]>
Commit | Line | Data |
---|---|---|
1 | /* Renesas M32C target-dependent code for GDB, the GNU debugger. | |
2 | ||
3 | Copyright (C) 2004-2025 Free Software Foundation, Inc. | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
19 | ||
20 | #include "extract-store-integer.h" | |
21 | #include "sim/sim-m32c.h" | |
22 | #include "gdbtypes.h" | |
23 | #include "regcache.h" | |
24 | #include "arch-utils.h" | |
25 | #include "frame.h" | |
26 | #include "frame-unwind.h" | |
27 | #include "symtab.h" | |
28 | #include "gdbcore.h" | |
29 | #include "value.h" | |
30 | #include "reggroups.h" | |
31 | #include "prologue-value.h" | |
32 | #include "objfiles.h" | |
33 | #include "gdbarch.h" | |
34 | ||
35 | \f | |
36 | /* The m32c tdep structure. */ | |
37 | ||
38 | static const reggroup *m32c_dma_reggroup; | |
39 | ||
40 | /* The type of a function that moves the value of REG between CACHE or | |
41 | BUF --- in either direction. */ | |
42 | typedef enum register_status (m32c_write_reg_t) (struct m32c_reg *reg, | |
43 | struct regcache *cache, | |
44 | const gdb_byte *buf); | |
45 | ||
46 | typedef enum register_status (m32c_read_reg_t) (struct m32c_reg *reg, | |
47 | readable_regcache *cache, | |
48 | gdb_byte *buf); | |
49 | ||
50 | struct m32c_reg | |
51 | { | |
52 | /* The name of this register. */ | |
53 | const char *name; | |
54 | ||
55 | /* Its type. */ | |
56 | struct type *type; | |
57 | ||
58 | /* The architecture this register belongs to. */ | |
59 | struct gdbarch *arch; | |
60 | ||
61 | /* Its GDB register number. */ | |
62 | int num; | |
63 | ||
64 | /* Its sim register number. */ | |
65 | int sim_num; | |
66 | ||
67 | /* Its DWARF register number, or -1 if it doesn't have one. */ | |
68 | int dwarf_num; | |
69 | ||
70 | /* Register group memberships. */ | |
71 | unsigned int general_p : 1; | |
72 | unsigned int dma_p : 1; | |
73 | unsigned int system_p : 1; | |
74 | unsigned int save_restore_p : 1; | |
75 | ||
76 | /* Functions to read its value from a regcache, and write its value | |
77 | to a regcache. */ | |
78 | m32c_read_reg_t *read; | |
79 | m32c_write_reg_t *write; | |
80 | ||
81 | /* Data for READ and WRITE functions. The exact meaning depends on | |
82 | the specific functions selected; see the comments for those | |
83 | functions. */ | |
84 | struct m32c_reg *rx, *ry; | |
85 | int n; | |
86 | }; | |
87 | ||
88 | ||
89 | /* An overestimate of the number of raw and pseudoregisters we will | |
90 | have. The exact answer depends on the variant of the architecture | |
91 | at hand, but we can use this to declare statically allocated | |
92 | arrays, and bump it up when needed. */ | |
93 | #define M32C_MAX_NUM_REGS (75) | |
94 | ||
95 | /* The largest assigned DWARF register number. */ | |
96 | #define M32C_MAX_DWARF_REGNUM (40) | |
97 | ||
98 | ||
99 | struct m32c_gdbarch_tdep : gdbarch_tdep_base | |
100 | { | |
101 | /* All the registers for this variant, indexed by GDB register | |
102 | number, and the number of registers present. */ | |
103 | struct m32c_reg regs[M32C_MAX_NUM_REGS] {}; | |
104 | ||
105 | /* The number of valid registers. */ | |
106 | int num_regs = 0; | |
107 | ||
108 | /* Interesting registers. These are pointers into REGS. */ | |
109 | struct m32c_reg *pc = nullptr, *flg = nullptr; | |
110 | struct m32c_reg *r0 = nullptr, *r1 = nullptr, *r2 = nullptr, *r3 = nullptr, | |
111 | *a0 = nullptr, *a1 = nullptr; | |
112 | struct m32c_reg *r2r0 = nullptr, *r3r2r1r0 = nullptr, *r3r1r2r0 = nullptr; | |
113 | struct m32c_reg *sb = nullptr, *fb = nullptr, *sp = nullptr; | |
114 | ||
115 | /* A table indexed by DWARF register numbers, pointing into | |
116 | REGS. */ | |
117 | struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1] {}; | |
118 | ||
119 | /* Types for this architecture. We can't use the builtin_type_foo | |
120 | types, because they're not initialized when building a gdbarch | |
121 | structure. */ | |
122 | struct type *voyd = nullptr, *ptr_voyd = nullptr, *func_voyd = nullptr; | |
123 | struct type *uint8 = nullptr, *uint16 = nullptr; | |
124 | struct type *int8 = nullptr, *int16 = nullptr, *int32 = nullptr, | |
125 | *int64 = nullptr; | |
126 | ||
127 | /* The types for data address and code address registers. */ | |
128 | struct type *data_addr_reg_type = nullptr, *code_addr_reg_type = nullptr; | |
129 | ||
130 | /* The number of bytes a return address pushed by a 'jsr' instruction | |
131 | occupies on the stack. */ | |
132 | int ret_addr_bytes = 0; | |
133 | ||
134 | /* The number of bytes an address register occupies on the stack | |
135 | when saved by an 'enter' or 'pushm' instruction. */ | |
136 | int push_addr_bytes = 0; | |
137 | }; | |
138 | ||
139 | \f | |
140 | /* Types. */ | |
141 | ||
142 | static void | |
143 | make_types (struct gdbarch *arch) | |
144 | { | |
145 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
146 | unsigned long mach = gdbarch_bfd_arch_info (arch)->mach; | |
147 | int data_addr_reg_bits, code_addr_reg_bits; | |
148 | char type_name[50]; | |
149 | ||
150 | #if 0 | |
151 | /* This is used to clip CORE_ADDR values, so this value is | |
152 | appropriate both on the m32c, where pointers are 32 bits long, | |
153 | and on the m16c, where pointers are sixteen bits long, but there | |
154 | may be code above the 64k boundary. */ | |
155 | set_gdbarch_addr_bit (arch, 24); | |
156 | #else | |
157 | /* GCC uses 32 bits for addrs in the dwarf info, even though | |
158 | only 16/24 bits are used. Setting addr_bit to 24 causes | |
159 | errors in reading the dwarf addresses. */ | |
160 | set_gdbarch_addr_bit (arch, 32); | |
161 | #endif | |
162 | ||
163 | set_gdbarch_int_bit (arch, 16); | |
164 | switch (mach) | |
165 | { | |
166 | case bfd_mach_m16c: | |
167 | data_addr_reg_bits = 16; | |
168 | code_addr_reg_bits = 24; | |
169 | set_gdbarch_ptr_bit (arch, 16); | |
170 | tdep->ret_addr_bytes = 3; | |
171 | tdep->push_addr_bytes = 2; | |
172 | break; | |
173 | ||
174 | case bfd_mach_m32c: | |
175 | data_addr_reg_bits = 24; | |
176 | code_addr_reg_bits = 24; | |
177 | set_gdbarch_ptr_bit (arch, 32); | |
178 | tdep->ret_addr_bytes = 4; | |
179 | tdep->push_addr_bytes = 4; | |
180 | break; | |
181 | ||
182 | default: | |
183 | gdb_assert_not_reached ("unexpected mach"); | |
184 | } | |
185 | ||
186 | /* The builtin_type_mumble variables are sometimes uninitialized when | |
187 | this is called, so we avoid using them. */ | |
188 | type_allocator alloc (arch); | |
189 | tdep->voyd = alloc.new_type (TYPE_CODE_VOID, TARGET_CHAR_BIT, "void"); | |
190 | tdep->ptr_voyd | |
191 | = init_pointer_type (alloc, gdbarch_ptr_bit (arch), NULL, tdep->voyd); | |
192 | tdep->func_voyd = lookup_function_type (tdep->voyd); | |
193 | ||
194 | xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t", | |
195 | gdbarch_bfd_arch_info (arch)->printable_name); | |
196 | tdep->data_addr_reg_type | |
197 | = init_pointer_type (alloc, data_addr_reg_bits, type_name, tdep->voyd); | |
198 | ||
199 | xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t", | |
200 | gdbarch_bfd_arch_info (arch)->printable_name); | |
201 | tdep->code_addr_reg_type | |
202 | = init_pointer_type (alloc, code_addr_reg_bits, type_name, | |
203 | tdep->func_voyd); | |
204 | ||
205 | tdep->uint8 = init_integer_type (alloc, 8, 1, "uint8_t"); | |
206 | tdep->uint16 = init_integer_type (alloc, 16, 1, "uint16_t"); | |
207 | tdep->int8 = init_integer_type (alloc, 8, 0, "int8_t"); | |
208 | tdep->int16 = init_integer_type (alloc, 16, 0, "int16_t"); | |
209 | tdep->int32 = init_integer_type (alloc, 32, 0, "int32_t"); | |
210 | tdep->int64 = init_integer_type (alloc, 64, 0, "int64_t"); | |
211 | } | |
212 | ||
213 | ||
214 | \f | |
215 | /* Register set. */ | |
216 | ||
217 | static const char * | |
218 | m32c_register_name (struct gdbarch *gdbarch, int num) | |
219 | { | |
220 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch); | |
221 | return tdep->regs[num].name; | |
222 | } | |
223 | ||
224 | ||
225 | static struct type * | |
226 | m32c_register_type (struct gdbarch *arch, int reg_nr) | |
227 | { | |
228 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
229 | return tdep->regs[reg_nr].type; | |
230 | } | |
231 | ||
232 | ||
233 | static int | |
234 | m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr) | |
235 | { | |
236 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch); | |
237 | return tdep->regs[reg_nr].sim_num; | |
238 | } | |
239 | ||
240 | ||
241 | static int | |
242 | m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr) | |
243 | { | |
244 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch); | |
245 | if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM | |
246 | && tdep->dwarf_regs[reg_nr]) | |
247 | return tdep->dwarf_regs[reg_nr]->num; | |
248 | else | |
249 | /* The DWARF CFI code expects to see -1 for invalid register | |
250 | numbers. */ | |
251 | return -1; | |
252 | } | |
253 | ||
254 | ||
255 | static int | |
256 | m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
257 | const struct reggroup *group) | |
258 | { | |
259 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch); | |
260 | struct m32c_reg *reg = &tdep->regs[regnum]; | |
261 | ||
262 | /* The anonymous raw registers aren't in any groups. */ | |
263 | if (! reg->name) | |
264 | return 0; | |
265 | ||
266 | if (group == all_reggroup) | |
267 | return 1; | |
268 | ||
269 | if (group == general_reggroup | |
270 | && reg->general_p) | |
271 | return 1; | |
272 | ||
273 | if (group == m32c_dma_reggroup | |
274 | && reg->dma_p) | |
275 | return 1; | |
276 | ||
277 | if (group == system_reggroup | |
278 | && reg->system_p) | |
279 | return 1; | |
280 | ||
281 | /* Since the m32c DWARF register numbers refer to cooked registers, not | |
282 | raw registers, and frame_pop depends on the save and restore groups | |
283 | containing registers the DWARF CFI will actually mention, our save | |
284 | and restore groups are cooked registers, not raw registers. (This is | |
285 | why we can't use the default reggroup function.) */ | |
286 | if ((group == save_reggroup | |
287 | || group == restore_reggroup) | |
288 | && reg->save_restore_p) | |
289 | return 1; | |
290 | ||
291 | return 0; | |
292 | } | |
293 | ||
294 | ||
295 | /* Register move functions. We declare them here using | |
296 | m32c_{read,write}_reg_t to check the types. */ | |
297 | static m32c_read_reg_t m32c_raw_read; | |
298 | static m32c_read_reg_t m32c_banked_read; | |
299 | static m32c_read_reg_t m32c_sb_read; | |
300 | static m32c_read_reg_t m32c_part_read; | |
301 | static m32c_read_reg_t m32c_cat_read; | |
302 | static m32c_read_reg_t m32c_r3r2r1r0_read; | |
303 | ||
304 | static m32c_write_reg_t m32c_raw_write; | |
305 | static m32c_write_reg_t m32c_banked_write; | |
306 | static m32c_write_reg_t m32c_sb_write; | |
307 | static m32c_write_reg_t m32c_part_write; | |
308 | static m32c_write_reg_t m32c_cat_write; | |
309 | static m32c_write_reg_t m32c_r3r2r1r0_write; | |
310 | ||
311 | /* Copy the value of the raw register REG from CACHE to BUF. */ | |
312 | static enum register_status | |
313 | m32c_raw_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf) | |
314 | { | |
315 | return cache->raw_read (reg->num, buf); | |
316 | } | |
317 | ||
318 | ||
319 | /* Copy the value of the raw register REG from BUF to CACHE. */ | |
320 | static enum register_status | |
321 | m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, | |
322 | const gdb_byte *buf) | |
323 | { | |
324 | cache->raw_write (reg->num, buf); | |
325 | ||
326 | return REG_VALID; | |
327 | } | |
328 | ||
329 | ||
330 | /* Return the value of the 'flg' register in CACHE. */ | |
331 | static int | |
332 | m32c_read_flg (readable_regcache *cache) | |
333 | { | |
334 | gdbarch *arch = cache->arch (); | |
335 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
336 | ULONGEST flg; | |
337 | ||
338 | cache->raw_read (tdep->flg->num, &flg); | |
339 | return flg & 0xffff; | |
340 | } | |
341 | ||
342 | ||
343 | /* Evaluate the real register number of a banked register. */ | |
344 | static struct m32c_reg * | |
345 | m32c_banked_register (struct m32c_reg *reg, readable_regcache *cache) | |
346 | { | |
347 | return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx); | |
348 | } | |
349 | ||
350 | ||
351 | /* Move the value of a banked register from CACHE to BUF. | |
352 | If the value of the 'flg' register in CACHE has any of the bits | |
353 | masked in REG->n set, then read REG->ry. Otherwise, read | |
354 | REG->rx. */ | |
355 | static enum register_status | |
356 | m32c_banked_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf) | |
357 | { | |
358 | struct m32c_reg *bank_reg = m32c_banked_register (reg, cache); | |
359 | return cache->raw_read (bank_reg->num, buf); | |
360 | } | |
361 | ||
362 | ||
363 | /* Move the value of a banked register from BUF to CACHE. | |
364 | If the value of the 'flg' register in CACHE has any of the bits | |
365 | masked in REG->n set, then write REG->ry. Otherwise, write | |
366 | REG->rx. */ | |
367 | static enum register_status | |
368 | m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, | |
369 | const gdb_byte *buf) | |
370 | { | |
371 | struct m32c_reg *bank_reg = m32c_banked_register (reg, cache); | |
372 | cache->raw_write (bank_reg->num, buf); | |
373 | ||
374 | return REG_VALID; | |
375 | } | |
376 | ||
377 | ||
378 | /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a | |
379 | banked register; on bfd_mach_m16c, it's not. */ | |
380 | static enum register_status | |
381 | m32c_sb_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf) | |
382 | { | |
383 | if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c) | |
384 | return m32c_raw_read (reg->rx, cache, buf); | |
385 | else | |
386 | return m32c_banked_read (reg, cache, buf); | |
387 | } | |
388 | ||
389 | ||
390 | /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a | |
391 | banked register; on bfd_mach_m16c, it's not. */ | |
392 | static enum register_status | |
393 | m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, const gdb_byte *buf) | |
394 | { | |
395 | if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c) | |
396 | m32c_raw_write (reg->rx, cache, buf); | |
397 | else | |
398 | m32c_banked_write (reg, cache, buf); | |
399 | ||
400 | return REG_VALID; | |
401 | } | |
402 | ||
403 | ||
404 | /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P | |
405 | and *LEN_P to the offset and length, in bytes, of the part REG | |
406 | occupies in its underlying register. The offset is from the | |
407 | lower-addressed end, regardless of the architecture's endianness. | |
408 | (The M32C family is always little-endian, but let's keep those | |
409 | assumptions out of here.) */ | |
410 | static void | |
411 | m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p) | |
412 | { | |
413 | /* The length of the containing register, of which REG is one part. */ | |
414 | int containing_len = reg->rx->type->length (); | |
415 | ||
416 | /* The length of one "element" in our imaginary array. */ | |
417 | int elt_len = reg->type->length (); | |
418 | ||
419 | /* The offset of REG's "element" from the least significant end of | |
420 | the containing register. */ | |
421 | int elt_offset = reg->n * elt_len; | |
422 | ||
423 | /* If we extend off the end, trim the length of the element. */ | |
424 | if (elt_offset + elt_len > containing_len) | |
425 | { | |
426 | elt_len = containing_len - elt_offset; | |
427 | /* We shouldn't be declaring partial registers that go off the | |
428 | end of their containing registers. */ | |
429 | gdb_assert (elt_len > 0); | |
430 | } | |
431 | ||
432 | /* Flip the offset around if we're big-endian. */ | |
433 | if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG) | |
434 | elt_offset = reg->rx->type->length () - elt_offset - elt_len; | |
435 | ||
436 | *offset_p = elt_offset; | |
437 | *len_p = elt_len; | |
438 | } | |
439 | ||
440 | ||
441 | /* Move the value of a partial register (r0h, intbl, etc.) from CACHE | |
442 | to BUF. Treating the value of the register REG->rx as an array of | |
443 | REG->type values, where higher indices refer to more significant | |
444 | bits, read the value of the REG->n'th element. */ | |
445 | static enum register_status | |
446 | m32c_part_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf) | |
447 | { | |
448 | int offset, len; | |
449 | ||
450 | memset (buf, 0, reg->type->length ()); | |
451 | m32c_find_part (reg, &offset, &len); | |
452 | return cache->cooked_read_part (reg->rx->num, offset, len, buf); | |
453 | } | |
454 | ||
455 | ||
456 | /* Move the value of a banked register from BUF to CACHE. | |
457 | Treating the value of the register REG->rx as an array of REG->type | |
458 | values, where higher indices refer to more significant bits, write | |
459 | the value of the REG->n'th element. */ | |
460 | static enum register_status | |
461 | m32c_part_write (struct m32c_reg *reg, struct regcache *cache, | |
462 | const gdb_byte *buf) | |
463 | { | |
464 | int offset, len; | |
465 | ||
466 | m32c_find_part (reg, &offset, &len); | |
467 | cache->cooked_write_part (reg->rx->num, offset, len, buf); | |
468 | ||
469 | return REG_VALID; | |
470 | } | |
471 | ||
472 | ||
473 | /* Move the value of REG from CACHE to BUF. REG's value is the | |
474 | concatenation of the values of the registers REG->rx and REG->ry, | |
475 | with REG->rx contributing the more significant bits. */ | |
476 | static enum register_status | |
477 | m32c_cat_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf) | |
478 | { | |
479 | int high_bytes = reg->rx->type->length (); | |
480 | int low_bytes = reg->ry->type->length (); | |
481 | enum register_status status; | |
482 | ||
483 | gdb_assert (reg->type->length () == high_bytes + low_bytes); | |
484 | ||
485 | if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG) | |
486 | { | |
487 | status = cache->cooked_read (reg->rx->num, buf); | |
488 | if (status == REG_VALID) | |
489 | status = cache->cooked_read (reg->ry->num, buf + high_bytes); | |
490 | } | |
491 | else | |
492 | { | |
493 | status = cache->cooked_read (reg->rx->num, buf + low_bytes); | |
494 | if (status == REG_VALID) | |
495 | status = cache->cooked_read (reg->ry->num, buf); | |
496 | } | |
497 | return status; | |
498 | } | |
499 | ||
500 | ||
501 | /* Move the value of REG from CACHE to BUF. REG's value is the | |
502 | concatenation of the values of the registers REG->rx and REG->ry, | |
503 | with REG->rx contributing the more significant bits. */ | |
504 | static enum register_status | |
505 | m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, | |
506 | const gdb_byte *buf) | |
507 | { | |
508 | int high_bytes = reg->rx->type->length (); | |
509 | int low_bytes = reg->ry->type->length (); | |
510 | ||
511 | gdb_assert (reg->type->length () == high_bytes + low_bytes); | |
512 | ||
513 | if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG) | |
514 | { | |
515 | cache->cooked_write (reg->rx->num, buf); | |
516 | cache->cooked_write (reg->ry->num, buf + high_bytes); | |
517 | } | |
518 | else | |
519 | { | |
520 | cache->cooked_write (reg->rx->num, buf + low_bytes); | |
521 | cache->cooked_write (reg->ry->num, buf); | |
522 | } | |
523 | ||
524 | return REG_VALID; | |
525 | } | |
526 | ||
527 | ||
528 | /* Copy the value of the raw register REG from CACHE to BUF. REG is | |
529 | the concatenation (from most significant to least) of r3, r2, r1, | |
530 | and r0. */ | |
531 | static enum register_status | |
532 | m32c_r3r2r1r0_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf) | |
533 | { | |
534 | gdbarch *arch = reg->arch; | |
535 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
536 | int len = tdep->r0->type->length (); | |
537 | enum register_status status; | |
538 | ||
539 | if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG) | |
540 | { | |
541 | status = cache->cooked_read (tdep->r0->num, buf + len * 3); | |
542 | if (status == REG_VALID) | |
543 | status = cache->cooked_read (tdep->r1->num, buf + len * 2); | |
544 | if (status == REG_VALID) | |
545 | status = cache->cooked_read (tdep->r2->num, buf + len * 1); | |
546 | if (status == REG_VALID) | |
547 | status = cache->cooked_read (tdep->r3->num, buf); | |
548 | } | |
549 | else | |
550 | { | |
551 | status = cache->cooked_read (tdep->r0->num, buf); | |
552 | if (status == REG_VALID) | |
553 | status = cache->cooked_read (tdep->r1->num, buf + len * 1); | |
554 | if (status == REG_VALID) | |
555 | status = cache->cooked_read (tdep->r2->num, buf + len * 2); | |
556 | if (status == REG_VALID) | |
557 | status = cache->cooked_read (tdep->r3->num, buf + len * 3); | |
558 | } | |
559 | ||
560 | return status; | |
561 | } | |
562 | ||
563 | ||
564 | /* Copy the value of the raw register REG from BUF to CACHE. REG is | |
565 | the concatenation (from most significant to least) of r3, r2, r1, | |
566 | and r0. */ | |
567 | static enum register_status | |
568 | m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, | |
569 | const gdb_byte *buf) | |
570 | { | |
571 | gdbarch *arch = reg->arch; | |
572 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
573 | int len = tdep->r0->type->length (); | |
574 | ||
575 | if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG) | |
576 | { | |
577 | cache->cooked_write (tdep->r0->num, buf + len * 3); | |
578 | cache->cooked_write (tdep->r1->num, buf + len * 2); | |
579 | cache->cooked_write (tdep->r2->num, buf + len * 1); | |
580 | cache->cooked_write (tdep->r3->num, buf); | |
581 | } | |
582 | else | |
583 | { | |
584 | cache->cooked_write (tdep->r0->num, buf); | |
585 | cache->cooked_write (tdep->r1->num, buf + len * 1); | |
586 | cache->cooked_write (tdep->r2->num, buf + len * 2); | |
587 | cache->cooked_write (tdep->r3->num, buf + len * 3); | |
588 | } | |
589 | ||
590 | return REG_VALID; | |
591 | } | |
592 | ||
593 | ||
594 | static enum register_status | |
595 | m32c_pseudo_register_read (struct gdbarch *arch, | |
596 | readable_regcache *cache, | |
597 | int cookednum, | |
598 | gdb_byte *buf) | |
599 | { | |
600 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
601 | struct m32c_reg *reg; | |
602 | ||
603 | gdb_assert (0 <= cookednum && cookednum < tdep->num_regs); | |
604 | gdb_assert (arch == cache->arch ()); | |
605 | gdb_assert (arch == tdep->regs[cookednum].arch); | |
606 | reg = &tdep->regs[cookednum]; | |
607 | ||
608 | return reg->read (reg, cache, buf); | |
609 | } | |
610 | ||
611 | ||
612 | static void | |
613 | m32c_pseudo_register_write (struct gdbarch *arch, | |
614 | struct regcache *cache, | |
615 | int cookednum, | |
616 | const gdb_byte *buf) | |
617 | { | |
618 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
619 | struct m32c_reg *reg; | |
620 | ||
621 | gdb_assert (0 <= cookednum && cookednum < tdep->num_regs); | |
622 | gdb_assert (arch == cache->arch ()); | |
623 | gdb_assert (arch == tdep->regs[cookednum].arch); | |
624 | reg = &tdep->regs[cookednum]; | |
625 | ||
626 | reg->write (reg, cache, buf); | |
627 | } | |
628 | ||
629 | ||
630 | /* Add a register with the given fields to the end of ARCH's table. | |
631 | Return a pointer to the newly added register. */ | |
632 | static struct m32c_reg * | |
633 | add_reg (struct gdbarch *arch, | |
634 | const char *name, | |
635 | struct type *type, | |
636 | int sim_num, | |
637 | m32c_read_reg_t *read, | |
638 | m32c_write_reg_t *write, | |
639 | struct m32c_reg *rx, | |
640 | struct m32c_reg *ry, | |
641 | int n) | |
642 | { | |
643 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
644 | struct m32c_reg *r = &tdep->regs[tdep->num_regs]; | |
645 | ||
646 | gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS); | |
647 | ||
648 | r->name = name; | |
649 | r->type = type; | |
650 | r->arch = arch; | |
651 | r->num = tdep->num_regs; | |
652 | r->sim_num = sim_num; | |
653 | r->dwarf_num = -1; | |
654 | r->general_p = 0; | |
655 | r->dma_p = 0; | |
656 | r->system_p = 0; | |
657 | r->save_restore_p = 0; | |
658 | r->read = read; | |
659 | r->write = write; | |
660 | r->rx = rx; | |
661 | r->ry = ry; | |
662 | r->n = n; | |
663 | ||
664 | tdep->num_regs++; | |
665 | ||
666 | return r; | |
667 | } | |
668 | ||
669 | ||
670 | /* Record NUM as REG's DWARF register number. */ | |
671 | static void | |
672 | set_dwarf_regnum (struct m32c_reg *reg, int num) | |
673 | { | |
674 | gdb_assert (num < M32C_MAX_NUM_REGS); | |
675 | ||
676 | /* Update the reg->DWARF mapping. Only count the first number | |
677 | assigned to this register. */ | |
678 | if (reg->dwarf_num == -1) | |
679 | reg->dwarf_num = num; | |
680 | ||
681 | /* Update the DWARF->reg mapping. */ | |
682 | gdbarch *arch = reg->arch; | |
683 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
684 | tdep->dwarf_regs[num] = reg; | |
685 | } | |
686 | ||
687 | ||
688 | /* Mark REG as a general-purpose register, and return it. */ | |
689 | static struct m32c_reg * | |
690 | mark_general (struct m32c_reg *reg) | |
691 | { | |
692 | reg->general_p = 1; | |
693 | return reg; | |
694 | } | |
695 | ||
696 | ||
697 | /* Mark REG as a DMA register. */ | |
698 | static void | |
699 | mark_dma (struct m32c_reg *reg) | |
700 | { | |
701 | reg->dma_p = 1; | |
702 | } | |
703 | ||
704 | ||
705 | /* Mark REG as a SYSTEM register, and return it. */ | |
706 | static struct m32c_reg * | |
707 | mark_system (struct m32c_reg *reg) | |
708 | { | |
709 | reg->system_p = 1; | |
710 | return reg; | |
711 | } | |
712 | ||
713 | ||
714 | /* Mark REG as a save-restore register, and return it. */ | |
715 | static struct m32c_reg * | |
716 | mark_save_restore (struct m32c_reg *reg) | |
717 | { | |
718 | reg->save_restore_p = 1; | |
719 | return reg; | |
720 | } | |
721 | ||
722 | ||
723 | #define FLAGBIT_B 0x0010 | |
724 | #define FLAGBIT_U 0x0080 | |
725 | ||
726 | /* Handy macros for declaring registers. These all evaluate to | |
727 | pointers to the register declared. Macros that define two | |
728 | registers evaluate to a pointer to the first. */ | |
729 | ||
730 | /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */ | |
731 | #define R(name, type, sim_num) \ | |
732 | (add_reg (arch, (name), (type), (sim_num), \ | |
733 | m32c_raw_read, m32c_raw_write, NULL, NULL, 0)) | |
734 | ||
735 | /* The simulator register number for a raw register named NAME. */ | |
736 | #define SIM(name) (m32c_sim_reg_ ## name) | |
737 | ||
738 | /* A raw unsigned 16-bit data register named NAME. | |
739 | NAME should be an identifier, not a string. */ | |
740 | #define R16U(name) \ | |
741 | (R(#name, tdep->uint16, SIM (name))) | |
742 | ||
743 | /* A raw data address register named NAME. | |
744 | NAME should be an identifier, not a string. */ | |
745 | #define RA(name) \ | |
746 | (R(#name, tdep->data_addr_reg_type, SIM (name))) | |
747 | ||
748 | /* A raw code address register named NAME. NAME should | |
749 | be an identifier, not a string. */ | |
750 | #define RC(name) \ | |
751 | (R(#name, tdep->code_addr_reg_type, SIM (name))) | |
752 | ||
753 | /* A pair of raw registers named NAME0 and NAME1, with type TYPE. | |
754 | NAME should be an identifier, not a string. */ | |
755 | #define RP(name, type) \ | |
756 | (R(#name "0", (type), SIM (name ## 0)), \ | |
757 | R(#name "1", (type), SIM (name ## 1)) - 1) | |
758 | ||
759 | /* A raw banked general-purpose data register named NAME. | |
760 | NAME should be an identifier, not a string. */ | |
761 | #define RBD(name) \ | |
762 | (R("", tdep->int16, SIM (name ## _bank0)), \ | |
763 | R("", tdep->int16, SIM (name ## _bank1)) - 1) | |
764 | ||
765 | /* A raw banked data address register named NAME. | |
766 | NAME should be an identifier, not a string. */ | |
767 | #define RBA(name) \ | |
768 | (R("", tdep->data_addr_reg_type, SIM (name ## _bank0)), \ | |
769 | R("", tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1) | |
770 | ||
771 | /* A cooked register named NAME referring to a raw banked register | |
772 | from the bank selected by the current value of FLG. RAW_PAIR | |
773 | should be a pointer to the first register in the banked pair. | |
774 | NAME must be an identifier, not a string. */ | |
775 | #define CB(name, raw_pair) \ | |
776 | (add_reg (arch, #name, (raw_pair)->type, 0, \ | |
777 | m32c_banked_read, m32c_banked_write, \ | |
778 | (raw_pair), (raw_pair + 1), FLAGBIT_B)) | |
779 | ||
780 | /* A pair of registers named NAMEH and NAMEL, of type TYPE, that | |
781 | access the top and bottom halves of the register pointed to by | |
782 | NAME. NAME should be an identifier. */ | |
783 | #define CHL(name, type) \ | |
784 | (add_reg (arch, #name "h", (type), 0, \ | |
785 | m32c_part_read, m32c_part_write, name, NULL, 1), \ | |
786 | add_reg (arch, #name "l", (type), 0, \ | |
787 | m32c_part_read, m32c_part_write, name, NULL, 0) - 1) | |
788 | ||
789 | /* A register constructed by concatenating the two registers HIGH and | |
790 | LOW, whose name is HIGHLOW and whose type is TYPE. */ | |
791 | #define CCAT(high, low, type) \ | |
792 | (add_reg (arch, #high #low, (type), 0, \ | |
793 | m32c_cat_read, m32c_cat_write, (high), (low), 0)) | |
794 | ||
795 | /* Abbreviations for marking register group membership. */ | |
796 | #define G(reg) (mark_general (reg)) | |
797 | #define S(reg) (mark_system (reg)) | |
798 | #define DMA(reg) (mark_dma (reg)) | |
799 | ||
800 | ||
801 | /* Construct the register set for ARCH. */ | |
802 | static void | |
803 | make_regs (struct gdbarch *arch) | |
804 | { | |
805 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
806 | int mach = gdbarch_bfd_arch_info (arch)->mach; | |
807 | int num_raw_regs; | |
808 | int num_cooked_regs; | |
809 | ||
810 | struct m32c_reg *r0; | |
811 | struct m32c_reg *r1; | |
812 | struct m32c_reg *r2; | |
813 | struct m32c_reg *r3; | |
814 | struct m32c_reg *a0; | |
815 | struct m32c_reg *a1; | |
816 | struct m32c_reg *fb; | |
817 | struct m32c_reg *sb; | |
818 | struct m32c_reg *sp; | |
819 | struct m32c_reg *r0hl; | |
820 | struct m32c_reg *r1hl; | |
821 | struct m32c_reg *r2r0; | |
822 | struct m32c_reg *r3r1; | |
823 | struct m32c_reg *r3r1r2r0; | |
824 | struct m32c_reg *r3r2r1r0; | |
825 | struct m32c_reg *a1a0; | |
826 | ||
827 | struct m32c_reg *raw_r0_pair = RBD (r0); | |
828 | struct m32c_reg *raw_r1_pair = RBD (r1); | |
829 | struct m32c_reg *raw_r2_pair = RBD (r2); | |
830 | struct m32c_reg *raw_r3_pair = RBD (r3); | |
831 | struct m32c_reg *raw_a0_pair = RBA (a0); | |
832 | struct m32c_reg *raw_a1_pair = RBA (a1); | |
833 | struct m32c_reg *raw_fb_pair = RBA (fb); | |
834 | ||
835 | /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c. | |
836 | We always declare both raw registers, and deal with the distinction | |
837 | in the pseudoregister. */ | |
838 | struct m32c_reg *raw_sb_pair = RBA (sb); | |
839 | ||
840 | struct m32c_reg *usp = S (RA (usp)); | |
841 | struct m32c_reg *isp = S (RA (isp)); | |
842 | struct m32c_reg *intb = S (RC (intb)); | |
843 | struct m32c_reg *pc = G (RC (pc)); | |
844 | struct m32c_reg *flg = G (R16U (flg)); | |
845 | ||
846 | if (mach == bfd_mach_m32c) | |
847 | { | |
848 | S (R16U (svf)); | |
849 | S (RC (svp)); | |
850 | S (RC (vct)); | |
851 | ||
852 | DMA (RP (dmd, tdep->uint8)); | |
853 | DMA (RP (dct, tdep->uint16)); | |
854 | DMA (RP (drc, tdep->uint16)); | |
855 | DMA (RP (dma, tdep->data_addr_reg_type)); | |
856 | DMA (RP (dsa, tdep->data_addr_reg_type)); | |
857 | DMA (RP (dra, tdep->data_addr_reg_type)); | |
858 | } | |
859 | ||
860 | num_raw_regs = tdep->num_regs; | |
861 | ||
862 | r0 = G (CB (r0, raw_r0_pair)); | |
863 | r1 = G (CB (r1, raw_r1_pair)); | |
864 | r2 = G (CB (r2, raw_r2_pair)); | |
865 | r3 = G (CB (r3, raw_r3_pair)); | |
866 | a0 = G (CB (a0, raw_a0_pair)); | |
867 | a1 = G (CB (a1, raw_a1_pair)); | |
868 | fb = G (CB (fb, raw_fb_pair)); | |
869 | ||
870 | /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c. | |
871 | Specify custom read/write functions that do the right thing. */ | |
872 | sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0, | |
873 | m32c_sb_read, m32c_sb_write, | |
874 | raw_sb_pair, raw_sb_pair + 1, 0)); | |
875 | ||
876 | /* The current sp is either usp or isp, depending on the value of | |
877 | the FLG register's U bit. */ | |
878 | sp = G (add_reg (arch, "sp", usp->type, 0, | |
879 | m32c_banked_read, m32c_banked_write, | |
880 | isp, usp, FLAGBIT_U)); | |
881 | ||
882 | r0hl = CHL (r0, tdep->int8); | |
883 | r1hl = CHL (r1, tdep->int8); | |
884 | CHL (r2, tdep->int8); | |
885 | CHL (r3, tdep->int8); | |
886 | CHL (intb, tdep->int16); | |
887 | ||
888 | r2r0 = CCAT (r2, r0, tdep->int32); | |
889 | r3r1 = CCAT (r3, r1, tdep->int32); | |
890 | r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64); | |
891 | ||
892 | r3r2r1r0 | |
893 | = add_reg (arch, "r3r2r1r0", tdep->int64, 0, | |
894 | m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0); | |
895 | ||
896 | if (mach == bfd_mach_m16c) | |
897 | a1a0 = CCAT (a1, a0, tdep->int32); | |
898 | else | |
899 | a1a0 = NULL; | |
900 | ||
901 | num_cooked_regs = tdep->num_regs - num_raw_regs; | |
902 | ||
903 | tdep->pc = pc; | |
904 | tdep->flg = flg; | |
905 | tdep->r0 = r0; | |
906 | tdep->r1 = r1; | |
907 | tdep->r2 = r2; | |
908 | tdep->r3 = r3; | |
909 | tdep->r2r0 = r2r0; | |
910 | tdep->r3r2r1r0 = r3r2r1r0; | |
911 | tdep->r3r1r2r0 = r3r1r2r0; | |
912 | tdep->a0 = a0; | |
913 | tdep->a1 = a1; | |
914 | tdep->sb = sb; | |
915 | tdep->fb = fb; | |
916 | tdep->sp = sp; | |
917 | ||
918 | /* Set up the DWARF register table. */ | |
919 | memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs)); | |
920 | set_dwarf_regnum (r0hl + 1, 0x01); | |
921 | set_dwarf_regnum (r0hl + 0, 0x02); | |
922 | set_dwarf_regnum (r1hl + 1, 0x03); | |
923 | set_dwarf_regnum (r1hl + 0, 0x04); | |
924 | set_dwarf_regnum (r0, 0x05); | |
925 | set_dwarf_regnum (r1, 0x06); | |
926 | set_dwarf_regnum (r2, 0x07); | |
927 | set_dwarf_regnum (r3, 0x08); | |
928 | set_dwarf_regnum (a0, 0x09); | |
929 | set_dwarf_regnum (a1, 0x0a); | |
930 | set_dwarf_regnum (fb, 0x0b); | |
931 | set_dwarf_regnum (sp, 0x0c); | |
932 | set_dwarf_regnum (pc, 0x0d); /* GCC's invention */ | |
933 | set_dwarf_regnum (sb, 0x13); | |
934 | set_dwarf_regnum (r2r0, 0x15); | |
935 | set_dwarf_regnum (r3r1, 0x16); | |
936 | if (a1a0) | |
937 | set_dwarf_regnum (a1a0, 0x17); | |
938 | ||
939 | /* Enumerate the save/restore register group. | |
940 | ||
941 | The regcache_save and regcache_restore functions apply their read | |
942 | function to each register in this group. | |
943 | ||
944 | Since frame_pop supplies frame_unwind_register as its read | |
945 | function, the registers meaningful to the Dwarf unwinder need to | |
946 | be in this group. | |
947 | ||
948 | On the other hand, when we make inferior calls, save_inferior_status | |
949 | and restore_inferior_status use them to preserve the current register | |
950 | values across the inferior call. For this, you'd kind of like to | |
951 | preserve all the raw registers, to protect the interrupted code from | |
952 | any sort of bank switching the callee might have done. But we handle | |
953 | those cases so badly anyway --- for example, it matters whether we | |
954 | restore FLG before or after we restore the general-purpose registers, | |
955 | but there's no way to express that --- that it isn't worth worrying | |
956 | about. | |
957 | ||
958 | We omit control registers like inthl: if you call a function that | |
959 | changes those, it's probably because you wanted that change to be | |
960 | visible to the interrupted code. */ | |
961 | mark_save_restore (r0); | |
962 | mark_save_restore (r1); | |
963 | mark_save_restore (r2); | |
964 | mark_save_restore (r3); | |
965 | mark_save_restore (a0); | |
966 | mark_save_restore (a1); | |
967 | mark_save_restore (sb); | |
968 | mark_save_restore (fb); | |
969 | mark_save_restore (sp); | |
970 | mark_save_restore (pc); | |
971 | mark_save_restore (flg); | |
972 | ||
973 | set_gdbarch_num_regs (arch, num_raw_regs); | |
974 | set_gdbarch_num_pseudo_regs (arch, num_cooked_regs); | |
975 | set_gdbarch_pc_regnum (arch, pc->num); | |
976 | set_gdbarch_sp_regnum (arch, sp->num); | |
977 | set_gdbarch_register_name (arch, m32c_register_name); | |
978 | set_gdbarch_register_type (arch, m32c_register_type); | |
979 | set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read); | |
980 | set_gdbarch_deprecated_pseudo_register_write (arch, | |
981 | m32c_pseudo_register_write); | |
982 | set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno); | |
983 | set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum); | |
984 | set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum); | |
985 | set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p); | |
986 | ||
987 | reggroup_add (arch, m32c_dma_reggroup); | |
988 | } | |
989 | ||
990 | ||
991 | \f | |
992 | /* Breakpoints. */ | |
993 | constexpr gdb_byte m32c_break_insn[] = { 0x00 }; /* brk */ | |
994 | ||
995 | typedef BP_MANIPULATION (m32c_break_insn) m32c_breakpoint; | |
996 | ||
997 | \f | |
998 | /* Prologue analysis. */ | |
999 | ||
1000 | enum m32c_prologue_kind | |
1001 | { | |
1002 | /* This function uses a frame pointer. */ | |
1003 | prologue_with_frame_ptr, | |
1004 | ||
1005 | /* This function has no frame pointer. */ | |
1006 | prologue_sans_frame_ptr, | |
1007 | ||
1008 | /* This function sets up the stack, so its frame is the first | |
1009 | frame on the stack. */ | |
1010 | prologue_first_frame | |
1011 | }; | |
1012 | ||
1013 | struct m32c_prologue | |
1014 | { | |
1015 | /* For consistency with the DWARF 2 .debug_frame info generated by | |
1016 | GCC, a frame's CFA is the address immediately after the saved | |
1017 | return address. */ | |
1018 | ||
1019 | /* The architecture for which we generated this prologue info. */ | |
1020 | struct gdbarch *arch; | |
1021 | ||
1022 | enum m32c_prologue_kind kind; | |
1023 | ||
1024 | /* If KIND is prologue_with_frame_ptr, this is the offset from the | |
1025 | CFA to where the frame pointer points. This is always zero or | |
1026 | negative. */ | |
1027 | LONGEST frame_ptr_offset; | |
1028 | ||
1029 | /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to | |
1030 | the stack pointer --- always zero or negative. | |
1031 | ||
1032 | Calling this a "size" is a bit misleading, but given that the | |
1033 | stack grows downwards, using offsets for everything keeps one | |
1034 | from going completely sign-crazy: you never change anything's | |
1035 | sign for an ADD instruction; always change the second operand's | |
1036 | sign for a SUB instruction; and everything takes care of | |
1037 | itself. | |
1038 | ||
1039 | Functions that use alloca don't have a constant frame size. But | |
1040 | they always have frame pointers, so we must use that to find the | |
1041 | CFA (and perhaps to unwind the stack pointer). */ | |
1042 | LONGEST frame_size; | |
1043 | ||
1044 | /* The address of the first instruction at which the frame has been | |
1045 | set up and the arguments are where the debug info says they are | |
1046 | --- as best as we can tell. */ | |
1047 | CORE_ADDR prologue_end; | |
1048 | ||
1049 | /* reg_offset[R] is the offset from the CFA at which register R is | |
1050 | saved, or 1 if register R has not been saved. (Real values are | |
1051 | always zero or negative.) */ | |
1052 | LONGEST reg_offset[M32C_MAX_NUM_REGS]; | |
1053 | }; | |
1054 | ||
1055 | ||
1056 | /* The longest I've seen, anyway. */ | |
1057 | #define M32C_MAX_INSN_LEN (9) | |
1058 | ||
1059 | /* Processor state, for the prologue analyzer. */ | |
1060 | struct m32c_pv_state | |
1061 | { | |
1062 | struct gdbarch *arch; | |
1063 | pv_t r0, r1, r2, r3; | |
1064 | pv_t a0, a1; | |
1065 | pv_t sb, fb, sp; | |
1066 | pv_t pc; | |
1067 | struct pv_area *stack; | |
1068 | ||
1069 | /* Bytes from the current PC, the address they were read from, | |
1070 | and the address of the next unconsumed byte. */ | |
1071 | gdb_byte insn[M32C_MAX_INSN_LEN]; | |
1072 | CORE_ADDR scan_pc, next_addr; | |
1073 | }; | |
1074 | ||
1075 | ||
1076 | /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if | |
1077 | all went well, or non-zero if simulating the action would trash our | |
1078 | state. */ | |
1079 | static int | |
1080 | m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size) | |
1081 | { | |
1082 | if (state->stack->store_would_trash (state->sp)) | |
1083 | return 1; | |
1084 | ||
1085 | state->sp = pv_add_constant (state->sp, -size); | |
1086 | state->stack->store (state->sp, size, value); | |
1087 | ||
1088 | return 0; | |
1089 | } | |
1090 | ||
1091 | ||
1092 | enum srcdest_kind | |
1093 | { | |
1094 | srcdest_reg, | |
1095 | srcdest_partial_reg, | |
1096 | srcdest_mem | |
1097 | }; | |
1098 | ||
1099 | /* A source or destination location for an m16c or m32c | |
1100 | instruction. */ | |
1101 | struct srcdest | |
1102 | { | |
1103 | /* If srcdest_reg, the location is a register pointed to by REG. | |
1104 | If srcdest_partial_reg, the location is part of a register pointed | |
1105 | to by REG. We don't try to handle this too well. | |
1106 | If srcdest_mem, the location is memory whose address is ADDR. */ | |
1107 | enum srcdest_kind kind; | |
1108 | pv_t *reg, addr; | |
1109 | }; | |
1110 | ||
1111 | ||
1112 | /* Return the SIZE-byte value at LOC in STATE. */ | |
1113 | static pv_t | |
1114 | m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size) | |
1115 | { | |
1116 | if (loc.kind == srcdest_mem) | |
1117 | return state->stack->fetch (loc.addr, size); | |
1118 | else if (loc.kind == srcdest_partial_reg) | |
1119 | return pv_unknown (); | |
1120 | else | |
1121 | return *loc.reg; | |
1122 | } | |
1123 | ||
1124 | ||
1125 | /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if | |
1126 | all went well, or non-zero if simulating the store would trash our | |
1127 | state. */ | |
1128 | static int | |
1129 | m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc, | |
1130 | pv_t value, int size) | |
1131 | { | |
1132 | if (loc.kind == srcdest_mem) | |
1133 | { | |
1134 | if (state->stack->store_would_trash (loc.addr)) | |
1135 | return 1; | |
1136 | state->stack->store (loc.addr, size, value); | |
1137 | } | |
1138 | else if (loc.kind == srcdest_partial_reg) | |
1139 | *loc.reg = pv_unknown (); | |
1140 | else | |
1141 | *loc.reg = value; | |
1142 | ||
1143 | return 0; | |
1144 | } | |
1145 | ||
1146 | ||
1147 | static int | |
1148 | m32c_sign_ext (int v, int bits) | |
1149 | { | |
1150 | int mask = 1 << (bits - 1); | |
1151 | return (v ^ mask) - mask; | |
1152 | } | |
1153 | ||
1154 | static unsigned int | |
1155 | m32c_next_byte (struct m32c_pv_state *st) | |
1156 | { | |
1157 | gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn)); | |
1158 | return st->insn[st->next_addr++ - st->scan_pc]; | |
1159 | } | |
1160 | ||
1161 | static int | |
1162 | m32c_udisp8 (struct m32c_pv_state *st) | |
1163 | { | |
1164 | return m32c_next_byte (st); | |
1165 | } | |
1166 | ||
1167 | ||
1168 | static int | |
1169 | m32c_sdisp8 (struct m32c_pv_state *st) | |
1170 | { | |
1171 | return m32c_sign_ext (m32c_next_byte (st), 8); | |
1172 | } | |
1173 | ||
1174 | ||
1175 | static int | |
1176 | m32c_udisp16 (struct m32c_pv_state *st) | |
1177 | { | |
1178 | int low = m32c_next_byte (st); | |
1179 | int high = m32c_next_byte (st); | |
1180 | ||
1181 | return low + (high << 8); | |
1182 | } | |
1183 | ||
1184 | ||
1185 | static int | |
1186 | m32c_sdisp16 (struct m32c_pv_state *st) | |
1187 | { | |
1188 | int low = m32c_next_byte (st); | |
1189 | int high = m32c_next_byte (st); | |
1190 | ||
1191 | return m32c_sign_ext (low + (high << 8), 16); | |
1192 | } | |
1193 | ||
1194 | ||
1195 | static int | |
1196 | m32c_udisp24 (struct m32c_pv_state *st) | |
1197 | { | |
1198 | int low = m32c_next_byte (st); | |
1199 | int mid = m32c_next_byte (st); | |
1200 | int high = m32c_next_byte (st); | |
1201 | ||
1202 | return low + (mid << 8) + (high << 16); | |
1203 | } | |
1204 | ||
1205 | ||
1206 | /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */ | |
1207 | static int | |
1208 | m32c_get_src23 (unsigned char *i) | |
1209 | { | |
1210 | return (((i[0] & 0x70) >> 2) | |
1211 | | ((i[1] & 0x30) >> 4)); | |
1212 | } | |
1213 | ||
1214 | ||
1215 | /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */ | |
1216 | static int | |
1217 | m32c_get_dest23 (unsigned char *i) | |
1218 | { | |
1219 | return (((i[0] & 0x0e) << 1) | |
1220 | | ((i[1] & 0xc0) >> 6)); | |
1221 | } | |
1222 | ||
1223 | ||
1224 | static struct srcdest | |
1225 | m32c_decode_srcdest4 (struct m32c_pv_state *st, | |
1226 | int code, int size) | |
1227 | { | |
1228 | struct srcdest sd; | |
1229 | ||
1230 | if (code < 6) | |
1231 | sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg); | |
1232 | else | |
1233 | sd.kind = srcdest_mem; | |
1234 | ||
1235 | sd.addr = pv_unknown (); | |
1236 | sd.reg = 0; | |
1237 | ||
1238 | switch (code) | |
1239 | { | |
1240 | case 0x0: sd.reg = &st->r0; break; | |
1241 | case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break; | |
1242 | case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break; | |
1243 | case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break; | |
1244 | ||
1245 | case 0x4: sd.reg = &st->a0; break; | |
1246 | case 0x5: sd.reg = &st->a1; break; | |
1247 | ||
1248 | case 0x6: sd.addr = st->a0; break; | |
1249 | case 0x7: sd.addr = st->a1; break; | |
1250 | ||
1251 | case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break; | |
1252 | case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break; | |
1253 | case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break; | |
1254 | case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break; | |
1255 | ||
1256 | case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break; | |
1257 | case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break; | |
1258 | case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break; | |
1259 | case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break; | |
1260 | ||
1261 | default: | |
1262 | gdb_assert_not_reached ("unexpected srcdest4"); | |
1263 | } | |
1264 | ||
1265 | return sd; | |
1266 | } | |
1267 | ||
1268 | ||
1269 | static struct srcdest | |
1270 | m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind) | |
1271 | { | |
1272 | struct srcdest sd; | |
1273 | ||
1274 | sd.addr = pv_unknown (); | |
1275 | sd.reg = 0; | |
1276 | ||
1277 | switch (code) | |
1278 | { | |
1279 | case 0x12: | |
1280 | case 0x13: | |
1281 | case 0x10: | |
1282 | case 0x11: | |
1283 | sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg; | |
1284 | break; | |
1285 | ||
1286 | case 0x02: | |
1287 | case 0x03: | |
1288 | sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg; | |
1289 | break; | |
1290 | ||
1291 | default: | |
1292 | sd.kind = srcdest_mem; | |
1293 | break; | |
1294 | ||
1295 | } | |
1296 | ||
1297 | switch (code) | |
1298 | { | |
1299 | case 0x12: sd.reg = &st->r0; break; | |
1300 | case 0x13: sd.reg = &st->r1; break; | |
1301 | case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break; | |
1302 | case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break; | |
1303 | case 0x02: sd.reg = &st->a0; break; | |
1304 | case 0x03: sd.reg = &st->a1; break; | |
1305 | ||
1306 | case 0x00: sd.addr = st->a0; break; | |
1307 | case 0x01: sd.addr = st->a1; break; | |
1308 | case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break; | |
1309 | case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break; | |
1310 | case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break; | |
1311 | case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break; | |
1312 | case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break; | |
1313 | case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break; | |
1314 | case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break; | |
1315 | case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break; | |
1316 | case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break; | |
1317 | case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break; | |
1318 | case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break; | |
1319 | case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break; | |
1320 | default: | |
1321 | gdb_assert_not_reached ("unexpected sd23"); | |
1322 | } | |
1323 | ||
1324 | if (ind) | |
1325 | { | |
1326 | sd.addr = m32c_srcdest_fetch (st, sd, 4); | |
1327 | sd.kind = srcdest_mem; | |
1328 | } | |
1329 | ||
1330 | return sd; | |
1331 | } | |
1332 | ||
1333 | ||
1334 | /* The r16c and r32c machines have instructions with similar | |
1335 | semantics, but completely different machine language encodings. So | |
1336 | we break out the semantics into their own functions, and leave | |
1337 | machine-specific decoding in m32c_analyze_prologue. | |
1338 | ||
1339 | The following functions all expect their arguments already decoded, | |
1340 | and they all return zero if analysis should continue past this | |
1341 | instruction, or non-zero if analysis should stop. */ | |
1342 | ||
1343 | ||
1344 | /* Simulate an 'enter SIZE' instruction in STATE. */ | |
1345 | static int | |
1346 | m32c_pv_enter (struct m32c_pv_state *state, int size) | |
1347 | { | |
1348 | /* If simulating this store would require us to forget | |
1349 | everything we know about the stack frame in the name of | |
1350 | accuracy, it would be better to just quit now. */ | |
1351 | if (state->stack->store_would_trash (state->sp)) | |
1352 | return 1; | |
1353 | ||
1354 | gdbarch *arch = state->arch; | |
1355 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
1356 | if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes)) | |
1357 | return 1; | |
1358 | ||
1359 | state->fb = state->sp; | |
1360 | state->sp = pv_add_constant (state->sp, -size); | |
1361 | ||
1362 | return 0; | |
1363 | } | |
1364 | ||
1365 | ||
1366 | static int | |
1367 | m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg, | |
1368 | int bit, int src, int size) | |
1369 | { | |
1370 | if (bit & src) | |
1371 | { | |
1372 | if (m32c_pv_push (state, reg, size)) | |
1373 | return 1; | |
1374 | } | |
1375 | ||
1376 | return 0; | |
1377 | } | |
1378 | ||
1379 | ||
1380 | /* Simulate a 'pushm SRC' instruction in STATE. */ | |
1381 | static int | |
1382 | m32c_pv_pushm (struct m32c_pv_state *state, int src) | |
1383 | { | |
1384 | gdbarch *arch = state->arch; | |
1385 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
1386 | ||
1387 | /* The bits in SRC indicating which registers to save are: | |
1388 | r0 r1 r2 r3 a0 a1 sb fb */ | |
1389 | return | |
1390 | ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes) | |
1391 | || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes) | |
1392 | || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes) | |
1393 | || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes) | |
1394 | || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2) | |
1395 | || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2) | |
1396 | || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2) | |
1397 | || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2)); | |
1398 | } | |
1399 | ||
1400 | /* Return non-zero if VALUE is the first incoming argument register. */ | |
1401 | ||
1402 | static int | |
1403 | m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value) | |
1404 | { | |
1405 | gdbarch *arch = state->arch; | |
1406 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
1407 | ||
1408 | return (value.kind == pvk_register | |
1409 | && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c | |
1410 | ? (value.reg == tdep->r1->num) | |
1411 | : (value.reg == tdep->r0->num)) | |
1412 | && value.k == 0); | |
1413 | } | |
1414 | ||
1415 | /* Return non-zero if VALUE is an incoming argument register. */ | |
1416 | ||
1417 | static int | |
1418 | m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value) | |
1419 | { | |
1420 | gdbarch *arch = state->arch; | |
1421 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
1422 | ||
1423 | return (value.kind == pvk_register | |
1424 | && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c | |
1425 | ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num) | |
1426 | : (value.reg == tdep->r0->num)) | |
1427 | && value.k == 0); | |
1428 | } | |
1429 | ||
1430 | /* Return non-zero if a store of VALUE to LOC is probably spilling an | |
1431 | argument register to its stack slot in STATE. Such instructions | |
1432 | should be included in the prologue, if possible. | |
1433 | ||
1434 | The store is a spill if: | |
1435 | - the value being stored is the original value of an argument register; | |
1436 | - the value has not already been stored somewhere in STACK; and | |
1437 | - LOC is a stack slot (e.g., a memory location whose address is | |
1438 | relative to the original value of the SP). */ | |
1439 | ||
1440 | static int | |
1441 | m32c_is_arg_spill (struct m32c_pv_state *st, | |
1442 | struct srcdest loc, | |
1443 | pv_t value) | |
1444 | { | |
1445 | gdbarch *arch = st->arch; | |
1446 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
1447 | ||
1448 | return (m32c_is_arg_reg (st, value) | |
1449 | && loc.kind == srcdest_mem | |
1450 | && pv_is_register (loc.addr, tdep->sp->num) | |
1451 | && ! st->stack->find_reg (st->arch, value.reg, 0)); | |
1452 | } | |
1453 | ||
1454 | /* Return non-zero if a store of VALUE to LOC is probably | |
1455 | copying the struct return address into an address register | |
1456 | for immediate use. This is basically a "spill" into the | |
1457 | address register, instead of onto the stack. | |
1458 | ||
1459 | The prerequisites are: | |
1460 | - value being stored is original value of the FIRST arg register; | |
1461 | - value has not already been stored on stack; and | |
1462 | - LOC is an address register (a0 or a1). */ | |
1463 | ||
1464 | static int | |
1465 | m32c_is_struct_return (struct m32c_pv_state *st, | |
1466 | struct srcdest loc, | |
1467 | pv_t value) | |
1468 | { | |
1469 | gdbarch *arch = st->arch; | |
1470 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
1471 | ||
1472 | return (m32c_is_1st_arg_reg (st, value) | |
1473 | && !st->stack->find_reg (st->arch, value.reg, 0) | |
1474 | && loc.kind == srcdest_reg | |
1475 | && (pv_is_register (*loc.reg, tdep->a0->num) | |
1476 | || pv_is_register (*loc.reg, tdep->a1->num))); | |
1477 | } | |
1478 | ||
1479 | /* Return non-zero if a 'pushm' saving the registers indicated by SRC | |
1480 | was a register save: | |
1481 | - all the named registers should have their original values, and | |
1482 | - the stack pointer should be at a constant offset from the | |
1483 | original stack pointer. */ | |
1484 | static int | |
1485 | m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src) | |
1486 | { | |
1487 | gdbarch *arch = st->arch; | |
1488 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
1489 | ||
1490 | /* The bits in SRC indicating which registers to save are: | |
1491 | r0 r1 r2 r3 a0 a1 sb fb */ | |
1492 | return | |
1493 | (pv_is_register (st->sp, tdep->sp->num) | |
1494 | && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0)) | |
1495 | && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0)) | |
1496 | && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0)) | |
1497 | && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0)) | |
1498 | && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0)) | |
1499 | && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0)) | |
1500 | && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0)) | |
1501 | && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0))); | |
1502 | } | |
1503 | ||
1504 | ||
1505 | /* Function for finding saved registers in a 'struct pv_area'; we pass | |
1506 | this to pv_area::scan. | |
1507 | ||
1508 | If VALUE is a saved register, ADDR says it was saved at a constant | |
1509 | offset from the frame base, and SIZE indicates that the whole | |
1510 | register was saved, record its offset in RESULT_UNTYPED. */ | |
1511 | static void | |
1512 | check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value) | |
1513 | { | |
1514 | struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped; | |
1515 | struct gdbarch *arch = prologue->arch; | |
1516 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
1517 | ||
1518 | /* Is this the unchanged value of some register being saved on the | |
1519 | stack? */ | |
1520 | if (value.kind == pvk_register | |
1521 | && value.k == 0 | |
1522 | && pv_is_register (addr, tdep->sp->num)) | |
1523 | { | |
1524 | /* Some registers require special handling: they're saved as a | |
1525 | larger value than the register itself. */ | |
1526 | CORE_ADDR saved_size = register_size (arch, value.reg); | |
1527 | ||
1528 | if (value.reg == tdep->pc->num) | |
1529 | saved_size = tdep->ret_addr_bytes; | |
1530 | else if (register_type (arch, value.reg) | |
1531 | == tdep->data_addr_reg_type) | |
1532 | saved_size = tdep->push_addr_bytes; | |
1533 | ||
1534 | if (size == saved_size) | |
1535 | { | |
1536 | /* Find which end of the saved value corresponds to our | |
1537 | register. */ | |
1538 | if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG) | |
1539 | prologue->reg_offset[value.reg] | |
1540 | = (addr.k + saved_size - register_size (arch, value.reg)); | |
1541 | else | |
1542 | prologue->reg_offset[value.reg] = addr.k; | |
1543 | } | |
1544 | } | |
1545 | } | |
1546 | ||
1547 | ||
1548 | /* Analyze the function prologue for ARCH at START, going no further | |
1549 | than LIMIT, and place a description of what we found in | |
1550 | PROLOGUE. */ | |
1551 | static void | |
1552 | m32c_analyze_prologue (struct gdbarch *arch, | |
1553 | CORE_ADDR start, CORE_ADDR limit, | |
1554 | struct m32c_prologue *prologue) | |
1555 | { | |
1556 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
1557 | unsigned long mach = gdbarch_bfd_arch_info (arch)->mach; | |
1558 | CORE_ADDR after_last_frame_related_insn; | |
1559 | struct m32c_pv_state st; | |
1560 | ||
1561 | st.arch = arch; | |
1562 | st.r0 = pv_register (tdep->r0->num, 0); | |
1563 | st.r1 = pv_register (tdep->r1->num, 0); | |
1564 | st.r2 = pv_register (tdep->r2->num, 0); | |
1565 | st.r3 = pv_register (tdep->r3->num, 0); | |
1566 | st.a0 = pv_register (tdep->a0->num, 0); | |
1567 | st.a1 = pv_register (tdep->a1->num, 0); | |
1568 | st.sb = pv_register (tdep->sb->num, 0); | |
1569 | st.fb = pv_register (tdep->fb->num, 0); | |
1570 | st.sp = pv_register (tdep->sp->num, 0); | |
1571 | st.pc = pv_register (tdep->pc->num, 0); | |
1572 | pv_area stack (tdep->sp->num, gdbarch_addr_bit (arch)); | |
1573 | st.stack = &stack; | |
1574 | ||
1575 | /* Record that the call instruction has saved the return address on | |
1576 | the stack. */ | |
1577 | m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes); | |
1578 | ||
1579 | memset (prologue, 0, sizeof (*prologue)); | |
1580 | prologue->arch = arch; | |
1581 | { | |
1582 | int i; | |
1583 | for (i = 0; i < M32C_MAX_NUM_REGS; i++) | |
1584 | prologue->reg_offset[i] = 1; | |
1585 | } | |
1586 | ||
1587 | st.scan_pc = after_last_frame_related_insn = start; | |
1588 | ||
1589 | while (st.scan_pc < limit) | |
1590 | { | |
1591 | pv_t pre_insn_fb = st.fb; | |
1592 | pv_t pre_insn_sp = st.sp; | |
1593 | ||
1594 | /* In theory we could get in trouble by trying to read ahead | |
1595 | here, when we only know we're expecting one byte. In | |
1596 | practice I doubt anyone will care, and it makes the rest of | |
1597 | the code easier. */ | |
1598 | if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn))) | |
1599 | /* If we can't fetch the instruction from memory, stop here | |
1600 | and hope for the best. */ | |
1601 | break; | |
1602 | st.next_addr = st.scan_pc; | |
1603 | ||
1604 | /* The assembly instructions are written as they appear in the | |
1605 | section of the processor manuals that describe the | |
1606 | instruction encodings. | |
1607 | ||
1608 | When a single assembly language instruction has several | |
1609 | different machine-language encodings, the manual | |
1610 | distinguishes them by a number in parens, before the | |
1611 | mnemonic. Those numbers are included, as well. | |
1612 | ||
1613 | The srcdest decoding instructions have the same names as the | |
1614 | analogous functions in the simulator. */ | |
1615 | if (mach == bfd_mach_m16c) | |
1616 | { | |
1617 | /* (1) ENTER #imm8 */ | |
1618 | if (st.insn[0] == 0x7c && st.insn[1] == 0xf2) | |
1619 | { | |
1620 | if (m32c_pv_enter (&st, st.insn[2])) | |
1621 | break; | |
1622 | st.next_addr += 3; | |
1623 | } | |
1624 | /* (1) PUSHM src */ | |
1625 | else if (st.insn[0] == 0xec) | |
1626 | { | |
1627 | int src = st.insn[1]; | |
1628 | if (m32c_pv_pushm (&st, src)) | |
1629 | break; | |
1630 | st.next_addr += 2; | |
1631 | ||
1632 | if (m32c_pushm_is_reg_save (&st, src)) | |
1633 | after_last_frame_related_insn = st.next_addr; | |
1634 | } | |
1635 | ||
1636 | /* (6) MOV.size:G src, dest */ | |
1637 | else if ((st.insn[0] & 0xfe) == 0x72) | |
1638 | { | |
1639 | int size = (st.insn[0] & 0x01) ? 2 : 1; | |
1640 | struct srcdest src; | |
1641 | struct srcdest dest; | |
1642 | pv_t src_value; | |
1643 | st.next_addr += 2; | |
1644 | ||
1645 | src | |
1646 | = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size); | |
1647 | dest | |
1648 | = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size); | |
1649 | src_value = m32c_srcdest_fetch (&st, src, size); | |
1650 | ||
1651 | if (m32c_is_arg_spill (&st, dest, src_value)) | |
1652 | after_last_frame_related_insn = st.next_addr; | |
1653 | else if (m32c_is_struct_return (&st, dest, src_value)) | |
1654 | after_last_frame_related_insn = st.next_addr; | |
1655 | ||
1656 | if (m32c_srcdest_store (&st, dest, src_value, size)) | |
1657 | break; | |
1658 | } | |
1659 | ||
1660 | /* (1) LDC #IMM16, sp */ | |
1661 | else if (st.insn[0] == 0xeb | |
1662 | && st.insn[1] == 0x50) | |
1663 | { | |
1664 | st.next_addr += 2; | |
1665 | st.sp = pv_constant (m32c_udisp16 (&st)); | |
1666 | } | |
1667 | ||
1668 | else | |
1669 | /* We've hit some instruction we don't know how to simulate. | |
1670 | Strictly speaking, we should set every value we're | |
1671 | tracking to "unknown". But we'll be optimistic, assume | |
1672 | that we have enough information already, and stop | |
1673 | analysis here. */ | |
1674 | break; | |
1675 | } | |
1676 | else | |
1677 | { | |
1678 | int src_indirect = 0; | |
1679 | int dest_indirect = 0; | |
1680 | int i = 0; | |
1681 | ||
1682 | gdb_assert (mach == bfd_mach_m32c); | |
1683 | ||
1684 | /* Check for prefix bytes indicating indirect addressing. */ | |
1685 | if (st.insn[0] == 0x41) | |
1686 | { | |
1687 | src_indirect = 1; | |
1688 | i++; | |
1689 | } | |
1690 | else if (st.insn[0] == 0x09) | |
1691 | { | |
1692 | dest_indirect = 1; | |
1693 | i++; | |
1694 | } | |
1695 | else if (st.insn[0] == 0x49) | |
1696 | { | |
1697 | src_indirect = dest_indirect = 1; | |
1698 | i++; | |
1699 | } | |
1700 | ||
1701 | /* (1) ENTER #imm8 */ | |
1702 | if (st.insn[i] == 0xec) | |
1703 | { | |
1704 | if (m32c_pv_enter (&st, st.insn[i + 1])) | |
1705 | break; | |
1706 | st.next_addr += 2; | |
1707 | } | |
1708 | ||
1709 | /* (1) PUSHM src */ | |
1710 | else if (st.insn[i] == 0x8f) | |
1711 | { | |
1712 | int src = st.insn[i + 1]; | |
1713 | if (m32c_pv_pushm (&st, src)) | |
1714 | break; | |
1715 | st.next_addr += 2; | |
1716 | ||
1717 | if (m32c_pushm_is_reg_save (&st, src)) | |
1718 | after_last_frame_related_insn = st.next_addr; | |
1719 | } | |
1720 | ||
1721 | /* (7) MOV.size:G src, dest */ | |
1722 | else if ((st.insn[i] & 0x80) == 0x80 | |
1723 | && (st.insn[i + 1] & 0x0f) == 0x0b | |
1724 | && m32c_get_src23 (&st.insn[i]) < 20 | |
1725 | && m32c_get_dest23 (&st.insn[i]) < 20) | |
1726 | { | |
1727 | struct srcdest src; | |
1728 | struct srcdest dest; | |
1729 | pv_t src_value; | |
1730 | int bw = st.insn[i] & 0x01; | |
1731 | int size = bw ? 2 : 1; | |
1732 | st.next_addr += 2; | |
1733 | ||
1734 | src | |
1735 | = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]), | |
1736 | size, src_indirect); | |
1737 | dest | |
1738 | = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]), | |
1739 | size, dest_indirect); | |
1740 | src_value = m32c_srcdest_fetch (&st, src, size); | |
1741 | ||
1742 | if (m32c_is_arg_spill (&st, dest, src_value)) | |
1743 | after_last_frame_related_insn = st.next_addr; | |
1744 | ||
1745 | if (m32c_srcdest_store (&st, dest, src_value, size)) | |
1746 | break; | |
1747 | } | |
1748 | /* (2) LDC #IMM24, sp */ | |
1749 | else if (st.insn[i] == 0xd5 | |
1750 | && st.insn[i + 1] == 0x29) | |
1751 | { | |
1752 | st.next_addr += 2; | |
1753 | st.sp = pv_constant (m32c_udisp24 (&st)); | |
1754 | } | |
1755 | else | |
1756 | /* We've hit some instruction we don't know how to simulate. | |
1757 | Strictly speaking, we should set every value we're | |
1758 | tracking to "unknown". But we'll be optimistic, assume | |
1759 | that we have enough information already, and stop | |
1760 | analysis here. */ | |
1761 | break; | |
1762 | } | |
1763 | ||
1764 | /* If this instruction changed the FB or decreased the SP (i.e., | |
1765 | allocated more stack space), then this may be a good place to | |
1766 | declare the prologue finished. However, there are some | |
1767 | exceptions: | |
1768 | ||
1769 | - If the instruction just changed the FB back to its original | |
1770 | value, then that's probably a restore instruction. The | |
1771 | prologue should definitely end before that. | |
1772 | ||
1773 | - If the instruction increased the value of the SP (that is, | |
1774 | shrunk the frame), then it's probably part of a frame | |
1775 | teardown sequence, and the prologue should end before | |
1776 | that. */ | |
1777 | ||
1778 | if (! pv_is_identical (st.fb, pre_insn_fb)) | |
1779 | { | |
1780 | if (! pv_is_register_k (st.fb, tdep->fb->num, 0)) | |
1781 | after_last_frame_related_insn = st.next_addr; | |
1782 | } | |
1783 | else if (! pv_is_identical (st.sp, pre_insn_sp)) | |
1784 | { | |
1785 | /* The comparison of the constants looks odd, there, because | |
1786 | .k is unsigned. All it really means is that the SP is | |
1787 | lower than it was before the instruction. */ | |
1788 | if ( pv_is_register (pre_insn_sp, tdep->sp->num) | |
1789 | && pv_is_register (st.sp, tdep->sp->num) | |
1790 | && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k))) | |
1791 | after_last_frame_related_insn = st.next_addr; | |
1792 | } | |
1793 | ||
1794 | st.scan_pc = st.next_addr; | |
1795 | } | |
1796 | ||
1797 | /* Did we load a constant value into the stack pointer? */ | |
1798 | if (pv_is_constant (st.sp)) | |
1799 | prologue->kind = prologue_first_frame; | |
1800 | ||
1801 | /* Alternatively, did we initialize the frame pointer? Remember | |
1802 | that the CFA is the address after the return address. */ | |
1803 | if (pv_is_register (st.fb, tdep->sp->num)) | |
1804 | { | |
1805 | prologue->kind = prologue_with_frame_ptr; | |
1806 | prologue->frame_ptr_offset = st.fb.k; | |
1807 | } | |
1808 | ||
1809 | /* Is the frame size a known constant? Remember that frame_size is | |
1810 | actually the offset from the CFA to the SP (i.e., a negative | |
1811 | value). */ | |
1812 | else if (pv_is_register (st.sp, tdep->sp->num)) | |
1813 | { | |
1814 | prologue->kind = prologue_sans_frame_ptr; | |
1815 | prologue->frame_size = st.sp.k; | |
1816 | } | |
1817 | ||
1818 | /* We haven't been able to make sense of this function's frame. Treat | |
1819 | it as the first frame. */ | |
1820 | else | |
1821 | prologue->kind = prologue_first_frame; | |
1822 | ||
1823 | /* Record where all the registers were saved. */ | |
1824 | st.stack->scan (check_for_saved, (void *) prologue); | |
1825 | ||
1826 | prologue->prologue_end = after_last_frame_related_insn; | |
1827 | } | |
1828 | ||
1829 | ||
1830 | static CORE_ADDR | |
1831 | m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip) | |
1832 | { | |
1833 | const char *name; | |
1834 | CORE_ADDR func_addr, func_end, sal_end; | |
1835 | struct m32c_prologue p; | |
1836 | ||
1837 | /* Try to find the extent of the function that contains IP. */ | |
1838 | if (! find_pc_partial_function (ip, &name, &func_addr, &func_end)) | |
1839 | return ip; | |
1840 | ||
1841 | /* Find end by prologue analysis. */ | |
1842 | m32c_analyze_prologue (gdbarch, ip, func_end, &p); | |
1843 | /* Find end by line info. */ | |
1844 | sal_end = skip_prologue_using_sal (gdbarch, ip); | |
1845 | /* Return whichever is lower. */ | |
1846 | if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end) | |
1847 | return sal_end; | |
1848 | else | |
1849 | return p.prologue_end; | |
1850 | } | |
1851 | ||
1852 | ||
1853 | \f | |
1854 | /* Stack unwinding. */ | |
1855 | ||
1856 | static struct m32c_prologue * | |
1857 | m32c_analyze_frame_prologue (const frame_info_ptr &this_frame, | |
1858 | void **this_prologue_cache) | |
1859 | { | |
1860 | if (! *this_prologue_cache) | |
1861 | { | |
1862 | CORE_ADDR func_start = get_frame_func (this_frame); | |
1863 | CORE_ADDR stop_addr = get_frame_pc (this_frame); | |
1864 | ||
1865 | /* If we couldn't find any function containing the PC, then | |
1866 | just initialize the prologue cache, but don't do anything. */ | |
1867 | if (! func_start) | |
1868 | stop_addr = func_start; | |
1869 | ||
1870 | *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue); | |
1871 | m32c_analyze_prologue (get_frame_arch (this_frame), | |
1872 | func_start, stop_addr, | |
1873 | (struct m32c_prologue *) *this_prologue_cache); | |
1874 | } | |
1875 | ||
1876 | return (struct m32c_prologue *) *this_prologue_cache; | |
1877 | } | |
1878 | ||
1879 | ||
1880 | static CORE_ADDR | |
1881 | m32c_frame_base (const frame_info_ptr &this_frame, | |
1882 | void **this_prologue_cache) | |
1883 | { | |
1884 | struct m32c_prologue *p | |
1885 | = m32c_analyze_frame_prologue (this_frame, this_prologue_cache); | |
1886 | gdbarch *arch = get_frame_arch (this_frame); | |
1887 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
1888 | ||
1889 | /* In functions that use alloca, the distance between the stack | |
1890 | pointer and the frame base varies dynamically, so we can't use | |
1891 | the SP plus static information like prologue analysis to find the | |
1892 | frame base. However, such functions must have a frame pointer, | |
1893 | to be able to restore the SP on exit. So whenever we do have a | |
1894 | frame pointer, use that to find the base. */ | |
1895 | switch (p->kind) | |
1896 | { | |
1897 | case prologue_with_frame_ptr: | |
1898 | { | |
1899 | CORE_ADDR fb | |
1900 | = get_frame_register_unsigned (this_frame, tdep->fb->num); | |
1901 | return fb - p->frame_ptr_offset; | |
1902 | } | |
1903 | ||
1904 | case prologue_sans_frame_ptr: | |
1905 | { | |
1906 | CORE_ADDR sp | |
1907 | = get_frame_register_unsigned (this_frame, tdep->sp->num); | |
1908 | return sp - p->frame_size; | |
1909 | } | |
1910 | ||
1911 | case prologue_first_frame: | |
1912 | return 0; | |
1913 | ||
1914 | default: | |
1915 | gdb_assert_not_reached ("unexpected prologue kind"); | |
1916 | } | |
1917 | } | |
1918 | ||
1919 | ||
1920 | static void | |
1921 | m32c_this_id (const frame_info_ptr &this_frame, | |
1922 | void **this_prologue_cache, | |
1923 | struct frame_id *this_id) | |
1924 | { | |
1925 | CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache); | |
1926 | ||
1927 | if (base) | |
1928 | *this_id = frame_id_build (base, get_frame_func (this_frame)); | |
1929 | /* Otherwise, leave it unset, and that will terminate the backtrace. */ | |
1930 | } | |
1931 | ||
1932 | ||
1933 | static struct value * | |
1934 | m32c_prev_register (const frame_info_ptr &this_frame, | |
1935 | void **this_prologue_cache, int regnum) | |
1936 | { | |
1937 | gdbarch *arch = get_frame_arch (this_frame); | |
1938 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch); | |
1939 | struct m32c_prologue *p | |
1940 | = m32c_analyze_frame_prologue (this_frame, this_prologue_cache); | |
1941 | CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache); | |
1942 | ||
1943 | if (regnum == tdep->sp->num) | |
1944 | return frame_unwind_got_constant (this_frame, regnum, frame_base); | |
1945 | ||
1946 | /* If prologue analysis says we saved this register somewhere, | |
1947 | return a description of the stack slot holding it. */ | |
1948 | if (p->reg_offset[regnum] != 1) | |
1949 | return frame_unwind_got_memory (this_frame, regnum, | |
1950 | frame_base + p->reg_offset[regnum]); | |
1951 | ||
1952 | /* Otherwise, presume we haven't changed the value of this | |
1953 | register, and get it from the next frame. */ | |
1954 | return frame_unwind_got_register (this_frame, regnum, regnum); | |
1955 | } | |
1956 | ||
1957 | ||
1958 | static const struct frame_unwind_legacy m32c_unwind ( | |
1959 | "m32c prologue", | |
1960 | NORMAL_FRAME, | |
1961 | FRAME_UNWIND_ARCH, | |
1962 | default_frame_unwind_stop_reason, | |
1963 | m32c_this_id, | |
1964 | m32c_prev_register, | |
1965 | NULL, | |
1966 | default_frame_sniffer | |
1967 | ); | |
1968 | ||
1969 | \f | |
1970 | /* Inferior calls. */ | |
1971 | ||
1972 | /* The calling conventions, according to GCC: | |
1973 | ||
1974 | r8c, m16c | |
1975 | --------- | |
1976 | First arg may be passed in r1l or r1 if it (1) fits (QImode or | |
1977 | HImode), (2) is named, and (3) is an integer or pointer type (no | |
1978 | structs, floats, etc). Otherwise, it's passed on the stack. | |
1979 | ||
1980 | Second arg may be passed in r2, same restrictions (but not QImode), | |
1981 | even if the first arg is passed on the stack. | |
1982 | ||
1983 | Third and further args are passed on the stack. No padding is | |
1984 | used, stack "alignment" is 8 bits. | |
1985 | ||
1986 | m32cm, m32c | |
1987 | ----------- | |
1988 | ||
1989 | First arg may be passed in r0l or r0, same restrictions as above. | |
1990 | ||
1991 | Second and further args are passed on the stack. Padding is used | |
1992 | after QImode parameters (i.e. lower-addressed byte is the value, | |
1993 | higher-addressed byte is the padding), stack "alignment" is 16 | |
1994 | bits. */ | |
1995 | ||
1996 | ||
1997 | /* Return true if TYPE is a type that can be passed in registers. (We | |
1998 | ignore the size, and pay attention only to the type code; | |
1999 | acceptable sizes depends on which register is being considered to | |
2000 | hold it.) */ | |
2001 | static int | |
2002 | m32c_reg_arg_type (struct type *type) | |
2003 | { | |
2004 | enum type_code code = type->code (); | |
2005 | ||
2006 | return (code == TYPE_CODE_INT | |
2007 | || code == TYPE_CODE_ENUM | |
2008 | || code == TYPE_CODE_PTR | |
2009 | || TYPE_IS_REFERENCE (type) | |
2010 | || code == TYPE_CODE_BOOL | |
2011 | || code == TYPE_CODE_CHAR); | |
2012 | } | |
2013 | ||
2014 | ||
2015 | static CORE_ADDR | |
2016 | m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
2017 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, | |
2018 | struct value **args, CORE_ADDR sp, | |
2019 | function_call_return_method return_method, | |
2020 | CORE_ADDR struct_addr) | |
2021 | { | |
2022 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch); | |
2023 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
2024 | unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach; | |
2025 | CORE_ADDR cfa; | |
2026 | int i; | |
2027 | ||
2028 | /* The number of arguments given in this function's prototype, or | |
2029 | zero if it has a non-prototyped function type. The m32c ABI | |
2030 | passes arguments mentioned in the prototype differently from | |
2031 | those in the ellipsis of a varargs function, or from those passed | |
2032 | to a non-prototyped function. */ | |
2033 | int num_prototyped_args = 0; | |
2034 | ||
2035 | { | |
2036 | struct type *func_type = function->type (); | |
2037 | ||
2038 | /* Dereference function pointer types. */ | |
2039 | if (func_type->code () == TYPE_CODE_PTR) | |
2040 | func_type = func_type->target_type (); | |
2041 | ||
2042 | gdb_assert (func_type->code () == TYPE_CODE_FUNC || | |
2043 | func_type->code () == TYPE_CODE_METHOD); | |
2044 | ||
2045 | #if 0 | |
2046 | /* The ABI description in gcc/config/m32c/m32c.abi says that | |
2047 | we need to handle prototyped and non-prototyped functions | |
2048 | separately, but the code in GCC doesn't actually do so. */ | |
2049 | if (TYPE_PROTOTYPED (func_type)) | |
2050 | #endif | |
2051 | num_prototyped_args = func_type->num_fields (); | |
2052 | } | |
2053 | ||
2054 | /* First, if the function returns an aggregate by value, push a | |
2055 | pointer to a buffer for it. This doesn't affect the way | |
2056 | subsequent arguments are allocated to registers. */ | |
2057 | if (return_method == return_method_struct) | |
2058 | { | |
2059 | int ptr_len = tdep->ptr_voyd->length (); | |
2060 | sp -= ptr_len; | |
2061 | write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr); | |
2062 | } | |
2063 | ||
2064 | /* Push the arguments. */ | |
2065 | for (i = nargs - 1; i >= 0; i--) | |
2066 | { | |
2067 | struct value *arg = args[i]; | |
2068 | const gdb_byte *arg_bits = arg->contents ().data (); | |
2069 | struct type *arg_type = arg->type (); | |
2070 | ULONGEST arg_size = arg_type->length (); | |
2071 | ||
2072 | /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */ | |
2073 | if (i == 0 | |
2074 | && arg_size <= 2 | |
2075 | && i < num_prototyped_args | |
2076 | && m32c_reg_arg_type (arg_type)) | |
2077 | { | |
2078 | /* Extract and re-store as an integer as a terse way to make | |
2079 | sure it ends up in the least significant end of r1. (GDB | |
2080 | should avoid assuming endianness, even on uni-endian | |
2081 | processors.) */ | |
2082 | ULONGEST u = extract_unsigned_integer (arg_bits, arg_size, | |
2083 | byte_order); | |
2084 | struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0; | |
2085 | regcache_cooked_write_unsigned (regcache, reg->num, u); | |
2086 | } | |
2087 | ||
2088 | /* Can it go in r2? */ | |
2089 | else if (mach == bfd_mach_m16c | |
2090 | && i == 1 | |
2091 | && arg_size == 2 | |
2092 | && i < num_prototyped_args | |
2093 | && m32c_reg_arg_type (arg_type)) | |
2094 | regcache->cooked_write (tdep->r2->num, arg_bits); | |
2095 | ||
2096 | /* Everything else goes on the stack. */ | |
2097 | else | |
2098 | { | |
2099 | sp -= arg_size; | |
2100 | ||
2101 | /* Align the stack. */ | |
2102 | if (mach == bfd_mach_m32c) | |
2103 | sp &= ~1; | |
2104 | ||
2105 | write_memory (sp, arg_bits, arg_size); | |
2106 | } | |
2107 | } | |
2108 | ||
2109 | /* This is the CFA we use to identify the dummy frame. */ | |
2110 | cfa = sp; | |
2111 | ||
2112 | /* Push the return address. */ | |
2113 | sp -= tdep->ret_addr_bytes; | |
2114 | write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order, | |
2115 | bp_addr); | |
2116 | ||
2117 | /* Update the stack pointer. */ | |
2118 | regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp); | |
2119 | ||
2120 | /* We need to borrow an odd trick from the i386 target here. | |
2121 | ||
2122 | The value we return from this function gets used as the stack | |
2123 | address (the CFA) for the dummy frame's ID. The obvious thing is | |
2124 | to return the new TOS. However, that points at the return | |
2125 | address, saved on the stack, which is inconsistent with the CFA's | |
2126 | described by GCC's DWARF 2 .debug_frame information: DWARF 2 | |
2127 | .debug_frame info uses the address immediately after the saved | |
2128 | return address. So you end up with a dummy frame whose CFA | |
2129 | points at the return address, but the frame for the function | |
2130 | being called has a CFA pointing after the return address: the | |
2131 | younger CFA is *greater than* the older CFA. The sanity checks | |
2132 | in frame.c don't like that. | |
2133 | ||
2134 | So we try to be consistent with the CFA's used by DWARF 2. | |
2135 | Having a dummy frame and a real frame with the *same* CFA is | |
2136 | tolerable. */ | |
2137 | return cfa; | |
2138 | } | |
2139 | ||
2140 | ||
2141 | \f | |
2142 | /* Return values. */ | |
2143 | ||
2144 | /* Return value conventions, according to GCC: | |
2145 | ||
2146 | r8c, m16c | |
2147 | --------- | |
2148 | ||
2149 | QImode in r0l | |
2150 | HImode in r0 | |
2151 | SImode in r2r0 | |
2152 | near pointer in r0 | |
2153 | far pointer in r2r0 | |
2154 | ||
2155 | Aggregate values (regardless of size) are returned by pushing a | |
2156 | pointer to a temporary area on the stack after the args are pushed. | |
2157 | The function fills in this area with the value. Note that this | |
2158 | pointer on the stack does not affect how register arguments, if any, | |
2159 | are configured. | |
2160 | ||
2161 | m32cm, m32c | |
2162 | ----------- | |
2163 | Same. */ | |
2164 | ||
2165 | /* Return non-zero if values of type TYPE are returned by storing them | |
2166 | in a buffer whose address is passed on the stack, ahead of the | |
2167 | other arguments. */ | |
2168 | static int | |
2169 | m32c_return_by_passed_buf (struct type *type) | |
2170 | { | |
2171 | enum type_code code = type->code (); | |
2172 | ||
2173 | return (code == TYPE_CODE_STRUCT | |
2174 | || code == TYPE_CODE_UNION); | |
2175 | } | |
2176 | ||
2177 | static enum return_value_convention | |
2178 | m32c_return_value (struct gdbarch *gdbarch, | |
2179 | struct value *function, | |
2180 | struct type *valtype, | |
2181 | struct regcache *regcache, | |
2182 | gdb_byte *readbuf, | |
2183 | const gdb_byte *writebuf) | |
2184 | { | |
2185 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch); | |
2186 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
2187 | enum return_value_convention conv; | |
2188 | ULONGEST valtype_len = valtype->length (); | |
2189 | ||
2190 | if (m32c_return_by_passed_buf (valtype)) | |
2191 | conv = RETURN_VALUE_STRUCT_CONVENTION; | |
2192 | else | |
2193 | conv = RETURN_VALUE_REGISTER_CONVENTION; | |
2194 | ||
2195 | if (readbuf) | |
2196 | { | |
2197 | /* We should never be called to find values being returned by | |
2198 | RETURN_VALUE_STRUCT_CONVENTION. Those can't be located, | |
2199 | unless we made the call ourselves. */ | |
2200 | gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION); | |
2201 | ||
2202 | gdb_assert (valtype_len <= 8); | |
2203 | ||
2204 | /* Anything that fits in r0 is returned there. */ | |
2205 | if (valtype_len <= tdep->r0->type->length ()) | |
2206 | { | |
2207 | ULONGEST u; | |
2208 | regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u); | |
2209 | store_unsigned_integer (readbuf, valtype_len, byte_order, u); | |
2210 | } | |
2211 | else | |
2212 | { | |
2213 | /* Everything else is passed in mem0, using as many bytes as | |
2214 | needed. This is not what the Renesas tools do, but it's | |
2215 | what GCC does at the moment. */ | |
2216 | bound_minimal_symbol mem0 | |
2217 | = lookup_minimal_symbol (current_program_space, "mem0"); | |
2218 | ||
2219 | if (! mem0.minsym) | |
2220 | error (_("The return value is stored in memory at 'mem0', " | |
2221 | "but GDB cannot find\n" | |
2222 | "its address.")); | |
2223 | read_memory (mem0.value_address (), readbuf, valtype_len); | |
2224 | } | |
2225 | } | |
2226 | ||
2227 | if (writebuf) | |
2228 | { | |
2229 | /* We should never be called to store values to be returned | |
2230 | using RETURN_VALUE_STRUCT_CONVENTION. We have no way of | |
2231 | finding the buffer, unless we made the call ourselves. */ | |
2232 | gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION); | |
2233 | ||
2234 | gdb_assert (valtype_len <= 8); | |
2235 | ||
2236 | /* Anything that fits in r0 is returned there. */ | |
2237 | if (valtype_len <= tdep->r0->type->length ()) | |
2238 | { | |
2239 | ULONGEST u = extract_unsigned_integer (writebuf, valtype_len, | |
2240 | byte_order); | |
2241 | regcache_cooked_write_unsigned (regcache, tdep->r0->num, u); | |
2242 | } | |
2243 | else | |
2244 | { | |
2245 | /* Everything else is passed in mem0, using as many bytes as | |
2246 | needed. This is not what the Renesas tools do, but it's | |
2247 | what GCC does at the moment. */ | |
2248 | bound_minimal_symbol mem0 | |
2249 | = lookup_minimal_symbol (current_program_space, "mem0"); | |
2250 | ||
2251 | if (! mem0.minsym) | |
2252 | error (_("The return value is stored in memory at 'mem0', " | |
2253 | "but GDB cannot find\n" | |
2254 | " its address.")); | |
2255 | write_memory (mem0.value_address (), writebuf, valtype_len); | |
2256 | } | |
2257 | } | |
2258 | ||
2259 | return conv; | |
2260 | } | |
2261 | ||
2262 | ||
2263 | \f | |
2264 | /* Trampolines. */ | |
2265 | ||
2266 | /* The m16c and m32c use a trampoline function for indirect function | |
2267 | calls. An indirect call looks like this: | |
2268 | ||
2269 | ... push arguments ... | |
2270 | ... push target function address ... | |
2271 | jsr.a m32c_jsri16 | |
2272 | ||
2273 | The code for m32c_jsri16 looks like this: | |
2274 | ||
2275 | m32c_jsri16: | |
2276 | ||
2277 | # Save return address. | |
2278 | pop.w m32c_jsri_ret | |
2279 | pop.b m32c_jsri_ret+2 | |
2280 | ||
2281 | # Store target function address. | |
2282 | pop.w m32c_jsri_addr | |
2283 | ||
2284 | # Re-push return address. | |
2285 | push.b m32c_jsri_ret+2 | |
2286 | push.w m32c_jsri_ret | |
2287 | ||
2288 | # Call the target function. | |
2289 | jmpi.a m32c_jsri_addr | |
2290 | ||
2291 | Without further information, GDB will treat calls to m32c_jsri16 | |
2292 | like calls to any other function. Since m32c_jsri16 doesn't have | |
2293 | debugging information, that normally means that GDB sets a step- | |
2294 | resume breakpoint and lets the program continue --- which is not | |
2295 | what the user wanted. (Giving the trampoline debugging info | |
2296 | doesn't help: the user expects the program to stop in the function | |
2297 | their program is calling, not in some trampoline code they've never | |
2298 | seen before.) | |
2299 | ||
2300 | The gdbarch_skip_trampoline_code method tells GDB how to step | |
2301 | through such trampoline functions transparently to the user. When | |
2302 | given the address of a trampoline function's first instruction, | |
2303 | gdbarch_skip_trampoline_code should return the address of the first | |
2304 | instruction of the function really being called. If GDB decides it | |
2305 | wants to step into that function, it will set a breakpoint there | |
2306 | and silently continue to it. | |
2307 | ||
2308 | We recognize the trampoline by name, and extract the target address | |
2309 | directly from the stack. This isn't great, but recognizing by its | |
2310 | code sequence seems more fragile. */ | |
2311 | ||
2312 | static CORE_ADDR | |
2313 | m32c_skip_trampoline_code (const frame_info_ptr &frame, CORE_ADDR stop_pc) | |
2314 | { | |
2315 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
2316 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch); | |
2317 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
2318 | ||
2319 | /* It would be nicer to simply look up the addresses of known | |
2320 | trampolines once, and then compare stop_pc with them. However, | |
2321 | we'd need to ensure that that cached address got invalidated when | |
2322 | someone loaded a new executable, and I'm not quite sure of the | |
2323 | best way to do that. find_pc_partial_function does do some | |
2324 | caching, so we'll see how this goes. */ | |
2325 | const char *name; | |
2326 | CORE_ADDR start, end; | |
2327 | ||
2328 | if (find_pc_partial_function (stop_pc, &name, &start, &end)) | |
2329 | { | |
2330 | /* Are we stopped at the beginning of the trampoline function? */ | |
2331 | if (strcmp (name, "m32c_jsri16") == 0 | |
2332 | && stop_pc == start) | |
2333 | { | |
2334 | /* Get the stack pointer. The return address is at the top, | |
2335 | and the target function's address is just below that. We | |
2336 | know it's a two-byte address, since the trampoline is | |
2337 | m32c_jsri*16*. */ | |
2338 | CORE_ADDR sp = get_frame_sp (get_current_frame ()); | |
2339 | CORE_ADDR target | |
2340 | = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes, | |
2341 | 2, byte_order); | |
2342 | ||
2343 | /* What we have now is the address of a jump instruction. | |
2344 | What we need is the destination of that jump. | |
2345 | The opcode is 1 byte, and the destination is the next 3 bytes. */ | |
2346 | ||
2347 | target = read_memory_unsigned_integer (target + 1, 3, byte_order); | |
2348 | return target; | |
2349 | } | |
2350 | } | |
2351 | ||
2352 | return 0; | |
2353 | } | |
2354 | ||
2355 | ||
2356 | /* Address/pointer conversions. */ | |
2357 | ||
2358 | /* On the m16c, there is a 24-bit address space, but only a very few | |
2359 | instructions can generate addresses larger than 0xffff: jumps, | |
2360 | jumps to subroutines, and the lde/std (load/store extended) | |
2361 | instructions. | |
2362 | ||
2363 | Since GCC can only support one size of pointer, we can't have | |
2364 | distinct 'near' and 'far' pointer types; we have to pick one size | |
2365 | for everything. If we wanted to use 24-bit pointers, then GCC | |
2366 | would have to use lde and ste for all memory references, which | |
2367 | would be terrible for performance and code size. So the GNU | |
2368 | toolchain uses 16-bit pointers for everything, and gives up the | |
2369 | ability to have pointers point outside the first 64k of memory. | |
2370 | ||
2371 | However, as a special hack, we let the linker place functions at | |
2372 | addresses above 0xffff, as long as it also places a trampoline in | |
2373 | the low 64k for every function whose address is taken. Each | |
2374 | trampoline consists of a single jmp.a instruction that jumps to the | |
2375 | function's real entry point. Pointers to functions can be 16 bits | |
2376 | long, even though the functions themselves are at higher addresses: | |
2377 | the pointers refer to the trampolines, not the functions. | |
2378 | ||
2379 | This complicates things for GDB, however: given the address of a | |
2380 | function (from debug info or linker symbols, say) which could be | |
2381 | anywhere in the 24-bit address space, how can we find an | |
2382 | appropriate 16-bit value to use as a pointer to it? | |
2383 | ||
2384 | If the linker has not generated a trampoline for the function, | |
2385 | we're out of luck. Well, I guess we could malloc some space and | |
2386 | write a jmp.a instruction to it, but I'm not going to get into that | |
2387 | at the moment. | |
2388 | ||
2389 | If the linker has generated a trampoline for the function, then it | |
2390 | also emitted a symbol for the trampoline: if the function's linker | |
2391 | symbol is named NAME, then the function's trampoline's linker | |
2392 | symbol is named NAME.plt. | |
2393 | ||
2394 | So, given a code address: | |
2395 | - We try to find a linker symbol at that address. | |
2396 | - If we find such a symbol named NAME, we look for a linker symbol | |
2397 | named NAME.plt. | |
2398 | - If we find such a symbol, we assume it is a trampoline, and use | |
2399 | its address as the pointer value. | |
2400 | ||
2401 | And, given a function pointer: | |
2402 | - We try to find a linker symbol at that address named NAME.plt. | |
2403 | - If we find such a symbol, we look for a linker symbol named NAME. | |
2404 | - If we find that, we provide that as the function's address. | |
2405 | - If any of the above steps fail, we return the original address | |
2406 | unchanged; it might really be a function in the low 64k. | |
2407 | ||
2408 | See? You *knew* there was a reason you wanted to be a computer | |
2409 | programmer! :) */ | |
2410 | ||
2411 | static void | |
2412 | m32c_m16c_address_to_pointer (struct gdbarch *gdbarch, | |
2413 | struct type *type, gdb_byte *buf, CORE_ADDR addr) | |
2414 | { | |
2415 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
2416 | enum type_code target_code; | |
2417 | gdb_assert (type->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type)); | |
2418 | ||
2419 | target_code = type->target_type ()->code (); | |
2420 | ||
2421 | if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD) | |
2422 | { | |
2423 | const char *func_name; | |
2424 | char *tramp_name; | |
2425 | ||
2426 | /* Try to find a linker symbol at this address. */ | |
2427 | bound_minimal_symbol func_msym = lookup_minimal_symbol_by_pc (addr); | |
2428 | ||
2429 | if (! func_msym.minsym) | |
2430 | error (_("Cannot convert code address %s to function pointer:\n" | |
2431 | "couldn't find a symbol at that address, to find trampoline."), | |
2432 | paddress (gdbarch, addr)); | |
2433 | ||
2434 | func_name = func_msym.minsym->linkage_name (); | |
2435 | tramp_name = (char *) xmalloc (strlen (func_name) + 5); | |
2436 | strcpy (tramp_name, func_name); | |
2437 | strcat (tramp_name, ".plt"); | |
2438 | ||
2439 | /* Try to find a linker symbol for the trampoline. */ | |
2440 | bound_minimal_symbol tramp_msym | |
2441 | = lookup_minimal_symbol (current_program_space, tramp_name); | |
2442 | ||
2443 | /* We've either got another copy of the name now, or don't need | |
2444 | the name any more. */ | |
2445 | xfree (tramp_name); | |
2446 | ||
2447 | if (! tramp_msym.minsym) | |
2448 | { | |
2449 | CORE_ADDR ptrval; | |
2450 | ||
2451 | /* No PLT entry found. Mask off the upper bits of the address | |
2452 | to make a pointer. As noted in the warning to the user | |
2453 | below, this value might be useful if converted back into | |
2454 | an address by GDB, but will otherwise, almost certainly, | |
2455 | be garbage. | |
2456 | ||
2457 | Using this masked result does seem to be useful | |
2458 | in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into | |
2459 | PASSes. These results appear to be correct as well. | |
2460 | ||
2461 | We print a warning here so that the user can make a | |
2462 | determination about whether the result is useful or not. */ | |
2463 | ptrval = addr & 0xffff; | |
2464 | ||
2465 | warning (_("Cannot convert code address %s to function pointer:\n" | |
2466 | "couldn't find trampoline named '%s.plt'.\n" | |
2467 | "Returning pointer value %s instead; this may produce\n" | |
2468 | "a useful result if converted back into an address by GDB,\n" | |
2469 | "but will most likely not be useful otherwise."), | |
2470 | paddress (gdbarch, addr), func_name, | |
2471 | paddress (gdbarch, ptrval)); | |
2472 | ||
2473 | addr = ptrval; | |
2474 | ||
2475 | } | |
2476 | else | |
2477 | { | |
2478 | /* The trampoline's address is our pointer. */ | |
2479 | addr = tramp_msym.value_address (); | |
2480 | } | |
2481 | } | |
2482 | ||
2483 | store_unsigned_integer (buf, type->length (), byte_order, addr); | |
2484 | } | |
2485 | ||
2486 | ||
2487 | static CORE_ADDR | |
2488 | m32c_m16c_pointer_to_address (struct gdbarch *gdbarch, | |
2489 | struct type *type, const gdb_byte *buf) | |
2490 | { | |
2491 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
2492 | CORE_ADDR ptr; | |
2493 | enum type_code target_code; | |
2494 | ||
2495 | gdb_assert (type->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type)); | |
2496 | ||
2497 | ptr = extract_unsigned_integer (buf, type->length (), byte_order); | |
2498 | ||
2499 | target_code = type->target_type ()->code (); | |
2500 | ||
2501 | if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD) | |
2502 | { | |
2503 | /* See if there is a minimal symbol at that address whose name is | |
2504 | "NAME.plt". */ | |
2505 | bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr); | |
2506 | ||
2507 | if (ptr_msym.minsym) | |
2508 | { | |
2509 | const char *ptr_msym_name = ptr_msym.minsym->linkage_name (); | |
2510 | int len = strlen (ptr_msym_name); | |
2511 | ||
2512 | if (len > 4 | |
2513 | && strcmp (ptr_msym_name + len - 4, ".plt") == 0) | |
2514 | { | |
2515 | /* We have a .plt symbol; try to find the symbol for the | |
2516 | corresponding function. | |
2517 | ||
2518 | Since the trampoline contains a jump instruction, we | |
2519 | could also just extract the jump's target address. I | |
2520 | don't see much advantage one way or the other. */ | |
2521 | char *func_name = (char *) xmalloc (len - 4 + 1); | |
2522 | memcpy (func_name, ptr_msym_name, len - 4); | |
2523 | func_name[len - 4] = '\0'; | |
2524 | bound_minimal_symbol func_msym | |
2525 | = lookup_minimal_symbol (current_program_space, func_name); | |
2526 | ||
2527 | /* If we do have such a symbol, return its value as the | |
2528 | function's true address. */ | |
2529 | if (func_msym.minsym) | |
2530 | ptr = func_msym.value_address (); | |
2531 | } | |
2532 | } | |
2533 | else | |
2534 | { | |
2535 | int aspace; | |
2536 | ||
2537 | for (aspace = 1; aspace <= 15; aspace++) | |
2538 | { | |
2539 | ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr); | |
2540 | ||
2541 | if (ptr_msym.minsym) | |
2542 | ptr |= aspace << 16; | |
2543 | } | |
2544 | } | |
2545 | } | |
2546 | ||
2547 | return ptr; | |
2548 | } | |
2549 | ||
2550 | static void | |
2551 | m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc, | |
2552 | int *frame_regnum, | |
2553 | LONGEST *frame_offset) | |
2554 | { | |
2555 | const char *name; | |
2556 | CORE_ADDR func_addr, func_end; | |
2557 | struct m32c_prologue p; | |
2558 | ||
2559 | regcache *regcache = get_thread_regcache (inferior_thread ()); | |
2560 | m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch); | |
2561 | ||
2562 | if (!find_pc_partial_function (pc, &name, &func_addr, &func_end)) | |
2563 | internal_error (_("No virtual frame pointer available")); | |
2564 | ||
2565 | m32c_analyze_prologue (gdbarch, func_addr, pc, &p); | |
2566 | switch (p.kind) | |
2567 | { | |
2568 | case prologue_with_frame_ptr: | |
2569 | *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num; | |
2570 | *frame_offset = p.frame_ptr_offset; | |
2571 | break; | |
2572 | case prologue_sans_frame_ptr: | |
2573 | *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num; | |
2574 | *frame_offset = p.frame_size; | |
2575 | break; | |
2576 | default: | |
2577 | *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num; | |
2578 | *frame_offset = 0; | |
2579 | break; | |
2580 | } | |
2581 | /* Sanity check */ | |
2582 | if (*frame_regnum > gdbarch_num_regs (gdbarch)) | |
2583 | internal_error (_("No virtual frame pointer available")); | |
2584 | } | |
2585 | ||
2586 | \f | |
2587 | /* Initialization. */ | |
2588 | ||
2589 | static struct gdbarch * | |
2590 | m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2591 | { | |
2592 | unsigned long mach = info.bfd_arch_info->mach; | |
2593 | ||
2594 | /* Find a candidate among the list of architectures we've created | |
2595 | already. */ | |
2596 | for (arches = gdbarch_list_lookup_by_info (arches, &info); | |
2597 | arches != NULL; | |
2598 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
2599 | return arches->gdbarch; | |
2600 | ||
2601 | gdbarch *gdbarch | |
2602 | = gdbarch_alloc (&info, gdbarch_tdep_up (new m32c_gdbarch_tdep)); | |
2603 | ||
2604 | /* Essential types. */ | |
2605 | make_types (gdbarch); | |
2606 | ||
2607 | /* Address/pointer conversions. */ | |
2608 | if (mach == bfd_mach_m16c) | |
2609 | { | |
2610 | set_gdbarch_address_to_pointer (gdbarch, m32c_m16c_address_to_pointer); | |
2611 | set_gdbarch_pointer_to_address (gdbarch, m32c_m16c_pointer_to_address); | |
2612 | } | |
2613 | ||
2614 | /* Register set. */ | |
2615 | make_regs (gdbarch); | |
2616 | ||
2617 | /* Breakpoints. */ | |
2618 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32c_breakpoint::kind_from_pc); | |
2619 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32c_breakpoint::bp_from_kind); | |
2620 | ||
2621 | /* Prologue analysis and unwinding. */ | |
2622 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
2623 | set_gdbarch_skip_prologue (gdbarch, m32c_skip_prologue); | |
2624 | #if 0 | |
2625 | /* I'm dropping the dwarf2 sniffer because it has a few problems. | |
2626 | They may be in the dwarf2 cfi code in GDB, or they may be in | |
2627 | the debug info emitted by the upstream toolchain. I don't | |
2628 | know which, but I do know that the prologue analyzer works better. | |
2629 | MVS 04/13/06 */ | |
2630 | dwarf2_append_sniffers (gdbarch); | |
2631 | #endif | |
2632 | frame_unwind_append_unwinder (gdbarch, &m32c_unwind); | |
2633 | ||
2634 | /* Inferior calls. */ | |
2635 | set_gdbarch_push_dummy_call (gdbarch, m32c_push_dummy_call); | |
2636 | set_gdbarch_return_value (gdbarch, m32c_return_value); | |
2637 | ||
2638 | /* Trampolines. */ | |
2639 | set_gdbarch_skip_trampoline_code (gdbarch, m32c_skip_trampoline_code); | |
2640 | ||
2641 | set_gdbarch_virtual_frame_pointer (gdbarch, m32c_virtual_frame_pointer); | |
2642 | ||
2643 | /* m32c function boundary addresses are not necessarily even. | |
2644 | Therefore, the `vbit', which indicates a pointer to a virtual | |
2645 | member function, is stored in the delta field, rather than as | |
2646 | the low bit of a function pointer address. | |
2647 | ||
2648 | In order to verify this, see the definition of | |
2649 | TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the | |
2650 | definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */ | |
2651 | set_gdbarch_vbit_in_delta (gdbarch, 1); | |
2652 | ||
2653 | return gdbarch; | |
2654 | } | |
2655 | ||
2656 | INIT_GDB_FILE (m32c_tdep) | |
2657 | { | |
2658 | gdbarch_register (bfd_arch_m32c, m32c_gdbarch_init); | |
2659 | ||
2660 | m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP); | |
2661 | } |