]>
Commit | Line | Data |
---|---|---|
1 | /* Symbol table lookup for the GNU debugger, GDB. | |
2 | ||
3 | Copyright (C) 1986-2025 Free Software Foundation, Inc. | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
19 | ||
20 | #include "dwarf2/call-site.h" | |
21 | #include "exceptions.h" | |
22 | #include "symtab.h" | |
23 | #include "event-top.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "gdbcore.h" | |
26 | #include "frame.h" | |
27 | #include "target.h" | |
28 | #include "value.h" | |
29 | #include "symfile.h" | |
30 | #include "objfiles.h" | |
31 | #include "gdbsupport/gdb_regex.h" | |
32 | #include "expression.h" | |
33 | #include "language.h" | |
34 | #include "demangle.h" | |
35 | #include "inferior.h" | |
36 | #include "source.h" | |
37 | #include "filenames.h" | |
38 | #include "objc-lang.h" | |
39 | #include "d-lang.h" | |
40 | #include "ada-lang.h" | |
41 | #include "go-lang.h" | |
42 | #include "p-lang.h" | |
43 | #include "addrmap.h" | |
44 | #include "cli/cli-utils.h" | |
45 | #include "cli/cli-style.h" | |
46 | #include "cli/cli-cmds.h" | |
47 | #include "fnmatch.h" | |
48 | #include "hashtab.h" | |
49 | #include "typeprint.h" | |
50 | #include "exceptions.h" | |
51 | ||
52 | #include "gdbsupport/gdb_obstack.h" | |
53 | #include "block.h" | |
54 | #include "dictionary.h" | |
55 | ||
56 | #include <sys/types.h> | |
57 | #include <fcntl.h> | |
58 | #include <sys/stat.h> | |
59 | #include <ctype.h> | |
60 | #include "cp-abi.h" | |
61 | #include "cp-support.h" | |
62 | #include "observable.h" | |
63 | #include "macrotab.h" | |
64 | #include "macroscope.h" | |
65 | ||
66 | #include "parser-defs.h" | |
67 | #include "completer.h" | |
68 | #include "progspace-and-thread.h" | |
69 | #include <optional> | |
70 | #include "filename-seen-cache.h" | |
71 | #include "arch-utils.h" | |
72 | #include <algorithm> | |
73 | #include <string_view> | |
74 | #include "gdbsupport/pathstuff.h" | |
75 | #include "gdbsupport/common-utils.h" | |
76 | #include <optional> | |
77 | #include "gdbsupport/unordered_set.h" | |
78 | ||
79 | /* Forward declarations for local functions. */ | |
80 | ||
81 | static void rbreak_command (const char *, int); | |
82 | ||
83 | static int find_line_common (const linetable *, int, int *, int); | |
84 | ||
85 | static struct block_symbol | |
86 | lookup_symbol_aux (const char *name, | |
87 | symbol_name_match_type match_type, | |
88 | const struct block *block, | |
89 | const domain_search_flags domain, | |
90 | enum language language, | |
91 | struct field_of_this_result *); | |
92 | ||
93 | static | |
94 | struct block_symbol lookup_local_symbol (const char *name, | |
95 | symbol_name_match_type match_type, | |
96 | const struct block *block, | |
97 | const domain_search_flags domain, | |
98 | const struct language_defn *langdef); | |
99 | ||
100 | static struct block_symbol | |
101 | lookup_symbol_in_objfile (struct objfile *objfile, | |
102 | enum block_enum block_index, | |
103 | const char *name, | |
104 | const domain_search_flags domain); | |
105 | ||
106 | static void set_main_name (program_space *pspace, const char *name, | |
107 | language lang); | |
108 | ||
109 | /* Type of the data stored on the program space. */ | |
110 | ||
111 | struct main_info | |
112 | { | |
113 | /* Name of "main". */ | |
114 | ||
115 | std::string name_of_main; | |
116 | ||
117 | /* Language of "main". */ | |
118 | ||
119 | enum language language_of_main = language_unknown; | |
120 | }; | |
121 | ||
122 | /* Program space key for finding name and language of "main". */ | |
123 | ||
124 | static const registry<program_space>::key<main_info> main_progspace_key; | |
125 | ||
126 | /* Symbol lookup is not reentrant (though this is not an intrinsic | |
127 | restriction). Keep track of whether a symbol lookup is active, to be able | |
128 | to detect reentrancy. */ | |
129 | static bool in_symbol_lookup; | |
130 | ||
131 | /* Struct to mark that a symbol lookup is active for the duration of its | |
132 | lifetime. */ | |
133 | ||
134 | struct enter_symbol_lookup | |
135 | { | |
136 | enter_symbol_lookup () | |
137 | { | |
138 | /* Ensure that the current language has been set. Normally the | |
139 | language is set lazily. However, when performing a symbol lookup, | |
140 | this could result in a recursive call into the lookup code in some | |
141 | cases. Set it now to ensure that this does not happen. */ | |
142 | get_current_language (); | |
143 | ||
144 | /* Detect symbol lookup reentrance. */ | |
145 | gdb_assert (!in_symbol_lookup); | |
146 | ||
147 | in_symbol_lookup = true; | |
148 | } | |
149 | ||
150 | ~enter_symbol_lookup () | |
151 | { | |
152 | /* Sanity check. */ | |
153 | gdb_assert (in_symbol_lookup); | |
154 | ||
155 | in_symbol_lookup = false; | |
156 | } | |
157 | ||
158 | DISABLE_COPY_AND_ASSIGN (enter_symbol_lookup); | |
159 | }; | |
160 | ||
161 | /* The default symbol cache size. | |
162 | There is no extra cpu cost for large N (except when flushing the cache, | |
163 | which is rare). The value here is just a first attempt. A better default | |
164 | value may be higher or lower. A prime number can make up for a bad hash | |
165 | computation, so that's why the number is what it is. */ | |
166 | #define DEFAULT_SYMBOL_CACHE_SIZE 1021 | |
167 | ||
168 | /* The maximum symbol cache size. | |
169 | There's no method to the decision of what value to use here, other than | |
170 | there's no point in allowing a user typo to make gdb consume all memory. */ | |
171 | #define MAX_SYMBOL_CACHE_SIZE (1024*1024) | |
172 | ||
173 | /* symbol_cache_lookup returns this if a previous lookup failed to find the | |
174 | symbol in any objfile. */ | |
175 | #define SYMBOL_LOOKUP_FAILED \ | |
176 | ((struct block_symbol) {(struct symbol *) 1, NULL}) | |
177 | #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1) | |
178 | ||
179 | /* Recording lookups that don't find the symbol is just as important, if not | |
180 | more so, than recording found symbols. */ | |
181 | ||
182 | enum symbol_cache_slot_state | |
183 | { | |
184 | SYMBOL_SLOT_UNUSED, | |
185 | SYMBOL_SLOT_NOT_FOUND, | |
186 | SYMBOL_SLOT_FOUND | |
187 | }; | |
188 | ||
189 | struct symbol_cache_slot | |
190 | { | |
191 | enum symbol_cache_slot_state state; | |
192 | ||
193 | /* The objfile that was current when the symbol was looked up. | |
194 | This is only needed for global blocks, but for simplicity's sake | |
195 | we allocate the space for both. If data shows the extra space used | |
196 | for static blocks is a problem, we can split things up then. | |
197 | ||
198 | Global blocks need cache lookup to include the objfile context because | |
199 | we need to account for gdbarch_iterate_over_objfiles_in_search_order | |
200 | which can traverse objfiles in, effectively, any order, depending on | |
201 | the current objfile, thus affecting which symbol is found. Normally, | |
202 | only the current objfile is searched first, and then the rest are | |
203 | searched in recorded order; but putting cache lookup inside | |
204 | gdbarch_iterate_over_objfiles_in_search_order would be awkward. | |
205 | Instead we just make the current objfile part of the context of | |
206 | cache lookup. This means we can record the same symbol multiple times, | |
207 | each with a different "current objfile" that was in effect when the | |
208 | lookup was saved in the cache, but cache space is pretty cheap. */ | |
209 | const struct objfile *objfile_context; | |
210 | ||
211 | /* The domain that was searched for initially. This must exactly | |
212 | match. */ | |
213 | domain_search_flags domain; | |
214 | ||
215 | union | |
216 | { | |
217 | struct block_symbol found; | |
218 | char *name; | |
219 | } value; | |
220 | }; | |
221 | ||
222 | /* Clear out SLOT. */ | |
223 | ||
224 | static void | |
225 | symbol_cache_clear_slot (struct symbol_cache_slot *slot) | |
226 | { | |
227 | if (slot->state == SYMBOL_SLOT_NOT_FOUND) | |
228 | xfree (slot->value.name); | |
229 | slot->state = SYMBOL_SLOT_UNUSED; | |
230 | } | |
231 | ||
232 | /* Symbols don't specify global vs static block. | |
233 | So keep them in separate caches. */ | |
234 | ||
235 | struct block_symbol_cache | |
236 | { | |
237 | unsigned int hits; | |
238 | unsigned int misses; | |
239 | unsigned int collisions; | |
240 | ||
241 | /* SYMBOLS is a variable length array of this size. | |
242 | One can imagine that in general one cache (global/static) should be a | |
243 | fraction of the size of the other, but there's no data at the moment | |
244 | on which to decide. */ | |
245 | unsigned int size; | |
246 | ||
247 | struct symbol_cache_slot symbols[1]; | |
248 | }; | |
249 | ||
250 | /* Clear all slots of BSC and free BSC. */ | |
251 | ||
252 | static void | |
253 | destroy_block_symbol_cache (struct block_symbol_cache *bsc) | |
254 | { | |
255 | if (bsc != nullptr) | |
256 | { | |
257 | for (unsigned int i = 0; i < bsc->size; i++) | |
258 | symbol_cache_clear_slot (&bsc->symbols[i]); | |
259 | xfree (bsc); | |
260 | } | |
261 | } | |
262 | ||
263 | /* The symbol cache. | |
264 | ||
265 | Searching for symbols in the static and global blocks over multiple objfiles | |
266 | again and again can be slow, as can searching very big objfiles. This is a | |
267 | simple cache to improve symbol lookup performance, which is critical to | |
268 | overall gdb performance. | |
269 | ||
270 | Symbols are hashed on the name, its domain, and block. | |
271 | They are also hashed on their objfile for objfile-specific lookups. */ | |
272 | ||
273 | struct symbol_cache | |
274 | { | |
275 | symbol_cache () = default; | |
276 | ||
277 | ~symbol_cache () | |
278 | { | |
279 | destroy_block_symbol_cache (global_symbols); | |
280 | destroy_block_symbol_cache (static_symbols); | |
281 | } | |
282 | ||
283 | struct block_symbol_cache *global_symbols = nullptr; | |
284 | struct block_symbol_cache *static_symbols = nullptr; | |
285 | }; | |
286 | ||
287 | /* Program space key for finding its symbol cache. */ | |
288 | ||
289 | static const registry<program_space>::key<symbol_cache> symbol_cache_key; | |
290 | ||
291 | /* When non-zero, print debugging messages related to symtab creation. */ | |
292 | unsigned int symtab_create_debug = 0; | |
293 | ||
294 | /* When non-zero, print debugging messages related to symbol lookup. */ | |
295 | unsigned int symbol_lookup_debug = 0; | |
296 | ||
297 | /* The size of the cache is staged here. */ | |
298 | static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE; | |
299 | ||
300 | /* The current value of the symbol cache size. | |
301 | This is saved so that if the user enters a value too big we can restore | |
302 | the original value from here. */ | |
303 | static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE; | |
304 | ||
305 | /* True if a file may be known by two different basenames. | |
306 | This is the uncommon case, and significantly slows down gdb. | |
307 | Default set to "off" to not slow down the common case. */ | |
308 | bool basenames_may_differ = false; | |
309 | ||
310 | /* Allow the user to configure the debugger behavior with respect | |
311 | to multiple-choice menus when more than one symbol matches during | |
312 | a symbol lookup. */ | |
313 | ||
314 | const char multiple_symbols_ask[] = "ask"; | |
315 | const char multiple_symbols_all[] = "all"; | |
316 | const char multiple_symbols_cancel[] = "cancel"; | |
317 | static const char *const multiple_symbols_modes[] = | |
318 | { | |
319 | multiple_symbols_ask, | |
320 | multiple_symbols_all, | |
321 | multiple_symbols_cancel, | |
322 | NULL | |
323 | }; | |
324 | static const char *multiple_symbols_mode = multiple_symbols_all; | |
325 | ||
326 | /* When TRUE, ignore the prologue-end flag in linetable_entry when searching | |
327 | for the SAL past a function prologue. */ | |
328 | static bool ignore_prologue_end_flag = false; | |
329 | ||
330 | /* Read-only accessor to AUTO_SELECT_MODE. */ | |
331 | ||
332 | const char * | |
333 | multiple_symbols_select_mode (void) | |
334 | { | |
335 | return multiple_symbols_mode; | |
336 | } | |
337 | ||
338 | /* Return the name of a domain_enum. */ | |
339 | ||
340 | const char * | |
341 | domain_name (domain_enum e) | |
342 | { | |
343 | switch (e) | |
344 | { | |
345 | #define SYM_DOMAIN(X) \ | |
346 | case X ## _DOMAIN: return #X "_DOMAIN"; | |
347 | #include "sym-domains.def" | |
348 | #undef SYM_DOMAIN | |
349 | default: gdb_assert_not_reached ("bad domain_enum"); | |
350 | } | |
351 | } | |
352 | ||
353 | /* See symtab.h. */ | |
354 | ||
355 | std::string | |
356 | domain_name (domain_search_flags flags) | |
357 | { | |
358 | static constexpr domain_search_flags::string_mapping mapping[] = { | |
359 | #define SYM_DOMAIN(X) \ | |
360 | MAP_ENUM_FLAG (SEARCH_ ## X ## _DOMAIN), | |
361 | #include "sym-domains.def" | |
362 | #undef SYM_DOMAIN | |
363 | }; | |
364 | ||
365 | return flags.to_string (mapping); | |
366 | } | |
367 | ||
368 | /* See symtab.h. */ | |
369 | ||
370 | domain_search_flags | |
371 | from_scripting_domain (int val) | |
372 | { | |
373 | if ((val & SCRIPTING_SEARCH_FLAG) == 0) | |
374 | { | |
375 | /* VAL should be one of the domain constants. Verify this and | |
376 | convert it to a search constant. */ | |
377 | switch (val) | |
378 | { | |
379 | #define SYM_DOMAIN(X) \ | |
380 | case X ## _DOMAIN: break; | |
381 | #include "sym-domains.def" | |
382 | #undef SYM_DOMAIN | |
383 | default: | |
384 | error (_("unrecognized domain constant")); | |
385 | } | |
386 | domain_search_flags result = to_search_flags ((domain_enum) val); | |
387 | if (val == VAR_DOMAIN) | |
388 | { | |
389 | /* This matches the historical practice. */ | |
390 | result |= SEARCH_TYPE_DOMAIN | SEARCH_FUNCTION_DOMAIN; | |
391 | } | |
392 | return result; | |
393 | } | |
394 | else | |
395 | { | |
396 | /* VAL is several search constants or'd together. Verify | |
397 | this. */ | |
398 | val &= ~SCRIPTING_SEARCH_FLAG; | |
399 | int check = val; | |
400 | #define SYM_DOMAIN(X) \ | |
401 | check &= ~ (int) SEARCH_ ## X ## _DOMAIN; | |
402 | #include "sym-domains.def" | |
403 | #undef SYM_DOMAIN | |
404 | if (check != 0) | |
405 | error (_("unrecognized domain constant")); | |
406 | return (domain_search_flag) val; | |
407 | } | |
408 | } | |
409 | ||
410 | /* See symtab.h. */ | |
411 | ||
412 | struct symbol * | |
413 | search_symbol_list (const char *name, int num, struct symbol **syms) | |
414 | { | |
415 | for (int i = 0; i < num; ++i) | |
416 | { | |
417 | if (strcmp (name, syms[i]->natural_name ()) == 0) | |
418 | return syms[i]; | |
419 | } | |
420 | return nullptr; | |
421 | } | |
422 | ||
423 | /* See symtab.h. */ | |
424 | ||
425 | CORE_ADDR | |
426 | linetable_entry::pc (const struct objfile *objfile) const | |
427 | { | |
428 | return CORE_ADDR (m_pc) + objfile->text_section_offset (); | |
429 | } | |
430 | ||
431 | /* See symtab.h. */ | |
432 | ||
433 | call_site * | |
434 | compunit_symtab::find_call_site (CORE_ADDR pc) const | |
435 | { | |
436 | if (m_call_site_htab == nullptr) | |
437 | return nullptr; | |
438 | ||
439 | CORE_ADDR delta = this->objfile ()->text_section_offset (); | |
440 | ||
441 | if (auto it = m_call_site_htab->find (static_cast<unrelocated_addr> (pc - delta)); | |
442 | it != m_call_site_htab->end ()) | |
443 | return *it; | |
444 | ||
445 | /* See if the arch knows another PC we should try. On some | |
446 | platforms, GCC emits a DWARF call site that is offset from the | |
447 | actual return location. */ | |
448 | struct gdbarch *arch = objfile ()->arch (); | |
449 | CORE_ADDR new_pc = gdbarch_update_call_site_pc (arch, pc); | |
450 | ||
451 | if (pc == new_pc) | |
452 | return nullptr; | |
453 | ||
454 | if (auto it = m_call_site_htab->find (static_cast<unrelocated_addr> (new_pc - delta)); | |
455 | it != m_call_site_htab->end ()) | |
456 | return *it; | |
457 | ||
458 | return nullptr; | |
459 | } | |
460 | ||
461 | /* See symtab.h. */ | |
462 | ||
463 | void | |
464 | compunit_symtab::set_call_site_htab (call_site_htab_t &&call_site_htab) | |
465 | { | |
466 | gdb_assert (m_call_site_htab == nullptr); | |
467 | m_call_site_htab = new call_site_htab_t (std::move (call_site_htab)); | |
468 | } | |
469 | ||
470 | /* See symtab.h. */ | |
471 | ||
472 | void | |
473 | compunit_symtab::set_primary_filetab (symtab *primary_filetab) | |
474 | { | |
475 | symtab *prev_filetab = nullptr; | |
476 | ||
477 | /* Move PRIMARY_FILETAB to the head of the filetab list. */ | |
478 | for (symtab *filetab : this->filetabs ()) | |
479 | { | |
480 | if (filetab == primary_filetab) | |
481 | { | |
482 | if (prev_filetab != nullptr) | |
483 | { | |
484 | prev_filetab->next = primary_filetab->next; | |
485 | primary_filetab->next = m_filetabs; | |
486 | m_filetabs = primary_filetab; | |
487 | } | |
488 | ||
489 | break; | |
490 | } | |
491 | ||
492 | prev_filetab = filetab; | |
493 | } | |
494 | ||
495 | gdb_assert (primary_filetab == m_filetabs); | |
496 | } | |
497 | ||
498 | /* See symtab.h. */ | |
499 | ||
500 | struct symtab * | |
501 | compunit_symtab::primary_filetab () const | |
502 | { | |
503 | gdb_assert (m_filetabs != nullptr); | |
504 | ||
505 | /* The primary file symtab is the first one in the list. */ | |
506 | return m_filetabs; | |
507 | } | |
508 | ||
509 | /* See symtab.h. */ | |
510 | ||
511 | enum language | |
512 | compunit_symtab::language () const | |
513 | { | |
514 | struct symtab *symtab = primary_filetab (); | |
515 | ||
516 | /* The language of the compunit symtab is the language of its | |
517 | primary source file. */ | |
518 | return symtab->language (); | |
519 | } | |
520 | ||
521 | /* See symtab.h. */ | |
522 | ||
523 | void | |
524 | compunit_symtab::forget_cached_source_info () | |
525 | { | |
526 | for (symtab *s : filetabs ()) | |
527 | s->release_fullname (); | |
528 | } | |
529 | ||
530 | /* See symtab.h. */ | |
531 | ||
532 | void | |
533 | compunit_symtab::finalize () | |
534 | { | |
535 | this->forget_cached_source_info (); | |
536 | delete m_call_site_htab; | |
537 | } | |
538 | ||
539 | /* The relocated address of the minimal symbol, using the section | |
540 | offsets from OBJFILE. */ | |
541 | ||
542 | CORE_ADDR | |
543 | minimal_symbol::value_address (objfile *objfile) const | |
544 | { | |
545 | if (this->maybe_copied (objfile)) | |
546 | return this->get_maybe_copied_address (objfile); | |
547 | else | |
548 | return (CORE_ADDR (this->unrelocated_address ()) | |
549 | + objfile->section_offsets[this->section_index ()]); | |
550 | } | |
551 | ||
552 | /* See symtab.h. */ | |
553 | ||
554 | bool | |
555 | minimal_symbol::data_p () const | |
556 | { | |
557 | return m_type == mst_data | |
558 | || m_type == mst_bss | |
559 | || m_type == mst_abs | |
560 | || m_type == mst_file_data | |
561 | || m_type == mst_file_bss; | |
562 | } | |
563 | ||
564 | /* See symtab.h. */ | |
565 | ||
566 | bool | |
567 | minimal_symbol::text_p () const | |
568 | { | |
569 | return m_type == mst_text | |
570 | || m_type == mst_text_gnu_ifunc | |
571 | || m_type == mst_data_gnu_ifunc | |
572 | || m_type == mst_slot_got_plt | |
573 | || m_type == mst_solib_trampoline | |
574 | || m_type == mst_file_text; | |
575 | } | |
576 | ||
577 | /* See symtab.h. */ | |
578 | ||
579 | bool | |
580 | minimal_symbol::maybe_copied (objfile *objfile) const | |
581 | { | |
582 | return (objfile->object_format_has_copy_relocs | |
583 | && (objfile->flags & OBJF_MAINLINE) == 0 | |
584 | && (m_type == mst_data || m_type == mst_bss)); | |
585 | } | |
586 | ||
587 | /* See whether FILENAME matches SEARCH_NAME using the rule that we | |
588 | advertise to the user. (The manual's description of linespecs | |
589 | describes what we advertise). Returns true if they match, false | |
590 | otherwise. */ | |
591 | ||
592 | bool | |
593 | compare_filenames_for_search (const char *filename, const char *search_name) | |
594 | { | |
595 | int len = strlen (filename); | |
596 | size_t search_len = strlen (search_name); | |
597 | ||
598 | if (len < search_len) | |
599 | return false; | |
600 | ||
601 | /* The tail of FILENAME must match. */ | |
602 | if (FILENAME_CMP (filename + len - search_len, search_name) != 0) | |
603 | return false; | |
604 | ||
605 | /* Either the names must completely match, or the character | |
606 | preceding the trailing SEARCH_NAME segment of FILENAME must be a | |
607 | directory separator. | |
608 | ||
609 | The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c" | |
610 | cannot match FILENAME "/path//dir/file.c" - as user has requested | |
611 | absolute path. The sama applies for "c:\file.c" possibly | |
612 | incorrectly hypothetically matching "d:\dir\c:\file.c". | |
613 | ||
614 | The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c" | |
615 | compatible with SEARCH_NAME "file.c". In such case a compiler had | |
616 | to put the "c:file.c" name into debug info. Such compatibility | |
617 | works only on GDB built for DOS host. */ | |
618 | return (len == search_len | |
619 | || (!IS_ABSOLUTE_PATH (search_name) | |
620 | && IS_DIR_SEPARATOR (filename[len - search_len - 1])) | |
621 | || (HAS_DRIVE_SPEC (filename) | |
622 | && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len])); | |
623 | } | |
624 | ||
625 | /* Check for a symtab of a specific name by searching some symtabs. | |
626 | This is a helper function for callbacks of iterate_over_symtabs. | |
627 | ||
628 | If NAME is not absolute, then REAL_PATH is NULL | |
629 | If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME. | |
630 | ||
631 | The return value, NAME, REAL_PATH and CALLBACK are identical to the | |
632 | `map_symtabs_matching_filename' method of quick_symbol_functions. | |
633 | ||
634 | FIRST and AFTER_LAST indicate the range of compunit symtabs to search. | |
635 | Each symtab within the specified compunit symtab is also searched. | |
636 | AFTER_LAST is one past the last compunit symtab to search; NULL means to | |
637 | search until the end of the list. */ | |
638 | ||
639 | bool | |
640 | iterate_over_some_symtabs (const char *name, | |
641 | const char *real_path, | |
642 | struct compunit_symtab *first, | |
643 | struct compunit_symtab *after_last, | |
644 | gdb::function_view<bool (symtab *)> callback) | |
645 | { | |
646 | struct compunit_symtab *cust; | |
647 | const char* base_name = lbasename (name); | |
648 | ||
649 | for (cust = first; cust != NULL && cust != after_last; cust = cust->next) | |
650 | { | |
651 | /* Skip included compunits. */ | |
652 | if (cust->user != nullptr) | |
653 | continue; | |
654 | ||
655 | for (symtab *s : cust->filetabs ()) | |
656 | { | |
657 | if (compare_filenames_for_search (s->filename, name)) | |
658 | { | |
659 | if (callback (s)) | |
660 | return true; | |
661 | continue; | |
662 | } | |
663 | ||
664 | /* Before we invoke realpath, which can get expensive when many | |
665 | files are involved, do a quick comparison of the basenames. */ | |
666 | if (! basenames_may_differ | |
667 | && FILENAME_CMP (base_name, lbasename (s->filename)) != 0) | |
668 | continue; | |
669 | ||
670 | if (compare_filenames_for_search (symtab_to_fullname (s), name)) | |
671 | { | |
672 | if (callback (s)) | |
673 | return true; | |
674 | continue; | |
675 | } | |
676 | ||
677 | /* If the user gave us an absolute path, try to find the file in | |
678 | this symtab and use its absolute path. */ | |
679 | if (real_path != NULL) | |
680 | { | |
681 | const char *fullname = symtab_to_fullname (s); | |
682 | ||
683 | gdb_assert (IS_ABSOLUTE_PATH (real_path)); | |
684 | gdb_assert (IS_ABSOLUTE_PATH (name)); | |
685 | gdb::unique_xmalloc_ptr<char> fullname_real_path | |
686 | = gdb_realpath (fullname); | |
687 | fullname = fullname_real_path.get (); | |
688 | if (FILENAME_CMP (real_path, fullname) == 0) | |
689 | { | |
690 | if (callback (s)) | |
691 | return true; | |
692 | continue; | |
693 | } | |
694 | } | |
695 | } | |
696 | } | |
697 | ||
698 | return false; | |
699 | } | |
700 | ||
701 | /* See symtab.h. */ | |
702 | ||
703 | void | |
704 | iterate_over_symtabs (program_space *pspace, const char *name, | |
705 | gdb::function_view<bool (symtab *)> callback) | |
706 | { | |
707 | gdb::unique_xmalloc_ptr<char> real_path; | |
708 | ||
709 | /* Here we are interested in canonicalizing an absolute path, not | |
710 | absolutizing a relative path. */ | |
711 | if (IS_ABSOLUTE_PATH (name)) | |
712 | { | |
713 | real_path = gdb_realpath (name); | |
714 | gdb_assert (IS_ABSOLUTE_PATH (real_path.get ())); | |
715 | } | |
716 | ||
717 | for (objfile *objfile : pspace->objfiles ()) | |
718 | if (iterate_over_some_symtabs (name, real_path.get (), | |
719 | objfile->compunit_symtabs, nullptr, | |
720 | callback)) | |
721 | return; | |
722 | ||
723 | /* Same search rules as above apply here, but now we look through the | |
724 | psymtabs. */ | |
725 | for (objfile *objfile : pspace->objfiles ()) | |
726 | if (objfile->map_symtabs_matching_filename (name, real_path.get (), | |
727 | callback)) | |
728 | return; | |
729 | } | |
730 | ||
731 | /* See symtab.h. */ | |
732 | ||
733 | symtab * | |
734 | lookup_symtab (program_space *pspace, const char *name) | |
735 | { | |
736 | struct symtab *result = NULL; | |
737 | ||
738 | iterate_over_symtabs (pspace, name, [&] (symtab *symtab) | |
739 | { | |
740 | result = symtab; | |
741 | return true; | |
742 | }); | |
743 | ||
744 | return result; | |
745 | } | |
746 | ||
747 | \f | |
748 | /* Mangle a GDB method stub type. This actually reassembles the pieces of the | |
749 | full method name, which consist of the class name (from T), the unadorned | |
750 | method name from METHOD_ID, and the signature for the specific overload, | |
751 | specified by SIGNATURE_ID. Note that this function is g++ specific. */ | |
752 | ||
753 | char * | |
754 | gdb_mangle_name (struct type *type, int method_id, int signature_id) | |
755 | { | |
756 | int mangled_name_len; | |
757 | char *mangled_name; | |
758 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id); | |
759 | struct fn_field *method = &f[signature_id]; | |
760 | const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id); | |
761 | const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id); | |
762 | const char *newname = type->name (); | |
763 | ||
764 | /* Does the form of physname indicate that it is the full mangled name | |
765 | of a constructor (not just the args)? */ | |
766 | int is_full_physname_constructor; | |
767 | ||
768 | int is_constructor; | |
769 | int is_destructor = is_destructor_name (physname); | |
770 | /* Need a new type prefix. */ | |
771 | const char *const_prefix = method->is_const ? "C" : ""; | |
772 | const char *volatile_prefix = method->is_volatile ? "V" : ""; | |
773 | char buf[20]; | |
774 | int len = (newname == NULL ? 0 : strlen (newname)); | |
775 | ||
776 | /* Nothing to do if physname already contains a fully mangled v3 abi name | |
777 | or an operator name. */ | |
778 | if ((physname[0] == '_' && physname[1] == 'Z') | |
779 | || is_operator_name (field_name)) | |
780 | return xstrdup (physname); | |
781 | ||
782 | is_full_physname_constructor = is_constructor_name (physname); | |
783 | ||
784 | is_constructor = is_full_physname_constructor | |
785 | || (newname && strcmp (field_name, newname) == 0); | |
786 | ||
787 | if (!is_destructor) | |
788 | is_destructor = (startswith (physname, "__dt")); | |
789 | ||
790 | if (is_destructor || is_full_physname_constructor) | |
791 | { | |
792 | mangled_name = (char *) xmalloc (strlen (physname) + 1); | |
793 | strcpy (mangled_name, physname); | |
794 | return mangled_name; | |
795 | } | |
796 | ||
797 | if (len == 0) | |
798 | { | |
799 | xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix); | |
800 | } | |
801 | else if (physname[0] == 't' || physname[0] == 'Q') | |
802 | { | |
803 | /* The physname for template and qualified methods already includes | |
804 | the class name. */ | |
805 | xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix); | |
806 | newname = NULL; | |
807 | len = 0; | |
808 | } | |
809 | else | |
810 | { | |
811 | xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix, | |
812 | volatile_prefix, len); | |
813 | } | |
814 | mangled_name_len = ((is_constructor ? 0 : strlen (field_name)) | |
815 | + strlen (buf) + len + strlen (physname) + 1); | |
816 | ||
817 | mangled_name = (char *) xmalloc (mangled_name_len); | |
818 | if (is_constructor) | |
819 | mangled_name[0] = '\0'; | |
820 | else | |
821 | strcpy (mangled_name, field_name); | |
822 | ||
823 | strcat (mangled_name, buf); | |
824 | /* If the class doesn't have a name, i.e. newname NULL, then we just | |
825 | mangle it using 0 for the length of the class. Thus it gets mangled | |
826 | as something starting with `::' rather than `classname::'. */ | |
827 | if (newname != NULL) | |
828 | strcat (mangled_name, newname); | |
829 | ||
830 | strcat (mangled_name, physname); | |
831 | return (mangled_name); | |
832 | } | |
833 | ||
834 | /* See symtab.h. */ | |
835 | ||
836 | void | |
837 | general_symbol_info::set_demangled_name (const char *name, | |
838 | struct obstack *obstack) | |
839 | { | |
840 | if (language () == language_ada) | |
841 | { | |
842 | if (name == NULL) | |
843 | { | |
844 | ada_mangled = 0; | |
845 | language_specific.obstack = obstack; | |
846 | } | |
847 | else | |
848 | { | |
849 | ada_mangled = 1; | |
850 | language_specific.demangled_name = name; | |
851 | } | |
852 | } | |
853 | else | |
854 | language_specific.demangled_name = name; | |
855 | } | |
856 | ||
857 | \f | |
858 | /* Initialize the language dependent portion of a symbol | |
859 | depending upon the language for the symbol. */ | |
860 | ||
861 | void | |
862 | general_symbol_info::set_language (enum language language, | |
863 | struct obstack *obstack) | |
864 | { | |
865 | m_language = language; | |
866 | if (language == language_cplus | |
867 | || language == language_d | |
868 | || language == language_go | |
869 | || language == language_objc | |
870 | || language == language_fortran) | |
871 | { | |
872 | set_demangled_name (NULL, obstack); | |
873 | } | |
874 | else if (language == language_ada) | |
875 | { | |
876 | gdb_assert (ada_mangled == 0); | |
877 | language_specific.obstack = obstack; | |
878 | } | |
879 | else | |
880 | { | |
881 | memset (&language_specific, 0, sizeof (language_specific)); | |
882 | } | |
883 | } | |
884 | ||
885 | /* Functions to initialize a symbol's mangled name. */ | |
886 | ||
887 | /* Objects of this type are stored in the demangled name hash table. */ | |
888 | struct demangled_name_entry | |
889 | { | |
890 | demangled_name_entry (std::string_view mangled_name) | |
891 | : mangled (mangled_name) {} | |
892 | ||
893 | std::string_view mangled; | |
894 | enum language language; | |
895 | gdb::unique_xmalloc_ptr<char> demangled; | |
896 | }; | |
897 | ||
898 | /* Hash function for the demangled name hash. */ | |
899 | ||
900 | static hashval_t | |
901 | hash_demangled_name_entry (const void *data) | |
902 | { | |
903 | const struct demangled_name_entry *e | |
904 | = (const struct demangled_name_entry *) data; | |
905 | ||
906 | return gdb::string_view_hash () (e->mangled); | |
907 | } | |
908 | ||
909 | /* Equality function for the demangled name hash. */ | |
910 | ||
911 | static int | |
912 | eq_demangled_name_entry (const void *a, const void *b) | |
913 | { | |
914 | const struct demangled_name_entry *da | |
915 | = (const struct demangled_name_entry *) a; | |
916 | const struct demangled_name_entry *db | |
917 | = (const struct demangled_name_entry *) b; | |
918 | ||
919 | return da->mangled == db->mangled; | |
920 | } | |
921 | ||
922 | static void | |
923 | free_demangled_name_entry (void *data) | |
924 | { | |
925 | struct demangled_name_entry *e | |
926 | = (struct demangled_name_entry *) data; | |
927 | ||
928 | e->~demangled_name_entry(); | |
929 | } | |
930 | ||
931 | /* Create the hash table used for demangled names. Each hash entry is | |
932 | a pair of strings; one for the mangled name and one for the demangled | |
933 | name. The entry is hashed via just the mangled name. */ | |
934 | ||
935 | static void | |
936 | create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd) | |
937 | { | |
938 | /* Choose 256 as the starting size of the hash table, somewhat arbitrarily. | |
939 | The hash table code will round this up to the next prime number. | |
940 | Choosing a much larger table size wastes memory, and saves only about | |
941 | 1% in symbol reading. However, if the minsym count is already | |
942 | initialized (e.g. because symbol name setting was deferred to | |
943 | a background thread) we can initialize the hashtable with a count | |
944 | based on that, because we will almost certainly have at least that | |
945 | many entries. If we have a nonzero number but less than 256, | |
946 | we still stay with 256 to have some space for psymbols, etc. */ | |
947 | ||
948 | /* htab will expand the table when it is 3/4th full, so we account for that | |
949 | here. +2 to round up. */ | |
950 | int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4; | |
951 | int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count); | |
952 | ||
953 | per_bfd->demangled_names_hash.reset (htab_create_alloc | |
954 | (count, hash_demangled_name_entry, eq_demangled_name_entry, | |
955 | free_demangled_name_entry, xcalloc, xfree)); | |
956 | } | |
957 | ||
958 | /* See symtab.h */ | |
959 | ||
960 | gdb::unique_xmalloc_ptr<char> | |
961 | symbol_find_demangled_name (struct general_symbol_info *gsymbol, | |
962 | const char *mangled) | |
963 | { | |
964 | gdb::unique_xmalloc_ptr<char> demangled; | |
965 | int i; | |
966 | ||
967 | if (gsymbol->language () != language_unknown) | |
968 | { | |
969 | const struct language_defn *lang = language_def (gsymbol->language ()); | |
970 | ||
971 | lang->sniff_from_mangled_name (mangled, &demangled); | |
972 | return demangled; | |
973 | } | |
974 | ||
975 | for (i = language_unknown; i < nr_languages; ++i) | |
976 | { | |
977 | enum language l = (enum language) i; | |
978 | const struct language_defn *lang = language_def (l); | |
979 | ||
980 | if (lang->sniff_from_mangled_name (mangled, &demangled)) | |
981 | { | |
982 | gsymbol->m_language = l; | |
983 | return demangled; | |
984 | } | |
985 | } | |
986 | ||
987 | return NULL; | |
988 | } | |
989 | ||
990 | /* Set both the mangled and demangled (if any) names for GSYMBOL based | |
991 | on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the | |
992 | objfile's obstack; but if COPY_NAME is 0 and if NAME is | |
993 | NUL-terminated, then this function assumes that NAME is already | |
994 | correctly saved (either permanently or with a lifetime tied to the | |
995 | objfile), and it will not be copied. | |
996 | ||
997 | The hash table corresponding to OBJFILE is used, and the memory | |
998 | comes from the per-BFD storage_obstack. LINKAGE_NAME is copied, | |
999 | so the pointer can be discarded after calling this function. */ | |
1000 | ||
1001 | void | |
1002 | general_symbol_info::compute_and_set_names (std::string_view linkage_name, | |
1003 | bool copy_name, | |
1004 | objfile_per_bfd_storage *per_bfd, | |
1005 | std::optional<hashval_t> hash) | |
1006 | { | |
1007 | struct demangled_name_entry **slot; | |
1008 | ||
1009 | if (language () == language_ada) | |
1010 | { | |
1011 | /* In Ada, we do the symbol lookups using the mangled name, so | |
1012 | we can save some space by not storing the demangled name. */ | |
1013 | if (!copy_name) | |
1014 | m_name = linkage_name.data (); | |
1015 | else | |
1016 | m_name = obstack_strndup (&per_bfd->storage_obstack, | |
1017 | linkage_name.data (), | |
1018 | linkage_name.length ()); | |
1019 | set_demangled_name (NULL, &per_bfd->storage_obstack); | |
1020 | ||
1021 | return; | |
1022 | } | |
1023 | ||
1024 | if (per_bfd->demangled_names_hash == NULL) | |
1025 | create_demangled_names_hash (per_bfd); | |
1026 | ||
1027 | struct demangled_name_entry entry (linkage_name); | |
1028 | if (!hash.has_value ()) | |
1029 | hash = hash_demangled_name_entry (&entry); | |
1030 | slot = ((struct demangled_name_entry **) | |
1031 | htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (), | |
1032 | &entry, *hash, INSERT)); | |
1033 | ||
1034 | /* The const_cast is safe because the only reason it is already | |
1035 | initialized is if we purposefully set it from a background | |
1036 | thread to avoid doing the work here. However, it is still | |
1037 | allocated from the heap and needs to be freed by us, just | |
1038 | like if we called symbol_find_demangled_name here. If this is | |
1039 | nullptr, we call symbol_find_demangled_name below, but we put | |
1040 | this smart pointer here to be sure that we don't leak this name. */ | |
1041 | gdb::unique_xmalloc_ptr<char> demangled_name | |
1042 | (const_cast<char *> (language_specific.demangled_name)); | |
1043 | ||
1044 | /* If this name is not in the hash table, add it. */ | |
1045 | if (*slot == NULL | |
1046 | /* A C version of the symbol may have already snuck into the table. | |
1047 | This happens to, e.g., main.init (__go_init_main). Cope. */ | |
1048 | || (language () == language_go && (*slot)->demangled == nullptr)) | |
1049 | { | |
1050 | /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME | |
1051 | to true if the string might not be nullterminated. We have to make | |
1052 | this copy because demangling needs a nullterminated string. */ | |
1053 | std::string_view linkage_name_copy; | |
1054 | if (copy_name) | |
1055 | { | |
1056 | char *alloc_name = (char *) alloca (linkage_name.length () + 1); | |
1057 | memcpy (alloc_name, linkage_name.data (), linkage_name.length ()); | |
1058 | alloc_name[linkage_name.length ()] = '\0'; | |
1059 | ||
1060 | linkage_name_copy = std::string_view (alloc_name, | |
1061 | linkage_name.length ()); | |
1062 | } | |
1063 | else | |
1064 | linkage_name_copy = linkage_name; | |
1065 | ||
1066 | if (demangled_name.get () == nullptr) | |
1067 | demangled_name | |
1068 | = symbol_find_demangled_name (this, linkage_name_copy.data ()); | |
1069 | ||
1070 | /* Suppose we have demangled_name==NULL, copy_name==0, and | |
1071 | linkage_name_copy==linkage_name. In this case, we already have the | |
1072 | mangled name saved, and we don't have a demangled name. So, | |
1073 | you might think we could save a little space by not recording | |
1074 | this in the hash table at all. | |
1075 | ||
1076 | It turns out that it is actually important to still save such | |
1077 | an entry in the hash table, because storing this name gives | |
1078 | us better bcache hit rates for partial symbols. */ | |
1079 | if (!copy_name) | |
1080 | { | |
1081 | *slot | |
1082 | = ((struct demangled_name_entry *) | |
1083 | obstack_alloc (&per_bfd->storage_obstack, | |
1084 | sizeof (demangled_name_entry))); | |
1085 | new (*slot) demangled_name_entry (linkage_name); | |
1086 | } | |
1087 | else | |
1088 | { | |
1089 | /* If we must copy the mangled name, put it directly after | |
1090 | the struct so we can have a single allocation. */ | |
1091 | *slot | |
1092 | = ((struct demangled_name_entry *) | |
1093 | obstack_alloc (&per_bfd->storage_obstack, | |
1094 | sizeof (demangled_name_entry) | |
1095 | + linkage_name.length () + 1)); | |
1096 | char *mangled_ptr = reinterpret_cast<char *> (*slot + 1); | |
1097 | memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ()); | |
1098 | mangled_ptr [linkage_name.length ()] = '\0'; | |
1099 | new (*slot) demangled_name_entry | |
1100 | (std::string_view (mangled_ptr, linkage_name.length ())); | |
1101 | } | |
1102 | (*slot)->demangled = std::move (demangled_name); | |
1103 | (*slot)->language = language (); | |
1104 | } | |
1105 | else if (language () == language_unknown) | |
1106 | m_language = (*slot)->language; | |
1107 | ||
1108 | m_name = (*slot)->mangled.data (); | |
1109 | set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack); | |
1110 | } | |
1111 | ||
1112 | /* See symtab.h. */ | |
1113 | ||
1114 | const char * | |
1115 | general_symbol_info::natural_name () const | |
1116 | { | |
1117 | switch (language ()) | |
1118 | { | |
1119 | case language_cplus: | |
1120 | case language_d: | |
1121 | case language_go: | |
1122 | case language_objc: | |
1123 | case language_fortran: | |
1124 | case language_rust: | |
1125 | if (language_specific.demangled_name != nullptr) | |
1126 | return language_specific.demangled_name; | |
1127 | break; | |
1128 | case language_ada: | |
1129 | return ada_decode_symbol (this); | |
1130 | default: | |
1131 | break; | |
1132 | } | |
1133 | return linkage_name (); | |
1134 | } | |
1135 | ||
1136 | /* See symtab.h. */ | |
1137 | ||
1138 | const char * | |
1139 | general_symbol_info::demangled_name () const | |
1140 | { | |
1141 | const char *dem_name = NULL; | |
1142 | ||
1143 | switch (language ()) | |
1144 | { | |
1145 | case language_cplus: | |
1146 | case language_d: | |
1147 | case language_go: | |
1148 | case language_objc: | |
1149 | case language_fortran: | |
1150 | case language_rust: | |
1151 | dem_name = language_specific.demangled_name; | |
1152 | break; | |
1153 | case language_ada: | |
1154 | dem_name = ada_decode_symbol (this); | |
1155 | break; | |
1156 | default: | |
1157 | break; | |
1158 | } | |
1159 | return dem_name; | |
1160 | } | |
1161 | ||
1162 | /* See symtab.h. */ | |
1163 | ||
1164 | const char * | |
1165 | general_symbol_info::search_name () const | |
1166 | { | |
1167 | if (language () == language_ada) | |
1168 | return linkage_name (); | |
1169 | else | |
1170 | return natural_name (); | |
1171 | } | |
1172 | ||
1173 | /* See symtab.h. */ | |
1174 | ||
1175 | struct obj_section * | |
1176 | general_symbol_info::obj_section (const struct objfile *objfile) const | |
1177 | { | |
1178 | if (section_index () >= 0) | |
1179 | return &objfile->sections_start[section_index ()]; | |
1180 | return nullptr; | |
1181 | } | |
1182 | ||
1183 | /* See symtab.h. */ | |
1184 | ||
1185 | bool | |
1186 | symbol_matches_search_name (const struct general_symbol_info *gsymbol, | |
1187 | const lookup_name_info &name) | |
1188 | { | |
1189 | symbol_name_matcher_ftype *name_match | |
1190 | = language_def (gsymbol->language ())->get_symbol_name_matcher (name); | |
1191 | return name_match (gsymbol->search_name (), name, NULL); | |
1192 | } | |
1193 | ||
1194 | \f | |
1195 | ||
1196 | /* Return true if the two sections are the same, or if they could | |
1197 | plausibly be copies of each other, one in an original object | |
1198 | file and another in a separated debug file. */ | |
1199 | ||
1200 | bool | |
1201 | matching_obj_sections (struct obj_section *obj_first, | |
1202 | struct obj_section *obj_second) | |
1203 | { | |
1204 | asection *first = obj_first? obj_first->the_bfd_section : NULL; | |
1205 | asection *second = obj_second? obj_second->the_bfd_section : NULL; | |
1206 | ||
1207 | /* If they're the same section, then they match. */ | |
1208 | if (first == second) | |
1209 | return true; | |
1210 | ||
1211 | /* If either is NULL, give up. */ | |
1212 | if (first == NULL || second == NULL) | |
1213 | return false; | |
1214 | ||
1215 | /* This doesn't apply to absolute symbols. */ | |
1216 | if (first->owner == NULL || second->owner == NULL) | |
1217 | return false; | |
1218 | ||
1219 | /* If they're in the same object file, they must be different sections. */ | |
1220 | if (first->owner == second->owner) | |
1221 | return false; | |
1222 | ||
1223 | /* Check whether the two sections are potentially corresponding. They must | |
1224 | have the same size, address, and name. We can't compare section indexes, | |
1225 | which would be more reliable, because some sections may have been | |
1226 | stripped. */ | |
1227 | if (bfd_section_size (first) != bfd_section_size (second)) | |
1228 | return false; | |
1229 | ||
1230 | /* In-memory addresses may start at a different offset, relativize them. */ | |
1231 | if (bfd_section_vma (first) - bfd_get_start_address (first->owner) | |
1232 | != bfd_section_vma (second) - bfd_get_start_address (second->owner)) | |
1233 | return false; | |
1234 | ||
1235 | if (bfd_section_name (first) == NULL | |
1236 | || bfd_section_name (second) == NULL | |
1237 | || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0) | |
1238 | return false; | |
1239 | ||
1240 | /* Otherwise check that they are in corresponding objfiles. */ | |
1241 | ||
1242 | struct objfile *obj = NULL; | |
1243 | for (objfile *objfile : current_program_space->objfiles ()) | |
1244 | if (objfile->obfd == first->owner) | |
1245 | { | |
1246 | obj = objfile; | |
1247 | break; | |
1248 | } | |
1249 | gdb_assert (obj != NULL); | |
1250 | ||
1251 | if (obj->separate_debug_objfile != NULL | |
1252 | && obj->separate_debug_objfile->obfd == second->owner) | |
1253 | return true; | |
1254 | if (obj->separate_debug_objfile_backlink != NULL | |
1255 | && obj->separate_debug_objfile_backlink->obfd == second->owner) | |
1256 | return true; | |
1257 | ||
1258 | return false; | |
1259 | } | |
1260 | \f | |
1261 | /* Hash function for the symbol cache. */ | |
1262 | ||
1263 | static unsigned int | |
1264 | hash_symbol_entry (const struct objfile *objfile_context, | |
1265 | const char *name, domain_search_flags domain) | |
1266 | { | |
1267 | unsigned int hash = (uintptr_t) objfile_context; | |
1268 | ||
1269 | if (name != NULL) | |
1270 | hash += htab_hash_string (name); | |
1271 | ||
1272 | hash += domain * 7; | |
1273 | ||
1274 | return hash; | |
1275 | } | |
1276 | ||
1277 | /* Equality function for the symbol cache. */ | |
1278 | ||
1279 | static int | |
1280 | eq_symbol_entry (const struct symbol_cache_slot *slot, | |
1281 | const struct objfile *objfile_context, | |
1282 | const char *name, domain_search_flags domain) | |
1283 | { | |
1284 | const char *slot_name; | |
1285 | ||
1286 | if (slot->state == SYMBOL_SLOT_UNUSED) | |
1287 | return 0; | |
1288 | ||
1289 | if (slot->objfile_context != objfile_context) | |
1290 | return 0; | |
1291 | ||
1292 | domain_search_flags slot_domain = slot->domain; | |
1293 | if (slot->state == SYMBOL_SLOT_NOT_FOUND) | |
1294 | slot_name = slot->value.name; | |
1295 | else | |
1296 | slot_name = slot->value.found.symbol->search_name (); | |
1297 | ||
1298 | /* NULL names match. */ | |
1299 | if (slot_name == NULL && name == NULL) | |
1300 | { | |
1301 | /* But there's no point in calling symbol_matches_domain in the | |
1302 | SYMBOL_SLOT_FOUND case. */ | |
1303 | if (slot_domain != domain) | |
1304 | return 0; | |
1305 | } | |
1306 | else if (slot_name != NULL && name != NULL) | |
1307 | { | |
1308 | /* It's important that we use the same comparison that was done | |
1309 | the first time through. If the slot records a found symbol, | |
1310 | then this means using the symbol name comparison function of | |
1311 | the symbol's language with symbol->search_name (). See | |
1312 | dictionary.c. | |
1313 | ||
1314 | If the slot records a not-found symbol, then require a precise match. | |
1315 | We could still be lax with whitespace like strcmp_iw though. */ | |
1316 | ||
1317 | if (slot_domain != domain) | |
1318 | return 0; | |
1319 | ||
1320 | if (slot->state == SYMBOL_SLOT_NOT_FOUND) | |
1321 | { | |
1322 | if (strcmp (slot_name, name) != 0) | |
1323 | return 0; | |
1324 | } | |
1325 | else | |
1326 | { | |
1327 | struct symbol *sym = slot->value.found.symbol; | |
1328 | lookup_name_info lookup_name (name, symbol_name_match_type::FULL); | |
1329 | ||
1330 | if (!symbol_matches_search_name (sym, lookup_name)) | |
1331 | return 0; | |
1332 | } | |
1333 | } | |
1334 | else | |
1335 | { | |
1336 | /* Only one name is NULL. */ | |
1337 | return 0; | |
1338 | } | |
1339 | ||
1340 | return 1; | |
1341 | } | |
1342 | ||
1343 | /* Given a cache of size SIZE, return the size of the struct (with variable | |
1344 | length array) in bytes. */ | |
1345 | ||
1346 | static size_t | |
1347 | symbol_cache_byte_size (unsigned int size) | |
1348 | { | |
1349 | return (sizeof (struct block_symbol_cache) | |
1350 | + ((size - 1) * sizeof (struct symbol_cache_slot))); | |
1351 | } | |
1352 | ||
1353 | /* Resize CACHE. */ | |
1354 | ||
1355 | static void | |
1356 | resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size) | |
1357 | { | |
1358 | /* If there's no change in size, don't do anything. | |
1359 | All caches have the same size, so we can just compare with the size | |
1360 | of the global symbols cache. */ | |
1361 | if ((cache->global_symbols != NULL | |
1362 | && cache->global_symbols->size == new_size) | |
1363 | || (cache->global_symbols == NULL | |
1364 | && new_size == 0)) | |
1365 | return; | |
1366 | ||
1367 | destroy_block_symbol_cache (cache->global_symbols); | |
1368 | destroy_block_symbol_cache (cache->static_symbols); | |
1369 | ||
1370 | if (new_size == 0) | |
1371 | { | |
1372 | cache->global_symbols = NULL; | |
1373 | cache->static_symbols = NULL; | |
1374 | } | |
1375 | else | |
1376 | { | |
1377 | size_t total_size = symbol_cache_byte_size (new_size); | |
1378 | ||
1379 | cache->global_symbols | |
1380 | = (struct block_symbol_cache *) xcalloc (1, total_size); | |
1381 | cache->static_symbols | |
1382 | = (struct block_symbol_cache *) xcalloc (1, total_size); | |
1383 | cache->global_symbols->size = new_size; | |
1384 | cache->static_symbols->size = new_size; | |
1385 | } | |
1386 | } | |
1387 | ||
1388 | /* Return the symbol cache of PSPACE. | |
1389 | Create one if it doesn't exist yet. */ | |
1390 | ||
1391 | static struct symbol_cache * | |
1392 | get_symbol_cache (struct program_space *pspace) | |
1393 | { | |
1394 | struct symbol_cache *cache = symbol_cache_key.get (pspace); | |
1395 | ||
1396 | if (cache == NULL) | |
1397 | { | |
1398 | cache = symbol_cache_key.emplace (pspace); | |
1399 | resize_symbol_cache (cache, symbol_cache_size); | |
1400 | } | |
1401 | ||
1402 | return cache; | |
1403 | } | |
1404 | ||
1405 | /* Set the size of the symbol cache in all program spaces. */ | |
1406 | ||
1407 | static void | |
1408 | set_symbol_cache_size (unsigned int new_size) | |
1409 | { | |
1410 | for (struct program_space *pspace : program_spaces) | |
1411 | { | |
1412 | struct symbol_cache *cache = symbol_cache_key.get (pspace); | |
1413 | ||
1414 | /* The pspace could have been created but not have a cache yet. */ | |
1415 | if (cache != NULL) | |
1416 | resize_symbol_cache (cache, new_size); | |
1417 | } | |
1418 | } | |
1419 | ||
1420 | /* Called when symbol-cache-size is set. */ | |
1421 | ||
1422 | static void | |
1423 | set_symbol_cache_size_handler (const char *args, int from_tty, | |
1424 | struct cmd_list_element *c) | |
1425 | { | |
1426 | if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE) | |
1427 | { | |
1428 | /* Restore the previous value. | |
1429 | This is the value the "show" command prints. */ | |
1430 | new_symbol_cache_size = symbol_cache_size; | |
1431 | ||
1432 | error (_("Symbol cache size is too large, max is %u."), | |
1433 | MAX_SYMBOL_CACHE_SIZE); | |
1434 | } | |
1435 | symbol_cache_size = new_symbol_cache_size; | |
1436 | ||
1437 | set_symbol_cache_size (symbol_cache_size); | |
1438 | } | |
1439 | ||
1440 | /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE. | |
1441 | OBJFILE_CONTEXT is the current objfile, which may be NULL. | |
1442 | The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup | |
1443 | failed (and thus this one will too), or NULL if the symbol is not present | |
1444 | in the cache. | |
1445 | *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which | |
1446 | can be used to save the result of a full lookup attempt. */ | |
1447 | ||
1448 | static struct block_symbol | |
1449 | symbol_cache_lookup (struct symbol_cache *cache, | |
1450 | struct objfile *objfile_context, enum block_enum block, | |
1451 | const char *name, domain_search_flags domain, | |
1452 | struct block_symbol_cache **bsc_ptr, | |
1453 | struct symbol_cache_slot **slot_ptr) | |
1454 | { | |
1455 | struct block_symbol_cache *bsc; | |
1456 | unsigned int hash; | |
1457 | struct symbol_cache_slot *slot; | |
1458 | ||
1459 | if (block == GLOBAL_BLOCK) | |
1460 | bsc = cache->global_symbols; | |
1461 | else | |
1462 | bsc = cache->static_symbols; | |
1463 | if (bsc == NULL) | |
1464 | { | |
1465 | *bsc_ptr = NULL; | |
1466 | *slot_ptr = NULL; | |
1467 | return {}; | |
1468 | } | |
1469 | ||
1470 | hash = hash_symbol_entry (objfile_context, name, domain); | |
1471 | slot = bsc->symbols + hash % bsc->size; | |
1472 | ||
1473 | *bsc_ptr = bsc; | |
1474 | *slot_ptr = slot; | |
1475 | ||
1476 | if (eq_symbol_entry (slot, objfile_context, name, domain)) | |
1477 | { | |
1478 | symbol_lookup_debug_printf ("%s block symbol cache hit%s for %s, %s", | |
1479 | block == GLOBAL_BLOCK ? "Global" : "Static", | |
1480 | slot->state == SYMBOL_SLOT_NOT_FOUND | |
1481 | ? " (not found)" : "", name, | |
1482 | domain_name (domain).c_str ()); | |
1483 | ++bsc->hits; | |
1484 | if (slot->state == SYMBOL_SLOT_NOT_FOUND) | |
1485 | return SYMBOL_LOOKUP_FAILED; | |
1486 | return slot->value.found; | |
1487 | } | |
1488 | ||
1489 | /* Symbol is not present in the cache. */ | |
1490 | ||
1491 | symbol_lookup_debug_printf ("%s block symbol cache miss for %s, %s", | |
1492 | block == GLOBAL_BLOCK ? "Global" : "Static", | |
1493 | name, domain_name (domain).c_str ()); | |
1494 | ++bsc->misses; | |
1495 | return {}; | |
1496 | } | |
1497 | ||
1498 | /* Mark SYMBOL as found in SLOT. | |
1499 | OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL | |
1500 | if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not* | |
1501 | necessarily the objfile the symbol was found in. */ | |
1502 | ||
1503 | static void | |
1504 | symbol_cache_mark_found (struct block_symbol_cache *bsc, | |
1505 | struct symbol_cache_slot *slot, | |
1506 | struct objfile *objfile_context, | |
1507 | struct symbol *symbol, | |
1508 | const struct block *block, | |
1509 | domain_search_flags domain) | |
1510 | { | |
1511 | if (bsc == NULL) | |
1512 | return; | |
1513 | if (slot->state != SYMBOL_SLOT_UNUSED) | |
1514 | { | |
1515 | ++bsc->collisions; | |
1516 | symbol_cache_clear_slot (slot); | |
1517 | } | |
1518 | slot->state = SYMBOL_SLOT_FOUND; | |
1519 | slot->objfile_context = objfile_context; | |
1520 | slot->value.found.symbol = symbol; | |
1521 | slot->value.found.block = block; | |
1522 | slot->domain = domain; | |
1523 | } | |
1524 | ||
1525 | /* Mark symbol NAME, DOMAIN as not found in SLOT. | |
1526 | OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL | |
1527 | if it's not needed to distinguish lookups (STATIC_BLOCK). */ | |
1528 | ||
1529 | static void | |
1530 | symbol_cache_mark_not_found (struct block_symbol_cache *bsc, | |
1531 | struct symbol_cache_slot *slot, | |
1532 | struct objfile *objfile_context, | |
1533 | const char *name, domain_search_flags domain) | |
1534 | { | |
1535 | if (bsc == NULL) | |
1536 | return; | |
1537 | if (slot->state != SYMBOL_SLOT_UNUSED) | |
1538 | { | |
1539 | ++bsc->collisions; | |
1540 | symbol_cache_clear_slot (slot); | |
1541 | } | |
1542 | slot->state = SYMBOL_SLOT_NOT_FOUND; | |
1543 | slot->objfile_context = objfile_context; | |
1544 | slot->value.name = xstrdup (name); | |
1545 | slot->domain = domain; | |
1546 | } | |
1547 | ||
1548 | /* Flush the symbol cache of PSPACE. */ | |
1549 | ||
1550 | static void | |
1551 | symbol_cache_flush (struct program_space *pspace) | |
1552 | { | |
1553 | ada_clear_symbol_cache (pspace); | |
1554 | struct symbol_cache *cache = symbol_cache_key.get (pspace); | |
1555 | int pass; | |
1556 | ||
1557 | if (cache == NULL) | |
1558 | return; | |
1559 | if (cache->global_symbols == NULL) | |
1560 | { | |
1561 | gdb_assert (symbol_cache_size == 0); | |
1562 | gdb_assert (cache->static_symbols == NULL); | |
1563 | return; | |
1564 | } | |
1565 | ||
1566 | /* If the cache is untouched since the last flush, early exit. | |
1567 | This is important for performance during the startup of a program linked | |
1568 | with 100s (or 1000s) of shared libraries. */ | |
1569 | if (cache->global_symbols->misses == 0 | |
1570 | && cache->static_symbols->misses == 0) | |
1571 | return; | |
1572 | ||
1573 | gdb_assert (cache->global_symbols->size == symbol_cache_size); | |
1574 | gdb_assert (cache->static_symbols->size == symbol_cache_size); | |
1575 | ||
1576 | for (pass = 0; pass < 2; ++pass) | |
1577 | { | |
1578 | struct block_symbol_cache *bsc | |
1579 | = pass == 0 ? cache->global_symbols : cache->static_symbols; | |
1580 | unsigned int i; | |
1581 | ||
1582 | for (i = 0; i < bsc->size; ++i) | |
1583 | symbol_cache_clear_slot (&bsc->symbols[i]); | |
1584 | } | |
1585 | ||
1586 | cache->global_symbols->hits = 0; | |
1587 | cache->global_symbols->misses = 0; | |
1588 | cache->global_symbols->collisions = 0; | |
1589 | cache->static_symbols->hits = 0; | |
1590 | cache->static_symbols->misses = 0; | |
1591 | cache->static_symbols->collisions = 0; | |
1592 | } | |
1593 | ||
1594 | /* Dump CACHE. */ | |
1595 | ||
1596 | static void | |
1597 | symbol_cache_dump (const struct symbol_cache *cache) | |
1598 | { | |
1599 | int pass; | |
1600 | ||
1601 | if (cache->global_symbols == NULL) | |
1602 | { | |
1603 | gdb_printf (" <disabled>\n"); | |
1604 | return; | |
1605 | } | |
1606 | ||
1607 | for (pass = 0; pass < 2; ++pass) | |
1608 | { | |
1609 | const struct block_symbol_cache *bsc | |
1610 | = pass == 0 ? cache->global_symbols : cache->static_symbols; | |
1611 | unsigned int i; | |
1612 | ||
1613 | if (pass == 0) | |
1614 | gdb_printf ("Global symbols:\n"); | |
1615 | else | |
1616 | gdb_printf ("Static symbols:\n"); | |
1617 | ||
1618 | for (i = 0; i < bsc->size; ++i) | |
1619 | { | |
1620 | const struct symbol_cache_slot *slot = &bsc->symbols[i]; | |
1621 | ||
1622 | QUIT; | |
1623 | ||
1624 | switch (slot->state) | |
1625 | { | |
1626 | case SYMBOL_SLOT_UNUSED: | |
1627 | break; | |
1628 | case SYMBOL_SLOT_NOT_FOUND: | |
1629 | gdb_printf (" [%4u] = %s, %s %s (not found)\n", i, | |
1630 | host_address_to_string (slot->objfile_context), | |
1631 | slot->value.name, | |
1632 | domain_name (slot->domain).c_str ()); | |
1633 | break; | |
1634 | case SYMBOL_SLOT_FOUND: | |
1635 | { | |
1636 | struct symbol *found = slot->value.found.symbol; | |
1637 | const struct objfile *context = slot->objfile_context; | |
1638 | ||
1639 | gdb_printf (" [%4u] = %s, %s %s\n", i, | |
1640 | host_address_to_string (context), | |
1641 | found->print_name (), | |
1642 | domain_name (found->domain ())); | |
1643 | break; | |
1644 | } | |
1645 | } | |
1646 | } | |
1647 | } | |
1648 | } | |
1649 | ||
1650 | /* The "mt print symbol-cache" command. */ | |
1651 | ||
1652 | static void | |
1653 | maintenance_print_symbol_cache (const char *args, int from_tty) | |
1654 | { | |
1655 | for (struct program_space *pspace : program_spaces) | |
1656 | { | |
1657 | struct symbol_cache *cache; | |
1658 | ||
1659 | gdb_printf (_("Symbol cache for pspace %d\n%s:\n"), | |
1660 | pspace->num, | |
1661 | pspace->symfile_object_file != NULL | |
1662 | ? objfile_name (pspace->symfile_object_file) | |
1663 | : "(no object file)"); | |
1664 | ||
1665 | /* If the cache hasn't been created yet, avoid creating one. */ | |
1666 | cache = symbol_cache_key.get (pspace); | |
1667 | if (cache == NULL) | |
1668 | gdb_printf (" <empty>\n"); | |
1669 | else | |
1670 | symbol_cache_dump (cache); | |
1671 | } | |
1672 | } | |
1673 | ||
1674 | /* The "mt flush-symbol-cache" command. */ | |
1675 | ||
1676 | static void | |
1677 | maintenance_flush_symbol_cache (const char *args, int from_tty) | |
1678 | { | |
1679 | for (struct program_space *pspace : program_spaces) | |
1680 | { | |
1681 | symbol_cache_flush (pspace); | |
1682 | } | |
1683 | } | |
1684 | ||
1685 | /* Print usage statistics of CACHE. */ | |
1686 | ||
1687 | static void | |
1688 | symbol_cache_stats (struct symbol_cache *cache) | |
1689 | { | |
1690 | int pass; | |
1691 | ||
1692 | if (cache->global_symbols == NULL) | |
1693 | { | |
1694 | gdb_printf (" <disabled>\n"); | |
1695 | return; | |
1696 | } | |
1697 | ||
1698 | for (pass = 0; pass < 2; ++pass) | |
1699 | { | |
1700 | const struct block_symbol_cache *bsc | |
1701 | = pass == 0 ? cache->global_symbols : cache->static_symbols; | |
1702 | ||
1703 | QUIT; | |
1704 | ||
1705 | if (pass == 0) | |
1706 | gdb_printf ("Global block cache stats:\n"); | |
1707 | else | |
1708 | gdb_printf ("Static block cache stats:\n"); | |
1709 | ||
1710 | gdb_printf (" size: %u\n", bsc->size); | |
1711 | gdb_printf (" hits: %u\n", bsc->hits); | |
1712 | gdb_printf (" misses: %u\n", bsc->misses); | |
1713 | gdb_printf (" collisions: %u\n", bsc->collisions); | |
1714 | } | |
1715 | } | |
1716 | ||
1717 | /* The "mt print symbol-cache-statistics" command. */ | |
1718 | ||
1719 | static void | |
1720 | maintenance_print_symbol_cache_statistics (const char *args, int from_tty) | |
1721 | { | |
1722 | for (struct program_space *pspace : program_spaces) | |
1723 | { | |
1724 | struct symbol_cache *cache; | |
1725 | ||
1726 | gdb_printf (_("Symbol cache statistics for pspace %d\n%s:\n"), | |
1727 | pspace->num, | |
1728 | pspace->symfile_object_file != NULL | |
1729 | ? objfile_name (pspace->symfile_object_file) | |
1730 | : "(no object file)"); | |
1731 | ||
1732 | /* If the cache hasn't been created yet, avoid creating one. */ | |
1733 | cache = symbol_cache_key.get (pspace); | |
1734 | if (cache == NULL) | |
1735 | gdb_printf (" empty, no stats available\n"); | |
1736 | else | |
1737 | symbol_cache_stats (cache); | |
1738 | } | |
1739 | } | |
1740 | ||
1741 | /* This module's 'new_objfile' observer. */ | |
1742 | ||
1743 | static void | |
1744 | symtab_new_objfile_observer (struct objfile *objfile) | |
1745 | { | |
1746 | symbol_cache_flush (objfile->pspace ()); | |
1747 | } | |
1748 | ||
1749 | /* This module's 'all_objfiles_removed' observer. */ | |
1750 | ||
1751 | static void | |
1752 | symtab_all_objfiles_removed (program_space *pspace) | |
1753 | { | |
1754 | symbol_cache_flush (pspace); | |
1755 | ||
1756 | /* Forget everything we know about the main function. */ | |
1757 | main_progspace_key.clear (pspace); | |
1758 | } | |
1759 | ||
1760 | /* This module's 'free_objfile' observer. */ | |
1761 | ||
1762 | static void | |
1763 | symtab_free_objfile_observer (struct objfile *objfile) | |
1764 | { | |
1765 | symbol_cache_flush (objfile->pspace ()); | |
1766 | } | |
1767 | \f | |
1768 | /* See symtab.h. */ | |
1769 | ||
1770 | void | |
1771 | fixup_symbol_section (struct symbol *sym, struct objfile *objfile) | |
1772 | { | |
1773 | gdb_assert (sym != nullptr); | |
1774 | gdb_assert (sym->is_objfile_owned ()); | |
1775 | gdb_assert (objfile != nullptr); | |
1776 | gdb_assert (sym->section_index () == -1); | |
1777 | ||
1778 | /* Note that if this ends up as -1, fixup_section will handle that | |
1779 | reasonably well. So, it's fine to use the objfile's section | |
1780 | index without doing the check that is done by the wrapper macros | |
1781 | like SECT_OFF_TEXT. */ | |
1782 | int fallback; | |
1783 | switch (sym->aclass ()) | |
1784 | { | |
1785 | case LOC_STATIC: | |
1786 | fallback = objfile->sect_index_data; | |
1787 | break; | |
1788 | ||
1789 | case LOC_LABEL: | |
1790 | fallback = objfile->sect_index_text; | |
1791 | break; | |
1792 | ||
1793 | default: | |
1794 | /* Nothing else will be listed in the minsyms -- no use looking | |
1795 | it up. */ | |
1796 | return; | |
1797 | } | |
1798 | ||
1799 | CORE_ADDR addr = sym->value_address (); | |
1800 | ||
1801 | struct minimal_symbol *msym; | |
1802 | ||
1803 | /* First, check whether a minimal symbol with the same name exists | |
1804 | and points to the same address. The address check is required | |
1805 | e.g. on PowerPC64, where the minimal symbol for a function will | |
1806 | point to the function descriptor, while the debug symbol will | |
1807 | point to the actual function code. */ | |
1808 | msym = lookup_minimal_symbol_by_pc_name (addr, sym->linkage_name (), | |
1809 | objfile); | |
1810 | if (msym) | |
1811 | sym->set_section_index (msym->section_index ()); | |
1812 | else | |
1813 | { | |
1814 | /* Static, function-local variables do appear in the linker | |
1815 | (minimal) symbols, but are frequently given names that won't | |
1816 | be found via lookup_minimal_symbol(). E.g., it has been | |
1817 | observed in frv-uclinux (ELF) executables that a static, | |
1818 | function-local variable named "foo" might appear in the | |
1819 | linker symbols as "foo.6" or "foo.3". Thus, there is no | |
1820 | point in attempting to extend the lookup-by-name mechanism to | |
1821 | handle this case due to the fact that there can be multiple | |
1822 | names. | |
1823 | ||
1824 | So, instead, search the section table when lookup by name has | |
1825 | failed. The ``addr'' and ``endaddr'' fields may have already | |
1826 | been relocated. If so, the relocation offset needs to be | |
1827 | subtracted from these values when performing the comparison. | |
1828 | We unconditionally subtract it, because, when no relocation | |
1829 | has been performed, the value will simply be zero. | |
1830 | ||
1831 | The address of the symbol whose section we're fixing up HAS | |
1832 | NOT BEEN adjusted (relocated) yet. It can't have been since | |
1833 | the section isn't yet known and knowing the section is | |
1834 | necessary in order to add the correct relocation value. In | |
1835 | other words, we wouldn't even be in this function (attempting | |
1836 | to compute the section) if it were already known. | |
1837 | ||
1838 | Note that it is possible to search the minimal symbols | |
1839 | (subtracting the relocation value if necessary) to find the | |
1840 | matching minimal symbol, but this is overkill and much less | |
1841 | efficient. It is not necessary to find the matching minimal | |
1842 | symbol, only its section. | |
1843 | ||
1844 | Note that this technique (of doing a section table search) | |
1845 | can fail when unrelocated section addresses overlap. For | |
1846 | this reason, we still attempt a lookup by name prior to doing | |
1847 | a search of the section table. */ | |
1848 | ||
1849 | for (obj_section *s : objfile->sections ()) | |
1850 | { | |
1851 | if ((bfd_section_flags (s->the_bfd_section) & SEC_ALLOC) == 0) | |
1852 | continue; | |
1853 | ||
1854 | int idx = s - objfile->sections_start; | |
1855 | CORE_ADDR offset = objfile->section_offsets[idx]; | |
1856 | ||
1857 | if (fallback == -1) | |
1858 | fallback = idx; | |
1859 | ||
1860 | if (s->addr () - offset <= addr && addr < s->endaddr () - offset) | |
1861 | { | |
1862 | sym->set_section_index (idx); | |
1863 | return; | |
1864 | } | |
1865 | } | |
1866 | ||
1867 | /* If we didn't find the section, assume it is in the first | |
1868 | section. If there is no allocated section, then it hardly | |
1869 | matters what we pick, so just pick zero. */ | |
1870 | if (fallback == -1) | |
1871 | sym->set_section_index (0); | |
1872 | else | |
1873 | sym->set_section_index (fallback); | |
1874 | } | |
1875 | } | |
1876 | ||
1877 | /* See symtab.h. */ | |
1878 | ||
1879 | demangle_for_lookup_info::demangle_for_lookup_info | |
1880 | (const lookup_name_info &lookup_name, language lang) | |
1881 | { | |
1882 | demangle_result_storage storage; | |
1883 | ||
1884 | if (lookup_name.ignore_parameters () && lang == language_cplus) | |
1885 | { | |
1886 | gdb::unique_xmalloc_ptr<char> without_params | |
1887 | = cp_remove_params_if_any (lookup_name.c_str (), | |
1888 | lookup_name.completion_mode ()); | |
1889 | ||
1890 | if (without_params != NULL) | |
1891 | { | |
1892 | if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME) | |
1893 | m_demangled_name = demangle_for_lookup (without_params.get (), | |
1894 | lang, storage); | |
1895 | return; | |
1896 | } | |
1897 | } | |
1898 | ||
1899 | if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME) | |
1900 | m_demangled_name = lookup_name.c_str (); | |
1901 | else | |
1902 | m_demangled_name = demangle_for_lookup (lookup_name.c_str (), | |
1903 | lang, storage); | |
1904 | } | |
1905 | ||
1906 | /* See symtab.h. */ | |
1907 | ||
1908 | const lookup_name_info & | |
1909 | lookup_name_info::match_any () | |
1910 | { | |
1911 | /* Lookup any symbol that "" would complete. I.e., this matches all | |
1912 | symbol names. */ | |
1913 | static const lookup_name_info lookup_name ("", symbol_name_match_type::WILD, | |
1914 | true); | |
1915 | ||
1916 | return lookup_name; | |
1917 | } | |
1918 | ||
1919 | /* See symtab.h. */ | |
1920 | ||
1921 | unsigned int | |
1922 | lookup_name_info::search_name_hash (language lang) const | |
1923 | { | |
1924 | /* This works around an obscure problem. If currently in Ada mode, | |
1925 | and the name is wrapped in '<...>' (indicating verbatim mode), | |
1926 | force the use of the Ada language here so that the '<' and '>' | |
1927 | will be removed. */ | |
1928 | if (current_language->la_language == language_ada && ada ().verbatim_p ()) | |
1929 | lang = language_ada; | |
1930 | ||
1931 | /* Only compute each language's hash once. */ | |
1932 | if (!m_demangled_hashes_p[lang]) | |
1933 | { | |
1934 | m_demangled_hashes[lang] | |
1935 | = ::search_name_hash (lang, language_lookup_name (lang)); | |
1936 | m_demangled_hashes_p[lang] = true; | |
1937 | } | |
1938 | return m_demangled_hashes[lang]; | |
1939 | } | |
1940 | ||
1941 | /* Compute the demangled form of NAME as used by the various symbol | |
1942 | lookup functions. The result can either be the input NAME | |
1943 | directly, or a pointer to a buffer owned by the STORAGE object. | |
1944 | ||
1945 | For Ada, this function just returns NAME, unmodified. | |
1946 | Normally, Ada symbol lookups are performed using the encoded name | |
1947 | rather than the demangled name, and so it might seem to make sense | |
1948 | for this function to return an encoded version of NAME. | |
1949 | Unfortunately, we cannot do this, because this function is used in | |
1950 | circumstances where it is not appropriate to try to encode NAME. | |
1951 | For instance, when displaying the frame info, we demangle the name | |
1952 | of each parameter, and then perform a symbol lookup inside our | |
1953 | function using that demangled name. In Ada, certain functions | |
1954 | have internally-generated parameters whose name contain uppercase | |
1955 | characters. Encoding those name would result in those uppercase | |
1956 | characters to become lowercase, and thus cause the symbol lookup | |
1957 | to fail. */ | |
1958 | ||
1959 | const char * | |
1960 | demangle_for_lookup (const char *name, enum language lang, | |
1961 | demangle_result_storage &storage) | |
1962 | { | |
1963 | /* If we are using C++, D, or Go, demangle the name before doing a | |
1964 | lookup, so we can always binary search. */ | |
1965 | if (lang == language_cplus) | |
1966 | { | |
1967 | gdb::unique_xmalloc_ptr<char> demangled_name | |
1968 | = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS); | |
1969 | if (demangled_name != NULL) | |
1970 | return storage.set_malloc_ptr (std::move (demangled_name)); | |
1971 | ||
1972 | /* If we were given a non-mangled name, canonicalize it | |
1973 | according to the language (so far only for C++). */ | |
1974 | gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name); | |
1975 | if (canon != nullptr) | |
1976 | return storage.set_malloc_ptr (std::move (canon)); | |
1977 | } | |
1978 | else if (lang == language_d) | |
1979 | { | |
1980 | gdb::unique_xmalloc_ptr<char> demangled_name = d_demangle (name, 0); | |
1981 | if (demangled_name != NULL) | |
1982 | return storage.set_malloc_ptr (std::move (demangled_name)); | |
1983 | } | |
1984 | else if (lang == language_go) | |
1985 | { | |
1986 | gdb::unique_xmalloc_ptr<char> demangled_name | |
1987 | = language_def (language_go)->demangle_symbol (name, 0); | |
1988 | if (demangled_name != NULL) | |
1989 | return storage.set_malloc_ptr (std::move (demangled_name)); | |
1990 | } | |
1991 | ||
1992 | return name; | |
1993 | } | |
1994 | ||
1995 | /* See symtab.h. */ | |
1996 | ||
1997 | unsigned int | |
1998 | search_name_hash (enum language language, const char *search_name) | |
1999 | { | |
2000 | return language_def (language)->search_name_hash (search_name); | |
2001 | } | |
2002 | ||
2003 | /* See symtab.h. | |
2004 | ||
2005 | This function (or rather its subordinates) have a bunch of loops and | |
2006 | it would seem to be attractive to put in some QUIT's (though I'm not really | |
2007 | sure whether it can run long enough to be really important). But there | |
2008 | are a few calls for which it would appear to be bad news to quit | |
2009 | out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note | |
2010 | that there is C++ code below which can error(), but that probably | |
2011 | doesn't affect these calls since they are looking for a known | |
2012 | variable and thus can probably assume it will never hit the C++ | |
2013 | code). */ | |
2014 | ||
2015 | struct block_symbol | |
2016 | lookup_symbol_in_language (const char *name, const struct block *block, | |
2017 | const domain_search_flags domain, | |
2018 | enum language lang, | |
2019 | struct field_of_this_result *is_a_field_of_this) | |
2020 | { | |
2021 | SYMBOL_LOOKUP_SCOPED_DEBUG_ENTER_EXIT; | |
2022 | ||
2023 | demangle_result_storage storage; | |
2024 | const char *modified_name = demangle_for_lookup (name, lang, storage); | |
2025 | ||
2026 | return lookup_symbol_aux (modified_name, | |
2027 | symbol_name_match_type::FULL, | |
2028 | block, domain, lang, | |
2029 | is_a_field_of_this); | |
2030 | } | |
2031 | ||
2032 | /* See symtab.h. */ | |
2033 | ||
2034 | struct block_symbol | |
2035 | lookup_symbol (const char *name, const struct block *block, | |
2036 | domain_search_flags domain, | |
2037 | struct field_of_this_result *is_a_field_of_this) | |
2038 | { | |
2039 | return lookup_symbol_in_language (name, block, domain, | |
2040 | current_language->la_language, | |
2041 | is_a_field_of_this); | |
2042 | } | |
2043 | ||
2044 | /* See symtab.h. */ | |
2045 | ||
2046 | struct block_symbol | |
2047 | lookup_symbol_search_name (const char *search_name, const struct block *block, | |
2048 | domain_search_flags domain) | |
2049 | { | |
2050 | return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME, | |
2051 | block, domain, language_asm, NULL); | |
2052 | } | |
2053 | ||
2054 | /* See symtab.h. */ | |
2055 | ||
2056 | struct block_symbol | |
2057 | lookup_language_this (const struct language_defn *lang, | |
2058 | const struct block *block) | |
2059 | { | |
2060 | if (lang->name_of_this () == NULL || block == NULL) | |
2061 | return {}; | |
2062 | ||
2063 | symbol_lookup_debug_printf_v ("lookup_language_this (%s, %s (objfile %s))", | |
2064 | lang->name (), host_address_to_string (block), | |
2065 | objfile_debug_name (block->objfile ())); | |
2066 | ||
2067 | lookup_name_info this_name (lang->name_of_this (), | |
2068 | symbol_name_match_type::SEARCH_NAME); | |
2069 | ||
2070 | while (block) | |
2071 | { | |
2072 | struct symbol *sym; | |
2073 | ||
2074 | sym = block_lookup_symbol (block, this_name, SEARCH_VFT); | |
2075 | if (sym != NULL) | |
2076 | { | |
2077 | symbol_lookup_debug_printf_v | |
2078 | ("lookup_language_this (...) = %s (%s, block %s)", | |
2079 | sym->print_name (), host_address_to_string (sym), | |
2080 | host_address_to_string (block)); | |
2081 | return (struct block_symbol) {sym, block}; | |
2082 | } | |
2083 | if (block->function ()) | |
2084 | break; | |
2085 | block = block->superblock (); | |
2086 | } | |
2087 | ||
2088 | symbol_lookup_debug_printf_v ("lookup_language_this (...) = NULL"); | |
2089 | return {}; | |
2090 | } | |
2091 | ||
2092 | /* Given TYPE, a structure/union, | |
2093 | return 1 if the component named NAME from the ultimate target | |
2094 | structure/union is defined, otherwise, return 0. */ | |
2095 | ||
2096 | static int | |
2097 | check_field (struct type *type, const char *name, | |
2098 | struct field_of_this_result *is_a_field_of_this) | |
2099 | { | |
2100 | int i; | |
2101 | ||
2102 | /* The type may be a stub. */ | |
2103 | type = check_typedef (type); | |
2104 | ||
2105 | for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
2106 | { | |
2107 | const char *t_field_name = type->field (i).name (); | |
2108 | ||
2109 | if (t_field_name && (strcmp_iw (t_field_name, name) == 0)) | |
2110 | { | |
2111 | is_a_field_of_this->type = type; | |
2112 | is_a_field_of_this->field = &type->field (i); | |
2113 | return 1; | |
2114 | } | |
2115 | } | |
2116 | ||
2117 | /* C++: If it was not found as a data field, then try to return it | |
2118 | as a pointer to a method. */ | |
2119 | ||
2120 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
2121 | { | |
2122 | if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0) | |
2123 | { | |
2124 | is_a_field_of_this->type = type; | |
2125 | is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i); | |
2126 | return 1; | |
2127 | } | |
2128 | } | |
2129 | ||
2130 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2131 | if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this)) | |
2132 | return 1; | |
2133 | ||
2134 | return 0; | |
2135 | } | |
2136 | ||
2137 | /* Behave like lookup_symbol except that NAME is the natural name | |
2138 | (e.g., demangled name) of the symbol that we're looking for. */ | |
2139 | ||
2140 | static struct block_symbol | |
2141 | lookup_symbol_aux (const char *name, symbol_name_match_type match_type, | |
2142 | const struct block *block, | |
2143 | const domain_search_flags domain, enum language language, | |
2144 | struct field_of_this_result *is_a_field_of_this) | |
2145 | { | |
2146 | SYMBOL_LOOKUP_SCOPED_DEBUG_ENTER_EXIT; | |
2147 | ||
2148 | struct block_symbol result; | |
2149 | const struct language_defn *langdef; | |
2150 | ||
2151 | if (symbol_lookup_debug) | |
2152 | { | |
2153 | struct objfile *objfile = (block == nullptr | |
2154 | ? nullptr : block->objfile ()); | |
2155 | ||
2156 | symbol_lookup_debug_printf | |
2157 | ("demangled symbol name = \"%s\", block @ %s (objfile %s)", | |
2158 | name, host_address_to_string (block), | |
2159 | objfile != NULL ? objfile_debug_name (objfile) : "NULL"); | |
2160 | symbol_lookup_debug_printf | |
2161 | ("domain name = \"%s\", language = \"%s\")", | |
2162 | domain_name (domain).c_str (), language_str (language)); | |
2163 | } | |
2164 | ||
2165 | langdef = language_def (language); | |
2166 | ||
2167 | /* Search specified block and its superiors. Don't search | |
2168 | STATIC_BLOCK or GLOBAL_BLOCK. */ | |
2169 | ||
2170 | result = lookup_local_symbol (name, match_type, block, domain, langdef); | |
2171 | if (result.symbol != NULL) | |
2172 | { | |
2173 | symbol_lookup_debug_printf | |
2174 | ("found symbol @ %s (using lookup_local_symbol)", | |
2175 | host_address_to_string (result.symbol)); | |
2176 | return result; | |
2177 | } | |
2178 | ||
2179 | /* If requested to do so by the caller and if appropriate for LANGUAGE, | |
2180 | check to see if NAME is a field of `this'. */ | |
2181 | ||
2182 | /* Don't do this check if we are searching for a struct. It will | |
2183 | not be found by check_field, but will be found by other | |
2184 | means. */ | |
2185 | if (is_a_field_of_this != NULL && (domain & SEARCH_STRUCT_DOMAIN) == 0) | |
2186 | { | |
2187 | result = lookup_language_this (langdef, block); | |
2188 | ||
2189 | if (result.symbol) | |
2190 | { | |
2191 | struct type *t = result.symbol->type (); | |
2192 | ||
2193 | /* I'm not really sure that type of this can ever | |
2194 | be typedefed; just be safe. */ | |
2195 | t = check_typedef (t); | |
2196 | if (t->is_pointer_or_reference ()) | |
2197 | t = t->target_type (); | |
2198 | ||
2199 | if (t->code () != TYPE_CODE_STRUCT | |
2200 | && t->code () != TYPE_CODE_UNION) | |
2201 | error (_("Internal error: `%s' is not an aggregate"), | |
2202 | langdef->name_of_this ()); | |
2203 | ||
2204 | if (check_field (t, name, is_a_field_of_this)) | |
2205 | { | |
2206 | symbol_lookup_debug_printf ("no symbol found"); | |
2207 | return {}; | |
2208 | } | |
2209 | } | |
2210 | } | |
2211 | ||
2212 | /* Now do whatever is appropriate for LANGUAGE to look | |
2213 | up static and global variables. */ | |
2214 | ||
2215 | result = langdef->lookup_symbol_nonlocal (name, block, domain); | |
2216 | if (result.symbol != NULL) | |
2217 | { | |
2218 | symbol_lookup_debug_printf | |
2219 | ("found symbol @ %s (using language lookup_symbol_nonlocal)", | |
2220 | host_address_to_string (result.symbol)); | |
2221 | return result; | |
2222 | } | |
2223 | ||
2224 | /* Now search all static file-level symbols. Not strictly correct, | |
2225 | but more useful than an error. */ | |
2226 | ||
2227 | result = lookup_static_symbol (name, domain); | |
2228 | symbol_lookup_debug_printf | |
2229 | ("found symbol @ %s (using lookup_static_symbol)", | |
2230 | result.symbol != NULL ? host_address_to_string (result.symbol) : "NULL"); | |
2231 | return result; | |
2232 | } | |
2233 | ||
2234 | /* Check to see if the symbol is defined in BLOCK or its superiors. | |
2235 | Don't search STATIC_BLOCK or GLOBAL_BLOCK. */ | |
2236 | ||
2237 | static struct block_symbol | |
2238 | lookup_local_symbol (const char *name, | |
2239 | symbol_name_match_type match_type, | |
2240 | const struct block *block, | |
2241 | const domain_search_flags domain, | |
2242 | const struct language_defn *langdef) | |
2243 | { | |
2244 | if (block == nullptr) | |
2245 | return {}; | |
2246 | ||
2247 | const char *scope = block->scope (); | |
2248 | ||
2249 | while (!block->is_global_block () && !block->is_static_block ()) | |
2250 | { | |
2251 | struct symbol *sym = lookup_symbol_in_block (name, match_type, | |
2252 | block, domain); | |
2253 | if (sym != NULL) | |
2254 | return (struct block_symbol) {sym, block}; | |
2255 | ||
2256 | struct symbol *function = block->function (); | |
2257 | if (function != nullptr && function->is_template_function ()) | |
2258 | { | |
2259 | struct template_symbol *templ = (struct template_symbol *) function; | |
2260 | sym = search_symbol_list (name, | |
2261 | templ->n_template_arguments, | |
2262 | templ->template_arguments); | |
2263 | if (sym != nullptr) | |
2264 | return (struct block_symbol) {sym, block}; | |
2265 | } | |
2266 | ||
2267 | struct block_symbol blocksym | |
2268 | = langdef->lookup_symbol_local (scope, name, block, domain); | |
2269 | if (blocksym.symbol != nullptr) | |
2270 | return blocksym; | |
2271 | ||
2272 | if (block->inlined_p ()) | |
2273 | break; | |
2274 | block = block->superblock (); | |
2275 | } | |
2276 | ||
2277 | /* We've reached the end of the function without finding a result. */ | |
2278 | ||
2279 | return {}; | |
2280 | } | |
2281 | ||
2282 | /* See symtab.h. */ | |
2283 | ||
2284 | struct symbol * | |
2285 | lookup_symbol_in_block (const char *name, symbol_name_match_type match_type, | |
2286 | const struct block *block, | |
2287 | const domain_search_flags domain) | |
2288 | { | |
2289 | enter_symbol_lookup tmp; | |
2290 | ||
2291 | struct symbol *sym; | |
2292 | ||
2293 | if (symbol_lookup_debug) | |
2294 | { | |
2295 | struct objfile *objfile | |
2296 | = block == nullptr ? nullptr : block->objfile (); | |
2297 | ||
2298 | symbol_lookup_debug_printf_v | |
2299 | ("lookup_symbol_in_block (%s, %s (objfile %s), %s)", | |
2300 | name, host_address_to_string (block), | |
2301 | objfile != nullptr ? objfile_debug_name (objfile) : "NULL", | |
2302 | domain_name (domain).c_str ()); | |
2303 | } | |
2304 | ||
2305 | lookup_name_info lookup_name (name, match_type); | |
2306 | sym = block_lookup_symbol (block, lookup_name, domain); | |
2307 | if (sym) | |
2308 | { | |
2309 | symbol_lookup_debug_printf_v ("lookup_symbol_in_block (...) = %s", | |
2310 | host_address_to_string (sym)); | |
2311 | return sym; | |
2312 | } | |
2313 | ||
2314 | symbol_lookup_debug_printf_v ("lookup_symbol_in_block (...) = NULL"); | |
2315 | return NULL; | |
2316 | } | |
2317 | ||
2318 | /* See symtab.h. */ | |
2319 | ||
2320 | struct block_symbol | |
2321 | lookup_global_symbol_from_objfile (struct objfile *main_objfile, | |
2322 | enum block_enum block_index, | |
2323 | const char *name, | |
2324 | const domain_search_flags domain) | |
2325 | { | |
2326 | enter_symbol_lookup tmp; | |
2327 | ||
2328 | gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK); | |
2329 | ||
2330 | for (objfile *objfile : main_objfile->separate_debug_objfiles ()) | |
2331 | { | |
2332 | struct block_symbol result | |
2333 | = lookup_symbol_in_objfile (objfile, block_index, name, domain); | |
2334 | ||
2335 | if (result.symbol != nullptr) | |
2336 | return result; | |
2337 | } | |
2338 | ||
2339 | return {}; | |
2340 | } | |
2341 | ||
2342 | /* Check to see if the symbol is defined in one of the OBJFILE's | |
2343 | symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK, | |
2344 | depending on whether or not we want to search global symbols or | |
2345 | static symbols. */ | |
2346 | ||
2347 | static struct block_symbol | |
2348 | lookup_symbol_in_objfile_symtabs (struct objfile *objfile, | |
2349 | enum block_enum block_index, const char *name, | |
2350 | const domain_search_flags domain) | |
2351 | { | |
2352 | gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK); | |
2353 | ||
2354 | symbol_lookup_debug_printf_v | |
2355 | ("lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)", | |
2356 | objfile_debug_name (objfile), | |
2357 | block_index == GLOBAL_BLOCK ? "GLOBAL_BLOCK" : "STATIC_BLOCK", | |
2358 | name, domain_name (domain).c_str ()); | |
2359 | ||
2360 | struct block_symbol other; | |
2361 | other.symbol = NULL; | |
2362 | for (compunit_symtab *cust : objfile->compunits ()) | |
2363 | { | |
2364 | const struct blockvector *bv; | |
2365 | const struct block *block; | |
2366 | struct block_symbol result; | |
2367 | ||
2368 | bv = cust->blockvector (); | |
2369 | block = bv->block (block_index); | |
2370 | result.symbol = block_lookup_symbol_primary (block, name, domain); | |
2371 | result.block = block; | |
2372 | if (result.symbol == NULL) | |
2373 | continue; | |
2374 | if (best_symbol (result.symbol, domain)) | |
2375 | { | |
2376 | other = result; | |
2377 | break; | |
2378 | } | |
2379 | if (result.symbol->matches (domain)) | |
2380 | { | |
2381 | struct symbol *better | |
2382 | = better_symbol (other.symbol, result.symbol, domain); | |
2383 | if (better != other.symbol) | |
2384 | { | |
2385 | other.symbol = better; | |
2386 | other.block = block; | |
2387 | } | |
2388 | } | |
2389 | } | |
2390 | ||
2391 | if (other.symbol != NULL) | |
2392 | { | |
2393 | symbol_lookup_debug_printf_v | |
2394 | ("lookup_symbol_in_objfile_symtabs (...) = %s (block %s)", | |
2395 | host_address_to_string (other.symbol), | |
2396 | host_address_to_string (other.block)); | |
2397 | return other; | |
2398 | } | |
2399 | ||
2400 | symbol_lookup_debug_printf_v | |
2401 | ("lookup_symbol_in_objfile_symtabs (...) = NULL"); | |
2402 | return {}; | |
2403 | } | |
2404 | ||
2405 | /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols. | |
2406 | Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE | |
2407 | and all associated separate debug objfiles. | |
2408 | ||
2409 | Normally we only look in OBJFILE, and not any separate debug objfiles | |
2410 | because the outer loop will cause them to be searched too. This case is | |
2411 | different. Here we're called from search_symbols where it will only | |
2412 | call us for the objfile that contains a matching minsym. */ | |
2413 | ||
2414 | static struct block_symbol | |
2415 | lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile, | |
2416 | const char *linkage_name, | |
2417 | domain_search_flags domain) | |
2418 | { | |
2419 | enum language lang = current_language->la_language; | |
2420 | struct objfile *main_objfile; | |
2421 | ||
2422 | demangle_result_storage storage; | |
2423 | const char *modified_name = demangle_for_lookup (linkage_name, lang, storage); | |
2424 | ||
2425 | if (objfile->separate_debug_objfile_backlink) | |
2426 | main_objfile = objfile->separate_debug_objfile_backlink; | |
2427 | else | |
2428 | main_objfile = objfile; | |
2429 | ||
2430 | for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ()) | |
2431 | { | |
2432 | struct block_symbol result; | |
2433 | ||
2434 | result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK, | |
2435 | modified_name, domain); | |
2436 | if (result.symbol == NULL) | |
2437 | result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK, | |
2438 | modified_name, domain); | |
2439 | if (result.symbol != NULL) | |
2440 | return result; | |
2441 | } | |
2442 | ||
2443 | return {}; | |
2444 | } | |
2445 | ||
2446 | /* A helper function that throws an exception when a symbol was found | |
2447 | in a psymtab but not in a symtab. */ | |
2448 | ||
2449 | [[noreturn]] static void | |
2450 | error_in_psymtab_expansion (enum block_enum block_index, const char *name, | |
2451 | struct compunit_symtab *cust) | |
2452 | { | |
2453 | error (_("\ | |
2454 | Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\ | |
2455 | %s may be an inlined function, or may be a template function\n \ | |
2456 | (if a template, try specifying an instantiation: %s<type>)."), | |
2457 | block_index == GLOBAL_BLOCK ? "global" : "static", | |
2458 | name, | |
2459 | symtab_to_filename_for_display (cust->primary_filetab ()), | |
2460 | name, name); | |
2461 | } | |
2462 | ||
2463 | /* A helper function for various lookup routines that interfaces with | |
2464 | the "quick" symbol table functions. */ | |
2465 | ||
2466 | static struct block_symbol | |
2467 | lookup_symbol_via_quick_fns (struct objfile *objfile, | |
2468 | enum block_enum block_index, const char *name, | |
2469 | const domain_search_flags domain) | |
2470 | { | |
2471 | struct compunit_symtab *cust; | |
2472 | const struct blockvector *bv; | |
2473 | const struct block *block; | |
2474 | struct block_symbol result; | |
2475 | ||
2476 | symbol_lookup_debug_printf_v | |
2477 | ("lookup_symbol_via_quick_fns (%s, %s, %s, %s)", | |
2478 | objfile_debug_name (objfile), | |
2479 | block_index == GLOBAL_BLOCK ? "GLOBAL_BLOCK" : "STATIC_BLOCK", | |
2480 | name, domain_name (domain).c_str ()); | |
2481 | ||
2482 | lookup_name_info lookup_name (name, symbol_name_match_type::FULL); | |
2483 | cust = objfile->lookup_symbol (block_index, lookup_name, domain); | |
2484 | if (cust == NULL) | |
2485 | { | |
2486 | symbol_lookup_debug_printf_v | |
2487 | ("lookup_symbol_via_quick_fns (...) = NULL"); | |
2488 | return {}; | |
2489 | } | |
2490 | ||
2491 | bv = cust->blockvector (); | |
2492 | block = bv->block (block_index); | |
2493 | result.symbol = block_lookup_symbol (block, lookup_name, domain); | |
2494 | if (result.symbol == NULL) | |
2495 | error_in_psymtab_expansion (block_index, name, cust); | |
2496 | ||
2497 | symbol_lookup_debug_printf_v | |
2498 | ("lookup_symbol_via_quick_fns (...) = %s (block %s)", | |
2499 | host_address_to_string (result.symbol), | |
2500 | host_address_to_string (block)); | |
2501 | ||
2502 | result.block = block; | |
2503 | return result; | |
2504 | } | |
2505 | ||
2506 | /* See language.h. */ | |
2507 | ||
2508 | struct block_symbol | |
2509 | language_defn::lookup_symbol_nonlocal (const char *name, | |
2510 | const struct block *block, | |
2511 | const domain_search_flags domain) const | |
2512 | { | |
2513 | struct block_symbol result; | |
2514 | ||
2515 | /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip | |
2516 | the current objfile. Searching the current objfile first is useful | |
2517 | for both matching user expectations as well as performance. */ | |
2518 | ||
2519 | result = lookup_symbol_in_static_block (name, block, domain); | |
2520 | if (result.symbol != NULL) | |
2521 | return result; | |
2522 | ||
2523 | /* If we didn't find a definition for a builtin type in the static block, | |
2524 | search for it now. This is actually the right thing to do and can be | |
2525 | a massive performance win. E.g., when debugging a program with lots of | |
2526 | shared libraries we could search all of them only to find out the | |
2527 | builtin type isn't defined in any of them. This is common for types | |
2528 | like "void". */ | |
2529 | if ((domain & SEARCH_TYPE_DOMAIN) != 0) | |
2530 | { | |
2531 | struct gdbarch *gdbarch; | |
2532 | ||
2533 | if (block == NULL) | |
2534 | gdbarch = current_inferior ()->arch (); | |
2535 | else | |
2536 | gdbarch = block->gdbarch (); | |
2537 | result.symbol = language_lookup_primitive_type_as_symbol (this, | |
2538 | gdbarch, name); | |
2539 | result.block = NULL; | |
2540 | if (result.symbol != NULL) | |
2541 | return result; | |
2542 | } | |
2543 | ||
2544 | return lookup_global_symbol (name, block, domain); | |
2545 | } | |
2546 | ||
2547 | /* See symtab.h. */ | |
2548 | ||
2549 | struct block_symbol | |
2550 | lookup_symbol_in_static_block (const char *name, | |
2551 | const struct block *block, | |
2552 | const domain_search_flags domain) | |
2553 | { | |
2554 | if (block == nullptr) | |
2555 | return {}; | |
2556 | ||
2557 | const struct block *static_block = block->static_block (); | |
2558 | struct symbol *sym; | |
2559 | ||
2560 | if (static_block == NULL) | |
2561 | return {}; | |
2562 | ||
2563 | if (symbol_lookup_debug) | |
2564 | { | |
2565 | struct objfile *objfile = (block == nullptr | |
2566 | ? nullptr : block->objfile ()); | |
2567 | ||
2568 | symbol_lookup_debug_printf | |
2569 | ("lookup_symbol_in_static_block (%s, %s (objfile %s), %s)", | |
2570 | name, host_address_to_string (block), | |
2571 | objfile != nullptr ? objfile_debug_name (objfile) : "NULL", | |
2572 | domain_name (domain).c_str ()); | |
2573 | } | |
2574 | ||
2575 | sym = lookup_symbol_in_block (name, | |
2576 | symbol_name_match_type::FULL, | |
2577 | static_block, domain); | |
2578 | symbol_lookup_debug_printf ("lookup_symbol_in_static_block (...) = %s", | |
2579 | sym != NULL | |
2580 | ? host_address_to_string (sym) : "NULL"); | |
2581 | return (struct block_symbol) {sym, static_block}; | |
2582 | } | |
2583 | ||
2584 | /* Perform the standard symbol lookup of NAME in OBJFILE: | |
2585 | 1) First search expanded symtabs, and if not found | |
2586 | 2) Search the "quick" symtabs (partial or .gdb_index). | |
2587 | BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */ | |
2588 | ||
2589 | static struct block_symbol | |
2590 | lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index, | |
2591 | const char *name, const domain_search_flags domain) | |
2592 | { | |
2593 | struct block_symbol result; | |
2594 | ||
2595 | gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK); | |
2596 | ||
2597 | symbol_lookup_debug_printf ("lookup_symbol_in_objfile (%s, %s, %s, %s)", | |
2598 | objfile_debug_name (objfile), | |
2599 | block_index == GLOBAL_BLOCK | |
2600 | ? "GLOBAL_BLOCK" : "STATIC_BLOCK", | |
2601 | name, domain_name (domain).c_str ()); | |
2602 | ||
2603 | result = lookup_symbol_in_objfile_symtabs (objfile, block_index, | |
2604 | name, domain); | |
2605 | if (result.symbol != NULL) | |
2606 | { | |
2607 | symbol_lookup_debug_printf | |
2608 | ("lookup_symbol_in_objfile (...) = %s (in symtabs)", | |
2609 | host_address_to_string (result.symbol)); | |
2610 | return result; | |
2611 | } | |
2612 | ||
2613 | result = lookup_symbol_via_quick_fns (objfile, block_index, | |
2614 | name, domain); | |
2615 | symbol_lookup_debug_printf ("lookup_symbol_in_objfile (...) = %s%s", | |
2616 | result.symbol != NULL | |
2617 | ? host_address_to_string (result.symbol) | |
2618 | : "NULL", | |
2619 | result.symbol != NULL ? " (via quick fns)" | |
2620 | : ""); | |
2621 | return result; | |
2622 | } | |
2623 | ||
2624 | /* This function contains the common code of lookup_{global,static}_symbol. | |
2625 | OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is | |
2626 | the objfile to start the lookup in. */ | |
2627 | ||
2628 | static struct block_symbol | |
2629 | lookup_global_or_static_symbol (const char *name, | |
2630 | enum block_enum block_index, | |
2631 | struct objfile *objfile, | |
2632 | const domain_search_flags domain) | |
2633 | { | |
2634 | struct symbol_cache *cache = get_symbol_cache (current_program_space); | |
2635 | struct block_symbol result; | |
2636 | struct block_symbol_cache *bsc; | |
2637 | struct symbol_cache_slot *slot; | |
2638 | ||
2639 | gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK); | |
2640 | gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK); | |
2641 | ||
2642 | /* First see if we can find the symbol in the cache. | |
2643 | This works because we use the current objfile to qualify the lookup. */ | |
2644 | result = symbol_cache_lookup (cache, objfile, block_index, name, domain, | |
2645 | &bsc, &slot); | |
2646 | if (result.symbol != NULL) | |
2647 | { | |
2648 | if (SYMBOL_LOOKUP_FAILED_P (result)) | |
2649 | return {}; | |
2650 | return result; | |
2651 | } | |
2652 | ||
2653 | enter_symbol_lookup tmp; | |
2654 | ||
2655 | /* Do a global search (of global blocks, heh). */ | |
2656 | if (result.symbol == NULL) | |
2657 | gdbarch_iterate_over_objfiles_in_search_order | |
2658 | (objfile != NULL ? objfile->arch () : current_inferior ()->arch (), | |
2659 | [&result, block_index, name, domain] (struct objfile *objfile_iter) | |
2660 | { | |
2661 | result = lookup_symbol_in_objfile (objfile_iter, block_index, | |
2662 | name, domain); | |
2663 | return result.symbol != nullptr; | |
2664 | }, | |
2665 | objfile); | |
2666 | ||
2667 | if (result.symbol != NULL) | |
2668 | symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block, | |
2669 | domain); | |
2670 | else | |
2671 | symbol_cache_mark_not_found (bsc, slot, objfile, name, domain); | |
2672 | ||
2673 | return result; | |
2674 | } | |
2675 | ||
2676 | /* See symtab.h. */ | |
2677 | ||
2678 | struct block_symbol | |
2679 | lookup_static_symbol (const char *name, const domain_search_flags domain) | |
2680 | { | |
2681 | return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain); | |
2682 | } | |
2683 | ||
2684 | /* See symtab.h. */ | |
2685 | ||
2686 | struct block_symbol | |
2687 | lookup_global_symbol (const char *name, | |
2688 | const struct block *block, | |
2689 | const domain_search_flags domain) | |
2690 | { | |
2691 | /* If a block was passed in, we want to search the corresponding | |
2692 | global block first. This yields "more expected" behavior, and is | |
2693 | needed to support 'FILENAME'::VARIABLE lookups. */ | |
2694 | const struct block *global_block | |
2695 | = block == nullptr ? nullptr : block->global_block (); | |
2696 | symbol *sym = NULL; | |
2697 | if (global_block != nullptr) | |
2698 | { | |
2699 | sym = lookup_symbol_in_block (name, | |
2700 | symbol_name_match_type::FULL, | |
2701 | global_block, domain); | |
2702 | if (sym != NULL && best_symbol (sym, domain)) | |
2703 | return { sym, global_block }; | |
2704 | } | |
2705 | ||
2706 | struct objfile *objfile = nullptr; | |
2707 | if (block != nullptr) | |
2708 | { | |
2709 | objfile = block->objfile (); | |
2710 | if (objfile->separate_debug_objfile_backlink != nullptr) | |
2711 | objfile = objfile->separate_debug_objfile_backlink; | |
2712 | } | |
2713 | ||
2714 | block_symbol bs | |
2715 | = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain); | |
2716 | if (better_symbol (sym, bs.symbol, domain) == sym) | |
2717 | return { sym, global_block }; | |
2718 | else | |
2719 | return bs; | |
2720 | } | |
2721 | ||
2722 | /* See symtab.h. */ | |
2723 | ||
2724 | bool | |
2725 | symbol::matches (domain_search_flags flags) const | |
2726 | { | |
2727 | /* C++ has a typedef for every tag, and the types are in the struct | |
2728 | domain. */ | |
2729 | if (language () == language_cplus && (flags & SEARCH_TYPE_DOMAIN) != 0) | |
2730 | flags |= SEARCH_STRUCT_DOMAIN; | |
2731 | ||
2732 | return search_flags_matches (flags, m_domain); | |
2733 | } | |
2734 | ||
2735 | /* See symtab.h. */ | |
2736 | ||
2737 | struct type * | |
2738 | lookup_transparent_type (const char *name, domain_search_flags flags) | |
2739 | { | |
2740 | return current_language->lookup_transparent_type (name, flags); | |
2741 | } | |
2742 | ||
2743 | /* A helper for basic_lookup_transparent_type that interfaces with the | |
2744 | "quick" symbol table functions. */ | |
2745 | ||
2746 | static struct type * | |
2747 | basic_lookup_transparent_type_quick (struct objfile *objfile, | |
2748 | enum block_enum block_index, | |
2749 | domain_search_flags flags, | |
2750 | const lookup_name_info &name) | |
2751 | { | |
2752 | struct compunit_symtab *cust; | |
2753 | const struct blockvector *bv; | |
2754 | const struct block *block; | |
2755 | struct symbol *sym; | |
2756 | ||
2757 | cust = objfile->lookup_symbol (block_index, name, flags); | |
2758 | if (cust == NULL) | |
2759 | return NULL; | |
2760 | ||
2761 | bv = cust->blockvector (); | |
2762 | block = bv->block (block_index); | |
2763 | ||
2764 | sym = block_find_symbol (block, name, flags, nullptr); | |
2765 | if (sym == nullptr) | |
2766 | error_in_psymtab_expansion (block_index, name.c_str (), cust); | |
2767 | gdb_assert (!TYPE_IS_OPAQUE (sym->type ())); | |
2768 | return sym->type (); | |
2769 | } | |
2770 | ||
2771 | /* Subroutine of basic_lookup_transparent_type to simplify it. | |
2772 | Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE. | |
2773 | BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */ | |
2774 | ||
2775 | static struct type * | |
2776 | basic_lookup_transparent_type_1 (struct objfile *objfile, | |
2777 | enum block_enum block_index, | |
2778 | domain_search_flags flags, | |
2779 | const lookup_name_info &name) | |
2780 | { | |
2781 | const struct blockvector *bv; | |
2782 | const struct block *block; | |
2783 | const struct symbol *sym; | |
2784 | ||
2785 | for (compunit_symtab *cust : objfile->compunits ()) | |
2786 | { | |
2787 | bv = cust->blockvector (); | |
2788 | block = bv->block (block_index); | |
2789 | sym = block_find_symbol (block, name, flags, nullptr); | |
2790 | if (sym != nullptr) | |
2791 | { | |
2792 | gdb_assert (!TYPE_IS_OPAQUE (sym->type ())); | |
2793 | return sym->type (); | |
2794 | } | |
2795 | } | |
2796 | ||
2797 | return NULL; | |
2798 | } | |
2799 | ||
2800 | /* The standard implementation of lookup_transparent_type. This code | |
2801 | was modeled on lookup_symbol -- the parts not relevant to looking | |
2802 | up types were just left out. In particular it's assumed here that | |
2803 | types are available in STRUCT_DOMAIN and only in file-static or | |
2804 | global blocks. */ | |
2805 | ||
2806 | struct type * | |
2807 | basic_lookup_transparent_type (const char *name, domain_search_flags flags) | |
2808 | { | |
2809 | struct type *t; | |
2810 | ||
2811 | lookup_name_info lookup_name (name, symbol_name_match_type::FULL); | |
2812 | ||
2813 | /* Now search all the global symbols. Do the symtab's first, then | |
2814 | check the psymtab's. If a psymtab indicates the existence | |
2815 | of the desired name as a global, then do psymtab-to-symtab | |
2816 | conversion on the fly and return the found symbol. */ | |
2817 | ||
2818 | for (objfile *objfile : current_program_space->objfiles ()) | |
2819 | { | |
2820 | t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, | |
2821 | flags, lookup_name); | |
2822 | if (t) | |
2823 | return t; | |
2824 | } | |
2825 | ||
2826 | for (objfile *objfile : current_program_space->objfiles ()) | |
2827 | { | |
2828 | t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, | |
2829 | flags, lookup_name); | |
2830 | if (t) | |
2831 | return t; | |
2832 | } | |
2833 | ||
2834 | /* Now search the static file-level symbols. | |
2835 | Not strictly correct, but more useful than an error. | |
2836 | Do the symtab's first, then | |
2837 | check the psymtab's. If a psymtab indicates the existence | |
2838 | of the desired name as a file-level static, then do psymtab-to-symtab | |
2839 | conversion on the fly and return the found symbol. */ | |
2840 | ||
2841 | for (objfile *objfile : current_program_space->objfiles ()) | |
2842 | { | |
2843 | t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, | |
2844 | flags, lookup_name); | |
2845 | if (t) | |
2846 | return t; | |
2847 | } | |
2848 | ||
2849 | for (objfile *objfile : current_program_space->objfiles ()) | |
2850 | { | |
2851 | t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, | |
2852 | flags, lookup_name); | |
2853 | if (t) | |
2854 | return t; | |
2855 | } | |
2856 | ||
2857 | return (struct type *) 0; | |
2858 | } | |
2859 | ||
2860 | /* See symtab.h. */ | |
2861 | ||
2862 | bool | |
2863 | iterate_over_symbols (const struct block *block, | |
2864 | const lookup_name_info &name, | |
2865 | const domain_search_flags domain, | |
2866 | gdb::function_view<symbol_found_callback_ftype> callback) | |
2867 | { | |
2868 | for (struct symbol *sym : block_iterator_range (block, &name)) | |
2869 | { | |
2870 | if (sym->matches (domain)) | |
2871 | { | |
2872 | struct block_symbol block_sym = {sym, block}; | |
2873 | ||
2874 | if (!callback (&block_sym)) | |
2875 | return false; | |
2876 | } | |
2877 | } | |
2878 | return true; | |
2879 | } | |
2880 | ||
2881 | /* See symtab.h. */ | |
2882 | ||
2883 | bool | |
2884 | iterate_over_symbols_terminated | |
2885 | (const struct block *block, | |
2886 | const lookup_name_info &name, | |
2887 | const domain_search_flags domain, | |
2888 | gdb::function_view<symbol_found_callback_ftype> callback) | |
2889 | { | |
2890 | if (!iterate_over_symbols (block, name, domain, callback)) | |
2891 | return false; | |
2892 | struct block_symbol block_sym = {nullptr, block}; | |
2893 | return callback (&block_sym); | |
2894 | } | |
2895 | ||
2896 | /* Find the compunit symtab associated with PC and SECTION. | |
2897 | This will read in debug info as necessary. */ | |
2898 | ||
2899 | struct compunit_symtab * | |
2900 | find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section) | |
2901 | { | |
2902 | struct compunit_symtab *best_cust = NULL; | |
2903 | CORE_ADDR best_cust_range = 0; | |
2904 | ||
2905 | /* If we know that this is not a text address, return failure. This is | |
2906 | necessary because we loop based on the block's high and low code | |
2907 | addresses, which do not include the data ranges, and because | |
2908 | we call find_pc_sect_psymtab which has a similar restriction based | |
2909 | on the partial_symtab's texthigh and textlow. */ | |
2910 | bound_minimal_symbol msymbol | |
2911 | = lookup_minimal_symbol_by_pc_section (pc, section); | |
2912 | if (msymbol.minsym && msymbol.minsym->data_p ()) | |
2913 | return NULL; | |
2914 | ||
2915 | /* Search all symtabs for the one whose file contains our address, and which | |
2916 | is the smallest of all the ones containing the address. This is designed | |
2917 | to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000 | |
2918 | and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from | |
2919 | 0x1000-0x4000, but for address 0x2345 we want to return symtab b. | |
2920 | ||
2921 | This happens for native ecoff format, where code from included files | |
2922 | gets its own symtab. The symtab for the included file should have | |
2923 | been read in already via the dependency mechanism. | |
2924 | It might be swifter to create several symtabs with the same name | |
2925 | like xcoff does (I'm not sure). | |
2926 | ||
2927 | It also happens for objfiles that have their functions reordered. | |
2928 | For these, the symtab we are looking for is not necessarily read in. */ | |
2929 | ||
2930 | for (objfile *obj_file : current_program_space->objfiles ()) | |
2931 | { | |
2932 | for (compunit_symtab *cust : obj_file->compunits ()) | |
2933 | { | |
2934 | const struct blockvector *bv = cust->blockvector (); | |
2935 | const struct block *global_block = bv->global_block (); | |
2936 | CORE_ADDR start = global_block->start (); | |
2937 | CORE_ADDR end = global_block->end (); | |
2938 | bool in_range_p = start <= pc && pc < end; | |
2939 | if (!in_range_p) | |
2940 | continue; | |
2941 | ||
2942 | if (bv->map () != nullptr) | |
2943 | { | |
2944 | if (bv->map ()->find (pc) == nullptr) | |
2945 | continue; | |
2946 | ||
2947 | return cust; | |
2948 | } | |
2949 | ||
2950 | CORE_ADDR range = end - start; | |
2951 | if (best_cust != nullptr | |
2952 | && range >= best_cust_range) | |
2953 | /* Cust doesn't have a smaller range than best_cust, skip it. */ | |
2954 | continue; | |
2955 | ||
2956 | /* For an objfile that has its functions reordered, | |
2957 | find_pc_psymtab will find the proper partial symbol table | |
2958 | and we simply return its corresponding symtab. */ | |
2959 | /* In order to better support objfiles that contain both | |
2960 | stabs and coff debugging info, we continue on if a psymtab | |
2961 | can't be found. */ | |
2962 | struct compunit_symtab *result | |
2963 | = obj_file->find_pc_sect_compunit_symtab (msymbol, pc, | |
2964 | section, 0); | |
2965 | if (result != nullptr) | |
2966 | return result; | |
2967 | ||
2968 | if (section != 0) | |
2969 | { | |
2970 | struct symbol *found_sym = nullptr; | |
2971 | ||
2972 | for (int b_index = GLOBAL_BLOCK; | |
2973 | b_index <= STATIC_BLOCK && found_sym == nullptr; | |
2974 | ++b_index) | |
2975 | { | |
2976 | const struct block *b = bv->block (b_index); | |
2977 | for (struct symbol *sym : block_iterator_range (b)) | |
2978 | { | |
2979 | if (matching_obj_sections (sym->obj_section (obj_file), | |
2980 | section)) | |
2981 | { | |
2982 | found_sym = sym; | |
2983 | break; | |
2984 | } | |
2985 | } | |
2986 | } | |
2987 | if (found_sym == nullptr) | |
2988 | continue; /* No symbol in this symtab matches | |
2989 | section. */ | |
2990 | } | |
2991 | ||
2992 | /* Cust is best found so far, save it. */ | |
2993 | best_cust = cust; | |
2994 | best_cust_range = range; | |
2995 | } | |
2996 | } | |
2997 | ||
2998 | if (best_cust != NULL) | |
2999 | return best_cust; | |
3000 | ||
3001 | /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */ | |
3002 | ||
3003 | for (objfile *objf : current_program_space->objfiles ()) | |
3004 | { | |
3005 | struct compunit_symtab *result | |
3006 | = objf->find_pc_sect_compunit_symtab (msymbol, pc, section, 1); | |
3007 | if (result != NULL) | |
3008 | return result; | |
3009 | } | |
3010 | ||
3011 | return NULL; | |
3012 | } | |
3013 | ||
3014 | /* Find the compunit symtab associated with PC. | |
3015 | This will read in debug info as necessary. | |
3016 | Backward compatibility, no section. */ | |
3017 | ||
3018 | struct compunit_symtab * | |
3019 | find_pc_compunit_symtab (CORE_ADDR pc) | |
3020 | { | |
3021 | return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc)); | |
3022 | } | |
3023 | ||
3024 | /* See symtab.h. */ | |
3025 | ||
3026 | struct symbol * | |
3027 | find_symbol_at_address (CORE_ADDR address) | |
3028 | { | |
3029 | /* A helper function to search a given symtab for a symbol matching | |
3030 | ADDR. */ | |
3031 | auto search_symtab = [] (compunit_symtab *symtab, CORE_ADDR addr) -> symbol * | |
3032 | { | |
3033 | const struct blockvector *bv = symtab->blockvector (); | |
3034 | ||
3035 | for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i) | |
3036 | { | |
3037 | const struct block *b = bv->block (i); | |
3038 | ||
3039 | for (struct symbol *sym : block_iterator_range (b)) | |
3040 | { | |
3041 | if (sym->aclass () == LOC_STATIC | |
3042 | && sym->value_address () == addr) | |
3043 | return sym; | |
3044 | } | |
3045 | } | |
3046 | return nullptr; | |
3047 | }; | |
3048 | ||
3049 | for (objfile *objfile : current_program_space->objfiles ()) | |
3050 | { | |
3051 | /* If this objfile was read with -readnow, then we need to | |
3052 | search the symtabs directly. */ | |
3053 | if ((objfile->flags & OBJF_READNOW) != 0) | |
3054 | { | |
3055 | for (compunit_symtab *symtab : objfile->compunits ()) | |
3056 | { | |
3057 | struct symbol *sym = search_symtab (symtab, address); | |
3058 | if (sym != nullptr) | |
3059 | return sym; | |
3060 | } | |
3061 | } | |
3062 | else | |
3063 | { | |
3064 | struct compunit_symtab *symtab | |
3065 | = objfile->find_compunit_symtab_by_address (address); | |
3066 | if (symtab != NULL) | |
3067 | { | |
3068 | struct symbol *sym = search_symtab (symtab, address); | |
3069 | if (sym != nullptr) | |
3070 | return sym; | |
3071 | } | |
3072 | } | |
3073 | } | |
3074 | ||
3075 | return NULL; | |
3076 | } | |
3077 | ||
3078 | \f | |
3079 | ||
3080 | /* Find the source file and line number for a given PC value and SECTION. | |
3081 | Return a structure containing a symtab pointer, a line number, | |
3082 | and a pc range for the entire source line. | |
3083 | The value's .pc field is NOT the specified pc. | |
3084 | NOTCURRENT nonzero means, if specified pc is on a line boundary, | |
3085 | use the line that ends there. Otherwise, in that case, the line | |
3086 | that begins there is used. */ | |
3087 | ||
3088 | /* The big complication here is that a line may start in one file, and end just | |
3089 | before the start of another file. This usually occurs when you #include | |
3090 | code in the middle of a subroutine. To properly find the end of a line's PC | |
3091 | range, we must search all symtabs associated with this compilation unit, and | |
3092 | find the one whose first PC is closer than that of the next line in this | |
3093 | symtab. */ | |
3094 | ||
3095 | struct symtab_and_line | |
3096 | find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent) | |
3097 | { | |
3098 | struct compunit_symtab *cust; | |
3099 | const linetable *l; | |
3100 | int len; | |
3101 | const linetable_entry *item; | |
3102 | const struct blockvector *bv; | |
3103 | ||
3104 | /* Info on best line seen so far, and where it starts, and its file. */ | |
3105 | ||
3106 | const linetable_entry *best = NULL; | |
3107 | CORE_ADDR best_end = 0; | |
3108 | struct symtab *best_symtab = 0; | |
3109 | ||
3110 | /* Store here the first line number | |
3111 | of a file which contains the line at the smallest pc after PC. | |
3112 | If we don't find a line whose range contains PC, | |
3113 | we will use a line one less than this, | |
3114 | with a range from the start of that file to the first line's pc. */ | |
3115 | const linetable_entry *alt = NULL; | |
3116 | ||
3117 | /* Info on best line seen in this file. */ | |
3118 | ||
3119 | const linetable_entry *prev; | |
3120 | ||
3121 | /* If this pc is not from the current frame, | |
3122 | it is the address of the end of a call instruction. | |
3123 | Quite likely that is the start of the following statement. | |
3124 | But what we want is the statement containing the instruction. | |
3125 | Fudge the pc to make sure we get that. */ | |
3126 | ||
3127 | /* It's tempting to assume that, if we can't find debugging info for | |
3128 | any function enclosing PC, that we shouldn't search for line | |
3129 | number info, either. However, GAS can emit line number info for | |
3130 | assembly files --- very helpful when debugging hand-written | |
3131 | assembly code. In such a case, we'd have no debug info for the | |
3132 | function, but we would have line info. */ | |
3133 | ||
3134 | if (notcurrent) | |
3135 | pc -= 1; | |
3136 | ||
3137 | /* elz: added this because this function returned the wrong | |
3138 | information if the pc belongs to a stub (import/export) | |
3139 | to call a shlib function. This stub would be anywhere between | |
3140 | two functions in the target, and the line info was erroneously | |
3141 | taken to be the one of the line before the pc. */ | |
3142 | ||
3143 | /* RT: Further explanation: | |
3144 | ||
3145 | * We have stubs (trampolines) inserted between procedures. | |
3146 | * | |
3147 | * Example: "shr1" exists in a shared library, and a "shr1" stub also | |
3148 | * exists in the main image. | |
3149 | * | |
3150 | * In the minimal symbol table, we have a bunch of symbols | |
3151 | * sorted by start address. The stubs are marked as "trampoline", | |
3152 | * the others appear as text. E.g.: | |
3153 | * | |
3154 | * Minimal symbol table for main image | |
3155 | * main: code for main (text symbol) | |
3156 | * shr1: stub (trampoline symbol) | |
3157 | * foo: code for foo (text symbol) | |
3158 | * ... | |
3159 | * Minimal symbol table for "shr1" image: | |
3160 | * ... | |
3161 | * shr1: code for shr1 (text symbol) | |
3162 | * ... | |
3163 | * | |
3164 | * So the code below is trying to detect if we are in the stub | |
3165 | * ("shr1" stub), and if so, find the real code ("shr1" trampoline), | |
3166 | * and if found, do the symbolization from the real-code address | |
3167 | * rather than the stub address. | |
3168 | * | |
3169 | * Assumptions being made about the minimal symbol table: | |
3170 | * 1. lookup_minimal_symbol_by_pc() will return a trampoline only | |
3171 | * if we're really in the trampoline.s If we're beyond it (say | |
3172 | * we're in "foo" in the above example), it'll have a closer | |
3173 | * symbol (the "foo" text symbol for example) and will not | |
3174 | * return the trampoline. | |
3175 | * 2. lookup_minimal_symbol_text() will find a real text symbol | |
3176 | * corresponding to the trampoline, and whose address will | |
3177 | * be different than the trampoline address. I put in a sanity | |
3178 | * check for the address being the same, to avoid an | |
3179 | * infinite recursion. | |
3180 | */ | |
3181 | bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (pc); | |
3182 | if (msymbol.minsym != NULL) | |
3183 | if (msymbol.minsym->type () == mst_solib_trampoline) | |
3184 | { | |
3185 | bound_minimal_symbol mfunsym | |
3186 | = lookup_minimal_symbol_text (current_program_space, | |
3187 | msymbol.minsym->linkage_name (), | |
3188 | nullptr); | |
3189 | ||
3190 | if (mfunsym.minsym == NULL) | |
3191 | /* I eliminated this warning since it is coming out | |
3192 | * in the following situation: | |
3193 | * gdb shmain // test program with shared libraries | |
3194 | * (gdb) break shr1 // function in shared lib | |
3195 | * Warning: In stub for ... | |
3196 | * In the above situation, the shared lib is not loaded yet, | |
3197 | * so of course we can't find the real func/line info, | |
3198 | * but the "break" still works, and the warning is annoying. | |
3199 | * So I commented out the warning. RT */ | |
3200 | /* warning ("In stub for %s; unable to find real function/line info", | |
3201 | msymbol->linkage_name ()); */ | |
3202 | ; | |
3203 | /* fall through */ | |
3204 | else if (mfunsym.value_address () | |
3205 | == msymbol.value_address ()) | |
3206 | /* Avoid infinite recursion */ | |
3207 | /* See above comment about why warning is commented out. */ | |
3208 | /* warning ("In stub for %s; unable to find real function/line info", | |
3209 | msymbol->linkage_name ()); */ | |
3210 | ; | |
3211 | /* fall through */ | |
3212 | else | |
3213 | { | |
3214 | /* Detect an obvious case of infinite recursion. If this | |
3215 | should occur, we'd like to know about it, so error out, | |
3216 | fatally. */ | |
3217 | if (mfunsym.value_address () == pc) | |
3218 | internal_error (_("Infinite recursion detected in find_pc_sect_line;" | |
3219 | "please file a bug report")); | |
3220 | ||
3221 | return find_pc_line (mfunsym.value_address (), 0); | |
3222 | } | |
3223 | } | |
3224 | ||
3225 | symtab_and_line val; | |
3226 | val.pspace = current_program_space; | |
3227 | ||
3228 | cust = find_pc_sect_compunit_symtab (pc, section); | |
3229 | if (cust == NULL) | |
3230 | { | |
3231 | /* If no symbol information, return previous pc. */ | |
3232 | if (notcurrent) | |
3233 | pc++; | |
3234 | val.pc = pc; | |
3235 | return val; | |
3236 | } | |
3237 | ||
3238 | bv = cust->blockvector (); | |
3239 | struct objfile *objfile = cust->objfile (); | |
3240 | ||
3241 | /* Look at all the symtabs that share this blockvector. | |
3242 | They all have the same apriori range, that we found was right; | |
3243 | but they have different line tables. */ | |
3244 | ||
3245 | for (symtab *iter_s : cust->filetabs ()) | |
3246 | { | |
3247 | /* Find the best line in this symtab. */ | |
3248 | l = iter_s->linetable (); | |
3249 | if (!l) | |
3250 | continue; | |
3251 | len = l->nitems; | |
3252 | if (len <= 0) | |
3253 | { | |
3254 | /* I think len can be zero if the symtab lacks line numbers | |
3255 | (e.g. gcc -g1). (Either that or the LINETABLE is NULL; | |
3256 | I'm not sure which, and maybe it depends on the symbol | |
3257 | reader). */ | |
3258 | continue; | |
3259 | } | |
3260 | ||
3261 | prev = NULL; | |
3262 | item = l->item; /* Get first line info. */ | |
3263 | ||
3264 | /* Is this file's first line closer than the first lines of other files? | |
3265 | If so, record this file, and its first line, as best alternate. */ | |
3266 | if (item->pc (objfile) > pc | |
3267 | && (!alt || item->unrelocated_pc () < alt->unrelocated_pc ())) | |
3268 | alt = item; | |
3269 | ||
3270 | auto pc_compare = [] (const unrelocated_addr &comp_pc, | |
3271 | const struct linetable_entry & lhs) | |
3272 | { | |
3273 | return comp_pc < lhs.unrelocated_pc (); | |
3274 | }; | |
3275 | ||
3276 | const linetable_entry *first = item; | |
3277 | const linetable_entry *last = item + len; | |
3278 | item = (std::upper_bound | |
3279 | (first, last, | |
3280 | unrelocated_addr (pc - objfile->text_section_offset ()), | |
3281 | pc_compare)); | |
3282 | if (item != first) | |
3283 | { | |
3284 | prev = item - 1; /* Found a matching item. */ | |
3285 | /* At this point, prev is a line whose address is <= pc. However, we | |
3286 | don't know if ITEM is pointing to the same statement or not. */ | |
3287 | while (item != last && prev->line == item->line && !item->is_stmt) | |
3288 | item++; | |
3289 | } | |
3290 | ||
3291 | /* At this point, prev points at the line whose start addr is <= pc, and | |
3292 | item points at the next statement. If we ran off the end of the linetable | |
3293 | (pc >= start of the last line), then prev == item. If pc < start of | |
3294 | the first line, prev will not be set. */ | |
3295 | ||
3296 | /* Is this file's best line closer than the best in the other files? | |
3297 | If so, record this file, and its best line, as best so far. Don't | |
3298 | save prev if it represents the end of a function (i.e. line number | |
3299 | 0) instead of a real line. */ | |
3300 | ||
3301 | if (prev && prev->line | |
3302 | && (!best || prev->unrelocated_pc () > best->unrelocated_pc ())) | |
3303 | { | |
3304 | best = prev; | |
3305 | best_symtab = iter_s; | |
3306 | ||
3307 | /* If during the binary search we land on a non-statement entry, | |
3308 | scan backward through entries at the same address to see if | |
3309 | there is an entry marked as is-statement. In theory this | |
3310 | duplication should have been removed from the line table | |
3311 | during construction, this is just a double check. If the line | |
3312 | table has had the duplication removed then this should be | |
3313 | pretty cheap. */ | |
3314 | if (!best->is_stmt) | |
3315 | { | |
3316 | const linetable_entry *tmp = best; | |
3317 | while (tmp > first | |
3318 | && (tmp - 1)->unrelocated_pc () == tmp->unrelocated_pc () | |
3319 | && (tmp - 1)->line != 0 && !tmp->is_stmt) | |
3320 | --tmp; | |
3321 | if (tmp->is_stmt) | |
3322 | best = tmp; | |
3323 | } | |
3324 | ||
3325 | /* Discard BEST_END if it's before the PC of the current BEST. */ | |
3326 | if (best_end <= best->pc (objfile)) | |
3327 | best_end = 0; | |
3328 | } | |
3329 | ||
3330 | /* If another line (denoted by ITEM) is in the linetable and its | |
3331 | PC is after BEST's PC, but before the current BEST_END, then | |
3332 | use ITEM's PC as the new best_end. */ | |
3333 | if (best && item < last | |
3334 | && item->unrelocated_pc () > best->unrelocated_pc () | |
3335 | && (best_end == 0 || best_end > item->pc (objfile))) | |
3336 | best_end = item->pc (objfile); | |
3337 | } | |
3338 | ||
3339 | if (!best_symtab) | |
3340 | { | |
3341 | /* If we didn't find any line number info, just return zeros. | |
3342 | We used to return alt->line - 1 here, but that could be | |
3343 | anywhere; if we don't have line number info for this PC, | |
3344 | don't make some up. */ | |
3345 | val.pc = pc; | |
3346 | } | |
3347 | else if (best->line == 0) | |
3348 | { | |
3349 | /* If our best fit is in a range of PC's for which no line | |
3350 | number info is available (line number is zero) then we didn't | |
3351 | find any valid line information. */ | |
3352 | val.pc = pc; | |
3353 | } | |
3354 | else | |
3355 | { | |
3356 | val.is_stmt = best->is_stmt; | |
3357 | val.symtab = best_symtab; | |
3358 | val.line = best->line; | |
3359 | val.pc = best->pc (objfile); | |
3360 | if (best_end && (!alt || best_end < alt->pc (objfile))) | |
3361 | val.end = best_end; | |
3362 | else if (alt) | |
3363 | val.end = alt->pc (objfile); | |
3364 | else | |
3365 | val.end = bv->global_block ()->end (); | |
3366 | } | |
3367 | val.section = section; | |
3368 | return val; | |
3369 | } | |
3370 | ||
3371 | /* Backward compatibility (no section). */ | |
3372 | ||
3373 | struct symtab_and_line | |
3374 | find_pc_line (CORE_ADDR pc, int notcurrent) | |
3375 | { | |
3376 | struct obj_section *section; | |
3377 | ||
3378 | section = find_pc_overlay (pc); | |
3379 | if (!pc_in_unmapped_range (pc, section)) | |
3380 | return find_pc_sect_line (pc, section, notcurrent); | |
3381 | ||
3382 | /* If the original PC was an unmapped address then we translate this to a | |
3383 | mapped address in order to lookup the sal. However, as the user | |
3384 | passed us an unmapped address it makes more sense to return a result | |
3385 | that has the pc and end fields translated to unmapped addresses. */ | |
3386 | pc = overlay_mapped_address (pc, section); | |
3387 | symtab_and_line sal = find_pc_sect_line (pc, section, notcurrent); | |
3388 | sal.pc = overlay_unmapped_address (sal.pc, section); | |
3389 | sal.end = overlay_unmapped_address (sal.end, section); | |
3390 | return sal; | |
3391 | } | |
3392 | ||
3393 | /* Compare two symtab_and_line entries. Return true if both have | |
3394 | the same line number and the same symtab pointer. That means we | |
3395 | are dealing with two entries from the same line and from the same | |
3396 | source file. | |
3397 | ||
3398 | Return false otherwise. */ | |
3399 | ||
3400 | static bool | |
3401 | sal_line_symtab_matches_p (const symtab_and_line &sal1, | |
3402 | const symtab_and_line &sal2) | |
3403 | { | |
3404 | return sal1.line == sal2.line && sal1.symtab == sal2.symtab; | |
3405 | } | |
3406 | ||
3407 | /* See symtah.h. */ | |
3408 | ||
3409 | std::optional<CORE_ADDR> | |
3410 | find_line_range_start (CORE_ADDR pc) | |
3411 | { | |
3412 | struct symtab_and_line current_sal = find_pc_line (pc, 0); | |
3413 | ||
3414 | if (current_sal.line == 0) | |
3415 | return {}; | |
3416 | ||
3417 | struct symtab_and_line prev_sal = find_pc_line (current_sal.pc - 1, 0); | |
3418 | ||
3419 | /* If the previous entry is for a different line, that means we are already | |
3420 | at the entry with the start PC for this line. */ | |
3421 | if (!sal_line_symtab_matches_p (prev_sal, current_sal)) | |
3422 | return current_sal.pc; | |
3423 | ||
3424 | /* Otherwise, keep looking for entries for the same line but with | |
3425 | smaller PC's. */ | |
3426 | bool done = false; | |
3427 | CORE_ADDR prev_pc; | |
3428 | while (!done) | |
3429 | { | |
3430 | prev_pc = prev_sal.pc; | |
3431 | ||
3432 | prev_sal = find_pc_line (prev_pc - 1, 0); | |
3433 | ||
3434 | /* Did we notice a line change? If so, we are done searching. */ | |
3435 | if (!sal_line_symtab_matches_p (prev_sal, current_sal)) | |
3436 | done = true; | |
3437 | } | |
3438 | ||
3439 | return prev_pc; | |
3440 | } | |
3441 | ||
3442 | /* See symtab.h. */ | |
3443 | ||
3444 | struct symtab * | |
3445 | find_pc_line_symtab (CORE_ADDR pc) | |
3446 | { | |
3447 | struct symtab_and_line sal; | |
3448 | ||
3449 | /* This always passes zero for NOTCURRENT to find_pc_line. | |
3450 | There are currently no callers that ever pass non-zero. */ | |
3451 | sal = find_pc_line (pc, 0); | |
3452 | return sal.symtab; | |
3453 | } | |
3454 | \f | |
3455 | /* See symtab.h. */ | |
3456 | ||
3457 | symtab * | |
3458 | find_line_symtab (symtab *sym_tab, int line, int *index) | |
3459 | { | |
3460 | int exact = 0; /* Initialized here to avoid a compiler warning. */ | |
3461 | ||
3462 | /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE | |
3463 | so far seen. */ | |
3464 | ||
3465 | int best_index; | |
3466 | const struct linetable *best_linetable; | |
3467 | struct symtab *best_symtab; | |
3468 | ||
3469 | /* First try looking it up in the given symtab. */ | |
3470 | best_linetable = sym_tab->linetable (); | |
3471 | best_symtab = sym_tab; | |
3472 | best_index = find_line_common (best_linetable, line, &exact, 0); | |
3473 | if (best_index < 0 || !exact) | |
3474 | { | |
3475 | /* Didn't find an exact match. So we better keep looking for | |
3476 | another symtab with the same name. In the case of xcoff, | |
3477 | multiple csects for one source file (produced by IBM's FORTRAN | |
3478 | compiler) produce multiple symtabs (this is unavoidable | |
3479 | assuming csects can be at arbitrary places in memory and that | |
3480 | the GLOBAL_BLOCK of a symtab has a begin and end address). */ | |
3481 | ||
3482 | /* BEST is the smallest linenumber > LINE so far seen, | |
3483 | or 0 if none has been seen so far. | |
3484 | BEST_INDEX and BEST_LINETABLE identify the item for it. */ | |
3485 | int best; | |
3486 | ||
3487 | if (best_index >= 0) | |
3488 | best = best_linetable->item[best_index].line; | |
3489 | else | |
3490 | best = 0; | |
3491 | ||
3492 | for (objfile *objfile : current_program_space->objfiles ()) | |
3493 | objfile->expand_symtabs_with_fullname (symtab_to_fullname (sym_tab)); | |
3494 | ||
3495 | for (objfile *objfile : current_program_space->objfiles ()) | |
3496 | { | |
3497 | for (compunit_symtab *cu : objfile->compunits ()) | |
3498 | { | |
3499 | for (symtab *s : cu->filetabs ()) | |
3500 | { | |
3501 | const struct linetable *l; | |
3502 | int ind; | |
3503 | ||
3504 | if (FILENAME_CMP (sym_tab->filename, s->filename) != 0) | |
3505 | continue; | |
3506 | if (FILENAME_CMP (symtab_to_fullname (sym_tab), | |
3507 | symtab_to_fullname (s)) != 0) | |
3508 | continue; | |
3509 | l = s->linetable (); | |
3510 | ind = find_line_common (l, line, &exact, 0); | |
3511 | if (ind >= 0) | |
3512 | { | |
3513 | if (exact) | |
3514 | { | |
3515 | best_index = ind; | |
3516 | best_linetable = l; | |
3517 | best_symtab = s; | |
3518 | goto done; | |
3519 | } | |
3520 | if (best == 0 || l->item[ind].line < best) | |
3521 | { | |
3522 | best = l->item[ind].line; | |
3523 | best_index = ind; | |
3524 | best_linetable = l; | |
3525 | best_symtab = s; | |
3526 | } | |
3527 | } | |
3528 | } | |
3529 | } | |
3530 | } | |
3531 | } | |
3532 | done: | |
3533 | if (best_index < 0) | |
3534 | return NULL; | |
3535 | ||
3536 | if (index) | |
3537 | *index = best_index; | |
3538 | ||
3539 | return best_symtab; | |
3540 | } | |
3541 | ||
3542 | /* Given SYMTAB, returns all the PCs function in the symtab that | |
3543 | exactly match LINE. Returns an empty vector if there are no exact | |
3544 | matches, but updates BEST_ITEM in this case. */ | |
3545 | ||
3546 | std::vector<CORE_ADDR> | |
3547 | find_pcs_for_symtab_line (struct symtab *symtab, int line, | |
3548 | const linetable_entry **best_item) | |
3549 | { | |
3550 | int start = 0; | |
3551 | std::vector<CORE_ADDR> result; | |
3552 | struct objfile *objfile = symtab->compunit ()->objfile (); | |
3553 | ||
3554 | /* First, collect all the PCs that are at this line. */ | |
3555 | while (1) | |
3556 | { | |
3557 | int was_exact; | |
3558 | int idx; | |
3559 | ||
3560 | idx = find_line_common (symtab->linetable (), line, &was_exact, | |
3561 | start); | |
3562 | if (idx < 0) | |
3563 | break; | |
3564 | ||
3565 | if (!was_exact) | |
3566 | { | |
3567 | const linetable_entry *item = &symtab->linetable ()->item[idx]; | |
3568 | ||
3569 | if (*best_item == NULL | |
3570 | || (item->line < (*best_item)->line && item->is_stmt)) | |
3571 | *best_item = item; | |
3572 | ||
3573 | break; | |
3574 | } | |
3575 | ||
3576 | result.push_back (symtab->linetable ()->item[idx].pc (objfile)); | |
3577 | start = idx + 1; | |
3578 | } | |
3579 | ||
3580 | return result; | |
3581 | } | |
3582 | ||
3583 | \f | |
3584 | /* Set the PC value for a given source file and line number and return true. | |
3585 | Returns false for invalid line number (and sets the PC to 0). | |
3586 | The source file is specified with a struct symtab. */ | |
3587 | ||
3588 | bool | |
3589 | find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc) | |
3590 | { | |
3591 | const struct linetable *l; | |
3592 | int ind; | |
3593 | ||
3594 | *pc = 0; | |
3595 | if (symtab == 0) | |
3596 | return false; | |
3597 | ||
3598 | symtab = find_line_symtab (symtab, line, &ind); | |
3599 | if (symtab != NULL) | |
3600 | { | |
3601 | l = symtab->linetable (); | |
3602 | *pc = l->item[ind].pc (symtab->compunit ()->objfile ()); | |
3603 | return true; | |
3604 | } | |
3605 | else | |
3606 | return false; | |
3607 | } | |
3608 | ||
3609 | /* Find the range of pc values in a line. | |
3610 | Store the starting pc of the line into *STARTPTR | |
3611 | and the ending pc (start of next line) into *ENDPTR. | |
3612 | Returns true to indicate success. | |
3613 | Returns false if could not find the specified line. */ | |
3614 | ||
3615 | bool | |
3616 | find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr, | |
3617 | CORE_ADDR *endptr) | |
3618 | { | |
3619 | CORE_ADDR startaddr; | |
3620 | struct symtab_and_line found_sal; | |
3621 | ||
3622 | startaddr = sal.pc; | |
3623 | if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr)) | |
3624 | return false; | |
3625 | ||
3626 | /* This whole function is based on address. For example, if line 10 has | |
3627 | two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then | |
3628 | "info line *0x123" should say the line goes from 0x100 to 0x200 | |
3629 | and "info line *0x355" should say the line goes from 0x300 to 0x400. | |
3630 | This also insures that we never give a range like "starts at 0x134 | |
3631 | and ends at 0x12c". */ | |
3632 | ||
3633 | found_sal = find_pc_sect_line (startaddr, sal.section, 0); | |
3634 | if (found_sal.line != sal.line) | |
3635 | { | |
3636 | /* The specified line (sal) has zero bytes. */ | |
3637 | *startptr = found_sal.pc; | |
3638 | *endptr = found_sal.pc; | |
3639 | } | |
3640 | else | |
3641 | { | |
3642 | *startptr = found_sal.pc; | |
3643 | *endptr = found_sal.end; | |
3644 | } | |
3645 | return true; | |
3646 | } | |
3647 | ||
3648 | /* Given a line table and a line number, return the index into the line | |
3649 | table for the pc of the nearest line whose number is >= the specified one. | |
3650 | Return -1 if none is found. The value is >= 0 if it is an index. | |
3651 | START is the index at which to start searching the line table. | |
3652 | ||
3653 | Set *EXACT_MATCH nonzero if the value returned is an exact match. */ | |
3654 | ||
3655 | static int | |
3656 | find_line_common (const linetable *l, int lineno, | |
3657 | int *exact_match, int start) | |
3658 | { | |
3659 | int i; | |
3660 | int len; | |
3661 | ||
3662 | /* BEST is the smallest linenumber > LINENO so far seen, | |
3663 | or 0 if none has been seen so far. | |
3664 | BEST_INDEX identifies the item for it. */ | |
3665 | ||
3666 | int best_index = -1; | |
3667 | int best = 0; | |
3668 | ||
3669 | *exact_match = 0; | |
3670 | ||
3671 | if (lineno <= 0) | |
3672 | return -1; | |
3673 | if (l == 0) | |
3674 | return -1; | |
3675 | ||
3676 | len = l->nitems; | |
3677 | for (i = start; i < len; i++) | |
3678 | { | |
3679 | const linetable_entry *item = &(l->item[i]); | |
3680 | ||
3681 | /* Ignore non-statements. */ | |
3682 | if (!item->is_stmt) | |
3683 | continue; | |
3684 | ||
3685 | if (item->line == lineno) | |
3686 | { | |
3687 | /* Return the first (lowest address) entry which matches. */ | |
3688 | *exact_match = 1; | |
3689 | return i; | |
3690 | } | |
3691 | ||
3692 | if (item->line > lineno && (best == 0 || item->line < best)) | |
3693 | { | |
3694 | best = item->line; | |
3695 | best_index = i; | |
3696 | } | |
3697 | } | |
3698 | ||
3699 | /* If we got here, we didn't get an exact match. */ | |
3700 | return best_index; | |
3701 | } | |
3702 | ||
3703 | bool | |
3704 | find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr) | |
3705 | { | |
3706 | struct symtab_and_line sal; | |
3707 | ||
3708 | sal = find_pc_line (pc, 0); | |
3709 | *startptr = sal.pc; | |
3710 | *endptr = sal.end; | |
3711 | return sal.symtab != 0; | |
3712 | } | |
3713 | ||
3714 | /* Helper for find_function_start_sal. Does most of the work, except | |
3715 | setting the sal's symbol. */ | |
3716 | ||
3717 | static symtab_and_line | |
3718 | find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section, | |
3719 | bool funfirstline) | |
3720 | { | |
3721 | symtab_and_line sal = find_pc_sect_line (func_addr, section, 0); | |
3722 | ||
3723 | if (funfirstline && sal.symtab != NULL | |
3724 | && (sal.symtab->compunit ()->locations_valid () | |
3725 | || sal.symtab->language () == language_asm)) | |
3726 | { | |
3727 | struct gdbarch *gdbarch = sal.symtab->compunit ()->objfile ()->arch (); | |
3728 | ||
3729 | sal.pc = func_addr; | |
3730 | if (gdbarch_skip_entrypoint_p (gdbarch)) | |
3731 | sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc); | |
3732 | return sal; | |
3733 | } | |
3734 | ||
3735 | /* We always should have a line for the function start address. | |
3736 | If we don't, something is odd. Create a plain SAL referring | |
3737 | just the PC and hope that skip_prologue_sal (if requested) | |
3738 | can find a line number for after the prologue. */ | |
3739 | if (sal.pc < func_addr) | |
3740 | { | |
3741 | sal = {}; | |
3742 | sal.pspace = current_program_space; | |
3743 | sal.pc = func_addr; | |
3744 | sal.section = section; | |
3745 | } | |
3746 | ||
3747 | if (funfirstline) | |
3748 | skip_prologue_sal (&sal); | |
3749 | ||
3750 | return sal; | |
3751 | } | |
3752 | ||
3753 | /* See symtab.h. */ | |
3754 | ||
3755 | symtab_and_line | |
3756 | find_function_start_sal (CORE_ADDR func_addr, obj_section *section, | |
3757 | bool funfirstline) | |
3758 | { | |
3759 | symtab_and_line sal | |
3760 | = find_function_start_sal_1 (func_addr, section, funfirstline); | |
3761 | ||
3762 | /* find_function_start_sal_1 does a linetable search, so it finds | |
3763 | the symtab and linenumber, but not a symbol. Fill in the | |
3764 | function symbol too. */ | |
3765 | sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section); | |
3766 | ||
3767 | return sal; | |
3768 | } | |
3769 | ||
3770 | /* See symtab.h. */ | |
3771 | ||
3772 | symtab_and_line | |
3773 | find_function_start_sal (symbol *sym, bool funfirstline) | |
3774 | { | |
3775 | symtab_and_line sal | |
3776 | = find_function_start_sal_1 (sym->value_block ()->entry_pc (), | |
3777 | sym->obj_section (sym->objfile ()), | |
3778 | funfirstline); | |
3779 | sal.symbol = sym; | |
3780 | return sal; | |
3781 | } | |
3782 | ||
3783 | ||
3784 | /* Given a function start address FUNC_ADDR and SYMTAB, find the first | |
3785 | address for that function that has an entry in SYMTAB's line info | |
3786 | table. If such an entry cannot be found, return FUNC_ADDR | |
3787 | unaltered. */ | |
3788 | ||
3789 | static CORE_ADDR | |
3790 | skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab) | |
3791 | { | |
3792 | CORE_ADDR func_start, func_end; | |
3793 | const struct linetable *l; | |
3794 | int i; | |
3795 | ||
3796 | /* Give up if this symbol has no lineinfo table. */ | |
3797 | l = symtab->linetable (); | |
3798 | if (l == NULL) | |
3799 | return func_addr; | |
3800 | ||
3801 | /* Get the range for the function's PC values, or give up if we | |
3802 | cannot, for some reason. */ | |
3803 | if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end)) | |
3804 | return func_addr; | |
3805 | ||
3806 | struct objfile *objfile = symtab->compunit ()->objfile (); | |
3807 | ||
3808 | /* Linetable entries are ordered by PC values, see the commentary in | |
3809 | symtab.h where `struct linetable' is defined. Thus, the first | |
3810 | entry whose PC is in the range [FUNC_START..FUNC_END[ is the | |
3811 | address we are looking for. */ | |
3812 | for (i = 0; i < l->nitems; i++) | |
3813 | { | |
3814 | const linetable_entry *item = &(l->item[i]); | |
3815 | CORE_ADDR item_pc = item->pc (objfile); | |
3816 | ||
3817 | /* Don't use line numbers of zero, they mark special entries in | |
3818 | the table. See the commentary on symtab.h before the | |
3819 | definition of struct linetable. */ | |
3820 | if (item->line > 0 && func_start <= item_pc && item_pc < func_end) | |
3821 | return item_pc; | |
3822 | } | |
3823 | ||
3824 | return func_addr; | |
3825 | } | |
3826 | ||
3827 | /* Try to locate the address where a breakpoint should be placed past the | |
3828 | prologue of function starting at FUNC_ADDR using the line table. | |
3829 | ||
3830 | Return the address associated with the first entry in the line-table for | |
3831 | the function starting at FUNC_ADDR which has prologue_end set to true if | |
3832 | such entry exist, otherwise return an empty optional. */ | |
3833 | ||
3834 | static std::optional<CORE_ADDR> | |
3835 | skip_prologue_using_linetable (CORE_ADDR func_addr) | |
3836 | { | |
3837 | CORE_ADDR start_pc, end_pc; | |
3838 | ||
3839 | if (!find_pc_partial_function (func_addr, nullptr, &start_pc, &end_pc)) | |
3840 | return {}; | |
3841 | ||
3842 | const struct symtab_and_line prologue_sal = find_pc_line (start_pc, 0); | |
3843 | if (prologue_sal.symtab != nullptr | |
3844 | && prologue_sal.symtab->language () != language_asm) | |
3845 | { | |
3846 | const linetable *linetable = prologue_sal.symtab->linetable (); | |
3847 | ||
3848 | struct objfile *objfile = prologue_sal.symtab->compunit ()->objfile (); | |
3849 | ||
3850 | unrelocated_addr unrel_start | |
3851 | = unrelocated_addr (start_pc - objfile->text_section_offset ()); | |
3852 | unrelocated_addr unrel_end | |
3853 | = unrelocated_addr (end_pc - objfile->text_section_offset ()); | |
3854 | ||
3855 | auto it = std::lower_bound | |
3856 | (linetable->item, linetable->item + linetable->nitems, unrel_start, | |
3857 | [] (const linetable_entry <e, unrelocated_addr pc) | |
3858 | { | |
3859 | return lte.unrelocated_pc () < pc; | |
3860 | }); | |
3861 | ||
3862 | for (; | |
3863 | (it < linetable->item + linetable->nitems | |
3864 | && it->unrelocated_pc () < unrel_end); | |
3865 | it++) | |
3866 | if (it->prologue_end) | |
3867 | return {it->pc (objfile)}; | |
3868 | } | |
3869 | ||
3870 | return {}; | |
3871 | } | |
3872 | ||
3873 | /* Adjust SAL to the first instruction past the function prologue. | |
3874 | If the PC was explicitly specified, the SAL is not changed. | |
3875 | If the line number was explicitly specified then the SAL can still be | |
3876 | updated, unless the language for SAL is assembler, in which case the SAL | |
3877 | will be left unchanged. | |
3878 | If SAL is already past the prologue, then do nothing. */ | |
3879 | ||
3880 | void | |
3881 | skip_prologue_sal (struct symtab_and_line *sal) | |
3882 | { | |
3883 | struct symbol *sym; | |
3884 | struct symtab_and_line start_sal; | |
3885 | CORE_ADDR pc, saved_pc; | |
3886 | struct obj_section *section; | |
3887 | const char *name; | |
3888 | struct objfile *objfile; | |
3889 | struct gdbarch *gdbarch; | |
3890 | const struct block *b, *function_block; | |
3891 | int force_skip, skip; | |
3892 | ||
3893 | /* Do not change the SAL if PC was specified explicitly. */ | |
3894 | if (sal->explicit_pc) | |
3895 | return; | |
3896 | ||
3897 | /* In assembly code, if the user asks for a specific line then we should | |
3898 | not adjust the SAL. The user already has instruction level | |
3899 | visibility in this case, so selecting a line other than one requested | |
3900 | is likely to be the wrong choice. */ | |
3901 | if (sal->symtab != nullptr | |
3902 | && sal->explicit_line | |
3903 | && sal->symtab->language () == language_asm) | |
3904 | return; | |
3905 | ||
3906 | scoped_restore_current_pspace_and_thread restore_pspace_thread; | |
3907 | ||
3908 | switch_to_program_space_and_thread (sal->pspace); | |
3909 | ||
3910 | sym = find_pc_sect_function (sal->pc, sal->section); | |
3911 | if (sym != NULL) | |
3912 | { | |
3913 | objfile = sym->objfile (); | |
3914 | pc = sym->value_block ()->entry_pc (); | |
3915 | section = sym->obj_section (objfile); | |
3916 | name = sym->linkage_name (); | |
3917 | } | |
3918 | else | |
3919 | { | |
3920 | bound_minimal_symbol msymbol | |
3921 | = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section); | |
3922 | ||
3923 | if (msymbol.minsym == NULL) | |
3924 | return; | |
3925 | ||
3926 | objfile = msymbol.objfile; | |
3927 | pc = msymbol.value_address (); | |
3928 | section = msymbol.minsym->obj_section (objfile); | |
3929 | name = msymbol.minsym->linkage_name (); | |
3930 | } | |
3931 | ||
3932 | gdbarch = objfile->arch (); | |
3933 | ||
3934 | /* Process the prologue in two passes. In the first pass try to skip the | |
3935 | prologue (SKIP is true) and verify there is a real need for it (indicated | |
3936 | by FORCE_SKIP). If no such reason was found run a second pass where the | |
3937 | prologue is not skipped (SKIP is false). */ | |
3938 | ||
3939 | skip = 1; | |
3940 | force_skip = 1; | |
3941 | ||
3942 | /* Be conservative - allow direct PC (without skipping prologue) only if we | |
3943 | have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not | |
3944 | have to be set by the caller so we use SYM instead. */ | |
3945 | if (sym != NULL | |
3946 | && sym->symtab ()->compunit ()->locations_valid ()) | |
3947 | force_skip = 0; | |
3948 | ||
3949 | saved_pc = pc; | |
3950 | do | |
3951 | { | |
3952 | pc = saved_pc; | |
3953 | ||
3954 | /* Check if the compiler explicitly indicated where a breakpoint should | |
3955 | be placed to skip the prologue. */ | |
3956 | if (!ignore_prologue_end_flag && skip) | |
3957 | { | |
3958 | std::optional<CORE_ADDR> linetable_pc | |
3959 | = skip_prologue_using_linetable (pc); | |
3960 | if (linetable_pc) | |
3961 | { | |
3962 | pc = *linetable_pc; | |
3963 | start_sal = find_pc_sect_line (pc, section, 0); | |
3964 | force_skip = 1; | |
3965 | continue; | |
3966 | } | |
3967 | } | |
3968 | ||
3969 | /* If the function is in an unmapped overlay, use its unmapped LMA address, | |
3970 | so that gdbarch_skip_prologue has something unique to work on. */ | |
3971 | if (section_is_overlay (section) && !section_is_mapped (section)) | |
3972 | pc = overlay_unmapped_address (pc, section); | |
3973 | ||
3974 | /* Skip "first line" of function (which is actually its prologue). */ | |
3975 | pc += gdbarch_deprecated_function_start_offset (gdbarch); | |
3976 | if (gdbarch_skip_entrypoint_p (gdbarch)) | |
3977 | pc = gdbarch_skip_entrypoint (gdbarch, pc); | |
3978 | if (skip) | |
3979 | pc = gdbarch_skip_prologue_noexcept (gdbarch, pc); | |
3980 | ||
3981 | /* For overlays, map pc back into its mapped VMA range. */ | |
3982 | pc = overlay_mapped_address (pc, section); | |
3983 | ||
3984 | /* Calculate line number. */ | |
3985 | start_sal = find_pc_sect_line (pc, section, 0); | |
3986 | ||
3987 | /* Check if gdbarch_skip_prologue left us in mid-line, and the next | |
3988 | line is still part of the same function. */ | |
3989 | if (skip && start_sal.pc != pc | |
3990 | && (sym ? (sym->value_block ()->entry_pc () <= start_sal.end | |
3991 | && start_sal.end < sym->value_block()->end ()) | |
3992 | : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym | |
3993 | == lookup_minimal_symbol_by_pc_section (pc, section).minsym))) | |
3994 | { | |
3995 | /* First pc of next line */ | |
3996 | pc = start_sal.end; | |
3997 | /* Recalculate the line number (might not be N+1). */ | |
3998 | start_sal = find_pc_sect_line (pc, section, 0); | |
3999 | } | |
4000 | ||
4001 | /* On targets with executable formats that don't have a concept of | |
4002 | constructors (ELF with .init has, PE doesn't), gcc emits a call | |
4003 | to `__main' in `main' between the prologue and before user | |
4004 | code. */ | |
4005 | if (gdbarch_skip_main_prologue_p (gdbarch) | |
4006 | && name && strcmp_iw (name, "main") == 0) | |
4007 | { | |
4008 | pc = gdbarch_skip_main_prologue (gdbarch, pc); | |
4009 | /* Recalculate the line number (might not be N+1). */ | |
4010 | start_sal = find_pc_sect_line (pc, section, 0); | |
4011 | force_skip = 1; | |
4012 | } | |
4013 | } | |
4014 | while (!force_skip && skip--); | |
4015 | ||
4016 | /* If we still don't have a valid source line, try to find the first | |
4017 | PC in the lineinfo table that belongs to the same function. This | |
4018 | happens with COFF debug info, which does not seem to have an | |
4019 | entry in lineinfo table for the code after the prologue which has | |
4020 | no direct relation to source. For example, this was found to be | |
4021 | the case with the DJGPP target using "gcc -gcoff" when the | |
4022 | compiler inserted code after the prologue to make sure the stack | |
4023 | is aligned. */ | |
4024 | if (!force_skip && sym && start_sal.symtab == NULL) | |
4025 | { | |
4026 | pc = skip_prologue_using_lineinfo (pc, sym->symtab ()); | |
4027 | /* Recalculate the line number. */ | |
4028 | start_sal = find_pc_sect_line (pc, section, 0); | |
4029 | } | |
4030 | ||
4031 | /* If we're already past the prologue, leave SAL unchanged. Otherwise | |
4032 | forward SAL to the end of the prologue. */ | |
4033 | if (sal->pc >= pc) | |
4034 | return; | |
4035 | ||
4036 | sal->pc = pc; | |
4037 | sal->section = section; | |
4038 | sal->symtab = start_sal.symtab; | |
4039 | sal->line = start_sal.line; | |
4040 | sal->end = start_sal.end; | |
4041 | ||
4042 | /* Check if we are now inside an inlined function. If we can, | |
4043 | use the call site of the function instead. */ | |
4044 | b = block_for_pc_sect (sal->pc, sal->section); | |
4045 | function_block = NULL; | |
4046 | while (b != NULL) | |
4047 | { | |
4048 | if (b->function () != NULL && b->inlined_p ()) | |
4049 | function_block = b; | |
4050 | else if (b->function () != NULL) | |
4051 | break; | |
4052 | b = b->superblock (); | |
4053 | } | |
4054 | if (function_block != NULL | |
4055 | && function_block->function ()->line () != 0) | |
4056 | { | |
4057 | sal->line = function_block->function ()->line (); | |
4058 | sal->symtab = function_block->function ()->symtab (); | |
4059 | } | |
4060 | } | |
4061 | ||
4062 | /* Given PC at the function's start address, attempt to find the | |
4063 | prologue end using SAL information. Return zero if the skip fails. | |
4064 | ||
4065 | A non-optimized prologue traditionally has one SAL for the function | |
4066 | and a second for the function body. A single line function has | |
4067 | them both pointing at the same line. | |
4068 | ||
4069 | An optimized prologue is similar but the prologue may contain | |
4070 | instructions (SALs) from the instruction body. Need to skip those | |
4071 | while not getting into the function body. | |
4072 | ||
4073 | The functions end point and an increasing SAL line are used as | |
4074 | indicators of the prologue's endpoint. | |
4075 | ||
4076 | This code is based on the function refine_prologue_limit | |
4077 | (found in ia64). */ | |
4078 | ||
4079 | CORE_ADDR | |
4080 | skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr) | |
4081 | { | |
4082 | struct symtab_and_line prologue_sal; | |
4083 | CORE_ADDR start_pc; | |
4084 | CORE_ADDR end_pc; | |
4085 | const struct block *bl; | |
4086 | ||
4087 | /* Get an initial range for the function. */ | |
4088 | find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc); | |
4089 | start_pc += gdbarch_deprecated_function_start_offset (gdbarch); | |
4090 | ||
4091 | prologue_sal = find_pc_line (start_pc, 0); | |
4092 | if (prologue_sal.line != 0) | |
4093 | { | |
4094 | /* For languages other than assembly, treat two consecutive line | |
4095 | entries at the same address as a zero-instruction prologue. | |
4096 | The GNU assembler emits separate line notes for each instruction | |
4097 | in a multi-instruction macro, but compilers generally will not | |
4098 | do this. */ | |
4099 | if (prologue_sal.symtab->language () != language_asm) | |
4100 | { | |
4101 | struct objfile *objfile | |
4102 | = prologue_sal.symtab->compunit ()->objfile (); | |
4103 | const linetable *linetable = prologue_sal.symtab->linetable (); | |
4104 | gdb_assert (linetable->nitems > 0); | |
4105 | int idx = 0; | |
4106 | ||
4107 | /* Skip any earlier lines, and any end-of-sequence marker | |
4108 | from a previous function. */ | |
4109 | while (idx + 1 < linetable->nitems | |
4110 | && (linetable->item[idx].pc (objfile) != prologue_sal.pc | |
4111 | || linetable->item[idx].line == 0)) | |
4112 | idx++; | |
4113 | ||
4114 | if (idx + 1 < linetable->nitems | |
4115 | && linetable->item[idx+1].line != 0 | |
4116 | && linetable->item[idx+1].pc (objfile) == start_pc) | |
4117 | return start_pc; | |
4118 | } | |
4119 | ||
4120 | /* If there is only one sal that covers the entire function, | |
4121 | then it is probably a single line function, like | |
4122 | "foo(){}". */ | |
4123 | if (prologue_sal.end >= end_pc) | |
4124 | return 0; | |
4125 | ||
4126 | while (prologue_sal.end < end_pc) | |
4127 | { | |
4128 | struct symtab_and_line sal; | |
4129 | ||
4130 | sal = find_pc_line (prologue_sal.end, 0); | |
4131 | if (sal.line == 0) | |
4132 | break; | |
4133 | /* Assume that a consecutive SAL for the same (or larger) | |
4134 | line mark the prologue -> body transition. */ | |
4135 | if (sal.line >= prologue_sal.line) | |
4136 | break; | |
4137 | /* Likewise if we are in a different symtab altogether | |
4138 | (e.g. within a file included via #include). */ | |
4139 | if (sal.symtab != prologue_sal.symtab) | |
4140 | break; | |
4141 | ||
4142 | /* The line number is smaller. Check that it's from the | |
4143 | same function, not something inlined. If it's inlined, | |
4144 | then there is no point comparing the line numbers. */ | |
4145 | bl = block_for_pc (prologue_sal.end); | |
4146 | while (bl) | |
4147 | { | |
4148 | if (bl->inlined_p ()) | |
4149 | break; | |
4150 | if (bl->function ()) | |
4151 | { | |
4152 | bl = NULL; | |
4153 | break; | |
4154 | } | |
4155 | bl = bl->superblock (); | |
4156 | } | |
4157 | if (bl != NULL) | |
4158 | break; | |
4159 | ||
4160 | /* The case in which compiler's optimizer/scheduler has | |
4161 | moved instructions into the prologue. We look ahead in | |
4162 | the function looking for address ranges whose | |
4163 | corresponding line number is less the first one that we | |
4164 | found for the function. This is more conservative then | |
4165 | refine_prologue_limit which scans a large number of SALs | |
4166 | looking for any in the prologue. */ | |
4167 | prologue_sal = sal; | |
4168 | } | |
4169 | } | |
4170 | ||
4171 | if (prologue_sal.end < end_pc) | |
4172 | /* Return the end of this line, or zero if we could not find a | |
4173 | line. */ | |
4174 | return prologue_sal.end; | |
4175 | else | |
4176 | /* Don't return END_PC, which is past the end of the function. */ | |
4177 | return prologue_sal.pc; | |
4178 | } | |
4179 | ||
4180 | /* See symtab.h. */ | |
4181 | ||
4182 | std::optional<CORE_ADDR> | |
4183 | find_epilogue_using_linetable (CORE_ADDR func_addr) | |
4184 | { | |
4185 | CORE_ADDR start_pc, end_pc; | |
4186 | ||
4187 | if (!find_pc_partial_function (func_addr, nullptr, &start_pc, &end_pc)) | |
4188 | return {}; | |
4189 | ||
4190 | /* While the standard allows for multiple points marked with epilogue_begin | |
4191 | in the same function, for performance reasons, this function will only | |
4192 | find the last address that sets this flag for a given block. | |
4193 | ||
4194 | The lines of a function can be described by several line tables in case | |
4195 | there are different files involved. There's a corner case where a | |
4196 | function epilogue is in a different file than a function start, and using | |
4197 | start_pc as argument to find_pc_line will mean we won't find the | |
4198 | epilogue. Instead, use "end_pc - 1" to maximize our chances of picking | |
4199 | the line table containing an epilogue. */ | |
4200 | const struct symtab_and_line sal = find_pc_line (end_pc - 1, 0); | |
4201 | if (sal.symtab != nullptr && sal.symtab->language () != language_asm) | |
4202 | { | |
4203 | struct objfile *objfile = sal.symtab->compunit ()->objfile (); | |
4204 | unrelocated_addr unrel_start | |
4205 | = unrelocated_addr (start_pc - objfile->text_section_offset ()); | |
4206 | unrelocated_addr unrel_end | |
4207 | = unrelocated_addr (end_pc - objfile->text_section_offset ()); | |
4208 | ||
4209 | const linetable *linetable = sal.symtab->linetable (); | |
4210 | if (linetable == nullptr || linetable->nitems == 0) | |
4211 | { | |
4212 | /* Empty line table. */ | |
4213 | return {}; | |
4214 | } | |
4215 | ||
4216 | /* Find the first linetable entry after the current function. Note that | |
4217 | this also may be an end_sequence entry. */ | |
4218 | auto it = std::lower_bound | |
4219 | (linetable->item, linetable->item + linetable->nitems, unrel_end, | |
4220 | [] (const linetable_entry <e, unrelocated_addr pc) | |
4221 | { | |
4222 | return lte.unrelocated_pc () < pc; | |
4223 | }); | |
4224 | if (it == linetable->item + linetable->nitems) | |
4225 | { | |
4226 | /* We couldn't find either: | |
4227 | - a linetable entry starting the function after the current | |
4228 | function, or | |
4229 | - an end_sequence entry that terminates the current function | |
4230 | at unrel_end. | |
4231 | ||
4232 | This can happen when the linetable doesn't describe the full | |
4233 | extent of the function. This can be triggered with: | |
4234 | - compiler-generated debug info, in the cornercase that the pc | |
4235 | with which we call find_pc_line resides in a different file | |
4236 | than unrel_end, or | |
4237 | - invalid dwarf assembly debug info. | |
4238 | In the former case, there's no point in iterating further, simply | |
4239 | return "not found". In the latter case, there's no current | |
4240 | incentive to attempt to support this, so handle this | |
4241 | conservatively and do the same. */ | |
4242 | return {}; | |
4243 | } | |
4244 | ||
4245 | if (unrel_end < it->unrelocated_pc ()) | |
4246 | { | |
4247 | /* We found a line entry that starts past the end of the | |
4248 | function. This can happen if the previous entry straddles | |
4249 | two functions, which shouldn't happen with compiler-generated | |
4250 | debug info. Handle the corner case conservatively. */ | |
4251 | return {}; | |
4252 | } | |
4253 | gdb_assert (unrel_end == it->unrelocated_pc ()); | |
4254 | ||
4255 | /* Move to the last linetable entry of the current function. */ | |
4256 | if (it == &linetable->item[0]) | |
4257 | { | |
4258 | /* Doing it-- would introduce undefined behavior, avoid it by | |
4259 | explicitly handling this case. */ | |
4260 | return {}; | |
4261 | } | |
4262 | it--; | |
4263 | if (it->unrelocated_pc () < unrel_start) | |
4264 | { | |
4265 | /* Not in the current function. */ | |
4266 | return {}; | |
4267 | } | |
4268 | gdb_assert (it->unrelocated_pc () < unrel_end); | |
4269 | ||
4270 | /* We're at the the last linetable entry of the current function. This | |
4271 | is probably where the epilogue begins, but since the DWARF 5 spec | |
4272 | doesn't guarantee it, we iterate backwards through the current | |
4273 | function until we either find the epilogue beginning, or are sure | |
4274 | that it doesn't exist. */ | |
4275 | for (; it >= &linetable->item[0]; it--) | |
4276 | { | |
4277 | if (it->unrelocated_pc () < unrel_start) | |
4278 | { | |
4279 | /* No longer in the current function. */ | |
4280 | break; | |
4281 | } | |
4282 | ||
4283 | if (it->epilogue_begin) | |
4284 | { | |
4285 | /* Found the beginning of the epilogue. */ | |
4286 | return {it->pc (objfile)}; | |
4287 | } | |
4288 | ||
4289 | if (it == &linetable->item[0]) | |
4290 | { | |
4291 | /* No more entries in the current function. | |
4292 | Doing it-- would introduce undefined behavior, avoid it by | |
4293 | explicitly handling this case. */ | |
4294 | break; | |
4295 | } | |
4296 | } | |
4297 | } | |
4298 | ||
4299 | return {}; | |
4300 | } | |
4301 | ||
4302 | /* See symtab.h. */ | |
4303 | ||
4304 | symbol * | |
4305 | find_function_alias_target (bound_minimal_symbol msymbol) | |
4306 | { | |
4307 | CORE_ADDR func_addr; | |
4308 | if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr)) | |
4309 | return NULL; | |
4310 | ||
4311 | symbol *sym = find_pc_function (func_addr); | |
4312 | if (sym != NULL | |
4313 | && sym->aclass () == LOC_BLOCK | |
4314 | && sym->value_block ()->entry_pc () == func_addr) | |
4315 | return sym; | |
4316 | ||
4317 | return NULL; | |
4318 | } | |
4319 | ||
4320 | \f | |
4321 | /* If P is of the form "operator[ \t]+..." where `...' is | |
4322 | some legitimate operator text, return a pointer to the | |
4323 | beginning of the substring of the operator text. | |
4324 | Otherwise, return "". */ | |
4325 | ||
4326 | static const char * | |
4327 | operator_chars (const char *p, const char **end) | |
4328 | { | |
4329 | *end = ""; | |
4330 | if (!startswith (p, CP_OPERATOR_STR)) | |
4331 | return *end; | |
4332 | p += CP_OPERATOR_LEN; | |
4333 | ||
4334 | /* Don't get faked out by `operator' being part of a longer | |
4335 | identifier. */ | |
4336 | if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0') | |
4337 | return *end; | |
4338 | ||
4339 | /* Allow some whitespace between `operator' and the operator symbol. */ | |
4340 | while (*p == ' ' || *p == '\t') | |
4341 | p++; | |
4342 | ||
4343 | /* Recognize 'operator TYPENAME'. */ | |
4344 | ||
4345 | if (isalpha (*p) || *p == '_' || *p == '$') | |
4346 | { | |
4347 | const char *q = p + 1; | |
4348 | ||
4349 | while (isalnum (*q) || *q == '_' || *q == '$') | |
4350 | q++; | |
4351 | *end = q; | |
4352 | return p; | |
4353 | } | |
4354 | ||
4355 | while (*p) | |
4356 | switch (*p) | |
4357 | { | |
4358 | case '\\': /* regexp quoting */ | |
4359 | if (p[1] == '*') | |
4360 | { | |
4361 | if (p[2] == '=') /* 'operator\*=' */ | |
4362 | *end = p + 3; | |
4363 | else /* 'operator\*' */ | |
4364 | *end = p + 2; | |
4365 | return p; | |
4366 | } | |
4367 | else if (p[1] == '[') | |
4368 | { | |
4369 | if (p[2] == ']') | |
4370 | error (_("mismatched quoting on brackets, " | |
4371 | "try 'operator\\[\\]'")); | |
4372 | else if (p[2] == '\\' && p[3] == ']') | |
4373 | { | |
4374 | *end = p + 4; /* 'operator\[\]' */ | |
4375 | return p; | |
4376 | } | |
4377 | else | |
4378 | error (_("nothing is allowed between '[' and ']'")); | |
4379 | } | |
4380 | else | |
4381 | { | |
4382 | /* Gratuitous quote: skip it and move on. */ | |
4383 | p++; | |
4384 | continue; | |
4385 | } | |
4386 | break; | |
4387 | case '!': | |
4388 | case '=': | |
4389 | case '*': | |
4390 | case '/': | |
4391 | case '%': | |
4392 | case '^': | |
4393 | if (p[1] == '=') | |
4394 | *end = p + 2; | |
4395 | else | |
4396 | *end = p + 1; | |
4397 | return p; | |
4398 | case '<': | |
4399 | case '>': | |
4400 | case '+': | |
4401 | case '-': | |
4402 | case '&': | |
4403 | case '|': | |
4404 | if (p[0] == '-' && p[1] == '>') | |
4405 | { | |
4406 | /* Struct pointer member operator 'operator->'. */ | |
4407 | if (p[2] == '*') | |
4408 | { | |
4409 | *end = p + 3; /* 'operator->*' */ | |
4410 | return p; | |
4411 | } | |
4412 | else if (p[2] == '\\') | |
4413 | { | |
4414 | *end = p + 4; /* Hopefully 'operator->\*' */ | |
4415 | return p; | |
4416 | } | |
4417 | else | |
4418 | { | |
4419 | *end = p + 2; /* 'operator->' */ | |
4420 | return p; | |
4421 | } | |
4422 | } | |
4423 | if (p[1] == '=' || p[1] == p[0]) | |
4424 | *end = p + 2; | |
4425 | else | |
4426 | *end = p + 1; | |
4427 | return p; | |
4428 | case '~': | |
4429 | case ',': | |
4430 | *end = p + 1; | |
4431 | return p; | |
4432 | case '(': | |
4433 | if (p[1] != ')') | |
4434 | error (_("`operator ()' must be specified " | |
4435 | "without whitespace in `()'")); | |
4436 | *end = p + 2; | |
4437 | return p; | |
4438 | case '?': | |
4439 | if (p[1] != ':') | |
4440 | error (_("`operator ?:' must be specified " | |
4441 | "without whitespace in `?:'")); | |
4442 | *end = p + 2; | |
4443 | return p; | |
4444 | case '[': | |
4445 | if (p[1] != ']') | |
4446 | error (_("`operator []' must be specified " | |
4447 | "without whitespace in `[]'")); | |
4448 | *end = p + 2; | |
4449 | return p; | |
4450 | default: | |
4451 | error (_("`operator %s' not supported"), p); | |
4452 | break; | |
4453 | } | |
4454 | ||
4455 | *end = ""; | |
4456 | return *end; | |
4457 | } | |
4458 | \f | |
4459 | ||
4460 | /* See class declaration. */ | |
4461 | ||
4462 | info_sources_filter::info_sources_filter (match_on match_type, | |
4463 | const char *regexp) | |
4464 | : m_match_type (match_type), | |
4465 | m_regexp (regexp) | |
4466 | { | |
4467 | /* Setup the compiled regular expression M_C_REGEXP based on M_REGEXP. */ | |
4468 | if (m_regexp != nullptr && *m_regexp != '\0') | |
4469 | { | |
4470 | gdb_assert (m_regexp != nullptr); | |
4471 | ||
4472 | int cflags = REG_NOSUB; | |
4473 | #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM | |
4474 | cflags |= REG_ICASE; | |
4475 | #endif | |
4476 | m_c_regexp.emplace (m_regexp, cflags, _("Invalid regexp")); | |
4477 | } | |
4478 | } | |
4479 | ||
4480 | /* See class declaration. */ | |
4481 | ||
4482 | bool | |
4483 | info_sources_filter::matches (const char *fullname) const | |
4484 | { | |
4485 | /* Does it match regexp? */ | |
4486 | if (m_c_regexp.has_value ()) | |
4487 | { | |
4488 | const char *to_match; | |
4489 | std::string dirname; | |
4490 | ||
4491 | switch (m_match_type) | |
4492 | { | |
4493 | case match_on::DIRNAME: | |
4494 | dirname = gdb_ldirname (fullname); | |
4495 | to_match = dirname.c_str (); | |
4496 | break; | |
4497 | case match_on::BASENAME: | |
4498 | to_match = lbasename (fullname); | |
4499 | break; | |
4500 | case match_on::FULLNAME: | |
4501 | to_match = fullname; | |
4502 | break; | |
4503 | default: | |
4504 | gdb_assert_not_reached ("bad m_match_type"); | |
4505 | } | |
4506 | ||
4507 | if (m_c_regexp->exec (to_match, 0, NULL, 0) != 0) | |
4508 | return false; | |
4509 | } | |
4510 | ||
4511 | return true; | |
4512 | } | |
4513 | ||
4514 | /* Data structure to maintain the state used for printing the results of | |
4515 | the 'info sources' command. */ | |
4516 | ||
4517 | struct output_source_filename_data | |
4518 | { | |
4519 | /* Create an object for displaying the results of the 'info sources' | |
4520 | command to UIOUT. FILTER must remain valid and unchanged for the | |
4521 | lifetime of this object as this object retains a reference to FILTER. */ | |
4522 | output_source_filename_data (struct ui_out *uiout, | |
4523 | const info_sources_filter &filter) | |
4524 | : m_filter (filter), | |
4525 | m_uiout (uiout) | |
4526 | { /* Nothing. */ } | |
4527 | ||
4528 | DISABLE_COPY_AND_ASSIGN (output_source_filename_data); | |
4529 | ||
4530 | /* Reset enough state of this object so we can match against a new set of | |
4531 | files. The existing regular expression is retained though. */ | |
4532 | void reset_output () | |
4533 | { | |
4534 | m_first = true; | |
4535 | m_filename_seen_cache.clear (); | |
4536 | } | |
4537 | ||
4538 | /* Worker for sources_info, outputs the file name formatted for either | |
4539 | cli or mi (based on the current_uiout). In cli mode displays | |
4540 | FULLNAME with a comma separating this name from any previously | |
4541 | printed name (line breaks are added at the comma). In MI mode | |
4542 | outputs a tuple containing DISP_NAME (the files display name), | |
4543 | FULLNAME, and EXPANDED_P (true when this file is from a fully | |
4544 | expanded symtab, otherwise false). */ | |
4545 | void output (const char *disp_name, const char *fullname, bool expanded_p); | |
4546 | ||
4547 | /* An overload suitable for use as a callback to | |
4548 | quick_symbol_functions::map_symbol_filenames. */ | |
4549 | void operator() (const char *filename, const char *fullname) | |
4550 | { | |
4551 | /* The false here indicates that this file is from an unexpanded | |
4552 | symtab. */ | |
4553 | output (filename, fullname, false); | |
4554 | } | |
4555 | ||
4556 | /* Return true if at least one filename has been printed (after a call to | |
4557 | output) since either this object was created, or the last call to | |
4558 | reset_output. */ | |
4559 | bool printed_filename_p () const | |
4560 | { | |
4561 | return !m_first; | |
4562 | } | |
4563 | ||
4564 | private: | |
4565 | ||
4566 | /* Flag of whether we're printing the first one. */ | |
4567 | bool m_first = true; | |
4568 | ||
4569 | /* Cache of what we've seen so far. */ | |
4570 | filename_seen_cache m_filename_seen_cache; | |
4571 | ||
4572 | /* How source filename should be filtered. */ | |
4573 | const info_sources_filter &m_filter; | |
4574 | ||
4575 | /* The object to which output is sent. */ | |
4576 | struct ui_out *m_uiout; | |
4577 | }; | |
4578 | ||
4579 | /* See comment in class declaration above. */ | |
4580 | ||
4581 | void | |
4582 | output_source_filename_data::output (const char *disp_name, | |
4583 | const char *fullname, | |
4584 | bool expanded_p) | |
4585 | { | |
4586 | /* Since a single source file can result in several partial symbol | |
4587 | tables, we need to avoid printing it more than once. Note: if | |
4588 | some of the psymtabs are read in and some are not, it gets | |
4589 | printed both under "Source files for which symbols have been | |
4590 | read" and "Source files for which symbols will be read in on | |
4591 | demand". I consider this a reasonable way to deal with the | |
4592 | situation. I'm not sure whether this can also happen for | |
4593 | symtabs; it doesn't hurt to check. */ | |
4594 | ||
4595 | /* Was NAME already seen? If so, then don't print it again. */ | |
4596 | if (m_filename_seen_cache.seen (fullname)) | |
4597 | return; | |
4598 | ||
4599 | /* If the filter rejects this file then don't print it. */ | |
4600 | if (!m_filter.matches (fullname)) | |
4601 | return; | |
4602 | ||
4603 | ui_out_emit_tuple ui_emitter (m_uiout, nullptr); | |
4604 | ||
4605 | /* Print it and reset *FIRST. */ | |
4606 | if (!m_first) | |
4607 | m_uiout->text (", "); | |
4608 | m_first = false; | |
4609 | ||
4610 | m_uiout->wrap_hint (0); | |
4611 | if (m_uiout->is_mi_like_p ()) | |
4612 | { | |
4613 | m_uiout->field_string ("file", disp_name, file_name_style.style ()); | |
4614 | if (fullname != nullptr) | |
4615 | m_uiout->field_string ("fullname", fullname, | |
4616 | file_name_style.style ()); | |
4617 | m_uiout->field_string ("debug-fully-read", | |
4618 | (expanded_p ? "true" : "false")); | |
4619 | } | |
4620 | else | |
4621 | { | |
4622 | if (fullname == nullptr) | |
4623 | fullname = disp_name; | |
4624 | m_uiout->field_string ("fullname", fullname, | |
4625 | file_name_style.style ()); | |
4626 | } | |
4627 | } | |
4628 | ||
4629 | /* For the 'info sources' command, what part of the file names should we be | |
4630 | matching the user supplied regular expression against? */ | |
4631 | ||
4632 | struct filename_partial_match_opts | |
4633 | { | |
4634 | /* Only match the directory name part. */ | |
4635 | bool dirname = false; | |
4636 | ||
4637 | /* Only match the basename part. */ | |
4638 | bool basename = false; | |
4639 | }; | |
4640 | ||
4641 | using isrc_flag_option_def | |
4642 | = gdb::option::flag_option_def<filename_partial_match_opts>; | |
4643 | ||
4644 | static const gdb::option::option_def info_sources_option_defs[] = { | |
4645 | ||
4646 | isrc_flag_option_def { | |
4647 | "dirname", | |
4648 | [] (filename_partial_match_opts *opts) { return &opts->dirname; }, | |
4649 | N_("Show only the files having a dirname matching REGEXP."), | |
4650 | }, | |
4651 | ||
4652 | isrc_flag_option_def { | |
4653 | "basename", | |
4654 | [] (filename_partial_match_opts *opts) { return &opts->basename; }, | |
4655 | N_("Show only the files having a basename matching REGEXP."), | |
4656 | }, | |
4657 | ||
4658 | }; | |
4659 | ||
4660 | /* Create an option_def_group for the "info sources" options, with | |
4661 | ISRC_OPTS as context. */ | |
4662 | ||
4663 | static inline gdb::option::option_def_group | |
4664 | make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts) | |
4665 | { | |
4666 | return {{info_sources_option_defs}, isrc_opts}; | |
4667 | } | |
4668 | ||
4669 | /* Completer for "info sources". */ | |
4670 | ||
4671 | static void | |
4672 | info_sources_command_completer (cmd_list_element *ignore, | |
4673 | completion_tracker &tracker, | |
4674 | const char *text, const char *word) | |
4675 | { | |
4676 | const auto group = make_info_sources_options_def_group (nullptr); | |
4677 | if (gdb::option::complete_options | |
4678 | (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group)) | |
4679 | return; | |
4680 | } | |
4681 | ||
4682 | /* See symtab.h. */ | |
4683 | ||
4684 | void | |
4685 | info_sources_worker (struct ui_out *uiout, | |
4686 | bool group_by_objfile, | |
4687 | const info_sources_filter &filter) | |
4688 | { | |
4689 | output_source_filename_data data (uiout, filter); | |
4690 | ||
4691 | ui_out_emit_list results_emitter (uiout, "files"); | |
4692 | std::optional<ui_out_emit_tuple> output_tuple; | |
4693 | std::optional<ui_out_emit_list> sources_list; | |
4694 | ||
4695 | gdb_assert (group_by_objfile || uiout->is_mi_like_p ()); | |
4696 | ||
4697 | for (objfile *objfile : current_program_space->objfiles ()) | |
4698 | { | |
4699 | if (group_by_objfile) | |
4700 | { | |
4701 | output_tuple.emplace (uiout, nullptr); | |
4702 | uiout->field_string ("filename", objfile_name (objfile), | |
4703 | file_name_style.style ()); | |
4704 | uiout->text (":\n"); | |
4705 | bool debug_fully_readin = !objfile->has_unexpanded_symtabs (); | |
4706 | if (uiout->is_mi_like_p ()) | |
4707 | { | |
4708 | const char *debug_info_state; | |
4709 | if (objfile->has_symbols ()) | |
4710 | { | |
4711 | if (debug_fully_readin) | |
4712 | debug_info_state = "fully-read"; | |
4713 | else | |
4714 | debug_info_state = "partially-read"; | |
4715 | } | |
4716 | else | |
4717 | debug_info_state = "none"; | |
4718 | current_uiout->field_string ("debug-info", debug_info_state); | |
4719 | } | |
4720 | else | |
4721 | { | |
4722 | if (!debug_fully_readin) | |
4723 | uiout->text ("(Full debug information has not yet been read " | |
4724 | "for this file.)\n"); | |
4725 | if (!objfile->has_symbols ()) | |
4726 | uiout->text ("(Objfile has no debug information.)\n"); | |
4727 | uiout->text ("\n"); | |
4728 | } | |
4729 | sources_list.emplace (uiout, "sources"); | |
4730 | } | |
4731 | ||
4732 | for (compunit_symtab *cu : objfile->compunits ()) | |
4733 | { | |
4734 | for (symtab *s : cu->filetabs ()) | |
4735 | { | |
4736 | const char *file = symtab_to_filename_for_display (s); | |
4737 | const char *fullname = symtab_to_fullname (s); | |
4738 | data.output (file, fullname, true); | |
4739 | } | |
4740 | } | |
4741 | ||
4742 | if (group_by_objfile) | |
4743 | { | |
4744 | objfile->map_symbol_filenames (data, true /* need_fullname */); | |
4745 | if (data.printed_filename_p ()) | |
4746 | uiout->text ("\n\n"); | |
4747 | data.reset_output (); | |
4748 | sources_list.reset (); | |
4749 | output_tuple.reset (); | |
4750 | } | |
4751 | } | |
4752 | ||
4753 | if (!group_by_objfile) | |
4754 | { | |
4755 | data.reset_output (); | |
4756 | map_symbol_filenames (data, true /*need_fullname*/); | |
4757 | } | |
4758 | } | |
4759 | ||
4760 | /* Implement the 'info sources' command. */ | |
4761 | ||
4762 | static void | |
4763 | info_sources_command (const char *args, int from_tty) | |
4764 | { | |
4765 | if (!have_full_symbols (current_program_space) | |
4766 | && !have_partial_symbols (current_program_space)) | |
4767 | error (_ ("No symbol table is loaded. Use the \"file\" command.")); | |
4768 | ||
4769 | filename_partial_match_opts match_opts; | |
4770 | auto group = make_info_sources_options_def_group (&match_opts); | |
4771 | gdb::option::process_options | |
4772 | (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group); | |
4773 | ||
4774 | if (match_opts.dirname && match_opts.basename) | |
4775 | error (_("You cannot give both -basename and -dirname to 'info sources'.")); | |
4776 | ||
4777 | const char *regex = nullptr; | |
4778 | if (args != NULL && *args != '\000') | |
4779 | regex = args; | |
4780 | ||
4781 | if ((match_opts.dirname || match_opts.basename) && regex == nullptr) | |
4782 | error (_("Missing REGEXP for 'info sources'.")); | |
4783 | ||
4784 | info_sources_filter::match_on match_type; | |
4785 | if (match_opts.dirname) | |
4786 | match_type = info_sources_filter::match_on::DIRNAME; | |
4787 | else if (match_opts.basename) | |
4788 | match_type = info_sources_filter::match_on::BASENAME; | |
4789 | else | |
4790 | match_type = info_sources_filter::match_on::FULLNAME; | |
4791 | ||
4792 | info_sources_filter filter (match_type, regex); | |
4793 | info_sources_worker (current_uiout, true, filter); | |
4794 | } | |
4795 | ||
4796 | /* Compare FILE against all the entries of FILENAMES. If BASENAMES is | |
4797 | true compare only lbasename of FILENAMES. */ | |
4798 | ||
4799 | static bool | |
4800 | file_matches (const char *file, | |
4801 | const std::vector<gdb::unique_xmalloc_ptr<char>> &filenames, | |
4802 | bool basenames) | |
4803 | { | |
4804 | if (filenames.empty ()) | |
4805 | return true; | |
4806 | ||
4807 | for (const auto &name : filenames) | |
4808 | { | |
4809 | const char *lname = (basenames ? lbasename (name.get ()) : name.get ()); | |
4810 | if (compare_filenames_for_search (file, lname)) | |
4811 | return true; | |
4812 | } | |
4813 | ||
4814 | return false; | |
4815 | } | |
4816 | ||
4817 | /* Helper function for std::sort on symbol_search objects. Can only sort | |
4818 | symbols, not minimal symbols. */ | |
4819 | ||
4820 | int | |
4821 | symbol_search::compare_search_syms (const symbol_search &sym_a, | |
4822 | const symbol_search &sym_b) | |
4823 | { | |
4824 | int c; | |
4825 | ||
4826 | c = FILENAME_CMP (sym_a.symbol->symtab ()->filename, | |
4827 | sym_b.symbol->symtab ()->filename); | |
4828 | if (c != 0) | |
4829 | return c; | |
4830 | ||
4831 | if (sym_a.block != sym_b.block) | |
4832 | return sym_a.block - sym_b.block; | |
4833 | ||
4834 | return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ()); | |
4835 | } | |
4836 | ||
4837 | /* Returns true if the type_name of symbol_type of SYM matches TREG. | |
4838 | If SYM has no symbol_type or symbol_name, returns false. */ | |
4839 | ||
4840 | bool | |
4841 | treg_matches_sym_type_name (const compiled_regex &treg, | |
4842 | const struct symbol *sym) | |
4843 | { | |
4844 | struct type *sym_type; | |
4845 | std::string printed_sym_type_name; | |
4846 | ||
4847 | symbol_lookup_debug_printf_v ("treg_matches_sym_type_name, sym %s", | |
4848 | sym->natural_name ()); | |
4849 | ||
4850 | sym_type = sym->type (); | |
4851 | if (sym_type == NULL) | |
4852 | return false; | |
4853 | ||
4854 | { | |
4855 | scoped_switch_to_sym_language_if_auto l (sym); | |
4856 | ||
4857 | printed_sym_type_name = type_to_string (sym_type); | |
4858 | } | |
4859 | ||
4860 | symbol_lookup_debug_printf_v ("sym_type_name %s", | |
4861 | printed_sym_type_name.c_str ()); | |
4862 | ||
4863 | if (printed_sym_type_name.empty ()) | |
4864 | return false; | |
4865 | ||
4866 | return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0; | |
4867 | } | |
4868 | ||
4869 | /* See symtab.h. */ | |
4870 | ||
4871 | bool | |
4872 | global_symbol_searcher::is_suitable_msymbol | |
4873 | (const domain_search_flags kind, const minimal_symbol *msymbol) | |
4874 | { | |
4875 | switch (msymbol->type ()) | |
4876 | { | |
4877 | case mst_data: | |
4878 | case mst_bss: | |
4879 | case mst_file_data: | |
4880 | case mst_file_bss: | |
4881 | return (kind & SEARCH_VAR_DOMAIN) != 0; | |
4882 | case mst_text: | |
4883 | case mst_file_text: | |
4884 | case mst_solib_trampoline: | |
4885 | case mst_text_gnu_ifunc: | |
4886 | return (kind & SEARCH_FUNCTION_DOMAIN) != 0; | |
4887 | default: | |
4888 | return false; | |
4889 | } | |
4890 | } | |
4891 | ||
4892 | /* See symtab.h. */ | |
4893 | ||
4894 | bool | |
4895 | global_symbol_searcher::expand_symtabs | |
4896 | (objfile *objfile, const std::optional<compiled_regex> &preg) const | |
4897 | { | |
4898 | domain_search_flags kind = m_kind; | |
4899 | bool found_msymbol = false; | |
4900 | ||
4901 | auto do_file_match = [&] (const char *filename, bool basenames) | |
4902 | { | |
4903 | return file_matches (filename, m_filenames, basenames); | |
4904 | }; | |
4905 | expand_symtabs_file_matcher file_matcher = nullptr; | |
4906 | if (!m_filenames.empty ()) | |
4907 | file_matcher = do_file_match; | |
4908 | ||
4909 | objfile->expand_symtabs_matching | |
4910 | (file_matcher, | |
4911 | &lookup_name_info::match_any (), | |
4912 | [&] (const char *symname) | |
4913 | { | |
4914 | return (!preg.has_value () | |
4915 | || preg->exec (symname, 0, NULL, 0) == 0); | |
4916 | }, | |
4917 | NULL, | |
4918 | SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK, | |
4919 | kind); | |
4920 | ||
4921 | /* Here, we search through the minimal symbol tables for functions and | |
4922 | variables that match, and force their symbols to be read. This is in | |
4923 | particular necessary for demangled variable names, which are no longer | |
4924 | put into the partial symbol tables. The symbol will then be found | |
4925 | during the scan of symtabs later. | |
4926 | ||
4927 | For functions, find_pc_symtab should succeed if we have debug info for | |
4928 | the function, for variables we have to call | |
4929 | lookup_symbol_in_objfile_from_linkage_name to determine if the | |
4930 | variable has debug info. If the lookup fails, set found_msymbol so | |
4931 | that we will rescan to print any matching symbols without debug info. | |
4932 | We only search the objfile the msymbol came from, we no longer search | |
4933 | all objfiles. In large programs (1000s of shared libs) searching all | |
4934 | objfiles is not worth the pain. */ | |
4935 | if (m_filenames.empty () | |
4936 | && (kind & (SEARCH_VAR_DOMAIN | SEARCH_FUNCTION_DOMAIN)) != 0) | |
4937 | { | |
4938 | for (minimal_symbol *msymbol : objfile->msymbols ()) | |
4939 | { | |
4940 | QUIT; | |
4941 | ||
4942 | if (msymbol->created_by_gdb) | |
4943 | continue; | |
4944 | ||
4945 | if (is_suitable_msymbol (kind, msymbol)) | |
4946 | { | |
4947 | if (!preg.has_value () | |
4948 | || preg->exec (msymbol->natural_name (), 0, | |
4949 | NULL, 0) == 0) | |
4950 | { | |
4951 | /* An important side-effect of these lookup functions is | |
4952 | to expand the symbol table if msymbol is found, later | |
4953 | in the process we will add matching symbols or | |
4954 | msymbols to the results list, and that requires that | |
4955 | the symbols tables are expanded. */ | |
4956 | if ((kind & SEARCH_FUNCTION_DOMAIN) != 0 | |
4957 | ? (find_pc_compunit_symtab | |
4958 | (msymbol->value_address (objfile)) == NULL) | |
4959 | : (lookup_symbol_in_objfile_from_linkage_name | |
4960 | (objfile, msymbol->linkage_name (), | |
4961 | SEARCH_VFT) | |
4962 | .symbol == NULL)) | |
4963 | found_msymbol = true; | |
4964 | } | |
4965 | } | |
4966 | } | |
4967 | } | |
4968 | ||
4969 | return found_msymbol; | |
4970 | } | |
4971 | ||
4972 | /* See symtab.h. */ | |
4973 | ||
4974 | bool | |
4975 | global_symbol_searcher::add_matching_symbols | |
4976 | (objfile *objfile, | |
4977 | const std::optional<compiled_regex> &preg, | |
4978 | const std::optional<compiled_regex> &treg, | |
4979 | std::set<symbol_search> *result_set) const | |
4980 | { | |
4981 | domain_search_flags kind = m_kind; | |
4982 | ||
4983 | /* Add matching symbols (if not already present). */ | |
4984 | for (compunit_symtab *cust : objfile->compunits ()) | |
4985 | { | |
4986 | const struct blockvector *bv = cust->blockvector (); | |
4987 | ||
4988 | for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK }) | |
4989 | { | |
4990 | const struct block *b = bv->block (block); | |
4991 | ||
4992 | for (struct symbol *sym : block_iterator_range (b)) | |
4993 | { | |
4994 | struct symtab *real_symtab = sym->symtab (); | |
4995 | ||
4996 | QUIT; | |
4997 | ||
4998 | /* Check first sole REAL_SYMTAB->FILENAME. It does | |
4999 | not need to be a substring of symtab_to_fullname as | |
5000 | it may contain "./" etc. */ | |
5001 | if (!(file_matches (real_symtab->filename, m_filenames, false) | |
5002 | || ((basenames_may_differ | |
5003 | || file_matches (lbasename (real_symtab->filename), | |
5004 | m_filenames, true)) | |
5005 | && file_matches (symtab_to_fullname (real_symtab), | |
5006 | m_filenames, false)))) | |
5007 | continue; | |
5008 | ||
5009 | if (!sym->matches (kind)) | |
5010 | continue; | |
5011 | ||
5012 | if (preg.has_value () && preg->exec (sym->natural_name (), 0, | |
5013 | nullptr, 0) != 0) | |
5014 | continue; | |
5015 | ||
5016 | if (((sym->domain () == VAR_DOMAIN | |
5017 | || sym->domain () == FUNCTION_DOMAIN) | |
5018 | && treg.has_value () | |
5019 | && !treg_matches_sym_type_name (*treg, sym))) | |
5020 | continue; | |
5021 | ||
5022 | if ((kind & SEARCH_VAR_DOMAIN) != 0) | |
5023 | { | |
5024 | if (sym->aclass () == LOC_UNRESOLVED | |
5025 | /* LOC_CONST can be used for more than | |
5026 | just enums, e.g., c++ static const | |
5027 | members. We only want to skip enums | |
5028 | here. */ | |
5029 | || (sym->aclass () == LOC_CONST | |
5030 | && (sym->type ()->code () == TYPE_CODE_ENUM))) | |
5031 | continue; | |
5032 | } | |
5033 | if (sym->domain () == MODULE_DOMAIN && sym->line () == 0) | |
5034 | continue; | |
5035 | ||
5036 | if (result_set->size () < m_max_search_results) | |
5037 | { | |
5038 | /* Match, insert if not already in the results. */ | |
5039 | symbol_search ss (block, sym); | |
5040 | if (result_set->find (ss) == result_set->end ()) | |
5041 | result_set->insert (ss); | |
5042 | } | |
5043 | else | |
5044 | return false; | |
5045 | } | |
5046 | } | |
5047 | } | |
5048 | ||
5049 | return true; | |
5050 | } | |
5051 | ||
5052 | /* See symtab.h. */ | |
5053 | ||
5054 | bool | |
5055 | global_symbol_searcher::add_matching_msymbols | |
5056 | (objfile *objfile, const std::optional<compiled_regex> &preg, | |
5057 | std::vector<symbol_search> *results) const | |
5058 | { | |
5059 | domain_search_flags kind = m_kind; | |
5060 | ||
5061 | for (minimal_symbol *msymbol : objfile->msymbols ()) | |
5062 | { | |
5063 | QUIT; | |
5064 | ||
5065 | if (msymbol->created_by_gdb) | |
5066 | continue; | |
5067 | ||
5068 | if (is_suitable_msymbol (kind, msymbol)) | |
5069 | { | |
5070 | if (!preg.has_value () | |
5071 | || preg->exec (msymbol->natural_name (), 0, | |
5072 | NULL, 0) == 0) | |
5073 | { | |
5074 | /* For functions we can do a quick check of whether the | |
5075 | symbol might be found via find_pc_symtab. */ | |
5076 | if ((kind & SEARCH_FUNCTION_DOMAIN) == 0 | |
5077 | || (find_pc_compunit_symtab | |
5078 | (msymbol->value_address (objfile)) == NULL)) | |
5079 | { | |
5080 | if (lookup_symbol_in_objfile_from_linkage_name | |
5081 | (objfile, msymbol->linkage_name (), | |
5082 | SEARCH_VFT).symbol == NULL) | |
5083 | { | |
5084 | /* Matching msymbol, add it to the results list. */ | |
5085 | if (results->size () < m_max_search_results) | |
5086 | results->emplace_back (GLOBAL_BLOCK, msymbol, objfile); | |
5087 | else | |
5088 | return false; | |
5089 | } | |
5090 | } | |
5091 | } | |
5092 | } | |
5093 | } | |
5094 | ||
5095 | return true; | |
5096 | } | |
5097 | ||
5098 | /* See symtab.h. */ | |
5099 | ||
5100 | std::vector<symbol_search> | |
5101 | global_symbol_searcher::search () const | |
5102 | { | |
5103 | std::optional<compiled_regex> preg; | |
5104 | std::optional<compiled_regex> treg; | |
5105 | ||
5106 | if (m_symbol_name_regexp != NULL) | |
5107 | { | |
5108 | const char *symbol_name_regexp = m_symbol_name_regexp; | |
5109 | std::string symbol_name_regexp_holder; | |
5110 | ||
5111 | /* Make sure spacing is right for C++ operators. | |
5112 | This is just a courtesy to make the matching less sensitive | |
5113 | to how many spaces the user leaves between 'operator' | |
5114 | and <TYPENAME> or <OPERATOR>. */ | |
5115 | const char *opend; | |
5116 | const char *opname = operator_chars (symbol_name_regexp, &opend); | |
5117 | ||
5118 | if (*opname) | |
5119 | { | |
5120 | int fix = -1; /* -1 means ok; otherwise number of | |
5121 | spaces needed. */ | |
5122 | ||
5123 | if (isalpha (*opname) || *opname == '_' || *opname == '$') | |
5124 | { | |
5125 | /* There should 1 space between 'operator' and 'TYPENAME'. */ | |
5126 | if (opname[-1] != ' ' || opname[-2] == ' ') | |
5127 | fix = 1; | |
5128 | } | |
5129 | else | |
5130 | { | |
5131 | /* There should 0 spaces between 'operator' and 'OPERATOR'. */ | |
5132 | if (opname[-1] == ' ') | |
5133 | fix = 0; | |
5134 | } | |
5135 | /* If wrong number of spaces, fix it. */ | |
5136 | if (fix >= 0) | |
5137 | { | |
5138 | symbol_name_regexp_holder | |
5139 | = string_printf ("operator%.*s%s", fix, " ", opname); | |
5140 | symbol_name_regexp = symbol_name_regexp_holder.c_str (); | |
5141 | } | |
5142 | } | |
5143 | ||
5144 | int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off | |
5145 | ? REG_ICASE : 0); | |
5146 | preg.emplace (symbol_name_regexp, cflags, | |
5147 | _("Invalid regexp")); | |
5148 | } | |
5149 | ||
5150 | if (m_symbol_type_regexp != NULL) | |
5151 | { | |
5152 | int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off | |
5153 | ? REG_ICASE : 0); | |
5154 | treg.emplace (m_symbol_type_regexp, cflags, | |
5155 | _("Invalid regexp")); | |
5156 | } | |
5157 | ||
5158 | bool found_msymbol = false; | |
5159 | std::set<symbol_search> result_set; | |
5160 | for (objfile *objfile : current_program_space->objfiles ()) | |
5161 | { | |
5162 | /* Expand symtabs within objfile that possibly contain matching | |
5163 | symbols. */ | |
5164 | found_msymbol |= expand_symtabs (objfile, preg); | |
5165 | ||
5166 | /* Find matching symbols within OBJFILE and add them in to the | |
5167 | RESULT_SET set. Use a set here so that we can easily detect | |
5168 | duplicates as we go, and can therefore track how many unique | |
5169 | matches we have found so far. */ | |
5170 | if (!add_matching_symbols (objfile, preg, treg, &result_set)) | |
5171 | break; | |
5172 | } | |
5173 | ||
5174 | /* Convert the result set into a sorted result list, as std::set is | |
5175 | defined to be sorted then no explicit call to std::sort is needed. */ | |
5176 | std::vector<symbol_search> result (result_set.begin (), result_set.end ()); | |
5177 | ||
5178 | /* If there are no debug symbols, then add matching minsyms. But if the | |
5179 | user wants to see symbols matching a type regexp, then never give a | |
5180 | minimal symbol, as we assume that a minimal symbol does not have a | |
5181 | type. */ | |
5182 | if ((found_msymbol | |
5183 | || (m_filenames.empty () && (m_kind & SEARCH_VAR_DOMAIN) != 0)) | |
5184 | && !m_exclude_minsyms | |
5185 | && !treg.has_value ()) | |
5186 | { | |
5187 | gdb_assert ((m_kind & (SEARCH_VAR_DOMAIN | SEARCH_FUNCTION_DOMAIN)) | |
5188 | != 0); | |
5189 | for (objfile *objfile : current_program_space->objfiles ()) | |
5190 | if (!add_matching_msymbols (objfile, preg, &result)) | |
5191 | break; | |
5192 | } | |
5193 | ||
5194 | return result; | |
5195 | } | |
5196 | ||
5197 | /* See symtab.h. */ | |
5198 | ||
5199 | std::string | |
5200 | symbol_to_info_string (struct symbol *sym, int block) | |
5201 | { | |
5202 | std::string str; | |
5203 | ||
5204 | gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK); | |
5205 | ||
5206 | if (block == STATIC_BLOCK | |
5207 | && (sym->domain () == VAR_DOMAIN | |
5208 | || sym->domain () == FUNCTION_DOMAIN)) | |
5209 | str += "static "; | |
5210 | ||
5211 | /* Typedef that is not a C++ class. */ | |
5212 | if (sym->domain () == TYPE_DOMAIN) | |
5213 | { | |
5214 | string_file tmp_stream; | |
5215 | ||
5216 | /* FIXME: For C (and C++) we end up with a difference in output here | |
5217 | between how a typedef is printed, and non-typedefs are printed. | |
5218 | The TYPEDEF_PRINT code places a ";" at the end in an attempt to | |
5219 | appear C-like, while TYPE_PRINT doesn't. | |
5220 | ||
5221 | For the struct printing case below, things are worse, we force | |
5222 | printing of the ";" in this function, which is going to be wrong | |
5223 | for languages that don't require a ";" between statements. */ | |
5224 | if (sym->type ()->code () == TYPE_CODE_TYPEDEF) | |
5225 | typedef_print (sym->type (), sym, &tmp_stream); | |
5226 | else | |
5227 | type_print (sym->type (), "", &tmp_stream, -1); | |
5228 | str += tmp_stream.string (); | |
5229 | } | |
5230 | /* variable, func, or typedef-that-is-c++-class. */ | |
5231 | else if (sym->domain () == VAR_DOMAIN || sym->domain () == STRUCT_DOMAIN | |
5232 | || sym->domain () == FUNCTION_DOMAIN) | |
5233 | { | |
5234 | string_file tmp_stream; | |
5235 | ||
5236 | type_print (sym->type (), | |
5237 | (sym->aclass () == LOC_TYPEDEF | |
5238 | ? "" : sym->print_name ()), | |
5239 | &tmp_stream, 0); | |
5240 | ||
5241 | str += tmp_stream.string (); | |
5242 | str += ";"; | |
5243 | } | |
5244 | /* Printing of modules is currently done here, maybe at some future | |
5245 | point we might want a language specific method to print the module | |
5246 | symbol so that we can customise the output more. */ | |
5247 | else if (sym->domain () == MODULE_DOMAIN) | |
5248 | str += sym->print_name (); | |
5249 | ||
5250 | return str; | |
5251 | } | |
5252 | ||
5253 | /* Helper function for symbol info commands, for example 'info | |
5254 | functions', 'info variables', etc. BLOCK is the type of block the | |
5255 | symbols was found in, either GLOBAL_BLOCK or STATIC_BLOCK. SYM is | |
5256 | the symbol we found. If LAST is not NULL, print file and line | |
5257 | number information for the symbol as well. Skip printing the | |
5258 | filename if it matches LAST. */ | |
5259 | ||
5260 | static void | |
5261 | print_symbol_info (struct symbol *sym, int block, const char *last) | |
5262 | { | |
5263 | scoped_switch_to_sym_language_if_auto l (sym); | |
5264 | struct symtab *s = sym->symtab (); | |
5265 | ||
5266 | if (last != NULL) | |
5267 | { | |
5268 | const char *s_filename = symtab_to_filename_for_display (s); | |
5269 | ||
5270 | if (filename_cmp (last, s_filename) != 0) | |
5271 | { | |
5272 | gdb_printf (_("\nFile %ps:\n"), | |
5273 | styled_string (file_name_style.style (), | |
5274 | s_filename)); | |
5275 | } | |
5276 | ||
5277 | if (sym->line () != 0) | |
5278 | gdb_printf ("%d:\t", sym->line ()); | |
5279 | else | |
5280 | gdb_puts ("\t"); | |
5281 | } | |
5282 | ||
5283 | std::string str = symbol_to_info_string (sym, block); | |
5284 | gdb_printf ("%s\n", str.c_str ()); | |
5285 | } | |
5286 | ||
5287 | /* This help function for symtab_symbol_info() prints information | |
5288 | for non-debugging symbols to gdb_stdout. */ | |
5289 | ||
5290 | static void | |
5291 | print_msymbol_info (bound_minimal_symbol msymbol) | |
5292 | { | |
5293 | struct gdbarch *gdbarch = msymbol.objfile->arch (); | |
5294 | const char *tmp; | |
5295 | ||
5296 | if (gdbarch_addr_bit (gdbarch) <= 32) | |
5297 | tmp = hex_string_custom (msymbol.value_address () | |
5298 | & (CORE_ADDR) 0xffffffff, | |
5299 | 8); | |
5300 | else | |
5301 | tmp = hex_string_custom (msymbol.value_address (), | |
5302 | 16); | |
5303 | ||
5304 | ui_file_style sym_style = (msymbol.minsym->text_p () | |
5305 | ? function_name_style.style () | |
5306 | : ui_file_style ()); | |
5307 | ||
5308 | gdb_printf (_("%ps %ps\n"), | |
5309 | styled_string (address_style.style (), tmp), | |
5310 | styled_string (sym_style, msymbol.minsym->print_name ())); | |
5311 | } | |
5312 | ||
5313 | /* This is the guts of the commands "info functions", "info types", and | |
5314 | "info variables". It calls search_symbols to find all matches and then | |
5315 | print_[m]symbol_info to print out some useful information about the | |
5316 | matches. */ | |
5317 | ||
5318 | static void | |
5319 | symtab_symbol_info (bool quiet, bool exclude_minsyms, | |
5320 | const char *regexp, domain_enum kind, | |
5321 | const char *t_regexp, int from_tty) | |
5322 | { | |
5323 | const char *last_filename = ""; | |
5324 | int first = 1; | |
5325 | ||
5326 | if (regexp != nullptr && *regexp == '\0') | |
5327 | regexp = nullptr; | |
5328 | ||
5329 | domain_search_flags flags = to_search_flags (kind); | |
5330 | if (kind == TYPE_DOMAIN) | |
5331 | flags |= SEARCH_STRUCT_DOMAIN; | |
5332 | ||
5333 | global_symbol_searcher spec (flags, regexp); | |
5334 | spec.set_symbol_type_regexp (t_regexp); | |
5335 | spec.set_exclude_minsyms (exclude_minsyms); | |
5336 | std::vector<symbol_search> symbols = spec.search (); | |
5337 | ||
5338 | if (!quiet) | |
5339 | { | |
5340 | const char *classname; | |
5341 | switch (kind) | |
5342 | { | |
5343 | case VAR_DOMAIN: | |
5344 | classname = "variable"; | |
5345 | break; | |
5346 | case FUNCTION_DOMAIN: | |
5347 | classname = "function"; | |
5348 | break; | |
5349 | case TYPE_DOMAIN: | |
5350 | classname = "type"; | |
5351 | break; | |
5352 | case MODULE_DOMAIN: | |
5353 | classname = "module"; | |
5354 | break; | |
5355 | default: | |
5356 | gdb_assert_not_reached ("invalid domain enum"); | |
5357 | } | |
5358 | ||
5359 | if (regexp != NULL) | |
5360 | { | |
5361 | if (t_regexp != NULL) | |
5362 | gdb_printf | |
5363 | (_("All %ss matching regular expression \"%s\"" | |
5364 | " with type matching regular expression \"%s\":\n"), | |
5365 | classname, regexp, t_regexp); | |
5366 | else | |
5367 | gdb_printf (_("All %ss matching regular expression \"%s\":\n"), | |
5368 | classname, regexp); | |
5369 | } | |
5370 | else | |
5371 | { | |
5372 | if (t_regexp != NULL) | |
5373 | gdb_printf | |
5374 | (_("All defined %ss" | |
5375 | " with type matching regular expression \"%s\" :\n"), | |
5376 | classname, t_regexp); | |
5377 | else | |
5378 | gdb_printf (_("All defined %ss:\n"), classname); | |
5379 | } | |
5380 | } | |
5381 | ||
5382 | for (const symbol_search &p : symbols) | |
5383 | { | |
5384 | QUIT; | |
5385 | ||
5386 | if (p.msymbol.minsym != NULL) | |
5387 | { | |
5388 | if (first) | |
5389 | { | |
5390 | if (!quiet) | |
5391 | gdb_printf (_("\nNon-debugging symbols:\n")); | |
5392 | first = 0; | |
5393 | } | |
5394 | print_msymbol_info (p.msymbol); | |
5395 | } | |
5396 | else | |
5397 | { | |
5398 | print_symbol_info (p.symbol, p.block, last_filename); | |
5399 | last_filename | |
5400 | = symtab_to_filename_for_display (p.symbol->symtab ()); | |
5401 | } | |
5402 | } | |
5403 | } | |
5404 | ||
5405 | /* Structure to hold the values of the options used by the 'info variables' | |
5406 | and 'info functions' commands. These correspond to the -q, -t, and -n | |
5407 | options. */ | |
5408 | ||
5409 | struct info_vars_funcs_options | |
5410 | { | |
5411 | bool quiet = false; | |
5412 | bool exclude_minsyms = false; | |
5413 | std::string type_regexp; | |
5414 | }; | |
5415 | ||
5416 | /* The options used by the 'info variables' and 'info functions' | |
5417 | commands. */ | |
5418 | ||
5419 | static const gdb::option::option_def info_vars_funcs_options_defs[] = { | |
5420 | gdb::option::boolean_option_def<info_vars_funcs_options> { | |
5421 | "q", | |
5422 | [] (info_vars_funcs_options *opt) { return &opt->quiet; }, | |
5423 | nullptr, /* show_cmd_cb */ | |
5424 | nullptr /* set_doc */ | |
5425 | }, | |
5426 | ||
5427 | gdb::option::boolean_option_def<info_vars_funcs_options> { | |
5428 | "n", | |
5429 | [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; }, | |
5430 | nullptr, /* show_cmd_cb */ | |
5431 | nullptr /* set_doc */ | |
5432 | }, | |
5433 | ||
5434 | gdb::option::string_option_def<info_vars_funcs_options> { | |
5435 | "t", | |
5436 | [] (info_vars_funcs_options *opt) { return &opt->type_regexp; }, | |
5437 | nullptr, /* show_cmd_cb */ | |
5438 | nullptr /* set_doc */ | |
5439 | } | |
5440 | }; | |
5441 | ||
5442 | /* Returns the option group used by 'info variables' and 'info | |
5443 | functions'. */ | |
5444 | ||
5445 | static gdb::option::option_def_group | |
5446 | make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts) | |
5447 | { | |
5448 | return {{info_vars_funcs_options_defs}, opts}; | |
5449 | } | |
5450 | ||
5451 | /* Command completer for 'info variables' and 'info functions'. */ | |
5452 | ||
5453 | static void | |
5454 | info_vars_funcs_command_completer (struct cmd_list_element *ignore, | |
5455 | completion_tracker &tracker, | |
5456 | const char *text, const char * /* word */) | |
5457 | { | |
5458 | const auto group | |
5459 | = make_info_vars_funcs_options_def_group (nullptr); | |
5460 | if (gdb::option::complete_options | |
5461 | (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group)) | |
5462 | return; | |
5463 | ||
5464 | const char *word = advance_to_expression_complete_word_point (tracker, text); | |
5465 | symbol_completer (ignore, tracker, text, word); | |
5466 | } | |
5467 | ||
5468 | /* Implement the 'info variables' command. */ | |
5469 | ||
5470 | static void | |
5471 | info_variables_command (const char *args, int from_tty) | |
5472 | { | |
5473 | info_vars_funcs_options opts; | |
5474 | auto grp = make_info_vars_funcs_options_def_group (&opts); | |
5475 | gdb::option::process_options | |
5476 | (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); | |
5477 | if (args != nullptr && *args == '\0') | |
5478 | args = nullptr; | |
5479 | ||
5480 | symtab_symbol_info | |
5481 | (opts.quiet, opts.exclude_minsyms, args, VAR_DOMAIN, | |
5482 | opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (), | |
5483 | from_tty); | |
5484 | } | |
5485 | ||
5486 | /* Implement the 'info functions' command. */ | |
5487 | ||
5488 | static void | |
5489 | info_functions_command (const char *args, int from_tty) | |
5490 | { | |
5491 | info_vars_funcs_options opts; | |
5492 | ||
5493 | auto grp = make_info_vars_funcs_options_def_group (&opts); | |
5494 | gdb::option::process_options | |
5495 | (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); | |
5496 | if (args != nullptr && *args == '\0') | |
5497 | args = nullptr; | |
5498 | ||
5499 | symtab_symbol_info | |
5500 | (opts.quiet, opts.exclude_minsyms, args, FUNCTION_DOMAIN, | |
5501 | opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (), | |
5502 | from_tty); | |
5503 | } | |
5504 | ||
5505 | /* Holds the -q option for the 'info types' command. */ | |
5506 | ||
5507 | struct info_types_options | |
5508 | { | |
5509 | bool quiet = false; | |
5510 | }; | |
5511 | ||
5512 | /* The options used by the 'info types' command. */ | |
5513 | ||
5514 | static const gdb::option::option_def info_types_options_defs[] = { | |
5515 | gdb::option::boolean_option_def<info_types_options> { | |
5516 | "q", | |
5517 | [] (info_types_options *opt) { return &opt->quiet; }, | |
5518 | nullptr, /* show_cmd_cb */ | |
5519 | nullptr /* set_doc */ | |
5520 | } | |
5521 | }; | |
5522 | ||
5523 | /* Returns the option group used by 'info types'. */ | |
5524 | ||
5525 | static gdb::option::option_def_group | |
5526 | make_info_types_options_def_group (info_types_options *opts) | |
5527 | { | |
5528 | return {{info_types_options_defs}, opts}; | |
5529 | } | |
5530 | ||
5531 | /* Implement the 'info types' command. */ | |
5532 | ||
5533 | static void | |
5534 | info_types_command (const char *args, int from_tty) | |
5535 | { | |
5536 | info_types_options opts; | |
5537 | ||
5538 | auto grp = make_info_types_options_def_group (&opts); | |
5539 | gdb::option::process_options | |
5540 | (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); | |
5541 | if (args != nullptr && *args == '\0') | |
5542 | args = nullptr; | |
5543 | symtab_symbol_info (opts.quiet, false, args, TYPE_DOMAIN, nullptr, | |
5544 | from_tty); | |
5545 | } | |
5546 | ||
5547 | /* Command completer for 'info types' command. */ | |
5548 | ||
5549 | static void | |
5550 | info_types_command_completer (struct cmd_list_element *ignore, | |
5551 | completion_tracker &tracker, | |
5552 | const char *text, const char * /* word */) | |
5553 | { | |
5554 | const auto group | |
5555 | = make_info_types_options_def_group (nullptr); | |
5556 | if (gdb::option::complete_options | |
5557 | (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group)) | |
5558 | return; | |
5559 | ||
5560 | const char *word = advance_to_expression_complete_word_point (tracker, text); | |
5561 | symbol_completer (ignore, tracker, text, word); | |
5562 | } | |
5563 | ||
5564 | /* Implement the 'info modules' command. */ | |
5565 | ||
5566 | static void | |
5567 | info_modules_command (const char *args, int from_tty) | |
5568 | { | |
5569 | info_types_options opts; | |
5570 | ||
5571 | auto grp = make_info_types_options_def_group (&opts); | |
5572 | gdb::option::process_options | |
5573 | (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); | |
5574 | if (args != nullptr && *args == '\0') | |
5575 | args = nullptr; | |
5576 | symtab_symbol_info (opts.quiet, true, args, MODULE_DOMAIN, nullptr, | |
5577 | from_tty); | |
5578 | } | |
5579 | ||
5580 | /* Implement the 'info main' command. */ | |
5581 | ||
5582 | static void | |
5583 | info_main_command (const char *args, int from_tty) | |
5584 | { | |
5585 | gdb_printf ("%s\n", main_name ()); | |
5586 | } | |
5587 | ||
5588 | static void | |
5589 | rbreak_command (const char *regexp, int from_tty) | |
5590 | { | |
5591 | gdb::unique_xmalloc_ptr<char> file_name; | |
5592 | ||
5593 | if (regexp != nullptr) | |
5594 | { | |
5595 | const char *colon = strchr (regexp, ':'); | |
5596 | ||
5597 | /* Ignore the colon if it is part of a Windows drive. */ | |
5598 | if (HAS_DRIVE_SPEC (regexp) | |
5599 | && (regexp[2] == '/' || regexp[2] == '\\')) | |
5600 | colon = strchr (STRIP_DRIVE_SPEC (regexp), ':'); | |
5601 | ||
5602 | if (colon && *(colon + 1) != ':') | |
5603 | { | |
5604 | int colon_index = colon - regexp; | |
5605 | while (colon_index > 0 && isspace (regexp[colon_index - 1])) | |
5606 | --colon_index; | |
5607 | ||
5608 | file_name = make_unique_xstrndup (regexp, colon_index); | |
5609 | regexp = skip_spaces (colon + 1); | |
5610 | } | |
5611 | } | |
5612 | ||
5613 | global_symbol_searcher spec (SEARCH_FUNCTION_DOMAIN, regexp); | |
5614 | if (file_name != nullptr) | |
5615 | spec.add_filename (std::move (file_name)); | |
5616 | std::vector<symbol_search> symbols = spec.search (); | |
5617 | ||
5618 | gdb::unordered_set<std::string> seen_names; | |
5619 | scoped_rbreak_breakpoints finalize; | |
5620 | int err_count = 0; | |
5621 | ||
5622 | for (const symbol_search &p : symbols) | |
5623 | { | |
5624 | std::string name; | |
5625 | if (p.msymbol.minsym == nullptr) | |
5626 | { | |
5627 | if (file_name != nullptr) | |
5628 | { | |
5629 | struct symtab *symtab = p.symbol->symtab (); | |
5630 | const char *fullname = symtab_to_fullname (symtab); | |
5631 | name = string_printf ("%s:'%s'", fullname, | |
5632 | p.symbol->linkage_name ()); | |
5633 | } | |
5634 | else | |
5635 | name = p.symbol->linkage_name (); | |
5636 | } | |
5637 | else | |
5638 | name = p.msymbol.minsym->linkage_name (); | |
5639 | ||
5640 | if (!seen_names.insert (name).second) | |
5641 | continue; | |
5642 | ||
5643 | try | |
5644 | { | |
5645 | break_command (name.c_str (), from_tty); | |
5646 | } | |
5647 | catch (const gdb_exception_error &ex) | |
5648 | { | |
5649 | exception_print (gdb_stderr, ex); | |
5650 | ++err_count; | |
5651 | continue; | |
5652 | } | |
5653 | ||
5654 | if (p.msymbol.minsym == nullptr) | |
5655 | print_symbol_info (p.symbol, p.block, nullptr); | |
5656 | else | |
5657 | gdb_printf ("<function, no debug info> %s;\n", name.c_str ()); | |
5658 | } | |
5659 | ||
5660 | int first_bp = finalize.first_breakpoint (); | |
5661 | int last_bp = finalize.last_breakpoint (); | |
5662 | ||
5663 | if (last_bp == -1) | |
5664 | gdb_printf (_("No breakpoints made.\n")); | |
5665 | else if (first_bp == last_bp) | |
5666 | gdb_printf (_("Successfully created breakpoint %d.\n"), first_bp); | |
5667 | else | |
5668 | gdb_printf (_("Successfully created breakpoints %d-%d.\n"), | |
5669 | first_bp, last_bp); | |
5670 | ||
5671 | if (err_count > 0) | |
5672 | gdb_printf (_("%d breakpoints failed due to errors, see above.\n"), | |
5673 | err_count); | |
5674 | } | |
5675 | \f | |
5676 | ||
5677 | /* Evaluate if SYMNAME matches LOOKUP_NAME. */ | |
5678 | ||
5679 | static int | |
5680 | compare_symbol_name (const char *symbol_name, language symbol_language, | |
5681 | const lookup_name_info &lookup_name, | |
5682 | completion_match_result &match_res) | |
5683 | { | |
5684 | const language_defn *lang = language_def (symbol_language); | |
5685 | ||
5686 | symbol_name_matcher_ftype *name_match | |
5687 | = lang->get_symbol_name_matcher (lookup_name); | |
5688 | ||
5689 | return name_match (symbol_name, lookup_name, &match_res); | |
5690 | } | |
5691 | ||
5692 | /* See symtab.h. */ | |
5693 | ||
5694 | bool | |
5695 | completion_list_add_name (completion_tracker &tracker, | |
5696 | language symbol_language, | |
5697 | const char *symname, | |
5698 | const lookup_name_info &lookup_name, | |
5699 | const char *text, const char *word) | |
5700 | { | |
5701 | completion_match_result &match_res | |
5702 | = tracker.reset_completion_match_result (); | |
5703 | ||
5704 | /* Clip symbols that cannot match. */ | |
5705 | if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res)) | |
5706 | return false; | |
5707 | ||
5708 | /* Refresh SYMNAME from the match string. It's potentially | |
5709 | different depending on language. (E.g., on Ada, the match may be | |
5710 | the encoded symbol name wrapped in "<>"). */ | |
5711 | symname = match_res.match.match (); | |
5712 | gdb_assert (symname != NULL); | |
5713 | ||
5714 | /* We have a match for a completion, so add SYMNAME to the current list | |
5715 | of matches. Note that the name is moved to freshly malloc'd space. */ | |
5716 | ||
5717 | { | |
5718 | gdb::unique_xmalloc_ptr<char> completion | |
5719 | = make_completion_match_str (symname, text, word); | |
5720 | ||
5721 | /* Here we pass the match-for-lcd object to add_completion. Some | |
5722 | languages match the user text against substrings of symbol | |
5723 | names in some cases. E.g., in C++, "b push_ba" completes to | |
5724 | "std::vector::push_back", "std::string::push_back", etc., and | |
5725 | in this case we want the completion lowest common denominator | |
5726 | to be "push_back" instead of "std::". */ | |
5727 | tracker.add_completion (std::move (completion), | |
5728 | &match_res.match_for_lcd, text, word); | |
5729 | } | |
5730 | ||
5731 | return true; | |
5732 | } | |
5733 | ||
5734 | /* completion_list_add_name wrapper for struct symbol. */ | |
5735 | ||
5736 | static void | |
5737 | completion_list_add_symbol (completion_tracker &tracker, | |
5738 | symbol *sym, | |
5739 | const lookup_name_info &lookup_name, | |
5740 | const char *text, const char *word) | |
5741 | { | |
5742 | if (!completion_list_add_name (tracker, sym->language (), | |
5743 | sym->natural_name (), | |
5744 | lookup_name, text, word)) | |
5745 | return; | |
5746 | ||
5747 | /* C++ function symbols include the parameters within both the msymbol | |
5748 | name and the symbol name. The problem is that the msymbol name will | |
5749 | describe the parameters in the most basic way, with typedefs stripped | |
5750 | out, while the symbol name will represent the types as they appear in | |
5751 | the program. This means we will see duplicate entries in the | |
5752 | completion tracker. The following converts the symbol name back to | |
5753 | the msymbol name and removes the msymbol name from the completion | |
5754 | tracker. */ | |
5755 | if (sym->language () == language_cplus | |
5756 | && sym->aclass () == LOC_BLOCK) | |
5757 | { | |
5758 | /* The call to canonicalize returns the empty string if the input | |
5759 | string is already in canonical form, thanks to this we don't | |
5760 | remove the symbol we just added above. */ | |
5761 | gdb::unique_xmalloc_ptr<char> str | |
5762 | = cp_canonicalize_string_no_typedefs (sym->natural_name ()); | |
5763 | if (str != nullptr) | |
5764 | tracker.remove_completion (str.get ()); | |
5765 | } | |
5766 | } | |
5767 | ||
5768 | /* completion_list_add_name wrapper for struct minimal_symbol. */ | |
5769 | ||
5770 | static void | |
5771 | completion_list_add_msymbol (completion_tracker &tracker, | |
5772 | minimal_symbol *sym, | |
5773 | const lookup_name_info &lookup_name, | |
5774 | const char *text, const char *word) | |
5775 | { | |
5776 | completion_list_add_name (tracker, sym->language (), | |
5777 | sym->natural_name (), | |
5778 | lookup_name, text, word); | |
5779 | } | |
5780 | ||
5781 | ||
5782 | /* ObjC: In case we are completing on a selector, look as the msymbol | |
5783 | again and feed all the selectors into the mill. */ | |
5784 | ||
5785 | static void | |
5786 | completion_list_objc_symbol (completion_tracker &tracker, | |
5787 | struct minimal_symbol *msymbol, | |
5788 | const lookup_name_info &lookup_name, | |
5789 | const char *text, const char *word) | |
5790 | { | |
5791 | static char *tmp = NULL; | |
5792 | static unsigned int tmplen = 0; | |
5793 | ||
5794 | const char *method, *category, *selector; | |
5795 | char *tmp2 = NULL; | |
5796 | ||
5797 | method = msymbol->natural_name (); | |
5798 | ||
5799 | /* Is it a method? */ | |
5800 | if ((method[0] != '-') && (method[0] != '+')) | |
5801 | return; | |
5802 | ||
5803 | if (text[0] == '[') | |
5804 | /* Complete on shortened method method. */ | |
5805 | completion_list_add_name (tracker, language_objc, | |
5806 | method + 1, | |
5807 | lookup_name, | |
5808 | text, word); | |
5809 | ||
5810 | while ((strlen (method) + 1) >= tmplen) | |
5811 | { | |
5812 | if (tmplen == 0) | |
5813 | tmplen = 1024; | |
5814 | else | |
5815 | tmplen *= 2; | |
5816 | tmp = (char *) xrealloc (tmp, tmplen); | |
5817 | } | |
5818 | selector = strchr (method, ' '); | |
5819 | if (selector != NULL) | |
5820 | selector++; | |
5821 | ||
5822 | category = strchr (method, '('); | |
5823 | ||
5824 | if ((category != NULL) && (selector != NULL)) | |
5825 | { | |
5826 | memcpy (tmp, method, (category - method)); | |
5827 | tmp[category - method] = ' '; | |
5828 | memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1); | |
5829 | completion_list_add_name (tracker, language_objc, tmp, | |
5830 | lookup_name, text, word); | |
5831 | if (text[0] == '[') | |
5832 | completion_list_add_name (tracker, language_objc, tmp + 1, | |
5833 | lookup_name, text, word); | |
5834 | } | |
5835 | ||
5836 | if (selector != NULL) | |
5837 | { | |
5838 | /* Complete on selector only. */ | |
5839 | strcpy (tmp, selector); | |
5840 | tmp2 = strchr (tmp, ']'); | |
5841 | if (tmp2 != NULL) | |
5842 | *tmp2 = '\0'; | |
5843 | ||
5844 | completion_list_add_name (tracker, language_objc, tmp, | |
5845 | lookup_name, text, word); | |
5846 | } | |
5847 | } | |
5848 | ||
5849 | /* Break the non-quoted text based on the characters which are in | |
5850 | symbols. FIXME: This should probably be language-specific. */ | |
5851 | ||
5852 | static const char * | |
5853 | language_search_unquoted_string (const char *text, const char *p) | |
5854 | { | |
5855 | for (; p > text; --p) | |
5856 | { | |
5857 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0') | |
5858 | continue; | |
5859 | else | |
5860 | { | |
5861 | if ((current_language->la_language == language_objc)) | |
5862 | { | |
5863 | if (p[-1] == ':') /* Might be part of a method name. */ | |
5864 | continue; | |
5865 | else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+')) | |
5866 | p -= 2; /* Beginning of a method name. */ | |
5867 | else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')') | |
5868 | { /* Might be part of a method name. */ | |
5869 | const char *t = p; | |
5870 | ||
5871 | /* Seeing a ' ' or a '(' is not conclusive evidence | |
5872 | that we are in the middle of a method name. However, | |
5873 | finding "-[" or "+[" should be pretty un-ambiguous. | |
5874 | Unfortunately we have to find it now to decide. */ | |
5875 | ||
5876 | while (t > text) | |
5877 | if (isalnum (t[-1]) || t[-1] == '_' || | |
5878 | t[-1] == ' ' || t[-1] == ':' || | |
5879 | t[-1] == '(' || t[-1] == ')') | |
5880 | --t; | |
5881 | else | |
5882 | break; | |
5883 | ||
5884 | if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+')) | |
5885 | p = t - 2; /* Method name detected. */ | |
5886 | /* Else we leave with p unchanged. */ | |
5887 | } | |
5888 | } | |
5889 | break; | |
5890 | } | |
5891 | } | |
5892 | return p; | |
5893 | } | |
5894 | ||
5895 | static void | |
5896 | completion_list_add_fields (completion_tracker &tracker, | |
5897 | struct symbol *sym, | |
5898 | const lookup_name_info &lookup_name, | |
5899 | const char *text, const char *word) | |
5900 | { | |
5901 | if (sym->aclass () == LOC_TYPEDEF) | |
5902 | { | |
5903 | struct type *t = sym->type (); | |
5904 | enum type_code c = t->code (); | |
5905 | int j; | |
5906 | ||
5907 | if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT) | |
5908 | for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++) | |
5909 | if (t->field (j).name ()) | |
5910 | completion_list_add_name (tracker, sym->language (), | |
5911 | t->field (j).name (), | |
5912 | lookup_name, text, word); | |
5913 | } | |
5914 | } | |
5915 | ||
5916 | /* See symtab.h. */ | |
5917 | ||
5918 | bool | |
5919 | symbol_is_function_or_method (symbol *sym) | |
5920 | { | |
5921 | switch (sym->type ()->code ()) | |
5922 | { | |
5923 | case TYPE_CODE_FUNC: | |
5924 | case TYPE_CODE_METHOD: | |
5925 | return true; | |
5926 | default: | |
5927 | return false; | |
5928 | } | |
5929 | } | |
5930 | ||
5931 | /* See symtab.h. */ | |
5932 | ||
5933 | bool | |
5934 | symbol_is_function_or_method (minimal_symbol *msymbol) | |
5935 | { | |
5936 | switch (msymbol->type ()) | |
5937 | { | |
5938 | case mst_text: | |
5939 | case mst_text_gnu_ifunc: | |
5940 | case mst_solib_trampoline: | |
5941 | case mst_file_text: | |
5942 | return true; | |
5943 | default: | |
5944 | return false; | |
5945 | } | |
5946 | } | |
5947 | ||
5948 | /* See symtab.h. */ | |
5949 | ||
5950 | bound_minimal_symbol | |
5951 | find_gnu_ifunc (const symbol *sym) | |
5952 | { | |
5953 | if (sym->aclass () != LOC_BLOCK) | |
5954 | return {}; | |
5955 | ||
5956 | lookup_name_info lookup_name (sym->search_name (), | |
5957 | symbol_name_match_type::SEARCH_NAME); | |
5958 | struct objfile *objfile = sym->objfile (); | |
5959 | ||
5960 | CORE_ADDR address = sym->value_block ()->entry_pc (); | |
5961 | minimal_symbol *ifunc = NULL; | |
5962 | ||
5963 | iterate_over_minimal_symbols (objfile, lookup_name, | |
5964 | [&] (minimal_symbol *minsym) | |
5965 | { | |
5966 | if (minsym->type () == mst_text_gnu_ifunc | |
5967 | || minsym->type () == mst_data_gnu_ifunc) | |
5968 | { | |
5969 | CORE_ADDR msym_addr = minsym->value_address (objfile); | |
5970 | if (minsym->type () == mst_data_gnu_ifunc) | |
5971 | { | |
5972 | struct gdbarch *gdbarch = objfile->arch (); | |
5973 | msym_addr = gdbarch_convert_from_func_ptr_addr | |
5974 | (gdbarch, msym_addr, current_inferior ()->top_target ()); | |
5975 | } | |
5976 | if (msym_addr == address) | |
5977 | { | |
5978 | ifunc = minsym; | |
5979 | return true; | |
5980 | } | |
5981 | } | |
5982 | return false; | |
5983 | }); | |
5984 | ||
5985 | if (ifunc != NULL) | |
5986 | return {ifunc, objfile}; | |
5987 | return {}; | |
5988 | } | |
5989 | ||
5990 | /* Add matching symbols from SYMTAB to the current completion list. */ | |
5991 | ||
5992 | static void | |
5993 | add_symtab_completions (struct compunit_symtab *cust, | |
5994 | completion_tracker &tracker, | |
5995 | complete_symbol_mode mode, | |
5996 | const lookup_name_info &lookup_name, | |
5997 | const char *text, const char *word, | |
5998 | enum type_code code) | |
5999 | { | |
6000 | int i; | |
6001 | ||
6002 | if (cust == NULL) | |
6003 | return; | |
6004 | ||
6005 | for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) | |
6006 | { | |
6007 | QUIT; | |
6008 | ||
6009 | const struct block *b = cust->blockvector ()->block (i); | |
6010 | for (struct symbol *sym : block_iterator_range (b)) | |
6011 | { | |
6012 | if (completion_skip_symbol (mode, sym)) | |
6013 | continue; | |
6014 | ||
6015 | if (code == TYPE_CODE_UNDEF | |
6016 | || (sym->domain () == STRUCT_DOMAIN | |
6017 | && sym->type ()->code () == code)) | |
6018 | completion_list_add_symbol (tracker, sym, | |
6019 | lookup_name, | |
6020 | text, word); | |
6021 | } | |
6022 | } | |
6023 | } | |
6024 | ||
6025 | void | |
6026 | default_collect_symbol_completion_matches_break_on | |
6027 | (completion_tracker &tracker, complete_symbol_mode mode, | |
6028 | symbol_name_match_type name_match_type, | |
6029 | const char *text, const char *word, | |
6030 | const char *break_on, enum type_code code) | |
6031 | { | |
6032 | /* Problem: All of the symbols have to be copied because readline | |
6033 | frees them. I'm not going to worry about this; hopefully there | |
6034 | won't be that many. */ | |
6035 | ||
6036 | const struct block *b; | |
6037 | const struct block *surrounding_static_block, *surrounding_global_block; | |
6038 | /* The symbol we are completing on. Points in same buffer as text. */ | |
6039 | const char *sym_text; | |
6040 | ||
6041 | /* Now look for the symbol we are supposed to complete on. */ | |
6042 | if (mode == complete_symbol_mode::LINESPEC) | |
6043 | sym_text = text; | |
6044 | else | |
6045 | { | |
6046 | const char *p; | |
6047 | char quote_found; | |
6048 | const char *quote_pos = NULL; | |
6049 | ||
6050 | /* First see if this is a quoted string. */ | |
6051 | quote_found = '\0'; | |
6052 | for (p = text; *p != '\0'; ++p) | |
6053 | { | |
6054 | if (quote_found != '\0') | |
6055 | { | |
6056 | if (*p == quote_found) | |
6057 | /* Found close quote. */ | |
6058 | quote_found = '\0'; | |
6059 | else if (*p == '\\' && p[1] == quote_found) | |
6060 | /* A backslash followed by the quote character | |
6061 | doesn't end the string. */ | |
6062 | ++p; | |
6063 | } | |
6064 | else if (*p == '\'' || *p == '"') | |
6065 | { | |
6066 | quote_found = *p; | |
6067 | quote_pos = p; | |
6068 | } | |
6069 | } | |
6070 | if (quote_found == '\'') | |
6071 | /* A string within single quotes can be a symbol, so complete on it. */ | |
6072 | sym_text = quote_pos + 1; | |
6073 | else if (quote_found == '"') | |
6074 | /* A double-quoted string is never a symbol, nor does it make sense | |
6075 | to complete it any other way. */ | |
6076 | { | |
6077 | return; | |
6078 | } | |
6079 | else | |
6080 | { | |
6081 | /* It is not a quoted string. Break it based on the characters | |
6082 | which are in symbols. */ | |
6083 | while (p > text) | |
6084 | { | |
6085 | if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0' | |
6086 | || p[-1] == ':' || strchr (break_on, p[-1]) != NULL) | |
6087 | --p; | |
6088 | else | |
6089 | break; | |
6090 | } | |
6091 | sym_text = p; | |
6092 | } | |
6093 | } | |
6094 | ||
6095 | lookup_name_info lookup_name (sym_text, name_match_type, true); | |
6096 | ||
6097 | /* At this point scan through the misc symbol vectors and add each | |
6098 | symbol you find to the list. Eventually we want to ignore | |
6099 | anything that isn't a text symbol (everything else will be | |
6100 | handled by the psymtab code below). */ | |
6101 | ||
6102 | if (code == TYPE_CODE_UNDEF) | |
6103 | { | |
6104 | for (objfile *objfile : current_program_space->objfiles ()) | |
6105 | { | |
6106 | for (minimal_symbol *msymbol : objfile->msymbols ()) | |
6107 | { | |
6108 | QUIT; | |
6109 | ||
6110 | if (completion_skip_symbol (mode, msymbol)) | |
6111 | continue; | |
6112 | ||
6113 | completion_list_add_msymbol (tracker, msymbol, lookup_name, | |
6114 | sym_text, word); | |
6115 | ||
6116 | completion_list_objc_symbol (tracker, msymbol, lookup_name, | |
6117 | sym_text, word); | |
6118 | } | |
6119 | } | |
6120 | } | |
6121 | ||
6122 | /* Add completions for all currently loaded symbol tables. */ | |
6123 | for (objfile *objfile : current_program_space->objfiles ()) | |
6124 | { | |
6125 | for (compunit_symtab *cust : objfile->compunits ()) | |
6126 | add_symtab_completions (cust, tracker, mode, lookup_name, | |
6127 | sym_text, word, code); | |
6128 | } | |
6129 | ||
6130 | /* Look through the partial symtabs for all symbols which begin by | |
6131 | matching SYM_TEXT. Expand all CUs that you find to the list. */ | |
6132 | expand_symtabs_matching (NULL, | |
6133 | lookup_name, | |
6134 | NULL, | |
6135 | [&] (compunit_symtab *symtab) /* expansion notify */ | |
6136 | { | |
6137 | add_symtab_completions (symtab, | |
6138 | tracker, mode, lookup_name, | |
6139 | sym_text, word, code); | |
6140 | return true; | |
6141 | }, | |
6142 | SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK, | |
6143 | SEARCH_ALL_DOMAINS); | |
6144 | ||
6145 | /* Search upwards from currently selected frame (so that we can | |
6146 | complete on local vars). Also catch fields of types defined in | |
6147 | this places which match our text string. Only complete on types | |
6148 | visible from current context. */ | |
6149 | ||
6150 | b = get_selected_block (0); | |
6151 | surrounding_static_block = b == nullptr ? nullptr : b->static_block (); | |
6152 | surrounding_global_block = b == nullptr ? nullptr : b->global_block (); | |
6153 | if (surrounding_static_block != NULL) | |
6154 | while (b != surrounding_static_block) | |
6155 | { | |
6156 | QUIT; | |
6157 | ||
6158 | for (struct symbol *sym : block_iterator_range (b)) | |
6159 | { | |
6160 | if (code == TYPE_CODE_UNDEF) | |
6161 | { | |
6162 | completion_list_add_symbol (tracker, sym, lookup_name, | |
6163 | sym_text, word); | |
6164 | completion_list_add_fields (tracker, sym, lookup_name, | |
6165 | sym_text, word); | |
6166 | } | |
6167 | else if (sym->domain () == STRUCT_DOMAIN | |
6168 | && sym->type ()->code () == code) | |
6169 | completion_list_add_symbol (tracker, sym, lookup_name, | |
6170 | sym_text, word); | |
6171 | } | |
6172 | ||
6173 | /* Stop when we encounter an enclosing function. Do not stop for | |
6174 | non-inlined functions - the locals of the enclosing function | |
6175 | are in scope for a nested function. */ | |
6176 | if (b->function () != NULL && b->inlined_p ()) | |
6177 | break; | |
6178 | b = b->superblock (); | |
6179 | } | |
6180 | ||
6181 | /* Add fields from the file's types; symbols will be added below. */ | |
6182 | ||
6183 | if (code == TYPE_CODE_UNDEF) | |
6184 | { | |
6185 | if (surrounding_static_block != NULL) | |
6186 | for (struct symbol *sym : block_iterator_range (surrounding_static_block)) | |
6187 | completion_list_add_fields (tracker, sym, lookup_name, | |
6188 | sym_text, word); | |
6189 | ||
6190 | if (surrounding_global_block != NULL) | |
6191 | for (struct symbol *sym : block_iterator_range (surrounding_global_block)) | |
6192 | completion_list_add_fields (tracker, sym, lookup_name, | |
6193 | sym_text, word); | |
6194 | } | |
6195 | ||
6196 | /* Skip macros if we are completing a struct tag -- arguable but | |
6197 | usually what is expected. */ | |
6198 | if (current_language->macro_expansion () == macro_expansion_c | |
6199 | && code == TYPE_CODE_UNDEF) | |
6200 | { | |
6201 | /* This adds a macro's name to the current completion list. */ | |
6202 | auto add_macro_name = [&] (const char *macro_name, | |
6203 | const macro_definition *, | |
6204 | macro_source_file *, | |
6205 | int) | |
6206 | { | |
6207 | completion_list_add_name (tracker, language_c, macro_name, | |
6208 | lookup_name, sym_text, word); | |
6209 | }; | |
6210 | ||
6211 | /* Add any macros visible in the default scope. Note that this | |
6212 | may yield the occasional wrong result, because an expression | |
6213 | might be evaluated in a scope other than the default. For | |
6214 | example, if the user types "break file:line if <TAB>", the | |
6215 | resulting expression will be evaluated at "file:line" -- but | |
6216 | at there does not seem to be a way to detect this at | |
6217 | completion time. */ | |
6218 | macro_scope scope = default_macro_scope (); | |
6219 | if (scope.is_valid ()) | |
6220 | macro_for_each_in_scope (scope.file, scope.line, add_macro_name); | |
6221 | ||
6222 | /* User-defined macros are always visible. */ | |
6223 | macro_for_each (macro_user_macros, add_macro_name); | |
6224 | } | |
6225 | } | |
6226 | ||
6227 | /* Collect all symbols (regardless of class) which begin by matching | |
6228 | TEXT. */ | |
6229 | ||
6230 | void | |
6231 | collect_symbol_completion_matches (completion_tracker &tracker, | |
6232 | complete_symbol_mode mode, | |
6233 | symbol_name_match_type name_match_type, | |
6234 | const char *text, const char *word) | |
6235 | { | |
6236 | current_language->collect_symbol_completion_matches (tracker, mode, | |
6237 | name_match_type, | |
6238 | text, word, | |
6239 | TYPE_CODE_UNDEF); | |
6240 | } | |
6241 | ||
6242 | /* Like collect_symbol_completion_matches, but only collect | |
6243 | STRUCT_DOMAIN symbols whose type code is CODE. */ | |
6244 | ||
6245 | void | |
6246 | collect_symbol_completion_matches_type (completion_tracker &tracker, | |
6247 | const char *text, const char *word, | |
6248 | enum type_code code) | |
6249 | { | |
6250 | complete_symbol_mode mode = complete_symbol_mode::EXPRESSION; | |
6251 | symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION; | |
6252 | ||
6253 | gdb_assert (code == TYPE_CODE_UNION | |
6254 | || code == TYPE_CODE_STRUCT | |
6255 | || code == TYPE_CODE_ENUM); | |
6256 | current_language->collect_symbol_completion_matches (tracker, mode, | |
6257 | name_match_type, | |
6258 | text, word, code); | |
6259 | } | |
6260 | ||
6261 | /* Like collect_symbol_completion_matches, but collects a list of | |
6262 | symbols defined in all source files named SRCFILE. */ | |
6263 | ||
6264 | void | |
6265 | collect_file_symbol_completion_matches (completion_tracker &tracker, | |
6266 | complete_symbol_mode mode, | |
6267 | symbol_name_match_type name_match_type, | |
6268 | const char *text, const char *word, | |
6269 | const char *srcfile) | |
6270 | { | |
6271 | /* The symbol we are completing on. Points in same buffer as text. */ | |
6272 | const char *sym_text; | |
6273 | ||
6274 | /* Now look for the symbol we are supposed to complete on. | |
6275 | FIXME: This should be language-specific. */ | |
6276 | if (mode == complete_symbol_mode::LINESPEC) | |
6277 | sym_text = text; | |
6278 | else | |
6279 | { | |
6280 | const char *p; | |
6281 | char quote_found; | |
6282 | const char *quote_pos = NULL; | |
6283 | ||
6284 | /* First see if this is a quoted string. */ | |
6285 | quote_found = '\0'; | |
6286 | for (p = text; *p != '\0'; ++p) | |
6287 | { | |
6288 | if (quote_found != '\0') | |
6289 | { | |
6290 | if (*p == quote_found) | |
6291 | /* Found close quote. */ | |
6292 | quote_found = '\0'; | |
6293 | else if (*p == '\\' && p[1] == quote_found) | |
6294 | /* A backslash followed by the quote character | |
6295 | doesn't end the string. */ | |
6296 | ++p; | |
6297 | } | |
6298 | else if (*p == '\'' || *p == '"') | |
6299 | { | |
6300 | quote_found = *p; | |
6301 | quote_pos = p; | |
6302 | } | |
6303 | } | |
6304 | if (quote_found == '\'') | |
6305 | /* A string within single quotes can be a symbol, so complete on it. */ | |
6306 | sym_text = quote_pos + 1; | |
6307 | else if (quote_found == '"') | |
6308 | /* A double-quoted string is never a symbol, nor does it make sense | |
6309 | to complete it any other way. */ | |
6310 | { | |
6311 | return; | |
6312 | } | |
6313 | else | |
6314 | { | |
6315 | /* Not a quoted string. */ | |
6316 | sym_text = language_search_unquoted_string (text, p); | |
6317 | } | |
6318 | } | |
6319 | ||
6320 | lookup_name_info lookup_name (sym_text, name_match_type, true); | |
6321 | ||
6322 | /* Go through symtabs for SRCFILE and check the externs and statics | |
6323 | for symbols which match. */ | |
6324 | iterate_over_symtabs (current_program_space, srcfile, [&] (symtab *s) | |
6325 | { | |
6326 | add_symtab_completions (s->compunit (), | |
6327 | tracker, mode, lookup_name, | |
6328 | sym_text, word, TYPE_CODE_UNDEF); | |
6329 | return false; | |
6330 | }); | |
6331 | } | |
6332 | ||
6333 | /* A helper function for make_source_files_completion_list. It adds | |
6334 | another file name to a list of possible completions, growing the | |
6335 | list as necessary. */ | |
6336 | ||
6337 | static void | |
6338 | add_filename_to_list (const char *fname, const char *text, const char *word, | |
6339 | completion_list *list) | |
6340 | { | |
6341 | list->emplace_back (make_completion_match_str (fname, text, word)); | |
6342 | } | |
6343 | ||
6344 | static int | |
6345 | not_interesting_fname (const char *fname) | |
6346 | { | |
6347 | static const char *illegal_aliens[] = { | |
6348 | "_globals_", /* inserted by coff_symtab_read */ | |
6349 | NULL | |
6350 | }; | |
6351 | int i; | |
6352 | ||
6353 | for (i = 0; illegal_aliens[i]; i++) | |
6354 | { | |
6355 | if (filename_cmp (fname, illegal_aliens[i]) == 0) | |
6356 | return 1; | |
6357 | } | |
6358 | return 0; | |
6359 | } | |
6360 | ||
6361 | /* An object of this type is passed as the callback argument to | |
6362 | map_partial_symbol_filenames. */ | |
6363 | struct add_partial_filename_data | |
6364 | { | |
6365 | struct filename_seen_cache *filename_seen_cache; | |
6366 | const char *text; | |
6367 | const char *word; | |
6368 | int text_len; | |
6369 | completion_list *list; | |
6370 | ||
6371 | void operator() (const char *filename, const char *fullname); | |
6372 | }; | |
6373 | ||
6374 | /* A callback for map_partial_symbol_filenames. */ | |
6375 | ||
6376 | void | |
6377 | add_partial_filename_data::operator() (const char *filename, | |
6378 | const char *fullname) | |
6379 | { | |
6380 | if (not_interesting_fname (filename)) | |
6381 | return; | |
6382 | if (!filename_seen_cache->seen (filename) | |
6383 | && filename_ncmp (filename, text, text_len) == 0) | |
6384 | { | |
6385 | /* This file matches for a completion; add it to the | |
6386 | current list of matches. */ | |
6387 | add_filename_to_list (filename, text, word, list); | |
6388 | } | |
6389 | else | |
6390 | { | |
6391 | const char *base_name = lbasename (filename); | |
6392 | ||
6393 | if (base_name != filename | |
6394 | && !filename_seen_cache->seen (base_name) | |
6395 | && filename_ncmp (base_name, text, text_len) == 0) | |
6396 | add_filename_to_list (base_name, text, word, list); | |
6397 | } | |
6398 | } | |
6399 | ||
6400 | /* Return a list of all source files whose names begin with matching | |
6401 | TEXT. The file names are looked up in the symbol tables of this | |
6402 | program. */ | |
6403 | ||
6404 | completion_list | |
6405 | make_source_files_completion_list (const char *text, const char *word) | |
6406 | { | |
6407 | size_t text_len = strlen (text); | |
6408 | completion_list list; | |
6409 | const char *base_name; | |
6410 | struct add_partial_filename_data datum; | |
6411 | ||
6412 | if (!have_full_symbols (current_program_space) | |
6413 | && !have_partial_symbols (current_program_space)) | |
6414 | return list; | |
6415 | ||
6416 | filename_seen_cache filenames_seen; | |
6417 | ||
6418 | for (objfile *objfile : current_program_space->objfiles ()) | |
6419 | { | |
6420 | for (compunit_symtab *cu : objfile->compunits ()) | |
6421 | { | |
6422 | for (symtab *s : cu->filetabs ()) | |
6423 | { | |
6424 | if (not_interesting_fname (s->filename)) | |
6425 | continue; | |
6426 | if (!filenames_seen.seen (s->filename) | |
6427 | && filename_ncmp (s->filename, text, text_len) == 0) | |
6428 | { | |
6429 | /* This file matches for a completion; add it to the current | |
6430 | list of matches. */ | |
6431 | add_filename_to_list (s->filename, text, word, &list); | |
6432 | } | |
6433 | else | |
6434 | { | |
6435 | /* NOTE: We allow the user to type a base name when the | |
6436 | debug info records leading directories, but not the other | |
6437 | way around. This is what subroutines of breakpoint | |
6438 | command do when they parse file names. */ | |
6439 | base_name = lbasename (s->filename); | |
6440 | if (base_name != s->filename | |
6441 | && !filenames_seen.seen (base_name) | |
6442 | && filename_ncmp (base_name, text, text_len) == 0) | |
6443 | add_filename_to_list (base_name, text, word, &list); | |
6444 | } | |
6445 | } | |
6446 | } | |
6447 | } | |
6448 | ||
6449 | datum.filename_seen_cache = &filenames_seen; | |
6450 | datum.text = text; | |
6451 | datum.word = word; | |
6452 | datum.text_len = text_len; | |
6453 | datum.list = &list; | |
6454 | map_symbol_filenames (datum, false /*need_fullname*/); | |
6455 | ||
6456 | return list; | |
6457 | } | |
6458 | \f | |
6459 | /* Track MAIN */ | |
6460 | ||
6461 | /* Return the "main_info" object for the current program space. If | |
6462 | the object has not yet been created, create it and fill in some | |
6463 | default values. */ | |
6464 | ||
6465 | static main_info * | |
6466 | get_main_info (program_space *pspace) | |
6467 | { | |
6468 | main_info *info = main_progspace_key.get (pspace); | |
6469 | ||
6470 | if (info == NULL) | |
6471 | { | |
6472 | /* It may seem strange to store the main name in the progspace | |
6473 | and also in whatever objfile happens to see a main name in | |
6474 | its debug info. The reason for this is mainly historical: | |
6475 | gdb returned "main" as the name even if no function named | |
6476 | "main" was defined the program; and this approach lets us | |
6477 | keep compatibility. */ | |
6478 | info = main_progspace_key.emplace (pspace); | |
6479 | } | |
6480 | ||
6481 | return info; | |
6482 | } | |
6483 | ||
6484 | static void | |
6485 | set_main_name (program_space *pspace, const char *name, enum language lang) | |
6486 | { | |
6487 | main_info *info = get_main_info (pspace); | |
6488 | ||
6489 | if (!info->name_of_main.empty ()) | |
6490 | { | |
6491 | info->name_of_main.clear (); | |
6492 | info->language_of_main = language_unknown; | |
6493 | } | |
6494 | if (name != NULL) | |
6495 | { | |
6496 | info->name_of_main = name; | |
6497 | info->language_of_main = lang; | |
6498 | } | |
6499 | } | |
6500 | ||
6501 | /* Deduce the name of the main procedure, and set NAME_OF_MAIN | |
6502 | accordingly. */ | |
6503 | ||
6504 | static void | |
6505 | find_main_name (void) | |
6506 | { | |
6507 | const char *new_main_name; | |
6508 | program_space *pspace = current_program_space; | |
6509 | ||
6510 | /* First check the objfiles to see whether a debuginfo reader has | |
6511 | picked up the appropriate main name. Historically the main name | |
6512 | was found in a more or less random way; this approach instead | |
6513 | relies on the order of objfile creation -- which still isn't | |
6514 | guaranteed to get the correct answer, but is just probably more | |
6515 | accurate. */ | |
6516 | for (objfile *objfile : current_program_space->objfiles ()) | |
6517 | { | |
6518 | objfile->compute_main_name (); | |
6519 | ||
6520 | if (objfile->per_bfd->name_of_main != NULL) | |
6521 | { | |
6522 | set_main_name (pspace, | |
6523 | objfile->per_bfd->name_of_main, | |
6524 | objfile->per_bfd->language_of_main); | |
6525 | return; | |
6526 | } | |
6527 | } | |
6528 | ||
6529 | /* Try to see if the main procedure is in Ada. */ | |
6530 | /* FIXME: brobecker/2005-03-07: Another way of doing this would | |
6531 | be to add a new method in the language vector, and call this | |
6532 | method for each language until one of them returns a non-empty | |
6533 | name. This would allow us to remove this hard-coded call to | |
6534 | an Ada function. It is not clear that this is a better approach | |
6535 | at this point, because all methods need to be written in a way | |
6536 | such that false positives never be returned. For instance, it is | |
6537 | important that a method does not return a wrong name for the main | |
6538 | procedure if the main procedure is actually written in a different | |
6539 | language. It is easy to guaranty this with Ada, since we use a | |
6540 | special symbol generated only when the main in Ada to find the name | |
6541 | of the main procedure. It is difficult however to see how this can | |
6542 | be guaranteed for languages such as C, for instance. This suggests | |
6543 | that order of call for these methods becomes important, which means | |
6544 | a more complicated approach. */ | |
6545 | new_main_name = ada_main_name (); | |
6546 | if (new_main_name != NULL) | |
6547 | { | |
6548 | set_main_name (pspace, new_main_name, language_ada); | |
6549 | return; | |
6550 | } | |
6551 | ||
6552 | new_main_name = d_main_name (); | |
6553 | if (new_main_name != NULL) | |
6554 | { | |
6555 | set_main_name (pspace, new_main_name, language_d); | |
6556 | return; | |
6557 | } | |
6558 | ||
6559 | new_main_name = go_main_name (); | |
6560 | if (new_main_name != NULL) | |
6561 | { | |
6562 | set_main_name (pspace, new_main_name, language_go); | |
6563 | return; | |
6564 | } | |
6565 | ||
6566 | new_main_name = pascal_main_name (); | |
6567 | if (new_main_name != NULL) | |
6568 | { | |
6569 | set_main_name (pspace, new_main_name, language_pascal); | |
6570 | return; | |
6571 | } | |
6572 | ||
6573 | /* The languages above didn't identify the name of the main procedure. | |
6574 | Fallback to "main". */ | |
6575 | ||
6576 | /* Try to find language for main in psymtabs. */ | |
6577 | bool symbol_found_p = false; | |
6578 | gdbarch_iterate_over_objfiles_in_search_order | |
6579 | (current_inferior ()->arch (), | |
6580 | [&symbol_found_p, pspace] (objfile *obj) | |
6581 | { | |
6582 | language lang | |
6583 | = obj->lookup_global_symbol_language ("main", | |
6584 | SEARCH_FUNCTION_DOMAIN, | |
6585 | &symbol_found_p); | |
6586 | if (symbol_found_p) | |
6587 | { | |
6588 | set_main_name (pspace, "main", lang); | |
6589 | return 1; | |
6590 | } | |
6591 | ||
6592 | return 0; | |
6593 | }, nullptr); | |
6594 | ||
6595 | if (symbol_found_p) | |
6596 | return; | |
6597 | ||
6598 | set_main_name (pspace, "main", language_unknown); | |
6599 | } | |
6600 | ||
6601 | /* See symtab.h. */ | |
6602 | ||
6603 | const char * | |
6604 | main_name () | |
6605 | { | |
6606 | main_info *info = get_main_info (current_program_space); | |
6607 | ||
6608 | if (info->name_of_main.empty ()) | |
6609 | find_main_name (); | |
6610 | ||
6611 | return info->name_of_main.c_str (); | |
6612 | } | |
6613 | ||
6614 | /* Return the language of the main function. If it is not known, | |
6615 | return language_unknown. */ | |
6616 | ||
6617 | enum language | |
6618 | main_language (void) | |
6619 | { | |
6620 | main_info *info = get_main_info (current_program_space); | |
6621 | ||
6622 | if (info->name_of_main.empty ()) | |
6623 | find_main_name (); | |
6624 | ||
6625 | return info->language_of_main; | |
6626 | } | |
6627 | ||
6628 | \f | |
6629 | ||
6630 | /* The next index to hand out in response to a registration request. */ | |
6631 | ||
6632 | static int next_aclass_value = LOC_FINAL_VALUE; | |
6633 | ||
6634 | /* The maximum number of "aclass" registrations we support. This is | |
6635 | constant for convenience. */ | |
6636 | #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 11) | |
6637 | ||
6638 | /* The objects representing the various "aclass" values. The elements | |
6639 | from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent | |
6640 | elements are those registered at gdb initialization time. */ | |
6641 | ||
6642 | static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS]; | |
6643 | ||
6644 | /* The globally visible pointer. This is separate from 'symbol_impl' | |
6645 | so that it can be const. */ | |
6646 | ||
6647 | gdb::array_view<const struct symbol_impl> symbol_impls (symbol_impl); | |
6648 | ||
6649 | /* Make sure we saved enough room in struct symbol. */ | |
6650 | ||
6651 | static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS)); | |
6652 | ||
6653 | /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS | |
6654 | is the ops vector associated with this index. This returns the new | |
6655 | index, which should be used as the aclass_index field for symbols | |
6656 | of this type. */ | |
6657 | ||
6658 | int | |
6659 | register_symbol_computed_impl (enum address_class aclass, | |
6660 | const struct symbol_computed_ops *ops) | |
6661 | { | |
6662 | int result = next_aclass_value++; | |
6663 | ||
6664 | gdb_assert (aclass == LOC_COMPUTED); | |
6665 | gdb_assert (result < MAX_SYMBOL_IMPLS); | |
6666 | symbol_impl[result].aclass = aclass; | |
6667 | symbol_impl[result].ops_computed = ops; | |
6668 | ||
6669 | /* Sanity check OPS. */ | |
6670 | gdb_assert (ops != NULL); | |
6671 | gdb_assert (ops->tracepoint_var_ref != NULL); | |
6672 | gdb_assert (ops->describe_location != NULL); | |
6673 | gdb_assert (ops->get_symbol_read_needs != NULL); | |
6674 | gdb_assert (ops->read_variable != NULL); | |
6675 | ||
6676 | return result; | |
6677 | } | |
6678 | ||
6679 | /* Register a function with frame base type. ACLASS must be LOC_BLOCK. | |
6680 | OPS is the ops vector associated with this index. This returns the | |
6681 | new index, which should be used as the aclass_index field for symbols | |
6682 | of this type. */ | |
6683 | ||
6684 | int | |
6685 | register_symbol_block_impl (enum address_class aclass, | |
6686 | const struct symbol_block_ops *ops) | |
6687 | { | |
6688 | int result = next_aclass_value++; | |
6689 | ||
6690 | gdb_assert (aclass == LOC_BLOCK); | |
6691 | gdb_assert (result < MAX_SYMBOL_IMPLS); | |
6692 | symbol_impl[result].aclass = aclass; | |
6693 | symbol_impl[result].ops_block = ops; | |
6694 | ||
6695 | /* Sanity check OPS. */ | |
6696 | gdb_assert (ops != NULL); | |
6697 | gdb_assert (ops->find_frame_base_location != nullptr | |
6698 | || ops->get_block_value != nullptr); | |
6699 | ||
6700 | return result; | |
6701 | } | |
6702 | ||
6703 | /* Register a register symbol type. ACLASS must be LOC_REGISTER or | |
6704 | LOC_REGPARM_ADDR. OPS is the register ops vector associated with | |
6705 | this index. This returns the new index, which should be used as | |
6706 | the aclass_index field for symbols of this type. */ | |
6707 | ||
6708 | int | |
6709 | register_symbol_register_impl (enum address_class aclass, | |
6710 | const struct symbol_register_ops *ops) | |
6711 | { | |
6712 | int result = next_aclass_value++; | |
6713 | ||
6714 | gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR); | |
6715 | gdb_assert (result < MAX_SYMBOL_IMPLS); | |
6716 | symbol_impl[result].aclass = aclass; | |
6717 | symbol_impl[result].ops_register = ops; | |
6718 | ||
6719 | return result; | |
6720 | } | |
6721 | ||
6722 | /* Initialize elements of 'symbol_impl' for the constants in enum | |
6723 | address_class. */ | |
6724 | ||
6725 | static void | |
6726 | initialize_ordinary_address_classes (void) | |
6727 | { | |
6728 | int i; | |
6729 | ||
6730 | for (i = 0; i < LOC_FINAL_VALUE; ++i) | |
6731 | symbol_impl[i].aclass = (enum address_class) i; | |
6732 | } | |
6733 | ||
6734 | \f | |
6735 | ||
6736 | /* See symtab.h. */ | |
6737 | ||
6738 | struct objfile * | |
6739 | symbol::objfile () const | |
6740 | { | |
6741 | gdb_assert (is_objfile_owned ()); | |
6742 | return owner.symtab->compunit ()->objfile (); | |
6743 | } | |
6744 | ||
6745 | /* See symtab.h. */ | |
6746 | ||
6747 | struct gdbarch * | |
6748 | symbol::arch () const | |
6749 | { | |
6750 | if (!is_objfile_owned ()) | |
6751 | return owner.arch; | |
6752 | return owner.symtab->compunit ()->objfile ()->arch (); | |
6753 | } | |
6754 | ||
6755 | /* See symtab.h. */ | |
6756 | ||
6757 | struct symtab * | |
6758 | symbol::symtab () const | |
6759 | { | |
6760 | gdb_assert (is_objfile_owned ()); | |
6761 | return owner.symtab; | |
6762 | } | |
6763 | ||
6764 | /* See symtab.h. */ | |
6765 | ||
6766 | void | |
6767 | symbol::set_symtab (struct symtab *symtab) | |
6768 | { | |
6769 | gdb_assert (is_objfile_owned ()); | |
6770 | owner.symtab = symtab; | |
6771 | } | |
6772 | ||
6773 | /* See symtab.h. */ | |
6774 | ||
6775 | CORE_ADDR | |
6776 | symbol::get_maybe_copied_address () const | |
6777 | { | |
6778 | gdb_assert (this->maybe_copied); | |
6779 | gdb_assert (this->aclass () == LOC_STATIC); | |
6780 | ||
6781 | const char *linkage_name = this->linkage_name (); | |
6782 | bound_minimal_symbol minsym | |
6783 | = lookup_minimal_symbol_linkage (this->objfile ()->pspace (), linkage_name, | |
6784 | false, false); | |
6785 | if (minsym.minsym != nullptr) | |
6786 | return minsym.value_address (); | |
6787 | ||
6788 | return this->m_value.address; | |
6789 | } | |
6790 | ||
6791 | /* See symtab.h. */ | |
6792 | ||
6793 | CORE_ADDR | |
6794 | minimal_symbol::get_maybe_copied_address (objfile *objf) const | |
6795 | { | |
6796 | gdb_assert (this->maybe_copied (objf)); | |
6797 | gdb_assert ((objf->flags & OBJF_MAINLINE) == 0); | |
6798 | ||
6799 | const char *linkage_name = this->linkage_name (); | |
6800 | bound_minimal_symbol found | |
6801 | = lookup_minimal_symbol_linkage (objf->pspace (), linkage_name, | |
6802 | false, true); | |
6803 | if (found.minsym != nullptr) | |
6804 | return found.value_address (); | |
6805 | ||
6806 | return (this->m_value.address | |
6807 | + objf->section_offsets[this->section_index ()]); | |
6808 | } | |
6809 | ||
6810 | \f | |
6811 | ||
6812 | /* Hold the sub-commands of 'info module'. */ | |
6813 | ||
6814 | static struct cmd_list_element *info_module_cmdlist = NULL; | |
6815 | ||
6816 | /* See symtab.h. */ | |
6817 | ||
6818 | std::vector<module_symbol_search> | |
6819 | search_module_symbols (const char *module_regexp, const char *regexp, | |
6820 | const char *type_regexp, domain_search_flags kind) | |
6821 | { | |
6822 | std::vector<module_symbol_search> results; | |
6823 | ||
6824 | /* Search for all modules matching MODULE_REGEXP. */ | |
6825 | global_symbol_searcher spec1 (SEARCH_MODULE_DOMAIN, module_regexp); | |
6826 | spec1.set_exclude_minsyms (true); | |
6827 | std::vector<symbol_search> modules = spec1.search (); | |
6828 | ||
6829 | /* Now search for all symbols of the required KIND matching the required | |
6830 | regular expressions. We figure out which ones are in which modules | |
6831 | below. */ | |
6832 | global_symbol_searcher spec2 (kind, regexp); | |
6833 | spec2.set_symbol_type_regexp (type_regexp); | |
6834 | spec2.set_exclude_minsyms (true); | |
6835 | std::vector<symbol_search> symbols = spec2.search (); | |
6836 | ||
6837 | /* Now iterate over all MODULES, checking to see which items from | |
6838 | SYMBOLS are in each module. */ | |
6839 | for (const symbol_search &p : modules) | |
6840 | { | |
6841 | QUIT; | |
6842 | ||
6843 | /* This is a module. */ | |
6844 | gdb_assert (p.symbol != nullptr); | |
6845 | ||
6846 | std::string prefix = p.symbol->print_name (); | |
6847 | prefix += "::"; | |
6848 | ||
6849 | for (const symbol_search &q : symbols) | |
6850 | { | |
6851 | if (q.symbol == nullptr) | |
6852 | continue; | |
6853 | ||
6854 | if (strncmp (q.symbol->print_name (), prefix.c_str (), | |
6855 | prefix.size ()) != 0) | |
6856 | continue; | |
6857 | ||
6858 | results.push_back ({p, q}); | |
6859 | } | |
6860 | } | |
6861 | ||
6862 | return results; | |
6863 | } | |
6864 | ||
6865 | /* Implement the core of both 'info module functions' and 'info module | |
6866 | variables'. */ | |
6867 | ||
6868 | static void | |
6869 | info_module_subcommand (bool quiet, const char *module_regexp, | |
6870 | const char *regexp, const char *type_regexp, | |
6871 | domain_search_flags kind) | |
6872 | { | |
6873 | gdb_assert (kind == SEARCH_FUNCTION_DOMAIN || kind == SEARCH_VAR_DOMAIN); | |
6874 | ||
6875 | /* Print a header line. Don't build the header line bit by bit as this | |
6876 | prevents internationalisation. */ | |
6877 | if (!quiet) | |
6878 | { | |
6879 | if (module_regexp == nullptr) | |
6880 | { | |
6881 | if (type_regexp == nullptr) | |
6882 | { | |
6883 | if (regexp == nullptr) | |
6884 | gdb_printf ((kind == SEARCH_VAR_DOMAIN | |
6885 | ? _("All variables in all modules:") | |
6886 | : _("All functions in all modules:"))); | |
6887 | else | |
6888 | gdb_printf | |
6889 | ((kind == SEARCH_VAR_DOMAIN | |
6890 | ? _("All variables matching regular expression" | |
6891 | " \"%s\" in all modules:") | |
6892 | : _("All functions matching regular expression" | |
6893 | " \"%s\" in all modules:")), | |
6894 | regexp); | |
6895 | } | |
6896 | else | |
6897 | { | |
6898 | if (regexp == nullptr) | |
6899 | gdb_printf | |
6900 | ((kind == SEARCH_VAR_DOMAIN | |
6901 | ? _("All variables with type matching regular " | |
6902 | "expression \"%s\" in all modules:") | |
6903 | : _("All functions with type matching regular " | |
6904 | "expression \"%s\" in all modules:")), | |
6905 | type_regexp); | |
6906 | else | |
6907 | gdb_printf | |
6908 | ((kind == SEARCH_VAR_DOMAIN | |
6909 | ? _("All variables matching regular expression " | |
6910 | "\"%s\",\n\twith type matching regular " | |
6911 | "expression \"%s\" in all modules:") | |
6912 | : _("All functions matching regular expression " | |
6913 | "\"%s\",\n\twith type matching regular " | |
6914 | "expression \"%s\" in all modules:")), | |
6915 | regexp, type_regexp); | |
6916 | } | |
6917 | } | |
6918 | else | |
6919 | { | |
6920 | if (type_regexp == nullptr) | |
6921 | { | |
6922 | if (regexp == nullptr) | |
6923 | gdb_printf | |
6924 | ((kind == SEARCH_VAR_DOMAIN | |
6925 | ? _("All variables in all modules matching regular " | |
6926 | "expression \"%s\":") | |
6927 | : _("All functions in all modules matching regular " | |
6928 | "expression \"%s\":")), | |
6929 | module_regexp); | |
6930 | else | |
6931 | gdb_printf | |
6932 | ((kind == SEARCH_VAR_DOMAIN | |
6933 | ? _("All variables matching regular expression " | |
6934 | "\"%s\",\n\tin all modules matching regular " | |
6935 | "expression \"%s\":") | |
6936 | : _("All functions matching regular expression " | |
6937 | "\"%s\",\n\tin all modules matching regular " | |
6938 | "expression \"%s\":")), | |
6939 | regexp, module_regexp); | |
6940 | } | |
6941 | else | |
6942 | { | |
6943 | if (regexp == nullptr) | |
6944 | gdb_printf | |
6945 | ((kind == SEARCH_VAR_DOMAIN | |
6946 | ? _("All variables with type matching regular " | |
6947 | "expression \"%s\"\n\tin all modules matching " | |
6948 | "regular expression \"%s\":") | |
6949 | : _("All functions with type matching regular " | |
6950 | "expression \"%s\"\n\tin all modules matching " | |
6951 | "regular expression \"%s\":")), | |
6952 | type_regexp, module_regexp); | |
6953 | else | |
6954 | gdb_printf | |
6955 | ((kind == SEARCH_VAR_DOMAIN | |
6956 | ? _("All variables matching regular expression " | |
6957 | "\"%s\",\n\twith type matching regular expression " | |
6958 | "\"%s\",\n\tin all modules matching regular " | |
6959 | "expression \"%s\":") | |
6960 | : _("All functions matching regular expression " | |
6961 | "\"%s\",\n\twith type matching regular expression " | |
6962 | "\"%s\",\n\tin all modules matching regular " | |
6963 | "expression \"%s\":")), | |
6964 | regexp, type_regexp, module_regexp); | |
6965 | } | |
6966 | } | |
6967 | gdb_printf ("\n"); | |
6968 | } | |
6969 | ||
6970 | /* Find all symbols of type KIND matching the given regular expressions | |
6971 | along with the symbols for the modules in which those symbols | |
6972 | reside. */ | |
6973 | std::vector<module_symbol_search> module_symbols | |
6974 | = search_module_symbols (module_regexp, regexp, type_regexp, kind); | |
6975 | ||
6976 | std::sort (module_symbols.begin (), module_symbols.end (), | |
6977 | [] (const module_symbol_search &a, const module_symbol_search &b) | |
6978 | { | |
6979 | if (a.first < b.first) | |
6980 | return true; | |
6981 | else if (a.first == b.first) | |
6982 | return a.second < b.second; | |
6983 | else | |
6984 | return false; | |
6985 | }); | |
6986 | ||
6987 | const char *last_filename = ""; | |
6988 | const symbol *last_module_symbol = nullptr; | |
6989 | for (const module_symbol_search &ms : module_symbols) | |
6990 | { | |
6991 | const symbol_search &p = ms.first; | |
6992 | const symbol_search &q = ms.second; | |
6993 | ||
6994 | gdb_assert (q.symbol != nullptr); | |
6995 | ||
6996 | if (last_module_symbol != p.symbol) | |
6997 | { | |
6998 | gdb_printf ("\n"); | |
6999 | gdb_printf (_("Module \"%s\":\n"), p.symbol->print_name ()); | |
7000 | last_module_symbol = p.symbol; | |
7001 | last_filename = ""; | |
7002 | } | |
7003 | ||
7004 | print_symbol_info (q.symbol, q.block, last_filename); | |
7005 | last_filename | |
7006 | = symtab_to_filename_for_display (q.symbol->symtab ()); | |
7007 | } | |
7008 | } | |
7009 | ||
7010 | /* Hold the option values for the 'info module .....' sub-commands. */ | |
7011 | ||
7012 | struct info_modules_var_func_options | |
7013 | { | |
7014 | bool quiet = false; | |
7015 | std::string type_regexp; | |
7016 | std::string module_regexp; | |
7017 | }; | |
7018 | ||
7019 | /* The options used by 'info module variables' and 'info module functions' | |
7020 | commands. */ | |
7021 | ||
7022 | static const gdb::option::option_def info_modules_var_func_options_defs [] = { | |
7023 | gdb::option::boolean_option_def<info_modules_var_func_options> { | |
7024 | "q", | |
7025 | [] (info_modules_var_func_options *opt) { return &opt->quiet; }, | |
7026 | nullptr, /* show_cmd_cb */ | |
7027 | nullptr /* set_doc */ | |
7028 | }, | |
7029 | ||
7030 | gdb::option::string_option_def<info_modules_var_func_options> { | |
7031 | "t", | |
7032 | [] (info_modules_var_func_options *opt) { return &opt->type_regexp; }, | |
7033 | nullptr, /* show_cmd_cb */ | |
7034 | nullptr /* set_doc */ | |
7035 | }, | |
7036 | ||
7037 | gdb::option::string_option_def<info_modules_var_func_options> { | |
7038 | "m", | |
7039 | [] (info_modules_var_func_options *opt) { return &opt->module_regexp; }, | |
7040 | nullptr, /* show_cmd_cb */ | |
7041 | nullptr /* set_doc */ | |
7042 | } | |
7043 | }; | |
7044 | ||
7045 | /* Return the option group used by the 'info module ...' sub-commands. */ | |
7046 | ||
7047 | static inline gdb::option::option_def_group | |
7048 | make_info_modules_var_func_options_def_group | |
7049 | (info_modules_var_func_options *opts) | |
7050 | { | |
7051 | return {{info_modules_var_func_options_defs}, opts}; | |
7052 | } | |
7053 | ||
7054 | /* Implements the 'info module functions' command. */ | |
7055 | ||
7056 | static void | |
7057 | info_module_functions_command (const char *args, int from_tty) | |
7058 | { | |
7059 | info_modules_var_func_options opts; | |
7060 | auto grp = make_info_modules_var_func_options_def_group (&opts); | |
7061 | gdb::option::process_options | |
7062 | (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); | |
7063 | if (args != nullptr && *args == '\0') | |
7064 | args = nullptr; | |
7065 | ||
7066 | info_module_subcommand | |
7067 | (opts.quiet, | |
7068 | opts.module_regexp.empty () ? nullptr : opts.module_regexp.c_str (), args, | |
7069 | opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (), | |
7070 | SEARCH_FUNCTION_DOMAIN); | |
7071 | } | |
7072 | ||
7073 | /* Implements the 'info module variables' command. */ | |
7074 | ||
7075 | static void | |
7076 | info_module_variables_command (const char *args, int from_tty) | |
7077 | { | |
7078 | info_modules_var_func_options opts; | |
7079 | auto grp = make_info_modules_var_func_options_def_group (&opts); | |
7080 | gdb::option::process_options | |
7081 | (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp); | |
7082 | if (args != nullptr && *args == '\0') | |
7083 | args = nullptr; | |
7084 | ||
7085 | info_module_subcommand | |
7086 | (opts.quiet, | |
7087 | opts.module_regexp.empty () ? nullptr : opts.module_regexp.c_str (), args, | |
7088 | opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (), | |
7089 | SEARCH_VAR_DOMAIN); | |
7090 | } | |
7091 | ||
7092 | /* Command completer for 'info module ...' sub-commands. */ | |
7093 | ||
7094 | static void | |
7095 | info_module_var_func_command_completer (struct cmd_list_element *ignore, | |
7096 | completion_tracker &tracker, | |
7097 | const char *text, | |
7098 | const char * /* word */) | |
7099 | { | |
7100 | ||
7101 | const auto group = make_info_modules_var_func_options_def_group (nullptr); | |
7102 | if (gdb::option::complete_options | |
7103 | (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group)) | |
7104 | return; | |
7105 | ||
7106 | const char *word = advance_to_expression_complete_word_point (tracker, text); | |
7107 | symbol_completer (ignore, tracker, text, word); | |
7108 | } | |
7109 | ||
7110 | \f | |
7111 | ||
7112 | INIT_GDB_FILE (symtab) | |
7113 | { | |
7114 | cmd_list_element *c; | |
7115 | ||
7116 | initialize_ordinary_address_classes (); | |
7117 | ||
7118 | c = add_info ("variables", info_variables_command, | |
7119 | info_print_args_help (_("\ | |
7120 | All global and static variable names or those matching REGEXPs.\n\ | |
7121 | Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\ | |
7122 | Prints the global and static variables.\n"), | |
7123 | _("global and static variables"), | |
7124 | true)); | |
7125 | set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer); | |
7126 | ||
7127 | c = add_info ("functions", info_functions_command, | |
7128 | info_print_args_help (_("\ | |
7129 | All function names or those matching REGEXPs.\n\ | |
7130 | Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\ | |
7131 | Prints the functions.\n"), | |
7132 | _("functions"), | |
7133 | true)); | |
7134 | set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer); | |
7135 | ||
7136 | c = add_info ("types", info_types_command, _("\ | |
7137 | All type names, or those matching REGEXP.\n\ | |
7138 | Usage: info types [-q] [REGEXP]\n\ | |
7139 | Print information about all types matching REGEXP, or all types if no\n\ | |
7140 | REGEXP is given. The optional flag -q disables printing of headers.")); | |
7141 | set_cmd_completer_handle_brkchars (c, info_types_command_completer); | |
7142 | ||
7143 | const auto info_sources_opts | |
7144 | = make_info_sources_options_def_group (nullptr); | |
7145 | ||
7146 | static std::string info_sources_help | |
7147 | = gdb::option::build_help (_("\ | |
7148 | All source files in the program or those matching REGEXP.\n\ | |
7149 | Usage: info sources [OPTION]... [REGEXP]\n\ | |
7150 | By default, REGEXP is used to match anywhere in the filename.\n\ | |
7151 | \n\ | |
7152 | Options:\n\ | |
7153 | %OPTIONS%"), | |
7154 | info_sources_opts); | |
7155 | ||
7156 | c = add_info ("sources", info_sources_command, info_sources_help.c_str ()); | |
7157 | set_cmd_completer_handle_brkchars (c, info_sources_command_completer); | |
7158 | ||
7159 | c = add_info ("modules", info_modules_command, | |
7160 | _("All module names, or those matching REGEXP.")); | |
7161 | set_cmd_completer_handle_brkchars (c, info_types_command_completer); | |
7162 | ||
7163 | add_info ("main", info_main_command, | |
7164 | _("Get main symbol to identify entry point into program.")); | |
7165 | ||
7166 | add_basic_prefix_cmd ("module", class_info, _("\ | |
7167 | Print information about modules."), | |
7168 | &info_module_cmdlist, 0, &infolist); | |
7169 | ||
7170 | c = add_cmd ("functions", class_info, info_module_functions_command, _("\ | |
7171 | Display functions arranged by modules.\n\ | |
7172 | Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\ | |
7173 | Print a summary of all functions within each Fortran module, grouped by\n\ | |
7174 | module and file. For each function the line on which the function is\n\ | |
7175 | defined is given along with the type signature and name of the function.\n\ | |
7176 | \n\ | |
7177 | If REGEXP is provided then only functions whose name matches REGEXP are\n\ | |
7178 | listed. If MODREGEXP is provided then only functions in modules matching\n\ | |
7179 | MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\ | |
7180 | type signature matches TYPEREGEXP are listed.\n\ | |
7181 | \n\ | |
7182 | The -q flag suppresses printing some header information."), | |
7183 | &info_module_cmdlist); | |
7184 | set_cmd_completer_handle_brkchars | |
7185 | (c, info_module_var_func_command_completer); | |
7186 | ||
7187 | c = add_cmd ("variables", class_info, info_module_variables_command, _("\ | |
7188 | Display variables arranged by modules.\n\ | |
7189 | Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\ | |
7190 | Print a summary of all variables within each Fortran module, grouped by\n\ | |
7191 | module and file. For each variable the line on which the variable is\n\ | |
7192 | defined is given along with the type and name of the variable.\n\ | |
7193 | \n\ | |
7194 | If REGEXP is provided then only variables whose name matches REGEXP are\n\ | |
7195 | listed. If MODREGEXP is provided then only variables in modules matching\n\ | |
7196 | MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\ | |
7197 | type matches TYPEREGEXP are listed.\n\ | |
7198 | \n\ | |
7199 | The -q flag suppresses printing some header information."), | |
7200 | &info_module_cmdlist); | |
7201 | set_cmd_completer_handle_brkchars | |
7202 | (c, info_module_var_func_command_completer); | |
7203 | ||
7204 | add_com ("rbreak", class_breakpoint, rbreak_command, | |
7205 | _("Set a breakpoint for all functions matching REGEXP.")); | |
7206 | ||
7207 | add_setshow_enum_cmd ("multiple-symbols", no_class, | |
7208 | multiple_symbols_modes, &multiple_symbols_mode, | |
7209 | _("\ | |
7210 | Set how the debugger handles ambiguities in expressions."), _("\ | |
7211 | Show how the debugger handles ambiguities in expressions."), _("\ | |
7212 | Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."), | |
7213 | NULL, NULL, &setlist, &showlist); | |
7214 | ||
7215 | add_setshow_boolean_cmd ("basenames-may-differ", class_obscure, | |
7216 | &basenames_may_differ, _("\ | |
7217 | Set whether a source file may have multiple base names."), _("\ | |
7218 | Show whether a source file may have multiple base names."), _("\ | |
7219 | (A \"base name\" is the name of a file with the directory part removed.\n\ | |
7220 | Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\ | |
7221 | If set, GDB will canonicalize file names (e.g., expand symlinks)\n\ | |
7222 | before comparing them. Canonicalization is an expensive operation,\n\ | |
7223 | but it allows the same file be known by more than one base name.\n\ | |
7224 | If not set (the default), all source files are assumed to have just\n\ | |
7225 | one base name, and gdb will do file name comparisons more efficiently."), | |
7226 | NULL, NULL, | |
7227 | &setlist, &showlist); | |
7228 | ||
7229 | add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug, | |
7230 | _("Set debugging of symbol table creation."), | |
7231 | _("Show debugging of symbol table creation."), _("\ | |
7232 | When enabled (non-zero), debugging messages are printed when building\n\ | |
7233 | symbol tables. A value of 1 (one) normally provides enough information.\n\ | |
7234 | A value greater than 1 provides more verbose information."), | |
7235 | NULL, | |
7236 | NULL, | |
7237 | &setdebuglist, &showdebuglist); | |
7238 | ||
7239 | add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug, | |
7240 | _("\ | |
7241 | Set debugging of symbol lookup."), _("\ | |
7242 | Show debugging of symbol lookup."), _("\ | |
7243 | When enabled (non-zero), symbol lookups are logged."), | |
7244 | NULL, NULL, | |
7245 | &setdebuglist, &showdebuglist); | |
7246 | ||
7247 | add_setshow_zuinteger_cmd ("symbol-cache-size", no_class, | |
7248 | &new_symbol_cache_size, | |
7249 | _("Set the size of the symbol cache."), | |
7250 | _("Show the size of the symbol cache."), _("\ | |
7251 | The size of the symbol cache.\n\ | |
7252 | If zero then the symbol cache is disabled."), | |
7253 | set_symbol_cache_size_handler, NULL, | |
7254 | &maintenance_set_cmdlist, | |
7255 | &maintenance_show_cmdlist); | |
7256 | ||
7257 | add_setshow_boolean_cmd ("ignore-prologue-end-flag", no_class, | |
7258 | &ignore_prologue_end_flag, | |
7259 | _("Set if the PROLOGUE-END flag is ignored."), | |
7260 | _("Show if the PROLOGUE-END flag is ignored."), | |
7261 | _("\ | |
7262 | The PROLOGUE-END flag from the line-table entries is used to place\n\ | |
7263 | breakpoints past the prologue of functions. Disabling its use forces\n\ | |
7264 | the use of prologue scanners."), | |
7265 | nullptr, nullptr, | |
7266 | &maintenance_set_cmdlist, | |
7267 | &maintenance_show_cmdlist); | |
7268 | ||
7269 | ||
7270 | add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache, | |
7271 | _("Dump the symbol cache for each program space."), | |
7272 | &maintenanceprintlist); | |
7273 | ||
7274 | add_cmd ("symbol-cache-statistics", class_maintenance, | |
7275 | maintenance_print_symbol_cache_statistics, | |
7276 | _("Print symbol cache statistics for each program space."), | |
7277 | &maintenanceprintlist); | |
7278 | ||
7279 | cmd_list_element *maintenance_flush_symbol_cache_cmd | |
7280 | = add_cmd ("symbol-cache", class_maintenance, | |
7281 | maintenance_flush_symbol_cache, | |
7282 | _("Flush the symbol cache for each program space."), | |
7283 | &maintenanceflushlist); | |
7284 | c = add_alias_cmd ("flush-symbol-cache", maintenance_flush_symbol_cache_cmd, | |
7285 | class_maintenance, 0, &maintenancelist); | |
7286 | deprecate_cmd (c, "maintenance flush symbol-cache"); | |
7287 | ||
7288 | gdb::observers::new_objfile.attach (symtab_new_objfile_observer, "symtab"); | |
7289 | gdb::observers::all_objfiles_removed.attach (symtab_all_objfiles_removed, | |
7290 | "symtab"); | |
7291 | gdb::observers::free_objfile.attach (symtab_free_objfile_observer, "symtab"); | |
7292 | } |