]>
Commit | Line | Data |
---|---|---|
1 | /* Implement a cached obstack. | |
2 | Written by Fred Fish <fnf@cygnus.com> | |
3 | Rewritten by Jim Blandy <jimb@cygnus.com> | |
4 | ||
5 | Copyright (C) 1999-2025 Free Software Foundation, Inc. | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 3 of the License, or | |
12 | (at your option) any later version. | |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
21 | ||
22 | #include "gdbsupport/gdb_obstack.h" | |
23 | #include "bcache.h" | |
24 | ||
25 | #include <algorithm> | |
26 | ||
27 | namespace gdb { | |
28 | ||
29 | /* The type used to hold a single bcache string. The user data is | |
30 | stored in d.data. Since it can be any type, it needs to have the | |
31 | same alignment as the most strict alignment of any type on the host | |
32 | machine. I don't know of any really correct way to do this in | |
33 | stock ANSI C, so just do it the same way obstack.h does. */ | |
34 | ||
35 | struct bstring | |
36 | { | |
37 | /* Hash chain. */ | |
38 | struct bstring *next; | |
39 | /* Assume the data length is no more than 64k. */ | |
40 | unsigned short length; | |
41 | /* The half hash hack. This contains the upper 16 bits of the hash | |
42 | value and is used as a pre-check when comparing two strings and | |
43 | avoids the need to do length or memcmp calls. It proves to be | |
44 | roughly 100% effective. */ | |
45 | unsigned short half_hash; | |
46 | ||
47 | union | |
48 | { | |
49 | char data[1]; | |
50 | double dummy; | |
51 | } | |
52 | d; | |
53 | }; | |
54 | ||
55 | \f | |
56 | /* Growing the bcache's hash table. */ | |
57 | ||
58 | /* If the average chain length grows beyond this, then we want to | |
59 | resize our hash table. */ | |
60 | #define CHAIN_LENGTH_THRESHOLD (5) | |
61 | ||
62 | void | |
63 | bcache::expand_hash_table () | |
64 | { | |
65 | /* A table of good hash table sizes. Whenever we grow, we pick the | |
66 | next larger size from this table. sizes[i] is close to 1 << (i+10), | |
67 | so we roughly double the table size each time. After we fall off | |
68 | the end of this table, we just double. Don't laugh --- there have | |
69 | been executables sighted with a gigabyte of debug info. */ | |
70 | static const unsigned long sizes[] = { | |
71 | 1021, 2053, 4099, 8191, 16381, 32771, | |
72 | 65537, 131071, 262144, 524287, 1048573, 2097143, | |
73 | 4194301, 8388617, 16777213, 33554467, 67108859, 134217757, | |
74 | 268435459, 536870923, 1073741827, 2147483659UL | |
75 | }; | |
76 | unsigned int new_num_buckets; | |
77 | struct bstring **new_buckets; | |
78 | unsigned int i; | |
79 | ||
80 | /* Count the stats. Every unique item needs to be re-hashed and | |
81 | re-entered. */ | |
82 | m_expand_count++; | |
83 | m_expand_hash_count += m_unique_count; | |
84 | ||
85 | /* Find the next size. */ | |
86 | new_num_buckets = m_num_buckets * 2; | |
87 | for (unsigned long a_size : sizes) | |
88 | if (a_size > m_num_buckets) | |
89 | { | |
90 | new_num_buckets = a_size; | |
91 | break; | |
92 | } | |
93 | ||
94 | /* Allocate the new table. */ | |
95 | { | |
96 | size_t new_size = new_num_buckets * sizeof (new_buckets[0]); | |
97 | ||
98 | new_buckets = (struct bstring **) xmalloc (new_size); | |
99 | memset (new_buckets, 0, new_size); | |
100 | ||
101 | m_structure_size -= m_num_buckets * sizeof (m_bucket[0]); | |
102 | m_structure_size += new_size; | |
103 | } | |
104 | ||
105 | /* Rehash all existing strings. */ | |
106 | for (i = 0; i < m_num_buckets; i++) | |
107 | { | |
108 | struct bstring *s, *next; | |
109 | ||
110 | for (s = m_bucket[i]; s; s = next) | |
111 | { | |
112 | struct bstring **new_bucket; | |
113 | next = s->next; | |
114 | ||
115 | new_bucket = &new_buckets[(this->hash (&s->d.data, s->length) | |
116 | % new_num_buckets)]; | |
117 | s->next = *new_bucket; | |
118 | *new_bucket = s; | |
119 | } | |
120 | } | |
121 | ||
122 | /* Plug in the new table. */ | |
123 | xfree (m_bucket); | |
124 | m_bucket = new_buckets; | |
125 | m_num_buckets = new_num_buckets; | |
126 | } | |
127 | ||
128 | \f | |
129 | /* Looking up things in the bcache. */ | |
130 | ||
131 | /* The number of bytes needed to allocate a struct bstring whose data | |
132 | is N bytes long. */ | |
133 | #define BSTRING_SIZE(n) (offsetof (struct bstring, d.data) + (n)) | |
134 | ||
135 | /* Find a copy of the LENGTH bytes at ADDR in BCACHE. If BCACHE has | |
136 | never seen those bytes before, add a copy of them to BCACHE. In | |
137 | either case, return a pointer to BCACHE's copy of that string. If | |
138 | optional ADDED is not NULL, return 1 in case of new entry or 0 if | |
139 | returning an old entry. */ | |
140 | ||
141 | const void * | |
142 | bcache::insert (const void *addr, int length, bool *added) | |
143 | { | |
144 | unsigned long full_hash; | |
145 | unsigned short half_hash; | |
146 | int hash_index; | |
147 | struct bstring *s; | |
148 | ||
149 | if (added != nullptr) | |
150 | *added = false; | |
151 | ||
152 | /* Lazily initialize the obstack. This can save quite a bit of | |
153 | memory in some cases. */ | |
154 | if (m_total_count == 0) | |
155 | { | |
156 | /* We could use obstack_specify_allocation here instead, but | |
157 | gdb_obstack.h specifies the allocation/deallocation | |
158 | functions. */ | |
159 | obstack_init (&m_cache); | |
160 | } | |
161 | ||
162 | /* If our average chain length is too high, expand the hash table. */ | |
163 | if (m_unique_count >= m_num_buckets * CHAIN_LENGTH_THRESHOLD) | |
164 | expand_hash_table (); | |
165 | ||
166 | m_total_count++; | |
167 | m_total_size += length; | |
168 | ||
169 | full_hash = this->hash (addr, length); | |
170 | ||
171 | half_hash = (full_hash >> 16); | |
172 | hash_index = full_hash % m_num_buckets; | |
173 | ||
174 | /* Search the hash m_bucket for a string identical to the caller's. | |
175 | As a short-circuit first compare the upper part of each hash | |
176 | values. */ | |
177 | for (s = m_bucket[hash_index]; s; s = s->next) | |
178 | { | |
179 | if (s->half_hash == half_hash) | |
180 | { | |
181 | if (s->length == length | |
182 | && this->compare (&s->d.data, addr, length)) | |
183 | return &s->d.data; | |
184 | else | |
185 | m_half_hash_miss_count++; | |
186 | } | |
187 | } | |
188 | ||
189 | /* The user's string isn't in the list. Insert it after *ps. */ | |
190 | { | |
191 | struct bstring *newobj | |
192 | = (struct bstring *) obstack_alloc (&m_cache, | |
193 | BSTRING_SIZE (length)); | |
194 | ||
195 | memcpy (&newobj->d.data, addr, length); | |
196 | newobj->length = length; | |
197 | newobj->next = m_bucket[hash_index]; | |
198 | newobj->half_hash = half_hash; | |
199 | m_bucket[hash_index] = newobj; | |
200 | ||
201 | m_unique_count++; | |
202 | m_unique_size += length; | |
203 | m_structure_size += BSTRING_SIZE (length); | |
204 | ||
205 | if (added != nullptr) | |
206 | *added = true; | |
207 | ||
208 | return &newobj->d.data; | |
209 | } | |
210 | } | |
211 | \f | |
212 | ||
213 | /* See bcache.h. */ | |
214 | ||
215 | unsigned long | |
216 | bcache::hash (const void *addr, int length) | |
217 | { | |
218 | return fast_hash (addr, length, 0); | |
219 | } | |
220 | ||
221 | /* See bcache.h. */ | |
222 | ||
223 | int | |
224 | bcache::compare (const void *left, const void *right, int length) | |
225 | { | |
226 | return memcmp (left, right, length) == 0; | |
227 | } | |
228 | ||
229 | /* Free all the storage associated with BCACHE. */ | |
230 | bcache::~bcache () | |
231 | { | |
232 | /* Only free the obstack if we actually initialized it. */ | |
233 | if (m_total_count > 0) | |
234 | obstack_free (&m_cache, 0); | |
235 | xfree (m_bucket); | |
236 | } | |
237 | ||
238 | ||
239 | \f | |
240 | /* Printing statistics. */ | |
241 | ||
242 | static void | |
243 | print_percentage (int portion, int total) | |
244 | { | |
245 | if (total == 0) | |
246 | /* i18n: Like "Percentage of duplicates, by count: (not applicable)". */ | |
247 | gdb_printf (_("(not applicable)\n")); | |
248 | else | |
249 | gdb_printf ("%3d%%\n", (int) (portion * 100.0 / total)); | |
250 | } | |
251 | ||
252 | ||
253 | /* Print statistics on BCACHE's memory usage and efficacy at | |
254 | eliminating duplication. NAME should describe the kind of data | |
255 | BCACHE holds. Statistics are printed using `gdb_printf' and | |
256 | its ilk. */ | |
257 | void | |
258 | bcache::print_statistics (const char *type) | |
259 | { | |
260 | int occupied_buckets; | |
261 | int max_chain_length; | |
262 | int median_chain_length; | |
263 | int max_entry_size; | |
264 | int median_entry_size; | |
265 | ||
266 | /* Count the number of occupied buckets, tally the various string | |
267 | lengths, and measure chain lengths. */ | |
268 | { | |
269 | unsigned int b; | |
270 | int *chain_length = XCNEWVEC (int, m_num_buckets + 1); | |
271 | int *entry_size = XCNEWVEC (int, m_unique_count + 1); | |
272 | int stringi = 0; | |
273 | ||
274 | occupied_buckets = 0; | |
275 | ||
276 | for (b = 0; b < m_num_buckets; b++) | |
277 | { | |
278 | struct bstring *s = m_bucket[b]; | |
279 | ||
280 | chain_length[b] = 0; | |
281 | ||
282 | if (s) | |
283 | { | |
284 | occupied_buckets++; | |
285 | ||
286 | while (s) | |
287 | { | |
288 | gdb_assert (b < m_num_buckets); | |
289 | chain_length[b]++; | |
290 | gdb_assert (stringi < m_unique_count); | |
291 | entry_size[stringi++] = s->length; | |
292 | s = s->next; | |
293 | } | |
294 | } | |
295 | } | |
296 | ||
297 | /* To compute the median, we need the set of chain lengths | |
298 | sorted. */ | |
299 | std::sort (chain_length, chain_length + m_num_buckets); | |
300 | std::sort (entry_size, entry_size + m_unique_count); | |
301 | ||
302 | if (m_num_buckets > 0) | |
303 | { | |
304 | max_chain_length = chain_length[m_num_buckets - 1]; | |
305 | median_chain_length = chain_length[m_num_buckets / 2]; | |
306 | } | |
307 | else | |
308 | { | |
309 | max_chain_length = 0; | |
310 | median_chain_length = 0; | |
311 | } | |
312 | if (m_unique_count > 0) | |
313 | { | |
314 | max_entry_size = entry_size[m_unique_count - 1]; | |
315 | median_entry_size = entry_size[m_unique_count / 2]; | |
316 | } | |
317 | else | |
318 | { | |
319 | max_entry_size = 0; | |
320 | median_entry_size = 0; | |
321 | } | |
322 | ||
323 | xfree (chain_length); | |
324 | xfree (entry_size); | |
325 | } | |
326 | ||
327 | gdb_printf (_(" M_Cached '%s' statistics:\n"), type); | |
328 | gdb_printf (_(" Total object count: %ld\n"), m_total_count); | |
329 | gdb_printf (_(" Unique object count: %lu\n"), m_unique_count); | |
330 | gdb_printf (_(" Percentage of duplicates, by count: ")); | |
331 | print_percentage (m_total_count - m_unique_count, m_total_count); | |
332 | gdb_printf ("\n"); | |
333 | ||
334 | gdb_printf (_(" Total object size: %ld\n"), m_total_size); | |
335 | gdb_printf (_(" Unique object size: %ld\n"), m_unique_size); | |
336 | gdb_printf (_(" Percentage of duplicates, by size: ")); | |
337 | print_percentage (m_total_size - m_unique_size, m_total_size); | |
338 | gdb_printf ("\n"); | |
339 | ||
340 | gdb_printf (_(" Max entry size: %d\n"), max_entry_size); | |
341 | gdb_printf (_(" Average entry size: ")); | |
342 | if (m_unique_count > 0) | |
343 | gdb_printf ("%ld\n", m_unique_size / m_unique_count); | |
344 | else | |
345 | /* i18n: "Average entry size: (not applicable)". */ | |
346 | gdb_printf (_("(not applicable)\n")); | |
347 | gdb_printf (_(" Median entry size: %d\n"), median_entry_size); | |
348 | gdb_printf ("\n"); | |
349 | ||
350 | gdb_printf (_(" \ | |
351 | Total memory used by bcache, including overhead: %ld\n"), | |
352 | m_structure_size); | |
353 | gdb_printf (_(" Percentage memory overhead: ")); | |
354 | print_percentage (m_structure_size - m_unique_size, m_unique_size); | |
355 | gdb_printf (_(" Net memory savings: ")); | |
356 | print_percentage (m_total_size - m_structure_size, m_total_size); | |
357 | gdb_printf ("\n"); | |
358 | ||
359 | gdb_printf (_(" Hash table size: %3d\n"), | |
360 | m_num_buckets); | |
361 | gdb_printf (_(" Hash table expands: %lu\n"), | |
362 | m_expand_count); | |
363 | gdb_printf (_(" Hash table hashes: %lu\n"), | |
364 | m_total_count + m_expand_hash_count); | |
365 | gdb_printf (_(" Half hash misses: %lu\n"), | |
366 | m_half_hash_miss_count); | |
367 | gdb_printf (_(" Hash table population: ")); | |
368 | print_percentage (occupied_buckets, m_num_buckets); | |
369 | gdb_printf (_(" Median hash chain length: %3d\n"), | |
370 | median_chain_length); | |
371 | gdb_printf (_(" Average hash chain length: ")); | |
372 | if (m_num_buckets > 0) | |
373 | gdb_printf ("%3lu\n", m_unique_count / m_num_buckets); | |
374 | else | |
375 | /* i18n: "Average hash chain length: (not applicable)". */ | |
376 | gdb_printf (_("(not applicable)\n")); | |
377 | gdb_printf (_(" Maximum hash chain length: %3d\n"), | |
378 | max_chain_length); | |
379 | gdb_printf ("\n"); | |
380 | } | |
381 | ||
382 | int | |
383 | bcache::memory_used () | |
384 | { | |
385 | if (m_total_count == 0) | |
386 | return 0; | |
387 | return obstack_memory_used (&m_cache); | |
388 | } | |
389 | ||
390 | } /* namespace gdb */ |