]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame_incremental - gdb/linux-nat.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / linux-nat.c
... / ...
CommitLineData
1/* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2025 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20#include "inferior.h"
21#include "infrun.h"
22#include "target.h"
23#include "nat/linux-nat.h"
24#include "nat/linux-waitpid.h"
25#include "gdbsupport/gdb_wait.h"
26#include <unistd.h>
27#include <sys/syscall.h>
28#include "nat/gdb_ptrace.h"
29#include "linux-nat.h"
30#include "nat/linux-ptrace.h"
31#include "nat/linux-procfs.h"
32#include "nat/linux-personality.h"
33#include "linux-fork.h"
34#include "gdbthread.h"
35#include "cli/cli-cmds.h"
36#include "regcache.h"
37#include "regset.h"
38#include "inf-child.h"
39#include "inf-ptrace.h"
40#include "auxv.h"
41#include <sys/procfs.h>
42#include "elf-bfd.h"
43#include "gregset.h"
44#include "gdbcore.h"
45#include <ctype.h>
46#include <sys/stat.h>
47#include <fcntl.h>
48#include "inf-loop.h"
49#include "gdbsupport/event-loop.h"
50#include "event-top.h"
51#include <pwd.h>
52#include <sys/types.h>
53#include <dirent.h>
54#include "xml-support.h"
55#include <sys/vfs.h>
56#include "solib.h"
57#include "nat/linux-osdata.h"
58#include "linux-tdep.h"
59#include "symfile.h"
60#include "gdbsupport/agent.h"
61#include "tracepoint.h"
62#include "target-descriptions.h"
63#include "gdbsupport/filestuff.h"
64#include "objfiles.h"
65#include "nat/linux-namespaces.h"
66#include "gdbsupport/block-signals.h"
67#include "gdbsupport/fileio.h"
68#include "gdbsupport/scope-exit.h"
69#include "gdbsupport/gdb-sigmask.h"
70#include "gdbsupport/common-debug.h"
71#include <unordered_map>
72
73/* This comment documents high-level logic of this file.
74
75Waiting for events in sync mode
76===============================
77
78When waiting for an event in a specific thread, we just use waitpid,
79passing the specific pid, and not passing WNOHANG.
80
81When waiting for an event in all threads, waitpid is not quite good:
82
83- If the thread group leader exits while other threads in the thread
84 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
85 return an exit status until the other threads in the group are
86 reaped.
87
88- When a non-leader thread execs, that thread just vanishes without
89 reporting an exit (so we'd hang if we waited for it explicitly in
90 that case). The exec event is instead reported to the TGID pid.
91
92The solution is to always use -1 and WNOHANG, together with
93sigsuspend.
94
95First, we use non-blocking waitpid to check for events. If nothing is
96found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
97it means something happened to a child process. As soon as we know
98there's an event, we get back to calling nonblocking waitpid.
99
100Note that SIGCHLD should be blocked between waitpid and sigsuspend
101calls, so that we don't miss a signal. If SIGCHLD arrives in between,
102when it's blocked, the signal becomes pending and sigsuspend
103immediately notices it and returns.
104
105Waiting for events in async mode (TARGET_WNOHANG)
106=================================================
107
108In async mode, GDB should always be ready to handle both user input
109and target events, so neither blocking waitpid nor sigsuspend are
110viable options. Instead, we should asynchronously notify the GDB main
111event loop whenever there's an unprocessed event from the target. We
112detect asynchronous target events by handling SIGCHLD signals. To
113notify the event loop about target events, an event pipe is used
114--- the pipe is registered as waitable event source in the event loop,
115the event loop select/poll's on the read end of this pipe (as well on
116other event sources, e.g., stdin), and the SIGCHLD handler marks the
117event pipe to raise an event. This is more portable than relying on
118pselect/ppoll, since on kernels that lack those syscalls, libc
119emulates them with select/poll+sigprocmask, and that is racy
120(a.k.a. plain broken).
121
122Obviously, if we fail to notify the event loop if there's a target
123event, it's bad. OTOH, if we notify the event loop when there's no
124event from the target, linux_nat_wait will detect that there's no real
125event to report, and return event of type TARGET_WAITKIND_IGNORE.
126This is mostly harmless, but it will waste time and is better avoided.
127
128The main design point is that every time GDB is outside linux-nat.c,
129we have a SIGCHLD handler installed that is called when something
130happens to the target and notifies the GDB event loop. Whenever GDB
131core decides to handle the event, and calls into linux-nat.c, we
132process things as in sync mode, except that the we never block in
133sigsuspend.
134
135While processing an event, we may end up momentarily blocked in
136waitpid calls. Those waitpid calls, while blocking, are guaranteed to
137return quickly. E.g., in all-stop mode, before reporting to the core
138that an LWP hit a breakpoint, all LWPs are stopped by sending them
139SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
140Note that this is different from blocking indefinitely waiting for the
141next event --- here, we're already handling an event.
142
143Use of signals
144==============
145
146We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
147signal is not entirely significant; we just need for a signal to be delivered,
148so that we can intercept it. SIGSTOP's advantage is that it can not be
149blocked. A disadvantage is that it is not a real-time signal, so it can only
150be queued once; we do not keep track of other sources of SIGSTOP.
151
152Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
153use them, because they have special behavior when the signal is generated -
154not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
155kills the entire thread group.
156
157A delivered SIGSTOP would stop the entire thread group, not just the thread we
158tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
159cancel it (by PTRACE_CONT without passing SIGSTOP).
160
161We could use a real-time signal instead. This would solve those problems; we
162could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
163But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
164generates it, and there are races with trying to find a signal that is not
165blocked.
166
167Exec events
168===========
169
170The case of a thread group (process) with 3 or more threads, and a
171thread other than the leader execs is worth detailing:
172
173On an exec, the Linux kernel destroys all threads except the execing
174one in the thread group, and resets the execing thread's tid to the
175tgid. No exit notification is sent for the execing thread -- from the
176ptracer's perspective, it appears as though the execing thread just
177vanishes. Until we reap all other threads except the leader and the
178execing thread, the leader will be zombie, and the execing thread will
179be in `D (disc sleep)' state. As soon as all other threads are
180reaped, the execing thread changes its tid to the tgid, and the
181previous (zombie) leader vanishes, giving place to the "new"
182leader.
183
184Accessing inferior memory
185=========================
186
187To access inferior memory, we strongly prefer /proc/PID/mem. We
188fallback to ptrace if and only if /proc/PID/mem is not writable, as a
189concession for obsolescent kernels (such as found in RHEL6). For
190modern kernels, the fallback shouldn't trigger. GDBserver does not
191have the ptrace fallback already, and at some point, we'll consider
192removing it from native GDB too.
193
194/proc/PID/mem has a few advantages over alternatives like
195PTRACE_PEEKTEXT/PTRACE_POKETEXT or process_vm_readv/process_vm_writev:
196
197- Because we can use a single read/write call, /proc/PID/mem can be
198 much more efficient than banging away at
199 PTRACE_PEEKTEXT/PTRACE_POKETEXT, one word at a time.
200
201- /proc/PID/mem allows writing to read-only pages, which we need to
202 e.g., plant breakpoint instructions. process_vm_writev does not
203 allow this.
204
205- /proc/PID/mem allows memory access even if all threads are running.
206 OTOH, PTRACE_PEEKTEXT/PTRACE_POKETEXT require passing down the tid
207 of a stopped task. This lets us e.g., install breakpoints while the
208 inferior is running, clear a displaced stepping scratch pad when the
209 thread that was displaced stepping exits, print inferior globals,
210 etc., all without having to worry about temporarily pausing some
211 thread.
212
213- /proc/PID/mem does not suffer from a race that could cause us to
214 access memory of the wrong address space when the inferior execs.
215
216 process_vm_readv/process_vm_writev have this problem.
217
218 E.g., say GDB decides to write to memory just while the inferior
219 execs. In this scenario, GDB could write memory to the post-exec
220 address space thinking it was writing to the pre-exec address space,
221 with high probability of corrupting the inferior. Or if GDB decides
222 instead to read memory just while the inferior execs, it could read
223 bogus contents out of the wrong address space.
224
225 ptrace used to have this problem too, but no longer has since Linux
226 commit dbb5afad100a ("ptrace: make ptrace() fail if the tracee
227 changed its pid unexpectedly"), in Linux 5.13. (And if ptrace were
228 ever changed to allow access memory via zombie or running threads,
229 it would better not forget to consider this scenario.)
230
231 We avoid this race with /proc/PID/mem, by opening the file as soon
232 as we start debugging the inferior, when it is known the inferior is
233 stopped, and holding on to the open file descriptor, to be used
234 whenever we need to access inferior memory. If the inferior execs
235 or exits, reading/writing from/to the file returns 0 (EOF),
236 indicating the address space is gone, and so we return
237 TARGET_XFER_EOF to the core. We close the old file and open a new
238 one when we finally see the PTRACE_EVENT_EXEC event. */
239
240#ifndef O_LARGEFILE
241#define O_LARGEFILE 0
242#endif
243
244struct linux_nat_target *linux_target;
245
246/* See nat/linux-nat.h. */
247enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
248
249/* When true, print debug messages relating to the linux native target. */
250
251static bool debug_linux_nat;
252
253/* Implement 'show debug linux-nat'. */
254
255static void
256show_debug_linux_nat (struct ui_file *file, int from_tty,
257 struct cmd_list_element *c, const char *value)
258{
259 gdb_printf (file, _("Debugging of GNU/Linux native targets is %s.\n"),
260 value);
261}
262
263/* Print a linux-nat debug statement. */
264
265#define linux_nat_debug_printf(fmt, ...) \
266 debug_prefixed_printf_cond (debug_linux_nat, "linux-nat", fmt, ##__VA_ARGS__)
267
268/* Print "linux-nat" enter/exit debug statements. */
269
270#define LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT \
271 scoped_debug_enter_exit (debug_linux_nat, "linux-nat")
272
273struct simple_pid_list
274{
275 int pid;
276 int status;
277 struct simple_pid_list *next;
278};
279static struct simple_pid_list *stopped_pids;
280
281/* Whether target_thread_events is in effect. */
282static bool report_thread_events;
283
284static int kill_lwp (int lwpid, int signo);
285
286static int stop_callback (struct lwp_info *lp);
287
288static void block_child_signals (sigset_t *prev_mask);
289static void restore_child_signals_mask (sigset_t *prev_mask);
290
291struct lwp_info;
292static struct lwp_info *add_lwp (ptid_t ptid);
293static void purge_lwp_list (int pid);
294static void delete_lwp (ptid_t ptid);
295static struct lwp_info *find_lwp_pid (ptid_t ptid);
296
297static int lwp_status_pending_p (struct lwp_info *lp);
298
299static bool is_lwp_marked_dead (lwp_info *lp);
300
301static void save_stop_reason (struct lwp_info *lp);
302
303static bool proc_mem_file_is_writable ();
304static void close_proc_mem_file (pid_t pid);
305static void open_proc_mem_file (ptid_t ptid);
306
307/* Return TRUE if LWP is the leader thread of the process. */
308
309static bool
310is_leader (lwp_info *lp)
311{
312 return lp->ptid.pid () == lp->ptid.lwp ();
313}
314
315/* Convert an LWP's pending status to a std::string. */
316
317static std::string
318pending_status_str (lwp_info *lp)
319{
320 gdb_assert (lwp_status_pending_p (lp));
321
322 if (lp->waitstatus.kind () != TARGET_WAITKIND_IGNORE)
323 return lp->waitstatus.to_string ();
324 else
325 return status_to_str (lp->status);
326}
327
328/* Return true if we should report exit events for LP. */
329
330static bool
331report_exit_events_for (lwp_info *lp)
332{
333 thread_info *thr = linux_target->find_thread (lp->ptid);
334 gdb_assert (thr != nullptr);
335
336 return (report_thread_events
337 || (thr->thread_options () & GDB_THREAD_OPTION_EXIT) != 0);
338}
339
340\f
341/* LWP accessors. */
342
343/* See nat/linux-nat.h. */
344
345ptid_t
346ptid_of_lwp (struct lwp_info *lwp)
347{
348 return lwp->ptid;
349}
350
351/* See nat/linux-nat.h. */
352
353void
354lwp_set_arch_private_info (struct lwp_info *lwp,
355 struct arch_lwp_info *info)
356{
357 lwp->arch_private = info;
358}
359
360/* See nat/linux-nat.h. */
361
362struct arch_lwp_info *
363lwp_arch_private_info (struct lwp_info *lwp)
364{
365 return lwp->arch_private;
366}
367
368/* See nat/linux-nat.h. */
369
370int
371lwp_is_stopped (struct lwp_info *lwp)
372{
373 return lwp->stopped;
374}
375
376/* See nat/linux-nat.h. */
377
378enum target_stop_reason
379lwp_stop_reason (struct lwp_info *lwp)
380{
381 return lwp->stop_reason;
382}
383
384/* See nat/linux-nat.h. */
385
386int
387lwp_is_stepping (struct lwp_info *lwp)
388{
389 return lwp->step;
390}
391
392\f
393/* Trivial list manipulation functions to keep track of a list of
394 new stopped processes. */
395static void
396add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
397{
398 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
399
400 new_pid->pid = pid;
401 new_pid->status = status;
402 new_pid->next = *listp;
403 *listp = new_pid;
404}
405
406static int
407pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
408{
409 struct simple_pid_list **p;
410
411 for (p = listp; *p != NULL; p = &(*p)->next)
412 if ((*p)->pid == pid)
413 {
414 struct simple_pid_list *next = (*p)->next;
415
416 *statusp = (*p)->status;
417 xfree (*p);
418 *p = next;
419 return 1;
420 }
421 return 0;
422}
423
424/* Return the ptrace options that we want to try to enable. */
425
426static int
427linux_nat_ptrace_options (int attached)
428{
429 int options = 0;
430
431 if (!attached)
432 options |= PTRACE_O_EXITKILL;
433
434 options |= (PTRACE_O_TRACESYSGOOD
435 | PTRACE_O_TRACEVFORKDONE
436 | PTRACE_O_TRACEVFORK
437 | PTRACE_O_TRACEFORK
438 | PTRACE_O_TRACEEXEC);
439
440 return options;
441}
442
443/* Initialize ptrace and procfs warnings and check for supported
444 ptrace features given PID.
445
446 ATTACHED should be nonzero iff we attached to the inferior. */
447
448static void
449linux_init_ptrace_procfs (pid_t pid, int attached)
450{
451 int options = linux_nat_ptrace_options (attached);
452
453 linux_enable_event_reporting (pid, options);
454 linux_ptrace_init_warnings ();
455 linux_proc_init_warnings ();
456 proc_mem_file_is_writable ();
457
458 /* Let the arch-specific native code do any needed initialization.
459 Some architectures need to call ptrace to check for hardware
460 watchpoints support, etc. Call it now, when we know the tracee
461 is ptrace-stopped. */
462 linux_target->low_init_process (pid);
463}
464
465linux_nat_target::~linux_nat_target ()
466{}
467
468void
469linux_nat_target::post_attach (int pid)
470{
471 linux_init_ptrace_procfs (pid, 1);
472}
473
474/* Implement the virtual inf_ptrace_target::post_startup_inferior method. */
475
476void
477linux_nat_target::post_startup_inferior (ptid_t ptid)
478{
479 linux_init_ptrace_procfs (ptid.pid (), 0);
480}
481
482/* Return the number of known LWPs in the tgid given by PID. */
483
484static int
485num_lwps (int pid)
486{
487 int count = 0;
488
489 for (const lwp_info *lp ATTRIBUTE_UNUSED : all_lwps ())
490 if (lp->ptid.pid () == pid)
491 count++;
492
493 return count;
494}
495
496/* Deleter for lwp_info unique_ptr specialisation. */
497
498struct lwp_deleter
499{
500 void operator() (struct lwp_info *lwp) const
501 {
502 delete_lwp (lwp->ptid);
503 }
504};
505
506/* A unique_ptr specialisation for lwp_info. */
507
508typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up;
509
510/* Target hook for follow_fork. */
511
512void
513linux_nat_target::follow_fork (inferior *child_inf, ptid_t child_ptid,
514 target_waitkind fork_kind, bool follow_child,
515 bool detach_fork)
516{
517 inf_ptrace_target::follow_fork (child_inf, child_ptid, fork_kind,
518 follow_child, detach_fork);
519
520 if (!follow_child)
521 {
522 bool has_vforked = fork_kind == TARGET_WAITKIND_VFORKED;
523 ptid_t parent_ptid = inferior_ptid;
524 int parent_pid = parent_ptid.lwp ();
525 int child_pid = child_ptid.lwp ();
526
527 /* We're already attached to the parent, by default. */
528 lwp_info *child_lp = add_lwp (child_ptid);
529 child_lp->stopped = 1;
530 child_lp->last_resume_kind = resume_stop;
531
532 /* Detach new forked process? */
533 if (detach_fork)
534 {
535 int child_stop_signal = 0;
536 bool detach_child = true;
537
538 /* Move CHILD_LP into a unique_ptr and clear the source pointer
539 to prevent us doing anything stupid with it. */
540 lwp_info_up child_lp_ptr (child_lp);
541 child_lp = nullptr;
542
543 linux_target->low_prepare_to_resume (child_lp_ptr.get ());
544
545 /* When debugging an inferior in an architecture that supports
546 hardware single stepping on a kernel without commit
547 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
548 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
549 set if the parent process had them set.
550 To work around this, single step the child process
551 once before detaching to clear the flags. */
552
553 /* Note that we consult the parent's architecture instead of
554 the child's because there's no inferior for the child at
555 this point. */
556 if (!gdbarch_software_single_step_p (target_thread_architecture
557 (parent_ptid)))
558 {
559 int status;
560
561 linux_disable_event_reporting (child_pid);
562 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
563 perror_with_name (_("Couldn't do single step"));
564 if (my_waitpid (child_pid, &status, 0) < 0)
565 perror_with_name (_("Couldn't wait vfork process"));
566 else
567 {
568 detach_child = WIFSTOPPED (status);
569 child_stop_signal = WSTOPSIG (status);
570 }
571 }
572
573 if (detach_child)
574 {
575 int signo = child_stop_signal;
576
577 if (signo != 0
578 && !signal_pass_state (gdb_signal_from_host (signo)))
579 signo = 0;
580 ptrace (PTRACE_DETACH, child_pid, 0, signo);
581
582 close_proc_mem_file (child_pid);
583 }
584 }
585
586 if (has_vforked)
587 {
588 lwp_info *parent_lp = find_lwp_pid (parent_ptid);
589 linux_nat_debug_printf ("waiting for VFORK_DONE on %d", parent_pid);
590 parent_lp->stopped = 1;
591
592 /* We'll handle the VFORK_DONE event like any other
593 event, in target_wait. */
594 }
595 }
596 else
597 {
598 struct lwp_info *child_lp;
599
600 child_lp = add_lwp (child_ptid);
601 child_lp->stopped = 1;
602 child_lp->last_resume_kind = resume_stop;
603 }
604}
605
606\f
607int
608linux_nat_target::insert_fork_catchpoint (int pid)
609{
610 return 0;
611}
612
613int
614linux_nat_target::remove_fork_catchpoint (int pid)
615{
616 return 0;
617}
618
619int
620linux_nat_target::insert_vfork_catchpoint (int pid)
621{
622 return 0;
623}
624
625int
626linux_nat_target::remove_vfork_catchpoint (int pid)
627{
628 return 0;
629}
630
631int
632linux_nat_target::insert_exec_catchpoint (int pid)
633{
634 return 0;
635}
636
637int
638linux_nat_target::remove_exec_catchpoint (int pid)
639{
640 return 0;
641}
642
643int
644linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
645 gdb::array_view<const int> syscall_counts)
646{
647 /* On GNU/Linux, we ignore the arguments. It means that we only
648 enable the syscall catchpoints, but do not disable them.
649
650 Also, we do not use the `syscall_counts' information because we do not
651 filter system calls here. We let GDB do the logic for us. */
652 return 0;
653}
654
655/* List of known LWPs, keyed by LWP PID. This speeds up the common
656 case of mapping a PID returned from the kernel to our corresponding
657 lwp_info data structure. */
658static htab_t lwp_lwpid_htab;
659
660/* Calculate a hash from a lwp_info's LWP PID. */
661
662static hashval_t
663lwp_info_hash (const void *ap)
664{
665 const struct lwp_info *lp = (struct lwp_info *) ap;
666 pid_t pid = lp->ptid.lwp ();
667
668 return iterative_hash_object (pid, 0);
669}
670
671/* Equality function for the lwp_info hash table. Compares the LWP's
672 PID. */
673
674static int
675lwp_lwpid_htab_eq (const void *a, const void *b)
676{
677 const struct lwp_info *entry = (const struct lwp_info *) a;
678 const struct lwp_info *element = (const struct lwp_info *) b;
679
680 return entry->ptid.lwp () == element->ptid.lwp ();
681}
682
683/* Create the lwp_lwpid_htab hash table. */
684
685static void
686lwp_lwpid_htab_create (void)
687{
688 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
689}
690
691/* Add LP to the hash table. */
692
693static void
694lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
695{
696 void **slot;
697
698 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
699 gdb_assert (slot != NULL && *slot == NULL);
700 *slot = lp;
701}
702
703/* Head of doubly-linked list of known LWPs. Sorted by reverse
704 creation order. This order is assumed in some cases. E.g.,
705 reaping status after killing all lwps of a process: the leader LWP
706 must be reaped last. */
707
708static intrusive_list<lwp_info> lwp_list;
709
710/* See linux-nat.h. */
711
712lwp_info_range
713all_lwps ()
714{
715 return lwp_info_range (lwp_list.begin ());
716}
717
718/* See linux-nat.h. */
719
720lwp_info_safe_range
721all_lwps_safe ()
722{
723 return lwp_info_safe_range (lwp_list.begin ());
724}
725
726/* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
727
728static void
729lwp_list_add (struct lwp_info *lp)
730{
731 lwp_list.push_front (*lp);
732}
733
734/* Remove LP from sorted-by-reverse-creation-order doubly-linked
735 list. */
736
737static void
738lwp_list_remove (struct lwp_info *lp)
739{
740 /* Remove from sorted-by-creation-order list. */
741 lwp_list.erase (lwp_list.iterator_to (*lp));
742}
743
744\f
745
746/* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
747 _initialize_linux_nat. */
748static sigset_t suspend_mask;
749
750/* Signals to block to make that sigsuspend work. */
751static sigset_t blocked_mask;
752
753/* SIGCHLD action. */
754static struct sigaction sigchld_action;
755
756/* Block child signals (SIGCHLD and linux threads signals), and store
757 the previous mask in PREV_MASK. */
758
759static void
760block_child_signals (sigset_t *prev_mask)
761{
762 /* Make sure SIGCHLD is blocked. */
763 if (!sigismember (&blocked_mask, SIGCHLD))
764 sigaddset (&blocked_mask, SIGCHLD);
765
766 gdb_sigmask (SIG_BLOCK, &blocked_mask, prev_mask);
767}
768
769/* Restore child signals mask, previously returned by
770 block_child_signals. */
771
772static void
773restore_child_signals_mask (sigset_t *prev_mask)
774{
775 gdb_sigmask (SIG_SETMASK, prev_mask, NULL);
776}
777
778/* Mask of signals to pass directly to the inferior. */
779static sigset_t pass_mask;
780
781/* Update signals to pass to the inferior. */
782void
783linux_nat_target::pass_signals
784 (gdb::array_view<const unsigned char> pass_signals)
785{
786 int signo;
787
788 sigemptyset (&pass_mask);
789
790 for (signo = 1; signo < NSIG; signo++)
791 {
792 int target_signo = gdb_signal_from_host (signo);
793 if (target_signo < pass_signals.size () && pass_signals[target_signo])
794 sigaddset (&pass_mask, signo);
795 }
796}
797
798\f
799
800/* Prototypes for local functions. */
801static int stop_wait_callback (struct lwp_info *lp);
802static int resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid);
803static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
804
805\f
806
807/* Destroy and free LP. */
808
809lwp_info::~lwp_info ()
810{
811 /* Let the arch specific bits release arch_lwp_info. */
812 linux_target->low_delete_thread (this->arch_private);
813}
814
815/* Traversal function for purge_lwp_list. */
816
817static int
818lwp_lwpid_htab_remove_pid (void **slot, void *info)
819{
820 struct lwp_info *lp = (struct lwp_info *) *slot;
821 int pid = *(int *) info;
822
823 if (lp->ptid.pid () == pid)
824 {
825 htab_clear_slot (lwp_lwpid_htab, slot);
826 lwp_list_remove (lp);
827 delete lp;
828 }
829
830 return 1;
831}
832
833/* Remove all LWPs belong to PID from the lwp list. */
834
835static void
836purge_lwp_list (int pid)
837{
838 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
839}
840
841/* Add the LWP specified by PTID to the list. PTID is the first LWP
842 in the process. Return a pointer to the structure describing the
843 new LWP.
844
845 This differs from add_lwp in that we don't let the arch specific
846 bits know about this new thread. Current clients of this callback
847 take the opportunity to install watchpoints in the new thread, and
848 we shouldn't do that for the first thread. If we're spawning a
849 child ("run"), the thread executes the shell wrapper first, and we
850 shouldn't touch it until it execs the program we want to debug.
851 For "attach", it'd be okay to call the callback, but it's not
852 necessary, because watchpoints can't yet have been inserted into
853 the inferior. */
854
855static struct lwp_info *
856add_initial_lwp (ptid_t ptid)
857{
858 gdb_assert (ptid.lwp_p ());
859
860 lwp_info *lp = new lwp_info (ptid);
861
862
863 /* Add to sorted-by-reverse-creation-order list. */
864 lwp_list_add (lp);
865
866 /* Add to keyed-by-pid htab. */
867 lwp_lwpid_htab_add_lwp (lp);
868
869 return lp;
870}
871
872/* Add the LWP specified by PID to the list. Return a pointer to the
873 structure describing the new LWP. The LWP should already be
874 stopped. */
875
876static struct lwp_info *
877add_lwp (ptid_t ptid)
878{
879 struct lwp_info *lp;
880
881 lp = add_initial_lwp (ptid);
882
883 /* Let the arch specific bits know about this new thread. Current
884 clients of this callback take the opportunity to install
885 watchpoints in the new thread. We don't do this for the first
886 thread though. See add_initial_lwp. */
887 linux_target->low_new_thread (lp);
888
889 return lp;
890}
891
892/* Remove the LWP specified by PID from the list. */
893
894static void
895delete_lwp (ptid_t ptid)
896{
897 lwp_info dummy (ptid);
898
899 void **slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
900 if (slot == NULL)
901 return;
902
903 lwp_info *lp = *(struct lwp_info **) slot;
904 gdb_assert (lp != NULL);
905
906 htab_clear_slot (lwp_lwpid_htab, slot);
907
908 /* Remove from sorted-by-creation-order list. */
909 lwp_list_remove (lp);
910
911 /* Release. */
912 delete lp;
913}
914
915/* Return a pointer to the structure describing the LWP corresponding
916 to PID. If no corresponding LWP could be found, return NULL. */
917
918static struct lwp_info *
919find_lwp_pid (ptid_t ptid)
920{
921 int lwp;
922
923 if (ptid.lwp_p ())
924 lwp = ptid.lwp ();
925 else
926 lwp = ptid.pid ();
927
928 lwp_info dummy (ptid_t (0, lwp));
929 return (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
930}
931
932/* See nat/linux-nat.h. */
933
934struct lwp_info *
935iterate_over_lwps (ptid_t filter,
936 gdb::function_view<iterate_over_lwps_ftype> callback)
937{
938 for (lwp_info *lp : all_lwps_safe ())
939 {
940 if (lp->ptid.matches (filter))
941 {
942 if (callback (lp) != 0)
943 return lp;
944 }
945 }
946
947 return NULL;
948}
949
950/* Update our internal state when changing from one checkpoint to
951 another indicated by NEW_PTID. We can only switch single-threaded
952 applications, so we only create one new LWP, and the previous list
953 is discarded. */
954
955void
956linux_nat_switch_fork (ptid_t new_ptid)
957{
958 struct lwp_info *lp;
959
960 purge_lwp_list (inferior_ptid.pid ());
961
962 lp = add_lwp (new_ptid);
963 lp->stopped = 1;
964
965 /* This changes the thread's ptid while preserving the gdb thread
966 num. Also changes the inferior pid, while preserving the
967 inferior num. */
968 thread_change_ptid (linux_target, inferior_ptid, new_ptid);
969
970 /* We've just told GDB core that the thread changed target id, but,
971 in fact, it really is a different thread, with different register
972 contents. */
973 registers_changed ();
974}
975
976/* Handle the exit of a single thread LP. If DEL_THREAD is true,
977 delete the thread_info associated to LP, if it exists. */
978
979static void
980exit_lwp (struct lwp_info *lp, bool del_thread = true)
981{
982 struct thread_info *th = linux_target->find_thread (lp->ptid);
983
984 if (th != nullptr && del_thread)
985 delete_thread (th);
986
987 delete_lwp (lp->ptid);
988}
989
990/* Wait for the LWP specified by LP, which we have just attached to.
991 Returns a wait status for that LWP, to cache. */
992
993static int
994linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
995{
996 pid_t new_pid, pid = ptid.lwp ();
997 int status;
998
999 if (linux_proc_pid_is_stopped (pid))
1000 {
1001 linux_nat_debug_printf ("Attaching to a stopped process");
1002
1003 /* The process is definitely stopped. It is in a job control
1004 stop, unless the kernel predates the TASK_STOPPED /
1005 TASK_TRACED distinction, in which case it might be in a
1006 ptrace stop. Make sure it is in a ptrace stop; from there we
1007 can kill it, signal it, et cetera.
1008
1009 First make sure there is a pending SIGSTOP. Since we are
1010 already attached, the process can not transition from stopped
1011 to running without a PTRACE_CONT; so we know this signal will
1012 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1013 probably already in the queue (unless this kernel is old
1014 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1015 is not an RT signal, it can only be queued once. */
1016 kill_lwp (pid, SIGSTOP);
1017
1018 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1019 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1020 ptrace (PTRACE_CONT, pid, 0, 0);
1021 }
1022
1023 /* Make sure the initial process is stopped. The user-level threads
1024 layer might want to poke around in the inferior, and that won't
1025 work if things haven't stabilized yet. */
1026 new_pid = my_waitpid (pid, &status, __WALL);
1027 gdb_assert (pid == new_pid);
1028
1029 if (!WIFSTOPPED (status))
1030 {
1031 /* The pid we tried to attach has apparently just exited. */
1032 linux_nat_debug_printf ("Failed to stop %d: %s", pid,
1033 status_to_str (status).c_str ());
1034 return status;
1035 }
1036
1037 if (WSTOPSIG (status) != SIGSTOP)
1038 {
1039 *signalled = 1;
1040 linux_nat_debug_printf ("Received %s after attaching",
1041 status_to_str (status).c_str ());
1042 }
1043
1044 return status;
1045}
1046
1047void
1048linux_nat_target::create_inferior (const char *exec_file,
1049 const std::string &allargs,
1050 char **env, int from_tty)
1051{
1052 maybe_disable_address_space_randomization restore_personality
1053 (disable_randomization);
1054
1055 /* The fork_child mechanism is synchronous and calls target_wait, so
1056 we have to mask the async mode. */
1057
1058 /* Make sure we report all signals during startup. */
1059 pass_signals ({});
1060
1061 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
1062
1063 open_proc_mem_file (inferior_ptid);
1064}
1065
1066/* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1067 already attached. Returns true if a new LWP is found, false
1068 otherwise. */
1069
1070static int
1071attach_proc_task_lwp_callback (ptid_t ptid)
1072{
1073 struct lwp_info *lp;
1074
1075 /* Ignore LWPs we're already attached to. */
1076 lp = find_lwp_pid (ptid);
1077 if (lp == NULL)
1078 {
1079 int lwpid = ptid.lwp ();
1080
1081 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1082 {
1083 int err = errno;
1084
1085 /* Be quiet if we simply raced with the thread exiting.
1086 EPERM is returned if the thread's task still exists, and
1087 is marked as exited or zombie, as well as other
1088 conditions, so in that case, confirm the status in
1089 /proc/PID/status. */
1090 if (err == ESRCH
1091 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1092 {
1093 linux_nat_debug_printf
1094 ("Cannot attach to lwp %d: thread is gone (%d: %s)",
1095 lwpid, err, safe_strerror (err));
1096
1097 }
1098 else
1099 {
1100 std::string reason
1101 = linux_ptrace_attach_fail_reason_string (ptid, err);
1102
1103 error (_("Cannot attach to lwp %d: %s"),
1104 lwpid, reason.c_str ());
1105 }
1106 }
1107 else
1108 {
1109 linux_nat_debug_printf ("PTRACE_ATTACH %s, 0, 0 (OK)",
1110 ptid.to_string ().c_str ());
1111
1112 lp = add_lwp (ptid);
1113
1114 /* The next time we wait for this LWP we'll see a SIGSTOP as
1115 PTRACE_ATTACH brings it to a halt. */
1116 lp->signalled = 1;
1117
1118 /* We need to wait for a stop before being able to make the
1119 next ptrace call on this LWP. */
1120 lp->must_set_ptrace_flags = 1;
1121
1122 /* So that wait collects the SIGSTOP. */
1123 lp->resumed = 1;
1124 }
1125
1126 return 1;
1127 }
1128 return 0;
1129}
1130
1131void
1132linux_nat_target::attach (const char *args, int from_tty)
1133{
1134 struct lwp_info *lp;
1135 int status;
1136 ptid_t ptid;
1137
1138 /* Make sure we report all signals during attach. */
1139 pass_signals ({});
1140
1141 try
1142 {
1143 inf_ptrace_target::attach (args, from_tty);
1144 }
1145 catch (const gdb_exception_error &ex)
1146 {
1147 pid_t pid = parse_pid_to_attach (args);
1148 std::string reason = linux_ptrace_attach_fail_reason (pid);
1149
1150 if (!reason.empty ())
1151 throw_error (ex.error, "warning: %s\n%s", reason.c_str (),
1152 ex.what ());
1153 else
1154 throw_error (ex.error, "%s", ex.what ());
1155 }
1156
1157 /* The ptrace base target adds the main thread with (pid,0,0)
1158 format. Decorate it with lwp info. */
1159 ptid = ptid_t (inferior_ptid.pid (),
1160 inferior_ptid.pid ());
1161 thread_change_ptid (linux_target, inferior_ptid, ptid);
1162
1163 /* Add the initial process as the first LWP to the list. */
1164 lp = add_initial_lwp (ptid);
1165
1166 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1167 if (!WIFSTOPPED (status))
1168 {
1169 if (WIFEXITED (status))
1170 {
1171 int exit_code = WEXITSTATUS (status);
1172
1173 target_terminal::ours ();
1174 target_mourn_inferior (inferior_ptid);
1175 if (exit_code == 0)
1176 error (_("Unable to attach: program exited normally."));
1177 else
1178 error (_("Unable to attach: program exited with code %d."),
1179 exit_code);
1180 }
1181 else if (WIFSIGNALED (status))
1182 {
1183 enum gdb_signal signo;
1184
1185 target_terminal::ours ();
1186 target_mourn_inferior (inferior_ptid);
1187
1188 signo = gdb_signal_from_host (WTERMSIG (status));
1189 error (_("Unable to attach: program terminated with signal "
1190 "%s, %s."),
1191 gdb_signal_to_name (signo),
1192 gdb_signal_to_string (signo));
1193 }
1194
1195 internal_error (_("unexpected status %d for PID %ld"),
1196 status, (long) ptid.lwp ());
1197 }
1198
1199 lp->stopped = 1;
1200
1201 open_proc_mem_file (lp->ptid);
1202
1203 /* Save the wait status to report later. */
1204 lp->resumed = 1;
1205 linux_nat_debug_printf ("waitpid %ld, saving status %s",
1206 (long) lp->ptid.pid (),
1207 status_to_str (status).c_str ());
1208
1209 lp->status = status;
1210
1211 /* We must attach to every LWP. If /proc is mounted, use that to
1212 find them now. The inferior may be using raw clone instead of
1213 using pthreads. But even if it is using pthreads, thread_db
1214 walks structures in the inferior's address space to find the list
1215 of threads/LWPs, and those structures may well be corrupted.
1216 Note that once thread_db is loaded, we'll still use it to list
1217 threads and associate pthread info with each LWP. */
1218 try
1219 {
1220 linux_proc_attach_tgid_threads (lp->ptid.pid (),
1221 attach_proc_task_lwp_callback);
1222 }
1223 catch (const gdb_exception_error &)
1224 {
1225 /* Failed to attach to some LWP. Detach any we've already
1226 attached to. */
1227 iterate_over_lwps (ptid_t (ptid.pid ()),
1228 [] (struct lwp_info *lwp) -> int
1229 {
1230 /* Ignore errors when detaching. */
1231 ptrace (PTRACE_DETACH, lwp->ptid.lwp (), 0, 0);
1232 delete_lwp (lwp->ptid);
1233 return 0;
1234 });
1235
1236 target_terminal::ours ();
1237 target_mourn_inferior (inferior_ptid);
1238
1239 throw;
1240 }
1241
1242 /* Add all the LWPs to gdb's thread list. */
1243 iterate_over_lwps (ptid_t (ptid.pid ()),
1244 [] (struct lwp_info *lwp) -> int
1245 {
1246 if (lwp->ptid.pid () != lwp->ptid.lwp ())
1247 {
1248 add_thread (linux_target, lwp->ptid);
1249 set_running (linux_target, lwp->ptid, true);
1250 set_executing (linux_target, lwp->ptid, true);
1251 }
1252 return 0;
1253 });
1254}
1255
1256/* Ptrace-detach the thread with pid PID. */
1257
1258static void
1259detach_one_pid (int pid, int signo)
1260{
1261 if (ptrace (PTRACE_DETACH, pid, 0, signo) < 0)
1262 {
1263 int save_errno = errno;
1264
1265 /* We know the thread exists, so ESRCH must mean the lwp is
1266 zombie. This can happen if one of the already-detached
1267 threads exits the whole thread group. In that case we're
1268 still attached, and must reap the lwp. */
1269 if (save_errno == ESRCH)
1270 {
1271 int ret, status;
1272
1273 ret = my_waitpid (pid, &status, __WALL);
1274 if (ret == -1)
1275 {
1276 warning (_("Couldn't reap LWP %d while detaching: %s"),
1277 pid, safe_strerror (errno));
1278 }
1279 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1280 {
1281 warning (_("Reaping LWP %d while detaching "
1282 "returned unexpected status 0x%x"),
1283 pid, status);
1284 }
1285 }
1286 else
1287 error (_("Can't detach %d: %s"),
1288 pid, safe_strerror (save_errno));
1289 }
1290 else
1291 linux_nat_debug_printf ("PTRACE_DETACH (%d, %s, 0) (OK)",
1292 pid, strsignal (signo));
1293}
1294
1295/* Get pending signal of THREAD as a host signal number, for detaching
1296 purposes. This is the signal the thread last stopped for, which we
1297 need to deliver to the thread when detaching, otherwise, it'd be
1298 suppressed/lost. */
1299
1300static int
1301get_detach_signal (struct lwp_info *lp)
1302{
1303 enum gdb_signal signo = GDB_SIGNAL_0;
1304
1305 /* If we paused threads momentarily, we may have stored pending
1306 events in lp->status or lp->waitstatus (see stop_wait_callback),
1307 and GDB core hasn't seen any signal for those threads.
1308 Otherwise, the last signal reported to the core is found in the
1309 thread object's stop_signal.
1310
1311 There's a corner case that isn't handled here at present. Only
1312 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1313 stop_signal make sense as a real signal to pass to the inferior.
1314 Some catchpoint related events, like
1315 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1316 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1317 those traps are debug API (ptrace in our case) related and
1318 induced; the inferior wouldn't see them if it wasn't being
1319 traced. Hence, we should never pass them to the inferior, even
1320 when set to pass state. Since this corner case isn't handled by
1321 infrun.c when proceeding with a signal, for consistency, neither
1322 do we handle it here (or elsewhere in the file we check for
1323 signal pass state). Normally SIGTRAP isn't set to pass state, so
1324 this is really a corner case. */
1325
1326 if (lp->waitstatus.kind () != TARGET_WAITKIND_IGNORE)
1327 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1328 else if (lp->status)
1329 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1330 else
1331 {
1332 thread_info *tp = linux_target->find_thread (lp->ptid);
1333
1334 if (target_is_non_stop_p () && !tp->executing ())
1335 {
1336 if (tp->has_pending_waitstatus ())
1337 {
1338 /* If the thread has a pending event, and it was stopped with a
1339 signal, use that signal to resume it. If it has a pending
1340 event of another kind, it was not stopped with a signal, so
1341 resume it without a signal. */
1342 if (tp->pending_waitstatus ().kind () == TARGET_WAITKIND_STOPPED)
1343 signo = tp->pending_waitstatus ().sig ();
1344 else
1345 signo = GDB_SIGNAL_0;
1346 }
1347 else
1348 signo = tp->stop_signal ();
1349 }
1350 else if (!target_is_non_stop_p ())
1351 {
1352 ptid_t last_ptid;
1353 process_stratum_target *last_target;
1354
1355 get_last_target_status (&last_target, &last_ptid, nullptr);
1356
1357 if (last_target == linux_target
1358 && lp->ptid.lwp () == last_ptid.lwp ())
1359 signo = tp->stop_signal ();
1360 }
1361 }
1362
1363 if (signo == GDB_SIGNAL_0)
1364 {
1365 linux_nat_debug_printf ("lwp %s has no pending signal",
1366 lp->ptid.to_string ().c_str ());
1367 }
1368 else if (!signal_pass_state (signo))
1369 {
1370 linux_nat_debug_printf
1371 ("lwp %s had signal %s but it is in no pass state",
1372 lp->ptid.to_string ().c_str (), gdb_signal_to_string (signo));
1373 }
1374 else
1375 {
1376 linux_nat_debug_printf ("lwp %s has pending signal %s",
1377 lp->ptid.to_string ().c_str (),
1378 gdb_signal_to_string (signo));
1379
1380 return gdb_signal_to_host (signo);
1381 }
1382
1383 return 0;
1384}
1385
1386/* If LP has a pending fork/vfork/clone status, return it. */
1387
1388static std::optional<target_waitstatus>
1389get_pending_child_status (lwp_info *lp)
1390{
1391 LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT;
1392
1393 linux_nat_debug_printf ("lwp %s (stopped = %d)",
1394 lp->ptid.to_string ().c_str (), lp->stopped);
1395
1396 /* Check in lwp_info::status. */
1397 if (WIFSTOPPED (lp->status) && linux_is_extended_waitstatus (lp->status))
1398 {
1399 int event = linux_ptrace_get_extended_event (lp->status);
1400
1401 if (event == PTRACE_EVENT_FORK
1402 || event == PTRACE_EVENT_VFORK
1403 || event == PTRACE_EVENT_CLONE)
1404 {
1405 unsigned long child_pid;
1406 int ret = ptrace (PTRACE_GETEVENTMSG, lp->ptid.lwp (), 0, &child_pid);
1407 if (ret == 0)
1408 {
1409 target_waitstatus ws;
1410
1411 if (event == PTRACE_EVENT_FORK)
1412 ws.set_forked (ptid_t (child_pid, child_pid));
1413 else if (event == PTRACE_EVENT_VFORK)
1414 ws.set_vforked (ptid_t (child_pid, child_pid));
1415 else if (event == PTRACE_EVENT_CLONE)
1416 ws.set_thread_cloned (ptid_t (lp->ptid.pid (), child_pid));
1417 else
1418 gdb_assert_not_reached ("unhandled");
1419
1420 return ws;
1421 }
1422 else
1423 {
1424 perror_warning_with_name (_("Failed to retrieve event msg"));
1425 return {};
1426 }
1427 }
1428 }
1429
1430 /* Check in lwp_info::waitstatus. */
1431 if (is_new_child_status (lp->waitstatus.kind ()))
1432 return lp->waitstatus;
1433
1434 thread_info *tp = linux_target->find_thread (lp->ptid);
1435
1436 /* Check in thread_info::pending_waitstatus. */
1437 if (tp->has_pending_waitstatus ()
1438 && is_new_child_status (tp->pending_waitstatus ().kind ()))
1439 return tp->pending_waitstatus ();
1440
1441 /* Check in thread_info::pending_follow. */
1442 if (is_new_child_status (tp->pending_follow.kind ()))
1443 return tp->pending_follow;
1444
1445 return {};
1446}
1447
1448/* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1449 signal number that should be passed to the LWP when detaching.
1450 Otherwise pass any pending signal the LWP may have, if any. */
1451
1452static void
1453detach_one_lwp (struct lwp_info *lp, int *signo_p)
1454{
1455 int lwpid = lp->ptid.lwp ();
1456 int signo;
1457
1458 /* If the lwp/thread we are about to detach has a pending fork/clone
1459 event, there is a process/thread GDB is attached to that the core
1460 of GDB doesn't know about. Detach from it. */
1461
1462 std::optional<target_waitstatus> ws = get_pending_child_status (lp);
1463 if (ws.has_value ())
1464 detach_one_pid (ws->child_ptid ().lwp (), 0);
1465
1466 /* If there is a pending SIGSTOP, get rid of it. */
1467 if (lp->signalled)
1468 {
1469 linux_nat_debug_printf ("Sending SIGCONT to %s",
1470 lp->ptid.to_string ().c_str ());
1471
1472 kill_lwp (lwpid, SIGCONT);
1473 lp->signalled = 0;
1474 }
1475
1476 /* If the lwp has exited or was terminated due to a signal, there's
1477 nothing left to do. */
1478 if (is_lwp_marked_dead (lp))
1479 {
1480 linux_nat_debug_printf
1481 ("Can't detach %s - it has exited or was terminated: %s.",
1482 lp->ptid.to_string ().c_str (),
1483 lp->waitstatus.to_string ().c_str ());
1484 delete_lwp (lp->ptid);
1485 return;
1486 }
1487
1488 if (signo_p == NULL)
1489 {
1490 /* Pass on any pending signal for this LWP. */
1491 signo = get_detach_signal (lp);
1492 }
1493 else
1494 signo = *signo_p;
1495
1496 linux_nat_debug_printf ("preparing to resume lwp %s (stopped = %d)",
1497 lp->ptid.to_string ().c_str (),
1498 lp->stopped);
1499
1500 /* Preparing to resume may try to write registers, and fail if the
1501 lwp is zombie. If that happens, ignore the error. We'll handle
1502 it below, when detach fails with ESRCH. */
1503 try
1504 {
1505 linux_target->low_prepare_to_resume (lp);
1506 }
1507 catch (const gdb_exception_error &ex)
1508 {
1509 if (!check_ptrace_stopped_lwp_gone (lp))
1510 throw;
1511 }
1512
1513 detach_one_pid (lwpid, signo);
1514
1515 delete_lwp (lp->ptid);
1516}
1517
1518static int
1519detach_callback (struct lwp_info *lp)
1520{
1521 /* We don't actually detach from the thread group leader just yet.
1522 If the thread group exits, we must reap the zombie clone lwps
1523 before we're able to reap the leader. */
1524 if (lp->ptid.lwp () != lp->ptid.pid ())
1525 detach_one_lwp (lp, NULL);
1526 return 0;
1527}
1528
1529void
1530linux_nat_target::detach (inferior *inf, int from_tty)
1531{
1532 LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT;
1533
1534 struct lwp_info *main_lwp;
1535 int pid = inf->pid;
1536
1537 /* Don't unregister from the event loop, as there may be other
1538 inferiors running. */
1539
1540 /* Stop all threads before detaching. ptrace requires that the
1541 thread is stopped to successfully detach. */
1542 iterate_over_lwps (ptid_t (pid), stop_callback);
1543 /* ... and wait until all of them have reported back that
1544 they're no longer running. */
1545 iterate_over_lwps (ptid_t (pid), stop_wait_callback);
1546
1547 /* We can now safely remove breakpoints. We don't this in earlier
1548 in common code because this target doesn't currently support
1549 writing memory while the inferior is running. */
1550 remove_breakpoints_inf (current_inferior ());
1551
1552 iterate_over_lwps (ptid_t (pid), detach_callback);
1553
1554 /* We have detached from everything except the main thread now, so
1555 should only have one thread left. However, in non-stop mode the
1556 main thread might have exited, in which case we'll have no threads
1557 left. */
1558 gdb_assert (num_lwps (pid) == 1
1559 || (target_is_non_stop_p () && num_lwps (pid) == 0));
1560
1561 if (forks_exist_p (inf))
1562 {
1563 /* Multi-fork case. The current inferior_ptid is being detached
1564 from, but there are other viable forks to debug. Detach from
1565 the current fork, and context-switch to the first
1566 available. */
1567 linux_fork_detach (from_tty, find_lwp_pid (ptid_t (pid)), inf);
1568 }
1569 else
1570 {
1571 target_announce_detach (from_tty);
1572
1573 /* In non-stop mode it is possible that the main thread has exited,
1574 in which case we don't try to detach. */
1575 main_lwp = find_lwp_pid (ptid_t (pid));
1576 if (main_lwp != nullptr)
1577 {
1578 /* Pass on any pending signal for the last LWP. */
1579 int signo = get_detach_signal (main_lwp);
1580
1581 detach_one_lwp (main_lwp, &signo);
1582 }
1583 else
1584 gdb_assert (target_is_non_stop_p ());
1585
1586 detach_success (inf);
1587 }
1588
1589 close_proc_mem_file (pid);
1590}
1591
1592/* Resume execution of the inferior process. If STEP is nonzero,
1593 single-step it. If SIGNAL is nonzero, give it that signal. */
1594
1595static void
1596linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1597 enum gdb_signal signo)
1598{
1599 lp->step = step;
1600
1601 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1602 We only presently need that if the LWP is stepped though (to
1603 handle the case of stepping a breakpoint instruction). */
1604 if (step)
1605 {
1606 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
1607
1608 lp->stop_pc = regcache_read_pc (regcache);
1609 }
1610 else
1611 lp->stop_pc = 0;
1612
1613 linux_target->low_prepare_to_resume (lp);
1614 linux_target->low_resume (lp->ptid, step, signo);
1615
1616 /* Successfully resumed. Clear state that no longer makes sense,
1617 and mark the LWP as running. Must not do this before resuming
1618 otherwise if that fails other code will be confused. E.g., we'd
1619 later try to stop the LWP and hang forever waiting for a stop
1620 status. Note that we must not throw after this is cleared,
1621 otherwise handle_zombie_lwp_error would get confused. */
1622 lp->stopped = 0;
1623 lp->core = -1;
1624 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1625 registers_changed_ptid (linux_target, lp->ptid);
1626}
1627
1628/* Called when we try to resume a stopped LWP and that errors out. If
1629 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1630 or about to become), discard the error, clear any pending status
1631 the LWP may have, and return true (we'll collect the exit status
1632 soon enough). Otherwise, return false. */
1633
1634static int
1635check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1636{
1637 /* If we get an error after resuming the LWP successfully, we'd
1638 confuse !T state for the LWP being gone. */
1639 gdb_assert (lp->stopped);
1640
1641 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1642 because even if ptrace failed with ESRCH, the tracee may be "not
1643 yet fully dead", but already refusing ptrace requests. In that
1644 case the tracee has 'R (Running)' state for a little bit
1645 (observed in Linux 3.18). See also the note on ESRCH in the
1646 ptrace(2) man page. Instead, check whether the LWP has any state
1647 other than ptrace-stopped. */
1648
1649 /* Don't assume anything if /proc/PID/status can't be read. */
1650 if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0)
1651 {
1652 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1653 lp->status = 0;
1654 lp->waitstatus.set_ignore ();
1655 return 1;
1656 }
1657 return 0;
1658}
1659
1660/* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1661 disappears while we try to resume it. */
1662
1663static void
1664linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1665{
1666 try
1667 {
1668 linux_resume_one_lwp_throw (lp, step, signo);
1669 }
1670 catch (const gdb_exception_error &ex)
1671 {
1672 if (!check_ptrace_stopped_lwp_gone (lp))
1673 throw;
1674 }
1675}
1676
1677/* Resume LP. */
1678
1679static void
1680resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1681{
1682 if (lp->stopped)
1683 {
1684 struct inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
1685
1686 if (inf->vfork_child != NULL)
1687 {
1688 linux_nat_debug_printf ("Not resuming sibling %s (vfork parent)",
1689 lp->ptid.to_string ().c_str ());
1690 }
1691 else if (!lwp_status_pending_p (lp))
1692 {
1693 linux_nat_debug_printf ("Resuming sibling %s, %s, %s",
1694 lp->ptid.to_string ().c_str (),
1695 (signo != GDB_SIGNAL_0
1696 ? strsignal (gdb_signal_to_host (signo))
1697 : "0"),
1698 step ? "step" : "resume");
1699
1700 linux_resume_one_lwp (lp, step, signo);
1701 }
1702 else
1703 {
1704 linux_nat_debug_printf ("Not resuming sibling %s (has pending)",
1705 lp->ptid.to_string ().c_str ());
1706 }
1707 }
1708 else
1709 linux_nat_debug_printf ("Not resuming sibling %s (not stopped)",
1710 lp->ptid.to_string ().c_str ());
1711}
1712
1713/* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1714 Resume LWP with the last stop signal, if it is in pass state. */
1715
1716static int
1717linux_nat_resume_callback (struct lwp_info *lp, struct lwp_info *except)
1718{
1719 enum gdb_signal signo = GDB_SIGNAL_0;
1720
1721 if (lp == except)
1722 return 0;
1723
1724 if (lp->stopped)
1725 {
1726 struct thread_info *thread;
1727
1728 thread = linux_target->find_thread (lp->ptid);
1729 if (thread != NULL)
1730 {
1731 signo = thread->stop_signal ();
1732 thread->set_stop_signal (GDB_SIGNAL_0);
1733 }
1734 }
1735
1736 resume_lwp (lp, 0, signo);
1737 return 0;
1738}
1739
1740static int
1741resume_clear_callback (struct lwp_info *lp)
1742{
1743 lp->resumed = 0;
1744 lp->last_resume_kind = resume_stop;
1745 return 0;
1746}
1747
1748static int
1749resume_set_callback (struct lwp_info *lp)
1750{
1751 lp->resumed = 1;
1752 lp->last_resume_kind = resume_continue;
1753 return 0;
1754}
1755
1756void
1757linux_nat_target::resume (ptid_t scope_ptid, int step, enum gdb_signal signo)
1758{
1759 struct lwp_info *lp;
1760
1761 linux_nat_debug_printf ("Preparing to %s %s, %s, inferior_ptid %s",
1762 step ? "step" : "resume",
1763 scope_ptid.to_string ().c_str (),
1764 (signo != GDB_SIGNAL_0
1765 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1766 inferior_ptid.to_string ().c_str ());
1767
1768 /* Mark the lwps we're resuming as resumed and update their
1769 last_resume_kind to resume_continue. */
1770 iterate_over_lwps (scope_ptid, resume_set_callback);
1771
1772 lp = find_lwp_pid (inferior_ptid);
1773 gdb_assert (lp != NULL);
1774
1775 /* Remember if we're stepping. */
1776 lp->last_resume_kind = step ? resume_step : resume_continue;
1777
1778 /* If we have a pending wait status for this thread, there is no
1779 point in resuming the process. But first make sure that
1780 linux_nat_wait won't preemptively handle the event - we
1781 should never take this short-circuit if we are going to
1782 leave LP running, since we have skipped resuming all the
1783 other threads. This bit of code needs to be synchronized
1784 with linux_nat_wait. */
1785
1786 if (lp->status && WIFSTOPPED (lp->status))
1787 {
1788 if (!lp->step
1789 && WSTOPSIG (lp->status)
1790 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1791 {
1792 linux_nat_debug_printf
1793 ("Not short circuiting for ignored status 0x%x", lp->status);
1794
1795 /* FIXME: What should we do if we are supposed to continue
1796 this thread with a signal? */
1797 gdb_assert (signo == GDB_SIGNAL_0);
1798 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1799 lp->status = 0;
1800 }
1801 }
1802
1803 if (lwp_status_pending_p (lp))
1804 {
1805 /* FIXME: What should we do if we are supposed to continue
1806 this thread with a signal? */
1807 gdb_assert (signo == GDB_SIGNAL_0);
1808
1809 linux_nat_debug_printf ("Short circuiting for status %s",
1810 pending_status_str (lp).c_str ());
1811
1812 if (target_can_async_p ())
1813 {
1814 target_async (true);
1815 /* Tell the event loop we have something to process. */
1816 async_file_mark ();
1817 }
1818 return;
1819 }
1820
1821 /* No use iterating unless we're resuming other threads. */
1822 if (scope_ptid != lp->ptid)
1823 iterate_over_lwps (scope_ptid, [=] (struct lwp_info *info)
1824 {
1825 return linux_nat_resume_callback (info, lp);
1826 });
1827
1828 linux_nat_debug_printf ("%s %s, %s (resume event thread)",
1829 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1830 lp->ptid.to_string ().c_str (),
1831 (signo != GDB_SIGNAL_0
1832 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1833
1834 linux_resume_one_lwp (lp, step, signo);
1835}
1836
1837/* Send a signal to an LWP. */
1838
1839static int
1840kill_lwp (int lwpid, int signo)
1841{
1842 int ret;
1843
1844 errno = 0;
1845 ret = syscall (__NR_tkill, lwpid, signo);
1846 if (errno == ENOSYS)
1847 {
1848 /* If tkill fails, then we are not using nptl threads, a
1849 configuration we no longer support. */
1850 perror_with_name (("tkill"));
1851 }
1852 return ret;
1853}
1854
1855/* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1856 event, check if the core is interested in it: if not, ignore the
1857 event, and keep waiting; otherwise, we need to toggle the LWP's
1858 syscall entry/exit status, since the ptrace event itself doesn't
1859 indicate it, and report the trap to higher layers. */
1860
1861static int
1862linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1863{
1864 struct target_waitstatus *ourstatus = &lp->waitstatus;
1865 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1866 thread_info *thread = linux_target->find_thread (lp->ptid);
1867 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread);
1868
1869 if (stopping)
1870 {
1871 /* If we're stopping threads, there's a SIGSTOP pending, which
1872 makes it so that the LWP reports an immediate syscall return,
1873 followed by the SIGSTOP. Skip seeing that "return" using
1874 PTRACE_CONT directly, and let stop_wait_callback collect the
1875 SIGSTOP. Later when the thread is resumed, a new syscall
1876 entry event. If we didn't do this (and returned 0), we'd
1877 leave a syscall entry pending, and our caller, by using
1878 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1879 itself. Later, when the user re-resumes this LWP, we'd see
1880 another syscall entry event and we'd mistake it for a return.
1881
1882 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1883 (leaving immediately with LWP->signalled set, without issuing
1884 a PTRACE_CONT), it would still be problematic to leave this
1885 syscall enter pending, as later when the thread is resumed,
1886 it would then see the same syscall exit mentioned above,
1887 followed by the delayed SIGSTOP, while the syscall didn't
1888 actually get to execute. It seems it would be even more
1889 confusing to the user. */
1890
1891 linux_nat_debug_printf
1892 ("ignoring syscall %d for LWP %ld (stopping threads), resuming with "
1893 "PTRACE_CONT for SIGSTOP", syscall_number, lp->ptid.lwp ());
1894
1895 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1896 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
1897 lp->stopped = 0;
1898 return 1;
1899 }
1900
1901 /* Always update the entry/return state, even if this particular
1902 syscall isn't interesting to the core now. In async mode,
1903 the user could install a new catchpoint for this syscall
1904 between syscall enter/return, and we'll need to know to
1905 report a syscall return if that happens. */
1906 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1907 ? TARGET_WAITKIND_SYSCALL_RETURN
1908 : TARGET_WAITKIND_SYSCALL_ENTRY);
1909
1910 if (catch_syscall_enabled ())
1911 {
1912 if (catching_syscall_number (syscall_number))
1913 {
1914 /* Alright, an event to report. */
1915 if (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY)
1916 ourstatus->set_syscall_entry (syscall_number);
1917 else if (lp->syscall_state == TARGET_WAITKIND_SYSCALL_RETURN)
1918 ourstatus->set_syscall_return (syscall_number);
1919 else
1920 gdb_assert_not_reached ("unexpected syscall state");
1921
1922 linux_nat_debug_printf
1923 ("stopping for %s of syscall %d for LWP %ld",
1924 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1925 ? "entry" : "return"), syscall_number, lp->ptid.lwp ());
1926
1927 return 0;
1928 }
1929
1930 linux_nat_debug_printf
1931 ("ignoring %s of syscall %d for LWP %ld",
1932 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1933 ? "entry" : "return"), syscall_number, lp->ptid.lwp ());
1934 }
1935 else
1936 {
1937 /* If we had been syscall tracing, and hence used PT_SYSCALL
1938 before on this LWP, it could happen that the user removes all
1939 syscall catchpoints before we get to process this event.
1940 There are two noteworthy issues here:
1941
1942 - When stopped at a syscall entry event, resuming with
1943 PT_STEP still resumes executing the syscall and reports a
1944 syscall return.
1945
1946 - Only PT_SYSCALL catches syscall enters. If we last
1947 single-stepped this thread, then this event can't be a
1948 syscall enter. If we last single-stepped this thread, this
1949 has to be a syscall exit.
1950
1951 The points above mean that the next resume, be it PT_STEP or
1952 PT_CONTINUE, can not trigger a syscall trace event. */
1953 linux_nat_debug_printf
1954 ("caught syscall event with no syscall catchpoints. %d for LWP %ld, "
1955 "ignoring", syscall_number, lp->ptid.lwp ());
1956 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1957 }
1958
1959 /* The core isn't interested in this event. For efficiency, avoid
1960 stopping all threads only to have the core resume them all again.
1961 Since we're not stopping threads, if we're still syscall tracing
1962 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1963 subsequent syscall. Simply resume using the inf-ptrace layer,
1964 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1965
1966 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1967 return 1;
1968}
1969
1970/* See target.h. */
1971
1972void
1973linux_nat_target::follow_clone (ptid_t child_ptid)
1974{
1975 lwp_info *new_lp = add_lwp (child_ptid);
1976 new_lp->stopped = 1;
1977
1978 /* If the thread_db layer is active, let it record the user
1979 level thread id and status, and add the thread to GDB's
1980 list. */
1981 if (!thread_db_notice_clone (inferior_ptid, new_lp->ptid))
1982 {
1983 /* The process is not using thread_db. Add the LWP to
1984 GDB's list. */
1985 add_thread (linux_target, new_lp->ptid);
1986 }
1987
1988 /* We just created NEW_LP so it cannot yet contain STATUS. */
1989 gdb_assert (new_lp->status == 0);
1990
1991 if (!pull_pid_from_list (&stopped_pids, child_ptid.lwp (), &new_lp->status))
1992 internal_error (_("no saved status for clone lwp"));
1993
1994 if (WSTOPSIG (new_lp->status) != SIGSTOP)
1995 {
1996 /* This can happen if someone starts sending signals to
1997 the new thread before it gets a chance to run, which
1998 have a lower number than SIGSTOP (e.g. SIGUSR1).
1999 This is an unlikely case, and harder to handle for
2000 fork / vfork than for clone, so we do not try - but
2001 we handle it for clone events here. */
2002
2003 new_lp->signalled = 1;
2004
2005 /* Save the wait status to report later. */
2006 linux_nat_debug_printf
2007 ("waitpid of new LWP %ld, saving status %s",
2008 (long) new_lp->ptid.lwp (), status_to_str (new_lp->status).c_str ());
2009 }
2010 else
2011 {
2012 new_lp->status = 0;
2013
2014 if (report_thread_events)
2015 new_lp->waitstatus.set_thread_created ();
2016 }
2017}
2018
2019/* Handle a GNU/Linux extended wait response. If we see a clone
2020 event, we need to add the new LWP to our list (and not report the
2021 trap to higher layers). This function returns non-zero if the
2022 event should be ignored and we should wait again. If STOPPING is
2023 true, the new LWP remains stopped, otherwise it is continued. */
2024
2025static int
2026linux_handle_extended_wait (struct lwp_info *lp, int status)
2027{
2028 int pid = lp->ptid.lwp ();
2029 struct target_waitstatus *ourstatus = &lp->waitstatus;
2030 int event = linux_ptrace_get_extended_event (status);
2031
2032 /* All extended events we currently use are mid-syscall. Only
2033 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
2034 you have to be using PTRACE_SEIZE to get that. */
2035 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
2036
2037 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2038 || event == PTRACE_EVENT_CLONE)
2039 {
2040 unsigned long new_pid;
2041 int ret;
2042
2043 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2044
2045 /* If we haven't already seen the new PID stop, wait for it now. */
2046 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2047 {
2048 /* The new child has a pending SIGSTOP. We can't affect it until it
2049 hits the SIGSTOP, but we're already attached. */
2050 ret = my_waitpid (new_pid, &status, __WALL);
2051 if (ret == -1)
2052 perror_with_name (_("waiting for new child"));
2053 else if (ret != new_pid)
2054 internal_error (_("wait returned unexpected PID %d"), ret);
2055 else if (!WIFSTOPPED (status))
2056 internal_error (_("wait returned unexpected status 0x%x"), status);
2057 }
2058
2059 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2060 {
2061 open_proc_mem_file (ptid_t (new_pid, new_pid));
2062
2063 /* The arch-specific native code may need to know about new
2064 forks even if those end up never mapped to an
2065 inferior. */
2066 linux_target->low_new_fork (lp, new_pid);
2067 }
2068 else if (event == PTRACE_EVENT_CLONE)
2069 {
2070 linux_target->low_new_clone (lp, new_pid);
2071 }
2072
2073 if (event == PTRACE_EVENT_FORK
2074 && linux_fork_checkpointing_p (lp->ptid.pid ()))
2075 {
2076 /* Handle checkpointing by linux-fork.c here as a special
2077 case. We don't want the follow-fork-mode or 'catch fork'
2078 to interfere with this. */
2079
2080 /* This won't actually modify the breakpoint list, but will
2081 physically remove the breakpoints from the child. */
2082 detach_breakpoints (ptid_t (new_pid, new_pid));
2083
2084 /* Retain child fork in ptrace (stopped) state. */
2085 if (find_fork_pid (new_pid).first == nullptr)
2086 {
2087 struct inferior *inf = find_inferior_ptid (linux_target,
2088 lp->ptid);
2089 add_fork (new_pid, inf);
2090 }
2091
2092 /* Report as spurious, so that infrun doesn't want to follow
2093 this fork. We're actually doing an infcall in
2094 linux-fork.c. */
2095 ourstatus->set_spurious ();
2096
2097 /* Report the stop to the core. */
2098 return 0;
2099 }
2100
2101 if (event == PTRACE_EVENT_FORK)
2102 ourstatus->set_forked (ptid_t (new_pid, new_pid));
2103 else if (event == PTRACE_EVENT_VFORK)
2104 ourstatus->set_vforked (ptid_t (new_pid, new_pid));
2105 else if (event == PTRACE_EVENT_CLONE)
2106 {
2107 linux_nat_debug_printf
2108 ("Got clone event from LWP %d, new child is LWP %ld", pid, new_pid);
2109
2110 /* Save the status again, we'll use it in follow_clone. */
2111 add_to_pid_list (&stopped_pids, new_pid, status);
2112
2113 ourstatus->set_thread_cloned (ptid_t (lp->ptid.pid (), new_pid));
2114 }
2115
2116 return 0;
2117 }
2118
2119 if (event == PTRACE_EVENT_EXEC)
2120 {
2121 linux_nat_debug_printf ("Got exec event from LWP %ld", lp->ptid.lwp ());
2122
2123 /* Close the previous /proc/PID/mem file for this inferior,
2124 which was using the address space which is now gone.
2125 Reading/writing from this file would return 0/EOF. */
2126 close_proc_mem_file (lp->ptid.pid ());
2127
2128 /* Open a new file for the new address space. */
2129 open_proc_mem_file (lp->ptid);
2130
2131 ourstatus->set_execd
2132 (make_unique_xstrdup (linux_target->pid_to_exec_file (pid)));
2133
2134 /* The thread that execed must have been resumed, but, when a
2135 thread execs, it changes its tid to the tgid, and the old
2136 tgid thread might have not been resumed. */
2137 lp->resumed = 1;
2138
2139 /* All other LWPs are gone now. We'll have received a thread
2140 exit notification for all threads other the execing one.
2141 That one, if it wasn't the leader, just silently changes its
2142 tid to the tgid, and the previous leader vanishes. Since
2143 Linux 3.0, the former thread ID can be retrieved with
2144 PTRACE_GETEVENTMSG, but since we support older kernels, don't
2145 bother with it, and just walk the LWP list. Even with
2146 PTRACE_GETEVENTMSG, we'd still need to lookup the
2147 corresponding LWP object, and it would be an extra ptrace
2148 syscall, so this way may even be more efficient. */
2149 for (lwp_info *other_lp : all_lwps_safe ())
2150 if (other_lp != lp && other_lp->ptid.pid () == lp->ptid.pid ())
2151 exit_lwp (other_lp);
2152
2153 return 0;
2154 }
2155
2156 if (event == PTRACE_EVENT_VFORK_DONE)
2157 {
2158 linux_nat_debug_printf
2159 ("Got PTRACE_EVENT_VFORK_DONE from LWP %ld",
2160 lp->ptid.lwp ());
2161 ourstatus->set_vfork_done ();
2162 return 0;
2163 }
2164
2165 internal_error (_("unknown ptrace event %d"), event);
2166}
2167
2168/* Suspend waiting for a signal. We're mostly interested in
2169 SIGCHLD/SIGINT. */
2170
2171static void
2172wait_for_signal ()
2173{
2174 linux_nat_debug_printf ("about to sigsuspend");
2175 sigsuspend (&suspend_mask);
2176
2177 /* If the quit flag is set, it means that the user pressed Ctrl-C
2178 and we're debugging a process that is running on a separate
2179 terminal, so we must forward the Ctrl-C to the inferior. (If the
2180 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2181 inferior directly.) We must do this here because functions that
2182 need to block waiting for a signal loop forever until there's an
2183 event to report before returning back to the event loop. */
2184 if (!target_terminal::is_ours ())
2185 {
2186 if (check_quit_flag ())
2187 target_pass_ctrlc ();
2188 }
2189}
2190
2191/* Mark LWP dead, with STATUS as exit status pending to report
2192 later. */
2193
2194static void
2195mark_lwp_dead (lwp_info *lp, int status)
2196{
2197 /* Store the exit status lp->waitstatus, because lp->status would be
2198 ambiguous (W_EXITCODE(0,0) == 0). */
2199 lp->waitstatus = host_status_to_waitstatus (status);
2200
2201 /* If we're processing LP's status, there should be no other event
2202 already recorded as pending. */
2203 gdb_assert (lp->status == 0);
2204
2205 /* Dead LWPs aren't expected to report a pending sigstop. */
2206 lp->signalled = 0;
2207
2208 /* Prevent trying to stop it. */
2209 lp->stopped = 1;
2210}
2211
2212/* Return true if LP is dead, with a pending exit/signalled event. */
2213
2214static bool
2215is_lwp_marked_dead (lwp_info *lp)
2216{
2217 switch (lp->waitstatus.kind ())
2218 {
2219 case TARGET_WAITKIND_EXITED:
2220 case TARGET_WAITKIND_THREAD_EXITED:
2221 case TARGET_WAITKIND_SIGNALLED:
2222 return true;
2223 }
2224 return false;
2225}
2226
2227/* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2228 exited. */
2229
2230static int
2231wait_lwp (struct lwp_info *lp)
2232{
2233 pid_t pid;
2234 int status = 0;
2235 int thread_dead = 0;
2236 sigset_t prev_mask;
2237
2238 gdb_assert (!lp->stopped);
2239 gdb_assert (lp->status == 0);
2240
2241 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2242 block_child_signals (&prev_mask);
2243
2244 for (;;)
2245 {
2246 pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG);
2247 if (pid == -1 && errno == ECHILD)
2248 {
2249 /* The thread has previously exited. We need to delete it
2250 now because if this was a non-leader thread execing, we
2251 won't get an exit event. See comments on exec events at
2252 the top of the file. */
2253 thread_dead = 1;
2254 linux_nat_debug_printf ("%s vanished.",
2255 lp->ptid.to_string ().c_str ());
2256 }
2257 if (pid != 0)
2258 break;
2259
2260 /* Bugs 10970, 12702.
2261 Thread group leader may have exited in which case we'll lock up in
2262 waitpid if there are other threads, even if they are all zombies too.
2263 Basically, we're not supposed to use waitpid this way.
2264 tkill(pid,0) cannot be used here as it gets ESRCH for both
2265 for zombie and running processes.
2266
2267 As a workaround, check if we're waiting for the thread group leader and
2268 if it's a zombie, and avoid calling waitpid if it is.
2269
2270 This is racy, what if the tgl becomes a zombie right after we check?
2271 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2272 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2273
2274 if (lp->ptid.pid () == lp->ptid.lwp ()
2275 && linux_proc_pid_is_zombie (lp->ptid.lwp ()))
2276 {
2277 thread_dead = 1;
2278 linux_nat_debug_printf ("Thread group leader %s vanished.",
2279 lp->ptid.to_string ().c_str ());
2280 break;
2281 }
2282
2283 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2284 get invoked despite our caller had them intentionally blocked by
2285 block_child_signals. This is sensitive only to the loop of
2286 linux_nat_wait_1 and there if we get called my_waitpid gets called
2287 again before it gets to sigsuspend so we can safely let the handlers
2288 get executed here. */
2289 wait_for_signal ();
2290 }
2291
2292 restore_child_signals_mask (&prev_mask);
2293
2294 if (!thread_dead)
2295 {
2296 gdb_assert (pid == lp->ptid.lwp ());
2297
2298 linux_nat_debug_printf ("waitpid %s received %s",
2299 lp->ptid.to_string ().c_str (),
2300 status_to_str (status).c_str ());
2301
2302 /* Check if the thread has exited. */
2303 if (WIFEXITED (status) || WIFSIGNALED (status))
2304 {
2305 if (report_exit_events_for (lp) || is_leader (lp))
2306 {
2307 linux_nat_debug_printf ("LWP %d exited.", lp->ptid.pid ());
2308
2309 /* If this is the leader exiting, it means the whole
2310 process is gone. Store the status to report to the
2311 core. */
2312 mark_lwp_dead (lp, status);
2313 return 0;
2314 }
2315
2316 thread_dead = 1;
2317 linux_nat_debug_printf ("%s exited.",
2318 lp->ptid.to_string ().c_str ());
2319 }
2320 }
2321
2322 if (thread_dead)
2323 {
2324 exit_lwp (lp);
2325 return 0;
2326 }
2327
2328 gdb_assert (WIFSTOPPED (status));
2329 lp->stopped = 1;
2330
2331 if (lp->must_set_ptrace_flags)
2332 {
2333 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
2334 int options = linux_nat_ptrace_options (inf->attach_flag);
2335
2336 linux_enable_event_reporting (lp->ptid.lwp (), options);
2337 lp->must_set_ptrace_flags = 0;
2338 }
2339
2340 /* Handle GNU/Linux's syscall SIGTRAPs. */
2341 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2342 {
2343 /* No longer need the sysgood bit. The ptrace event ends up
2344 recorded in lp->waitstatus if we care for it. We can carry
2345 on handling the event like a regular SIGTRAP from here
2346 on. */
2347 status = W_STOPCODE (SIGTRAP);
2348 if (linux_handle_syscall_trap (lp, 1))
2349 return wait_lwp (lp);
2350 }
2351 else
2352 {
2353 /* Almost all other ptrace-stops are known to be outside of system
2354 calls, with further exceptions in linux_handle_extended_wait. */
2355 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2356 }
2357
2358 /* Handle GNU/Linux's extended waitstatus for trace events. */
2359 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2360 && linux_is_extended_waitstatus (status))
2361 {
2362 linux_nat_debug_printf ("Handling extended status 0x%06x", status);
2363 linux_handle_extended_wait (lp, status);
2364 return 0;
2365 }
2366
2367 return status;
2368}
2369
2370/* Send a SIGSTOP to LP. */
2371
2372static int
2373stop_callback (struct lwp_info *lp)
2374{
2375 if (!lp->stopped && !lp->signalled)
2376 {
2377 int ret;
2378
2379 linux_nat_debug_printf ("kill %s **<SIGSTOP>**",
2380 lp->ptid.to_string ().c_str ());
2381
2382 errno = 0;
2383 ret = kill_lwp (lp->ptid.lwp (), SIGSTOP);
2384 linux_nat_debug_printf ("lwp kill %d %s", ret,
2385 errno ? safe_strerror (errno) : "ERRNO-OK");
2386
2387 lp->signalled = 1;
2388 gdb_assert (lp->status == 0);
2389 }
2390
2391 return 0;
2392}
2393
2394/* Request a stop on LWP. */
2395
2396void
2397linux_stop_lwp (struct lwp_info *lwp)
2398{
2399 stop_callback (lwp);
2400}
2401
2402/* See linux-nat.h */
2403
2404void
2405linux_stop_and_wait_all_lwps (void)
2406{
2407 /* Stop all LWP's ... */
2408 iterate_over_lwps (minus_one_ptid, stop_callback);
2409
2410 /* ... and wait until all of them have reported back that
2411 they're no longer running. */
2412 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
2413}
2414
2415/* See linux-nat.h */
2416
2417void
2418linux_unstop_all_lwps (void)
2419{
2420 iterate_over_lwps (minus_one_ptid,
2421 [] (struct lwp_info *info)
2422 {
2423 return resume_stopped_resumed_lwps (info, minus_one_ptid);
2424 });
2425}
2426
2427/* Return non-zero if LWP PID has a pending SIGINT. */
2428
2429static int
2430linux_nat_has_pending_sigint (int pid)
2431{
2432 sigset_t pending, blocked, ignored;
2433
2434 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2435
2436 if (sigismember (&pending, SIGINT)
2437 && !sigismember (&ignored, SIGINT))
2438 return 1;
2439
2440 return 0;
2441}
2442
2443/* Set a flag in LP indicating that we should ignore its next SIGINT. */
2444
2445static int
2446set_ignore_sigint (struct lwp_info *lp)
2447{
2448 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2449 flag to consume the next one. */
2450 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2451 && WSTOPSIG (lp->status) == SIGINT)
2452 lp->status = 0;
2453 else
2454 lp->ignore_sigint = 1;
2455
2456 return 0;
2457}
2458
2459/* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2460 This function is called after we know the LWP has stopped; if the LWP
2461 stopped before the expected SIGINT was delivered, then it will never have
2462 arrived. Also, if the signal was delivered to a shared queue and consumed
2463 by a different thread, it will never be delivered to this LWP. */
2464
2465static void
2466maybe_clear_ignore_sigint (struct lwp_info *lp)
2467{
2468 if (!lp->ignore_sigint)
2469 return;
2470
2471 if (!linux_nat_has_pending_sigint (lp->ptid.lwp ()))
2472 {
2473 linux_nat_debug_printf ("Clearing bogus flag for %s",
2474 lp->ptid.to_string ().c_str ());
2475 lp->ignore_sigint = 0;
2476 }
2477}
2478
2479/* Fetch the possible triggered data watchpoint info and store it in
2480 LP.
2481
2482 On some archs, like x86, that use debug registers to set
2483 watchpoints, it's possible that the way to know which watched
2484 address trapped, is to check the register that is used to select
2485 which address to watch. Problem is, between setting the watchpoint
2486 and reading back which data address trapped, the user may change
2487 the set of watchpoints, and, as a consequence, GDB changes the
2488 debug registers in the inferior. To avoid reading back a stale
2489 stopped-data-address when that happens, we cache in LP the fact
2490 that a watchpoint trapped, and the corresponding data address, as
2491 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2492 registers meanwhile, we have the cached data we can rely on. */
2493
2494static int
2495check_stopped_by_watchpoint (struct lwp_info *lp)
2496{
2497 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2498 inferior_ptid = lp->ptid;
2499
2500 if (linux_target->low_stopped_by_watchpoint ())
2501 {
2502 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2503 lp->stopped_data_address_p
2504 = linux_target->low_stopped_data_address (&lp->stopped_data_address);
2505 }
2506
2507 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2508}
2509
2510/* Returns true if the LWP had stopped for a watchpoint. */
2511
2512bool
2513linux_nat_target::stopped_by_watchpoint ()
2514{
2515 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2516
2517 gdb_assert (lp != NULL);
2518
2519 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2520}
2521
2522bool
2523linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2524{
2525 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2526
2527 gdb_assert (lp != NULL);
2528
2529 *addr_p = lp->stopped_data_address;
2530
2531 return lp->stopped_data_address_p;
2532}
2533
2534/* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2535
2536bool
2537linux_nat_target::low_status_is_event (int status)
2538{
2539 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2540}
2541
2542/* Wait until LP is stopped. */
2543
2544static int
2545stop_wait_callback (struct lwp_info *lp)
2546{
2547 inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
2548
2549 /* If this is a vfork parent, bail out, it is not going to report
2550 any SIGSTOP until the vfork is done with. */
2551 if (inf->vfork_child != NULL)
2552 return 0;
2553
2554 if (!lp->stopped)
2555 {
2556 int status;
2557
2558 status = wait_lwp (lp);
2559 if (status == 0)
2560 return 0;
2561
2562 if (lp->ignore_sigint && WIFSTOPPED (status)
2563 && WSTOPSIG (status) == SIGINT)
2564 {
2565 lp->ignore_sigint = 0;
2566
2567 errno = 0;
2568 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
2569 lp->stopped = 0;
2570 linux_nat_debug_printf
2571 ("PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)",
2572 lp->ptid.to_string ().c_str (),
2573 errno ? safe_strerror (errno) : "OK");
2574
2575 return stop_wait_callback (lp);
2576 }
2577
2578 maybe_clear_ignore_sigint (lp);
2579
2580 if (WSTOPSIG (status) != SIGSTOP)
2581 {
2582 /* The thread was stopped with a signal other than SIGSTOP. */
2583
2584 linux_nat_debug_printf ("Pending event %s in %s",
2585 status_to_str ((int) status).c_str (),
2586 lp->ptid.to_string ().c_str ());
2587
2588 /* Save the sigtrap event. */
2589 lp->status = status;
2590 gdb_assert (lp->signalled);
2591 save_stop_reason (lp);
2592 }
2593 else
2594 {
2595 /* We caught the SIGSTOP that we intended to catch. */
2596
2597 linux_nat_debug_printf ("Expected SIGSTOP caught for %s.",
2598 lp->ptid.to_string ().c_str ());
2599
2600 lp->signalled = 0;
2601
2602 /* If we are waiting for this stop so we can report the thread
2603 stopped then we need to record this status. Otherwise, we can
2604 now discard this stop event. */
2605 if (lp->last_resume_kind == resume_stop)
2606 {
2607 lp->status = status;
2608 save_stop_reason (lp);
2609 }
2610 }
2611 }
2612
2613 return 0;
2614}
2615
2616/* Get the inferior associated to LWP. Must be called with an LWP that has
2617 an associated inferior. Always return non-nullptr. */
2618
2619static inferior *
2620lwp_inferior (const lwp_info *lwp)
2621{
2622 inferior *inf = find_inferior_ptid (linux_target, lwp->ptid);
2623 gdb_assert (inf != nullptr);
2624 return inf;
2625}
2626
2627/* Return non-zero if LP has a wait status pending. Discard the
2628 pending event and resume the LWP if the event that originally
2629 caused the stop became uninteresting. */
2630
2631static int
2632status_callback (struct lwp_info *lp)
2633{
2634 /* Only report a pending wait status if we pretend that this has
2635 indeed been resumed. */
2636 if (!lp->resumed)
2637 return 0;
2638
2639 if (!lwp_status_pending_p (lp))
2640 return 0;
2641
2642 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2643 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2644 {
2645 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
2646 CORE_ADDR pc;
2647 int discard = 0;
2648
2649 pc = regcache_read_pc (regcache);
2650
2651 if (pc != lp->stop_pc)
2652 {
2653 linux_nat_debug_printf ("PC of %s changed. was=%s, now=%s",
2654 lp->ptid.to_string ().c_str (),
2655 paddress (current_inferior ()->arch (),
2656 lp->stop_pc),
2657 paddress (current_inferior ()->arch (), pc));
2658 discard = 1;
2659 }
2660
2661 if (discard)
2662 {
2663 linux_nat_debug_printf ("pending event of %s cancelled.",
2664 lp->ptid.to_string ().c_str ());
2665
2666 lp->status = 0;
2667 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2668 return 0;
2669 }
2670 }
2671
2672 return 1;
2673}
2674
2675/* Count the LWP's that have had events. */
2676
2677static int
2678count_events_callback (struct lwp_info *lp, int *count)
2679{
2680 gdb_assert (count != NULL);
2681
2682 /* Select only resumed LWPs that have an event pending. */
2683 if (lp->resumed && lwp_status_pending_p (lp))
2684 (*count)++;
2685
2686 return 0;
2687}
2688
2689/* Select the LWP (if any) that is currently being single-stepped. */
2690
2691static int
2692select_singlestep_lwp_callback (struct lwp_info *lp)
2693{
2694 if (lp->last_resume_kind == resume_step
2695 && lp->status != 0)
2696 return 1;
2697 else
2698 return 0;
2699}
2700
2701/* Returns true if LP has a status pending. */
2702
2703static int
2704lwp_status_pending_p (struct lwp_info *lp)
2705{
2706 /* We check for lp->waitstatus in addition to lp->status, because we
2707 can have pending process exits recorded in lp->status and
2708 W_EXITCODE(0,0) happens to be 0. */
2709 return lp->status != 0 || lp->waitstatus.kind () != TARGET_WAITKIND_IGNORE;
2710}
2711
2712/* Select the Nth LWP that has had an event. */
2713
2714static int
2715select_event_lwp_callback (struct lwp_info *lp, int *selector)
2716{
2717 gdb_assert (selector != NULL);
2718
2719 /* Select only resumed LWPs that have an event pending. */
2720 if (lp->resumed && lwp_status_pending_p (lp))
2721 if ((*selector)-- == 0)
2722 return 1;
2723
2724 return 0;
2725}
2726
2727/* Called when the LWP stopped for a signal/trap. If it stopped for a
2728 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2729 and save the result in the LWP's stop_reason field. If it stopped
2730 for a breakpoint, decrement the PC if necessary on the lwp's
2731 architecture. */
2732
2733static void
2734save_stop_reason (struct lwp_info *lp)
2735{
2736 struct regcache *regcache;
2737 struct gdbarch *gdbarch;
2738 CORE_ADDR pc;
2739 CORE_ADDR sw_bp_pc;
2740 siginfo_t siginfo;
2741
2742 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2743 gdb_assert (lp->status != 0);
2744
2745 if (!linux_target->low_status_is_event (lp->status))
2746 return;
2747
2748 inferior *inf = lwp_inferior (lp);
2749 if (inf->starting_up)
2750 return;
2751
2752 regcache = get_thread_regcache (linux_target, lp->ptid);
2753 gdbarch = regcache->arch ();
2754
2755 pc = regcache_read_pc (regcache);
2756 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2757
2758 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2759 {
2760 if (siginfo.si_signo == SIGTRAP)
2761 {
2762 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2763 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2764 {
2765 /* The si_code is ambiguous on this arch -- check debug
2766 registers. */
2767 if (!check_stopped_by_watchpoint (lp))
2768 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2769 }
2770 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2771 {
2772 /* If we determine the LWP stopped for a SW breakpoint,
2773 trust it. Particularly don't check watchpoint
2774 registers, because, at least on s390, we'd find
2775 stopped-by-watchpoint as long as there's a watchpoint
2776 set. */
2777 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2778 }
2779 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2780 {
2781 /* This can indicate either a hardware breakpoint or
2782 hardware watchpoint. Check debug registers. */
2783 if (!check_stopped_by_watchpoint (lp))
2784 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2785 }
2786 else if (siginfo.si_code == TRAP_TRACE)
2787 {
2788 linux_nat_debug_printf ("%s stopped by trace",
2789 lp->ptid.to_string ().c_str ());
2790
2791 /* We may have single stepped an instruction that
2792 triggered a watchpoint. In that case, on some
2793 architectures (such as x86), instead of TRAP_HWBKPT,
2794 si_code indicates TRAP_TRACE, and we need to check
2795 the debug registers separately. */
2796 check_stopped_by_watchpoint (lp);
2797 }
2798 }
2799 }
2800
2801 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2802 {
2803 linux_nat_debug_printf ("%s stopped by software breakpoint",
2804 lp->ptid.to_string ().c_str ());
2805
2806 /* Back up the PC if necessary. */
2807 if (pc != sw_bp_pc)
2808 regcache_write_pc (regcache, sw_bp_pc);
2809
2810 /* Update this so we record the correct stop PC below. */
2811 pc = sw_bp_pc;
2812 }
2813 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2814 {
2815 linux_nat_debug_printf ("%s stopped by hardware breakpoint",
2816 lp->ptid.to_string ().c_str ());
2817 }
2818 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2819 {
2820 linux_nat_debug_printf ("%s stopped by hardware watchpoint",
2821 lp->ptid.to_string ().c_str ());
2822 }
2823
2824 lp->stop_pc = pc;
2825}
2826
2827
2828/* Returns true if the LWP had stopped for a software breakpoint. */
2829
2830bool
2831linux_nat_target::stopped_by_sw_breakpoint ()
2832{
2833 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2834
2835 gdb_assert (lp != NULL);
2836
2837 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2838}
2839
2840/* Implement the supports_stopped_by_sw_breakpoint method. */
2841
2842bool
2843linux_nat_target::supports_stopped_by_sw_breakpoint ()
2844{
2845 return true;
2846}
2847
2848/* Returns true if the LWP had stopped for a hardware
2849 breakpoint/watchpoint. */
2850
2851bool
2852linux_nat_target::stopped_by_hw_breakpoint ()
2853{
2854 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2855
2856 gdb_assert (lp != NULL);
2857
2858 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2859}
2860
2861/* Implement the supports_stopped_by_hw_breakpoint method. */
2862
2863bool
2864linux_nat_target::supports_stopped_by_hw_breakpoint ()
2865{
2866 return true;
2867}
2868
2869/* Select one LWP out of those that have events pending. */
2870
2871static void
2872select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2873{
2874 int num_events = 0;
2875 int random_selector;
2876 struct lwp_info *event_lp = NULL;
2877
2878 /* Record the wait status for the original LWP. */
2879 (*orig_lp)->status = *status;
2880
2881 /* In all-stop, give preference to the LWP that is being
2882 single-stepped. There will be at most one, and it will be the
2883 LWP that the core is most interested in. If we didn't do this,
2884 then we'd have to handle pending step SIGTRAPs somehow in case
2885 the core later continues the previously-stepped thread, as
2886 otherwise we'd report the pending SIGTRAP then, and the core, not
2887 having stepped the thread, wouldn't understand what the trap was
2888 for, and therefore would report it to the user as a random
2889 signal. */
2890 if (!target_is_non_stop_p ())
2891 {
2892 event_lp = iterate_over_lwps (filter, select_singlestep_lwp_callback);
2893 if (event_lp != NULL)
2894 {
2895 linux_nat_debug_printf ("Select single-step %s",
2896 event_lp->ptid.to_string ().c_str ());
2897 }
2898 }
2899
2900 if (event_lp == NULL)
2901 {
2902 /* Pick one at random, out of those which have had events. */
2903
2904 /* First see how many events we have. */
2905 iterate_over_lwps (filter,
2906 [&] (struct lwp_info *info)
2907 {
2908 return count_events_callback (info, &num_events);
2909 });
2910 gdb_assert (num_events > 0);
2911
2912 /* Now randomly pick a LWP out of those that have had
2913 events. */
2914 random_selector = (int)
2915 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2916
2917 if (num_events > 1)
2918 linux_nat_debug_printf ("Found %d events, selecting #%d",
2919 num_events, random_selector);
2920
2921 event_lp
2922 = (iterate_over_lwps
2923 (filter,
2924 [&] (struct lwp_info *info)
2925 {
2926 return select_event_lwp_callback (info,
2927 &random_selector);
2928 }));
2929 }
2930
2931 if (event_lp != NULL)
2932 {
2933 /* Switch the event LWP. */
2934 *orig_lp = event_lp;
2935 *status = event_lp->status;
2936 }
2937
2938 /* Flush the wait status for the event LWP. */
2939 (*orig_lp)->status = 0;
2940}
2941
2942/* Return non-zero if LP has been resumed. */
2943
2944static int
2945resumed_callback (struct lwp_info *lp)
2946{
2947 return lp->resumed;
2948}
2949
2950/* Check if we should go on and pass this event to common code.
2951
2952 If so, save the status to the lwp_info structure associated to LWPID. */
2953
2954static void
2955linux_nat_filter_event (int lwpid, int status)
2956{
2957 struct lwp_info *lp;
2958 int event = linux_ptrace_get_extended_event (status);
2959
2960 lp = find_lwp_pid (ptid_t (lwpid));
2961
2962 /* Check for events reported by anything not in our LWP list. */
2963 if (lp == nullptr)
2964 {
2965 if (WIFSTOPPED (status))
2966 {
2967 if (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC)
2968 {
2969 /* A non-leader thread exec'ed after we've seen the
2970 leader zombie, and removed it from our lists (in
2971 check_zombie_leaders). The non-leader thread changes
2972 its tid to the tgid. */
2973 linux_nat_debug_printf
2974 ("Re-adding thread group leader LWP %d after exec.",
2975 lwpid);
2976
2977 lp = add_lwp (ptid_t (lwpid, lwpid));
2978 lp->stopped = 1;
2979 lp->resumed = 1;
2980 add_thread (linux_target, lp->ptid);
2981 }
2982 else
2983 {
2984 /* A process we are controlling has forked and the new
2985 child's stop was reported to us by the kernel. Save
2986 its PID and go back to waiting for the fork event to
2987 be reported - the stopped process might be returned
2988 from waitpid before or after the fork event is. */
2989 linux_nat_debug_printf
2990 ("Saving LWP %d status %s in stopped_pids list",
2991 lwpid, status_to_str (status).c_str ());
2992 add_to_pid_list (&stopped_pids, lwpid, status);
2993 }
2994 }
2995 else
2996 {
2997 /* Don't report an event for the exit of an LWP not in our
2998 list, i.e. not part of any inferior we're debugging.
2999 This can happen if we detach from a program we originally
3000 forked and then it exits. However, note that we may have
3001 earlier deleted a leader of an inferior we're debugging,
3002 in check_zombie_leaders. Re-add it back here if so. */
3003 for (inferior *inf : all_inferiors (linux_target))
3004 {
3005 if (inf->pid == lwpid)
3006 {
3007 linux_nat_debug_printf
3008 ("Re-adding thread group leader LWP %d after exit.",
3009 lwpid);
3010
3011 lp = add_lwp (ptid_t (lwpid, lwpid));
3012 lp->resumed = 1;
3013 add_thread (linux_target, lp->ptid);
3014 break;
3015 }
3016 }
3017 }
3018
3019 if (lp == nullptr)
3020 return;
3021 }
3022
3023 /* This LWP is stopped now. (And if dead, this prevents it from
3024 ever being continued.) */
3025 lp->stopped = 1;
3026
3027 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
3028 {
3029 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
3030 int options = linux_nat_ptrace_options (inf->attach_flag);
3031
3032 linux_enable_event_reporting (lp->ptid.lwp (), options);
3033 lp->must_set_ptrace_flags = 0;
3034 }
3035
3036 /* Handle GNU/Linux's syscall SIGTRAPs. */
3037 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3038 {
3039 /* No longer need the sysgood bit. The ptrace event ends up
3040 recorded in lp->waitstatus if we care for it. We can carry
3041 on handling the event like a regular SIGTRAP from here
3042 on. */
3043 status = W_STOPCODE (SIGTRAP);
3044 if (linux_handle_syscall_trap (lp, 0))
3045 return;
3046 }
3047 else
3048 {
3049 /* Almost all other ptrace-stops are known to be outside of system
3050 calls, with further exceptions in linux_handle_extended_wait. */
3051 lp->syscall_state = TARGET_WAITKIND_IGNORE;
3052 }
3053
3054 /* Handle GNU/Linux's extended waitstatus for trace events. */
3055 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3056 && linux_is_extended_waitstatus (status))
3057 {
3058 linux_nat_debug_printf ("Handling extended status 0x%06x", status);
3059
3060 if (linux_handle_extended_wait (lp, status))
3061 return;
3062 }
3063
3064 /* Check if the thread has exited. */
3065 if (WIFEXITED (status) || WIFSIGNALED (status))
3066 {
3067 if (!report_exit_events_for (lp) && !is_leader (lp))
3068 {
3069 linux_nat_debug_printf ("%s exited.",
3070 lp->ptid.to_string ().c_str ());
3071
3072 /* If this was not the leader exiting, then the exit signal
3073 was not the end of the debugged application and should be
3074 ignored. */
3075 exit_lwp (lp);
3076 return;
3077 }
3078
3079 /* Note that even if the leader was ptrace-stopped, it can still
3080 exit, if e.g., some other thread brings down the whole
3081 process (calls `exit'). So don't assert that the lwp is
3082 resumed. */
3083 linux_nat_debug_printf ("LWP %ld exited (resumed=%d)",
3084 lp->ptid.lwp (), lp->resumed);
3085
3086 mark_lwp_dead (lp, status);
3087 return;
3088 }
3089
3090 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3091 an attempt to stop an LWP. */
3092 if (lp->signalled
3093 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3094 {
3095 lp->signalled = 0;
3096
3097 if (lp->last_resume_kind == resume_stop)
3098 {
3099 linux_nat_debug_printf ("resume_stop SIGSTOP caught for %s.",
3100 lp->ptid.to_string ().c_str ());
3101 }
3102 else
3103 {
3104 /* This is a delayed SIGSTOP. Filter out the event. */
3105
3106 linux_nat_debug_printf
3107 ("%s %s, 0, 0 (discard delayed SIGSTOP)",
3108 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3109 lp->ptid.to_string ().c_str ());
3110
3111 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3112 gdb_assert (lp->resumed);
3113 return;
3114 }
3115 }
3116
3117 /* Make sure we don't report a SIGINT that we have already displayed
3118 for another thread. */
3119 if (lp->ignore_sigint
3120 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3121 {
3122 linux_nat_debug_printf ("Delayed SIGINT caught for %s.",
3123 lp->ptid.to_string ().c_str ());
3124
3125 /* This is a delayed SIGINT. */
3126 lp->ignore_sigint = 0;
3127
3128 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3129 linux_nat_debug_printf ("%s %s, 0, 0 (discard SIGINT)",
3130 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3131 lp->ptid.to_string ().c_str ());
3132 gdb_assert (lp->resumed);
3133
3134 /* Discard the event. */
3135 return;
3136 }
3137
3138 /* Don't report signals that GDB isn't interested in, such as
3139 signals that are neither printed nor stopped upon. Stopping all
3140 threads can be a bit time-consuming, so if we want decent
3141 performance with heavily multi-threaded programs, especially when
3142 they're using a high frequency timer, we'd better avoid it if we
3143 can. */
3144 if (WIFSTOPPED (status))
3145 {
3146 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3147
3148 if (!target_is_non_stop_p ())
3149 {
3150 /* Only do the below in all-stop, as we currently use SIGSTOP
3151 to implement target_stop (see linux_nat_stop) in
3152 non-stop. */
3153 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3154 {
3155 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3156 forwarded to the entire process group, that is, all LWPs
3157 will receive it - unless they're using CLONE_THREAD to
3158 share signals. Since we only want to report it once, we
3159 mark it as ignored for all LWPs except this one. */
3160 iterate_over_lwps (ptid_t (lp->ptid.pid ()), set_ignore_sigint);
3161 lp->ignore_sigint = 0;
3162 }
3163 else
3164 maybe_clear_ignore_sigint (lp);
3165 }
3166
3167 /* When using hardware single-step, we need to report every signal.
3168 Otherwise, signals in pass_mask may be short-circuited
3169 except signals that might be caused by a breakpoint, or SIGSTOP
3170 if we sent the SIGSTOP and are waiting for it to arrive. */
3171 if (!lp->step
3172 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3173 && (WSTOPSIG (status) != SIGSTOP
3174 || !linux_target->find_thread (lp->ptid)->stop_requested)
3175 && !linux_wstatus_maybe_breakpoint (status))
3176 {
3177 linux_resume_one_lwp (lp, lp->step, signo);
3178 linux_nat_debug_printf
3179 ("%s %s, %s (preempt 'handle')",
3180 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3181 lp->ptid.to_string ().c_str (),
3182 (signo != GDB_SIGNAL_0
3183 ? strsignal (gdb_signal_to_host (signo)) : "0"));
3184 return;
3185 }
3186 }
3187
3188 /* An interesting event. */
3189 gdb_assert (lp);
3190 lp->status = status;
3191 save_stop_reason (lp);
3192}
3193
3194/* Detect zombie thread group leaders, and "exit" them. We can't reap
3195 their exits until all other threads in the group have exited. */
3196
3197static void
3198check_zombie_leaders (void)
3199{
3200 for (inferior *inf : all_inferiors ())
3201 {
3202 struct lwp_info *leader_lp;
3203
3204 if (inf->pid == 0)
3205 continue;
3206
3207 leader_lp = find_lwp_pid (ptid_t (inf->pid));
3208 if (leader_lp != NULL
3209 /* Check if there are other threads in the group, as we may
3210 have raced with the inferior simply exiting. Note this
3211 isn't a watertight check. If the inferior is
3212 multi-threaded and is exiting, it may be we see the
3213 leader as zombie before we reap all the non-leader
3214 threads. See comments below. */
3215 && num_lwps (inf->pid) > 1
3216 && linux_proc_pid_is_zombie (inf->pid))
3217 {
3218 /* A zombie leader in a multi-threaded program can mean one
3219 of three things:
3220
3221 #1 - Only the leader exited, not the whole program, e.g.,
3222 with pthread_exit. Since we can't reap the leader's exit
3223 status until all other threads are gone and reaped too,
3224 we want to delete the zombie leader right away, as it
3225 can't be debugged, we can't read its registers, etc.
3226 This is the main reason we check for zombie leaders
3227 disappearing.
3228
3229 #2 - The whole thread-group/process exited (a group exit,
3230 via e.g. exit(3), and there is (or will be shortly) an
3231 exit reported for each thread in the process, and then
3232 finally an exit for the leader once the non-leaders are
3233 reaped.
3234
3235 #3 - There are 3 or more threads in the group, and a
3236 thread other than the leader exec'd. See comments on
3237 exec events at the top of the file.
3238
3239 Ideally we would never delete the leader for case #2.
3240 Instead, we want to collect the exit status of each
3241 non-leader thread, and then finally collect the exit
3242 status of the leader as normal and use its exit code as
3243 whole-process exit code. Unfortunately, there's no
3244 race-free way to distinguish cases #1 and #2. We can't
3245 assume the exit events for the non-leaders threads are
3246 already pending in the kernel, nor can we assume the
3247 non-leader threads are in zombie state already. Between
3248 the leader becoming zombie and the non-leaders exiting
3249 and becoming zombie themselves, there's a small time
3250 window, so such a check would be racy. Temporarily
3251 pausing all threads and checking to see if all threads
3252 exit or not before re-resuming them would work in the
3253 case that all threads are running right now, but it
3254 wouldn't work if some thread is currently already
3255 ptrace-stopped, e.g., due to scheduler-locking.
3256
3257 So what we do is we delete the leader anyhow, and then
3258 later on when we see its exit status, we re-add it back.
3259 We also make sure that we only report a whole-process
3260 exit when we see the leader exiting, as opposed to when
3261 the last LWP in the LWP list exits, which can be a
3262 non-leader if we deleted the leader here. */
3263 linux_nat_debug_printf ("Thread group leader %d zombie "
3264 "(it exited, or another thread execd), "
3265 "deleting it.",
3266 inf->pid);
3267 exit_lwp (leader_lp);
3268 }
3269 }
3270}
3271
3272/* Convenience function that is called when we're about to return an
3273 event to the core. If the event is an exit or signalled event,
3274 then this decides whether to report it as process-wide event, as a
3275 thread exit event, or to suppress it. All other event kinds are
3276 passed through unmodified. */
3277
3278static ptid_t
3279filter_exit_event (struct lwp_info *event_child,
3280 struct target_waitstatus *ourstatus)
3281{
3282 ptid_t ptid = event_child->ptid;
3283
3284 /* Note we must filter TARGET_WAITKIND_SIGNALLED as well, otherwise
3285 if a non-leader thread exits with a signal, we'd report it to the
3286 core which would interpret it as the whole-process exiting.
3287 There is no TARGET_WAITKIND_THREAD_SIGNALLED event kind. */
3288 if (ourstatus->kind () != TARGET_WAITKIND_EXITED
3289 && ourstatus->kind () != TARGET_WAITKIND_SIGNALLED)
3290 return ptid;
3291
3292 if (!is_leader (event_child))
3293 {
3294 if (report_exit_events_for (event_child))
3295 {
3296 ourstatus->set_thread_exited (0);
3297 /* Delete lwp, but not thread_info, infrun will need it to
3298 process the event. */
3299 exit_lwp (event_child, false);
3300 }
3301 else
3302 {
3303 ourstatus->set_ignore ();
3304 exit_lwp (event_child);
3305 }
3306 }
3307
3308 return ptid;
3309}
3310
3311static ptid_t
3312linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3313 target_wait_flags target_options)
3314{
3315 LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT;
3316
3317 sigset_t prev_mask;
3318 enum resume_kind last_resume_kind;
3319 struct lwp_info *lp;
3320 int status;
3321
3322 /* The first time we get here after starting a new inferior, we may
3323 not have added it to the LWP list yet - this is the earliest
3324 moment at which we know its PID. */
3325 if (ptid.is_pid () && find_lwp_pid (ptid) == nullptr)
3326 {
3327 ptid_t lwp_ptid (ptid.pid (), ptid.pid ());
3328
3329 /* Upgrade the main thread's ptid. */
3330 thread_change_ptid (linux_target, ptid, lwp_ptid);
3331 lp = add_initial_lwp (lwp_ptid);
3332 lp->resumed = 1;
3333 }
3334
3335 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3336 block_child_signals (&prev_mask);
3337
3338 /* First check if there is a LWP with a wait status pending. */
3339 lp = iterate_over_lwps (ptid, status_callback);
3340 if (lp != NULL)
3341 {
3342 linux_nat_debug_printf ("Using pending wait status %s for %s.",
3343 pending_status_str (lp).c_str (),
3344 lp->ptid.to_string ().c_str ());
3345 }
3346
3347 /* But if we don't find a pending event, we'll have to wait. Always
3348 pull all events out of the kernel. We'll randomly select an
3349 event LWP out of all that have events, to prevent starvation. */
3350
3351 while (lp == NULL)
3352 {
3353 pid_t lwpid;
3354
3355 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3356 quirks:
3357
3358 - If the thread group leader exits while other threads in the
3359 thread group still exist, waitpid(TGID, ...) hangs. That
3360 waitpid won't return an exit status until the other threads
3361 in the group are reaped.
3362
3363 - When a non-leader thread execs, that thread just vanishes
3364 without reporting an exit (so we'd hang if we waited for it
3365 explicitly in that case). The exec event is reported to
3366 the TGID pid. */
3367
3368 errno = 0;
3369 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3370
3371 linux_nat_debug_printf ("waitpid(-1, ...) returned %d, %s",
3372 lwpid,
3373 errno ? safe_strerror (errno) : "ERRNO-OK");
3374
3375 if (lwpid > 0)
3376 {
3377 linux_nat_debug_printf ("waitpid %ld received %s",
3378 (long) lwpid,
3379 status_to_str (status).c_str ());
3380
3381 linux_nat_filter_event (lwpid, status);
3382 /* Retry until nothing comes out of waitpid. A single
3383 SIGCHLD can indicate more than one child stopped. */
3384 continue;
3385 }
3386
3387 /* Now that we've pulled all events out of the kernel, resume
3388 LWPs that don't have an interesting event to report. */
3389 iterate_over_lwps (minus_one_ptid,
3390 [] (struct lwp_info *info)
3391 {
3392 return resume_stopped_resumed_lwps (info, minus_one_ptid);
3393 });
3394
3395 /* ... and find an LWP with a status to report to the core, if
3396 any. */
3397 lp = iterate_over_lwps (ptid, status_callback);
3398 if (lp != NULL)
3399 break;
3400
3401 /* Check for zombie thread group leaders. Those can't be reaped
3402 until all other threads in the thread group are. */
3403 check_zombie_leaders ();
3404
3405 /* If there are no resumed children left, bail. We'd be stuck
3406 forever in the sigsuspend call below otherwise. */
3407 if (iterate_over_lwps (ptid, resumed_callback) == NULL)
3408 {
3409 linux_nat_debug_printf ("exit (no resumed LWP)");
3410
3411 ourstatus->set_no_resumed ();
3412
3413 restore_child_signals_mask (&prev_mask);
3414 return minus_one_ptid;
3415 }
3416
3417 /* No interesting event to report to the core. */
3418
3419 if (target_options & TARGET_WNOHANG)
3420 {
3421 linux_nat_debug_printf ("no interesting events found");
3422
3423 ourstatus->set_ignore ();
3424 restore_child_signals_mask (&prev_mask);
3425 return minus_one_ptid;
3426 }
3427
3428 /* We shouldn't end up here unless we want to try again. */
3429 gdb_assert (lp == NULL);
3430
3431 /* Block until we get an event reported with SIGCHLD. */
3432 wait_for_signal ();
3433 }
3434
3435 gdb_assert (lp);
3436 gdb_assert (lp->stopped);
3437
3438 status = lp->status;
3439 lp->status = 0;
3440
3441 if (!target_is_non_stop_p ())
3442 {
3443 /* Now stop all other LWP's ... */
3444 iterate_over_lwps (minus_one_ptid, stop_callback);
3445
3446 /* ... and wait until all of them have reported back that
3447 they're no longer running. */
3448 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
3449 }
3450
3451 /* If we're not waiting for a specific LWP, choose an event LWP from
3452 among those that have had events. Giving equal priority to all
3453 LWPs that have had events helps prevent starvation. */
3454 if (ptid == minus_one_ptid || ptid.is_pid ())
3455 select_event_lwp (ptid, &lp, &status);
3456
3457 gdb_assert (lp != NULL);
3458
3459 /* We'll need this to determine whether to report a SIGSTOP as
3460 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3461 clears it. */
3462 last_resume_kind = lp->last_resume_kind;
3463
3464 if (!target_is_non_stop_p ())
3465 {
3466 /* In all-stop, from the core's perspective, all LWPs are now
3467 stopped until a new resume action is sent over. */
3468 iterate_over_lwps (minus_one_ptid, resume_clear_callback);
3469 }
3470 else
3471 {
3472 resume_clear_callback (lp);
3473 }
3474
3475 if (linux_target->low_status_is_event (status))
3476 {
3477 linux_nat_debug_printf ("trap ptid is %s.",
3478 lp->ptid.to_string ().c_str ());
3479 }
3480
3481 if (lp->waitstatus.kind () != TARGET_WAITKIND_IGNORE)
3482 {
3483 *ourstatus = lp->waitstatus;
3484 lp->waitstatus.set_ignore ();
3485 }
3486 else
3487 *ourstatus = host_status_to_waitstatus (status);
3488
3489 linux_nat_debug_printf ("event found");
3490
3491 restore_child_signals_mask (&prev_mask);
3492
3493 if (last_resume_kind == resume_stop
3494 && ourstatus->kind () == TARGET_WAITKIND_STOPPED
3495 && WSTOPSIG (status) == SIGSTOP)
3496 {
3497 /* A thread that has been requested to stop by GDB with
3498 target_stop, and it stopped cleanly, so report as SIG0. The
3499 use of SIGSTOP is an implementation detail. */
3500 ourstatus->set_stopped (GDB_SIGNAL_0);
3501 }
3502
3503 if (ourstatus->kind () == TARGET_WAITKIND_EXITED
3504 || ourstatus->kind () == TARGET_WAITKIND_SIGNALLED)
3505 lp->core = -1;
3506 else
3507 lp->core = linux_common_core_of_thread (lp->ptid);
3508
3509 return filter_exit_event (lp, ourstatus);
3510}
3511
3512/* Resume LWPs that are currently stopped without any pending status
3513 to report, but are resumed from the core's perspective. */
3514
3515static int
3516resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid)
3517{
3518 inferior *inf = lwp_inferior (lp);
3519
3520 if (!lp->stopped)
3521 {
3522 linux_nat_debug_printf ("NOT resuming LWP %s, not stopped",
3523 lp->ptid.to_string ().c_str ());
3524 }
3525 else if (!lp->resumed)
3526 {
3527 linux_nat_debug_printf ("NOT resuming LWP %s, not resumed",
3528 lp->ptid.to_string ().c_str ());
3529 }
3530 else if (lwp_status_pending_p (lp))
3531 {
3532 linux_nat_debug_printf ("NOT resuming LWP %s, has pending status",
3533 lp->ptid.to_string ().c_str ());
3534 }
3535 else if (inf->vfork_child != nullptr)
3536 {
3537 linux_nat_debug_printf ("NOT resuming LWP %s (vfork parent)",
3538 lp->ptid.to_string ().c_str ());
3539 }
3540 else
3541 {
3542 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
3543 struct gdbarch *gdbarch = regcache->arch ();
3544
3545 try
3546 {
3547 CORE_ADDR pc = regcache_read_pc (regcache);
3548 int leave_stopped = 0;
3549
3550 /* Don't bother if there's a breakpoint at PC that we'd hit
3551 immediately, and we're not waiting for this LWP. */
3552 if (!lp->ptid.matches (wait_ptid))
3553 {
3554 if (breakpoint_inserted_here_p (inf->aspace.get (), pc))
3555 leave_stopped = 1;
3556 }
3557
3558 if (!leave_stopped)
3559 {
3560 linux_nat_debug_printf
3561 ("resuming stopped-resumed LWP %s at %s: step=%d",
3562 lp->ptid.to_string ().c_str (), paddress (gdbarch, pc),
3563 lp->step);
3564
3565 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3566 }
3567 }
3568 catch (const gdb_exception_error &ex)
3569 {
3570 if (!check_ptrace_stopped_lwp_gone (lp))
3571 throw;
3572 }
3573 }
3574
3575 return 0;
3576}
3577
3578ptid_t
3579linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3580 target_wait_flags target_options)
3581{
3582 LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT;
3583
3584 ptid_t event_ptid;
3585
3586 linux_nat_debug_printf ("[%s], [%s]", ptid.to_string ().c_str (),
3587 target_options_to_string (target_options).c_str ());
3588
3589 /* Flush the async file first. */
3590 if (target_is_async_p ())
3591 async_file_flush ();
3592
3593 /* Resume LWPs that are currently stopped without any pending status
3594 to report, but are resumed from the core's perspective. LWPs get
3595 in this state if we find them stopping at a time we're not
3596 interested in reporting the event (target_wait on a
3597 specific_process, for example, see linux_nat_wait_1), and
3598 meanwhile the event became uninteresting. Don't bother resuming
3599 LWPs we're not going to wait for if they'd stop immediately. */
3600 if (target_is_non_stop_p ())
3601 iterate_over_lwps (minus_one_ptid,
3602 [=] (struct lwp_info *info)
3603 {
3604 return resume_stopped_resumed_lwps (info, ptid);
3605 });
3606
3607 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3608
3609 /* If we requested any event, and something came out, assume there
3610 may be more. If we requested a specific lwp or process, also
3611 assume there may be more. */
3612 if (target_is_async_p ()
3613 && ((ourstatus->kind () != TARGET_WAITKIND_IGNORE
3614 && ourstatus->kind () != TARGET_WAITKIND_NO_RESUMED)
3615 || ptid != minus_one_ptid))
3616 async_file_mark ();
3617
3618 return event_ptid;
3619}
3620
3621/* Kill one LWP. */
3622
3623static void
3624kill_one_lwp (pid_t pid)
3625{
3626 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3627
3628 errno = 0;
3629 kill_lwp (pid, SIGKILL);
3630
3631 if (debug_linux_nat)
3632 {
3633 int save_errno = errno;
3634
3635 linux_nat_debug_printf
3636 ("kill (SIGKILL) %ld, 0, 0 (%s)", (long) pid,
3637 save_errno != 0 ? safe_strerror (save_errno) : "OK");
3638 }
3639
3640 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3641
3642 errno = 0;
3643 ptrace (PTRACE_KILL, pid, 0, 0);
3644 if (debug_linux_nat)
3645 {
3646 int save_errno = errno;
3647
3648 linux_nat_debug_printf
3649 ("PTRACE_KILL %ld, 0, 0 (%s)", (long) pid,
3650 save_errno ? safe_strerror (save_errno) : "OK");
3651 }
3652}
3653
3654/* Wait for an LWP to die. */
3655
3656static void
3657kill_wait_one_lwp (pid_t pid)
3658{
3659 pid_t res;
3660
3661 /* We must make sure that there are no pending events (delayed
3662 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3663 program doesn't interfere with any following debugging session. */
3664
3665 do
3666 {
3667 res = my_waitpid (pid, NULL, __WALL);
3668 if (res != (pid_t) -1)
3669 {
3670 linux_nat_debug_printf ("wait %ld received unknown.", (long) pid);
3671
3672 /* The Linux kernel sometimes fails to kill a thread
3673 completely after PTRACE_KILL; that goes from the stop
3674 point in do_fork out to the one in get_signal_to_deliver
3675 and waits again. So kill it again. */
3676 kill_one_lwp (pid);
3677 }
3678 }
3679 while (res == pid);
3680
3681 gdb_assert (res == -1 && errno == ECHILD);
3682}
3683
3684/* Callback for iterate_over_lwps. */
3685
3686static int
3687kill_callback (struct lwp_info *lp)
3688{
3689 kill_one_lwp (lp->ptid.lwp ());
3690 return 0;
3691}
3692
3693/* Callback for iterate_over_lwps. */
3694
3695static int
3696kill_wait_callback (struct lwp_info *lp)
3697{
3698 kill_wait_one_lwp (lp->ptid.lwp ());
3699 return 0;
3700}
3701
3702/* Kill the fork/clone child of LP if it has an unfollowed child. */
3703
3704static int
3705kill_unfollowed_child_callback (lwp_info *lp)
3706{
3707 std::optional<target_waitstatus> ws = get_pending_child_status (lp);
3708 if (ws.has_value ())
3709 {
3710 ptid_t child_ptid = ws->child_ptid ();
3711 int child_pid = child_ptid.pid ();
3712 int child_lwp = child_ptid.lwp ();
3713
3714 kill_one_lwp (child_lwp);
3715 kill_wait_one_lwp (child_lwp);
3716
3717 /* Let the arch-specific native code know this process is
3718 gone. */
3719 if (ws->kind () != TARGET_WAITKIND_THREAD_CLONED)
3720 linux_target->low_forget_process (child_pid);
3721 }
3722
3723 return 0;
3724}
3725
3726void
3727linux_nat_target::kill ()
3728{
3729 ptid_t pid_ptid (inferior_ptid.pid ());
3730
3731 /* If we're stopped while forking/cloning and we haven't followed
3732 yet, kill the child task. We need to do this first because the
3733 parent will be sleeping if this is a vfork. */
3734 iterate_over_lwps (pid_ptid, kill_unfollowed_child_callback);
3735
3736 if (forks_exist_p (current_inferior ()))
3737 linux_fork_killall (current_inferior ());
3738 else
3739 {
3740 /* Stop all threads before killing them, since ptrace requires
3741 that the thread is stopped to successfully PTRACE_KILL. */
3742 iterate_over_lwps (pid_ptid, stop_callback);
3743 /* ... and wait until all of them have reported back that
3744 they're no longer running. */
3745 iterate_over_lwps (pid_ptid, stop_wait_callback);
3746
3747 /* Kill all LWP's ... */
3748 iterate_over_lwps (pid_ptid, kill_callback);
3749
3750 /* ... and wait until we've flushed all events. */
3751 iterate_over_lwps (pid_ptid, kill_wait_callback);
3752 }
3753
3754 target_mourn_inferior (inferior_ptid);
3755}
3756
3757void
3758linux_nat_target::mourn_inferior ()
3759{
3760 LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT;
3761
3762 int pid = inferior_ptid.pid ();
3763
3764 purge_lwp_list (pid);
3765
3766 close_proc_mem_file (pid);
3767
3768 if (! forks_exist_p (current_inferior ()))
3769 /* Normal case, no other forks available. */
3770 inf_ptrace_target::mourn_inferior ();
3771 else
3772 /* Multi-fork case. The current inferior_ptid has exited, but
3773 there are other viable forks to debug. Delete the exiting
3774 one and context-switch to the first available. */
3775 linux_fork_mourn_inferior ();
3776
3777 /* Let the arch-specific native code know this process is gone. */
3778 linux_target->low_forget_process (pid);
3779}
3780
3781/* Convert a native/host siginfo object, into/from the siginfo in the
3782 layout of the inferiors' architecture. */
3783
3784static void
3785siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3786{
3787 /* If the low target didn't do anything, then just do a straight
3788 memcpy. */
3789 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3790 {
3791 if (direction == 1)
3792 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3793 else
3794 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3795 }
3796}
3797
3798static enum target_xfer_status
3799linux_xfer_siginfo (ptid_t ptid, enum target_object object,
3800 const char *annex, gdb_byte *readbuf,
3801 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3802 ULONGEST *xfered_len)
3803{
3804 siginfo_t siginfo;
3805 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3806
3807 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3808 gdb_assert (readbuf || writebuf);
3809
3810 if (offset > sizeof (siginfo))
3811 return TARGET_XFER_E_IO;
3812
3813 if (!linux_nat_get_siginfo (ptid, &siginfo))
3814 return TARGET_XFER_E_IO;
3815
3816 /* When GDB is built as a 64-bit application, ptrace writes into
3817 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3818 inferior with a 64-bit GDB should look the same as debugging it
3819 with a 32-bit GDB, we need to convert it. GDB core always sees
3820 the converted layout, so any read/write will have to be done
3821 post-conversion. */
3822 siginfo_fixup (&siginfo, inf_siginfo, 0);
3823
3824 if (offset + len > sizeof (siginfo))
3825 len = sizeof (siginfo) - offset;
3826
3827 if (readbuf != NULL)
3828 memcpy (readbuf, inf_siginfo + offset, len);
3829 else
3830 {
3831 memcpy (inf_siginfo + offset, writebuf, len);
3832
3833 /* Convert back to ptrace layout before flushing it out. */
3834 siginfo_fixup (&siginfo, inf_siginfo, 1);
3835
3836 int pid = get_ptrace_pid (ptid);
3837 errno = 0;
3838 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3839 if (errno != 0)
3840 return TARGET_XFER_E_IO;
3841 }
3842
3843 *xfered_len = len;
3844 return TARGET_XFER_OK;
3845}
3846
3847static enum target_xfer_status
3848linux_nat_xfer_osdata (enum target_object object,
3849 const char *annex, gdb_byte *readbuf,
3850 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3851 ULONGEST *xfered_len);
3852
3853static enum target_xfer_status
3854linux_proc_xfer_memory_partial (int pid, gdb_byte *readbuf,
3855 const gdb_byte *writebuf, ULONGEST offset,
3856 LONGEST len, ULONGEST *xfered_len);
3857
3858/* Look for an LWP of PID that we know is ptrace-stopped. Returns
3859 NULL if none is found. */
3860
3861static lwp_info *
3862find_stopped_lwp (int pid)
3863{
3864 for (lwp_info *lp : all_lwps ())
3865 if (lp->ptid.pid () == pid
3866 && lp->stopped
3867 && !is_lwp_marked_dead (lp))
3868 return lp;
3869 return nullptr;
3870}
3871
3872enum target_xfer_status
3873linux_nat_target::xfer_partial (enum target_object object,
3874 const char *annex, gdb_byte *readbuf,
3875 const gdb_byte *writebuf,
3876 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3877{
3878 if (object == TARGET_OBJECT_SIGNAL_INFO)
3879 return linux_xfer_siginfo (inferior_ptid, object, annex, readbuf, writebuf,
3880 offset, len, xfered_len);
3881
3882 /* The target is connected but no live inferior is selected. Pass
3883 this request down to a lower stratum (e.g., the executable
3884 file). */
3885 if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid)
3886 return TARGET_XFER_EOF;
3887
3888 if (object == TARGET_OBJECT_AUXV)
3889 return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3890 offset, len, xfered_len);
3891
3892 if (object == TARGET_OBJECT_OSDATA)
3893 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3894 offset, len, xfered_len);
3895
3896 if (object == TARGET_OBJECT_MEMORY)
3897 {
3898 /* GDB calculates all addresses in the largest possible address
3899 width. The address width must be masked before its final use
3900 by linux_proc_xfer_partial.
3901
3902 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
3903 int addr_bit = gdbarch_addr_bit (current_inferior ()->arch ());
3904
3905 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3906 offset &= ((ULONGEST) 1 << addr_bit) - 1;
3907
3908 /* If /proc/pid/mem is writable, don't fallback to ptrace. If
3909 the write via /proc/pid/mem fails because the inferior execed
3910 (and we haven't seen the exec event yet), a subsequent ptrace
3911 poke would incorrectly write memory to the post-exec address
3912 space, while the core was trying to write to the pre-exec
3913 address space. */
3914 if (proc_mem_file_is_writable ())
3915 return linux_proc_xfer_memory_partial (inferior_ptid.pid (), readbuf,
3916 writebuf, offset, len,
3917 xfered_len);
3918
3919 /* Fallback to ptrace. This should only really trigger on old
3920 systems. See "Accessing inferior memory" at the top.
3921
3922 The target_xfer interface for memory access uses
3923 inferior_ptid as sideband argument to indicate which process
3924 to access. Memory access is process-wide, it is not
3925 thread-specific, so inferior_ptid sometimes points at a
3926 process ptid_t. If we fallback to inf_ptrace_target with
3927 that inferior_ptid, then the ptrace code will do the ptrace
3928 call targeting inferior_ptid.pid(), the leader LWP. That
3929 may fail with ESRCH if the leader is currently running, or
3930 zombie. So if we get a pid-ptid, we try to find a stopped
3931 LWP to use with ptrace.
3932
3933 Note that inferior_ptid may not exist in the lwp / thread /
3934 inferior lists. This can happen when we're removing
3935 breakpoints from a fork child that we're not going to stay
3936 attached to. So if we don't find a stopped LWP, still do the
3937 ptrace call, targeting the inferior_ptid we had on entry. */
3938 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3939 lwp_info *stopped = find_stopped_lwp (inferior_ptid.pid ());
3940 if (stopped != nullptr)
3941 inferior_ptid = stopped->ptid;
3942 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3943 offset, len, xfered_len);
3944 }
3945
3946 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3947 offset, len, xfered_len);
3948}
3949
3950bool
3951linux_nat_target::thread_alive (ptid_t ptid)
3952{
3953 /* As long as a PTID is in lwp list, consider it alive. */
3954 return find_lwp_pid (ptid) != NULL;
3955}
3956
3957/* Implement the to_update_thread_list target method for this
3958 target. */
3959
3960void
3961linux_nat_target::update_thread_list ()
3962{
3963 /* We add/delete threads from the list as clone/exit events are
3964 processed, so just try deleting exited threads still in the
3965 thread list. */
3966 delete_exited_threads ();
3967
3968 /* Update the processor core that each lwp/thread was last seen
3969 running on. */
3970 for (lwp_info *lwp : all_lwps ())
3971 {
3972 /* Avoid accessing /proc if the thread hasn't run since we last
3973 time we fetched the thread's core. Accessing /proc becomes
3974 noticeably expensive when we have thousands of LWPs. */
3975 if (lwp->core == -1)
3976 lwp->core = linux_common_core_of_thread (lwp->ptid);
3977 }
3978}
3979
3980std::string
3981linux_nat_target::pid_to_str (ptid_t ptid)
3982{
3983 if (ptid.lwp_p ()
3984 && (ptid.pid () != ptid.lwp ()
3985 || num_lwps (ptid.pid ()) > 1))
3986 return string_printf ("LWP %ld", ptid.lwp ());
3987
3988 return normal_pid_to_str (ptid);
3989}
3990
3991const char *
3992linux_nat_target::thread_name (struct thread_info *thr)
3993{
3994 return linux_proc_tid_get_name (thr->ptid);
3995}
3996
3997/* Accepts an integer PID; Returns a string representing a file that
3998 can be opened to get the symbols for the child process. */
3999
4000const char *
4001linux_nat_target::pid_to_exec_file (int pid)
4002{
4003 /* If there's no sysroot. Or the sysroot is just 'target:' and the
4004 inferior is in the same mount namespce, then we can consider the
4005 filesystem local. */
4006 bool local_fs = (gdb_sysroot.empty ()
4007 || (gdb_sysroot == TARGET_SYSROOT_PREFIX
4008 && linux_ns_same (pid, LINUX_NS_MNT)));
4009
4010 return linux_proc_pid_to_exec_file (pid, local_fs);
4011}
4012
4013/* Object representing an /proc/PID/mem open file. We keep one such
4014 file open per inferior.
4015
4016 It might be tempting to think about only ever opening one file at
4017 most for all inferiors, closing/reopening the file as we access
4018 memory of different inferiors, to minimize number of file
4019 descriptors open, which can otherwise run into resource limits.
4020 However, that does not work correctly -- if the inferior execs and
4021 we haven't processed the exec event yet, and, we opened a
4022 /proc/PID/mem file, we will get a mem file accessing the post-exec
4023 address space, thinking we're opening it for the pre-exec address
4024 space. That is dangerous as we can poke memory (e.g. clearing
4025 breakpoints) in the post-exec memory by mistake, corrupting the
4026 inferior. For that reason, we open the mem file as early as
4027 possible, right after spawning, forking or attaching to the
4028 inferior, when the inferior is stopped and thus before it has a
4029 chance of execing.
4030
4031 Note that after opening the file, even if the thread we opened it
4032 for subsequently exits, the open file is still usable for accessing
4033 memory. It's only when the whole process exits or execs that the
4034 file becomes invalid, at which point reads/writes return EOF. */
4035
4036class proc_mem_file
4037{
4038public:
4039 proc_mem_file (ptid_t ptid, scoped_fd fd)
4040 : m_ptid (ptid), m_fd (std::move (fd))
4041 {
4042 gdb_assert (m_fd.get () != -1);
4043 }
4044
4045 ~proc_mem_file ()
4046 {
4047 linux_nat_debug_printf ("closing fd %d for /proc/%d/task/%ld/mem",
4048 m_fd.get (), m_ptid.pid (), m_ptid.lwp ());
4049 }
4050
4051 int fd () const noexcept
4052 {
4053 return m_fd.get ();
4054 }
4055
4056private:
4057 /* The LWP this file was opened for. Just for debugging
4058 purposes. */
4059 ptid_t m_ptid;
4060
4061 /* The file descriptor. */
4062 scoped_fd m_fd;
4063};
4064
4065/* The map between an inferior process id, and the open /proc/PID/mem
4066 file. This is stored in a map instead of in a per-inferior
4067 structure because we need to be able to access memory of processes
4068 which don't have a corresponding struct inferior object. E.g.,
4069 with "detach-on-fork on" (the default), and "follow-fork parent"
4070 (also default), we don't create an inferior for the fork child, but
4071 we still need to remove breakpoints from the fork child's
4072 memory. */
4073static std::unordered_map<int, proc_mem_file> proc_mem_file_map;
4074
4075/* Close the /proc/PID/mem file for PID. */
4076
4077static void
4078close_proc_mem_file (pid_t pid)
4079{
4080 proc_mem_file_map.erase (pid);
4081}
4082
4083/* Open the /proc/PID/mem file for the process (thread group) of PTID.
4084 We actually open /proc/PID/task/LWP/mem, as that's the LWP we know
4085 exists and is stopped right now. We prefer the
4086 /proc/PID/task/LWP/mem form over /proc/LWP/mem to avoid tid-reuse
4087 races, just in case this is ever called on an already-waited
4088 LWP. */
4089
4090static void
4091open_proc_mem_file (ptid_t ptid)
4092{
4093 auto iter = proc_mem_file_map.find (ptid.pid ());
4094 gdb_assert (iter == proc_mem_file_map.end ());
4095
4096 char filename[64];
4097 xsnprintf (filename, sizeof filename,
4098 "/proc/%d/task/%ld/mem", ptid.pid (), ptid.lwp ());
4099
4100 scoped_fd fd = gdb_open_cloexec (filename, O_RDWR | O_LARGEFILE, 0);
4101
4102 if (fd.get () == -1)
4103 {
4104 warning (_("opening /proc/PID/mem file for lwp %d.%ld failed: %s (%d)"),
4105 ptid.pid (), ptid.lwp (),
4106 safe_strerror (errno), errno);
4107 return;
4108 }
4109
4110 linux_nat_debug_printf ("opened fd %d for lwp %d.%ld",
4111 fd.get (), ptid.pid (), ptid.lwp ());
4112 proc_mem_file_map.emplace (std::piecewise_construct,
4113 std::forward_as_tuple (ptid.pid ()),
4114 std::forward_as_tuple (ptid, std::move (fd)));
4115}
4116
4117/* Helper for linux_proc_xfer_memory_partial and
4118 proc_mem_file_is_writable. FD is the already opened /proc/pid/mem
4119 file, and PID is the pid of the corresponding process. The rest of
4120 the arguments are like linux_proc_xfer_memory_partial's. */
4121
4122static enum target_xfer_status
4123linux_proc_xfer_memory_partial_fd (int fd, int pid,
4124 gdb_byte *readbuf, const gdb_byte *writebuf,
4125 ULONGEST offset, LONGEST len,
4126 ULONGEST *xfered_len)
4127{
4128 ssize_t ret;
4129
4130 gdb_assert (fd != -1);
4131
4132 /* Use pread64/pwrite64 if available, since they save a syscall and
4133 can handle 64-bit offsets even on 32-bit platforms (for instance,
4134 SPARC debugging a SPARC64 application). But only use them if the
4135 offset isn't so high that when cast to off_t it'd be negative, as
4136 seen on SPARC64. pread64/pwrite64 outright reject such offsets.
4137 lseek does not. */
4138#ifdef HAVE_PREAD64
4139 if ((off_t) offset >= 0)
4140 ret = (readbuf != nullptr
4141 ? pread64 (fd, readbuf, len, offset)
4142 : pwrite64 (fd, writebuf, len, offset));
4143 else
4144#endif
4145 {
4146 ret = lseek (fd, offset, SEEK_SET);
4147 if (ret != -1)
4148 ret = (readbuf != nullptr
4149 ? read (fd, readbuf, len)
4150 : write (fd, writebuf, len));
4151 }
4152
4153 if (ret == -1)
4154 {
4155 linux_nat_debug_printf ("accessing fd %d for pid %d failed: %s (%d)",
4156 fd, pid, safe_strerror (errno), errno);
4157 return TARGET_XFER_E_IO;
4158 }
4159 else if (ret == 0)
4160 {
4161 /* EOF means the address space is gone, the whole process exited
4162 or execed. */
4163 linux_nat_debug_printf ("accessing fd %d for pid %d got EOF",
4164 fd, pid);
4165 return TARGET_XFER_EOF;
4166 }
4167 else
4168 {
4169 *xfered_len = ret;
4170 return TARGET_XFER_OK;
4171 }
4172}
4173
4174/* Implement the to_xfer_partial target method using /proc/PID/mem.
4175 Because we can use a single read/write call, this can be much more
4176 efficient than banging away at PTRACE_PEEKTEXT. Also, unlike
4177 PTRACE_PEEKTEXT/PTRACE_POKETEXT, this works with running
4178 threads. */
4179
4180static enum target_xfer_status
4181linux_proc_xfer_memory_partial (int pid, gdb_byte *readbuf,
4182 const gdb_byte *writebuf, ULONGEST offset,
4183 LONGEST len, ULONGEST *xfered_len)
4184{
4185 auto iter = proc_mem_file_map.find (pid);
4186 if (iter == proc_mem_file_map.end ())
4187 return TARGET_XFER_EOF;
4188
4189 int fd = iter->second.fd ();
4190
4191 return linux_proc_xfer_memory_partial_fd (fd, pid, readbuf, writebuf, offset,
4192 len, xfered_len);
4193}
4194
4195/* Check whether /proc/pid/mem is writable in the current kernel, and
4196 return true if so. It wasn't writable before Linux 2.6.39, but
4197 there's no way to know whether the feature was backported to older
4198 kernels. So we check to see if it works. The result is cached,
4199 and this is guaranteed to be called once early during inferior
4200 startup, so that any warning is printed out consistently between
4201 GDB invocations. Note we don't call it during GDB startup instead
4202 though, because then we might warn with e.g. just "gdb --version"
4203 on sandboxed systems. See PR gdb/29907. */
4204
4205static bool
4206proc_mem_file_is_writable ()
4207{
4208 static std::optional<bool> writable;
4209
4210 if (writable.has_value ())
4211 return *writable;
4212
4213 writable.emplace (false);
4214
4215 /* We check whether /proc/pid/mem is writable by trying to write to
4216 one of our variables via /proc/self/mem. */
4217
4218 int fd = gdb_open_cloexec ("/proc/self/mem", O_RDWR | O_LARGEFILE, 0).release ();
4219
4220 if (fd == -1)
4221 {
4222 warning (_("opening /proc/self/mem file failed: %s (%d)"),
4223 safe_strerror (errno), errno);
4224 return *writable;
4225 }
4226
4227 SCOPE_EXIT { close (fd); };
4228
4229 /* This is the variable we try to write to. Note OFFSET below. */
4230 volatile gdb_byte test_var = 0;
4231
4232 gdb_byte writebuf[] = {0x55};
4233 ULONGEST offset = (uintptr_t) &test_var;
4234 ULONGEST xfered_len;
4235
4236 enum target_xfer_status res
4237 = linux_proc_xfer_memory_partial_fd (fd, getpid (), nullptr, writebuf,
4238 offset, 1, &xfered_len);
4239
4240 if (res == TARGET_XFER_OK)
4241 {
4242 gdb_assert (xfered_len == 1);
4243 gdb_assert (test_var == 0x55);
4244 /* Success. */
4245 *writable = true;
4246 }
4247
4248 return *writable;
4249}
4250
4251/* Parse LINE as a signal set and add its set bits to SIGS. */
4252
4253static void
4254add_line_to_sigset (const char *line, sigset_t *sigs)
4255{
4256 int len = strlen (line) - 1;
4257 const char *p;
4258 int signum;
4259
4260 if (line[len] != '\n')
4261 error (_("Could not parse signal set: %s"), line);
4262
4263 p = line;
4264 signum = len * 4;
4265 while (len-- > 0)
4266 {
4267 int digit;
4268
4269 if (*p >= '0' && *p <= '9')
4270 digit = *p - '0';
4271 else if (*p >= 'a' && *p <= 'f')
4272 digit = *p - 'a' + 10;
4273 else
4274 error (_("Could not parse signal set: %s"), line);
4275
4276 signum -= 4;
4277
4278 if (digit & 1)
4279 sigaddset (sigs, signum + 1);
4280 if (digit & 2)
4281 sigaddset (sigs, signum + 2);
4282 if (digit & 4)
4283 sigaddset (sigs, signum + 3);
4284 if (digit & 8)
4285 sigaddset (sigs, signum + 4);
4286
4287 p++;
4288 }
4289}
4290
4291/* Find process PID's pending signals from /proc/pid/status and set
4292 SIGS to match. */
4293
4294void
4295linux_proc_pending_signals (int pid, sigset_t *pending,
4296 sigset_t *blocked, sigset_t *ignored)
4297{
4298 char buffer[PATH_MAX], fname[PATH_MAX];
4299
4300 sigemptyset (pending);
4301 sigemptyset (blocked);
4302 sigemptyset (ignored);
4303 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4304 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4305 if (procfile == NULL)
4306 error (_("Could not open %s"), fname);
4307
4308 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4309 {
4310 /* Normal queued signals are on the SigPnd line in the status
4311 file. However, 2.6 kernels also have a "shared" pending
4312 queue for delivering signals to a thread group, so check for
4313 a ShdPnd line also.
4314
4315 Unfortunately some Red Hat kernels include the shared pending
4316 queue but not the ShdPnd status field. */
4317
4318 if (startswith (buffer, "SigPnd:\t"))
4319 add_line_to_sigset (buffer + 8, pending);
4320 else if (startswith (buffer, "ShdPnd:\t"))
4321 add_line_to_sigset (buffer + 8, pending);
4322 else if (startswith (buffer, "SigBlk:\t"))
4323 add_line_to_sigset (buffer + 8, blocked);
4324 else if (startswith (buffer, "SigIgn:\t"))
4325 add_line_to_sigset (buffer + 8, ignored);
4326 }
4327}
4328
4329static enum target_xfer_status
4330linux_nat_xfer_osdata (enum target_object object,
4331 const char *annex, gdb_byte *readbuf,
4332 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4333 ULONGEST *xfered_len)
4334{
4335 gdb_assert (object == TARGET_OBJECT_OSDATA);
4336
4337 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4338 if (*xfered_len == 0)
4339 return TARGET_XFER_EOF;
4340 else
4341 return TARGET_XFER_OK;
4342}
4343
4344std::vector<static_tracepoint_marker>
4345linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
4346{
4347 char s[IPA_CMD_BUF_SIZE];
4348 int pid = inferior_ptid.pid ();
4349 std::vector<static_tracepoint_marker> markers;
4350 const char *p = s;
4351 ptid_t ptid = ptid_t (pid, 0);
4352 static_tracepoint_marker marker;
4353
4354 /* Pause all */
4355 target_stop (ptid);
4356
4357 strcpy (s, "qTfSTM");
4358 agent_run_command (pid, s, strlen (s) + 1);
4359
4360 /* Unpause all. */
4361 SCOPE_EXIT { target_continue_no_signal (ptid); };
4362
4363 while (*p++ == 'm')
4364 {
4365 do
4366 {
4367 parse_static_tracepoint_marker_definition (p, &p, &marker);
4368
4369 if (strid == NULL || marker.str_id == strid)
4370 markers.push_back (std::move (marker));
4371 }
4372 while (*p++ == ','); /* comma-separated list */
4373
4374 strcpy (s, "qTsSTM");
4375 agent_run_command (pid, s, strlen (s) + 1);
4376 p = s;
4377 }
4378
4379 return markers;
4380}
4381
4382/* target_can_async_p implementation. */
4383
4384bool
4385linux_nat_target::can_async_p ()
4386{
4387 /* This flag should be checked in the common target.c code. */
4388 gdb_assert (target_async_permitted);
4389
4390 /* Otherwise, this targets is always able to support async mode. */
4391 return true;
4392}
4393
4394bool
4395linux_nat_target::supports_non_stop ()
4396{
4397 return true;
4398}
4399
4400/* to_always_non_stop_p implementation. */
4401
4402bool
4403linux_nat_target::always_non_stop_p ()
4404{
4405 return true;
4406}
4407
4408bool
4409linux_nat_target::supports_multi_process ()
4410{
4411 return true;
4412}
4413
4414bool
4415linux_nat_target::supports_disable_randomization ()
4416{
4417 return true;
4418}
4419
4420/* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4421 so we notice when any child changes state, and notify the
4422 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4423 above to wait for the arrival of a SIGCHLD. */
4424
4425static void
4426sigchld_handler (int signo)
4427{
4428 int old_errno = errno;
4429
4430 if (debug_linux_nat)
4431 gdb_stdlog->write_async_safe ("sigchld\n", sizeof ("sigchld\n") - 1);
4432
4433 if (signo == SIGCHLD)
4434 {
4435 /* Let the event loop know that there are events to handle. */
4436 linux_nat_target::async_file_mark_if_open ();
4437 }
4438
4439 errno = old_errno;
4440}
4441
4442/* Callback registered with the target events file descriptor. */
4443
4444static void
4445handle_target_event (int error, gdb_client_data client_data)
4446{
4447 inferior_event_handler (INF_REG_EVENT);
4448}
4449
4450/* target_async implementation. */
4451
4452void
4453linux_nat_target::async (bool enable)
4454{
4455 if (enable == is_async_p ())
4456 return;
4457
4458 /* Block child signals while we create/destroy the pipe, as their
4459 handler writes to it. */
4460 gdb::block_signals blocker;
4461
4462 if (enable)
4463 {
4464 if (!async_file_open ())
4465 internal_error ("creating event pipe failed.");
4466
4467 add_file_handler (async_wait_fd (), handle_target_event, NULL,
4468 "linux-nat");
4469
4470 /* There may be pending events to handle. Tell the event loop
4471 to poll them. */
4472 async_file_mark ();
4473 }
4474 else
4475 {
4476 delete_file_handler (async_wait_fd ());
4477 async_file_close ();
4478 }
4479}
4480
4481/* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4482 event came out. */
4483
4484static int
4485linux_nat_stop_lwp (struct lwp_info *lwp)
4486{
4487 if (!lwp->stopped)
4488 {
4489 linux_nat_debug_printf ("running -> suspending %s",
4490 lwp->ptid.to_string ().c_str ());
4491
4492
4493 if (lwp->last_resume_kind == resume_stop)
4494 {
4495 linux_nat_debug_printf ("already stopping LWP %ld at GDB's request",
4496 lwp->ptid.lwp ());
4497 return 0;
4498 }
4499
4500 stop_callback (lwp);
4501 lwp->last_resume_kind = resume_stop;
4502 }
4503 else
4504 {
4505 /* Already known to be stopped; do nothing. */
4506
4507 if (debug_linux_nat)
4508 {
4509 if (linux_target->find_thread (lwp->ptid)->stop_requested)
4510 linux_nat_debug_printf ("already stopped/stop_requested %s",
4511 lwp->ptid.to_string ().c_str ());
4512 else
4513 linux_nat_debug_printf ("already stopped/no stop_requested yet %s",
4514 lwp->ptid.to_string ().c_str ());
4515 }
4516 }
4517 return 0;
4518}
4519
4520void
4521linux_nat_target::stop (ptid_t ptid)
4522{
4523 LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT;
4524 iterate_over_lwps (ptid, linux_nat_stop_lwp);
4525}
4526
4527/* Return the cached value of the processor core for thread PTID. */
4528
4529int
4530linux_nat_target::core_of_thread (ptid_t ptid)
4531{
4532 struct lwp_info *info = find_lwp_pid (ptid);
4533
4534 if (info)
4535 return info->core;
4536 return -1;
4537}
4538
4539/* Implementation of to_filesystem_is_local. */
4540
4541bool
4542linux_nat_target::filesystem_is_local ()
4543{
4544 struct inferior *inf = current_inferior ();
4545
4546 if (inf->fake_pid_p || inf->pid == 0)
4547 return true;
4548
4549 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4550}
4551
4552/* Convert the INF argument passed to a to_fileio_* method
4553 to a process ID suitable for passing to its corresponding
4554 linux_mntns_* function. If INF is non-NULL then the
4555 caller is requesting the filesystem seen by INF. If INF
4556 is NULL then the caller is requesting the filesystem seen
4557 by the GDB. We fall back to GDB's filesystem in the case
4558 that INF is non-NULL but its PID is unknown. */
4559
4560static pid_t
4561linux_nat_fileio_pid_of (struct inferior *inf)
4562{
4563 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4564 return getpid ();
4565 else
4566 return inf->pid;
4567}
4568
4569/* Implementation of to_fileio_open. */
4570
4571int
4572linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4573 int flags, int mode, int warn_if_slow,
4574 fileio_error *target_errno)
4575{
4576 int nat_flags;
4577 mode_t nat_mode;
4578 int fd;
4579
4580 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4581 || fileio_to_host_mode (mode, &nat_mode) == -1)
4582 {
4583 *target_errno = FILEIO_EINVAL;
4584 return -1;
4585 }
4586
4587 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4588 filename, nat_flags, nat_mode);
4589 if (fd == -1)
4590 *target_errno = host_to_fileio_error (errno);
4591
4592 return fd;
4593}
4594
4595/* Implementation of to_fileio_lstat. */
4596
4597int
4598linux_nat_target::fileio_lstat (struct inferior *inf, const char *filename,
4599 struct stat *sb, fileio_error *target_errno)
4600{
4601 int r = linux_mntns_lstat (linux_nat_fileio_pid_of (inf), filename, sb);
4602
4603 if (r == -1)
4604 *target_errno = host_to_fileio_error (errno);
4605
4606 return r;
4607}
4608
4609/* Implementation of to_fileio_readlink. */
4610
4611std::optional<std::string>
4612linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4613 fileio_error *target_errno)
4614{
4615 char buf[PATH_MAX];
4616 int len;
4617
4618 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4619 filename, buf, sizeof (buf));
4620 if (len < 0)
4621 {
4622 *target_errno = host_to_fileio_error (errno);
4623 return {};
4624 }
4625
4626 return std::string (buf, len);
4627}
4628
4629/* Implementation of to_fileio_unlink. */
4630
4631int
4632linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4633 fileio_error *target_errno)
4634{
4635 int ret;
4636
4637 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4638 filename);
4639 if (ret == -1)
4640 *target_errno = host_to_fileio_error (errno);
4641
4642 return ret;
4643}
4644
4645/* Implementation of the to_thread_events method. */
4646
4647void
4648linux_nat_target::thread_events (bool enable)
4649{
4650 report_thread_events = enable;
4651}
4652
4653bool
4654linux_nat_target::supports_set_thread_options (gdb_thread_options options)
4655{
4656 constexpr gdb_thread_options supported_options
4657 = GDB_THREAD_OPTION_CLONE | GDB_THREAD_OPTION_EXIT;
4658 return ((options & supported_options) == options);
4659}
4660
4661linux_nat_target::linux_nat_target ()
4662{
4663 /* We don't change the stratum; this target will sit at
4664 process_stratum and thread_db will set at thread_stratum. This
4665 is a little strange, since this is a multi-threaded-capable
4666 target, but we want to be on the stack below thread_db, and we
4667 also want to be used for single-threaded processes. */
4668}
4669
4670/* See linux-nat.h. */
4671
4672bool
4673linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4674{
4675 int pid = get_ptrace_pid (ptid);
4676 return ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo) == 0;
4677}
4678
4679/* See nat/linux-nat.h. */
4680
4681ptid_t
4682current_lwp_ptid (void)
4683{
4684 gdb_assert (inferior_ptid.lwp_p ());
4685 return inferior_ptid;
4686}
4687
4688/* Implement 'maintenance info linux-lwps'. Displays some basic
4689 information about all the current lwp_info objects. */
4690
4691static void
4692maintenance_info_lwps (const char *arg, int from_tty)
4693{
4694 if (all_lwps ().size () == 0)
4695 {
4696 gdb_printf ("No Linux LWPs\n");
4697 return;
4698 }
4699
4700 /* Start the width at 8 to match the column heading below, then
4701 figure out the widest ptid string. We'll use this to build our
4702 output table below. */
4703 size_t ptid_width = 8;
4704 for (lwp_info *lp : all_lwps ())
4705 ptid_width = std::max (ptid_width, lp->ptid.to_string ().size ());
4706
4707 /* Setup the table headers. */
4708 struct ui_out *uiout = current_uiout;
4709 ui_out_emit_table table_emitter (uiout, 2, -1, "linux-lwps");
4710 uiout->table_header (ptid_width, ui_left, "lwp-ptid", _("LWP Ptid"));
4711 uiout->table_header (9, ui_left, "thread-info", _("Thread ID"));
4712 uiout->table_body ();
4713
4714 /* Display one table row for each lwp_info. */
4715 for (lwp_info *lp : all_lwps ())
4716 {
4717 ui_out_emit_tuple tuple_emitter (uiout, "lwp-entry");
4718
4719 thread_info *th = linux_target->find_thread (lp->ptid);
4720
4721 uiout->field_string ("lwp-ptid", lp->ptid.to_string ().c_str ());
4722 if (th == nullptr)
4723 uiout->field_string ("thread-info", "None");
4724 else
4725 uiout->field_string ("thread-info", print_full_thread_id (th));
4726
4727 uiout->message ("\n");
4728 }
4729}
4730
4731INIT_GDB_FILE (linux_nat)
4732{
4733 add_setshow_boolean_cmd ("linux-nat", class_maintenance,
4734 &debug_linux_nat, _("\
4735Set debugging of GNU/Linux native target."), _("\
4736Show debugging of GNU/Linux native target."), _("\
4737When on, print debug messages relating to the GNU/Linux native target."),
4738 nullptr,
4739 show_debug_linux_nat,
4740 &setdebuglist, &showdebuglist);
4741
4742 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4743 &debug_linux_namespaces, _("\
4744Set debugging of GNU/Linux namespaces module."), _("\
4745Show debugging of GNU/Linux namespaces module."), _("\
4746Enables printf debugging output."),
4747 NULL,
4748 NULL,
4749 &setdebuglist, &showdebuglist);
4750
4751 /* Install a SIGCHLD handler. */
4752 sigchld_action.sa_handler = sigchld_handler;
4753 sigemptyset (&sigchld_action.sa_mask);
4754 sigchld_action.sa_flags = SA_RESTART;
4755
4756 /* Make it the default. */
4757 sigaction (SIGCHLD, &sigchld_action, NULL);
4758
4759 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4760 gdb_sigmask (SIG_SETMASK, NULL, &suspend_mask);
4761 sigdelset (&suspend_mask, SIGCHLD);
4762
4763 sigemptyset (&blocked_mask);
4764
4765 lwp_lwpid_htab_create ();
4766
4767 add_cmd ("linux-lwps", class_maintenance, maintenance_info_lwps,
4768 _("List the Linux LWPS."), &maintenanceinfolist);
4769}
4770\f
4771
4772/* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4773 the GNU/Linux Threads library and therefore doesn't really belong
4774 here. */
4775
4776/* NPTL reserves the first two RT signals, but does not provide any
4777 way for the debugger to query the signal numbers - fortunately
4778 they don't change. */
4779static int lin_thread_signals[] = { __SIGRTMIN, __SIGRTMIN + 1 };
4780
4781/* See linux-nat.h. */
4782
4783unsigned int
4784lin_thread_get_thread_signal_num (void)
4785{
4786 return sizeof (lin_thread_signals) / sizeof (lin_thread_signals[0]);
4787}
4788
4789/* See linux-nat.h. */
4790
4791int
4792lin_thread_get_thread_signal (unsigned int i)
4793{
4794 gdb_assert (i < lin_thread_get_thread_signal_num ());
4795 return lin_thread_signals[i];
4796}