]>
Commit | Line | Data |
---|---|---|
1 | /* Target-dependent code for Renesas M32R, for GDB. | |
2 | ||
3 | Copyright (C) 1996-2025 Free Software Foundation, Inc. | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
19 | ||
20 | #include "extract-store-integer.h" | |
21 | #include "frame.h" | |
22 | #include "frame-unwind.h" | |
23 | #include "frame-base.h" | |
24 | #include "symtab.h" | |
25 | #include "gdbtypes.h" | |
26 | #include "cli/cli-cmds.h" | |
27 | #include "gdbcore.h" | |
28 | #include "value.h" | |
29 | #include "inferior.h" | |
30 | #include "symfile.h" | |
31 | #include "objfiles.h" | |
32 | #include "osabi.h" | |
33 | #include "language.h" | |
34 | #include "arch-utils.h" | |
35 | #include "regcache.h" | |
36 | #include "trad-frame.h" | |
37 | #include "dis-asm.h" | |
38 | #include "m32r-tdep.h" | |
39 | #include <algorithm> | |
40 | ||
41 | /* The size of the argument registers (r0 - r3) in bytes. */ | |
42 | #define M32R_ARG_REGISTER_SIZE 4 | |
43 | ||
44 | /* Local functions */ | |
45 | ||
46 | static CORE_ADDR | |
47 | m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
48 | { | |
49 | /* Align to the size of an instruction (so that they can safely be | |
50 | pushed onto the stack. */ | |
51 | return sp & ~3; | |
52 | } | |
53 | ||
54 | ||
55 | /* Breakpoints | |
56 | ||
57 | The little endian mode of M32R is unique. In most of architectures, | |
58 | two 16-bit instructions, A and B, are placed as the following: | |
59 | ||
60 | Big endian: | |
61 | A0 A1 B0 B1 | |
62 | ||
63 | Little endian: | |
64 | A1 A0 B1 B0 | |
65 | ||
66 | In M32R, they are placed like this: | |
67 | ||
68 | Big endian: | |
69 | A0 A1 B0 B1 | |
70 | ||
71 | Little endian: | |
72 | B1 B0 A1 A0 | |
73 | ||
74 | This is because M32R always fetches instructions in 32-bit. | |
75 | ||
76 | The following functions take care of this behavior. */ | |
77 | ||
78 | static int | |
79 | m32r_memory_insert_breakpoint (struct gdbarch *gdbarch, | |
80 | struct bp_target_info *bp_tgt) | |
81 | { | |
82 | CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address; | |
83 | int val; | |
84 | gdb_byte buf[4]; | |
85 | gdb_byte contents_cache[4]; | |
86 | gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */ | |
87 | ||
88 | /* Save the memory contents. */ | |
89 | val = target_read_memory (addr & 0xfffffffc, contents_cache, 4); | |
90 | if (val != 0) | |
91 | return val; /* return error */ | |
92 | ||
93 | memcpy (bp_tgt->shadow_contents, contents_cache, 4); | |
94 | bp_tgt->shadow_len = 4; | |
95 | ||
96 | /* Determine appropriate breakpoint contents and size for this address. */ | |
97 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
98 | { | |
99 | if ((addr & 3) == 0) | |
100 | { | |
101 | buf[0] = bp_entry[0]; | |
102 | buf[1] = bp_entry[1]; | |
103 | buf[2] = contents_cache[2] & 0x7f; | |
104 | buf[3] = contents_cache[3]; | |
105 | } | |
106 | else | |
107 | { | |
108 | buf[0] = contents_cache[0]; | |
109 | buf[1] = contents_cache[1]; | |
110 | buf[2] = bp_entry[0]; | |
111 | buf[3] = bp_entry[1]; | |
112 | } | |
113 | } | |
114 | else /* little-endian */ | |
115 | { | |
116 | if ((addr & 3) == 0) | |
117 | { | |
118 | buf[0] = contents_cache[0]; | |
119 | buf[1] = contents_cache[1] & 0x7f; | |
120 | buf[2] = bp_entry[1]; | |
121 | buf[3] = bp_entry[0]; | |
122 | } | |
123 | else | |
124 | { | |
125 | buf[0] = bp_entry[1]; | |
126 | buf[1] = bp_entry[0]; | |
127 | buf[2] = contents_cache[2]; | |
128 | buf[3] = contents_cache[3]; | |
129 | } | |
130 | } | |
131 | ||
132 | /* Write the breakpoint. */ | |
133 | val = target_write_memory (addr & 0xfffffffc, buf, 4); | |
134 | return val; | |
135 | } | |
136 | ||
137 | static int | |
138 | m32r_memory_remove_breakpoint (struct gdbarch *gdbarch, | |
139 | struct bp_target_info *bp_tgt) | |
140 | { | |
141 | CORE_ADDR addr = bp_tgt->placed_address; | |
142 | int val; | |
143 | gdb_byte buf[4]; | |
144 | gdb_byte *contents_cache = bp_tgt->shadow_contents; | |
145 | ||
146 | buf[0] = contents_cache[0]; | |
147 | buf[1] = contents_cache[1]; | |
148 | buf[2] = contents_cache[2]; | |
149 | buf[3] = contents_cache[3]; | |
150 | ||
151 | /* Remove parallel bit. */ | |
152 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
153 | { | |
154 | if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0) | |
155 | buf[2] &= 0x7f; | |
156 | } | |
157 | else /* little-endian */ | |
158 | { | |
159 | if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0) | |
160 | buf[1] &= 0x7f; | |
161 | } | |
162 | ||
163 | /* Write contents. */ | |
164 | val = target_write_raw_memory (addr & 0xfffffffc, buf, 4); | |
165 | return val; | |
166 | } | |
167 | ||
168 | /* Implement the breakpoint_kind_from_pc gdbarch method. */ | |
169 | ||
170 | static int | |
171 | m32r_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) | |
172 | { | |
173 | if ((*pcptr & 3) == 0) | |
174 | return 4; | |
175 | else | |
176 | return 2; | |
177 | } | |
178 | ||
179 | /* Implement the sw_breakpoint_from_kind gdbarch method. */ | |
180 | ||
181 | static const gdb_byte * | |
182 | m32r_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) | |
183 | { | |
184 | static gdb_byte be_bp_entry[] = { | |
185 | 0x10, 0xf1, 0x70, 0x00 | |
186 | }; /* dpt -> nop */ | |
187 | static gdb_byte le_bp_entry[] = { | |
188 | 0x00, 0x70, 0xf1, 0x10 | |
189 | }; /* dpt -> nop */ | |
190 | ||
191 | *size = kind; | |
192 | ||
193 | /* Determine appropriate breakpoint. */ | |
194 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
195 | return be_bp_entry; | |
196 | else | |
197 | { | |
198 | if (kind == 4) | |
199 | return le_bp_entry; | |
200 | else | |
201 | return le_bp_entry + 2; | |
202 | } | |
203 | } | |
204 | ||
205 | static const char * const m32r_register_names[] = { | |
206 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
207 | "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp", | |
208 | "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch", | |
209 | "evb" | |
210 | }; | |
211 | ||
212 | static const char * | |
213 | m32r_register_name (struct gdbarch *gdbarch, int reg_nr) | |
214 | { | |
215 | static_assert (ARRAY_SIZE (m32r_register_names) == M32R_NUM_REGS); | |
216 | return m32r_register_names[reg_nr]; | |
217 | } | |
218 | ||
219 | ||
220 | /* Return the GDB type object for the "standard" data type | |
221 | of data in register N. */ | |
222 | ||
223 | static struct type * | |
224 | m32r_register_type (struct gdbarch *gdbarch, int reg_nr) | |
225 | { | |
226 | if (reg_nr == M32R_PC_REGNUM) | |
227 | return builtin_type (gdbarch)->builtin_func_ptr; | |
228 | else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM) | |
229 | return builtin_type (gdbarch)->builtin_data_ptr; | |
230 | else | |
231 | return builtin_type (gdbarch)->builtin_int32; | |
232 | } | |
233 | ||
234 | ||
235 | /* Write into appropriate registers a function return value | |
236 | of type TYPE, given in virtual format. | |
237 | ||
238 | Things always get returned in RET1_REGNUM, RET2_REGNUM. */ | |
239 | ||
240 | static void | |
241 | m32r_store_return_value (struct type *type, struct regcache *regcache, | |
242 | const gdb_byte *valbuf) | |
243 | { | |
244 | struct gdbarch *gdbarch = regcache->arch (); | |
245 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
246 | CORE_ADDR regval; | |
247 | int len = type->length (); | |
248 | ||
249 | regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order); | |
250 | regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval); | |
251 | ||
252 | if (len > 4) | |
253 | { | |
254 | regval = extract_unsigned_integer (valbuf + 4, | |
255 | len - 4, byte_order); | |
256 | regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval); | |
257 | } | |
258 | } | |
259 | ||
260 | /* This is required by skip_prologue. The results of decoding a prologue | |
261 | should be cached because this thrashing is getting nuts. */ | |
262 | ||
263 | static int | |
264 | decode_prologue (struct gdbarch *gdbarch, | |
265 | CORE_ADDR start_pc, CORE_ADDR scan_limit, | |
266 | CORE_ADDR *pl_endptr, unsigned long *framelength) | |
267 | { | |
268 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
269 | unsigned long framesize; | |
270 | int insn; | |
271 | int op1; | |
272 | CORE_ADDR after_prologue = 0; | |
273 | CORE_ADDR after_push = 0; | |
274 | CORE_ADDR after_stack_adjust = 0; | |
275 | CORE_ADDR current_pc; | |
276 | LONGEST return_value; | |
277 | ||
278 | framesize = 0; | |
279 | after_prologue = 0; | |
280 | ||
281 | for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2) | |
282 | { | |
283 | /* Check if current pc's location is readable. */ | |
284 | if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value)) | |
285 | return -1; | |
286 | ||
287 | insn = read_memory_unsigned_integer (current_pc, 2, byte_order); | |
288 | ||
289 | if (insn == 0x0000) | |
290 | break; | |
291 | ||
292 | /* If this is a 32 bit instruction, we dont want to examine its | |
293 | immediate data as though it were an instruction. */ | |
294 | if (current_pc & 0x02) | |
295 | { | |
296 | /* Decode this instruction further. */ | |
297 | insn &= 0x7fff; | |
298 | } | |
299 | else | |
300 | { | |
301 | if (insn & 0x8000) | |
302 | { | |
303 | if (current_pc == scan_limit) | |
304 | scan_limit += 2; /* extend the search */ | |
305 | ||
306 | current_pc += 2; /* skip the immediate data */ | |
307 | ||
308 | /* Check if current pc's location is readable. */ | |
309 | if (!safe_read_memory_integer (current_pc, 2, byte_order, | |
310 | &return_value)) | |
311 | return -1; | |
312 | ||
313 | if (insn == 0x8faf) /* add3 sp, sp, xxxx */ | |
314 | /* add 16 bit sign-extended offset */ | |
315 | { | |
316 | framesize += | |
317 | -((short) read_memory_unsigned_integer (current_pc, | |
318 | 2, byte_order)); | |
319 | } | |
320 | else | |
321 | { | |
322 | if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */ | |
323 | && safe_read_memory_integer (current_pc + 2, | |
324 | 2, byte_order, | |
325 | &return_value) | |
326 | && read_memory_unsigned_integer (current_pc + 2, | |
327 | 2, byte_order) | |
328 | == 0x0f24) | |
329 | { | |
330 | /* Subtract 24 bit sign-extended negative-offset. */ | |
331 | insn = read_memory_unsigned_integer (current_pc - 2, | |
332 | 4, byte_order); | |
333 | if (insn & 0x00800000) /* sign extend */ | |
334 | insn |= 0xff000000; /* negative */ | |
335 | else | |
336 | insn &= 0x00ffffff; /* positive */ | |
337 | framesize += insn; | |
338 | } | |
339 | } | |
340 | after_push = current_pc + 2; | |
341 | continue; | |
342 | } | |
343 | } | |
344 | op1 = insn & 0xf000; /* Isolate just the first nibble. */ | |
345 | ||
346 | if ((insn & 0xf0ff) == 0x207f) | |
347 | { /* st reg, @-sp */ | |
348 | framesize += 4; | |
349 | after_prologue = 0; | |
350 | continue; | |
351 | } | |
352 | if ((insn >> 8) == 0x4f) /* addi sp, xx */ | |
353 | /* Add 8 bit sign-extended offset. */ | |
354 | { | |
355 | int stack_adjust = (signed char) (insn & 0xff); | |
356 | ||
357 | /* there are probably two of these stack adjustments: | |
358 | 1) A negative one in the prologue, and | |
359 | 2) A positive one in the epilogue. | |
360 | We are only interested in the first one. */ | |
361 | ||
362 | if (stack_adjust < 0) | |
363 | { | |
364 | framesize -= stack_adjust; | |
365 | after_prologue = 0; | |
366 | /* A frameless function may have no "mv fp, sp". | |
367 | In that case, this is the end of the prologue. */ | |
368 | after_stack_adjust = current_pc + 2; | |
369 | } | |
370 | continue; | |
371 | } | |
372 | if (insn == 0x1d8f) | |
373 | { /* mv fp, sp */ | |
374 | after_prologue = current_pc + 2; | |
375 | break; /* end of stack adjustments */ | |
376 | } | |
377 | ||
378 | /* Nop looks like a branch, continue explicitly. */ | |
379 | if (insn == 0x7000) | |
380 | { | |
381 | after_prologue = current_pc + 2; | |
382 | continue; /* nop occurs between pushes. */ | |
383 | } | |
384 | /* End of prolog if any of these are trap instructions. */ | |
385 | if ((insn & 0xfff0) == 0x10f0) | |
386 | { | |
387 | after_prologue = current_pc; | |
388 | break; | |
389 | } | |
390 | /* End of prolog if any of these are branch instructions. */ | |
391 | if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000)) | |
392 | { | |
393 | after_prologue = current_pc; | |
394 | continue; | |
395 | } | |
396 | /* Some of the branch instructions are mixed with other types. */ | |
397 | if (op1 == 0x1000) | |
398 | { | |
399 | int subop = insn & 0x0ff0; | |
400 | if ((subop == 0x0ec0) || (subop == 0x0fc0)) | |
401 | { | |
402 | after_prologue = current_pc; | |
403 | continue; /* jmp , jl */ | |
404 | } | |
405 | } | |
406 | } | |
407 | ||
408 | if (framelength) | |
409 | *framelength = framesize; | |
410 | ||
411 | if (current_pc >= scan_limit) | |
412 | { | |
413 | if (pl_endptr) | |
414 | { | |
415 | if (after_stack_adjust != 0) | |
416 | /* We did not find a "mv fp,sp", but we DID find | |
417 | a stack_adjust. Is it safe to use that as the | |
418 | end of the prologue? I just don't know. */ | |
419 | { | |
420 | *pl_endptr = after_stack_adjust; | |
421 | } | |
422 | else if (after_push != 0) | |
423 | /* We did not find a "mv fp,sp", but we DID find | |
424 | a push. Is it safe to use that as the | |
425 | end of the prologue? I just don't know. */ | |
426 | { | |
427 | *pl_endptr = after_push; | |
428 | } | |
429 | else | |
430 | /* We reached the end of the loop without finding the end | |
431 | of the prologue. No way to win -- we should report | |
432 | failure. The way we do that is to return the original | |
433 | start_pc. GDB will set a breakpoint at the start of | |
434 | the function (etc.) */ | |
435 | *pl_endptr = start_pc; | |
436 | } | |
437 | return 0; | |
438 | } | |
439 | ||
440 | if (after_prologue == 0) | |
441 | after_prologue = current_pc; | |
442 | ||
443 | if (pl_endptr) | |
444 | *pl_endptr = after_prologue; | |
445 | ||
446 | return 0; | |
447 | } /* decode_prologue */ | |
448 | ||
449 | /* Function: skip_prologue | |
450 | Find end of function prologue. */ | |
451 | ||
452 | #define DEFAULT_SEARCH_LIMIT 128 | |
453 | ||
454 | static CORE_ADDR | |
455 | m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | |
456 | { | |
457 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
458 | CORE_ADDR func_addr, func_end; | |
459 | struct symtab_and_line sal; | |
460 | LONGEST return_value; | |
461 | ||
462 | /* See what the symbol table says. */ | |
463 | ||
464 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
465 | { | |
466 | sal = find_pc_line (func_addr, 0); | |
467 | ||
468 | if (sal.line != 0 && sal.end <= func_end) | |
469 | { | |
470 | func_end = sal.end; | |
471 | } | |
472 | else | |
473 | /* Either there's no line info, or the line after the prologue is after | |
474 | the end of the function. In this case, there probably isn't a | |
475 | prologue. */ | |
476 | { | |
477 | func_end = std::min (func_end, func_addr + DEFAULT_SEARCH_LIMIT); | |
478 | } | |
479 | } | |
480 | else | |
481 | func_end = pc + DEFAULT_SEARCH_LIMIT; | |
482 | ||
483 | /* If pc's location is not readable, just quit. */ | |
484 | if (!safe_read_memory_integer (pc, 4, byte_order, &return_value)) | |
485 | return pc; | |
486 | ||
487 | /* Find the end of prologue. */ | |
488 | if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0) | |
489 | return pc; | |
490 | ||
491 | return sal.end; | |
492 | } | |
493 | ||
494 | struct m32r_unwind_cache | |
495 | { | |
496 | /* The previous frame's inner most stack address. Used as this | |
497 | frame ID's stack_addr. */ | |
498 | CORE_ADDR prev_sp; | |
499 | /* The frame's base, optionally used by the high-level debug info. */ | |
500 | CORE_ADDR base; | |
501 | int size; | |
502 | /* How far the SP and r13 (FP) have been offset from the start of | |
503 | the stack frame (as defined by the previous frame's stack | |
504 | pointer). */ | |
505 | LONGEST sp_offset; | |
506 | LONGEST r13_offset; | |
507 | int uses_frame; | |
508 | /* Table indicating the location of each and every register. */ | |
509 | trad_frame_saved_reg *saved_regs; | |
510 | }; | |
511 | ||
512 | /* Put here the code to store, into fi->saved_regs, the addresses of | |
513 | the saved registers of frame described by FRAME_INFO. This | |
514 | includes special registers such as pc and fp saved in special ways | |
515 | in the stack frame. sp is even more special: the address we return | |
516 | for it IS the sp for the next frame. */ | |
517 | ||
518 | static struct m32r_unwind_cache * | |
519 | m32r_frame_unwind_cache (const frame_info_ptr &this_frame, | |
520 | void **this_prologue_cache) | |
521 | { | |
522 | CORE_ADDR pc, scan_limit; | |
523 | ULONGEST prev_sp; | |
524 | ULONGEST this_base; | |
525 | unsigned long op; | |
526 | int i; | |
527 | struct m32r_unwind_cache *info; | |
528 | ||
529 | ||
530 | if ((*this_prologue_cache)) | |
531 | return (struct m32r_unwind_cache *) (*this_prologue_cache); | |
532 | ||
533 | info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache); | |
534 | (*this_prologue_cache) = info; | |
535 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); | |
536 | ||
537 | info->size = 0; | |
538 | info->sp_offset = 0; | |
539 | info->uses_frame = 0; | |
540 | ||
541 | scan_limit = get_frame_pc (this_frame); | |
542 | for (pc = get_frame_func (this_frame); | |
543 | pc > 0 && pc < scan_limit; pc += 2) | |
544 | { | |
545 | if ((pc & 2) == 0) | |
546 | { | |
547 | op = get_frame_memory_unsigned (this_frame, pc, 4); | |
548 | if ((op & 0x80000000) == 0x80000000) | |
549 | { | |
550 | /* 32-bit instruction */ | |
551 | if ((op & 0xffff0000) == 0x8faf0000) | |
552 | { | |
553 | /* add3 sp,sp,xxxx */ | |
554 | short n = op & 0xffff; | |
555 | info->sp_offset += n; | |
556 | } | |
557 | else if (((op >> 8) == 0xe4) | |
558 | && get_frame_memory_unsigned (this_frame, pc + 2, | |
559 | 2) == 0x0f24) | |
560 | { | |
561 | /* ld24 r4, xxxxxx; sub sp, r4 */ | |
562 | unsigned long n = op & 0xffffff; | |
563 | info->sp_offset += n; | |
564 | pc += 2; /* skip sub instruction */ | |
565 | } | |
566 | ||
567 | if (pc == scan_limit) | |
568 | scan_limit += 2; /* extend the search */ | |
569 | pc += 2; /* skip the immediate data */ | |
570 | continue; | |
571 | } | |
572 | } | |
573 | ||
574 | /* 16-bit instructions */ | |
575 | op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff; | |
576 | if ((op & 0xf0ff) == 0x207f) | |
577 | { | |
578 | /* st rn, @-sp */ | |
579 | int regno = ((op >> 8) & 0xf); | |
580 | info->sp_offset -= 4; | |
581 | info->saved_regs[regno].set_addr (info->sp_offset); | |
582 | } | |
583 | else if ((op & 0xff00) == 0x4f00) | |
584 | { | |
585 | /* addi sp, xx */ | |
586 | int n = (signed char) (op & 0xff); | |
587 | info->sp_offset += n; | |
588 | } | |
589 | else if (op == 0x1d8f) | |
590 | { | |
591 | /* mv fp, sp */ | |
592 | info->uses_frame = 1; | |
593 | info->r13_offset = info->sp_offset; | |
594 | break; /* end of stack adjustments */ | |
595 | } | |
596 | else if ((op & 0xfff0) == 0x10f0) | |
597 | { | |
598 | /* End of prologue if this is a trap instruction. */ | |
599 | break; /* End of stack adjustments. */ | |
600 | } | |
601 | } | |
602 | ||
603 | info->size = -info->sp_offset; | |
604 | ||
605 | /* Compute the previous frame's stack pointer (which is also the | |
606 | frame's ID's stack address), and this frame's base pointer. */ | |
607 | if (info->uses_frame) | |
608 | { | |
609 | /* The SP was moved to the FP. This indicates that a new frame | |
610 | was created. Get THIS frame's FP value by unwinding it from | |
611 | the next frame. */ | |
612 | this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM); | |
613 | /* The FP points at the last saved register. Adjust the FP back | |
614 | to before the first saved register giving the SP. */ | |
615 | prev_sp = this_base + info->size; | |
616 | } | |
617 | else | |
618 | { | |
619 | /* Assume that the FP is this frame's SP but with that pushed | |
620 | stack space added back. */ | |
621 | this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM); | |
622 | prev_sp = this_base + info->size; | |
623 | } | |
624 | ||
625 | /* Convert that SP/BASE into real addresses. */ | |
626 | info->prev_sp = prev_sp; | |
627 | info->base = this_base; | |
628 | ||
629 | /* Adjust all the saved registers so that they contain addresses and | |
630 | not offsets. */ | |
631 | for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++) | |
632 | if (info->saved_regs[i].is_addr ()) | |
633 | info->saved_regs[i].set_addr (info->prev_sp | |
634 | + info->saved_regs[i].addr ()); | |
635 | ||
636 | /* The call instruction moves the caller's PC in the callee's LR. | |
637 | Since this is an unwind, do the reverse. Copy the location of LR | |
638 | into PC (the address / regnum) so that a request for PC will be | |
639 | converted into a request for the LR. */ | |
640 | info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM]; | |
641 | ||
642 | /* The previous frame's SP needed to be computed. Save the computed | |
643 | value. */ | |
644 | info->saved_regs[M32R_SP_REGNUM].set_value (prev_sp); | |
645 | ||
646 | return info; | |
647 | } | |
648 | ||
649 | static CORE_ADDR | |
650 | m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
651 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, | |
652 | struct value **args, CORE_ADDR sp, | |
653 | function_call_return_method return_method, | |
654 | CORE_ADDR struct_addr) | |
655 | { | |
656 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
657 | int stack_offset, stack_alloc; | |
658 | int argreg = ARG1_REGNUM; | |
659 | int argnum; | |
660 | struct type *type; | |
661 | enum type_code typecode; | |
662 | CORE_ADDR regval; | |
663 | gdb_byte *val; | |
664 | gdb_byte valbuf[M32R_ARG_REGISTER_SIZE]; | |
665 | int len; | |
666 | ||
667 | /* First force sp to a 4-byte alignment. */ | |
668 | sp = sp & ~3; | |
669 | ||
670 | /* Set the return address. For the m32r, the return breakpoint is | |
671 | always at BP_ADDR. */ | |
672 | regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr); | |
673 | ||
674 | /* If STRUCT_RETURN is true, then the struct return address (in | |
675 | STRUCT_ADDR) will consume the first argument-passing register. | |
676 | Both adjust the register count and store that value. */ | |
677 | if (return_method == return_method_struct) | |
678 | { | |
679 | regcache_cooked_write_unsigned (regcache, argreg, struct_addr); | |
680 | argreg++; | |
681 | } | |
682 | ||
683 | /* Now make sure there's space on the stack. */ | |
684 | for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++) | |
685 | stack_alloc += ((args[argnum]->type ()->length () + 3) & ~3); | |
686 | sp -= stack_alloc; /* Make room on stack for args. */ | |
687 | ||
688 | for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) | |
689 | { | |
690 | type = args[argnum]->type (); | |
691 | typecode = type->code (); | |
692 | len = type->length (); | |
693 | ||
694 | memset (valbuf, 0, sizeof (valbuf)); | |
695 | ||
696 | /* Passes structures that do not fit in 2 registers by reference. */ | |
697 | if (len > 8 | |
698 | && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) | |
699 | { | |
700 | store_unsigned_integer (valbuf, 4, byte_order, | |
701 | args[argnum]->address ()); | |
702 | typecode = TYPE_CODE_PTR; | |
703 | len = 4; | |
704 | val = valbuf; | |
705 | } | |
706 | else if (len < 4) | |
707 | { | |
708 | /* Value gets right-justified in the register or stack word. */ | |
709 | memcpy (valbuf + (register_size (gdbarch, argreg) - len), | |
710 | (gdb_byte *) args[argnum]->contents ().data (), len); | |
711 | val = valbuf; | |
712 | } | |
713 | else | |
714 | val = (gdb_byte *) args[argnum]->contents ().data (); | |
715 | ||
716 | while (len > 0) | |
717 | { | |
718 | if (argreg > ARGN_REGNUM) | |
719 | { | |
720 | /* Must go on the stack. */ | |
721 | write_memory (sp + stack_offset, val, 4); | |
722 | stack_offset += 4; | |
723 | } | |
724 | else if (argreg <= ARGN_REGNUM) | |
725 | { | |
726 | /* There's room in a register. */ | |
727 | regval = | |
728 | extract_unsigned_integer (val, | |
729 | register_size (gdbarch, argreg), | |
730 | byte_order); | |
731 | regcache_cooked_write_unsigned (regcache, argreg++, regval); | |
732 | } | |
733 | ||
734 | /* Store the value 4 bytes at a time. This means that things | |
735 | larger than 4 bytes may go partly in registers and partly | |
736 | on the stack. */ | |
737 | len -= register_size (gdbarch, argreg); | |
738 | val += register_size (gdbarch, argreg); | |
739 | } | |
740 | } | |
741 | ||
742 | /* Finally, update the SP register. */ | |
743 | regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp); | |
744 | ||
745 | return sp; | |
746 | } | |
747 | ||
748 | ||
749 | /* Given a return value in `regbuf' with a type `valtype', | |
750 | extract and copy its value into `valbuf'. */ | |
751 | ||
752 | static void | |
753 | m32r_extract_return_value (struct type *type, struct regcache *regcache, | |
754 | gdb_byte *dst) | |
755 | { | |
756 | struct gdbarch *gdbarch = regcache->arch (); | |
757 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
758 | int len = type->length (); | |
759 | ULONGEST tmp; | |
760 | ||
761 | /* By using store_unsigned_integer we avoid having to do | |
762 | anything special for small big-endian values. */ | |
763 | regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp); | |
764 | store_unsigned_integer (dst, (len > 4 ? len - 4 : len), byte_order, tmp); | |
765 | ||
766 | /* Ignore return values more than 8 bytes in size because the m32r | |
767 | returns anything more than 8 bytes in the stack. */ | |
768 | if (len > 4) | |
769 | { | |
770 | regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp); | |
771 | store_unsigned_integer (dst + len - 4, 4, byte_order, tmp); | |
772 | } | |
773 | } | |
774 | ||
775 | static enum return_value_convention | |
776 | m32r_return_value (struct gdbarch *gdbarch, struct value *function, | |
777 | struct type *valtype, struct regcache *regcache, | |
778 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
779 | { | |
780 | if (valtype->length () > 8) | |
781 | return RETURN_VALUE_STRUCT_CONVENTION; | |
782 | else | |
783 | { | |
784 | if (readbuf != NULL) | |
785 | m32r_extract_return_value (valtype, regcache, readbuf); | |
786 | if (writebuf != NULL) | |
787 | m32r_store_return_value (valtype, regcache, writebuf); | |
788 | return RETURN_VALUE_REGISTER_CONVENTION; | |
789 | } | |
790 | } | |
791 | ||
792 | /* Given a GDB frame, determine the address of the calling function's | |
793 | frame. This will be used to create a new GDB frame struct. */ | |
794 | ||
795 | static void | |
796 | m32r_frame_this_id (const frame_info_ptr &this_frame, | |
797 | void **this_prologue_cache, struct frame_id *this_id) | |
798 | { | |
799 | struct m32r_unwind_cache *info | |
800 | = m32r_frame_unwind_cache (this_frame, this_prologue_cache); | |
801 | CORE_ADDR base; | |
802 | CORE_ADDR func; | |
803 | struct frame_id id; | |
804 | ||
805 | /* The FUNC is easy. */ | |
806 | func = get_frame_func (this_frame); | |
807 | ||
808 | /* Check if the stack is empty. */ | |
809 | bound_minimal_symbol msym_stack | |
810 | = lookup_minimal_symbol (current_program_space, "_stack"); | |
811 | if (msym_stack.minsym && info->base == msym_stack.value_address ()) | |
812 | return; | |
813 | ||
814 | /* Hopefully the prologue analysis either correctly determined the | |
815 | frame's base (which is the SP from the previous frame), or set | |
816 | that base to "NULL". */ | |
817 | base = info->prev_sp; | |
818 | if (base == 0) | |
819 | return; | |
820 | ||
821 | id = frame_id_build (base, func); | |
822 | (*this_id) = id; | |
823 | } | |
824 | ||
825 | static struct value * | |
826 | m32r_frame_prev_register (const frame_info_ptr &this_frame, | |
827 | void **this_prologue_cache, int regnum) | |
828 | { | |
829 | struct m32r_unwind_cache *info | |
830 | = m32r_frame_unwind_cache (this_frame, this_prologue_cache); | |
831 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | |
832 | } | |
833 | ||
834 | static const struct frame_unwind_legacy m32r_frame_unwind ( | |
835 | "m32r prologue", | |
836 | NORMAL_FRAME, | |
837 | FRAME_UNWIND_ARCH, | |
838 | default_frame_unwind_stop_reason, | |
839 | m32r_frame_this_id, | |
840 | m32r_frame_prev_register, | |
841 | NULL, | |
842 | default_frame_sniffer | |
843 | ); | |
844 | ||
845 | static CORE_ADDR | |
846 | m32r_frame_base_address (const frame_info_ptr &this_frame, void **this_cache) | |
847 | { | |
848 | struct m32r_unwind_cache *info | |
849 | = m32r_frame_unwind_cache (this_frame, this_cache); | |
850 | return info->base; | |
851 | } | |
852 | ||
853 | static const struct frame_base m32r_frame_base = { | |
854 | &m32r_frame_unwind, | |
855 | m32r_frame_base_address, | |
856 | m32r_frame_base_address, | |
857 | m32r_frame_base_address | |
858 | }; | |
859 | ||
860 | static gdbarch_init_ftype m32r_gdbarch_init; | |
861 | ||
862 | static struct gdbarch * | |
863 | m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
864 | { | |
865 | /* If there is already a candidate, use it. */ | |
866 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
867 | if (arches != NULL) | |
868 | return arches->gdbarch; | |
869 | ||
870 | /* Allocate space for the new architecture. */ | |
871 | gdbarch *gdbarch | |
872 | = gdbarch_alloc (&info, gdbarch_tdep_up (new m32r_gdbarch_tdep)); | |
873 | ||
874 | set_gdbarch_wchar_bit (gdbarch, 16); | |
875 | set_gdbarch_wchar_signed (gdbarch, 0); | |
876 | ||
877 | set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS); | |
878 | set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM); | |
879 | set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM); | |
880 | set_gdbarch_register_name (gdbarch, m32r_register_name); | |
881 | set_gdbarch_register_type (gdbarch, m32r_register_type); | |
882 | ||
883 | set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call); | |
884 | set_gdbarch_return_value (gdbarch, m32r_return_value); | |
885 | ||
886 | set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue); | |
887 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
888 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32r_breakpoint_kind_from_pc); | |
889 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32r_sw_breakpoint_from_kind); | |
890 | set_gdbarch_memory_insert_breakpoint (gdbarch, | |
891 | m32r_memory_insert_breakpoint); | |
892 | set_gdbarch_memory_remove_breakpoint (gdbarch, | |
893 | m32r_memory_remove_breakpoint); | |
894 | ||
895 | set_gdbarch_frame_align (gdbarch, m32r_frame_align); | |
896 | ||
897 | frame_base_set_default (gdbarch, &m32r_frame_base); | |
898 | ||
899 | /* Hook in ABI-specific overrides, if they have been registered. */ | |
900 | gdbarch_init_osabi (info, gdbarch); | |
901 | ||
902 | /* Hook in the default unwinders. */ | |
903 | frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind); | |
904 | ||
905 | /* Support simple overlay manager. */ | |
906 | set_gdbarch_overlay_update (gdbarch, simple_overlay_update); | |
907 | ||
908 | return gdbarch; | |
909 | } | |
910 | ||
911 | INIT_GDB_FILE (m32r_tdep) | |
912 | { | |
913 | gdbarch_register (bfd_arch_m32r, m32r_gdbarch_init); | |
914 | } |