]>
Commit | Line | Data |
---|---|---|
1 | /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger. | |
2 | ||
3 | Copyright (C) 2002-2025 Free Software Foundation, Inc. | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
19 | ||
20 | #include "extract-store-integer.h" | |
21 | #include "inferior.h" | |
22 | #include "gdbcore.h" | |
23 | #include "arch-utils.h" | |
24 | #include "regcache.h" | |
25 | #include "frame.h" | |
26 | #include "frame-unwind.h" | |
27 | #include "frame-base.h" | |
28 | #include "solib-frv.h" | |
29 | #include "trad-frame.h" | |
30 | #include "dis-asm.h" | |
31 | #include "sim-regno.h" | |
32 | #include "sim/sim-frv.h" | |
33 | #include "symtab.h" | |
34 | #include "elf-bfd.h" | |
35 | #include "elf/frv.h" | |
36 | #include "osabi.h" | |
37 | #include "infcall.h" | |
38 | #include "solib.h" | |
39 | #include "frv-tdep.h" | |
40 | #include "objfiles.h" | |
41 | #include "gdbarch.h" | |
42 | ||
43 | /* Make cgen names unique to prevent ODR conflicts with other targets. */ | |
44 | #define GDB_CGEN_REMAP_PREFIX frv | |
45 | #include "cgen-remap.h" | |
46 | #include "opcodes/frv-desc.h" | |
47 | ||
48 | struct frv_unwind_cache /* was struct frame_extra_info */ | |
49 | { | |
50 | /* The previous frame's inner-most stack address. Used as this | |
51 | frame ID's stack_addr. */ | |
52 | CORE_ADDR prev_sp; | |
53 | ||
54 | /* The frame's base, optionally used by the high-level debug info. */ | |
55 | CORE_ADDR base; | |
56 | ||
57 | /* Table indicating the location of each and every register. */ | |
58 | trad_frame_saved_reg *saved_regs; | |
59 | }; | |
60 | ||
61 | /* A structure describing a particular variant of the FRV. | |
62 | We allocate and initialize one of these structures when we create | |
63 | the gdbarch object for a variant. | |
64 | ||
65 | At the moment, all the FR variants we support differ only in which | |
66 | registers are present; the portable code of GDB knows that | |
67 | registers whose names are the empty string don't exist, so the | |
68 | `register_names' array captures all the per-variant information we | |
69 | need. | |
70 | ||
71 | in the future, if we need to have per-variant maps for raw size, | |
72 | virtual type, etc., we should replace register_names with an array | |
73 | of structures, each of which gives all the necessary info for one | |
74 | register. Don't stick parallel arrays in here --- that's so | |
75 | Fortran. */ | |
76 | struct frv_gdbarch_tdep : gdbarch_tdep_base | |
77 | { | |
78 | /* Which ABI is in use? */ | |
79 | enum frv_abi frv_abi {}; | |
80 | ||
81 | /* How many general-purpose registers does this variant have? */ | |
82 | int num_gprs = 0; | |
83 | ||
84 | /* How many floating-point registers does this variant have? */ | |
85 | int num_fprs = 0; | |
86 | ||
87 | /* How many hardware watchpoints can it support? */ | |
88 | int num_hw_watchpoints = 0; | |
89 | ||
90 | /* How many hardware breakpoints can it support? */ | |
91 | int num_hw_breakpoints = 0; | |
92 | ||
93 | /* Register names. */ | |
94 | const char **register_names = nullptr; | |
95 | }; | |
96 | ||
97 | using frv_gdbarch_tdep_up = std::unique_ptr<frv_gdbarch_tdep>; | |
98 | ||
99 | /* Return the FR-V ABI associated with GDBARCH. */ | |
100 | enum frv_abi | |
101 | frv_abi (struct gdbarch *gdbarch) | |
102 | { | |
103 | frv_gdbarch_tdep *tdep = gdbarch_tdep<frv_gdbarch_tdep> (gdbarch); | |
104 | return tdep->frv_abi; | |
105 | } | |
106 | ||
107 | /* Fetch the interpreter and executable loadmap addresses (for shared | |
108 | library support) for the FDPIC ABI. Return 0 if successful, -1 if | |
109 | not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */ | |
110 | int | |
111 | frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr, | |
112 | CORE_ADDR *exec_addr) | |
113 | { | |
114 | if (frv_abi (gdbarch) != FRV_ABI_FDPIC) | |
115 | return -1; | |
116 | else | |
117 | { | |
118 | regcache *regcache = get_thread_regcache (inferior_thread ()); | |
119 | ||
120 | if (interp_addr != NULL) | |
121 | { | |
122 | ULONGEST val; | |
123 | regcache_cooked_read_unsigned (regcache, | |
124 | fdpic_loadmap_interp_regnum, &val); | |
125 | *interp_addr = val; | |
126 | } | |
127 | if (exec_addr != NULL) | |
128 | { | |
129 | ULONGEST val; | |
130 | regcache_cooked_read_unsigned (regcache, | |
131 | fdpic_loadmap_exec_regnum, &val); | |
132 | *exec_addr = val; | |
133 | } | |
134 | return 0; | |
135 | } | |
136 | } | |
137 | ||
138 | /* Allocate a new variant structure, and set up default values for all | |
139 | the fields. */ | |
140 | static frv_gdbarch_tdep_up | |
141 | new_variant () | |
142 | { | |
143 | int r; | |
144 | ||
145 | frv_gdbarch_tdep_up var (new frv_gdbarch_tdep); | |
146 | ||
147 | var->frv_abi = FRV_ABI_EABI; | |
148 | var->num_gprs = 64; | |
149 | var->num_fprs = 64; | |
150 | var->num_hw_watchpoints = 0; | |
151 | var->num_hw_breakpoints = 0; | |
152 | ||
153 | /* By default, don't supply any general-purpose or floating-point | |
154 | register names. */ | |
155 | var->register_names | |
156 | = (const char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs) | |
157 | * sizeof (const char *)); | |
158 | for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++) | |
159 | var->register_names[r] = ""; | |
160 | ||
161 | /* Do, however, supply default names for the known special-purpose | |
162 | registers. */ | |
163 | ||
164 | var->register_names[pc_regnum] = "pc"; | |
165 | var->register_names[lr_regnum] = "lr"; | |
166 | var->register_names[lcr_regnum] = "lcr"; | |
167 | ||
168 | var->register_names[psr_regnum] = "psr"; | |
169 | var->register_names[ccr_regnum] = "ccr"; | |
170 | var->register_names[cccr_regnum] = "cccr"; | |
171 | var->register_names[tbr_regnum] = "tbr"; | |
172 | ||
173 | /* Debug registers. */ | |
174 | var->register_names[brr_regnum] = "brr"; | |
175 | var->register_names[dbar0_regnum] = "dbar0"; | |
176 | var->register_names[dbar1_regnum] = "dbar1"; | |
177 | var->register_names[dbar2_regnum] = "dbar2"; | |
178 | var->register_names[dbar3_regnum] = "dbar3"; | |
179 | ||
180 | /* iacc0 (Only found on MB93405.) */ | |
181 | var->register_names[iacc0h_regnum] = "iacc0h"; | |
182 | var->register_names[iacc0l_regnum] = "iacc0l"; | |
183 | var->register_names[iacc0_regnum] = "iacc0"; | |
184 | ||
185 | /* fsr0 (Found on FR555 and FR501.) */ | |
186 | var->register_names[fsr0_regnum] = "fsr0"; | |
187 | ||
188 | /* acc0 - acc7. The architecture provides for the possibility of many | |
189 | more (up to 64 total), but we don't want to make that big of a hole | |
190 | in the G packet. If we need more in the future, we'll add them | |
191 | elsewhere. */ | |
192 | for (r = acc0_regnum; r <= acc7_regnum; r++) | |
193 | var->register_names[r] | |
194 | = xstrprintf ("acc%d", r - acc0_regnum).release (); | |
195 | ||
196 | /* accg0 - accg7: These are one byte registers. The remote protocol | |
197 | provides the raw values packed four into a slot. accg0123 and | |
198 | accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively. | |
199 | We don't provide names for accg0123 and accg4567 since the user will | |
200 | likely not want to see these raw values. */ | |
201 | ||
202 | for (r = accg0_regnum; r <= accg7_regnum; r++) | |
203 | var->register_names[r] | |
204 | = xstrprintf ("accg%d", r - accg0_regnum).release (); | |
205 | ||
206 | /* msr0 and msr1. */ | |
207 | ||
208 | var->register_names[msr0_regnum] = "msr0"; | |
209 | var->register_names[msr1_regnum] = "msr1"; | |
210 | ||
211 | /* gner and fner registers. */ | |
212 | var->register_names[gner0_regnum] = "gner0"; | |
213 | var->register_names[gner1_regnum] = "gner1"; | |
214 | var->register_names[fner0_regnum] = "fner0"; | |
215 | var->register_names[fner1_regnum] = "fner1"; | |
216 | ||
217 | return var; | |
218 | } | |
219 | ||
220 | ||
221 | /* Indicate that the variant VAR has NUM_GPRS general-purpose | |
222 | registers, and fill in the names array appropriately. */ | |
223 | static void | |
224 | set_variant_num_gprs (frv_gdbarch_tdep *var, int num_gprs) | |
225 | { | |
226 | int r; | |
227 | ||
228 | var->num_gprs = num_gprs; | |
229 | ||
230 | for (r = 0; r < num_gprs; ++r) | |
231 | { | |
232 | char buf[20]; | |
233 | ||
234 | xsnprintf (buf, sizeof (buf), "gr%d", r); | |
235 | var->register_names[first_gpr_regnum + r] = xstrdup (buf); | |
236 | } | |
237 | } | |
238 | ||
239 | ||
240 | /* Indicate that the variant VAR has NUM_FPRS floating-point | |
241 | registers, and fill in the names array appropriately. */ | |
242 | static void | |
243 | set_variant_num_fprs (frv_gdbarch_tdep *var, int num_fprs) | |
244 | { | |
245 | int r; | |
246 | ||
247 | var->num_fprs = num_fprs; | |
248 | ||
249 | for (r = 0; r < num_fprs; ++r) | |
250 | { | |
251 | char buf[20]; | |
252 | ||
253 | xsnprintf (buf, sizeof (buf), "fr%d", r); | |
254 | var->register_names[first_fpr_regnum + r] = xstrdup (buf); | |
255 | } | |
256 | } | |
257 | ||
258 | static void | |
259 | set_variant_abi_fdpic (frv_gdbarch_tdep *var) | |
260 | { | |
261 | var->frv_abi = FRV_ABI_FDPIC; | |
262 | var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec"); | |
263 | var->register_names[fdpic_loadmap_interp_regnum] | |
264 | = xstrdup ("loadmap_interp"); | |
265 | } | |
266 | ||
267 | static void | |
268 | set_variant_scratch_registers (frv_gdbarch_tdep *var) | |
269 | { | |
270 | var->register_names[scr0_regnum] = xstrdup ("scr0"); | |
271 | var->register_names[scr1_regnum] = xstrdup ("scr1"); | |
272 | var->register_names[scr2_regnum] = xstrdup ("scr2"); | |
273 | var->register_names[scr3_regnum] = xstrdup ("scr3"); | |
274 | } | |
275 | ||
276 | static const char * | |
277 | frv_register_name (struct gdbarch *gdbarch, int reg) | |
278 | { | |
279 | frv_gdbarch_tdep *tdep = gdbarch_tdep<frv_gdbarch_tdep> (gdbarch); | |
280 | return tdep->register_names[reg]; | |
281 | } | |
282 | ||
283 | ||
284 | static struct type * | |
285 | frv_register_type (struct gdbarch *gdbarch, int reg) | |
286 | { | |
287 | if (reg >= first_fpr_regnum && reg <= last_fpr_regnum) | |
288 | return builtin_type (gdbarch)->builtin_float; | |
289 | else if (reg == iacc0_regnum) | |
290 | return builtin_type (gdbarch)->builtin_int64; | |
291 | else | |
292 | return builtin_type (gdbarch)->builtin_int32; | |
293 | } | |
294 | ||
295 | static enum register_status | |
296 | frv_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache, | |
297 | int reg, gdb_byte *buffer) | |
298 | { | |
299 | enum register_status status; | |
300 | ||
301 | if (reg == iacc0_regnum) | |
302 | { | |
303 | status = regcache->raw_read (iacc0h_regnum, buffer); | |
304 | if (status == REG_VALID) | |
305 | status = regcache->raw_read (iacc0l_regnum, (bfd_byte *) buffer + 4); | |
306 | } | |
307 | else if (accg0_regnum <= reg && reg <= accg7_regnum) | |
308 | { | |
309 | /* The accg raw registers have four values in each slot with the | |
310 | lowest register number occupying the first byte. */ | |
311 | ||
312 | int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4; | |
313 | int byte_num = (reg - accg0_regnum) % 4; | |
314 | gdb_byte buf[4]; | |
315 | ||
316 | status = regcache->raw_read (raw_regnum, buf); | |
317 | if (status == REG_VALID) | |
318 | { | |
319 | memset (buffer, 0, 4); | |
320 | /* FR-V is big endian, so put the requested byte in the | |
321 | first byte of the buffer allocated to hold the | |
322 | pseudo-register. */ | |
323 | buffer[0] = buf[byte_num]; | |
324 | } | |
325 | } | |
326 | else | |
327 | gdb_assert_not_reached ("invalid pseudo register number"); | |
328 | ||
329 | return status; | |
330 | } | |
331 | ||
332 | static void | |
333 | frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
334 | int reg, const gdb_byte *buffer) | |
335 | { | |
336 | if (reg == iacc0_regnum) | |
337 | { | |
338 | regcache->raw_write (iacc0h_regnum, buffer); | |
339 | regcache->raw_write (iacc0l_regnum, (bfd_byte *) buffer + 4); | |
340 | } | |
341 | else if (accg0_regnum <= reg && reg <= accg7_regnum) | |
342 | { | |
343 | /* The accg raw registers have four values in each slot with the | |
344 | lowest register number occupying the first byte. */ | |
345 | ||
346 | int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4; | |
347 | int byte_num = (reg - accg0_regnum) % 4; | |
348 | gdb_byte buf[4]; | |
349 | ||
350 | regcache->raw_read (raw_regnum, buf); | |
351 | buf[byte_num] = ((bfd_byte *) buffer)[0]; | |
352 | regcache->raw_write (raw_regnum, buf); | |
353 | } | |
354 | } | |
355 | ||
356 | static int | |
357 | frv_register_sim_regno (struct gdbarch *gdbarch, int reg) | |
358 | { | |
359 | static const int spr_map[] = | |
360 | { | |
361 | H_SPR_PSR, /* psr_regnum */ | |
362 | H_SPR_CCR, /* ccr_regnum */ | |
363 | H_SPR_CCCR, /* cccr_regnum */ | |
364 | -1, /* fdpic_loadmap_exec_regnum */ | |
365 | -1, /* fdpic_loadmap_interp_regnum */ | |
366 | -1, /* 134 */ | |
367 | H_SPR_TBR, /* tbr_regnum */ | |
368 | H_SPR_BRR, /* brr_regnum */ | |
369 | H_SPR_DBAR0, /* dbar0_regnum */ | |
370 | H_SPR_DBAR1, /* dbar1_regnum */ | |
371 | H_SPR_DBAR2, /* dbar2_regnum */ | |
372 | H_SPR_DBAR3, /* dbar3_regnum */ | |
373 | H_SPR_SCR0, /* scr0_regnum */ | |
374 | H_SPR_SCR1, /* scr1_regnum */ | |
375 | H_SPR_SCR2, /* scr2_regnum */ | |
376 | H_SPR_SCR3, /* scr3_regnum */ | |
377 | H_SPR_LR, /* lr_regnum */ | |
378 | H_SPR_LCR, /* lcr_regnum */ | |
379 | H_SPR_IACC0H, /* iacc0h_regnum */ | |
380 | H_SPR_IACC0L, /* iacc0l_regnum */ | |
381 | H_SPR_FSR0, /* fsr0_regnum */ | |
382 | /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */ | |
383 | -1, /* acc0_regnum */ | |
384 | -1, /* acc1_regnum */ | |
385 | -1, /* acc2_regnum */ | |
386 | -1, /* acc3_regnum */ | |
387 | -1, /* acc4_regnum */ | |
388 | -1, /* acc5_regnum */ | |
389 | -1, /* acc6_regnum */ | |
390 | -1, /* acc7_regnum */ | |
391 | -1, /* acc0123_regnum */ | |
392 | -1, /* acc4567_regnum */ | |
393 | H_SPR_MSR0, /* msr0_regnum */ | |
394 | H_SPR_MSR1, /* msr1_regnum */ | |
395 | H_SPR_GNER0, /* gner0_regnum */ | |
396 | H_SPR_GNER1, /* gner1_regnum */ | |
397 | H_SPR_FNER0, /* fner0_regnum */ | |
398 | H_SPR_FNER1, /* fner1_regnum */ | |
399 | }; | |
400 | ||
401 | gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch)); | |
402 | ||
403 | if (first_gpr_regnum <= reg && reg <= last_gpr_regnum) | |
404 | return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM; | |
405 | else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum) | |
406 | return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM; | |
407 | else if (pc_regnum == reg) | |
408 | return SIM_FRV_PC_REGNUM; | |
409 | else if (reg >= first_spr_regnum | |
410 | && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0])) | |
411 | { | |
412 | int spr_reg_offset = spr_map[reg - first_spr_regnum]; | |
413 | ||
414 | if (spr_reg_offset < 0) | |
415 | return SIM_REGNO_DOES_NOT_EXIST; | |
416 | else | |
417 | return SIM_FRV_SPR0_REGNUM + spr_reg_offset; | |
418 | } | |
419 | ||
420 | internal_error (_("Bad register number %d"), reg); | |
421 | } | |
422 | ||
423 | constexpr gdb_byte frv_break_insn[] = {0xc0, 0x70, 0x00, 0x01}; | |
424 | ||
425 | typedef BP_MANIPULATION (frv_break_insn) frv_breakpoint; | |
426 | ||
427 | /* Define the maximum number of instructions which may be packed into a | |
428 | bundle (VLIW instruction). */ | |
429 | static const int max_instrs_per_bundle = 8; | |
430 | ||
431 | /* Define the size (in bytes) of an FR-V instruction. */ | |
432 | static const int frv_instr_size = 4; | |
433 | ||
434 | /* Adjust a breakpoint's address to account for the FR-V architecture's | |
435 | constraint that a break instruction must not appear as any but the | |
436 | first instruction in the bundle. */ | |
437 | static CORE_ADDR | |
438 | frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr) | |
439 | { | |
440 | int count = max_instrs_per_bundle; | |
441 | CORE_ADDR addr = bpaddr - frv_instr_size; | |
442 | CORE_ADDR func_start = get_pc_function_start (bpaddr); | |
443 | ||
444 | /* Find the end of the previous packing sequence. This will be indicated | |
445 | by either attempting to access some inaccessible memory or by finding | |
446 | an instruction word whose packing bit is set to one. */ | |
447 | while (count-- > 0 && addr >= func_start) | |
448 | { | |
449 | gdb_byte instr[frv_instr_size]; | |
450 | int status; | |
451 | ||
452 | status = target_read_memory (addr, instr, sizeof instr); | |
453 | ||
454 | if (status != 0) | |
455 | break; | |
456 | ||
457 | /* This is a big endian architecture, so byte zero will have most | |
458 | significant byte. The most significant bit of this byte is the | |
459 | packing bit. */ | |
460 | if (instr[0] & 0x80) | |
461 | break; | |
462 | ||
463 | addr -= frv_instr_size; | |
464 | } | |
465 | ||
466 | if (count > 0) | |
467 | bpaddr = addr + frv_instr_size; | |
468 | ||
469 | return bpaddr; | |
470 | } | |
471 | ||
472 | ||
473 | /* Return true if REG is a caller-saves ("scratch") register, | |
474 | false otherwise. */ | |
475 | static int | |
476 | is_caller_saves_reg (int reg) | |
477 | { | |
478 | return ((4 <= reg && reg <= 7) | |
479 | || (14 <= reg && reg <= 15) | |
480 | || (32 <= reg && reg <= 47)); | |
481 | } | |
482 | ||
483 | ||
484 | /* Return true if REG is a callee-saves register, false otherwise. */ | |
485 | static int | |
486 | is_callee_saves_reg (int reg) | |
487 | { | |
488 | return ((16 <= reg && reg <= 31) | |
489 | || (48 <= reg && reg <= 63)); | |
490 | } | |
491 | ||
492 | ||
493 | /* Return true if REG is an argument register, false otherwise. */ | |
494 | static int | |
495 | is_argument_reg (int reg) | |
496 | { | |
497 | return (8 <= reg && reg <= 13); | |
498 | } | |
499 | ||
500 | /* Scan an FR-V prologue, starting at PC, until frame->PC. | |
501 | If FRAME is non-zero, fill in its saved_regs with appropriate addresses. | |
502 | We assume FRAME's saved_regs array has already been allocated and cleared. | |
503 | Return the first PC value after the prologue. | |
504 | ||
505 | Note that, for unoptimized code, we almost don't need this function | |
506 | at all; all arguments and locals live on the stack, so we just need | |
507 | the FP to find everything. The catch: structures passed by value | |
508 | have their addresses living in registers; they're never spilled to | |
509 | the stack. So if you ever want to be able to get to these | |
510 | arguments in any frame but the top, you'll need to do this serious | |
511 | prologue analysis. */ | |
512 | static CORE_ADDR | |
513 | frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, | |
514 | const frame_info_ptr &this_frame, | |
515 | struct frv_unwind_cache *info) | |
516 | { | |
517 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
518 | ||
519 | /* When writing out instruction bitpatterns, we use the following | |
520 | letters to label instruction fields: | |
521 | P - The parallel bit. We don't use this. | |
522 | J - The register number of GRj in the instruction description. | |
523 | K - The register number of GRk in the instruction description. | |
524 | I - The register number of GRi. | |
525 | S - a signed immediate offset. | |
526 | U - an unsigned immediate offset. | |
527 | ||
528 | The dots below the numbers indicate where hex digit boundaries | |
529 | fall, to make it easier to check the numbers. */ | |
530 | ||
531 | /* Non-zero iff we've seen the instruction that initializes the | |
532 | frame pointer for this function's frame. */ | |
533 | int fp_set = 0; | |
534 | ||
535 | /* If fp_set is non_zero, then this is the distance from | |
536 | the stack pointer to frame pointer: fp = sp + fp_offset. */ | |
537 | int fp_offset = 0; | |
538 | ||
539 | /* Total size of frame prior to any alloca operations. */ | |
540 | int framesize = 0; | |
541 | ||
542 | /* Flag indicating if lr has been saved on the stack. */ | |
543 | int lr_saved_on_stack = 0; | |
544 | ||
545 | /* The number of the general-purpose register we saved the return | |
546 | address ("link register") in, or -1 if we haven't moved it yet. */ | |
547 | int lr_save_reg = -1; | |
548 | ||
549 | /* Offset (from sp) at which lr has been saved on the stack. */ | |
550 | ||
551 | int lr_sp_offset = 0; | |
552 | ||
553 | /* If gr_saved[i] is non-zero, then we've noticed that general | |
554 | register i has been saved at gr_sp_offset[i] from the stack | |
555 | pointer. */ | |
556 | char gr_saved[64]; | |
557 | int gr_sp_offset[64]; | |
558 | ||
559 | /* The address of the most recently scanned prologue instruction. */ | |
560 | CORE_ADDR last_prologue_pc; | |
561 | ||
562 | /* The address of the next instruction. */ | |
563 | CORE_ADDR next_pc; | |
564 | ||
565 | /* The upper bound to of the pc values to scan. */ | |
566 | CORE_ADDR lim_pc; | |
567 | ||
568 | memset (gr_saved, 0, sizeof (gr_saved)); | |
569 | ||
570 | last_prologue_pc = pc; | |
571 | ||
572 | /* Try to compute an upper limit (on how far to scan) based on the | |
573 | line number info. */ | |
574 | lim_pc = skip_prologue_using_sal (gdbarch, pc); | |
575 | /* If there's no line number info, lim_pc will be 0. In that case, | |
576 | set the limit to be 100 instructions away from pc. Hopefully, this | |
577 | will be far enough away to account for the entire prologue. Don't | |
578 | worry about overshooting the end of the function. The scan loop | |
579 | below contains some checks to avoid scanning unreasonably far. */ | |
580 | if (lim_pc == 0) | |
581 | lim_pc = pc + 400; | |
582 | ||
583 | /* If we have a frame, we don't want to scan past the frame's pc. This | |
584 | will catch those cases where the pc is in the prologue. */ | |
585 | if (this_frame) | |
586 | { | |
587 | CORE_ADDR frame_pc = get_frame_pc (this_frame); | |
588 | if (frame_pc < lim_pc) | |
589 | lim_pc = frame_pc; | |
590 | } | |
591 | ||
592 | /* Scan the prologue. */ | |
593 | while (pc < lim_pc) | |
594 | { | |
595 | gdb_byte buf[frv_instr_size]; | |
596 | LONGEST op; | |
597 | ||
598 | if (target_read_memory (pc, buf, sizeof buf) != 0) | |
599 | break; | |
600 | op = extract_signed_integer (buf, byte_order); | |
601 | ||
602 | next_pc = pc + 4; | |
603 | ||
604 | /* The tests in this chain of ifs should be in order of | |
605 | decreasing selectivity, so that more particular patterns get | |
606 | to fire before less particular patterns. */ | |
607 | ||
608 | /* Some sort of control transfer instruction: stop scanning prologue. | |
609 | Integer Conditional Branch: | |
610 | X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX | |
611 | Floating-point / media Conditional Branch: | |
612 | X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX | |
613 | LCR Conditional Branch to LR | |
614 | X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX | |
615 | Integer conditional Branches to LR | |
616 | X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX | |
617 | X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX | |
618 | Floating-point/Media Branches to LR | |
619 | X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX | |
620 | X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX | |
621 | Jump and Link | |
622 | X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX | |
623 | X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX | |
624 | Call | |
625 | X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX | |
626 | Return from Trap | |
627 | X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX | |
628 | Integer Conditional Trap | |
629 | X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX | |
630 | X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX | |
631 | Floating-point /media Conditional Trap | |
632 | X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX | |
633 | X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX | |
634 | Break | |
635 | X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX | |
636 | Media Trap | |
637 | X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */ | |
638 | if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */ | |
639 | || (op & 0x01f80000) == 0x00300000 /* Jump and Link */ | |
640 | || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */ | |
641 | || (op & 0x01f80000) == 0x00700000) /* Trap immediate */ | |
642 | { | |
643 | /* Stop scanning; not in prologue any longer. */ | |
644 | break; | |
645 | } | |
646 | ||
647 | /* Loading something from memory into fp probably means that | |
648 | we're in the epilogue. Stop scanning the prologue. | |
649 | ld @(GRi, GRk), fp | |
650 | X 000010 0000010 XXXXXX 000100 XXXXXX | |
651 | ldi @(GRi, d12), fp | |
652 | X 000010 0110010 XXXXXX XXXXXXXXXXXX */ | |
653 | else if ((op & 0x7ffc0fc0) == 0x04080100 | |
654 | || (op & 0x7ffc0000) == 0x04c80000) | |
655 | { | |
656 | break; | |
657 | } | |
658 | ||
659 | /* Setting the FP from the SP: | |
660 | ori sp, 0, fp | |
661 | P 000010 0100010 000001 000000000000 = 0x04881000 | |
662 | 0 111111 1111111 111111 111111111111 = 0x7fffffff | |
663 | . . . . . . . . | |
664 | We treat this as part of the prologue. */ | |
665 | else if ((op & 0x7fffffff) == 0x04881000) | |
666 | { | |
667 | fp_set = 1; | |
668 | fp_offset = 0; | |
669 | last_prologue_pc = next_pc; | |
670 | } | |
671 | ||
672 | /* Move the link register to the scratch register grJ, before saving: | |
673 | movsg lr, grJ | |
674 | P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0 | |
675 | 0 111111 1111111 111111 111111 000000 = 0x7fffffc0 | |
676 | . . . . . . . . | |
677 | We treat this as part of the prologue. */ | |
678 | else if ((op & 0x7fffffc0) == 0x080d01c0) | |
679 | { | |
680 | int gr_j = op & 0x3f; | |
681 | ||
682 | /* If we're moving it to a scratch register, that's fine. */ | |
683 | if (is_caller_saves_reg (gr_j)) | |
684 | { | |
685 | lr_save_reg = gr_j; | |
686 | last_prologue_pc = next_pc; | |
687 | } | |
688 | } | |
689 | ||
690 | /* To save multiple callee-saves registers on the stack, at | |
691 | offset zero: | |
692 | ||
693 | std grK,@(sp,gr0) | |
694 | P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0 | |
695 | 0 000000 1111111 111111 111111 111111 = 0x01ffffff | |
696 | ||
697 | stq grK,@(sp,gr0) | |
698 | P KKKKKK 0000011 000001 000100 000000 = 0x000c1100 | |
699 | 0 000000 1111111 111111 111111 111111 = 0x01ffffff | |
700 | . . . . . . . . | |
701 | We treat this as part of the prologue, and record the register's | |
702 | saved address in the frame structure. */ | |
703 | else if ((op & 0x01ffffff) == 0x000c10c0 | |
704 | || (op & 0x01ffffff) == 0x000c1100) | |
705 | { | |
706 | int gr_k = ((op >> 25) & 0x3f); | |
707 | int ope = ((op >> 6) & 0x3f); | |
708 | int count; | |
709 | int i; | |
710 | ||
711 | /* Is it an std or an stq? */ | |
712 | if (ope == 0x03) | |
713 | count = 2; | |
714 | else | |
715 | count = 4; | |
716 | ||
717 | /* Is it really a callee-saves register? */ | |
718 | if (is_callee_saves_reg (gr_k)) | |
719 | { | |
720 | for (i = 0; i < count; i++) | |
721 | { | |
722 | gr_saved[gr_k + i] = 1; | |
723 | gr_sp_offset[gr_k + i] = 4 * i; | |
724 | } | |
725 | last_prologue_pc = next_pc; | |
726 | } | |
727 | } | |
728 | ||
729 | /* Adjusting the stack pointer. (The stack pointer is GR1.) | |
730 | addi sp, S, sp | |
731 | P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000 | |
732 | 0 111111 1111111 111111 000000000000 = 0x7ffff000 | |
733 | . . . . . . . . | |
734 | We treat this as part of the prologue. */ | |
735 | else if ((op & 0x7ffff000) == 0x02401000) | |
736 | { | |
737 | if (framesize == 0) | |
738 | { | |
739 | /* Sign-extend the twelve-bit field. | |
740 | (Isn't there a better way to do this?) */ | |
741 | int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
742 | ||
743 | framesize -= s; | |
744 | last_prologue_pc = pc; | |
745 | } | |
746 | else | |
747 | { | |
748 | /* If the prologue is being adjusted again, we've | |
749 | likely gone too far; i.e. we're probably in the | |
750 | epilogue. */ | |
751 | break; | |
752 | } | |
753 | } | |
754 | ||
755 | /* Setting the FP to a constant distance from the SP: | |
756 | addi sp, S, fp | |
757 | P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000 | |
758 | 0 111111 1111111 111111 000000000000 = 0x7ffff000 | |
759 | . . . . . . . . | |
760 | We treat this as part of the prologue. */ | |
761 | else if ((op & 0x7ffff000) == 0x04401000) | |
762 | { | |
763 | /* Sign-extend the twelve-bit field. | |
764 | (Isn't there a better way to do this?) */ | |
765 | int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
766 | fp_set = 1; | |
767 | fp_offset = s; | |
768 | last_prologue_pc = pc; | |
769 | } | |
770 | ||
771 | /* To spill an argument register to a scratch register: | |
772 | ori GRi, 0, GRk | |
773 | P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000 | |
774 | 0 000000 1111111 000000 111111111111 = 0x01fc0fff | |
775 | . . . . . . . . | |
776 | For the time being, we treat this as a prologue instruction, | |
777 | assuming that GRi is an argument register. This one's kind | |
778 | of suspicious, because it seems like it could be part of a | |
779 | legitimate body instruction. But we only come here when the | |
780 | source info wasn't helpful, so we have to do the best we can. | |
781 | Hopefully once GCC and GDB agree on how to emit line number | |
782 | info for prologues, then this code will never come into play. */ | |
783 | else if ((op & 0x01fc0fff) == 0x00880000) | |
784 | { | |
785 | int gr_i = ((op >> 12) & 0x3f); | |
786 | ||
787 | /* Make sure that the source is an arg register; if it is, we'll | |
788 | treat it as a prologue instruction. */ | |
789 | if (is_argument_reg (gr_i)) | |
790 | last_prologue_pc = next_pc; | |
791 | } | |
792 | ||
793 | /* To spill 16-bit values to the stack: | |
794 | sthi GRk, @(fp, s) | |
795 | P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000 | |
796 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
797 | . . . . . . . . | |
798 | And for 8-bit values, we use STB instructions. | |
799 | stbi GRk, @(fp, s) | |
800 | P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000 | |
801 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
802 | . . . . . . . . | |
803 | We check that GRk is really an argument register, and treat | |
804 | all such as part of the prologue. */ | |
805 | else if ( (op & 0x01fff000) == 0x01442000 | |
806 | || (op & 0x01fff000) == 0x01402000) | |
807 | { | |
808 | int gr_k = ((op >> 25) & 0x3f); | |
809 | ||
810 | /* Make sure that GRk is really an argument register; treat | |
811 | it as a prologue instruction if so. */ | |
812 | if (is_argument_reg (gr_k)) | |
813 | last_prologue_pc = next_pc; | |
814 | } | |
815 | ||
816 | /* To save multiple callee-saves register on the stack, at a | |
817 | non-zero offset: | |
818 | ||
819 | stdi GRk, @(sp, s) | |
820 | P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000 | |
821 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
822 | . . . . . . . . | |
823 | stqi GRk, @(sp, s) | |
824 | P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000 | |
825 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
826 | . . . . . . . . | |
827 | We treat this as part of the prologue, and record the register's | |
828 | saved address in the frame structure. */ | |
829 | else if ((op & 0x01fff000) == 0x014c1000 | |
830 | || (op & 0x01fff000) == 0x01501000) | |
831 | { | |
832 | int gr_k = ((op >> 25) & 0x3f); | |
833 | int count; | |
834 | int i; | |
835 | ||
836 | /* Is it a stdi or a stqi? */ | |
837 | if ((op & 0x01fff000) == 0x014c1000) | |
838 | count = 2; | |
839 | else | |
840 | count = 4; | |
841 | ||
842 | /* Is it really a callee-saves register? */ | |
843 | if (is_callee_saves_reg (gr_k)) | |
844 | { | |
845 | /* Sign-extend the twelve-bit field. | |
846 | (Isn't there a better way to do this?) */ | |
847 | int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
848 | ||
849 | for (i = 0; i < count; i++) | |
850 | { | |
851 | gr_saved[gr_k + i] = 1; | |
852 | gr_sp_offset[gr_k + i] = s + (4 * i); | |
853 | } | |
854 | last_prologue_pc = next_pc; | |
855 | } | |
856 | } | |
857 | ||
858 | /* Storing any kind of integer register at any constant offset | |
859 | from any other register. | |
860 | ||
861 | st GRk, @(GRi, gr0) | |
862 | P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080 | |
863 | 0 000000 1111111 000000 111111 111111 = 0x01fc0fff | |
864 | . . . . . . . . | |
865 | sti GRk, @(GRi, d12) | |
866 | P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000 | |
867 | 0 000000 1111111 000000 000000000000 = 0x01fc0000 | |
868 | . . . . . . . . | |
869 | These could be almost anything, but a lot of prologue | |
870 | instructions fall into this pattern, so let's decode the | |
871 | instruction once, and then work at a higher level. */ | |
872 | else if (((op & 0x01fc0fff) == 0x000c0080) | |
873 | || ((op & 0x01fc0000) == 0x01480000)) | |
874 | { | |
875 | int gr_k = ((op >> 25) & 0x3f); | |
876 | int gr_i = ((op >> 12) & 0x3f); | |
877 | int offset; | |
878 | ||
879 | /* Are we storing with gr0 as an offset, or using an | |
880 | immediate value? */ | |
881 | if ((op & 0x01fc0fff) == 0x000c0080) | |
882 | offset = 0; | |
883 | else | |
884 | offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
885 | ||
886 | /* If the address isn't relative to the SP or FP, it's not a | |
887 | prologue instruction. */ | |
888 | if (gr_i != sp_regnum && gr_i != fp_regnum) | |
889 | { | |
890 | /* Do nothing; not a prologue instruction. */ | |
891 | } | |
892 | ||
893 | /* Saving the old FP in the new frame (relative to the SP). */ | |
894 | else if (gr_k == fp_regnum && gr_i == sp_regnum) | |
895 | { | |
896 | gr_saved[fp_regnum] = 1; | |
897 | gr_sp_offset[fp_regnum] = offset; | |
898 | last_prologue_pc = next_pc; | |
899 | } | |
900 | ||
901 | /* Saving callee-saves register(s) on the stack, relative to | |
902 | the SP. */ | |
903 | else if (gr_i == sp_regnum | |
904 | && is_callee_saves_reg (gr_k)) | |
905 | { | |
906 | gr_saved[gr_k] = 1; | |
907 | if (gr_i == sp_regnum) | |
908 | gr_sp_offset[gr_k] = offset; | |
909 | else | |
910 | gr_sp_offset[gr_k] = offset + fp_offset; | |
911 | last_prologue_pc = next_pc; | |
912 | } | |
913 | ||
914 | /* Saving the scratch register holding the return address. */ | |
915 | else if (lr_save_reg != -1 | |
916 | && gr_k == lr_save_reg) | |
917 | { | |
918 | lr_saved_on_stack = 1; | |
919 | if (gr_i == sp_regnum) | |
920 | lr_sp_offset = offset; | |
921 | else | |
922 | lr_sp_offset = offset + fp_offset; | |
923 | last_prologue_pc = next_pc; | |
924 | } | |
925 | ||
926 | /* Spilling int-sized arguments to the stack. */ | |
927 | else if (is_argument_reg (gr_k)) | |
928 | last_prologue_pc = next_pc; | |
929 | } | |
930 | pc = next_pc; | |
931 | } | |
932 | ||
933 | if (this_frame && info) | |
934 | { | |
935 | int i; | |
936 | ULONGEST this_base; | |
937 | ||
938 | /* If we know the relationship between the stack and frame | |
939 | pointers, record the addresses of the registers we noticed. | |
940 | Note that we have to do this as a separate step at the end, | |
941 | because instructions may save relative to the SP, but we need | |
942 | their addresses relative to the FP. */ | |
943 | if (fp_set) | |
944 | this_base = get_frame_register_unsigned (this_frame, fp_regnum); | |
945 | else | |
946 | this_base = get_frame_register_unsigned (this_frame, sp_regnum); | |
947 | ||
948 | for (i = 0; i < 64; i++) | |
949 | if (gr_saved[i]) | |
950 | info->saved_regs[i].set_addr (this_base - fp_offset | |
951 | + gr_sp_offset[i]); | |
952 | ||
953 | info->prev_sp = this_base - fp_offset + framesize; | |
954 | info->base = this_base; | |
955 | ||
956 | /* If LR was saved on the stack, record its location. */ | |
957 | if (lr_saved_on_stack) | |
958 | info->saved_regs[lr_regnum].set_addr (this_base - fp_offset | |
959 | + lr_sp_offset); | |
960 | ||
961 | /* The call instruction moves the caller's PC in the callee's LR. | |
962 | Since this is an unwind, do the reverse. Copy the location of LR | |
963 | into PC (the address / regnum) so that a request for PC will be | |
964 | converted into a request for the LR. */ | |
965 | info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum]; | |
966 | ||
967 | /* Save the previous frame's computed SP value. */ | |
968 | info->saved_regs[sp_regnum].set_value (info->prev_sp); | |
969 | } | |
970 | ||
971 | return last_prologue_pc; | |
972 | } | |
973 | ||
974 | ||
975 | static CORE_ADDR | |
976 | frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | |
977 | { | |
978 | CORE_ADDR func_addr, func_end, new_pc; | |
979 | ||
980 | new_pc = pc; | |
981 | ||
982 | /* If the line table has entry for a line *within* the function | |
983 | (i.e., not in the prologue, and not past the end), then that's | |
984 | our location. */ | |
985 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
986 | { | |
987 | struct symtab_and_line sal; | |
988 | ||
989 | sal = find_pc_line (func_addr, 0); | |
990 | ||
991 | if (sal.line != 0 && sal.end < func_end) | |
992 | { | |
993 | new_pc = sal.end; | |
994 | } | |
995 | } | |
996 | ||
997 | /* The FR-V prologue is at least five instructions long (twenty bytes). | |
998 | If we didn't find a real source location past that, then | |
999 | do a full analysis of the prologue. */ | |
1000 | if (new_pc < pc + 20) | |
1001 | new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0); | |
1002 | ||
1003 | return new_pc; | |
1004 | } | |
1005 | ||
1006 | ||
1007 | /* Examine the instruction pointed to by PC. If it corresponds to | |
1008 | a call to __main, return the address of the next instruction. | |
1009 | Otherwise, return PC. */ | |
1010 | ||
1011 | static CORE_ADDR | |
1012 | frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | |
1013 | { | |
1014 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1015 | gdb_byte buf[4]; | |
1016 | unsigned long op; | |
1017 | CORE_ADDR orig_pc = pc; | |
1018 | ||
1019 | if (target_read_memory (pc, buf, 4)) | |
1020 | return pc; | |
1021 | op = extract_unsigned_integer (buf, 4, byte_order); | |
1022 | ||
1023 | /* In PIC code, GR15 may be loaded from some offset off of FP prior | |
1024 | to the call instruction. | |
1025 | ||
1026 | Skip over this instruction if present. It won't be present in | |
1027 | non-PIC code, and even in PIC code, it might not be present. | |
1028 | (This is due to the fact that GR15, the FDPIC register, already | |
1029 | contains the correct value.) | |
1030 | ||
1031 | The general form of the LDI is given first, followed by the | |
1032 | specific instruction with the GRi and GRk filled in as FP and | |
1033 | GR15. | |
1034 | ||
1035 | ldi @(GRi, d12), GRk | |
1036 | P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000 | |
1037 | 0 000000 1111111 000000 000000000000 = 0x01fc0000 | |
1038 | . . . . . . . . | |
1039 | ldi @(FP, d12), GR15 | |
1040 | P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000 | |
1041 | 0 001111 1111111 000010 000000000000 = 0x7ffff000 | |
1042 | . . . . . . . . */ | |
1043 | ||
1044 | if ((op & 0x7ffff000) == 0x1ec82000) | |
1045 | { | |
1046 | pc += 4; | |
1047 | if (target_read_memory (pc, buf, 4)) | |
1048 | return orig_pc; | |
1049 | op = extract_unsigned_integer (buf, 4, byte_order); | |
1050 | } | |
1051 | ||
1052 | /* The format of an FRV CALL instruction is as follows: | |
1053 | ||
1054 | call label24 | |
1055 | P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000 | |
1056 | 0 000000 1111111 000000000000000000 = 0x01fc0000 | |
1057 | . . . . . . . . | |
1058 | ||
1059 | where label24 is constructed by concatenating the H bits with the | |
1060 | L bits. The call target is PC + (4 * sign_ext(label24)). */ | |
1061 | ||
1062 | if ((op & 0x01fc0000) == 0x003c0000) | |
1063 | { | |
1064 | LONGEST displ; | |
1065 | CORE_ADDR call_dest; | |
1066 | ||
1067 | displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff); | |
1068 | if ((displ & 0x00800000) != 0) | |
1069 | displ |= ~((LONGEST) 0x00ffffff); | |
1070 | ||
1071 | call_dest = pc + 4 * displ; | |
1072 | bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest); | |
1073 | ||
1074 | if (s.minsym != NULL | |
1075 | && s.minsym->linkage_name () != NULL | |
1076 | && strcmp (s.minsym->linkage_name (), "__main") == 0) | |
1077 | { | |
1078 | pc += 4; | |
1079 | return pc; | |
1080 | } | |
1081 | } | |
1082 | return orig_pc; | |
1083 | } | |
1084 | ||
1085 | ||
1086 | static struct frv_unwind_cache * | |
1087 | frv_frame_unwind_cache (const frame_info_ptr &this_frame, | |
1088 | void **this_prologue_cache) | |
1089 | { | |
1090 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
1091 | struct frv_unwind_cache *info; | |
1092 | ||
1093 | if ((*this_prologue_cache)) | |
1094 | return (struct frv_unwind_cache *) (*this_prologue_cache); | |
1095 | ||
1096 | info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache); | |
1097 | (*this_prologue_cache) = info; | |
1098 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); | |
1099 | ||
1100 | /* Prologue analysis does the rest... */ | |
1101 | frv_analyze_prologue (gdbarch, | |
1102 | get_frame_func (this_frame), this_frame, info); | |
1103 | ||
1104 | return info; | |
1105 | } | |
1106 | ||
1107 | static void | |
1108 | frv_extract_return_value (struct type *type, struct regcache *regcache, | |
1109 | gdb_byte *valbuf) | |
1110 | { | |
1111 | struct gdbarch *gdbarch = regcache->arch (); | |
1112 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1113 | int len = type->length (); | |
1114 | ||
1115 | if (len <= 4) | |
1116 | { | |
1117 | ULONGEST gpr8_val; | |
1118 | regcache_cooked_read_unsigned (regcache, 8, &gpr8_val); | |
1119 | store_unsigned_integer (valbuf, len, byte_order, gpr8_val); | |
1120 | } | |
1121 | else if (len == 8) | |
1122 | { | |
1123 | ULONGEST regval; | |
1124 | ||
1125 | regcache_cooked_read_unsigned (regcache, 8, ®val); | |
1126 | store_unsigned_integer (valbuf, 4, byte_order, regval); | |
1127 | regcache_cooked_read_unsigned (regcache, 9, ®val); | |
1128 | store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval); | |
1129 | } | |
1130 | else | |
1131 | internal_error (_("Illegal return value length: %d"), len); | |
1132 | } | |
1133 | ||
1134 | static CORE_ADDR | |
1135 | frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
1136 | { | |
1137 | /* Require dword alignment. */ | |
1138 | return align_down (sp, 8); | |
1139 | } | |
1140 | ||
1141 | static CORE_ADDR | |
1142 | find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point) | |
1143 | { | |
1144 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1145 | CORE_ADDR descr; | |
1146 | gdb_byte valbuf[4]; | |
1147 | CORE_ADDR start_addr; | |
1148 | ||
1149 | /* If we can't find the function in the symbol table, then we assume | |
1150 | that the function address is already in descriptor form. */ | |
1151 | if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL) | |
1152 | || entry_point != start_addr) | |
1153 | return entry_point; | |
1154 | ||
1155 | descr = frv_fdpic_find_canonical_descriptor (entry_point); | |
1156 | ||
1157 | if (descr != 0) | |
1158 | return descr; | |
1159 | ||
1160 | /* Construct a non-canonical descriptor from space allocated on | |
1161 | the stack. */ | |
1162 | ||
1163 | descr = value_as_long (value_allocate_space_in_inferior (8)); | |
1164 | store_unsigned_integer (valbuf, 4, byte_order, entry_point); | |
1165 | write_memory (descr, valbuf, 4); | |
1166 | store_unsigned_integer (valbuf, 4, byte_order, | |
1167 | frv_fdpic_find_global_pointer (entry_point)); | |
1168 | write_memory (descr + 4, valbuf, 4); | |
1169 | return descr; | |
1170 | } | |
1171 | ||
1172 | static CORE_ADDR | |
1173 | frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, | |
1174 | struct target_ops *targ) | |
1175 | { | |
1176 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1177 | CORE_ADDR entry_point; | |
1178 | CORE_ADDR got_address; | |
1179 | ||
1180 | entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order); | |
1181 | got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order); | |
1182 | ||
1183 | if (got_address == frv_fdpic_find_global_pointer (entry_point)) | |
1184 | return entry_point; | |
1185 | else | |
1186 | return addr; | |
1187 | } | |
1188 | ||
1189 | static CORE_ADDR | |
1190 | frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
1191 | struct regcache *regcache, CORE_ADDR bp_addr, | |
1192 | int nargs, struct value **args, CORE_ADDR sp, | |
1193 | function_call_return_method return_method, | |
1194 | CORE_ADDR struct_addr) | |
1195 | { | |
1196 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
1197 | int argreg; | |
1198 | int argnum; | |
1199 | const gdb_byte *val; | |
1200 | gdb_byte valbuf[4]; | |
1201 | struct value *arg; | |
1202 | struct type *arg_type; | |
1203 | int len; | |
1204 | enum type_code typecode; | |
1205 | CORE_ADDR regval; | |
1206 | int stack_space; | |
1207 | int stack_offset; | |
1208 | enum frv_abi abi = frv_abi (gdbarch); | |
1209 | CORE_ADDR func_addr = find_function_addr (function, NULL); | |
1210 | ||
1211 | #if 0 | |
1212 | printf("Push %d args at sp = %x, struct_return=%d (%x)\n", | |
1213 | nargs, (int) sp, struct_return, struct_addr); | |
1214 | #endif | |
1215 | ||
1216 | stack_space = 0; | |
1217 | for (argnum = 0; argnum < nargs; ++argnum) | |
1218 | stack_space += align_up (args[argnum]->type ()->length (), 4); | |
1219 | ||
1220 | stack_space -= (6 * 4); | |
1221 | if (stack_space > 0) | |
1222 | sp -= stack_space; | |
1223 | ||
1224 | /* Make sure stack is dword aligned. */ | |
1225 | sp = align_down (sp, 8); | |
1226 | ||
1227 | stack_offset = 0; | |
1228 | ||
1229 | argreg = 8; | |
1230 | ||
1231 | if (return_method == return_method_struct) | |
1232 | regcache_cooked_write_unsigned (regcache, struct_return_regnum, | |
1233 | struct_addr); | |
1234 | ||
1235 | for (argnum = 0; argnum < nargs; ++argnum) | |
1236 | { | |
1237 | arg = args[argnum]; | |
1238 | arg_type = check_typedef (arg->type ()); | |
1239 | len = arg_type->length (); | |
1240 | typecode = arg_type->code (); | |
1241 | ||
1242 | if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) | |
1243 | { | |
1244 | store_unsigned_integer (valbuf, 4, byte_order, | |
1245 | arg->address ()); | |
1246 | typecode = TYPE_CODE_PTR; | |
1247 | len = 4; | |
1248 | val = valbuf; | |
1249 | } | |
1250 | else if (abi == FRV_ABI_FDPIC | |
1251 | && len == 4 | |
1252 | && typecode == TYPE_CODE_PTR | |
1253 | && arg_type->target_type ()->code () == TYPE_CODE_FUNC) | |
1254 | { | |
1255 | /* The FDPIC ABI requires function descriptors to be passed instead | |
1256 | of entry points. */ | |
1257 | CORE_ADDR addr = extract_unsigned_integer | |
1258 | (arg->contents ().data (), 4, byte_order); | |
1259 | addr = find_func_descr (gdbarch, addr); | |
1260 | store_unsigned_integer (valbuf, 4, byte_order, addr); | |
1261 | typecode = TYPE_CODE_PTR; | |
1262 | len = 4; | |
1263 | val = valbuf; | |
1264 | } | |
1265 | else | |
1266 | { | |
1267 | val = arg->contents ().data (); | |
1268 | } | |
1269 | ||
1270 | while (len > 0) | |
1271 | { | |
1272 | int partial_len = (len < 4 ? len : 4); | |
1273 | ||
1274 | if (argreg < 14) | |
1275 | { | |
1276 | regval = extract_unsigned_integer (val, partial_len, byte_order); | |
1277 | #if 0 | |
1278 | printf(" Argnum %d data %x -> reg %d\n", | |
1279 | argnum, (int) regval, argreg); | |
1280 | #endif | |
1281 | regcache_cooked_write_unsigned (regcache, argreg, regval); | |
1282 | ++argreg; | |
1283 | } | |
1284 | else | |
1285 | { | |
1286 | #if 0 | |
1287 | printf(" Argnum %d data %x -> offset %d (%x)\n", | |
1288 | argnum, *((int *)val), stack_offset, | |
1289 | (int) (sp + stack_offset)); | |
1290 | #endif | |
1291 | write_memory (sp + stack_offset, val, partial_len); | |
1292 | stack_offset += align_up (partial_len, 4); | |
1293 | } | |
1294 | len -= partial_len; | |
1295 | val += partial_len; | |
1296 | } | |
1297 | } | |
1298 | ||
1299 | /* Set the return address. For the frv, the return breakpoint is | |
1300 | always at BP_ADDR. */ | |
1301 | regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr); | |
1302 | ||
1303 | if (abi == FRV_ABI_FDPIC) | |
1304 | { | |
1305 | /* Set the GOT register for the FDPIC ABI. */ | |
1306 | regcache_cooked_write_unsigned | |
1307 | (regcache, first_gpr_regnum + 15, | |
1308 | frv_fdpic_find_global_pointer (func_addr)); | |
1309 | } | |
1310 | ||
1311 | /* Finally, update the SP register. */ | |
1312 | regcache_cooked_write_unsigned (regcache, sp_regnum, sp); | |
1313 | ||
1314 | return sp; | |
1315 | } | |
1316 | ||
1317 | static void | |
1318 | frv_store_return_value (struct type *type, struct regcache *regcache, | |
1319 | const gdb_byte *valbuf) | |
1320 | { | |
1321 | int len = type->length (); | |
1322 | ||
1323 | if (len <= 4) | |
1324 | { | |
1325 | bfd_byte val[4]; | |
1326 | memset (val, 0, sizeof (val)); | |
1327 | memcpy (val + (4 - len), valbuf, len); | |
1328 | regcache->cooked_write (8, val); | |
1329 | } | |
1330 | else if (len == 8) | |
1331 | { | |
1332 | regcache->cooked_write (8, valbuf); | |
1333 | regcache->cooked_write (9, (bfd_byte *) valbuf + 4); | |
1334 | } | |
1335 | else | |
1336 | internal_error (_("Don't know how to return a %d-byte value."), len); | |
1337 | } | |
1338 | ||
1339 | static enum return_value_convention | |
1340 | frv_return_value (struct gdbarch *gdbarch, struct value *function, | |
1341 | struct type *valtype, struct regcache *regcache, | |
1342 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
1343 | { | |
1344 | int struct_return = valtype->code () == TYPE_CODE_STRUCT | |
1345 | || valtype->code () == TYPE_CODE_UNION | |
1346 | || valtype->code () == TYPE_CODE_ARRAY; | |
1347 | ||
1348 | if (writebuf != NULL) | |
1349 | { | |
1350 | gdb_assert (!struct_return); | |
1351 | frv_store_return_value (valtype, regcache, writebuf); | |
1352 | } | |
1353 | ||
1354 | if (readbuf != NULL) | |
1355 | { | |
1356 | gdb_assert (!struct_return); | |
1357 | frv_extract_return_value (valtype, regcache, readbuf); | |
1358 | } | |
1359 | ||
1360 | if (struct_return) | |
1361 | return RETURN_VALUE_STRUCT_CONVENTION; | |
1362 | else | |
1363 | return RETURN_VALUE_REGISTER_CONVENTION; | |
1364 | } | |
1365 | ||
1366 | /* Given a GDB frame, determine the address of the calling function's | |
1367 | frame. This will be used to create a new GDB frame struct. */ | |
1368 | ||
1369 | static void | |
1370 | frv_frame_this_id (const frame_info_ptr &this_frame, | |
1371 | void **this_prologue_cache, struct frame_id *this_id) | |
1372 | { | |
1373 | struct frv_unwind_cache *info | |
1374 | = frv_frame_unwind_cache (this_frame, this_prologue_cache); | |
1375 | CORE_ADDR base; | |
1376 | CORE_ADDR func; | |
1377 | struct frame_id id; | |
1378 | ||
1379 | /* The FUNC is easy. */ | |
1380 | func = get_frame_func (this_frame); | |
1381 | ||
1382 | /* Check if the stack is empty. */ | |
1383 | bound_minimal_symbol msym_stack | |
1384 | = lookup_minimal_symbol (current_program_space, "_stack"); | |
1385 | if (msym_stack.minsym && info->base == msym_stack.value_address ()) | |
1386 | return; | |
1387 | ||
1388 | /* Hopefully the prologue analysis either correctly determined the | |
1389 | frame's base (which is the SP from the previous frame), or set | |
1390 | that base to "NULL". */ | |
1391 | base = info->prev_sp; | |
1392 | if (base == 0) | |
1393 | return; | |
1394 | ||
1395 | id = frame_id_build (base, func); | |
1396 | (*this_id) = id; | |
1397 | } | |
1398 | ||
1399 | static struct value * | |
1400 | frv_frame_prev_register (const frame_info_ptr &this_frame, | |
1401 | void **this_prologue_cache, int regnum) | |
1402 | { | |
1403 | struct frv_unwind_cache *info | |
1404 | = frv_frame_unwind_cache (this_frame, this_prologue_cache); | |
1405 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | |
1406 | } | |
1407 | ||
1408 | static const struct frame_unwind_legacy frv_frame_unwind ( | |
1409 | "frv prologue", | |
1410 | NORMAL_FRAME, | |
1411 | FRAME_UNWIND_ARCH, | |
1412 | default_frame_unwind_stop_reason, | |
1413 | frv_frame_this_id, | |
1414 | frv_frame_prev_register, | |
1415 | NULL, | |
1416 | default_frame_sniffer | |
1417 | ); | |
1418 | ||
1419 | static CORE_ADDR | |
1420 | frv_frame_base_address (const frame_info_ptr &this_frame, void **this_cache) | |
1421 | { | |
1422 | struct frv_unwind_cache *info | |
1423 | = frv_frame_unwind_cache (this_frame, this_cache); | |
1424 | return info->base; | |
1425 | } | |
1426 | ||
1427 | static const struct frame_base frv_frame_base = { | |
1428 | &frv_frame_unwind, | |
1429 | frv_frame_base_address, | |
1430 | frv_frame_base_address, | |
1431 | frv_frame_base_address | |
1432 | }; | |
1433 | ||
1434 | static struct gdbarch * | |
1435 | frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1436 | { | |
1437 | int elf_flags = 0; | |
1438 | ||
1439 | /* Check to see if we've already built an appropriate architecture | |
1440 | object for this executable. */ | |
1441 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1442 | if (arches) | |
1443 | return arches->gdbarch; | |
1444 | ||
1445 | /* Select the right tdep structure for this variant. */ | |
1446 | gdbarch *gdbarch = gdbarch_alloc (&info, new_variant ()); | |
1447 | frv_gdbarch_tdep *var = gdbarch_tdep<frv_gdbarch_tdep> (gdbarch); | |
1448 | ||
1449 | switch (info.bfd_arch_info->mach) | |
1450 | { | |
1451 | case bfd_mach_frv: | |
1452 | case bfd_mach_frvsimple: | |
1453 | case bfd_mach_fr300: | |
1454 | case bfd_mach_fr500: | |
1455 | case bfd_mach_frvtomcat: | |
1456 | case bfd_mach_fr550: | |
1457 | set_variant_num_gprs (var, 64); | |
1458 | set_variant_num_fprs (var, 64); | |
1459 | break; | |
1460 | ||
1461 | case bfd_mach_fr400: | |
1462 | case bfd_mach_fr450: | |
1463 | set_variant_num_gprs (var, 32); | |
1464 | set_variant_num_fprs (var, 32); | |
1465 | break; | |
1466 | ||
1467 | default: | |
1468 | /* Never heard of this variant. */ | |
1469 | return 0; | |
1470 | } | |
1471 | ||
1472 | /* Extract the ELF flags, if available. */ | |
1473 | if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | |
1474 | elf_flags = elf_elfheader (info.abfd)->e_flags; | |
1475 | ||
1476 | if (elf_flags & EF_FRV_FDPIC) | |
1477 | set_variant_abi_fdpic (var); | |
1478 | ||
1479 | if (elf_flags & EF_FRV_CPU_FR450) | |
1480 | set_variant_scratch_registers (var); | |
1481 | ||
1482 | set_gdbarch_short_bit (gdbarch, 16); | |
1483 | set_gdbarch_int_bit (gdbarch, 32); | |
1484 | set_gdbarch_long_bit (gdbarch, 32); | |
1485 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1486 | set_gdbarch_float_bit (gdbarch, 32); | |
1487 | set_gdbarch_double_bit (gdbarch, 64); | |
1488 | set_gdbarch_long_double_bit (gdbarch, 64); | |
1489 | set_gdbarch_ptr_bit (gdbarch, 32); | |
1490 | ||
1491 | set_gdbarch_num_regs (gdbarch, frv_num_regs); | |
1492 | set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs); | |
1493 | ||
1494 | set_gdbarch_sp_regnum (gdbarch, sp_regnum); | |
1495 | set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum); | |
1496 | set_gdbarch_pc_regnum (gdbarch, pc_regnum); | |
1497 | ||
1498 | set_gdbarch_register_name (gdbarch, frv_register_name); | |
1499 | set_gdbarch_register_type (gdbarch, frv_register_type); | |
1500 | set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno); | |
1501 | ||
1502 | set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read); | |
1503 | set_gdbarch_deprecated_pseudo_register_write (gdbarch, | |
1504 | frv_pseudo_register_write); | |
1505 | ||
1506 | set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue); | |
1507 | set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue); | |
1508 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, frv_breakpoint::kind_from_pc); | |
1509 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, frv_breakpoint::bp_from_kind); | |
1510 | set_gdbarch_adjust_breakpoint_address | |
1511 | (gdbarch, frv_adjust_breakpoint_address); | |
1512 | ||
1513 | set_gdbarch_return_value (gdbarch, frv_return_value); | |
1514 | ||
1515 | /* Frame stuff. */ | |
1516 | set_gdbarch_frame_align (gdbarch, frv_frame_align); | |
1517 | frame_base_set_default (gdbarch, &frv_frame_base); | |
1518 | /* We set the sniffer lower down after the OSABI hooks have been | |
1519 | established. */ | |
1520 | ||
1521 | /* Settings for calling functions in the inferior. */ | |
1522 | set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call); | |
1523 | ||
1524 | /* Settings that should be unnecessary. */ | |
1525 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
1526 | ||
1527 | /* Hardware watchpoint / breakpoint support. */ | |
1528 | switch (info.bfd_arch_info->mach) | |
1529 | { | |
1530 | case bfd_mach_frv: | |
1531 | case bfd_mach_frvsimple: | |
1532 | case bfd_mach_fr300: | |
1533 | case bfd_mach_fr500: | |
1534 | case bfd_mach_frvtomcat: | |
1535 | /* fr500-style hardware debugging support. */ | |
1536 | var->num_hw_watchpoints = 4; | |
1537 | var->num_hw_breakpoints = 4; | |
1538 | break; | |
1539 | ||
1540 | case bfd_mach_fr400: | |
1541 | case bfd_mach_fr450: | |
1542 | /* fr400-style hardware debugging support. */ | |
1543 | var->num_hw_watchpoints = 2; | |
1544 | var->num_hw_breakpoints = 4; | |
1545 | break; | |
1546 | ||
1547 | default: | |
1548 | /* Otherwise, assume we don't have hardware debugging support. */ | |
1549 | var->num_hw_watchpoints = 0; | |
1550 | var->num_hw_breakpoints = 0; | |
1551 | break; | |
1552 | } | |
1553 | ||
1554 | if (frv_abi (gdbarch) == FRV_ABI_FDPIC) | |
1555 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, | |
1556 | frv_convert_from_func_ptr_addr); | |
1557 | ||
1558 | set_gdbarch_make_solib_ops (gdbarch, make_frv_solib_ops); | |
1559 | ||
1560 | /* Hook in ABI-specific overrides, if they have been registered. */ | |
1561 | gdbarch_init_osabi (info, gdbarch); | |
1562 | ||
1563 | /* Set the fallback (prologue based) frame sniffer. */ | |
1564 | frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind); | |
1565 | ||
1566 | /* Enable TLS support. */ | |
1567 | set_gdbarch_fetch_tls_load_module_address (gdbarch, | |
1568 | frv_fetch_objfile_link_map); | |
1569 | ||
1570 | return gdbarch; | |
1571 | } | |
1572 | ||
1573 | INIT_GDB_FILE (frv_tdep) | |
1574 | { | |
1575 | gdbarch_register (bfd_arch_frv, frv_gdbarch_init); | |
1576 | } |