocs (h); | |
15746 | if (sec != NULL) | |
15747 | { | |
15748 | struct bfd_link_info *info = (struct bfd_link_info *) inf; | |
15749 | ||
15750 | info->flags |= DF_TEXTREL; | |
15751 | /* xgettext:c-format */ | |
15752 | info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' " | |
15753 | "in read-only section `%pA'\n"), | |
15754 | sec->owner, h->root.root.string, sec); | |
15755 | ||
15756 | if (bfd_link_textrel_check (info)) | |
15757 | /* xgettext:c-format */ | |
15758 | info->callbacks->einfo (_("%P: %pB: warning: relocation against `%s' " | |
15759 | "in read-only section `%pA'\n"), | |
15760 | sec->owner, h->root.root.string, sec); | |
15761 | ||
15762 | /* Not an error, just cut short the traversal. */ | |
15763 | return false; | |
15764 | } | |
15765 | return true; | |
15766 | } | |
15767 | ||
15768 | /* Add dynamic tags. */ | |
15769 | ||
15770 | bool | |
15771 | _bfd_elf_add_dynamic_tags (bfd *output_bfd, struct bfd_link_info *info, | |
15772 | bool need_dynamic_reloc) | |
15773 | { | |
15774 | struct elf_link_hash_table *htab = elf_hash_table (info); | |
15775 | ||
15776 | if (htab->dynamic_sections_created) | |
15777 | { | |
15778 | /* Add some entries to the .dynamic section. We fill in the | |
15779 | values later, in finish_dynamic_sections, but we must add | |
15780 | the entries now so that we get the correct size for the | |
15781 | .dynamic section. The DT_DEBUG entry is filled in by the | |
15782 | dynamic linker and used by the debugger. */ | |
15783 | #define add_dynamic_entry(TAG, VAL) \ | |
15784 | _bfd_elf_add_dynamic_entry (info, TAG, VAL) | |
15785 | ||
15786 | const struct elf_backend_data *bed | |
15787 | = get_elf_backend_data (output_bfd); | |
15788 | ||
15789 | if (bfd_link_executable (info)) | |
15790 | { | |
15791 | if (!add_dynamic_entry (DT_DEBUG, 0)) | |
15792 | return false; | |
15793 | } | |
15794 | ||
15795 | if (htab->dt_pltgot_required || htab->splt->size != 0) | |
15796 | { | |
15797 | /* DT_PLTGOT is used by prelink even if there is no PLT | |
15798 | relocation. */ | |
15799 | if (!add_dynamic_entry (DT_PLTGOT, 0)) | |
15800 | return false; | |
15801 | } | |
15802 | ||
15803 | if (htab->dt_jmprel_required || htab->srelplt->size != 0) | |
15804 | { | |
15805 | if (!add_dynamic_entry (DT_PLTRELSZ, 0) | |
15806 | || !add_dynamic_entry (DT_PLTREL, | |
15807 | (bed->rela_plts_and_copies_p | |
15808 | ? DT_RELA : DT_REL)) | |
15809 | || !add_dynamic_entry (DT_JMPREL, 0)) | |
15810 | return false; | |
15811 | } | |
15812 | ||
15813 | if (htab->tlsdesc_plt | |
15814 | && (!add_dynamic_entry (DT_TLSDESC_PLT, 0) | |
15815 | || !add_dynamic_entry (DT_TLSDESC_GOT, 0))) | |
15816 | return false; | |
15817 | ||
15818 | if (need_dynamic_reloc) | |
15819 | { | |
15820 | if (bed->rela_plts_and_copies_p) | |
15821 | { | |
15822 | if (!add_dynamic_entry (DT_RELA, 0) | |
15823 | || !add_dynamic_entry (DT_RELASZ, 0) | |
15824 | || !add_dynamic_entry (DT_RELAENT, | |
15825 | bed->s->sizeof_rela)) | |
15826 | return false; | |
15827 | } | |
15828 | else | |
15829 | { | |
15830 | if (!add_dynamic_entry (DT_REL, 0) | |
15831 | || !add_dynamic_entry (DT_RELSZ, 0) | |
15832 | || !add_dynamic_entry (DT_RELENT, | |
15833 | bed->s->sizeof_rel)) | |
15834 | return false; | |
15835 | } | |
15836 | ||
15837 | /* If any dynamic relocs apply to a read-only section, | |
15838 | then we need a DT_TEXTREL entry. */ | |
15839 | if ((info->flags & DF_TEXTREL) == 0) | |
15840 | elf_link_hash_traverse (htab, _bfd_elf_maybe_set_textrel, | |
15841 | info); | |
15842 | ||
15843 | if ((info->flags & DF_TEXTREL) != 0) | |
15844 | { | |
15845 | if (htab->ifunc_resolvers) | |
15846 | info->callbacks->einfo | |
15847 | (_("%P: warning: GNU indirect functions with DT_TEXTREL " | |
15848 | "may result in a segfault at runtime; recompile with %s\n"), | |
15849 | bfd_link_dll (info) ? "-fPIC" : "-fPIE"); | |
15850 | ||
15851 | if (!add_dynamic_entry (DT_TEXTREL, 0)) | |
15852 | return false; | |
15853 | } | |
15854 | } | |
15855 | } | |
15856 | #undef add_dynamic_entry | |
15857 | ||
15858 | return true; | |
15859 | } |