]>
Commit | Line | Data |
---|---|---|
1 | /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger. | |
2 | ||
3 | Copyright (C) 1993-2025 Free Software Foundation, Inc. | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
19 | ||
20 | #include "extract-store-integer.h" | |
21 | #include "frame.h" | |
22 | #include "frame-unwind.h" | |
23 | #include "frame-base.h" | |
24 | #include "dwarf2/frame.h" | |
25 | #include "inferior.h" | |
26 | #include "symtab.h" | |
27 | #include "value.h" | |
28 | #include "cli/cli-cmds.h" | |
29 | #include "gdbcore.h" | |
30 | #include "dis-asm.h" | |
31 | #include "symfile.h" | |
32 | #include "objfiles.h" | |
33 | #include "linespec.h" | |
34 | #include "regcache.h" | |
35 | #include "reggroups.h" | |
36 | #include "arch-utils.h" | |
37 | #include "osabi.h" | |
38 | #include "infcall.h" | |
39 | #include "trad-frame.h" | |
40 | ||
41 | #include "elf-bfd.h" | |
42 | ||
43 | #include "alpha-tdep.h" | |
44 | #include <algorithm> | |
45 | ||
46 | #include "target-descriptions.h" | |
47 | #include "features/alpha.c" | |
48 | ||
49 | /* Instruction decoding. The notations for registers, immediates and | |
50 | opcodes are the same as the one used in Compaq's Alpha architecture | |
51 | handbook. */ | |
52 | ||
53 | #define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26) | |
54 | ||
55 | /* Memory instruction format */ | |
56 | #define MEM_RA(insn) ((insn & 0x03e00000) >> 21) | |
57 | #define MEM_RB(insn) ((insn & 0x001f0000) >> 16) | |
58 | #define MEM_DISP(insn) \ | |
59 | (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff)) | |
60 | ||
61 | static const int lda_opcode = 0x08; | |
62 | static const int stq_opcode = 0x2d; | |
63 | ||
64 | /* Branch instruction format */ | |
65 | #define BR_RA(insn) MEM_RA(insn) | |
66 | ||
67 | static const int br_opcode = 0x30; | |
68 | static const int bne_opcode = 0x3d; | |
69 | ||
70 | /* Operate instruction format */ | |
71 | #define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5) | |
72 | #define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000) | |
73 | #define OPR_RA(insn) MEM_RA(insn) | |
74 | #define OPR_RC(insn) ((insn & 0x1f)) | |
75 | #define OPR_LIT(insn) ((insn & 0x1fe000) >> 13) | |
76 | ||
77 | static const int subq_opcode = 0x10; | |
78 | static const int subq_function = 0x29; | |
79 | ||
80 | \f | |
81 | /* Alpha registers using their software names. | |
82 | ||
83 | An empty name corresponds to a register number that used to | |
84 | be used for a virtual register. That virtual register has | |
85 | been removed, but the index is still reserved to maintain | |
86 | compatibility with existing remote alpha targets. */ | |
87 | ||
88 | static const char * const alpha_register_names[] = | |
89 | { | |
90 | "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6", | |
91 | "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp", | |
92 | "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9", | |
93 | "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero", | |
94 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
95 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
96 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
97 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr", | |
98 | "pc", "", "unique" | |
99 | }; | |
100 | static_assert (ALPHA_NUM_REGS == ARRAY_SIZE (alpha_register_names)); | |
101 | ||
102 | static int | |
103 | alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno) | |
104 | { | |
105 | return (strlen (alpha_register_names[regno]) == 0); | |
106 | } | |
107 | ||
108 | static int | |
109 | alpha_cannot_store_register (struct gdbarch *gdbarch, int regno) | |
110 | { | |
111 | return (regno == ALPHA_ZERO_REGNUM | |
112 | || strlen (alpha_register_names[regno]) == 0); | |
113 | } | |
114 | ||
115 | /* Is REGNUM a member of REGGROUP? */ | |
116 | ||
117 | static int | |
118 | alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
119 | const struct reggroup *group) | |
120 | { | |
121 | /* Filter out any registers eliminated, but whose regnum is | |
122 | reserved for backward compatibility, e.g. the vfp. */ | |
123 | if (*gdbarch_register_name (gdbarch, regnum) == '\0') | |
124 | return 0; | |
125 | ||
126 | if (group == all_reggroup) | |
127 | return 1; | |
128 | ||
129 | /* Zero should not be saved or restored. Technically it is a general | |
130 | register (just as $f31 would be a float if we represented it), but | |
131 | there's no point displaying it during "info regs", so leave it out | |
132 | of all groups except for "all". */ | |
133 | if (regnum == ALPHA_ZERO_REGNUM) | |
134 | return 0; | |
135 | ||
136 | /* All other registers are saved and restored. */ | |
137 | if (group == save_reggroup || group == restore_reggroup) | |
138 | return 1; | |
139 | ||
140 | /* All other groups are non-overlapping. */ | |
141 | ||
142 | /* Since this is really a PALcode memory slot... */ | |
143 | if (regnum == ALPHA_UNIQUE_REGNUM) | |
144 | return group == system_reggroup; | |
145 | ||
146 | /* Force the FPCR to be considered part of the floating point state. */ | |
147 | if (regnum == ALPHA_FPCR_REGNUM) | |
148 | return group == float_reggroup; | |
149 | ||
150 | if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31) | |
151 | return group == float_reggroup; | |
152 | else | |
153 | return group == general_reggroup; | |
154 | } | |
155 | ||
156 | /* The following represents exactly the conversion performed by | |
157 | the LDS instruction. This applies to both single-precision | |
158 | floating point and 32-bit integers. */ | |
159 | ||
160 | static void | |
161 | alpha_lds (struct gdbarch *gdbarch, void *out, const void *in) | |
162 | { | |
163 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
164 | ULONGEST mem | |
165 | = extract_unsigned_integer ((const gdb_byte *) in, 4, byte_order); | |
166 | ULONGEST frac = (mem >> 0) & 0x7fffff; | |
167 | ULONGEST sign = (mem >> 31) & 1; | |
168 | ULONGEST exp_msb = (mem >> 30) & 1; | |
169 | ULONGEST exp_low = (mem >> 23) & 0x7f; | |
170 | ULONGEST exp, reg; | |
171 | ||
172 | exp = (exp_msb << 10) | exp_low; | |
173 | if (exp_msb) | |
174 | { | |
175 | if (exp_low == 0x7f) | |
176 | exp = 0x7ff; | |
177 | } | |
178 | else | |
179 | { | |
180 | if (exp_low != 0x00) | |
181 | exp |= 0x380; | |
182 | } | |
183 | ||
184 | reg = (sign << 63) | (exp << 52) | (frac << 29); | |
185 | store_unsigned_integer ((gdb_byte *) out, 8, byte_order, reg); | |
186 | } | |
187 | ||
188 | /* Similarly, this represents exactly the conversion performed by | |
189 | the STS instruction. */ | |
190 | ||
191 | static void | |
192 | alpha_sts (struct gdbarch *gdbarch, void *out, const void *in) | |
193 | { | |
194 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
195 | ULONGEST reg, mem; | |
196 | ||
197 | reg = extract_unsigned_integer ((const gdb_byte *) in, 8, byte_order); | |
198 | mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff); | |
199 | store_unsigned_integer ((gdb_byte *) out, 4, byte_order, mem); | |
200 | } | |
201 | ||
202 | /* The alpha needs a conversion between register and memory format if the | |
203 | register is a floating point register and memory format is float, as the | |
204 | register format must be double or memory format is an integer with 4 | |
205 | bytes, as the representation of integers in floating point | |
206 | registers is different. */ | |
207 | ||
208 | static int | |
209 | alpha_convert_register_p (struct gdbarch *gdbarch, int regno, | |
210 | struct type *type) | |
211 | { | |
212 | return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31 | |
213 | && type->length () == 4); | |
214 | } | |
215 | ||
216 | static int | |
217 | alpha_register_to_value (const frame_info_ptr &frame, int regnum, | |
218 | struct type *valtype, gdb_byte *out, | |
219 | int *optimizedp, int *unavailablep) | |
220 | { | |
221 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
222 | struct value *value = get_frame_register_value (frame, regnum); | |
223 | ||
224 | gdb_assert (value != NULL); | |
225 | *optimizedp = value->optimized_out (); | |
226 | *unavailablep = !value->entirely_available (); | |
227 | ||
228 | if (*optimizedp || *unavailablep) | |
229 | { | |
230 | release_value (value); | |
231 | return 0; | |
232 | } | |
233 | ||
234 | /* Convert to VALTYPE. */ | |
235 | ||
236 | gdb_assert (valtype->length () == 4); | |
237 | alpha_sts (gdbarch, out, value->contents_all ().data ()); | |
238 | ||
239 | release_value (value); | |
240 | return 1; | |
241 | } | |
242 | ||
243 | static void | |
244 | alpha_value_to_register (const frame_info_ptr &frame, int regnum, | |
245 | struct type *valtype, const gdb_byte *in) | |
246 | { | |
247 | int reg_size = register_size (get_frame_arch (frame), regnum); | |
248 | gdb_assert (valtype->length () == 4); | |
249 | gdb_assert (reg_size <= ALPHA_REGISTER_SIZE); | |
250 | ||
251 | gdb_byte out[ALPHA_REGISTER_SIZE]; | |
252 | alpha_lds (get_frame_arch (frame), out, in); | |
253 | ||
254 | auto out_view = gdb::make_array_view (out, reg_size); | |
255 | put_frame_register (get_next_frame_sentinel_okay (frame), regnum, out_view); | |
256 | } | |
257 | ||
258 | \f | |
259 | /* The alpha passes the first six arguments in the registers, the rest on | |
260 | the stack. The register arguments are stored in ARG_REG_BUFFER, and | |
261 | then moved into the register file; this simplifies the passing of a | |
262 | large struct which extends from the registers to the stack, plus avoids | |
263 | three ptrace invocations per word. | |
264 | ||
265 | We don't bother tracking which register values should go in integer | |
266 | regs or fp regs; we load the same values into both. | |
267 | ||
268 | If the called function is returning a structure, the address of the | |
269 | structure to be returned is passed as a hidden first argument. */ | |
270 | ||
271 | static CORE_ADDR | |
272 | alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
273 | struct regcache *regcache, CORE_ADDR bp_addr, | |
274 | int nargs, struct value **args, CORE_ADDR sp, | |
275 | function_call_return_method return_method, | |
276 | CORE_ADDR struct_addr) | |
277 | { | |
278 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
279 | int i; | |
280 | int accumulate_size = (return_method == return_method_struct) ? 8 : 0; | |
281 | struct alpha_arg | |
282 | { | |
283 | const gdb_byte *contents; | |
284 | int len; | |
285 | int offset; | |
286 | }; | |
287 | struct alpha_arg *alpha_args = XALLOCAVEC (struct alpha_arg, nargs); | |
288 | struct alpha_arg *m_arg; | |
289 | gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS]; | |
290 | int required_arg_regs; | |
291 | CORE_ADDR func_addr = find_function_addr (function, NULL); | |
292 | ||
293 | /* The ABI places the address of the called function in T12. */ | |
294 | regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr); | |
295 | ||
296 | /* Set the return address register to point to the entry point | |
297 | of the program, where a breakpoint lies in wait. */ | |
298 | regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr); | |
299 | ||
300 | /* Lay out the arguments in memory. */ | |
301 | for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++) | |
302 | { | |
303 | struct value *arg = args[i]; | |
304 | struct type *arg_type = check_typedef (arg->type ()); | |
305 | ||
306 | /* Cast argument to long if necessary as the compiler does it too. */ | |
307 | switch (arg_type->code ()) | |
308 | { | |
309 | case TYPE_CODE_INT: | |
310 | case TYPE_CODE_BOOL: | |
311 | case TYPE_CODE_CHAR: | |
312 | case TYPE_CODE_RANGE: | |
313 | case TYPE_CODE_ENUM: | |
314 | if (arg_type->length () == 4) | |
315 | { | |
316 | /* 32-bit values must be sign-extended to 64 bits | |
317 | even if the base data type is unsigned. */ | |
318 | arg_type = builtin_type (gdbarch)->builtin_int32; | |
319 | arg = value_cast (arg_type, arg); | |
320 | } | |
321 | if (arg_type->length () < ALPHA_REGISTER_SIZE) | |
322 | { | |
323 | arg_type = builtin_type (gdbarch)->builtin_int64; | |
324 | arg = value_cast (arg_type, arg); | |
325 | } | |
326 | break; | |
327 | ||
328 | case TYPE_CODE_FLT: | |
329 | /* "float" arguments loaded in registers must be passed in | |
330 | register format, aka "double". */ | |
331 | if (accumulate_size < sizeof (arg_reg_buffer) | |
332 | && arg_type->length () == 4) | |
333 | { | |
334 | arg_type = builtin_type (gdbarch)->builtin_double; | |
335 | arg = value_cast (arg_type, arg); | |
336 | } | |
337 | /* Tru64 5.1 has a 128-bit long double, and passes this by | |
338 | invisible reference. No one else uses this data type. */ | |
339 | else if (arg_type->length () == 16) | |
340 | { | |
341 | /* Allocate aligned storage. */ | |
342 | sp = (sp & -16) - 16; | |
343 | ||
344 | /* Write the real data into the stack. */ | |
345 | write_memory (sp, arg->contents ().data (), 16); | |
346 | ||
347 | /* Construct the indirection. */ | |
348 | arg_type = lookup_pointer_type (arg_type); | |
349 | arg = value_from_pointer (arg_type, sp); | |
350 | } | |
351 | break; | |
352 | ||
353 | case TYPE_CODE_COMPLEX: | |
354 | /* ??? The ABI says that complex values are passed as two | |
355 | separate scalar values. This distinction only matters | |
356 | for complex float. However, GCC does not implement this. */ | |
357 | ||
358 | /* Tru64 5.1 has a 128-bit long double, and passes this by | |
359 | invisible reference. */ | |
360 | if (arg_type->length () == 32) | |
361 | { | |
362 | /* Allocate aligned storage. */ | |
363 | sp = (sp & -16) - 16; | |
364 | ||
365 | /* Write the real data into the stack. */ | |
366 | write_memory (sp, arg->contents ().data (), 32); | |
367 | ||
368 | /* Construct the indirection. */ | |
369 | arg_type = lookup_pointer_type (arg_type); | |
370 | arg = value_from_pointer (arg_type, sp); | |
371 | } | |
372 | break; | |
373 | ||
374 | default: | |
375 | break; | |
376 | } | |
377 | m_arg->len = arg_type->length (); | |
378 | m_arg->offset = accumulate_size; | |
379 | accumulate_size = (accumulate_size + m_arg->len + 7) & ~7; | |
380 | m_arg->contents = arg->contents ().data (); | |
381 | } | |
382 | ||
383 | /* Determine required argument register loads, loading an argument register | |
384 | is expensive as it uses three ptrace calls. */ | |
385 | required_arg_regs = accumulate_size / 8; | |
386 | if (required_arg_regs > ALPHA_NUM_ARG_REGS) | |
387 | required_arg_regs = ALPHA_NUM_ARG_REGS; | |
388 | ||
389 | /* Make room for the arguments on the stack. */ | |
390 | if (accumulate_size < sizeof(arg_reg_buffer)) | |
391 | accumulate_size = 0; | |
392 | else | |
393 | accumulate_size -= sizeof(arg_reg_buffer); | |
394 | sp -= accumulate_size; | |
395 | ||
396 | /* Keep sp aligned to a multiple of 16 as the ABI requires. */ | |
397 | sp &= ~15; | |
398 | ||
399 | /* `Push' arguments on the stack. */ | |
400 | for (i = nargs; m_arg--, --i >= 0;) | |
401 | { | |
402 | const gdb_byte *contents = m_arg->contents; | |
403 | int offset = m_arg->offset; | |
404 | int len = m_arg->len; | |
405 | ||
406 | /* Copy the bytes destined for registers into arg_reg_buffer. */ | |
407 | if (offset < sizeof(arg_reg_buffer)) | |
408 | { | |
409 | if (offset + len <= sizeof(arg_reg_buffer)) | |
410 | { | |
411 | memcpy (arg_reg_buffer + offset, contents, len); | |
412 | continue; | |
413 | } | |
414 | else | |
415 | { | |
416 | int tlen = sizeof(arg_reg_buffer) - offset; | |
417 | memcpy (arg_reg_buffer + offset, contents, tlen); | |
418 | offset += tlen; | |
419 | contents += tlen; | |
420 | len -= tlen; | |
421 | } | |
422 | } | |
423 | ||
424 | /* Everything else goes to the stack. */ | |
425 | write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len); | |
426 | } | |
427 | if (return_method == return_method_struct) | |
428 | store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, | |
429 | byte_order, struct_addr); | |
430 | ||
431 | /* Load the argument registers. */ | |
432 | for (i = 0; i < required_arg_regs; i++) | |
433 | { | |
434 | regcache->cooked_write (ALPHA_A0_REGNUM + i, | |
435 | arg_reg_buffer + i * ALPHA_REGISTER_SIZE); | |
436 | regcache->cooked_write (ALPHA_FPA0_REGNUM + i, | |
437 | arg_reg_buffer + i * ALPHA_REGISTER_SIZE); | |
438 | } | |
439 | ||
440 | /* Finally, update the stack pointer. */ | |
441 | regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp); | |
442 | ||
443 | return sp; | |
444 | } | |
445 | ||
446 | /* Extract from REGCACHE the value about to be returned from a function | |
447 | and copy it into VALBUF. */ | |
448 | ||
449 | static void | |
450 | alpha_extract_return_value (struct type *valtype, struct regcache *regcache, | |
451 | gdb_byte *valbuf) | |
452 | { | |
453 | struct gdbarch *gdbarch = regcache->arch (); | |
454 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
455 | gdb_byte raw_buffer[ALPHA_REGISTER_SIZE]; | |
456 | ULONGEST l; | |
457 | ||
458 | switch (valtype->code ()) | |
459 | { | |
460 | case TYPE_CODE_FLT: | |
461 | switch (valtype->length ()) | |
462 | { | |
463 | case 4: | |
464 | regcache->cooked_read (ALPHA_FP0_REGNUM, raw_buffer); | |
465 | alpha_sts (gdbarch, valbuf, raw_buffer); | |
466 | break; | |
467 | ||
468 | case 8: | |
469 | regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf); | |
470 | break; | |
471 | ||
472 | case 16: | |
473 | regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l); | |
474 | read_memory (l, valbuf, 16); | |
475 | break; | |
476 | ||
477 | default: | |
478 | internal_error (_("unknown floating point width")); | |
479 | } | |
480 | break; | |
481 | ||
482 | case TYPE_CODE_COMPLEX: | |
483 | switch (valtype->length ()) | |
484 | { | |
485 | case 8: | |
486 | /* ??? This isn't correct wrt the ABI, but it's what GCC does. */ | |
487 | regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf); | |
488 | break; | |
489 | ||
490 | case 16: | |
491 | regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf); | |
492 | regcache->cooked_read (ALPHA_FP0_REGNUM + 1, valbuf + 8); | |
493 | break; | |
494 | ||
495 | case 32: | |
496 | regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l); | |
497 | read_memory (l, valbuf, 32); | |
498 | break; | |
499 | ||
500 | default: | |
501 | internal_error (_("unknown floating point width")); | |
502 | } | |
503 | break; | |
504 | ||
505 | default: | |
506 | /* Assume everything else degenerates to an integer. */ | |
507 | regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l); | |
508 | store_unsigned_integer (valbuf, valtype->length (), byte_order, l); | |
509 | break; | |
510 | } | |
511 | } | |
512 | ||
513 | /* Insert the given value into REGCACHE as if it was being | |
514 | returned by a function. */ | |
515 | ||
516 | static void | |
517 | alpha_store_return_value (struct type *valtype, struct regcache *regcache, | |
518 | const gdb_byte *valbuf) | |
519 | { | |
520 | struct gdbarch *gdbarch = regcache->arch (); | |
521 | gdb_byte raw_buffer[ALPHA_REGISTER_SIZE]; | |
522 | ULONGEST l; | |
523 | ||
524 | switch (valtype->code ()) | |
525 | { | |
526 | case TYPE_CODE_FLT: | |
527 | switch (valtype->length ()) | |
528 | { | |
529 | case 4: | |
530 | alpha_lds (gdbarch, raw_buffer, valbuf); | |
531 | regcache->cooked_write (ALPHA_FP0_REGNUM, raw_buffer); | |
532 | break; | |
533 | ||
534 | case 8: | |
535 | regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf); | |
536 | break; | |
537 | ||
538 | case 16: | |
539 | /* FIXME: 128-bit long doubles are returned like structures: | |
540 | by writing into indirect storage provided by the caller | |
541 | as the first argument. */ | |
542 | error (_("Cannot set a 128-bit long double return value.")); | |
543 | ||
544 | default: | |
545 | internal_error (_("unknown floating point width")); | |
546 | } | |
547 | break; | |
548 | ||
549 | case TYPE_CODE_COMPLEX: | |
550 | switch (valtype->length ()) | |
551 | { | |
552 | case 8: | |
553 | /* ??? This isn't correct wrt the ABI, but it's what GCC does. */ | |
554 | regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf); | |
555 | break; | |
556 | ||
557 | case 16: | |
558 | regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf); | |
559 | regcache->cooked_write (ALPHA_FP0_REGNUM + 1, valbuf + 8); | |
560 | break; | |
561 | ||
562 | case 32: | |
563 | /* FIXME: 128-bit long doubles are returned like structures: | |
564 | by writing into indirect storage provided by the caller | |
565 | as the first argument. */ | |
566 | error (_("Cannot set a 128-bit long double return value.")); | |
567 | ||
568 | default: | |
569 | internal_error (_("unknown floating point width")); | |
570 | } | |
571 | break; | |
572 | ||
573 | default: | |
574 | /* Assume everything else degenerates to an integer. */ | |
575 | /* 32-bit values must be sign-extended to 64 bits | |
576 | even if the base data type is unsigned. */ | |
577 | if (valtype->length () == 4) | |
578 | valtype = builtin_type (gdbarch)->builtin_int32; | |
579 | l = unpack_long (valtype, valbuf); | |
580 | regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l); | |
581 | break; | |
582 | } | |
583 | } | |
584 | ||
585 | static enum return_value_convention | |
586 | alpha_return_value (struct gdbarch *gdbarch, struct value *function, | |
587 | struct type *type, struct regcache *regcache, | |
588 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
589 | { | |
590 | enum type_code code = type->code (); | |
591 | alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch); | |
592 | ||
593 | if ((code == TYPE_CODE_STRUCT | |
594 | || code == TYPE_CODE_UNION | |
595 | || code == TYPE_CODE_ARRAY) | |
596 | && tdep->return_in_memory (type)) | |
597 | { | |
598 | if (readbuf) | |
599 | { | |
600 | ULONGEST addr; | |
601 | regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr); | |
602 | read_memory (addr, readbuf, type->length ()); | |
603 | } | |
604 | ||
605 | return RETURN_VALUE_ABI_RETURNS_ADDRESS; | |
606 | } | |
607 | ||
608 | if (readbuf) | |
609 | alpha_extract_return_value (type, regcache, readbuf); | |
610 | if (writebuf) | |
611 | alpha_store_return_value (type, regcache, writebuf); | |
612 | ||
613 | return RETURN_VALUE_REGISTER_CONVENTION; | |
614 | } | |
615 | ||
616 | static int | |
617 | alpha_return_in_memory_always (struct type *type) | |
618 | { | |
619 | return 1; | |
620 | } | |
621 | \f | |
622 | ||
623 | constexpr gdb_byte alpha_break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */ | |
624 | ||
625 | typedef BP_MANIPULATION (alpha_break_insn) alpha_breakpoint; | |
626 | ||
627 | \f | |
628 | /* This returns the PC of the first insn after the prologue. | |
629 | If we can't find the prologue, then return 0. */ | |
630 | ||
631 | CORE_ADDR | |
632 | alpha_after_prologue (CORE_ADDR pc) | |
633 | { | |
634 | struct symtab_and_line sal; | |
635 | CORE_ADDR func_addr, func_end; | |
636 | ||
637 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
638 | return 0; | |
639 | ||
640 | sal = find_pc_line (func_addr, 0); | |
641 | if (sal.end < func_end) | |
642 | return sal.end; | |
643 | ||
644 | /* The line after the prologue is after the end of the function. In this | |
645 | case, tell the caller to find the prologue the hard way. */ | |
646 | return 0; | |
647 | } | |
648 | ||
649 | /* Read an instruction from memory at PC, looking through breakpoints. */ | |
650 | ||
651 | unsigned int | |
652 | alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc) | |
653 | { | |
654 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
655 | gdb_byte buf[ALPHA_INSN_SIZE]; | |
656 | int res; | |
657 | ||
658 | res = target_read_memory (pc, buf, sizeof (buf)); | |
659 | if (res != 0) | |
660 | memory_error (TARGET_XFER_E_IO, pc); | |
661 | return extract_unsigned_integer (buf, sizeof (buf), byte_order); | |
662 | } | |
663 | ||
664 | /* To skip prologues, I use this predicate. Returns either PC itself | |
665 | if the code at PC does not look like a function prologue; otherwise | |
666 | returns an address that (if we're lucky) follows the prologue. If | |
667 | LENIENT, then we must skip everything which is involved in setting | |
668 | up the frame (it's OK to skip more, just so long as we don't skip | |
669 | anything which might clobber the registers which are being saved. */ | |
670 | ||
671 | static CORE_ADDR | |
672 | alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | |
673 | { | |
674 | unsigned long inst; | |
675 | int offset; | |
676 | CORE_ADDR post_prologue_pc; | |
677 | gdb_byte buf[ALPHA_INSN_SIZE]; | |
678 | ||
679 | /* Silently return the unaltered pc upon memory errors. | |
680 | This could happen on OSF/1 if decode_line_1 tries to skip the | |
681 | prologue for quickstarted shared library functions when the | |
682 | shared library is not yet mapped in. | |
683 | Reading target memory is slow over serial lines, so we perform | |
684 | this check only if the target has shared libraries (which all | |
685 | Alpha targets do). */ | |
686 | if (target_read_memory (pc, buf, sizeof (buf))) | |
687 | return pc; | |
688 | ||
689 | /* See if we can determine the end of the prologue via the symbol table. | |
690 | If so, then return either PC, or the PC after the prologue, whichever | |
691 | is greater. */ | |
692 | ||
693 | post_prologue_pc = alpha_after_prologue (pc); | |
694 | if (post_prologue_pc != 0) | |
695 | return std::max (pc, post_prologue_pc); | |
696 | ||
697 | /* Can't determine prologue from the symbol table, need to examine | |
698 | instructions. */ | |
699 | ||
700 | /* Skip the typical prologue instructions. These are the stack adjustment | |
701 | instruction and the instructions that save registers on the stack | |
702 | or in the gcc frame. */ | |
703 | for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE) | |
704 | { | |
705 | inst = alpha_read_insn (gdbarch, pc + offset); | |
706 | ||
707 | if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */ | |
708 | continue; | |
709 | if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */ | |
710 | continue; | |
711 | if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */ | |
712 | continue; | |
713 | if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */ | |
714 | continue; | |
715 | ||
716 | if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */ | |
717 | || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */ | |
718 | && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */ | |
719 | continue; | |
720 | ||
721 | if (inst == 0x47de040f) /* bis sp,sp,fp */ | |
722 | continue; | |
723 | if (inst == 0x47fe040f) /* bis zero,sp,fp */ | |
724 | continue; | |
725 | ||
726 | break; | |
727 | } | |
728 | return pc + offset; | |
729 | } | |
730 | ||
731 | \f | |
732 | static const int ldl_l_opcode = 0x2a; | |
733 | static const int ldq_l_opcode = 0x2b; | |
734 | static const int stl_c_opcode = 0x2e; | |
735 | static const int stq_c_opcode = 0x2f; | |
736 | ||
737 | /* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L | |
738 | instruction and ending with a STL_C/STQ_C instruction. If such a sequence | |
739 | is found, attempt to step through it. A breakpoint is placed at the end of | |
740 | the sequence. */ | |
741 | ||
742 | static std::vector<CORE_ADDR> | |
743 | alpha_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc) | |
744 | { | |
745 | CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX}; | |
746 | CORE_ADDR loc = pc; | |
747 | CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */ | |
748 | unsigned int insn = alpha_read_insn (gdbarch, loc); | |
749 | int insn_count; | |
750 | int index; | |
751 | int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */ | |
752 | const int atomic_sequence_length = 16; /* Instruction sequence length. */ | |
753 | int bc_insn_count = 0; /* Conditional branch instruction count. */ | |
754 | ||
755 | /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */ | |
756 | if (INSN_OPCODE (insn) != ldl_l_opcode | |
757 | && INSN_OPCODE (insn) != ldq_l_opcode) | |
758 | return {}; | |
759 | ||
760 | /* Assume that no atomic sequence is longer than "atomic_sequence_length" | |
761 | instructions. */ | |
762 | for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count) | |
763 | { | |
764 | loc += ALPHA_INSN_SIZE; | |
765 | insn = alpha_read_insn (gdbarch, loc); | |
766 | ||
767 | /* Assume that there is at most one branch in the atomic | |
768 | sequence. If a branch is found, put a breakpoint in | |
769 | its destination address. */ | |
770 | if (INSN_OPCODE (insn) >= br_opcode) | |
771 | { | |
772 | int immediate = (insn & 0x001fffff) << 2; | |
773 | ||
774 | immediate = (immediate ^ 0x400000) - 0x400000; | |
775 | ||
776 | if (bc_insn_count >= 1) | |
777 | return {}; /* More than one branch found, fallback | |
778 | to the standard single-step code. */ | |
779 | ||
780 | breaks[1] = loc + ALPHA_INSN_SIZE + immediate; | |
781 | ||
782 | bc_insn_count++; | |
783 | last_breakpoint++; | |
784 | } | |
785 | ||
786 | if (INSN_OPCODE (insn) == stl_c_opcode | |
787 | || INSN_OPCODE (insn) == stq_c_opcode) | |
788 | break; | |
789 | } | |
790 | ||
791 | /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */ | |
792 | if (INSN_OPCODE (insn) != stl_c_opcode | |
793 | && INSN_OPCODE (insn) != stq_c_opcode) | |
794 | return {}; | |
795 | ||
796 | closing_insn = loc; | |
797 | loc += ALPHA_INSN_SIZE; | |
798 | ||
799 | /* Insert a breakpoint right after the end of the atomic sequence. */ | |
800 | breaks[0] = loc; | |
801 | ||
802 | /* Check for duplicated breakpoints. Check also for a breakpoint | |
803 | placed (branch instruction's destination) anywhere in sequence. */ | |
804 | if (last_breakpoint | |
805 | && (breaks[1] == breaks[0] | |
806 | || (breaks[1] >= pc && breaks[1] <= closing_insn))) | |
807 | last_breakpoint = 0; | |
808 | ||
809 | std::vector<CORE_ADDR> next_pcs; | |
810 | ||
811 | for (index = 0; index <= last_breakpoint; index++) | |
812 | next_pcs.push_back (breaks[index]); | |
813 | ||
814 | return next_pcs; | |
815 | } | |
816 | ||
817 | \f | |
818 | /* Figure out where the longjmp will land. | |
819 | We expect the first arg to be a pointer to the jmp_buf structure from | |
820 | which we extract the PC (JB_PC) that we will land at. The PC is copied | |
821 | into the "pc". This routine returns true on success. */ | |
822 | ||
823 | static int | |
824 | alpha_get_longjmp_target (const frame_info_ptr &frame, CORE_ADDR *pc) | |
825 | { | |
826 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
827 | alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch); | |
828 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
829 | CORE_ADDR jb_addr; | |
830 | gdb_byte raw_buffer[ALPHA_REGISTER_SIZE]; | |
831 | ||
832 | jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM); | |
833 | ||
834 | if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size), | |
835 | raw_buffer, tdep->jb_elt_size)) | |
836 | return 0; | |
837 | ||
838 | *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order); | |
839 | return 1; | |
840 | } | |
841 | ||
842 | \f | |
843 | /* Frame unwinder for signal trampolines. We use alpha tdep bits that | |
844 | describe the location and shape of the sigcontext structure. After | |
845 | that, all registers are in memory, so it's easy. */ | |
846 | /* ??? Shouldn't we be able to do this generically, rather than with | |
847 | OSABI data specific to Alpha? */ | |
848 | ||
849 | struct alpha_sigtramp_unwind_cache | |
850 | { | |
851 | CORE_ADDR sigcontext_addr; | |
852 | }; | |
853 | ||
854 | static struct alpha_sigtramp_unwind_cache * | |
855 | alpha_sigtramp_frame_unwind_cache (const frame_info_ptr &this_frame, | |
856 | void **this_prologue_cache) | |
857 | { | |
858 | struct alpha_sigtramp_unwind_cache *info; | |
859 | ||
860 | if (*this_prologue_cache) | |
861 | return (struct alpha_sigtramp_unwind_cache *) *this_prologue_cache; | |
862 | ||
863 | info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache); | |
864 | *this_prologue_cache = info; | |
865 | ||
866 | gdbarch *arch = get_frame_arch (this_frame); | |
867 | alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (arch); | |
868 | info->sigcontext_addr = tdep->sigcontext_addr (this_frame); | |
869 | ||
870 | return info; | |
871 | } | |
872 | ||
873 | /* Return the address of REGNUM in a sigtramp frame. Since this is | |
874 | all arithmetic, it doesn't seem worthwhile to cache it. */ | |
875 | ||
876 | static CORE_ADDR | |
877 | alpha_sigtramp_register_address (struct gdbarch *gdbarch, | |
878 | CORE_ADDR sigcontext_addr, int regnum) | |
879 | { | |
880 | alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch); | |
881 | ||
882 | if (regnum >= 0 && regnum < 32) | |
883 | return sigcontext_addr + tdep->sc_regs_offset + regnum * 8; | |
884 | else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32) | |
885 | return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8; | |
886 | else if (regnum == ALPHA_PC_REGNUM) | |
887 | return sigcontext_addr + tdep->sc_pc_offset; | |
888 | ||
889 | return 0; | |
890 | } | |
891 | ||
892 | /* Given a GDB frame, determine the address of the calling function's | |
893 | frame. This will be used to create a new GDB frame struct. */ | |
894 | ||
895 | static void | |
896 | alpha_sigtramp_frame_this_id (const frame_info_ptr &this_frame, | |
897 | void **this_prologue_cache, | |
898 | struct frame_id *this_id) | |
899 | { | |
900 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
901 | alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch); | |
902 | struct alpha_sigtramp_unwind_cache *info | |
903 | = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); | |
904 | CORE_ADDR stack_addr, code_addr; | |
905 | ||
906 | /* If the OSABI couldn't locate the sigcontext, give up. */ | |
907 | if (info->sigcontext_addr == 0) | |
908 | return; | |
909 | ||
910 | /* If we have dynamic signal trampolines, find their start. | |
911 | If we do not, then we must assume there is a symbol record | |
912 | that can provide the start address. */ | |
913 | if (tdep->dynamic_sigtramp_offset) | |
914 | { | |
915 | int offset; | |
916 | code_addr = get_frame_pc (this_frame); | |
917 | offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr); | |
918 | if (offset >= 0) | |
919 | code_addr -= offset; | |
920 | else | |
921 | code_addr = 0; | |
922 | } | |
923 | else | |
924 | code_addr = get_frame_func (this_frame); | |
925 | ||
926 | /* The stack address is trivially read from the sigcontext. */ | |
927 | stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr, | |
928 | ALPHA_SP_REGNUM); | |
929 | stack_addr = get_frame_memory_unsigned (this_frame, stack_addr, | |
930 | ALPHA_REGISTER_SIZE); | |
931 | ||
932 | *this_id = frame_id_build (stack_addr, code_addr); | |
933 | } | |
934 | ||
935 | /* Retrieve the value of REGNUM in FRAME. Don't give up! */ | |
936 | ||
937 | static struct value * | |
938 | alpha_sigtramp_frame_prev_register (const frame_info_ptr &this_frame, | |
939 | void **this_prologue_cache, int regnum) | |
940 | { | |
941 | struct alpha_sigtramp_unwind_cache *info | |
942 | = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); | |
943 | CORE_ADDR addr; | |
944 | ||
945 | if (info->sigcontext_addr != 0) | |
946 | { | |
947 | /* All integer and fp registers are stored in memory. */ | |
948 | addr = alpha_sigtramp_register_address (get_frame_arch (this_frame), | |
949 | info->sigcontext_addr, regnum); | |
950 | if (addr != 0) | |
951 | return frame_unwind_got_memory (this_frame, regnum, addr); | |
952 | } | |
953 | ||
954 | /* This extra register may actually be in the sigcontext, but our | |
955 | current description of it in alpha_sigtramp_frame_unwind_cache | |
956 | doesn't include it. Too bad. Fall back on whatever's in the | |
957 | outer frame. */ | |
958 | return frame_unwind_got_register (this_frame, regnum, regnum); | |
959 | } | |
960 | ||
961 | static int | |
962 | alpha_sigtramp_frame_sniffer (const struct frame_unwind *self, | |
963 | const frame_info_ptr &this_frame, | |
964 | void **this_prologue_cache) | |
965 | { | |
966 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
967 | CORE_ADDR pc = get_frame_pc (this_frame); | |
968 | const char *name; | |
969 | ||
970 | /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead | |
971 | look at tramp-frame.h and other simpler per-architecture | |
972 | sigtramp unwinders. */ | |
973 | ||
974 | /* We shouldn't even bother to try if the OSABI didn't register a | |
975 | sigcontext_addr handler or pc_in_sigtramp handler. */ | |
976 | alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch); | |
977 | if (tdep->sigcontext_addr == NULL) | |
978 | return 0; | |
979 | ||
980 | if (tdep->pc_in_sigtramp == NULL) | |
981 | return 0; | |
982 | ||
983 | /* Otherwise we should be in a signal frame. */ | |
984 | find_pc_partial_function (pc, &name, NULL, NULL); | |
985 | if (tdep->pc_in_sigtramp (gdbarch, pc, name)) | |
986 | return 1; | |
987 | ||
988 | return 0; | |
989 | } | |
990 | ||
991 | static const struct frame_unwind_legacy alpha_sigtramp_frame_unwind ( | |
992 | "alpha sigtramp", | |
993 | SIGTRAMP_FRAME, | |
994 | FRAME_UNWIND_ARCH, | |
995 | default_frame_unwind_stop_reason, | |
996 | alpha_sigtramp_frame_this_id, | |
997 | alpha_sigtramp_frame_prev_register, | |
998 | NULL, | |
999 | alpha_sigtramp_frame_sniffer | |
1000 | ); | |
1001 | ||
1002 | \f | |
1003 | ||
1004 | /* Heuristic_proc_start may hunt through the text section for a long | |
1005 | time across a 2400 baud serial line. Allows the user to limit this | |
1006 | search. */ | |
1007 | static int heuristic_fence_post = 0; | |
1008 | ||
1009 | /* Attempt to locate the start of the function containing PC. We assume that | |
1010 | the previous function ends with an about_to_return insn. Not foolproof by | |
1011 | any means, since gcc is happy to put the epilogue in the middle of a | |
1012 | function. But we're guessing anyway... */ | |
1013 | ||
1014 | static CORE_ADDR | |
1015 | alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc) | |
1016 | { | |
1017 | alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch); | |
1018 | CORE_ADDR last_non_nop = pc; | |
1019 | CORE_ADDR fence = pc - heuristic_fence_post; | |
1020 | CORE_ADDR orig_pc = pc; | |
1021 | CORE_ADDR func; | |
1022 | struct inferior *inf; | |
1023 | ||
1024 | if (pc == 0) | |
1025 | return 0; | |
1026 | ||
1027 | /* First see if we can find the start of the function from minimal | |
1028 | symbol information. This can succeed with a binary that doesn't | |
1029 | have debug info, but hasn't been stripped. */ | |
1030 | func = get_pc_function_start (pc); | |
1031 | if (func) | |
1032 | return func; | |
1033 | ||
1034 | if (heuristic_fence_post == -1 | |
1035 | || fence < tdep->vm_min_address) | |
1036 | fence = tdep->vm_min_address; | |
1037 | ||
1038 | /* Search back for previous return; also stop at a 0, which might be | |
1039 | seen for instance before the start of a code section. Don't include | |
1040 | nops, since this usually indicates padding between functions. */ | |
1041 | for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE) | |
1042 | { | |
1043 | unsigned int insn = alpha_read_insn (gdbarch, pc); | |
1044 | switch (insn) | |
1045 | { | |
1046 | case 0: /* invalid insn */ | |
1047 | case 0x6bfa8001: /* ret $31,($26),1 */ | |
1048 | return last_non_nop; | |
1049 | ||
1050 | case 0x2ffe0000: /* unop: ldq_u $31,0($30) */ | |
1051 | case 0x47ff041f: /* nop: bis $31,$31,$31 */ | |
1052 | break; | |
1053 | ||
1054 | default: | |
1055 | last_non_nop = pc; | |
1056 | break; | |
1057 | } | |
1058 | } | |
1059 | ||
1060 | inf = current_inferior (); | |
1061 | ||
1062 | /* It's not clear to me why we reach this point when stopping quietly, | |
1063 | but with this test, at least we don't print out warnings for every | |
1064 | child forked (eg, on decstation). 22apr93 rich@cygnus.com. */ | |
1065 | if (inf->control.stop_soon == NO_STOP_QUIETLY) | |
1066 | { | |
1067 | static int blurb_printed = 0; | |
1068 | ||
1069 | if (fence == tdep->vm_min_address) | |
1070 | warning (_("Hit beginning of text section without finding \ | |
1071 | enclosing function for address %s"), paddress (gdbarch, orig_pc)); | |
1072 | else | |
1073 | warning (_("Hit heuristic-fence-post without finding \ | |
1074 | enclosing function for address %s"), paddress (gdbarch, orig_pc)); | |
1075 | ||
1076 | if (!blurb_printed) | |
1077 | { | |
1078 | gdb_printf (_("\ | |
1079 | This warning occurs if you are debugging a function without any symbols\n\ | |
1080 | (for example, in a stripped executable). In that case, you may wish to\n\ | |
1081 | increase the size of the search with the `set heuristic-fence-post' command.\n\ | |
1082 | \n\ | |
1083 | Otherwise, you told GDB there was a function where there isn't one, or\n\ | |
1084 | (more likely) you have encountered a bug in GDB.\n")); | |
1085 | blurb_printed = 1; | |
1086 | } | |
1087 | } | |
1088 | ||
1089 | return 0; | |
1090 | } | |
1091 | ||
1092 | /* Fallback alpha frame unwinder. Uses instruction scanning and knows | |
1093 | something about the traditional layout of alpha stack frames. */ | |
1094 | ||
1095 | struct alpha_heuristic_unwind_cache | |
1096 | { | |
1097 | CORE_ADDR vfp; | |
1098 | CORE_ADDR start_pc; | |
1099 | trad_frame_saved_reg *saved_regs; | |
1100 | int return_reg; | |
1101 | }; | |
1102 | ||
1103 | /* If a probing loop sequence starts at PC, simulate it and compute | |
1104 | FRAME_SIZE and PC after its execution. Otherwise, return with PC and | |
1105 | FRAME_SIZE unchanged. */ | |
1106 | ||
1107 | static void | |
1108 | alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc, | |
1109 | int *frame_size) | |
1110 | { | |
1111 | CORE_ADDR cur_pc = *pc; | |
1112 | int cur_frame_size = *frame_size; | |
1113 | int nb_of_iterations, reg_index, reg_probe; | |
1114 | unsigned int insn; | |
1115 | ||
1116 | /* The following pattern is recognized as a probing loop: | |
1117 | ||
1118 | lda REG_INDEX,NB_OF_ITERATIONS | |
1119 | lda REG_PROBE,<immediate>(sp) | |
1120 | ||
1121 | LOOP_START: | |
1122 | stq zero,<immediate>(REG_PROBE) | |
1123 | subq REG_INDEX,0x1,REG_INDEX | |
1124 | lda REG_PROBE,<immediate>(REG_PROBE) | |
1125 | bne REG_INDEX, LOOP_START | |
1126 | ||
1127 | lda sp,<immediate>(REG_PROBE) | |
1128 | ||
1129 | If anything different is found, the function returns without | |
1130 | changing PC and FRAME_SIZE. Otherwise, PC will point immediately | |
1131 | after this sequence, and FRAME_SIZE will be updated. */ | |
1132 | ||
1133 | /* lda REG_INDEX,NB_OF_ITERATIONS */ | |
1134 | ||
1135 | insn = alpha_read_insn (gdbarch, cur_pc); | |
1136 | if (INSN_OPCODE (insn) != lda_opcode) | |
1137 | return; | |
1138 | reg_index = MEM_RA (insn); | |
1139 | nb_of_iterations = MEM_DISP (insn); | |
1140 | ||
1141 | /* lda REG_PROBE,<immediate>(sp) */ | |
1142 | ||
1143 | cur_pc += ALPHA_INSN_SIZE; | |
1144 | insn = alpha_read_insn (gdbarch, cur_pc); | |
1145 | if (INSN_OPCODE (insn) != lda_opcode | |
1146 | || MEM_RB (insn) != ALPHA_SP_REGNUM) | |
1147 | return; | |
1148 | reg_probe = MEM_RA (insn); | |
1149 | cur_frame_size -= MEM_DISP (insn); | |
1150 | ||
1151 | /* stq zero,<immediate>(REG_PROBE) */ | |
1152 | ||
1153 | cur_pc += ALPHA_INSN_SIZE; | |
1154 | insn = alpha_read_insn (gdbarch, cur_pc); | |
1155 | if (INSN_OPCODE (insn) != stq_opcode | |
1156 | || MEM_RA (insn) != 0x1f | |
1157 | || MEM_RB (insn) != reg_probe) | |
1158 | return; | |
1159 | ||
1160 | /* subq REG_INDEX,0x1,REG_INDEX */ | |
1161 | ||
1162 | cur_pc += ALPHA_INSN_SIZE; | |
1163 | insn = alpha_read_insn (gdbarch, cur_pc); | |
1164 | if (INSN_OPCODE (insn) != subq_opcode | |
1165 | || !OPR_HAS_IMMEDIATE (insn) | |
1166 | || OPR_FUNCTION (insn) != subq_function | |
1167 | || OPR_LIT(insn) != 1 | |
1168 | || OPR_RA (insn) != reg_index | |
1169 | || OPR_RC (insn) != reg_index) | |
1170 | return; | |
1171 | ||
1172 | /* lda REG_PROBE,<immediate>(REG_PROBE) */ | |
1173 | ||
1174 | cur_pc += ALPHA_INSN_SIZE; | |
1175 | insn = alpha_read_insn (gdbarch, cur_pc); | |
1176 | if (INSN_OPCODE (insn) != lda_opcode | |
1177 | || MEM_RA (insn) != reg_probe | |
1178 | || MEM_RB (insn) != reg_probe) | |
1179 | return; | |
1180 | cur_frame_size -= MEM_DISP (insn) * nb_of_iterations; | |
1181 | ||
1182 | /* bne REG_INDEX, LOOP_START */ | |
1183 | ||
1184 | cur_pc += ALPHA_INSN_SIZE; | |
1185 | insn = alpha_read_insn (gdbarch, cur_pc); | |
1186 | if (INSN_OPCODE (insn) != bne_opcode | |
1187 | || MEM_RA (insn) != reg_index) | |
1188 | return; | |
1189 | ||
1190 | /* lda sp,<immediate>(REG_PROBE) */ | |
1191 | ||
1192 | cur_pc += ALPHA_INSN_SIZE; | |
1193 | insn = alpha_read_insn (gdbarch, cur_pc); | |
1194 | if (INSN_OPCODE (insn) != lda_opcode | |
1195 | || MEM_RA (insn) != ALPHA_SP_REGNUM | |
1196 | || MEM_RB (insn) != reg_probe) | |
1197 | return; | |
1198 | cur_frame_size -= MEM_DISP (insn); | |
1199 | ||
1200 | *pc = cur_pc; | |
1201 | *frame_size = cur_frame_size; | |
1202 | } | |
1203 | ||
1204 | static struct alpha_heuristic_unwind_cache * | |
1205 | alpha_heuristic_frame_unwind_cache (const frame_info_ptr &this_frame, | |
1206 | void **this_prologue_cache, | |
1207 | CORE_ADDR start_pc) | |
1208 | { | |
1209 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
1210 | struct alpha_heuristic_unwind_cache *info; | |
1211 | ULONGEST val; | |
1212 | CORE_ADDR limit_pc, cur_pc; | |
1213 | int frame_reg, frame_size, return_reg, reg; | |
1214 | ||
1215 | if (*this_prologue_cache) | |
1216 | return (struct alpha_heuristic_unwind_cache *) *this_prologue_cache; | |
1217 | ||
1218 | info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache); | |
1219 | *this_prologue_cache = info; | |
1220 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); | |
1221 | ||
1222 | limit_pc = get_frame_pc (this_frame); | |
1223 | if (start_pc == 0) | |
1224 | start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc); | |
1225 | info->start_pc = start_pc; | |
1226 | ||
1227 | frame_reg = ALPHA_SP_REGNUM; | |
1228 | frame_size = 0; | |
1229 | return_reg = -1; | |
1230 | ||
1231 | /* If we've identified a likely place to start, do code scanning. */ | |
1232 | if (start_pc != 0) | |
1233 | { | |
1234 | /* Limit the forward search to 50 instructions. */ | |
1235 | if (start_pc + 200 < limit_pc) | |
1236 | limit_pc = start_pc + 200; | |
1237 | ||
1238 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE) | |
1239 | { | |
1240 | unsigned int word = alpha_read_insn (gdbarch, cur_pc); | |
1241 | ||
1242 | if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */ | |
1243 | { | |
1244 | if (word & 0x8000) | |
1245 | { | |
1246 | /* Consider only the first stack allocation instruction | |
1247 | to contain the static size of the frame. */ | |
1248 | if (frame_size == 0) | |
1249 | frame_size = (-word) & 0xffff; | |
1250 | } | |
1251 | else | |
1252 | { | |
1253 | /* Exit loop if a positive stack adjustment is found, which | |
1254 | usually means that the stack cleanup code in the function | |
1255 | epilogue is reached. */ | |
1256 | break; | |
1257 | } | |
1258 | } | |
1259 | else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */ | |
1260 | { | |
1261 | reg = (word & 0x03e00000) >> 21; | |
1262 | ||
1263 | /* Ignore this instruction if we have already encountered | |
1264 | an instruction saving the same register earlier in the | |
1265 | function code. The current instruction does not tell | |
1266 | us where the original value upon function entry is saved. | |
1267 | All it says is that the function we are scanning reused | |
1268 | that register for some computation of its own, and is now | |
1269 | saving its result. */ | |
1270 | if (info->saved_regs[reg].is_addr ()) | |
1271 | continue; | |
1272 | ||
1273 | if (reg == 31) | |
1274 | continue; | |
1275 | ||
1276 | /* Do not compute the address where the register was saved yet, | |
1277 | because we don't know yet if the offset will need to be | |
1278 | relative to $sp or $fp (we can not compute the address | |
1279 | relative to $sp if $sp is updated during the execution of | |
1280 | the current subroutine, for instance when doing some alloca). | |
1281 | So just store the offset for the moment, and compute the | |
1282 | address later when we know whether this frame has a frame | |
1283 | pointer or not. */ | |
1284 | /* Hack: temporarily add one, so that the offset is non-zero | |
1285 | and we can tell which registers have save offsets below. */ | |
1286 | info->saved_regs[reg].set_addr ((word & 0xffff) + 1); | |
1287 | ||
1288 | /* Starting with OSF/1-3.2C, the system libraries are shipped | |
1289 | without local symbols, but they still contain procedure | |
1290 | descriptors without a symbol reference. GDB is currently | |
1291 | unable to find these procedure descriptors and uses | |
1292 | heuristic_proc_desc instead. | |
1293 | As some low level compiler support routines (__div*, __add*) | |
1294 | use a non-standard return address register, we have to | |
1295 | add some heuristics to determine the return address register, | |
1296 | or stepping over these routines will fail. | |
1297 | Usually the return address register is the first register | |
1298 | saved on the stack, but assembler optimization might | |
1299 | rearrange the register saves. | |
1300 | So we recognize only a few registers (t7, t9, ra) within | |
1301 | the procedure prologue as valid return address registers. | |
1302 | If we encounter a return instruction, we extract the | |
1303 | return address register from it. | |
1304 | ||
1305 | FIXME: Rewriting GDB to access the procedure descriptors, | |
1306 | e.g. via the minimal symbol table, might obviate this | |
1307 | hack. */ | |
1308 | if (return_reg == -1 | |
1309 | && cur_pc < (start_pc + 80) | |
1310 | && (reg == ALPHA_T7_REGNUM | |
1311 | || reg == ALPHA_T9_REGNUM | |
1312 | || reg == ALPHA_RA_REGNUM)) | |
1313 | return_reg = reg; | |
1314 | } | |
1315 | else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */ | |
1316 | return_reg = (word >> 16) & 0x1f; | |
1317 | else if (word == 0x47de040f) /* bis sp,sp,fp */ | |
1318 | frame_reg = ALPHA_GCC_FP_REGNUM; | |
1319 | else if (word == 0x47fe040f) /* bis zero,sp,fp */ | |
1320 | frame_reg = ALPHA_GCC_FP_REGNUM; | |
1321 | ||
1322 | alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size); | |
1323 | } | |
1324 | ||
1325 | /* If we haven't found a valid return address register yet, keep | |
1326 | searching in the procedure prologue. */ | |
1327 | if (return_reg == -1) | |
1328 | { | |
1329 | while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80)) | |
1330 | { | |
1331 | unsigned int word = alpha_read_insn (gdbarch, cur_pc); | |
1332 | ||
1333 | if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */ | |
1334 | { | |
1335 | reg = (word & 0x03e00000) >> 21; | |
1336 | if (reg == ALPHA_T7_REGNUM | |
1337 | || reg == ALPHA_T9_REGNUM | |
1338 | || reg == ALPHA_RA_REGNUM) | |
1339 | { | |
1340 | return_reg = reg; | |
1341 | break; | |
1342 | } | |
1343 | } | |
1344 | else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */ | |
1345 | { | |
1346 | return_reg = (word >> 16) & 0x1f; | |
1347 | break; | |
1348 | } | |
1349 | ||
1350 | cur_pc += ALPHA_INSN_SIZE; | |
1351 | } | |
1352 | } | |
1353 | } | |
1354 | ||
1355 | /* Failing that, do default to the customary RA. */ | |
1356 | if (return_reg == -1) | |
1357 | return_reg = ALPHA_RA_REGNUM; | |
1358 | info->return_reg = return_reg; | |
1359 | ||
1360 | val = get_frame_register_unsigned (this_frame, frame_reg); | |
1361 | info->vfp = val + frame_size; | |
1362 | ||
1363 | /* Convert offsets to absolute addresses. See above about adding | |
1364 | one to the offsets to make all detected offsets non-zero. */ | |
1365 | for (reg = 0; reg < ALPHA_NUM_REGS; ++reg) | |
1366 | if (info->saved_regs[reg].is_addr ()) | |
1367 | info->saved_regs[reg].set_addr (info->saved_regs[reg].addr () | |
1368 | + val - 1); | |
1369 | ||
1370 | /* The stack pointer of the previous frame is computed by popping | |
1371 | the current stack frame. */ | |
1372 | if (!info->saved_regs[ALPHA_SP_REGNUM].is_addr ()) | |
1373 | info->saved_regs[ALPHA_SP_REGNUM].set_value (info->vfp); | |
1374 | ||
1375 | return info; | |
1376 | } | |
1377 | ||
1378 | /* Given a GDB frame, determine the address of the calling function's | |
1379 | frame. This will be used to create a new GDB frame struct. */ | |
1380 | ||
1381 | static void | |
1382 | alpha_heuristic_frame_this_id (const frame_info_ptr &this_frame, | |
1383 | void **this_prologue_cache, | |
1384 | struct frame_id *this_id) | |
1385 | { | |
1386 | struct alpha_heuristic_unwind_cache *info | |
1387 | = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0); | |
1388 | ||
1389 | *this_id = frame_id_build (info->vfp, info->start_pc); | |
1390 | } | |
1391 | ||
1392 | /* Retrieve the value of REGNUM in FRAME. Don't give up! */ | |
1393 | ||
1394 | static struct value * | |
1395 | alpha_heuristic_frame_prev_register (const frame_info_ptr &this_frame, | |
1396 | void **this_prologue_cache, int regnum) | |
1397 | { | |
1398 | struct alpha_heuristic_unwind_cache *info | |
1399 | = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0); | |
1400 | ||
1401 | /* The PC of the previous frame is stored in the link register of | |
1402 | the current frame. Frob regnum so that we pull the value from | |
1403 | the correct place. */ | |
1404 | if (regnum == ALPHA_PC_REGNUM) | |
1405 | regnum = info->return_reg; | |
1406 | ||
1407 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | |
1408 | } | |
1409 | ||
1410 | static const struct frame_unwind_legacy alpha_heuristic_frame_unwind ( | |
1411 | "alpha prologue", | |
1412 | NORMAL_FRAME, | |
1413 | FRAME_UNWIND_ARCH, | |
1414 | default_frame_unwind_stop_reason, | |
1415 | alpha_heuristic_frame_this_id, | |
1416 | alpha_heuristic_frame_prev_register, | |
1417 | NULL, | |
1418 | default_frame_sniffer | |
1419 | ); | |
1420 | ||
1421 | static CORE_ADDR | |
1422 | alpha_heuristic_frame_base_address (const frame_info_ptr &this_frame, | |
1423 | void **this_prologue_cache) | |
1424 | { | |
1425 | struct alpha_heuristic_unwind_cache *info | |
1426 | = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0); | |
1427 | ||
1428 | return info->vfp; | |
1429 | } | |
1430 | ||
1431 | static const struct frame_base alpha_heuristic_frame_base = { | |
1432 | &alpha_heuristic_frame_unwind, | |
1433 | alpha_heuristic_frame_base_address, | |
1434 | alpha_heuristic_frame_base_address, | |
1435 | alpha_heuristic_frame_base_address | |
1436 | }; | |
1437 | ||
1438 | /* Just like reinit_frame_cache, but with the right arguments to be | |
1439 | callable as an sfunc. Used by the "set heuristic-fence-post" command. */ | |
1440 | ||
1441 | static void | |
1442 | reinit_frame_cache_sfunc (const char *args, | |
1443 | int from_tty, struct cmd_list_element *c) | |
1444 | { | |
1445 | reinit_frame_cache (); | |
1446 | } | |
1447 | \f | |
1448 | /* Helper routines for alpha*-nat.c files to move register sets to and | |
1449 | from core files. The UNIQUE pointer is allowed to be NULL, as most | |
1450 | targets don't supply this value in their core files. */ | |
1451 | ||
1452 | void | |
1453 | alpha_supply_int_regs (struct regcache *regcache, int regno, | |
1454 | const void *r0_r30, const void *pc, const void *unique) | |
1455 | { | |
1456 | const gdb_byte *regs = (const gdb_byte *) r0_r30; | |
1457 | int i; | |
1458 | ||
1459 | for (i = 0; i < 31; ++i) | |
1460 | if (regno == i || regno == -1) | |
1461 | regcache->raw_supply (i, regs + i * 8); | |
1462 | ||
1463 | if (regno == ALPHA_ZERO_REGNUM || regno == -1) | |
1464 | regcache->raw_supply_zeroed (ALPHA_ZERO_REGNUM); | |
1465 | ||
1466 | if (regno == ALPHA_PC_REGNUM || regno == -1) | |
1467 | regcache->raw_supply (ALPHA_PC_REGNUM, pc); | |
1468 | ||
1469 | if (regno == ALPHA_UNIQUE_REGNUM || regno == -1) | |
1470 | regcache->raw_supply (ALPHA_UNIQUE_REGNUM, unique); | |
1471 | } | |
1472 | ||
1473 | void | |
1474 | alpha_fill_int_regs (const struct regcache *regcache, | |
1475 | int regno, void *r0_r30, void *pc, void *unique) | |
1476 | { | |
1477 | gdb_byte *regs = (gdb_byte *) r0_r30; | |
1478 | int i; | |
1479 | ||
1480 | for (i = 0; i < 31; ++i) | |
1481 | if (regno == i || regno == -1) | |
1482 | regcache->raw_collect (i, regs + i * 8); | |
1483 | ||
1484 | if (regno == ALPHA_PC_REGNUM || regno == -1) | |
1485 | regcache->raw_collect (ALPHA_PC_REGNUM, pc); | |
1486 | ||
1487 | if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1)) | |
1488 | regcache->raw_collect (ALPHA_UNIQUE_REGNUM, unique); | |
1489 | } | |
1490 | ||
1491 | void | |
1492 | alpha_supply_fp_regs (struct regcache *regcache, int regno, | |
1493 | const void *f0_f30, const void *fpcr) | |
1494 | { | |
1495 | const gdb_byte *regs = (const gdb_byte *) f0_f30; | |
1496 | int i; | |
1497 | ||
1498 | for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i) | |
1499 | if (regno == i || regno == -1) | |
1500 | regcache->raw_supply (i, regs + (i - ALPHA_FP0_REGNUM) * 8); | |
1501 | ||
1502 | if (regno == ALPHA_FPCR_REGNUM || regno == -1) | |
1503 | regcache->raw_supply (ALPHA_FPCR_REGNUM, fpcr); | |
1504 | } | |
1505 | ||
1506 | void | |
1507 | alpha_fill_fp_regs (const struct regcache *regcache, | |
1508 | int regno, void *f0_f30, void *fpcr) | |
1509 | { | |
1510 | gdb_byte *regs = (gdb_byte *) f0_f30; | |
1511 | int i; | |
1512 | ||
1513 | for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i) | |
1514 | if (regno == i || regno == -1) | |
1515 | regcache->raw_collect (i, regs + (i - ALPHA_FP0_REGNUM) * 8); | |
1516 | ||
1517 | if (regno == ALPHA_FPCR_REGNUM || regno == -1) | |
1518 | regcache->raw_collect (ALPHA_FPCR_REGNUM, fpcr); | |
1519 | } | |
1520 | ||
1521 | \f | |
1522 | ||
1523 | /* Return nonzero if the G_floating register value in REG is equal to | |
1524 | zero for FP control instructions. */ | |
1525 | ||
1526 | static int | |
1527 | fp_register_zero_p (LONGEST reg) | |
1528 | { | |
1529 | /* Check that all bits except the sign bit are zero. */ | |
1530 | const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1; | |
1531 | ||
1532 | return ((reg & zero_mask) == 0); | |
1533 | } | |
1534 | ||
1535 | /* Return the value of the sign bit for the G_floating register | |
1536 | value held in REG. */ | |
1537 | ||
1538 | static int | |
1539 | fp_register_sign_bit (LONGEST reg) | |
1540 | { | |
1541 | const LONGEST sign_mask = (LONGEST) 1 << 63; | |
1542 | ||
1543 | return ((reg & sign_mask) != 0); | |
1544 | } | |
1545 | ||
1546 | /* alpha_software_single_step() is called just before we want to resume | |
1547 | the inferior, if we want to single-step it but there is no hardware | |
1548 | or kernel single-step support (NetBSD on Alpha, for example). We find | |
1549 | the target of the coming instruction and breakpoint it. */ | |
1550 | ||
1551 | static CORE_ADDR | |
1552 | alpha_next_pc (struct regcache *regcache, CORE_ADDR pc) | |
1553 | { | |
1554 | struct gdbarch *gdbarch = regcache->arch (); | |
1555 | unsigned int insn; | |
1556 | unsigned int op; | |
1557 | int regno; | |
1558 | int offset; | |
1559 | LONGEST rav; | |
1560 | ||
1561 | insn = alpha_read_insn (gdbarch, pc); | |
1562 | ||
1563 | /* Opcode is top 6 bits. */ | |
1564 | op = (insn >> 26) & 0x3f; | |
1565 | ||
1566 | if (op == 0x1a) | |
1567 | { | |
1568 | /* Jump format: target PC is: | |
1569 | RB & ~3 */ | |
1570 | return (regcache_raw_get_unsigned (regcache, (insn >> 16) & 0x1f) & ~3); | |
1571 | } | |
1572 | ||
1573 | if ((op & 0x30) == 0x30) | |
1574 | { | |
1575 | /* Branch format: target PC is: | |
1576 | (new PC) + (4 * sext(displacement)) */ | |
1577 | if (op == 0x30 /* BR */ | |
1578 | || op == 0x34) /* BSR */ | |
1579 | { | |
1580 | branch_taken: | |
1581 | offset = (insn & 0x001fffff); | |
1582 | if (offset & 0x00100000) | |
1583 | offset |= 0xffe00000; | |
1584 | offset *= ALPHA_INSN_SIZE; | |
1585 | return (pc + ALPHA_INSN_SIZE + offset); | |
1586 | } | |
1587 | ||
1588 | /* Need to determine if branch is taken; read RA. */ | |
1589 | regno = (insn >> 21) & 0x1f; | |
1590 | switch (op) | |
1591 | { | |
1592 | case 0x31: /* FBEQ */ | |
1593 | case 0x36: /* FBGE */ | |
1594 | case 0x37: /* FBGT */ | |
1595 | case 0x33: /* FBLE */ | |
1596 | case 0x32: /* FBLT */ | |
1597 | case 0x35: /* FBNE */ | |
1598 | regno += gdbarch_fp0_regnum (gdbarch); | |
1599 | } | |
1600 | ||
1601 | rav = regcache_raw_get_signed (regcache, regno); | |
1602 | ||
1603 | switch (op) | |
1604 | { | |
1605 | case 0x38: /* BLBC */ | |
1606 | if ((rav & 1) == 0) | |
1607 | goto branch_taken; | |
1608 | break; | |
1609 | case 0x3c: /* BLBS */ | |
1610 | if (rav & 1) | |
1611 | goto branch_taken; | |
1612 | break; | |
1613 | case 0x39: /* BEQ */ | |
1614 | if (rav == 0) | |
1615 | goto branch_taken; | |
1616 | break; | |
1617 | case 0x3d: /* BNE */ | |
1618 | if (rav != 0) | |
1619 | goto branch_taken; | |
1620 | break; | |
1621 | case 0x3a: /* BLT */ | |
1622 | if (rav < 0) | |
1623 | goto branch_taken; | |
1624 | break; | |
1625 | case 0x3b: /* BLE */ | |
1626 | if (rav <= 0) | |
1627 | goto branch_taken; | |
1628 | break; | |
1629 | case 0x3f: /* BGT */ | |
1630 | if (rav > 0) | |
1631 | goto branch_taken; | |
1632 | break; | |
1633 | case 0x3e: /* BGE */ | |
1634 | if (rav >= 0) | |
1635 | goto branch_taken; | |
1636 | break; | |
1637 | ||
1638 | /* Floating point branches. */ | |
1639 | ||
1640 | case 0x31: /* FBEQ */ | |
1641 | if (fp_register_zero_p (rav)) | |
1642 | goto branch_taken; | |
1643 | break; | |
1644 | case 0x36: /* FBGE */ | |
1645 | if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav)) | |
1646 | goto branch_taken; | |
1647 | break; | |
1648 | case 0x37: /* FBGT */ | |
1649 | if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav)) | |
1650 | goto branch_taken; | |
1651 | break; | |
1652 | case 0x33: /* FBLE */ | |
1653 | if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav)) | |
1654 | goto branch_taken; | |
1655 | break; | |
1656 | case 0x32: /* FBLT */ | |
1657 | if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav)) | |
1658 | goto branch_taken; | |
1659 | break; | |
1660 | case 0x35: /* FBNE */ | |
1661 | if (! fp_register_zero_p (rav)) | |
1662 | goto branch_taken; | |
1663 | break; | |
1664 | } | |
1665 | } | |
1666 | ||
1667 | /* Not a branch or branch not taken; target PC is: | |
1668 | pc + 4 */ | |
1669 | return (pc + ALPHA_INSN_SIZE); | |
1670 | } | |
1671 | ||
1672 | std::vector<CORE_ADDR> | |
1673 | alpha_software_single_step (struct regcache *regcache) | |
1674 | { | |
1675 | struct gdbarch *gdbarch = regcache->arch (); | |
1676 | ||
1677 | CORE_ADDR pc = regcache_read_pc (regcache); | |
1678 | ||
1679 | std::vector<CORE_ADDR> next_pcs | |
1680 | = alpha_deal_with_atomic_sequence (gdbarch, pc); | |
1681 | if (!next_pcs.empty ()) | |
1682 | return next_pcs; | |
1683 | ||
1684 | CORE_ADDR next_pc = alpha_next_pc (regcache, pc); | |
1685 | return {next_pc}; | |
1686 | } | |
1687 | ||
1688 | \f | |
1689 | /* Initialize the current architecture based on INFO. If possible, reuse an | |
1690 | architecture from ARCHES, which is a list of architectures already created | |
1691 | during this debugging session. | |
1692 | ||
1693 | Called e.g. at program startup, when reading a core file, and when reading | |
1694 | a binary file. */ | |
1695 | ||
1696 | static struct gdbarch * | |
1697 | alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1698 | { | |
1699 | tdesc_arch_data_up tdesc_data; | |
1700 | const struct target_desc *tdesc = info.target_desc; | |
1701 | ||
1702 | /* Find a candidate among extant architectures. */ | |
1703 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1704 | if (arches != NULL) | |
1705 | return arches->gdbarch; | |
1706 | ||
1707 | if (tdesc == nullptr) | |
1708 | tdesc = tdesc_alpha; | |
1709 | ||
1710 | /* Validate target description. */ | |
1711 | if (tdesc_has_registers (tdesc)) | |
1712 | { | |
1713 | const struct tdesc_feature *feature; | |
1714 | bool valid_p; | |
1715 | ||
1716 | feature = tdesc_find_feature (tdesc, "org.gnu.gdb.alpha.core"); | |
1717 | if (feature == nullptr) | |
1718 | return nullptr; | |
1719 | ||
1720 | tdesc_data = tdesc_data_alloc (); | |
1721 | valid_p = true; | |
1722 | for (int i = 0; i < ALPHA_NUM_REGS; ++i) | |
1723 | valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i, | |
1724 | alpha_register_names[i]); | |
1725 | ||
1726 | if (!valid_p) | |
1727 | return nullptr; | |
1728 | } | |
1729 | ||
1730 | gdb_assert (tdesc_data != nullptr); | |
1731 | ||
1732 | gdbarch *gdbarch | |
1733 | = gdbarch_alloc (&info, gdbarch_tdep_up (new alpha_gdbarch_tdep)); | |
1734 | alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch); | |
1735 | ||
1736 | /* Lowest text address. This is used by heuristic_proc_start() | |
1737 | to decide when to stop looking. */ | |
1738 | tdep->vm_min_address = (CORE_ADDR) 0x120000000LL; | |
1739 | ||
1740 | tdep->dynamic_sigtramp_offset = NULL; | |
1741 | tdep->sigcontext_addr = NULL; | |
1742 | tdep->sc_pc_offset = 2 * 8; | |
1743 | tdep->sc_regs_offset = 4 * 8; | |
1744 | tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8; | |
1745 | ||
1746 | tdep->jb_pc = -1; /* longjmp support not enabled by default. */ | |
1747 | ||
1748 | tdep->return_in_memory = alpha_return_in_memory_always; | |
1749 | ||
1750 | /* Type sizes */ | |
1751 | set_gdbarch_short_bit (gdbarch, 16); | |
1752 | set_gdbarch_int_bit (gdbarch, 32); | |
1753 | set_gdbarch_long_bit (gdbarch, 64); | |
1754 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1755 | set_gdbarch_wchar_bit (gdbarch, 64); | |
1756 | set_gdbarch_wchar_signed (gdbarch, 0); | |
1757 | set_gdbarch_float_bit (gdbarch, 32); | |
1758 | set_gdbarch_double_bit (gdbarch, 64); | |
1759 | set_gdbarch_long_double_bit (gdbarch, 64); | |
1760 | set_gdbarch_ptr_bit (gdbarch, 64); | |
1761 | ||
1762 | /* Register info */ | |
1763 | set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS); | |
1764 | set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM); | |
1765 | set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM); | |
1766 | set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM); | |
1767 | ||
1768 | tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data)); | |
1769 | ||
1770 | set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register); | |
1771 | set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register); | |
1772 | ||
1773 | set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p); | |
1774 | set_gdbarch_register_to_value (gdbarch, alpha_register_to_value); | |
1775 | set_gdbarch_value_to_register (gdbarch, alpha_value_to_register); | |
1776 | ||
1777 | set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p); | |
1778 | ||
1779 | /* Prologue heuristics. */ | |
1780 | set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue); | |
1781 | ||
1782 | /* Call info. */ | |
1783 | ||
1784 | set_gdbarch_return_value (gdbarch, alpha_return_value); | |
1785 | ||
1786 | /* Settings for calling functions in the inferior. */ | |
1787 | set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call); | |
1788 | ||
1789 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
1790 | set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); | |
1791 | ||
1792 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, | |
1793 | alpha_breakpoint::kind_from_pc); | |
1794 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, | |
1795 | alpha_breakpoint::bp_from_kind); | |
1796 | set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE); | |
1797 | set_gdbarch_cannot_step_breakpoint (gdbarch, 1); | |
1798 | ||
1799 | /* Handles single stepping of atomic sequences. */ | |
1800 | set_gdbarch_software_single_step (gdbarch, alpha_software_single_step); | |
1801 | ||
1802 | /* Hook in ABI-specific overrides, if they have been registered. */ | |
1803 | gdbarch_init_osabi (info, gdbarch); | |
1804 | ||
1805 | /* Now that we have tuned the configuration, set a few final things | |
1806 | based on what the OS ABI has told us. */ | |
1807 | ||
1808 | if (tdep->jb_pc >= 0) | |
1809 | set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target); | |
1810 | ||
1811 | frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind); | |
1812 | frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind); | |
1813 | ||
1814 | frame_base_set_default (gdbarch, &alpha_heuristic_frame_base); | |
1815 | ||
1816 | return gdbarch; | |
1817 | } | |
1818 | ||
1819 | void | |
1820 | alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) | |
1821 | { | |
1822 | dwarf2_append_unwinders (gdbarch); | |
1823 | frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer); | |
1824 | } | |
1825 | ||
1826 | INIT_GDB_FILE (alpha_tdep) | |
1827 | { | |
1828 | ||
1829 | gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL); | |
1830 | ||
1831 | initialize_tdesc_alpha (); | |
1832 | ||
1833 | /* Let the user set the fence post for heuristic_proc_start. */ | |
1834 | ||
1835 | /* We really would like to have both "0" and "unlimited" work, but | |
1836 | command.c doesn't deal with that. So make it a var_zinteger | |
1837 | because the user can always use "999999" or some such for unlimited. */ | |
1838 | /* We need to throw away the frame cache when we set this, since it | |
1839 | might change our ability to get backtraces. */ | |
1840 | add_setshow_zinteger_cmd ("heuristic-fence-post", class_support, | |
1841 | &heuristic_fence_post, _("\ | |
1842 | Set the distance searched for the start of a function."), _("\ | |
1843 | Show the distance searched for the start of a function."), _("\ | |
1844 | If you are debugging a stripped executable, GDB needs to search through the\n\ | |
1845 | program for the start of a function. This command sets the distance of the\n\ | |
1846 | search. The only need to set it is when debugging a stripped executable."), | |
1847 | reinit_frame_cache_sfunc, | |
1848 | NULL, /* FIXME: i18n: The distance searched for | |
1849 | the start of a function is \"%d\". */ | |
1850 | &setlist, &showlist); | |
1851 | } |