]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame_incremental - gdb/arm-linux-nat.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / arm-linux-nat.c
... / ...
CommitLineData
1/* GNU/Linux on ARM native support.
2 Copyright (C) 1999-2025 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19#include "inferior.h"
20#include "gdbcore.h"
21#include "regcache.h"
22#include "target.h"
23#include "linux-nat.h"
24#include "target-descriptions.h"
25#include "auxv.h"
26#include "observable.h"
27#include "gdbthread.h"
28
29#include "aarch32-tdep.h"
30#include "arm-tdep.h"
31#include "arm-linux-tdep.h"
32#include "aarch32-linux-nat.h"
33
34#include <elf/common.h>
35#include <sys/user.h>
36#include "nat/gdb_ptrace.h"
37#include <sys/utsname.h>
38#include <sys/procfs.h>
39
40#include "nat/linux-ptrace.h"
41#include "linux-tdep.h"
42
43/* Prototypes for supply_gregset etc. */
44#include "gregset.h"
45
46/* Defines ps_err_e, struct ps_prochandle. */
47#include "gdb_proc_service.h"
48
49#ifndef PTRACE_GET_THREAD_AREA
50#define PTRACE_GET_THREAD_AREA 22
51#endif
52
53#ifndef PTRACE_GETWMMXREGS
54#define PTRACE_GETWMMXREGS 18
55#define PTRACE_SETWMMXREGS 19
56#endif
57
58#ifndef PTRACE_GETVFPREGS
59#define PTRACE_GETVFPREGS 27
60#define PTRACE_SETVFPREGS 28
61#endif
62
63#ifndef PTRACE_GETHBPREGS
64#define PTRACE_GETHBPREGS 29
65#define PTRACE_SETHBPREGS 30
66#endif
67
68class arm_linux_nat_target final : public linux_nat_target
69{
70public:
71 /* Add our register access methods. */
72 void fetch_registers (struct regcache *, int) override;
73 void store_registers (struct regcache *, int) override;
74
75 /* Add our hardware breakpoint and watchpoint implementation. */
76 int can_use_hw_breakpoint (enum bptype, int, int) override;
77
78 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
79
80 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
81
82 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
83
84 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
85 struct expression *) override;
86
87 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
88 struct expression *) override;
89 bool stopped_by_watchpoint () override;
90
91 bool stopped_data_address (CORE_ADDR *) override;
92
93 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
94
95 const struct target_desc *read_description () override;
96
97 /* Override linux_nat_target low methods. */
98
99 /* Handle thread creation and exit. */
100 void low_new_thread (struct lwp_info *lp) override;
101 void low_delete_thread (struct arch_lwp_info *lp) override;
102 void low_prepare_to_resume (struct lwp_info *lp) override;
103
104 /* Handle process creation and exit. */
105 void low_new_fork (struct lwp_info *parent, pid_t child_pid) override;
106 void low_init_process (pid_t pid) override;
107 void low_forget_process (pid_t pid) override;
108};
109
110static arm_linux_nat_target the_arm_linux_nat_target;
111
112/* Get the whole floating point state of the process and store it
113 into regcache. */
114
115static void
116fetch_fpregs (struct regcache *regcache)
117{
118 int ret, regno, tid;
119 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
120
121 /* Get the thread id for the ptrace call. */
122 tid = regcache->ptid ().lwp ();
123
124 /* Read the floating point state. */
125 if (have_ptrace_getregset == TRIBOOL_TRUE)
126 {
127 struct iovec iov;
128
129 iov.iov_base = &fp;
130 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
131
132 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
133 }
134 else
135 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
136
137 if (ret < 0)
138 perror_with_name (_("Unable to fetch the floating point registers"));
139
140 /* Fetch fpsr. */
141 regcache->raw_supply (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
142
143 /* Fetch the floating point registers. */
144 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
145 supply_nwfpe_register (regcache, regno, fp);
146}
147
148/* Save the whole floating point state of the process using
149 the contents from regcache. */
150
151static void
152store_fpregs (const struct regcache *regcache)
153{
154 int ret, regno, tid;
155 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
156
157 /* Get the thread id for the ptrace call. */
158 tid = regcache->ptid ().lwp ();
159
160 /* Read the floating point state. */
161 if (have_ptrace_getregset == TRIBOOL_TRUE)
162 {
163 elf_fpregset_t fpregs;
164 struct iovec iov;
165
166 iov.iov_base = &fpregs;
167 iov.iov_len = sizeof (fpregs);
168
169 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
170 }
171 else
172 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
173
174 if (ret < 0)
175 perror_with_name (_("Unable to fetch the floating point registers"));
176
177 /* Store fpsr. */
178 if (REG_VALID == regcache->get_register_status (ARM_FPS_REGNUM))
179 regcache->raw_collect (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
180
181 /* Store the floating point registers. */
182 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
183 if (REG_VALID == regcache->get_register_status (regno))
184 collect_nwfpe_register (regcache, regno, fp);
185
186 if (have_ptrace_getregset == TRIBOOL_TRUE)
187 {
188 struct iovec iov;
189
190 iov.iov_base = &fp;
191 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
192
193 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iov);
194 }
195 else
196 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
197
198 if (ret < 0)
199 perror_with_name (_("Unable to store floating point registers"));
200}
201
202/* Fetch all general registers of the process and store into
203 regcache. */
204
205static void
206fetch_regs (struct regcache *regcache)
207{
208 int ret, tid;
209 elf_gregset_t regs;
210
211 /* Get the thread id for the ptrace call. */
212 tid = regcache->ptid ().lwp ();
213
214 if (have_ptrace_getregset == TRIBOOL_TRUE)
215 {
216 struct iovec iov;
217
218 iov.iov_base = &regs;
219 iov.iov_len = sizeof (regs);
220
221 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
222 }
223 else
224 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
225
226 if (ret < 0)
227 perror_with_name (_("Unable to fetch general registers"));
228
229 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, arm_apcs_32);
230}
231
232static void
233store_regs (const struct regcache *regcache)
234{
235 int ret, tid;
236 elf_gregset_t regs;
237
238 /* Get the thread id for the ptrace call. */
239 tid = regcache->ptid ().lwp ();
240
241 /* Fetch the general registers. */
242 if (have_ptrace_getregset == TRIBOOL_TRUE)
243 {
244 struct iovec iov;
245
246 iov.iov_base = &regs;
247 iov.iov_len = sizeof (regs);
248
249 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
250 }
251 else
252 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
253
254 if (ret < 0)
255 perror_with_name (_("Unable to fetch general registers"));
256
257 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, arm_apcs_32);
258
259 if (have_ptrace_getregset == TRIBOOL_TRUE)
260 {
261 struct iovec iov;
262
263 iov.iov_base = &regs;
264 iov.iov_len = sizeof (regs);
265
266 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iov);
267 }
268 else
269 ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
270
271 if (ret < 0)
272 perror_with_name (_("Unable to store general registers"));
273}
274
275/* Fetch all WMMX registers of the process and store into
276 regcache. */
277
278static void
279fetch_wmmx_regs (struct regcache *regcache)
280{
281 char regbuf[IWMMXT_REGS_SIZE];
282 int ret, regno, tid;
283
284 /* Get the thread id for the ptrace call. */
285 tid = regcache->ptid ().lwp ();
286
287 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
288 if (ret < 0)
289 perror_with_name (_("Unable to fetch WMMX registers"));
290
291 for (regno = 0; regno < 16; regno++)
292 regcache->raw_supply (regno + ARM_WR0_REGNUM, &regbuf[regno * 8]);
293
294 for (regno = 0; regno < 2; regno++)
295 regcache->raw_supply (regno + ARM_WCSSF_REGNUM,
296 &regbuf[16 * 8 + regno * 4]);
297
298 for (regno = 0; regno < 4; regno++)
299 regcache->raw_supply (regno + ARM_WCGR0_REGNUM,
300 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
301}
302
303static void
304store_wmmx_regs (const struct regcache *regcache)
305{
306 char regbuf[IWMMXT_REGS_SIZE];
307 int ret, regno, tid;
308
309 /* Get the thread id for the ptrace call. */
310 tid = regcache->ptid ().lwp ();
311
312 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
313 if (ret < 0)
314 perror_with_name (_("Unable to fetch WMMX registers"));
315
316 for (regno = 0; regno < 16; regno++)
317 if (REG_VALID == regcache->get_register_status (regno + ARM_WR0_REGNUM))
318 regcache->raw_collect (regno + ARM_WR0_REGNUM, &regbuf[regno * 8]);
319
320 for (regno = 0; regno < 2; regno++)
321 if (REG_VALID == regcache->get_register_status (regno + ARM_WCSSF_REGNUM))
322 regcache->raw_collect (regno + ARM_WCSSF_REGNUM,
323 &regbuf[16 * 8 + regno * 4]);
324
325 for (regno = 0; regno < 4; regno++)
326 if (REG_VALID == regcache->get_register_status (regno + ARM_WCGR0_REGNUM))
327 regcache->raw_collect (regno + ARM_WCGR0_REGNUM,
328 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
329
330 ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf);
331
332 if (ret < 0)
333 perror_with_name (_("Unable to store WMMX registers"));
334}
335
336static void
337fetch_vfp_regs (struct regcache *regcache)
338{
339 gdb_byte regbuf[ARM_VFP3_REGS_SIZE];
340 int ret, tid;
341 struct gdbarch *gdbarch = regcache->arch ();
342 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
343
344 /* Get the thread id for the ptrace call. */
345 tid = regcache->ptid ().lwp ();
346
347 if (have_ptrace_getregset == TRIBOOL_TRUE)
348 {
349 struct iovec iov;
350
351 iov.iov_base = regbuf;
352 iov.iov_len = ARM_VFP3_REGS_SIZE;
353 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
354 }
355 else
356 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
357
358 if (ret < 0)
359 perror_with_name (_("Unable to fetch VFP registers"));
360
361 aarch32_vfp_regcache_supply (regcache, regbuf,
362 tdep->vfp_register_count);
363}
364
365static void
366store_vfp_regs (const struct regcache *regcache)
367{
368 gdb_byte regbuf[ARM_VFP3_REGS_SIZE];
369 int ret, tid;
370 struct gdbarch *gdbarch = regcache->arch ();
371 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
372
373 /* Get the thread id for the ptrace call. */
374 tid = regcache->ptid ().lwp ();
375
376 if (have_ptrace_getregset == TRIBOOL_TRUE)
377 {
378 struct iovec iov;
379
380 iov.iov_base = regbuf;
381 iov.iov_len = ARM_VFP3_REGS_SIZE;
382 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
383 }
384 else
385 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
386
387 if (ret < 0)
388 perror_with_name (_("Unable to fetch VFP registers (for update)"));
389
390 aarch32_vfp_regcache_collect (regcache, regbuf,
391 tdep->vfp_register_count);
392
393 if (have_ptrace_getregset == TRIBOOL_TRUE)
394 {
395 struct iovec iov;
396
397 iov.iov_base = regbuf;
398 iov.iov_len = ARM_VFP3_REGS_SIZE;
399 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iov);
400 }
401 else
402 ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf);
403
404 if (ret < 0)
405 perror_with_name (_("Unable to store VFP registers"));
406}
407
408/* Fetch registers from the child process. Fetch all registers if
409 regno == -1, otherwise fetch all general registers or all floating
410 point registers depending upon the value of regno. */
411
412void
413arm_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
414{
415 struct gdbarch *gdbarch = regcache->arch ();
416 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
417
418 if (-1 == regno)
419 {
420 fetch_regs (regcache);
421 if (tdep->have_wmmx_registers)
422 fetch_wmmx_regs (regcache);
423 if (tdep->vfp_register_count > 0)
424 fetch_vfp_regs (regcache);
425 if (tdep->have_fpa_registers)
426 fetch_fpregs (regcache);
427 }
428 else
429 {
430 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
431 fetch_regs (regcache);
432 else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM)
433 fetch_fpregs (regcache);
434 else if (tdep->have_wmmx_registers
435 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
436 fetch_wmmx_regs (regcache);
437 else if (tdep->vfp_register_count > 0
438 && regno >= ARM_D0_REGNUM
439 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
440 || regno == ARM_FPSCR_REGNUM))
441 fetch_vfp_regs (regcache);
442 }
443}
444
445/* Store registers back into the inferior. Store all registers if
446 regno == -1, otherwise store all general registers or all floating
447 point registers depending upon the value of regno. */
448
449void
450arm_linux_nat_target::store_registers (struct regcache *regcache, int regno)
451{
452 struct gdbarch *gdbarch = regcache->arch ();
453 arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch);
454
455 if (-1 == regno)
456 {
457 store_regs (regcache);
458 if (tdep->have_wmmx_registers)
459 store_wmmx_regs (regcache);
460 if (tdep->vfp_register_count > 0)
461 store_vfp_regs (regcache);
462 if (tdep->have_fpa_registers)
463 store_fpregs (regcache);
464 }
465 else
466 {
467 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
468 store_regs (regcache);
469 else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM))
470 store_fpregs (regcache);
471 else if (tdep->have_wmmx_registers
472 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
473 store_wmmx_regs (regcache);
474 else if (tdep->vfp_register_count > 0
475 && regno >= ARM_D0_REGNUM
476 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
477 || regno == ARM_FPSCR_REGNUM))
478 store_vfp_regs (regcache);
479 }
480}
481
482/* Wrapper functions for the standard regset handling, used by
483 thread debugging. */
484
485void
486fill_gregset (const struct regcache *regcache,
487 gdb_gregset_t *gregsetp, int regno)
488{
489 arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0);
490}
491
492void
493supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
494{
495 arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0);
496}
497
498void
499fill_fpregset (const struct regcache *regcache,
500 gdb_fpregset_t *fpregsetp, int regno)
501{
502 arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0);
503}
504
505/* Fill GDB's register array with the floating-point register values
506 in *fpregsetp. */
507
508void
509supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
510{
511 arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0);
512}
513
514/* Fetch the thread-local storage pointer for libthread_db. */
515
516ps_err_e
517ps_get_thread_area (struct ps_prochandle *ph,
518 lwpid_t lwpid, int idx, void **base)
519{
520 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
521 return PS_ERR;
522
523 /* IDX is the bias from the thread pointer to the beginning of the
524 thread descriptor. It has to be subtracted due to implementation
525 quirks in libthread_db. */
526 *base = (void *) ((char *)*base - idx);
527
528 return PS_OK;
529}
530
531const struct target_desc *
532arm_linux_nat_target::read_description ()
533{
534 if (inferior_ptid == null_ptid)
535 return this->beneath ()->read_description ();
536
537 CORE_ADDR arm_hwcap = linux_get_hwcap ();
538
539 if (have_ptrace_getregset == TRIBOOL_UNKNOWN)
540 {
541 elf_gregset_t gpregs;
542 struct iovec iov;
543 int tid = inferior_ptid.pid ();
544
545 iov.iov_base = &gpregs;
546 iov.iov_len = sizeof (gpregs);
547
548 /* Check if PTRACE_GETREGSET works. */
549 if (ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov) < 0)
550 have_ptrace_getregset = TRIBOOL_FALSE;
551 else
552 have_ptrace_getregset = TRIBOOL_TRUE;
553 }
554
555 if (arm_hwcap & HWCAP_IWMMXT)
556 return arm_read_description (ARM_FP_TYPE_IWMMXT, false);
557
558 if (arm_hwcap & HWCAP_VFP)
559 {
560 /* Make sure that the kernel supports reading VFP registers. Support was
561 added in 2.6.30. */
562 int pid = inferior_ptid.pid ();
563 errno = 0;
564 char *buf = (char *) alloca (ARM_VFP3_REGS_SIZE);
565 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0 && errno == EIO)
566 return nullptr;
567
568 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
569 Neon with VFPv3-D32. */
570 if (arm_hwcap & HWCAP_NEON)
571 return aarch32_read_description (false);
572 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
573 return arm_read_description (ARM_FP_TYPE_VFPV3, false);
574
575 return arm_read_description (ARM_FP_TYPE_VFPV2, false);
576 }
577
578 return this->beneath ()->read_description ();
579}
580
581/* Information describing the hardware breakpoint capabilities. */
582struct arm_linux_hwbp_cap
583{
584 gdb_byte arch;
585 gdb_byte max_wp_length;
586 gdb_byte wp_count;
587 gdb_byte bp_count;
588};
589
590/* Since we cannot dynamically allocate subfields of arm_linux_process_info,
591 assume a maximum number of supported break-/watchpoints. */
592#define MAX_BPTS 16
593#define MAX_WPTS 16
594
595/* Get hold of the Hardware Breakpoint information for the target we are
596 attached to. Returns NULL if the kernel doesn't support Hardware
597 breakpoints at all, or a pointer to the information structure. */
598static const struct arm_linux_hwbp_cap *
599arm_linux_get_hwbp_cap (void)
600{
601 /* The info structure we return. */
602 static struct arm_linux_hwbp_cap info;
603
604 /* Is INFO in a good state? -1 means that no attempt has been made to
605 initialize INFO; 0 means an attempt has been made, but it failed; 1
606 means INFO is in an initialized state. */
607 static int available = -1;
608
609 if (available == -1)
610 {
611 int tid;
612 unsigned int val;
613
614 tid = inferior_ptid.lwp ();
615 if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0)
616 available = 0;
617 else
618 {
619 info.arch = (gdb_byte)((val >> 24) & 0xff);
620 info.max_wp_length = (gdb_byte)((val >> 16) & 0xff);
621 info.wp_count = (gdb_byte)((val >> 8) & 0xff);
622 info.bp_count = (gdb_byte)(val & 0xff);
623
624 if (info.wp_count > MAX_WPTS)
625 {
626 warning (_("arm-linux-gdb supports %d hardware watchpoints but target \
627 supports %d"), MAX_WPTS, info.wp_count);
628 info.wp_count = MAX_WPTS;
629 }
630
631 if (info.bp_count > MAX_BPTS)
632 {
633 warning (_("arm-linux-gdb supports %d hardware breakpoints but target \
634 supports %d"), MAX_BPTS, info.bp_count);
635 info.bp_count = MAX_BPTS;
636 }
637 available = (info.arch != 0);
638 }
639 }
640
641 return available == 1 ? &info : NULL;
642}
643
644/* How many hardware breakpoints are available? */
645static int
646arm_linux_get_hw_breakpoint_count (void)
647{
648 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
649 return cap != NULL ? cap->bp_count : 0;
650}
651
652/* How many hardware watchpoints are available? */
653static int
654arm_linux_get_hw_watchpoint_count (void)
655{
656 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
657 return cap != NULL ? cap->wp_count : 0;
658}
659
660/* Have we got a free break-/watch-point available for use? Returns -1 if
661 there is not an appropriate resource available, otherwise returns 1. */
662int
663arm_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
664 int cnt, int ot)
665{
666 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
667 || type == bp_access_watchpoint || type == bp_watchpoint)
668 {
669 int count = arm_linux_get_hw_watchpoint_count ();
670
671 if (count == 0)
672 return 0;
673 else if (cnt + ot > count)
674 return -1;
675 }
676 else if (type == bp_hardware_breakpoint)
677 {
678 int count = arm_linux_get_hw_breakpoint_count ();
679
680 if (count == 0)
681 return 0;
682 else if (cnt > count)
683 return -1;
684 }
685 else
686 gdb_assert_not_reached ("unknown breakpoint type");
687
688 return 1;
689}
690
691/* Enum describing the different types of ARM hardware break-/watch-points. */
692typedef enum
693{
694 arm_hwbp_break = 0,
695 arm_hwbp_load = 1,
696 arm_hwbp_store = 2,
697 arm_hwbp_access = 3
698} arm_hwbp_type;
699
700/* Type describing an ARM Hardware Breakpoint Control register value. */
701typedef unsigned int arm_hwbp_control_t;
702
703/* Structure used to keep track of hardware break-/watch-points. */
704struct arm_linux_hw_breakpoint
705{
706 /* Address to break on, or being watched. */
707 unsigned int address;
708 /* Control register for break-/watch- point. */
709 arm_hwbp_control_t control;
710};
711
712/* Structure containing arrays of per process hardware break-/watchpoints
713 for caching address and control information.
714
715 The Linux ptrace interface to hardware break-/watch-points presents the
716 values in a vector centred around 0 (which is used fo generic information).
717 Positive indices refer to breakpoint addresses/control registers, negative
718 indices to watchpoint addresses/control registers.
719
720 The Linux vector is indexed as follows:
721 -((i << 1) + 2): Control register for watchpoint i.
722 -((i << 1) + 1): Address register for watchpoint i.
723 0: Information register.
724 ((i << 1) + 1): Address register for breakpoint i.
725 ((i << 1) + 2): Control register for breakpoint i.
726
727 This structure is used as a per-thread cache of the state stored by the
728 kernel, so that we don't need to keep calling into the kernel to find a
729 free breakpoint.
730
731 We treat break-/watch-points with their enable bit clear as being deleted.
732 */
733struct arm_linux_debug_reg_state
734{
735 /* Hardware breakpoints for this process. */
736 struct arm_linux_hw_breakpoint bpts[MAX_BPTS];
737 /* Hardware watchpoints for this process. */
738 struct arm_linux_hw_breakpoint wpts[MAX_WPTS];
739};
740
741/* Per-process arch-specific data we want to keep. */
742struct arm_linux_process_info
743{
744 /* Linked list. */
745 struct arm_linux_process_info *next;
746 /* The process identifier. */
747 pid_t pid;
748 /* Hardware break-/watchpoints state information. */
749 struct arm_linux_debug_reg_state state;
750
751};
752
753/* Per-thread arch-specific data we want to keep. */
754struct arch_lwp_info
755{
756 /* Non-zero if our copy differs from what's recorded in the thread. */
757 char bpts_changed[MAX_BPTS];
758 char wpts_changed[MAX_WPTS];
759};
760
761static struct arm_linux_process_info *arm_linux_process_list = NULL;
762
763/* Find process data for process PID. */
764
765static struct arm_linux_process_info *
766arm_linux_find_process_pid (pid_t pid)
767{
768 struct arm_linux_process_info *proc;
769
770 for (proc = arm_linux_process_list; proc; proc = proc->next)
771 if (proc->pid == pid)
772 return proc;
773
774 return NULL;
775}
776
777/* Add process data for process PID. Returns newly allocated info
778 object. */
779
780static struct arm_linux_process_info *
781arm_linux_add_process (pid_t pid)
782{
783 struct arm_linux_process_info *proc;
784
785 proc = XCNEW (struct arm_linux_process_info);
786 proc->pid = pid;
787
788 proc->next = arm_linux_process_list;
789 arm_linux_process_list = proc;
790
791 return proc;
792}
793
794/* Get data specific info for process PID, creating it if necessary.
795 Never returns NULL. */
796
797static struct arm_linux_process_info *
798arm_linux_process_info_get (pid_t pid)
799{
800 struct arm_linux_process_info *proc;
801
802 proc = arm_linux_find_process_pid (pid);
803 if (proc == NULL)
804 proc = arm_linux_add_process (pid);
805
806 return proc;
807}
808
809/* Implement the "low_init_process" target_ops method. */
810
811void
812arm_linux_nat_target::low_init_process (pid_t pid)
813{
814 /* Set the hardware debug register capacity. This requires the process to be
815 ptrace-stopped, otherwise detection will fail and software watchpoints will
816 be used instead of hardware. If we allow this to be done lazily, we
817 cannot guarantee that it's called when the process is ptrace-stopped, so
818 do it now. */
819 arm_linux_get_hwbp_cap ();
820}
821
822/* Called whenever GDB is no longer debugging process PID. It deletes
823 data structures that keep track of debug register state. */
824
825void
826arm_linux_nat_target::low_forget_process (pid_t pid)
827{
828 struct arm_linux_process_info *proc, **proc_link;
829
830 proc = arm_linux_process_list;
831 proc_link = &arm_linux_process_list;
832
833 while (proc != NULL)
834 {
835 if (proc->pid == pid)
836 {
837 *proc_link = proc->next;
838
839 xfree (proc);
840 return;
841 }
842
843 proc_link = &proc->next;
844 proc = *proc_link;
845 }
846}
847
848/* Get hardware break-/watchpoint state for process PID. */
849
850static struct arm_linux_debug_reg_state *
851arm_linux_get_debug_reg_state (pid_t pid)
852{
853 return &arm_linux_process_info_get (pid)->state;
854}
855
856/* Initialize an ARM hardware break-/watch-point control register value.
857 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the
858 type of break-/watch-point; ENABLE indicates whether the point is enabled.
859 */
860static arm_hwbp_control_t
861arm_hwbp_control_initialize (unsigned byte_address_select,
862 arm_hwbp_type hwbp_type,
863 int enable)
864{
865 gdb_assert ((byte_address_select & ~0xffU) == 0);
866 gdb_assert (hwbp_type != arm_hwbp_break
867 || ((byte_address_select & 0xfU) != 0));
868
869 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
870}
871
872/* Does the breakpoint control value CONTROL have the enable bit set? */
873static int
874arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
875{
876 return control & 0x1;
877}
878
879/* Is the breakpoint control value CONTROL initialized? */
880
881static int
882arm_hwbp_control_is_initialized (arm_hwbp_control_t control)
883{
884 return control != 0;
885}
886
887/* Change a breakpoint control word so that it is in the disabled state. */
888static arm_hwbp_control_t
889arm_hwbp_control_disable (arm_hwbp_control_t control)
890{
891 return control & ~0x1;
892}
893
894/* Initialise the hardware breakpoint structure P. The breakpoint will be
895 enabled, and will point to the placed address of BP_TGT. */
896static void
897arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch,
898 struct bp_target_info *bp_tgt,
899 struct arm_linux_hw_breakpoint *p)
900{
901 unsigned mask;
902 CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address;
903
904 /* We have to create a mask for the control register which says which bits
905 of the word pointed to by address to break on. */
906 if (arm_pc_is_thumb (gdbarch, address))
907 {
908 mask = 0x3;
909 address &= ~1;
910 }
911 else
912 {
913 mask = 0xf;
914 address &= ~3;
915 }
916
917 p->address = (unsigned int) address;
918 p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1);
919}
920
921/* Get the ARM hardware breakpoint type from the TYPE value we're
922 given when asked to set a watchpoint. */
923static arm_hwbp_type
924arm_linux_get_hwbp_type (enum target_hw_bp_type type)
925{
926 if (type == hw_read)
927 return arm_hwbp_load;
928 else if (type == hw_write)
929 return arm_hwbp_store;
930 else
931 return arm_hwbp_access;
932}
933
934/* Initialize the hardware breakpoint structure P for a watchpoint at ADDR
935 to LEN. The type of watchpoint is given in RW. */
936static void
937arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len,
938 enum target_hw_bp_type type,
939 struct arm_linux_hw_breakpoint *p)
940{
941 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
942 unsigned mask;
943
944 gdb_assert (cap != NULL);
945 gdb_assert (cap->max_wp_length != 0);
946
947 mask = (1 << len) - 1;
948
949 p->address = (unsigned int) addr;
950 p->control = arm_hwbp_control_initialize (mask,
951 arm_linux_get_hwbp_type (type), 1);
952}
953
954/* Are two break-/watch-points equal? */
955static int
956arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
957 const struct arm_linux_hw_breakpoint *p2)
958{
959 return p1->address == p2->address && p1->control == p2->control;
960}
961
962/* Callback to mark a watch-/breakpoint to be updated in all threads of
963 the current process. */
964
965static int
966update_registers_callback (struct lwp_info *lwp, int watch, int index)
967{
968 if (lwp->arch_private == NULL)
969 lwp->arch_private = XCNEW (struct arch_lwp_info);
970
971 /* The actual update is done later just before resuming the lwp,
972 we just mark that the registers need updating. */
973 if (watch)
974 lwp->arch_private->wpts_changed[index] = 1;
975 else
976 lwp->arch_private->bpts_changed[index] = 1;
977
978 /* If the lwp isn't stopped, force it to momentarily pause, so
979 we can update its breakpoint registers. */
980 if (!lwp->stopped)
981 linux_stop_lwp (lwp);
982
983 return 0;
984}
985
986/* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT
987 =1) BPT for thread TID. */
988static void
989arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt,
990 int watchpoint)
991{
992 int pid;
993 ptid_t pid_ptid;
994 gdb_byte count, i;
995 struct arm_linux_hw_breakpoint* bpts;
996
997 pid = inferior_ptid.pid ();
998 pid_ptid = ptid_t (pid);
999
1000 if (watchpoint)
1001 {
1002 count = arm_linux_get_hw_watchpoint_count ();
1003 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1004 }
1005 else
1006 {
1007 count = arm_linux_get_hw_breakpoint_count ();
1008 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1009 }
1010
1011 for (i = 0; i < count; ++i)
1012 if (!arm_hwbp_control_is_enabled (bpts[i].control))
1013 {
1014 bpts[i] = *bpt;
1015 iterate_over_lwps (pid_ptid,
1016 [=] (struct lwp_info *info)
1017 {
1018 return update_registers_callback (info, watchpoint,
1019 i);
1020 });
1021 break;
1022 }
1023
1024 gdb_assert (i != count);
1025}
1026
1027/* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint
1028 (WATCHPOINT = 1) BPT for thread TID. */
1029static void
1030arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt,
1031 int watchpoint)
1032{
1033 int pid;
1034 gdb_byte count, i;
1035 ptid_t pid_ptid;
1036 struct arm_linux_hw_breakpoint* bpts;
1037
1038 pid = inferior_ptid.pid ();
1039 pid_ptid = ptid_t (pid);
1040
1041 if (watchpoint)
1042 {
1043 count = arm_linux_get_hw_watchpoint_count ();
1044 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1045 }
1046 else
1047 {
1048 count = arm_linux_get_hw_breakpoint_count ();
1049 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1050 }
1051
1052 for (i = 0; i < count; ++i)
1053 if (arm_linux_hw_breakpoint_equal (bpt, bpts + i))
1054 {
1055 bpts[i].control = arm_hwbp_control_disable (bpts[i].control);
1056 iterate_over_lwps (pid_ptid,
1057 [=] (struct lwp_info *info)
1058 {
1059 return update_registers_callback (info, watchpoint,
1060 i);
1061 });
1062 break;
1063 }
1064
1065 gdb_assert (i != count);
1066}
1067
1068/* Insert a Hardware breakpoint. */
1069int
1070arm_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
1071 struct bp_target_info *bp_tgt)
1072{
1073 struct arm_linux_hw_breakpoint p;
1074
1075 if (arm_linux_get_hw_breakpoint_count () == 0)
1076 return -1;
1077
1078 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1079
1080 arm_linux_insert_hw_breakpoint1 (&p, 0);
1081
1082 return 0;
1083}
1084
1085/* Remove a hardware breakpoint. */
1086int
1087arm_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
1088 struct bp_target_info *bp_tgt)
1089{
1090 struct arm_linux_hw_breakpoint p;
1091
1092 if (arm_linux_get_hw_breakpoint_count () == 0)
1093 return -1;
1094
1095 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1096
1097 arm_linux_remove_hw_breakpoint1 (&p, 0);
1098
1099 return 0;
1100}
1101
1102/* Are we able to use a hardware watchpoint for the LEN bytes starting at
1103 ADDR? */
1104int
1105arm_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1106{
1107 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1108 CORE_ADDR max_wp_length, aligned_addr;
1109
1110 /* Can not set watchpoints for zero or negative lengths. */
1111 if (len <= 0)
1112 return 0;
1113
1114 /* Need to be able to use the ptrace interface. */
1115 if (cap == NULL || cap->wp_count == 0)
1116 return 0;
1117
1118 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address
1119 range covered by a watchpoint. */
1120 max_wp_length = (CORE_ADDR)cap->max_wp_length;
1121 aligned_addr = addr & ~(max_wp_length - 1);
1122
1123 if (aligned_addr + max_wp_length < addr + len)
1124 return 0;
1125
1126 /* The current ptrace interface can only handle watchpoints that are a
1127 power of 2. */
1128 if ((len & (len - 1)) != 0)
1129 return 0;
1130
1131 /* All tests passed so we must be able to set a watchpoint. */
1132 return 1;
1133}
1134
1135/* Insert a Hardware breakpoint. */
1136int
1137arm_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
1138 enum target_hw_bp_type rw,
1139 struct expression *cond)
1140{
1141 struct arm_linux_hw_breakpoint p;
1142
1143 if (arm_linux_get_hw_watchpoint_count () == 0)
1144 return -1;
1145
1146 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1147
1148 arm_linux_insert_hw_breakpoint1 (&p, 1);
1149
1150 return 0;
1151}
1152
1153/* Remove a hardware breakpoint. */
1154int
1155arm_linux_nat_target::remove_watchpoint (CORE_ADDR addr,
1156 int len, enum target_hw_bp_type rw,
1157 struct expression *cond)
1158{
1159 struct arm_linux_hw_breakpoint p;
1160
1161 if (arm_linux_get_hw_watchpoint_count () == 0)
1162 return -1;
1163
1164 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1165
1166 arm_linux_remove_hw_breakpoint1 (&p, 1);
1167
1168 return 0;
1169}
1170
1171/* What was the data address the target was stopped on accessing. */
1172bool
1173arm_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
1174{
1175 siginfo_t siginfo;
1176 int slot;
1177
1178 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1179 return false;
1180
1181 /* This must be a hardware breakpoint. */
1182 if (siginfo.si_signo != SIGTRAP
1183 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1184 return false;
1185
1186 /* We must be able to set hardware watchpoints. */
1187 if (arm_linux_get_hw_watchpoint_count () == 0)
1188 return 0;
1189
1190 slot = siginfo.si_errno;
1191
1192 /* If we are in a positive slot then we're looking at a breakpoint and not
1193 a watchpoint. */
1194 if (slot >= 0)
1195 return false;
1196
1197 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
1198 return true;
1199}
1200
1201/* Has the target been stopped by hitting a watchpoint? */
1202bool
1203arm_linux_nat_target::stopped_by_watchpoint ()
1204{
1205 CORE_ADDR addr;
1206 return stopped_data_address (&addr);
1207}
1208
1209bool
1210arm_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
1211 CORE_ADDR start,
1212 int length)
1213{
1214 return start <= addr && start + length - 1 >= addr;
1215}
1216
1217/* Handle thread creation. We need to copy the breakpoints and watchpoints
1218 in the parent thread to the child thread. */
1219void
1220arm_linux_nat_target::low_new_thread (struct lwp_info *lp)
1221{
1222 int i;
1223 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
1224
1225 /* Mark that all the hardware breakpoint/watchpoint register pairs
1226 for this thread need to be initialized. */
1227
1228 for (i = 0; i < MAX_BPTS; i++)
1229 {
1230 info->bpts_changed[i] = 1;
1231 info->wpts_changed[i] = 1;
1232 }
1233
1234 lp->arch_private = info;
1235}
1236
1237/* Function to call when a thread is being deleted. */
1238
1239void
1240arm_linux_nat_target::low_delete_thread (struct arch_lwp_info *arch_lwp)
1241{
1242 xfree (arch_lwp);
1243}
1244
1245/* For PID, set the address register of hardware breakpoint pair I to
1246 ADDRESS. */
1247
1248static void
1249sethbpregs_hwbp_address (int pid, int i, unsigned int address)
1250{
1251 PTRACE_TYPE_ARG3 address_reg = (PTRACE_TYPE_ARG3) ((i << 1) + 1);
1252
1253 errno = 0;
1254
1255 if (ptrace (PTRACE_SETHBPREGS, pid, address_reg, &address) < 0)
1256 perror_with_name (_("Unexpected error updating breakpoint address"));
1257}
1258
1259/* For PID, set the control register of hardware breakpoint pair I to
1260 CONTROL. */
1261
1262static void
1263sethbpregs_hwbp_control (int pid, int i, arm_hwbp_control_t control)
1264{
1265 PTRACE_TYPE_ARG3 control_reg = (PTRACE_TYPE_ARG3) ((i << 1) + 2);
1266
1267 errno = 0;
1268
1269 if (ptrace (PTRACE_SETHBPREGS, pid, control_reg, &control) < 0)
1270 perror_with_name (_("Unexpected error setting breakpoint control"));
1271}
1272
1273/* Called when resuming a thread.
1274 The hardware debug registers are updated when there is any change. */
1275
1276void
1277arm_linux_nat_target::low_prepare_to_resume (struct lwp_info *lwp)
1278{
1279 int pid, i;
1280 struct arm_linux_hw_breakpoint *bpts, *wpts;
1281 struct arch_lwp_info *arm_lwp_info = lwp->arch_private;
1282
1283 pid = lwp->ptid.lwp ();
1284 bpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->bpts;
1285 wpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->wpts;
1286
1287 /* NULL means this is the main thread still going through the shell,
1288 or, no watchpoint has been set yet. In that case, there's
1289 nothing to do. */
1290 if (arm_lwp_info == NULL)
1291 return;
1292
1293 for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++)
1294 if (arm_lwp_info->bpts_changed[i])
1295 {
1296 unsigned int address = bpts[i].address;
1297 arm_hwbp_control_t control = bpts[i].control;
1298
1299 if (!arm_hwbp_control_is_initialized (control))
1300 {
1301 /* Nothing to do. */
1302 }
1303 else if (!arm_hwbp_control_is_enabled (control))
1304 {
1305 /* Disable hardware breakpoint, just write the control
1306 register. */
1307 sethbpregs_hwbp_control (pid, i, control);
1308 }
1309 else
1310 {
1311 /* We used to do here simply:
1312 1. address_reg = address
1313 2. control_reg = control
1314 but the write to address_reg can fail for thumb2 instructions if
1315 the address is not 4-byte aligned.
1316
1317 It's not clear whether this is a kernel bug or not, partly
1318 because PTRACE_SETHBPREGS is undocumented.
1319
1320 The context is that we're using two ptrace calls to set the two
1321 halves of a register pair. For each ptrace call, the kernel must
1322 check the arguments, and return -1 and set errno appropriately if
1323 something is wrong. One of the aspects that needs validation is
1324 whether, in terms of hw_breakpoint_arch_parse, the breakpoint
1325 address matches the breakpoint length. This aspect can only be
1326 checked by looking in both registers, which only makes sense
1327 once a pair is written in full.
1328
1329 The problem is that the kernel checks this aspect after each
1330 ptrace call, and consequently for the first call it may be
1331 checking this aspect using a default or previous value for the
1332 part of the pair not written by the call. A possible fix for
1333 this would be to only check this aspect when writing the
1334 control reg.
1335
1336 Work around this by first using an inoffensive address, which is
1337 guaranteed to hit the offset == 0 case in
1338 hw_breakpoint_arch_parse. */
1339 unsigned int aligned_address = address & ~0x7U;
1340 if (aligned_address != address)
1341 {
1342 sethbpregs_hwbp_address (pid, i, aligned_address);
1343 sethbpregs_hwbp_control (pid, i, control);
1344 }
1345 sethbpregs_hwbp_address (pid, i, address);
1346 sethbpregs_hwbp_control (pid, i, control);
1347 }
1348
1349 arm_lwp_info->bpts_changed[i] = 0;
1350 }
1351
1352 for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++)
1353 if (arm_lwp_info->wpts_changed[i])
1354 {
1355 errno = 0;
1356 if (arm_hwbp_control_is_enabled (wpts[i].control))
1357 if (ptrace (PTRACE_SETHBPREGS, pid,
1358 (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0)
1359 perror_with_name (_("Unexpected error setting watchpoint"));
1360
1361 if (wpts[i].control != 0)
1362 if (ptrace (PTRACE_SETHBPREGS, pid,
1363 (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0)
1364 perror_with_name (_("Unexpected error setting watchpoint"));
1365
1366 arm_lwp_info->wpts_changed[i] = 0;
1367 }
1368}
1369
1370/* linux_nat_new_fork hook. */
1371
1372void
1373arm_linux_nat_target::low_new_fork (struct lwp_info *parent, pid_t child_pid)
1374{
1375 pid_t parent_pid;
1376 struct arm_linux_debug_reg_state *parent_state;
1377 struct arm_linux_debug_reg_state *child_state;
1378
1379 /* NULL means no watchpoint has ever been set in the parent. In
1380 that case, there's nothing to do. */
1381 if (parent->arch_private == NULL)
1382 return;
1383
1384 /* GDB core assumes the child inherits the watchpoints/hw
1385 breakpoints of the parent, and will remove them all from the
1386 forked off process. Copy the debug registers mirrors into the
1387 new process so that all breakpoints and watchpoints can be
1388 removed together. */
1389
1390 parent_pid = parent->ptid.pid ();
1391 parent_state = arm_linux_get_debug_reg_state (parent_pid);
1392 child_state = arm_linux_get_debug_reg_state (child_pid);
1393 *child_state = *parent_state;
1394}
1395
1396INIT_GDB_FILE (arm_linux_nat)
1397{
1398 /* Register the target. */
1399 linux_target = &the_arm_linux_nat_target;
1400 add_inf_child_target (&the_arm_linux_nat_target);
1401}