]>
| Commit | Line | Data |
|---|---|---|
| 1 | /* Target-dependent code for PowerPC systems using the SVR4 ABI | |
| 2 | for GDB, the GNU debugger. | |
| 3 | ||
| 4 | Copyright (C) 2000-2025 Free Software Foundation, Inc. | |
| 5 | ||
| 6 | This file is part of GDB. | |
| 7 | ||
| 8 | This program is free software; you can redistribute it and/or modify | |
| 9 | it under the terms of the GNU General Public License as published by | |
| 10 | the Free Software Foundation; either version 3 of the License, or | |
| 11 | (at your option) any later version. | |
| 12 | ||
| 13 | This program is distributed in the hope that it will be useful, | |
| 14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| 15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| 16 | GNU General Public License for more details. | |
| 17 | ||
| 18 | You should have received a copy of the GNU General Public License | |
| 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
| 20 | ||
| 21 | #include "extract-store-integer.h" | |
| 22 | #include "language.h" | |
| 23 | #include "gdbcore.h" | |
| 24 | #include "inferior.h" | |
| 25 | #include "regcache.h" | |
| 26 | #include "value.h" | |
| 27 | #include "ppc-tdep.h" | |
| 28 | #include "target.h" | |
| 29 | #include "objfiles.h" | |
| 30 | #include "infcall.h" | |
| 31 | #include "dwarf2.h" | |
| 32 | #include "dwarf2/loc.h" | |
| 33 | #include "target-float.h" | |
| 34 | #include <algorithm> | |
| 35 | ||
| 36 | ||
| 37 | /* Check whether FTPYE is a (pointer to) function type that should use | |
| 38 | the OpenCL vector ABI. */ | |
| 39 | ||
| 40 | static int | |
| 41 | ppc_sysv_use_opencl_abi (struct type *ftype) | |
| 42 | { | |
| 43 | ftype = check_typedef (ftype); | |
| 44 | ||
| 45 | if (ftype->code () == TYPE_CODE_PTR) | |
| 46 | ftype = check_typedef (ftype->target_type ()); | |
| 47 | ||
| 48 | return (ftype->code () == TYPE_CODE_FUNC | |
| 49 | && TYPE_CALLING_CONVENTION (ftype) == DW_CC_GDB_IBM_OpenCL); | |
| 50 | } | |
| 51 | ||
| 52 | /* Pass the arguments in either registers, or in the stack. Using the | |
| 53 | ppc sysv ABI, the first eight words of the argument list (that might | |
| 54 | be less than eight parameters if some parameters occupy more than one | |
| 55 | word) are passed in r3..r10 registers. float and double parameters are | |
| 56 | passed in fpr's, in addition to that. Rest of the parameters if any | |
| 57 | are passed in user stack. | |
| 58 | ||
| 59 | If the function is returning a structure, then the return address is passed | |
| 60 | in r3, then the first 7 words of the parameters can be passed in registers, | |
| 61 | starting from r4. */ | |
| 62 | ||
| 63 | CORE_ADDR | |
| 64 | ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
| 65 | struct regcache *regcache, CORE_ADDR bp_addr, | |
| 66 | int nargs, struct value **args, CORE_ADDR sp, | |
| 67 | function_call_return_method return_method, | |
| 68 | CORE_ADDR struct_addr) | |
| 69 | { | |
| 70 | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | |
| 71 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
| 72 | int opencl_abi = ppc_sysv_use_opencl_abi (function->type ()); | |
| 73 | ULONGEST saved_sp; | |
| 74 | int argspace = 0; /* 0 is an initial wrong guess. */ | |
| 75 | int write_pass; | |
| 76 | ||
| 77 | gdb_assert (tdep->wordsize == 4); | |
| 78 | ||
| 79 | regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch), | |
| 80 | &saved_sp); | |
| 81 | ||
| 82 | /* Go through the argument list twice. | |
| 83 | ||
| 84 | Pass 1: Figure out how much new stack space is required for | |
| 85 | arguments and pushed values. Unlike the PowerOpen ABI, the SysV | |
| 86 | ABI doesn't reserve any extra space for parameters which are put | |
| 87 | in registers, but does always push structures and then pass their | |
| 88 | address. | |
| 89 | ||
| 90 | Pass 2: Replay the same computation but this time also write the | |
| 91 | values out to the target. */ | |
| 92 | ||
| 93 | for (write_pass = 0; write_pass < 2; write_pass++) | |
| 94 | { | |
| 95 | int argno; | |
| 96 | /* Next available floating point register for float and double | |
| 97 | arguments. */ | |
| 98 | int freg = 1; | |
| 99 | /* Next available general register for non-float, non-vector | |
| 100 | arguments. */ | |
| 101 | int greg = 3; | |
| 102 | /* Next available vector register for vector arguments. */ | |
| 103 | int vreg = 2; | |
| 104 | /* Arguments start above the "LR save word" and "Back chain". */ | |
| 105 | int argoffset = 2 * tdep->wordsize; | |
| 106 | /* Structures start after the arguments. */ | |
| 107 | int structoffset = argoffset + argspace; | |
| 108 | ||
| 109 | /* If the function is returning a `struct', then the first word | |
| 110 | (which will be passed in r3) is used for struct return | |
| 111 | address. In that case we should advance one word and start | |
| 112 | from r4 register to copy parameters. */ | |
| 113 | if (return_method == return_method_struct) | |
| 114 | { | |
| 115 | if (write_pass) | |
| 116 | regcache_cooked_write_signed (regcache, | |
| 117 | tdep->ppc_gp0_regnum + greg, | |
| 118 | struct_addr); | |
| 119 | greg++; | |
| 120 | } | |
| 121 | ||
| 122 | for (argno = 0; argno < nargs; argno++) | |
| 123 | { | |
| 124 | struct value *arg = args[argno]; | |
| 125 | struct type *type = check_typedef (arg->type ()); | |
| 126 | int len = type->length (); | |
| 127 | const bfd_byte *val = arg->contents ().data (); | |
| 128 | ||
| 129 | if (type->code () == TYPE_CODE_FLT && len <= 8 | |
| 130 | && !tdep->soft_float) | |
| 131 | { | |
| 132 | /* Floating point value converted to "double" then | |
| 133 | passed in an FP register, when the registers run out, | |
| 134 | 8 byte aligned stack is used. */ | |
| 135 | if (freg <= 8) | |
| 136 | { | |
| 137 | if (write_pass) | |
| 138 | { | |
| 139 | /* Always store the floating point value using | |
| 140 | the register's floating-point format. */ | |
| 141 | gdb_byte regval[PPC_MAX_REGISTER_SIZE]; | |
| 142 | struct type *regtype | |
| 143 | = register_type (gdbarch, tdep->ppc_fp0_regnum + freg); | |
| 144 | target_float_convert (val, type, regval, regtype); | |
| 145 | regcache->cooked_write (tdep->ppc_fp0_regnum + freg, | |
| 146 | regval); | |
| 147 | } | |
| 148 | freg++; | |
| 149 | } | |
| 150 | else | |
| 151 | { | |
| 152 | /* The SysV ABI tells us to convert floats to | |
| 153 | doubles before writing them to an 8 byte aligned | |
| 154 | stack location. Unfortunately GCC does not do | |
| 155 | that, and stores floats into 4 byte aligned | |
| 156 | locations without converting them to doubles. | |
| 157 | Since there is no know compiler that actually | |
| 158 | follows the ABI here, we implement the GCC | |
| 159 | convention. */ | |
| 160 | ||
| 161 | /* Align to 4 bytes or 8 bytes depending on the type of | |
| 162 | the argument (float or double). */ | |
| 163 | argoffset = align_up (argoffset, len); | |
| 164 | if (write_pass) | |
| 165 | write_memory (sp + argoffset, val, len); | |
| 166 | argoffset += len; | |
| 167 | } | |
| 168 | } | |
| 169 | else if (type->code () == TYPE_CODE_FLT | |
| 170 | && len == 16 | |
| 171 | && !tdep->soft_float | |
| 172 | && (gdbarch_long_double_format (gdbarch) | |
| 173 | == floatformats_ibm_long_double)) | |
| 174 | { | |
| 175 | /* IBM long double passed in two FP registers if | |
| 176 | available, otherwise 8-byte aligned stack. */ | |
| 177 | if (freg <= 7) | |
| 178 | { | |
| 179 | if (write_pass) | |
| 180 | { | |
| 181 | regcache->cooked_write (tdep->ppc_fp0_regnum + freg, val); | |
| 182 | regcache->cooked_write (tdep->ppc_fp0_regnum + freg + 1, | |
| 183 | val + 8); | |
| 184 | } | |
| 185 | freg += 2; | |
| 186 | } | |
| 187 | else | |
| 188 | { | |
| 189 | argoffset = align_up (argoffset, 8); | |
| 190 | if (write_pass) | |
| 191 | write_memory (sp + argoffset, val, len); | |
| 192 | argoffset += 16; | |
| 193 | } | |
| 194 | } | |
| 195 | else if (len == 8 | |
| 196 | && (type->code () == TYPE_CODE_INT /* long long */ | |
| 197 | || type->code () == TYPE_CODE_FLT /* double */ | |
| 198 | || (type->code () == TYPE_CODE_DECFLOAT | |
| 199 | && tdep->soft_float))) | |
| 200 | { | |
| 201 | /* "long long" or soft-float "double" or "_Decimal64" | |
| 202 | passed in an odd/even register pair with the low | |
| 203 | addressed word in the odd register and the high | |
| 204 | addressed word in the even register, or when the | |
| 205 | registers run out an 8 byte aligned stack | |
| 206 | location. */ | |
| 207 | if (greg > 9) | |
| 208 | { | |
| 209 | /* Just in case GREG was 10. */ | |
| 210 | greg = 11; | |
| 211 | argoffset = align_up (argoffset, 8); | |
| 212 | if (write_pass) | |
| 213 | write_memory (sp + argoffset, val, len); | |
| 214 | argoffset += 8; | |
| 215 | } | |
| 216 | else | |
| 217 | { | |
| 218 | /* Must start on an odd register - r3/r4 etc. */ | |
| 219 | if ((greg & 1) == 0) | |
| 220 | greg++; | |
| 221 | if (write_pass) | |
| 222 | { | |
| 223 | regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 0, | |
| 224 | val + 0); | |
| 225 | regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 1, | |
| 226 | val + 4); | |
| 227 | } | |
| 228 | greg += 2; | |
| 229 | } | |
| 230 | } | |
| 231 | else if (len == 16 | |
| 232 | && ((type->code () == TYPE_CODE_FLT | |
| 233 | && (gdbarch_long_double_format (gdbarch) | |
| 234 | == floatformats_ibm_long_double)) | |
| 235 | || (type->code () == TYPE_CODE_DECFLOAT | |
| 236 | && tdep->soft_float))) | |
| 237 | { | |
| 238 | /* Soft-float IBM long double or _Decimal128 passed in | |
| 239 | four consecutive registers, or on the stack. The | |
| 240 | registers are not necessarily odd/even pairs. */ | |
| 241 | if (greg > 7) | |
| 242 | { | |
| 243 | greg = 11; | |
| 244 | argoffset = align_up (argoffset, 8); | |
| 245 | if (write_pass) | |
| 246 | write_memory (sp + argoffset, val, len); | |
| 247 | argoffset += 16; | |
| 248 | } | |
| 249 | else | |
| 250 | { | |
| 251 | if (write_pass) | |
| 252 | { | |
| 253 | regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 0, | |
| 254 | val + 0); | |
| 255 | regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 1, | |
| 256 | val + 4); | |
| 257 | regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 2, | |
| 258 | val + 8); | |
| 259 | regcache->cooked_write (tdep->ppc_gp0_regnum + greg + 3, | |
| 260 | val + 12); | |
| 261 | } | |
| 262 | greg += 4; | |
| 263 | } | |
| 264 | } | |
| 265 | else if (type->code () == TYPE_CODE_DECFLOAT && len <= 8 | |
| 266 | && !tdep->soft_float) | |
| 267 | { | |
| 268 | /* 32-bit and 64-bit decimal floats go in f1 .. f8. They can | |
| 269 | end up in memory. */ | |
| 270 | ||
| 271 | if (freg <= 8) | |
| 272 | { | |
| 273 | if (write_pass) | |
| 274 | { | |
| 275 | gdb_byte regval[PPC_MAX_REGISTER_SIZE]; | |
| 276 | const gdb_byte *p; | |
| 277 | ||
| 278 | /* 32-bit decimal floats are right aligned in the | |
| 279 | doubleword. */ | |
| 280 | if (type->length () == 4) | |
| 281 | { | |
| 282 | memcpy (regval + 4, val, 4); | |
| 283 | p = regval; | |
| 284 | } | |
| 285 | else | |
| 286 | p = val; | |
| 287 | ||
| 288 | regcache->cooked_write (tdep->ppc_fp0_regnum + freg, p); | |
| 289 | } | |
| 290 | ||
| 291 | freg++; | |
| 292 | } | |
| 293 | else | |
| 294 | { | |
| 295 | argoffset = align_up (argoffset, len); | |
| 296 | ||
| 297 | if (write_pass) | |
| 298 | /* Write value in the stack's parameter save area. */ | |
| 299 | write_memory (sp + argoffset, val, len); | |
| 300 | ||
| 301 | argoffset += len; | |
| 302 | } | |
| 303 | } | |
| 304 | else if (type->code () == TYPE_CODE_DECFLOAT && len == 16 | |
| 305 | && !tdep->soft_float) | |
| 306 | { | |
| 307 | /* 128-bit decimal floats go in f2 .. f7, always in even/odd | |
| 308 | pairs. They can end up in memory, using two doublewords. */ | |
| 309 | ||
| 310 | if (freg <= 6) | |
| 311 | { | |
| 312 | /* Make sure freg is even. */ | |
| 313 | freg += freg & 1; | |
| 314 | ||
| 315 | if (write_pass) | |
| 316 | { | |
| 317 | regcache->cooked_write (tdep->ppc_fp0_regnum + freg, val); | |
| 318 | regcache->cooked_write (tdep->ppc_fp0_regnum + freg + 1, | |
| 319 | val + 8); | |
| 320 | } | |
| 321 | } | |
| 322 | else | |
| 323 | { | |
| 324 | argoffset = align_up (argoffset, 8); | |
| 325 | ||
| 326 | if (write_pass) | |
| 327 | write_memory (sp + argoffset, val, 16); | |
| 328 | ||
| 329 | argoffset += 16; | |
| 330 | } | |
| 331 | ||
| 332 | /* If a 128-bit decimal float goes to the stack because only f7 | |
| 333 | and f8 are free (thus there's no even/odd register pair | |
| 334 | available), these registers should be marked as occupied. | |
| 335 | Hence we increase freg even when writing to memory. */ | |
| 336 | freg += 2; | |
| 337 | } | |
| 338 | else if (len < 16 | |
| 339 | && type->code () == TYPE_CODE_ARRAY | |
| 340 | && type->is_vector () | |
| 341 | && opencl_abi) | |
| 342 | { | |
| 343 | /* OpenCL vectors shorter than 16 bytes are passed as if | |
| 344 | a series of independent scalars. */ | |
| 345 | struct type *eltype = check_typedef (type->target_type ()); | |
| 346 | int i, nelt = type->length () / eltype->length (); | |
| 347 | ||
| 348 | for (i = 0; i < nelt; i++) | |
| 349 | { | |
| 350 | const gdb_byte *elval = val + i * eltype->length (); | |
| 351 | ||
| 352 | if (eltype->code () == TYPE_CODE_FLT && !tdep->soft_float) | |
| 353 | { | |
| 354 | if (freg <= 8) | |
| 355 | { | |
| 356 | if (write_pass) | |
| 357 | { | |
| 358 | int regnum = tdep->ppc_fp0_regnum + freg; | |
| 359 | gdb_byte regval[PPC_MAX_REGISTER_SIZE]; | |
| 360 | struct type *regtype | |
| 361 | = register_type (gdbarch, regnum); | |
| 362 | target_float_convert (elval, eltype, | |
| 363 | regval, regtype); | |
| 364 | regcache->cooked_write (regnum, regval); | |
| 365 | } | |
| 366 | freg++; | |
| 367 | } | |
| 368 | else | |
| 369 | { | |
| 370 | argoffset = align_up (argoffset, len); | |
| 371 | if (write_pass) | |
| 372 | write_memory (sp + argoffset, val, len); | |
| 373 | argoffset += len; | |
| 374 | } | |
| 375 | } | |
| 376 | else if (eltype->length () == 8) | |
| 377 | { | |
| 378 | if (greg > 9) | |
| 379 | { | |
| 380 | /* Just in case GREG was 10. */ | |
| 381 | greg = 11; | |
| 382 | argoffset = align_up (argoffset, 8); | |
| 383 | if (write_pass) | |
| 384 | write_memory (sp + argoffset, elval, | |
| 385 | eltype->length ()); | |
| 386 | argoffset += 8; | |
| 387 | } | |
| 388 | else | |
| 389 | { | |
| 390 | /* Must start on an odd register - r3/r4 etc. */ | |
| 391 | if ((greg & 1) == 0) | |
| 392 | greg++; | |
| 393 | if (write_pass) | |
| 394 | { | |
| 395 | int regnum = tdep->ppc_gp0_regnum + greg; | |
| 396 | regcache->cooked_write (regnum + 0, elval + 0); | |
| 397 | regcache->cooked_write (regnum + 1, elval + 4); | |
| 398 | } | |
| 399 | greg += 2; | |
| 400 | } | |
| 401 | } | |
| 402 | else | |
| 403 | { | |
| 404 | gdb_byte word[PPC_MAX_REGISTER_SIZE]; | |
| 405 | store_unsigned_integer (word, tdep->wordsize, byte_order, | |
| 406 | unpack_long (eltype, elval)); | |
| 407 | ||
| 408 | if (greg <= 10) | |
| 409 | { | |
| 410 | if (write_pass) | |
| 411 | regcache->cooked_write (tdep->ppc_gp0_regnum + greg, | |
| 412 | word); | |
| 413 | greg++; | |
| 414 | } | |
| 415 | else | |
| 416 | { | |
| 417 | argoffset = align_up (argoffset, tdep->wordsize); | |
| 418 | if (write_pass) | |
| 419 | write_memory (sp + argoffset, word, tdep->wordsize); | |
| 420 | argoffset += tdep->wordsize; | |
| 421 | } | |
| 422 | } | |
| 423 | } | |
| 424 | } | |
| 425 | else if (len >= 16 | |
| 426 | && type->code () == TYPE_CODE_ARRAY | |
| 427 | && type->is_vector () | |
| 428 | && opencl_abi) | |
| 429 | { | |
| 430 | /* OpenCL vectors 16 bytes or longer are passed as if | |
| 431 | a series of AltiVec vectors. */ | |
| 432 | int i; | |
| 433 | ||
| 434 | for (i = 0; i < len / 16; i++) | |
| 435 | { | |
| 436 | const gdb_byte *elval = val + i * 16; | |
| 437 | ||
| 438 | if (vreg <= 13) | |
| 439 | { | |
| 440 | if (write_pass) | |
| 441 | regcache->cooked_write (tdep->ppc_vr0_regnum + vreg, | |
| 442 | elval); | |
| 443 | vreg++; | |
| 444 | } | |
| 445 | else | |
| 446 | { | |
| 447 | argoffset = align_up (argoffset, 16); | |
| 448 | if (write_pass) | |
| 449 | write_memory (sp + argoffset, elval, 16); | |
| 450 | argoffset += 16; | |
| 451 | } | |
| 452 | } | |
| 453 | } | |
| 454 | else if (len == 16 | |
| 455 | && ((type->code () == TYPE_CODE_ARRAY | |
| 456 | && type->is_vector () | |
| 457 | && tdep->vector_abi == POWERPC_VEC_ALTIVEC) | |
| 458 | || (type->code () == TYPE_CODE_FLT | |
| 459 | && (gdbarch_long_double_format (gdbarch) | |
| 460 | == floatformats_ieee_quad)))) | |
| 461 | { | |
| 462 | /* Vector parameter passed in an Altivec register, or | |
| 463 | when that runs out, 16 byte aligned stack location. | |
| 464 | IEEE FLOAT 128-bit also passes parameters in vector | |
| 465 | registers. */ | |
| 466 | if (vreg <= 13) | |
| 467 | { | |
| 468 | if (write_pass) | |
| 469 | regcache->cooked_write (tdep->ppc_vr0_regnum + vreg, val); | |
| 470 | vreg++; | |
| 471 | } | |
| 472 | else | |
| 473 | { | |
| 474 | argoffset = align_up (argoffset, 16); | |
| 475 | if (write_pass) | |
| 476 | write_memory (sp + argoffset, val, 16); | |
| 477 | argoffset += 16; | |
| 478 | } | |
| 479 | } | |
| 480 | else if (len == 8 | |
| 481 | && type->code () == TYPE_CODE_ARRAY | |
| 482 | && type->is_vector () | |
| 483 | && tdep->vector_abi == POWERPC_VEC_SPE) | |
| 484 | { | |
| 485 | /* Vector parameter passed in an e500 register, or when | |
| 486 | that runs out, 8 byte aligned stack location. Note | |
| 487 | that since e500 vector and general purpose registers | |
| 488 | both map onto the same underlying register set, a | |
| 489 | "greg" and not a "vreg" is consumed here. A cooked | |
| 490 | write stores the value in the correct locations | |
| 491 | within the raw register cache. */ | |
| 492 | if (greg <= 10) | |
| 493 | { | |
| 494 | if (write_pass) | |
| 495 | regcache->cooked_write (tdep->ppc_ev0_regnum + greg, val); | |
| 496 | greg++; | |
| 497 | } | |
| 498 | else | |
| 499 | { | |
| 500 | argoffset = align_up (argoffset, 8); | |
| 501 | if (write_pass) | |
| 502 | write_memory (sp + argoffset, val, 8); | |
| 503 | argoffset += 8; | |
| 504 | } | |
| 505 | } | |
| 506 | else | |
| 507 | { | |
| 508 | /* Reduce the parameter down to something that fits in a | |
| 509 | "word". */ | |
| 510 | gdb_byte word[PPC_MAX_REGISTER_SIZE]; | |
| 511 | memset (word, 0, PPC_MAX_REGISTER_SIZE); | |
| 512 | if (len > tdep->wordsize | |
| 513 | || type->code () == TYPE_CODE_STRUCT | |
| 514 | || type->code () == TYPE_CODE_UNION) | |
| 515 | { | |
| 516 | /* Structs and large values are put in an | |
| 517 | aligned stack slot ... */ | |
| 518 | if (type->code () == TYPE_CODE_ARRAY | |
| 519 | && type->is_vector () | |
| 520 | && len >= 16) | |
| 521 | structoffset = align_up (structoffset, 16); | |
| 522 | else | |
| 523 | structoffset = align_up (structoffset, 8); | |
| 524 | ||
| 525 | if (write_pass) | |
| 526 | write_memory (sp + structoffset, val, len); | |
| 527 | /* ... and then a "word" pointing to that address is | |
| 528 | passed as the parameter. */ | |
| 529 | store_unsigned_integer (word, tdep->wordsize, byte_order, | |
| 530 | sp + structoffset); | |
| 531 | structoffset += len; | |
| 532 | } | |
| 533 | else if (type->code () == TYPE_CODE_INT) | |
| 534 | /* Sign or zero extend the "int" into a "word". */ | |
| 535 | store_unsigned_integer (word, tdep->wordsize, byte_order, | |
| 536 | unpack_long (type, val)); | |
| 537 | else | |
| 538 | /* Always goes in the low address. */ | |
| 539 | memcpy (word, val, len); | |
| 540 | /* Store that "word" in a register, or on the stack. | |
| 541 | The words have "4" byte alignment. */ | |
| 542 | if (greg <= 10) | |
| 543 | { | |
| 544 | if (write_pass) | |
| 545 | regcache->cooked_write (tdep->ppc_gp0_regnum + greg, word); | |
| 546 | greg++; | |
| 547 | } | |
| 548 | else | |
| 549 | { | |
| 550 | argoffset = align_up (argoffset, tdep->wordsize); | |
| 551 | if (write_pass) | |
| 552 | write_memory (sp + argoffset, word, tdep->wordsize); | |
| 553 | argoffset += tdep->wordsize; | |
| 554 | } | |
| 555 | } | |
| 556 | } | |
| 557 | ||
| 558 | /* Compute the actual stack space requirements. */ | |
| 559 | if (!write_pass) | |
| 560 | { | |
| 561 | /* Remember the amount of space needed by the arguments. */ | |
| 562 | argspace = argoffset; | |
| 563 | /* Allocate space for both the arguments and the structures. */ | |
| 564 | sp -= (argoffset + structoffset); | |
| 565 | /* Ensure that the stack is still 16 byte aligned. */ | |
| 566 | sp = align_down (sp, 16); | |
| 567 | } | |
| 568 | ||
| 569 | /* The psABI says that "A caller of a function that takes a | |
| 570 | variable argument list shall set condition register bit 6 to | |
| 571 | 1 if it passes one or more arguments in the floating-point | |
| 572 | registers. It is strongly recommended that the caller set the | |
| 573 | bit to 0 otherwise..." Doing this for normal functions too | |
| 574 | shouldn't hurt. */ | |
| 575 | if (write_pass) | |
| 576 | { | |
| 577 | ULONGEST cr; | |
| 578 | ||
| 579 | regcache_cooked_read_unsigned (regcache, tdep->ppc_cr_regnum, &cr); | |
| 580 | if (freg > 1) | |
| 581 | cr |= 0x02000000; | |
| 582 | else | |
| 583 | cr &= ~0x02000000; | |
| 584 | regcache_cooked_write_unsigned (regcache, tdep->ppc_cr_regnum, cr); | |
| 585 | } | |
| 586 | } | |
| 587 | ||
| 588 | /* Update %sp. */ | |
| 589 | regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp); | |
| 590 | ||
| 591 | /* Write the backchain (it occupies WORDSIZED bytes). */ | |
| 592 | write_memory_signed_integer (sp, tdep->wordsize, byte_order, saved_sp); | |
| 593 | ||
| 594 | /* Point the inferior function call's return address at the dummy's | |
| 595 | breakpoint. */ | |
| 596 | regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); | |
| 597 | ||
| 598 | return sp; | |
| 599 | } | |
| 600 | ||
| 601 | /* Handle the return-value conventions for Decimal Floating Point values. */ | |
| 602 | static enum return_value_convention | |
| 603 | get_decimal_float_return_value (struct gdbarch *gdbarch, struct type *valtype, | |
| 604 | struct regcache *regcache, gdb_byte *readbuf, | |
| 605 | const gdb_byte *writebuf) | |
| 606 | { | |
| 607 | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | |
| 608 | ||
| 609 | gdb_assert (valtype->code () == TYPE_CODE_DECFLOAT); | |
| 610 | ||
| 611 | /* 32-bit and 64-bit decimal floats in f1. */ | |
| 612 | if (valtype->length () <= 8) | |
| 613 | { | |
| 614 | if (writebuf != NULL) | |
| 615 | { | |
| 616 | gdb_byte regval[PPC_MAX_REGISTER_SIZE]; | |
| 617 | const gdb_byte *p; | |
| 618 | ||
| 619 | /* 32-bit decimal float is right aligned in the doubleword. */ | |
| 620 | if (valtype->length () == 4) | |
| 621 | { | |
| 622 | memcpy (regval + 4, writebuf, 4); | |
| 623 | p = regval; | |
| 624 | } | |
| 625 | else | |
| 626 | p = writebuf; | |
| 627 | ||
| 628 | regcache->cooked_write (tdep->ppc_fp0_regnum + 1, p); | |
| 629 | } | |
| 630 | if (readbuf != NULL) | |
| 631 | { | |
| 632 | regcache->cooked_read (tdep->ppc_fp0_regnum + 1, readbuf); | |
| 633 | ||
| 634 | /* Left align 32-bit decimal float. */ | |
| 635 | if (valtype->length () == 4) | |
| 636 | memcpy (readbuf, readbuf + 4, 4); | |
| 637 | } | |
| 638 | } | |
| 639 | /* 128-bit decimal floats in f2,f3. */ | |
| 640 | else if (valtype->length () == 16) | |
| 641 | { | |
| 642 | if (writebuf != NULL || readbuf != NULL) | |
| 643 | { | |
| 644 | int i; | |
| 645 | ||
| 646 | for (i = 0; i < 2; i++) | |
| 647 | { | |
| 648 | if (writebuf != NULL) | |
| 649 | regcache->cooked_write (tdep->ppc_fp0_regnum + 2 + i, | |
| 650 | writebuf + i * 8); | |
| 651 | if (readbuf != NULL) | |
| 652 | regcache->cooked_read (tdep->ppc_fp0_regnum + 2 + i, | |
| 653 | readbuf + i * 8); | |
| 654 | } | |
| 655 | } | |
| 656 | } | |
| 657 | else | |
| 658 | /* Can't happen. */ | |
| 659 | internal_error (_("Unknown decimal float size.")); | |
| 660 | ||
| 661 | return RETURN_VALUE_REGISTER_CONVENTION; | |
| 662 | } | |
| 663 | ||
| 664 | /* Handle the return-value conventions specified by the SysV 32-bit | |
| 665 | PowerPC ABI (including all the supplements): | |
| 666 | ||
| 667 | no floating-point: floating-point values returned using 32-bit | |
| 668 | general-purpose registers. | |
| 669 | ||
| 670 | Altivec: 128-bit vectors returned using vector registers. | |
| 671 | ||
| 672 | e500: 64-bit vectors returned using the full full 64 bit EV | |
| 673 | register, floating-point values returned using 32-bit | |
| 674 | general-purpose registers. | |
| 675 | ||
| 676 | GCC (broken): Small struct values right (instead of left) aligned | |
| 677 | when returned in general-purpose registers. */ | |
| 678 | ||
| 679 | static enum return_value_convention | |
| 680 | do_ppc_sysv_return_value (struct gdbarch *gdbarch, struct type *func_type, | |
| 681 | struct type *type, struct regcache *regcache, | |
| 682 | gdb_byte *readbuf, const gdb_byte *writebuf, | |
| 683 | int broken_gcc) | |
| 684 | { | |
| 685 | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | |
| 686 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
| 687 | int opencl_abi = func_type? ppc_sysv_use_opencl_abi (func_type) : 0; | |
| 688 | ||
| 689 | gdb_assert (tdep->wordsize == 4); | |
| 690 | ||
| 691 | if (type->code () == TYPE_CODE_FLT | |
| 692 | && type->length () <= 8 | |
| 693 | && !tdep->soft_float) | |
| 694 | { | |
| 695 | if (readbuf) | |
| 696 | { | |
| 697 | /* Floats and doubles stored in "f1". Convert the value to | |
| 698 | the required type. */ | |
| 699 | gdb_byte regval[PPC_MAX_REGISTER_SIZE]; | |
| 700 | struct type *regtype = register_type (gdbarch, | |
| 701 | tdep->ppc_fp0_regnum + 1); | |
| 702 | regcache->cooked_read (tdep->ppc_fp0_regnum + 1, regval); | |
| 703 | target_float_convert (regval, regtype, readbuf, type); | |
| 704 | } | |
| 705 | if (writebuf) | |
| 706 | { | |
| 707 | /* Floats and doubles stored in "f1". Convert the value to | |
| 708 | the register's "double" type. */ | |
| 709 | gdb_byte regval[PPC_MAX_REGISTER_SIZE]; | |
| 710 | struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum); | |
| 711 | target_float_convert (writebuf, type, regval, regtype); | |
| 712 | regcache->cooked_write (tdep->ppc_fp0_regnum + 1, regval); | |
| 713 | } | |
| 714 | return RETURN_VALUE_REGISTER_CONVENTION; | |
| 715 | } | |
| 716 | if (type->code () == TYPE_CODE_FLT | |
| 717 | && type->length () == 16 | |
| 718 | && !tdep->soft_float | |
| 719 | && (gdbarch_long_double_format (gdbarch) | |
| 720 | == floatformats_ibm_long_double)) | |
| 721 | { | |
| 722 | /* IBM long double stored in f1 and f2. */ | |
| 723 | if (readbuf) | |
| 724 | { | |
| 725 | regcache->cooked_read (tdep->ppc_fp0_regnum + 1, readbuf); | |
| 726 | regcache->cooked_read (tdep->ppc_fp0_regnum + 2, readbuf + 8); | |
| 727 | } | |
| 728 | if (writebuf) | |
| 729 | { | |
| 730 | regcache->cooked_write (tdep->ppc_fp0_regnum + 1, writebuf); | |
| 731 | regcache->cooked_write (tdep->ppc_fp0_regnum + 2, writebuf + 8); | |
| 732 | } | |
| 733 | return RETURN_VALUE_REGISTER_CONVENTION; | |
| 734 | } | |
| 735 | if (type->length () == 16 | |
| 736 | && ((type->code () == TYPE_CODE_FLT | |
| 737 | && (gdbarch_long_double_format (gdbarch) | |
| 738 | == floatformats_ibm_long_double)) | |
| 739 | || (type->code () == TYPE_CODE_DECFLOAT && tdep->soft_float))) | |
| 740 | { | |
| 741 | /* Soft-float IBM long double or _Decimal128 stored in r3, r4, | |
| 742 | r5, r6. */ | |
| 743 | if (readbuf) | |
| 744 | { | |
| 745 | regcache->cooked_read (tdep->ppc_gp0_regnum + 3, readbuf); | |
| 746 | regcache->cooked_read (tdep->ppc_gp0_regnum + 4, readbuf + 4); | |
| 747 | regcache->cooked_read (tdep->ppc_gp0_regnum + 5, readbuf + 8); | |
| 748 | regcache->cooked_read (tdep->ppc_gp0_regnum + 6, readbuf + 12); | |
| 749 | } | |
| 750 | if (writebuf) | |
| 751 | { | |
| 752 | regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf); | |
| 753 | regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4); | |
| 754 | regcache->cooked_write (tdep->ppc_gp0_regnum + 5, writebuf + 8); | |
| 755 | regcache->cooked_write (tdep->ppc_gp0_regnum + 6, writebuf + 12); | |
| 756 | } | |
| 757 | return RETURN_VALUE_REGISTER_CONVENTION; | |
| 758 | } | |
| 759 | if ((type->code () == TYPE_CODE_INT && type->length () == 8) | |
| 760 | || (type->code () == TYPE_CODE_FLT && type->length () == 8) | |
| 761 | || (type->code () == TYPE_CODE_DECFLOAT && type->length () == 8 | |
| 762 | && tdep->soft_float)) | |
| 763 | { | |
| 764 | if (readbuf) | |
| 765 | { | |
| 766 | /* A long long, double or _Decimal64 stored in the 32 bit | |
| 767 | r3/r4. */ | |
| 768 | regcache->cooked_read (tdep->ppc_gp0_regnum + 3, readbuf + 0); | |
| 769 | regcache->cooked_read (tdep->ppc_gp0_regnum + 4, readbuf + 4); | |
| 770 | } | |
| 771 | if (writebuf) | |
| 772 | { | |
| 773 | /* A long long, double or _Decimal64 stored in the 32 bit | |
| 774 | r3/r4. */ | |
| 775 | regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf + 0); | |
| 776 | regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4); | |
| 777 | } | |
| 778 | return RETURN_VALUE_REGISTER_CONVENTION; | |
| 779 | } | |
| 780 | if (type->code () == TYPE_CODE_DECFLOAT && !tdep->soft_float) | |
| 781 | return get_decimal_float_return_value (gdbarch, type, regcache, readbuf, | |
| 782 | writebuf); | |
| 783 | else if ((type->code () == TYPE_CODE_INT | |
| 784 | || type->code () == TYPE_CODE_CHAR | |
| 785 | || type->code () == TYPE_CODE_BOOL | |
| 786 | || type->code () == TYPE_CODE_PTR | |
| 787 | || TYPE_IS_REFERENCE (type) | |
| 788 | || type->code () == TYPE_CODE_ENUM) | |
| 789 | && type->length () <= tdep->wordsize) | |
| 790 | { | |
| 791 | if (readbuf) | |
| 792 | { | |
| 793 | /* Some sort of integer stored in r3. Since TYPE isn't | |
| 794 | bigger than the register, sign extension isn't a problem | |
| 795 | - just do everything unsigned. */ | |
| 796 | ULONGEST regval; | |
| 797 | regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
| 798 | ®val); | |
| 799 | store_unsigned_integer (readbuf, type->length (), byte_order, | |
| 800 | regval); | |
| 801 | } | |
| 802 | if (writebuf) | |
| 803 | { | |
| 804 | /* Some sort of integer stored in r3. Use unpack_long since | |
| 805 | that should handle any required sign extension. */ | |
| 806 | regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, | |
| 807 | unpack_long (type, writebuf)); | |
| 808 | } | |
| 809 | return RETURN_VALUE_REGISTER_CONVENTION; | |
| 810 | } | |
| 811 | /* OpenCL vectors < 16 bytes are returned as distinct | |
| 812 | scalars in f1..f2 or r3..r10. */ | |
| 813 | if (type->code () == TYPE_CODE_ARRAY | |
| 814 | && type->is_vector () | |
| 815 | && type->length () < 16 | |
| 816 | && opencl_abi) | |
| 817 | { | |
| 818 | struct type *eltype = check_typedef (type->target_type ()); | |
| 819 | int i, nelt = type->length () / eltype->length (); | |
| 820 | ||
| 821 | for (i = 0; i < nelt; i++) | |
| 822 | { | |
| 823 | int offset = i * eltype->length (); | |
| 824 | ||
| 825 | if (eltype->code () == TYPE_CODE_FLT) | |
| 826 | { | |
| 827 | int regnum = tdep->ppc_fp0_regnum + 1 + i; | |
| 828 | gdb_byte regval[PPC_MAX_REGISTER_SIZE]; | |
| 829 | struct type *regtype = register_type (gdbarch, regnum); | |
| 830 | ||
| 831 | if (writebuf != NULL) | |
| 832 | { | |
| 833 | target_float_convert (writebuf + offset, eltype, | |
| 834 | regval, regtype); | |
| 835 | regcache->cooked_write (regnum, regval); | |
| 836 | } | |
| 837 | if (readbuf != NULL) | |
| 838 | { | |
| 839 | regcache->cooked_read (regnum, regval); | |
| 840 | target_float_convert (regval, regtype, | |
| 841 | readbuf + offset, eltype); | |
| 842 | } | |
| 843 | } | |
| 844 | else | |
| 845 | { | |
| 846 | int regnum = tdep->ppc_gp0_regnum + 3 + i; | |
| 847 | ULONGEST regval; | |
| 848 | ||
| 849 | if (writebuf != NULL) | |
| 850 | { | |
| 851 | regval = unpack_long (eltype, writebuf + offset); | |
| 852 | regcache_cooked_write_unsigned (regcache, regnum, regval); | |
| 853 | } | |
| 854 | if (readbuf != NULL) | |
| 855 | { | |
| 856 | regcache_cooked_read_unsigned (regcache, regnum, ®val); | |
| 857 | store_unsigned_integer (readbuf + offset, | |
| 858 | eltype->length (), byte_order, | |
| 859 | regval); | |
| 860 | } | |
| 861 | } | |
| 862 | } | |
| 863 | ||
| 864 | return RETURN_VALUE_REGISTER_CONVENTION; | |
| 865 | } | |
| 866 | /* OpenCL vectors >= 16 bytes are returned in v2..v9. */ | |
| 867 | if (type->code () == TYPE_CODE_ARRAY | |
| 868 | && type->is_vector () | |
| 869 | && type->length () >= 16 | |
| 870 | && opencl_abi) | |
| 871 | { | |
| 872 | int n_regs = type->length () / 16; | |
| 873 | int i; | |
| 874 | ||
| 875 | for (i = 0; i < n_regs; i++) | |
| 876 | { | |
| 877 | int offset = i * 16; | |
| 878 | int regnum = tdep->ppc_vr0_regnum + 2 + i; | |
| 879 | ||
| 880 | if (writebuf != NULL) | |
| 881 | regcache->cooked_write (regnum, writebuf + offset); | |
| 882 | if (readbuf != NULL) | |
| 883 | regcache->cooked_read (regnum, readbuf + offset); | |
| 884 | } | |
| 885 | ||
| 886 | return RETURN_VALUE_REGISTER_CONVENTION; | |
| 887 | } | |
| 888 | if (type->length () == 16 | |
| 889 | && type->code () == TYPE_CODE_ARRAY | |
| 890 | && type->is_vector () | |
| 891 | && tdep->vector_abi == POWERPC_VEC_ALTIVEC) | |
| 892 | { | |
| 893 | if (readbuf) | |
| 894 | { | |
| 895 | /* Altivec places the return value in "v2". */ | |
| 896 | regcache->cooked_read (tdep->ppc_vr0_regnum + 2, readbuf); | |
| 897 | } | |
| 898 | if (writebuf) | |
| 899 | { | |
| 900 | /* Altivec places the return value in "v2". */ | |
| 901 | regcache->cooked_write (tdep->ppc_vr0_regnum + 2, writebuf); | |
| 902 | } | |
| 903 | return RETURN_VALUE_REGISTER_CONVENTION; | |
| 904 | } | |
| 905 | if (type->length () == 16 | |
| 906 | && type->code () == TYPE_CODE_ARRAY | |
| 907 | && type->is_vector () | |
| 908 | && tdep->vector_abi == POWERPC_VEC_GENERIC) | |
| 909 | { | |
| 910 | /* GCC -maltivec -mabi=no-altivec returns vectors in r3/r4/r5/r6. | |
| 911 | GCC without AltiVec returns them in memory, but it warns about | |
| 912 | ABI risks in that case; we don't try to support it. */ | |
| 913 | if (readbuf) | |
| 914 | { | |
| 915 | regcache->cooked_read (tdep->ppc_gp0_regnum + 3, readbuf + 0); | |
| 916 | regcache->cooked_read (tdep->ppc_gp0_regnum + 4, readbuf + 4); | |
| 917 | regcache->cooked_read (tdep->ppc_gp0_regnum + 5, readbuf + 8); | |
| 918 | regcache->cooked_read (tdep->ppc_gp0_regnum + 6, readbuf + 12); | |
| 919 | } | |
| 920 | if (writebuf) | |
| 921 | { | |
| 922 | regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf + 0); | |
| 923 | regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4); | |
| 924 | regcache->cooked_write (tdep->ppc_gp0_regnum + 5, writebuf + 8); | |
| 925 | regcache->cooked_write (tdep->ppc_gp0_regnum + 6, writebuf + 12); | |
| 926 | } | |
| 927 | return RETURN_VALUE_REGISTER_CONVENTION; | |
| 928 | } | |
| 929 | if (type->length () == 8 | |
| 930 | && type->code () == TYPE_CODE_ARRAY | |
| 931 | && type->is_vector () | |
| 932 | && tdep->vector_abi == POWERPC_VEC_SPE) | |
| 933 | { | |
| 934 | /* The e500 ABI places return values for the 64-bit DSP types | |
| 935 | (__ev64_opaque__) in r3. However, in GDB-speak, ev3 | |
| 936 | corresponds to the entire r3 value for e500, whereas GDB's r3 | |
| 937 | only corresponds to the least significant 32-bits. So place | |
| 938 | the 64-bit DSP type's value in ev3. */ | |
| 939 | if (readbuf) | |
| 940 | regcache->cooked_read (tdep->ppc_ev0_regnum + 3, readbuf); | |
| 941 | if (writebuf) | |
| 942 | regcache->cooked_write (tdep->ppc_ev0_regnum + 3, writebuf); | |
| 943 | return RETURN_VALUE_REGISTER_CONVENTION; | |
| 944 | } | |
| 945 | if (broken_gcc && type->length () <= 8) | |
| 946 | { | |
| 947 | /* GCC screwed up for structures or unions whose size is less | |
| 948 | than or equal to 8 bytes.. Instead of left-aligning, it | |
| 949 | right-aligns the data into the buffer formed by r3, r4. */ | |
| 950 | gdb_byte regvals[PPC_MAX_REGISTER_SIZE * 2]; | |
| 951 | int len = type->length (); | |
| 952 | int offset = (2 * tdep->wordsize - len) % tdep->wordsize; | |
| 953 | ||
| 954 | if (readbuf) | |
| 955 | { | |
| 956 | regcache->cooked_read (tdep->ppc_gp0_regnum + 3, | |
| 957 | regvals + 0 * tdep->wordsize); | |
| 958 | if (len > tdep->wordsize) | |
| 959 | regcache->cooked_read (tdep->ppc_gp0_regnum + 4, | |
| 960 | regvals + 1 * tdep->wordsize); | |
| 961 | memcpy (readbuf, regvals + offset, len); | |
| 962 | } | |
| 963 | if (writebuf) | |
| 964 | { | |
| 965 | memset (regvals, 0, sizeof regvals); | |
| 966 | memcpy (regvals + offset, writebuf, len); | |
| 967 | regcache->cooked_write (tdep->ppc_gp0_regnum + 3, | |
| 968 | regvals + 0 * tdep->wordsize); | |
| 969 | if (len > tdep->wordsize) | |
| 970 | regcache->cooked_write (tdep->ppc_gp0_regnum + 4, | |
| 971 | regvals + 1 * tdep->wordsize); | |
| 972 | } | |
| 973 | ||
| 974 | return RETURN_VALUE_REGISTER_CONVENTION; | |
| 975 | } | |
| 976 | if (type->length () <= 8) | |
| 977 | { | |
| 978 | if (readbuf) | |
| 979 | { | |
| 980 | /* This matches SVr4 PPC, it does not match GCC. */ | |
| 981 | /* The value is right-padded to 8 bytes and then loaded, as | |
| 982 | two "words", into r3/r4. */ | |
| 983 | gdb_byte regvals[PPC_MAX_REGISTER_SIZE * 2]; | |
| 984 | regcache->cooked_read (tdep->ppc_gp0_regnum + 3, | |
| 985 | regvals + 0 * tdep->wordsize); | |
| 986 | if (type->length () > tdep->wordsize) | |
| 987 | regcache->cooked_read (tdep->ppc_gp0_regnum + 4, | |
| 988 | regvals + 1 * tdep->wordsize); | |
| 989 | memcpy (readbuf, regvals, type->length ()); | |
| 990 | } | |
| 991 | if (writebuf) | |
| 992 | { | |
| 993 | /* This matches SVr4 PPC, it does not match GCC. */ | |
| 994 | /* The value is padded out to 8 bytes and then loaded, as | |
| 995 | two "words" into r3/r4. */ | |
| 996 | gdb_byte regvals[PPC_MAX_REGISTER_SIZE * 2]; | |
| 997 | memset (regvals, 0, sizeof regvals); | |
| 998 | memcpy (regvals, writebuf, type->length ()); | |
| 999 | regcache->cooked_write (tdep->ppc_gp0_regnum + 3, | |
| 1000 | regvals + 0 * tdep->wordsize); | |
| 1001 | if (type->length () > tdep->wordsize) | |
| 1002 | regcache->cooked_write (tdep->ppc_gp0_regnum + 4, | |
| 1003 | regvals + 1 * tdep->wordsize); | |
| 1004 | } | |
| 1005 | return RETURN_VALUE_REGISTER_CONVENTION; | |
| 1006 | } | |
| 1007 | return RETURN_VALUE_STRUCT_CONVENTION; | |
| 1008 | } | |
| 1009 | ||
| 1010 | enum return_value_convention | |
| 1011 | ppc_sysv_abi_return_value (struct gdbarch *gdbarch, struct value *function, | |
| 1012 | struct type *valtype, struct regcache *regcache, | |
| 1013 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
| 1014 | { | |
| 1015 | return do_ppc_sysv_return_value (gdbarch, | |
| 1016 | function ? function->type () : NULL, | |
| 1017 | valtype, regcache, readbuf, writebuf, 0); | |
| 1018 | } | |
| 1019 | ||
| 1020 | enum return_value_convention | |
| 1021 | ppc_sysv_abi_broken_return_value (struct gdbarch *gdbarch, | |
| 1022 | struct value *function, | |
| 1023 | struct type *valtype, | |
| 1024 | struct regcache *regcache, | |
| 1025 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
| 1026 | { | |
| 1027 | return do_ppc_sysv_return_value (gdbarch, | |
| 1028 | function ? function->type () : NULL, | |
| 1029 | valtype, regcache, readbuf, writebuf, 1); | |
| 1030 | } | |
| 1031 | ||
| 1032 | /* The helper function for 64-bit SYSV push_dummy_call. Converts the | |
| 1033 | function's code address back into the function's descriptor | |
| 1034 | address. | |
| 1035 | ||
| 1036 | Find a value for the TOC register. Every symbol should have both | |
| 1037 | ".FN" and "FN" in the minimal symbol table. "FN" points at the | |
| 1038 | FN's descriptor, while ".FN" points at the entry point (which | |
| 1039 | matches FUNC_ADDR). Need to reverse from FUNC_ADDR back to the | |
| 1040 | FN's descriptor address (while at the same time being careful to | |
| 1041 | find "FN" in the same object file as ".FN"). */ | |
| 1042 | ||
| 1043 | static int | |
| 1044 | convert_code_addr_to_desc_addr (CORE_ADDR code_addr, CORE_ADDR *desc_addr) | |
| 1045 | { | |
| 1046 | struct obj_section *dot_fn_section; | |
| 1047 | ||
| 1048 | /* Find the minimal symbol that corresponds to CODE_ADDR (should | |
| 1049 | have a name of the form ".FN"). */ | |
| 1050 | bound_minimal_symbol dot_fn = lookup_minimal_symbol_by_pc (code_addr); | |
| 1051 | if (dot_fn.minsym == NULL || dot_fn.minsym->linkage_name ()[0] != '.') | |
| 1052 | return 0; | |
| 1053 | /* Get the section that contains CODE_ADDR. Need this for the | |
| 1054 | "objfile" that it contains. */ | |
| 1055 | dot_fn_section = find_pc_section (code_addr); | |
| 1056 | if (dot_fn_section == NULL || dot_fn_section->objfile == NULL) | |
| 1057 | return 0; | |
| 1058 | /* Now find the corresponding "FN" (dropping ".") minimal symbol's | |
| 1059 | address. Only look for the minimal symbol in ".FN"'s object file | |
| 1060 | - avoids problems when two object files (i.e., shared libraries) | |
| 1061 | contain a minimal symbol with the same name. */ | |
| 1062 | bound_minimal_symbol fn | |
| 1063 | = lookup_minimal_symbol (current_program_space, | |
| 1064 | dot_fn.minsym->linkage_name () + 1, | |
| 1065 | dot_fn_section->objfile); | |
| 1066 | if (fn.minsym == NULL) | |
| 1067 | return 0; | |
| 1068 | /* Found a descriptor. */ | |
| 1069 | (*desc_addr) = fn.value_address (); | |
| 1070 | return 1; | |
| 1071 | } | |
| 1072 | ||
| 1073 | /* Walk down the type tree of TYPE counting consecutive base elements. | |
| 1074 | If *FIELD_TYPE is NULL, then set it to the first valid floating point | |
| 1075 | or vector type. If a non-floating point or vector type is found, or | |
| 1076 | if a floating point or vector type that doesn't match a non-NULL | |
| 1077 | *FIELD_TYPE is found, then return -1, otherwise return the count in the | |
| 1078 | sub-tree. */ | |
| 1079 | ||
| 1080 | static LONGEST | |
| 1081 | ppc64_aggregate_candidate (struct type *type, | |
| 1082 | struct type **field_type) | |
| 1083 | { | |
| 1084 | type = check_typedef (type); | |
| 1085 | ||
| 1086 | switch (type->code ()) | |
| 1087 | { | |
| 1088 | case TYPE_CODE_FLT: | |
| 1089 | case TYPE_CODE_DECFLOAT: | |
| 1090 | if (!*field_type) | |
| 1091 | *field_type = type; | |
| 1092 | if ((*field_type)->code () == type->code () | |
| 1093 | && (*field_type)->length () == type->length ()) | |
| 1094 | return 1; | |
| 1095 | break; | |
| 1096 | ||
| 1097 | case TYPE_CODE_COMPLEX: | |
| 1098 | type = type->target_type (); | |
| 1099 | if (type->code () == TYPE_CODE_FLT | |
| 1100 | || type->code () == TYPE_CODE_DECFLOAT) | |
| 1101 | { | |
| 1102 | if (!*field_type) | |
| 1103 | *field_type = type; | |
| 1104 | if ((*field_type)->code () == type->code () | |
| 1105 | && (*field_type)->length () == type->length ()) | |
| 1106 | return 2; | |
| 1107 | } | |
| 1108 | break; | |
| 1109 | ||
| 1110 | case TYPE_CODE_ARRAY: | |
| 1111 | if (type->is_vector ()) | |
| 1112 | { | |
| 1113 | if (!*field_type) | |
| 1114 | *field_type = type; | |
| 1115 | if ((*field_type)->code () == type->code () | |
| 1116 | && (*field_type)->length () == type->length ()) | |
| 1117 | return 1; | |
| 1118 | } | |
| 1119 | else | |
| 1120 | { | |
| 1121 | LONGEST count, low_bound, high_bound; | |
| 1122 | ||
| 1123 | count = ppc64_aggregate_candidate | |
| 1124 | (type->target_type (), field_type); | |
| 1125 | if (count == -1) | |
| 1126 | return -1; | |
| 1127 | ||
| 1128 | if (!get_array_bounds (type, &low_bound, &high_bound)) | |
| 1129 | return -1; | |
| 1130 | ||
| 1131 | LONGEST nr_array_elements = (low_bound > high_bound | |
| 1132 | ? 0 | |
| 1133 | : (high_bound - low_bound + 1)); | |
| 1134 | count *= nr_array_elements; | |
| 1135 | ||
| 1136 | /* There must be no padding. */ | |
| 1137 | if (count == 0) | |
| 1138 | return type->length () == 0 ? 0 : -1; | |
| 1139 | else if (type->length () != count * (*field_type)->length ()) | |
| 1140 | return -1; | |
| 1141 | ||
| 1142 | return count; | |
| 1143 | } | |
| 1144 | break; | |
| 1145 | ||
| 1146 | case TYPE_CODE_STRUCT: | |
| 1147 | case TYPE_CODE_UNION: | |
| 1148 | { | |
| 1149 | LONGEST count = 0; | |
| 1150 | int i; | |
| 1151 | ||
| 1152 | for (i = 0; i < type->num_fields (); i++) | |
| 1153 | { | |
| 1154 | LONGEST sub_count; | |
| 1155 | ||
| 1156 | if (type->field (i).is_static ()) | |
| 1157 | continue; | |
| 1158 | ||
| 1159 | sub_count = ppc64_aggregate_candidate | |
| 1160 | (type->field (i).type (), field_type); | |
| 1161 | if (sub_count == -1) | |
| 1162 | return -1; | |
| 1163 | ||
| 1164 | if (type->code () == TYPE_CODE_STRUCT) | |
| 1165 | count += sub_count; | |
| 1166 | else | |
| 1167 | count = std::max (count, sub_count); | |
| 1168 | } | |
| 1169 | ||
| 1170 | /* There must be no padding. */ | |
| 1171 | if (count == 0) | |
| 1172 | return type->length () == 0 ? 0 : -1; | |
| 1173 | else if (type->length () != count * (*field_type)->length ()) | |
| 1174 | return -1; | |
| 1175 | ||
| 1176 | return count; | |
| 1177 | } | |
| 1178 | break; | |
| 1179 | ||
| 1180 | default: | |
| 1181 | break; | |
| 1182 | } | |
| 1183 | ||
| 1184 | return -1; | |
| 1185 | } | |
| 1186 | ||
| 1187 | /* If an argument of type TYPE is a homogeneous float or vector aggregate | |
| 1188 | that shall be passed in FP/vector registers according to the ELFv2 ABI, | |
| 1189 | return the homogeneous element type in *ELT_TYPE and the number of | |
| 1190 | elements in *N_ELTS, and return non-zero. Otherwise, return zero. */ | |
| 1191 | ||
| 1192 | static int | |
| 1193 | ppc64_elfv2_abi_homogeneous_aggregate (struct type *type, | |
| 1194 | struct type **elt_type, int *n_elts, | |
| 1195 | struct gdbarch *gdbarch) | |
| 1196 | { | |
| 1197 | /* Complex types at the top level are treated separately. However, | |
| 1198 | complex types can be elements of homogeneous aggregates. */ | |
| 1199 | if (type->code () == TYPE_CODE_STRUCT | |
| 1200 | || type->code () == TYPE_CODE_UNION | |
| 1201 | || (type->code () == TYPE_CODE_ARRAY && !type->is_vector ())) | |
| 1202 | { | |
| 1203 | struct type *field_type = NULL; | |
| 1204 | LONGEST field_count = ppc64_aggregate_candidate (type, &field_type); | |
| 1205 | ||
| 1206 | if (field_count > 0) | |
| 1207 | { | |
| 1208 | int n_regs; | |
| 1209 | ||
| 1210 | if (field_type->code () == TYPE_CODE_FLT | |
| 1211 | && (gdbarch_long_double_format (gdbarch) | |
| 1212 | == floatformats_ieee_quad)) | |
| 1213 | /* IEEE Float 128-bit uses one vector register. */ | |
| 1214 | n_regs = 1; | |
| 1215 | ||
| 1216 | else if (field_type->code () == TYPE_CODE_FLT | |
| 1217 | || field_type->code () == TYPE_CODE_DECFLOAT) | |
| 1218 | n_regs = (field_type->length () + 7) >> 3; | |
| 1219 | ||
| 1220 | else | |
| 1221 | n_regs = 1; | |
| 1222 | ||
| 1223 | /* The ELFv2 ABI allows homogeneous aggregates to occupy | |
| 1224 | up to 8 registers. */ | |
| 1225 | if (field_count * n_regs <= 8) | |
| 1226 | { | |
| 1227 | if (elt_type) | |
| 1228 | *elt_type = field_type; | |
| 1229 | if (n_elts) | |
| 1230 | *n_elts = (int) field_count; | |
| 1231 | /* Note that field_count is LONGEST since it may hold the size | |
| 1232 | of an array, while *n_elts is int since its value is bounded | |
| 1233 | by the number of registers used for argument passing. The | |
| 1234 | cast cannot overflow due to the bounds checking above. */ | |
| 1235 | return 1; | |
| 1236 | } | |
| 1237 | } | |
| 1238 | } | |
| 1239 | ||
| 1240 | return 0; | |
| 1241 | } | |
| 1242 | ||
| 1243 | /* Structure holding the next argument position. */ | |
| 1244 | struct ppc64_sysv_argpos | |
| 1245 | { | |
| 1246 | /* Register cache holding argument registers. If this is NULL, | |
| 1247 | we only simulate argument processing without actually updating | |
| 1248 | any registers or memory. */ | |
| 1249 | struct regcache *regcache; | |
| 1250 | /* Next available general-purpose argument register. */ | |
| 1251 | int greg; | |
| 1252 | /* Next available floating-point argument register. */ | |
| 1253 | int freg; | |
| 1254 | /* Next available vector argument register. */ | |
| 1255 | int vreg; | |
| 1256 | /* The address, at which the next general purpose parameter | |
| 1257 | (integer, struct, float, vector, ...) should be saved. */ | |
| 1258 | CORE_ADDR gparam; | |
| 1259 | /* The address, at which the next by-reference parameter | |
| 1260 | (non-Altivec vector, variably-sized type) should be saved. */ | |
| 1261 | CORE_ADDR refparam; | |
| 1262 | }; | |
| 1263 | ||
| 1264 | /* VAL is a value of length LEN. Store it into the argument area on the | |
| 1265 | stack and load it into the corresponding general-purpose registers | |
| 1266 | required by the ABI, and update ARGPOS. | |
| 1267 | ||
| 1268 | If ALIGN is nonzero, it specifies the minimum alignment required | |
| 1269 | for the on-stack copy of the argument. */ | |
| 1270 | ||
| 1271 | static void | |
| 1272 | ppc64_sysv_abi_push_val (struct gdbarch *gdbarch, | |
| 1273 | const bfd_byte *val, int len, int align, | |
| 1274 | struct ppc64_sysv_argpos *argpos) | |
| 1275 | { | |
| 1276 | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | |
| 1277 | int offset = 0; | |
| 1278 | ||
| 1279 | /* Enforce alignment of stack location, if requested. */ | |
| 1280 | if (align > tdep->wordsize) | |
| 1281 | { | |
| 1282 | CORE_ADDR aligned_gparam = align_up (argpos->gparam, align); | |
| 1283 | ||
| 1284 | argpos->greg += (aligned_gparam - argpos->gparam) / tdep->wordsize; | |
| 1285 | argpos->gparam = aligned_gparam; | |
| 1286 | } | |
| 1287 | ||
| 1288 | /* The ABI (version 1.9) specifies that values smaller than one | |
| 1289 | doubleword are right-aligned and those larger are left-aligned. | |
| 1290 | GCC versions before 3.4 implemented this incorrectly; see | |
| 1291 | <http://gcc.gnu.org/gcc-3.4/powerpc-abi.html>. */ | |
| 1292 | if (len < tdep->wordsize | |
| 1293 | && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
| 1294 | offset = tdep->wordsize - len; | |
| 1295 | ||
| 1296 | if (argpos->regcache) | |
| 1297 | write_memory (argpos->gparam + offset, val, len); | |
| 1298 | argpos->gparam = align_up (argpos->gparam + len, tdep->wordsize); | |
| 1299 | ||
| 1300 | while (len >= tdep->wordsize) | |
| 1301 | { | |
| 1302 | if (argpos->regcache && argpos->greg <= 10) | |
| 1303 | argpos->regcache->cooked_write (tdep->ppc_gp0_regnum + argpos->greg, | |
| 1304 | val); | |
| 1305 | argpos->greg++; | |
| 1306 | len -= tdep->wordsize; | |
| 1307 | val += tdep->wordsize; | |
| 1308 | } | |
| 1309 | ||
| 1310 | if (len > 0) | |
| 1311 | { | |
| 1312 | if (argpos->regcache && argpos->greg <= 10) | |
| 1313 | argpos->regcache->cooked_write_part | |
| 1314 | (tdep->ppc_gp0_regnum + argpos->greg, offset, len, val); | |
| 1315 | argpos->greg++; | |
| 1316 | } | |
| 1317 | } | |
| 1318 | ||
| 1319 | /* The same as ppc64_sysv_abi_push_val, but using a single-word integer | |
| 1320 | value VAL as argument. */ | |
| 1321 | ||
| 1322 | static void | |
| 1323 | ppc64_sysv_abi_push_integer (struct gdbarch *gdbarch, ULONGEST val, | |
| 1324 | struct ppc64_sysv_argpos *argpos) | |
| 1325 | { | |
| 1326 | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | |
| 1327 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
| 1328 | gdb_byte buf[PPC_MAX_REGISTER_SIZE]; | |
| 1329 | ||
| 1330 | if (argpos->regcache) | |
| 1331 | store_unsigned_integer (buf, tdep->wordsize, byte_order, val); | |
| 1332 | ppc64_sysv_abi_push_val (gdbarch, buf, tdep->wordsize, 0, argpos); | |
| 1333 | } | |
| 1334 | ||
| 1335 | /* VAL is a value of TYPE, a (binary or decimal) floating-point type. | |
| 1336 | Load it into a floating-point register if required by the ABI, | |
| 1337 | and update ARGPOS. */ | |
| 1338 | ||
| 1339 | static void | |
| 1340 | ppc64_sysv_abi_push_freg (struct gdbarch *gdbarch, | |
| 1341 | struct type *type, const bfd_byte *val, | |
| 1342 | struct ppc64_sysv_argpos *argpos) | |
| 1343 | { | |
| 1344 | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | |
| 1345 | if (tdep->soft_float) | |
| 1346 | return; | |
| 1347 | ||
| 1348 | if (type->length () <= 8 | |
| 1349 | && type->code () == TYPE_CODE_FLT) | |
| 1350 | { | |
| 1351 | /* Floats and doubles go in f1 .. f13. 32-bit floats are converted | |
| 1352 | to double first. */ | |
| 1353 | if (argpos->regcache && argpos->freg <= 13) | |
| 1354 | { | |
| 1355 | int regnum = tdep->ppc_fp0_regnum + argpos->freg; | |
| 1356 | struct type *regtype = register_type (gdbarch, regnum); | |
| 1357 | gdb_byte regval[PPC_MAX_REGISTER_SIZE]; | |
| 1358 | ||
| 1359 | target_float_convert (val, type, regval, regtype); | |
| 1360 | argpos->regcache->cooked_write (regnum, regval); | |
| 1361 | } | |
| 1362 | ||
| 1363 | argpos->freg++; | |
| 1364 | } | |
| 1365 | else if (type->length () <= 8 | |
| 1366 | && type->code () == TYPE_CODE_DECFLOAT) | |
| 1367 | { | |
| 1368 | /* Floats and doubles go in f1 .. f13. 32-bit decimal floats are | |
| 1369 | placed in the least significant word. */ | |
| 1370 | if (argpos->regcache && argpos->freg <= 13) | |
| 1371 | { | |
| 1372 | int regnum = tdep->ppc_fp0_regnum + argpos->freg; | |
| 1373 | int offset = 0; | |
| 1374 | ||
| 1375 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
| 1376 | offset = 8 - type->length (); | |
| 1377 | ||
| 1378 | argpos->regcache->cooked_write_part (regnum, offset, | |
| 1379 | type->length (), val); | |
| 1380 | } | |
| 1381 | ||
| 1382 | argpos->freg++; | |
| 1383 | } | |
| 1384 | else if (type->length () == 16 | |
| 1385 | && type->code () == TYPE_CODE_FLT | |
| 1386 | && (gdbarch_long_double_format (gdbarch) | |
| 1387 | == floatformats_ibm_long_double)) | |
| 1388 | { | |
| 1389 | /* IBM long double stored in two consecutive FPRs. */ | |
| 1390 | if (argpos->regcache && argpos->freg <= 13) | |
| 1391 | { | |
| 1392 | int regnum = tdep->ppc_fp0_regnum + argpos->freg; | |
| 1393 | ||
| 1394 | argpos->regcache->cooked_write (regnum, val); | |
| 1395 | if (argpos->freg <= 12) | |
| 1396 | argpos->regcache->cooked_write (regnum + 1, val + 8); | |
| 1397 | } | |
| 1398 | ||
| 1399 | argpos->freg += 2; | |
| 1400 | } | |
| 1401 | else if (type->length () == 16 | |
| 1402 | && type->code () == TYPE_CODE_DECFLOAT) | |
| 1403 | { | |
| 1404 | /* 128-bit decimal floating-point values are stored in and even/odd | |
| 1405 | pair of FPRs, with the even FPR holding the most significant half. */ | |
| 1406 | argpos->freg += argpos->freg & 1; | |
| 1407 | ||
| 1408 | if (argpos->regcache && argpos->freg <= 12) | |
| 1409 | { | |
| 1410 | int regnum = tdep->ppc_fp0_regnum + argpos->freg; | |
| 1411 | int lopart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 : 0; | |
| 1412 | int hipart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8; | |
| 1413 | ||
| 1414 | argpos->regcache->cooked_write (regnum, val + hipart); | |
| 1415 | argpos->regcache->cooked_write (regnum + 1, val + lopart); | |
| 1416 | } | |
| 1417 | ||
| 1418 | argpos->freg += 2; | |
| 1419 | } | |
| 1420 | } | |
| 1421 | ||
| 1422 | /* VAL is a value of AltiVec vector type. Load it into a vector register | |
| 1423 | if required by the ABI, and update ARGPOS. */ | |
| 1424 | ||
| 1425 | static void | |
| 1426 | ppc64_sysv_abi_push_vreg (struct gdbarch *gdbarch, const bfd_byte *val, | |
| 1427 | struct ppc64_sysv_argpos *argpos) | |
| 1428 | { | |
| 1429 | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | |
| 1430 | ||
| 1431 | if (argpos->regcache && argpos->vreg <= 13) | |
| 1432 | argpos->regcache->cooked_write (tdep->ppc_vr0_regnum + argpos->vreg, val); | |
| 1433 | ||
| 1434 | argpos->vreg++; | |
| 1435 | } | |
| 1436 | ||
| 1437 | /* VAL is a value of TYPE. Load it into memory and/or registers | |
| 1438 | as required by the ABI, and update ARGPOS. */ | |
| 1439 | ||
| 1440 | static void | |
| 1441 | ppc64_sysv_abi_push_param (struct gdbarch *gdbarch, | |
| 1442 | struct type *type, const bfd_byte *val, | |
| 1443 | struct ppc64_sysv_argpos *argpos) | |
| 1444 | { | |
| 1445 | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | |
| 1446 | ||
| 1447 | if (type->code () == TYPE_CODE_FLT | |
| 1448 | && type->length () == 16 | |
| 1449 | && (gdbarch_long_double_format (gdbarch) | |
| 1450 | == floatformats_ieee_quad)) | |
| 1451 | { | |
| 1452 | /* IEEE FLOAT128, args in vector registers. */ | |
| 1453 | ppc64_sysv_abi_push_val (gdbarch, val, type->length (), 16, argpos); | |
| 1454 | ppc64_sysv_abi_push_vreg (gdbarch, val, argpos); | |
| 1455 | } | |
| 1456 | else if (type->code () == TYPE_CODE_FLT | |
| 1457 | || type->code () == TYPE_CODE_DECFLOAT) | |
| 1458 | { | |
| 1459 | /* Floating-point scalars are passed in floating-point registers. */ | |
| 1460 | ppc64_sysv_abi_push_val (gdbarch, val, type->length (), 0, argpos); | |
| 1461 | ppc64_sysv_abi_push_freg (gdbarch, type, val, argpos); | |
| 1462 | } | |
| 1463 | else if (type->code () == TYPE_CODE_ARRAY && type->is_vector () | |
| 1464 | && tdep->vector_abi == POWERPC_VEC_ALTIVEC | |
| 1465 | && type->length () == 16) | |
| 1466 | { | |
| 1467 | /* AltiVec vectors are passed aligned, and in vector registers. */ | |
| 1468 | ppc64_sysv_abi_push_val (gdbarch, val, type->length (), 16, argpos); | |
| 1469 | ppc64_sysv_abi_push_vreg (gdbarch, val, argpos); | |
| 1470 | } | |
| 1471 | else if (type->code () == TYPE_CODE_ARRAY && type->is_vector () | |
| 1472 | && type->length () >= 16) | |
| 1473 | { | |
| 1474 | /* Non-Altivec vectors are passed by reference. */ | |
| 1475 | ||
| 1476 | /* Copy value onto the stack ... */ | |
| 1477 | CORE_ADDR addr = align_up (argpos->refparam, 16); | |
| 1478 | if (argpos->regcache) | |
| 1479 | write_memory (addr, val, type->length ()); | |
| 1480 | argpos->refparam = align_up (addr + type->length (), tdep->wordsize); | |
| 1481 | ||
| 1482 | /* ... and pass a pointer to the copy as parameter. */ | |
| 1483 | ppc64_sysv_abi_push_integer (gdbarch, addr, argpos); | |
| 1484 | } | |
| 1485 | else if ((type->code () == TYPE_CODE_INT | |
| 1486 | || type->code () == TYPE_CODE_ENUM | |
| 1487 | || type->code () == TYPE_CODE_BOOL | |
| 1488 | || type->code () == TYPE_CODE_CHAR | |
| 1489 | || type->code () == TYPE_CODE_PTR | |
| 1490 | || TYPE_IS_REFERENCE (type)) | |
| 1491 | && type->length () <= tdep->wordsize) | |
| 1492 | { | |
| 1493 | ULONGEST word = 0; | |
| 1494 | ||
| 1495 | if (argpos->regcache) | |
| 1496 | { | |
| 1497 | /* Sign extend the value, then store it unsigned. */ | |
| 1498 | word = unpack_long (type, val); | |
| 1499 | ||
| 1500 | /* Convert any function code addresses into descriptors. */ | |
| 1501 | if (tdep->elf_abi == POWERPC_ELF_V1 | |
| 1502 | && (type->code () == TYPE_CODE_PTR | |
| 1503 | || type->code () == TYPE_CODE_REF)) | |
| 1504 | { | |
| 1505 | struct type *target_type | |
| 1506 | = check_typedef (type->target_type ()); | |
| 1507 | ||
| 1508 | if (target_type->code () == TYPE_CODE_FUNC | |
| 1509 | || target_type->code () == TYPE_CODE_METHOD) | |
| 1510 | { | |
| 1511 | CORE_ADDR desc = word; | |
| 1512 | ||
| 1513 | convert_code_addr_to_desc_addr (word, &desc); | |
| 1514 | word = desc; | |
| 1515 | } | |
| 1516 | } | |
| 1517 | } | |
| 1518 | ||
| 1519 | ppc64_sysv_abi_push_integer (gdbarch, word, argpos); | |
| 1520 | } | |
| 1521 | else | |
| 1522 | { | |
| 1523 | /* Align == 0 is correct for ppc64_sysv_abi_push_freg, | |
| 1524 | Align == 16 is correct for ppc64_sysv_abi_push_vreg. | |
| 1525 | Default to 0. */ | |
| 1526 | int align = 0; | |
| 1527 | ||
| 1528 | /* The ABI (version 1.9) specifies that structs containing a | |
| 1529 | single floating-point value, at any level of nesting of | |
| 1530 | single-member structs, are passed in floating-point registers. */ | |
| 1531 | if (type->code () == TYPE_CODE_STRUCT | |
| 1532 | && type->num_fields () == 1 && tdep->elf_abi == POWERPC_ELF_V1) | |
| 1533 | { | |
| 1534 | while (type->code () == TYPE_CODE_STRUCT | |
| 1535 | && type->num_fields () == 1) | |
| 1536 | type = check_typedef (type->field (0).type ()); | |
| 1537 | ||
| 1538 | if (type->code () == TYPE_CODE_FLT) { | |
| 1539 | /* Handle the case of 128-bit floats for both IEEE and IBM long double | |
| 1540 | formats. */ | |
| 1541 | if (type->length () == 16 | |
| 1542 | && (gdbarch_long_double_format (gdbarch) | |
| 1543 | == floatformats_ieee_quad)) | |
| 1544 | { | |
| 1545 | ppc64_sysv_abi_push_vreg (gdbarch, val, argpos); | |
| 1546 | align = 16; | |
| 1547 | } | |
| 1548 | else | |
| 1549 | ppc64_sysv_abi_push_freg (gdbarch, type, val, argpos); | |
| 1550 | } | |
| 1551 | } | |
| 1552 | ||
| 1553 | /* In the ELFv2 ABI, homogeneous floating-point or vector | |
| 1554 | aggregates are passed in a series of registers. */ | |
| 1555 | if (tdep->elf_abi == POWERPC_ELF_V2) | |
| 1556 | { | |
| 1557 | struct type *eltype; | |
| 1558 | int i, nelt; | |
| 1559 | ||
| 1560 | if (ppc64_elfv2_abi_homogeneous_aggregate (type, &eltype, &nelt, | |
| 1561 | gdbarch)) | |
| 1562 | for (i = 0; i < nelt; i++) | |
| 1563 | { | |
| 1564 | const gdb_byte *elval = val + i * eltype->length (); | |
| 1565 | ||
| 1566 | if (eltype->code () == TYPE_CODE_FLT | |
| 1567 | && eltype->length () == 16 | |
| 1568 | && (gdbarch_long_double_format (gdbarch) | |
| 1569 | == floatformats_ieee_quad)) | |
| 1570 | /* IEEE FLOAT128, args in vector registers. */ | |
| 1571 | { | |
| 1572 | ppc64_sysv_abi_push_vreg (gdbarch, elval, argpos); | |
| 1573 | align = 16; | |
| 1574 | } | |
| 1575 | else if (eltype->code () == TYPE_CODE_FLT | |
| 1576 | || eltype->code () == TYPE_CODE_DECFLOAT) | |
| 1577 | /* IBM long double and all other floats and decfloats, args | |
| 1578 | are in a pair of floating point registers. */ | |
| 1579 | ppc64_sysv_abi_push_freg (gdbarch, eltype, elval, argpos); | |
| 1580 | else if (eltype->code () == TYPE_CODE_ARRAY | |
| 1581 | && eltype->is_vector () | |
| 1582 | && tdep->vector_abi == POWERPC_VEC_ALTIVEC | |
| 1583 | && eltype->length () == 16) | |
| 1584 | { | |
| 1585 | ppc64_sysv_abi_push_vreg (gdbarch, elval, argpos); | |
| 1586 | align = 16; | |
| 1587 | } | |
| 1588 | } | |
| 1589 | } | |
| 1590 | ||
| 1591 | ppc64_sysv_abi_push_val (gdbarch, val, type->length (), align, argpos); | |
| 1592 | } | |
| 1593 | } | |
| 1594 | ||
| 1595 | /* Pass the arguments in either registers, or in the stack. Using the | |
| 1596 | ppc 64 bit SysV ABI. | |
| 1597 | ||
| 1598 | This implements a dumbed down version of the ABI. It always writes | |
| 1599 | values to memory, GPR and FPR, even when not necessary. Doing this | |
| 1600 | greatly simplifies the logic. */ | |
| 1601 | ||
| 1602 | CORE_ADDR | |
| 1603 | ppc64_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, | |
| 1604 | struct value *function, | |
| 1605 | struct regcache *regcache, CORE_ADDR bp_addr, | |
| 1606 | int nargs, struct value **args, CORE_ADDR sp, | |
| 1607 | function_call_return_method return_method, | |
| 1608 | CORE_ADDR struct_addr) | |
| 1609 | { | |
| 1610 | CORE_ADDR func_addr = find_function_addr (function, NULL); | |
| 1611 | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | |
| 1612 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
| 1613 | int opencl_abi = ppc_sysv_use_opencl_abi (function->type ()); | |
| 1614 | ULONGEST back_chain; | |
| 1615 | /* See for-loop comment below. */ | |
| 1616 | int write_pass; | |
| 1617 | /* Size of the by-reference parameter copy region, the final value is | |
| 1618 | computed in the for-loop below. */ | |
| 1619 | LONGEST refparam_size = 0; | |
| 1620 | /* Size of the general parameter region, the final value is computed | |
| 1621 | in the for-loop below. */ | |
| 1622 | LONGEST gparam_size = 0; | |
| 1623 | /* Kevin writes ... I don't mind seeing tdep->wordsize used in the | |
| 1624 | calls to align_up(), align_down(), etc. because this makes it | |
| 1625 | easier to reuse this code (in a copy/paste sense) in the future, | |
| 1626 | but it is a 64-bit ABI and asserting that the wordsize is 8 bytes | |
| 1627 | at some point makes it easier to verify that this function is | |
| 1628 | correct without having to do a non-local analysis to figure out | |
| 1629 | the possible values of tdep->wordsize. */ | |
| 1630 | gdb_assert (tdep->wordsize == 8); | |
| 1631 | ||
| 1632 | /* This function exists to support a calling convention that | |
| 1633 | requires floating-point registers. It shouldn't be used on | |
| 1634 | processors that lack them. */ | |
| 1635 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); | |
| 1636 | ||
| 1637 | /* By this stage in the proceedings, SP has been decremented by "red | |
| 1638 | zone size" + "struct return size". Fetch the stack-pointer from | |
| 1639 | before this and use that as the BACK_CHAIN. */ | |
| 1640 | regcache_cooked_read_unsigned (regcache, gdbarch_sp_regnum (gdbarch), | |
| 1641 | &back_chain); | |
| 1642 | ||
| 1643 | /* Go through the argument list twice. | |
| 1644 | ||
| 1645 | Pass 1: Compute the function call's stack space and register | |
| 1646 | requirements. | |
| 1647 | ||
| 1648 | Pass 2: Replay the same computation but this time also write the | |
| 1649 | values out to the target. */ | |
| 1650 | ||
| 1651 | for (write_pass = 0; write_pass < 2; write_pass++) | |
| 1652 | { | |
| 1653 | int argno; | |
| 1654 | ||
| 1655 | struct ppc64_sysv_argpos argpos; | |
| 1656 | argpos.greg = 3; | |
| 1657 | argpos.freg = 1; | |
| 1658 | argpos.vreg = 2; | |
| 1659 | ||
| 1660 | if (!write_pass) | |
| 1661 | { | |
| 1662 | /* During the first pass, GPARAM and REFPARAM are more like | |
| 1663 | offsets (start address zero) than addresses. That way | |
| 1664 | they accumulate the total stack space each region | |
| 1665 | requires. */ | |
| 1666 | argpos.regcache = NULL; | |
| 1667 | argpos.gparam = 0; | |
| 1668 | argpos.refparam = 0; | |
| 1669 | } | |
| 1670 | else | |
| 1671 | { | |
| 1672 | /* Decrement the stack pointer making space for the Altivec | |
| 1673 | and general on-stack parameters. Set refparam and gparam | |
| 1674 | to their corresponding regions. */ | |
| 1675 | argpos.regcache = regcache; | |
| 1676 | argpos.refparam = align_down (sp - refparam_size, 16); | |
| 1677 | argpos.gparam = align_down (argpos.refparam - gparam_size, 16); | |
| 1678 | /* Add in space for the TOC, link editor double word (v1 only), | |
| 1679 | compiler double word (v1 only), LR save area, CR save area, | |
| 1680 | and backchain. */ | |
| 1681 | if (tdep->elf_abi == POWERPC_ELF_V1) | |
| 1682 | sp = align_down (argpos.gparam - 48, 16); | |
| 1683 | else | |
| 1684 | sp = align_down (argpos.gparam - 32, 16); | |
| 1685 | } | |
| 1686 | ||
| 1687 | /* If the function is returning a `struct', then there is an | |
| 1688 | extra hidden parameter (which will be passed in r3) | |
| 1689 | containing the address of that struct.. In that case we | |
| 1690 | should advance one word and start from r4 register to copy | |
| 1691 | parameters. This also consumes one on-stack parameter slot. */ | |
| 1692 | if (return_method == return_method_struct) | |
| 1693 | ppc64_sysv_abi_push_integer (gdbarch, struct_addr, &argpos); | |
| 1694 | ||
| 1695 | for (argno = 0; argno < nargs; argno++) | |
| 1696 | { | |
| 1697 | struct value *arg = args[argno]; | |
| 1698 | struct type *type = check_typedef (arg->type ()); | |
| 1699 | const bfd_byte *val = arg->contents ().data (); | |
| 1700 | ||
| 1701 | if (type->code () == TYPE_CODE_COMPLEX) | |
| 1702 | { | |
| 1703 | /* Complex types are passed as if two independent scalars. */ | |
| 1704 | struct type *eltype = check_typedef (type->target_type ()); | |
| 1705 | ||
| 1706 | ppc64_sysv_abi_push_param (gdbarch, eltype, val, &argpos); | |
| 1707 | ppc64_sysv_abi_push_param (gdbarch, eltype, | |
| 1708 | val + eltype->length (), &argpos); | |
| 1709 | } | |
| 1710 | else if (type->code () == TYPE_CODE_ARRAY && type->is_vector () | |
| 1711 | && opencl_abi) | |
| 1712 | { | |
| 1713 | /* OpenCL vectors shorter than 16 bytes are passed as if | |
| 1714 | a series of independent scalars; OpenCL vectors 16 bytes | |
| 1715 | or longer are passed as if a series of AltiVec vectors. */ | |
| 1716 | struct type *eltype; | |
| 1717 | int i, nelt; | |
| 1718 | ||
| 1719 | if (type->length () < 16) | |
| 1720 | eltype = check_typedef (type->target_type ()); | |
| 1721 | else | |
| 1722 | eltype = register_type (gdbarch, tdep->ppc_vr0_regnum); | |
| 1723 | ||
| 1724 | nelt = type->length () / eltype->length (); | |
| 1725 | for (i = 0; i < nelt; i++) | |
| 1726 | { | |
| 1727 | const gdb_byte *elval = val + i * eltype->length (); | |
| 1728 | ||
| 1729 | ppc64_sysv_abi_push_param (gdbarch, eltype, elval, &argpos); | |
| 1730 | } | |
| 1731 | } | |
| 1732 | else | |
| 1733 | { | |
| 1734 | /* All other types are passed as single arguments. */ | |
| 1735 | ppc64_sysv_abi_push_param (gdbarch, type, val, &argpos); | |
| 1736 | } | |
| 1737 | } | |
| 1738 | ||
| 1739 | if (!write_pass) | |
| 1740 | { | |
| 1741 | /* Save the true region sizes ready for the second pass. */ | |
| 1742 | refparam_size = argpos.refparam; | |
| 1743 | /* Make certain that the general parameter save area is at | |
| 1744 | least the minimum 8 registers (or doublewords) in size. */ | |
| 1745 | if (argpos.greg < 8) | |
| 1746 | gparam_size = 8 * tdep->wordsize; | |
| 1747 | else | |
| 1748 | gparam_size = argpos.gparam; | |
| 1749 | } | |
| 1750 | } | |
| 1751 | ||
| 1752 | /* Update %sp. */ | |
| 1753 | regcache_cooked_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp); | |
| 1754 | ||
| 1755 | /* Write the backchain (it occupies WORDSIZED bytes). */ | |
| 1756 | write_memory_signed_integer (sp, tdep->wordsize, byte_order, back_chain); | |
| 1757 | ||
| 1758 | /* Point the inferior function call's return address at the dummy's | |
| 1759 | breakpoint. */ | |
| 1760 | regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); | |
| 1761 | ||
| 1762 | /* In the ELFv1 ABI, use the func_addr to find the descriptor, and use | |
| 1763 | that to find the TOC. If we're calling via a function pointer, | |
| 1764 | the pointer itself identifies the descriptor. */ | |
| 1765 | if (tdep->elf_abi == POWERPC_ELF_V1) | |
| 1766 | { | |
| 1767 | struct type *ftype = check_typedef (function->type ()); | |
| 1768 | CORE_ADDR desc_addr = value_as_address (function); | |
| 1769 | ||
| 1770 | if (ftype->code () == TYPE_CODE_PTR | |
| 1771 | || convert_code_addr_to_desc_addr (func_addr, &desc_addr)) | |
| 1772 | { | |
| 1773 | /* The TOC is the second double word in the descriptor. */ | |
| 1774 | CORE_ADDR toc = | |
| 1775 | read_memory_unsigned_integer (desc_addr + tdep->wordsize, | |
| 1776 | tdep->wordsize, byte_order); | |
| 1777 | ||
| 1778 | regcache_cooked_write_unsigned (regcache, | |
| 1779 | tdep->ppc_gp0_regnum + 2, toc); | |
| 1780 | } | |
| 1781 | } | |
| 1782 | ||
| 1783 | /* In the ELFv2 ABI, we need to pass the target address in r12 since | |
| 1784 | we may be calling a global entry point. */ | |
| 1785 | if (tdep->elf_abi == POWERPC_ELF_V2) | |
| 1786 | regcache_cooked_write_unsigned (regcache, | |
| 1787 | tdep->ppc_gp0_regnum + 12, func_addr); | |
| 1788 | ||
| 1789 | return sp; | |
| 1790 | } | |
| 1791 | ||
| 1792 | /* Subroutine of ppc64_sysv_abi_return_value that handles "base" types: | |
| 1793 | integer, floating-point, and AltiVec vector types. | |
| 1794 | ||
| 1795 | This routine also handles components of aggregate return types; | |
| 1796 | INDEX describes which part of the aggregate is to be handled. | |
| 1797 | ||
| 1798 | Returns true if VALTYPE is some such base type that could be handled, | |
| 1799 | false otherwise. */ | |
| 1800 | static int | |
| 1801 | ppc64_sysv_abi_return_value_base (struct gdbarch *gdbarch, struct type *valtype, | |
| 1802 | struct regcache *regcache, gdb_byte *readbuf, | |
| 1803 | const gdb_byte *writebuf, int index) | |
| 1804 | { | |
| 1805 | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | |
| 1806 | ||
| 1807 | /* Integers live in GPRs starting at r3. */ | |
| 1808 | if ((valtype->code () == TYPE_CODE_INT | |
| 1809 | || valtype->code () == TYPE_CODE_ENUM | |
| 1810 | || valtype->code () == TYPE_CODE_CHAR | |
| 1811 | || valtype->code () == TYPE_CODE_BOOL | |
| 1812 | || valtype->code () == TYPE_CODE_RANGE | |
| 1813 | || is_fixed_point_type (valtype)) | |
| 1814 | && valtype->length () <= 8) | |
| 1815 | { | |
| 1816 | int regnum = tdep->ppc_gp0_regnum + 3 + index; | |
| 1817 | ||
| 1818 | if (writebuf != NULL) | |
| 1819 | { | |
| 1820 | LONGEST return_val; | |
| 1821 | ||
| 1822 | if (is_fixed_point_type (valtype)) | |
| 1823 | { | |
| 1824 | /* Fixed point type values need to be returned unscaled. */ | |
| 1825 | gdb_mpz unscaled; | |
| 1826 | ||
| 1827 | unscaled.read (gdb::make_array_view (writebuf, | |
| 1828 | valtype->length ()), | |
| 1829 | type_byte_order (valtype), | |
| 1830 | valtype->is_unsigned ()); | |
| 1831 | return_val = unscaled.as_integer<LONGEST> (); | |
| 1832 | } | |
| 1833 | else | |
| 1834 | return_val = unpack_long (valtype, writebuf); | |
| 1835 | ||
| 1836 | /* Be careful to sign extend the value. */ | |
| 1837 | regcache_cooked_write_unsigned (regcache, regnum, return_val); | |
| 1838 | } | |
| 1839 | if (readbuf != NULL) | |
| 1840 | { | |
| 1841 | /* Extract the integer from GPR. Since this is truncating the | |
| 1842 | value, there isn't a sign extension problem. */ | |
| 1843 | ULONGEST regval; | |
| 1844 | ||
| 1845 | regcache_cooked_read_unsigned (regcache, regnum, ®val); | |
| 1846 | store_unsigned_integer (readbuf, valtype->length (), | |
| 1847 | gdbarch_byte_order (gdbarch), regval); | |
| 1848 | } | |
| 1849 | return 1; | |
| 1850 | } | |
| 1851 | ||
| 1852 | /* Floats and doubles go in f1 .. f13. 32-bit floats are converted | |
| 1853 | to double first. */ | |
| 1854 | if (valtype->length () <= 8 | |
| 1855 | && valtype->code () == TYPE_CODE_FLT) | |
| 1856 | { | |
| 1857 | int regnum = tdep->ppc_fp0_regnum + 1 + index; | |
| 1858 | struct type *regtype = register_type (gdbarch, regnum); | |
| 1859 | gdb_byte regval[PPC_MAX_REGISTER_SIZE]; | |
| 1860 | ||
| 1861 | if (writebuf != NULL) | |
| 1862 | { | |
| 1863 | target_float_convert (writebuf, valtype, regval, regtype); | |
| 1864 | regcache->cooked_write (regnum, regval); | |
| 1865 | } | |
| 1866 | if (readbuf != NULL) | |
| 1867 | { | |
| 1868 | regcache->cooked_read (regnum, regval); | |
| 1869 | target_float_convert (regval, regtype, readbuf, valtype); | |
| 1870 | } | |
| 1871 | return 1; | |
| 1872 | } | |
| 1873 | ||
| 1874 | /* Floats and doubles go in f1 .. f13. 32-bit decimal floats are | |
| 1875 | placed in the least significant word. */ | |
| 1876 | if (valtype->length () <= 8 | |
| 1877 | && valtype->code () == TYPE_CODE_DECFLOAT) | |
| 1878 | { | |
| 1879 | int regnum = tdep->ppc_fp0_regnum + 1 + index; | |
| 1880 | int offset = 0; | |
| 1881 | ||
| 1882 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
| 1883 | offset = 8 - valtype->length (); | |
| 1884 | ||
| 1885 | if (writebuf != NULL) | |
| 1886 | regcache->cooked_write_part (regnum, offset, valtype->length (), | |
| 1887 | writebuf); | |
| 1888 | if (readbuf != NULL) | |
| 1889 | regcache->cooked_read_part (regnum, offset, valtype->length (), | |
| 1890 | readbuf); | |
| 1891 | return 1; | |
| 1892 | } | |
| 1893 | ||
| 1894 | /* IBM long double stored in two consecutive FPRs. */ | |
| 1895 | if (valtype->length () == 16 | |
| 1896 | && valtype->code () == TYPE_CODE_FLT | |
| 1897 | && (gdbarch_long_double_format (gdbarch) | |
| 1898 | == floatformats_ibm_long_double)) | |
| 1899 | { | |
| 1900 | int regnum = tdep->ppc_fp0_regnum + 1 + 2 * index; | |
| 1901 | ||
| 1902 | if (writebuf != NULL) | |
| 1903 | { | |
| 1904 | regcache->cooked_write (regnum, writebuf); | |
| 1905 | regcache->cooked_write (regnum + 1, writebuf + 8); | |
| 1906 | } | |
| 1907 | if (readbuf != NULL) | |
| 1908 | { | |
| 1909 | regcache->cooked_read (regnum, readbuf); | |
| 1910 | regcache->cooked_read (regnum + 1, readbuf + 8); | |
| 1911 | } | |
| 1912 | return 1; | |
| 1913 | } | |
| 1914 | ||
| 1915 | /* 128-bit decimal floating-point values are stored in an even/odd | |
| 1916 | pair of FPRs, with the even FPR holding the most significant half. */ | |
| 1917 | if (valtype->length () == 16 | |
| 1918 | && valtype->code () == TYPE_CODE_DECFLOAT) | |
| 1919 | { | |
| 1920 | int regnum = tdep->ppc_fp0_regnum + 2 + 2 * index; | |
| 1921 | int lopart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 : 0; | |
| 1922 | int hipart = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8; | |
| 1923 | ||
| 1924 | if (writebuf != NULL) | |
| 1925 | { | |
| 1926 | regcache->cooked_write (regnum, writebuf + hipart); | |
| 1927 | regcache->cooked_write (regnum + 1, writebuf + lopart); | |
| 1928 | } | |
| 1929 | if (readbuf != NULL) | |
| 1930 | { | |
| 1931 | regcache->cooked_read (regnum, readbuf + hipart); | |
| 1932 | regcache->cooked_read (regnum + 1, readbuf + lopart); | |
| 1933 | } | |
| 1934 | return 1; | |
| 1935 | } | |
| 1936 | ||
| 1937 | /* AltiVec vectors are returned in VRs starting at v2. | |
| 1938 | IEEE FLOAT 128-bit are stored in vector register. */ | |
| 1939 | ||
| 1940 | if (valtype->length () == 16 | |
| 1941 | && ((valtype->code () == TYPE_CODE_ARRAY | |
| 1942 | && valtype->is_vector () | |
| 1943 | && tdep->vector_abi == POWERPC_VEC_ALTIVEC) | |
| 1944 | || (valtype->code () == TYPE_CODE_FLT | |
| 1945 | && (gdbarch_long_double_format (gdbarch) | |
| 1946 | == floatformats_ieee_quad)))) | |
| 1947 | { | |
| 1948 | int regnum = tdep->ppc_vr0_regnum + 2 + index; | |
| 1949 | ||
| 1950 | if (writebuf != NULL) | |
| 1951 | regcache->cooked_write (regnum, writebuf); | |
| 1952 | if (readbuf != NULL) | |
| 1953 | regcache->cooked_read (regnum, readbuf); | |
| 1954 | return 1; | |
| 1955 | } | |
| 1956 | ||
| 1957 | /* Short vectors are returned in GPRs starting at r3. */ | |
| 1958 | if (valtype->length () <= 8 | |
| 1959 | && valtype->code () == TYPE_CODE_ARRAY && valtype->is_vector ()) | |
| 1960 | { | |
| 1961 | int regnum = tdep->ppc_gp0_regnum + 3 + index; | |
| 1962 | int offset = 0; | |
| 1963 | ||
| 1964 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
| 1965 | offset = 8 - valtype->length (); | |
| 1966 | ||
| 1967 | if (writebuf != NULL) | |
| 1968 | regcache->cooked_write_part (regnum, offset, valtype->length (), | |
| 1969 | writebuf); | |
| 1970 | if (readbuf != NULL) | |
| 1971 | regcache->cooked_read_part (regnum, offset, valtype->length (), | |
| 1972 | readbuf); | |
| 1973 | return 1; | |
| 1974 | } | |
| 1975 | ||
| 1976 | return 0; | |
| 1977 | } | |
| 1978 | ||
| 1979 | /* The 64 bit ABI return value convention. | |
| 1980 | ||
| 1981 | Return non-zero if the return-value is stored in a register, return | |
| 1982 | 0 if the return-value is instead stored on the stack (a.k.a., | |
| 1983 | struct return convention). | |
| 1984 | ||
| 1985 | For a return-value stored in a register: when WRITEBUF is non-NULL, | |
| 1986 | copy the buffer to the corresponding register return-value location | |
| 1987 | location; when READBUF is non-NULL, fill the buffer from the | |
| 1988 | corresponding register return-value location. */ | |
| 1989 | enum return_value_convention | |
| 1990 | ppc64_sysv_abi_return_value (struct gdbarch *gdbarch, struct value *function, | |
| 1991 | struct type *valtype, struct regcache *regcache, | |
| 1992 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
| 1993 | { | |
| 1994 | ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); | |
| 1995 | struct type *func_type = function ? function->type () : NULL; | |
| 1996 | int opencl_abi = func_type? ppc_sysv_use_opencl_abi (func_type) : 0; | |
| 1997 | struct type *eltype; | |
| 1998 | int nelt, ok; | |
| 1999 | ||
| 2000 | /* This function exists to support a calling convention that | |
| 2001 | requires floating-point registers. It shouldn't be used on | |
| 2002 | processors that lack them. */ | |
| 2003 | gdb_assert (ppc_floating_point_unit_p (gdbarch)); | |
| 2004 | ||
| 2005 | /* Complex types are returned as if two independent scalars. */ | |
| 2006 | if (valtype->code () == TYPE_CODE_COMPLEX) | |
| 2007 | { | |
| 2008 | eltype = check_typedef (valtype->target_type ()); | |
| 2009 | ||
| 2010 | for (int i = 0; i < 2; i++) | |
| 2011 | { | |
| 2012 | ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache, | |
| 2013 | readbuf, writebuf, i); | |
| 2014 | gdb_assert (ok); | |
| 2015 | ||
| 2016 | if (readbuf) | |
| 2017 | readbuf += eltype->length (); | |
| 2018 | if (writebuf) | |
| 2019 | writebuf += eltype->length (); | |
| 2020 | } | |
| 2021 | return RETURN_VALUE_REGISTER_CONVENTION; | |
| 2022 | } | |
| 2023 | ||
| 2024 | /* OpenCL vectors shorter than 16 bytes are returned as if | |
| 2025 | a series of independent scalars; OpenCL vectors 16 bytes | |
| 2026 | or longer are returned as if a series of AltiVec vectors. */ | |
| 2027 | if (valtype->code () == TYPE_CODE_ARRAY && valtype->is_vector () | |
| 2028 | && opencl_abi) | |
| 2029 | { | |
| 2030 | if (valtype->length () < 16) | |
| 2031 | eltype = check_typedef (valtype->target_type ()); | |
| 2032 | else | |
| 2033 | eltype = register_type (gdbarch, tdep->ppc_vr0_regnum); | |
| 2034 | ||
| 2035 | nelt = valtype->length () / eltype->length (); | |
| 2036 | for (int i = 0; i < nelt; i++) | |
| 2037 | { | |
| 2038 | ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache, | |
| 2039 | readbuf, writebuf, i); | |
| 2040 | gdb_assert (ok); | |
| 2041 | ||
| 2042 | if (readbuf) | |
| 2043 | readbuf += eltype->length (); | |
| 2044 | if (writebuf) | |
| 2045 | writebuf += eltype->length (); | |
| 2046 | } | |
| 2047 | return RETURN_VALUE_REGISTER_CONVENTION; | |
| 2048 | } | |
| 2049 | ||
| 2050 | /* All pointers live in r3. */ | |
| 2051 | if (valtype->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (valtype)) | |
| 2052 | { | |
| 2053 | int regnum = tdep->ppc_gp0_regnum + 3; | |
| 2054 | ||
| 2055 | if (writebuf != NULL) | |
| 2056 | regcache->cooked_write (regnum, writebuf); | |
| 2057 | if (readbuf != NULL) | |
| 2058 | regcache->cooked_read (regnum, readbuf); | |
| 2059 | return RETURN_VALUE_REGISTER_CONVENTION; | |
| 2060 | } | |
| 2061 | ||
| 2062 | /* Small character arrays are returned, right justified, in r3, according to | |
| 2063 | the v1 ELF ABI spec [1]. But GCC doesn't implement this (PR gcc/122282), | |
| 2064 | so we treat this as an ABI spec bug, and use | |
| 2065 | RETURN_VALUE_STRUCT_CONVENTION. We don't handle this case explicly, but | |
| 2066 | let it be handled by the default return. | |
| 2067 | [1] https://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi-1.9.html. | |
| 2068 | */ | |
| 2069 | ||
| 2070 | /* In the ELFv2 ABI, homogeneous floating-point or vector | |
| 2071 | aggregates are returned in registers. */ | |
| 2072 | if (tdep->elf_abi == POWERPC_ELF_V2 | |
| 2073 | && ppc64_elfv2_abi_homogeneous_aggregate (valtype, &eltype, &nelt, | |
| 2074 | gdbarch) | |
| 2075 | && (eltype->code () == TYPE_CODE_FLT | |
| 2076 | || eltype->code () == TYPE_CODE_DECFLOAT | |
| 2077 | || (eltype->code () == TYPE_CODE_ARRAY | |
| 2078 | && eltype->is_vector () | |
| 2079 | && tdep->vector_abi == POWERPC_VEC_ALTIVEC | |
| 2080 | && eltype->length () == 16))) | |
| 2081 | { | |
| 2082 | for (int i = 0; i < nelt; i++) | |
| 2083 | { | |
| 2084 | ok = ppc64_sysv_abi_return_value_base (gdbarch, eltype, regcache, | |
| 2085 | readbuf, writebuf, i); | |
| 2086 | gdb_assert (ok); | |
| 2087 | ||
| 2088 | if (readbuf) | |
| 2089 | readbuf += eltype->length (); | |
| 2090 | if (writebuf) | |
| 2091 | writebuf += eltype->length (); | |
| 2092 | } | |
| 2093 | ||
| 2094 | return RETURN_VALUE_REGISTER_CONVENTION; | |
| 2095 | } | |
| 2096 | ||
| 2097 | if (!language_pass_by_reference (valtype).trivially_copyable | |
| 2098 | && valtype->code () == TYPE_CODE_STRUCT) | |
| 2099 | return RETURN_VALUE_STRUCT_CONVENTION; | |
| 2100 | ||
| 2101 | /* In the ELFv2 ABI, aggregate types of up to 16 bytes are | |
| 2102 | returned in registers r3:r4. */ | |
| 2103 | if (tdep->elf_abi == POWERPC_ELF_V2 | |
| 2104 | && !TYPE_HAS_DYNAMIC_LENGTH (valtype) | |
| 2105 | && valtype->length () <= 16 | |
| 2106 | && (valtype->code () == TYPE_CODE_STRUCT | |
| 2107 | || valtype->code () == TYPE_CODE_UNION | |
| 2108 | || (valtype->code () == TYPE_CODE_ARRAY | |
| 2109 | && !valtype->is_vector ()))) | |
| 2110 | { | |
| 2111 | int n_regs = ((valtype->length () + tdep->wordsize - 1) | |
| 2112 | / tdep->wordsize); | |
| 2113 | ||
| 2114 | for (int i = 0; i < n_regs; i++) | |
| 2115 | { | |
| 2116 | gdb_byte regval[PPC_MAX_REGISTER_SIZE]; | |
| 2117 | int regnum = tdep->ppc_gp0_regnum + 3 + i; | |
| 2118 | int offset = i * tdep->wordsize; | |
| 2119 | int len = valtype->length () - offset; | |
| 2120 | ||
| 2121 | if (len > tdep->wordsize) | |
| 2122 | len = tdep->wordsize; | |
| 2123 | ||
| 2124 | if (writebuf != NULL) | |
| 2125 | { | |
| 2126 | memset (regval, 0, sizeof regval); | |
| 2127 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG | |
| 2128 | && offset == 0) | |
| 2129 | memcpy (regval + tdep->wordsize - len, writebuf, len); | |
| 2130 | else | |
| 2131 | memcpy (regval, writebuf + offset, len); | |
| 2132 | regcache->cooked_write (regnum, regval); | |
| 2133 | } | |
| 2134 | if (readbuf != NULL) | |
| 2135 | { | |
| 2136 | regcache->cooked_read (regnum, regval); | |
| 2137 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG | |
| 2138 | && offset == 0) | |
| 2139 | memcpy (readbuf, regval + tdep->wordsize - len, len); | |
| 2140 | else | |
| 2141 | memcpy (readbuf + offset, regval, len); | |
| 2142 | } | |
| 2143 | } | |
| 2144 | return RETURN_VALUE_REGISTER_CONVENTION; | |
| 2145 | } | |
| 2146 | ||
| 2147 | /* Handle plain base types. */ | |
| 2148 | if (ppc64_sysv_abi_return_value_base (gdbarch, valtype, regcache, | |
| 2149 | readbuf, writebuf, 0)) | |
| 2150 | return RETURN_VALUE_REGISTER_CONVENTION; | |
| 2151 | ||
| 2152 | return RETURN_VALUE_STRUCT_CONVENTION; | |
| 2153 | } | |
| 2154 | ||
| 2155 | CORE_ADDR | |
| 2156 | ppc_sysv_get_return_buf_addr (struct type *val_type, | |
| 2157 | const frame_info_ptr &cur_frame) | |
| 2158 | { | |
| 2159 | /* The PowerPC ABI specifies aggregates that are not returned by value | |
| 2160 | are returned in a storage buffer provided by the caller. The | |
| 2161 | address of the storage buffer is provided as a hidden first input | |
| 2162 | argument in register r3. The PowerPC ABI does not guarantee that | |
| 2163 | register r3 will not be changed while executing the function. Hence, it | |
| 2164 | cannot be assumed that r3 will still contain the address of the storage | |
| 2165 | buffer when execution reaches the end of the function. | |
| 2166 | ||
| 2167 | This function attempts to determine the value of r3 on entry to the | |
| 2168 | function using the DW_OP_entry_value DWARF entries. This requires | |
| 2169 | compiling the user program with -fvar-tracking to resolve the | |
| 2170 | DW_TAG_call_sites in the binary file. */ | |
| 2171 | ||
| 2172 | union call_site_parameter_u kind_u; | |
| 2173 | enum call_site_parameter_kind kind; | |
| 2174 | CORE_ADDR return_val = 0; | |
| 2175 | ||
| 2176 | kind_u.dwarf_reg = 3; /* First passed arg/return value is in r3. */ | |
| 2177 | kind = CALL_SITE_PARAMETER_DWARF_REG; | |
| 2178 | ||
| 2179 | /* val_type is the type of the return value. Need the pointer type | |
| 2180 | to the return value. */ | |
| 2181 | val_type = lookup_pointer_type (val_type); | |
| 2182 | ||
| 2183 | try | |
| 2184 | { | |
| 2185 | return_val = value_as_address (value_of_dwarf_reg_entry (val_type, | |
| 2186 | cur_frame, | |
| 2187 | kind, kind_u)); | |
| 2188 | } | |
| 2189 | catch (const gdb_exception_error &e) | |
| 2190 | { | |
| 2191 | warning ("Cannot determine the function return value.\n" | |
| 2192 | "Try compiling with -fvar-tracking."); | |
| 2193 | } | |
| 2194 | return return_val; | |
| 2195 | } |