]>
Commit | Line | Data |
---|---|---|
1 | /* GNU/Linux native-dependent code common to multiple platforms. | |
2 | ||
3 | Copyright (C) 2001-2025 Free Software Foundation, Inc. | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
19 | ||
20 | #include "inferior.h" | |
21 | #include "infrun.h" | |
22 | #include "target.h" | |
23 | #include "nat/linux-nat.h" | |
24 | #include "nat/linux-waitpid.h" | |
25 | #include "gdbsupport/gdb_wait.h" | |
26 | #include <unistd.h> | |
27 | #include <sys/syscall.h> | |
28 | #include "nat/gdb_ptrace.h" | |
29 | #include "linux-nat.h" | |
30 | #include "nat/linux-ptrace.h" | |
31 | #include "nat/linux-procfs.h" | |
32 | #include "nat/linux-personality.h" | |
33 | #include "linux-fork.h" | |
34 | #include "gdbthread.h" | |
35 | #include "cli/cli-cmds.h" | |
36 | #include "regcache.h" | |
37 | #include "regset.h" | |
38 | #include "inf-child.h" | |
39 | #include "inf-ptrace.h" | |
40 | #include "auxv.h" | |
41 | #include <sys/procfs.h> | |
42 | #include "elf-bfd.h" | |
43 | #include "gregset.h" | |
44 | #include "gdbcore.h" | |
45 | #include <ctype.h> | |
46 | #include <sys/stat.h> | |
47 | #include <fcntl.h> | |
48 | #include "inf-loop.h" | |
49 | #include "gdbsupport/event-loop.h" | |
50 | #include "event-top.h" | |
51 | #include <pwd.h> | |
52 | #include <sys/types.h> | |
53 | #include <dirent.h> | |
54 | #include "xml-support.h" | |
55 | #include <sys/vfs.h> | |
56 | #include "solib.h" | |
57 | #include "nat/linux-osdata.h" | |
58 | #include "linux-tdep.h" | |
59 | #include "symfile.h" | |
60 | #include "gdbsupport/agent.h" | |
61 | #include "tracepoint.h" | |
62 | #include "target-descriptions.h" | |
63 | #include "gdbsupport/filestuff.h" | |
64 | #include "objfiles.h" | |
65 | #include "nat/linux-namespaces.h" | |
66 | #include "gdbsupport/block-signals.h" | |
67 | #include "gdbsupport/fileio.h" | |
68 | #include "gdbsupport/scope-exit.h" | |
69 | #include "gdbsupport/gdb-sigmask.h" | |
70 | #include "gdbsupport/common-debug.h" | |
71 | #include <unordered_map> | |
72 | ||
73 | /* This comment documents high-level logic of this file. | |
74 | ||
75 | Waiting for events in sync mode | |
76 | =============================== | |
77 | ||
78 | When waiting for an event in a specific thread, we just use waitpid, | |
79 | passing the specific pid, and not passing WNOHANG. | |
80 | ||
81 | When waiting for an event in all threads, waitpid is not quite good: | |
82 | ||
83 | - If the thread group leader exits while other threads in the thread | |
84 | group still exist, waitpid(TGID, ...) hangs. That waitpid won't | |
85 | return an exit status until the other threads in the group are | |
86 | reaped. | |
87 | ||
88 | - When a non-leader thread execs, that thread just vanishes without | |
89 | reporting an exit (so we'd hang if we waited for it explicitly in | |
90 | that case). The exec event is instead reported to the TGID pid. | |
91 | ||
92 | The solution is to always use -1 and WNOHANG, together with | |
93 | sigsuspend. | |
94 | ||
95 | First, we use non-blocking waitpid to check for events. If nothing is | |
96 | found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, | |
97 | it means something happened to a child process. As soon as we know | |
98 | there's an event, we get back to calling nonblocking waitpid. | |
99 | ||
100 | Note that SIGCHLD should be blocked between waitpid and sigsuspend | |
101 | calls, so that we don't miss a signal. If SIGCHLD arrives in between, | |
102 | when it's blocked, the signal becomes pending and sigsuspend | |
103 | immediately notices it and returns. | |
104 | ||
105 | Waiting for events in async mode (TARGET_WNOHANG) | |
106 | ================================================= | |
107 | ||
108 | In async mode, GDB should always be ready to handle both user input | |
109 | and target events, so neither blocking waitpid nor sigsuspend are | |
110 | viable options. Instead, we should asynchronously notify the GDB main | |
111 | event loop whenever there's an unprocessed event from the target. We | |
112 | detect asynchronous target events by handling SIGCHLD signals. To | |
113 | notify the event loop about target events, an event pipe is used | |
114 | --- the pipe is registered as waitable event source in the event loop, | |
115 | the event loop select/poll's on the read end of this pipe (as well on | |
116 | other event sources, e.g., stdin), and the SIGCHLD handler marks the | |
117 | event pipe to raise an event. This is more portable than relying on | |
118 | pselect/ppoll, since on kernels that lack those syscalls, libc | |
119 | emulates them with select/poll+sigprocmask, and that is racy | |
120 | (a.k.a. plain broken). | |
121 | ||
122 | Obviously, if we fail to notify the event loop if there's a target | |
123 | event, it's bad. OTOH, if we notify the event loop when there's no | |
124 | event from the target, linux_nat_wait will detect that there's no real | |
125 | event to report, and return event of type TARGET_WAITKIND_IGNORE. | |
126 | This is mostly harmless, but it will waste time and is better avoided. | |
127 | ||
128 | The main design point is that every time GDB is outside linux-nat.c, | |
129 | we have a SIGCHLD handler installed that is called when something | |
130 | happens to the target and notifies the GDB event loop. Whenever GDB | |
131 | core decides to handle the event, and calls into linux-nat.c, we | |
132 | process things as in sync mode, except that the we never block in | |
133 | sigsuspend. | |
134 | ||
135 | While processing an event, we may end up momentarily blocked in | |
136 | waitpid calls. Those waitpid calls, while blocking, are guaranteed to | |
137 | return quickly. E.g., in all-stop mode, before reporting to the core | |
138 | that an LWP hit a breakpoint, all LWPs are stopped by sending them | |
139 | SIGSTOP, and synchronously waiting for the SIGSTOP to be reported. | |
140 | Note that this is different from blocking indefinitely waiting for the | |
141 | next event --- here, we're already handling an event. | |
142 | ||
143 | Use of signals | |
144 | ============== | |
145 | ||
146 | We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another | |
147 | signal is not entirely significant; we just need for a signal to be delivered, | |
148 | so that we can intercept it. SIGSTOP's advantage is that it can not be | |
149 | blocked. A disadvantage is that it is not a real-time signal, so it can only | |
150 | be queued once; we do not keep track of other sources of SIGSTOP. | |
151 | ||
152 | Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't | |
153 | use them, because they have special behavior when the signal is generated - | |
154 | not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL | |
155 | kills the entire thread group. | |
156 | ||
157 | A delivered SIGSTOP would stop the entire thread group, not just the thread we | |
158 | tkill'd. But we never let the SIGSTOP be delivered; we always intercept and | |
159 | cancel it (by PTRACE_CONT without passing SIGSTOP). | |
160 | ||
161 | We could use a real-time signal instead. This would solve those problems; we | |
162 | could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB. | |
163 | But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH | |
164 | generates it, and there are races with trying to find a signal that is not | |
165 | blocked. | |
166 | ||
167 | Exec events | |
168 | =========== | |
169 | ||
170 | The case of a thread group (process) with 3 or more threads, and a | |
171 | thread other than the leader execs is worth detailing: | |
172 | ||
173 | On an exec, the Linux kernel destroys all threads except the execing | |
174 | one in the thread group, and resets the execing thread's tid to the | |
175 | tgid. No exit notification is sent for the execing thread -- from the | |
176 | ptracer's perspective, it appears as though the execing thread just | |
177 | vanishes. Until we reap all other threads except the leader and the | |
178 | execing thread, the leader will be zombie, and the execing thread will | |
179 | be in `D (disc sleep)' state. As soon as all other threads are | |
180 | reaped, the execing thread changes its tid to the tgid, and the | |
181 | previous (zombie) leader vanishes, giving place to the "new" | |
182 | leader. | |
183 | ||
184 | Accessing inferior memory | |
185 | ========================= | |
186 | ||
187 | To access inferior memory, we strongly prefer /proc/PID/mem. We | |
188 | fallback to ptrace if and only if /proc/PID/mem is not writable, as a | |
189 | concession for obsolescent kernels (such as found in RHEL6). For | |
190 | modern kernels, the fallback shouldn't trigger. GDBserver does not | |
191 | have the ptrace fallback already, and at some point, we'll consider | |
192 | removing it from native GDB too. | |
193 | ||
194 | /proc/PID/mem has a few advantages over alternatives like | |
195 | PTRACE_PEEKTEXT/PTRACE_POKETEXT or process_vm_readv/process_vm_writev: | |
196 | ||
197 | - Because we can use a single read/write call, /proc/PID/mem can be | |
198 | much more efficient than banging away at | |
199 | PTRACE_PEEKTEXT/PTRACE_POKETEXT, one word at a time. | |
200 | ||
201 | - /proc/PID/mem allows writing to read-only pages, which we need to | |
202 | e.g., plant breakpoint instructions. process_vm_writev does not | |
203 | allow this. | |
204 | ||
205 | - /proc/PID/mem allows memory access even if all threads are running. | |
206 | OTOH, PTRACE_PEEKTEXT/PTRACE_POKETEXT require passing down the tid | |
207 | of a stopped task. This lets us e.g., install breakpoints while the | |
208 | inferior is running, clear a displaced stepping scratch pad when the | |
209 | thread that was displaced stepping exits, print inferior globals, | |
210 | etc., all without having to worry about temporarily pausing some | |
211 | thread. | |
212 | ||
213 | - /proc/PID/mem does not suffer from a race that could cause us to | |
214 | access memory of the wrong address space when the inferior execs. | |
215 | ||
216 | process_vm_readv/process_vm_writev have this problem. | |
217 | ||
218 | E.g., say GDB decides to write to memory just while the inferior | |
219 | execs. In this scenario, GDB could write memory to the post-exec | |
220 | address space thinking it was writing to the pre-exec address space, | |
221 | with high probability of corrupting the inferior. Or if GDB decides | |
222 | instead to read memory just while the inferior execs, it could read | |
223 | bogus contents out of the wrong address space. | |
224 | ||
225 | ptrace used to have this problem too, but no longer has since Linux | |
226 | commit dbb5afad100a ("ptrace: make ptrace() fail if the tracee | |
227 | changed its pid unexpectedly"), in Linux 5.13. (And if ptrace were | |
228 | ever changed to allow access memory via zombie or running threads, | |
229 | it would better not forget to consider this scenario.) | |
230 | ||
231 | We avoid this race with /proc/PID/mem, by opening the file as soon | |
232 | as we start debugging the inferior, when it is known the inferior is | |
233 | stopped, and holding on to the open file descriptor, to be used | |
234 | whenever we need to access inferior memory. If the inferior execs | |
235 | or exits, reading/writing from/to the file returns 0 (EOF), | |
236 | indicating the address space is gone, and so we return | |
237 | TARGET_XFER_EOF to the core. We close the old file and open a new | |
238 | one when we finally see the PTRACE_EVENT_EXEC event. */ | |
239 | ||
240 | #ifndef O_LARGEFILE | |
241 | #define O_LARGEFILE 0 | |
242 | #endif | |
243 | ||
244 | struct linux_nat_target *linux_target; | |
245 | ||
246 | /* See nat/linux-nat.h. */ | |
247 | enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN; | |
248 | ||
249 | /* When true, print debug messages relating to the linux native target. */ | |
250 | ||
251 | static bool debug_linux_nat; | |
252 | ||
253 | /* Implement 'show debug linux-nat'. */ | |
254 | ||
255 | static void | |
256 | show_debug_linux_nat (struct ui_file *file, int from_tty, | |
257 | struct cmd_list_element *c, const char *value) | |
258 | { | |
259 | gdb_printf (file, _("Debugging of GNU/Linux native targets is %s.\n"), | |
260 | value); | |
261 | } | |
262 | ||
263 | /* Print a linux-nat debug statement. */ | |
264 | ||
265 | #define linux_nat_debug_printf(fmt, ...) \ | |
266 | debug_prefixed_printf_cond (debug_linux_nat, "linux-nat", fmt, ##__VA_ARGS__) | |
267 | ||
268 | /* Print "linux-nat" enter/exit debug statements. */ | |
269 | ||
270 | #define LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT \ | |
271 | scoped_debug_enter_exit (debug_linux_nat, "linux-nat") | |
272 | ||
273 | struct simple_pid_list | |
274 | { | |
275 | int pid; | |
276 | int status; | |
277 | struct simple_pid_list *next; | |
278 | }; | |
279 | static struct simple_pid_list *stopped_pids; | |
280 | ||
281 | /* Whether target_thread_events is in effect. */ | |
282 | static bool report_thread_events; | |
283 | ||
284 | static int kill_lwp (int lwpid, int signo); | |
285 | ||
286 | static int stop_callback (struct lwp_info *lp); | |
287 | ||
288 | static void block_child_signals (sigset_t *prev_mask); | |
289 | static void restore_child_signals_mask (sigset_t *prev_mask); | |
290 | ||
291 | struct lwp_info; | |
292 | static struct lwp_info *add_lwp (ptid_t ptid); | |
293 | static void purge_lwp_list (int pid); | |
294 | static void delete_lwp (ptid_t ptid); | |
295 | static struct lwp_info *find_lwp_pid (ptid_t ptid); | |
296 | ||
297 | static int lwp_status_pending_p (struct lwp_info *lp); | |
298 | ||
299 | static bool is_lwp_marked_dead (lwp_info *lp); | |
300 | ||
301 | static void save_stop_reason (struct lwp_info *lp); | |
302 | ||
303 | static bool proc_mem_file_is_writable (); | |
304 | static void close_proc_mem_file (pid_t pid); | |
305 | static void open_proc_mem_file (ptid_t ptid); | |
306 | ||
307 | /* Return TRUE if LWP is the leader thread of the process. */ | |
308 | ||
309 | static bool | |
310 | is_leader (lwp_info *lp) | |
311 | { | |
312 | return lp->ptid.pid () == lp->ptid.lwp (); | |
313 | } | |
314 | ||
315 | /* Convert an LWP's pending status to a std::string. */ | |
316 | ||
317 | static std::string | |
318 | pending_status_str (lwp_info *lp) | |
319 | { | |
320 | gdb_assert (lwp_status_pending_p (lp)); | |
321 | ||
322 | if (lp->waitstatus.kind () != TARGET_WAITKIND_IGNORE) | |
323 | return lp->waitstatus.to_string (); | |
324 | else | |
325 | return status_to_str (lp->status); | |
326 | } | |
327 | ||
328 | /* Return true if we should report exit events for LP. */ | |
329 | ||
330 | static bool | |
331 | report_exit_events_for (lwp_info *lp) | |
332 | { | |
333 | thread_info *thr = linux_target->find_thread (lp->ptid); | |
334 | gdb_assert (thr != nullptr); | |
335 | ||
336 | return (report_thread_events | |
337 | || (thr->thread_options () & GDB_THREAD_OPTION_EXIT) != 0); | |
338 | } | |
339 | ||
340 | \f | |
341 | /* LWP accessors. */ | |
342 | ||
343 | /* See nat/linux-nat.h. */ | |
344 | ||
345 | ptid_t | |
346 | ptid_of_lwp (struct lwp_info *lwp) | |
347 | { | |
348 | return lwp->ptid; | |
349 | } | |
350 | ||
351 | /* See nat/linux-nat.h. */ | |
352 | ||
353 | void | |
354 | lwp_set_arch_private_info (struct lwp_info *lwp, | |
355 | struct arch_lwp_info *info) | |
356 | { | |
357 | lwp->arch_private = info; | |
358 | } | |
359 | ||
360 | /* See nat/linux-nat.h. */ | |
361 | ||
362 | struct arch_lwp_info * | |
363 | lwp_arch_private_info (struct lwp_info *lwp) | |
364 | { | |
365 | return lwp->arch_private; | |
366 | } | |
367 | ||
368 | /* See nat/linux-nat.h. */ | |
369 | ||
370 | int | |
371 | lwp_is_stopped (struct lwp_info *lwp) | |
372 | { | |
373 | return lwp->stopped; | |
374 | } | |
375 | ||
376 | /* See nat/linux-nat.h. */ | |
377 | ||
378 | enum target_stop_reason | |
379 | lwp_stop_reason (struct lwp_info *lwp) | |
380 | { | |
381 | return lwp->stop_reason; | |
382 | } | |
383 | ||
384 | /* See nat/linux-nat.h. */ | |
385 | ||
386 | int | |
387 | lwp_is_stepping (struct lwp_info *lwp) | |
388 | { | |
389 | return lwp->step; | |
390 | } | |
391 | ||
392 | \f | |
393 | /* Trivial list manipulation functions to keep track of a list of | |
394 | new stopped processes. */ | |
395 | static void | |
396 | add_to_pid_list (struct simple_pid_list **listp, int pid, int status) | |
397 | { | |
398 | struct simple_pid_list *new_pid = XNEW (struct simple_pid_list); | |
399 | ||
400 | new_pid->pid = pid; | |
401 | new_pid->status = status; | |
402 | new_pid->next = *listp; | |
403 | *listp = new_pid; | |
404 | } | |
405 | ||
406 | static int | |
407 | pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp) | |
408 | { | |
409 | struct simple_pid_list **p; | |
410 | ||
411 | for (p = listp; *p != NULL; p = &(*p)->next) | |
412 | if ((*p)->pid == pid) | |
413 | { | |
414 | struct simple_pid_list *next = (*p)->next; | |
415 | ||
416 | *statusp = (*p)->status; | |
417 | xfree (*p); | |
418 | *p = next; | |
419 | return 1; | |
420 | } | |
421 | return 0; | |
422 | } | |
423 | ||
424 | /* Return the ptrace options that we want to try to enable. */ | |
425 | ||
426 | static int | |
427 | linux_nat_ptrace_options (int attached) | |
428 | { | |
429 | int options = 0; | |
430 | ||
431 | if (!attached) | |
432 | options |= PTRACE_O_EXITKILL; | |
433 | ||
434 | options |= (PTRACE_O_TRACESYSGOOD | |
435 | | PTRACE_O_TRACEVFORKDONE | |
436 | | PTRACE_O_TRACEVFORK | |
437 | | PTRACE_O_TRACEFORK | |
438 | | PTRACE_O_TRACEEXEC); | |
439 | ||
440 | return options; | |
441 | } | |
442 | ||
443 | /* Initialize ptrace and procfs warnings and check for supported | |
444 | ptrace features given PID. | |
445 | ||
446 | ATTACHED should be nonzero iff we attached to the inferior. */ | |
447 | ||
448 | static void | |
449 | linux_init_ptrace_procfs (pid_t pid, int attached) | |
450 | { | |
451 | int options = linux_nat_ptrace_options (attached); | |
452 | ||
453 | linux_enable_event_reporting (pid, options); | |
454 | linux_ptrace_init_warnings (); | |
455 | linux_proc_init_warnings (); | |
456 | proc_mem_file_is_writable (); | |
457 | ||
458 | /* Let the arch-specific native code do any needed initialization. | |
459 | Some architectures need to call ptrace to check for hardware | |
460 | watchpoints support, etc. Call it now, when we know the tracee | |
461 | is ptrace-stopped. */ | |
462 | linux_target->low_init_process (pid); | |
463 | } | |
464 | ||
465 | linux_nat_target::~linux_nat_target () | |
466 | {} | |
467 | ||
468 | void | |
469 | linux_nat_target::post_attach (int pid) | |
470 | { | |
471 | linux_init_ptrace_procfs (pid, 1); | |
472 | } | |
473 | ||
474 | /* Implement the virtual inf_ptrace_target::post_startup_inferior method. */ | |
475 | ||
476 | void | |
477 | linux_nat_target::post_startup_inferior (ptid_t ptid) | |
478 | { | |
479 | linux_init_ptrace_procfs (ptid.pid (), 0); | |
480 | } | |
481 | ||
482 | /* Return the number of known LWPs in the tgid given by PID. */ | |
483 | ||
484 | static int | |
485 | num_lwps (int pid) | |
486 | { | |
487 | int count = 0; | |
488 | ||
489 | for (const lwp_info *lp ATTRIBUTE_UNUSED : all_lwps ()) | |
490 | if (lp->ptid.pid () == pid) | |
491 | count++; | |
492 | ||
493 | return count; | |
494 | } | |
495 | ||
496 | /* Deleter for lwp_info unique_ptr specialisation. */ | |
497 | ||
498 | struct lwp_deleter | |
499 | { | |
500 | void operator() (struct lwp_info *lwp) const | |
501 | { | |
502 | delete_lwp (lwp->ptid); | |
503 | } | |
504 | }; | |
505 | ||
506 | /* A unique_ptr specialisation for lwp_info. */ | |
507 | ||
508 | typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up; | |
509 | ||
510 | /* Target hook for follow_fork. */ | |
511 | ||
512 | void | |
513 | linux_nat_target::follow_fork (inferior *child_inf, ptid_t child_ptid, | |
514 | target_waitkind fork_kind, bool follow_child, | |
515 | bool detach_fork) | |
516 | { | |
517 | inf_ptrace_target::follow_fork (child_inf, child_ptid, fork_kind, | |
518 | follow_child, detach_fork); | |
519 | ||
520 | if (!follow_child) | |
521 | { | |
522 | bool has_vforked = fork_kind == TARGET_WAITKIND_VFORKED; | |
523 | ptid_t parent_ptid = inferior_ptid; | |
524 | int parent_pid = parent_ptid.lwp (); | |
525 | int child_pid = child_ptid.lwp (); | |
526 | ||
527 | /* We're already attached to the parent, by default. */ | |
528 | lwp_info *child_lp = add_lwp (child_ptid); | |
529 | child_lp->stopped = 1; | |
530 | child_lp->last_resume_kind = resume_stop; | |
531 | ||
532 | /* Detach new forked process? */ | |
533 | if (detach_fork) | |
534 | { | |
535 | int child_stop_signal = 0; | |
536 | bool detach_child = true; | |
537 | ||
538 | /* Move CHILD_LP into a unique_ptr and clear the source pointer | |
539 | to prevent us doing anything stupid with it. */ | |
540 | lwp_info_up child_lp_ptr (child_lp); | |
541 | child_lp = nullptr; | |
542 | ||
543 | linux_target->low_prepare_to_resume (child_lp_ptr.get ()); | |
544 | ||
545 | /* When debugging an inferior in an architecture that supports | |
546 | hardware single stepping on a kernel without commit | |
547 | 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child | |
548 | process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits | |
549 | set if the parent process had them set. | |
550 | To work around this, single step the child process | |
551 | once before detaching to clear the flags. */ | |
552 | ||
553 | /* Note that we consult the parent's architecture instead of | |
554 | the child's because there's no inferior for the child at | |
555 | this point. */ | |
556 | if (!gdbarch_software_single_step_p (target_thread_architecture | |
557 | (parent_ptid))) | |
558 | { | |
559 | int status; | |
560 | ||
561 | linux_disable_event_reporting (child_pid); | |
562 | if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0) | |
563 | perror_with_name (_("Couldn't do single step")); | |
564 | if (my_waitpid (child_pid, &status, 0) < 0) | |
565 | perror_with_name (_("Couldn't wait vfork process")); | |
566 | else | |
567 | { | |
568 | detach_child = WIFSTOPPED (status); | |
569 | child_stop_signal = WSTOPSIG (status); | |
570 | } | |
571 | } | |
572 | ||
573 | if (detach_child) | |
574 | { | |
575 | int signo = child_stop_signal; | |
576 | ||
577 | if (signo != 0 | |
578 | && !signal_pass_state (gdb_signal_from_host (signo))) | |
579 | signo = 0; | |
580 | ptrace (PTRACE_DETACH, child_pid, 0, signo); | |
581 | ||
582 | close_proc_mem_file (child_pid); | |
583 | } | |
584 | } | |
585 | ||
586 | if (has_vforked) | |
587 | { | |
588 | lwp_info *parent_lp = find_lwp_pid (parent_ptid); | |
589 | linux_nat_debug_printf ("waiting for VFORK_DONE on %d", parent_pid); | |
590 | parent_lp->stopped = 1; | |
591 | ||
592 | /* We'll handle the VFORK_DONE event like any other | |
593 | event, in target_wait. */ | |
594 | } | |
595 | } | |
596 | else | |
597 | { | |
598 | struct lwp_info *child_lp; | |
599 | ||
600 | child_lp = add_lwp (child_ptid); | |
601 | child_lp->stopped = 1; | |
602 | child_lp->last_resume_kind = resume_stop; | |
603 | } | |
604 | } | |
605 | ||
606 | \f | |
607 | int | |
608 | linux_nat_target::insert_fork_catchpoint (int pid) | |
609 | { | |
610 | return 0; | |
611 | } | |
612 | ||
613 | int | |
614 | linux_nat_target::remove_fork_catchpoint (int pid) | |
615 | { | |
616 | return 0; | |
617 | } | |
618 | ||
619 | int | |
620 | linux_nat_target::insert_vfork_catchpoint (int pid) | |
621 | { | |
622 | return 0; | |
623 | } | |
624 | ||
625 | int | |
626 | linux_nat_target::remove_vfork_catchpoint (int pid) | |
627 | { | |
628 | return 0; | |
629 | } | |
630 | ||
631 | int | |
632 | linux_nat_target::insert_exec_catchpoint (int pid) | |
633 | { | |
634 | return 0; | |
635 | } | |
636 | ||
637 | int | |
638 | linux_nat_target::remove_exec_catchpoint (int pid) | |
639 | { | |
640 | return 0; | |
641 | } | |
642 | ||
643 | int | |
644 | linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count, | |
645 | gdb::array_view<const int> syscall_counts) | |
646 | { | |
647 | /* On GNU/Linux, we ignore the arguments. It means that we only | |
648 | enable the syscall catchpoints, but do not disable them. | |
649 | ||
650 | Also, we do not use the `syscall_counts' information because we do not | |
651 | filter system calls here. We let GDB do the logic for us. */ | |
652 | return 0; | |
653 | } | |
654 | ||
655 | /* List of known LWPs, keyed by LWP PID. This speeds up the common | |
656 | case of mapping a PID returned from the kernel to our corresponding | |
657 | lwp_info data structure. */ | |
658 | static htab_t lwp_lwpid_htab; | |
659 | ||
660 | /* Calculate a hash from a lwp_info's LWP PID. */ | |
661 | ||
662 | static hashval_t | |
663 | lwp_info_hash (const void *ap) | |
664 | { | |
665 | const struct lwp_info *lp = (struct lwp_info *) ap; | |
666 | pid_t pid = lp->ptid.lwp (); | |
667 | ||
668 | return iterative_hash_object (pid, 0); | |
669 | } | |
670 | ||
671 | /* Equality function for the lwp_info hash table. Compares the LWP's | |
672 | PID. */ | |
673 | ||
674 | static int | |
675 | lwp_lwpid_htab_eq (const void *a, const void *b) | |
676 | { | |
677 | const struct lwp_info *entry = (const struct lwp_info *) a; | |
678 | const struct lwp_info *element = (const struct lwp_info *) b; | |
679 | ||
680 | return entry->ptid.lwp () == element->ptid.lwp (); | |
681 | } | |
682 | ||
683 | /* Create the lwp_lwpid_htab hash table. */ | |
684 | ||
685 | static void | |
686 | lwp_lwpid_htab_create (void) | |
687 | { | |
688 | lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL); | |
689 | } | |
690 | ||
691 | /* Add LP to the hash table. */ | |
692 | ||
693 | static void | |
694 | lwp_lwpid_htab_add_lwp (struct lwp_info *lp) | |
695 | { | |
696 | void **slot; | |
697 | ||
698 | slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT); | |
699 | gdb_assert (slot != NULL && *slot == NULL); | |
700 | *slot = lp; | |
701 | } | |
702 | ||
703 | /* Head of doubly-linked list of known LWPs. Sorted by reverse | |
704 | creation order. This order is assumed in some cases. E.g., | |
705 | reaping status after killing all lwps of a process: the leader LWP | |
706 | must be reaped last. */ | |
707 | ||
708 | static intrusive_list<lwp_info> lwp_list; | |
709 | ||
710 | /* See linux-nat.h. */ | |
711 | ||
712 | lwp_info_range | |
713 | all_lwps () | |
714 | { | |
715 | return lwp_info_range (lwp_list.begin ()); | |
716 | } | |
717 | ||
718 | /* See linux-nat.h. */ | |
719 | ||
720 | lwp_info_safe_range | |
721 | all_lwps_safe () | |
722 | { | |
723 | return lwp_info_safe_range (lwp_list.begin ()); | |
724 | } | |
725 | ||
726 | /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */ | |
727 | ||
728 | static void | |
729 | lwp_list_add (struct lwp_info *lp) | |
730 | { | |
731 | lwp_list.push_front (*lp); | |
732 | } | |
733 | ||
734 | /* Remove LP from sorted-by-reverse-creation-order doubly-linked | |
735 | list. */ | |
736 | ||
737 | static void | |
738 | lwp_list_remove (struct lwp_info *lp) | |
739 | { | |
740 | /* Remove from sorted-by-creation-order list. */ | |
741 | lwp_list.erase (lwp_list.iterator_to (*lp)); | |
742 | } | |
743 | ||
744 | \f | |
745 | ||
746 | /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in | |
747 | _initialize_linux_nat. */ | |
748 | static sigset_t suspend_mask; | |
749 | ||
750 | /* Signals to block to make that sigsuspend work. */ | |
751 | static sigset_t blocked_mask; | |
752 | ||
753 | /* SIGCHLD action. */ | |
754 | static struct sigaction sigchld_action; | |
755 | ||
756 | /* Block child signals (SIGCHLD and linux threads signals), and store | |
757 | the previous mask in PREV_MASK. */ | |
758 | ||
759 | static void | |
760 | block_child_signals (sigset_t *prev_mask) | |
761 | { | |
762 | /* Make sure SIGCHLD is blocked. */ | |
763 | if (!sigismember (&blocked_mask, SIGCHLD)) | |
764 | sigaddset (&blocked_mask, SIGCHLD); | |
765 | ||
766 | gdb_sigmask (SIG_BLOCK, &blocked_mask, prev_mask); | |
767 | } | |
768 | ||
769 | /* Restore child signals mask, previously returned by | |
770 | block_child_signals. */ | |
771 | ||
772 | static void | |
773 | restore_child_signals_mask (sigset_t *prev_mask) | |
774 | { | |
775 | gdb_sigmask (SIG_SETMASK, prev_mask, NULL); | |
776 | } | |
777 | ||
778 | /* Mask of signals to pass directly to the inferior. */ | |
779 | static sigset_t pass_mask; | |
780 | ||
781 | /* Update signals to pass to the inferior. */ | |
782 | void | |
783 | linux_nat_target::pass_signals | |
784 | (gdb::array_view<const unsigned char> pass_signals) | |
785 | { | |
786 | int signo; | |
787 | ||
788 | sigemptyset (&pass_mask); | |
789 | ||
790 | for (signo = 1; signo < NSIG; signo++) | |
791 | { | |
792 | int target_signo = gdb_signal_from_host (signo); | |
793 | if (target_signo < pass_signals.size () && pass_signals[target_signo]) | |
794 | sigaddset (&pass_mask, signo); | |
795 | } | |
796 | } | |
797 | ||
798 | \f | |
799 | ||
800 | /* Prototypes for local functions. */ | |
801 | static int stop_wait_callback (struct lwp_info *lp); | |
802 | static int resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid); | |
803 | static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp); | |
804 | ||
805 | \f | |
806 | ||
807 | /* Destroy and free LP. */ | |
808 | ||
809 | lwp_info::~lwp_info () | |
810 | { | |
811 | /* Let the arch specific bits release arch_lwp_info. */ | |
812 | linux_target->low_delete_thread (this->arch_private); | |
813 | } | |
814 | ||
815 | /* Traversal function for purge_lwp_list. */ | |
816 | ||
817 | static int | |
818 | lwp_lwpid_htab_remove_pid (void **slot, void *info) | |
819 | { | |
820 | struct lwp_info *lp = (struct lwp_info *) *slot; | |
821 | int pid = *(int *) info; | |
822 | ||
823 | if (lp->ptid.pid () == pid) | |
824 | { | |
825 | htab_clear_slot (lwp_lwpid_htab, slot); | |
826 | lwp_list_remove (lp); | |
827 | delete lp; | |
828 | } | |
829 | ||
830 | return 1; | |
831 | } | |
832 | ||
833 | /* Remove all LWPs belong to PID from the lwp list. */ | |
834 | ||
835 | static void | |
836 | purge_lwp_list (int pid) | |
837 | { | |
838 | htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid); | |
839 | } | |
840 | ||
841 | /* Add the LWP specified by PTID to the list. PTID is the first LWP | |
842 | in the process. Return a pointer to the structure describing the | |
843 | new LWP. | |
844 | ||
845 | This differs from add_lwp in that we don't let the arch specific | |
846 | bits know about this new thread. Current clients of this callback | |
847 | take the opportunity to install watchpoints in the new thread, and | |
848 | we shouldn't do that for the first thread. If we're spawning a | |
849 | child ("run"), the thread executes the shell wrapper first, and we | |
850 | shouldn't touch it until it execs the program we want to debug. | |
851 | For "attach", it'd be okay to call the callback, but it's not | |
852 | necessary, because watchpoints can't yet have been inserted into | |
853 | the inferior. */ | |
854 | ||
855 | static struct lwp_info * | |
856 | add_initial_lwp (ptid_t ptid) | |
857 | { | |
858 | gdb_assert (ptid.lwp_p ()); | |
859 | ||
860 | lwp_info *lp = new lwp_info (ptid); | |
861 | ||
862 | ||
863 | /* Add to sorted-by-reverse-creation-order list. */ | |
864 | lwp_list_add (lp); | |
865 | ||
866 | /* Add to keyed-by-pid htab. */ | |
867 | lwp_lwpid_htab_add_lwp (lp); | |
868 | ||
869 | return lp; | |
870 | } | |
871 | ||
872 | /* Add the LWP specified by PID to the list. Return a pointer to the | |
873 | structure describing the new LWP. The LWP should already be | |
874 | stopped. */ | |
875 | ||
876 | static struct lwp_info * | |
877 | add_lwp (ptid_t ptid) | |
878 | { | |
879 | struct lwp_info *lp; | |
880 | ||
881 | lp = add_initial_lwp (ptid); | |
882 | ||
883 | /* Let the arch specific bits know about this new thread. Current | |
884 | clients of this callback take the opportunity to install | |
885 | watchpoints in the new thread. We don't do this for the first | |
886 | thread though. See add_initial_lwp. */ | |
887 | linux_target->low_new_thread (lp); | |
888 | ||
889 | return lp; | |
890 | } | |
891 | ||
892 | /* Remove the LWP specified by PID from the list. */ | |
893 | ||
894 | static void | |
895 | delete_lwp (ptid_t ptid) | |
896 | { | |
897 | lwp_info dummy (ptid); | |
898 | ||
899 | void **slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT); | |
900 | if (slot == NULL) | |
901 | return; | |
902 | ||
903 | lwp_info *lp = *(struct lwp_info **) slot; | |
904 | gdb_assert (lp != NULL); | |
905 | ||
906 | htab_clear_slot (lwp_lwpid_htab, slot); | |
907 | ||
908 | /* Remove from sorted-by-creation-order list. */ | |
909 | lwp_list_remove (lp); | |
910 | ||
911 | /* Release. */ | |
912 | delete lp; | |
913 | } | |
914 | ||
915 | /* Return a pointer to the structure describing the LWP corresponding | |
916 | to PID. If no corresponding LWP could be found, return NULL. */ | |
917 | ||
918 | static struct lwp_info * | |
919 | find_lwp_pid (ptid_t ptid) | |
920 | { | |
921 | int lwp; | |
922 | ||
923 | if (ptid.lwp_p ()) | |
924 | lwp = ptid.lwp (); | |
925 | else | |
926 | lwp = ptid.pid (); | |
927 | ||
928 | lwp_info dummy (ptid_t (0, lwp)); | |
929 | return (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy); | |
930 | } | |
931 | ||
932 | /* See nat/linux-nat.h. */ | |
933 | ||
934 | struct lwp_info * | |
935 | iterate_over_lwps (ptid_t filter, | |
936 | gdb::function_view<iterate_over_lwps_ftype> callback) | |
937 | { | |
938 | for (lwp_info *lp : all_lwps_safe ()) | |
939 | { | |
940 | if (lp->ptid.matches (filter)) | |
941 | { | |
942 | if (callback (lp) != 0) | |
943 | return lp; | |
944 | } | |
945 | } | |
946 | ||
947 | return NULL; | |
948 | } | |
949 | ||
950 | /* Update our internal state when changing from one checkpoint to | |
951 | another indicated by NEW_PTID. We can only switch single-threaded | |
952 | applications, so we only create one new LWP, and the previous list | |
953 | is discarded. */ | |
954 | ||
955 | void | |
956 | linux_nat_switch_fork (ptid_t new_ptid) | |
957 | { | |
958 | struct lwp_info *lp; | |
959 | ||
960 | purge_lwp_list (inferior_ptid.pid ()); | |
961 | ||
962 | lp = add_lwp (new_ptid); | |
963 | lp->stopped = 1; | |
964 | ||
965 | /* This changes the thread's ptid while preserving the gdb thread | |
966 | num. Also changes the inferior pid, while preserving the | |
967 | inferior num. */ | |
968 | thread_change_ptid (linux_target, inferior_ptid, new_ptid); | |
969 | ||
970 | /* We've just told GDB core that the thread changed target id, but, | |
971 | in fact, it really is a different thread, with different register | |
972 | contents. */ | |
973 | registers_changed (); | |
974 | } | |
975 | ||
976 | /* Handle the exit of a single thread LP. If DEL_THREAD is true, | |
977 | delete the thread_info associated to LP, if it exists. */ | |
978 | ||
979 | static void | |
980 | exit_lwp (struct lwp_info *lp, bool del_thread = true) | |
981 | { | |
982 | struct thread_info *th = linux_target->find_thread (lp->ptid); | |
983 | ||
984 | if (th != nullptr && del_thread) | |
985 | delete_thread (th); | |
986 | ||
987 | delete_lwp (lp->ptid); | |
988 | } | |
989 | ||
990 | /* Wait for the LWP specified by LP, which we have just attached to. | |
991 | Returns a wait status for that LWP, to cache. */ | |
992 | ||
993 | static int | |
994 | linux_nat_post_attach_wait (ptid_t ptid, int *signalled) | |
995 | { | |
996 | pid_t new_pid, pid = ptid.lwp (); | |
997 | int status; | |
998 | ||
999 | if (linux_proc_pid_is_stopped (pid)) | |
1000 | { | |
1001 | linux_nat_debug_printf ("Attaching to a stopped process"); | |
1002 | ||
1003 | /* The process is definitely stopped. It is in a job control | |
1004 | stop, unless the kernel predates the TASK_STOPPED / | |
1005 | TASK_TRACED distinction, in which case it might be in a | |
1006 | ptrace stop. Make sure it is in a ptrace stop; from there we | |
1007 | can kill it, signal it, et cetera. | |
1008 | ||
1009 | First make sure there is a pending SIGSTOP. Since we are | |
1010 | already attached, the process can not transition from stopped | |
1011 | to running without a PTRACE_CONT; so we know this signal will | |
1012 | go into the queue. The SIGSTOP generated by PTRACE_ATTACH is | |
1013 | probably already in the queue (unless this kernel is old | |
1014 | enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP | |
1015 | is not an RT signal, it can only be queued once. */ | |
1016 | kill_lwp (pid, SIGSTOP); | |
1017 | ||
1018 | /* Finally, resume the stopped process. This will deliver the SIGSTOP | |
1019 | (or a higher priority signal, just like normal PTRACE_ATTACH). */ | |
1020 | ptrace (PTRACE_CONT, pid, 0, 0); | |
1021 | } | |
1022 | ||
1023 | /* Make sure the initial process is stopped. The user-level threads | |
1024 | layer might want to poke around in the inferior, and that won't | |
1025 | work if things haven't stabilized yet. */ | |
1026 | new_pid = my_waitpid (pid, &status, __WALL); | |
1027 | gdb_assert (pid == new_pid); | |
1028 | ||
1029 | if (!WIFSTOPPED (status)) | |
1030 | { | |
1031 | /* The pid we tried to attach has apparently just exited. */ | |
1032 | linux_nat_debug_printf ("Failed to stop %d: %s", pid, | |
1033 | status_to_str (status).c_str ()); | |
1034 | return status; | |
1035 | } | |
1036 | ||
1037 | if (WSTOPSIG (status) != SIGSTOP) | |
1038 | { | |
1039 | *signalled = 1; | |
1040 | linux_nat_debug_printf ("Received %s after attaching", | |
1041 | status_to_str (status).c_str ()); | |
1042 | } | |
1043 | ||
1044 | return status; | |
1045 | } | |
1046 | ||
1047 | void | |
1048 | linux_nat_target::create_inferior (const char *exec_file, | |
1049 | const std::string &allargs, | |
1050 | char **env, int from_tty) | |
1051 | { | |
1052 | maybe_disable_address_space_randomization restore_personality | |
1053 | (disable_randomization); | |
1054 | ||
1055 | /* The fork_child mechanism is synchronous and calls target_wait, so | |
1056 | we have to mask the async mode. */ | |
1057 | ||
1058 | /* Make sure we report all signals during startup. */ | |
1059 | pass_signals ({}); | |
1060 | ||
1061 | inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty); | |
1062 | ||
1063 | open_proc_mem_file (inferior_ptid); | |
1064 | } | |
1065 | ||
1066 | /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not | |
1067 | already attached. Returns true if a new LWP is found, false | |
1068 | otherwise. */ | |
1069 | ||
1070 | static int | |
1071 | attach_proc_task_lwp_callback (ptid_t ptid) | |
1072 | { | |
1073 | struct lwp_info *lp; | |
1074 | ||
1075 | /* Ignore LWPs we're already attached to. */ | |
1076 | lp = find_lwp_pid (ptid); | |
1077 | if (lp == NULL) | |
1078 | { | |
1079 | int lwpid = ptid.lwp (); | |
1080 | ||
1081 | if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0) | |
1082 | { | |
1083 | int err = errno; | |
1084 | ||
1085 | /* Be quiet if we simply raced with the thread exiting. | |
1086 | EPERM is returned if the thread's task still exists, and | |
1087 | is marked as exited or zombie, as well as other | |
1088 | conditions, so in that case, confirm the status in | |
1089 | /proc/PID/status. */ | |
1090 | if (err == ESRCH | |
1091 | || (err == EPERM && linux_proc_pid_is_gone (lwpid))) | |
1092 | { | |
1093 | linux_nat_debug_printf | |
1094 | ("Cannot attach to lwp %d: thread is gone (%d: %s)", | |
1095 | lwpid, err, safe_strerror (err)); | |
1096 | ||
1097 | } | |
1098 | else | |
1099 | { | |
1100 | std::string reason | |
1101 | = linux_ptrace_attach_fail_reason_string (ptid, err); | |
1102 | ||
1103 | error (_("Cannot attach to lwp %d: %s"), | |
1104 | lwpid, reason.c_str ()); | |
1105 | } | |
1106 | } | |
1107 | else | |
1108 | { | |
1109 | linux_nat_debug_printf ("PTRACE_ATTACH %s, 0, 0 (OK)", | |
1110 | ptid.to_string ().c_str ()); | |
1111 | ||
1112 | lp = add_lwp (ptid); | |
1113 | ||
1114 | /* The next time we wait for this LWP we'll see a SIGSTOP as | |
1115 | PTRACE_ATTACH brings it to a halt. */ | |
1116 | lp->signalled = 1; | |
1117 | ||
1118 | /* We need to wait for a stop before being able to make the | |
1119 | next ptrace call on this LWP. */ | |
1120 | lp->must_set_ptrace_flags = 1; | |
1121 | ||
1122 | /* So that wait collects the SIGSTOP. */ | |
1123 | lp->resumed = 1; | |
1124 | } | |
1125 | ||
1126 | return 1; | |
1127 | } | |
1128 | return 0; | |
1129 | } | |
1130 | ||
1131 | void | |
1132 | linux_nat_target::attach (const char *args, int from_tty) | |
1133 | { | |
1134 | struct lwp_info *lp; | |
1135 | int status; | |
1136 | ptid_t ptid; | |
1137 | ||
1138 | /* Make sure we report all signals during attach. */ | |
1139 | pass_signals ({}); | |
1140 | ||
1141 | try | |
1142 | { | |
1143 | inf_ptrace_target::attach (args, from_tty); | |
1144 | } | |
1145 | catch (const gdb_exception_error &ex) | |
1146 | { | |
1147 | pid_t pid = parse_pid_to_attach (args); | |
1148 | std::string reason = linux_ptrace_attach_fail_reason (pid); | |
1149 | ||
1150 | if (!reason.empty ()) | |
1151 | throw_error (ex.error, "warning: %s\n%s", reason.c_str (), | |
1152 | ex.what ()); | |
1153 | else | |
1154 | throw_error (ex.error, "%s", ex.what ()); | |
1155 | } | |
1156 | ||
1157 | /* The ptrace base target adds the main thread with (pid,0,0) | |
1158 | format. Decorate it with lwp info. */ | |
1159 | ptid = ptid_t (inferior_ptid.pid (), | |
1160 | inferior_ptid.pid ()); | |
1161 | thread_change_ptid (linux_target, inferior_ptid, ptid); | |
1162 | ||
1163 | /* Add the initial process as the first LWP to the list. */ | |
1164 | lp = add_initial_lwp (ptid); | |
1165 | ||
1166 | status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled); | |
1167 | if (!WIFSTOPPED (status)) | |
1168 | { | |
1169 | if (WIFEXITED (status)) | |
1170 | { | |
1171 | int exit_code = WEXITSTATUS (status); | |
1172 | ||
1173 | target_terminal::ours (); | |
1174 | target_mourn_inferior (inferior_ptid); | |
1175 | if (exit_code == 0) | |
1176 | error (_("Unable to attach: program exited normally.")); | |
1177 | else | |
1178 | error (_("Unable to attach: program exited with code %d."), | |
1179 | exit_code); | |
1180 | } | |
1181 | else if (WIFSIGNALED (status)) | |
1182 | { | |
1183 | enum gdb_signal signo; | |
1184 | ||
1185 | target_terminal::ours (); | |
1186 | target_mourn_inferior (inferior_ptid); | |
1187 | ||
1188 | signo = gdb_signal_from_host (WTERMSIG (status)); | |
1189 | error (_("Unable to attach: program terminated with signal " | |
1190 | "%s, %s."), | |
1191 | gdb_signal_to_name (signo), | |
1192 | gdb_signal_to_string (signo)); | |
1193 | } | |
1194 | ||
1195 | internal_error (_("unexpected status %d for PID %ld"), | |
1196 | status, (long) ptid.lwp ()); | |
1197 | } | |
1198 | ||
1199 | lp->stopped = 1; | |
1200 | ||
1201 | open_proc_mem_file (lp->ptid); | |
1202 | ||
1203 | /* Save the wait status to report later. */ | |
1204 | lp->resumed = 1; | |
1205 | linux_nat_debug_printf ("waitpid %ld, saving status %s", | |
1206 | (long) lp->ptid.pid (), | |
1207 | status_to_str (status).c_str ()); | |
1208 | ||
1209 | lp->status = status; | |
1210 | ||
1211 | /* We must attach to every LWP. If /proc is mounted, use that to | |
1212 | find them now. The inferior may be using raw clone instead of | |
1213 | using pthreads. But even if it is using pthreads, thread_db | |
1214 | walks structures in the inferior's address space to find the list | |
1215 | of threads/LWPs, and those structures may well be corrupted. | |
1216 | Note that once thread_db is loaded, we'll still use it to list | |
1217 | threads and associate pthread info with each LWP. */ | |
1218 | try | |
1219 | { | |
1220 | linux_proc_attach_tgid_threads (lp->ptid.pid (), | |
1221 | attach_proc_task_lwp_callback); | |
1222 | } | |
1223 | catch (const gdb_exception_error &) | |
1224 | { | |
1225 | /* Failed to attach to some LWP. Detach any we've already | |
1226 | attached to. */ | |
1227 | iterate_over_lwps (ptid_t (ptid.pid ()), | |
1228 | [] (struct lwp_info *lwp) -> int | |
1229 | { | |
1230 | /* Ignore errors when detaching. */ | |
1231 | ptrace (PTRACE_DETACH, lwp->ptid.lwp (), 0, 0); | |
1232 | delete_lwp (lwp->ptid); | |
1233 | return 0; | |
1234 | }); | |
1235 | ||
1236 | target_terminal::ours (); | |
1237 | target_mourn_inferior (inferior_ptid); | |
1238 | ||
1239 | throw; | |
1240 | } | |
1241 | ||
1242 | /* Add all the LWPs to gdb's thread list. */ | |
1243 | iterate_over_lwps (ptid_t (ptid.pid ()), | |
1244 | [] (struct lwp_info *lwp) -> int | |
1245 | { | |
1246 | if (lwp->ptid.pid () != lwp->ptid.lwp ()) | |
1247 | { | |
1248 | add_thread (linux_target, lwp->ptid); | |
1249 | set_running (linux_target, lwp->ptid, true); | |
1250 | set_executing (linux_target, lwp->ptid, true); | |
1251 | } | |
1252 | return 0; | |
1253 | }); | |
1254 | } | |
1255 | ||
1256 | /* Ptrace-detach the thread with pid PID. */ | |
1257 | ||
1258 | static void | |
1259 | detach_one_pid (int pid, int signo) | |
1260 | { | |
1261 | if (ptrace (PTRACE_DETACH, pid, 0, signo) < 0) | |
1262 | { | |
1263 | int save_errno = errno; | |
1264 | ||
1265 | /* We know the thread exists, so ESRCH must mean the lwp is | |
1266 | zombie. This can happen if one of the already-detached | |
1267 | threads exits the whole thread group. In that case we're | |
1268 | still attached, and must reap the lwp. */ | |
1269 | if (save_errno == ESRCH) | |
1270 | { | |
1271 | int ret, status; | |
1272 | ||
1273 | ret = my_waitpid (pid, &status, __WALL); | |
1274 | if (ret == -1) | |
1275 | { | |
1276 | warning (_("Couldn't reap LWP %d while detaching: %s"), | |
1277 | pid, safe_strerror (errno)); | |
1278 | } | |
1279 | else if (!WIFEXITED (status) && !WIFSIGNALED (status)) | |
1280 | { | |
1281 | warning (_("Reaping LWP %d while detaching " | |
1282 | "returned unexpected status 0x%x"), | |
1283 | pid, status); | |
1284 | } | |
1285 | } | |
1286 | else | |
1287 | error (_("Can't detach %d: %s"), | |
1288 | pid, safe_strerror (save_errno)); | |
1289 | } | |
1290 | else | |
1291 | linux_nat_debug_printf ("PTRACE_DETACH (%d, %s, 0) (OK)", | |
1292 | pid, strsignal (signo)); | |
1293 | } | |
1294 | ||
1295 | /* Get pending signal of THREAD as a host signal number, for detaching | |
1296 | purposes. This is the signal the thread last stopped for, which we | |
1297 | need to deliver to the thread when detaching, otherwise, it'd be | |
1298 | suppressed/lost. */ | |
1299 | ||
1300 | static int | |
1301 | get_detach_signal (struct lwp_info *lp) | |
1302 | { | |
1303 | enum gdb_signal signo = GDB_SIGNAL_0; | |
1304 | ||
1305 | /* If we paused threads momentarily, we may have stored pending | |
1306 | events in lp->status or lp->waitstatus (see stop_wait_callback), | |
1307 | and GDB core hasn't seen any signal for those threads. | |
1308 | Otherwise, the last signal reported to the core is found in the | |
1309 | thread object's stop_signal. | |
1310 | ||
1311 | There's a corner case that isn't handled here at present. Only | |
1312 | if the thread stopped with a TARGET_WAITKIND_STOPPED does | |
1313 | stop_signal make sense as a real signal to pass to the inferior. | |
1314 | Some catchpoint related events, like | |
1315 | TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set | |
1316 | to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But, | |
1317 | those traps are debug API (ptrace in our case) related and | |
1318 | induced; the inferior wouldn't see them if it wasn't being | |
1319 | traced. Hence, we should never pass them to the inferior, even | |
1320 | when set to pass state. Since this corner case isn't handled by | |
1321 | infrun.c when proceeding with a signal, for consistency, neither | |
1322 | do we handle it here (or elsewhere in the file we check for | |
1323 | signal pass state). Normally SIGTRAP isn't set to pass state, so | |
1324 | this is really a corner case. */ | |
1325 | ||
1326 | if (lp->waitstatus.kind () != TARGET_WAITKIND_IGNORE) | |
1327 | signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */ | |
1328 | else if (lp->status) | |
1329 | signo = gdb_signal_from_host (WSTOPSIG (lp->status)); | |
1330 | else | |
1331 | { | |
1332 | thread_info *tp = linux_target->find_thread (lp->ptid); | |
1333 | ||
1334 | if (target_is_non_stop_p () && !tp->executing ()) | |
1335 | { | |
1336 | if (tp->has_pending_waitstatus ()) | |
1337 | { | |
1338 | /* If the thread has a pending event, and it was stopped with a | |
1339 | signal, use that signal to resume it. If it has a pending | |
1340 | event of another kind, it was not stopped with a signal, so | |
1341 | resume it without a signal. */ | |
1342 | if (tp->pending_waitstatus ().kind () == TARGET_WAITKIND_STOPPED) | |
1343 | signo = tp->pending_waitstatus ().sig (); | |
1344 | else | |
1345 | signo = GDB_SIGNAL_0; | |
1346 | } | |
1347 | else | |
1348 | signo = tp->stop_signal (); | |
1349 | } | |
1350 | else if (!target_is_non_stop_p ()) | |
1351 | { | |
1352 | ptid_t last_ptid; | |
1353 | process_stratum_target *last_target; | |
1354 | ||
1355 | get_last_target_status (&last_target, &last_ptid, nullptr); | |
1356 | ||
1357 | if (last_target == linux_target | |
1358 | && lp->ptid.lwp () == last_ptid.lwp ()) | |
1359 | signo = tp->stop_signal (); | |
1360 | } | |
1361 | } | |
1362 | ||
1363 | if (signo == GDB_SIGNAL_0) | |
1364 | { | |
1365 | linux_nat_debug_printf ("lwp %s has no pending signal", | |
1366 | lp->ptid.to_string ().c_str ()); | |
1367 | } | |
1368 | else if (!signal_pass_state (signo)) | |
1369 | { | |
1370 | linux_nat_debug_printf | |
1371 | ("lwp %s had signal %s but it is in no pass state", | |
1372 | lp->ptid.to_string ().c_str (), gdb_signal_to_string (signo)); | |
1373 | } | |
1374 | else | |
1375 | { | |
1376 | linux_nat_debug_printf ("lwp %s has pending signal %s", | |
1377 | lp->ptid.to_string ().c_str (), | |
1378 | gdb_signal_to_string (signo)); | |
1379 | ||
1380 | return gdb_signal_to_host (signo); | |
1381 | } | |
1382 | ||
1383 | return 0; | |
1384 | } | |
1385 | ||
1386 | /* If LP has a pending fork/vfork/clone status, return it. */ | |
1387 | ||
1388 | static std::optional<target_waitstatus> | |
1389 | get_pending_child_status (lwp_info *lp) | |
1390 | { | |
1391 | LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT; | |
1392 | ||
1393 | linux_nat_debug_printf ("lwp %s (stopped = %d)", | |
1394 | lp->ptid.to_string ().c_str (), lp->stopped); | |
1395 | ||
1396 | /* Check in lwp_info::status. */ | |
1397 | if (WIFSTOPPED (lp->status) && linux_is_extended_waitstatus (lp->status)) | |
1398 | { | |
1399 | int event = linux_ptrace_get_extended_event (lp->status); | |
1400 | ||
1401 | if (event == PTRACE_EVENT_FORK | |
1402 | || event == PTRACE_EVENT_VFORK | |
1403 | || event == PTRACE_EVENT_CLONE) | |
1404 | { | |
1405 | unsigned long child_pid; | |
1406 | int ret = ptrace (PTRACE_GETEVENTMSG, lp->ptid.lwp (), 0, &child_pid); | |
1407 | if (ret == 0) | |
1408 | { | |
1409 | target_waitstatus ws; | |
1410 | ||
1411 | if (event == PTRACE_EVENT_FORK) | |
1412 | ws.set_forked (ptid_t (child_pid, child_pid)); | |
1413 | else if (event == PTRACE_EVENT_VFORK) | |
1414 | ws.set_vforked (ptid_t (child_pid, child_pid)); | |
1415 | else if (event == PTRACE_EVENT_CLONE) | |
1416 | ws.set_thread_cloned (ptid_t (lp->ptid.pid (), child_pid)); | |
1417 | else | |
1418 | gdb_assert_not_reached ("unhandled"); | |
1419 | ||
1420 | return ws; | |
1421 | } | |
1422 | else | |
1423 | { | |
1424 | perror_warning_with_name (_("Failed to retrieve event msg")); | |
1425 | return {}; | |
1426 | } | |
1427 | } | |
1428 | } | |
1429 | ||
1430 | /* Check in lwp_info::waitstatus. */ | |
1431 | if (is_new_child_status (lp->waitstatus.kind ())) | |
1432 | return lp->waitstatus; | |
1433 | ||
1434 | thread_info *tp = linux_target->find_thread (lp->ptid); | |
1435 | ||
1436 | /* Check in thread_info::pending_waitstatus. */ | |
1437 | if (tp->has_pending_waitstatus () | |
1438 | && is_new_child_status (tp->pending_waitstatus ().kind ())) | |
1439 | return tp->pending_waitstatus (); | |
1440 | ||
1441 | /* Check in thread_info::pending_follow. */ | |
1442 | if (is_new_child_status (tp->pending_follow.kind ())) | |
1443 | return tp->pending_follow; | |
1444 | ||
1445 | return {}; | |
1446 | } | |
1447 | ||
1448 | /* Detach from LP. If SIGNO_P is non-NULL, then it points to the | |
1449 | signal number that should be passed to the LWP when detaching. | |
1450 | Otherwise pass any pending signal the LWP may have, if any. */ | |
1451 | ||
1452 | static void | |
1453 | detach_one_lwp (struct lwp_info *lp, int *signo_p) | |
1454 | { | |
1455 | int lwpid = lp->ptid.lwp (); | |
1456 | int signo; | |
1457 | ||
1458 | /* If the lwp/thread we are about to detach has a pending fork/clone | |
1459 | event, there is a process/thread GDB is attached to that the core | |
1460 | of GDB doesn't know about. Detach from it. */ | |
1461 | ||
1462 | std::optional<target_waitstatus> ws = get_pending_child_status (lp); | |
1463 | if (ws.has_value ()) | |
1464 | detach_one_pid (ws->child_ptid ().lwp (), 0); | |
1465 | ||
1466 | /* If there is a pending SIGSTOP, get rid of it. */ | |
1467 | if (lp->signalled) | |
1468 | { | |
1469 | linux_nat_debug_printf ("Sending SIGCONT to %s", | |
1470 | lp->ptid.to_string ().c_str ()); | |
1471 | ||
1472 | kill_lwp (lwpid, SIGCONT); | |
1473 | lp->signalled = 0; | |
1474 | } | |
1475 | ||
1476 | /* If the lwp has exited or was terminated due to a signal, there's | |
1477 | nothing left to do. */ | |
1478 | if (is_lwp_marked_dead (lp)) | |
1479 | { | |
1480 | linux_nat_debug_printf | |
1481 | ("Can't detach %s - it has exited or was terminated: %s.", | |
1482 | lp->ptid.to_string ().c_str (), | |
1483 | lp->waitstatus.to_string ().c_str ()); | |
1484 | delete_lwp (lp->ptid); | |
1485 | return; | |
1486 | } | |
1487 | ||
1488 | if (signo_p == NULL) | |
1489 | { | |
1490 | /* Pass on any pending signal for this LWP. */ | |
1491 | signo = get_detach_signal (lp); | |
1492 | } | |
1493 | else | |
1494 | signo = *signo_p; | |
1495 | ||
1496 | linux_nat_debug_printf ("preparing to resume lwp %s (stopped = %d)", | |
1497 | lp->ptid.to_string ().c_str (), | |
1498 | lp->stopped); | |
1499 | ||
1500 | /* Preparing to resume may try to write registers, and fail if the | |
1501 | lwp is zombie. If that happens, ignore the error. We'll handle | |
1502 | it below, when detach fails with ESRCH. */ | |
1503 | try | |
1504 | { | |
1505 | linux_target->low_prepare_to_resume (lp); | |
1506 | } | |
1507 | catch (const gdb_exception_error &ex) | |
1508 | { | |
1509 | if (!check_ptrace_stopped_lwp_gone (lp)) | |
1510 | throw; | |
1511 | } | |
1512 | ||
1513 | detach_one_pid (lwpid, signo); | |
1514 | ||
1515 | delete_lwp (lp->ptid); | |
1516 | } | |
1517 | ||
1518 | static int | |
1519 | detach_callback (struct lwp_info *lp) | |
1520 | { | |
1521 | /* We don't actually detach from the thread group leader just yet. | |
1522 | If the thread group exits, we must reap the zombie clone lwps | |
1523 | before we're able to reap the leader. */ | |
1524 | if (lp->ptid.lwp () != lp->ptid.pid ()) | |
1525 | detach_one_lwp (lp, NULL); | |
1526 | return 0; | |
1527 | } | |
1528 | ||
1529 | void | |
1530 | linux_nat_target::detach (inferior *inf, int from_tty) | |
1531 | { | |
1532 | LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT; | |
1533 | ||
1534 | struct lwp_info *main_lwp; | |
1535 | int pid = inf->pid; | |
1536 | ||
1537 | /* Don't unregister from the event loop, as there may be other | |
1538 | inferiors running. */ | |
1539 | ||
1540 | /* Stop all threads before detaching. ptrace requires that the | |
1541 | thread is stopped to successfully detach. */ | |
1542 | iterate_over_lwps (ptid_t (pid), stop_callback); | |
1543 | /* ... and wait until all of them have reported back that | |
1544 | they're no longer running. */ | |
1545 | iterate_over_lwps (ptid_t (pid), stop_wait_callback); | |
1546 | ||
1547 | /* We can now safely remove breakpoints. We don't this in earlier | |
1548 | in common code because this target doesn't currently support | |
1549 | writing memory while the inferior is running. */ | |
1550 | remove_breakpoints_inf (current_inferior ()); | |
1551 | ||
1552 | iterate_over_lwps (ptid_t (pid), detach_callback); | |
1553 | ||
1554 | /* We have detached from everything except the main thread now, so | |
1555 | should only have one thread left. However, in non-stop mode the | |
1556 | main thread might have exited, in which case we'll have no threads | |
1557 | left. */ | |
1558 | gdb_assert (num_lwps (pid) == 1 | |
1559 | || (target_is_non_stop_p () && num_lwps (pid) == 0)); | |
1560 | ||
1561 | if (forks_exist_p (inf)) | |
1562 | { | |
1563 | /* Multi-fork case. The current inferior_ptid is being detached | |
1564 | from, but there are other viable forks to debug. Detach from | |
1565 | the current fork, and context-switch to the first | |
1566 | available. */ | |
1567 | linux_fork_detach (from_tty, find_lwp_pid (ptid_t (pid)), inf); | |
1568 | } | |
1569 | else | |
1570 | { | |
1571 | target_announce_detach (from_tty); | |
1572 | ||
1573 | /* In non-stop mode it is possible that the main thread has exited, | |
1574 | in which case we don't try to detach. */ | |
1575 | main_lwp = find_lwp_pid (ptid_t (pid)); | |
1576 | if (main_lwp != nullptr) | |
1577 | { | |
1578 | /* Pass on any pending signal for the last LWP. */ | |
1579 | int signo = get_detach_signal (main_lwp); | |
1580 | ||
1581 | detach_one_lwp (main_lwp, &signo); | |
1582 | } | |
1583 | else | |
1584 | gdb_assert (target_is_non_stop_p ()); | |
1585 | ||
1586 | detach_success (inf); | |
1587 | } | |
1588 | ||
1589 | close_proc_mem_file (pid); | |
1590 | } | |
1591 | ||
1592 | /* Resume execution of the inferior process. If STEP is nonzero, | |
1593 | single-step it. If SIGNAL is nonzero, give it that signal. */ | |
1594 | ||
1595 | static void | |
1596 | linux_resume_one_lwp_throw (struct lwp_info *lp, int step, | |
1597 | enum gdb_signal signo) | |
1598 | { | |
1599 | lp->step = step; | |
1600 | ||
1601 | /* stop_pc doubles as the PC the LWP had when it was last resumed. | |
1602 | We only presently need that if the LWP is stepped though (to | |
1603 | handle the case of stepping a breakpoint instruction). */ | |
1604 | if (step) | |
1605 | { | |
1606 | struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid); | |
1607 | ||
1608 | lp->stop_pc = regcache_read_pc (regcache); | |
1609 | } | |
1610 | else | |
1611 | lp->stop_pc = 0; | |
1612 | ||
1613 | linux_target->low_prepare_to_resume (lp); | |
1614 | linux_target->low_resume (lp->ptid, step, signo); | |
1615 | ||
1616 | /* Successfully resumed. Clear state that no longer makes sense, | |
1617 | and mark the LWP as running. Must not do this before resuming | |
1618 | otherwise if that fails other code will be confused. E.g., we'd | |
1619 | later try to stop the LWP and hang forever waiting for a stop | |
1620 | status. Note that we must not throw after this is cleared, | |
1621 | otherwise handle_zombie_lwp_error would get confused. */ | |
1622 | lp->stopped = 0; | |
1623 | lp->core = -1; | |
1624 | lp->stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
1625 | registers_changed_ptid (linux_target, lp->ptid); | |
1626 | } | |
1627 | ||
1628 | /* Called when we try to resume a stopped LWP and that errors out. If | |
1629 | the LWP is no longer in ptrace-stopped state (meaning it's zombie, | |
1630 | or about to become), discard the error, clear any pending status | |
1631 | the LWP may have, and return true (we'll collect the exit status | |
1632 | soon enough). Otherwise, return false. */ | |
1633 | ||
1634 | static int | |
1635 | check_ptrace_stopped_lwp_gone (struct lwp_info *lp) | |
1636 | { | |
1637 | /* If we get an error after resuming the LWP successfully, we'd | |
1638 | confuse !T state for the LWP being gone. */ | |
1639 | gdb_assert (lp->stopped); | |
1640 | ||
1641 | /* We can't just check whether the LWP is in 'Z (Zombie)' state, | |
1642 | because even if ptrace failed with ESRCH, the tracee may be "not | |
1643 | yet fully dead", but already refusing ptrace requests. In that | |
1644 | case the tracee has 'R (Running)' state for a little bit | |
1645 | (observed in Linux 3.18). See also the note on ESRCH in the | |
1646 | ptrace(2) man page. Instead, check whether the LWP has any state | |
1647 | other than ptrace-stopped. */ | |
1648 | ||
1649 | /* Don't assume anything if /proc/PID/status can't be read. */ | |
1650 | if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0) | |
1651 | { | |
1652 | lp->stop_reason = TARGET_STOPPED_BY_NO_REASON; | |
1653 | lp->status = 0; | |
1654 | lp->waitstatus.set_ignore (); | |
1655 | return 1; | |
1656 | } | |
1657 | return 0; | |
1658 | } | |
1659 | ||
1660 | /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP | |
1661 | disappears while we try to resume it. */ | |
1662 | ||
1663 | static void | |
1664 | linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo) | |
1665 | { | |
1666 | try | |
1667 | { | |
1668 | linux_resume_one_lwp_throw (lp, step, signo); | |
1669 | } | |
1670 | catch (const gdb_exception_error &ex) | |
1671 | { | |
1672 | if (!check_ptrace_stopped_lwp_gone (lp)) | |
1673 | throw; | |
1674 | } | |
1675 | } | |
1676 | ||
1677 | /* Resume LP. */ | |
1678 | ||
1679 | static void | |
1680 | resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo) | |
1681 | { | |
1682 | if (lp->stopped) | |
1683 | { | |
1684 | struct inferior *inf = find_inferior_ptid (linux_target, lp->ptid); | |
1685 | ||
1686 | if (inf->vfork_child != NULL) | |
1687 | { | |
1688 | linux_nat_debug_printf ("Not resuming sibling %s (vfork parent)", | |
1689 | lp->ptid.to_string ().c_str ()); | |
1690 | } | |
1691 | else if (!lwp_status_pending_p (lp)) | |
1692 | { | |
1693 | linux_nat_debug_printf ("Resuming sibling %s, %s, %s", | |
1694 | lp->ptid.to_string ().c_str (), | |
1695 | (signo != GDB_SIGNAL_0 | |
1696 | ? strsignal (gdb_signal_to_host (signo)) | |
1697 | : "0"), | |
1698 | step ? "step" : "resume"); | |
1699 | ||
1700 | linux_resume_one_lwp (lp, step, signo); | |
1701 | } | |
1702 | else | |
1703 | { | |
1704 | linux_nat_debug_printf ("Not resuming sibling %s (has pending)", | |
1705 | lp->ptid.to_string ().c_str ()); | |
1706 | } | |
1707 | } | |
1708 | else | |
1709 | linux_nat_debug_printf ("Not resuming sibling %s (not stopped)", | |
1710 | lp->ptid.to_string ().c_str ()); | |
1711 | } | |
1712 | ||
1713 | /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing. | |
1714 | Resume LWP with the last stop signal, if it is in pass state. */ | |
1715 | ||
1716 | static int | |
1717 | linux_nat_resume_callback (struct lwp_info *lp, struct lwp_info *except) | |
1718 | { | |
1719 | enum gdb_signal signo = GDB_SIGNAL_0; | |
1720 | ||
1721 | if (lp == except) | |
1722 | return 0; | |
1723 | ||
1724 | if (lp->stopped) | |
1725 | { | |
1726 | struct thread_info *thread; | |
1727 | ||
1728 | thread = linux_target->find_thread (lp->ptid); | |
1729 | if (thread != NULL) | |
1730 | { | |
1731 | signo = thread->stop_signal (); | |
1732 | thread->set_stop_signal (GDB_SIGNAL_0); | |
1733 | } | |
1734 | } | |
1735 | ||
1736 | resume_lwp (lp, 0, signo); | |
1737 | return 0; | |
1738 | } | |
1739 | ||
1740 | static int | |
1741 | resume_clear_callback (struct lwp_info *lp) | |
1742 | { | |
1743 | lp->resumed = 0; | |
1744 | lp->last_resume_kind = resume_stop; | |
1745 | return 0; | |
1746 | } | |
1747 | ||
1748 | static int | |
1749 | resume_set_callback (struct lwp_info *lp) | |
1750 | { | |
1751 | lp->resumed = 1; | |
1752 | lp->last_resume_kind = resume_continue; | |
1753 | return 0; | |
1754 | } | |
1755 | ||
1756 | void | |
1757 | linux_nat_target::resume (ptid_t scope_ptid, int step, enum gdb_signal signo) | |
1758 | { | |
1759 | struct lwp_info *lp; | |
1760 | ||
1761 | linux_nat_debug_printf ("Preparing to %s %s, %s, inferior_ptid %s", | |
1762 | step ? "step" : "resume", | |
1763 | scope_ptid.to_string ().c_str (), | |
1764 | (signo != GDB_SIGNAL_0 | |
1765 | ? strsignal (gdb_signal_to_host (signo)) : "0"), | |
1766 | inferior_ptid.to_string ().c_str ()); | |
1767 | ||
1768 | /* Mark the lwps we're resuming as resumed and update their | |
1769 | last_resume_kind to resume_continue. */ | |
1770 | iterate_over_lwps (scope_ptid, resume_set_callback); | |
1771 | ||
1772 | lp = find_lwp_pid (inferior_ptid); | |
1773 | gdb_assert (lp != NULL); | |
1774 | ||
1775 | /* Remember if we're stepping. */ | |
1776 | lp->last_resume_kind = step ? resume_step : resume_continue; | |
1777 | ||
1778 | /* If we have a pending wait status for this thread, there is no | |
1779 | point in resuming the process. But first make sure that | |
1780 | linux_nat_wait won't preemptively handle the event - we | |
1781 | should never take this short-circuit if we are going to | |
1782 | leave LP running, since we have skipped resuming all the | |
1783 | other threads. This bit of code needs to be synchronized | |
1784 | with linux_nat_wait. */ | |
1785 | ||
1786 | if (lp->status && WIFSTOPPED (lp->status)) | |
1787 | { | |
1788 | if (!lp->step | |
1789 | && WSTOPSIG (lp->status) | |
1790 | && sigismember (&pass_mask, WSTOPSIG (lp->status))) | |
1791 | { | |
1792 | linux_nat_debug_printf | |
1793 | ("Not short circuiting for ignored status 0x%x", lp->status); | |
1794 | ||
1795 | /* FIXME: What should we do if we are supposed to continue | |
1796 | this thread with a signal? */ | |
1797 | gdb_assert (signo == GDB_SIGNAL_0); | |
1798 | signo = gdb_signal_from_host (WSTOPSIG (lp->status)); | |
1799 | lp->status = 0; | |
1800 | } | |
1801 | } | |
1802 | ||
1803 | if (lwp_status_pending_p (lp)) | |
1804 | { | |
1805 | /* FIXME: What should we do if we are supposed to continue | |
1806 | this thread with a signal? */ | |
1807 | gdb_assert (signo == GDB_SIGNAL_0); | |
1808 | ||
1809 | linux_nat_debug_printf ("Short circuiting for status %s", | |
1810 | pending_status_str (lp).c_str ()); | |
1811 | ||
1812 | if (target_can_async_p ()) | |
1813 | { | |
1814 | target_async (true); | |
1815 | /* Tell the event loop we have something to process. */ | |
1816 | async_file_mark (); | |
1817 | } | |
1818 | return; | |
1819 | } | |
1820 | ||
1821 | /* No use iterating unless we're resuming other threads. */ | |
1822 | if (scope_ptid != lp->ptid) | |
1823 | iterate_over_lwps (scope_ptid, [=] (struct lwp_info *info) | |
1824 | { | |
1825 | return linux_nat_resume_callback (info, lp); | |
1826 | }); | |
1827 | ||
1828 | linux_nat_debug_printf ("%s %s, %s (resume event thread)", | |
1829 | step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT", | |
1830 | lp->ptid.to_string ().c_str (), | |
1831 | (signo != GDB_SIGNAL_0 | |
1832 | ? strsignal (gdb_signal_to_host (signo)) : "0")); | |
1833 | ||
1834 | linux_resume_one_lwp (lp, step, signo); | |
1835 | } | |
1836 | ||
1837 | /* Send a signal to an LWP. */ | |
1838 | ||
1839 | static int | |
1840 | kill_lwp (int lwpid, int signo) | |
1841 | { | |
1842 | int ret; | |
1843 | ||
1844 | errno = 0; | |
1845 | ret = syscall (__NR_tkill, lwpid, signo); | |
1846 | if (errno == ENOSYS) | |
1847 | { | |
1848 | /* If tkill fails, then we are not using nptl threads, a | |
1849 | configuration we no longer support. */ | |
1850 | perror_with_name (("tkill")); | |
1851 | } | |
1852 | return ret; | |
1853 | } | |
1854 | ||
1855 | /* Handle a GNU/Linux syscall trap wait response. If we see a syscall | |
1856 | event, check if the core is interested in it: if not, ignore the | |
1857 | event, and keep waiting; otherwise, we need to toggle the LWP's | |
1858 | syscall entry/exit status, since the ptrace event itself doesn't | |
1859 | indicate it, and report the trap to higher layers. */ | |
1860 | ||
1861 | static int | |
1862 | linux_handle_syscall_trap (struct lwp_info *lp, int stopping) | |
1863 | { | |
1864 | struct target_waitstatus *ourstatus = &lp->waitstatus; | |
1865 | struct gdbarch *gdbarch = target_thread_architecture (lp->ptid); | |
1866 | thread_info *thread = linux_target->find_thread (lp->ptid); | |
1867 | int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread); | |
1868 | ||
1869 | if (stopping) | |
1870 | { | |
1871 | /* If we're stopping threads, there's a SIGSTOP pending, which | |
1872 | makes it so that the LWP reports an immediate syscall return, | |
1873 | followed by the SIGSTOP. Skip seeing that "return" using | |
1874 | PTRACE_CONT directly, and let stop_wait_callback collect the | |
1875 | SIGSTOP. Later when the thread is resumed, a new syscall | |
1876 | entry event. If we didn't do this (and returned 0), we'd | |
1877 | leave a syscall entry pending, and our caller, by using | |
1878 | PTRACE_CONT to collect the SIGSTOP, skips the syscall return | |
1879 | itself. Later, when the user re-resumes this LWP, we'd see | |
1880 | another syscall entry event and we'd mistake it for a return. | |
1881 | ||
1882 | If stop_wait_callback didn't force the SIGSTOP out of the LWP | |
1883 | (leaving immediately with LWP->signalled set, without issuing | |
1884 | a PTRACE_CONT), it would still be problematic to leave this | |
1885 | syscall enter pending, as later when the thread is resumed, | |
1886 | it would then see the same syscall exit mentioned above, | |
1887 | followed by the delayed SIGSTOP, while the syscall didn't | |
1888 | actually get to execute. It seems it would be even more | |
1889 | confusing to the user. */ | |
1890 | ||
1891 | linux_nat_debug_printf | |
1892 | ("ignoring syscall %d for LWP %ld (stopping threads), resuming with " | |
1893 | "PTRACE_CONT for SIGSTOP", syscall_number, lp->ptid.lwp ()); | |
1894 | ||
1895 | lp->syscall_state = TARGET_WAITKIND_IGNORE; | |
1896 | ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0); | |
1897 | lp->stopped = 0; | |
1898 | return 1; | |
1899 | } | |
1900 | ||
1901 | /* Always update the entry/return state, even if this particular | |
1902 | syscall isn't interesting to the core now. In async mode, | |
1903 | the user could install a new catchpoint for this syscall | |
1904 | between syscall enter/return, and we'll need to know to | |
1905 | report a syscall return if that happens. */ | |
1906 | lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY | |
1907 | ? TARGET_WAITKIND_SYSCALL_RETURN | |
1908 | : TARGET_WAITKIND_SYSCALL_ENTRY); | |
1909 | ||
1910 | if (catch_syscall_enabled ()) | |
1911 | { | |
1912 | if (catching_syscall_number (syscall_number)) | |
1913 | { | |
1914 | /* Alright, an event to report. */ | |
1915 | if (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY) | |
1916 | ourstatus->set_syscall_entry (syscall_number); | |
1917 | else if (lp->syscall_state == TARGET_WAITKIND_SYSCALL_RETURN) | |
1918 | ourstatus->set_syscall_return (syscall_number); | |
1919 | else | |
1920 | gdb_assert_not_reached ("unexpected syscall state"); | |
1921 | ||
1922 | linux_nat_debug_printf | |
1923 | ("stopping for %s of syscall %d for LWP %ld", | |
1924 | (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY | |
1925 | ? "entry" : "return"), syscall_number, lp->ptid.lwp ()); | |
1926 | ||
1927 | return 0; | |
1928 | } | |
1929 | ||
1930 | linux_nat_debug_printf | |
1931 | ("ignoring %s of syscall %d for LWP %ld", | |
1932 | (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY | |
1933 | ? "entry" : "return"), syscall_number, lp->ptid.lwp ()); | |
1934 | } | |
1935 | else | |
1936 | { | |
1937 | /* If we had been syscall tracing, and hence used PT_SYSCALL | |
1938 | before on this LWP, it could happen that the user removes all | |
1939 | syscall catchpoints before we get to process this event. | |
1940 | There are two noteworthy issues here: | |
1941 | ||
1942 | - When stopped at a syscall entry event, resuming with | |
1943 | PT_STEP still resumes executing the syscall and reports a | |
1944 | syscall return. | |
1945 | ||
1946 | - Only PT_SYSCALL catches syscall enters. If we last | |
1947 | single-stepped this thread, then this event can't be a | |
1948 | syscall enter. If we last single-stepped this thread, this | |
1949 | has to be a syscall exit. | |
1950 | ||
1951 | The points above mean that the next resume, be it PT_STEP or | |
1952 | PT_CONTINUE, can not trigger a syscall trace event. */ | |
1953 | linux_nat_debug_printf | |
1954 | ("caught syscall event with no syscall catchpoints. %d for LWP %ld, " | |
1955 | "ignoring", syscall_number, lp->ptid.lwp ()); | |
1956 | lp->syscall_state = TARGET_WAITKIND_IGNORE; | |
1957 | } | |
1958 | ||
1959 | /* The core isn't interested in this event. For efficiency, avoid | |
1960 | stopping all threads only to have the core resume them all again. | |
1961 | Since we're not stopping threads, if we're still syscall tracing | |
1962 | and not stepping, we can't use PTRACE_CONT here, as we'd miss any | |
1963 | subsequent syscall. Simply resume using the inf-ptrace layer, | |
1964 | which knows when to use PT_SYSCALL or PT_CONTINUE. */ | |
1965 | ||
1966 | linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); | |
1967 | return 1; | |
1968 | } | |
1969 | ||
1970 | /* See target.h. */ | |
1971 | ||
1972 | void | |
1973 | linux_nat_target::follow_clone (ptid_t child_ptid) | |
1974 | { | |
1975 | lwp_info *new_lp = add_lwp (child_ptid); | |
1976 | new_lp->stopped = 1; | |
1977 | ||
1978 | /* If the thread_db layer is active, let it record the user | |
1979 | level thread id and status, and add the thread to GDB's | |
1980 | list. */ | |
1981 | if (!thread_db_notice_clone (inferior_ptid, new_lp->ptid)) | |
1982 | { | |
1983 | /* The process is not using thread_db. Add the LWP to | |
1984 | GDB's list. */ | |
1985 | add_thread (linux_target, new_lp->ptid); | |
1986 | } | |
1987 | ||
1988 | /* We just created NEW_LP so it cannot yet contain STATUS. */ | |
1989 | gdb_assert (new_lp->status == 0); | |
1990 | ||
1991 | if (!pull_pid_from_list (&stopped_pids, child_ptid.lwp (), &new_lp->status)) | |
1992 | internal_error (_("no saved status for clone lwp")); | |
1993 | ||
1994 | if (WSTOPSIG (new_lp->status) != SIGSTOP) | |
1995 | { | |
1996 | /* This can happen if someone starts sending signals to | |
1997 | the new thread before it gets a chance to run, which | |
1998 | have a lower number than SIGSTOP (e.g. SIGUSR1). | |
1999 | This is an unlikely case, and harder to handle for | |
2000 | fork / vfork than for clone, so we do not try - but | |
2001 | we handle it for clone events here. */ | |
2002 | ||
2003 | new_lp->signalled = 1; | |
2004 | ||
2005 | /* Save the wait status to report later. */ | |
2006 | linux_nat_debug_printf | |
2007 | ("waitpid of new LWP %ld, saving status %s", | |
2008 | (long) new_lp->ptid.lwp (), status_to_str (new_lp->status).c_str ()); | |
2009 | } | |
2010 | else | |
2011 | { | |
2012 | new_lp->status = 0; | |
2013 | ||
2014 | if (report_thread_events) | |
2015 | new_lp->waitstatus.set_thread_created (); | |
2016 | } | |
2017 | } | |
2018 | ||
2019 | /* Handle a GNU/Linux extended wait response. If we see a clone | |
2020 | event, we need to add the new LWP to our list (and not report the | |
2021 | trap to higher layers). This function returns non-zero if the | |
2022 | event should be ignored and we should wait again. If STOPPING is | |
2023 | true, the new LWP remains stopped, otherwise it is continued. */ | |
2024 | ||
2025 | static int | |
2026 | linux_handle_extended_wait (struct lwp_info *lp, int status) | |
2027 | { | |
2028 | int pid = lp->ptid.lwp (); | |
2029 | struct target_waitstatus *ourstatus = &lp->waitstatus; | |
2030 | int event = linux_ptrace_get_extended_event (status); | |
2031 | ||
2032 | /* All extended events we currently use are mid-syscall. Only | |
2033 | PTRACE_EVENT_STOP is delivered more like a signal-stop, but | |
2034 | you have to be using PTRACE_SEIZE to get that. */ | |
2035 | lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY; | |
2036 | ||
2037 | if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK | |
2038 | || event == PTRACE_EVENT_CLONE) | |
2039 | { | |
2040 | unsigned long new_pid; | |
2041 | int ret; | |
2042 | ||
2043 | ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid); | |
2044 | ||
2045 | /* If we haven't already seen the new PID stop, wait for it now. */ | |
2046 | if (! pull_pid_from_list (&stopped_pids, new_pid, &status)) | |
2047 | { | |
2048 | /* The new child has a pending SIGSTOP. We can't affect it until it | |
2049 | hits the SIGSTOP, but we're already attached. */ | |
2050 | ret = my_waitpid (new_pid, &status, __WALL); | |
2051 | if (ret == -1) | |
2052 | perror_with_name (_("waiting for new child")); | |
2053 | else if (ret != new_pid) | |
2054 | internal_error (_("wait returned unexpected PID %d"), ret); | |
2055 | else if (!WIFSTOPPED (status)) | |
2056 | internal_error (_("wait returned unexpected status 0x%x"), status); | |
2057 | } | |
2058 | ||
2059 | if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK) | |
2060 | { | |
2061 | open_proc_mem_file (ptid_t (new_pid, new_pid)); | |
2062 | ||
2063 | /* The arch-specific native code may need to know about new | |
2064 | forks even if those end up never mapped to an | |
2065 | inferior. */ | |
2066 | linux_target->low_new_fork (lp, new_pid); | |
2067 | } | |
2068 | else if (event == PTRACE_EVENT_CLONE) | |
2069 | { | |
2070 | linux_target->low_new_clone (lp, new_pid); | |
2071 | } | |
2072 | ||
2073 | if (event == PTRACE_EVENT_FORK | |
2074 | && linux_fork_checkpointing_p (lp->ptid.pid ())) | |
2075 | { | |
2076 | /* Handle checkpointing by linux-fork.c here as a special | |
2077 | case. We don't want the follow-fork-mode or 'catch fork' | |
2078 | to interfere with this. */ | |
2079 | ||
2080 | /* This won't actually modify the breakpoint list, but will | |
2081 | physically remove the breakpoints from the child. */ | |
2082 | detach_breakpoints (ptid_t (new_pid, new_pid)); | |
2083 | ||
2084 | /* Retain child fork in ptrace (stopped) state. */ | |
2085 | if (find_fork_pid (new_pid).first == nullptr) | |
2086 | { | |
2087 | struct inferior *inf = find_inferior_ptid (linux_target, | |
2088 | lp->ptid); | |
2089 | add_fork (new_pid, inf); | |
2090 | } | |
2091 | ||
2092 | /* Report as spurious, so that infrun doesn't want to follow | |
2093 | this fork. We're actually doing an infcall in | |
2094 | linux-fork.c. */ | |
2095 | ourstatus->set_spurious (); | |
2096 | ||
2097 | /* Report the stop to the core. */ | |
2098 | return 0; | |
2099 | } | |
2100 | ||
2101 | if (event == PTRACE_EVENT_FORK) | |
2102 | ourstatus->set_forked (ptid_t (new_pid, new_pid)); | |
2103 | else if (event == PTRACE_EVENT_VFORK) | |
2104 | ourstatus->set_vforked (ptid_t (new_pid, new_pid)); | |
2105 | else if (event == PTRACE_EVENT_CLONE) | |
2106 | { | |
2107 | linux_nat_debug_printf | |
2108 | ("Got clone event from LWP %d, new child is LWP %ld", pid, new_pid); | |
2109 | ||
2110 | /* Save the status again, we'll use it in follow_clone. */ | |
2111 | add_to_pid_list (&stopped_pids, new_pid, status); | |
2112 | ||
2113 | ourstatus->set_thread_cloned (ptid_t (lp->ptid.pid (), new_pid)); | |
2114 | } | |
2115 | ||
2116 | return 0; | |
2117 | } | |
2118 | ||
2119 | if (event == PTRACE_EVENT_EXEC) | |
2120 | { | |
2121 | linux_nat_debug_printf ("Got exec event from LWP %ld", lp->ptid.lwp ()); | |
2122 | ||
2123 | /* Close the previous /proc/PID/mem file for this inferior, | |
2124 | which was using the address space which is now gone. | |
2125 | Reading/writing from this file would return 0/EOF. */ | |
2126 | close_proc_mem_file (lp->ptid.pid ()); | |
2127 | ||
2128 | /* Open a new file for the new address space. */ | |
2129 | open_proc_mem_file (lp->ptid); | |
2130 | ||
2131 | ourstatus->set_execd | |
2132 | (make_unique_xstrdup (linux_target->pid_to_exec_file (pid))); | |
2133 | ||
2134 | /* The thread that execed must have been resumed, but, when a | |
2135 | thread execs, it changes its tid to the tgid, and the old | |
2136 | tgid thread might have not been resumed. */ | |
2137 | lp->resumed = 1; | |
2138 | ||
2139 | /* All other LWPs are gone now. We'll have received a thread | |
2140 | exit notification for all threads other the execing one. | |
2141 | That one, if it wasn't the leader, just silently changes its | |
2142 | tid to the tgid, and the previous leader vanishes. Since | |
2143 | Linux 3.0, the former thread ID can be retrieved with | |
2144 | PTRACE_GETEVENTMSG, but since we support older kernels, don't | |
2145 | bother with it, and just walk the LWP list. Even with | |
2146 | PTRACE_GETEVENTMSG, we'd still need to lookup the | |
2147 | corresponding LWP object, and it would be an extra ptrace | |
2148 | syscall, so this way may even be more efficient. */ | |
2149 | for (lwp_info *other_lp : all_lwps_safe ()) | |
2150 | if (other_lp != lp && other_lp->ptid.pid () == lp->ptid.pid ()) | |
2151 | exit_lwp (other_lp); | |
2152 | ||
2153 | return 0; | |
2154 | } | |
2155 | ||
2156 | if (event == PTRACE_EVENT_VFORK_DONE) | |
2157 | { | |
2158 | linux_nat_debug_printf | |
2159 | ("Got PTRACE_EVENT_VFORK_DONE from LWP %ld", | |
2160 | lp->ptid.lwp ()); | |
2161 | ourstatus->set_vfork_done (); | |
2162 | return 0; | |
2163 | } | |
2164 | ||
2165 | internal_error (_("unknown ptrace event %d"), event); | |
2166 | } | |
2167 | ||
2168 | /* Suspend waiting for a signal. We're mostly interested in | |
2169 | SIGCHLD/SIGINT. */ | |
2170 | ||
2171 | static void | |
2172 | wait_for_signal () | |
2173 | { | |
2174 | linux_nat_debug_printf ("about to sigsuspend"); | |
2175 | sigsuspend (&suspend_mask); | |
2176 | ||
2177 | /* If the quit flag is set, it means that the user pressed Ctrl-C | |
2178 | and we're debugging a process that is running on a separate | |
2179 | terminal, so we must forward the Ctrl-C to the inferior. (If the | |
2180 | inferior is sharing GDB's terminal, then the Ctrl-C reaches the | |
2181 | inferior directly.) We must do this here because functions that | |
2182 | need to block waiting for a signal loop forever until there's an | |
2183 | event to report before returning back to the event loop. */ | |
2184 | if (!target_terminal::is_ours ()) | |
2185 | { | |
2186 | if (check_quit_flag ()) | |
2187 | target_pass_ctrlc (); | |
2188 | } | |
2189 | } | |
2190 | ||
2191 | /* Mark LWP dead, with STATUS as exit status pending to report | |
2192 | later. */ | |
2193 | ||
2194 | static void | |
2195 | mark_lwp_dead (lwp_info *lp, int status) | |
2196 | { | |
2197 | /* Store the exit status lp->waitstatus, because lp->status would be | |
2198 | ambiguous (W_EXITCODE(0,0) == 0). */ | |
2199 | lp->waitstatus = host_status_to_waitstatus (status); | |
2200 | ||
2201 | /* If we're processing LP's status, there should be no other event | |
2202 | already recorded as pending. */ | |
2203 | gdb_assert (lp->status == 0); | |
2204 | ||
2205 | /* Dead LWPs aren't expected to report a pending sigstop. */ | |
2206 | lp->signalled = 0; | |
2207 | ||
2208 | /* Prevent trying to stop it. */ | |
2209 | lp->stopped = 1; | |
2210 | } | |
2211 | ||
2212 | /* Return true if LP is dead, with a pending exit/signalled event. */ | |
2213 | ||
2214 | static bool | |
2215 | is_lwp_marked_dead (lwp_info *lp) | |
2216 | { | |
2217 | switch (lp->waitstatus.kind ()) | |
2218 | { | |
2219 | case TARGET_WAITKIND_EXITED: | |
2220 | case TARGET_WAITKIND_THREAD_EXITED: | |
2221 | case TARGET_WAITKIND_SIGNALLED: | |
2222 | return true; | |
2223 | } | |
2224 | return false; | |
2225 | } | |
2226 | ||
2227 | /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has | |
2228 | exited. */ | |
2229 | ||
2230 | static int | |
2231 | wait_lwp (struct lwp_info *lp) | |
2232 | { | |
2233 | pid_t pid; | |
2234 | int status = 0; | |
2235 | int thread_dead = 0; | |
2236 | sigset_t prev_mask; | |
2237 | ||
2238 | gdb_assert (!lp->stopped); | |
2239 | gdb_assert (lp->status == 0); | |
2240 | ||
2241 | /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */ | |
2242 | block_child_signals (&prev_mask); | |
2243 | ||
2244 | for (;;) | |
2245 | { | |
2246 | pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG); | |
2247 | if (pid == -1 && errno == ECHILD) | |
2248 | { | |
2249 | /* The thread has previously exited. We need to delete it | |
2250 | now because if this was a non-leader thread execing, we | |
2251 | won't get an exit event. See comments on exec events at | |
2252 | the top of the file. */ | |
2253 | thread_dead = 1; | |
2254 | linux_nat_debug_printf ("%s vanished.", | |
2255 | lp->ptid.to_string ().c_str ()); | |
2256 | } | |
2257 | if (pid != 0) | |
2258 | break; | |
2259 | ||
2260 | /* Bugs 10970, 12702. | |
2261 | Thread group leader may have exited in which case we'll lock up in | |
2262 | waitpid if there are other threads, even if they are all zombies too. | |
2263 | Basically, we're not supposed to use waitpid this way. | |
2264 | tkill(pid,0) cannot be used here as it gets ESRCH for both | |
2265 | for zombie and running processes. | |
2266 | ||
2267 | As a workaround, check if we're waiting for the thread group leader and | |
2268 | if it's a zombie, and avoid calling waitpid if it is. | |
2269 | ||
2270 | This is racy, what if the tgl becomes a zombie right after we check? | |
2271 | Therefore always use WNOHANG with sigsuspend - it is equivalent to | |
2272 | waiting waitpid but linux_proc_pid_is_zombie is safe this way. */ | |
2273 | ||
2274 | if (lp->ptid.pid () == lp->ptid.lwp () | |
2275 | && linux_proc_pid_is_zombie (lp->ptid.lwp ())) | |
2276 | { | |
2277 | thread_dead = 1; | |
2278 | linux_nat_debug_printf ("Thread group leader %s vanished.", | |
2279 | lp->ptid.to_string ().c_str ()); | |
2280 | break; | |
2281 | } | |
2282 | ||
2283 | /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers | |
2284 | get invoked despite our caller had them intentionally blocked by | |
2285 | block_child_signals. This is sensitive only to the loop of | |
2286 | linux_nat_wait_1 and there if we get called my_waitpid gets called | |
2287 | again before it gets to sigsuspend so we can safely let the handlers | |
2288 | get executed here. */ | |
2289 | wait_for_signal (); | |
2290 | } | |
2291 | ||
2292 | restore_child_signals_mask (&prev_mask); | |
2293 | ||
2294 | if (!thread_dead) | |
2295 | { | |
2296 | gdb_assert (pid == lp->ptid.lwp ()); | |
2297 | ||
2298 | linux_nat_debug_printf ("waitpid %s received %s", | |
2299 | lp->ptid.to_string ().c_str (), | |
2300 | status_to_str (status).c_str ()); | |
2301 | ||
2302 | /* Check if the thread has exited. */ | |
2303 | if (WIFEXITED (status) || WIFSIGNALED (status)) | |
2304 | { | |
2305 | if (report_exit_events_for (lp) || is_leader (lp)) | |
2306 | { | |
2307 | linux_nat_debug_printf ("LWP %d exited.", lp->ptid.pid ()); | |
2308 | ||
2309 | /* If this is the leader exiting, it means the whole | |
2310 | process is gone. Store the status to report to the | |
2311 | core. */ | |
2312 | mark_lwp_dead (lp, status); | |
2313 | return 0; | |
2314 | } | |
2315 | ||
2316 | thread_dead = 1; | |
2317 | linux_nat_debug_printf ("%s exited.", | |
2318 | lp->ptid.to_string ().c_str ()); | |
2319 | } | |
2320 | } | |
2321 | ||
2322 | if (thread_dead) | |
2323 | { | |
2324 | exit_lwp (lp); | |
2325 | return 0; | |
2326 | } | |
2327 | ||
2328 | gdb_assert (WIFSTOPPED (status)); | |
2329 | lp->stopped = 1; | |
2330 | ||
2331 | if (lp->must_set_ptrace_flags) | |
2332 | { | |
2333 | inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ()); | |
2334 | int options = linux_nat_ptrace_options (inf->attach_flag); | |
2335 | ||
2336 | linux_enable_event_reporting (lp->ptid.lwp (), options); | |
2337 | lp->must_set_ptrace_flags = 0; | |
2338 | } | |
2339 | ||
2340 | /* Handle GNU/Linux's syscall SIGTRAPs. */ | |
2341 | if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP) | |
2342 | { | |
2343 | /* No longer need the sysgood bit. The ptrace event ends up | |
2344 | recorded in lp->waitstatus if we care for it. We can carry | |
2345 | on handling the event like a regular SIGTRAP from here | |
2346 | on. */ | |
2347 | status = W_STOPCODE (SIGTRAP); | |
2348 | if (linux_handle_syscall_trap (lp, 1)) | |
2349 | return wait_lwp (lp); | |
2350 | } | |
2351 | else | |
2352 | { | |
2353 | /* Almost all other ptrace-stops are known to be outside of system | |
2354 | calls, with further exceptions in linux_handle_extended_wait. */ | |
2355 | lp->syscall_state = TARGET_WAITKIND_IGNORE; | |
2356 | } | |
2357 | ||
2358 | /* Handle GNU/Linux's extended waitstatus for trace events. */ | |
2359 | if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP | |
2360 | && linux_is_extended_waitstatus (status)) | |
2361 | { | |
2362 | linux_nat_debug_printf ("Handling extended status 0x%06x", status); | |
2363 | linux_handle_extended_wait (lp, status); | |
2364 | return 0; | |
2365 | } | |
2366 | ||
2367 | return status; | |
2368 | } | |
2369 | ||
2370 | /* Send a SIGSTOP to LP. */ | |
2371 | ||
2372 | static int | |
2373 | stop_callback (struct lwp_info *lp) | |
2374 | { | |
2375 | if (!lp->stopped && !lp->signalled) | |
2376 | { | |
2377 | int ret; | |
2378 | ||
2379 | linux_nat_debug_printf ("kill %s **<SIGSTOP>**", | |
2380 | lp->ptid.to_string ().c_str ()); | |
2381 | ||
2382 | errno = 0; | |
2383 | ret = kill_lwp (lp->ptid.lwp (), SIGSTOP); | |
2384 | linux_nat_debug_printf ("lwp kill %d %s", ret, | |
2385 | errno ? safe_strerror (errno) : "ERRNO-OK"); | |
2386 | ||
2387 | lp->signalled = 1; | |
2388 | gdb_assert (lp->status == 0); | |
2389 | } | |
2390 | ||
2391 | return 0; | |
2392 | } | |
2393 | ||
2394 | /* Request a stop on LWP. */ | |
2395 | ||
2396 | void | |
2397 | linux_stop_lwp (struct lwp_info *lwp) | |
2398 | { | |
2399 | stop_callback (lwp); | |
2400 | } | |
2401 | ||
2402 | /* See linux-nat.h */ | |
2403 | ||
2404 | void | |
2405 | linux_stop_and_wait_all_lwps (void) | |
2406 | { | |
2407 | /* Stop all LWP's ... */ | |
2408 | iterate_over_lwps (minus_one_ptid, stop_callback); | |
2409 | ||
2410 | /* ... and wait until all of them have reported back that | |
2411 | they're no longer running. */ | |
2412 | iterate_over_lwps (minus_one_ptid, stop_wait_callback); | |
2413 | } | |
2414 | ||
2415 | /* See linux-nat.h */ | |
2416 | ||
2417 | void | |
2418 | linux_unstop_all_lwps (void) | |
2419 | { | |
2420 | iterate_over_lwps (minus_one_ptid, | |
2421 | [] (struct lwp_info *info) | |
2422 | { | |
2423 | return resume_stopped_resumed_lwps (info, minus_one_ptid); | |
2424 | }); | |
2425 | } | |
2426 | ||
2427 | /* Return non-zero if LWP PID has a pending SIGINT. */ | |
2428 | ||
2429 | static int | |
2430 | linux_nat_has_pending_sigint (int pid) | |
2431 | { | |
2432 | sigset_t pending, blocked, ignored; | |
2433 | ||
2434 | linux_proc_pending_signals (pid, &pending, &blocked, &ignored); | |
2435 | ||
2436 | if (sigismember (&pending, SIGINT) | |
2437 | && !sigismember (&ignored, SIGINT)) | |
2438 | return 1; | |
2439 | ||
2440 | return 0; | |
2441 | } | |
2442 | ||
2443 | /* Set a flag in LP indicating that we should ignore its next SIGINT. */ | |
2444 | ||
2445 | static int | |
2446 | set_ignore_sigint (struct lwp_info *lp) | |
2447 | { | |
2448 | /* If a thread has a pending SIGINT, consume it; otherwise, set a | |
2449 | flag to consume the next one. */ | |
2450 | if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status) | |
2451 | && WSTOPSIG (lp->status) == SIGINT) | |
2452 | lp->status = 0; | |
2453 | else | |
2454 | lp->ignore_sigint = 1; | |
2455 | ||
2456 | return 0; | |
2457 | } | |
2458 | ||
2459 | /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag. | |
2460 | This function is called after we know the LWP has stopped; if the LWP | |
2461 | stopped before the expected SIGINT was delivered, then it will never have | |
2462 | arrived. Also, if the signal was delivered to a shared queue and consumed | |
2463 | by a different thread, it will never be delivered to this LWP. */ | |
2464 | ||
2465 | static void | |
2466 | maybe_clear_ignore_sigint (struct lwp_info *lp) | |
2467 | { | |
2468 | if (!lp->ignore_sigint) | |
2469 | return; | |
2470 | ||
2471 | if (!linux_nat_has_pending_sigint (lp->ptid.lwp ())) | |
2472 | { | |
2473 | linux_nat_debug_printf ("Clearing bogus flag for %s", | |
2474 | lp->ptid.to_string ().c_str ()); | |
2475 | lp->ignore_sigint = 0; | |
2476 | } | |
2477 | } | |
2478 | ||
2479 | /* Fetch the possible triggered data watchpoint info and store it in | |
2480 | LP. | |
2481 | ||
2482 | On some archs, like x86, that use debug registers to set | |
2483 | watchpoints, it's possible that the way to know which watched | |
2484 | address trapped, is to check the register that is used to select | |
2485 | which address to watch. Problem is, between setting the watchpoint | |
2486 | and reading back which data address trapped, the user may change | |
2487 | the set of watchpoints, and, as a consequence, GDB changes the | |
2488 | debug registers in the inferior. To avoid reading back a stale | |
2489 | stopped-data-address when that happens, we cache in LP the fact | |
2490 | that a watchpoint trapped, and the corresponding data address, as | |
2491 | soon as we see LP stop with a SIGTRAP. If GDB changes the debug | |
2492 | registers meanwhile, we have the cached data we can rely on. */ | |
2493 | ||
2494 | static int | |
2495 | check_stopped_by_watchpoint (struct lwp_info *lp) | |
2496 | { | |
2497 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); | |
2498 | inferior_ptid = lp->ptid; | |
2499 | ||
2500 | if (linux_target->low_stopped_by_watchpoint ()) | |
2501 | { | |
2502 | lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT; | |
2503 | lp->stopped_data_address_p | |
2504 | = linux_target->low_stopped_data_address (&lp->stopped_data_address); | |
2505 | } | |
2506 | ||
2507 | return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT; | |
2508 | } | |
2509 | ||
2510 | /* Returns true if the LWP had stopped for a watchpoint. */ | |
2511 | ||
2512 | bool | |
2513 | linux_nat_target::stopped_by_watchpoint () | |
2514 | { | |
2515 | struct lwp_info *lp = find_lwp_pid (inferior_ptid); | |
2516 | ||
2517 | gdb_assert (lp != NULL); | |
2518 | ||
2519 | return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT; | |
2520 | } | |
2521 | ||
2522 | bool | |
2523 | linux_nat_target::stopped_data_address (CORE_ADDR *addr_p) | |
2524 | { | |
2525 | struct lwp_info *lp = find_lwp_pid (inferior_ptid); | |
2526 | ||
2527 | gdb_assert (lp != NULL); | |
2528 | ||
2529 | *addr_p = lp->stopped_data_address; | |
2530 | ||
2531 | return lp->stopped_data_address_p; | |
2532 | } | |
2533 | ||
2534 | /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */ | |
2535 | ||
2536 | bool | |
2537 | linux_nat_target::low_status_is_event (int status) | |
2538 | { | |
2539 | return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP; | |
2540 | } | |
2541 | ||
2542 | /* Wait until LP is stopped. */ | |
2543 | ||
2544 | static int | |
2545 | stop_wait_callback (struct lwp_info *lp) | |
2546 | { | |
2547 | inferior *inf = find_inferior_ptid (linux_target, lp->ptid); | |
2548 | ||
2549 | /* If this is a vfork parent, bail out, it is not going to report | |
2550 | any SIGSTOP until the vfork is done with. */ | |
2551 | if (inf->vfork_child != NULL) | |
2552 | return 0; | |
2553 | ||
2554 | if (!lp->stopped) | |
2555 | { | |
2556 | int status; | |
2557 | ||
2558 | status = wait_lwp (lp); | |
2559 | if (status == 0) | |
2560 | return 0; | |
2561 | ||
2562 | if (lp->ignore_sigint && WIFSTOPPED (status) | |
2563 | && WSTOPSIG (status) == SIGINT) | |
2564 | { | |
2565 | lp->ignore_sigint = 0; | |
2566 | ||
2567 | errno = 0; | |
2568 | ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0); | |
2569 | lp->stopped = 0; | |
2570 | linux_nat_debug_printf | |
2571 | ("PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)", | |
2572 | lp->ptid.to_string ().c_str (), | |
2573 | errno ? safe_strerror (errno) : "OK"); | |
2574 | ||
2575 | return stop_wait_callback (lp); | |
2576 | } | |
2577 | ||
2578 | maybe_clear_ignore_sigint (lp); | |
2579 | ||
2580 | if (WSTOPSIG (status) != SIGSTOP) | |
2581 | { | |
2582 | /* The thread was stopped with a signal other than SIGSTOP. */ | |
2583 | ||
2584 | linux_nat_debug_printf ("Pending event %s in %s", | |
2585 | status_to_str ((int) status).c_str (), | |
2586 | lp->ptid.to_string ().c_str ()); | |
2587 | ||
2588 | /* Save the sigtrap event. */ | |
2589 | lp->status = status; | |
2590 | gdb_assert (lp->signalled); | |
2591 | save_stop_reason (lp); | |
2592 | } | |
2593 | else | |
2594 | { | |
2595 | /* We caught the SIGSTOP that we intended to catch. */ | |
2596 | ||
2597 | linux_nat_debug_printf ("Expected SIGSTOP caught for %s.", | |
2598 | lp->ptid.to_string ().c_str ()); | |
2599 | ||
2600 | lp->signalled = 0; | |
2601 | ||
2602 | /* If we are waiting for this stop so we can report the thread | |
2603 | stopped then we need to record this status. Otherwise, we can | |
2604 | now discard this stop event. */ | |
2605 | if (lp->last_resume_kind == resume_stop) | |
2606 | { | |
2607 | lp->status = status; | |
2608 | save_stop_reason (lp); | |
2609 | } | |
2610 | } | |
2611 | } | |
2612 | ||
2613 | return 0; | |
2614 | } | |
2615 | ||
2616 | /* Get the inferior associated to LWP. Must be called with an LWP that has | |
2617 | an associated inferior. Always return non-nullptr. */ | |
2618 | ||
2619 | static inferior * | |
2620 | lwp_inferior (const lwp_info *lwp) | |
2621 | { | |
2622 | inferior *inf = find_inferior_ptid (linux_target, lwp->ptid); | |
2623 | gdb_assert (inf != nullptr); | |
2624 | return inf; | |
2625 | } | |
2626 | ||
2627 | /* Return non-zero if LP has a wait status pending. Discard the | |
2628 | pending event and resume the LWP if the event that originally | |
2629 | caused the stop became uninteresting. */ | |
2630 | ||
2631 | static int | |
2632 | status_callback (struct lwp_info *lp) | |
2633 | { | |
2634 | /* Only report a pending wait status if we pretend that this has | |
2635 | indeed been resumed. */ | |
2636 | if (!lp->resumed) | |
2637 | return 0; | |
2638 | ||
2639 | if (!lwp_status_pending_p (lp)) | |
2640 | return 0; | |
2641 | ||
2642 | if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT | |
2643 | || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT) | |
2644 | { | |
2645 | struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid); | |
2646 | CORE_ADDR pc; | |
2647 | int discard = 0; | |
2648 | ||
2649 | pc = regcache_read_pc (regcache); | |
2650 | ||
2651 | if (pc != lp->stop_pc) | |
2652 | { | |
2653 | linux_nat_debug_printf ("PC of %s changed. was=%s, now=%s", | |
2654 | lp->ptid.to_string ().c_str (), | |
2655 | paddress (current_inferior ()->arch (), | |
2656 | lp->stop_pc), | |
2657 | paddress (current_inferior ()->arch (), pc)); | |
2658 | discard = 1; | |
2659 | } | |
2660 | ||
2661 | if (discard) | |
2662 | { | |
2663 | linux_nat_debug_printf ("pending event of %s cancelled.", | |
2664 | lp->ptid.to_string ().c_str ()); | |
2665 | ||
2666 | lp->status = 0; | |
2667 | linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); | |
2668 | return 0; | |
2669 | } | |
2670 | } | |
2671 | ||
2672 | return 1; | |
2673 | } | |
2674 | ||
2675 | /* Count the LWP's that have had events. */ | |
2676 | ||
2677 | static int | |
2678 | count_events_callback (struct lwp_info *lp, int *count) | |
2679 | { | |
2680 | gdb_assert (count != NULL); | |
2681 | ||
2682 | /* Select only resumed LWPs that have an event pending. */ | |
2683 | if (lp->resumed && lwp_status_pending_p (lp)) | |
2684 | (*count)++; | |
2685 | ||
2686 | return 0; | |
2687 | } | |
2688 | ||
2689 | /* Select the LWP (if any) that is currently being single-stepped. */ | |
2690 | ||
2691 | static int | |
2692 | select_singlestep_lwp_callback (struct lwp_info *lp) | |
2693 | { | |
2694 | if (lp->last_resume_kind == resume_step | |
2695 | && lp->status != 0) | |
2696 | return 1; | |
2697 | else | |
2698 | return 0; | |
2699 | } | |
2700 | ||
2701 | /* Returns true if LP has a status pending. */ | |
2702 | ||
2703 | static int | |
2704 | lwp_status_pending_p (struct lwp_info *lp) | |
2705 | { | |
2706 | /* We check for lp->waitstatus in addition to lp->status, because we | |
2707 | can have pending process exits recorded in lp->status and | |
2708 | W_EXITCODE(0,0) happens to be 0. */ | |
2709 | return lp->status != 0 || lp->waitstatus.kind () != TARGET_WAITKIND_IGNORE; | |
2710 | } | |
2711 | ||
2712 | /* Select the Nth LWP that has had an event. */ | |
2713 | ||
2714 | static int | |
2715 | select_event_lwp_callback (struct lwp_info *lp, int *selector) | |
2716 | { | |
2717 | gdb_assert (selector != NULL); | |
2718 | ||
2719 | /* Select only resumed LWPs that have an event pending. */ | |
2720 | if (lp->resumed && lwp_status_pending_p (lp)) | |
2721 | if ((*selector)-- == 0) | |
2722 | return 1; | |
2723 | ||
2724 | return 0; | |
2725 | } | |
2726 | ||
2727 | /* Called when the LWP stopped for a signal/trap. If it stopped for a | |
2728 | trap check what caused it (breakpoint, watchpoint, trace, etc.), | |
2729 | and save the result in the LWP's stop_reason field. If it stopped | |
2730 | for a breakpoint, decrement the PC if necessary on the lwp's | |
2731 | architecture. */ | |
2732 | ||
2733 | static void | |
2734 | save_stop_reason (struct lwp_info *lp) | |
2735 | { | |
2736 | struct regcache *regcache; | |
2737 | struct gdbarch *gdbarch; | |
2738 | CORE_ADDR pc; | |
2739 | CORE_ADDR sw_bp_pc; | |
2740 | siginfo_t siginfo; | |
2741 | ||
2742 | gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON); | |
2743 | gdb_assert (lp->status != 0); | |
2744 | ||
2745 | if (!linux_target->low_status_is_event (lp->status)) | |
2746 | return; | |
2747 | ||
2748 | inferior *inf = lwp_inferior (lp); | |
2749 | if (inf->starting_up) | |
2750 | return; | |
2751 | ||
2752 | regcache = get_thread_regcache (linux_target, lp->ptid); | |
2753 | gdbarch = regcache->arch (); | |
2754 | ||
2755 | pc = regcache_read_pc (regcache); | |
2756 | sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch); | |
2757 | ||
2758 | if (linux_nat_get_siginfo (lp->ptid, &siginfo)) | |
2759 | { | |
2760 | if (siginfo.si_signo == SIGTRAP) | |
2761 | { | |
2762 | if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code) | |
2763 | && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code)) | |
2764 | { | |
2765 | /* The si_code is ambiguous on this arch -- check debug | |
2766 | registers. */ | |
2767 | if (!check_stopped_by_watchpoint (lp)) | |
2768 | lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; | |
2769 | } | |
2770 | else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)) | |
2771 | { | |
2772 | /* If we determine the LWP stopped for a SW breakpoint, | |
2773 | trust it. Particularly don't check watchpoint | |
2774 | registers, because, at least on s390, we'd find | |
2775 | stopped-by-watchpoint as long as there's a watchpoint | |
2776 | set. */ | |
2777 | lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; | |
2778 | } | |
2779 | else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code)) | |
2780 | { | |
2781 | /* This can indicate either a hardware breakpoint or | |
2782 | hardware watchpoint. Check debug registers. */ | |
2783 | if (!check_stopped_by_watchpoint (lp)) | |
2784 | lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT; | |
2785 | } | |
2786 | else if (siginfo.si_code == TRAP_TRACE) | |
2787 | { | |
2788 | linux_nat_debug_printf ("%s stopped by trace", | |
2789 | lp->ptid.to_string ().c_str ()); | |
2790 | ||
2791 | /* We may have single stepped an instruction that | |
2792 | triggered a watchpoint. In that case, on some | |
2793 | architectures (such as x86), instead of TRAP_HWBKPT, | |
2794 | si_code indicates TRAP_TRACE, and we need to check | |
2795 | the debug registers separately. */ | |
2796 | check_stopped_by_watchpoint (lp); | |
2797 | } | |
2798 | } | |
2799 | } | |
2800 | ||
2801 | if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT) | |
2802 | { | |
2803 | linux_nat_debug_printf ("%s stopped by software breakpoint", | |
2804 | lp->ptid.to_string ().c_str ()); | |
2805 | ||
2806 | /* Back up the PC if necessary. */ | |
2807 | if (pc != sw_bp_pc) | |
2808 | regcache_write_pc (regcache, sw_bp_pc); | |
2809 | ||
2810 | /* Update this so we record the correct stop PC below. */ | |
2811 | pc = sw_bp_pc; | |
2812 | } | |
2813 | else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT) | |
2814 | { | |
2815 | linux_nat_debug_printf ("%s stopped by hardware breakpoint", | |
2816 | lp->ptid.to_string ().c_str ()); | |
2817 | } | |
2818 | else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT) | |
2819 | { | |
2820 | linux_nat_debug_printf ("%s stopped by hardware watchpoint", | |
2821 | lp->ptid.to_string ().c_str ()); | |
2822 | } | |
2823 | ||
2824 | lp->stop_pc = pc; | |
2825 | } | |
2826 | ||
2827 | ||
2828 | /* Returns true if the LWP had stopped for a software breakpoint. */ | |
2829 | ||
2830 | bool | |
2831 | linux_nat_target::stopped_by_sw_breakpoint () | |
2832 | { | |
2833 | struct lwp_info *lp = find_lwp_pid (inferior_ptid); | |
2834 | ||
2835 | gdb_assert (lp != NULL); | |
2836 | ||
2837 | return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT; | |
2838 | } | |
2839 | ||
2840 | /* Implement the supports_stopped_by_sw_breakpoint method. */ | |
2841 | ||
2842 | bool | |
2843 | linux_nat_target::supports_stopped_by_sw_breakpoint () | |
2844 | { | |
2845 | return true; | |
2846 | } | |
2847 | ||
2848 | /* Returns true if the LWP had stopped for a hardware | |
2849 | breakpoint/watchpoint. */ | |
2850 | ||
2851 | bool | |
2852 | linux_nat_target::stopped_by_hw_breakpoint () | |
2853 | { | |
2854 | struct lwp_info *lp = find_lwp_pid (inferior_ptid); | |
2855 | ||
2856 | gdb_assert (lp != NULL); | |
2857 | ||
2858 | return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT; | |
2859 | } | |
2860 | ||
2861 | /* Implement the supports_stopped_by_hw_breakpoint method. */ | |
2862 | ||
2863 | bool | |
2864 | linux_nat_target::supports_stopped_by_hw_breakpoint () | |
2865 | { | |
2866 | return true; | |
2867 | } | |
2868 | ||
2869 | /* Select one LWP out of those that have events pending. */ | |
2870 | ||
2871 | static void | |
2872 | select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status) | |
2873 | { | |
2874 | int num_events = 0; | |
2875 | int random_selector; | |
2876 | struct lwp_info *event_lp = NULL; | |
2877 | ||
2878 | /* Record the wait status for the original LWP. */ | |
2879 | (*orig_lp)->status = *status; | |
2880 | ||
2881 | /* In all-stop, give preference to the LWP that is being | |
2882 | single-stepped. There will be at most one, and it will be the | |
2883 | LWP that the core is most interested in. If we didn't do this, | |
2884 | then we'd have to handle pending step SIGTRAPs somehow in case | |
2885 | the core later continues the previously-stepped thread, as | |
2886 | otherwise we'd report the pending SIGTRAP then, and the core, not | |
2887 | having stepped the thread, wouldn't understand what the trap was | |
2888 | for, and therefore would report it to the user as a random | |
2889 | signal. */ | |
2890 | if (!target_is_non_stop_p ()) | |
2891 | { | |
2892 | event_lp = iterate_over_lwps (filter, select_singlestep_lwp_callback); | |
2893 | if (event_lp != NULL) | |
2894 | { | |
2895 | linux_nat_debug_printf ("Select single-step %s", | |
2896 | event_lp->ptid.to_string ().c_str ()); | |
2897 | } | |
2898 | } | |
2899 | ||
2900 | if (event_lp == NULL) | |
2901 | { | |
2902 | /* Pick one at random, out of those which have had events. */ | |
2903 | ||
2904 | /* First see how many events we have. */ | |
2905 | iterate_over_lwps (filter, | |
2906 | [&] (struct lwp_info *info) | |
2907 | { | |
2908 | return count_events_callback (info, &num_events); | |
2909 | }); | |
2910 | gdb_assert (num_events > 0); | |
2911 | ||
2912 | /* Now randomly pick a LWP out of those that have had | |
2913 | events. */ | |
2914 | random_selector = (int) | |
2915 | ((num_events * (double) rand ()) / (RAND_MAX + 1.0)); | |
2916 | ||
2917 | if (num_events > 1) | |
2918 | linux_nat_debug_printf ("Found %d events, selecting #%d", | |
2919 | num_events, random_selector); | |
2920 | ||
2921 | event_lp | |
2922 | = (iterate_over_lwps | |
2923 | (filter, | |
2924 | [&] (struct lwp_info *info) | |
2925 | { | |
2926 | return select_event_lwp_callback (info, | |
2927 | &random_selector); | |
2928 | })); | |
2929 | } | |
2930 | ||
2931 | if (event_lp != NULL) | |
2932 | { | |
2933 | /* Switch the event LWP. */ | |
2934 | *orig_lp = event_lp; | |
2935 | *status = event_lp->status; | |
2936 | } | |
2937 | ||
2938 | /* Flush the wait status for the event LWP. */ | |
2939 | (*orig_lp)->status = 0; | |
2940 | } | |
2941 | ||
2942 | /* Return non-zero if LP has been resumed. */ | |
2943 | ||
2944 | static int | |
2945 | resumed_callback (struct lwp_info *lp) | |
2946 | { | |
2947 | return lp->resumed; | |
2948 | } | |
2949 | ||
2950 | /* Check if we should go on and pass this event to common code. | |
2951 | ||
2952 | If so, save the status to the lwp_info structure associated to LWPID. */ | |
2953 | ||
2954 | static void | |
2955 | linux_nat_filter_event (int lwpid, int status) | |
2956 | { | |
2957 | struct lwp_info *lp; | |
2958 | int event = linux_ptrace_get_extended_event (status); | |
2959 | ||
2960 | lp = find_lwp_pid (ptid_t (lwpid)); | |
2961 | ||
2962 | /* Check for events reported by anything not in our LWP list. */ | |
2963 | if (lp == nullptr) | |
2964 | { | |
2965 | if (WIFSTOPPED (status)) | |
2966 | { | |
2967 | if (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC) | |
2968 | { | |
2969 | /* A non-leader thread exec'ed after we've seen the | |
2970 | leader zombie, and removed it from our lists (in | |
2971 | check_zombie_leaders). The non-leader thread changes | |
2972 | its tid to the tgid. */ | |
2973 | linux_nat_debug_printf | |
2974 | ("Re-adding thread group leader LWP %d after exec.", | |
2975 | lwpid); | |
2976 | ||
2977 | lp = add_lwp (ptid_t (lwpid, lwpid)); | |
2978 | lp->stopped = 1; | |
2979 | lp->resumed = 1; | |
2980 | add_thread (linux_target, lp->ptid); | |
2981 | } | |
2982 | else | |
2983 | { | |
2984 | /* A process we are controlling has forked and the new | |
2985 | child's stop was reported to us by the kernel. Save | |
2986 | its PID and go back to waiting for the fork event to | |
2987 | be reported - the stopped process might be returned | |
2988 | from waitpid before or after the fork event is. */ | |
2989 | linux_nat_debug_printf | |
2990 | ("Saving LWP %d status %s in stopped_pids list", | |
2991 | lwpid, status_to_str (status).c_str ()); | |
2992 | add_to_pid_list (&stopped_pids, lwpid, status); | |
2993 | } | |
2994 | } | |
2995 | else | |
2996 | { | |
2997 | /* Don't report an event for the exit of an LWP not in our | |
2998 | list, i.e. not part of any inferior we're debugging. | |
2999 | This can happen if we detach from a program we originally | |
3000 | forked and then it exits. However, note that we may have | |
3001 | earlier deleted a leader of an inferior we're debugging, | |
3002 | in check_zombie_leaders. Re-add it back here if so. */ | |
3003 | for (inferior *inf : all_inferiors (linux_target)) | |
3004 | { | |
3005 | if (inf->pid == lwpid) | |
3006 | { | |
3007 | linux_nat_debug_printf | |
3008 | ("Re-adding thread group leader LWP %d after exit.", | |
3009 | lwpid); | |
3010 | ||
3011 | lp = add_lwp (ptid_t (lwpid, lwpid)); | |
3012 | lp->resumed = 1; | |
3013 | add_thread (linux_target, lp->ptid); | |
3014 | break; | |
3015 | } | |
3016 | } | |
3017 | } | |
3018 | ||
3019 | if (lp == nullptr) | |
3020 | return; | |
3021 | } | |
3022 | ||
3023 | /* This LWP is stopped now. (And if dead, this prevents it from | |
3024 | ever being continued.) */ | |
3025 | lp->stopped = 1; | |
3026 | ||
3027 | if (WIFSTOPPED (status) && lp->must_set_ptrace_flags) | |
3028 | { | |
3029 | inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ()); | |
3030 | int options = linux_nat_ptrace_options (inf->attach_flag); | |
3031 | ||
3032 | linux_enable_event_reporting (lp->ptid.lwp (), options); | |
3033 | lp->must_set_ptrace_flags = 0; | |
3034 | } | |
3035 | ||
3036 | /* Handle GNU/Linux's syscall SIGTRAPs. */ | |
3037 | if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP) | |
3038 | { | |
3039 | /* No longer need the sysgood bit. The ptrace event ends up | |
3040 | recorded in lp->waitstatus if we care for it. We can carry | |
3041 | on handling the event like a regular SIGTRAP from here | |
3042 | on. */ | |
3043 | status = W_STOPCODE (SIGTRAP); | |
3044 | if (linux_handle_syscall_trap (lp, 0)) | |
3045 | return; | |
3046 | } | |
3047 | else | |
3048 | { | |
3049 | /* Almost all other ptrace-stops are known to be outside of system | |
3050 | calls, with further exceptions in linux_handle_extended_wait. */ | |
3051 | lp->syscall_state = TARGET_WAITKIND_IGNORE; | |
3052 | } | |
3053 | ||
3054 | /* Handle GNU/Linux's extended waitstatus for trace events. */ | |
3055 | if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP | |
3056 | && linux_is_extended_waitstatus (status)) | |
3057 | { | |
3058 | linux_nat_debug_printf ("Handling extended status 0x%06x", status); | |
3059 | ||
3060 | if (linux_handle_extended_wait (lp, status)) | |
3061 | return; | |
3062 | } | |
3063 | ||
3064 | /* Check if the thread has exited. */ | |
3065 | if (WIFEXITED (status) || WIFSIGNALED (status)) | |
3066 | { | |
3067 | if (!report_exit_events_for (lp) && !is_leader (lp)) | |
3068 | { | |
3069 | linux_nat_debug_printf ("%s exited.", | |
3070 | lp->ptid.to_string ().c_str ()); | |
3071 | ||
3072 | /* If this was not the leader exiting, then the exit signal | |
3073 | was not the end of the debugged application and should be | |
3074 | ignored. */ | |
3075 | exit_lwp (lp); | |
3076 | return; | |
3077 | } | |
3078 | ||
3079 | /* Note that even if the leader was ptrace-stopped, it can still | |
3080 | exit, if e.g., some other thread brings down the whole | |
3081 | process (calls `exit'). So don't assert that the lwp is | |
3082 | resumed. */ | |
3083 | linux_nat_debug_printf ("LWP %ld exited (resumed=%d)", | |
3084 | lp->ptid.lwp (), lp->resumed); | |
3085 | ||
3086 | mark_lwp_dead (lp, status); | |
3087 | return; | |
3088 | } | |
3089 | ||
3090 | /* Make sure we don't report a SIGSTOP that we sent ourselves in | |
3091 | an attempt to stop an LWP. */ | |
3092 | if (lp->signalled | |
3093 | && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP) | |
3094 | { | |
3095 | lp->signalled = 0; | |
3096 | ||
3097 | if (lp->last_resume_kind == resume_stop) | |
3098 | { | |
3099 | linux_nat_debug_printf ("resume_stop SIGSTOP caught for %s.", | |
3100 | lp->ptid.to_string ().c_str ()); | |
3101 | } | |
3102 | else | |
3103 | { | |
3104 | /* This is a delayed SIGSTOP. Filter out the event. */ | |
3105 | ||
3106 | linux_nat_debug_printf | |
3107 | ("%s %s, 0, 0 (discard delayed SIGSTOP)", | |
3108 | lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT", | |
3109 | lp->ptid.to_string ().c_str ()); | |
3110 | ||
3111 | linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); | |
3112 | gdb_assert (lp->resumed); | |
3113 | return; | |
3114 | } | |
3115 | } | |
3116 | ||
3117 | /* Make sure we don't report a SIGINT that we have already displayed | |
3118 | for another thread. */ | |
3119 | if (lp->ignore_sigint | |
3120 | && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT) | |
3121 | { | |
3122 | linux_nat_debug_printf ("Delayed SIGINT caught for %s.", | |
3123 | lp->ptid.to_string ().c_str ()); | |
3124 | ||
3125 | /* This is a delayed SIGINT. */ | |
3126 | lp->ignore_sigint = 0; | |
3127 | ||
3128 | linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); | |
3129 | linux_nat_debug_printf ("%s %s, 0, 0 (discard SIGINT)", | |
3130 | lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT", | |
3131 | lp->ptid.to_string ().c_str ()); | |
3132 | gdb_assert (lp->resumed); | |
3133 | ||
3134 | /* Discard the event. */ | |
3135 | return; | |
3136 | } | |
3137 | ||
3138 | /* Don't report signals that GDB isn't interested in, such as | |
3139 | signals that are neither printed nor stopped upon. Stopping all | |
3140 | threads can be a bit time-consuming, so if we want decent | |
3141 | performance with heavily multi-threaded programs, especially when | |
3142 | they're using a high frequency timer, we'd better avoid it if we | |
3143 | can. */ | |
3144 | if (WIFSTOPPED (status)) | |
3145 | { | |
3146 | enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status)); | |
3147 | ||
3148 | if (!target_is_non_stop_p ()) | |
3149 | { | |
3150 | /* Only do the below in all-stop, as we currently use SIGSTOP | |
3151 | to implement target_stop (see linux_nat_stop) in | |
3152 | non-stop. */ | |
3153 | if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0) | |
3154 | { | |
3155 | /* If ^C/BREAK is typed at the tty/console, SIGINT gets | |
3156 | forwarded to the entire process group, that is, all LWPs | |
3157 | will receive it - unless they're using CLONE_THREAD to | |
3158 | share signals. Since we only want to report it once, we | |
3159 | mark it as ignored for all LWPs except this one. */ | |
3160 | iterate_over_lwps (ptid_t (lp->ptid.pid ()), set_ignore_sigint); | |
3161 | lp->ignore_sigint = 0; | |
3162 | } | |
3163 | else | |
3164 | maybe_clear_ignore_sigint (lp); | |
3165 | } | |
3166 | ||
3167 | /* When using hardware single-step, we need to report every signal. | |
3168 | Otherwise, signals in pass_mask may be short-circuited | |
3169 | except signals that might be caused by a breakpoint, or SIGSTOP | |
3170 | if we sent the SIGSTOP and are waiting for it to arrive. */ | |
3171 | if (!lp->step | |
3172 | && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)) | |
3173 | && (WSTOPSIG (status) != SIGSTOP | |
3174 | || !linux_target->find_thread (lp->ptid)->stop_requested) | |
3175 | && !linux_wstatus_maybe_breakpoint (status)) | |
3176 | { | |
3177 | linux_resume_one_lwp (lp, lp->step, signo); | |
3178 | linux_nat_debug_printf | |
3179 | ("%s %s, %s (preempt 'handle')", | |
3180 | lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT", | |
3181 | lp->ptid.to_string ().c_str (), | |
3182 | (signo != GDB_SIGNAL_0 | |
3183 | ? strsignal (gdb_signal_to_host (signo)) : "0")); | |
3184 | return; | |
3185 | } | |
3186 | } | |
3187 | ||
3188 | /* An interesting event. */ | |
3189 | gdb_assert (lp); | |
3190 | lp->status = status; | |
3191 | save_stop_reason (lp); | |
3192 | } | |
3193 | ||
3194 | /* Detect zombie thread group leaders, and "exit" them. We can't reap | |
3195 | their exits until all other threads in the group have exited. */ | |
3196 | ||
3197 | static void | |
3198 | check_zombie_leaders (void) | |
3199 | { | |
3200 | for (inferior *inf : all_inferiors ()) | |
3201 | { | |
3202 | struct lwp_info *leader_lp; | |
3203 | ||
3204 | if (inf->pid == 0) | |
3205 | continue; | |
3206 | ||
3207 | leader_lp = find_lwp_pid (ptid_t (inf->pid)); | |
3208 | if (leader_lp != NULL | |
3209 | /* Check if there are other threads in the group, as we may | |
3210 | have raced with the inferior simply exiting. Note this | |
3211 | isn't a watertight check. If the inferior is | |
3212 | multi-threaded and is exiting, it may be we see the | |
3213 | leader as zombie before we reap all the non-leader | |
3214 | threads. See comments below. */ | |
3215 | && num_lwps (inf->pid) > 1 | |
3216 | && linux_proc_pid_is_zombie (inf->pid)) | |
3217 | { | |
3218 | /* A zombie leader in a multi-threaded program can mean one | |
3219 | of three things: | |
3220 | ||
3221 | #1 - Only the leader exited, not the whole program, e.g., | |
3222 | with pthread_exit. Since we can't reap the leader's exit | |
3223 | status until all other threads are gone and reaped too, | |
3224 | we want to delete the zombie leader right away, as it | |
3225 | can't be debugged, we can't read its registers, etc. | |
3226 | This is the main reason we check for zombie leaders | |
3227 | disappearing. | |
3228 | ||
3229 | #2 - The whole thread-group/process exited (a group exit, | |
3230 | via e.g. exit(3), and there is (or will be shortly) an | |
3231 | exit reported for each thread in the process, and then | |
3232 | finally an exit for the leader once the non-leaders are | |
3233 | reaped. | |
3234 | ||
3235 | #3 - There are 3 or more threads in the group, and a | |
3236 | thread other than the leader exec'd. See comments on | |
3237 | exec events at the top of the file. | |
3238 | ||
3239 | Ideally we would never delete the leader for case #2. | |
3240 | Instead, we want to collect the exit status of each | |
3241 | non-leader thread, and then finally collect the exit | |
3242 | status of the leader as normal and use its exit code as | |
3243 | whole-process exit code. Unfortunately, there's no | |
3244 | race-free way to distinguish cases #1 and #2. We can't | |
3245 | assume the exit events for the non-leaders threads are | |
3246 | already pending in the kernel, nor can we assume the | |
3247 | non-leader threads are in zombie state already. Between | |
3248 | the leader becoming zombie and the non-leaders exiting | |
3249 | and becoming zombie themselves, there's a small time | |
3250 | window, so such a check would be racy. Temporarily | |
3251 | pausing all threads and checking to see if all threads | |
3252 | exit or not before re-resuming them would work in the | |
3253 | case that all threads are running right now, but it | |
3254 | wouldn't work if some thread is currently already | |
3255 | ptrace-stopped, e.g., due to scheduler-locking. | |
3256 | ||
3257 | So what we do is we delete the leader anyhow, and then | |
3258 | later on when we see its exit status, we re-add it back. | |
3259 | We also make sure that we only report a whole-process | |
3260 | exit when we see the leader exiting, as opposed to when | |
3261 | the last LWP in the LWP list exits, which can be a | |
3262 | non-leader if we deleted the leader here. */ | |
3263 | linux_nat_debug_printf ("Thread group leader %d zombie " | |
3264 | "(it exited, or another thread execd), " | |
3265 | "deleting it.", | |
3266 | inf->pid); | |
3267 | exit_lwp (leader_lp); | |
3268 | } | |
3269 | } | |
3270 | } | |
3271 | ||
3272 | /* Convenience function that is called when we're about to return an | |
3273 | event to the core. If the event is an exit or signalled event, | |
3274 | then this decides whether to report it as process-wide event, as a | |
3275 | thread exit event, or to suppress it. All other event kinds are | |
3276 | passed through unmodified. */ | |
3277 | ||
3278 | static ptid_t | |
3279 | filter_exit_event (struct lwp_info *event_child, | |
3280 | struct target_waitstatus *ourstatus) | |
3281 | { | |
3282 | ptid_t ptid = event_child->ptid; | |
3283 | ||
3284 | /* Note we must filter TARGET_WAITKIND_SIGNALLED as well, otherwise | |
3285 | if a non-leader thread exits with a signal, we'd report it to the | |
3286 | core which would interpret it as the whole-process exiting. | |
3287 | There is no TARGET_WAITKIND_THREAD_SIGNALLED event kind. */ | |
3288 | if (ourstatus->kind () != TARGET_WAITKIND_EXITED | |
3289 | && ourstatus->kind () != TARGET_WAITKIND_SIGNALLED) | |
3290 | return ptid; | |
3291 | ||
3292 | if (!is_leader (event_child)) | |
3293 | { | |
3294 | if (report_exit_events_for (event_child)) | |
3295 | { | |
3296 | ourstatus->set_thread_exited (0); | |
3297 | /* Delete lwp, but not thread_info, infrun will need it to | |
3298 | process the event. */ | |
3299 | exit_lwp (event_child, false); | |
3300 | } | |
3301 | else | |
3302 | { | |
3303 | ourstatus->set_ignore (); | |
3304 | exit_lwp (event_child); | |
3305 | } | |
3306 | } | |
3307 | ||
3308 | return ptid; | |
3309 | } | |
3310 | ||
3311 | static ptid_t | |
3312 | linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus, | |
3313 | target_wait_flags target_options) | |
3314 | { | |
3315 | LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT; | |
3316 | ||
3317 | sigset_t prev_mask; | |
3318 | enum resume_kind last_resume_kind; | |
3319 | struct lwp_info *lp; | |
3320 | int status; | |
3321 | ||
3322 | /* The first time we get here after starting a new inferior, we may | |
3323 | not have added it to the LWP list yet - this is the earliest | |
3324 | moment at which we know its PID. */ | |
3325 | if (ptid.is_pid () && find_lwp_pid (ptid) == nullptr) | |
3326 | { | |
3327 | ptid_t lwp_ptid (ptid.pid (), ptid.pid ()); | |
3328 | ||
3329 | /* Upgrade the main thread's ptid. */ | |
3330 | thread_change_ptid (linux_target, ptid, lwp_ptid); | |
3331 | lp = add_initial_lwp (lwp_ptid); | |
3332 | lp->resumed = 1; | |
3333 | } | |
3334 | ||
3335 | /* Make sure SIGCHLD is blocked until the sigsuspend below. */ | |
3336 | block_child_signals (&prev_mask); | |
3337 | ||
3338 | /* First check if there is a LWP with a wait status pending. */ | |
3339 | lp = iterate_over_lwps (ptid, status_callback); | |
3340 | if (lp != NULL) | |
3341 | { | |
3342 | linux_nat_debug_printf ("Using pending wait status %s for %s.", | |
3343 | pending_status_str (lp).c_str (), | |
3344 | lp->ptid.to_string ().c_str ()); | |
3345 | } | |
3346 | ||
3347 | /* But if we don't find a pending event, we'll have to wait. Always | |
3348 | pull all events out of the kernel. We'll randomly select an | |
3349 | event LWP out of all that have events, to prevent starvation. */ | |
3350 | ||
3351 | while (lp == NULL) | |
3352 | { | |
3353 | pid_t lwpid; | |
3354 | ||
3355 | /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace | |
3356 | quirks: | |
3357 | ||
3358 | - If the thread group leader exits while other threads in the | |
3359 | thread group still exist, waitpid(TGID, ...) hangs. That | |
3360 | waitpid won't return an exit status until the other threads | |
3361 | in the group are reaped. | |
3362 | ||
3363 | - When a non-leader thread execs, that thread just vanishes | |
3364 | without reporting an exit (so we'd hang if we waited for it | |
3365 | explicitly in that case). The exec event is reported to | |
3366 | the TGID pid. */ | |
3367 | ||
3368 | errno = 0; | |
3369 | lwpid = my_waitpid (-1, &status, __WALL | WNOHANG); | |
3370 | ||
3371 | linux_nat_debug_printf ("waitpid(-1, ...) returned %d, %s", | |
3372 | lwpid, | |
3373 | errno ? safe_strerror (errno) : "ERRNO-OK"); | |
3374 | ||
3375 | if (lwpid > 0) | |
3376 | { | |
3377 | linux_nat_debug_printf ("waitpid %ld received %s", | |
3378 | (long) lwpid, | |
3379 | status_to_str (status).c_str ()); | |
3380 | ||
3381 | linux_nat_filter_event (lwpid, status); | |
3382 | /* Retry until nothing comes out of waitpid. A single | |
3383 | SIGCHLD can indicate more than one child stopped. */ | |
3384 | continue; | |
3385 | } | |
3386 | ||
3387 | /* Now that we've pulled all events out of the kernel, resume | |
3388 | LWPs that don't have an interesting event to report. */ | |
3389 | iterate_over_lwps (minus_one_ptid, | |
3390 | [] (struct lwp_info *info) | |
3391 | { | |
3392 | return resume_stopped_resumed_lwps (info, minus_one_ptid); | |
3393 | }); | |
3394 | ||
3395 | /* ... and find an LWP with a status to report to the core, if | |
3396 | any. */ | |
3397 | lp = iterate_over_lwps (ptid, status_callback); | |
3398 | if (lp != NULL) | |
3399 | break; | |
3400 | ||
3401 | /* Check for zombie thread group leaders. Those can't be reaped | |
3402 | until all other threads in the thread group are. */ | |
3403 | check_zombie_leaders (); | |
3404 | ||
3405 | /* If there are no resumed children left, bail. We'd be stuck | |
3406 | forever in the sigsuspend call below otherwise. */ | |
3407 | if (iterate_over_lwps (ptid, resumed_callback) == NULL) | |
3408 | { | |
3409 | linux_nat_debug_printf ("exit (no resumed LWP)"); | |
3410 | ||
3411 | ourstatus->set_no_resumed (); | |
3412 | ||
3413 | restore_child_signals_mask (&prev_mask); | |
3414 | return minus_one_ptid; | |
3415 | } | |
3416 | ||
3417 | /* No interesting event to report to the core. */ | |
3418 | ||
3419 | if (target_options & TARGET_WNOHANG) | |
3420 | { | |
3421 | linux_nat_debug_printf ("no interesting events found"); | |
3422 | ||
3423 | ourstatus->set_ignore (); | |
3424 | restore_child_signals_mask (&prev_mask); | |
3425 | return minus_one_ptid; | |
3426 | } | |
3427 | ||
3428 | /* We shouldn't end up here unless we want to try again. */ | |
3429 | gdb_assert (lp == NULL); | |
3430 | ||
3431 | /* Block until we get an event reported with SIGCHLD. */ | |
3432 | wait_for_signal (); | |
3433 | } | |
3434 | ||
3435 | gdb_assert (lp); | |
3436 | gdb_assert (lp->stopped); | |
3437 | ||
3438 | status = lp->status; | |
3439 | lp->status = 0; | |
3440 | ||
3441 | if (!target_is_non_stop_p ()) | |
3442 | { | |
3443 | /* Now stop all other LWP's ... */ | |
3444 | iterate_over_lwps (minus_one_ptid, stop_callback); | |
3445 | ||
3446 | /* ... and wait until all of them have reported back that | |
3447 | they're no longer running. */ | |
3448 | iterate_over_lwps (minus_one_ptid, stop_wait_callback); | |
3449 | } | |
3450 | ||
3451 | /* If we're not waiting for a specific LWP, choose an event LWP from | |
3452 | among those that have had events. Giving equal priority to all | |
3453 | LWPs that have had events helps prevent starvation. */ | |
3454 | if (ptid == minus_one_ptid || ptid.is_pid ()) | |
3455 | select_event_lwp (ptid, &lp, &status); | |
3456 | ||
3457 | gdb_assert (lp != NULL); | |
3458 | ||
3459 | /* We'll need this to determine whether to report a SIGSTOP as | |
3460 | GDB_SIGNAL_0. Need to take a copy because resume_clear_callback | |
3461 | clears it. */ | |
3462 | last_resume_kind = lp->last_resume_kind; | |
3463 | ||
3464 | if (!target_is_non_stop_p ()) | |
3465 | { | |
3466 | /* In all-stop, from the core's perspective, all LWPs are now | |
3467 | stopped until a new resume action is sent over. */ | |
3468 | iterate_over_lwps (minus_one_ptid, resume_clear_callback); | |
3469 | } | |
3470 | else | |
3471 | { | |
3472 | resume_clear_callback (lp); | |
3473 | } | |
3474 | ||
3475 | if (linux_target->low_status_is_event (status)) | |
3476 | { | |
3477 | linux_nat_debug_printf ("trap ptid is %s.", | |
3478 | lp->ptid.to_string ().c_str ()); | |
3479 | } | |
3480 | ||
3481 | if (lp->waitstatus.kind () != TARGET_WAITKIND_IGNORE) | |
3482 | { | |
3483 | *ourstatus = lp->waitstatus; | |
3484 | lp->waitstatus.set_ignore (); | |
3485 | } | |
3486 | else | |
3487 | *ourstatus = host_status_to_waitstatus (status); | |
3488 | ||
3489 | linux_nat_debug_printf ("event found"); | |
3490 | ||
3491 | restore_child_signals_mask (&prev_mask); | |
3492 | ||
3493 | if (last_resume_kind == resume_stop | |
3494 | && ourstatus->kind () == TARGET_WAITKIND_STOPPED | |
3495 | && WSTOPSIG (status) == SIGSTOP) | |
3496 | { | |
3497 | /* A thread that has been requested to stop by GDB with | |
3498 | target_stop, and it stopped cleanly, so report as SIG0. The | |
3499 | use of SIGSTOP is an implementation detail. */ | |
3500 | ourstatus->set_stopped (GDB_SIGNAL_0); | |
3501 | } | |
3502 | ||
3503 | if (ourstatus->kind () == TARGET_WAITKIND_EXITED | |
3504 | || ourstatus->kind () == TARGET_WAITKIND_SIGNALLED) | |
3505 | lp->core = -1; | |
3506 | else | |
3507 | lp->core = linux_common_core_of_thread (lp->ptid); | |
3508 | ||
3509 | return filter_exit_event (lp, ourstatus); | |
3510 | } | |
3511 | ||
3512 | /* Resume LWPs that are currently stopped without any pending status | |
3513 | to report, but are resumed from the core's perspective. */ | |
3514 | ||
3515 | static int | |
3516 | resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid) | |
3517 | { | |
3518 | inferior *inf = lwp_inferior (lp); | |
3519 | ||
3520 | if (!lp->stopped) | |
3521 | { | |
3522 | linux_nat_debug_printf ("NOT resuming LWP %s, not stopped", | |
3523 | lp->ptid.to_string ().c_str ()); | |
3524 | } | |
3525 | else if (!lp->resumed) | |
3526 | { | |
3527 | linux_nat_debug_printf ("NOT resuming LWP %s, not resumed", | |
3528 | lp->ptid.to_string ().c_str ()); | |
3529 | } | |
3530 | else if (lwp_status_pending_p (lp)) | |
3531 | { | |
3532 | linux_nat_debug_printf ("NOT resuming LWP %s, has pending status", | |
3533 | lp->ptid.to_string ().c_str ()); | |
3534 | } | |
3535 | else if (inf->vfork_child != nullptr) | |
3536 | { | |
3537 | linux_nat_debug_printf ("NOT resuming LWP %s (vfork parent)", | |
3538 | lp->ptid.to_string ().c_str ()); | |
3539 | } | |
3540 | else | |
3541 | { | |
3542 | struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid); | |
3543 | struct gdbarch *gdbarch = regcache->arch (); | |
3544 | ||
3545 | try | |
3546 | { | |
3547 | CORE_ADDR pc = regcache_read_pc (regcache); | |
3548 | int leave_stopped = 0; | |
3549 | ||
3550 | /* Don't bother if there's a breakpoint at PC that we'd hit | |
3551 | immediately, and we're not waiting for this LWP. */ | |
3552 | if (!lp->ptid.matches (wait_ptid)) | |
3553 | { | |
3554 | if (breakpoint_inserted_here_p (inf->aspace.get (), pc)) | |
3555 | leave_stopped = 1; | |
3556 | } | |
3557 | ||
3558 | if (!leave_stopped) | |
3559 | { | |
3560 | linux_nat_debug_printf | |
3561 | ("resuming stopped-resumed LWP %s at %s: step=%d", | |
3562 | lp->ptid.to_string ().c_str (), paddress (gdbarch, pc), | |
3563 | lp->step); | |
3564 | ||
3565 | linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0); | |
3566 | } | |
3567 | } | |
3568 | catch (const gdb_exception_error &ex) | |
3569 | { | |
3570 | if (!check_ptrace_stopped_lwp_gone (lp)) | |
3571 | throw; | |
3572 | } | |
3573 | } | |
3574 | ||
3575 | return 0; | |
3576 | } | |
3577 | ||
3578 | ptid_t | |
3579 | linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus, | |
3580 | target_wait_flags target_options) | |
3581 | { | |
3582 | LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT; | |
3583 | ||
3584 | ptid_t event_ptid; | |
3585 | ||
3586 | linux_nat_debug_printf ("[%s], [%s]", ptid.to_string ().c_str (), | |
3587 | target_options_to_string (target_options).c_str ()); | |
3588 | ||
3589 | /* Flush the async file first. */ | |
3590 | if (target_is_async_p ()) | |
3591 | async_file_flush (); | |
3592 | ||
3593 | /* Resume LWPs that are currently stopped without any pending status | |
3594 | to report, but are resumed from the core's perspective. LWPs get | |
3595 | in this state if we find them stopping at a time we're not | |
3596 | interested in reporting the event (target_wait on a | |
3597 | specific_process, for example, see linux_nat_wait_1), and | |
3598 | meanwhile the event became uninteresting. Don't bother resuming | |
3599 | LWPs we're not going to wait for if they'd stop immediately. */ | |
3600 | if (target_is_non_stop_p ()) | |
3601 | iterate_over_lwps (minus_one_ptid, | |
3602 | [=] (struct lwp_info *info) | |
3603 | { | |
3604 | return resume_stopped_resumed_lwps (info, ptid); | |
3605 | }); | |
3606 | ||
3607 | event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options); | |
3608 | ||
3609 | /* If we requested any event, and something came out, assume there | |
3610 | may be more. If we requested a specific lwp or process, also | |
3611 | assume there may be more. */ | |
3612 | if (target_is_async_p () | |
3613 | && ((ourstatus->kind () != TARGET_WAITKIND_IGNORE | |
3614 | && ourstatus->kind () != TARGET_WAITKIND_NO_RESUMED) | |
3615 | || ptid != minus_one_ptid)) | |
3616 | async_file_mark (); | |
3617 | ||
3618 | return event_ptid; | |
3619 | } | |
3620 | ||
3621 | /* Kill one LWP. */ | |
3622 | ||
3623 | static void | |
3624 | kill_one_lwp (pid_t pid) | |
3625 | { | |
3626 | /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */ | |
3627 | ||
3628 | errno = 0; | |
3629 | kill_lwp (pid, SIGKILL); | |
3630 | ||
3631 | if (debug_linux_nat) | |
3632 | { | |
3633 | int save_errno = errno; | |
3634 | ||
3635 | linux_nat_debug_printf | |
3636 | ("kill (SIGKILL) %ld, 0, 0 (%s)", (long) pid, | |
3637 | save_errno != 0 ? safe_strerror (save_errno) : "OK"); | |
3638 | } | |
3639 | ||
3640 | /* Some kernels ignore even SIGKILL for processes under ptrace. */ | |
3641 | ||
3642 | errno = 0; | |
3643 | ptrace (PTRACE_KILL, pid, 0, 0); | |
3644 | if (debug_linux_nat) | |
3645 | { | |
3646 | int save_errno = errno; | |
3647 | ||
3648 | linux_nat_debug_printf | |
3649 | ("PTRACE_KILL %ld, 0, 0 (%s)", (long) pid, | |
3650 | save_errno ? safe_strerror (save_errno) : "OK"); | |
3651 | } | |
3652 | } | |
3653 | ||
3654 | /* Wait for an LWP to die. */ | |
3655 | ||
3656 | static void | |
3657 | kill_wait_one_lwp (pid_t pid) | |
3658 | { | |
3659 | pid_t res; | |
3660 | ||
3661 | /* We must make sure that there are no pending events (delayed | |
3662 | SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current | |
3663 | program doesn't interfere with any following debugging session. */ | |
3664 | ||
3665 | do | |
3666 | { | |
3667 | res = my_waitpid (pid, NULL, __WALL); | |
3668 | if (res != (pid_t) -1) | |
3669 | { | |
3670 | linux_nat_debug_printf ("wait %ld received unknown.", (long) pid); | |
3671 | ||
3672 | /* The Linux kernel sometimes fails to kill a thread | |
3673 | completely after PTRACE_KILL; that goes from the stop | |
3674 | point in do_fork out to the one in get_signal_to_deliver | |
3675 | and waits again. So kill it again. */ | |
3676 | kill_one_lwp (pid); | |
3677 | } | |
3678 | } | |
3679 | while (res == pid); | |
3680 | ||
3681 | gdb_assert (res == -1 && errno == ECHILD); | |
3682 | } | |
3683 | ||
3684 | /* Callback for iterate_over_lwps. */ | |
3685 | ||
3686 | static int | |
3687 | kill_callback (struct lwp_info *lp) | |
3688 | { | |
3689 | kill_one_lwp (lp->ptid.lwp ()); | |
3690 | return 0; | |
3691 | } | |
3692 | ||
3693 | /* Callback for iterate_over_lwps. */ | |
3694 | ||
3695 | static int | |
3696 | kill_wait_callback (struct lwp_info *lp) | |
3697 | { | |
3698 | kill_wait_one_lwp (lp->ptid.lwp ()); | |
3699 | return 0; | |
3700 | } | |
3701 | ||
3702 | /* Kill the fork/clone child of LP if it has an unfollowed child. */ | |
3703 | ||
3704 | static int | |
3705 | kill_unfollowed_child_callback (lwp_info *lp) | |
3706 | { | |
3707 | std::optional<target_waitstatus> ws = get_pending_child_status (lp); | |
3708 | if (ws.has_value ()) | |
3709 | { | |
3710 | ptid_t child_ptid = ws->child_ptid (); | |
3711 | int child_pid = child_ptid.pid (); | |
3712 | int child_lwp = child_ptid.lwp (); | |
3713 | ||
3714 | kill_one_lwp (child_lwp); | |
3715 | kill_wait_one_lwp (child_lwp); | |
3716 | ||
3717 | /* Let the arch-specific native code know this process is | |
3718 | gone. */ | |
3719 | if (ws->kind () != TARGET_WAITKIND_THREAD_CLONED) | |
3720 | linux_target->low_forget_process (child_pid); | |
3721 | } | |
3722 | ||
3723 | return 0; | |
3724 | } | |
3725 | ||
3726 | void | |
3727 | linux_nat_target::kill () | |
3728 | { | |
3729 | ptid_t pid_ptid (inferior_ptid.pid ()); | |
3730 | ||
3731 | /* If we're stopped while forking/cloning and we haven't followed | |
3732 | yet, kill the child task. We need to do this first because the | |
3733 | parent will be sleeping if this is a vfork. */ | |
3734 | iterate_over_lwps (pid_ptid, kill_unfollowed_child_callback); | |
3735 | ||
3736 | if (forks_exist_p (current_inferior ())) | |
3737 | linux_fork_killall (current_inferior ()); | |
3738 | else | |
3739 | { | |
3740 | /* Stop all threads before killing them, since ptrace requires | |
3741 | that the thread is stopped to successfully PTRACE_KILL. */ | |
3742 | iterate_over_lwps (pid_ptid, stop_callback); | |
3743 | /* ... and wait until all of them have reported back that | |
3744 | they're no longer running. */ | |
3745 | iterate_over_lwps (pid_ptid, stop_wait_callback); | |
3746 | ||
3747 | /* Kill all LWP's ... */ | |
3748 | iterate_over_lwps (pid_ptid, kill_callback); | |
3749 | ||
3750 | /* ... and wait until we've flushed all events. */ | |
3751 | iterate_over_lwps (pid_ptid, kill_wait_callback); | |
3752 | } | |
3753 | ||
3754 | target_mourn_inferior (inferior_ptid); | |
3755 | } | |
3756 | ||
3757 | void | |
3758 | linux_nat_target::mourn_inferior () | |
3759 | { | |
3760 | LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT; | |
3761 | ||
3762 | int pid = inferior_ptid.pid (); | |
3763 | ||
3764 | purge_lwp_list (pid); | |
3765 | ||
3766 | close_proc_mem_file (pid); | |
3767 | ||
3768 | if (! forks_exist_p (current_inferior ())) | |
3769 | /* Normal case, no other forks available. */ | |
3770 | inf_ptrace_target::mourn_inferior (); | |
3771 | else | |
3772 | /* Multi-fork case. The current inferior_ptid has exited, but | |
3773 | there are other viable forks to debug. Delete the exiting | |
3774 | one and context-switch to the first available. */ | |
3775 | linux_fork_mourn_inferior (); | |
3776 | ||
3777 | /* Let the arch-specific native code know this process is gone. */ | |
3778 | linux_target->low_forget_process (pid); | |
3779 | } | |
3780 | ||
3781 | /* Convert a native/host siginfo object, into/from the siginfo in the | |
3782 | layout of the inferiors' architecture. */ | |
3783 | ||
3784 | static void | |
3785 | siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction) | |
3786 | { | |
3787 | /* If the low target didn't do anything, then just do a straight | |
3788 | memcpy. */ | |
3789 | if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction)) | |
3790 | { | |
3791 | if (direction == 1) | |
3792 | memcpy (siginfo, inf_siginfo, sizeof (siginfo_t)); | |
3793 | else | |
3794 | memcpy (inf_siginfo, siginfo, sizeof (siginfo_t)); | |
3795 | } | |
3796 | } | |
3797 | ||
3798 | static enum target_xfer_status | |
3799 | linux_xfer_siginfo (ptid_t ptid, enum target_object object, | |
3800 | const char *annex, gdb_byte *readbuf, | |
3801 | const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, | |
3802 | ULONGEST *xfered_len) | |
3803 | { | |
3804 | siginfo_t siginfo; | |
3805 | gdb_byte inf_siginfo[sizeof (siginfo_t)]; | |
3806 | ||
3807 | gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO); | |
3808 | gdb_assert (readbuf || writebuf); | |
3809 | ||
3810 | if (offset > sizeof (siginfo)) | |
3811 | return TARGET_XFER_E_IO; | |
3812 | ||
3813 | if (!linux_nat_get_siginfo (ptid, &siginfo)) | |
3814 | return TARGET_XFER_E_IO; | |
3815 | ||
3816 | /* When GDB is built as a 64-bit application, ptrace writes into | |
3817 | SIGINFO an object with 64-bit layout. Since debugging a 32-bit | |
3818 | inferior with a 64-bit GDB should look the same as debugging it | |
3819 | with a 32-bit GDB, we need to convert it. GDB core always sees | |
3820 | the converted layout, so any read/write will have to be done | |
3821 | post-conversion. */ | |
3822 | siginfo_fixup (&siginfo, inf_siginfo, 0); | |
3823 | ||
3824 | if (offset + len > sizeof (siginfo)) | |
3825 | len = sizeof (siginfo) - offset; | |
3826 | ||
3827 | if (readbuf != NULL) | |
3828 | memcpy (readbuf, inf_siginfo + offset, len); | |
3829 | else | |
3830 | { | |
3831 | memcpy (inf_siginfo + offset, writebuf, len); | |
3832 | ||
3833 | /* Convert back to ptrace layout before flushing it out. */ | |
3834 | siginfo_fixup (&siginfo, inf_siginfo, 1); | |
3835 | ||
3836 | int pid = get_ptrace_pid (ptid); | |
3837 | errno = 0; | |
3838 | ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo); | |
3839 | if (errno != 0) | |
3840 | return TARGET_XFER_E_IO; | |
3841 | } | |
3842 | ||
3843 | *xfered_len = len; | |
3844 | return TARGET_XFER_OK; | |
3845 | } | |
3846 | ||
3847 | static enum target_xfer_status | |
3848 | linux_nat_xfer_osdata (enum target_object object, | |
3849 | const char *annex, gdb_byte *readbuf, | |
3850 | const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, | |
3851 | ULONGEST *xfered_len); | |
3852 | ||
3853 | static enum target_xfer_status | |
3854 | linux_proc_xfer_memory_partial (int pid, gdb_byte *readbuf, | |
3855 | const gdb_byte *writebuf, ULONGEST offset, | |
3856 | LONGEST len, ULONGEST *xfered_len); | |
3857 | ||
3858 | /* Look for an LWP of PID that we know is ptrace-stopped. Returns | |
3859 | NULL if none is found. */ | |
3860 | ||
3861 | static lwp_info * | |
3862 | find_stopped_lwp (int pid) | |
3863 | { | |
3864 | for (lwp_info *lp : all_lwps ()) | |
3865 | if (lp->ptid.pid () == pid | |
3866 | && lp->stopped | |
3867 | && !is_lwp_marked_dead (lp)) | |
3868 | return lp; | |
3869 | return nullptr; | |
3870 | } | |
3871 | ||
3872 | enum target_xfer_status | |
3873 | linux_nat_target::xfer_partial (enum target_object object, | |
3874 | const char *annex, gdb_byte *readbuf, | |
3875 | const gdb_byte *writebuf, | |
3876 | ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) | |
3877 | { | |
3878 | if (object == TARGET_OBJECT_SIGNAL_INFO) | |
3879 | return linux_xfer_siginfo (inferior_ptid, object, annex, readbuf, writebuf, | |
3880 | offset, len, xfered_len); | |
3881 | ||
3882 | /* The target is connected but no live inferior is selected. Pass | |
3883 | this request down to a lower stratum (e.g., the executable | |
3884 | file). */ | |
3885 | if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid) | |
3886 | return TARGET_XFER_EOF; | |
3887 | ||
3888 | if (object == TARGET_OBJECT_AUXV) | |
3889 | return memory_xfer_auxv (this, object, annex, readbuf, writebuf, | |
3890 | offset, len, xfered_len); | |
3891 | ||
3892 | if (object == TARGET_OBJECT_OSDATA) | |
3893 | return linux_nat_xfer_osdata (object, annex, readbuf, writebuf, | |
3894 | offset, len, xfered_len); | |
3895 | ||
3896 | if (object == TARGET_OBJECT_MEMORY) | |
3897 | { | |
3898 | /* GDB calculates all addresses in the largest possible address | |
3899 | width. The address width must be masked before its final use | |
3900 | by linux_proc_xfer_partial. | |
3901 | ||
3902 | Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */ | |
3903 | int addr_bit = gdbarch_addr_bit (current_inferior ()->arch ()); | |
3904 | ||
3905 | if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT)) | |
3906 | offset &= ((ULONGEST) 1 << addr_bit) - 1; | |
3907 | ||
3908 | /* If /proc/pid/mem is writable, don't fallback to ptrace. If | |
3909 | the write via /proc/pid/mem fails because the inferior execed | |
3910 | (and we haven't seen the exec event yet), a subsequent ptrace | |
3911 | poke would incorrectly write memory to the post-exec address | |
3912 | space, while the core was trying to write to the pre-exec | |
3913 | address space. */ | |
3914 | if (proc_mem_file_is_writable ()) | |
3915 | return linux_proc_xfer_memory_partial (inferior_ptid.pid (), readbuf, | |
3916 | writebuf, offset, len, | |
3917 | xfered_len); | |
3918 | ||
3919 | /* Fallback to ptrace. This should only really trigger on old | |
3920 | systems. See "Accessing inferior memory" at the top. | |
3921 | ||
3922 | The target_xfer interface for memory access uses | |
3923 | inferior_ptid as sideband argument to indicate which process | |
3924 | to access. Memory access is process-wide, it is not | |
3925 | thread-specific, so inferior_ptid sometimes points at a | |
3926 | process ptid_t. If we fallback to inf_ptrace_target with | |
3927 | that inferior_ptid, then the ptrace code will do the ptrace | |
3928 | call targeting inferior_ptid.pid(), the leader LWP. That | |
3929 | may fail with ESRCH if the leader is currently running, or | |
3930 | zombie. So if we get a pid-ptid, we try to find a stopped | |
3931 | LWP to use with ptrace. | |
3932 | ||
3933 | Note that inferior_ptid may not exist in the lwp / thread / | |
3934 | inferior lists. This can happen when we're removing | |
3935 | breakpoints from a fork child that we're not going to stay | |
3936 | attached to. So if we don't find a stopped LWP, still do the | |
3937 | ptrace call, targeting the inferior_ptid we had on entry. */ | |
3938 | scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); | |
3939 | lwp_info *stopped = find_stopped_lwp (inferior_ptid.pid ()); | |
3940 | if (stopped != nullptr) | |
3941 | inferior_ptid = stopped->ptid; | |
3942 | return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf, | |
3943 | offset, len, xfered_len); | |
3944 | } | |
3945 | ||
3946 | return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf, | |
3947 | offset, len, xfered_len); | |
3948 | } | |
3949 | ||
3950 | bool | |
3951 | linux_nat_target::thread_alive (ptid_t ptid) | |
3952 | { | |
3953 | /* As long as a PTID is in lwp list, consider it alive. */ | |
3954 | return find_lwp_pid (ptid) != NULL; | |
3955 | } | |
3956 | ||
3957 | /* Implement the to_update_thread_list target method for this | |
3958 | target. */ | |
3959 | ||
3960 | void | |
3961 | linux_nat_target::update_thread_list () | |
3962 | { | |
3963 | /* We add/delete threads from the list as clone/exit events are | |
3964 | processed, so just try deleting exited threads still in the | |
3965 | thread list. */ | |
3966 | delete_exited_threads (); | |
3967 | ||
3968 | /* Update the processor core that each lwp/thread was last seen | |
3969 | running on. */ | |
3970 | for (lwp_info *lwp : all_lwps ()) | |
3971 | { | |
3972 | /* Avoid accessing /proc if the thread hasn't run since we last | |
3973 | time we fetched the thread's core. Accessing /proc becomes | |
3974 | noticeably expensive when we have thousands of LWPs. */ | |
3975 | if (lwp->core == -1) | |
3976 | lwp->core = linux_common_core_of_thread (lwp->ptid); | |
3977 | } | |
3978 | } | |
3979 | ||
3980 | std::string | |
3981 | linux_nat_target::pid_to_str (ptid_t ptid) | |
3982 | { | |
3983 | if (ptid.lwp_p () | |
3984 | && (ptid.pid () != ptid.lwp () | |
3985 | || num_lwps (ptid.pid ()) > 1)) | |
3986 | return string_printf ("LWP %ld", ptid.lwp ()); | |
3987 | ||
3988 | return normal_pid_to_str (ptid); | |
3989 | } | |
3990 | ||
3991 | const char * | |
3992 | linux_nat_target::thread_name (struct thread_info *thr) | |
3993 | { | |
3994 | return linux_proc_tid_get_name (thr->ptid); | |
3995 | } | |
3996 | ||
3997 | /* Accepts an integer PID; Returns a string representing a file that | |
3998 | can be opened to get the symbols for the child process. */ | |
3999 | ||
4000 | const char * | |
4001 | linux_nat_target::pid_to_exec_file (int pid) | |
4002 | { | |
4003 | /* If there's no sysroot. Or the sysroot is just 'target:' and the | |
4004 | inferior is in the same mount namespce, then we can consider the | |
4005 | filesystem local. */ | |
4006 | bool local_fs = (gdb_sysroot.empty () | |
4007 | || (gdb_sysroot == TARGET_SYSROOT_PREFIX | |
4008 | && linux_ns_same (pid, LINUX_NS_MNT))); | |
4009 | ||
4010 | return linux_proc_pid_to_exec_file (pid, local_fs); | |
4011 | } | |
4012 | ||
4013 | /* Object representing an /proc/PID/mem open file. We keep one such | |
4014 | file open per inferior. | |
4015 | ||
4016 | It might be tempting to think about only ever opening one file at | |
4017 | most for all inferiors, closing/reopening the file as we access | |
4018 | memory of different inferiors, to minimize number of file | |
4019 | descriptors open, which can otherwise run into resource limits. | |
4020 | However, that does not work correctly -- if the inferior execs and | |
4021 | we haven't processed the exec event yet, and, we opened a | |
4022 | /proc/PID/mem file, we will get a mem file accessing the post-exec | |
4023 | address space, thinking we're opening it for the pre-exec address | |
4024 | space. That is dangerous as we can poke memory (e.g. clearing | |
4025 | breakpoints) in the post-exec memory by mistake, corrupting the | |
4026 | inferior. For that reason, we open the mem file as early as | |
4027 | possible, right after spawning, forking or attaching to the | |
4028 | inferior, when the inferior is stopped and thus before it has a | |
4029 | chance of execing. | |
4030 | ||
4031 | Note that after opening the file, even if the thread we opened it | |
4032 | for subsequently exits, the open file is still usable for accessing | |
4033 | memory. It's only when the whole process exits or execs that the | |
4034 | file becomes invalid, at which point reads/writes return EOF. */ | |
4035 | ||
4036 | class proc_mem_file | |
4037 | { | |
4038 | public: | |
4039 | proc_mem_file (ptid_t ptid, scoped_fd fd) | |
4040 | : m_ptid (ptid), m_fd (std::move (fd)) | |
4041 | { | |
4042 | gdb_assert (m_fd.get () != -1); | |
4043 | } | |
4044 | ||
4045 | ~proc_mem_file () | |
4046 | { | |
4047 | linux_nat_debug_printf ("closing fd %d for /proc/%d/task/%ld/mem", | |
4048 | m_fd.get (), m_ptid.pid (), m_ptid.lwp ()); | |
4049 | } | |
4050 | ||
4051 | int fd () const noexcept | |
4052 | { | |
4053 | return m_fd.get (); | |
4054 | } | |
4055 | ||
4056 | private: | |
4057 | /* The LWP this file was opened for. Just for debugging | |
4058 | purposes. */ | |
4059 | ptid_t m_ptid; | |
4060 | ||
4061 | /* The file descriptor. */ | |
4062 | scoped_fd m_fd; | |
4063 | }; | |
4064 | ||
4065 | /* The map between an inferior process id, and the open /proc/PID/mem | |
4066 | file. This is stored in a map instead of in a per-inferior | |
4067 | structure because we need to be able to access memory of processes | |
4068 | which don't have a corresponding struct inferior object. E.g., | |
4069 | with "detach-on-fork on" (the default), and "follow-fork parent" | |
4070 | (also default), we don't create an inferior for the fork child, but | |
4071 | we still need to remove breakpoints from the fork child's | |
4072 | memory. */ | |
4073 | static std::unordered_map<int, proc_mem_file> proc_mem_file_map; | |
4074 | ||
4075 | /* Close the /proc/PID/mem file for PID. */ | |
4076 | ||
4077 | static void | |
4078 | close_proc_mem_file (pid_t pid) | |
4079 | { | |
4080 | proc_mem_file_map.erase (pid); | |
4081 | } | |
4082 | ||
4083 | /* Open the /proc/PID/mem file for the process (thread group) of PTID. | |
4084 | We actually open /proc/PID/task/LWP/mem, as that's the LWP we know | |
4085 | exists and is stopped right now. We prefer the | |
4086 | /proc/PID/task/LWP/mem form over /proc/LWP/mem to avoid tid-reuse | |
4087 | races, just in case this is ever called on an already-waited | |
4088 | LWP. */ | |
4089 | ||
4090 | static void | |
4091 | open_proc_mem_file (ptid_t ptid) | |
4092 | { | |
4093 | auto iter = proc_mem_file_map.find (ptid.pid ()); | |
4094 | gdb_assert (iter == proc_mem_file_map.end ()); | |
4095 | ||
4096 | char filename[64]; | |
4097 | xsnprintf (filename, sizeof filename, | |
4098 | "/proc/%d/task/%ld/mem", ptid.pid (), ptid.lwp ()); | |
4099 | ||
4100 | scoped_fd fd = gdb_open_cloexec (filename, O_RDWR | O_LARGEFILE, 0); | |
4101 | ||
4102 | if (fd.get () == -1) | |
4103 | { | |
4104 | warning (_("opening /proc/PID/mem file for lwp %d.%ld failed: %s (%d)"), | |
4105 | ptid.pid (), ptid.lwp (), | |
4106 | safe_strerror (errno), errno); | |
4107 | return; | |
4108 | } | |
4109 | ||
4110 | linux_nat_debug_printf ("opened fd %d for lwp %d.%ld", | |
4111 | fd.get (), ptid.pid (), ptid.lwp ()); | |
4112 | proc_mem_file_map.emplace (std::piecewise_construct, | |
4113 | std::forward_as_tuple (ptid.pid ()), | |
4114 | std::forward_as_tuple (ptid, std::move (fd))); | |
4115 | } | |
4116 | ||
4117 | /* Helper for linux_proc_xfer_memory_partial and | |
4118 | proc_mem_file_is_writable. FD is the already opened /proc/pid/mem | |
4119 | file, and PID is the pid of the corresponding process. The rest of | |
4120 | the arguments are like linux_proc_xfer_memory_partial's. */ | |
4121 | ||
4122 | static enum target_xfer_status | |
4123 | linux_proc_xfer_memory_partial_fd (int fd, int pid, | |
4124 | gdb_byte *readbuf, const gdb_byte *writebuf, | |
4125 | ULONGEST offset, LONGEST len, | |
4126 | ULONGEST *xfered_len) | |
4127 | { | |
4128 | ssize_t ret; | |
4129 | ||
4130 | gdb_assert (fd != -1); | |
4131 | ||
4132 | /* Use pread64/pwrite64 if available, since they save a syscall and | |
4133 | can handle 64-bit offsets even on 32-bit platforms (for instance, | |
4134 | SPARC debugging a SPARC64 application). But only use them if the | |
4135 | offset isn't so high that when cast to off_t it'd be negative, as | |
4136 | seen on SPARC64. pread64/pwrite64 outright reject such offsets. | |
4137 | lseek does not. */ | |
4138 | #ifdef HAVE_PREAD64 | |
4139 | if ((off_t) offset >= 0) | |
4140 | ret = (readbuf != nullptr | |
4141 | ? pread64 (fd, readbuf, len, offset) | |
4142 | : pwrite64 (fd, writebuf, len, offset)); | |
4143 | else | |
4144 | #endif | |
4145 | { | |
4146 | ret = lseek (fd, offset, SEEK_SET); | |
4147 | if (ret != -1) | |
4148 | ret = (readbuf != nullptr | |
4149 | ? read (fd, readbuf, len) | |
4150 | : write (fd, writebuf, len)); | |
4151 | } | |
4152 | ||
4153 | if (ret == -1) | |
4154 | { | |
4155 | linux_nat_debug_printf ("accessing fd %d for pid %d failed: %s (%d)", | |
4156 | fd, pid, safe_strerror (errno), errno); | |
4157 | return TARGET_XFER_E_IO; | |
4158 | } | |
4159 | else if (ret == 0) | |
4160 | { | |
4161 | /* EOF means the address space is gone, the whole process exited | |
4162 | or execed. */ | |
4163 | linux_nat_debug_printf ("accessing fd %d for pid %d got EOF", | |
4164 | fd, pid); | |
4165 | return TARGET_XFER_EOF; | |
4166 | } | |
4167 | else | |
4168 | { | |
4169 | *xfered_len = ret; | |
4170 | return TARGET_XFER_OK; | |
4171 | } | |
4172 | } | |
4173 | ||
4174 | /* Implement the to_xfer_partial target method using /proc/PID/mem. | |
4175 | Because we can use a single read/write call, this can be much more | |
4176 | efficient than banging away at PTRACE_PEEKTEXT. Also, unlike | |
4177 | PTRACE_PEEKTEXT/PTRACE_POKETEXT, this works with running | |
4178 | threads. */ | |
4179 | ||
4180 | static enum target_xfer_status | |
4181 | linux_proc_xfer_memory_partial (int pid, gdb_byte *readbuf, | |
4182 | const gdb_byte *writebuf, ULONGEST offset, | |
4183 | LONGEST len, ULONGEST *xfered_len) | |
4184 | { | |
4185 | auto iter = proc_mem_file_map.find (pid); | |
4186 | if (iter == proc_mem_file_map.end ()) | |
4187 | return TARGET_XFER_EOF; | |
4188 | ||
4189 | int fd = iter->second.fd (); | |
4190 | ||
4191 | return linux_proc_xfer_memory_partial_fd (fd, pid, readbuf, writebuf, offset, | |
4192 | len, xfered_len); | |
4193 | } | |
4194 | ||
4195 | /* Check whether /proc/pid/mem is writable in the current kernel, and | |
4196 | return true if so. It wasn't writable before Linux 2.6.39, but | |
4197 | there's no way to know whether the feature was backported to older | |
4198 | kernels. So we check to see if it works. The result is cached, | |
4199 | and this is guaranteed to be called once early during inferior | |
4200 | startup, so that any warning is printed out consistently between | |
4201 | GDB invocations. Note we don't call it during GDB startup instead | |
4202 | though, because then we might warn with e.g. just "gdb --version" | |
4203 | on sandboxed systems. See PR gdb/29907. */ | |
4204 | ||
4205 | static bool | |
4206 | proc_mem_file_is_writable () | |
4207 | { | |
4208 | static std::optional<bool> writable; | |
4209 | ||
4210 | if (writable.has_value ()) | |
4211 | return *writable; | |
4212 | ||
4213 | writable.emplace (false); | |
4214 | ||
4215 | /* We check whether /proc/pid/mem is writable by trying to write to | |
4216 | one of our variables via /proc/self/mem. */ | |
4217 | ||
4218 | int fd = gdb_open_cloexec ("/proc/self/mem", O_RDWR | O_LARGEFILE, 0).release (); | |
4219 | ||
4220 | if (fd == -1) | |
4221 | { | |
4222 | warning (_("opening /proc/self/mem file failed: %s (%d)"), | |
4223 | safe_strerror (errno), errno); | |
4224 | return *writable; | |
4225 | } | |
4226 | ||
4227 | SCOPE_EXIT { close (fd); }; | |
4228 | ||
4229 | /* This is the variable we try to write to. Note OFFSET below. */ | |
4230 | volatile gdb_byte test_var = 0; | |
4231 | ||
4232 | gdb_byte writebuf[] = {0x55}; | |
4233 | ULONGEST offset = (uintptr_t) &test_var; | |
4234 | ULONGEST xfered_len; | |
4235 | ||
4236 | enum target_xfer_status res | |
4237 | = linux_proc_xfer_memory_partial_fd (fd, getpid (), nullptr, writebuf, | |
4238 | offset, 1, &xfered_len); | |
4239 | ||
4240 | if (res == TARGET_XFER_OK) | |
4241 | { | |
4242 | gdb_assert (xfered_len == 1); | |
4243 | gdb_assert (test_var == 0x55); | |
4244 | /* Success. */ | |
4245 | *writable = true; | |
4246 | } | |
4247 | ||
4248 | return *writable; | |
4249 | } | |
4250 | ||
4251 | /* Parse LINE as a signal set and add its set bits to SIGS. */ | |
4252 | ||
4253 | static void | |
4254 | add_line_to_sigset (const char *line, sigset_t *sigs) | |
4255 | { | |
4256 | int len = strlen (line) - 1; | |
4257 | const char *p; | |
4258 | int signum; | |
4259 | ||
4260 | if (line[len] != '\n') | |
4261 | error (_("Could not parse signal set: %s"), line); | |
4262 | ||
4263 | p = line; | |
4264 | signum = len * 4; | |
4265 | while (len-- > 0) | |
4266 | { | |
4267 | int digit; | |
4268 | ||
4269 | if (*p >= '0' && *p <= '9') | |
4270 | digit = *p - '0'; | |
4271 | else if (*p >= 'a' && *p <= 'f') | |
4272 | digit = *p - 'a' + 10; | |
4273 | else | |
4274 | error (_("Could not parse signal set: %s"), line); | |
4275 | ||
4276 | signum -= 4; | |
4277 | ||
4278 | if (digit & 1) | |
4279 | sigaddset (sigs, signum + 1); | |
4280 | if (digit & 2) | |
4281 | sigaddset (sigs, signum + 2); | |
4282 | if (digit & 4) | |
4283 | sigaddset (sigs, signum + 3); | |
4284 | if (digit & 8) | |
4285 | sigaddset (sigs, signum + 4); | |
4286 | ||
4287 | p++; | |
4288 | } | |
4289 | } | |
4290 | ||
4291 | /* Find process PID's pending signals from /proc/pid/status and set | |
4292 | SIGS to match. */ | |
4293 | ||
4294 | void | |
4295 | linux_proc_pending_signals (int pid, sigset_t *pending, | |
4296 | sigset_t *blocked, sigset_t *ignored) | |
4297 | { | |
4298 | char buffer[PATH_MAX], fname[PATH_MAX]; | |
4299 | ||
4300 | sigemptyset (pending); | |
4301 | sigemptyset (blocked); | |
4302 | sigemptyset (ignored); | |
4303 | xsnprintf (fname, sizeof fname, "/proc/%d/status", pid); | |
4304 | gdb_file_up procfile = gdb_fopen_cloexec (fname, "r"); | |
4305 | if (procfile == NULL) | |
4306 | error (_("Could not open %s"), fname); | |
4307 | ||
4308 | while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL) | |
4309 | { | |
4310 | /* Normal queued signals are on the SigPnd line in the status | |
4311 | file. However, 2.6 kernels also have a "shared" pending | |
4312 | queue for delivering signals to a thread group, so check for | |
4313 | a ShdPnd line also. | |
4314 | ||
4315 | Unfortunately some Red Hat kernels include the shared pending | |
4316 | queue but not the ShdPnd status field. */ | |
4317 | ||
4318 | if (startswith (buffer, "SigPnd:\t")) | |
4319 | add_line_to_sigset (buffer + 8, pending); | |
4320 | else if (startswith (buffer, "ShdPnd:\t")) | |
4321 | add_line_to_sigset (buffer + 8, pending); | |
4322 | else if (startswith (buffer, "SigBlk:\t")) | |
4323 | add_line_to_sigset (buffer + 8, blocked); | |
4324 | else if (startswith (buffer, "SigIgn:\t")) | |
4325 | add_line_to_sigset (buffer + 8, ignored); | |
4326 | } | |
4327 | } | |
4328 | ||
4329 | static enum target_xfer_status | |
4330 | linux_nat_xfer_osdata (enum target_object object, | |
4331 | const char *annex, gdb_byte *readbuf, | |
4332 | const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, | |
4333 | ULONGEST *xfered_len) | |
4334 | { | |
4335 | gdb_assert (object == TARGET_OBJECT_OSDATA); | |
4336 | ||
4337 | *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len); | |
4338 | if (*xfered_len == 0) | |
4339 | return TARGET_XFER_EOF; | |
4340 | else | |
4341 | return TARGET_XFER_OK; | |
4342 | } | |
4343 | ||
4344 | std::vector<static_tracepoint_marker> | |
4345 | linux_nat_target::static_tracepoint_markers_by_strid (const char *strid) | |
4346 | { | |
4347 | char s[IPA_CMD_BUF_SIZE]; | |
4348 | int pid = inferior_ptid.pid (); | |
4349 | std::vector<static_tracepoint_marker> markers; | |
4350 | const char *p = s; | |
4351 | ptid_t ptid = ptid_t (pid, 0); | |
4352 | static_tracepoint_marker marker; | |
4353 | ||
4354 | /* Pause all */ | |
4355 | target_stop (ptid); | |
4356 | ||
4357 | strcpy (s, "qTfSTM"); | |
4358 | agent_run_command (pid, s, strlen (s) + 1); | |
4359 | ||
4360 | /* Unpause all. */ | |
4361 | SCOPE_EXIT { target_continue_no_signal (ptid); }; | |
4362 | ||
4363 | while (*p++ == 'm') | |
4364 | { | |
4365 | do | |
4366 | { | |
4367 | parse_static_tracepoint_marker_definition (p, &p, &marker); | |
4368 | ||
4369 | if (strid == NULL || marker.str_id == strid) | |
4370 | markers.push_back (std::move (marker)); | |
4371 | } | |
4372 | while (*p++ == ','); /* comma-separated list */ | |
4373 | ||
4374 | strcpy (s, "qTsSTM"); | |
4375 | agent_run_command (pid, s, strlen (s) + 1); | |
4376 | p = s; | |
4377 | } | |
4378 | ||
4379 | return markers; | |
4380 | } | |
4381 | ||
4382 | /* target_can_async_p implementation. */ | |
4383 | ||
4384 | bool | |
4385 | linux_nat_target::can_async_p () | |
4386 | { | |
4387 | /* This flag should be checked in the common target.c code. */ | |
4388 | gdb_assert (target_async_permitted); | |
4389 | ||
4390 | /* Otherwise, this targets is always able to support async mode. */ | |
4391 | return true; | |
4392 | } | |
4393 | ||
4394 | bool | |
4395 | linux_nat_target::supports_non_stop () | |
4396 | { | |
4397 | return true; | |
4398 | } | |
4399 | ||
4400 | /* to_always_non_stop_p implementation. */ | |
4401 | ||
4402 | bool | |
4403 | linux_nat_target::always_non_stop_p () | |
4404 | { | |
4405 | return true; | |
4406 | } | |
4407 | ||
4408 | bool | |
4409 | linux_nat_target::supports_multi_process () | |
4410 | { | |
4411 | return true; | |
4412 | } | |
4413 | ||
4414 | bool | |
4415 | linux_nat_target::supports_disable_randomization () | |
4416 | { | |
4417 | return true; | |
4418 | } | |
4419 | ||
4420 | /* SIGCHLD handler that serves two purposes: In non-stop/async mode, | |
4421 | so we notice when any child changes state, and notify the | |
4422 | event-loop; it allows us to use sigsuspend in linux_nat_wait_1 | |
4423 | above to wait for the arrival of a SIGCHLD. */ | |
4424 | ||
4425 | static void | |
4426 | sigchld_handler (int signo) | |
4427 | { | |
4428 | int old_errno = errno; | |
4429 | ||
4430 | if (debug_linux_nat) | |
4431 | gdb_stdlog->write_async_safe ("sigchld\n", sizeof ("sigchld\n") - 1); | |
4432 | ||
4433 | if (signo == SIGCHLD) | |
4434 | { | |
4435 | /* Let the event loop know that there are events to handle. */ | |
4436 | linux_nat_target::async_file_mark_if_open (); | |
4437 | } | |
4438 | ||
4439 | errno = old_errno; | |
4440 | } | |
4441 | ||
4442 | /* Callback registered with the target events file descriptor. */ | |
4443 | ||
4444 | static void | |
4445 | handle_target_event (int error, gdb_client_data client_data) | |
4446 | { | |
4447 | inferior_event_handler (INF_REG_EVENT); | |
4448 | } | |
4449 | ||
4450 | /* target_async implementation. */ | |
4451 | ||
4452 | void | |
4453 | linux_nat_target::async (bool enable) | |
4454 | { | |
4455 | if (enable == is_async_p ()) | |
4456 | return; | |
4457 | ||
4458 | /* Block child signals while we create/destroy the pipe, as their | |
4459 | handler writes to it. */ | |
4460 | gdb::block_signals blocker; | |
4461 | ||
4462 | if (enable) | |
4463 | { | |
4464 | if (!async_file_open ()) | |
4465 | internal_error ("creating event pipe failed."); | |
4466 | ||
4467 | add_file_handler (async_wait_fd (), handle_target_event, NULL, | |
4468 | "linux-nat"); | |
4469 | ||
4470 | /* There may be pending events to handle. Tell the event loop | |
4471 | to poll them. */ | |
4472 | async_file_mark (); | |
4473 | } | |
4474 | else | |
4475 | { | |
4476 | delete_file_handler (async_wait_fd ()); | |
4477 | async_file_close (); | |
4478 | } | |
4479 | } | |
4480 | ||
4481 | /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other | |
4482 | event came out. */ | |
4483 | ||
4484 | static int | |
4485 | linux_nat_stop_lwp (struct lwp_info *lwp) | |
4486 | { | |
4487 | if (!lwp->stopped) | |
4488 | { | |
4489 | linux_nat_debug_printf ("running -> suspending %s", | |
4490 | lwp->ptid.to_string ().c_str ()); | |
4491 | ||
4492 | ||
4493 | if (lwp->last_resume_kind == resume_stop) | |
4494 | { | |
4495 | linux_nat_debug_printf ("already stopping LWP %ld at GDB's request", | |
4496 | lwp->ptid.lwp ()); | |
4497 | return 0; | |
4498 | } | |
4499 | ||
4500 | stop_callback (lwp); | |
4501 | lwp->last_resume_kind = resume_stop; | |
4502 | } | |
4503 | else | |
4504 | { | |
4505 | /* Already known to be stopped; do nothing. */ | |
4506 | ||
4507 | if (debug_linux_nat) | |
4508 | { | |
4509 | if (linux_target->find_thread (lwp->ptid)->stop_requested) | |
4510 | linux_nat_debug_printf ("already stopped/stop_requested %s", | |
4511 | lwp->ptid.to_string ().c_str ()); | |
4512 | else | |
4513 | linux_nat_debug_printf ("already stopped/no stop_requested yet %s", | |
4514 | lwp->ptid.to_string ().c_str ()); | |
4515 | } | |
4516 | } | |
4517 | return 0; | |
4518 | } | |
4519 | ||
4520 | void | |
4521 | linux_nat_target::stop (ptid_t ptid) | |
4522 | { | |
4523 | LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT; | |
4524 | iterate_over_lwps (ptid, linux_nat_stop_lwp); | |
4525 | } | |
4526 | ||
4527 | /* Return the cached value of the processor core for thread PTID. */ | |
4528 | ||
4529 | int | |
4530 | linux_nat_target::core_of_thread (ptid_t ptid) | |
4531 | { | |
4532 | struct lwp_info *info = find_lwp_pid (ptid); | |
4533 | ||
4534 | if (info) | |
4535 | return info->core; | |
4536 | return -1; | |
4537 | } | |
4538 | ||
4539 | /* Implementation of to_filesystem_is_local. */ | |
4540 | ||
4541 | bool | |
4542 | linux_nat_target::filesystem_is_local () | |
4543 | { | |
4544 | struct inferior *inf = current_inferior (); | |
4545 | ||
4546 | if (inf->fake_pid_p || inf->pid == 0) | |
4547 | return true; | |
4548 | ||
4549 | return linux_ns_same (inf->pid, LINUX_NS_MNT); | |
4550 | } | |
4551 | ||
4552 | /* Convert the INF argument passed to a to_fileio_* method | |
4553 | to a process ID suitable for passing to its corresponding | |
4554 | linux_mntns_* function. If INF is non-NULL then the | |
4555 | caller is requesting the filesystem seen by INF. If INF | |
4556 | is NULL then the caller is requesting the filesystem seen | |
4557 | by the GDB. We fall back to GDB's filesystem in the case | |
4558 | that INF is non-NULL but its PID is unknown. */ | |
4559 | ||
4560 | static pid_t | |
4561 | linux_nat_fileio_pid_of (struct inferior *inf) | |
4562 | { | |
4563 | if (inf == NULL || inf->fake_pid_p || inf->pid == 0) | |
4564 | return getpid (); | |
4565 | else | |
4566 | return inf->pid; | |
4567 | } | |
4568 | ||
4569 | /* Implementation of to_fileio_open. */ | |
4570 | ||
4571 | int | |
4572 | linux_nat_target::fileio_open (struct inferior *inf, const char *filename, | |
4573 | int flags, int mode, int warn_if_slow, | |
4574 | fileio_error *target_errno) | |
4575 | { | |
4576 | int nat_flags; | |
4577 | mode_t nat_mode; | |
4578 | int fd; | |
4579 | ||
4580 | if (fileio_to_host_openflags (flags, &nat_flags) == -1 | |
4581 | || fileio_to_host_mode (mode, &nat_mode) == -1) | |
4582 | { | |
4583 | *target_errno = FILEIO_EINVAL; | |
4584 | return -1; | |
4585 | } | |
4586 | ||
4587 | fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf), | |
4588 | filename, nat_flags, nat_mode); | |
4589 | if (fd == -1) | |
4590 | *target_errno = host_to_fileio_error (errno); | |
4591 | ||
4592 | return fd; | |
4593 | } | |
4594 | ||
4595 | /* Implementation of to_fileio_lstat. */ | |
4596 | ||
4597 | int | |
4598 | linux_nat_target::fileio_lstat (struct inferior *inf, const char *filename, | |
4599 | struct stat *sb, fileio_error *target_errno) | |
4600 | { | |
4601 | int r = linux_mntns_lstat (linux_nat_fileio_pid_of (inf), filename, sb); | |
4602 | ||
4603 | if (r == -1) | |
4604 | *target_errno = host_to_fileio_error (errno); | |
4605 | ||
4606 | return r; | |
4607 | } | |
4608 | ||
4609 | /* Implementation of to_fileio_readlink. */ | |
4610 | ||
4611 | std::optional<std::string> | |
4612 | linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename, | |
4613 | fileio_error *target_errno) | |
4614 | { | |
4615 | char buf[PATH_MAX]; | |
4616 | int len; | |
4617 | ||
4618 | len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf), | |
4619 | filename, buf, sizeof (buf)); | |
4620 | if (len < 0) | |
4621 | { | |
4622 | *target_errno = host_to_fileio_error (errno); | |
4623 | return {}; | |
4624 | } | |
4625 | ||
4626 | return std::string (buf, len); | |
4627 | } | |
4628 | ||
4629 | /* Implementation of to_fileio_unlink. */ | |
4630 | ||
4631 | int | |
4632 | linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename, | |
4633 | fileio_error *target_errno) | |
4634 | { | |
4635 | int ret; | |
4636 | ||
4637 | ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf), | |
4638 | filename); | |
4639 | if (ret == -1) | |
4640 | *target_errno = host_to_fileio_error (errno); | |
4641 | ||
4642 | return ret; | |
4643 | } | |
4644 | ||
4645 | /* Implementation of the to_thread_events method. */ | |
4646 | ||
4647 | void | |
4648 | linux_nat_target::thread_events (bool enable) | |
4649 | { | |
4650 | report_thread_events = enable; | |
4651 | } | |
4652 | ||
4653 | bool | |
4654 | linux_nat_target::supports_set_thread_options (gdb_thread_options options) | |
4655 | { | |
4656 | constexpr gdb_thread_options supported_options | |
4657 | = GDB_THREAD_OPTION_CLONE | GDB_THREAD_OPTION_EXIT; | |
4658 | return ((options & supported_options) == options); | |
4659 | } | |
4660 | ||
4661 | linux_nat_target::linux_nat_target () | |
4662 | { | |
4663 | /* We don't change the stratum; this target will sit at | |
4664 | process_stratum and thread_db will set at thread_stratum. This | |
4665 | is a little strange, since this is a multi-threaded-capable | |
4666 | target, but we want to be on the stack below thread_db, and we | |
4667 | also want to be used for single-threaded processes. */ | |
4668 | } | |
4669 | ||
4670 | /* See linux-nat.h. */ | |
4671 | ||
4672 | bool | |
4673 | linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo) | |
4674 | { | |
4675 | int pid = get_ptrace_pid (ptid); | |
4676 | return ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo) == 0; | |
4677 | } | |
4678 | ||
4679 | /* See nat/linux-nat.h. */ | |
4680 | ||
4681 | ptid_t | |
4682 | current_lwp_ptid (void) | |
4683 | { | |
4684 | gdb_assert (inferior_ptid.lwp_p ()); | |
4685 | return inferior_ptid; | |
4686 | } | |
4687 | ||
4688 | /* Implement 'maintenance info linux-lwps'. Displays some basic | |
4689 | information about all the current lwp_info objects. */ | |
4690 | ||
4691 | static void | |
4692 | maintenance_info_lwps (const char *arg, int from_tty) | |
4693 | { | |
4694 | if (all_lwps ().size () == 0) | |
4695 | { | |
4696 | gdb_printf ("No Linux LWPs\n"); | |
4697 | return; | |
4698 | } | |
4699 | ||
4700 | /* Start the width at 8 to match the column heading below, then | |
4701 | figure out the widest ptid string. We'll use this to build our | |
4702 | output table below. */ | |
4703 | size_t ptid_width = 8; | |
4704 | for (lwp_info *lp : all_lwps ()) | |
4705 | ptid_width = std::max (ptid_width, lp->ptid.to_string ().size ()); | |
4706 | ||
4707 | /* Setup the table headers. */ | |
4708 | struct ui_out *uiout = current_uiout; | |
4709 | ui_out_emit_table table_emitter (uiout, 2, -1, "linux-lwps"); | |
4710 | uiout->table_header (ptid_width, ui_left, "lwp-ptid", _("LWP Ptid")); | |
4711 | uiout->table_header (9, ui_left, "thread-info", _("Thread ID")); | |
4712 | uiout->table_body (); | |
4713 | ||
4714 | /* Display one table row for each lwp_info. */ | |
4715 | for (lwp_info *lp : all_lwps ()) | |
4716 | { | |
4717 | ui_out_emit_tuple tuple_emitter (uiout, "lwp-entry"); | |
4718 | ||
4719 | thread_info *th = linux_target->find_thread (lp->ptid); | |
4720 | ||
4721 | uiout->field_string ("lwp-ptid", lp->ptid.to_string ().c_str ()); | |
4722 | if (th == nullptr) | |
4723 | uiout->field_string ("thread-info", "None"); | |
4724 | else | |
4725 | uiout->field_string ("thread-info", print_full_thread_id (th)); | |
4726 | ||
4727 | uiout->message ("\n"); | |
4728 | } | |
4729 | } | |
4730 | ||
4731 | INIT_GDB_FILE (linux_nat) | |
4732 | { | |
4733 | add_setshow_boolean_cmd ("linux-nat", class_maintenance, | |
4734 | &debug_linux_nat, _("\ | |
4735 | Set debugging of GNU/Linux native target."), _("\ | |
4736 | Show debugging of GNU/Linux native target."), _("\ | |
4737 | When on, print debug messages relating to the GNU/Linux native target."), | |
4738 | nullptr, | |
4739 | show_debug_linux_nat, | |
4740 | &setdebuglist, &showdebuglist); | |
4741 | ||
4742 | add_setshow_boolean_cmd ("linux-namespaces", class_maintenance, | |
4743 | &debug_linux_namespaces, _("\ | |
4744 | Set debugging of GNU/Linux namespaces module."), _("\ | |
4745 | Show debugging of GNU/Linux namespaces module."), _("\ | |
4746 | Enables printf debugging output."), | |
4747 | NULL, | |
4748 | NULL, | |
4749 | &setdebuglist, &showdebuglist); | |
4750 | ||
4751 | /* Install a SIGCHLD handler. */ | |
4752 | sigchld_action.sa_handler = sigchld_handler; | |
4753 | sigemptyset (&sigchld_action.sa_mask); | |
4754 | sigchld_action.sa_flags = SA_RESTART; | |
4755 | ||
4756 | /* Make it the default. */ | |
4757 | sigaction (SIGCHLD, &sigchld_action, NULL); | |
4758 | ||
4759 | /* Make sure we don't block SIGCHLD during a sigsuspend. */ | |
4760 | gdb_sigmask (SIG_SETMASK, NULL, &suspend_mask); | |
4761 | sigdelset (&suspend_mask, SIGCHLD); | |
4762 | ||
4763 | sigemptyset (&blocked_mask); | |
4764 | ||
4765 | lwp_lwpid_htab_create (); | |
4766 | ||
4767 | add_cmd ("linux-lwps", class_maintenance, maintenance_info_lwps, | |
4768 | _("List the Linux LWPS."), &maintenanceinfolist); | |
4769 | } | |
4770 | \f | |
4771 | ||
4772 | /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to | |
4773 | the GNU/Linux Threads library and therefore doesn't really belong | |
4774 | here. */ | |
4775 | ||
4776 | /* NPTL reserves the first two RT signals, but does not provide any | |
4777 | way for the debugger to query the signal numbers - fortunately | |
4778 | they don't change. */ | |
4779 | static int lin_thread_signals[] = { __SIGRTMIN, __SIGRTMIN + 1 }; | |
4780 | ||
4781 | /* See linux-nat.h. */ | |
4782 | ||
4783 | unsigned int | |
4784 | lin_thread_get_thread_signal_num (void) | |
4785 | { | |
4786 | return sizeof (lin_thread_signals) / sizeof (lin_thread_signals[0]); | |
4787 | } | |
4788 | ||
4789 | /* See linux-nat.h. */ | |
4790 | ||
4791 | int | |
4792 | lin_thread_get_thread_signal (unsigned int i) | |
4793 | { | |
4794 | gdb_assert (i < lin_thread_get_thread_signal_num ()); | |
4795 | return lin_thread_signals[i]; | |
4796 | } |