]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame_incremental - gdb/frv-tdep.c
gas: Move gas_sframe_check to binutils-common.exp
[thirdparty/binutils-gdb.git] / gdb / frv-tdep.c
... / ...
CommitLineData
1/* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2
3 Copyright (C) 2002-2025 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "extract-store-integer.h"
21#include "inferior.h"
22#include "gdbcore.h"
23#include "arch-utils.h"
24#include "regcache.h"
25#include "frame.h"
26#include "frame-unwind.h"
27#include "frame-base.h"
28#include "solib-frv.h"
29#include "trad-frame.h"
30#include "dis-asm.h"
31#include "sim-regno.h"
32#include "sim/sim-frv.h"
33#include "symtab.h"
34#include "elf-bfd.h"
35#include "elf/frv.h"
36#include "osabi.h"
37#include "infcall.h"
38#include "solib.h"
39#include "frv-tdep.h"
40#include "objfiles.h"
41#include "gdbarch.h"
42
43/* Make cgen names unique to prevent ODR conflicts with other targets. */
44#define GDB_CGEN_REMAP_PREFIX frv
45#include "cgen-remap.h"
46#include "opcodes/frv-desc.h"
47
48struct frv_unwind_cache /* was struct frame_extra_info */
49 {
50 /* The previous frame's inner-most stack address. Used as this
51 frame ID's stack_addr. */
52 CORE_ADDR prev_sp;
53
54 /* The frame's base, optionally used by the high-level debug info. */
55 CORE_ADDR base;
56
57 /* Table indicating the location of each and every register. */
58 trad_frame_saved_reg *saved_regs;
59 };
60
61/* A structure describing a particular variant of the FRV.
62 We allocate and initialize one of these structures when we create
63 the gdbarch object for a variant.
64
65 At the moment, all the FR variants we support differ only in which
66 registers are present; the portable code of GDB knows that
67 registers whose names are the empty string don't exist, so the
68 `register_names' array captures all the per-variant information we
69 need.
70
71 in the future, if we need to have per-variant maps for raw size,
72 virtual type, etc., we should replace register_names with an array
73 of structures, each of which gives all the necessary info for one
74 register. Don't stick parallel arrays in here --- that's so
75 Fortran. */
76struct frv_gdbarch_tdep : gdbarch_tdep_base
77{
78 /* Which ABI is in use? */
79 enum frv_abi frv_abi {};
80
81 /* How many general-purpose registers does this variant have? */
82 int num_gprs = 0;
83
84 /* How many floating-point registers does this variant have? */
85 int num_fprs = 0;
86
87 /* How many hardware watchpoints can it support? */
88 int num_hw_watchpoints = 0;
89
90 /* How many hardware breakpoints can it support? */
91 int num_hw_breakpoints = 0;
92
93 /* Register names. */
94 const char **register_names = nullptr;
95};
96
97using frv_gdbarch_tdep_up = std::unique_ptr<frv_gdbarch_tdep>;
98
99/* Return the FR-V ABI associated with GDBARCH. */
100enum frv_abi
101frv_abi (struct gdbarch *gdbarch)
102{
103 frv_gdbarch_tdep *tdep = gdbarch_tdep<frv_gdbarch_tdep> (gdbarch);
104 return tdep->frv_abi;
105}
106
107/* Fetch the interpreter and executable loadmap addresses (for shared
108 library support) for the FDPIC ABI. Return 0 if successful, -1 if
109 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
110int
111frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
112 CORE_ADDR *exec_addr)
113{
114 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
115 return -1;
116 else
117 {
118 regcache *regcache = get_thread_regcache (inferior_thread ());
119
120 if (interp_addr != NULL)
121 {
122 ULONGEST val;
123 regcache_cooked_read_unsigned (regcache,
124 fdpic_loadmap_interp_regnum, &val);
125 *interp_addr = val;
126 }
127 if (exec_addr != NULL)
128 {
129 ULONGEST val;
130 regcache_cooked_read_unsigned (regcache,
131 fdpic_loadmap_exec_regnum, &val);
132 *exec_addr = val;
133 }
134 return 0;
135 }
136}
137
138/* Allocate a new variant structure, and set up default values for all
139 the fields. */
140static frv_gdbarch_tdep_up
141new_variant ()
142{
143 int r;
144
145 frv_gdbarch_tdep_up var (new frv_gdbarch_tdep);
146
147 var->frv_abi = FRV_ABI_EABI;
148 var->num_gprs = 64;
149 var->num_fprs = 64;
150 var->num_hw_watchpoints = 0;
151 var->num_hw_breakpoints = 0;
152
153 /* By default, don't supply any general-purpose or floating-point
154 register names. */
155 var->register_names
156 = (const char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
157 * sizeof (const char *));
158 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
159 var->register_names[r] = "";
160
161 /* Do, however, supply default names for the known special-purpose
162 registers. */
163
164 var->register_names[pc_regnum] = "pc";
165 var->register_names[lr_regnum] = "lr";
166 var->register_names[lcr_regnum] = "lcr";
167
168 var->register_names[psr_regnum] = "psr";
169 var->register_names[ccr_regnum] = "ccr";
170 var->register_names[cccr_regnum] = "cccr";
171 var->register_names[tbr_regnum] = "tbr";
172
173 /* Debug registers. */
174 var->register_names[brr_regnum] = "brr";
175 var->register_names[dbar0_regnum] = "dbar0";
176 var->register_names[dbar1_regnum] = "dbar1";
177 var->register_names[dbar2_regnum] = "dbar2";
178 var->register_names[dbar3_regnum] = "dbar3";
179
180 /* iacc0 (Only found on MB93405.) */
181 var->register_names[iacc0h_regnum] = "iacc0h";
182 var->register_names[iacc0l_regnum] = "iacc0l";
183 var->register_names[iacc0_regnum] = "iacc0";
184
185 /* fsr0 (Found on FR555 and FR501.) */
186 var->register_names[fsr0_regnum] = "fsr0";
187
188 /* acc0 - acc7. The architecture provides for the possibility of many
189 more (up to 64 total), but we don't want to make that big of a hole
190 in the G packet. If we need more in the future, we'll add them
191 elsewhere. */
192 for (r = acc0_regnum; r <= acc7_regnum; r++)
193 var->register_names[r]
194 = xstrprintf ("acc%d", r - acc0_regnum).release ();
195
196 /* accg0 - accg7: These are one byte registers. The remote protocol
197 provides the raw values packed four into a slot. accg0123 and
198 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
199 We don't provide names for accg0123 and accg4567 since the user will
200 likely not want to see these raw values. */
201
202 for (r = accg0_regnum; r <= accg7_regnum; r++)
203 var->register_names[r]
204 = xstrprintf ("accg%d", r - accg0_regnum).release ();
205
206 /* msr0 and msr1. */
207
208 var->register_names[msr0_regnum] = "msr0";
209 var->register_names[msr1_regnum] = "msr1";
210
211 /* gner and fner registers. */
212 var->register_names[gner0_regnum] = "gner0";
213 var->register_names[gner1_regnum] = "gner1";
214 var->register_names[fner0_regnum] = "fner0";
215 var->register_names[fner1_regnum] = "fner1";
216
217 return var;
218}
219
220
221/* Indicate that the variant VAR has NUM_GPRS general-purpose
222 registers, and fill in the names array appropriately. */
223static void
224set_variant_num_gprs (frv_gdbarch_tdep *var, int num_gprs)
225{
226 int r;
227
228 var->num_gprs = num_gprs;
229
230 for (r = 0; r < num_gprs; ++r)
231 {
232 char buf[20];
233
234 xsnprintf (buf, sizeof (buf), "gr%d", r);
235 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
236 }
237}
238
239
240/* Indicate that the variant VAR has NUM_FPRS floating-point
241 registers, and fill in the names array appropriately. */
242static void
243set_variant_num_fprs (frv_gdbarch_tdep *var, int num_fprs)
244{
245 int r;
246
247 var->num_fprs = num_fprs;
248
249 for (r = 0; r < num_fprs; ++r)
250 {
251 char buf[20];
252
253 xsnprintf (buf, sizeof (buf), "fr%d", r);
254 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
255 }
256}
257
258static void
259set_variant_abi_fdpic (frv_gdbarch_tdep *var)
260{
261 var->frv_abi = FRV_ABI_FDPIC;
262 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
263 var->register_names[fdpic_loadmap_interp_regnum]
264 = xstrdup ("loadmap_interp");
265}
266
267static void
268set_variant_scratch_registers (frv_gdbarch_tdep *var)
269{
270 var->register_names[scr0_regnum] = xstrdup ("scr0");
271 var->register_names[scr1_regnum] = xstrdup ("scr1");
272 var->register_names[scr2_regnum] = xstrdup ("scr2");
273 var->register_names[scr3_regnum] = xstrdup ("scr3");
274}
275
276static const char *
277frv_register_name (struct gdbarch *gdbarch, int reg)
278{
279 frv_gdbarch_tdep *tdep = gdbarch_tdep<frv_gdbarch_tdep> (gdbarch);
280 return tdep->register_names[reg];
281}
282
283
284static struct type *
285frv_register_type (struct gdbarch *gdbarch, int reg)
286{
287 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
288 return builtin_type (gdbarch)->builtin_float;
289 else if (reg == iacc0_regnum)
290 return builtin_type (gdbarch)->builtin_int64;
291 else
292 return builtin_type (gdbarch)->builtin_int32;
293}
294
295static enum register_status
296frv_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
297 int reg, gdb_byte *buffer)
298{
299 enum register_status status;
300
301 if (reg == iacc0_regnum)
302 {
303 status = regcache->raw_read (iacc0h_regnum, buffer);
304 if (status == REG_VALID)
305 status = regcache->raw_read (iacc0l_regnum, (bfd_byte *) buffer + 4);
306 }
307 else if (accg0_regnum <= reg && reg <= accg7_regnum)
308 {
309 /* The accg raw registers have four values in each slot with the
310 lowest register number occupying the first byte. */
311
312 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
313 int byte_num = (reg - accg0_regnum) % 4;
314 gdb_byte buf[4];
315
316 status = regcache->raw_read (raw_regnum, buf);
317 if (status == REG_VALID)
318 {
319 memset (buffer, 0, 4);
320 /* FR-V is big endian, so put the requested byte in the
321 first byte of the buffer allocated to hold the
322 pseudo-register. */
323 buffer[0] = buf[byte_num];
324 }
325 }
326 else
327 gdb_assert_not_reached ("invalid pseudo register number");
328
329 return status;
330}
331
332static void
333frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
334 int reg, const gdb_byte *buffer)
335{
336 if (reg == iacc0_regnum)
337 {
338 regcache->raw_write (iacc0h_regnum, buffer);
339 regcache->raw_write (iacc0l_regnum, (bfd_byte *) buffer + 4);
340 }
341 else if (accg0_regnum <= reg && reg <= accg7_regnum)
342 {
343 /* The accg raw registers have four values in each slot with the
344 lowest register number occupying the first byte. */
345
346 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
347 int byte_num = (reg - accg0_regnum) % 4;
348 gdb_byte buf[4];
349
350 regcache->raw_read (raw_regnum, buf);
351 buf[byte_num] = ((bfd_byte *) buffer)[0];
352 regcache->raw_write (raw_regnum, buf);
353 }
354}
355
356static int
357frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
358{
359 static const int spr_map[] =
360 {
361 H_SPR_PSR, /* psr_regnum */
362 H_SPR_CCR, /* ccr_regnum */
363 H_SPR_CCCR, /* cccr_regnum */
364 -1, /* fdpic_loadmap_exec_regnum */
365 -1, /* fdpic_loadmap_interp_regnum */
366 -1, /* 134 */
367 H_SPR_TBR, /* tbr_regnum */
368 H_SPR_BRR, /* brr_regnum */
369 H_SPR_DBAR0, /* dbar0_regnum */
370 H_SPR_DBAR1, /* dbar1_regnum */
371 H_SPR_DBAR2, /* dbar2_regnum */
372 H_SPR_DBAR3, /* dbar3_regnum */
373 H_SPR_SCR0, /* scr0_regnum */
374 H_SPR_SCR1, /* scr1_regnum */
375 H_SPR_SCR2, /* scr2_regnum */
376 H_SPR_SCR3, /* scr3_regnum */
377 H_SPR_LR, /* lr_regnum */
378 H_SPR_LCR, /* lcr_regnum */
379 H_SPR_IACC0H, /* iacc0h_regnum */
380 H_SPR_IACC0L, /* iacc0l_regnum */
381 H_SPR_FSR0, /* fsr0_regnum */
382 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
383 -1, /* acc0_regnum */
384 -1, /* acc1_regnum */
385 -1, /* acc2_regnum */
386 -1, /* acc3_regnum */
387 -1, /* acc4_regnum */
388 -1, /* acc5_regnum */
389 -1, /* acc6_regnum */
390 -1, /* acc7_regnum */
391 -1, /* acc0123_regnum */
392 -1, /* acc4567_regnum */
393 H_SPR_MSR0, /* msr0_regnum */
394 H_SPR_MSR1, /* msr1_regnum */
395 H_SPR_GNER0, /* gner0_regnum */
396 H_SPR_GNER1, /* gner1_regnum */
397 H_SPR_FNER0, /* fner0_regnum */
398 H_SPR_FNER1, /* fner1_regnum */
399 };
400
401 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
402
403 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
404 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
405 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
406 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
407 else if (pc_regnum == reg)
408 return SIM_FRV_PC_REGNUM;
409 else if (reg >= first_spr_regnum
410 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
411 {
412 int spr_reg_offset = spr_map[reg - first_spr_regnum];
413
414 if (spr_reg_offset < 0)
415 return SIM_REGNO_DOES_NOT_EXIST;
416 else
417 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
418 }
419
420 internal_error (_("Bad register number %d"), reg);
421}
422
423constexpr gdb_byte frv_break_insn[] = {0xc0, 0x70, 0x00, 0x01};
424
425typedef BP_MANIPULATION (frv_break_insn) frv_breakpoint;
426
427/* Define the maximum number of instructions which may be packed into a
428 bundle (VLIW instruction). */
429static const int max_instrs_per_bundle = 8;
430
431/* Define the size (in bytes) of an FR-V instruction. */
432static const int frv_instr_size = 4;
433
434/* Adjust a breakpoint's address to account for the FR-V architecture's
435 constraint that a break instruction must not appear as any but the
436 first instruction in the bundle. */
437static CORE_ADDR
438frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
439{
440 int count = max_instrs_per_bundle;
441 CORE_ADDR addr = bpaddr - frv_instr_size;
442 CORE_ADDR func_start = get_pc_function_start (bpaddr);
443
444 /* Find the end of the previous packing sequence. This will be indicated
445 by either attempting to access some inaccessible memory or by finding
446 an instruction word whose packing bit is set to one. */
447 while (count-- > 0 && addr >= func_start)
448 {
449 gdb_byte instr[frv_instr_size];
450 int status;
451
452 status = target_read_memory (addr, instr, sizeof instr);
453
454 if (status != 0)
455 break;
456
457 /* This is a big endian architecture, so byte zero will have most
458 significant byte. The most significant bit of this byte is the
459 packing bit. */
460 if (instr[0] & 0x80)
461 break;
462
463 addr -= frv_instr_size;
464 }
465
466 if (count > 0)
467 bpaddr = addr + frv_instr_size;
468
469 return bpaddr;
470}
471
472
473/* Return true if REG is a caller-saves ("scratch") register,
474 false otherwise. */
475static int
476is_caller_saves_reg (int reg)
477{
478 return ((4 <= reg && reg <= 7)
479 || (14 <= reg && reg <= 15)
480 || (32 <= reg && reg <= 47));
481}
482
483
484/* Return true if REG is a callee-saves register, false otherwise. */
485static int
486is_callee_saves_reg (int reg)
487{
488 return ((16 <= reg && reg <= 31)
489 || (48 <= reg && reg <= 63));
490}
491
492
493/* Return true if REG is an argument register, false otherwise. */
494static int
495is_argument_reg (int reg)
496{
497 return (8 <= reg && reg <= 13);
498}
499
500/* Scan an FR-V prologue, starting at PC, until frame->PC.
501 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
502 We assume FRAME's saved_regs array has already been allocated and cleared.
503 Return the first PC value after the prologue.
504
505 Note that, for unoptimized code, we almost don't need this function
506 at all; all arguments and locals live on the stack, so we just need
507 the FP to find everything. The catch: structures passed by value
508 have their addresses living in registers; they're never spilled to
509 the stack. So if you ever want to be able to get to these
510 arguments in any frame but the top, you'll need to do this serious
511 prologue analysis. */
512static CORE_ADDR
513frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
514 const frame_info_ptr &this_frame,
515 struct frv_unwind_cache *info)
516{
517 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
518
519 /* When writing out instruction bitpatterns, we use the following
520 letters to label instruction fields:
521 P - The parallel bit. We don't use this.
522 J - The register number of GRj in the instruction description.
523 K - The register number of GRk in the instruction description.
524 I - The register number of GRi.
525 S - a signed immediate offset.
526 U - an unsigned immediate offset.
527
528 The dots below the numbers indicate where hex digit boundaries
529 fall, to make it easier to check the numbers. */
530
531 /* Non-zero iff we've seen the instruction that initializes the
532 frame pointer for this function's frame. */
533 int fp_set = 0;
534
535 /* If fp_set is non_zero, then this is the distance from
536 the stack pointer to frame pointer: fp = sp + fp_offset. */
537 int fp_offset = 0;
538
539 /* Total size of frame prior to any alloca operations. */
540 int framesize = 0;
541
542 /* Flag indicating if lr has been saved on the stack. */
543 int lr_saved_on_stack = 0;
544
545 /* The number of the general-purpose register we saved the return
546 address ("link register") in, or -1 if we haven't moved it yet. */
547 int lr_save_reg = -1;
548
549 /* Offset (from sp) at which lr has been saved on the stack. */
550
551 int lr_sp_offset = 0;
552
553 /* If gr_saved[i] is non-zero, then we've noticed that general
554 register i has been saved at gr_sp_offset[i] from the stack
555 pointer. */
556 char gr_saved[64];
557 int gr_sp_offset[64];
558
559 /* The address of the most recently scanned prologue instruction. */
560 CORE_ADDR last_prologue_pc;
561
562 /* The address of the next instruction. */
563 CORE_ADDR next_pc;
564
565 /* The upper bound to of the pc values to scan. */
566 CORE_ADDR lim_pc;
567
568 memset (gr_saved, 0, sizeof (gr_saved));
569
570 last_prologue_pc = pc;
571
572 /* Try to compute an upper limit (on how far to scan) based on the
573 line number info. */
574 lim_pc = skip_prologue_using_sal (gdbarch, pc);
575 /* If there's no line number info, lim_pc will be 0. In that case,
576 set the limit to be 100 instructions away from pc. Hopefully, this
577 will be far enough away to account for the entire prologue. Don't
578 worry about overshooting the end of the function. The scan loop
579 below contains some checks to avoid scanning unreasonably far. */
580 if (lim_pc == 0)
581 lim_pc = pc + 400;
582
583 /* If we have a frame, we don't want to scan past the frame's pc. This
584 will catch those cases where the pc is in the prologue. */
585 if (this_frame)
586 {
587 CORE_ADDR frame_pc = get_frame_pc (this_frame);
588 if (frame_pc < lim_pc)
589 lim_pc = frame_pc;
590 }
591
592 /* Scan the prologue. */
593 while (pc < lim_pc)
594 {
595 gdb_byte buf[frv_instr_size];
596 LONGEST op;
597
598 if (target_read_memory (pc, buf, sizeof buf) != 0)
599 break;
600 op = extract_signed_integer (buf, byte_order);
601
602 next_pc = pc + 4;
603
604 /* The tests in this chain of ifs should be in order of
605 decreasing selectivity, so that more particular patterns get
606 to fire before less particular patterns. */
607
608 /* Some sort of control transfer instruction: stop scanning prologue.
609 Integer Conditional Branch:
610 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
611 Floating-point / media Conditional Branch:
612 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
613 LCR Conditional Branch to LR
614 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
615 Integer conditional Branches to LR
616 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
617 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
618 Floating-point/Media Branches to LR
619 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
620 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
621 Jump and Link
622 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
623 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
624 Call
625 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
626 Return from Trap
627 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
628 Integer Conditional Trap
629 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
630 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
631 Floating-point /media Conditional Trap
632 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
633 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
634 Break
635 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
636 Media Trap
637 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
638 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
639 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
640 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
641 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
642 {
643 /* Stop scanning; not in prologue any longer. */
644 break;
645 }
646
647 /* Loading something from memory into fp probably means that
648 we're in the epilogue. Stop scanning the prologue.
649 ld @(GRi, GRk), fp
650 X 000010 0000010 XXXXXX 000100 XXXXXX
651 ldi @(GRi, d12), fp
652 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
653 else if ((op & 0x7ffc0fc0) == 0x04080100
654 || (op & 0x7ffc0000) == 0x04c80000)
655 {
656 break;
657 }
658
659 /* Setting the FP from the SP:
660 ori sp, 0, fp
661 P 000010 0100010 000001 000000000000 = 0x04881000
662 0 111111 1111111 111111 111111111111 = 0x7fffffff
663 . . . . . . . .
664 We treat this as part of the prologue. */
665 else if ((op & 0x7fffffff) == 0x04881000)
666 {
667 fp_set = 1;
668 fp_offset = 0;
669 last_prologue_pc = next_pc;
670 }
671
672 /* Move the link register to the scratch register grJ, before saving:
673 movsg lr, grJ
674 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
675 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
676 . . . . . . . .
677 We treat this as part of the prologue. */
678 else if ((op & 0x7fffffc0) == 0x080d01c0)
679 {
680 int gr_j = op & 0x3f;
681
682 /* If we're moving it to a scratch register, that's fine. */
683 if (is_caller_saves_reg (gr_j))
684 {
685 lr_save_reg = gr_j;
686 last_prologue_pc = next_pc;
687 }
688 }
689
690 /* To save multiple callee-saves registers on the stack, at
691 offset zero:
692
693 std grK,@(sp,gr0)
694 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
695 0 000000 1111111 111111 111111 111111 = 0x01ffffff
696
697 stq grK,@(sp,gr0)
698 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
699 0 000000 1111111 111111 111111 111111 = 0x01ffffff
700 . . . . . . . .
701 We treat this as part of the prologue, and record the register's
702 saved address in the frame structure. */
703 else if ((op & 0x01ffffff) == 0x000c10c0
704 || (op & 0x01ffffff) == 0x000c1100)
705 {
706 int gr_k = ((op >> 25) & 0x3f);
707 int ope = ((op >> 6) & 0x3f);
708 int count;
709 int i;
710
711 /* Is it an std or an stq? */
712 if (ope == 0x03)
713 count = 2;
714 else
715 count = 4;
716
717 /* Is it really a callee-saves register? */
718 if (is_callee_saves_reg (gr_k))
719 {
720 for (i = 0; i < count; i++)
721 {
722 gr_saved[gr_k + i] = 1;
723 gr_sp_offset[gr_k + i] = 4 * i;
724 }
725 last_prologue_pc = next_pc;
726 }
727 }
728
729 /* Adjusting the stack pointer. (The stack pointer is GR1.)
730 addi sp, S, sp
731 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
732 0 111111 1111111 111111 000000000000 = 0x7ffff000
733 . . . . . . . .
734 We treat this as part of the prologue. */
735 else if ((op & 0x7ffff000) == 0x02401000)
736 {
737 if (framesize == 0)
738 {
739 /* Sign-extend the twelve-bit field.
740 (Isn't there a better way to do this?) */
741 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
742
743 framesize -= s;
744 last_prologue_pc = pc;
745 }
746 else
747 {
748 /* If the prologue is being adjusted again, we've
749 likely gone too far; i.e. we're probably in the
750 epilogue. */
751 break;
752 }
753 }
754
755 /* Setting the FP to a constant distance from the SP:
756 addi sp, S, fp
757 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
758 0 111111 1111111 111111 000000000000 = 0x7ffff000
759 . . . . . . . .
760 We treat this as part of the prologue. */
761 else if ((op & 0x7ffff000) == 0x04401000)
762 {
763 /* Sign-extend the twelve-bit field.
764 (Isn't there a better way to do this?) */
765 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
766 fp_set = 1;
767 fp_offset = s;
768 last_prologue_pc = pc;
769 }
770
771 /* To spill an argument register to a scratch register:
772 ori GRi, 0, GRk
773 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
774 0 000000 1111111 000000 111111111111 = 0x01fc0fff
775 . . . . . . . .
776 For the time being, we treat this as a prologue instruction,
777 assuming that GRi is an argument register. This one's kind
778 of suspicious, because it seems like it could be part of a
779 legitimate body instruction. But we only come here when the
780 source info wasn't helpful, so we have to do the best we can.
781 Hopefully once GCC and GDB agree on how to emit line number
782 info for prologues, then this code will never come into play. */
783 else if ((op & 0x01fc0fff) == 0x00880000)
784 {
785 int gr_i = ((op >> 12) & 0x3f);
786
787 /* Make sure that the source is an arg register; if it is, we'll
788 treat it as a prologue instruction. */
789 if (is_argument_reg (gr_i))
790 last_prologue_pc = next_pc;
791 }
792
793 /* To spill 16-bit values to the stack:
794 sthi GRk, @(fp, s)
795 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
796 0 000000 1111111 111111 000000000000 = 0x01fff000
797 . . . . . . . .
798 And for 8-bit values, we use STB instructions.
799 stbi GRk, @(fp, s)
800 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
801 0 000000 1111111 111111 000000000000 = 0x01fff000
802 . . . . . . . .
803 We check that GRk is really an argument register, and treat
804 all such as part of the prologue. */
805 else if ( (op & 0x01fff000) == 0x01442000
806 || (op & 0x01fff000) == 0x01402000)
807 {
808 int gr_k = ((op >> 25) & 0x3f);
809
810 /* Make sure that GRk is really an argument register; treat
811 it as a prologue instruction if so. */
812 if (is_argument_reg (gr_k))
813 last_prologue_pc = next_pc;
814 }
815
816 /* To save multiple callee-saves register on the stack, at a
817 non-zero offset:
818
819 stdi GRk, @(sp, s)
820 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
821 0 000000 1111111 111111 000000000000 = 0x01fff000
822 . . . . . . . .
823 stqi GRk, @(sp, s)
824 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
825 0 000000 1111111 111111 000000000000 = 0x01fff000
826 . . . . . . . .
827 We treat this as part of the prologue, and record the register's
828 saved address in the frame structure. */
829 else if ((op & 0x01fff000) == 0x014c1000
830 || (op & 0x01fff000) == 0x01501000)
831 {
832 int gr_k = ((op >> 25) & 0x3f);
833 int count;
834 int i;
835
836 /* Is it a stdi or a stqi? */
837 if ((op & 0x01fff000) == 0x014c1000)
838 count = 2;
839 else
840 count = 4;
841
842 /* Is it really a callee-saves register? */
843 if (is_callee_saves_reg (gr_k))
844 {
845 /* Sign-extend the twelve-bit field.
846 (Isn't there a better way to do this?) */
847 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
848
849 for (i = 0; i < count; i++)
850 {
851 gr_saved[gr_k + i] = 1;
852 gr_sp_offset[gr_k + i] = s + (4 * i);
853 }
854 last_prologue_pc = next_pc;
855 }
856 }
857
858 /* Storing any kind of integer register at any constant offset
859 from any other register.
860
861 st GRk, @(GRi, gr0)
862 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
863 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
864 . . . . . . . .
865 sti GRk, @(GRi, d12)
866 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
867 0 000000 1111111 000000 000000000000 = 0x01fc0000
868 . . . . . . . .
869 These could be almost anything, but a lot of prologue
870 instructions fall into this pattern, so let's decode the
871 instruction once, and then work at a higher level. */
872 else if (((op & 0x01fc0fff) == 0x000c0080)
873 || ((op & 0x01fc0000) == 0x01480000))
874 {
875 int gr_k = ((op >> 25) & 0x3f);
876 int gr_i = ((op >> 12) & 0x3f);
877 int offset;
878
879 /* Are we storing with gr0 as an offset, or using an
880 immediate value? */
881 if ((op & 0x01fc0fff) == 0x000c0080)
882 offset = 0;
883 else
884 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
885
886 /* If the address isn't relative to the SP or FP, it's not a
887 prologue instruction. */
888 if (gr_i != sp_regnum && gr_i != fp_regnum)
889 {
890 /* Do nothing; not a prologue instruction. */
891 }
892
893 /* Saving the old FP in the new frame (relative to the SP). */
894 else if (gr_k == fp_regnum && gr_i == sp_regnum)
895 {
896 gr_saved[fp_regnum] = 1;
897 gr_sp_offset[fp_regnum] = offset;
898 last_prologue_pc = next_pc;
899 }
900
901 /* Saving callee-saves register(s) on the stack, relative to
902 the SP. */
903 else if (gr_i == sp_regnum
904 && is_callee_saves_reg (gr_k))
905 {
906 gr_saved[gr_k] = 1;
907 if (gr_i == sp_regnum)
908 gr_sp_offset[gr_k] = offset;
909 else
910 gr_sp_offset[gr_k] = offset + fp_offset;
911 last_prologue_pc = next_pc;
912 }
913
914 /* Saving the scratch register holding the return address. */
915 else if (lr_save_reg != -1
916 && gr_k == lr_save_reg)
917 {
918 lr_saved_on_stack = 1;
919 if (gr_i == sp_regnum)
920 lr_sp_offset = offset;
921 else
922 lr_sp_offset = offset + fp_offset;
923 last_prologue_pc = next_pc;
924 }
925
926 /* Spilling int-sized arguments to the stack. */
927 else if (is_argument_reg (gr_k))
928 last_prologue_pc = next_pc;
929 }
930 pc = next_pc;
931 }
932
933 if (this_frame && info)
934 {
935 int i;
936 ULONGEST this_base;
937
938 /* If we know the relationship between the stack and frame
939 pointers, record the addresses of the registers we noticed.
940 Note that we have to do this as a separate step at the end,
941 because instructions may save relative to the SP, but we need
942 their addresses relative to the FP. */
943 if (fp_set)
944 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
945 else
946 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
947
948 for (i = 0; i < 64; i++)
949 if (gr_saved[i])
950 info->saved_regs[i].set_addr (this_base - fp_offset
951 + gr_sp_offset[i]);
952
953 info->prev_sp = this_base - fp_offset + framesize;
954 info->base = this_base;
955
956 /* If LR was saved on the stack, record its location. */
957 if (lr_saved_on_stack)
958 info->saved_regs[lr_regnum].set_addr (this_base - fp_offset
959 + lr_sp_offset);
960
961 /* The call instruction moves the caller's PC in the callee's LR.
962 Since this is an unwind, do the reverse. Copy the location of LR
963 into PC (the address / regnum) so that a request for PC will be
964 converted into a request for the LR. */
965 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
966
967 /* Save the previous frame's computed SP value. */
968 info->saved_regs[sp_regnum].set_value (info->prev_sp);
969 }
970
971 return last_prologue_pc;
972}
973
974
975static CORE_ADDR
976frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
977{
978 CORE_ADDR func_addr, func_end, new_pc;
979
980 new_pc = pc;
981
982 /* If the line table has entry for a line *within* the function
983 (i.e., not in the prologue, and not past the end), then that's
984 our location. */
985 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
986 {
987 struct symtab_and_line sal;
988
989 sal = find_pc_line (func_addr, 0);
990
991 if (sal.line != 0 && sal.end < func_end)
992 {
993 new_pc = sal.end;
994 }
995 }
996
997 /* The FR-V prologue is at least five instructions long (twenty bytes).
998 If we didn't find a real source location past that, then
999 do a full analysis of the prologue. */
1000 if (new_pc < pc + 20)
1001 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
1002
1003 return new_pc;
1004}
1005
1006
1007/* Examine the instruction pointed to by PC. If it corresponds to
1008 a call to __main, return the address of the next instruction.
1009 Otherwise, return PC. */
1010
1011static CORE_ADDR
1012frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1013{
1014 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1015 gdb_byte buf[4];
1016 unsigned long op;
1017 CORE_ADDR orig_pc = pc;
1018
1019 if (target_read_memory (pc, buf, 4))
1020 return pc;
1021 op = extract_unsigned_integer (buf, 4, byte_order);
1022
1023 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1024 to the call instruction.
1025
1026 Skip over this instruction if present. It won't be present in
1027 non-PIC code, and even in PIC code, it might not be present.
1028 (This is due to the fact that GR15, the FDPIC register, already
1029 contains the correct value.)
1030
1031 The general form of the LDI is given first, followed by the
1032 specific instruction with the GRi and GRk filled in as FP and
1033 GR15.
1034
1035 ldi @(GRi, d12), GRk
1036 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1037 0 000000 1111111 000000 000000000000 = 0x01fc0000
1038 . . . . . . . .
1039 ldi @(FP, d12), GR15
1040 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1041 0 001111 1111111 000010 000000000000 = 0x7ffff000
1042 . . . . . . . . */
1043
1044 if ((op & 0x7ffff000) == 0x1ec82000)
1045 {
1046 pc += 4;
1047 if (target_read_memory (pc, buf, 4))
1048 return orig_pc;
1049 op = extract_unsigned_integer (buf, 4, byte_order);
1050 }
1051
1052 /* The format of an FRV CALL instruction is as follows:
1053
1054 call label24
1055 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1056 0 000000 1111111 000000000000000000 = 0x01fc0000
1057 . . . . . . . .
1058
1059 where label24 is constructed by concatenating the H bits with the
1060 L bits. The call target is PC + (4 * sign_ext(label24)). */
1061
1062 if ((op & 0x01fc0000) == 0x003c0000)
1063 {
1064 LONGEST displ;
1065 CORE_ADDR call_dest;
1066
1067 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1068 if ((displ & 0x00800000) != 0)
1069 displ |= ~((LONGEST) 0x00ffffff);
1070
1071 call_dest = pc + 4 * displ;
1072 bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
1073
1074 if (s.minsym != NULL
1075 && s.minsym->linkage_name () != NULL
1076 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1077 {
1078 pc += 4;
1079 return pc;
1080 }
1081 }
1082 return orig_pc;
1083}
1084
1085
1086static struct frv_unwind_cache *
1087frv_frame_unwind_cache (const frame_info_ptr &this_frame,
1088 void **this_prologue_cache)
1089{
1090 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1091 struct frv_unwind_cache *info;
1092
1093 if ((*this_prologue_cache))
1094 return (struct frv_unwind_cache *) (*this_prologue_cache);
1095
1096 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1097 (*this_prologue_cache) = info;
1098 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1099
1100 /* Prologue analysis does the rest... */
1101 frv_analyze_prologue (gdbarch,
1102 get_frame_func (this_frame), this_frame, info);
1103
1104 return info;
1105}
1106
1107static void
1108frv_extract_return_value (struct type *type, struct regcache *regcache,
1109 gdb_byte *valbuf)
1110{
1111 struct gdbarch *gdbarch = regcache->arch ();
1112 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1113 int len = type->length ();
1114
1115 if (len <= 4)
1116 {
1117 ULONGEST gpr8_val;
1118 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1119 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
1120 }
1121 else if (len == 8)
1122 {
1123 ULONGEST regval;
1124
1125 regcache_cooked_read_unsigned (regcache, 8, &regval);
1126 store_unsigned_integer (valbuf, 4, byte_order, regval);
1127 regcache_cooked_read_unsigned (regcache, 9, &regval);
1128 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
1129 }
1130 else
1131 internal_error (_("Illegal return value length: %d"), len);
1132}
1133
1134static CORE_ADDR
1135frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1136{
1137 /* Require dword alignment. */
1138 return align_down (sp, 8);
1139}
1140
1141static CORE_ADDR
1142find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1143{
1144 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1145 CORE_ADDR descr;
1146 gdb_byte valbuf[4];
1147 CORE_ADDR start_addr;
1148
1149 /* If we can't find the function in the symbol table, then we assume
1150 that the function address is already in descriptor form. */
1151 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1152 || entry_point != start_addr)
1153 return entry_point;
1154
1155 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1156
1157 if (descr != 0)
1158 return descr;
1159
1160 /* Construct a non-canonical descriptor from space allocated on
1161 the stack. */
1162
1163 descr = value_as_long (value_allocate_space_in_inferior (8));
1164 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
1165 write_memory (descr, valbuf, 4);
1166 store_unsigned_integer (valbuf, 4, byte_order,
1167 frv_fdpic_find_global_pointer (entry_point));
1168 write_memory (descr + 4, valbuf, 4);
1169 return descr;
1170}
1171
1172static CORE_ADDR
1173frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1174 struct target_ops *targ)
1175{
1176 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1177 CORE_ADDR entry_point;
1178 CORE_ADDR got_address;
1179
1180 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1181 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
1182
1183 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1184 return entry_point;
1185 else
1186 return addr;
1187}
1188
1189static CORE_ADDR
1190frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1191 struct regcache *regcache, CORE_ADDR bp_addr,
1192 int nargs, struct value **args, CORE_ADDR sp,
1193 function_call_return_method return_method,
1194 CORE_ADDR struct_addr)
1195{
1196 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1197 int argreg;
1198 int argnum;
1199 const gdb_byte *val;
1200 gdb_byte valbuf[4];
1201 struct value *arg;
1202 struct type *arg_type;
1203 int len;
1204 enum type_code typecode;
1205 CORE_ADDR regval;
1206 int stack_space;
1207 int stack_offset;
1208 enum frv_abi abi = frv_abi (gdbarch);
1209 CORE_ADDR func_addr = find_function_addr (function, NULL);
1210
1211#if 0
1212 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1213 nargs, (int) sp, struct_return, struct_addr);
1214#endif
1215
1216 stack_space = 0;
1217 for (argnum = 0; argnum < nargs; ++argnum)
1218 stack_space += align_up (args[argnum]->type ()->length (), 4);
1219
1220 stack_space -= (6 * 4);
1221 if (stack_space > 0)
1222 sp -= stack_space;
1223
1224 /* Make sure stack is dword aligned. */
1225 sp = align_down (sp, 8);
1226
1227 stack_offset = 0;
1228
1229 argreg = 8;
1230
1231 if (return_method == return_method_struct)
1232 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1233 struct_addr);
1234
1235 for (argnum = 0; argnum < nargs; ++argnum)
1236 {
1237 arg = args[argnum];
1238 arg_type = check_typedef (arg->type ());
1239 len = arg_type->length ();
1240 typecode = arg_type->code ();
1241
1242 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1243 {
1244 store_unsigned_integer (valbuf, 4, byte_order,
1245 arg->address ());
1246 typecode = TYPE_CODE_PTR;
1247 len = 4;
1248 val = valbuf;
1249 }
1250 else if (abi == FRV_ABI_FDPIC
1251 && len == 4
1252 && typecode == TYPE_CODE_PTR
1253 && arg_type->target_type ()->code () == TYPE_CODE_FUNC)
1254 {
1255 /* The FDPIC ABI requires function descriptors to be passed instead
1256 of entry points. */
1257 CORE_ADDR addr = extract_unsigned_integer
1258 (arg->contents ().data (), 4, byte_order);
1259 addr = find_func_descr (gdbarch, addr);
1260 store_unsigned_integer (valbuf, 4, byte_order, addr);
1261 typecode = TYPE_CODE_PTR;
1262 len = 4;
1263 val = valbuf;
1264 }
1265 else
1266 {
1267 val = arg->contents ().data ();
1268 }
1269
1270 while (len > 0)
1271 {
1272 int partial_len = (len < 4 ? len : 4);
1273
1274 if (argreg < 14)
1275 {
1276 regval = extract_unsigned_integer (val, partial_len, byte_order);
1277#if 0
1278 printf(" Argnum %d data %x -> reg %d\n",
1279 argnum, (int) regval, argreg);
1280#endif
1281 regcache_cooked_write_unsigned (regcache, argreg, regval);
1282 ++argreg;
1283 }
1284 else
1285 {
1286#if 0
1287 printf(" Argnum %d data %x -> offset %d (%x)\n",
1288 argnum, *((int *)val), stack_offset,
1289 (int) (sp + stack_offset));
1290#endif
1291 write_memory (sp + stack_offset, val, partial_len);
1292 stack_offset += align_up (partial_len, 4);
1293 }
1294 len -= partial_len;
1295 val += partial_len;
1296 }
1297 }
1298
1299 /* Set the return address. For the frv, the return breakpoint is
1300 always at BP_ADDR. */
1301 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1302
1303 if (abi == FRV_ABI_FDPIC)
1304 {
1305 /* Set the GOT register for the FDPIC ABI. */
1306 regcache_cooked_write_unsigned
1307 (regcache, first_gpr_regnum + 15,
1308 frv_fdpic_find_global_pointer (func_addr));
1309 }
1310
1311 /* Finally, update the SP register. */
1312 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1313
1314 return sp;
1315}
1316
1317static void
1318frv_store_return_value (struct type *type, struct regcache *regcache,
1319 const gdb_byte *valbuf)
1320{
1321 int len = type->length ();
1322
1323 if (len <= 4)
1324 {
1325 bfd_byte val[4];
1326 memset (val, 0, sizeof (val));
1327 memcpy (val + (4 - len), valbuf, len);
1328 regcache->cooked_write (8, val);
1329 }
1330 else if (len == 8)
1331 {
1332 regcache->cooked_write (8, valbuf);
1333 regcache->cooked_write (9, (bfd_byte *) valbuf + 4);
1334 }
1335 else
1336 internal_error (_("Don't know how to return a %d-byte value."), len);
1337}
1338
1339static enum return_value_convention
1340frv_return_value (struct gdbarch *gdbarch, struct value *function,
1341 struct type *valtype, struct regcache *regcache,
1342 gdb_byte *readbuf, const gdb_byte *writebuf)
1343{
1344 int struct_return = valtype->code () == TYPE_CODE_STRUCT
1345 || valtype->code () == TYPE_CODE_UNION
1346 || valtype->code () == TYPE_CODE_ARRAY;
1347
1348 if (writebuf != NULL)
1349 {
1350 gdb_assert (!struct_return);
1351 frv_store_return_value (valtype, regcache, writebuf);
1352 }
1353
1354 if (readbuf != NULL)
1355 {
1356 gdb_assert (!struct_return);
1357 frv_extract_return_value (valtype, regcache, readbuf);
1358 }
1359
1360 if (struct_return)
1361 return RETURN_VALUE_STRUCT_CONVENTION;
1362 else
1363 return RETURN_VALUE_REGISTER_CONVENTION;
1364}
1365
1366/* Given a GDB frame, determine the address of the calling function's
1367 frame. This will be used to create a new GDB frame struct. */
1368
1369static void
1370frv_frame_this_id (const frame_info_ptr &this_frame,
1371 void **this_prologue_cache, struct frame_id *this_id)
1372{
1373 struct frv_unwind_cache *info
1374 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1375 CORE_ADDR base;
1376 CORE_ADDR func;
1377 struct frame_id id;
1378
1379 /* The FUNC is easy. */
1380 func = get_frame_func (this_frame);
1381
1382 /* Check if the stack is empty. */
1383 bound_minimal_symbol msym_stack
1384 = lookup_minimal_symbol (current_program_space, "_stack");
1385 if (msym_stack.minsym && info->base == msym_stack.value_address ())
1386 return;
1387
1388 /* Hopefully the prologue analysis either correctly determined the
1389 frame's base (which is the SP from the previous frame), or set
1390 that base to "NULL". */
1391 base = info->prev_sp;
1392 if (base == 0)
1393 return;
1394
1395 id = frame_id_build (base, func);
1396 (*this_id) = id;
1397}
1398
1399static struct value *
1400frv_frame_prev_register (const frame_info_ptr &this_frame,
1401 void **this_prologue_cache, int regnum)
1402{
1403 struct frv_unwind_cache *info
1404 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1405 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1406}
1407
1408static const struct frame_unwind_legacy frv_frame_unwind (
1409 "frv prologue",
1410 NORMAL_FRAME,
1411 FRAME_UNWIND_ARCH,
1412 default_frame_unwind_stop_reason,
1413 frv_frame_this_id,
1414 frv_frame_prev_register,
1415 NULL,
1416 default_frame_sniffer
1417);
1418
1419static CORE_ADDR
1420frv_frame_base_address (const frame_info_ptr &this_frame, void **this_cache)
1421{
1422 struct frv_unwind_cache *info
1423 = frv_frame_unwind_cache (this_frame, this_cache);
1424 return info->base;
1425}
1426
1427static const struct frame_base frv_frame_base = {
1428 &frv_frame_unwind,
1429 frv_frame_base_address,
1430 frv_frame_base_address,
1431 frv_frame_base_address
1432};
1433
1434static struct gdbarch *
1435frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1436{
1437 int elf_flags = 0;
1438
1439 /* Check to see if we've already built an appropriate architecture
1440 object for this executable. */
1441 arches = gdbarch_list_lookup_by_info (arches, &info);
1442 if (arches)
1443 return arches->gdbarch;
1444
1445 /* Select the right tdep structure for this variant. */
1446 gdbarch *gdbarch = gdbarch_alloc (&info, new_variant ());
1447 frv_gdbarch_tdep *var = gdbarch_tdep<frv_gdbarch_tdep> (gdbarch);
1448
1449 switch (info.bfd_arch_info->mach)
1450 {
1451 case bfd_mach_frv:
1452 case bfd_mach_frvsimple:
1453 case bfd_mach_fr300:
1454 case bfd_mach_fr500:
1455 case bfd_mach_frvtomcat:
1456 case bfd_mach_fr550:
1457 set_variant_num_gprs (var, 64);
1458 set_variant_num_fprs (var, 64);
1459 break;
1460
1461 case bfd_mach_fr400:
1462 case bfd_mach_fr450:
1463 set_variant_num_gprs (var, 32);
1464 set_variant_num_fprs (var, 32);
1465 break;
1466
1467 default:
1468 /* Never heard of this variant. */
1469 return 0;
1470 }
1471
1472 /* Extract the ELF flags, if available. */
1473 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1474 elf_flags = elf_elfheader (info.abfd)->e_flags;
1475
1476 if (elf_flags & EF_FRV_FDPIC)
1477 set_variant_abi_fdpic (var);
1478
1479 if (elf_flags & EF_FRV_CPU_FR450)
1480 set_variant_scratch_registers (var);
1481
1482 set_gdbarch_short_bit (gdbarch, 16);
1483 set_gdbarch_int_bit (gdbarch, 32);
1484 set_gdbarch_long_bit (gdbarch, 32);
1485 set_gdbarch_long_long_bit (gdbarch, 64);
1486 set_gdbarch_float_bit (gdbarch, 32);
1487 set_gdbarch_double_bit (gdbarch, 64);
1488 set_gdbarch_long_double_bit (gdbarch, 64);
1489 set_gdbarch_ptr_bit (gdbarch, 32);
1490
1491 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1492 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1493
1494 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1495 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1496 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1497
1498 set_gdbarch_register_name (gdbarch, frv_register_name);
1499 set_gdbarch_register_type (gdbarch, frv_register_type);
1500 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1501
1502 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1503 set_gdbarch_deprecated_pseudo_register_write (gdbarch,
1504 frv_pseudo_register_write);
1505
1506 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1507 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
1508 set_gdbarch_breakpoint_kind_from_pc (gdbarch, frv_breakpoint::kind_from_pc);
1509 set_gdbarch_sw_breakpoint_from_kind (gdbarch, frv_breakpoint::bp_from_kind);
1510 set_gdbarch_adjust_breakpoint_address
1511 (gdbarch, frv_adjust_breakpoint_address);
1512
1513 set_gdbarch_return_value (gdbarch, frv_return_value);
1514
1515 /* Frame stuff. */
1516 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1517 frame_base_set_default (gdbarch, &frv_frame_base);
1518 /* We set the sniffer lower down after the OSABI hooks have been
1519 established. */
1520
1521 /* Settings for calling functions in the inferior. */
1522 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1523
1524 /* Settings that should be unnecessary. */
1525 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1526
1527 /* Hardware watchpoint / breakpoint support. */
1528 switch (info.bfd_arch_info->mach)
1529 {
1530 case bfd_mach_frv:
1531 case bfd_mach_frvsimple:
1532 case bfd_mach_fr300:
1533 case bfd_mach_fr500:
1534 case bfd_mach_frvtomcat:
1535 /* fr500-style hardware debugging support. */
1536 var->num_hw_watchpoints = 4;
1537 var->num_hw_breakpoints = 4;
1538 break;
1539
1540 case bfd_mach_fr400:
1541 case bfd_mach_fr450:
1542 /* fr400-style hardware debugging support. */
1543 var->num_hw_watchpoints = 2;
1544 var->num_hw_breakpoints = 4;
1545 break;
1546
1547 default:
1548 /* Otherwise, assume we don't have hardware debugging support. */
1549 var->num_hw_watchpoints = 0;
1550 var->num_hw_breakpoints = 0;
1551 break;
1552 }
1553
1554 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1555 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1556 frv_convert_from_func_ptr_addr);
1557
1558 set_gdbarch_make_solib_ops (gdbarch, make_frv_solib_ops);
1559
1560 /* Hook in ABI-specific overrides, if they have been registered. */
1561 gdbarch_init_osabi (info, gdbarch);
1562
1563 /* Set the fallback (prologue based) frame sniffer. */
1564 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
1565
1566 /* Enable TLS support. */
1567 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1568 frv_fetch_objfile_link_map);
1569
1570 return gdbarch;
1571}
1572
1573INIT_GDB_FILE (frv_tdep)
1574{
1575 gdbarch_register (bfd_arch_frv, frv_gdbarch_init);
1576}