]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame_incremental - gdb/rx-tdep.c
libsframe: fix error code in sframe_decode
[thirdparty/binutils-gdb.git] / gdb / rx-tdep.c
... / ...
CommitLineData
1/* Target-dependent code for the Renesas RX for GDB, the GNU debugger.
2
3 Copyright (C) 2008-2025 Free Software Foundation, Inc.
4
5 Contributed by Red Hat, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "arch-utils.h"
23#include "extract-store-integer.h"
24#include "prologue-value.h"
25#include "target.h"
26#include "regcache.h"
27#include "opcode/rx.h"
28#include "dis-asm.h"
29#include "gdbtypes.h"
30#include "frame.h"
31#include "frame-unwind.h"
32#include "frame-base.h"
33#include "value.h"
34#include "gdbcore.h"
35#include "dwarf2/frame.h"
36#include "remote.h"
37#include "target-descriptions.h"
38#include "gdbarch.h"
39#include "inferior.h"
40
41#include "elf/rx.h"
42#include "elf-bfd.h"
43#include <algorithm>
44
45#include "features/rx.c"
46
47/* Certain important register numbers. */
48enum
49{
50 RX_SP_REGNUM = 0,
51 RX_R1_REGNUM = 1,
52 RX_R4_REGNUM = 4,
53 RX_FP_REGNUM = 6,
54 RX_R15_REGNUM = 15,
55 RX_USP_REGNUM = 16,
56 RX_PSW_REGNUM = 18,
57 RX_PC_REGNUM = 19,
58 RX_BPSW_REGNUM = 21,
59 RX_BPC_REGNUM = 22,
60 RX_FPSW_REGNUM = 24,
61 RX_ACC_REGNUM = 25,
62 RX_NUM_REGS = 26
63};
64
65/* RX frame types. */
66enum rx_frame_type {
67 RX_FRAME_TYPE_NORMAL,
68 RX_FRAME_TYPE_EXCEPTION,
69 RX_FRAME_TYPE_FAST_INTERRUPT
70};
71
72/* Architecture specific data. */
73struct rx_gdbarch_tdep : gdbarch_tdep_base
74{
75 /* The ELF header flags specify the multilib used. */
76 int elf_flags = 0;
77
78 /* Type of PSW and BPSW. */
79 struct type *rx_psw_type = nullptr;
80
81 /* Type of FPSW. */
82 struct type *rx_fpsw_type = nullptr;
83};
84
85/* This structure holds the results of a prologue analysis. */
86struct rx_prologue
87{
88 /* Frame type, either a normal frame or one of two types of exception
89 frames. */
90 enum rx_frame_type frame_type;
91
92 /* The offset from the frame base to the stack pointer --- always
93 zero or negative.
94
95 Calling this a "size" is a bit misleading, but given that the
96 stack grows downwards, using offsets for everything keeps one
97 from going completely sign-crazy: you never change anything's
98 sign for an ADD instruction; always change the second operand's
99 sign for a SUB instruction; and everything takes care of
100 itself. */
101 int frame_size;
102
103 /* Non-zero if this function has initialized the frame pointer from
104 the stack pointer, zero otherwise. */
105 int has_frame_ptr;
106
107 /* If has_frame_ptr is non-zero, this is the offset from the frame
108 base to where the frame pointer points. This is always zero or
109 negative. */
110 int frame_ptr_offset;
111
112 /* The address of the first instruction at which the frame has been
113 set up and the arguments are where the debug info says they are
114 --- as best as we can tell. */
115 CORE_ADDR prologue_end;
116
117 /* reg_offset[R] is the offset from the CFA at which register R is
118 saved, or 1 if register R has not been saved. (Real values are
119 always zero or negative.) */
120 int reg_offset[RX_NUM_REGS];
121};
122
123/* RX register names */
124static const char *const rx_register_names[] = {
125 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
126 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
127 "usp", "isp", "psw", "pc", "intb", "bpsw","bpc","fintv",
128 "fpsw", "acc",
129};
130
131
132/* Function for finding saved registers in a 'struct pv_area'; this
133 function is passed to pv_area::scan.
134
135 If VALUE is a saved register, ADDR says it was saved at a constant
136 offset from the frame base, and SIZE indicates that the whole
137 register was saved, record its offset. */
138static void
139check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
140{
141 struct rx_prologue *result = (struct rx_prologue *) result_untyped;
142
143 if (value.kind == pvk_register
144 && value.k == 0
145 && pv_is_register (addr, RX_SP_REGNUM)
146 && size == register_size (current_inferior ()->arch (), value.reg))
147 result->reg_offset[value.reg] = addr.k;
148}
149
150/* Define a "handle" struct for fetching the next opcode. */
151struct rx_get_opcode_byte_handle
152{
153 CORE_ADDR pc;
154};
155
156/* Fetch a byte on behalf of the opcode decoder. HANDLE contains
157 the memory address of the next byte to fetch. If successful,
158 the address in the handle is updated and the byte fetched is
159 returned as the value of the function. If not successful, -1
160 is returned. */
161static int
162rx_get_opcode_byte (void *handle)
163{
164 struct rx_get_opcode_byte_handle *opcdata
165 = (struct rx_get_opcode_byte_handle *) handle;
166 int status;
167 gdb_byte byte;
168
169 status = target_read_code (opcdata->pc, &byte, 1);
170 if (status == 0)
171 {
172 opcdata->pc += 1;
173 return byte;
174 }
175 else
176 return -1;
177}
178
179/* Analyze a prologue starting at START_PC, going no further than
180 LIMIT_PC. Fill in RESULT as appropriate. */
181
182static void
183rx_analyze_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
184 enum rx_frame_type frame_type,
185 struct rx_prologue *result)
186{
187 CORE_ADDR pc, next_pc;
188 int rn;
189 pv_t reg[RX_NUM_REGS];
190 CORE_ADDR after_last_frame_setup_insn = start_pc;
191
192 memset (result, 0, sizeof (*result));
193
194 result->frame_type = frame_type;
195
196 for (rn = 0; rn < RX_NUM_REGS; rn++)
197 {
198 reg[rn] = pv_register (rn, 0);
199 result->reg_offset[rn] = 1;
200 }
201
202 pv_area stack (RX_SP_REGNUM, gdbarch_addr_bit (current_inferior ()->arch ()));
203
204 if (frame_type == RX_FRAME_TYPE_FAST_INTERRUPT)
205 {
206 /* This code won't do anything useful at present, but this is
207 what happens for fast interrupts. */
208 reg[RX_BPSW_REGNUM] = reg[RX_PSW_REGNUM];
209 reg[RX_BPC_REGNUM] = reg[RX_PC_REGNUM];
210 }
211 else
212 {
213 /* When an exception occurs, the PSW is saved to the interrupt stack
214 first. */
215 if (frame_type == RX_FRAME_TYPE_EXCEPTION)
216 {
217 reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
218 stack.store (reg[RX_SP_REGNUM], 4, reg[RX_PSW_REGNUM]);
219 }
220
221 /* The call instruction (or an exception/interrupt) has saved the return
222 address on the stack. */
223 reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
224 stack.store (reg[RX_SP_REGNUM], 4, reg[RX_PC_REGNUM]);
225
226 }
227
228
229 pc = start_pc;
230 while (pc < limit_pc)
231 {
232 int bytes_read;
233 struct rx_get_opcode_byte_handle opcode_handle;
234 RX_Opcode_Decoded opc;
235
236 opcode_handle.pc = pc;
237 bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte,
238 &opcode_handle);
239 next_pc = pc + bytes_read;
240
241 if (opc.id == RXO_pushm /* pushm r1, r2 */
242 && opc.op[1].type == RX_Operand_Register
243 && opc.op[2].type == RX_Operand_Register)
244 {
245 int r1, r2;
246 int r;
247
248 r1 = opc.op[1].reg;
249 r2 = opc.op[2].reg;
250 for (r = r2; r >= r1; r--)
251 {
252 reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
253 stack.store (reg[RX_SP_REGNUM], 4, reg[r]);
254 }
255 after_last_frame_setup_insn = next_pc;
256 }
257 else if (opc.id == RXO_mov /* mov.l rdst, rsrc */
258 && opc.op[0].type == RX_Operand_Register
259 && opc.op[1].type == RX_Operand_Register
260 && opc.size == RX_Long)
261 {
262 int rdst, rsrc;
263
264 rdst = opc.op[0].reg;
265 rsrc = opc.op[1].reg;
266 reg[rdst] = reg[rsrc];
267 if (rdst == RX_FP_REGNUM && rsrc == RX_SP_REGNUM)
268 after_last_frame_setup_insn = next_pc;
269 }
270 else if (opc.id == RXO_mov /* mov.l rsrc, [-SP] */
271 && opc.op[0].type == RX_Operand_Predec
272 && opc.op[0].reg == RX_SP_REGNUM
273 && opc.op[1].type == RX_Operand_Register
274 && opc.size == RX_Long)
275 {
276 int rsrc;
277
278 rsrc = opc.op[1].reg;
279 reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4);
280 stack.store (reg[RX_SP_REGNUM], 4, reg[rsrc]);
281 after_last_frame_setup_insn = next_pc;
282 }
283 else if (opc.id == RXO_add /* add #const, rsrc, rdst */
284 && opc.op[0].type == RX_Operand_Register
285 && opc.op[1].type == RX_Operand_Immediate
286 && opc.op[2].type == RX_Operand_Register)
287 {
288 int rdst = opc.op[0].reg;
289 int addend = opc.op[1].addend;
290 int rsrc = opc.op[2].reg;
291 reg[rdst] = pv_add_constant (reg[rsrc], addend);
292 /* Negative adjustments to the stack pointer or frame pointer
293 are (most likely) part of the prologue. */
294 if ((rdst == RX_SP_REGNUM || rdst == RX_FP_REGNUM) && addend < 0)
295 after_last_frame_setup_insn = next_pc;
296 }
297 else if (opc.id == RXO_mov
298 && opc.op[0].type == RX_Operand_Indirect
299 && opc.op[1].type == RX_Operand_Register
300 && opc.size == RX_Long
301 && (opc.op[0].reg == RX_SP_REGNUM
302 || opc.op[0].reg == RX_FP_REGNUM)
303 && (RX_R1_REGNUM <= opc.op[1].reg
304 && opc.op[1].reg <= RX_R4_REGNUM))
305 {
306 /* This moves an argument register to the stack. Don't
307 record it, but allow it to be a part of the prologue. */
308 }
309 else if (opc.id == RXO_branch
310 && opc.op[0].type == RX_Operand_Immediate
311 && next_pc < opc.op[0].addend)
312 {
313 /* When a loop appears as the first statement of a function
314 body, gcc 4.x will use a BRA instruction to branch to the
315 loop condition checking code. This BRA instruction is
316 marked as part of the prologue. We therefore set next_pc
317 to this branch target and also stop the prologue scan.
318 The instructions at and beyond the branch target should
319 no longer be associated with the prologue.
320
321 Note that we only consider forward branches here. We
322 presume that a forward branch is being used to skip over
323 a loop body.
324
325 A backwards branch is covered by the default case below.
326 If we were to encounter a backwards branch, that would
327 most likely mean that we've scanned through a loop body.
328 We definitely want to stop the prologue scan when this
329 happens and that is precisely what is done by the default
330 case below. */
331
332 after_last_frame_setup_insn = opc.op[0].addend;
333 break; /* Scan no further if we hit this case. */
334 }
335 else
336 {
337 /* Terminate the prologue scan. */
338 break;
339 }
340
341 pc = next_pc;
342 }
343
344 /* Is the frame size (offset, really) a known constant? */
345 if (pv_is_register (reg[RX_SP_REGNUM], RX_SP_REGNUM))
346 result->frame_size = reg[RX_SP_REGNUM].k;
347
348 /* Was the frame pointer initialized? */
349 if (pv_is_register (reg[RX_FP_REGNUM], RX_SP_REGNUM))
350 {
351 result->has_frame_ptr = 1;
352 result->frame_ptr_offset = reg[RX_FP_REGNUM].k;
353 }
354
355 /* Record where all the registers were saved. */
356 stack.scan (check_for_saved, (void *) result);
357
358 result->prologue_end = after_last_frame_setup_insn;
359}
360
361
362/* Implement the "skip_prologue" gdbarch method. */
363static CORE_ADDR
364rx_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
365{
366 const char *name;
367 CORE_ADDR func_addr, func_end;
368 struct rx_prologue p;
369
370 /* Try to find the extent of the function that contains PC. */
371 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
372 return pc;
373
374 /* The frame type doesn't matter here, since we only care about
375 where the prologue ends. We'll use RX_FRAME_TYPE_NORMAL. */
376 rx_analyze_prologue (pc, func_end, RX_FRAME_TYPE_NORMAL, &p);
377 return p.prologue_end;
378}
379
380/* Given a frame described by THIS_FRAME, decode the prologue of its
381 associated function if there is not cache entry as specified by
382 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
383 return that struct as the value of this function. */
384
385static struct rx_prologue *
386rx_analyze_frame_prologue (const frame_info_ptr &this_frame,
387 enum rx_frame_type frame_type,
388 void **this_prologue_cache)
389{
390 if (!*this_prologue_cache)
391 {
392 CORE_ADDR func_start, stop_addr;
393
394 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rx_prologue);
395
396 func_start = get_frame_func (this_frame);
397 stop_addr = get_frame_pc (this_frame);
398
399 /* If we couldn't find any function containing the PC, then
400 just initialize the prologue cache, but don't do anything. */
401 if (!func_start)
402 stop_addr = func_start;
403
404 rx_analyze_prologue (func_start, stop_addr, frame_type,
405 (struct rx_prologue *) *this_prologue_cache);
406 }
407
408 return (struct rx_prologue *) *this_prologue_cache;
409}
410
411/* Determine type of frame by scanning the function for a return
412 instruction. */
413
414static enum rx_frame_type
415rx_frame_type (const frame_info_ptr &this_frame, void **this_cache)
416{
417 const char *name;
418 CORE_ADDR pc, start_pc, lim_pc;
419 int bytes_read;
420 struct rx_get_opcode_byte_handle opcode_handle;
421 RX_Opcode_Decoded opc;
422
423 gdb_assert (this_cache != NULL);
424
425 /* If we have a cached value, return it. */
426
427 if (*this_cache != NULL)
428 {
429 struct rx_prologue *p = (struct rx_prologue *) *this_cache;
430
431 return p->frame_type;
432 }
433
434 /* No cached value; scan the function. The frame type is cached in
435 rx_analyze_prologue / rx_analyze_frame_prologue. */
436
437 pc = get_frame_pc (this_frame);
438
439 /* Attempt to find the last address in the function. If it cannot
440 be determined, set the limit to be a short ways past the frame's
441 pc. */
442 if (!find_pc_partial_function (pc, &name, &start_pc, &lim_pc))
443 lim_pc = pc + 20;
444
445 while (pc < lim_pc)
446 {
447 opcode_handle.pc = pc;
448 bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte,
449 &opcode_handle);
450
451 if (bytes_read <= 0 || opc.id == RXO_rts)
452 return RX_FRAME_TYPE_NORMAL;
453 else if (opc.id == RXO_rtfi)
454 return RX_FRAME_TYPE_FAST_INTERRUPT;
455 else if (opc.id == RXO_rte)
456 return RX_FRAME_TYPE_EXCEPTION;
457
458 pc += bytes_read;
459 }
460
461 return RX_FRAME_TYPE_NORMAL;
462}
463
464
465/* Given the next frame and a prologue cache, return this frame's
466 base. */
467
468static CORE_ADDR
469rx_frame_base (const frame_info_ptr &this_frame, void **this_cache)
470{
471 enum rx_frame_type frame_type = rx_frame_type (this_frame, this_cache);
472 struct rx_prologue *p
473 = rx_analyze_frame_prologue (this_frame, frame_type, this_cache);
474
475 /* In functions that use alloca, the distance between the stack
476 pointer and the frame base varies dynamically, so we can't use
477 the SP plus static information like prologue analysis to find the
478 frame base. However, such functions must have a frame pointer,
479 to be able to restore the SP on exit. So whenever we do have a
480 frame pointer, use that to find the base. */
481 if (p->has_frame_ptr)
482 {
483 CORE_ADDR fp = get_frame_register_unsigned (this_frame, RX_FP_REGNUM);
484 return fp - p->frame_ptr_offset;
485 }
486 else
487 {
488 CORE_ADDR sp = get_frame_register_unsigned (this_frame, RX_SP_REGNUM);
489 return sp - p->frame_size;
490 }
491}
492
493/* Implement the "frame_this_id" method for unwinding frames. */
494
495static void
496rx_frame_this_id (const frame_info_ptr &this_frame, void **this_cache,
497 struct frame_id *this_id)
498{
499 *this_id = frame_id_build (rx_frame_base (this_frame, this_cache),
500 get_frame_func (this_frame));
501}
502
503/* Implement the "frame_prev_register" method for unwinding frames. */
504
505static struct value *
506rx_frame_prev_register (const frame_info_ptr &this_frame, void **this_cache,
507 int regnum)
508{
509 enum rx_frame_type frame_type = rx_frame_type (this_frame, this_cache);
510 struct rx_prologue *p
511 = rx_analyze_frame_prologue (this_frame, frame_type, this_cache);
512 CORE_ADDR frame_base = rx_frame_base (this_frame, this_cache);
513
514 if (regnum == RX_SP_REGNUM)
515 {
516 if (frame_type == RX_FRAME_TYPE_EXCEPTION)
517 {
518 struct value *psw_val;
519 CORE_ADDR psw;
520
521 psw_val = rx_frame_prev_register (this_frame, this_cache,
522 RX_PSW_REGNUM);
523 psw = extract_unsigned_integer
524 (psw_val->contents_all ().data (), 4,
525 gdbarch_byte_order (get_frame_arch (this_frame)));
526
527 if ((psw & 0x20000 /* U bit */) != 0)
528 return rx_frame_prev_register (this_frame, this_cache,
529 RX_USP_REGNUM);
530
531 /* Fall through for the case where U bit is zero. */
532 }
533
534 return frame_unwind_got_constant (this_frame, regnum, frame_base);
535 }
536
537 if (frame_type == RX_FRAME_TYPE_FAST_INTERRUPT)
538 {
539 if (regnum == RX_PC_REGNUM)
540 return rx_frame_prev_register (this_frame, this_cache,
541 RX_BPC_REGNUM);
542 if (regnum == RX_PSW_REGNUM)
543 return rx_frame_prev_register (this_frame, this_cache,
544 RX_BPSW_REGNUM);
545 }
546
547 /* If prologue analysis says we saved this register somewhere,
548 return a description of the stack slot holding it. */
549 if (p->reg_offset[regnum] != 1)
550 return frame_unwind_got_memory (this_frame, regnum,
551 frame_base + p->reg_offset[regnum]);
552
553 /* Otherwise, presume we haven't changed the value of this
554 register, and get it from the next frame. */
555 return frame_unwind_got_register (this_frame, regnum, regnum);
556}
557
558/* Return TRUE if the frame indicated by FRAME_TYPE is a normal frame. */
559
560static int
561normal_frame_p (enum rx_frame_type frame_type)
562{
563 return (frame_type == RX_FRAME_TYPE_NORMAL);
564}
565
566/* Return TRUE if the frame indicated by FRAME_TYPE is an exception
567 frame. */
568
569static int
570exception_frame_p (enum rx_frame_type frame_type)
571{
572 return (frame_type == RX_FRAME_TYPE_EXCEPTION
573 || frame_type == RX_FRAME_TYPE_FAST_INTERRUPT);
574}
575
576/* Common code used by both normal and exception frame sniffers. */
577
578static int
579rx_frame_sniffer_common (const struct frame_unwind *self,
580 const frame_info_ptr &this_frame,
581 void **this_cache,
582 int (*sniff_p)(enum rx_frame_type) )
583{
584 gdb_assert (this_cache != NULL);
585
586 if (*this_cache == NULL)
587 {
588 enum rx_frame_type frame_type = rx_frame_type (this_frame, this_cache);
589
590 if (sniff_p (frame_type))
591 {
592 /* The call below will fill in the cache, including the frame
593 type. */
594 (void) rx_analyze_frame_prologue (this_frame, frame_type, this_cache);
595
596 return 1;
597 }
598 else
599 return 0;
600 }
601 else
602 {
603 struct rx_prologue *p = (struct rx_prologue *) *this_cache;
604
605 return sniff_p (p->frame_type);
606 }
607}
608
609/* Frame sniffer for normal (non-exception) frames. */
610
611static int
612rx_frame_sniffer (const struct frame_unwind *self,
613 const frame_info_ptr &this_frame,
614 void **this_cache)
615{
616 return rx_frame_sniffer_common (self, this_frame, this_cache,
617 normal_frame_p);
618}
619
620/* Frame sniffer for exception frames. */
621
622static int
623rx_exception_sniffer (const struct frame_unwind *self,
624 const frame_info_ptr &this_frame,
625 void **this_cache)
626{
627 return rx_frame_sniffer_common (self, this_frame, this_cache,
628 exception_frame_p);
629}
630
631/* Data structure for normal code using instruction-based prologue
632 analyzer. */
633
634static const struct frame_unwind_legacy rx_frame_unwind (
635 "rx prologue",
636 NORMAL_FRAME,
637 FRAME_UNWIND_ARCH,
638 default_frame_unwind_stop_reason,
639 rx_frame_this_id,
640 rx_frame_prev_register,
641 NULL,
642 rx_frame_sniffer
643);
644
645/* Data structure for exception code using instruction-based prologue
646 analyzer. */
647
648static const struct frame_unwind_legacy rx_exception_unwind (
649 "rx exception",
650 /* SIGTRAMP_FRAME could be used here, but backtraces are less informative. */
651 NORMAL_FRAME,
652 FRAME_UNWIND_ARCH,
653 default_frame_unwind_stop_reason,
654 rx_frame_this_id,
655 rx_frame_prev_register,
656 NULL,
657 rx_exception_sniffer
658);
659
660/* Implement the "push_dummy_call" gdbarch method. */
661static CORE_ADDR
662rx_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
663 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
664 struct value **args, CORE_ADDR sp,
665 function_call_return_method return_method,
666 CORE_ADDR struct_addr)
667{
668 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
669 int write_pass;
670 int sp_off = 0;
671 CORE_ADDR cfa;
672 int num_register_candidate_args;
673
674 struct type *func_type = function->type ();
675
676 /* Dereference function pointer types. */
677 while (func_type->code () == TYPE_CODE_PTR)
678 func_type = func_type->target_type ();
679
680 /* The end result had better be a function or a method. */
681 gdb_assert (func_type->code () == TYPE_CODE_FUNC
682 || func_type->code () == TYPE_CODE_METHOD);
683
684 /* Functions with a variable number of arguments have all of their
685 variable arguments and the last non-variable argument passed
686 on the stack.
687
688 Otherwise, we can pass up to four arguments on the stack.
689
690 Once computed, we leave this value alone. I.e. we don't update
691 it in case of a struct return going in a register or an argument
692 requiring multiple registers, etc. We rely instead on the value
693 of the ``arg_reg'' variable to get these other details correct. */
694
695 if (func_type->has_varargs ())
696 num_register_candidate_args = func_type->num_fields () - 1;
697 else
698 num_register_candidate_args = 4;
699
700 /* We make two passes; the first does the stack allocation,
701 the second actually stores the arguments. */
702 for (write_pass = 0; write_pass <= 1; write_pass++)
703 {
704 int i;
705 int arg_reg = RX_R1_REGNUM;
706
707 if (write_pass)
708 sp = align_down (sp - sp_off, 4);
709 sp_off = 0;
710
711 if (return_method == return_method_struct)
712 {
713 struct type *return_type = func_type->target_type ();
714
715 gdb_assert (return_type->code () == TYPE_CODE_STRUCT
716 || func_type->code () == TYPE_CODE_UNION);
717
718 if (return_type->length () > 16
719 || return_type->length () % 4 != 0)
720 {
721 if (write_pass)
722 regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM,
723 struct_addr);
724 }
725 }
726
727 /* Push the arguments. */
728 for (i = 0; i < nargs; i++)
729 {
730 struct value *arg = args[i];
731 const gdb_byte *arg_bits = arg->contents_all ().data ();
732 struct type *arg_type = check_typedef (arg->type ());
733 ULONGEST arg_size = arg_type->length ();
734
735 if (i == 0 && struct_addr != 0
736 && return_method != return_method_struct
737 && arg_type->code () == TYPE_CODE_PTR
738 && extract_unsigned_integer (arg_bits, 4,
739 byte_order) == struct_addr)
740 {
741 /* This argument represents the address at which C++ (and
742 possibly other languages) store their return value.
743 Put this value in R15. */
744 if (write_pass)
745 regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM,
746 struct_addr);
747 }
748 else if (arg_type->code () != TYPE_CODE_STRUCT
749 && arg_type->code () != TYPE_CODE_UNION
750 && arg_size <= 8)
751 {
752 /* Argument is a scalar. */
753 if (arg_size == 8)
754 {
755 if (i < num_register_candidate_args
756 && arg_reg <= RX_R4_REGNUM - 1)
757 {
758 /* If argument registers are going to be used to pass
759 an 8 byte scalar, the ABI specifies that two registers
760 must be available. */
761 if (write_pass)
762 {
763 regcache_cooked_write_unsigned (regcache, arg_reg,
764 extract_unsigned_integer
765 (arg_bits, 4,
766 byte_order));
767 regcache_cooked_write_unsigned (regcache,
768 arg_reg + 1,
769 extract_unsigned_integer
770 (arg_bits + 4, 4,
771 byte_order));
772 }
773 arg_reg += 2;
774 }
775 else
776 {
777 sp_off = align_up (sp_off, 4);
778 /* Otherwise, pass the 8 byte scalar on the stack. */
779 if (write_pass)
780 write_memory (sp + sp_off, arg_bits, 8);
781 sp_off += 8;
782 }
783 }
784 else
785 {
786 ULONGEST u;
787
788 gdb_assert (arg_size <= 4);
789
790 u =
791 extract_unsigned_integer (arg_bits, arg_size, byte_order);
792
793 if (i < num_register_candidate_args
794 && arg_reg <= RX_R4_REGNUM)
795 {
796 if (write_pass)
797 regcache_cooked_write_unsigned (regcache, arg_reg, u);
798 arg_reg += 1;
799 }
800 else
801 {
802 int p_arg_size = 4;
803
804 if (func_type->is_prototyped ()
805 && i < func_type->num_fields ())
806 {
807 struct type *p_arg_type =
808 func_type->field (i).type ();
809 p_arg_size = p_arg_type->length ();
810 }
811
812 sp_off = align_up (sp_off, p_arg_size);
813
814 if (write_pass)
815 write_memory_unsigned_integer (sp + sp_off,
816 p_arg_size, byte_order,
817 u);
818 sp_off += p_arg_size;
819 }
820 }
821 }
822 else
823 {
824 /* Argument is a struct or union. Pass as much of the struct
825 in registers, if possible. Pass the rest on the stack. */
826 while (arg_size > 0)
827 {
828 if (i < num_register_candidate_args
829 && arg_reg <= RX_R4_REGNUM
830 && arg_size <= 4 * (RX_R4_REGNUM - arg_reg + 1)
831 && arg_size % 4 == 0)
832 {
833 int len = std::min (arg_size, (ULONGEST) 4);
834
835 if (write_pass)
836 regcache_cooked_write_unsigned (regcache, arg_reg,
837 extract_unsigned_integer
838 (arg_bits, len,
839 byte_order));
840 arg_bits += len;
841 arg_size -= len;
842 arg_reg++;
843 }
844 else
845 {
846 sp_off = align_up (sp_off, 4);
847 if (write_pass)
848 write_memory (sp + sp_off, arg_bits, arg_size);
849 sp_off += align_up (arg_size, 4);
850 arg_size = 0;
851 }
852 }
853 }
854 }
855 }
856
857 /* Keep track of the stack address prior to pushing the return address.
858 This is the value that we'll return. */
859 cfa = sp;
860
861 /* Push the return address. */
862 sp = sp - 4;
863 write_memory_unsigned_integer (sp, 4, byte_order, bp_addr);
864
865 /* Update the stack pointer. */
866 regcache_cooked_write_unsigned (regcache, RX_SP_REGNUM, sp);
867
868 return cfa;
869}
870
871/* Implement the "return_value" gdbarch method. */
872static enum return_value_convention
873rx_return_value (struct gdbarch *gdbarch,
874 struct value *function,
875 struct type *valtype,
876 struct regcache *regcache,
877 gdb_byte *readbuf, const gdb_byte *writebuf)
878{
879 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
880 ULONGEST valtype_len = valtype->length ();
881
882 if (valtype->length () > 16
883 || ((valtype->code () == TYPE_CODE_STRUCT
884 || valtype->code () == TYPE_CODE_UNION)
885 && valtype->length () % 4 != 0))
886 return RETURN_VALUE_STRUCT_CONVENTION;
887
888 if (readbuf)
889 {
890 ULONGEST u;
891 int argreg = RX_R1_REGNUM;
892 int offset = 0;
893
894 while (valtype_len > 0)
895 {
896 int len = std::min (valtype_len, (ULONGEST) 4);
897
898 regcache_cooked_read_unsigned (regcache, argreg, &u);
899 store_unsigned_integer (readbuf + offset, len, byte_order, u);
900 valtype_len -= len;
901 offset += len;
902 argreg++;
903 }
904 }
905
906 if (writebuf)
907 {
908 ULONGEST u;
909 int argreg = RX_R1_REGNUM;
910 int offset = 0;
911
912 while (valtype_len > 0)
913 {
914 int len = std::min (valtype_len, (ULONGEST) 4);
915
916 u = extract_unsigned_integer (writebuf + offset, len, byte_order);
917 regcache_cooked_write_unsigned (regcache, argreg, u);
918 valtype_len -= len;
919 offset += len;
920 argreg++;
921 }
922 }
923
924 return RETURN_VALUE_REGISTER_CONVENTION;
925}
926
927constexpr gdb_byte rx_break_insn[] = { 0x00 };
928
929typedef BP_MANIPULATION (rx_break_insn) rx_breakpoint;
930
931/* Implement the dwarf_reg_to_regnum" gdbarch method. */
932
933static int
934rx_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
935{
936 if (0 <= reg && reg <= 15)
937 return reg;
938 else if (reg == 16)
939 return RX_PSW_REGNUM;
940 else if (reg == 17)
941 return RX_PC_REGNUM;
942 else
943 return -1;
944}
945
946/* Allocate and initialize a gdbarch object. */
947static struct gdbarch *
948rx_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
949{
950 int elf_flags;
951 tdesc_arch_data_up tdesc_data;
952 const struct target_desc *tdesc = info.target_desc;
953
954 /* Extract the elf_flags if available. */
955 if (info.abfd != NULL
956 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
957 elf_flags = elf_elfheader (info.abfd)->e_flags;
958 else
959 elf_flags = 0;
960
961
962 /* Try to find the architecture in the list of already defined
963 architectures. */
964 for (arches = gdbarch_list_lookup_by_info (arches, &info);
965 arches != NULL;
966 arches = gdbarch_list_lookup_by_info (arches->next, &info))
967 {
968 rx_gdbarch_tdep *tdep
969 = gdbarch_tdep<rx_gdbarch_tdep> (arches->gdbarch);
970
971 if (tdep->elf_flags != elf_flags)
972 continue;
973
974 return arches->gdbarch;
975 }
976
977 if (tdesc == NULL)
978 tdesc = tdesc_rx;
979
980 /* Check any target description for validity. */
981 if (tdesc_has_registers (tdesc))
982 {
983 const struct tdesc_feature *feature;
984 bool valid_p = true;
985
986 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.rx.core");
987
988 if (feature != NULL)
989 {
990 tdesc_data = tdesc_data_alloc ();
991 for (int i = 0; i < RX_NUM_REGS; i++)
992 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i,
993 rx_register_names[i]);
994 }
995
996 if (!valid_p)
997 return NULL;
998 }
999
1000 gdb_assert(tdesc_data != NULL);
1001
1002 gdbarch *gdbarch
1003 = gdbarch_alloc (&info, gdbarch_tdep_up (new rx_gdbarch_tdep));
1004 rx_gdbarch_tdep *tdep = gdbarch_tdep<rx_gdbarch_tdep> (gdbarch);
1005
1006 tdep->elf_flags = elf_flags;
1007
1008 set_gdbarch_num_regs (gdbarch, RX_NUM_REGS);
1009 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
1010
1011 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1012 set_gdbarch_pc_regnum (gdbarch, RX_PC_REGNUM);
1013 set_gdbarch_sp_regnum (gdbarch, RX_SP_REGNUM);
1014 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1015 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1016 set_gdbarch_breakpoint_kind_from_pc (gdbarch, rx_breakpoint::kind_from_pc);
1017 set_gdbarch_sw_breakpoint_from_kind (gdbarch, rx_breakpoint::bp_from_kind);
1018 set_gdbarch_skip_prologue (gdbarch, rx_skip_prologue);
1019
1020 /* Target builtin data types. */
1021 set_gdbarch_char_signed (gdbarch, 0);
1022 set_gdbarch_short_bit (gdbarch, 16);
1023 set_gdbarch_int_bit (gdbarch, 32);
1024 set_gdbarch_long_bit (gdbarch, 32);
1025 set_gdbarch_long_long_bit (gdbarch, 64);
1026 set_gdbarch_ptr_bit (gdbarch, 32);
1027 set_gdbarch_float_bit (gdbarch, 32);
1028 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1029
1030 if (elf_flags & E_FLAG_RX_64BIT_DOUBLES)
1031 {
1032 set_gdbarch_double_bit (gdbarch, 64);
1033 set_gdbarch_long_double_bit (gdbarch, 64);
1034 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1035 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1036 }
1037 else
1038 {
1039 set_gdbarch_double_bit (gdbarch, 32);
1040 set_gdbarch_long_double_bit (gdbarch, 32);
1041 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1042 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1043 }
1044
1045 /* DWARF register mapping. */
1046 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rx_dwarf_reg_to_regnum);
1047
1048 /* Frame unwinding. */
1049 frame_unwind_append_unwinder (gdbarch, &rx_exception_unwind);
1050 dwarf2_append_unwinders (gdbarch);
1051 frame_unwind_append_unwinder (gdbarch, &rx_frame_unwind);
1052
1053 /* Methods setting up a dummy call, and extracting the return value from
1054 a call. */
1055 set_gdbarch_push_dummy_call (gdbarch, rx_push_dummy_call);
1056 set_gdbarch_return_value (gdbarch, rx_return_value);
1057
1058 /* Virtual tables. */
1059 set_gdbarch_vbit_in_delta (gdbarch, 1);
1060
1061 return gdbarch;
1062}
1063
1064/* Register the above initialization routine. */
1065
1066INIT_GDB_FILE (rx_tdep)
1067{
1068 gdbarch_register (bfd_arch_rx, rx_gdbarch_init);
1069 initialize_tdesc_rx ();
1070}