]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame_incremental - gdb/infrun.c
2012-11-02 Pedro Alves <palves@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / infrun.c
... / ...
CommitLineData
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "exceptions.h"
28#include "breakpoint.h"
29#include "gdb_wait.h"
30#include "gdbcore.h"
31#include "gdbcmd.h"
32#include "cli/cli-script.h"
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
36#include "symfile.h"
37#include "top.h"
38#include <signal.h>
39#include "inf-loop.h"
40#include "regcache.h"
41#include "value.h"
42#include "observer.h"
43#include "language.h"
44#include "solib.h"
45#include "main.h"
46#include "dictionary.h"
47#include "block.h"
48#include "gdb_assert.h"
49#include "mi/mi-common.h"
50#include "event-top.h"
51#include "record.h"
52#include "inline-frame.h"
53#include "jit.h"
54#include "tracepoint.h"
55#include "continuations.h"
56#include "interps.h"
57#include "skip.h"
58#include "probe.h"
59#include "objfiles.h"
60#include "completer.h"
61
62/* Prototypes for local functions */
63
64static void signals_info (char *, int);
65
66static void handle_command (char *, int);
67
68static void sig_print_info (enum gdb_signal);
69
70static void sig_print_header (void);
71
72static void resume_cleanups (void *);
73
74static int hook_stop_stub (void *);
75
76static int restore_selected_frame (void *);
77
78static int follow_fork (void);
79
80static void set_schedlock_func (char *args, int from_tty,
81 struct cmd_list_element *c);
82
83static int currently_stepping (struct thread_info *tp);
84
85static int currently_stepping_or_nexting_callback (struct thread_info *tp,
86 void *data);
87
88static void xdb_handle_command (char *args, int from_tty);
89
90static int prepare_to_proceed (int);
91
92static void print_exited_reason (int exitstatus);
93
94static void print_signal_exited_reason (enum gdb_signal siggnal);
95
96static void print_no_history_reason (void);
97
98static void print_signal_received_reason (enum gdb_signal siggnal);
99
100static void print_end_stepping_range_reason (void);
101
102void _initialize_infrun (void);
103
104void nullify_last_target_wait_ptid (void);
105
106static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
107
108static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
109
110static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
111
112/* When set, stop the 'step' command if we enter a function which has
113 no line number information. The normal behavior is that we step
114 over such function. */
115int step_stop_if_no_debug = 0;
116static void
117show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119{
120 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
121}
122
123/* In asynchronous mode, but simulating synchronous execution. */
124
125int sync_execution = 0;
126
127/* wait_for_inferior and normal_stop use this to notify the user
128 when the inferior stopped in a different thread than it had been
129 running in. */
130
131static ptid_t previous_inferior_ptid;
132
133/* Default behavior is to detach newly forked processes (legacy). */
134int detach_fork = 1;
135
136int debug_displaced = 0;
137static void
138show_debug_displaced (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140{
141 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
142}
143
144unsigned int debug_infrun = 0;
145static void
146show_debug_infrun (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148{
149 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
150}
151
152
153/* Support for disabling address space randomization. */
154
155int disable_randomization = 1;
156
157static void
158show_disable_randomization (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160{
161 if (target_supports_disable_randomization ())
162 fprintf_filtered (file,
163 _("Disabling randomization of debuggee's "
164 "virtual address space is %s.\n"),
165 value);
166 else
167 fputs_filtered (_("Disabling randomization of debuggee's "
168 "virtual address space is unsupported on\n"
169 "this platform.\n"), file);
170}
171
172static void
173set_disable_randomization (char *args, int from_tty,
174 struct cmd_list_element *c)
175{
176 if (!target_supports_disable_randomization ())
177 error (_("Disabling randomization of debuggee's "
178 "virtual address space is unsupported on\n"
179 "this platform."));
180}
181
182
183/* If the program uses ELF-style shared libraries, then calls to
184 functions in shared libraries go through stubs, which live in a
185 table called the PLT (Procedure Linkage Table). The first time the
186 function is called, the stub sends control to the dynamic linker,
187 which looks up the function's real address, patches the stub so
188 that future calls will go directly to the function, and then passes
189 control to the function.
190
191 If we are stepping at the source level, we don't want to see any of
192 this --- we just want to skip over the stub and the dynamic linker.
193 The simple approach is to single-step until control leaves the
194 dynamic linker.
195
196 However, on some systems (e.g., Red Hat's 5.2 distribution) the
197 dynamic linker calls functions in the shared C library, so you
198 can't tell from the PC alone whether the dynamic linker is still
199 running. In this case, we use a step-resume breakpoint to get us
200 past the dynamic linker, as if we were using "next" to step over a
201 function call.
202
203 in_solib_dynsym_resolve_code() says whether we're in the dynamic
204 linker code or not. Normally, this means we single-step. However,
205 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
206 address where we can place a step-resume breakpoint to get past the
207 linker's symbol resolution function.
208
209 in_solib_dynsym_resolve_code() can generally be implemented in a
210 pretty portable way, by comparing the PC against the address ranges
211 of the dynamic linker's sections.
212
213 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
214 it depends on internal details of the dynamic linker. It's usually
215 not too hard to figure out where to put a breakpoint, but it
216 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
217 sanity checking. If it can't figure things out, returning zero and
218 getting the (possibly confusing) stepping behavior is better than
219 signalling an error, which will obscure the change in the
220 inferior's state. */
221
222/* This function returns TRUE if pc is the address of an instruction
223 that lies within the dynamic linker (such as the event hook, or the
224 dld itself).
225
226 This function must be used only when a dynamic linker event has
227 been caught, and the inferior is being stepped out of the hook, or
228 undefined results are guaranteed. */
229
230#ifndef SOLIB_IN_DYNAMIC_LINKER
231#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
232#endif
233
234/* "Observer mode" is somewhat like a more extreme version of
235 non-stop, in which all GDB operations that might affect the
236 target's execution have been disabled. */
237
238static int non_stop_1 = 0;
239
240int observer_mode = 0;
241static int observer_mode_1 = 0;
242
243static void
244set_observer_mode (char *args, int from_tty,
245 struct cmd_list_element *c)
246{
247 extern int pagination_enabled;
248
249 if (target_has_execution)
250 {
251 observer_mode_1 = observer_mode;
252 error (_("Cannot change this setting while the inferior is running."));
253 }
254
255 observer_mode = observer_mode_1;
256
257 may_write_registers = !observer_mode;
258 may_write_memory = !observer_mode;
259 may_insert_breakpoints = !observer_mode;
260 may_insert_tracepoints = !observer_mode;
261 /* We can insert fast tracepoints in or out of observer mode,
262 but enable them if we're going into this mode. */
263 if (observer_mode)
264 may_insert_fast_tracepoints = 1;
265 may_stop = !observer_mode;
266 update_target_permissions ();
267
268 /* Going *into* observer mode we must force non-stop, then
269 going out we leave it that way. */
270 if (observer_mode)
271 {
272 target_async_permitted = 1;
273 pagination_enabled = 0;
274 non_stop = non_stop_1 = 1;
275 }
276
277 if (from_tty)
278 printf_filtered (_("Observer mode is now %s.\n"),
279 (observer_mode ? "on" : "off"));
280}
281
282static void
283show_observer_mode (struct ui_file *file, int from_tty,
284 struct cmd_list_element *c, const char *value)
285{
286 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
287}
288
289/* This updates the value of observer mode based on changes in
290 permissions. Note that we are deliberately ignoring the values of
291 may-write-registers and may-write-memory, since the user may have
292 reason to enable these during a session, for instance to turn on a
293 debugging-related global. */
294
295void
296update_observer_mode (void)
297{
298 int newval;
299
300 newval = (!may_insert_breakpoints
301 && !may_insert_tracepoints
302 && may_insert_fast_tracepoints
303 && !may_stop
304 && non_stop);
305
306 /* Let the user know if things change. */
307 if (newval != observer_mode)
308 printf_filtered (_("Observer mode is now %s.\n"),
309 (newval ? "on" : "off"));
310
311 observer_mode = observer_mode_1 = newval;
312}
313
314/* Tables of how to react to signals; the user sets them. */
315
316static unsigned char *signal_stop;
317static unsigned char *signal_print;
318static unsigned char *signal_program;
319
320/* Table of signals that the target may silently handle.
321 This is automatically determined from the flags above,
322 and simply cached here. */
323static unsigned char *signal_pass;
324
325#define SET_SIGS(nsigs,sigs,flags) \
326 do { \
327 int signum = (nsigs); \
328 while (signum-- > 0) \
329 if ((sigs)[signum]) \
330 (flags)[signum] = 1; \
331 } while (0)
332
333#define UNSET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 0; \
339 } while (0)
340
341/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
342 this function is to avoid exporting `signal_program'. */
343
344void
345update_signals_program_target (void)
346{
347 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
348}
349
350/* Value to pass to target_resume() to cause all threads to resume. */
351
352#define RESUME_ALL minus_one_ptid
353
354/* Command list pointer for the "stop" placeholder. */
355
356static struct cmd_list_element *stop_command;
357
358/* Function inferior was in as of last step command. */
359
360static struct symbol *step_start_function;
361
362/* Nonzero if we want to give control to the user when we're notified
363 of shared library events by the dynamic linker. */
364int stop_on_solib_events;
365static void
366show_stop_on_solib_events (struct ui_file *file, int from_tty,
367 struct cmd_list_element *c, const char *value)
368{
369 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
370 value);
371}
372
373/* Nonzero means expecting a trace trap
374 and should stop the inferior and return silently when it happens. */
375
376int stop_after_trap;
377
378/* Save register contents here when executing a "finish" command or are
379 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
380 Thus this contains the return value from the called function (assuming
381 values are returned in a register). */
382
383struct regcache *stop_registers;
384
385/* Nonzero after stop if current stack frame should be printed. */
386
387static int stop_print_frame;
388
389/* This is a cached copy of the pid/waitstatus of the last event
390 returned by target_wait()/deprecated_target_wait_hook(). This
391 information is returned by get_last_target_status(). */
392static ptid_t target_last_wait_ptid;
393static struct target_waitstatus target_last_waitstatus;
394
395static void context_switch (ptid_t ptid);
396
397void init_thread_stepping_state (struct thread_info *tss);
398
399void init_infwait_state (void);
400
401static const char follow_fork_mode_child[] = "child";
402static const char follow_fork_mode_parent[] = "parent";
403
404static const char *const follow_fork_mode_kind_names[] = {
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
408};
409
410static const char *follow_fork_mode_string = follow_fork_mode_parent;
411static void
412show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414{
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
418 value);
419}
420\f
421
422/* Tell the target to follow the fork we're stopped at. Returns true
423 if the inferior should be resumed; false, if the target for some
424 reason decided it's best not to resume. */
425
426static int
427follow_fork (void)
428{
429 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
430 int should_resume = 1;
431 struct thread_info *tp;
432
433 /* Copy user stepping state to the new inferior thread. FIXME: the
434 followed fork child thread should have a copy of most of the
435 parent thread structure's run control related fields, not just these.
436 Initialized to avoid "may be used uninitialized" warnings from gcc. */
437 struct breakpoint *step_resume_breakpoint = NULL;
438 struct breakpoint *exception_resume_breakpoint = NULL;
439 CORE_ADDR step_range_start = 0;
440 CORE_ADDR step_range_end = 0;
441 struct frame_id step_frame_id = { 0 };
442
443 if (!non_stop)
444 {
445 ptid_t wait_ptid;
446 struct target_waitstatus wait_status;
447
448 /* Get the last target status returned by target_wait(). */
449 get_last_target_status (&wait_ptid, &wait_status);
450
451 /* If not stopped at a fork event, then there's nothing else to
452 do. */
453 if (wait_status.kind != TARGET_WAITKIND_FORKED
454 && wait_status.kind != TARGET_WAITKIND_VFORKED)
455 return 1;
456
457 /* Check if we switched over from WAIT_PTID, since the event was
458 reported. */
459 if (!ptid_equal (wait_ptid, minus_one_ptid)
460 && !ptid_equal (inferior_ptid, wait_ptid))
461 {
462 /* We did. Switch back to WAIT_PTID thread, to tell the
463 target to follow it (in either direction). We'll
464 afterwards refuse to resume, and inform the user what
465 happened. */
466 switch_to_thread (wait_ptid);
467 should_resume = 0;
468 }
469 }
470
471 tp = inferior_thread ();
472
473 /* If there were any forks/vforks that were caught and are now to be
474 followed, then do so now. */
475 switch (tp->pending_follow.kind)
476 {
477 case TARGET_WAITKIND_FORKED:
478 case TARGET_WAITKIND_VFORKED:
479 {
480 ptid_t parent, child;
481
482 /* If the user did a next/step, etc, over a fork call,
483 preserve the stepping state in the fork child. */
484 if (follow_child && should_resume)
485 {
486 step_resume_breakpoint = clone_momentary_breakpoint
487 (tp->control.step_resume_breakpoint);
488 step_range_start = tp->control.step_range_start;
489 step_range_end = tp->control.step_range_end;
490 step_frame_id = tp->control.step_frame_id;
491 exception_resume_breakpoint
492 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
493
494 /* For now, delete the parent's sr breakpoint, otherwise,
495 parent/child sr breakpoints are considered duplicates,
496 and the child version will not be installed. Remove
497 this when the breakpoints module becomes aware of
498 inferiors and address spaces. */
499 delete_step_resume_breakpoint (tp);
500 tp->control.step_range_start = 0;
501 tp->control.step_range_end = 0;
502 tp->control.step_frame_id = null_frame_id;
503 delete_exception_resume_breakpoint (tp);
504 }
505
506 parent = inferior_ptid;
507 child = tp->pending_follow.value.related_pid;
508
509 /* Tell the target to do whatever is necessary to follow
510 either parent or child. */
511 if (target_follow_fork (follow_child))
512 {
513 /* Target refused to follow, or there's some other reason
514 we shouldn't resume. */
515 should_resume = 0;
516 }
517 else
518 {
519 /* This pending follow fork event is now handled, one way
520 or another. The previous selected thread may be gone
521 from the lists by now, but if it is still around, need
522 to clear the pending follow request. */
523 tp = find_thread_ptid (parent);
524 if (tp)
525 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
526
527 /* This makes sure we don't try to apply the "Switched
528 over from WAIT_PID" logic above. */
529 nullify_last_target_wait_ptid ();
530
531 /* If we followed the child, switch to it... */
532 if (follow_child)
533 {
534 switch_to_thread (child);
535
536 /* ... and preserve the stepping state, in case the
537 user was stepping over the fork call. */
538 if (should_resume)
539 {
540 tp = inferior_thread ();
541 tp->control.step_resume_breakpoint
542 = step_resume_breakpoint;
543 tp->control.step_range_start = step_range_start;
544 tp->control.step_range_end = step_range_end;
545 tp->control.step_frame_id = step_frame_id;
546 tp->control.exception_resume_breakpoint
547 = exception_resume_breakpoint;
548 }
549 else
550 {
551 /* If we get here, it was because we're trying to
552 resume from a fork catchpoint, but, the user
553 has switched threads away from the thread that
554 forked. In that case, the resume command
555 issued is most likely not applicable to the
556 child, so just warn, and refuse to resume. */
557 warning (_("Not resuming: switched threads "
558 "before following fork child.\n"));
559 }
560
561 /* Reset breakpoints in the child as appropriate. */
562 follow_inferior_reset_breakpoints ();
563 }
564 else
565 switch_to_thread (parent);
566 }
567 }
568 break;
569 case TARGET_WAITKIND_SPURIOUS:
570 /* Nothing to follow. */
571 break;
572 default:
573 internal_error (__FILE__, __LINE__,
574 "Unexpected pending_follow.kind %d\n",
575 tp->pending_follow.kind);
576 break;
577 }
578
579 return should_resume;
580}
581
582void
583follow_inferior_reset_breakpoints (void)
584{
585 struct thread_info *tp = inferior_thread ();
586
587 /* Was there a step_resume breakpoint? (There was if the user
588 did a "next" at the fork() call.) If so, explicitly reset its
589 thread number.
590
591 step_resumes are a form of bp that are made to be per-thread.
592 Since we created the step_resume bp when the parent process
593 was being debugged, and now are switching to the child process,
594 from the breakpoint package's viewpoint, that's a switch of
595 "threads". We must update the bp's notion of which thread
596 it is for, or it'll be ignored when it triggers. */
597
598 if (tp->control.step_resume_breakpoint)
599 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
600
601 if (tp->control.exception_resume_breakpoint)
602 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
603
604 /* Reinsert all breakpoints in the child. The user may have set
605 breakpoints after catching the fork, in which case those
606 were never set in the child, but only in the parent. This makes
607 sure the inserted breakpoints match the breakpoint list. */
608
609 breakpoint_re_set ();
610 insert_breakpoints ();
611}
612
613/* The child has exited or execed: resume threads of the parent the
614 user wanted to be executing. */
615
616static int
617proceed_after_vfork_done (struct thread_info *thread,
618 void *arg)
619{
620 int pid = * (int *) arg;
621
622 if (ptid_get_pid (thread->ptid) == pid
623 && is_running (thread->ptid)
624 && !is_executing (thread->ptid)
625 && !thread->stop_requested
626 && thread->suspend.stop_signal == GDB_SIGNAL_0)
627 {
628 if (debug_infrun)
629 fprintf_unfiltered (gdb_stdlog,
630 "infrun: resuming vfork parent thread %s\n",
631 target_pid_to_str (thread->ptid));
632
633 switch_to_thread (thread->ptid);
634 clear_proceed_status ();
635 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
636 }
637
638 return 0;
639}
640
641/* Called whenever we notice an exec or exit event, to handle
642 detaching or resuming a vfork parent. */
643
644static void
645handle_vfork_child_exec_or_exit (int exec)
646{
647 struct inferior *inf = current_inferior ();
648
649 if (inf->vfork_parent)
650 {
651 int resume_parent = -1;
652
653 /* This exec or exit marks the end of the shared memory region
654 between the parent and the child. If the user wanted to
655 detach from the parent, now is the time. */
656
657 if (inf->vfork_parent->pending_detach)
658 {
659 struct thread_info *tp;
660 struct cleanup *old_chain;
661 struct program_space *pspace;
662 struct address_space *aspace;
663
664 /* follow-fork child, detach-on-fork on. */
665
666 old_chain = make_cleanup_restore_current_thread ();
667
668 /* We're letting loose of the parent. */
669 tp = any_live_thread_of_process (inf->vfork_parent->pid);
670 switch_to_thread (tp->ptid);
671
672 /* We're about to detach from the parent, which implicitly
673 removes breakpoints from its address space. There's a
674 catch here: we want to reuse the spaces for the child,
675 but, parent/child are still sharing the pspace at this
676 point, although the exec in reality makes the kernel give
677 the child a fresh set of new pages. The problem here is
678 that the breakpoints module being unaware of this, would
679 likely chose the child process to write to the parent
680 address space. Swapping the child temporarily away from
681 the spaces has the desired effect. Yes, this is "sort
682 of" a hack. */
683
684 pspace = inf->pspace;
685 aspace = inf->aspace;
686 inf->aspace = NULL;
687 inf->pspace = NULL;
688
689 if (debug_infrun || info_verbose)
690 {
691 target_terminal_ours ();
692
693 if (exec)
694 fprintf_filtered (gdb_stdlog,
695 "Detaching vfork parent process "
696 "%d after child exec.\n",
697 inf->vfork_parent->pid);
698 else
699 fprintf_filtered (gdb_stdlog,
700 "Detaching vfork parent process "
701 "%d after child exit.\n",
702 inf->vfork_parent->pid);
703 }
704
705 target_detach (NULL, 0);
706
707 /* Put it back. */
708 inf->pspace = pspace;
709 inf->aspace = aspace;
710
711 do_cleanups (old_chain);
712 }
713 else if (exec)
714 {
715 /* We're staying attached to the parent, so, really give the
716 child a new address space. */
717 inf->pspace = add_program_space (maybe_new_address_space ());
718 inf->aspace = inf->pspace->aspace;
719 inf->removable = 1;
720 set_current_program_space (inf->pspace);
721
722 resume_parent = inf->vfork_parent->pid;
723
724 /* Break the bonds. */
725 inf->vfork_parent->vfork_child = NULL;
726 }
727 else
728 {
729 struct cleanup *old_chain;
730 struct program_space *pspace;
731
732 /* If this is a vfork child exiting, then the pspace and
733 aspaces were shared with the parent. Since we're
734 reporting the process exit, we'll be mourning all that is
735 found in the address space, and switching to null_ptid,
736 preparing to start a new inferior. But, since we don't
737 want to clobber the parent's address/program spaces, we
738 go ahead and create a new one for this exiting
739 inferior. */
740
741 /* Switch to null_ptid, so that clone_program_space doesn't want
742 to read the selected frame of a dead process. */
743 old_chain = save_inferior_ptid ();
744 inferior_ptid = null_ptid;
745
746 /* This inferior is dead, so avoid giving the breakpoints
747 module the option to write through to it (cloning a
748 program space resets breakpoints). */
749 inf->aspace = NULL;
750 inf->pspace = NULL;
751 pspace = add_program_space (maybe_new_address_space ());
752 set_current_program_space (pspace);
753 inf->removable = 1;
754 inf->symfile_flags = SYMFILE_NO_READ;
755 clone_program_space (pspace, inf->vfork_parent->pspace);
756 inf->pspace = pspace;
757 inf->aspace = pspace->aspace;
758
759 /* Put back inferior_ptid. We'll continue mourning this
760 inferior. */
761 do_cleanups (old_chain);
762
763 resume_parent = inf->vfork_parent->pid;
764 /* Break the bonds. */
765 inf->vfork_parent->vfork_child = NULL;
766 }
767
768 inf->vfork_parent = NULL;
769
770 gdb_assert (current_program_space == inf->pspace);
771
772 if (non_stop && resume_parent != -1)
773 {
774 /* If the user wanted the parent to be running, let it go
775 free now. */
776 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
777
778 if (debug_infrun)
779 fprintf_unfiltered (gdb_stdlog,
780 "infrun: resuming vfork parent process %d\n",
781 resume_parent);
782
783 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
784
785 do_cleanups (old_chain);
786 }
787 }
788}
789
790/* Enum strings for "set|show displaced-stepping". */
791
792static const char follow_exec_mode_new[] = "new";
793static const char follow_exec_mode_same[] = "same";
794static const char *const follow_exec_mode_names[] =
795{
796 follow_exec_mode_new,
797 follow_exec_mode_same,
798 NULL,
799};
800
801static const char *follow_exec_mode_string = follow_exec_mode_same;
802static void
803show_follow_exec_mode_string (struct ui_file *file, int from_tty,
804 struct cmd_list_element *c, const char *value)
805{
806 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
807}
808
809/* EXECD_PATHNAME is assumed to be non-NULL. */
810
811static void
812follow_exec (ptid_t pid, char *execd_pathname)
813{
814 struct thread_info *th = inferior_thread ();
815 struct inferior *inf = current_inferior ();
816
817 /* This is an exec event that we actually wish to pay attention to.
818 Refresh our symbol table to the newly exec'd program, remove any
819 momentary bp's, etc.
820
821 If there are breakpoints, they aren't really inserted now,
822 since the exec() transformed our inferior into a fresh set
823 of instructions.
824
825 We want to preserve symbolic breakpoints on the list, since
826 we have hopes that they can be reset after the new a.out's
827 symbol table is read.
828
829 However, any "raw" breakpoints must be removed from the list
830 (e.g., the solib bp's), since their address is probably invalid
831 now.
832
833 And, we DON'T want to call delete_breakpoints() here, since
834 that may write the bp's "shadow contents" (the instruction
835 value that was overwritten witha TRAP instruction). Since
836 we now have a new a.out, those shadow contents aren't valid. */
837
838 mark_breakpoints_out ();
839
840 update_breakpoints_after_exec ();
841
842 /* If there was one, it's gone now. We cannot truly step-to-next
843 statement through an exec(). */
844 th->control.step_resume_breakpoint = NULL;
845 th->control.exception_resume_breakpoint = NULL;
846 th->control.step_range_start = 0;
847 th->control.step_range_end = 0;
848
849 /* The target reports the exec event to the main thread, even if
850 some other thread does the exec, and even if the main thread was
851 already stopped --- if debugging in non-stop mode, it's possible
852 the user had the main thread held stopped in the previous image
853 --- release it now. This is the same behavior as step-over-exec
854 with scheduler-locking on in all-stop mode. */
855 th->stop_requested = 0;
856
857 /* What is this a.out's name? */
858 printf_unfiltered (_("%s is executing new program: %s\n"),
859 target_pid_to_str (inferior_ptid),
860 execd_pathname);
861
862 /* We've followed the inferior through an exec. Therefore, the
863 inferior has essentially been killed & reborn. */
864
865 gdb_flush (gdb_stdout);
866
867 breakpoint_init_inferior (inf_execd);
868
869 if (gdb_sysroot && *gdb_sysroot)
870 {
871 char *name = alloca (strlen (gdb_sysroot)
872 + strlen (execd_pathname)
873 + 1);
874
875 strcpy (name, gdb_sysroot);
876 strcat (name, execd_pathname);
877 execd_pathname = name;
878 }
879
880 /* Reset the shared library package. This ensures that we get a
881 shlib event when the child reaches "_start", at which point the
882 dld will have had a chance to initialize the child. */
883 /* Also, loading a symbol file below may trigger symbol lookups, and
884 we don't want those to be satisfied by the libraries of the
885 previous incarnation of this process. */
886 no_shared_libraries (NULL, 0);
887
888 if (follow_exec_mode_string == follow_exec_mode_new)
889 {
890 struct program_space *pspace;
891
892 /* The user wants to keep the old inferior and program spaces
893 around. Create a new fresh one, and switch to it. */
894
895 inf = add_inferior (current_inferior ()->pid);
896 pspace = add_program_space (maybe_new_address_space ());
897 inf->pspace = pspace;
898 inf->aspace = pspace->aspace;
899
900 exit_inferior_num_silent (current_inferior ()->num);
901
902 set_current_inferior (inf);
903 set_current_program_space (pspace);
904 }
905
906 gdb_assert (current_program_space == inf->pspace);
907
908 /* That a.out is now the one to use. */
909 exec_file_attach (execd_pathname, 0);
910
911 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
912 (Position Independent Executable) main symbol file will get applied by
913 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
914 the breakpoints with the zero displacement. */
915
916 symbol_file_add (execd_pathname,
917 (inf->symfile_flags
918 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
919 NULL, 0);
920
921 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
922 set_initial_language ();
923
924#ifdef SOLIB_CREATE_INFERIOR_HOOK
925 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
926#else
927 solib_create_inferior_hook (0);
928#endif
929
930 jit_inferior_created_hook ();
931
932 breakpoint_re_set ();
933
934 /* Reinsert all breakpoints. (Those which were symbolic have
935 been reset to the proper address in the new a.out, thanks
936 to symbol_file_command...). */
937 insert_breakpoints ();
938
939 /* The next resume of this inferior should bring it to the shlib
940 startup breakpoints. (If the user had also set bp's on
941 "main" from the old (parent) process, then they'll auto-
942 matically get reset there in the new process.). */
943}
944
945/* Non-zero if we just simulating a single-step. This is needed
946 because we cannot remove the breakpoints in the inferior process
947 until after the `wait' in `wait_for_inferior'. */
948static int singlestep_breakpoints_inserted_p = 0;
949
950/* The thread we inserted single-step breakpoints for. */
951static ptid_t singlestep_ptid;
952
953/* PC when we started this single-step. */
954static CORE_ADDR singlestep_pc;
955
956/* If another thread hit the singlestep breakpoint, we save the original
957 thread here so that we can resume single-stepping it later. */
958static ptid_t saved_singlestep_ptid;
959static int stepping_past_singlestep_breakpoint;
960
961/* If not equal to null_ptid, this means that after stepping over breakpoint
962 is finished, we need to switch to deferred_step_ptid, and step it.
963
964 The use case is when one thread has hit a breakpoint, and then the user
965 has switched to another thread and issued 'step'. We need to step over
966 breakpoint in the thread which hit the breakpoint, but then continue
967 stepping the thread user has selected. */
968static ptid_t deferred_step_ptid;
969\f
970/* Displaced stepping. */
971
972/* In non-stop debugging mode, we must take special care to manage
973 breakpoints properly; in particular, the traditional strategy for
974 stepping a thread past a breakpoint it has hit is unsuitable.
975 'Displaced stepping' is a tactic for stepping one thread past a
976 breakpoint it has hit while ensuring that other threads running
977 concurrently will hit the breakpoint as they should.
978
979 The traditional way to step a thread T off a breakpoint in a
980 multi-threaded program in all-stop mode is as follows:
981
982 a0) Initially, all threads are stopped, and breakpoints are not
983 inserted.
984 a1) We single-step T, leaving breakpoints uninserted.
985 a2) We insert breakpoints, and resume all threads.
986
987 In non-stop debugging, however, this strategy is unsuitable: we
988 don't want to have to stop all threads in the system in order to
989 continue or step T past a breakpoint. Instead, we use displaced
990 stepping:
991
992 n0) Initially, T is stopped, other threads are running, and
993 breakpoints are inserted.
994 n1) We copy the instruction "under" the breakpoint to a separate
995 location, outside the main code stream, making any adjustments
996 to the instruction, register, and memory state as directed by
997 T's architecture.
998 n2) We single-step T over the instruction at its new location.
999 n3) We adjust the resulting register and memory state as directed
1000 by T's architecture. This includes resetting T's PC to point
1001 back into the main instruction stream.
1002 n4) We resume T.
1003
1004 This approach depends on the following gdbarch methods:
1005
1006 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1007 indicate where to copy the instruction, and how much space must
1008 be reserved there. We use these in step n1.
1009
1010 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1011 address, and makes any necessary adjustments to the instruction,
1012 register contents, and memory. We use this in step n1.
1013
1014 - gdbarch_displaced_step_fixup adjusts registers and memory after
1015 we have successfuly single-stepped the instruction, to yield the
1016 same effect the instruction would have had if we had executed it
1017 at its original address. We use this in step n3.
1018
1019 - gdbarch_displaced_step_free_closure provides cleanup.
1020
1021 The gdbarch_displaced_step_copy_insn and
1022 gdbarch_displaced_step_fixup functions must be written so that
1023 copying an instruction with gdbarch_displaced_step_copy_insn,
1024 single-stepping across the copied instruction, and then applying
1025 gdbarch_displaced_insn_fixup should have the same effects on the
1026 thread's memory and registers as stepping the instruction in place
1027 would have. Exactly which responsibilities fall to the copy and
1028 which fall to the fixup is up to the author of those functions.
1029
1030 See the comments in gdbarch.sh for details.
1031
1032 Note that displaced stepping and software single-step cannot
1033 currently be used in combination, although with some care I think
1034 they could be made to. Software single-step works by placing
1035 breakpoints on all possible subsequent instructions; if the
1036 displaced instruction is a PC-relative jump, those breakpoints
1037 could fall in very strange places --- on pages that aren't
1038 executable, or at addresses that are not proper instruction
1039 boundaries. (We do generally let other threads run while we wait
1040 to hit the software single-step breakpoint, and they might
1041 encounter such a corrupted instruction.) One way to work around
1042 this would be to have gdbarch_displaced_step_copy_insn fully
1043 simulate the effect of PC-relative instructions (and return NULL)
1044 on architectures that use software single-stepping.
1045
1046 In non-stop mode, we can have independent and simultaneous step
1047 requests, so more than one thread may need to simultaneously step
1048 over a breakpoint. The current implementation assumes there is
1049 only one scratch space per process. In this case, we have to
1050 serialize access to the scratch space. If thread A wants to step
1051 over a breakpoint, but we are currently waiting for some other
1052 thread to complete a displaced step, we leave thread A stopped and
1053 place it in the displaced_step_request_queue. Whenever a displaced
1054 step finishes, we pick the next thread in the queue and start a new
1055 displaced step operation on it. See displaced_step_prepare and
1056 displaced_step_fixup for details. */
1057
1058struct displaced_step_request
1059{
1060 ptid_t ptid;
1061 struct displaced_step_request *next;
1062};
1063
1064/* Per-inferior displaced stepping state. */
1065struct displaced_step_inferior_state
1066{
1067 /* Pointer to next in linked list. */
1068 struct displaced_step_inferior_state *next;
1069
1070 /* The process this displaced step state refers to. */
1071 int pid;
1072
1073 /* A queue of pending displaced stepping requests. One entry per
1074 thread that needs to do a displaced step. */
1075 struct displaced_step_request *step_request_queue;
1076
1077 /* If this is not null_ptid, this is the thread carrying out a
1078 displaced single-step in process PID. This thread's state will
1079 require fixing up once it has completed its step. */
1080 ptid_t step_ptid;
1081
1082 /* The architecture the thread had when we stepped it. */
1083 struct gdbarch *step_gdbarch;
1084
1085 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1086 for post-step cleanup. */
1087 struct displaced_step_closure *step_closure;
1088
1089 /* The address of the original instruction, and the copy we
1090 made. */
1091 CORE_ADDR step_original, step_copy;
1092
1093 /* Saved contents of copy area. */
1094 gdb_byte *step_saved_copy;
1095};
1096
1097/* The list of states of processes involved in displaced stepping
1098 presently. */
1099static struct displaced_step_inferior_state *displaced_step_inferior_states;
1100
1101/* Get the displaced stepping state of process PID. */
1102
1103static struct displaced_step_inferior_state *
1104get_displaced_stepping_state (int pid)
1105{
1106 struct displaced_step_inferior_state *state;
1107
1108 for (state = displaced_step_inferior_states;
1109 state != NULL;
1110 state = state->next)
1111 if (state->pid == pid)
1112 return state;
1113
1114 return NULL;
1115}
1116
1117/* Add a new displaced stepping state for process PID to the displaced
1118 stepping state list, or return a pointer to an already existing
1119 entry, if it already exists. Never returns NULL. */
1120
1121static struct displaced_step_inferior_state *
1122add_displaced_stepping_state (int pid)
1123{
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
1131
1132 state = xcalloc (1, sizeof (*state));
1133 state->pid = pid;
1134 state->next = displaced_step_inferior_states;
1135 displaced_step_inferior_states = state;
1136
1137 return state;
1138}
1139
1140/* If inferior is in displaced stepping, and ADDR equals to starting address
1141 of copy area, return corresponding displaced_step_closure. Otherwise,
1142 return NULL. */
1143
1144struct displaced_step_closure*
1145get_displaced_step_closure_by_addr (CORE_ADDR addr)
1146{
1147 struct displaced_step_inferior_state *displaced
1148 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1149
1150 /* If checking the mode of displaced instruction in copy area. */
1151 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1152 && (displaced->step_copy == addr))
1153 return displaced->step_closure;
1154
1155 return NULL;
1156}
1157
1158/* Remove the displaced stepping state of process PID. */
1159
1160static void
1161remove_displaced_stepping_state (int pid)
1162{
1163 struct displaced_step_inferior_state *it, **prev_next_p;
1164
1165 gdb_assert (pid != 0);
1166
1167 it = displaced_step_inferior_states;
1168 prev_next_p = &displaced_step_inferior_states;
1169 while (it)
1170 {
1171 if (it->pid == pid)
1172 {
1173 *prev_next_p = it->next;
1174 xfree (it);
1175 return;
1176 }
1177
1178 prev_next_p = &it->next;
1179 it = *prev_next_p;
1180 }
1181}
1182
1183static void
1184infrun_inferior_exit (struct inferior *inf)
1185{
1186 remove_displaced_stepping_state (inf->pid);
1187}
1188
1189/* If ON, and the architecture supports it, GDB will use displaced
1190 stepping to step over breakpoints. If OFF, or if the architecture
1191 doesn't support it, GDB will instead use the traditional
1192 hold-and-step approach. If AUTO (which is the default), GDB will
1193 decide which technique to use to step over breakpoints depending on
1194 which of all-stop or non-stop mode is active --- displaced stepping
1195 in non-stop mode; hold-and-step in all-stop mode. */
1196
1197static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1198
1199static void
1200show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1201 struct cmd_list_element *c,
1202 const char *value)
1203{
1204 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1205 fprintf_filtered (file,
1206 _("Debugger's willingness to use displaced stepping "
1207 "to step over breakpoints is %s (currently %s).\n"),
1208 value, non_stop ? "on" : "off");
1209 else
1210 fprintf_filtered (file,
1211 _("Debugger's willingness to use displaced stepping "
1212 "to step over breakpoints is %s.\n"), value);
1213}
1214
1215/* Return non-zero if displaced stepping can/should be used to step
1216 over breakpoints. */
1217
1218static int
1219use_displaced_stepping (struct gdbarch *gdbarch)
1220{
1221 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1222 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1223 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1224 && !RECORD_IS_USED);
1225}
1226
1227/* Clean out any stray displaced stepping state. */
1228static void
1229displaced_step_clear (struct displaced_step_inferior_state *displaced)
1230{
1231 /* Indicate that there is no cleanup pending. */
1232 displaced->step_ptid = null_ptid;
1233
1234 if (displaced->step_closure)
1235 {
1236 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1237 displaced->step_closure);
1238 displaced->step_closure = NULL;
1239 }
1240}
1241
1242static void
1243displaced_step_clear_cleanup (void *arg)
1244{
1245 struct displaced_step_inferior_state *state = arg;
1246
1247 displaced_step_clear (state);
1248}
1249
1250/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1251void
1252displaced_step_dump_bytes (struct ui_file *file,
1253 const gdb_byte *buf,
1254 size_t len)
1255{
1256 int i;
1257
1258 for (i = 0; i < len; i++)
1259 fprintf_unfiltered (file, "%02x ", buf[i]);
1260 fputs_unfiltered ("\n", file);
1261}
1262
1263/* Prepare to single-step, using displaced stepping.
1264
1265 Note that we cannot use displaced stepping when we have a signal to
1266 deliver. If we have a signal to deliver and an instruction to step
1267 over, then after the step, there will be no indication from the
1268 target whether the thread entered a signal handler or ignored the
1269 signal and stepped over the instruction successfully --- both cases
1270 result in a simple SIGTRAP. In the first case we mustn't do a
1271 fixup, and in the second case we must --- but we can't tell which.
1272 Comments in the code for 'random signals' in handle_inferior_event
1273 explain how we handle this case instead.
1274
1275 Returns 1 if preparing was successful -- this thread is going to be
1276 stepped now; or 0 if displaced stepping this thread got queued. */
1277static int
1278displaced_step_prepare (ptid_t ptid)
1279{
1280 struct cleanup *old_cleanups, *ignore_cleanups;
1281 struct regcache *regcache = get_thread_regcache (ptid);
1282 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1283 CORE_ADDR original, copy;
1284 ULONGEST len;
1285 struct displaced_step_closure *closure;
1286 struct displaced_step_inferior_state *displaced;
1287 int status;
1288
1289 /* We should never reach this function if the architecture does not
1290 support displaced stepping. */
1291 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1292
1293 /* We have to displaced step one thread at a time, as we only have
1294 access to a single scratch space per inferior. */
1295
1296 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1297
1298 if (!ptid_equal (displaced->step_ptid, null_ptid))
1299 {
1300 /* Already waiting for a displaced step to finish. Defer this
1301 request and place in queue. */
1302 struct displaced_step_request *req, *new_req;
1303
1304 if (debug_displaced)
1305 fprintf_unfiltered (gdb_stdlog,
1306 "displaced: defering step of %s\n",
1307 target_pid_to_str (ptid));
1308
1309 new_req = xmalloc (sizeof (*new_req));
1310 new_req->ptid = ptid;
1311 new_req->next = NULL;
1312
1313 if (displaced->step_request_queue)
1314 {
1315 for (req = displaced->step_request_queue;
1316 req && req->next;
1317 req = req->next)
1318 ;
1319 req->next = new_req;
1320 }
1321 else
1322 displaced->step_request_queue = new_req;
1323
1324 return 0;
1325 }
1326 else
1327 {
1328 if (debug_displaced)
1329 fprintf_unfiltered (gdb_stdlog,
1330 "displaced: stepping %s now\n",
1331 target_pid_to_str (ptid));
1332 }
1333
1334 displaced_step_clear (displaced);
1335
1336 old_cleanups = save_inferior_ptid ();
1337 inferior_ptid = ptid;
1338
1339 original = regcache_read_pc (regcache);
1340
1341 copy = gdbarch_displaced_step_location (gdbarch);
1342 len = gdbarch_max_insn_length (gdbarch);
1343
1344 /* Save the original contents of the copy area. */
1345 displaced->step_saved_copy = xmalloc (len);
1346 ignore_cleanups = make_cleanup (free_current_contents,
1347 &displaced->step_saved_copy);
1348 status = target_read_memory (copy, displaced->step_saved_copy, len);
1349 if (status != 0)
1350 throw_error (MEMORY_ERROR,
1351 _("Error accessing memory address %s (%s) for "
1352 "displaced-stepping scratch space."),
1353 paddress (gdbarch, copy), safe_strerror (status));
1354 if (debug_displaced)
1355 {
1356 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1357 paddress (gdbarch, copy));
1358 displaced_step_dump_bytes (gdb_stdlog,
1359 displaced->step_saved_copy,
1360 len);
1361 };
1362
1363 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1364 original, copy, regcache);
1365
1366 /* We don't support the fully-simulated case at present. */
1367 gdb_assert (closure);
1368
1369 /* Save the information we need to fix things up if the step
1370 succeeds. */
1371 displaced->step_ptid = ptid;
1372 displaced->step_gdbarch = gdbarch;
1373 displaced->step_closure = closure;
1374 displaced->step_original = original;
1375 displaced->step_copy = copy;
1376
1377 make_cleanup (displaced_step_clear_cleanup, displaced);
1378
1379 /* Resume execution at the copy. */
1380 regcache_write_pc (regcache, copy);
1381
1382 discard_cleanups (ignore_cleanups);
1383
1384 do_cleanups (old_cleanups);
1385
1386 if (debug_displaced)
1387 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1388 paddress (gdbarch, copy));
1389
1390 return 1;
1391}
1392
1393static void
1394write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1395 const gdb_byte *myaddr, int len)
1396{
1397 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1398
1399 inferior_ptid = ptid;
1400 write_memory (memaddr, myaddr, len);
1401 do_cleanups (ptid_cleanup);
1402}
1403
1404/* Restore the contents of the copy area for thread PTID. */
1405
1406static void
1407displaced_step_restore (struct displaced_step_inferior_state *displaced,
1408 ptid_t ptid)
1409{
1410 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1411
1412 write_memory_ptid (ptid, displaced->step_copy,
1413 displaced->step_saved_copy, len);
1414 if (debug_displaced)
1415 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1416 target_pid_to_str (ptid),
1417 paddress (displaced->step_gdbarch,
1418 displaced->step_copy));
1419}
1420
1421static void
1422displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1423{
1424 struct cleanup *old_cleanups;
1425 struct displaced_step_inferior_state *displaced
1426 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1427
1428 /* Was any thread of this process doing a displaced step? */
1429 if (displaced == NULL)
1430 return;
1431
1432 /* Was this event for the pid we displaced? */
1433 if (ptid_equal (displaced->step_ptid, null_ptid)
1434 || ! ptid_equal (displaced->step_ptid, event_ptid))
1435 return;
1436
1437 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1438
1439 displaced_step_restore (displaced, displaced->step_ptid);
1440
1441 /* Did the instruction complete successfully? */
1442 if (signal == GDB_SIGNAL_TRAP)
1443 {
1444 /* Fix up the resulting state. */
1445 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1446 displaced->step_closure,
1447 displaced->step_original,
1448 displaced->step_copy,
1449 get_thread_regcache (displaced->step_ptid));
1450 }
1451 else
1452 {
1453 /* Since the instruction didn't complete, all we can do is
1454 relocate the PC. */
1455 struct regcache *regcache = get_thread_regcache (event_ptid);
1456 CORE_ADDR pc = regcache_read_pc (regcache);
1457
1458 pc = displaced->step_original + (pc - displaced->step_copy);
1459 regcache_write_pc (regcache, pc);
1460 }
1461
1462 do_cleanups (old_cleanups);
1463
1464 displaced->step_ptid = null_ptid;
1465
1466 /* Are there any pending displaced stepping requests? If so, run
1467 one now. Leave the state object around, since we're likely to
1468 need it again soon. */
1469 while (displaced->step_request_queue)
1470 {
1471 struct displaced_step_request *head;
1472 ptid_t ptid;
1473 struct regcache *regcache;
1474 struct gdbarch *gdbarch;
1475 CORE_ADDR actual_pc;
1476 struct address_space *aspace;
1477
1478 head = displaced->step_request_queue;
1479 ptid = head->ptid;
1480 displaced->step_request_queue = head->next;
1481 xfree (head);
1482
1483 context_switch (ptid);
1484
1485 regcache = get_thread_regcache (ptid);
1486 actual_pc = regcache_read_pc (regcache);
1487 aspace = get_regcache_aspace (regcache);
1488
1489 if (breakpoint_here_p (aspace, actual_pc))
1490 {
1491 if (debug_displaced)
1492 fprintf_unfiltered (gdb_stdlog,
1493 "displaced: stepping queued %s now\n",
1494 target_pid_to_str (ptid));
1495
1496 displaced_step_prepare (ptid);
1497
1498 gdbarch = get_regcache_arch (regcache);
1499
1500 if (debug_displaced)
1501 {
1502 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1503 gdb_byte buf[4];
1504
1505 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1506 paddress (gdbarch, actual_pc));
1507 read_memory (actual_pc, buf, sizeof (buf));
1508 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1509 }
1510
1511 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1512 displaced->step_closure))
1513 target_resume (ptid, 1, GDB_SIGNAL_0);
1514 else
1515 target_resume (ptid, 0, GDB_SIGNAL_0);
1516
1517 /* Done, we're stepping a thread. */
1518 break;
1519 }
1520 else
1521 {
1522 int step;
1523 struct thread_info *tp = inferior_thread ();
1524
1525 /* The breakpoint we were sitting under has since been
1526 removed. */
1527 tp->control.trap_expected = 0;
1528
1529 /* Go back to what we were trying to do. */
1530 step = currently_stepping (tp);
1531
1532 if (debug_displaced)
1533 fprintf_unfiltered (gdb_stdlog,
1534 "displaced: breakpoint is gone: %s, step(%d)\n",
1535 target_pid_to_str (tp->ptid), step);
1536
1537 target_resume (ptid, step, GDB_SIGNAL_0);
1538 tp->suspend.stop_signal = GDB_SIGNAL_0;
1539
1540 /* This request was discarded. See if there's any other
1541 thread waiting for its turn. */
1542 }
1543 }
1544}
1545
1546/* Update global variables holding ptids to hold NEW_PTID if they were
1547 holding OLD_PTID. */
1548static void
1549infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1550{
1551 struct displaced_step_request *it;
1552 struct displaced_step_inferior_state *displaced;
1553
1554 if (ptid_equal (inferior_ptid, old_ptid))
1555 inferior_ptid = new_ptid;
1556
1557 if (ptid_equal (singlestep_ptid, old_ptid))
1558 singlestep_ptid = new_ptid;
1559
1560 if (ptid_equal (deferred_step_ptid, old_ptid))
1561 deferred_step_ptid = new_ptid;
1562
1563 for (displaced = displaced_step_inferior_states;
1564 displaced;
1565 displaced = displaced->next)
1566 {
1567 if (ptid_equal (displaced->step_ptid, old_ptid))
1568 displaced->step_ptid = new_ptid;
1569
1570 for (it = displaced->step_request_queue; it; it = it->next)
1571 if (ptid_equal (it->ptid, old_ptid))
1572 it->ptid = new_ptid;
1573 }
1574}
1575
1576\f
1577/* Resuming. */
1578
1579/* Things to clean up if we QUIT out of resume (). */
1580static void
1581resume_cleanups (void *ignore)
1582{
1583 normal_stop ();
1584}
1585
1586static const char schedlock_off[] = "off";
1587static const char schedlock_on[] = "on";
1588static const char schedlock_step[] = "step";
1589static const char *const scheduler_enums[] = {
1590 schedlock_off,
1591 schedlock_on,
1592 schedlock_step,
1593 NULL
1594};
1595static const char *scheduler_mode = schedlock_off;
1596static void
1597show_scheduler_mode (struct ui_file *file, int from_tty,
1598 struct cmd_list_element *c, const char *value)
1599{
1600 fprintf_filtered (file,
1601 _("Mode for locking scheduler "
1602 "during execution is \"%s\".\n"),
1603 value);
1604}
1605
1606static void
1607set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1608{
1609 if (!target_can_lock_scheduler)
1610 {
1611 scheduler_mode = schedlock_off;
1612 error (_("Target '%s' cannot support this command."), target_shortname);
1613 }
1614}
1615
1616/* True if execution commands resume all threads of all processes by
1617 default; otherwise, resume only threads of the current inferior
1618 process. */
1619int sched_multi = 0;
1620
1621/* Try to setup for software single stepping over the specified location.
1622 Return 1 if target_resume() should use hardware single step.
1623
1624 GDBARCH the current gdbarch.
1625 PC the location to step over. */
1626
1627static int
1628maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1629{
1630 int hw_step = 1;
1631
1632 if (execution_direction == EXEC_FORWARD
1633 && gdbarch_software_single_step_p (gdbarch)
1634 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1635 {
1636 hw_step = 0;
1637 /* Do not pull these breakpoints until after a `wait' in
1638 `wait_for_inferior'. */
1639 singlestep_breakpoints_inserted_p = 1;
1640 singlestep_ptid = inferior_ptid;
1641 singlestep_pc = pc;
1642 }
1643 return hw_step;
1644}
1645
1646/* Return a ptid representing the set of threads that we will proceed,
1647 in the perspective of the user/frontend. We may actually resume
1648 fewer threads at first, e.g., if a thread is stopped at a
1649 breakpoint that needs stepping-off, but that should not be visible
1650 to the user/frontend, and neither should the frontend/user be
1651 allowed to proceed any of the threads that happen to be stopped for
1652 internal run control handling, if a previous command wanted them
1653 resumed. */
1654
1655ptid_t
1656user_visible_resume_ptid (int step)
1657{
1658 /* By default, resume all threads of all processes. */
1659 ptid_t resume_ptid = RESUME_ALL;
1660
1661 /* Maybe resume only all threads of the current process. */
1662 if (!sched_multi && target_supports_multi_process ())
1663 {
1664 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1665 }
1666
1667 /* Maybe resume a single thread after all. */
1668 if (non_stop)
1669 {
1670 /* With non-stop mode on, threads are always handled
1671 individually. */
1672 resume_ptid = inferior_ptid;
1673 }
1674 else if ((scheduler_mode == schedlock_on)
1675 || (scheduler_mode == schedlock_step
1676 && (step || singlestep_breakpoints_inserted_p)))
1677 {
1678 /* User-settable 'scheduler' mode requires solo thread resume. */
1679 resume_ptid = inferior_ptid;
1680 }
1681
1682 return resume_ptid;
1683}
1684
1685/* Resume the inferior, but allow a QUIT. This is useful if the user
1686 wants to interrupt some lengthy single-stepping operation
1687 (for child processes, the SIGINT goes to the inferior, and so
1688 we get a SIGINT random_signal, but for remote debugging and perhaps
1689 other targets, that's not true).
1690
1691 STEP nonzero if we should step (zero to continue instead).
1692 SIG is the signal to give the inferior (zero for none). */
1693void
1694resume (int step, enum gdb_signal sig)
1695{
1696 int should_resume = 1;
1697 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1698 struct regcache *regcache = get_current_regcache ();
1699 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1700 struct thread_info *tp = inferior_thread ();
1701 CORE_ADDR pc = regcache_read_pc (regcache);
1702 struct address_space *aspace = get_regcache_aspace (regcache);
1703
1704 QUIT;
1705
1706 if (current_inferior ()->waiting_for_vfork_done)
1707 {
1708 /* Don't try to single-step a vfork parent that is waiting for
1709 the child to get out of the shared memory region (by exec'ing
1710 or exiting). This is particularly important on software
1711 single-step archs, as the child process would trip on the
1712 software single step breakpoint inserted for the parent
1713 process. Since the parent will not actually execute any
1714 instruction until the child is out of the shared region (such
1715 are vfork's semantics), it is safe to simply continue it.
1716 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1717 the parent, and tell it to `keep_going', which automatically
1718 re-sets it stepping. */
1719 if (debug_infrun)
1720 fprintf_unfiltered (gdb_stdlog,
1721 "infrun: resume : clear step\n");
1722 step = 0;
1723 }
1724
1725 if (debug_infrun)
1726 fprintf_unfiltered (gdb_stdlog,
1727 "infrun: resume (step=%d, signal=%d), "
1728 "trap_expected=%d, current thread [%s] at %s\n",
1729 step, sig, tp->control.trap_expected,
1730 target_pid_to_str (inferior_ptid),
1731 paddress (gdbarch, pc));
1732
1733 /* Normally, by the time we reach `resume', the breakpoints are either
1734 removed or inserted, as appropriate. The exception is if we're sitting
1735 at a permanent breakpoint; we need to step over it, but permanent
1736 breakpoints can't be removed. So we have to test for it here. */
1737 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1738 {
1739 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1740 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1741 else
1742 error (_("\
1743The program is stopped at a permanent breakpoint, but GDB does not know\n\
1744how to step past a permanent breakpoint on this architecture. Try using\n\
1745a command like `return' or `jump' to continue execution."));
1746 }
1747
1748 /* If enabled, step over breakpoints by executing a copy of the
1749 instruction at a different address.
1750
1751 We can't use displaced stepping when we have a signal to deliver;
1752 the comments for displaced_step_prepare explain why. The
1753 comments in the handle_inferior event for dealing with 'random
1754 signals' explain what we do instead.
1755
1756 We can't use displaced stepping when we are waiting for vfork_done
1757 event, displaced stepping breaks the vfork child similarly as single
1758 step software breakpoint. */
1759 if (use_displaced_stepping (gdbarch)
1760 && (tp->control.trap_expected
1761 || (step && gdbarch_software_single_step_p (gdbarch)))
1762 && sig == GDB_SIGNAL_0
1763 && !current_inferior ()->waiting_for_vfork_done)
1764 {
1765 struct displaced_step_inferior_state *displaced;
1766
1767 if (!displaced_step_prepare (inferior_ptid))
1768 {
1769 /* Got placed in displaced stepping queue. Will be resumed
1770 later when all the currently queued displaced stepping
1771 requests finish. The thread is not executing at this point,
1772 and the call to set_executing will be made later. But we
1773 need to call set_running here, since from frontend point of view,
1774 the thread is running. */
1775 set_running (inferior_ptid, 1);
1776 discard_cleanups (old_cleanups);
1777 return;
1778 }
1779
1780 /* Update pc to reflect the new address from which we will execute
1781 instructions due to displaced stepping. */
1782 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1783
1784 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1785 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1786 displaced->step_closure);
1787 }
1788
1789 /* Do we need to do it the hard way, w/temp breakpoints? */
1790 else if (step)
1791 step = maybe_software_singlestep (gdbarch, pc);
1792
1793 /* Currently, our software single-step implementation leads to different
1794 results than hardware single-stepping in one situation: when stepping
1795 into delivering a signal which has an associated signal handler,
1796 hardware single-step will stop at the first instruction of the handler,
1797 while software single-step will simply skip execution of the handler.
1798
1799 For now, this difference in behavior is accepted since there is no
1800 easy way to actually implement single-stepping into a signal handler
1801 without kernel support.
1802
1803 However, there is one scenario where this difference leads to follow-on
1804 problems: if we're stepping off a breakpoint by removing all breakpoints
1805 and then single-stepping. In this case, the software single-step
1806 behavior means that even if there is a *breakpoint* in the signal
1807 handler, GDB still would not stop.
1808
1809 Fortunately, we can at least fix this particular issue. We detect
1810 here the case where we are about to deliver a signal while software
1811 single-stepping with breakpoints removed. In this situation, we
1812 revert the decisions to remove all breakpoints and insert single-
1813 step breakpoints, and instead we install a step-resume breakpoint
1814 at the current address, deliver the signal without stepping, and
1815 once we arrive back at the step-resume breakpoint, actually step
1816 over the breakpoint we originally wanted to step over. */
1817 if (singlestep_breakpoints_inserted_p
1818 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1819 {
1820 /* If we have nested signals or a pending signal is delivered
1821 immediately after a handler returns, might might already have
1822 a step-resume breakpoint set on the earlier handler. We cannot
1823 set another step-resume breakpoint; just continue on until the
1824 original breakpoint is hit. */
1825 if (tp->control.step_resume_breakpoint == NULL)
1826 {
1827 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1828 tp->step_after_step_resume_breakpoint = 1;
1829 }
1830
1831 remove_single_step_breakpoints ();
1832 singlestep_breakpoints_inserted_p = 0;
1833
1834 insert_breakpoints ();
1835 tp->control.trap_expected = 0;
1836 }
1837
1838 if (should_resume)
1839 {
1840 ptid_t resume_ptid;
1841
1842 /* If STEP is set, it's a request to use hardware stepping
1843 facilities. But in that case, we should never
1844 use singlestep breakpoint. */
1845 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1846
1847 /* Decide the set of threads to ask the target to resume. Start
1848 by assuming everything will be resumed, than narrow the set
1849 by applying increasingly restricting conditions. */
1850 resume_ptid = user_visible_resume_ptid (step);
1851
1852 /* Maybe resume a single thread after all. */
1853 if (singlestep_breakpoints_inserted_p
1854 && stepping_past_singlestep_breakpoint)
1855 {
1856 /* The situation here is as follows. In thread T1 we wanted to
1857 single-step. Lacking hardware single-stepping we've
1858 set breakpoint at the PC of the next instruction -- call it
1859 P. After resuming, we've hit that breakpoint in thread T2.
1860 Now we've removed original breakpoint, inserted breakpoint
1861 at P+1, and try to step to advance T2 past breakpoint.
1862 We need to step only T2, as if T1 is allowed to freely run,
1863 it can run past P, and if other threads are allowed to run,
1864 they can hit breakpoint at P+1, and nested hits of single-step
1865 breakpoints is not something we'd want -- that's complicated
1866 to support, and has no value. */
1867 resume_ptid = inferior_ptid;
1868 }
1869 else if ((step || singlestep_breakpoints_inserted_p)
1870 && tp->control.trap_expected)
1871 {
1872 /* We're allowing a thread to run past a breakpoint it has
1873 hit, by single-stepping the thread with the breakpoint
1874 removed. In which case, we need to single-step only this
1875 thread, and keep others stopped, as they can miss this
1876 breakpoint if allowed to run.
1877
1878 The current code actually removes all breakpoints when
1879 doing this, not just the one being stepped over, so if we
1880 let other threads run, we can actually miss any
1881 breakpoint, not just the one at PC. */
1882 resume_ptid = inferior_ptid;
1883 }
1884
1885 if (gdbarch_cannot_step_breakpoint (gdbarch))
1886 {
1887 /* Most targets can step a breakpoint instruction, thus
1888 executing it normally. But if this one cannot, just
1889 continue and we will hit it anyway. */
1890 if (step && breakpoint_inserted_here_p (aspace, pc))
1891 step = 0;
1892 }
1893
1894 if (debug_displaced
1895 && use_displaced_stepping (gdbarch)
1896 && tp->control.trap_expected)
1897 {
1898 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1899 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1900 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1901 gdb_byte buf[4];
1902
1903 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1904 paddress (resume_gdbarch, actual_pc));
1905 read_memory (actual_pc, buf, sizeof (buf));
1906 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1907 }
1908
1909 /* Install inferior's terminal modes. */
1910 target_terminal_inferior ();
1911
1912 /* Avoid confusing the next resume, if the next stop/resume
1913 happens to apply to another thread. */
1914 tp->suspend.stop_signal = GDB_SIGNAL_0;
1915
1916 /* Advise target which signals may be handled silently. If we have
1917 removed breakpoints because we are stepping over one (which can
1918 happen only if we are not using displaced stepping), we need to
1919 receive all signals to avoid accidentally skipping a breakpoint
1920 during execution of a signal handler. */
1921 if ((step || singlestep_breakpoints_inserted_p)
1922 && tp->control.trap_expected
1923 && !use_displaced_stepping (gdbarch))
1924 target_pass_signals (0, NULL);
1925 else
1926 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1927
1928 target_resume (resume_ptid, step, sig);
1929 }
1930
1931 discard_cleanups (old_cleanups);
1932}
1933\f
1934/* Proceeding. */
1935
1936/* Clear out all variables saying what to do when inferior is continued.
1937 First do this, then set the ones you want, then call `proceed'. */
1938
1939static void
1940clear_proceed_status_thread (struct thread_info *tp)
1941{
1942 if (debug_infrun)
1943 fprintf_unfiltered (gdb_stdlog,
1944 "infrun: clear_proceed_status_thread (%s)\n",
1945 target_pid_to_str (tp->ptid));
1946
1947 tp->control.trap_expected = 0;
1948 tp->control.step_range_start = 0;
1949 tp->control.step_range_end = 0;
1950 tp->control.step_frame_id = null_frame_id;
1951 tp->control.step_stack_frame_id = null_frame_id;
1952 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1953 tp->stop_requested = 0;
1954
1955 tp->control.stop_step = 0;
1956
1957 tp->control.proceed_to_finish = 0;
1958
1959 /* Discard any remaining commands or status from previous stop. */
1960 bpstat_clear (&tp->control.stop_bpstat);
1961}
1962
1963static int
1964clear_proceed_status_callback (struct thread_info *tp, void *data)
1965{
1966 if (is_exited (tp->ptid))
1967 return 0;
1968
1969 clear_proceed_status_thread (tp);
1970 return 0;
1971}
1972
1973void
1974clear_proceed_status (void)
1975{
1976 if (!non_stop)
1977 {
1978 /* In all-stop mode, delete the per-thread status of all
1979 threads, even if inferior_ptid is null_ptid, there may be
1980 threads on the list. E.g., we may be launching a new
1981 process, while selecting the executable. */
1982 iterate_over_threads (clear_proceed_status_callback, NULL);
1983 }
1984
1985 if (!ptid_equal (inferior_ptid, null_ptid))
1986 {
1987 struct inferior *inferior;
1988
1989 if (non_stop)
1990 {
1991 /* If in non-stop mode, only delete the per-thread status of
1992 the current thread. */
1993 clear_proceed_status_thread (inferior_thread ());
1994 }
1995
1996 inferior = current_inferior ();
1997 inferior->control.stop_soon = NO_STOP_QUIETLY;
1998 }
1999
2000 stop_after_trap = 0;
2001
2002 observer_notify_about_to_proceed ();
2003
2004 if (stop_registers)
2005 {
2006 regcache_xfree (stop_registers);
2007 stop_registers = NULL;
2008 }
2009}
2010
2011/* Check the current thread against the thread that reported the most recent
2012 event. If a step-over is required return TRUE and set the current thread
2013 to the old thread. Otherwise return FALSE.
2014
2015 This should be suitable for any targets that support threads. */
2016
2017static int
2018prepare_to_proceed (int step)
2019{
2020 ptid_t wait_ptid;
2021 struct target_waitstatus wait_status;
2022 int schedlock_enabled;
2023
2024 /* With non-stop mode on, threads are always handled individually. */
2025 gdb_assert (! non_stop);
2026
2027 /* Get the last target status returned by target_wait(). */
2028 get_last_target_status (&wait_ptid, &wait_status);
2029
2030 /* Make sure we were stopped at a breakpoint. */
2031 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2032 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2033 && wait_status.value.sig != GDB_SIGNAL_ILL
2034 && wait_status.value.sig != GDB_SIGNAL_SEGV
2035 && wait_status.value.sig != GDB_SIGNAL_EMT))
2036 {
2037 return 0;
2038 }
2039
2040 schedlock_enabled = (scheduler_mode == schedlock_on
2041 || (scheduler_mode == schedlock_step
2042 && step));
2043
2044 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2045 if (schedlock_enabled)
2046 return 0;
2047
2048 /* Don't switch over if we're about to resume some other process
2049 other than WAIT_PTID's, and schedule-multiple is off. */
2050 if (!sched_multi
2051 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2052 return 0;
2053
2054 /* Switched over from WAIT_PID. */
2055 if (!ptid_equal (wait_ptid, minus_one_ptid)
2056 && !ptid_equal (inferior_ptid, wait_ptid))
2057 {
2058 struct regcache *regcache = get_thread_regcache (wait_ptid);
2059
2060 if (breakpoint_here_p (get_regcache_aspace (regcache),
2061 regcache_read_pc (regcache)))
2062 {
2063 /* If stepping, remember current thread to switch back to. */
2064 if (step)
2065 deferred_step_ptid = inferior_ptid;
2066
2067 /* Switch back to WAIT_PID thread. */
2068 switch_to_thread (wait_ptid);
2069
2070 if (debug_infrun)
2071 fprintf_unfiltered (gdb_stdlog,
2072 "infrun: prepare_to_proceed (step=%d), "
2073 "switched to [%s]\n",
2074 step, target_pid_to_str (inferior_ptid));
2075
2076 /* We return 1 to indicate that there is a breakpoint here,
2077 so we need to step over it before continuing to avoid
2078 hitting it straight away. */
2079 return 1;
2080 }
2081 }
2082
2083 return 0;
2084}
2085
2086/* Basic routine for continuing the program in various fashions.
2087
2088 ADDR is the address to resume at, or -1 for resume where stopped.
2089 SIGGNAL is the signal to give it, or 0 for none,
2090 or -1 for act according to how it stopped.
2091 STEP is nonzero if should trap after one instruction.
2092 -1 means return after that and print nothing.
2093 You should probably set various step_... variables
2094 before calling here, if you are stepping.
2095
2096 You should call clear_proceed_status before calling proceed. */
2097
2098void
2099proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2100{
2101 struct regcache *regcache;
2102 struct gdbarch *gdbarch;
2103 struct thread_info *tp;
2104 CORE_ADDR pc;
2105 struct address_space *aspace;
2106 int oneproc = 0;
2107
2108 /* If we're stopped at a fork/vfork, follow the branch set by the
2109 "set follow-fork-mode" command; otherwise, we'll just proceed
2110 resuming the current thread. */
2111 if (!follow_fork ())
2112 {
2113 /* The target for some reason decided not to resume. */
2114 normal_stop ();
2115 if (target_can_async_p ())
2116 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2117 return;
2118 }
2119
2120 /* We'll update this if & when we switch to a new thread. */
2121 previous_inferior_ptid = inferior_ptid;
2122
2123 regcache = get_current_regcache ();
2124 gdbarch = get_regcache_arch (regcache);
2125 aspace = get_regcache_aspace (regcache);
2126 pc = regcache_read_pc (regcache);
2127
2128 if (step > 0)
2129 step_start_function = find_pc_function (pc);
2130 if (step < 0)
2131 stop_after_trap = 1;
2132
2133 if (addr == (CORE_ADDR) -1)
2134 {
2135 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2136 && execution_direction != EXEC_REVERSE)
2137 /* There is a breakpoint at the address we will resume at,
2138 step one instruction before inserting breakpoints so that
2139 we do not stop right away (and report a second hit at this
2140 breakpoint).
2141
2142 Note, we don't do this in reverse, because we won't
2143 actually be executing the breakpoint insn anyway.
2144 We'll be (un-)executing the previous instruction. */
2145
2146 oneproc = 1;
2147 else if (gdbarch_single_step_through_delay_p (gdbarch)
2148 && gdbarch_single_step_through_delay (gdbarch,
2149 get_current_frame ()))
2150 /* We stepped onto an instruction that needs to be stepped
2151 again before re-inserting the breakpoint, do so. */
2152 oneproc = 1;
2153 }
2154 else
2155 {
2156 regcache_write_pc (regcache, addr);
2157 }
2158
2159 if (debug_infrun)
2160 fprintf_unfiltered (gdb_stdlog,
2161 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2162 paddress (gdbarch, addr), siggnal, step);
2163
2164 if (non_stop)
2165 /* In non-stop, each thread is handled individually. The context
2166 must already be set to the right thread here. */
2167 ;
2168 else
2169 {
2170 /* In a multi-threaded task we may select another thread and
2171 then continue or step.
2172
2173 But if the old thread was stopped at a breakpoint, it will
2174 immediately cause another breakpoint stop without any
2175 execution (i.e. it will report a breakpoint hit incorrectly).
2176 So we must step over it first.
2177
2178 prepare_to_proceed checks the current thread against the
2179 thread that reported the most recent event. If a step-over
2180 is required it returns TRUE and sets the current thread to
2181 the old thread. */
2182 if (prepare_to_proceed (step))
2183 oneproc = 1;
2184 }
2185
2186 /* prepare_to_proceed may change the current thread. */
2187 tp = inferior_thread ();
2188
2189 if (oneproc)
2190 {
2191 tp->control.trap_expected = 1;
2192 /* If displaced stepping is enabled, we can step over the
2193 breakpoint without hitting it, so leave all breakpoints
2194 inserted. Otherwise we need to disable all breakpoints, step
2195 one instruction, and then re-add them when that step is
2196 finished. */
2197 if (!use_displaced_stepping (gdbarch))
2198 remove_breakpoints ();
2199 }
2200
2201 /* We can insert breakpoints if we're not trying to step over one,
2202 or if we are stepping over one but we're using displaced stepping
2203 to do so. */
2204 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2205 insert_breakpoints ();
2206
2207 if (!non_stop)
2208 {
2209 /* Pass the last stop signal to the thread we're resuming,
2210 irrespective of whether the current thread is the thread that
2211 got the last event or not. This was historically GDB's
2212 behaviour before keeping a stop_signal per thread. */
2213
2214 struct thread_info *last_thread;
2215 ptid_t last_ptid;
2216 struct target_waitstatus last_status;
2217
2218 get_last_target_status (&last_ptid, &last_status);
2219 if (!ptid_equal (inferior_ptid, last_ptid)
2220 && !ptid_equal (last_ptid, null_ptid)
2221 && !ptid_equal (last_ptid, minus_one_ptid))
2222 {
2223 last_thread = find_thread_ptid (last_ptid);
2224 if (last_thread)
2225 {
2226 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2227 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2228 }
2229 }
2230 }
2231
2232 if (siggnal != GDB_SIGNAL_DEFAULT)
2233 tp->suspend.stop_signal = siggnal;
2234 /* If this signal should not be seen by program,
2235 give it zero. Used for debugging signals. */
2236 else if (!signal_program[tp->suspend.stop_signal])
2237 tp->suspend.stop_signal = GDB_SIGNAL_0;
2238
2239 annotate_starting ();
2240
2241 /* Make sure that output from GDB appears before output from the
2242 inferior. */
2243 gdb_flush (gdb_stdout);
2244
2245 /* Refresh prev_pc value just prior to resuming. This used to be
2246 done in stop_stepping, however, setting prev_pc there did not handle
2247 scenarios such as inferior function calls or returning from
2248 a function via the return command. In those cases, the prev_pc
2249 value was not set properly for subsequent commands. The prev_pc value
2250 is used to initialize the starting line number in the ecs. With an
2251 invalid value, the gdb next command ends up stopping at the position
2252 represented by the next line table entry past our start position.
2253 On platforms that generate one line table entry per line, this
2254 is not a problem. However, on the ia64, the compiler generates
2255 extraneous line table entries that do not increase the line number.
2256 When we issue the gdb next command on the ia64 after an inferior call
2257 or a return command, we often end up a few instructions forward, still
2258 within the original line we started.
2259
2260 An attempt was made to refresh the prev_pc at the same time the
2261 execution_control_state is initialized (for instance, just before
2262 waiting for an inferior event). But this approach did not work
2263 because of platforms that use ptrace, where the pc register cannot
2264 be read unless the inferior is stopped. At that point, we are not
2265 guaranteed the inferior is stopped and so the regcache_read_pc() call
2266 can fail. Setting the prev_pc value here ensures the value is updated
2267 correctly when the inferior is stopped. */
2268 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2269
2270 /* Fill in with reasonable starting values. */
2271 init_thread_stepping_state (tp);
2272
2273 /* Reset to normal state. */
2274 init_infwait_state ();
2275
2276 /* Resume inferior. */
2277 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2278
2279 /* Wait for it to stop (if not standalone)
2280 and in any case decode why it stopped, and act accordingly. */
2281 /* Do this only if we are not using the event loop, or if the target
2282 does not support asynchronous execution. */
2283 if (!target_can_async_p ())
2284 {
2285 wait_for_inferior ();
2286 normal_stop ();
2287 }
2288}
2289\f
2290
2291/* Start remote-debugging of a machine over a serial link. */
2292
2293void
2294start_remote (int from_tty)
2295{
2296 struct inferior *inferior;
2297
2298 inferior = current_inferior ();
2299 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2300
2301 /* Always go on waiting for the target, regardless of the mode. */
2302 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2303 indicate to wait_for_inferior that a target should timeout if
2304 nothing is returned (instead of just blocking). Because of this,
2305 targets expecting an immediate response need to, internally, set
2306 things up so that the target_wait() is forced to eventually
2307 timeout. */
2308 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2309 differentiate to its caller what the state of the target is after
2310 the initial open has been performed. Here we're assuming that
2311 the target has stopped. It should be possible to eventually have
2312 target_open() return to the caller an indication that the target
2313 is currently running and GDB state should be set to the same as
2314 for an async run. */
2315 wait_for_inferior ();
2316
2317 /* Now that the inferior has stopped, do any bookkeeping like
2318 loading shared libraries. We want to do this before normal_stop,
2319 so that the displayed frame is up to date. */
2320 post_create_inferior (&current_target, from_tty);
2321
2322 normal_stop ();
2323}
2324
2325/* Initialize static vars when a new inferior begins. */
2326
2327void
2328init_wait_for_inferior (void)
2329{
2330 /* These are meaningless until the first time through wait_for_inferior. */
2331
2332 breakpoint_init_inferior (inf_starting);
2333
2334 clear_proceed_status ();
2335
2336 stepping_past_singlestep_breakpoint = 0;
2337 deferred_step_ptid = null_ptid;
2338
2339 target_last_wait_ptid = minus_one_ptid;
2340
2341 previous_inferior_ptid = inferior_ptid;
2342 init_infwait_state ();
2343
2344 /* Discard any skipped inlined frames. */
2345 clear_inline_frame_state (minus_one_ptid);
2346}
2347
2348\f
2349/* This enum encodes possible reasons for doing a target_wait, so that
2350 wfi can call target_wait in one place. (Ultimately the call will be
2351 moved out of the infinite loop entirely.) */
2352
2353enum infwait_states
2354{
2355 infwait_normal_state,
2356 infwait_thread_hop_state,
2357 infwait_step_watch_state,
2358 infwait_nonstep_watch_state
2359};
2360
2361/* The PTID we'll do a target_wait on.*/
2362ptid_t waiton_ptid;
2363
2364/* Current inferior wait state. */
2365enum infwait_states infwait_state;
2366
2367/* Data to be passed around while handling an event. This data is
2368 discarded between events. */
2369struct execution_control_state
2370{
2371 ptid_t ptid;
2372 /* The thread that got the event, if this was a thread event; NULL
2373 otherwise. */
2374 struct thread_info *event_thread;
2375
2376 struct target_waitstatus ws;
2377 int random_signal;
2378 int stop_func_filled_in;
2379 CORE_ADDR stop_func_start;
2380 CORE_ADDR stop_func_end;
2381 const char *stop_func_name;
2382 int wait_some_more;
2383};
2384
2385static void handle_inferior_event (struct execution_control_state *ecs);
2386
2387static void handle_step_into_function (struct gdbarch *gdbarch,
2388 struct execution_control_state *ecs);
2389static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2390 struct execution_control_state *ecs);
2391static void check_exception_resume (struct execution_control_state *,
2392 struct frame_info *);
2393
2394static void stop_stepping (struct execution_control_state *ecs);
2395static void prepare_to_wait (struct execution_control_state *ecs);
2396static void keep_going (struct execution_control_state *ecs);
2397
2398/* Callback for iterate over threads. If the thread is stopped, but
2399 the user/frontend doesn't know about that yet, go through
2400 normal_stop, as if the thread had just stopped now. ARG points at
2401 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2402 ptid_is_pid(PTID) is true, applies to all threads of the process
2403 pointed at by PTID. Otherwise, apply only to the thread pointed by
2404 PTID. */
2405
2406static int
2407infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2408{
2409 ptid_t ptid = * (ptid_t *) arg;
2410
2411 if ((ptid_equal (info->ptid, ptid)
2412 || ptid_equal (minus_one_ptid, ptid)
2413 || (ptid_is_pid (ptid)
2414 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2415 && is_running (info->ptid)
2416 && !is_executing (info->ptid))
2417 {
2418 struct cleanup *old_chain;
2419 struct execution_control_state ecss;
2420 struct execution_control_state *ecs = &ecss;
2421
2422 memset (ecs, 0, sizeof (*ecs));
2423
2424 old_chain = make_cleanup_restore_current_thread ();
2425
2426 /* Go through handle_inferior_event/normal_stop, so we always
2427 have consistent output as if the stop event had been
2428 reported. */
2429 ecs->ptid = info->ptid;
2430 ecs->event_thread = find_thread_ptid (info->ptid);
2431 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2432 ecs->ws.value.sig = GDB_SIGNAL_0;
2433
2434 handle_inferior_event (ecs);
2435
2436 if (!ecs->wait_some_more)
2437 {
2438 struct thread_info *tp;
2439
2440 normal_stop ();
2441
2442 /* Finish off the continuations. */
2443 tp = inferior_thread ();
2444 do_all_intermediate_continuations_thread (tp, 1);
2445 do_all_continuations_thread (tp, 1);
2446 }
2447
2448 do_cleanups (old_chain);
2449 }
2450
2451 return 0;
2452}
2453
2454/* This function is attached as a "thread_stop_requested" observer.
2455 Cleanup local state that assumed the PTID was to be resumed, and
2456 report the stop to the frontend. */
2457
2458static void
2459infrun_thread_stop_requested (ptid_t ptid)
2460{
2461 struct displaced_step_inferior_state *displaced;
2462
2463 /* PTID was requested to stop. Remove it from the displaced
2464 stepping queue, so we don't try to resume it automatically. */
2465
2466 for (displaced = displaced_step_inferior_states;
2467 displaced;
2468 displaced = displaced->next)
2469 {
2470 struct displaced_step_request *it, **prev_next_p;
2471
2472 it = displaced->step_request_queue;
2473 prev_next_p = &displaced->step_request_queue;
2474 while (it)
2475 {
2476 if (ptid_match (it->ptid, ptid))
2477 {
2478 *prev_next_p = it->next;
2479 it->next = NULL;
2480 xfree (it);
2481 }
2482 else
2483 {
2484 prev_next_p = &it->next;
2485 }
2486
2487 it = *prev_next_p;
2488 }
2489 }
2490
2491 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2492}
2493
2494static void
2495infrun_thread_thread_exit (struct thread_info *tp, int silent)
2496{
2497 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2498 nullify_last_target_wait_ptid ();
2499}
2500
2501/* Callback for iterate_over_threads. */
2502
2503static int
2504delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2505{
2506 if (is_exited (info->ptid))
2507 return 0;
2508
2509 delete_step_resume_breakpoint (info);
2510 delete_exception_resume_breakpoint (info);
2511 return 0;
2512}
2513
2514/* In all-stop, delete the step resume breakpoint of any thread that
2515 had one. In non-stop, delete the step resume breakpoint of the
2516 thread that just stopped. */
2517
2518static void
2519delete_step_thread_step_resume_breakpoint (void)
2520{
2521 if (!target_has_execution
2522 || ptid_equal (inferior_ptid, null_ptid))
2523 /* If the inferior has exited, we have already deleted the step
2524 resume breakpoints out of GDB's lists. */
2525 return;
2526
2527 if (non_stop)
2528 {
2529 /* If in non-stop mode, only delete the step-resume or
2530 longjmp-resume breakpoint of the thread that just stopped
2531 stepping. */
2532 struct thread_info *tp = inferior_thread ();
2533
2534 delete_step_resume_breakpoint (tp);
2535 delete_exception_resume_breakpoint (tp);
2536 }
2537 else
2538 /* In all-stop mode, delete all step-resume and longjmp-resume
2539 breakpoints of any thread that had them. */
2540 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2541}
2542
2543/* A cleanup wrapper. */
2544
2545static void
2546delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2547{
2548 delete_step_thread_step_resume_breakpoint ();
2549}
2550
2551/* Pretty print the results of target_wait, for debugging purposes. */
2552
2553static void
2554print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2555 const struct target_waitstatus *ws)
2556{
2557 char *status_string = target_waitstatus_to_string (ws);
2558 struct ui_file *tmp_stream = mem_fileopen ();
2559 char *text;
2560
2561 /* The text is split over several lines because it was getting too long.
2562 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2563 output as a unit; we want only one timestamp printed if debug_timestamp
2564 is set. */
2565
2566 fprintf_unfiltered (tmp_stream,
2567 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2568 if (PIDGET (waiton_ptid) != -1)
2569 fprintf_unfiltered (tmp_stream,
2570 " [%s]", target_pid_to_str (waiton_ptid));
2571 fprintf_unfiltered (tmp_stream, ", status) =\n");
2572 fprintf_unfiltered (tmp_stream,
2573 "infrun: %d [%s],\n",
2574 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2575 fprintf_unfiltered (tmp_stream,
2576 "infrun: %s\n",
2577 status_string);
2578
2579 text = ui_file_xstrdup (tmp_stream, NULL);
2580
2581 /* This uses %s in part to handle %'s in the text, but also to avoid
2582 a gcc error: the format attribute requires a string literal. */
2583 fprintf_unfiltered (gdb_stdlog, "%s", text);
2584
2585 xfree (status_string);
2586 xfree (text);
2587 ui_file_delete (tmp_stream);
2588}
2589
2590/* Prepare and stabilize the inferior for detaching it. E.g.,
2591 detaching while a thread is displaced stepping is a recipe for
2592 crashing it, as nothing would readjust the PC out of the scratch
2593 pad. */
2594
2595void
2596prepare_for_detach (void)
2597{
2598 struct inferior *inf = current_inferior ();
2599 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2600 struct cleanup *old_chain_1;
2601 struct displaced_step_inferior_state *displaced;
2602
2603 displaced = get_displaced_stepping_state (inf->pid);
2604
2605 /* Is any thread of this process displaced stepping? If not,
2606 there's nothing else to do. */
2607 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2608 return;
2609
2610 if (debug_infrun)
2611 fprintf_unfiltered (gdb_stdlog,
2612 "displaced-stepping in-process while detaching");
2613
2614 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2615 inf->detaching = 1;
2616
2617 while (!ptid_equal (displaced->step_ptid, null_ptid))
2618 {
2619 struct cleanup *old_chain_2;
2620 struct execution_control_state ecss;
2621 struct execution_control_state *ecs;
2622
2623 ecs = &ecss;
2624 memset (ecs, 0, sizeof (*ecs));
2625
2626 overlay_cache_invalid = 1;
2627
2628 if (deprecated_target_wait_hook)
2629 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2630 else
2631 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2632
2633 if (debug_infrun)
2634 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2635
2636 /* If an error happens while handling the event, propagate GDB's
2637 knowledge of the executing state to the frontend/user running
2638 state. */
2639 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2640 &minus_one_ptid);
2641
2642 /* Now figure out what to do with the result of the result. */
2643 handle_inferior_event (ecs);
2644
2645 /* No error, don't finish the state yet. */
2646 discard_cleanups (old_chain_2);
2647
2648 /* Breakpoints and watchpoints are not installed on the target
2649 at this point, and signals are passed directly to the
2650 inferior, so this must mean the process is gone. */
2651 if (!ecs->wait_some_more)
2652 {
2653 discard_cleanups (old_chain_1);
2654 error (_("Program exited while detaching"));
2655 }
2656 }
2657
2658 discard_cleanups (old_chain_1);
2659}
2660
2661/* Wait for control to return from inferior to debugger.
2662
2663 If inferior gets a signal, we may decide to start it up again
2664 instead of returning. That is why there is a loop in this function.
2665 When this function actually returns it means the inferior
2666 should be left stopped and GDB should read more commands. */
2667
2668void
2669wait_for_inferior (void)
2670{
2671 struct cleanup *old_cleanups;
2672
2673 if (debug_infrun)
2674 fprintf_unfiltered
2675 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2676
2677 old_cleanups =
2678 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2679
2680 while (1)
2681 {
2682 struct execution_control_state ecss;
2683 struct execution_control_state *ecs = &ecss;
2684 struct cleanup *old_chain;
2685
2686 memset (ecs, 0, sizeof (*ecs));
2687
2688 overlay_cache_invalid = 1;
2689
2690 if (deprecated_target_wait_hook)
2691 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2692 else
2693 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2694
2695 if (debug_infrun)
2696 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2697
2698 /* If an error happens while handling the event, propagate GDB's
2699 knowledge of the executing state to the frontend/user running
2700 state. */
2701 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2702
2703 /* Now figure out what to do with the result of the result. */
2704 handle_inferior_event (ecs);
2705
2706 /* No error, don't finish the state yet. */
2707 discard_cleanups (old_chain);
2708
2709 if (!ecs->wait_some_more)
2710 break;
2711 }
2712
2713 do_cleanups (old_cleanups);
2714}
2715
2716/* Asynchronous version of wait_for_inferior. It is called by the
2717 event loop whenever a change of state is detected on the file
2718 descriptor corresponding to the target. It can be called more than
2719 once to complete a single execution command. In such cases we need
2720 to keep the state in a global variable ECSS. If it is the last time
2721 that this function is called for a single execution command, then
2722 report to the user that the inferior has stopped, and do the
2723 necessary cleanups. */
2724
2725void
2726fetch_inferior_event (void *client_data)
2727{
2728 struct execution_control_state ecss;
2729 struct execution_control_state *ecs = &ecss;
2730 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2731 struct cleanup *ts_old_chain;
2732 int was_sync = sync_execution;
2733 int cmd_done = 0;
2734
2735 memset (ecs, 0, sizeof (*ecs));
2736
2737 /* We're handling a live event, so make sure we're doing live
2738 debugging. If we're looking at traceframes while the target is
2739 running, we're going to need to get back to that mode after
2740 handling the event. */
2741 if (non_stop)
2742 {
2743 make_cleanup_restore_current_traceframe ();
2744 set_current_traceframe (-1);
2745 }
2746
2747 if (non_stop)
2748 /* In non-stop mode, the user/frontend should not notice a thread
2749 switch due to internal events. Make sure we reverse to the
2750 user selected thread and frame after handling the event and
2751 running any breakpoint commands. */
2752 make_cleanup_restore_current_thread ();
2753
2754 overlay_cache_invalid = 1;
2755
2756 make_cleanup_restore_integer (&execution_direction);
2757 execution_direction = target_execution_direction ();
2758
2759 if (deprecated_target_wait_hook)
2760 ecs->ptid =
2761 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2762 else
2763 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2764
2765 if (debug_infrun)
2766 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2767
2768 /* If an error happens while handling the event, propagate GDB's
2769 knowledge of the executing state to the frontend/user running
2770 state. */
2771 if (!non_stop)
2772 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2773 else
2774 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2775
2776 /* Get executed before make_cleanup_restore_current_thread above to apply
2777 still for the thread which has thrown the exception. */
2778 make_bpstat_clear_actions_cleanup ();
2779
2780 /* Now figure out what to do with the result of the result. */
2781 handle_inferior_event (ecs);
2782
2783 if (!ecs->wait_some_more)
2784 {
2785 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2786
2787 delete_step_thread_step_resume_breakpoint ();
2788
2789 /* We may not find an inferior if this was a process exit. */
2790 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2791 normal_stop ();
2792
2793 if (target_has_execution
2794 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2795 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2796 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2797 && ecs->event_thread->step_multi
2798 && ecs->event_thread->control.stop_step)
2799 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2800 else
2801 {
2802 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2803 cmd_done = 1;
2804 }
2805 }
2806
2807 /* No error, don't finish the thread states yet. */
2808 discard_cleanups (ts_old_chain);
2809
2810 /* Revert thread and frame. */
2811 do_cleanups (old_chain);
2812
2813 /* If the inferior was in sync execution mode, and now isn't,
2814 restore the prompt (a synchronous execution command has finished,
2815 and we're ready for input). */
2816 if (interpreter_async && was_sync && !sync_execution)
2817 display_gdb_prompt (0);
2818
2819 if (cmd_done
2820 && !was_sync
2821 && exec_done_display_p
2822 && (ptid_equal (inferior_ptid, null_ptid)
2823 || !is_running (inferior_ptid)))
2824 printf_unfiltered (_("completed.\n"));
2825}
2826
2827/* Record the frame and location we're currently stepping through. */
2828void
2829set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2830{
2831 struct thread_info *tp = inferior_thread ();
2832
2833 tp->control.step_frame_id = get_frame_id (frame);
2834 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2835
2836 tp->current_symtab = sal.symtab;
2837 tp->current_line = sal.line;
2838}
2839
2840/* Clear context switchable stepping state. */
2841
2842void
2843init_thread_stepping_state (struct thread_info *tss)
2844{
2845 tss->stepping_over_breakpoint = 0;
2846 tss->step_after_step_resume_breakpoint = 0;
2847}
2848
2849/* Return the cached copy of the last pid/waitstatus returned by
2850 target_wait()/deprecated_target_wait_hook(). The data is actually
2851 cached by handle_inferior_event(), which gets called immediately
2852 after target_wait()/deprecated_target_wait_hook(). */
2853
2854void
2855get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2856{
2857 *ptidp = target_last_wait_ptid;
2858 *status = target_last_waitstatus;
2859}
2860
2861void
2862nullify_last_target_wait_ptid (void)
2863{
2864 target_last_wait_ptid = minus_one_ptid;
2865}
2866
2867/* Switch thread contexts. */
2868
2869static void
2870context_switch (ptid_t ptid)
2871{
2872 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2873 {
2874 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2875 target_pid_to_str (inferior_ptid));
2876 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2877 target_pid_to_str (ptid));
2878 }
2879
2880 switch_to_thread (ptid);
2881}
2882
2883static void
2884adjust_pc_after_break (struct execution_control_state *ecs)
2885{
2886 struct regcache *regcache;
2887 struct gdbarch *gdbarch;
2888 struct address_space *aspace;
2889 CORE_ADDR breakpoint_pc;
2890
2891 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2892 we aren't, just return.
2893
2894 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2895 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2896 implemented by software breakpoints should be handled through the normal
2897 breakpoint layer.
2898
2899 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2900 different signals (SIGILL or SIGEMT for instance), but it is less
2901 clear where the PC is pointing afterwards. It may not match
2902 gdbarch_decr_pc_after_break. I don't know any specific target that
2903 generates these signals at breakpoints (the code has been in GDB since at
2904 least 1992) so I can not guess how to handle them here.
2905
2906 In earlier versions of GDB, a target with
2907 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2908 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2909 target with both of these set in GDB history, and it seems unlikely to be
2910 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2911
2912 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2913 return;
2914
2915 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2916 return;
2917
2918 /* In reverse execution, when a breakpoint is hit, the instruction
2919 under it has already been de-executed. The reported PC always
2920 points at the breakpoint address, so adjusting it further would
2921 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2922 architecture:
2923
2924 B1 0x08000000 : INSN1
2925 B2 0x08000001 : INSN2
2926 0x08000002 : INSN3
2927 PC -> 0x08000003 : INSN4
2928
2929 Say you're stopped at 0x08000003 as above. Reverse continuing
2930 from that point should hit B2 as below. Reading the PC when the
2931 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2932 been de-executed already.
2933
2934 B1 0x08000000 : INSN1
2935 B2 PC -> 0x08000001 : INSN2
2936 0x08000002 : INSN3
2937 0x08000003 : INSN4
2938
2939 We can't apply the same logic as for forward execution, because
2940 we would wrongly adjust the PC to 0x08000000, since there's a
2941 breakpoint at PC - 1. We'd then report a hit on B1, although
2942 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2943 behaviour. */
2944 if (execution_direction == EXEC_REVERSE)
2945 return;
2946
2947 /* If this target does not decrement the PC after breakpoints, then
2948 we have nothing to do. */
2949 regcache = get_thread_regcache (ecs->ptid);
2950 gdbarch = get_regcache_arch (regcache);
2951 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2952 return;
2953
2954 aspace = get_regcache_aspace (regcache);
2955
2956 /* Find the location where (if we've hit a breakpoint) the
2957 breakpoint would be. */
2958 breakpoint_pc = regcache_read_pc (regcache)
2959 - gdbarch_decr_pc_after_break (gdbarch);
2960
2961 /* Check whether there actually is a software breakpoint inserted at
2962 that location.
2963
2964 If in non-stop mode, a race condition is possible where we've
2965 removed a breakpoint, but stop events for that breakpoint were
2966 already queued and arrive later. To suppress those spurious
2967 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2968 and retire them after a number of stop events are reported. */
2969 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2970 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2971 {
2972 struct cleanup *old_cleanups = NULL;
2973
2974 if (RECORD_IS_USED)
2975 old_cleanups = record_gdb_operation_disable_set ();
2976
2977 /* When using hardware single-step, a SIGTRAP is reported for both
2978 a completed single-step and a software breakpoint. Need to
2979 differentiate between the two, as the latter needs adjusting
2980 but the former does not.
2981
2982 The SIGTRAP can be due to a completed hardware single-step only if
2983 - we didn't insert software single-step breakpoints
2984 - the thread to be examined is still the current thread
2985 - this thread is currently being stepped
2986
2987 If any of these events did not occur, we must have stopped due
2988 to hitting a software breakpoint, and have to back up to the
2989 breakpoint address.
2990
2991 As a special case, we could have hardware single-stepped a
2992 software breakpoint. In this case (prev_pc == breakpoint_pc),
2993 we also need to back up to the breakpoint address. */
2994
2995 if (singlestep_breakpoints_inserted_p
2996 || !ptid_equal (ecs->ptid, inferior_ptid)
2997 || !currently_stepping (ecs->event_thread)
2998 || ecs->event_thread->prev_pc == breakpoint_pc)
2999 regcache_write_pc (regcache, breakpoint_pc);
3000
3001 if (RECORD_IS_USED)
3002 do_cleanups (old_cleanups);
3003 }
3004}
3005
3006void
3007init_infwait_state (void)
3008{
3009 waiton_ptid = pid_to_ptid (-1);
3010 infwait_state = infwait_normal_state;
3011}
3012
3013void
3014error_is_running (void)
3015{
3016 error (_("Cannot execute this command while "
3017 "the selected thread is running."));
3018}
3019
3020void
3021ensure_not_running (void)
3022{
3023 if (is_running (inferior_ptid))
3024 error_is_running ();
3025}
3026
3027static int
3028stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3029{
3030 for (frame = get_prev_frame (frame);
3031 frame != NULL;
3032 frame = get_prev_frame (frame))
3033 {
3034 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3035 return 1;
3036 if (get_frame_type (frame) != INLINE_FRAME)
3037 break;
3038 }
3039
3040 return 0;
3041}
3042
3043/* Auxiliary function that handles syscall entry/return events.
3044 It returns 1 if the inferior should keep going (and GDB
3045 should ignore the event), or 0 if the event deserves to be
3046 processed. */
3047
3048static int
3049handle_syscall_event (struct execution_control_state *ecs)
3050{
3051 struct regcache *regcache;
3052 struct gdbarch *gdbarch;
3053 int syscall_number;
3054
3055 if (!ptid_equal (ecs->ptid, inferior_ptid))
3056 context_switch (ecs->ptid);
3057
3058 regcache = get_thread_regcache (ecs->ptid);
3059 gdbarch = get_regcache_arch (regcache);
3060 syscall_number = ecs->ws.value.syscall_number;
3061 stop_pc = regcache_read_pc (regcache);
3062
3063 if (catch_syscall_enabled () > 0
3064 && catching_syscall_number (syscall_number) > 0)
3065 {
3066 if (debug_infrun)
3067 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3068 syscall_number);
3069
3070 ecs->event_thread->control.stop_bpstat
3071 = bpstat_stop_status (get_regcache_aspace (regcache),
3072 stop_pc, ecs->ptid, &ecs->ws);
3073 ecs->random_signal
3074 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3075
3076 if (!ecs->random_signal)
3077 {
3078 /* Catchpoint hit. */
3079 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3080 return 0;
3081 }
3082 }
3083
3084 /* If no catchpoint triggered for this, then keep going. */
3085 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3086 keep_going (ecs);
3087 return 1;
3088}
3089
3090/* Clear the supplied execution_control_state's stop_func_* fields. */
3091
3092static void
3093clear_stop_func (struct execution_control_state *ecs)
3094{
3095 ecs->stop_func_filled_in = 0;
3096 ecs->stop_func_start = 0;
3097 ecs->stop_func_end = 0;
3098 ecs->stop_func_name = NULL;
3099}
3100
3101/* Lazily fill in the execution_control_state's stop_func_* fields. */
3102
3103static void
3104fill_in_stop_func (struct gdbarch *gdbarch,
3105 struct execution_control_state *ecs)
3106{
3107 if (!ecs->stop_func_filled_in)
3108 {
3109 /* Don't care about return value; stop_func_start and stop_func_name
3110 will both be 0 if it doesn't work. */
3111 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3112 &ecs->stop_func_start, &ecs->stop_func_end);
3113 ecs->stop_func_start
3114 += gdbarch_deprecated_function_start_offset (gdbarch);
3115
3116 ecs->stop_func_filled_in = 1;
3117 }
3118}
3119
3120/* Given an execution control state that has been freshly filled in
3121 by an event from the inferior, figure out what it means and take
3122 appropriate action. */
3123
3124static void
3125handle_inferior_event (struct execution_control_state *ecs)
3126{
3127 struct frame_info *frame;
3128 struct gdbarch *gdbarch;
3129 int stopped_by_watchpoint;
3130 int stepped_after_stopped_by_watchpoint = 0;
3131 struct symtab_and_line stop_pc_sal;
3132 enum stop_kind stop_soon;
3133
3134 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3135 {
3136 /* We had an event in the inferior, but we are not interested in
3137 handling it at this level. The lower layers have already
3138 done what needs to be done, if anything.
3139
3140 One of the possible circumstances for this is when the
3141 inferior produces output for the console. The inferior has
3142 not stopped, and we are ignoring the event. Another possible
3143 circumstance is any event which the lower level knows will be
3144 reported multiple times without an intervening resume. */
3145 if (debug_infrun)
3146 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3147 prepare_to_wait (ecs);
3148 return;
3149 }
3150
3151 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3152 && target_can_async_p () && !sync_execution)
3153 {
3154 /* There were no unwaited-for children left in the target, but,
3155 we're not synchronously waiting for events either. Just
3156 ignore. Otherwise, if we were running a synchronous
3157 execution command, we need to cancel it and give the user
3158 back the terminal. */
3159 if (debug_infrun)
3160 fprintf_unfiltered (gdb_stdlog,
3161 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3162 prepare_to_wait (ecs);
3163 return;
3164 }
3165
3166 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3167 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3168 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3169 {
3170 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3171
3172 gdb_assert (inf);
3173 stop_soon = inf->control.stop_soon;
3174 }
3175 else
3176 stop_soon = NO_STOP_QUIETLY;
3177
3178 /* Cache the last pid/waitstatus. */
3179 target_last_wait_ptid = ecs->ptid;
3180 target_last_waitstatus = ecs->ws;
3181
3182 /* Always clear state belonging to the previous time we stopped. */
3183 stop_stack_dummy = STOP_NONE;
3184
3185 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3186 {
3187 /* No unwaited-for children left. IOW, all resumed children
3188 have exited. */
3189 if (debug_infrun)
3190 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3191
3192 stop_print_frame = 0;
3193 stop_stepping (ecs);
3194 return;
3195 }
3196
3197 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3198 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3199 {
3200 ecs->event_thread = find_thread_ptid (ecs->ptid);
3201 /* If it's a new thread, add it to the thread database. */
3202 if (ecs->event_thread == NULL)
3203 ecs->event_thread = add_thread (ecs->ptid);
3204 }
3205
3206 /* Dependent on valid ECS->EVENT_THREAD. */
3207 adjust_pc_after_break (ecs);
3208
3209 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3210 reinit_frame_cache ();
3211
3212 breakpoint_retire_moribund ();
3213
3214 /* First, distinguish signals caused by the debugger from signals
3215 that have to do with the program's own actions. Note that
3216 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3217 on the operating system version. Here we detect when a SIGILL or
3218 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3219 something similar for SIGSEGV, since a SIGSEGV will be generated
3220 when we're trying to execute a breakpoint instruction on a
3221 non-executable stack. This happens for call dummy breakpoints
3222 for architectures like SPARC that place call dummies on the
3223 stack. */
3224 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3225 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3226 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3227 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3228 {
3229 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3230
3231 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3232 regcache_read_pc (regcache)))
3233 {
3234 if (debug_infrun)
3235 fprintf_unfiltered (gdb_stdlog,
3236 "infrun: Treating signal as SIGTRAP\n");
3237 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3238 }
3239 }
3240
3241 /* Mark the non-executing threads accordingly. In all-stop, all
3242 threads of all processes are stopped when we get any event
3243 reported. In non-stop mode, only the event thread stops. If
3244 we're handling a process exit in non-stop mode, there's nothing
3245 to do, as threads of the dead process are gone, and threads of
3246 any other process were left running. */
3247 if (!non_stop)
3248 set_executing (minus_one_ptid, 0);
3249 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3250 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3251 set_executing (ecs->ptid, 0);
3252
3253 switch (infwait_state)
3254 {
3255 case infwait_thread_hop_state:
3256 if (debug_infrun)
3257 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3258 break;
3259
3260 case infwait_normal_state:
3261 if (debug_infrun)
3262 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3263 break;
3264
3265 case infwait_step_watch_state:
3266 if (debug_infrun)
3267 fprintf_unfiltered (gdb_stdlog,
3268 "infrun: infwait_step_watch_state\n");
3269
3270 stepped_after_stopped_by_watchpoint = 1;
3271 break;
3272
3273 case infwait_nonstep_watch_state:
3274 if (debug_infrun)
3275 fprintf_unfiltered (gdb_stdlog,
3276 "infrun: infwait_nonstep_watch_state\n");
3277 insert_breakpoints ();
3278
3279 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3280 handle things like signals arriving and other things happening
3281 in combination correctly? */
3282 stepped_after_stopped_by_watchpoint = 1;
3283 break;
3284
3285 default:
3286 internal_error (__FILE__, __LINE__, _("bad switch"));
3287 }
3288
3289 infwait_state = infwait_normal_state;
3290 waiton_ptid = pid_to_ptid (-1);
3291
3292 switch (ecs->ws.kind)
3293 {
3294 case TARGET_WAITKIND_LOADED:
3295 if (debug_infrun)
3296 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3297 /* Ignore gracefully during startup of the inferior, as it might
3298 be the shell which has just loaded some objects, otherwise
3299 add the symbols for the newly loaded objects. Also ignore at
3300 the beginning of an attach or remote session; we will query
3301 the full list of libraries once the connection is
3302 established. */
3303 if (stop_soon == NO_STOP_QUIETLY)
3304 {
3305 struct regcache *regcache;
3306
3307 if (!ptid_equal (ecs->ptid, inferior_ptid))
3308 context_switch (ecs->ptid);
3309 regcache = get_thread_regcache (ecs->ptid);
3310
3311 handle_solib_event ();
3312
3313 ecs->event_thread->control.stop_bpstat
3314 = bpstat_stop_status (get_regcache_aspace (regcache),
3315 stop_pc, ecs->ptid, &ecs->ws);
3316 ecs->random_signal
3317 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3318
3319 if (!ecs->random_signal)
3320 {
3321 /* A catchpoint triggered. */
3322 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3323 goto process_event_stop_test;
3324 }
3325
3326 /* If requested, stop when the dynamic linker notifies
3327 gdb of events. This allows the user to get control
3328 and place breakpoints in initializer routines for
3329 dynamically loaded objects (among other things). */
3330 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3331 if (stop_on_solib_events)
3332 {
3333 /* Make sure we print "Stopped due to solib-event" in
3334 normal_stop. */
3335 stop_print_frame = 1;
3336
3337 stop_stepping (ecs);
3338 return;
3339 }
3340 }
3341
3342 /* If we are skipping through a shell, or through shared library
3343 loading that we aren't interested in, resume the program. If
3344 we're running the program normally, also resume. But stop if
3345 we're attaching or setting up a remote connection. */
3346 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3347 {
3348 if (!ptid_equal (ecs->ptid, inferior_ptid))
3349 context_switch (ecs->ptid);
3350
3351 /* Loading of shared libraries might have changed breakpoint
3352 addresses. Make sure new breakpoints are inserted. */
3353 if (stop_soon == NO_STOP_QUIETLY
3354 && !breakpoints_always_inserted_mode ())
3355 insert_breakpoints ();
3356 resume (0, GDB_SIGNAL_0);
3357 prepare_to_wait (ecs);
3358 return;
3359 }
3360
3361 break;
3362
3363 case TARGET_WAITKIND_SPURIOUS:
3364 if (debug_infrun)
3365 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3366 if (!ptid_equal (ecs->ptid, inferior_ptid))
3367 context_switch (ecs->ptid);
3368 resume (0, GDB_SIGNAL_0);
3369 prepare_to_wait (ecs);
3370 return;
3371
3372 case TARGET_WAITKIND_EXITED:
3373 case TARGET_WAITKIND_SIGNALLED:
3374 if (debug_infrun)
3375 {
3376 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3377 fprintf_unfiltered (gdb_stdlog,
3378 "infrun: TARGET_WAITKIND_EXITED\n");
3379 else
3380 fprintf_unfiltered (gdb_stdlog,
3381 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3382 }
3383
3384 inferior_ptid = ecs->ptid;
3385 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3386 set_current_program_space (current_inferior ()->pspace);
3387 handle_vfork_child_exec_or_exit (0);
3388 target_terminal_ours (); /* Must do this before mourn anyway. */
3389
3390 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3391 {
3392 /* Record the exit code in the convenience variable $_exitcode, so
3393 that the user can inspect this again later. */
3394 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3395 (LONGEST) ecs->ws.value.integer);
3396
3397 /* Also record this in the inferior itself. */
3398 current_inferior ()->has_exit_code = 1;
3399 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3400
3401 print_exited_reason (ecs->ws.value.integer);
3402 }
3403 else
3404 print_signal_exited_reason (ecs->ws.value.sig);
3405
3406 gdb_flush (gdb_stdout);
3407 target_mourn_inferior ();
3408 singlestep_breakpoints_inserted_p = 0;
3409 cancel_single_step_breakpoints ();
3410 stop_print_frame = 0;
3411 stop_stepping (ecs);
3412 return;
3413
3414 /* The following are the only cases in which we keep going;
3415 the above cases end in a continue or goto. */
3416 case TARGET_WAITKIND_FORKED:
3417 case TARGET_WAITKIND_VFORKED:
3418 if (debug_infrun)
3419 {
3420 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3421 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3422 else
3423 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3424 }
3425
3426 /* Check whether the inferior is displaced stepping. */
3427 {
3428 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3429 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3430 struct displaced_step_inferior_state *displaced
3431 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3432
3433 /* If checking displaced stepping is supported, and thread
3434 ecs->ptid is displaced stepping. */
3435 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3436 {
3437 struct inferior *parent_inf
3438 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3439 struct regcache *child_regcache;
3440 CORE_ADDR parent_pc;
3441
3442 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3443 indicating that the displaced stepping of syscall instruction
3444 has been done. Perform cleanup for parent process here. Note
3445 that this operation also cleans up the child process for vfork,
3446 because their pages are shared. */
3447 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3448
3449 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3450 {
3451 /* Restore scratch pad for child process. */
3452 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3453 }
3454
3455 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3456 the child's PC is also within the scratchpad. Set the child's PC
3457 to the parent's PC value, which has already been fixed up.
3458 FIXME: we use the parent's aspace here, although we're touching
3459 the child, because the child hasn't been added to the inferior
3460 list yet at this point. */
3461
3462 child_regcache
3463 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3464 gdbarch,
3465 parent_inf->aspace);
3466 /* Read PC value of parent process. */
3467 parent_pc = regcache_read_pc (regcache);
3468
3469 if (debug_displaced)
3470 fprintf_unfiltered (gdb_stdlog,
3471 "displaced: write child pc from %s to %s\n",
3472 paddress (gdbarch,
3473 regcache_read_pc (child_regcache)),
3474 paddress (gdbarch, parent_pc));
3475
3476 regcache_write_pc (child_regcache, parent_pc);
3477 }
3478 }
3479
3480 if (!ptid_equal (ecs->ptid, inferior_ptid))
3481 context_switch (ecs->ptid);
3482
3483 /* Immediately detach breakpoints from the child before there's
3484 any chance of letting the user delete breakpoints from the
3485 breakpoint lists. If we don't do this early, it's easy to
3486 leave left over traps in the child, vis: "break foo; catch
3487 fork; c; <fork>; del; c; <child calls foo>". We only follow
3488 the fork on the last `continue', and by that time the
3489 breakpoint at "foo" is long gone from the breakpoint table.
3490 If we vforked, then we don't need to unpatch here, since both
3491 parent and child are sharing the same memory pages; we'll
3492 need to unpatch at follow/detach time instead to be certain
3493 that new breakpoints added between catchpoint hit time and
3494 vfork follow are detached. */
3495 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3496 {
3497 /* This won't actually modify the breakpoint list, but will
3498 physically remove the breakpoints from the child. */
3499 detach_breakpoints (ecs->ws.value.related_pid);
3500 }
3501
3502 if (singlestep_breakpoints_inserted_p)
3503 {
3504 /* Pull the single step breakpoints out of the target. */
3505 remove_single_step_breakpoints ();
3506 singlestep_breakpoints_inserted_p = 0;
3507 }
3508
3509 /* In case the event is caught by a catchpoint, remember that
3510 the event is to be followed at the next resume of the thread,
3511 and not immediately. */
3512 ecs->event_thread->pending_follow = ecs->ws;
3513
3514 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3515
3516 ecs->event_thread->control.stop_bpstat
3517 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3518 stop_pc, ecs->ptid, &ecs->ws);
3519
3520 /* Note that we're interested in knowing the bpstat actually
3521 causes a stop, not just if it may explain the signal.
3522 Software watchpoints, for example, always appear in the
3523 bpstat. */
3524 ecs->random_signal
3525 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3526
3527 /* If no catchpoint triggered for this, then keep going. */
3528 if (ecs->random_signal)
3529 {
3530 ptid_t parent;
3531 ptid_t child;
3532 int should_resume;
3533 int follow_child
3534 = (follow_fork_mode_string == follow_fork_mode_child);
3535
3536 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3537
3538 should_resume = follow_fork ();
3539
3540 parent = ecs->ptid;
3541 child = ecs->ws.value.related_pid;
3542
3543 /* In non-stop mode, also resume the other branch. */
3544 if (non_stop && !detach_fork)
3545 {
3546 if (follow_child)
3547 switch_to_thread (parent);
3548 else
3549 switch_to_thread (child);
3550
3551 ecs->event_thread = inferior_thread ();
3552 ecs->ptid = inferior_ptid;
3553 keep_going (ecs);
3554 }
3555
3556 if (follow_child)
3557 switch_to_thread (child);
3558 else
3559 switch_to_thread (parent);
3560
3561 ecs->event_thread = inferior_thread ();
3562 ecs->ptid = inferior_ptid;
3563
3564 if (should_resume)
3565 keep_going (ecs);
3566 else
3567 stop_stepping (ecs);
3568 return;
3569 }
3570 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3571 goto process_event_stop_test;
3572
3573 case TARGET_WAITKIND_VFORK_DONE:
3574 /* Done with the shared memory region. Re-insert breakpoints in
3575 the parent, and keep going. */
3576
3577 if (debug_infrun)
3578 fprintf_unfiltered (gdb_stdlog,
3579 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3580
3581 if (!ptid_equal (ecs->ptid, inferior_ptid))
3582 context_switch (ecs->ptid);
3583
3584 current_inferior ()->waiting_for_vfork_done = 0;
3585 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3586 /* This also takes care of reinserting breakpoints in the
3587 previously locked inferior. */
3588 keep_going (ecs);
3589 return;
3590
3591 case TARGET_WAITKIND_EXECD:
3592 if (debug_infrun)
3593 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3594
3595 if (!ptid_equal (ecs->ptid, inferior_ptid))
3596 context_switch (ecs->ptid);
3597
3598 singlestep_breakpoints_inserted_p = 0;
3599 cancel_single_step_breakpoints ();
3600
3601 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3602
3603 /* Do whatever is necessary to the parent branch of the vfork. */
3604 handle_vfork_child_exec_or_exit (1);
3605
3606 /* This causes the eventpoints and symbol table to be reset.
3607 Must do this now, before trying to determine whether to
3608 stop. */
3609 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3610
3611 ecs->event_thread->control.stop_bpstat
3612 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3613 stop_pc, ecs->ptid, &ecs->ws);
3614 ecs->random_signal
3615 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3616
3617 /* Note that this may be referenced from inside
3618 bpstat_stop_status above, through inferior_has_execd. */
3619 xfree (ecs->ws.value.execd_pathname);
3620 ecs->ws.value.execd_pathname = NULL;
3621
3622 /* If no catchpoint triggered for this, then keep going. */
3623 if (ecs->random_signal)
3624 {
3625 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3626 keep_going (ecs);
3627 return;
3628 }
3629 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3630 goto process_event_stop_test;
3631
3632 /* Be careful not to try to gather much state about a thread
3633 that's in a syscall. It's frequently a losing proposition. */
3634 case TARGET_WAITKIND_SYSCALL_ENTRY:
3635 if (debug_infrun)
3636 fprintf_unfiltered (gdb_stdlog,
3637 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3638 /* Getting the current syscall number. */
3639 if (handle_syscall_event (ecs) != 0)
3640 return;
3641 goto process_event_stop_test;
3642
3643 /* Before examining the threads further, step this thread to
3644 get it entirely out of the syscall. (We get notice of the
3645 event when the thread is just on the verge of exiting a
3646 syscall. Stepping one instruction seems to get it back
3647 into user code.) */
3648 case TARGET_WAITKIND_SYSCALL_RETURN:
3649 if (debug_infrun)
3650 fprintf_unfiltered (gdb_stdlog,
3651 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3652 if (handle_syscall_event (ecs) != 0)
3653 return;
3654 goto process_event_stop_test;
3655
3656 case TARGET_WAITKIND_STOPPED:
3657 if (debug_infrun)
3658 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3659 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3660 break;
3661
3662 case TARGET_WAITKIND_NO_HISTORY:
3663 if (debug_infrun)
3664 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3665 /* Reverse execution: target ran out of history info. */
3666
3667 /* Pull the single step breakpoints out of the target. */
3668 if (singlestep_breakpoints_inserted_p)
3669 {
3670 if (!ptid_equal (ecs->ptid, inferior_ptid))
3671 context_switch (ecs->ptid);
3672 remove_single_step_breakpoints ();
3673 singlestep_breakpoints_inserted_p = 0;
3674 }
3675 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3676 print_no_history_reason ();
3677 stop_stepping (ecs);
3678 return;
3679 }
3680
3681 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3682 {
3683 /* Do we need to clean up the state of a thread that has
3684 completed a displaced single-step? (Doing so usually affects
3685 the PC, so do it here, before we set stop_pc.) */
3686 displaced_step_fixup (ecs->ptid,
3687 ecs->event_thread->suspend.stop_signal);
3688
3689 /* If we either finished a single-step or hit a breakpoint, but
3690 the user wanted this thread to be stopped, pretend we got a
3691 SIG0 (generic unsignaled stop). */
3692
3693 if (ecs->event_thread->stop_requested
3694 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3695 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3696 }
3697
3698 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3699
3700 if (debug_infrun)
3701 {
3702 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3703 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3704 struct cleanup *old_chain = save_inferior_ptid ();
3705
3706 inferior_ptid = ecs->ptid;
3707
3708 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3709 paddress (gdbarch, stop_pc));
3710 if (target_stopped_by_watchpoint ())
3711 {
3712 CORE_ADDR addr;
3713
3714 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3715
3716 if (target_stopped_data_address (&current_target, &addr))
3717 fprintf_unfiltered (gdb_stdlog,
3718 "infrun: stopped data address = %s\n",
3719 paddress (gdbarch, addr));
3720 else
3721 fprintf_unfiltered (gdb_stdlog,
3722 "infrun: (no data address available)\n");
3723 }
3724
3725 do_cleanups (old_chain);
3726 }
3727
3728 if (stepping_past_singlestep_breakpoint)
3729 {
3730 gdb_assert (singlestep_breakpoints_inserted_p);
3731 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3732 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3733
3734 stepping_past_singlestep_breakpoint = 0;
3735
3736 /* We've either finished single-stepping past the single-step
3737 breakpoint, or stopped for some other reason. It would be nice if
3738 we could tell, but we can't reliably. */
3739 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3740 {
3741 if (debug_infrun)
3742 fprintf_unfiltered (gdb_stdlog,
3743 "infrun: stepping_past_"
3744 "singlestep_breakpoint\n");
3745 /* Pull the single step breakpoints out of the target. */
3746 if (!ptid_equal (ecs->ptid, inferior_ptid))
3747 context_switch (ecs->ptid);
3748 remove_single_step_breakpoints ();
3749 singlestep_breakpoints_inserted_p = 0;
3750
3751 ecs->random_signal = 0;
3752 ecs->event_thread->control.trap_expected = 0;
3753
3754 context_switch (saved_singlestep_ptid);
3755 if (deprecated_context_hook)
3756 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3757
3758 resume (1, GDB_SIGNAL_0);
3759 prepare_to_wait (ecs);
3760 return;
3761 }
3762 }
3763
3764 if (!ptid_equal (deferred_step_ptid, null_ptid))
3765 {
3766 /* In non-stop mode, there's never a deferred_step_ptid set. */
3767 gdb_assert (!non_stop);
3768
3769 /* If we stopped for some other reason than single-stepping, ignore
3770 the fact that we were supposed to switch back. */
3771 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3772 {
3773 if (debug_infrun)
3774 fprintf_unfiltered (gdb_stdlog,
3775 "infrun: handling deferred step\n");
3776
3777 /* Pull the single step breakpoints out of the target. */
3778 if (singlestep_breakpoints_inserted_p)
3779 {
3780 if (!ptid_equal (ecs->ptid, inferior_ptid))
3781 context_switch (ecs->ptid);
3782 remove_single_step_breakpoints ();
3783 singlestep_breakpoints_inserted_p = 0;
3784 }
3785
3786 ecs->event_thread->control.trap_expected = 0;
3787
3788 context_switch (deferred_step_ptid);
3789 deferred_step_ptid = null_ptid;
3790 /* Suppress spurious "Switching to ..." message. */
3791 previous_inferior_ptid = inferior_ptid;
3792
3793 resume (1, GDB_SIGNAL_0);
3794 prepare_to_wait (ecs);
3795 return;
3796 }
3797
3798 deferred_step_ptid = null_ptid;
3799 }
3800
3801 /* See if a thread hit a thread-specific breakpoint that was meant for
3802 another thread. If so, then step that thread past the breakpoint,
3803 and continue it. */
3804
3805 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3806 {
3807 int thread_hop_needed = 0;
3808 struct address_space *aspace =
3809 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3810
3811 /* Check if a regular breakpoint has been hit before checking
3812 for a potential single step breakpoint. Otherwise, GDB will
3813 not see this breakpoint hit when stepping onto breakpoints. */
3814 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3815 {
3816 ecs->random_signal = 0;
3817 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3818 thread_hop_needed = 1;
3819 }
3820 else if (singlestep_breakpoints_inserted_p)
3821 {
3822 /* We have not context switched yet, so this should be true
3823 no matter which thread hit the singlestep breakpoint. */
3824 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3825 if (debug_infrun)
3826 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3827 "trap for %s\n",
3828 target_pid_to_str (ecs->ptid));
3829
3830 ecs->random_signal = 0;
3831 /* The call to in_thread_list is necessary because PTIDs sometimes
3832 change when we go from single-threaded to multi-threaded. If
3833 the singlestep_ptid is still in the list, assume that it is
3834 really different from ecs->ptid. */
3835 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3836 && in_thread_list (singlestep_ptid))
3837 {
3838 /* If the PC of the thread we were trying to single-step
3839 has changed, discard this event (which we were going
3840 to ignore anyway), and pretend we saw that thread
3841 trap. This prevents us continuously moving the
3842 single-step breakpoint forward, one instruction at a
3843 time. If the PC has changed, then the thread we were
3844 trying to single-step has trapped or been signalled,
3845 but the event has not been reported to GDB yet.
3846
3847 There might be some cases where this loses signal
3848 information, if a signal has arrived at exactly the
3849 same time that the PC changed, but this is the best
3850 we can do with the information available. Perhaps we
3851 should arrange to report all events for all threads
3852 when they stop, or to re-poll the remote looking for
3853 this particular thread (i.e. temporarily enable
3854 schedlock). */
3855
3856 CORE_ADDR new_singlestep_pc
3857 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3858
3859 if (new_singlestep_pc != singlestep_pc)
3860 {
3861 enum gdb_signal stop_signal;
3862
3863 if (debug_infrun)
3864 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3865 " but expected thread advanced also\n");
3866
3867 /* The current context still belongs to
3868 singlestep_ptid. Don't swap here, since that's
3869 the context we want to use. Just fudge our
3870 state and continue. */
3871 stop_signal = ecs->event_thread->suspend.stop_signal;
3872 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3873 ecs->ptid = singlestep_ptid;
3874 ecs->event_thread = find_thread_ptid (ecs->ptid);
3875 ecs->event_thread->suspend.stop_signal = stop_signal;
3876 stop_pc = new_singlestep_pc;
3877 }
3878 else
3879 {
3880 if (debug_infrun)
3881 fprintf_unfiltered (gdb_stdlog,
3882 "infrun: unexpected thread\n");
3883
3884 thread_hop_needed = 1;
3885 stepping_past_singlestep_breakpoint = 1;
3886 saved_singlestep_ptid = singlestep_ptid;
3887 }
3888 }
3889 }
3890
3891 if (thread_hop_needed)
3892 {
3893 struct regcache *thread_regcache;
3894 int remove_status = 0;
3895
3896 if (debug_infrun)
3897 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3898
3899 /* Switch context before touching inferior memory, the
3900 previous thread may have exited. */
3901 if (!ptid_equal (inferior_ptid, ecs->ptid))
3902 context_switch (ecs->ptid);
3903
3904 /* Saw a breakpoint, but it was hit by the wrong thread.
3905 Just continue. */
3906
3907 if (singlestep_breakpoints_inserted_p)
3908 {
3909 /* Pull the single step breakpoints out of the target. */
3910 remove_single_step_breakpoints ();
3911 singlestep_breakpoints_inserted_p = 0;
3912 }
3913
3914 /* If the arch can displace step, don't remove the
3915 breakpoints. */
3916 thread_regcache = get_thread_regcache (ecs->ptid);
3917 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3918 remove_status = remove_breakpoints ();
3919
3920 /* Did we fail to remove breakpoints? If so, try
3921 to set the PC past the bp. (There's at least
3922 one situation in which we can fail to remove
3923 the bp's: On HP-UX's that use ttrace, we can't
3924 change the address space of a vforking child
3925 process until the child exits (well, okay, not
3926 then either :-) or execs. */
3927 if (remove_status != 0)
3928 error (_("Cannot step over breakpoint hit in wrong thread"));
3929 else
3930 { /* Single step */
3931 if (!non_stop)
3932 {
3933 /* Only need to require the next event from this
3934 thread in all-stop mode. */
3935 waiton_ptid = ecs->ptid;
3936 infwait_state = infwait_thread_hop_state;
3937 }
3938
3939 ecs->event_thread->stepping_over_breakpoint = 1;
3940 keep_going (ecs);
3941 return;
3942 }
3943 }
3944 else if (singlestep_breakpoints_inserted_p)
3945 {
3946 ecs->random_signal = 0;
3947 }
3948 }
3949 else
3950 ecs->random_signal = 1;
3951
3952 /* See if something interesting happened to the non-current thread. If
3953 so, then switch to that thread. */
3954 if (!ptid_equal (ecs->ptid, inferior_ptid))
3955 {
3956 if (debug_infrun)
3957 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3958
3959 context_switch (ecs->ptid);
3960
3961 if (deprecated_context_hook)
3962 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3963 }
3964
3965 /* At this point, get hold of the now-current thread's frame. */
3966 frame = get_current_frame ();
3967 gdbarch = get_frame_arch (frame);
3968
3969 if (singlestep_breakpoints_inserted_p)
3970 {
3971 /* Pull the single step breakpoints out of the target. */
3972 remove_single_step_breakpoints ();
3973 singlestep_breakpoints_inserted_p = 0;
3974 }
3975
3976 if (stepped_after_stopped_by_watchpoint)
3977 stopped_by_watchpoint = 0;
3978 else
3979 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3980
3981 /* If necessary, step over this watchpoint. We'll be back to display
3982 it in a moment. */
3983 if (stopped_by_watchpoint
3984 && (target_have_steppable_watchpoint
3985 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3986 {
3987 /* At this point, we are stopped at an instruction which has
3988 attempted to write to a piece of memory under control of
3989 a watchpoint. The instruction hasn't actually executed
3990 yet. If we were to evaluate the watchpoint expression
3991 now, we would get the old value, and therefore no change
3992 would seem to have occurred.
3993
3994 In order to make watchpoints work `right', we really need
3995 to complete the memory write, and then evaluate the
3996 watchpoint expression. We do this by single-stepping the
3997 target.
3998
3999 It may not be necessary to disable the watchpoint to stop over
4000 it. For example, the PA can (with some kernel cooperation)
4001 single step over a watchpoint without disabling the watchpoint.
4002
4003 It is far more common to need to disable a watchpoint to step
4004 the inferior over it. If we have non-steppable watchpoints,
4005 we must disable the current watchpoint; it's simplest to
4006 disable all watchpoints and breakpoints. */
4007 int hw_step = 1;
4008
4009 if (!target_have_steppable_watchpoint)
4010 {
4011 remove_breakpoints ();
4012 /* See comment in resume why we need to stop bypassing signals
4013 while breakpoints have been removed. */
4014 target_pass_signals (0, NULL);
4015 }
4016 /* Single step */
4017 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4018 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4019 waiton_ptid = ecs->ptid;
4020 if (target_have_steppable_watchpoint)
4021 infwait_state = infwait_step_watch_state;
4022 else
4023 infwait_state = infwait_nonstep_watch_state;
4024 prepare_to_wait (ecs);
4025 return;
4026 }
4027
4028 clear_stop_func (ecs);
4029 ecs->event_thread->stepping_over_breakpoint = 0;
4030 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4031 ecs->event_thread->control.stop_step = 0;
4032 stop_print_frame = 1;
4033 ecs->random_signal = 0;
4034 stopped_by_random_signal = 0;
4035
4036 /* Hide inlined functions starting here, unless we just performed stepi or
4037 nexti. After stepi and nexti, always show the innermost frame (not any
4038 inline function call sites). */
4039 if (ecs->event_thread->control.step_range_end != 1)
4040 {
4041 struct address_space *aspace =
4042 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4043
4044 /* skip_inline_frames is expensive, so we avoid it if we can
4045 determine that the address is one where functions cannot have
4046 been inlined. This improves performance with inferiors that
4047 load a lot of shared libraries, because the solib event
4048 breakpoint is defined as the address of a function (i.e. not
4049 inline). Note that we have to check the previous PC as well
4050 as the current one to catch cases when we have just
4051 single-stepped off a breakpoint prior to reinstating it.
4052 Note that we're assuming that the code we single-step to is
4053 not inline, but that's not definitive: there's nothing
4054 preventing the event breakpoint function from containing
4055 inlined code, and the single-step ending up there. If the
4056 user had set a breakpoint on that inlined code, the missing
4057 skip_inline_frames call would break things. Fortunately
4058 that's an extremely unlikely scenario. */
4059 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4060 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4061 && ecs->event_thread->control.trap_expected
4062 && pc_at_non_inline_function (aspace,
4063 ecs->event_thread->prev_pc,
4064 &ecs->ws)))
4065 {
4066 skip_inline_frames (ecs->ptid);
4067
4068 /* Re-fetch current thread's frame in case that invalidated
4069 the frame cache. */
4070 frame = get_current_frame ();
4071 gdbarch = get_frame_arch (frame);
4072 }
4073 }
4074
4075 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4076 && ecs->event_thread->control.trap_expected
4077 && gdbarch_single_step_through_delay_p (gdbarch)
4078 && currently_stepping (ecs->event_thread))
4079 {
4080 /* We're trying to step off a breakpoint. Turns out that we're
4081 also on an instruction that needs to be stepped multiple
4082 times before it's been fully executing. E.g., architectures
4083 with a delay slot. It needs to be stepped twice, once for
4084 the instruction and once for the delay slot. */
4085 int step_through_delay
4086 = gdbarch_single_step_through_delay (gdbarch, frame);
4087
4088 if (debug_infrun && step_through_delay)
4089 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4090 if (ecs->event_thread->control.step_range_end == 0
4091 && step_through_delay)
4092 {
4093 /* The user issued a continue when stopped at a breakpoint.
4094 Set up for another trap and get out of here. */
4095 ecs->event_thread->stepping_over_breakpoint = 1;
4096 keep_going (ecs);
4097 return;
4098 }
4099 else if (step_through_delay)
4100 {
4101 /* The user issued a step when stopped at a breakpoint.
4102 Maybe we should stop, maybe we should not - the delay
4103 slot *might* correspond to a line of source. In any
4104 case, don't decide that here, just set
4105 ecs->stepping_over_breakpoint, making sure we
4106 single-step again before breakpoints are re-inserted. */
4107 ecs->event_thread->stepping_over_breakpoint = 1;
4108 }
4109 }
4110
4111 /* Look at the cause of the stop, and decide what to do.
4112 The alternatives are:
4113 1) stop_stepping and return; to really stop and return to the debugger,
4114 2) keep_going and return to start up again
4115 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4116 3) set ecs->random_signal to 1, and the decision between 1 and 2
4117 will be made according to the signal handling tables. */
4118
4119 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4120 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4121 || stop_soon == STOP_QUIETLY_REMOTE)
4122 {
4123 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4124 && stop_after_trap)
4125 {
4126 if (debug_infrun)
4127 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4128 stop_print_frame = 0;
4129 stop_stepping (ecs);
4130 return;
4131 }
4132
4133 /* This is originated from start_remote(), start_inferior() and
4134 shared libraries hook functions. */
4135 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4136 {
4137 if (debug_infrun)
4138 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4139 stop_stepping (ecs);
4140 return;
4141 }
4142
4143 /* This originates from attach_command(). We need to overwrite
4144 the stop_signal here, because some kernels don't ignore a
4145 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4146 See more comments in inferior.h. On the other hand, if we
4147 get a non-SIGSTOP, report it to the user - assume the backend
4148 will handle the SIGSTOP if it should show up later.
4149
4150 Also consider that the attach is complete when we see a
4151 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4152 target extended-remote report it instead of a SIGSTOP
4153 (e.g. gdbserver). We already rely on SIGTRAP being our
4154 signal, so this is no exception.
4155
4156 Also consider that the attach is complete when we see a
4157 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4158 the target to stop all threads of the inferior, in case the
4159 low level attach operation doesn't stop them implicitly. If
4160 they weren't stopped implicitly, then the stub will report a
4161 GDB_SIGNAL_0, meaning: stopped for no particular reason
4162 other than GDB's request. */
4163 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4164 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4165 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4166 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4167 {
4168 stop_stepping (ecs);
4169 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4170 return;
4171 }
4172
4173 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4174 handles this event. */
4175 ecs->event_thread->control.stop_bpstat
4176 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4177 stop_pc, ecs->ptid, &ecs->ws);
4178
4179 /* Following in case break condition called a
4180 function. */
4181 stop_print_frame = 1;
4182
4183 /* This is where we handle "moribund" watchpoints. Unlike
4184 software breakpoints traps, hardware watchpoint traps are
4185 always distinguishable from random traps. If no high-level
4186 watchpoint is associated with the reported stop data address
4187 anymore, then the bpstat does not explain the signal ---
4188 simply make sure to ignore it if `stopped_by_watchpoint' is
4189 set. */
4190
4191 if (debug_infrun
4192 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4193 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4194 && stopped_by_watchpoint)
4195 fprintf_unfiltered (gdb_stdlog,
4196 "infrun: no user watchpoint explains "
4197 "watchpoint SIGTRAP, ignoring\n");
4198
4199 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4200 at one stage in the past included checks for an inferior
4201 function call's call dummy's return breakpoint. The original
4202 comment, that went with the test, read:
4203
4204 ``End of a stack dummy. Some systems (e.g. Sony news) give
4205 another signal besides SIGTRAP, so check here as well as
4206 above.''
4207
4208 If someone ever tries to get call dummys on a
4209 non-executable stack to work (where the target would stop
4210 with something like a SIGSEGV), then those tests might need
4211 to be re-instated. Given, however, that the tests were only
4212 enabled when momentary breakpoints were not being used, I
4213 suspect that it won't be the case.
4214
4215 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4216 be necessary for call dummies on a non-executable stack on
4217 SPARC. */
4218
4219 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4220 ecs->random_signal
4221 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4222 || stopped_by_watchpoint
4223 || ecs->event_thread->control.trap_expected
4224 || (ecs->event_thread->control.step_range_end
4225 && (ecs->event_thread->control.step_resume_breakpoint
4226 == NULL)));
4227 else
4228 {
4229 ecs->random_signal = !bpstat_explains_signal
4230 (ecs->event_thread->control.stop_bpstat);
4231 if (!ecs->random_signal)
4232 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4233 }
4234 }
4235
4236 /* When we reach this point, we've pretty much decided
4237 that the reason for stopping must've been a random
4238 (unexpected) signal. */
4239
4240 else
4241 ecs->random_signal = 1;
4242
4243process_event_stop_test:
4244
4245 /* Re-fetch current thread's frame in case we did a
4246 "goto process_event_stop_test" above. */
4247 frame = get_current_frame ();
4248 gdbarch = get_frame_arch (frame);
4249
4250 /* For the program's own signals, act according to
4251 the signal handling tables. */
4252
4253 if (ecs->random_signal)
4254 {
4255 /* Signal not for debugging purposes. */
4256 int printed = 0;
4257 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4258
4259 if (debug_infrun)
4260 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4261 ecs->event_thread->suspend.stop_signal);
4262
4263 stopped_by_random_signal = 1;
4264
4265 if (signal_print[ecs->event_thread->suspend.stop_signal])
4266 {
4267 printed = 1;
4268 target_terminal_ours_for_output ();
4269 print_signal_received_reason
4270 (ecs->event_thread->suspend.stop_signal);
4271 }
4272 /* Always stop on signals if we're either just gaining control
4273 of the program, or the user explicitly requested this thread
4274 to remain stopped. */
4275 if (stop_soon != NO_STOP_QUIETLY
4276 || ecs->event_thread->stop_requested
4277 || (!inf->detaching
4278 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4279 {
4280 stop_stepping (ecs);
4281 return;
4282 }
4283 /* If not going to stop, give terminal back
4284 if we took it away. */
4285 else if (printed)
4286 target_terminal_inferior ();
4287
4288 /* Clear the signal if it should not be passed. */
4289 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4290 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4291
4292 if (ecs->event_thread->prev_pc == stop_pc
4293 && ecs->event_thread->control.trap_expected
4294 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4295 {
4296 /* We were just starting a new sequence, attempting to
4297 single-step off of a breakpoint and expecting a SIGTRAP.
4298 Instead this signal arrives. This signal will take us out
4299 of the stepping range so GDB needs to remember to, when
4300 the signal handler returns, resume stepping off that
4301 breakpoint. */
4302 /* To simplify things, "continue" is forced to use the same
4303 code paths as single-step - set a breakpoint at the
4304 signal return address and then, once hit, step off that
4305 breakpoint. */
4306 if (debug_infrun)
4307 fprintf_unfiltered (gdb_stdlog,
4308 "infrun: signal arrived while stepping over "
4309 "breakpoint\n");
4310
4311 insert_hp_step_resume_breakpoint_at_frame (frame);
4312 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4313 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4314 ecs->event_thread->control.trap_expected = 0;
4315 keep_going (ecs);
4316 return;
4317 }
4318
4319 if (ecs->event_thread->control.step_range_end != 0
4320 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4321 && (ecs->event_thread->control.step_range_start <= stop_pc
4322 && stop_pc < ecs->event_thread->control.step_range_end)
4323 && frame_id_eq (get_stack_frame_id (frame),
4324 ecs->event_thread->control.step_stack_frame_id)
4325 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4326 {
4327 /* The inferior is about to take a signal that will take it
4328 out of the single step range. Set a breakpoint at the
4329 current PC (which is presumably where the signal handler
4330 will eventually return) and then allow the inferior to
4331 run free.
4332
4333 Note that this is only needed for a signal delivered
4334 while in the single-step range. Nested signals aren't a
4335 problem as they eventually all return. */
4336 if (debug_infrun)
4337 fprintf_unfiltered (gdb_stdlog,
4338 "infrun: signal may take us out of "
4339 "single-step range\n");
4340
4341 insert_hp_step_resume_breakpoint_at_frame (frame);
4342 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4343 ecs->event_thread->control.trap_expected = 0;
4344 keep_going (ecs);
4345 return;
4346 }
4347
4348 /* Note: step_resume_breakpoint may be non-NULL. This occures
4349 when either there's a nested signal, or when there's a
4350 pending signal enabled just as the signal handler returns
4351 (leaving the inferior at the step-resume-breakpoint without
4352 actually executing it). Either way continue until the
4353 breakpoint is really hit. */
4354 }
4355 else
4356 {
4357 /* Handle cases caused by hitting a breakpoint. */
4358
4359 CORE_ADDR jmp_buf_pc;
4360 struct bpstat_what what;
4361
4362 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4363
4364 if (what.call_dummy)
4365 {
4366 stop_stack_dummy = what.call_dummy;
4367 }
4368
4369 /* If we hit an internal event that triggers symbol changes, the
4370 current frame will be invalidated within bpstat_what (e.g.,
4371 if we hit an internal solib event). Re-fetch it. */
4372 frame = get_current_frame ();
4373 gdbarch = get_frame_arch (frame);
4374
4375 switch (what.main_action)
4376 {
4377 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4378 /* If we hit the breakpoint at longjmp while stepping, we
4379 install a momentary breakpoint at the target of the
4380 jmp_buf. */
4381
4382 if (debug_infrun)
4383 fprintf_unfiltered (gdb_stdlog,
4384 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4385
4386 ecs->event_thread->stepping_over_breakpoint = 1;
4387
4388 if (what.is_longjmp)
4389 {
4390 struct value *arg_value;
4391
4392 /* If we set the longjmp breakpoint via a SystemTap
4393 probe, then use it to extract the arguments. The
4394 destination PC is the third argument to the
4395 probe. */
4396 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4397 if (arg_value)
4398 jmp_buf_pc = value_as_address (arg_value);
4399 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4400 || !gdbarch_get_longjmp_target (gdbarch,
4401 frame, &jmp_buf_pc))
4402 {
4403 if (debug_infrun)
4404 fprintf_unfiltered (gdb_stdlog,
4405 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4406 "(!gdbarch_get_longjmp_target)\n");
4407 keep_going (ecs);
4408 return;
4409 }
4410
4411 /* Insert a breakpoint at resume address. */
4412 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4413 }
4414 else
4415 check_exception_resume (ecs, frame);
4416 keep_going (ecs);
4417 return;
4418
4419 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4420 {
4421 struct frame_info *init_frame;
4422
4423 /* There are several cases to consider.
4424
4425 1. The initiating frame no longer exists. In this case
4426 we must stop, because the exception or longjmp has gone
4427 too far.
4428
4429 2. The initiating frame exists, and is the same as the
4430 current frame. We stop, because the exception or
4431 longjmp has been caught.
4432
4433 3. The initiating frame exists and is different from
4434 the current frame. This means the exception or longjmp
4435 has been caught beneath the initiating frame, so keep
4436 going.
4437
4438 4. longjmp breakpoint has been placed just to protect
4439 against stale dummy frames and user is not interested
4440 in stopping around longjmps. */
4441
4442 if (debug_infrun)
4443 fprintf_unfiltered (gdb_stdlog,
4444 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4445
4446 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4447 != NULL);
4448 delete_exception_resume_breakpoint (ecs->event_thread);
4449
4450 if (what.is_longjmp)
4451 {
4452 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4453
4454 if (!frame_id_p (ecs->event_thread->initiating_frame))
4455 {
4456 /* Case 4. */
4457 keep_going (ecs);
4458 return;
4459 }
4460 }
4461
4462 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4463
4464 if (init_frame)
4465 {
4466 struct frame_id current_id
4467 = get_frame_id (get_current_frame ());
4468 if (frame_id_eq (current_id,
4469 ecs->event_thread->initiating_frame))
4470 {
4471 /* Case 2. Fall through. */
4472 }
4473 else
4474 {
4475 /* Case 3. */
4476 keep_going (ecs);
4477 return;
4478 }
4479 }
4480
4481 /* For Cases 1 and 2, remove the step-resume breakpoint,
4482 if it exists. */
4483 delete_step_resume_breakpoint (ecs->event_thread);
4484
4485 ecs->event_thread->control.stop_step = 1;
4486 print_end_stepping_range_reason ();
4487 stop_stepping (ecs);
4488 }
4489 return;
4490
4491 case BPSTAT_WHAT_SINGLE:
4492 if (debug_infrun)
4493 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4494 ecs->event_thread->stepping_over_breakpoint = 1;
4495 /* Still need to check other stuff, at least the case where
4496 we are stepping and step out of the right range. */
4497 break;
4498
4499 case BPSTAT_WHAT_STEP_RESUME:
4500 if (debug_infrun)
4501 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4502
4503 delete_step_resume_breakpoint (ecs->event_thread);
4504 if (ecs->event_thread->control.proceed_to_finish
4505 && execution_direction == EXEC_REVERSE)
4506 {
4507 struct thread_info *tp = ecs->event_thread;
4508
4509 /* We are finishing a function in reverse, and just hit
4510 the step-resume breakpoint at the start address of
4511 the function, and we're almost there -- just need to
4512 back up by one more single-step, which should take us
4513 back to the function call. */
4514 tp->control.step_range_start = tp->control.step_range_end = 1;
4515 keep_going (ecs);
4516 return;
4517 }
4518 fill_in_stop_func (gdbarch, ecs);
4519 if (stop_pc == ecs->stop_func_start
4520 && execution_direction == EXEC_REVERSE)
4521 {
4522 /* We are stepping over a function call in reverse, and
4523 just hit the step-resume breakpoint at the start
4524 address of the function. Go back to single-stepping,
4525 which should take us back to the function call. */
4526 ecs->event_thread->stepping_over_breakpoint = 1;
4527 keep_going (ecs);
4528 return;
4529 }
4530 break;
4531
4532 case BPSTAT_WHAT_STOP_NOISY:
4533 if (debug_infrun)
4534 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4535 stop_print_frame = 1;
4536
4537 /* We are about to nuke the step_resume_breakpointt via the
4538 cleanup chain, so no need to worry about it here. */
4539
4540 stop_stepping (ecs);
4541 return;
4542
4543 case BPSTAT_WHAT_STOP_SILENT:
4544 if (debug_infrun)
4545 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4546 stop_print_frame = 0;
4547
4548 /* We are about to nuke the step_resume_breakpoin via the
4549 cleanup chain, so no need to worry about it here. */
4550
4551 stop_stepping (ecs);
4552 return;
4553
4554 case BPSTAT_WHAT_HP_STEP_RESUME:
4555 if (debug_infrun)
4556 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4557
4558 delete_step_resume_breakpoint (ecs->event_thread);
4559 if (ecs->event_thread->step_after_step_resume_breakpoint)
4560 {
4561 /* Back when the step-resume breakpoint was inserted, we
4562 were trying to single-step off a breakpoint. Go back
4563 to doing that. */
4564 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4565 ecs->event_thread->stepping_over_breakpoint = 1;
4566 keep_going (ecs);
4567 return;
4568 }
4569 break;
4570
4571 case BPSTAT_WHAT_KEEP_CHECKING:
4572 break;
4573 }
4574 }
4575
4576 /* We come here if we hit a breakpoint but should not
4577 stop for it. Possibly we also were stepping
4578 and should stop for that. So fall through and
4579 test for stepping. But, if not stepping,
4580 do not stop. */
4581
4582 /* In all-stop mode, if we're currently stepping but have stopped in
4583 some other thread, we need to switch back to the stepped thread. */
4584 if (!non_stop)
4585 {
4586 struct thread_info *tp;
4587
4588 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4589 ecs->event_thread);
4590 if (tp)
4591 {
4592 /* However, if the current thread is blocked on some internal
4593 breakpoint, and we simply need to step over that breakpoint
4594 to get it going again, do that first. */
4595 if ((ecs->event_thread->control.trap_expected
4596 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
4597 || ecs->event_thread->stepping_over_breakpoint)
4598 {
4599 keep_going (ecs);
4600 return;
4601 }
4602
4603 /* If the stepping thread exited, then don't try to switch
4604 back and resume it, which could fail in several different
4605 ways depending on the target. Instead, just keep going.
4606
4607 We can find a stepping dead thread in the thread list in
4608 two cases:
4609
4610 - The target supports thread exit events, and when the
4611 target tries to delete the thread from the thread list,
4612 inferior_ptid pointed at the exiting thread. In such
4613 case, calling delete_thread does not really remove the
4614 thread from the list; instead, the thread is left listed,
4615 with 'exited' state.
4616
4617 - The target's debug interface does not support thread
4618 exit events, and so we have no idea whatsoever if the
4619 previously stepping thread is still alive. For that
4620 reason, we need to synchronously query the target
4621 now. */
4622 if (is_exited (tp->ptid)
4623 || !target_thread_alive (tp->ptid))
4624 {
4625 if (debug_infrun)
4626 fprintf_unfiltered (gdb_stdlog,
4627 "infrun: not switching back to "
4628 "stepped thread, it has vanished\n");
4629
4630 delete_thread (tp->ptid);
4631 keep_going (ecs);
4632 return;
4633 }
4634
4635 /* Otherwise, we no longer expect a trap in the current thread.
4636 Clear the trap_expected flag before switching back -- this is
4637 what keep_going would do as well, if we called it. */
4638 ecs->event_thread->control.trap_expected = 0;
4639
4640 if (debug_infrun)
4641 fprintf_unfiltered (gdb_stdlog,
4642 "infrun: switching back to stepped thread\n");
4643
4644 ecs->event_thread = tp;
4645 ecs->ptid = tp->ptid;
4646 context_switch (ecs->ptid);
4647 keep_going (ecs);
4648 return;
4649 }
4650 }
4651
4652 if (ecs->event_thread->control.step_resume_breakpoint)
4653 {
4654 if (debug_infrun)
4655 fprintf_unfiltered (gdb_stdlog,
4656 "infrun: step-resume breakpoint is inserted\n");
4657
4658 /* Having a step-resume breakpoint overrides anything
4659 else having to do with stepping commands until
4660 that breakpoint is reached. */
4661 keep_going (ecs);
4662 return;
4663 }
4664
4665 if (ecs->event_thread->control.step_range_end == 0)
4666 {
4667 if (debug_infrun)
4668 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4669 /* Likewise if we aren't even stepping. */
4670 keep_going (ecs);
4671 return;
4672 }
4673
4674 /* Re-fetch current thread's frame in case the code above caused
4675 the frame cache to be re-initialized, making our FRAME variable
4676 a dangling pointer. */
4677 frame = get_current_frame ();
4678 gdbarch = get_frame_arch (frame);
4679 fill_in_stop_func (gdbarch, ecs);
4680
4681 /* If stepping through a line, keep going if still within it.
4682
4683 Note that step_range_end is the address of the first instruction
4684 beyond the step range, and NOT the address of the last instruction
4685 within it!
4686
4687 Note also that during reverse execution, we may be stepping
4688 through a function epilogue and therefore must detect when
4689 the current-frame changes in the middle of a line. */
4690
4691 if (stop_pc >= ecs->event_thread->control.step_range_start
4692 && stop_pc < ecs->event_thread->control.step_range_end
4693 && (execution_direction != EXEC_REVERSE
4694 || frame_id_eq (get_frame_id (frame),
4695 ecs->event_thread->control.step_frame_id)))
4696 {
4697 if (debug_infrun)
4698 fprintf_unfiltered
4699 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4700 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4701 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4702
4703 /* When stepping backward, stop at beginning of line range
4704 (unless it's the function entry point, in which case
4705 keep going back to the call point). */
4706 if (stop_pc == ecs->event_thread->control.step_range_start
4707 && stop_pc != ecs->stop_func_start
4708 && execution_direction == EXEC_REVERSE)
4709 {
4710 ecs->event_thread->control.stop_step = 1;
4711 print_end_stepping_range_reason ();
4712 stop_stepping (ecs);
4713 }
4714 else
4715 keep_going (ecs);
4716
4717 return;
4718 }
4719
4720 /* We stepped out of the stepping range. */
4721
4722 /* If we are stepping at the source level and entered the runtime
4723 loader dynamic symbol resolution code...
4724
4725 EXEC_FORWARD: we keep on single stepping until we exit the run
4726 time loader code and reach the callee's address.
4727
4728 EXEC_REVERSE: we've already executed the callee (backward), and
4729 the runtime loader code is handled just like any other
4730 undebuggable function call. Now we need only keep stepping
4731 backward through the trampoline code, and that's handled further
4732 down, so there is nothing for us to do here. */
4733
4734 if (execution_direction != EXEC_REVERSE
4735 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4736 && in_solib_dynsym_resolve_code (stop_pc))
4737 {
4738 CORE_ADDR pc_after_resolver =
4739 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4740
4741 if (debug_infrun)
4742 fprintf_unfiltered (gdb_stdlog,
4743 "infrun: stepped into dynsym resolve code\n");
4744
4745 if (pc_after_resolver)
4746 {
4747 /* Set up a step-resume breakpoint at the address
4748 indicated by SKIP_SOLIB_RESOLVER. */
4749 struct symtab_and_line sr_sal;
4750
4751 init_sal (&sr_sal);
4752 sr_sal.pc = pc_after_resolver;
4753 sr_sal.pspace = get_frame_program_space (frame);
4754
4755 insert_step_resume_breakpoint_at_sal (gdbarch,
4756 sr_sal, null_frame_id);
4757 }
4758
4759 keep_going (ecs);
4760 return;
4761 }
4762
4763 if (ecs->event_thread->control.step_range_end != 1
4764 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4765 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4766 && get_frame_type (frame) == SIGTRAMP_FRAME)
4767 {
4768 if (debug_infrun)
4769 fprintf_unfiltered (gdb_stdlog,
4770 "infrun: stepped into signal trampoline\n");
4771 /* The inferior, while doing a "step" or "next", has ended up in
4772 a signal trampoline (either by a signal being delivered or by
4773 the signal handler returning). Just single-step until the
4774 inferior leaves the trampoline (either by calling the handler
4775 or returning). */
4776 keep_going (ecs);
4777 return;
4778 }
4779
4780 /* If we're in the return path from a shared library trampoline,
4781 we want to proceed through the trampoline when stepping. */
4782 /* macro/2012-04-25: This needs to come before the subroutine
4783 call check below as on some targets return trampolines look
4784 like subroutine calls (MIPS16 return thunks). */
4785 if (gdbarch_in_solib_return_trampoline (gdbarch,
4786 stop_pc, ecs->stop_func_name)
4787 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4788 {
4789 /* Determine where this trampoline returns. */
4790 CORE_ADDR real_stop_pc;
4791
4792 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4793
4794 if (debug_infrun)
4795 fprintf_unfiltered (gdb_stdlog,
4796 "infrun: stepped into solib return tramp\n");
4797
4798 /* Only proceed through if we know where it's going. */
4799 if (real_stop_pc)
4800 {
4801 /* And put the step-breakpoint there and go until there. */
4802 struct symtab_and_line sr_sal;
4803
4804 init_sal (&sr_sal); /* initialize to zeroes */
4805 sr_sal.pc = real_stop_pc;
4806 sr_sal.section = find_pc_overlay (sr_sal.pc);
4807 sr_sal.pspace = get_frame_program_space (frame);
4808
4809 /* Do not specify what the fp should be when we stop since
4810 on some machines the prologue is where the new fp value
4811 is established. */
4812 insert_step_resume_breakpoint_at_sal (gdbarch,
4813 sr_sal, null_frame_id);
4814
4815 /* Restart without fiddling with the step ranges or
4816 other state. */
4817 keep_going (ecs);
4818 return;
4819 }
4820 }
4821
4822 /* Check for subroutine calls. The check for the current frame
4823 equalling the step ID is not necessary - the check of the
4824 previous frame's ID is sufficient - but it is a common case and
4825 cheaper than checking the previous frame's ID.
4826
4827 NOTE: frame_id_eq will never report two invalid frame IDs as
4828 being equal, so to get into this block, both the current and
4829 previous frame must have valid frame IDs. */
4830 /* The outer_frame_id check is a heuristic to detect stepping
4831 through startup code. If we step over an instruction which
4832 sets the stack pointer from an invalid value to a valid value,
4833 we may detect that as a subroutine call from the mythical
4834 "outermost" function. This could be fixed by marking
4835 outermost frames as !stack_p,code_p,special_p. Then the
4836 initial outermost frame, before sp was valid, would
4837 have code_addr == &_start. See the comment in frame_id_eq
4838 for more. */
4839 if (!frame_id_eq (get_stack_frame_id (frame),
4840 ecs->event_thread->control.step_stack_frame_id)
4841 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4842 ecs->event_thread->control.step_stack_frame_id)
4843 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4844 outer_frame_id)
4845 || step_start_function != find_pc_function (stop_pc))))
4846 {
4847 CORE_ADDR real_stop_pc;
4848
4849 if (debug_infrun)
4850 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4851
4852 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4853 || ((ecs->event_thread->control.step_range_end == 1)
4854 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4855 ecs->stop_func_start)))
4856 {
4857 /* I presume that step_over_calls is only 0 when we're
4858 supposed to be stepping at the assembly language level
4859 ("stepi"). Just stop. */
4860 /* Also, maybe we just did a "nexti" inside a prolog, so we
4861 thought it was a subroutine call but it was not. Stop as
4862 well. FENN */
4863 /* And this works the same backward as frontward. MVS */
4864 ecs->event_thread->control.stop_step = 1;
4865 print_end_stepping_range_reason ();
4866 stop_stepping (ecs);
4867 return;
4868 }
4869
4870 /* Reverse stepping through solib trampolines. */
4871
4872 if (execution_direction == EXEC_REVERSE
4873 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4874 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4875 || (ecs->stop_func_start == 0
4876 && in_solib_dynsym_resolve_code (stop_pc))))
4877 {
4878 /* Any solib trampoline code can be handled in reverse
4879 by simply continuing to single-step. We have already
4880 executed the solib function (backwards), and a few
4881 steps will take us back through the trampoline to the
4882 caller. */
4883 keep_going (ecs);
4884 return;
4885 }
4886
4887 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4888 {
4889 /* We're doing a "next".
4890
4891 Normal (forward) execution: set a breakpoint at the
4892 callee's return address (the address at which the caller
4893 will resume).
4894
4895 Reverse (backward) execution. set the step-resume
4896 breakpoint at the start of the function that we just
4897 stepped into (backwards), and continue to there. When we
4898 get there, we'll need to single-step back to the caller. */
4899
4900 if (execution_direction == EXEC_REVERSE)
4901 {
4902 /* If we're already at the start of the function, we've either
4903 just stepped backward into a single instruction function,
4904 or stepped back out of a signal handler to the first instruction
4905 of the function. Just keep going, which will single-step back
4906 to the caller. */
4907 if (ecs->stop_func_start != stop_pc)
4908 {
4909 struct symtab_and_line sr_sal;
4910
4911 /* Normal function call return (static or dynamic). */
4912 init_sal (&sr_sal);
4913 sr_sal.pc = ecs->stop_func_start;
4914 sr_sal.pspace = get_frame_program_space (frame);
4915 insert_step_resume_breakpoint_at_sal (gdbarch,
4916 sr_sal, null_frame_id);
4917 }
4918 }
4919 else
4920 insert_step_resume_breakpoint_at_caller (frame);
4921
4922 keep_going (ecs);
4923 return;
4924 }
4925
4926 /* If we are in a function call trampoline (a stub between the
4927 calling routine and the real function), locate the real
4928 function. That's what tells us (a) whether we want to step
4929 into it at all, and (b) what prologue we want to run to the
4930 end of, if we do step into it. */
4931 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4932 if (real_stop_pc == 0)
4933 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4934 if (real_stop_pc != 0)
4935 ecs->stop_func_start = real_stop_pc;
4936
4937 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4938 {
4939 struct symtab_and_line sr_sal;
4940
4941 init_sal (&sr_sal);
4942 sr_sal.pc = ecs->stop_func_start;
4943 sr_sal.pspace = get_frame_program_space (frame);
4944
4945 insert_step_resume_breakpoint_at_sal (gdbarch,
4946 sr_sal, null_frame_id);
4947 keep_going (ecs);
4948 return;
4949 }
4950
4951 /* If we have line number information for the function we are
4952 thinking of stepping into and the function isn't on the skip
4953 list, step into it.
4954
4955 If there are several symtabs at that PC (e.g. with include
4956 files), just want to know whether *any* of them have line
4957 numbers. find_pc_line handles this. */
4958 {
4959 struct symtab_and_line tmp_sal;
4960
4961 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4962 if (tmp_sal.line != 0
4963 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
4964 {
4965 if (execution_direction == EXEC_REVERSE)
4966 handle_step_into_function_backward (gdbarch, ecs);
4967 else
4968 handle_step_into_function (gdbarch, ecs);
4969 return;
4970 }
4971 }
4972
4973 /* If we have no line number and the step-stop-if-no-debug is
4974 set, we stop the step so that the user has a chance to switch
4975 in assembly mode. */
4976 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4977 && step_stop_if_no_debug)
4978 {
4979 ecs->event_thread->control.stop_step = 1;
4980 print_end_stepping_range_reason ();
4981 stop_stepping (ecs);
4982 return;
4983 }
4984
4985 if (execution_direction == EXEC_REVERSE)
4986 {
4987 /* If we're already at the start of the function, we've either just
4988 stepped backward into a single instruction function without line
4989 number info, or stepped back out of a signal handler to the first
4990 instruction of the function without line number info. Just keep
4991 going, which will single-step back to the caller. */
4992 if (ecs->stop_func_start != stop_pc)
4993 {
4994 /* Set a breakpoint at callee's start address.
4995 From there we can step once and be back in the caller. */
4996 struct symtab_and_line sr_sal;
4997
4998 init_sal (&sr_sal);
4999 sr_sal.pc = ecs->stop_func_start;
5000 sr_sal.pspace = get_frame_program_space (frame);
5001 insert_step_resume_breakpoint_at_sal (gdbarch,
5002 sr_sal, null_frame_id);
5003 }
5004 }
5005 else
5006 /* Set a breakpoint at callee's return address (the address
5007 at which the caller will resume). */
5008 insert_step_resume_breakpoint_at_caller (frame);
5009
5010 keep_going (ecs);
5011 return;
5012 }
5013
5014 /* Reverse stepping through solib trampolines. */
5015
5016 if (execution_direction == EXEC_REVERSE
5017 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5018 {
5019 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5020 || (ecs->stop_func_start == 0
5021 && in_solib_dynsym_resolve_code (stop_pc)))
5022 {
5023 /* Any solib trampoline code can be handled in reverse
5024 by simply continuing to single-step. We have already
5025 executed the solib function (backwards), and a few
5026 steps will take us back through the trampoline to the
5027 caller. */
5028 keep_going (ecs);
5029 return;
5030 }
5031 else if (in_solib_dynsym_resolve_code (stop_pc))
5032 {
5033 /* Stepped backward into the solib dynsym resolver.
5034 Set a breakpoint at its start and continue, then
5035 one more step will take us out. */
5036 struct symtab_and_line sr_sal;
5037
5038 init_sal (&sr_sal);
5039 sr_sal.pc = ecs->stop_func_start;
5040 sr_sal.pspace = get_frame_program_space (frame);
5041 insert_step_resume_breakpoint_at_sal (gdbarch,
5042 sr_sal, null_frame_id);
5043 keep_going (ecs);
5044 return;
5045 }
5046 }
5047
5048 stop_pc_sal = find_pc_line (stop_pc, 0);
5049
5050 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5051 the trampoline processing logic, however, there are some trampolines
5052 that have no names, so we should do trampoline handling first. */
5053 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5054 && ecs->stop_func_name == NULL
5055 && stop_pc_sal.line == 0)
5056 {
5057 if (debug_infrun)
5058 fprintf_unfiltered (gdb_stdlog,
5059 "infrun: stepped into undebuggable function\n");
5060
5061 /* The inferior just stepped into, or returned to, an
5062 undebuggable function (where there is no debugging information
5063 and no line number corresponding to the address where the
5064 inferior stopped). Since we want to skip this kind of code,
5065 we keep going until the inferior returns from this
5066 function - unless the user has asked us not to (via
5067 set step-mode) or we no longer know how to get back
5068 to the call site. */
5069 if (step_stop_if_no_debug
5070 || !frame_id_p (frame_unwind_caller_id (frame)))
5071 {
5072 /* If we have no line number and the step-stop-if-no-debug
5073 is set, we stop the step so that the user has a chance to
5074 switch in assembly mode. */
5075 ecs->event_thread->control.stop_step = 1;
5076 print_end_stepping_range_reason ();
5077 stop_stepping (ecs);
5078 return;
5079 }
5080 else
5081 {
5082 /* Set a breakpoint at callee's return address (the address
5083 at which the caller will resume). */
5084 insert_step_resume_breakpoint_at_caller (frame);
5085 keep_going (ecs);
5086 return;
5087 }
5088 }
5089
5090 if (ecs->event_thread->control.step_range_end == 1)
5091 {
5092 /* It is stepi or nexti. We always want to stop stepping after
5093 one instruction. */
5094 if (debug_infrun)
5095 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5096 ecs->event_thread->control.stop_step = 1;
5097 print_end_stepping_range_reason ();
5098 stop_stepping (ecs);
5099 return;
5100 }
5101
5102 if (stop_pc_sal.line == 0)
5103 {
5104 /* We have no line number information. That means to stop
5105 stepping (does this always happen right after one instruction,
5106 when we do "s" in a function with no line numbers,
5107 or can this happen as a result of a return or longjmp?). */
5108 if (debug_infrun)
5109 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5110 ecs->event_thread->control.stop_step = 1;
5111 print_end_stepping_range_reason ();
5112 stop_stepping (ecs);
5113 return;
5114 }
5115
5116 /* Look for "calls" to inlined functions, part one. If the inline
5117 frame machinery detected some skipped call sites, we have entered
5118 a new inline function. */
5119
5120 if (frame_id_eq (get_frame_id (get_current_frame ()),
5121 ecs->event_thread->control.step_frame_id)
5122 && inline_skipped_frames (ecs->ptid))
5123 {
5124 struct symtab_and_line call_sal;
5125
5126 if (debug_infrun)
5127 fprintf_unfiltered (gdb_stdlog,
5128 "infrun: stepped into inlined function\n");
5129
5130 find_frame_sal (get_current_frame (), &call_sal);
5131
5132 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5133 {
5134 /* For "step", we're going to stop. But if the call site
5135 for this inlined function is on the same source line as
5136 we were previously stepping, go down into the function
5137 first. Otherwise stop at the call site. */
5138
5139 if (call_sal.line == ecs->event_thread->current_line
5140 && call_sal.symtab == ecs->event_thread->current_symtab)
5141 step_into_inline_frame (ecs->ptid);
5142
5143 ecs->event_thread->control.stop_step = 1;
5144 print_end_stepping_range_reason ();
5145 stop_stepping (ecs);
5146 return;
5147 }
5148 else
5149 {
5150 /* For "next", we should stop at the call site if it is on a
5151 different source line. Otherwise continue through the
5152 inlined function. */
5153 if (call_sal.line == ecs->event_thread->current_line
5154 && call_sal.symtab == ecs->event_thread->current_symtab)
5155 keep_going (ecs);
5156 else
5157 {
5158 ecs->event_thread->control.stop_step = 1;
5159 print_end_stepping_range_reason ();
5160 stop_stepping (ecs);
5161 }
5162 return;
5163 }
5164 }
5165
5166 /* Look for "calls" to inlined functions, part two. If we are still
5167 in the same real function we were stepping through, but we have
5168 to go further up to find the exact frame ID, we are stepping
5169 through a more inlined call beyond its call site. */
5170
5171 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5172 && !frame_id_eq (get_frame_id (get_current_frame ()),
5173 ecs->event_thread->control.step_frame_id)
5174 && stepped_in_from (get_current_frame (),
5175 ecs->event_thread->control.step_frame_id))
5176 {
5177 if (debug_infrun)
5178 fprintf_unfiltered (gdb_stdlog,
5179 "infrun: stepping through inlined function\n");
5180
5181 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5182 keep_going (ecs);
5183 else
5184 {
5185 ecs->event_thread->control.stop_step = 1;
5186 print_end_stepping_range_reason ();
5187 stop_stepping (ecs);
5188 }
5189 return;
5190 }
5191
5192 if ((stop_pc == stop_pc_sal.pc)
5193 && (ecs->event_thread->current_line != stop_pc_sal.line
5194 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5195 {
5196 /* We are at the start of a different line. So stop. Note that
5197 we don't stop if we step into the middle of a different line.
5198 That is said to make things like for (;;) statements work
5199 better. */
5200 if (debug_infrun)
5201 fprintf_unfiltered (gdb_stdlog,
5202 "infrun: stepped to a different line\n");
5203 ecs->event_thread->control.stop_step = 1;
5204 print_end_stepping_range_reason ();
5205 stop_stepping (ecs);
5206 return;
5207 }
5208
5209 /* We aren't done stepping.
5210
5211 Optimize by setting the stepping range to the line.
5212 (We might not be in the original line, but if we entered a
5213 new line in mid-statement, we continue stepping. This makes
5214 things like for(;;) statements work better.) */
5215
5216 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5217 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5218 set_step_info (frame, stop_pc_sal);
5219
5220 if (debug_infrun)
5221 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5222 keep_going (ecs);
5223}
5224
5225/* Is thread TP in the middle of single-stepping? */
5226
5227static int
5228currently_stepping (struct thread_info *tp)
5229{
5230 return ((tp->control.step_range_end
5231 && tp->control.step_resume_breakpoint == NULL)
5232 || tp->control.trap_expected
5233 || bpstat_should_step ());
5234}
5235
5236/* Returns true if any thread *but* the one passed in "data" is in the
5237 middle of stepping or of handling a "next". */
5238
5239static int
5240currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5241{
5242 if (tp == data)
5243 return 0;
5244
5245 return (tp->control.step_range_end
5246 || tp->control.trap_expected);
5247}
5248
5249/* Inferior has stepped into a subroutine call with source code that
5250 we should not step over. Do step to the first line of code in
5251 it. */
5252
5253static void
5254handle_step_into_function (struct gdbarch *gdbarch,
5255 struct execution_control_state *ecs)
5256{
5257 struct symtab *s;
5258 struct symtab_and_line stop_func_sal, sr_sal;
5259
5260 fill_in_stop_func (gdbarch, ecs);
5261
5262 s = find_pc_symtab (stop_pc);
5263 if (s && s->language != language_asm)
5264 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5265 ecs->stop_func_start);
5266
5267 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5268 /* Use the step_resume_break to step until the end of the prologue,
5269 even if that involves jumps (as it seems to on the vax under
5270 4.2). */
5271 /* If the prologue ends in the middle of a source line, continue to
5272 the end of that source line (if it is still within the function).
5273 Otherwise, just go to end of prologue. */
5274 if (stop_func_sal.end
5275 && stop_func_sal.pc != ecs->stop_func_start
5276 && stop_func_sal.end < ecs->stop_func_end)
5277 ecs->stop_func_start = stop_func_sal.end;
5278
5279 /* Architectures which require breakpoint adjustment might not be able
5280 to place a breakpoint at the computed address. If so, the test
5281 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5282 ecs->stop_func_start to an address at which a breakpoint may be
5283 legitimately placed.
5284
5285 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5286 made, GDB will enter an infinite loop when stepping through
5287 optimized code consisting of VLIW instructions which contain
5288 subinstructions corresponding to different source lines. On
5289 FR-V, it's not permitted to place a breakpoint on any but the
5290 first subinstruction of a VLIW instruction. When a breakpoint is
5291 set, GDB will adjust the breakpoint address to the beginning of
5292 the VLIW instruction. Thus, we need to make the corresponding
5293 adjustment here when computing the stop address. */
5294
5295 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5296 {
5297 ecs->stop_func_start
5298 = gdbarch_adjust_breakpoint_address (gdbarch,
5299 ecs->stop_func_start);
5300 }
5301
5302 if (ecs->stop_func_start == stop_pc)
5303 {
5304 /* We are already there: stop now. */
5305 ecs->event_thread->control.stop_step = 1;
5306 print_end_stepping_range_reason ();
5307 stop_stepping (ecs);
5308 return;
5309 }
5310 else
5311 {
5312 /* Put the step-breakpoint there and go until there. */
5313 init_sal (&sr_sal); /* initialize to zeroes */
5314 sr_sal.pc = ecs->stop_func_start;
5315 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5316 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5317
5318 /* Do not specify what the fp should be when we stop since on
5319 some machines the prologue is where the new fp value is
5320 established. */
5321 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5322
5323 /* And make sure stepping stops right away then. */
5324 ecs->event_thread->control.step_range_end
5325 = ecs->event_thread->control.step_range_start;
5326 }
5327 keep_going (ecs);
5328}
5329
5330/* Inferior has stepped backward into a subroutine call with source
5331 code that we should not step over. Do step to the beginning of the
5332 last line of code in it. */
5333
5334static void
5335handle_step_into_function_backward (struct gdbarch *gdbarch,
5336 struct execution_control_state *ecs)
5337{
5338 struct symtab *s;
5339 struct symtab_and_line stop_func_sal;
5340
5341 fill_in_stop_func (gdbarch, ecs);
5342
5343 s = find_pc_symtab (stop_pc);
5344 if (s && s->language != language_asm)
5345 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5346 ecs->stop_func_start);
5347
5348 stop_func_sal = find_pc_line (stop_pc, 0);
5349
5350 /* OK, we're just going to keep stepping here. */
5351 if (stop_func_sal.pc == stop_pc)
5352 {
5353 /* We're there already. Just stop stepping now. */
5354 ecs->event_thread->control.stop_step = 1;
5355 print_end_stepping_range_reason ();
5356 stop_stepping (ecs);
5357 }
5358 else
5359 {
5360 /* Else just reset the step range and keep going.
5361 No step-resume breakpoint, they don't work for
5362 epilogues, which can have multiple entry paths. */
5363 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5364 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5365 keep_going (ecs);
5366 }
5367 return;
5368}
5369
5370/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5371 This is used to both functions and to skip over code. */
5372
5373static void
5374insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5375 struct symtab_and_line sr_sal,
5376 struct frame_id sr_id,
5377 enum bptype sr_type)
5378{
5379 /* There should never be more than one step-resume or longjmp-resume
5380 breakpoint per thread, so we should never be setting a new
5381 step_resume_breakpoint when one is already active. */
5382 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5383 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5384
5385 if (debug_infrun)
5386 fprintf_unfiltered (gdb_stdlog,
5387 "infrun: inserting step-resume breakpoint at %s\n",
5388 paddress (gdbarch, sr_sal.pc));
5389
5390 inferior_thread ()->control.step_resume_breakpoint
5391 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5392}
5393
5394void
5395insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5396 struct symtab_and_line sr_sal,
5397 struct frame_id sr_id)
5398{
5399 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5400 sr_sal, sr_id,
5401 bp_step_resume);
5402}
5403
5404/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5405 This is used to skip a potential signal handler.
5406
5407 This is called with the interrupted function's frame. The signal
5408 handler, when it returns, will resume the interrupted function at
5409 RETURN_FRAME.pc. */
5410
5411static void
5412insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5413{
5414 struct symtab_and_line sr_sal;
5415 struct gdbarch *gdbarch;
5416
5417 gdb_assert (return_frame != NULL);
5418 init_sal (&sr_sal); /* initialize to zeros */
5419
5420 gdbarch = get_frame_arch (return_frame);
5421 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5422 sr_sal.section = find_pc_overlay (sr_sal.pc);
5423 sr_sal.pspace = get_frame_program_space (return_frame);
5424
5425 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5426 get_stack_frame_id (return_frame),
5427 bp_hp_step_resume);
5428}
5429
5430/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5431 is used to skip a function after stepping into it (for "next" or if
5432 the called function has no debugging information).
5433
5434 The current function has almost always been reached by single
5435 stepping a call or return instruction. NEXT_FRAME belongs to the
5436 current function, and the breakpoint will be set at the caller's
5437 resume address.
5438
5439 This is a separate function rather than reusing
5440 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5441 get_prev_frame, which may stop prematurely (see the implementation
5442 of frame_unwind_caller_id for an example). */
5443
5444static void
5445insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5446{
5447 struct symtab_and_line sr_sal;
5448 struct gdbarch *gdbarch;
5449
5450 /* We shouldn't have gotten here if we don't know where the call site
5451 is. */
5452 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5453
5454 init_sal (&sr_sal); /* initialize to zeros */
5455
5456 gdbarch = frame_unwind_caller_arch (next_frame);
5457 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5458 frame_unwind_caller_pc (next_frame));
5459 sr_sal.section = find_pc_overlay (sr_sal.pc);
5460 sr_sal.pspace = frame_unwind_program_space (next_frame);
5461
5462 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5463 frame_unwind_caller_id (next_frame));
5464}
5465
5466/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5467 new breakpoint at the target of a jmp_buf. The handling of
5468 longjmp-resume uses the same mechanisms used for handling
5469 "step-resume" breakpoints. */
5470
5471static void
5472insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5473{
5474 /* There should never be more than one longjmp-resume breakpoint per
5475 thread, so we should never be setting a new
5476 longjmp_resume_breakpoint when one is already active. */
5477 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5478
5479 if (debug_infrun)
5480 fprintf_unfiltered (gdb_stdlog,
5481 "infrun: inserting longjmp-resume breakpoint at %s\n",
5482 paddress (gdbarch, pc));
5483
5484 inferior_thread ()->control.exception_resume_breakpoint =
5485 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5486}
5487
5488/* Insert an exception resume breakpoint. TP is the thread throwing
5489 the exception. The block B is the block of the unwinder debug hook
5490 function. FRAME is the frame corresponding to the call to this
5491 function. SYM is the symbol of the function argument holding the
5492 target PC of the exception. */
5493
5494static void
5495insert_exception_resume_breakpoint (struct thread_info *tp,
5496 struct block *b,
5497 struct frame_info *frame,
5498 struct symbol *sym)
5499{
5500 volatile struct gdb_exception e;
5501
5502 /* We want to ignore errors here. */
5503 TRY_CATCH (e, RETURN_MASK_ERROR)
5504 {
5505 struct symbol *vsym;
5506 struct value *value;
5507 CORE_ADDR handler;
5508 struct breakpoint *bp;
5509
5510 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5511 value = read_var_value (vsym, frame);
5512 /* If the value was optimized out, revert to the old behavior. */
5513 if (! value_optimized_out (value))
5514 {
5515 handler = value_as_address (value);
5516
5517 if (debug_infrun)
5518 fprintf_unfiltered (gdb_stdlog,
5519 "infrun: exception resume at %lx\n",
5520 (unsigned long) handler);
5521
5522 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5523 handler, bp_exception_resume);
5524
5525 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5526 frame = NULL;
5527
5528 bp->thread = tp->num;
5529 inferior_thread ()->control.exception_resume_breakpoint = bp;
5530 }
5531 }
5532}
5533
5534/* A helper for check_exception_resume that sets an
5535 exception-breakpoint based on a SystemTap probe. */
5536
5537static void
5538insert_exception_resume_from_probe (struct thread_info *tp,
5539 const struct probe *probe,
5540 struct frame_info *frame)
5541{
5542 struct value *arg_value;
5543 CORE_ADDR handler;
5544 struct breakpoint *bp;
5545
5546 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5547 if (!arg_value)
5548 return;
5549
5550 handler = value_as_address (arg_value);
5551
5552 if (debug_infrun)
5553 fprintf_unfiltered (gdb_stdlog,
5554 "infrun: exception resume at %s\n",
5555 paddress (get_objfile_arch (probe->objfile),
5556 handler));
5557
5558 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5559 handler, bp_exception_resume);
5560 bp->thread = tp->num;
5561 inferior_thread ()->control.exception_resume_breakpoint = bp;
5562}
5563
5564/* This is called when an exception has been intercepted. Check to
5565 see whether the exception's destination is of interest, and if so,
5566 set an exception resume breakpoint there. */
5567
5568static void
5569check_exception_resume (struct execution_control_state *ecs,
5570 struct frame_info *frame)
5571{
5572 volatile struct gdb_exception e;
5573 const struct probe *probe;
5574 struct symbol *func;
5575
5576 /* First see if this exception unwinding breakpoint was set via a
5577 SystemTap probe point. If so, the probe has two arguments: the
5578 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5579 set a breakpoint there. */
5580 probe = find_probe_by_pc (get_frame_pc (frame));
5581 if (probe)
5582 {
5583 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5584 return;
5585 }
5586
5587 func = get_frame_function (frame);
5588 if (!func)
5589 return;
5590
5591 TRY_CATCH (e, RETURN_MASK_ERROR)
5592 {
5593 struct block *b;
5594 struct block_iterator iter;
5595 struct symbol *sym;
5596 int argno = 0;
5597
5598 /* The exception breakpoint is a thread-specific breakpoint on
5599 the unwinder's debug hook, declared as:
5600
5601 void _Unwind_DebugHook (void *cfa, void *handler);
5602
5603 The CFA argument indicates the frame to which control is
5604 about to be transferred. HANDLER is the destination PC.
5605
5606 We ignore the CFA and set a temporary breakpoint at HANDLER.
5607 This is not extremely efficient but it avoids issues in gdb
5608 with computing the DWARF CFA, and it also works even in weird
5609 cases such as throwing an exception from inside a signal
5610 handler. */
5611
5612 b = SYMBOL_BLOCK_VALUE (func);
5613 ALL_BLOCK_SYMBOLS (b, iter, sym)
5614 {
5615 if (!SYMBOL_IS_ARGUMENT (sym))
5616 continue;
5617
5618 if (argno == 0)
5619 ++argno;
5620 else
5621 {
5622 insert_exception_resume_breakpoint (ecs->event_thread,
5623 b, frame, sym);
5624 break;
5625 }
5626 }
5627 }
5628}
5629
5630static void
5631stop_stepping (struct execution_control_state *ecs)
5632{
5633 if (debug_infrun)
5634 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5635
5636 /* Let callers know we don't want to wait for the inferior anymore. */
5637 ecs->wait_some_more = 0;
5638}
5639
5640/* This function handles various cases where we need to continue
5641 waiting for the inferior. */
5642/* (Used to be the keep_going: label in the old wait_for_inferior). */
5643
5644static void
5645keep_going (struct execution_control_state *ecs)
5646{
5647 /* Make sure normal_stop is called if we get a QUIT handled before
5648 reaching resume. */
5649 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5650
5651 /* Save the pc before execution, to compare with pc after stop. */
5652 ecs->event_thread->prev_pc
5653 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5654
5655 /* If we did not do break;, it means we should keep running the
5656 inferior and not return to debugger. */
5657
5658 if (ecs->event_thread->control.trap_expected
5659 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5660 {
5661 /* We took a signal (which we are supposed to pass through to
5662 the inferior, else we'd not get here) and we haven't yet
5663 gotten our trap. Simply continue. */
5664
5665 discard_cleanups (old_cleanups);
5666 resume (currently_stepping (ecs->event_thread),
5667 ecs->event_thread->suspend.stop_signal);
5668 }
5669 else
5670 {
5671 /* Either the trap was not expected, but we are continuing
5672 anyway (the user asked that this signal be passed to the
5673 child)
5674 -- or --
5675 The signal was SIGTRAP, e.g. it was our signal, but we
5676 decided we should resume from it.
5677
5678 We're going to run this baby now!
5679
5680 Note that insert_breakpoints won't try to re-insert
5681 already inserted breakpoints. Therefore, we don't
5682 care if breakpoints were already inserted, or not. */
5683
5684 if (ecs->event_thread->stepping_over_breakpoint)
5685 {
5686 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5687
5688 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5689 /* Since we can't do a displaced step, we have to remove
5690 the breakpoint while we step it. To keep things
5691 simple, we remove them all. */
5692 remove_breakpoints ();
5693 }
5694 else
5695 {
5696 volatile struct gdb_exception e;
5697
5698 /* Stop stepping when inserting breakpoints
5699 has failed. */
5700 TRY_CATCH (e, RETURN_MASK_ERROR)
5701 {
5702 insert_breakpoints ();
5703 }
5704 if (e.reason < 0)
5705 {
5706 exception_print (gdb_stderr, e);
5707 stop_stepping (ecs);
5708 return;
5709 }
5710 }
5711
5712 ecs->event_thread->control.trap_expected
5713 = ecs->event_thread->stepping_over_breakpoint;
5714
5715 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5716 specifies that such a signal should be delivered to the
5717 target program).
5718
5719 Typically, this would occure when a user is debugging a
5720 target monitor on a simulator: the target monitor sets a
5721 breakpoint; the simulator encounters this break-point and
5722 halts the simulation handing control to GDB; GDB, noteing
5723 that the break-point isn't valid, returns control back to the
5724 simulator; the simulator then delivers the hardware
5725 equivalent of a SIGNAL_TRAP to the program being debugged. */
5726
5727 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5728 && !signal_program[ecs->event_thread->suspend.stop_signal])
5729 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5730
5731 discard_cleanups (old_cleanups);
5732 resume (currently_stepping (ecs->event_thread),
5733 ecs->event_thread->suspend.stop_signal);
5734 }
5735
5736 prepare_to_wait (ecs);
5737}
5738
5739/* This function normally comes after a resume, before
5740 handle_inferior_event exits. It takes care of any last bits of
5741 housekeeping, and sets the all-important wait_some_more flag. */
5742
5743static void
5744prepare_to_wait (struct execution_control_state *ecs)
5745{
5746 if (debug_infrun)
5747 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5748
5749 /* This is the old end of the while loop. Let everybody know we
5750 want to wait for the inferior some more and get called again
5751 soon. */
5752 ecs->wait_some_more = 1;
5753}
5754
5755/* Several print_*_reason functions to print why the inferior has stopped.
5756 We always print something when the inferior exits, or receives a signal.
5757 The rest of the cases are dealt with later on in normal_stop and
5758 print_it_typical. Ideally there should be a call to one of these
5759 print_*_reason functions functions from handle_inferior_event each time
5760 stop_stepping is called. */
5761
5762/* Print why the inferior has stopped.
5763 We are done with a step/next/si/ni command, print why the inferior has
5764 stopped. For now print nothing. Print a message only if not in the middle
5765 of doing a "step n" operation for n > 1. */
5766
5767static void
5768print_end_stepping_range_reason (void)
5769{
5770 if ((!inferior_thread ()->step_multi
5771 || !inferior_thread ()->control.stop_step)
5772 && ui_out_is_mi_like_p (current_uiout))
5773 ui_out_field_string (current_uiout, "reason",
5774 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5775}
5776
5777/* The inferior was terminated by a signal, print why it stopped. */
5778
5779static void
5780print_signal_exited_reason (enum gdb_signal siggnal)
5781{
5782 struct ui_out *uiout = current_uiout;
5783
5784 annotate_signalled ();
5785 if (ui_out_is_mi_like_p (uiout))
5786 ui_out_field_string
5787 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5788 ui_out_text (uiout, "\nProgram terminated with signal ");
5789 annotate_signal_name ();
5790 ui_out_field_string (uiout, "signal-name",
5791 gdb_signal_to_name (siggnal));
5792 annotate_signal_name_end ();
5793 ui_out_text (uiout, ", ");
5794 annotate_signal_string ();
5795 ui_out_field_string (uiout, "signal-meaning",
5796 gdb_signal_to_string (siggnal));
5797 annotate_signal_string_end ();
5798 ui_out_text (uiout, ".\n");
5799 ui_out_text (uiout, "The program no longer exists.\n");
5800}
5801
5802/* The inferior program is finished, print why it stopped. */
5803
5804static void
5805print_exited_reason (int exitstatus)
5806{
5807 struct inferior *inf = current_inferior ();
5808 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5809 struct ui_out *uiout = current_uiout;
5810
5811 annotate_exited (exitstatus);
5812 if (exitstatus)
5813 {
5814 if (ui_out_is_mi_like_p (uiout))
5815 ui_out_field_string (uiout, "reason",
5816 async_reason_lookup (EXEC_ASYNC_EXITED));
5817 ui_out_text (uiout, "[Inferior ");
5818 ui_out_text (uiout, plongest (inf->num));
5819 ui_out_text (uiout, " (");
5820 ui_out_text (uiout, pidstr);
5821 ui_out_text (uiout, ") exited with code ");
5822 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5823 ui_out_text (uiout, "]\n");
5824 }
5825 else
5826 {
5827 if (ui_out_is_mi_like_p (uiout))
5828 ui_out_field_string
5829 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5830 ui_out_text (uiout, "[Inferior ");
5831 ui_out_text (uiout, plongest (inf->num));
5832 ui_out_text (uiout, " (");
5833 ui_out_text (uiout, pidstr);
5834 ui_out_text (uiout, ") exited normally]\n");
5835 }
5836 /* Support the --return-child-result option. */
5837 return_child_result_value = exitstatus;
5838}
5839
5840/* Signal received, print why the inferior has stopped. The signal table
5841 tells us to print about it. */
5842
5843static void
5844print_signal_received_reason (enum gdb_signal siggnal)
5845{
5846 struct ui_out *uiout = current_uiout;
5847
5848 annotate_signal ();
5849
5850 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5851 {
5852 struct thread_info *t = inferior_thread ();
5853
5854 ui_out_text (uiout, "\n[");
5855 ui_out_field_string (uiout, "thread-name",
5856 target_pid_to_str (t->ptid));
5857 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5858 ui_out_text (uiout, " stopped");
5859 }
5860 else
5861 {
5862 ui_out_text (uiout, "\nProgram received signal ");
5863 annotate_signal_name ();
5864 if (ui_out_is_mi_like_p (uiout))
5865 ui_out_field_string
5866 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5867 ui_out_field_string (uiout, "signal-name",
5868 gdb_signal_to_name (siggnal));
5869 annotate_signal_name_end ();
5870 ui_out_text (uiout, ", ");
5871 annotate_signal_string ();
5872 ui_out_field_string (uiout, "signal-meaning",
5873 gdb_signal_to_string (siggnal));
5874 annotate_signal_string_end ();
5875 }
5876 ui_out_text (uiout, ".\n");
5877}
5878
5879/* Reverse execution: target ran out of history info, print why the inferior
5880 has stopped. */
5881
5882static void
5883print_no_history_reason (void)
5884{
5885 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5886}
5887
5888/* Here to return control to GDB when the inferior stops for real.
5889 Print appropriate messages, remove breakpoints, give terminal our modes.
5890
5891 STOP_PRINT_FRAME nonzero means print the executing frame
5892 (pc, function, args, file, line number and line text).
5893 BREAKPOINTS_FAILED nonzero means stop was due to error
5894 attempting to insert breakpoints. */
5895
5896void
5897normal_stop (void)
5898{
5899 struct target_waitstatus last;
5900 ptid_t last_ptid;
5901 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5902
5903 get_last_target_status (&last_ptid, &last);
5904
5905 /* If an exception is thrown from this point on, make sure to
5906 propagate GDB's knowledge of the executing state to the
5907 frontend/user running state. A QUIT is an easy exception to see
5908 here, so do this before any filtered output. */
5909 if (!non_stop)
5910 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5911 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5912 && last.kind != TARGET_WAITKIND_EXITED
5913 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5914 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5915
5916 /* In non-stop mode, we don't want GDB to switch threads behind the
5917 user's back, to avoid races where the user is typing a command to
5918 apply to thread x, but GDB switches to thread y before the user
5919 finishes entering the command. */
5920
5921 /* As with the notification of thread events, we want to delay
5922 notifying the user that we've switched thread context until
5923 the inferior actually stops.
5924
5925 There's no point in saying anything if the inferior has exited.
5926 Note that SIGNALLED here means "exited with a signal", not
5927 "received a signal". */
5928 if (!non_stop
5929 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5930 && target_has_execution
5931 && last.kind != TARGET_WAITKIND_SIGNALLED
5932 && last.kind != TARGET_WAITKIND_EXITED
5933 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5934 {
5935 target_terminal_ours_for_output ();
5936 printf_filtered (_("[Switching to %s]\n"),
5937 target_pid_to_str (inferior_ptid));
5938 annotate_thread_changed ();
5939 previous_inferior_ptid = inferior_ptid;
5940 }
5941
5942 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5943 {
5944 gdb_assert (sync_execution || !target_can_async_p ());
5945
5946 target_terminal_ours_for_output ();
5947 printf_filtered (_("No unwaited-for children left.\n"));
5948 }
5949
5950 if (!breakpoints_always_inserted_mode () && target_has_execution)
5951 {
5952 if (remove_breakpoints ())
5953 {
5954 target_terminal_ours_for_output ();
5955 printf_filtered (_("Cannot remove breakpoints because "
5956 "program is no longer writable.\nFurther "
5957 "execution is probably impossible.\n"));
5958 }
5959 }
5960
5961 /* If an auto-display called a function and that got a signal,
5962 delete that auto-display to avoid an infinite recursion. */
5963
5964 if (stopped_by_random_signal)
5965 disable_current_display ();
5966
5967 /* Don't print a message if in the middle of doing a "step n"
5968 operation for n > 1 */
5969 if (target_has_execution
5970 && last.kind != TARGET_WAITKIND_SIGNALLED
5971 && last.kind != TARGET_WAITKIND_EXITED
5972 && inferior_thread ()->step_multi
5973 && inferior_thread ()->control.stop_step)
5974 goto done;
5975
5976 target_terminal_ours ();
5977 async_enable_stdin ();
5978
5979 /* Set the current source location. This will also happen if we
5980 display the frame below, but the current SAL will be incorrect
5981 during a user hook-stop function. */
5982 if (has_stack_frames () && !stop_stack_dummy)
5983 set_current_sal_from_frame (get_current_frame (), 1);
5984
5985 /* Let the user/frontend see the threads as stopped. */
5986 do_cleanups (old_chain);
5987
5988 /* Look up the hook_stop and run it (CLI internally handles problem
5989 of stop_command's pre-hook not existing). */
5990 if (stop_command)
5991 catch_errors (hook_stop_stub, stop_command,
5992 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5993
5994 if (!has_stack_frames ())
5995 goto done;
5996
5997 if (last.kind == TARGET_WAITKIND_SIGNALLED
5998 || last.kind == TARGET_WAITKIND_EXITED)
5999 goto done;
6000
6001 /* Select innermost stack frame - i.e., current frame is frame 0,
6002 and current location is based on that.
6003 Don't do this on return from a stack dummy routine,
6004 or if the program has exited. */
6005
6006 if (!stop_stack_dummy)
6007 {
6008 select_frame (get_current_frame ());
6009
6010 /* Print current location without a level number, if
6011 we have changed functions or hit a breakpoint.
6012 Print source line if we have one.
6013 bpstat_print() contains the logic deciding in detail
6014 what to print, based on the event(s) that just occurred. */
6015
6016 /* If --batch-silent is enabled then there's no need to print the current
6017 source location, and to try risks causing an error message about
6018 missing source files. */
6019 if (stop_print_frame && !batch_silent)
6020 {
6021 int bpstat_ret;
6022 int source_flag;
6023 int do_frame_printing = 1;
6024 struct thread_info *tp = inferior_thread ();
6025
6026 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6027 switch (bpstat_ret)
6028 {
6029 case PRINT_UNKNOWN:
6030 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6031 (or should) carry around the function and does (or
6032 should) use that when doing a frame comparison. */
6033 if (tp->control.stop_step
6034 && frame_id_eq (tp->control.step_frame_id,
6035 get_frame_id (get_current_frame ()))
6036 && step_start_function == find_pc_function (stop_pc))
6037 source_flag = SRC_LINE; /* Finished step, just
6038 print source line. */
6039 else
6040 source_flag = SRC_AND_LOC; /* Print location and
6041 source line. */
6042 break;
6043 case PRINT_SRC_AND_LOC:
6044 source_flag = SRC_AND_LOC; /* Print location and
6045 source line. */
6046 break;
6047 case PRINT_SRC_ONLY:
6048 source_flag = SRC_LINE;
6049 break;
6050 case PRINT_NOTHING:
6051 source_flag = SRC_LINE; /* something bogus */
6052 do_frame_printing = 0;
6053 break;
6054 default:
6055 internal_error (__FILE__, __LINE__, _("Unknown value."));
6056 }
6057
6058 /* The behavior of this routine with respect to the source
6059 flag is:
6060 SRC_LINE: Print only source line
6061 LOCATION: Print only location
6062 SRC_AND_LOC: Print location and source line. */
6063 if (do_frame_printing)
6064 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
6065
6066 /* Display the auto-display expressions. */
6067 do_displays ();
6068 }
6069 }
6070
6071 /* Save the function value return registers, if we care.
6072 We might be about to restore their previous contents. */
6073 if (inferior_thread ()->control.proceed_to_finish
6074 && execution_direction != EXEC_REVERSE)
6075 {
6076 /* This should not be necessary. */
6077 if (stop_registers)
6078 regcache_xfree (stop_registers);
6079
6080 /* NB: The copy goes through to the target picking up the value of
6081 all the registers. */
6082 stop_registers = regcache_dup (get_current_regcache ());
6083 }
6084
6085 if (stop_stack_dummy == STOP_STACK_DUMMY)
6086 {
6087 /* Pop the empty frame that contains the stack dummy.
6088 This also restores inferior state prior to the call
6089 (struct infcall_suspend_state). */
6090 struct frame_info *frame = get_current_frame ();
6091
6092 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6093 frame_pop (frame);
6094 /* frame_pop() calls reinit_frame_cache as the last thing it
6095 does which means there's currently no selected frame. We
6096 don't need to re-establish a selected frame if the dummy call
6097 returns normally, that will be done by
6098 restore_infcall_control_state. However, we do have to handle
6099 the case where the dummy call is returning after being
6100 stopped (e.g. the dummy call previously hit a breakpoint).
6101 We can't know which case we have so just always re-establish
6102 a selected frame here. */
6103 select_frame (get_current_frame ());
6104 }
6105
6106done:
6107 annotate_stopped ();
6108
6109 /* Suppress the stop observer if we're in the middle of:
6110
6111 - a step n (n > 1), as there still more steps to be done.
6112
6113 - a "finish" command, as the observer will be called in
6114 finish_command_continuation, so it can include the inferior
6115 function's return value.
6116
6117 - calling an inferior function, as we pretend we inferior didn't
6118 run at all. The return value of the call is handled by the
6119 expression evaluator, through call_function_by_hand. */
6120
6121 if (!target_has_execution
6122 || last.kind == TARGET_WAITKIND_SIGNALLED
6123 || last.kind == TARGET_WAITKIND_EXITED
6124 || last.kind == TARGET_WAITKIND_NO_RESUMED
6125 || (!(inferior_thread ()->step_multi
6126 && inferior_thread ()->control.stop_step)
6127 && !(inferior_thread ()->control.stop_bpstat
6128 && inferior_thread ()->control.proceed_to_finish)
6129 && !inferior_thread ()->control.in_infcall))
6130 {
6131 if (!ptid_equal (inferior_ptid, null_ptid))
6132 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6133 stop_print_frame);
6134 else
6135 observer_notify_normal_stop (NULL, stop_print_frame);
6136 }
6137
6138 if (target_has_execution)
6139 {
6140 if (last.kind != TARGET_WAITKIND_SIGNALLED
6141 && last.kind != TARGET_WAITKIND_EXITED)
6142 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6143 Delete any breakpoint that is to be deleted at the next stop. */
6144 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6145 }
6146
6147 /* Try to get rid of automatically added inferiors that are no
6148 longer needed. Keeping those around slows down things linearly.
6149 Note that this never removes the current inferior. */
6150 prune_inferiors ();
6151}
6152
6153static int
6154hook_stop_stub (void *cmd)
6155{
6156 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6157 return (0);
6158}
6159\f
6160int
6161signal_stop_state (int signo)
6162{
6163 return signal_stop[signo];
6164}
6165
6166int
6167signal_print_state (int signo)
6168{
6169 return signal_print[signo];
6170}
6171
6172int
6173signal_pass_state (int signo)
6174{
6175 return signal_program[signo];
6176}
6177
6178static void
6179signal_cache_update (int signo)
6180{
6181 if (signo == -1)
6182 {
6183 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6184 signal_cache_update (signo);
6185
6186 return;
6187 }
6188
6189 signal_pass[signo] = (signal_stop[signo] == 0
6190 && signal_print[signo] == 0
6191 && signal_program[signo] == 1);
6192}
6193
6194int
6195signal_stop_update (int signo, int state)
6196{
6197 int ret = signal_stop[signo];
6198
6199 signal_stop[signo] = state;
6200 signal_cache_update (signo);
6201 return ret;
6202}
6203
6204int
6205signal_print_update (int signo, int state)
6206{
6207 int ret = signal_print[signo];
6208
6209 signal_print[signo] = state;
6210 signal_cache_update (signo);
6211 return ret;
6212}
6213
6214int
6215signal_pass_update (int signo, int state)
6216{
6217 int ret = signal_program[signo];
6218
6219 signal_program[signo] = state;
6220 signal_cache_update (signo);
6221 return ret;
6222}
6223
6224static void
6225sig_print_header (void)
6226{
6227 printf_filtered (_("Signal Stop\tPrint\tPass "
6228 "to program\tDescription\n"));
6229}
6230
6231static void
6232sig_print_info (enum gdb_signal oursig)
6233{
6234 const char *name = gdb_signal_to_name (oursig);
6235 int name_padding = 13 - strlen (name);
6236
6237 if (name_padding <= 0)
6238 name_padding = 0;
6239
6240 printf_filtered ("%s", name);
6241 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6242 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6243 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6244 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6245 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6246}
6247
6248/* Specify how various signals in the inferior should be handled. */
6249
6250static void
6251handle_command (char *args, int from_tty)
6252{
6253 char **argv;
6254 int digits, wordlen;
6255 int sigfirst, signum, siglast;
6256 enum gdb_signal oursig;
6257 int allsigs;
6258 int nsigs;
6259 unsigned char *sigs;
6260 struct cleanup *old_chain;
6261
6262 if (args == NULL)
6263 {
6264 error_no_arg (_("signal to handle"));
6265 }
6266
6267 /* Allocate and zero an array of flags for which signals to handle. */
6268
6269 nsigs = (int) GDB_SIGNAL_LAST;
6270 sigs = (unsigned char *) alloca (nsigs);
6271 memset (sigs, 0, nsigs);
6272
6273 /* Break the command line up into args. */
6274
6275 argv = gdb_buildargv (args);
6276 old_chain = make_cleanup_freeargv (argv);
6277
6278 /* Walk through the args, looking for signal oursigs, signal names, and
6279 actions. Signal numbers and signal names may be interspersed with
6280 actions, with the actions being performed for all signals cumulatively
6281 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6282
6283 while (*argv != NULL)
6284 {
6285 wordlen = strlen (*argv);
6286 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6287 {;
6288 }
6289 allsigs = 0;
6290 sigfirst = siglast = -1;
6291
6292 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6293 {
6294 /* Apply action to all signals except those used by the
6295 debugger. Silently skip those. */
6296 allsigs = 1;
6297 sigfirst = 0;
6298 siglast = nsigs - 1;
6299 }
6300 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6301 {
6302 SET_SIGS (nsigs, sigs, signal_stop);
6303 SET_SIGS (nsigs, sigs, signal_print);
6304 }
6305 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6306 {
6307 UNSET_SIGS (nsigs, sigs, signal_program);
6308 }
6309 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6310 {
6311 SET_SIGS (nsigs, sigs, signal_print);
6312 }
6313 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6314 {
6315 SET_SIGS (nsigs, sigs, signal_program);
6316 }
6317 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6318 {
6319 UNSET_SIGS (nsigs, sigs, signal_stop);
6320 }
6321 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6322 {
6323 SET_SIGS (nsigs, sigs, signal_program);
6324 }
6325 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6326 {
6327 UNSET_SIGS (nsigs, sigs, signal_print);
6328 UNSET_SIGS (nsigs, sigs, signal_stop);
6329 }
6330 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6331 {
6332 UNSET_SIGS (nsigs, sigs, signal_program);
6333 }
6334 else if (digits > 0)
6335 {
6336 /* It is numeric. The numeric signal refers to our own
6337 internal signal numbering from target.h, not to host/target
6338 signal number. This is a feature; users really should be
6339 using symbolic names anyway, and the common ones like
6340 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6341
6342 sigfirst = siglast = (int)
6343 gdb_signal_from_command (atoi (*argv));
6344 if ((*argv)[digits] == '-')
6345 {
6346 siglast = (int)
6347 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6348 }
6349 if (sigfirst > siglast)
6350 {
6351 /* Bet he didn't figure we'd think of this case... */
6352 signum = sigfirst;
6353 sigfirst = siglast;
6354 siglast = signum;
6355 }
6356 }
6357 else
6358 {
6359 oursig = gdb_signal_from_name (*argv);
6360 if (oursig != GDB_SIGNAL_UNKNOWN)
6361 {
6362 sigfirst = siglast = (int) oursig;
6363 }
6364 else
6365 {
6366 /* Not a number and not a recognized flag word => complain. */
6367 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6368 }
6369 }
6370
6371 /* If any signal numbers or symbol names were found, set flags for
6372 which signals to apply actions to. */
6373
6374 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6375 {
6376 switch ((enum gdb_signal) signum)
6377 {
6378 case GDB_SIGNAL_TRAP:
6379 case GDB_SIGNAL_INT:
6380 if (!allsigs && !sigs[signum])
6381 {
6382 if (query (_("%s is used by the debugger.\n\
6383Are you sure you want to change it? "),
6384 gdb_signal_to_name ((enum gdb_signal) signum)))
6385 {
6386 sigs[signum] = 1;
6387 }
6388 else
6389 {
6390 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6391 gdb_flush (gdb_stdout);
6392 }
6393 }
6394 break;
6395 case GDB_SIGNAL_0:
6396 case GDB_SIGNAL_DEFAULT:
6397 case GDB_SIGNAL_UNKNOWN:
6398 /* Make sure that "all" doesn't print these. */
6399 break;
6400 default:
6401 sigs[signum] = 1;
6402 break;
6403 }
6404 }
6405
6406 argv++;
6407 }
6408
6409 for (signum = 0; signum < nsigs; signum++)
6410 if (sigs[signum])
6411 {
6412 signal_cache_update (-1);
6413 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6414 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6415
6416 if (from_tty)
6417 {
6418 /* Show the results. */
6419 sig_print_header ();
6420 for (; signum < nsigs; signum++)
6421 if (sigs[signum])
6422 sig_print_info (signum);
6423 }
6424
6425 break;
6426 }
6427
6428 do_cleanups (old_chain);
6429}
6430
6431/* Complete the "handle" command. */
6432
6433static VEC (char_ptr) *
6434handle_completer (struct cmd_list_element *ignore,
6435 char *text, char *word)
6436{
6437 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6438 static const char * const keywords[] =
6439 {
6440 "all",
6441 "stop",
6442 "ignore",
6443 "print",
6444 "pass",
6445 "nostop",
6446 "noignore",
6447 "noprint",
6448 "nopass",
6449 NULL,
6450 };
6451
6452 vec_signals = signal_completer (ignore, text, word);
6453 vec_keywords = complete_on_enum (keywords, word, word);
6454
6455 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6456 VEC_free (char_ptr, vec_signals);
6457 VEC_free (char_ptr, vec_keywords);
6458 return return_val;
6459}
6460
6461static void
6462xdb_handle_command (char *args, int from_tty)
6463{
6464 char **argv;
6465 struct cleanup *old_chain;
6466
6467 if (args == NULL)
6468 error_no_arg (_("xdb command"));
6469
6470 /* Break the command line up into args. */
6471
6472 argv = gdb_buildargv (args);
6473 old_chain = make_cleanup_freeargv (argv);
6474 if (argv[1] != (char *) NULL)
6475 {
6476 char *argBuf;
6477 int bufLen;
6478
6479 bufLen = strlen (argv[0]) + 20;
6480 argBuf = (char *) xmalloc (bufLen);
6481 if (argBuf)
6482 {
6483 int validFlag = 1;
6484 enum gdb_signal oursig;
6485
6486 oursig = gdb_signal_from_name (argv[0]);
6487 memset (argBuf, 0, bufLen);
6488 if (strcmp (argv[1], "Q") == 0)
6489 sprintf (argBuf, "%s %s", argv[0], "noprint");
6490 else
6491 {
6492 if (strcmp (argv[1], "s") == 0)
6493 {
6494 if (!signal_stop[oursig])
6495 sprintf (argBuf, "%s %s", argv[0], "stop");
6496 else
6497 sprintf (argBuf, "%s %s", argv[0], "nostop");
6498 }
6499 else if (strcmp (argv[1], "i") == 0)
6500 {
6501 if (!signal_program[oursig])
6502 sprintf (argBuf, "%s %s", argv[0], "pass");
6503 else
6504 sprintf (argBuf, "%s %s", argv[0], "nopass");
6505 }
6506 else if (strcmp (argv[1], "r") == 0)
6507 {
6508 if (!signal_print[oursig])
6509 sprintf (argBuf, "%s %s", argv[0], "print");
6510 else
6511 sprintf (argBuf, "%s %s", argv[0], "noprint");
6512 }
6513 else
6514 validFlag = 0;
6515 }
6516 if (validFlag)
6517 handle_command (argBuf, from_tty);
6518 else
6519 printf_filtered (_("Invalid signal handling flag.\n"));
6520 if (argBuf)
6521 xfree (argBuf);
6522 }
6523 }
6524 do_cleanups (old_chain);
6525}
6526
6527enum gdb_signal
6528gdb_signal_from_command (int num)
6529{
6530 if (num >= 1 && num <= 15)
6531 return (enum gdb_signal) num;
6532 error (_("Only signals 1-15 are valid as numeric signals.\n\
6533Use \"info signals\" for a list of symbolic signals."));
6534}
6535
6536/* Print current contents of the tables set by the handle command.
6537 It is possible we should just be printing signals actually used
6538 by the current target (but for things to work right when switching
6539 targets, all signals should be in the signal tables). */
6540
6541static void
6542signals_info (char *signum_exp, int from_tty)
6543{
6544 enum gdb_signal oursig;
6545
6546 sig_print_header ();
6547
6548 if (signum_exp)
6549 {
6550 /* First see if this is a symbol name. */
6551 oursig = gdb_signal_from_name (signum_exp);
6552 if (oursig == GDB_SIGNAL_UNKNOWN)
6553 {
6554 /* No, try numeric. */
6555 oursig =
6556 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6557 }
6558 sig_print_info (oursig);
6559 return;
6560 }
6561
6562 printf_filtered ("\n");
6563 /* These ugly casts brought to you by the native VAX compiler. */
6564 for (oursig = GDB_SIGNAL_FIRST;
6565 (int) oursig < (int) GDB_SIGNAL_LAST;
6566 oursig = (enum gdb_signal) ((int) oursig + 1))
6567 {
6568 QUIT;
6569
6570 if (oursig != GDB_SIGNAL_UNKNOWN
6571 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6572 sig_print_info (oursig);
6573 }
6574
6575 printf_filtered (_("\nUse the \"handle\" command "
6576 "to change these tables.\n"));
6577}
6578
6579/* Check if it makes sense to read $_siginfo from the current thread
6580 at this point. If not, throw an error. */
6581
6582static void
6583validate_siginfo_access (void)
6584{
6585 /* No current inferior, no siginfo. */
6586 if (ptid_equal (inferior_ptid, null_ptid))
6587 error (_("No thread selected."));
6588
6589 /* Don't try to read from a dead thread. */
6590 if (is_exited (inferior_ptid))
6591 error (_("The current thread has terminated"));
6592
6593 /* ... or from a spinning thread. */
6594 if (is_running (inferior_ptid))
6595 error (_("Selected thread is running."));
6596}
6597
6598/* The $_siginfo convenience variable is a bit special. We don't know
6599 for sure the type of the value until we actually have a chance to
6600 fetch the data. The type can change depending on gdbarch, so it is
6601 also dependent on which thread you have selected.
6602
6603 1. making $_siginfo be an internalvar that creates a new value on
6604 access.
6605
6606 2. making the value of $_siginfo be an lval_computed value. */
6607
6608/* This function implements the lval_computed support for reading a
6609 $_siginfo value. */
6610
6611static void
6612siginfo_value_read (struct value *v)
6613{
6614 LONGEST transferred;
6615
6616 validate_siginfo_access ();
6617
6618 transferred =
6619 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6620 NULL,
6621 value_contents_all_raw (v),
6622 value_offset (v),
6623 TYPE_LENGTH (value_type (v)));
6624
6625 if (transferred != TYPE_LENGTH (value_type (v)))
6626 error (_("Unable to read siginfo"));
6627}
6628
6629/* This function implements the lval_computed support for writing a
6630 $_siginfo value. */
6631
6632static void
6633siginfo_value_write (struct value *v, struct value *fromval)
6634{
6635 LONGEST transferred;
6636
6637 validate_siginfo_access ();
6638
6639 transferred = target_write (&current_target,
6640 TARGET_OBJECT_SIGNAL_INFO,
6641 NULL,
6642 value_contents_all_raw (fromval),
6643 value_offset (v),
6644 TYPE_LENGTH (value_type (fromval)));
6645
6646 if (transferred != TYPE_LENGTH (value_type (fromval)))
6647 error (_("Unable to write siginfo"));
6648}
6649
6650static const struct lval_funcs siginfo_value_funcs =
6651 {
6652 siginfo_value_read,
6653 siginfo_value_write
6654 };
6655
6656/* Return a new value with the correct type for the siginfo object of
6657 the current thread using architecture GDBARCH. Return a void value
6658 if there's no object available. */
6659
6660static struct value *
6661siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6662 void *ignore)
6663{
6664 if (target_has_stack
6665 && !ptid_equal (inferior_ptid, null_ptid)
6666 && gdbarch_get_siginfo_type_p (gdbarch))
6667 {
6668 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6669
6670 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6671 }
6672
6673 return allocate_value (builtin_type (gdbarch)->builtin_void);
6674}
6675
6676\f
6677/* infcall_suspend_state contains state about the program itself like its
6678 registers and any signal it received when it last stopped.
6679 This state must be restored regardless of how the inferior function call
6680 ends (either successfully, or after it hits a breakpoint or signal)
6681 if the program is to properly continue where it left off. */
6682
6683struct infcall_suspend_state
6684{
6685 struct thread_suspend_state thread_suspend;
6686#if 0 /* Currently unused and empty structures are not valid C. */
6687 struct inferior_suspend_state inferior_suspend;
6688#endif
6689
6690 /* Other fields: */
6691 CORE_ADDR stop_pc;
6692 struct regcache *registers;
6693
6694 /* Format of SIGINFO_DATA or NULL if it is not present. */
6695 struct gdbarch *siginfo_gdbarch;
6696
6697 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6698 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6699 content would be invalid. */
6700 gdb_byte *siginfo_data;
6701};
6702
6703struct infcall_suspend_state *
6704save_infcall_suspend_state (void)
6705{
6706 struct infcall_suspend_state *inf_state;
6707 struct thread_info *tp = inferior_thread ();
6708 struct inferior *inf = current_inferior ();
6709 struct regcache *regcache = get_current_regcache ();
6710 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6711 gdb_byte *siginfo_data = NULL;
6712
6713 if (gdbarch_get_siginfo_type_p (gdbarch))
6714 {
6715 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6716 size_t len = TYPE_LENGTH (type);
6717 struct cleanup *back_to;
6718
6719 siginfo_data = xmalloc (len);
6720 back_to = make_cleanup (xfree, siginfo_data);
6721
6722 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6723 siginfo_data, 0, len) == len)
6724 discard_cleanups (back_to);
6725 else
6726 {
6727 /* Errors ignored. */
6728 do_cleanups (back_to);
6729 siginfo_data = NULL;
6730 }
6731 }
6732
6733 inf_state = XZALLOC (struct infcall_suspend_state);
6734
6735 if (siginfo_data)
6736 {
6737 inf_state->siginfo_gdbarch = gdbarch;
6738 inf_state->siginfo_data = siginfo_data;
6739 }
6740
6741 inf_state->thread_suspend = tp->suspend;
6742#if 0 /* Currently unused and empty structures are not valid C. */
6743 inf_state->inferior_suspend = inf->suspend;
6744#endif
6745
6746 /* run_inferior_call will not use the signal due to its `proceed' call with
6747 GDB_SIGNAL_0 anyway. */
6748 tp->suspend.stop_signal = GDB_SIGNAL_0;
6749
6750 inf_state->stop_pc = stop_pc;
6751
6752 inf_state->registers = regcache_dup (regcache);
6753
6754 return inf_state;
6755}
6756
6757/* Restore inferior session state to INF_STATE. */
6758
6759void
6760restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6761{
6762 struct thread_info *tp = inferior_thread ();
6763 struct inferior *inf = current_inferior ();
6764 struct regcache *regcache = get_current_regcache ();
6765 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6766
6767 tp->suspend = inf_state->thread_suspend;
6768#if 0 /* Currently unused and empty structures are not valid C. */
6769 inf->suspend = inf_state->inferior_suspend;
6770#endif
6771
6772 stop_pc = inf_state->stop_pc;
6773
6774 if (inf_state->siginfo_gdbarch == gdbarch)
6775 {
6776 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6777
6778 /* Errors ignored. */
6779 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6780 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
6781 }
6782
6783 /* The inferior can be gone if the user types "print exit(0)"
6784 (and perhaps other times). */
6785 if (target_has_execution)
6786 /* NB: The register write goes through to the target. */
6787 regcache_cpy (regcache, inf_state->registers);
6788
6789 discard_infcall_suspend_state (inf_state);
6790}
6791
6792static void
6793do_restore_infcall_suspend_state_cleanup (void *state)
6794{
6795 restore_infcall_suspend_state (state);
6796}
6797
6798struct cleanup *
6799make_cleanup_restore_infcall_suspend_state
6800 (struct infcall_suspend_state *inf_state)
6801{
6802 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6803}
6804
6805void
6806discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6807{
6808 regcache_xfree (inf_state->registers);
6809 xfree (inf_state->siginfo_data);
6810 xfree (inf_state);
6811}
6812
6813struct regcache *
6814get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6815{
6816 return inf_state->registers;
6817}
6818
6819/* infcall_control_state contains state regarding gdb's control of the
6820 inferior itself like stepping control. It also contains session state like
6821 the user's currently selected frame. */
6822
6823struct infcall_control_state
6824{
6825 struct thread_control_state thread_control;
6826 struct inferior_control_state inferior_control;
6827
6828 /* Other fields: */
6829 enum stop_stack_kind stop_stack_dummy;
6830 int stopped_by_random_signal;
6831 int stop_after_trap;
6832
6833 /* ID if the selected frame when the inferior function call was made. */
6834 struct frame_id selected_frame_id;
6835};
6836
6837/* Save all of the information associated with the inferior<==>gdb
6838 connection. */
6839
6840struct infcall_control_state *
6841save_infcall_control_state (void)
6842{
6843 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6844 struct thread_info *tp = inferior_thread ();
6845 struct inferior *inf = current_inferior ();
6846
6847 inf_status->thread_control = tp->control;
6848 inf_status->inferior_control = inf->control;
6849
6850 tp->control.step_resume_breakpoint = NULL;
6851 tp->control.exception_resume_breakpoint = NULL;
6852
6853 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6854 chain. If caller's caller is walking the chain, they'll be happier if we
6855 hand them back the original chain when restore_infcall_control_state is
6856 called. */
6857 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6858
6859 /* Other fields: */
6860 inf_status->stop_stack_dummy = stop_stack_dummy;
6861 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6862 inf_status->stop_after_trap = stop_after_trap;
6863
6864 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6865
6866 return inf_status;
6867}
6868
6869static int
6870restore_selected_frame (void *args)
6871{
6872 struct frame_id *fid = (struct frame_id *) args;
6873 struct frame_info *frame;
6874
6875 frame = frame_find_by_id (*fid);
6876
6877 /* If inf_status->selected_frame_id is NULL, there was no previously
6878 selected frame. */
6879 if (frame == NULL)
6880 {
6881 warning (_("Unable to restore previously selected frame."));
6882 return 0;
6883 }
6884
6885 select_frame (frame);
6886
6887 return (1);
6888}
6889
6890/* Restore inferior session state to INF_STATUS. */
6891
6892void
6893restore_infcall_control_state (struct infcall_control_state *inf_status)
6894{
6895 struct thread_info *tp = inferior_thread ();
6896 struct inferior *inf = current_inferior ();
6897
6898 if (tp->control.step_resume_breakpoint)
6899 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6900
6901 if (tp->control.exception_resume_breakpoint)
6902 tp->control.exception_resume_breakpoint->disposition
6903 = disp_del_at_next_stop;
6904
6905 /* Handle the bpstat_copy of the chain. */
6906 bpstat_clear (&tp->control.stop_bpstat);
6907
6908 tp->control = inf_status->thread_control;
6909 inf->control = inf_status->inferior_control;
6910
6911 /* Other fields: */
6912 stop_stack_dummy = inf_status->stop_stack_dummy;
6913 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6914 stop_after_trap = inf_status->stop_after_trap;
6915
6916 if (target_has_stack)
6917 {
6918 /* The point of catch_errors is that if the stack is clobbered,
6919 walking the stack might encounter a garbage pointer and
6920 error() trying to dereference it. */
6921 if (catch_errors
6922 (restore_selected_frame, &inf_status->selected_frame_id,
6923 "Unable to restore previously selected frame:\n",
6924 RETURN_MASK_ERROR) == 0)
6925 /* Error in restoring the selected frame. Select the innermost
6926 frame. */
6927 select_frame (get_current_frame ());
6928 }
6929
6930 xfree (inf_status);
6931}
6932
6933static void
6934do_restore_infcall_control_state_cleanup (void *sts)
6935{
6936 restore_infcall_control_state (sts);
6937}
6938
6939struct cleanup *
6940make_cleanup_restore_infcall_control_state
6941 (struct infcall_control_state *inf_status)
6942{
6943 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6944}
6945
6946void
6947discard_infcall_control_state (struct infcall_control_state *inf_status)
6948{
6949 if (inf_status->thread_control.step_resume_breakpoint)
6950 inf_status->thread_control.step_resume_breakpoint->disposition
6951 = disp_del_at_next_stop;
6952
6953 if (inf_status->thread_control.exception_resume_breakpoint)
6954 inf_status->thread_control.exception_resume_breakpoint->disposition
6955 = disp_del_at_next_stop;
6956
6957 /* See save_infcall_control_state for info on stop_bpstat. */
6958 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6959
6960 xfree (inf_status);
6961}
6962\f
6963int
6964ptid_match (ptid_t ptid, ptid_t filter)
6965{
6966 if (ptid_equal (filter, minus_one_ptid))
6967 return 1;
6968 if (ptid_is_pid (filter)
6969 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6970 return 1;
6971 else if (ptid_equal (ptid, filter))
6972 return 1;
6973
6974 return 0;
6975}
6976
6977/* restore_inferior_ptid() will be used by the cleanup machinery
6978 to restore the inferior_ptid value saved in a call to
6979 save_inferior_ptid(). */
6980
6981static void
6982restore_inferior_ptid (void *arg)
6983{
6984 ptid_t *saved_ptid_ptr = arg;
6985
6986 inferior_ptid = *saved_ptid_ptr;
6987 xfree (arg);
6988}
6989
6990/* Save the value of inferior_ptid so that it may be restored by a
6991 later call to do_cleanups(). Returns the struct cleanup pointer
6992 needed for later doing the cleanup. */
6993
6994struct cleanup *
6995save_inferior_ptid (void)
6996{
6997 ptid_t *saved_ptid_ptr;
6998
6999 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7000 *saved_ptid_ptr = inferior_ptid;
7001 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7002}
7003\f
7004
7005/* User interface for reverse debugging:
7006 Set exec-direction / show exec-direction commands
7007 (returns error unless target implements to_set_exec_direction method). */
7008
7009int execution_direction = EXEC_FORWARD;
7010static const char exec_forward[] = "forward";
7011static const char exec_reverse[] = "reverse";
7012static const char *exec_direction = exec_forward;
7013static const char *const exec_direction_names[] = {
7014 exec_forward,
7015 exec_reverse,
7016 NULL
7017};
7018
7019static void
7020set_exec_direction_func (char *args, int from_tty,
7021 struct cmd_list_element *cmd)
7022{
7023 if (target_can_execute_reverse)
7024 {
7025 if (!strcmp (exec_direction, exec_forward))
7026 execution_direction = EXEC_FORWARD;
7027 else if (!strcmp (exec_direction, exec_reverse))
7028 execution_direction = EXEC_REVERSE;
7029 }
7030 else
7031 {
7032 exec_direction = exec_forward;
7033 error (_("Target does not support this operation."));
7034 }
7035}
7036
7037static void
7038show_exec_direction_func (struct ui_file *out, int from_tty,
7039 struct cmd_list_element *cmd, const char *value)
7040{
7041 switch (execution_direction) {
7042 case EXEC_FORWARD:
7043 fprintf_filtered (out, _("Forward.\n"));
7044 break;
7045 case EXEC_REVERSE:
7046 fprintf_filtered (out, _("Reverse.\n"));
7047 break;
7048 default:
7049 internal_error (__FILE__, __LINE__,
7050 _("bogus execution_direction value: %d"),
7051 (int) execution_direction);
7052 }
7053}
7054
7055/* User interface for non-stop mode. */
7056
7057int non_stop = 0;
7058
7059static void
7060set_non_stop (char *args, int from_tty,
7061 struct cmd_list_element *c)
7062{
7063 if (target_has_execution)
7064 {
7065 non_stop_1 = non_stop;
7066 error (_("Cannot change this setting while the inferior is running."));
7067 }
7068
7069 non_stop = non_stop_1;
7070}
7071
7072static void
7073show_non_stop (struct ui_file *file, int from_tty,
7074 struct cmd_list_element *c, const char *value)
7075{
7076 fprintf_filtered (file,
7077 _("Controlling the inferior in non-stop mode is %s.\n"),
7078 value);
7079}
7080
7081static void
7082show_schedule_multiple (struct ui_file *file, int from_tty,
7083 struct cmd_list_element *c, const char *value)
7084{
7085 fprintf_filtered (file, _("Resuming the execution of threads "
7086 "of all processes is %s.\n"), value);
7087}
7088
7089/* Implementation of `siginfo' variable. */
7090
7091static const struct internalvar_funcs siginfo_funcs =
7092{
7093 siginfo_make_value,
7094 NULL,
7095 NULL
7096};
7097
7098void
7099_initialize_infrun (void)
7100{
7101 int i;
7102 int numsigs;
7103 struct cmd_list_element *c;
7104
7105 add_info ("signals", signals_info, _("\
7106What debugger does when program gets various signals.\n\
7107Specify a signal as argument to print info on that signal only."));
7108 add_info_alias ("handle", "signals", 0);
7109
7110 c = add_com ("handle", class_run, handle_command, _("\
7111Specify how to handle signals.\n\
7112Usage: handle SIGNAL [ACTIONS]\n\
7113Args are signals and actions to apply to those signals.\n\
7114If no actions are specified, the current settings for the specified signals\n\
7115will be displayed instead.\n\
7116\n\
7117Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7118from 1-15 are allowed for compatibility with old versions of GDB.\n\
7119Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7120The special arg \"all\" is recognized to mean all signals except those\n\
7121used by the debugger, typically SIGTRAP and SIGINT.\n\
7122\n\
7123Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7124\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7125Stop means reenter debugger if this signal happens (implies print).\n\
7126Print means print a message if this signal happens.\n\
7127Pass means let program see this signal; otherwise program doesn't know.\n\
7128Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7129Pass and Stop may be combined.\n\
7130\n\
7131Multiple signals may be specified. Signal numbers and signal names\n\
7132may be interspersed with actions, with the actions being performed for\n\
7133all signals cumulatively specified."));
7134 set_cmd_completer (c, handle_completer);
7135
7136 if (xdb_commands)
7137 {
7138 add_com ("lz", class_info, signals_info, _("\
7139What debugger does when program gets various signals.\n\
7140Specify a signal as argument to print info on that signal only."));
7141 add_com ("z", class_run, xdb_handle_command, _("\
7142Specify how to handle a signal.\n\
7143Args are signals and actions to apply to those signals.\n\
7144Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7145from 1-15 are allowed for compatibility with old versions of GDB.\n\
7146Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7147The special arg \"all\" is recognized to mean all signals except those\n\
7148used by the debugger, typically SIGTRAP and SIGINT.\n\
7149Recognized actions include \"s\" (toggles between stop and nostop),\n\
7150\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7151nopass), \"Q\" (noprint)\n\
7152Stop means reenter debugger if this signal happens (implies print).\n\
7153Print means print a message if this signal happens.\n\
7154Pass means let program see this signal; otherwise program doesn't know.\n\
7155Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7156Pass and Stop may be combined."));
7157 }
7158
7159 if (!dbx_commands)
7160 stop_command = add_cmd ("stop", class_obscure,
7161 not_just_help_class_command, _("\
7162There is no `stop' command, but you can set a hook on `stop'.\n\
7163This allows you to set a list of commands to be run each time execution\n\
7164of the program stops."), &cmdlist);
7165
7166 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7167Set inferior debugging."), _("\
7168Show inferior debugging."), _("\
7169When non-zero, inferior specific debugging is enabled."),
7170 NULL,
7171 show_debug_infrun,
7172 &setdebuglist, &showdebuglist);
7173
7174 add_setshow_boolean_cmd ("displaced", class_maintenance,
7175 &debug_displaced, _("\
7176Set displaced stepping debugging."), _("\
7177Show displaced stepping debugging."), _("\
7178When non-zero, displaced stepping specific debugging is enabled."),
7179 NULL,
7180 show_debug_displaced,
7181 &setdebuglist, &showdebuglist);
7182
7183 add_setshow_boolean_cmd ("non-stop", no_class,
7184 &non_stop_1, _("\
7185Set whether gdb controls the inferior in non-stop mode."), _("\
7186Show whether gdb controls the inferior in non-stop mode."), _("\
7187When debugging a multi-threaded program and this setting is\n\
7188off (the default, also called all-stop mode), when one thread stops\n\
7189(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7190all other threads in the program while you interact with the thread of\n\
7191interest. When you continue or step a thread, you can allow the other\n\
7192threads to run, or have them remain stopped, but while you inspect any\n\
7193thread's state, all threads stop.\n\
7194\n\
7195In non-stop mode, when one thread stops, other threads can continue\n\
7196to run freely. You'll be able to step each thread independently,\n\
7197leave it stopped or free to run as needed."),
7198 set_non_stop,
7199 show_non_stop,
7200 &setlist,
7201 &showlist);
7202
7203 numsigs = (int) GDB_SIGNAL_LAST;
7204 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7205 signal_print = (unsigned char *)
7206 xmalloc (sizeof (signal_print[0]) * numsigs);
7207 signal_program = (unsigned char *)
7208 xmalloc (sizeof (signal_program[0]) * numsigs);
7209 signal_pass = (unsigned char *)
7210 xmalloc (sizeof (signal_program[0]) * numsigs);
7211 for (i = 0; i < numsigs; i++)
7212 {
7213 signal_stop[i] = 1;
7214 signal_print[i] = 1;
7215 signal_program[i] = 1;
7216 }
7217
7218 /* Signals caused by debugger's own actions
7219 should not be given to the program afterwards. */
7220 signal_program[GDB_SIGNAL_TRAP] = 0;
7221 signal_program[GDB_SIGNAL_INT] = 0;
7222
7223 /* Signals that are not errors should not normally enter the debugger. */
7224 signal_stop[GDB_SIGNAL_ALRM] = 0;
7225 signal_print[GDB_SIGNAL_ALRM] = 0;
7226 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7227 signal_print[GDB_SIGNAL_VTALRM] = 0;
7228 signal_stop[GDB_SIGNAL_PROF] = 0;
7229 signal_print[GDB_SIGNAL_PROF] = 0;
7230 signal_stop[GDB_SIGNAL_CHLD] = 0;
7231 signal_print[GDB_SIGNAL_CHLD] = 0;
7232 signal_stop[GDB_SIGNAL_IO] = 0;
7233 signal_print[GDB_SIGNAL_IO] = 0;
7234 signal_stop[GDB_SIGNAL_POLL] = 0;
7235 signal_print[GDB_SIGNAL_POLL] = 0;
7236 signal_stop[GDB_SIGNAL_URG] = 0;
7237 signal_print[GDB_SIGNAL_URG] = 0;
7238 signal_stop[GDB_SIGNAL_WINCH] = 0;
7239 signal_print[GDB_SIGNAL_WINCH] = 0;
7240 signal_stop[GDB_SIGNAL_PRIO] = 0;
7241 signal_print[GDB_SIGNAL_PRIO] = 0;
7242
7243 /* These signals are used internally by user-level thread
7244 implementations. (See signal(5) on Solaris.) Like the above
7245 signals, a healthy program receives and handles them as part of
7246 its normal operation. */
7247 signal_stop[GDB_SIGNAL_LWP] = 0;
7248 signal_print[GDB_SIGNAL_LWP] = 0;
7249 signal_stop[GDB_SIGNAL_WAITING] = 0;
7250 signal_print[GDB_SIGNAL_WAITING] = 0;
7251 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7252 signal_print[GDB_SIGNAL_CANCEL] = 0;
7253
7254 /* Update cached state. */
7255 signal_cache_update (-1);
7256
7257 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7258 &stop_on_solib_events, _("\
7259Set stopping for shared library events."), _("\
7260Show stopping for shared library events."), _("\
7261If nonzero, gdb will give control to the user when the dynamic linker\n\
7262notifies gdb of shared library events. The most common event of interest\n\
7263to the user would be loading/unloading of a new library."),
7264 NULL,
7265 show_stop_on_solib_events,
7266 &setlist, &showlist);
7267
7268 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7269 follow_fork_mode_kind_names,
7270 &follow_fork_mode_string, _("\
7271Set debugger response to a program call of fork or vfork."), _("\
7272Show debugger response to a program call of fork or vfork."), _("\
7273A fork or vfork creates a new process. follow-fork-mode can be:\n\
7274 parent - the original process is debugged after a fork\n\
7275 child - the new process is debugged after a fork\n\
7276The unfollowed process will continue to run.\n\
7277By default, the debugger will follow the parent process."),
7278 NULL,
7279 show_follow_fork_mode_string,
7280 &setlist, &showlist);
7281
7282 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7283 follow_exec_mode_names,
7284 &follow_exec_mode_string, _("\
7285Set debugger response to a program call of exec."), _("\
7286Show debugger response to a program call of exec."), _("\
7287An exec call replaces the program image of a process.\n\
7288\n\
7289follow-exec-mode can be:\n\
7290\n\
7291 new - the debugger creates a new inferior and rebinds the process\n\
7292to this new inferior. The program the process was running before\n\
7293the exec call can be restarted afterwards by restarting the original\n\
7294inferior.\n\
7295\n\
7296 same - the debugger keeps the process bound to the same inferior.\n\
7297The new executable image replaces the previous executable loaded in\n\
7298the inferior. Restarting the inferior after the exec call restarts\n\
7299the executable the process was running after the exec call.\n\
7300\n\
7301By default, the debugger will use the same inferior."),
7302 NULL,
7303 show_follow_exec_mode_string,
7304 &setlist, &showlist);
7305
7306 add_setshow_enum_cmd ("scheduler-locking", class_run,
7307 scheduler_enums, &scheduler_mode, _("\
7308Set mode for locking scheduler during execution."), _("\
7309Show mode for locking scheduler during execution."), _("\
7310off == no locking (threads may preempt at any time)\n\
7311on == full locking (no thread except the current thread may run)\n\
7312step == scheduler locked during every single-step operation.\n\
7313 In this mode, no other thread may run during a step command.\n\
7314 Other threads may run while stepping over a function call ('next')."),
7315 set_schedlock_func, /* traps on target vector */
7316 show_scheduler_mode,
7317 &setlist, &showlist);
7318
7319 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7320Set mode for resuming threads of all processes."), _("\
7321Show mode for resuming threads of all processes."), _("\
7322When on, execution commands (such as 'continue' or 'next') resume all\n\
7323threads of all processes. When off (which is the default), execution\n\
7324commands only resume the threads of the current process. The set of\n\
7325threads that are resumed is further refined by the scheduler-locking\n\
7326mode (see help set scheduler-locking)."),
7327 NULL,
7328 show_schedule_multiple,
7329 &setlist, &showlist);
7330
7331 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7332Set mode of the step operation."), _("\
7333Show mode of the step operation."), _("\
7334When set, doing a step over a function without debug line information\n\
7335will stop at the first instruction of that function. Otherwise, the\n\
7336function is skipped and the step command stops at a different source line."),
7337 NULL,
7338 show_step_stop_if_no_debug,
7339 &setlist, &showlist);
7340
7341 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7342 &can_use_displaced_stepping, _("\
7343Set debugger's willingness to use displaced stepping."), _("\
7344Show debugger's willingness to use displaced stepping."), _("\
7345If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7346supported by the target architecture. If off, gdb will not use displaced\n\
7347stepping to step over breakpoints, even if such is supported by the target\n\
7348architecture. If auto (which is the default), gdb will use displaced stepping\n\
7349if the target architecture supports it and non-stop mode is active, but will not\n\
7350use it in all-stop mode (see help set non-stop)."),
7351 NULL,
7352 show_can_use_displaced_stepping,
7353 &setlist, &showlist);
7354
7355 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7356 &exec_direction, _("Set direction of execution.\n\
7357Options are 'forward' or 'reverse'."),
7358 _("Show direction of execution (forward/reverse)."),
7359 _("Tells gdb whether to execute forward or backward."),
7360 set_exec_direction_func, show_exec_direction_func,
7361 &setlist, &showlist);
7362
7363 /* Set/show detach-on-fork: user-settable mode. */
7364
7365 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7366Set whether gdb will detach the child of a fork."), _("\
7367Show whether gdb will detach the child of a fork."), _("\
7368Tells gdb whether to detach the child of a fork."),
7369 NULL, NULL, &setlist, &showlist);
7370
7371 /* Set/show disable address space randomization mode. */
7372
7373 add_setshow_boolean_cmd ("disable-randomization", class_support,
7374 &disable_randomization, _("\
7375Set disabling of debuggee's virtual address space randomization."), _("\
7376Show disabling of debuggee's virtual address space randomization."), _("\
7377When this mode is on (which is the default), randomization of the virtual\n\
7378address space is disabled. Standalone programs run with the randomization\n\
7379enabled by default on some platforms."),
7380 &set_disable_randomization,
7381 &show_disable_randomization,
7382 &setlist, &showlist);
7383
7384 /* ptid initializations */
7385 inferior_ptid = null_ptid;
7386 target_last_wait_ptid = minus_one_ptid;
7387
7388 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7389 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7390 observer_attach_thread_exit (infrun_thread_thread_exit);
7391 observer_attach_inferior_exit (infrun_inferior_exit);
7392
7393 /* Explicitly create without lookup, since that tries to create a
7394 value with a void typed value, and when we get here, gdbarch
7395 isn't initialized yet. At this point, we're quite sure there
7396 isn't another convenience variable of the same name. */
7397 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7398
7399 add_setshow_boolean_cmd ("observer", no_class,
7400 &observer_mode_1, _("\
7401Set whether gdb controls the inferior in observer mode."), _("\
7402Show whether gdb controls the inferior in observer mode."), _("\
7403In observer mode, GDB can get data from the inferior, but not\n\
7404affect its execution. Registers and memory may not be changed,\n\
7405breakpoints may not be set, and the program cannot be interrupted\n\
7406or signalled."),
7407 set_observer_mode,
7408 show_observer_mode,
7409 &setlist,
7410 &showlist);
7411}