]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame_incremental - gdb/target.c
Constify add_info
[thirdparty/binutils-gdb.git] / gdb / target.c
... / ...
CommitLineData
1/* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22#include "defs.h"
23#include "target.h"
24#include "target-dcache.h"
25#include "gdbcmd.h"
26#include "symtab.h"
27#include "inferior.h"
28#include "infrun.h"
29#include "bfd.h"
30#include "symfile.h"
31#include "objfiles.h"
32#include "dcache.h"
33#include <signal.h>
34#include "regcache.h"
35#include "gdbcore.h"
36#include "target-descriptions.h"
37#include "gdbthread.h"
38#include "solib.h"
39#include "exec.h"
40#include "inline-frame.h"
41#include "tracepoint.h"
42#include "gdb/fileio.h"
43#include "agent.h"
44#include "auxv.h"
45#include "target-debug.h"
46#include "top.h"
47#include "event-top.h"
48#include <algorithm>
49#include "byte-vector.h"
50
51static void generic_tls_error (void) ATTRIBUTE_NORETURN;
52
53static void default_terminal_info (struct target_ops *, const char *, int);
54
55static int default_watchpoint_addr_within_range (struct target_ops *,
56 CORE_ADDR, CORE_ADDR, int);
57
58static int default_region_ok_for_hw_watchpoint (struct target_ops *,
59 CORE_ADDR, int);
60
61static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
62
63static ptid_t default_get_ada_task_ptid (struct target_ops *self,
64 long lwp, long tid);
65
66static int default_follow_fork (struct target_ops *self, int follow_child,
67 int detach_fork);
68
69static void default_mourn_inferior (struct target_ops *self);
70
71static int default_search_memory (struct target_ops *ops,
72 CORE_ADDR start_addr,
73 ULONGEST search_space_len,
74 const gdb_byte *pattern,
75 ULONGEST pattern_len,
76 CORE_ADDR *found_addrp);
77
78static int default_verify_memory (struct target_ops *self,
79 const gdb_byte *data,
80 CORE_ADDR memaddr, ULONGEST size);
81
82static struct address_space *default_thread_address_space
83 (struct target_ops *self, ptid_t ptid);
84
85static void tcomplain (void) ATTRIBUTE_NORETURN;
86
87static int return_zero (struct target_ops *);
88
89static int return_zero_has_execution (struct target_ops *, ptid_t);
90
91static struct target_ops *find_default_run_target (const char *);
92
93static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
100static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
103static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
105static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
108static struct target_ops debug_target;
109
110#include "target-delegates.c"
111
112static void init_dummy_target (void);
113
114static void update_current_target (void);
115
116/* Vector of existing target structures. */
117typedef struct target_ops *target_ops_p;
118DEF_VEC_P (target_ops_p);
119static VEC (target_ops_p) *target_structs;
120
121/* The initial current target, so that there is always a semi-valid
122 current target. */
123
124static struct target_ops dummy_target;
125
126/* Top of target stack. */
127
128static struct target_ops *target_stack;
129
130/* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133struct target_ops current_target;
134
135/* Command list for target. */
136
137static struct cmd_list_element *targetlist = NULL;
138
139/* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142static int trust_readonly = 0;
143
144/* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147static int show_memory_breakpoints = 0;
148
149/* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153int may_write_registers = 1;
154
155int may_write_memory = 1;
156
157int may_insert_breakpoints = 1;
158
159int may_insert_tracepoints = 1;
160
161int may_insert_fast_tracepoints = 1;
162
163int may_stop = 1;
164
165/* Non-zero if we want to see trace of target level stuff. */
166
167static unsigned int targetdebug = 0;
168
169static void
170set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
171{
172 update_current_target ();
173}
174
175static void
176show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180}
181
182static void setup_target_debug (void);
183
184/* The user just typed 'target' without the name of a target. */
185
186static void
187target_command (const char *arg, int from_tty)
188{
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191}
192
193/* Default target_has_* methods for process_stratum targets. */
194
195int
196default_child_has_all_memory (struct target_ops *ops)
197{
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203}
204
205int
206default_child_has_memory (struct target_ops *ops)
207{
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213}
214
215int
216default_child_has_stack (struct target_ops *ops)
217{
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223}
224
225int
226default_child_has_registers (struct target_ops *ops)
227{
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233}
234
235int
236default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
237{
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
240 if (ptid_equal (the_ptid, null_ptid))
241 return 0;
242
243 return 1;
244}
245
246
247int
248target_has_all_memory_1 (void)
249{
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257}
258
259int
260target_has_memory_1 (void)
261{
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269}
270
271int
272target_has_stack_1 (void)
273{
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281}
282
283int
284target_has_registers_1 (void)
285{
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293}
294
295int
296target_has_execution_1 (ptid_t the_ptid)
297{
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
301 if (t->to_has_execution (t, the_ptid))
302 return 1;
303
304 return 0;
305}
306
307int
308target_has_execution_current (void)
309{
310 return target_has_execution_1 (inferior_ptid);
311}
312
313/* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
315
316void
317complete_target_initialization (struct target_ops *t)
318{
319 /* Provide default values for all "must have" methods. */
320
321 if (t->to_has_all_memory == NULL)
322 t->to_has_all_memory = return_zero;
323
324 if (t->to_has_memory == NULL)
325 t->to_has_memory = return_zero;
326
327 if (t->to_has_stack == NULL)
328 t->to_has_stack = return_zero;
329
330 if (t->to_has_registers == NULL)
331 t->to_has_registers = return_zero;
332
333 if (t->to_has_execution == NULL)
334 t->to_has_execution = return_zero_has_execution;
335
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
342 install_delegators (t);
343}
344
345/* This is used to implement the various target commands. */
346
347static void
348open_target (char *args, int from_tty, struct cmd_list_element *command)
349{
350 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361}
362
363/* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367void
368add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370{
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
374
375 VEC_safe_push (target_ops_p, target_structs, t);
376
377 if (targetlist == NULL)
378 add_prefix_cmd ("target", class_run, target_command, _("\
379Connect to a target machine or process.\n\
380The first argument is the type or protocol of the target machine.\n\
381Remaining arguments are interpreted by the target protocol. For more\n\
382information on the arguments for a particular protocol, type\n\
383`help target ' followed by the protocol name."),
384 &targetlist, "target ", 0, &cmdlist);
385 c = add_cmd (t->to_shortname, no_class, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390}
391
392/* Add a possible target architecture to the list. */
393
394void
395add_target (struct target_ops *t)
396{
397 add_target_with_completer (t, NULL);
398}
399
400/* See target.h. */
401
402void
403add_deprecated_target_alias (struct target_ops *t, const char *alias)
404{
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
410 c = add_cmd (alias, no_class, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415}
416
417/* Stub functions */
418
419void
420target_kill (void)
421{
422 current_target.to_kill (&current_target);
423}
424
425void
426target_load (const char *arg, int from_tty)
427{
428 target_dcache_invalidate ();
429 (*current_target.to_load) (&current_target, arg, from_tty);
430}
431
432/* Define it. */
433
434enum target_terminal::terminal_state target_terminal::terminal_state
435 = target_terminal::terminal_is_ours;
436
437/* See target/target.h. */
438
439void
440target_terminal::init (void)
441{
442 (*current_target.to_terminal_init) (&current_target);
443
444 terminal_state = terminal_is_ours;
445}
446
447/* See target/target.h. */
448
449void
450target_terminal::inferior (void)
451{
452 struct ui *ui = current_ui;
453
454 /* A background resume (``run&'') should leave GDB in control of the
455 terminal. */
456 if (ui->prompt_state != PROMPT_BLOCKED)
457 return;
458
459 /* Since we always run the inferior in the main console (unless "set
460 inferior-tty" is in effect), when some UI other than the main one
461 calls target_terminal::inferior, then we leave the main UI's
462 terminal settings as is. */
463 if (ui != main_ui)
464 return;
465
466 if (terminal_state == terminal_is_inferior)
467 return;
468
469 /* If GDB is resuming the inferior in the foreground, install
470 inferior's terminal modes. */
471 (*current_target.to_terminal_inferior) (&current_target);
472 terminal_state = terminal_is_inferior;
473
474 /* If the user hit C-c before, pretend that it was hit right
475 here. */
476 if (check_quit_flag ())
477 target_pass_ctrlc ();
478}
479
480/* See target/target.h. */
481
482void
483target_terminal::ours ()
484{
485 struct ui *ui = current_ui;
486
487 /* See target_terminal::inferior. */
488 if (ui != main_ui)
489 return;
490
491 if (terminal_state == terminal_is_ours)
492 return;
493
494 (*current_target.to_terminal_ours) (&current_target);
495 terminal_state = terminal_is_ours;
496}
497
498/* See target/target.h. */
499
500void
501target_terminal::ours_for_output ()
502{
503 struct ui *ui = current_ui;
504
505 /* See target_terminal::inferior. */
506 if (ui != main_ui)
507 return;
508
509 if (terminal_state != terminal_is_inferior)
510 return;
511 (*current_target.to_terminal_ours_for_output) (&current_target);
512 terminal_state = terminal_is_ours_for_output;
513}
514
515/* See target/target.h. */
516
517void
518target_terminal::info (const char *arg, int from_tty)
519{
520 (*current_target.to_terminal_info) (&current_target, arg, from_tty);
521}
522
523/* See target.h. */
524
525int
526target_supports_terminal_ours (void)
527{
528 struct target_ops *t;
529
530 for (t = current_target.beneath; t != NULL; t = t->beneath)
531 {
532 if (t->to_terminal_ours != delegate_terminal_ours
533 && t->to_terminal_ours != tdefault_terminal_ours)
534 return 1;
535 }
536
537 return 0;
538}
539
540static void
541tcomplain (void)
542{
543 error (_("You can't do that when your target is `%s'"),
544 current_target.to_shortname);
545}
546
547void
548noprocess (void)
549{
550 error (_("You can't do that without a process to debug."));
551}
552
553static void
554default_terminal_info (struct target_ops *self, const char *args, int from_tty)
555{
556 printf_unfiltered (_("No saved terminal information.\n"));
557}
558
559/* A default implementation for the to_get_ada_task_ptid target method.
560
561 This function builds the PTID by using both LWP and TID as part of
562 the PTID lwp and tid elements. The pid used is the pid of the
563 inferior_ptid. */
564
565static ptid_t
566default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
567{
568 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
569}
570
571static enum exec_direction_kind
572default_execution_direction (struct target_ops *self)
573{
574 if (!target_can_execute_reverse)
575 return EXEC_FORWARD;
576 else if (!target_can_async_p ())
577 return EXEC_FORWARD;
578 else
579 gdb_assert_not_reached ("\
580to_execution_direction must be implemented for reverse async");
581}
582
583/* Go through the target stack from top to bottom, copying over zero
584 entries in current_target, then filling in still empty entries. In
585 effect, we are doing class inheritance through the pushed target
586 vectors.
587
588 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
589 is currently implemented, is that it discards any knowledge of
590 which target an inherited method originally belonged to.
591 Consequently, new new target methods should instead explicitly and
592 locally search the target stack for the target that can handle the
593 request. */
594
595static void
596update_current_target (void)
597{
598 struct target_ops *t;
599
600 /* First, reset current's contents. */
601 memset (&current_target, 0, sizeof (current_target));
602
603 /* Install the delegators. */
604 install_delegators (&current_target);
605
606 current_target.to_stratum = target_stack->to_stratum;
607
608#define INHERIT(FIELD, TARGET) \
609 if (!current_target.FIELD) \
610 current_target.FIELD = (TARGET)->FIELD
611
612 /* Do not add any new INHERITs here. Instead, use the delegation
613 mechanism provided by make-target-delegates. */
614 for (t = target_stack; t; t = t->beneath)
615 {
616 INHERIT (to_shortname, t);
617 INHERIT (to_longname, t);
618 INHERIT (to_attach_no_wait, t);
619 INHERIT (to_have_steppable_watchpoint, t);
620 INHERIT (to_have_continuable_watchpoint, t);
621 INHERIT (to_has_thread_control, t);
622 }
623#undef INHERIT
624
625 /* Finally, position the target-stack beneath the squashed
626 "current_target". That way code looking for a non-inherited
627 target method can quickly and simply find it. */
628 current_target.beneath = target_stack;
629
630 if (targetdebug)
631 setup_target_debug ();
632}
633
634/* Push a new target type into the stack of the existing target accessors,
635 possibly superseding some of the existing accessors.
636
637 Rather than allow an empty stack, we always have the dummy target at
638 the bottom stratum, so we can call the function vectors without
639 checking them. */
640
641void
642push_target (struct target_ops *t)
643{
644 struct target_ops **cur;
645
646 /* Check magic number. If wrong, it probably means someone changed
647 the struct definition, but not all the places that initialize one. */
648 if (t->to_magic != OPS_MAGIC)
649 {
650 fprintf_unfiltered (gdb_stderr,
651 "Magic number of %s target struct wrong\n",
652 t->to_shortname);
653 internal_error (__FILE__, __LINE__,
654 _("failed internal consistency check"));
655 }
656
657 /* Find the proper stratum to install this target in. */
658 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
659 {
660 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
661 break;
662 }
663
664 /* If there's already targets at this stratum, remove them. */
665 /* FIXME: cagney/2003-10-15: I think this should be popping all
666 targets to CUR, and not just those at this stratum level. */
667 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
668 {
669 /* There's already something at this stratum level. Close it,
670 and un-hook it from the stack. */
671 struct target_ops *tmp = (*cur);
672
673 (*cur) = (*cur)->beneath;
674 tmp->beneath = NULL;
675 target_close (tmp);
676 }
677
678 /* We have removed all targets in our stratum, now add the new one. */
679 t->beneath = (*cur);
680 (*cur) = t;
681
682 update_current_target ();
683}
684
685/* Remove a target_ops vector from the stack, wherever it may be.
686 Return how many times it was removed (0 or 1). */
687
688int
689unpush_target (struct target_ops *t)
690{
691 struct target_ops **cur;
692 struct target_ops *tmp;
693
694 if (t->to_stratum == dummy_stratum)
695 internal_error (__FILE__, __LINE__,
696 _("Attempt to unpush the dummy target"));
697
698 /* Look for the specified target. Note that we assume that a target
699 can only occur once in the target stack. */
700
701 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
702 {
703 if ((*cur) == t)
704 break;
705 }
706
707 /* If we don't find target_ops, quit. Only open targets should be
708 closed. */
709 if ((*cur) == NULL)
710 return 0;
711
712 /* Unchain the target. */
713 tmp = (*cur);
714 (*cur) = (*cur)->beneath;
715 tmp->beneath = NULL;
716
717 update_current_target ();
718
719 /* Finally close the target. Note we do this after unchaining, so
720 any target method calls from within the target_close
721 implementation don't end up in T anymore. */
722 target_close (t);
723
724 return 1;
725}
726
727/* Unpush TARGET and assert that it worked. */
728
729static void
730unpush_target_and_assert (struct target_ops *target)
731{
732 if (!unpush_target (target))
733 {
734 fprintf_unfiltered (gdb_stderr,
735 "pop_all_targets couldn't find target %s\n",
736 target->to_shortname);
737 internal_error (__FILE__, __LINE__,
738 _("failed internal consistency check"));
739 }
740}
741
742void
743pop_all_targets_above (enum strata above_stratum)
744{
745 while ((int) (current_target.to_stratum) > (int) above_stratum)
746 unpush_target_and_assert (target_stack);
747}
748
749/* See target.h. */
750
751void
752pop_all_targets_at_and_above (enum strata stratum)
753{
754 while ((int) (current_target.to_stratum) >= (int) stratum)
755 unpush_target_and_assert (target_stack);
756}
757
758void
759pop_all_targets (void)
760{
761 pop_all_targets_above (dummy_stratum);
762}
763
764/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
765
766int
767target_is_pushed (struct target_ops *t)
768{
769 struct target_ops *cur;
770
771 /* Check magic number. If wrong, it probably means someone changed
772 the struct definition, but not all the places that initialize one. */
773 if (t->to_magic != OPS_MAGIC)
774 {
775 fprintf_unfiltered (gdb_stderr,
776 "Magic number of %s target struct wrong\n",
777 t->to_shortname);
778 internal_error (__FILE__, __LINE__,
779 _("failed internal consistency check"));
780 }
781
782 for (cur = target_stack; cur != NULL; cur = cur->beneath)
783 if (cur == t)
784 return 1;
785
786 return 0;
787}
788
789/* Default implementation of to_get_thread_local_address. */
790
791static void
792generic_tls_error (void)
793{
794 throw_error (TLS_GENERIC_ERROR,
795 _("Cannot find thread-local variables on this target"));
796}
797
798/* Using the objfile specified in OBJFILE, find the address for the
799 current thread's thread-local storage with offset OFFSET. */
800CORE_ADDR
801target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
802{
803 volatile CORE_ADDR addr = 0;
804 struct target_ops *target = &current_target;
805
806 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
807 {
808 ptid_t ptid = inferior_ptid;
809
810 TRY
811 {
812 CORE_ADDR lm_addr;
813
814 /* Fetch the load module address for this objfile. */
815 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
816 objfile);
817
818 addr = target->to_get_thread_local_address (target, ptid,
819 lm_addr, offset);
820 }
821 /* If an error occurred, print TLS related messages here. Otherwise,
822 throw the error to some higher catcher. */
823 CATCH (ex, RETURN_MASK_ALL)
824 {
825 int objfile_is_library = (objfile->flags & OBJF_SHARED);
826
827 switch (ex.error)
828 {
829 case TLS_NO_LIBRARY_SUPPORT_ERROR:
830 error (_("Cannot find thread-local variables "
831 "in this thread library."));
832 break;
833 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
834 if (objfile_is_library)
835 error (_("Cannot find shared library `%s' in dynamic"
836 " linker's load module list"), objfile_name (objfile));
837 else
838 error (_("Cannot find executable file `%s' in dynamic"
839 " linker's load module list"), objfile_name (objfile));
840 break;
841 case TLS_NOT_ALLOCATED_YET_ERROR:
842 if (objfile_is_library)
843 error (_("The inferior has not yet allocated storage for"
844 " thread-local variables in\n"
845 "the shared library `%s'\n"
846 "for %s"),
847 objfile_name (objfile), target_pid_to_str (ptid));
848 else
849 error (_("The inferior has not yet allocated storage for"
850 " thread-local variables in\n"
851 "the executable `%s'\n"
852 "for %s"),
853 objfile_name (objfile), target_pid_to_str (ptid));
854 break;
855 case TLS_GENERIC_ERROR:
856 if (objfile_is_library)
857 error (_("Cannot find thread-local storage for %s, "
858 "shared library %s:\n%s"),
859 target_pid_to_str (ptid),
860 objfile_name (objfile), ex.message);
861 else
862 error (_("Cannot find thread-local storage for %s, "
863 "executable file %s:\n%s"),
864 target_pid_to_str (ptid),
865 objfile_name (objfile), ex.message);
866 break;
867 default:
868 throw_exception (ex);
869 break;
870 }
871 }
872 END_CATCH
873 }
874 /* It wouldn't be wrong here to try a gdbarch method, too; finding
875 TLS is an ABI-specific thing. But we don't do that yet. */
876 else
877 error (_("Cannot find thread-local variables on this target"));
878
879 return addr;
880}
881
882const char *
883target_xfer_status_to_string (enum target_xfer_status status)
884{
885#define CASE(X) case X: return #X
886 switch (status)
887 {
888 CASE(TARGET_XFER_E_IO);
889 CASE(TARGET_XFER_UNAVAILABLE);
890 default:
891 return "<unknown>";
892 }
893#undef CASE
894};
895
896
897#undef MIN
898#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
899
900/* target_read_string -- read a null terminated string, up to LEN bytes,
901 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
902 Set *STRING to a pointer to malloc'd memory containing the data; the caller
903 is responsible for freeing it. Return the number of bytes successfully
904 read. */
905
906int
907target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
908{
909 int tlen, offset, i;
910 gdb_byte buf[4];
911 int errcode = 0;
912 char *buffer;
913 int buffer_allocated;
914 char *bufptr;
915 unsigned int nbytes_read = 0;
916
917 gdb_assert (string);
918
919 /* Small for testing. */
920 buffer_allocated = 4;
921 buffer = (char *) xmalloc (buffer_allocated);
922 bufptr = buffer;
923
924 while (len > 0)
925 {
926 tlen = MIN (len, 4 - (memaddr & 3));
927 offset = memaddr & 3;
928
929 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
930 if (errcode != 0)
931 {
932 /* The transfer request might have crossed the boundary to an
933 unallocated region of memory. Retry the transfer, requesting
934 a single byte. */
935 tlen = 1;
936 offset = 0;
937 errcode = target_read_memory (memaddr, buf, 1);
938 if (errcode != 0)
939 goto done;
940 }
941
942 if (bufptr - buffer + tlen > buffer_allocated)
943 {
944 unsigned int bytes;
945
946 bytes = bufptr - buffer;
947 buffer_allocated *= 2;
948 buffer = (char *) xrealloc (buffer, buffer_allocated);
949 bufptr = buffer + bytes;
950 }
951
952 for (i = 0; i < tlen; i++)
953 {
954 *bufptr++ = buf[i + offset];
955 if (buf[i + offset] == '\000')
956 {
957 nbytes_read += i + 1;
958 goto done;
959 }
960 }
961
962 memaddr += tlen;
963 len -= tlen;
964 nbytes_read += tlen;
965 }
966done:
967 *string = buffer;
968 if (errnop != NULL)
969 *errnop = errcode;
970 return nbytes_read;
971}
972
973struct target_section_table *
974target_get_section_table (struct target_ops *target)
975{
976 return (*target->to_get_section_table) (target);
977}
978
979/* Find a section containing ADDR. */
980
981struct target_section *
982target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
983{
984 struct target_section_table *table = target_get_section_table (target);
985 struct target_section *secp;
986
987 if (table == NULL)
988 return NULL;
989
990 for (secp = table->sections; secp < table->sections_end; secp++)
991 {
992 if (addr >= secp->addr && addr < secp->endaddr)
993 return secp;
994 }
995 return NULL;
996}
997
998
999/* Helper for the memory xfer routines. Checks the attributes of the
1000 memory region of MEMADDR against the read or write being attempted.
1001 If the access is permitted returns true, otherwise returns false.
1002 REGION_P is an optional output parameter. If not-NULL, it is
1003 filled with a pointer to the memory region of MEMADDR. REG_LEN
1004 returns LEN trimmed to the end of the region. This is how much the
1005 caller can continue requesting, if the access is permitted. A
1006 single xfer request must not straddle memory region boundaries. */
1007
1008static int
1009memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1010 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1011 struct mem_region **region_p)
1012{
1013 struct mem_region *region;
1014
1015 region = lookup_mem_region (memaddr);
1016
1017 if (region_p != NULL)
1018 *region_p = region;
1019
1020 switch (region->attrib.mode)
1021 {
1022 case MEM_RO:
1023 if (writebuf != NULL)
1024 return 0;
1025 break;
1026
1027 case MEM_WO:
1028 if (readbuf != NULL)
1029 return 0;
1030 break;
1031
1032 case MEM_FLASH:
1033 /* We only support writing to flash during "load" for now. */
1034 if (writebuf != NULL)
1035 error (_("Writing to flash memory forbidden in this context"));
1036 break;
1037
1038 case MEM_NONE:
1039 return 0;
1040 }
1041
1042 /* region->hi == 0 means there's no upper bound. */
1043 if (memaddr + len < region->hi || region->hi == 0)
1044 *reg_len = len;
1045 else
1046 *reg_len = region->hi - memaddr;
1047
1048 return 1;
1049}
1050
1051/* Read memory from more than one valid target. A core file, for
1052 instance, could have some of memory but delegate other bits to
1053 the target below it. So, we must manually try all targets. */
1054
1055enum target_xfer_status
1056raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1057 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1058 ULONGEST *xfered_len)
1059{
1060 enum target_xfer_status res;
1061
1062 do
1063 {
1064 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1065 readbuf, writebuf, memaddr, len,
1066 xfered_len);
1067 if (res == TARGET_XFER_OK)
1068 break;
1069
1070 /* Stop if the target reports that the memory is not available. */
1071 if (res == TARGET_XFER_UNAVAILABLE)
1072 break;
1073
1074 /* We want to continue past core files to executables, but not
1075 past a running target's memory. */
1076 if (ops->to_has_all_memory (ops))
1077 break;
1078
1079 ops = ops->beneath;
1080 }
1081 while (ops != NULL);
1082
1083 /* The cache works at the raw memory level. Make sure the cache
1084 gets updated with raw contents no matter what kind of memory
1085 object was originally being written. Note we do write-through
1086 first, so that if it fails, we don't write to the cache contents
1087 that never made it to the target. */
1088 if (writebuf != NULL
1089 && !ptid_equal (inferior_ptid, null_ptid)
1090 && target_dcache_init_p ()
1091 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1092 {
1093 DCACHE *dcache = target_dcache_get ();
1094
1095 /* Note that writing to an area of memory which wasn't present
1096 in the cache doesn't cause it to be loaded in. */
1097 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1098 }
1099
1100 return res;
1101}
1102
1103/* Perform a partial memory transfer.
1104 For docs see target.h, to_xfer_partial. */
1105
1106static enum target_xfer_status
1107memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1108 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1109 ULONGEST len, ULONGEST *xfered_len)
1110{
1111 enum target_xfer_status res;
1112 ULONGEST reg_len;
1113 struct mem_region *region;
1114 struct inferior *inf;
1115
1116 /* For accesses to unmapped overlay sections, read directly from
1117 files. Must do this first, as MEMADDR may need adjustment. */
1118 if (readbuf != NULL && overlay_debugging)
1119 {
1120 struct obj_section *section = find_pc_overlay (memaddr);
1121
1122 if (pc_in_unmapped_range (memaddr, section))
1123 {
1124 struct target_section_table *table
1125 = target_get_section_table (ops);
1126 const char *section_name = section->the_bfd_section->name;
1127
1128 memaddr = overlay_mapped_address (memaddr, section);
1129 return section_table_xfer_memory_partial (readbuf, writebuf,
1130 memaddr, len, xfered_len,
1131 table->sections,
1132 table->sections_end,
1133 section_name);
1134 }
1135 }
1136
1137 /* Try the executable files, if "trust-readonly-sections" is set. */
1138 if (readbuf != NULL && trust_readonly)
1139 {
1140 struct target_section *secp;
1141 struct target_section_table *table;
1142
1143 secp = target_section_by_addr (ops, memaddr);
1144 if (secp != NULL
1145 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1146 secp->the_bfd_section)
1147 & SEC_READONLY))
1148 {
1149 table = target_get_section_table (ops);
1150 return section_table_xfer_memory_partial (readbuf, writebuf,
1151 memaddr, len, xfered_len,
1152 table->sections,
1153 table->sections_end,
1154 NULL);
1155 }
1156 }
1157
1158 /* Try GDB's internal data cache. */
1159
1160 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1161 &region))
1162 return TARGET_XFER_E_IO;
1163
1164 if (!ptid_equal (inferior_ptid, null_ptid))
1165 inf = find_inferior_ptid (inferior_ptid);
1166 else
1167 inf = NULL;
1168
1169 if (inf != NULL
1170 && readbuf != NULL
1171 /* The dcache reads whole cache lines; that doesn't play well
1172 with reading from a trace buffer, because reading outside of
1173 the collected memory range fails. */
1174 && get_traceframe_number () == -1
1175 && (region->attrib.cache
1176 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1177 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1178 {
1179 DCACHE *dcache = target_dcache_get_or_init ();
1180
1181 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1182 reg_len, xfered_len);
1183 }
1184
1185 /* If none of those methods found the memory we wanted, fall back
1186 to a target partial transfer. Normally a single call to
1187 to_xfer_partial is enough; if it doesn't recognize an object
1188 it will call the to_xfer_partial of the next target down.
1189 But for memory this won't do. Memory is the only target
1190 object which can be read from more than one valid target.
1191 A core file, for instance, could have some of memory but
1192 delegate other bits to the target below it. So, we must
1193 manually try all targets. */
1194
1195 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1196 xfered_len);
1197
1198 /* If we still haven't got anything, return the last error. We
1199 give up. */
1200 return res;
1201}
1202
1203/* Perform a partial memory transfer. For docs see target.h,
1204 to_xfer_partial. */
1205
1206static enum target_xfer_status
1207memory_xfer_partial (struct target_ops *ops, enum target_object object,
1208 gdb_byte *readbuf, const gdb_byte *writebuf,
1209 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1210{
1211 enum target_xfer_status res;
1212
1213 /* Zero length requests are ok and require no work. */
1214 if (len == 0)
1215 return TARGET_XFER_EOF;
1216
1217 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1218 breakpoint insns, thus hiding out from higher layers whether
1219 there are software breakpoints inserted in the code stream. */
1220 if (readbuf != NULL)
1221 {
1222 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1223 xfered_len);
1224
1225 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1226 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1227 }
1228 else
1229 {
1230 /* A large write request is likely to be partially satisfied
1231 by memory_xfer_partial_1. We will continually malloc
1232 and free a copy of the entire write request for breakpoint
1233 shadow handling even though we only end up writing a small
1234 subset of it. Cap writes to a limit specified by the target
1235 to mitigate this. */
1236 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1237
1238 gdb::byte_vector buf (writebuf, writebuf + len);
1239 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1240 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1241 xfered_len);
1242 }
1243
1244 return res;
1245}
1246
1247scoped_restore_tmpl<int>
1248make_scoped_restore_show_memory_breakpoints (int show)
1249{
1250 return make_scoped_restore (&show_memory_breakpoints, show);
1251}
1252
1253/* For docs see target.h, to_xfer_partial. */
1254
1255enum target_xfer_status
1256target_xfer_partial (struct target_ops *ops,
1257 enum target_object object, const char *annex,
1258 gdb_byte *readbuf, const gdb_byte *writebuf,
1259 ULONGEST offset, ULONGEST len,
1260 ULONGEST *xfered_len)
1261{
1262 enum target_xfer_status retval;
1263
1264 gdb_assert (ops->to_xfer_partial != NULL);
1265
1266 /* Transfer is done when LEN is zero. */
1267 if (len == 0)
1268 return TARGET_XFER_EOF;
1269
1270 if (writebuf && !may_write_memory)
1271 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1272 core_addr_to_string_nz (offset), plongest (len));
1273
1274 *xfered_len = 0;
1275
1276 /* If this is a memory transfer, let the memory-specific code
1277 have a look at it instead. Memory transfers are more
1278 complicated. */
1279 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1280 || object == TARGET_OBJECT_CODE_MEMORY)
1281 retval = memory_xfer_partial (ops, object, readbuf,
1282 writebuf, offset, len, xfered_len);
1283 else if (object == TARGET_OBJECT_RAW_MEMORY)
1284 {
1285 /* Skip/avoid accessing the target if the memory region
1286 attributes block the access. Check this here instead of in
1287 raw_memory_xfer_partial as otherwise we'd end up checking
1288 this twice in the case of the memory_xfer_partial path is
1289 taken; once before checking the dcache, and another in the
1290 tail call to raw_memory_xfer_partial. */
1291 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1292 NULL))
1293 return TARGET_XFER_E_IO;
1294
1295 /* Request the normal memory object from other layers. */
1296 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1297 xfered_len);
1298 }
1299 else
1300 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1301 writebuf, offset, len, xfered_len);
1302
1303 if (targetdebug)
1304 {
1305 const unsigned char *myaddr = NULL;
1306
1307 fprintf_unfiltered (gdb_stdlog,
1308 "%s:target_xfer_partial "
1309 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1310 ops->to_shortname,
1311 (int) object,
1312 (annex ? annex : "(null)"),
1313 host_address_to_string (readbuf),
1314 host_address_to_string (writebuf),
1315 core_addr_to_string_nz (offset),
1316 pulongest (len), retval,
1317 pulongest (*xfered_len));
1318
1319 if (readbuf)
1320 myaddr = readbuf;
1321 if (writebuf)
1322 myaddr = writebuf;
1323 if (retval == TARGET_XFER_OK && myaddr != NULL)
1324 {
1325 int i;
1326
1327 fputs_unfiltered (", bytes =", gdb_stdlog);
1328 for (i = 0; i < *xfered_len; i++)
1329 {
1330 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1331 {
1332 if (targetdebug < 2 && i > 0)
1333 {
1334 fprintf_unfiltered (gdb_stdlog, " ...");
1335 break;
1336 }
1337 fprintf_unfiltered (gdb_stdlog, "\n");
1338 }
1339
1340 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1341 }
1342 }
1343
1344 fputc_unfiltered ('\n', gdb_stdlog);
1345 }
1346
1347 /* Check implementations of to_xfer_partial update *XFERED_LEN
1348 properly. Do assertion after printing debug messages, so that we
1349 can find more clues on assertion failure from debugging messages. */
1350 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1351 gdb_assert (*xfered_len > 0);
1352
1353 return retval;
1354}
1355
1356/* Read LEN bytes of target memory at address MEMADDR, placing the
1357 results in GDB's memory at MYADDR. Returns either 0 for success or
1358 -1 if any error occurs.
1359
1360 If an error occurs, no guarantee is made about the contents of the data at
1361 MYADDR. In particular, the caller should not depend upon partial reads
1362 filling the buffer with good data. There is no way for the caller to know
1363 how much good data might have been transfered anyway. Callers that can
1364 deal with partial reads should call target_read (which will retry until
1365 it makes no progress, and then return how much was transferred). */
1366
1367int
1368target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1369{
1370 /* Dispatch to the topmost target, not the flattened current_target.
1371 Memory accesses check target->to_has_(all_)memory, and the
1372 flattened target doesn't inherit those. */
1373 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1374 myaddr, memaddr, len) == len)
1375 return 0;
1376 else
1377 return -1;
1378}
1379
1380/* See target/target.h. */
1381
1382int
1383target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1384{
1385 gdb_byte buf[4];
1386 int r;
1387
1388 r = target_read_memory (memaddr, buf, sizeof buf);
1389 if (r != 0)
1390 return r;
1391 *result = extract_unsigned_integer (buf, sizeof buf,
1392 gdbarch_byte_order (target_gdbarch ()));
1393 return 0;
1394}
1395
1396/* Like target_read_memory, but specify explicitly that this is a read
1397 from the target's raw memory. That is, this read bypasses the
1398 dcache, breakpoint shadowing, etc. */
1399
1400int
1401target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1402{
1403 /* See comment in target_read_memory about why the request starts at
1404 current_target.beneath. */
1405 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1406 myaddr, memaddr, len) == len)
1407 return 0;
1408 else
1409 return -1;
1410}
1411
1412/* Like target_read_memory, but specify explicitly that this is a read from
1413 the target's stack. This may trigger different cache behavior. */
1414
1415int
1416target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1417{
1418 /* See comment in target_read_memory about why the request starts at
1419 current_target.beneath. */
1420 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1421 myaddr, memaddr, len) == len)
1422 return 0;
1423 else
1424 return -1;
1425}
1426
1427/* Like target_read_memory, but specify explicitly that this is a read from
1428 the target's code. This may trigger different cache behavior. */
1429
1430int
1431target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1432{
1433 /* See comment in target_read_memory about why the request starts at
1434 current_target.beneath. */
1435 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1436 myaddr, memaddr, len) == len)
1437 return 0;
1438 else
1439 return -1;
1440}
1441
1442/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1443 Returns either 0 for success or -1 if any error occurs. If an
1444 error occurs, no guarantee is made about how much data got written.
1445 Callers that can deal with partial writes should call
1446 target_write. */
1447
1448int
1449target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1450{
1451 /* See comment in target_read_memory about why the request starts at
1452 current_target.beneath. */
1453 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1454 myaddr, memaddr, len) == len)
1455 return 0;
1456 else
1457 return -1;
1458}
1459
1460/* Write LEN bytes from MYADDR to target raw memory at address
1461 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1462 If an error occurs, no guarantee is made about how much data got
1463 written. Callers that can deal with partial writes should call
1464 target_write. */
1465
1466int
1467target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1468{
1469 /* See comment in target_read_memory about why the request starts at
1470 current_target.beneath. */
1471 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1472 myaddr, memaddr, len) == len)
1473 return 0;
1474 else
1475 return -1;
1476}
1477
1478/* Fetch the target's memory map. */
1479
1480std::vector<mem_region>
1481target_memory_map (void)
1482{
1483 std::vector<mem_region> result
1484 = current_target.to_memory_map (&current_target);
1485 if (result.empty ())
1486 return result;
1487
1488 std::sort (result.begin (), result.end ());
1489
1490 /* Check that regions do not overlap. Simultaneously assign
1491 a numbering for the "mem" commands to use to refer to
1492 each region. */
1493 mem_region *last_one = NULL;
1494 for (size_t ix = 0; ix < result.size (); ix++)
1495 {
1496 mem_region *this_one = &result[ix];
1497 this_one->number = ix;
1498
1499 if (last_one != NULL && last_one->hi > this_one->lo)
1500 {
1501 warning (_("Overlapping regions in memory map: ignoring"));
1502 return std::vector<mem_region> ();
1503 }
1504
1505 last_one = this_one;
1506 }
1507
1508 return result;
1509}
1510
1511void
1512target_flash_erase (ULONGEST address, LONGEST length)
1513{
1514 current_target.to_flash_erase (&current_target, address, length);
1515}
1516
1517void
1518target_flash_done (void)
1519{
1520 current_target.to_flash_done (&current_target);
1521}
1522
1523static void
1524show_trust_readonly (struct ui_file *file, int from_tty,
1525 struct cmd_list_element *c, const char *value)
1526{
1527 fprintf_filtered (file,
1528 _("Mode for reading from readonly sections is %s.\n"),
1529 value);
1530}
1531
1532/* Target vector read/write partial wrapper functions. */
1533
1534static enum target_xfer_status
1535target_read_partial (struct target_ops *ops,
1536 enum target_object object,
1537 const char *annex, gdb_byte *buf,
1538 ULONGEST offset, ULONGEST len,
1539 ULONGEST *xfered_len)
1540{
1541 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1542 xfered_len);
1543}
1544
1545static enum target_xfer_status
1546target_write_partial (struct target_ops *ops,
1547 enum target_object object,
1548 const char *annex, const gdb_byte *buf,
1549 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1550{
1551 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1552 xfered_len);
1553}
1554
1555/* Wrappers to perform the full transfer. */
1556
1557/* For docs on target_read see target.h. */
1558
1559LONGEST
1560target_read (struct target_ops *ops,
1561 enum target_object object,
1562 const char *annex, gdb_byte *buf,
1563 ULONGEST offset, LONGEST len)
1564{
1565 LONGEST xfered_total = 0;
1566 int unit_size = 1;
1567
1568 /* If we are reading from a memory object, find the length of an addressable
1569 unit for that architecture. */
1570 if (object == TARGET_OBJECT_MEMORY
1571 || object == TARGET_OBJECT_STACK_MEMORY
1572 || object == TARGET_OBJECT_CODE_MEMORY
1573 || object == TARGET_OBJECT_RAW_MEMORY)
1574 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1575
1576 while (xfered_total < len)
1577 {
1578 ULONGEST xfered_partial;
1579 enum target_xfer_status status;
1580
1581 status = target_read_partial (ops, object, annex,
1582 buf + xfered_total * unit_size,
1583 offset + xfered_total, len - xfered_total,
1584 &xfered_partial);
1585
1586 /* Call an observer, notifying them of the xfer progress? */
1587 if (status == TARGET_XFER_EOF)
1588 return xfered_total;
1589 else if (status == TARGET_XFER_OK)
1590 {
1591 xfered_total += xfered_partial;
1592 QUIT;
1593 }
1594 else
1595 return TARGET_XFER_E_IO;
1596
1597 }
1598 return len;
1599}
1600
1601/* Assuming that the entire [begin, end) range of memory cannot be
1602 read, try to read whatever subrange is possible to read.
1603
1604 The function returns, in RESULT, either zero or one memory block.
1605 If there's a readable subrange at the beginning, it is completely
1606 read and returned. Any further readable subrange will not be read.
1607 Otherwise, if there's a readable subrange at the end, it will be
1608 completely read and returned. Any readable subranges before it
1609 (obviously, not starting at the beginning), will be ignored. In
1610 other cases -- either no readable subrange, or readable subrange(s)
1611 that is neither at the beginning, or end, nothing is returned.
1612
1613 The purpose of this function is to handle a read across a boundary
1614 of accessible memory in a case when memory map is not available.
1615 The above restrictions are fine for this case, but will give
1616 incorrect results if the memory is 'patchy'. However, supporting
1617 'patchy' memory would require trying to read every single byte,
1618 and it seems unacceptable solution. Explicit memory map is
1619 recommended for this case -- and target_read_memory_robust will
1620 take care of reading multiple ranges then. */
1621
1622static void
1623read_whatever_is_readable (struct target_ops *ops,
1624 const ULONGEST begin, const ULONGEST end,
1625 int unit_size,
1626 std::vector<memory_read_result> *result)
1627{
1628 ULONGEST current_begin = begin;
1629 ULONGEST current_end = end;
1630 int forward;
1631 ULONGEST xfered_len;
1632
1633 /* If we previously failed to read 1 byte, nothing can be done here. */
1634 if (end - begin <= 1)
1635 return;
1636
1637 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1638
1639 /* Check that either first or the last byte is readable, and give up
1640 if not. This heuristic is meant to permit reading accessible memory
1641 at the boundary of accessible region. */
1642 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1643 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1644 {
1645 forward = 1;
1646 ++current_begin;
1647 }
1648 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1649 buf.get () + (end - begin) - 1, end - 1, 1,
1650 &xfered_len) == TARGET_XFER_OK)
1651 {
1652 forward = 0;
1653 --current_end;
1654 }
1655 else
1656 return;
1657
1658 /* Loop invariant is that the [current_begin, current_end) was previously
1659 found to be not readable as a whole.
1660
1661 Note loop condition -- if the range has 1 byte, we can't divide the range
1662 so there's no point trying further. */
1663 while (current_end - current_begin > 1)
1664 {
1665 ULONGEST first_half_begin, first_half_end;
1666 ULONGEST second_half_begin, second_half_end;
1667 LONGEST xfer;
1668 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1669
1670 if (forward)
1671 {
1672 first_half_begin = current_begin;
1673 first_half_end = middle;
1674 second_half_begin = middle;
1675 second_half_end = current_end;
1676 }
1677 else
1678 {
1679 first_half_begin = middle;
1680 first_half_end = current_end;
1681 second_half_begin = current_begin;
1682 second_half_end = middle;
1683 }
1684
1685 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1686 buf.get () + (first_half_begin - begin) * unit_size,
1687 first_half_begin,
1688 first_half_end - first_half_begin);
1689
1690 if (xfer == first_half_end - first_half_begin)
1691 {
1692 /* This half reads up fine. So, the error must be in the
1693 other half. */
1694 current_begin = second_half_begin;
1695 current_end = second_half_end;
1696 }
1697 else
1698 {
1699 /* This half is not readable. Because we've tried one byte, we
1700 know some part of this half if actually readable. Go to the next
1701 iteration to divide again and try to read.
1702
1703 We don't handle the other half, because this function only tries
1704 to read a single readable subrange. */
1705 current_begin = first_half_begin;
1706 current_end = first_half_end;
1707 }
1708 }
1709
1710 if (forward)
1711 {
1712 /* The [begin, current_begin) range has been read. */
1713 result->emplace_back (begin, current_end, std::move (buf));
1714 }
1715 else
1716 {
1717 /* The [current_end, end) range has been read. */
1718 LONGEST region_len = end - current_end;
1719
1720 gdb::unique_xmalloc_ptr<gdb_byte> data
1721 ((gdb_byte *) xmalloc (region_len * unit_size));
1722 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1723 region_len * unit_size);
1724 result->emplace_back (current_end, end, std::move (data));
1725 }
1726}
1727
1728std::vector<memory_read_result>
1729read_memory_robust (struct target_ops *ops,
1730 const ULONGEST offset, const LONGEST len)
1731{
1732 std::vector<memory_read_result> result;
1733 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1734
1735 LONGEST xfered_total = 0;
1736 while (xfered_total < len)
1737 {
1738 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1739 LONGEST region_len;
1740
1741 /* If there is no explicit region, a fake one should be created. */
1742 gdb_assert (region);
1743
1744 if (region->hi == 0)
1745 region_len = len - xfered_total;
1746 else
1747 region_len = region->hi - offset;
1748
1749 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1750 {
1751 /* Cannot read this region. Note that we can end up here only
1752 if the region is explicitly marked inaccessible, or
1753 'inaccessible-by-default' is in effect. */
1754 xfered_total += region_len;
1755 }
1756 else
1757 {
1758 LONGEST to_read = std::min (len - xfered_total, region_len);
1759 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1760 ((gdb_byte *) xmalloc (to_read * unit_size));
1761
1762 LONGEST xfered_partial =
1763 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1764 offset + xfered_total, to_read);
1765 /* Call an observer, notifying them of the xfer progress? */
1766 if (xfered_partial <= 0)
1767 {
1768 /* Got an error reading full chunk. See if maybe we can read
1769 some subrange. */
1770 read_whatever_is_readable (ops, offset + xfered_total,
1771 offset + xfered_total + to_read,
1772 unit_size, &result);
1773 xfered_total += to_read;
1774 }
1775 else
1776 {
1777 result.emplace_back (offset + xfered_total,
1778 offset + xfered_total + xfered_partial,
1779 std::move (buffer));
1780 xfered_total += xfered_partial;
1781 }
1782 QUIT;
1783 }
1784 }
1785
1786 return result;
1787}
1788
1789
1790/* An alternative to target_write with progress callbacks. */
1791
1792LONGEST
1793target_write_with_progress (struct target_ops *ops,
1794 enum target_object object,
1795 const char *annex, const gdb_byte *buf,
1796 ULONGEST offset, LONGEST len,
1797 void (*progress) (ULONGEST, void *), void *baton)
1798{
1799 LONGEST xfered_total = 0;
1800 int unit_size = 1;
1801
1802 /* If we are writing to a memory object, find the length of an addressable
1803 unit for that architecture. */
1804 if (object == TARGET_OBJECT_MEMORY
1805 || object == TARGET_OBJECT_STACK_MEMORY
1806 || object == TARGET_OBJECT_CODE_MEMORY
1807 || object == TARGET_OBJECT_RAW_MEMORY)
1808 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1809
1810 /* Give the progress callback a chance to set up. */
1811 if (progress)
1812 (*progress) (0, baton);
1813
1814 while (xfered_total < len)
1815 {
1816 ULONGEST xfered_partial;
1817 enum target_xfer_status status;
1818
1819 status = target_write_partial (ops, object, annex,
1820 buf + xfered_total * unit_size,
1821 offset + xfered_total, len - xfered_total,
1822 &xfered_partial);
1823
1824 if (status != TARGET_XFER_OK)
1825 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1826
1827 if (progress)
1828 (*progress) (xfered_partial, baton);
1829
1830 xfered_total += xfered_partial;
1831 QUIT;
1832 }
1833 return len;
1834}
1835
1836/* For docs on target_write see target.h. */
1837
1838LONGEST
1839target_write (struct target_ops *ops,
1840 enum target_object object,
1841 const char *annex, const gdb_byte *buf,
1842 ULONGEST offset, LONGEST len)
1843{
1844 return target_write_with_progress (ops, object, annex, buf, offset, len,
1845 NULL, NULL);
1846}
1847
1848/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1849 the size of the transferred data. PADDING additional bytes are
1850 available in *BUF_P. This is a helper function for
1851 target_read_alloc; see the declaration of that function for more
1852 information. */
1853
1854static LONGEST
1855target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1856 const char *annex, gdb_byte **buf_p, int padding)
1857{
1858 size_t buf_alloc, buf_pos;
1859 gdb_byte *buf;
1860
1861 /* This function does not have a length parameter; it reads the
1862 entire OBJECT). Also, it doesn't support objects fetched partly
1863 from one target and partly from another (in a different stratum,
1864 e.g. a core file and an executable). Both reasons make it
1865 unsuitable for reading memory. */
1866 gdb_assert (object != TARGET_OBJECT_MEMORY);
1867
1868 /* Start by reading up to 4K at a time. The target will throttle
1869 this number down if necessary. */
1870 buf_alloc = 4096;
1871 buf = (gdb_byte *) xmalloc (buf_alloc);
1872 buf_pos = 0;
1873 while (1)
1874 {
1875 ULONGEST xfered_len;
1876 enum target_xfer_status status;
1877
1878 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1879 buf_pos, buf_alloc - buf_pos - padding,
1880 &xfered_len);
1881
1882 if (status == TARGET_XFER_EOF)
1883 {
1884 /* Read all there was. */
1885 if (buf_pos == 0)
1886 xfree (buf);
1887 else
1888 *buf_p = buf;
1889 return buf_pos;
1890 }
1891 else if (status != TARGET_XFER_OK)
1892 {
1893 /* An error occurred. */
1894 xfree (buf);
1895 return TARGET_XFER_E_IO;
1896 }
1897
1898 buf_pos += xfered_len;
1899
1900 /* If the buffer is filling up, expand it. */
1901 if (buf_alloc < buf_pos * 2)
1902 {
1903 buf_alloc *= 2;
1904 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1905 }
1906
1907 QUIT;
1908 }
1909}
1910
1911/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1912 the size of the transferred data. See the declaration in "target.h"
1913 function for more information about the return value. */
1914
1915LONGEST
1916target_read_alloc (struct target_ops *ops, enum target_object object,
1917 const char *annex, gdb_byte **buf_p)
1918{
1919 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1920}
1921
1922/* See target.h. */
1923
1924gdb::unique_xmalloc_ptr<char>
1925target_read_stralloc (struct target_ops *ops, enum target_object object,
1926 const char *annex)
1927{
1928 gdb_byte *buffer;
1929 char *bufstr;
1930 LONGEST i, transferred;
1931
1932 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1933 bufstr = (char *) buffer;
1934
1935 if (transferred < 0)
1936 return NULL;
1937
1938 if (transferred == 0)
1939 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
1940
1941 bufstr[transferred] = 0;
1942
1943 /* Check for embedded NUL bytes; but allow trailing NULs. */
1944 for (i = strlen (bufstr); i < transferred; i++)
1945 if (bufstr[i] != 0)
1946 {
1947 warning (_("target object %d, annex %s, "
1948 "contained unexpected null characters"),
1949 (int) object, annex ? annex : "(none)");
1950 break;
1951 }
1952
1953 return gdb::unique_xmalloc_ptr<char> (bufstr);
1954}
1955
1956/* Memory transfer methods. */
1957
1958void
1959get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1960 LONGEST len)
1961{
1962 /* This method is used to read from an alternate, non-current
1963 target. This read must bypass the overlay support (as symbols
1964 don't match this target), and GDB's internal cache (wrong cache
1965 for this target). */
1966 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1967 != len)
1968 memory_error (TARGET_XFER_E_IO, addr);
1969}
1970
1971ULONGEST
1972get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1973 int len, enum bfd_endian byte_order)
1974{
1975 gdb_byte buf[sizeof (ULONGEST)];
1976
1977 gdb_assert (len <= sizeof (buf));
1978 get_target_memory (ops, addr, buf, len);
1979 return extract_unsigned_integer (buf, len, byte_order);
1980}
1981
1982/* See target.h. */
1983
1984int
1985target_insert_breakpoint (struct gdbarch *gdbarch,
1986 struct bp_target_info *bp_tgt)
1987{
1988 if (!may_insert_breakpoints)
1989 {
1990 warning (_("May not insert breakpoints"));
1991 return 1;
1992 }
1993
1994 return current_target.to_insert_breakpoint (&current_target,
1995 gdbarch, bp_tgt);
1996}
1997
1998/* See target.h. */
1999
2000int
2001target_remove_breakpoint (struct gdbarch *gdbarch,
2002 struct bp_target_info *bp_tgt,
2003 enum remove_bp_reason reason)
2004{
2005 /* This is kind of a weird case to handle, but the permission might
2006 have been changed after breakpoints were inserted - in which case
2007 we should just take the user literally and assume that any
2008 breakpoints should be left in place. */
2009 if (!may_insert_breakpoints)
2010 {
2011 warning (_("May not remove breakpoints"));
2012 return 1;
2013 }
2014
2015 return current_target.to_remove_breakpoint (&current_target,
2016 gdbarch, bp_tgt, reason);
2017}
2018
2019static void
2020info_target_command (const char *args, int from_tty)
2021{
2022 struct target_ops *t;
2023 int has_all_mem = 0;
2024
2025 if (symfile_objfile != NULL)
2026 printf_unfiltered (_("Symbols from \"%s\".\n"),
2027 objfile_name (symfile_objfile));
2028
2029 for (t = target_stack; t != NULL; t = t->beneath)
2030 {
2031 if (!(*t->to_has_memory) (t))
2032 continue;
2033
2034 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2035 continue;
2036 if (has_all_mem)
2037 printf_unfiltered (_("\tWhile running this, "
2038 "GDB does not access memory from...\n"));
2039 printf_unfiltered ("%s:\n", t->to_longname);
2040 (t->to_files_info) (t);
2041 has_all_mem = (*t->to_has_all_memory) (t);
2042 }
2043}
2044
2045/* This function is called before any new inferior is created, e.g.
2046 by running a program, attaching, or connecting to a target.
2047 It cleans up any state from previous invocations which might
2048 change between runs. This is a subset of what target_preopen
2049 resets (things which might change between targets). */
2050
2051void
2052target_pre_inferior (int from_tty)
2053{
2054 /* Clear out solib state. Otherwise the solib state of the previous
2055 inferior might have survived and is entirely wrong for the new
2056 target. This has been observed on GNU/Linux using glibc 2.3. How
2057 to reproduce:
2058
2059 bash$ ./foo&
2060 [1] 4711
2061 bash$ ./foo&
2062 [1] 4712
2063 bash$ gdb ./foo
2064 [...]
2065 (gdb) attach 4711
2066 (gdb) detach
2067 (gdb) attach 4712
2068 Cannot access memory at address 0xdeadbeef
2069 */
2070
2071 /* In some OSs, the shared library list is the same/global/shared
2072 across inferiors. If code is shared between processes, so are
2073 memory regions and features. */
2074 if (!gdbarch_has_global_solist (target_gdbarch ()))
2075 {
2076 no_shared_libraries (NULL, from_tty);
2077
2078 invalidate_target_mem_regions ();
2079
2080 target_clear_description ();
2081 }
2082
2083 /* attach_flag may be set if the previous process associated with
2084 the inferior was attached to. */
2085 current_inferior ()->attach_flag = 0;
2086
2087 current_inferior ()->highest_thread_num = 0;
2088
2089 agent_capability_invalidate ();
2090}
2091
2092/* Callback for iterate_over_inferiors. Gets rid of the given
2093 inferior. */
2094
2095static int
2096dispose_inferior (struct inferior *inf, void *args)
2097{
2098 struct thread_info *thread;
2099
2100 thread = any_thread_of_process (inf->pid);
2101 if (thread)
2102 {
2103 switch_to_thread (thread->ptid);
2104
2105 /* Core inferiors actually should be detached, not killed. */
2106 if (target_has_execution)
2107 target_kill ();
2108 else
2109 target_detach (NULL, 0);
2110 }
2111
2112 return 0;
2113}
2114
2115/* This is to be called by the open routine before it does
2116 anything. */
2117
2118void
2119target_preopen (int from_tty)
2120{
2121 dont_repeat ();
2122
2123 if (have_inferiors ())
2124 {
2125 if (!from_tty
2126 || !have_live_inferiors ()
2127 || query (_("A program is being debugged already. Kill it? ")))
2128 iterate_over_inferiors (dispose_inferior, NULL);
2129 else
2130 error (_("Program not killed."));
2131 }
2132
2133 /* Calling target_kill may remove the target from the stack. But if
2134 it doesn't (which seems like a win for UDI), remove it now. */
2135 /* Leave the exec target, though. The user may be switching from a
2136 live process to a core of the same program. */
2137 pop_all_targets_above (file_stratum);
2138
2139 target_pre_inferior (from_tty);
2140}
2141
2142/* Detach a target after doing deferred register stores. */
2143
2144void
2145target_detach (const char *args, int from_tty)
2146{
2147 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2148 /* Don't remove global breakpoints here. They're removed on
2149 disconnection from the target. */
2150 ;
2151 else
2152 /* If we're in breakpoints-always-inserted mode, have to remove
2153 them before detaching. */
2154 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2155
2156 prepare_for_detach ();
2157
2158 current_target.to_detach (&current_target, args, from_tty);
2159}
2160
2161void
2162target_disconnect (const char *args, int from_tty)
2163{
2164 /* If we're in breakpoints-always-inserted mode or if breakpoints
2165 are global across processes, we have to remove them before
2166 disconnecting. */
2167 remove_breakpoints ();
2168
2169 current_target.to_disconnect (&current_target, args, from_tty);
2170}
2171
2172/* See target/target.h. */
2173
2174ptid_t
2175target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2176{
2177 return (current_target.to_wait) (&current_target, ptid, status, options);
2178}
2179
2180/* See target.h. */
2181
2182ptid_t
2183default_target_wait (struct target_ops *ops,
2184 ptid_t ptid, struct target_waitstatus *status,
2185 int options)
2186{
2187 status->kind = TARGET_WAITKIND_IGNORE;
2188 return minus_one_ptid;
2189}
2190
2191const char *
2192target_pid_to_str (ptid_t ptid)
2193{
2194 return (*current_target.to_pid_to_str) (&current_target, ptid);
2195}
2196
2197const char *
2198target_thread_name (struct thread_info *info)
2199{
2200 return current_target.to_thread_name (&current_target, info);
2201}
2202
2203struct thread_info *
2204target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2205 int handle_len,
2206 struct inferior *inf)
2207{
2208 return current_target.to_thread_handle_to_thread_info
2209 (&current_target, thread_handle, handle_len, inf);
2210}
2211
2212void
2213target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2214{
2215 target_dcache_invalidate ();
2216
2217 current_target.to_resume (&current_target, ptid, step, signal);
2218
2219 registers_changed_ptid (ptid);
2220 /* We only set the internal executing state here. The user/frontend
2221 running state is set at a higher level. */
2222 set_executing (ptid, 1);
2223 clear_inline_frame_state (ptid);
2224}
2225
2226/* If true, target_commit_resume is a nop. */
2227static int defer_target_commit_resume;
2228
2229/* See target.h. */
2230
2231void
2232target_commit_resume (void)
2233{
2234 struct target_ops *t;
2235
2236 if (defer_target_commit_resume)
2237 return;
2238
2239 current_target.to_commit_resume (&current_target);
2240}
2241
2242/* See target.h. */
2243
2244scoped_restore_tmpl<int>
2245make_scoped_defer_target_commit_resume ()
2246{
2247 return make_scoped_restore (&defer_target_commit_resume, 1);
2248}
2249
2250void
2251target_pass_signals (int numsigs, unsigned char *pass_signals)
2252{
2253 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2254}
2255
2256void
2257target_program_signals (int numsigs, unsigned char *program_signals)
2258{
2259 (*current_target.to_program_signals) (&current_target,
2260 numsigs, program_signals);
2261}
2262
2263static int
2264default_follow_fork (struct target_ops *self, int follow_child,
2265 int detach_fork)
2266{
2267 /* Some target returned a fork event, but did not know how to follow it. */
2268 internal_error (__FILE__, __LINE__,
2269 _("could not find a target to follow fork"));
2270}
2271
2272/* Look through the list of possible targets for a target that can
2273 follow forks. */
2274
2275int
2276target_follow_fork (int follow_child, int detach_fork)
2277{
2278 return current_target.to_follow_fork (&current_target,
2279 follow_child, detach_fork);
2280}
2281
2282/* Target wrapper for follow exec hook. */
2283
2284void
2285target_follow_exec (struct inferior *inf, char *execd_pathname)
2286{
2287 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2288}
2289
2290static void
2291default_mourn_inferior (struct target_ops *self)
2292{
2293 internal_error (__FILE__, __LINE__,
2294 _("could not find a target to follow mourn inferior"));
2295}
2296
2297void
2298target_mourn_inferior (ptid_t ptid)
2299{
2300 gdb_assert (ptid_equal (ptid, inferior_ptid));
2301 current_target.to_mourn_inferior (&current_target);
2302
2303 /* We no longer need to keep handles on any of the object files.
2304 Make sure to release them to avoid unnecessarily locking any
2305 of them while we're not actually debugging. */
2306 bfd_cache_close_all ();
2307}
2308
2309/* Look for a target which can describe architectural features, starting
2310 from TARGET. If we find one, return its description. */
2311
2312const struct target_desc *
2313target_read_description (struct target_ops *target)
2314{
2315 return target->to_read_description (target);
2316}
2317
2318/* This implements a basic search of memory, reading target memory and
2319 performing the search here (as opposed to performing the search in on the
2320 target side with, for example, gdbserver). */
2321
2322int
2323simple_search_memory (struct target_ops *ops,
2324 CORE_ADDR start_addr, ULONGEST search_space_len,
2325 const gdb_byte *pattern, ULONGEST pattern_len,
2326 CORE_ADDR *found_addrp)
2327{
2328 /* NOTE: also defined in find.c testcase. */
2329#define SEARCH_CHUNK_SIZE 16000
2330 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2331 /* Buffer to hold memory contents for searching. */
2332 unsigned search_buf_size;
2333
2334 search_buf_size = chunk_size + pattern_len - 1;
2335
2336 /* No point in trying to allocate a buffer larger than the search space. */
2337 if (search_space_len < search_buf_size)
2338 search_buf_size = search_space_len;
2339
2340 gdb::byte_vector search_buf (search_buf_size);
2341
2342 /* Prime the search buffer. */
2343
2344 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2345 search_buf.data (), start_addr, search_buf_size)
2346 != search_buf_size)
2347 {
2348 warning (_("Unable to access %s bytes of target "
2349 "memory at %s, halting search."),
2350 pulongest (search_buf_size), hex_string (start_addr));
2351 return -1;
2352 }
2353
2354 /* Perform the search.
2355
2356 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2357 When we've scanned N bytes we copy the trailing bytes to the start and
2358 read in another N bytes. */
2359
2360 while (search_space_len >= pattern_len)
2361 {
2362 gdb_byte *found_ptr;
2363 unsigned nr_search_bytes
2364 = std::min (search_space_len, (ULONGEST) search_buf_size);
2365
2366 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2367 pattern, pattern_len);
2368
2369 if (found_ptr != NULL)
2370 {
2371 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2372
2373 *found_addrp = found_addr;
2374 return 1;
2375 }
2376
2377 /* Not found in this chunk, skip to next chunk. */
2378
2379 /* Don't let search_space_len wrap here, it's unsigned. */
2380 if (search_space_len >= chunk_size)
2381 search_space_len -= chunk_size;
2382 else
2383 search_space_len = 0;
2384
2385 if (search_space_len >= pattern_len)
2386 {
2387 unsigned keep_len = search_buf_size - chunk_size;
2388 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2389 int nr_to_read;
2390
2391 /* Copy the trailing part of the previous iteration to the front
2392 of the buffer for the next iteration. */
2393 gdb_assert (keep_len == pattern_len - 1);
2394 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2395
2396 nr_to_read = std::min (search_space_len - keep_len,
2397 (ULONGEST) chunk_size);
2398
2399 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2400 &search_buf[keep_len], read_addr,
2401 nr_to_read) != nr_to_read)
2402 {
2403 warning (_("Unable to access %s bytes of target "
2404 "memory at %s, halting search."),
2405 plongest (nr_to_read),
2406 hex_string (read_addr));
2407 return -1;
2408 }
2409
2410 start_addr += chunk_size;
2411 }
2412 }
2413
2414 /* Not found. */
2415
2416 return 0;
2417}
2418
2419/* Default implementation of memory-searching. */
2420
2421static int
2422default_search_memory (struct target_ops *self,
2423 CORE_ADDR start_addr, ULONGEST search_space_len,
2424 const gdb_byte *pattern, ULONGEST pattern_len,
2425 CORE_ADDR *found_addrp)
2426{
2427 /* Start over from the top of the target stack. */
2428 return simple_search_memory (current_target.beneath,
2429 start_addr, search_space_len,
2430 pattern, pattern_len, found_addrp);
2431}
2432
2433/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2434 sequence of bytes in PATTERN with length PATTERN_LEN.
2435
2436 The result is 1 if found, 0 if not found, and -1 if there was an error
2437 requiring halting of the search (e.g. memory read error).
2438 If the pattern is found the address is recorded in FOUND_ADDRP. */
2439
2440int
2441target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2442 const gdb_byte *pattern, ULONGEST pattern_len,
2443 CORE_ADDR *found_addrp)
2444{
2445 return current_target.to_search_memory (&current_target, start_addr,
2446 search_space_len,
2447 pattern, pattern_len, found_addrp);
2448}
2449
2450/* Look through the currently pushed targets. If none of them will
2451 be able to restart the currently running process, issue an error
2452 message. */
2453
2454void
2455target_require_runnable (void)
2456{
2457 struct target_ops *t;
2458
2459 for (t = target_stack; t != NULL; t = t->beneath)
2460 {
2461 /* If this target knows how to create a new program, then
2462 assume we will still be able to after killing the current
2463 one. Either killing and mourning will not pop T, or else
2464 find_default_run_target will find it again. */
2465 if (t->to_create_inferior != NULL)
2466 return;
2467
2468 /* Do not worry about targets at certain strata that can not
2469 create inferiors. Assume they will be pushed again if
2470 necessary, and continue to the process_stratum. */
2471 if (t->to_stratum == thread_stratum
2472 || t->to_stratum == record_stratum
2473 || t->to_stratum == arch_stratum)
2474 continue;
2475
2476 error (_("The \"%s\" target does not support \"run\". "
2477 "Try \"help target\" or \"continue\"."),
2478 t->to_shortname);
2479 }
2480
2481 /* This function is only called if the target is running. In that
2482 case there should have been a process_stratum target and it
2483 should either know how to create inferiors, or not... */
2484 internal_error (__FILE__, __LINE__, _("No targets found"));
2485}
2486
2487/* Whether GDB is allowed to fall back to the default run target for
2488 "run", "attach", etc. when no target is connected yet. */
2489static int auto_connect_native_target = 1;
2490
2491static void
2492show_auto_connect_native_target (struct ui_file *file, int from_tty,
2493 struct cmd_list_element *c, const char *value)
2494{
2495 fprintf_filtered (file,
2496 _("Whether GDB may automatically connect to the "
2497 "native target is %s.\n"),
2498 value);
2499}
2500
2501/* Look through the list of possible targets for a target that can
2502 execute a run or attach command without any other data. This is
2503 used to locate the default process stratum.
2504
2505 If DO_MESG is not NULL, the result is always valid (error() is
2506 called for errors); else, return NULL on error. */
2507
2508static struct target_ops *
2509find_default_run_target (const char *do_mesg)
2510{
2511 struct target_ops *runable = NULL;
2512
2513 if (auto_connect_native_target)
2514 {
2515 struct target_ops *t;
2516 int count = 0;
2517 int i;
2518
2519 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2520 {
2521 if (t->to_can_run != delegate_can_run && target_can_run (t))
2522 {
2523 runable = t;
2524 ++count;
2525 }
2526 }
2527
2528 if (count != 1)
2529 runable = NULL;
2530 }
2531
2532 if (runable == NULL)
2533 {
2534 if (do_mesg)
2535 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2536 else
2537 return NULL;
2538 }
2539
2540 return runable;
2541}
2542
2543/* See target.h. */
2544
2545struct target_ops *
2546find_attach_target (void)
2547{
2548 struct target_ops *t;
2549
2550 /* If a target on the current stack can attach, use it. */
2551 for (t = current_target.beneath; t != NULL; t = t->beneath)
2552 {
2553 if (t->to_attach != NULL)
2554 break;
2555 }
2556
2557 /* Otherwise, use the default run target for attaching. */
2558 if (t == NULL)
2559 t = find_default_run_target ("attach");
2560
2561 return t;
2562}
2563
2564/* See target.h. */
2565
2566struct target_ops *
2567find_run_target (void)
2568{
2569 struct target_ops *t;
2570
2571 /* If a target on the current stack can attach, use it. */
2572 for (t = current_target.beneath; t != NULL; t = t->beneath)
2573 {
2574 if (t->to_create_inferior != NULL)
2575 break;
2576 }
2577
2578 /* Otherwise, use the default run target. */
2579 if (t == NULL)
2580 t = find_default_run_target ("run");
2581
2582 return t;
2583}
2584
2585/* Implement the "info proc" command. */
2586
2587int
2588target_info_proc (const char *args, enum info_proc_what what)
2589{
2590 struct target_ops *t;
2591
2592 /* If we're already connected to something that can get us OS
2593 related data, use it. Otherwise, try using the native
2594 target. */
2595 if (current_target.to_stratum >= process_stratum)
2596 t = current_target.beneath;
2597 else
2598 t = find_default_run_target (NULL);
2599
2600 for (; t != NULL; t = t->beneath)
2601 {
2602 if (t->to_info_proc != NULL)
2603 {
2604 t->to_info_proc (t, args, what);
2605
2606 if (targetdebug)
2607 fprintf_unfiltered (gdb_stdlog,
2608 "target_info_proc (\"%s\", %d)\n", args, what);
2609
2610 return 1;
2611 }
2612 }
2613
2614 return 0;
2615}
2616
2617static int
2618find_default_supports_disable_randomization (struct target_ops *self)
2619{
2620 struct target_ops *t;
2621
2622 t = find_default_run_target (NULL);
2623 if (t && t->to_supports_disable_randomization)
2624 return (t->to_supports_disable_randomization) (t);
2625 return 0;
2626}
2627
2628int
2629target_supports_disable_randomization (void)
2630{
2631 struct target_ops *t;
2632
2633 for (t = &current_target; t != NULL; t = t->beneath)
2634 if (t->to_supports_disable_randomization)
2635 return t->to_supports_disable_randomization (t);
2636
2637 return 0;
2638}
2639
2640/* See target/target.h. */
2641
2642int
2643target_supports_multi_process (void)
2644{
2645 return (*current_target.to_supports_multi_process) (&current_target);
2646}
2647
2648/* See target.h. */
2649
2650gdb::unique_xmalloc_ptr<char>
2651target_get_osdata (const char *type)
2652{
2653 struct target_ops *t;
2654
2655 /* If we're already connected to something that can get us OS
2656 related data, use it. Otherwise, try using the native
2657 target. */
2658 if (current_target.to_stratum >= process_stratum)
2659 t = current_target.beneath;
2660 else
2661 t = find_default_run_target ("get OS data");
2662
2663 if (!t)
2664 return NULL;
2665
2666 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2667}
2668
2669static struct address_space *
2670default_thread_address_space (struct target_ops *self, ptid_t ptid)
2671{
2672 struct inferior *inf;
2673
2674 /* Fall-back to the "main" address space of the inferior. */
2675 inf = find_inferior_ptid (ptid);
2676
2677 if (inf == NULL || inf->aspace == NULL)
2678 internal_error (__FILE__, __LINE__,
2679 _("Can't determine the current "
2680 "address space of thread %s\n"),
2681 target_pid_to_str (ptid));
2682
2683 return inf->aspace;
2684}
2685
2686/* Determine the current address space of thread PTID. */
2687
2688struct address_space *
2689target_thread_address_space (ptid_t ptid)
2690{
2691 struct address_space *aspace;
2692
2693 aspace = current_target.to_thread_address_space (&current_target, ptid);
2694 gdb_assert (aspace != NULL);
2695
2696 return aspace;
2697}
2698
2699
2700/* Target file operations. */
2701
2702static struct target_ops *
2703default_fileio_target (void)
2704{
2705 /* If we're already connected to something that can perform
2706 file I/O, use it. Otherwise, try using the native target. */
2707 if (current_target.to_stratum >= process_stratum)
2708 return current_target.beneath;
2709 else
2710 return find_default_run_target ("file I/O");
2711}
2712
2713/* File handle for target file operations. */
2714
2715typedef struct
2716{
2717 /* The target on which this file is open. */
2718 struct target_ops *t;
2719
2720 /* The file descriptor on the target. */
2721 int fd;
2722} fileio_fh_t;
2723
2724DEF_VEC_O (fileio_fh_t);
2725
2726/* Vector of currently open file handles. The value returned by
2727 target_fileio_open and passed as the FD argument to other
2728 target_fileio_* functions is an index into this vector. This
2729 vector's entries are never freed; instead, files are marked as
2730 closed, and the handle becomes available for reuse. */
2731static VEC (fileio_fh_t) *fileio_fhandles;
2732
2733/* Macro to check whether a fileio_fh_t represents a closed file. */
2734#define is_closed_fileio_fh(fd) ((fd) < 0)
2735
2736/* Index into fileio_fhandles of the lowest handle that might be
2737 closed. This permits handle reuse without searching the whole
2738 list each time a new file is opened. */
2739static int lowest_closed_fd;
2740
2741/* Acquire a target fileio file descriptor. */
2742
2743static int
2744acquire_fileio_fd (struct target_ops *t, int fd)
2745{
2746 fileio_fh_t *fh;
2747
2748 gdb_assert (!is_closed_fileio_fh (fd));
2749
2750 /* Search for closed handles to reuse. */
2751 for (;
2752 VEC_iterate (fileio_fh_t, fileio_fhandles,
2753 lowest_closed_fd, fh);
2754 lowest_closed_fd++)
2755 if (is_closed_fileio_fh (fh->fd))
2756 break;
2757
2758 /* Push a new handle if no closed handles were found. */
2759 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2760 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2761
2762 /* Fill in the handle. */
2763 fh->t = t;
2764 fh->fd = fd;
2765
2766 /* Return its index, and start the next lookup at
2767 the next index. */
2768 return lowest_closed_fd++;
2769}
2770
2771/* Release a target fileio file descriptor. */
2772
2773static void
2774release_fileio_fd (int fd, fileio_fh_t *fh)
2775{
2776 fh->fd = -1;
2777 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2778}
2779
2780/* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2781
2782#define fileio_fd_to_fh(fd) \
2783 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2784
2785/* Helper for target_fileio_open and
2786 target_fileio_open_warn_if_slow. */
2787
2788static int
2789target_fileio_open_1 (struct inferior *inf, const char *filename,
2790 int flags, int mode, int warn_if_slow,
2791 int *target_errno)
2792{
2793 struct target_ops *t;
2794
2795 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2796 {
2797 if (t->to_fileio_open != NULL)
2798 {
2799 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2800 warn_if_slow, target_errno);
2801
2802 if (fd < 0)
2803 fd = -1;
2804 else
2805 fd = acquire_fileio_fd (t, fd);
2806
2807 if (targetdebug)
2808 fprintf_unfiltered (gdb_stdlog,
2809 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2810 " = %d (%d)\n",
2811 inf == NULL ? 0 : inf->num,
2812 filename, flags, mode,
2813 warn_if_slow, fd,
2814 fd != -1 ? 0 : *target_errno);
2815 return fd;
2816 }
2817 }
2818
2819 *target_errno = FILEIO_ENOSYS;
2820 return -1;
2821}
2822
2823/* See target.h. */
2824
2825int
2826target_fileio_open (struct inferior *inf, const char *filename,
2827 int flags, int mode, int *target_errno)
2828{
2829 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2830 target_errno);
2831}
2832
2833/* See target.h. */
2834
2835int
2836target_fileio_open_warn_if_slow (struct inferior *inf,
2837 const char *filename,
2838 int flags, int mode, int *target_errno)
2839{
2840 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2841 target_errno);
2842}
2843
2844/* See target.h. */
2845
2846int
2847target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2848 ULONGEST offset, int *target_errno)
2849{
2850 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2851 int ret = -1;
2852
2853 if (is_closed_fileio_fh (fh->fd))
2854 *target_errno = EBADF;
2855 else
2856 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2857 len, offset, target_errno);
2858
2859 if (targetdebug)
2860 fprintf_unfiltered (gdb_stdlog,
2861 "target_fileio_pwrite (%d,...,%d,%s) "
2862 "= %d (%d)\n",
2863 fd, len, pulongest (offset),
2864 ret, ret != -1 ? 0 : *target_errno);
2865 return ret;
2866}
2867
2868/* See target.h. */
2869
2870int
2871target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2872 ULONGEST offset, int *target_errno)
2873{
2874 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2875 int ret = -1;
2876
2877 if (is_closed_fileio_fh (fh->fd))
2878 *target_errno = EBADF;
2879 else
2880 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2881 len, offset, target_errno);
2882
2883 if (targetdebug)
2884 fprintf_unfiltered (gdb_stdlog,
2885 "target_fileio_pread (%d,...,%d,%s) "
2886 "= %d (%d)\n",
2887 fd, len, pulongest (offset),
2888 ret, ret != -1 ? 0 : *target_errno);
2889 return ret;
2890}
2891
2892/* See target.h. */
2893
2894int
2895target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2896{
2897 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2898 int ret = -1;
2899
2900 if (is_closed_fileio_fh (fh->fd))
2901 *target_errno = EBADF;
2902 else
2903 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2904
2905 if (targetdebug)
2906 fprintf_unfiltered (gdb_stdlog,
2907 "target_fileio_fstat (%d) = %d (%d)\n",
2908 fd, ret, ret != -1 ? 0 : *target_errno);
2909 return ret;
2910}
2911
2912/* See target.h. */
2913
2914int
2915target_fileio_close (int fd, int *target_errno)
2916{
2917 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2918 int ret = -1;
2919
2920 if (is_closed_fileio_fh (fh->fd))
2921 *target_errno = EBADF;
2922 else
2923 {
2924 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2925 release_fileio_fd (fd, fh);
2926 }
2927
2928 if (targetdebug)
2929 fprintf_unfiltered (gdb_stdlog,
2930 "target_fileio_close (%d) = %d (%d)\n",
2931 fd, ret, ret != -1 ? 0 : *target_errno);
2932 return ret;
2933}
2934
2935/* See target.h. */
2936
2937int
2938target_fileio_unlink (struct inferior *inf, const char *filename,
2939 int *target_errno)
2940{
2941 struct target_ops *t;
2942
2943 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2944 {
2945 if (t->to_fileio_unlink != NULL)
2946 {
2947 int ret = t->to_fileio_unlink (t, inf, filename,
2948 target_errno);
2949
2950 if (targetdebug)
2951 fprintf_unfiltered (gdb_stdlog,
2952 "target_fileio_unlink (%d,%s)"
2953 " = %d (%d)\n",
2954 inf == NULL ? 0 : inf->num, filename,
2955 ret, ret != -1 ? 0 : *target_errno);
2956 return ret;
2957 }
2958 }
2959
2960 *target_errno = FILEIO_ENOSYS;
2961 return -1;
2962}
2963
2964/* See target.h. */
2965
2966char *
2967target_fileio_readlink (struct inferior *inf, const char *filename,
2968 int *target_errno)
2969{
2970 struct target_ops *t;
2971
2972 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2973 {
2974 if (t->to_fileio_readlink != NULL)
2975 {
2976 char *ret = t->to_fileio_readlink (t, inf, filename,
2977 target_errno);
2978
2979 if (targetdebug)
2980 fprintf_unfiltered (gdb_stdlog,
2981 "target_fileio_readlink (%d,%s)"
2982 " = %s (%d)\n",
2983 inf == NULL ? 0 : inf->num,
2984 filename, ret? ret : "(nil)",
2985 ret? 0 : *target_errno);
2986 return ret;
2987 }
2988 }
2989
2990 *target_errno = FILEIO_ENOSYS;
2991 return NULL;
2992}
2993
2994static void
2995target_fileio_close_cleanup (void *opaque)
2996{
2997 int fd = *(int *) opaque;
2998 int target_errno;
2999
3000 target_fileio_close (fd, &target_errno);
3001}
3002
3003/* Read target file FILENAME, in the filesystem as seen by INF. If
3004 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3005 remote targets, the remote stub). Store the result in *BUF_P and
3006 return the size of the transferred data. PADDING additional bytes
3007 are available in *BUF_P. This is a helper function for
3008 target_fileio_read_alloc; see the declaration of that function for
3009 more information. */
3010
3011static LONGEST
3012target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3013 gdb_byte **buf_p, int padding)
3014{
3015 struct cleanup *close_cleanup;
3016 size_t buf_alloc, buf_pos;
3017 gdb_byte *buf;
3018 LONGEST n;
3019 int fd;
3020 int target_errno;
3021
3022 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3023 &target_errno);
3024 if (fd == -1)
3025 return -1;
3026
3027 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3028
3029 /* Start by reading up to 4K at a time. The target will throttle
3030 this number down if necessary. */
3031 buf_alloc = 4096;
3032 buf = (gdb_byte *) xmalloc (buf_alloc);
3033 buf_pos = 0;
3034 while (1)
3035 {
3036 n = target_fileio_pread (fd, &buf[buf_pos],
3037 buf_alloc - buf_pos - padding, buf_pos,
3038 &target_errno);
3039 if (n < 0)
3040 {
3041 /* An error occurred. */
3042 do_cleanups (close_cleanup);
3043 xfree (buf);
3044 return -1;
3045 }
3046 else if (n == 0)
3047 {
3048 /* Read all there was. */
3049 do_cleanups (close_cleanup);
3050 if (buf_pos == 0)
3051 xfree (buf);
3052 else
3053 *buf_p = buf;
3054 return buf_pos;
3055 }
3056
3057 buf_pos += n;
3058
3059 /* If the buffer is filling up, expand it. */
3060 if (buf_alloc < buf_pos * 2)
3061 {
3062 buf_alloc *= 2;
3063 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3064 }
3065
3066 QUIT;
3067 }
3068}
3069
3070/* See target.h. */
3071
3072LONGEST
3073target_fileio_read_alloc (struct inferior *inf, const char *filename,
3074 gdb_byte **buf_p)
3075{
3076 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3077}
3078
3079/* See target.h. */
3080
3081gdb::unique_xmalloc_ptr<char>
3082target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3083{
3084 gdb_byte *buffer;
3085 char *bufstr;
3086 LONGEST i, transferred;
3087
3088 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3089 bufstr = (char *) buffer;
3090
3091 if (transferred < 0)
3092 return gdb::unique_xmalloc_ptr<char> (nullptr);
3093
3094 if (transferred == 0)
3095 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3096
3097 bufstr[transferred] = 0;
3098
3099 /* Check for embedded NUL bytes; but allow trailing NULs. */
3100 for (i = strlen (bufstr); i < transferred; i++)
3101 if (bufstr[i] != 0)
3102 {
3103 warning (_("target file %s "
3104 "contained unexpected null characters"),
3105 filename);
3106 break;
3107 }
3108
3109 return gdb::unique_xmalloc_ptr<char> (bufstr);
3110}
3111
3112
3113static int
3114default_region_ok_for_hw_watchpoint (struct target_ops *self,
3115 CORE_ADDR addr, int len)
3116{
3117 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3118}
3119
3120static int
3121default_watchpoint_addr_within_range (struct target_ops *target,
3122 CORE_ADDR addr,
3123 CORE_ADDR start, int length)
3124{
3125 return addr >= start && addr < start + length;
3126}
3127
3128static struct gdbarch *
3129default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3130{
3131 inferior *inf = find_inferior_ptid (ptid);
3132 gdb_assert (inf != NULL);
3133 return inf->gdbarch;
3134}
3135
3136static int
3137return_zero (struct target_ops *ignore)
3138{
3139 return 0;
3140}
3141
3142static int
3143return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3144{
3145 return 0;
3146}
3147
3148/*
3149 * Find the next target down the stack from the specified target.
3150 */
3151
3152struct target_ops *
3153find_target_beneath (struct target_ops *t)
3154{
3155 return t->beneath;
3156}
3157
3158/* See target.h. */
3159
3160struct target_ops *
3161find_target_at (enum strata stratum)
3162{
3163 struct target_ops *t;
3164
3165 for (t = current_target.beneath; t != NULL; t = t->beneath)
3166 if (t->to_stratum == stratum)
3167 return t;
3168
3169 return NULL;
3170}
3171
3172\f
3173
3174/* See target.h */
3175
3176void
3177target_announce_detach (int from_tty)
3178{
3179 pid_t pid;
3180 const char *exec_file;
3181
3182 if (!from_tty)
3183 return;
3184
3185 exec_file = get_exec_file (0);
3186 if (exec_file == NULL)
3187 exec_file = "";
3188
3189 pid = ptid_get_pid (inferior_ptid);
3190 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3191 target_pid_to_str (pid_to_ptid (pid)));
3192 gdb_flush (gdb_stdout);
3193}
3194
3195/* The inferior process has died. Long live the inferior! */
3196
3197void
3198generic_mourn_inferior (void)
3199{
3200 ptid_t ptid;
3201
3202 ptid = inferior_ptid;
3203 inferior_ptid = null_ptid;
3204
3205 /* Mark breakpoints uninserted in case something tries to delete a
3206 breakpoint while we delete the inferior's threads (which would
3207 fail, since the inferior is long gone). */
3208 mark_breakpoints_out ();
3209
3210 if (!ptid_equal (ptid, null_ptid))
3211 {
3212 int pid = ptid_get_pid (ptid);
3213 exit_inferior (pid);
3214 }
3215
3216 /* Note this wipes step-resume breakpoints, so needs to be done
3217 after exit_inferior, which ends up referencing the step-resume
3218 breakpoints through clear_thread_inferior_resources. */
3219 breakpoint_init_inferior (inf_exited);
3220
3221 registers_changed ();
3222
3223 reopen_exec_file ();
3224 reinit_frame_cache ();
3225
3226 if (deprecated_detach_hook)
3227 deprecated_detach_hook ();
3228}
3229\f
3230/* Convert a normal process ID to a string. Returns the string in a
3231 static buffer. */
3232
3233const char *
3234normal_pid_to_str (ptid_t ptid)
3235{
3236 static char buf[32];
3237
3238 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3239 return buf;
3240}
3241
3242static const char *
3243default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3244{
3245 return normal_pid_to_str (ptid);
3246}
3247
3248/* Error-catcher for target_find_memory_regions. */
3249static int
3250dummy_find_memory_regions (struct target_ops *self,
3251 find_memory_region_ftype ignore1, void *ignore2)
3252{
3253 error (_("Command not implemented for this target."));
3254 return 0;
3255}
3256
3257/* Error-catcher for target_make_corefile_notes. */
3258static char *
3259dummy_make_corefile_notes (struct target_ops *self,
3260 bfd *ignore1, int *ignore2)
3261{
3262 error (_("Command not implemented for this target."));
3263 return NULL;
3264}
3265
3266/* Set up the handful of non-empty slots needed by the dummy target
3267 vector. */
3268
3269static void
3270init_dummy_target (void)
3271{
3272 dummy_target.to_shortname = "None";
3273 dummy_target.to_longname = "None";
3274 dummy_target.to_doc = "";
3275 dummy_target.to_supports_disable_randomization
3276 = find_default_supports_disable_randomization;
3277 dummy_target.to_stratum = dummy_stratum;
3278 dummy_target.to_has_all_memory = return_zero;
3279 dummy_target.to_has_memory = return_zero;
3280 dummy_target.to_has_stack = return_zero;
3281 dummy_target.to_has_registers = return_zero;
3282 dummy_target.to_has_execution = return_zero_has_execution;
3283 dummy_target.to_magic = OPS_MAGIC;
3284
3285 install_dummy_methods (&dummy_target);
3286}
3287\f
3288
3289void
3290target_close (struct target_ops *targ)
3291{
3292 gdb_assert (!target_is_pushed (targ));
3293
3294 if (targ->to_xclose != NULL)
3295 targ->to_xclose (targ);
3296 else if (targ->to_close != NULL)
3297 targ->to_close (targ);
3298
3299 if (targetdebug)
3300 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3301}
3302
3303int
3304target_thread_alive (ptid_t ptid)
3305{
3306 return current_target.to_thread_alive (&current_target, ptid);
3307}
3308
3309void
3310target_update_thread_list (void)
3311{
3312 current_target.to_update_thread_list (&current_target);
3313}
3314
3315void
3316target_stop (ptid_t ptid)
3317{
3318 if (!may_stop)
3319 {
3320 warning (_("May not interrupt or stop the target, ignoring attempt"));
3321 return;
3322 }
3323
3324 (*current_target.to_stop) (&current_target, ptid);
3325}
3326
3327void
3328target_interrupt (ptid_t ptid)
3329{
3330 if (!may_stop)
3331 {
3332 warning (_("May not interrupt or stop the target, ignoring attempt"));
3333 return;
3334 }
3335
3336 (*current_target.to_interrupt) (&current_target, ptid);
3337}
3338
3339/* See target.h. */
3340
3341void
3342target_pass_ctrlc (void)
3343{
3344 (*current_target.to_pass_ctrlc) (&current_target);
3345}
3346
3347/* See target.h. */
3348
3349void
3350default_target_pass_ctrlc (struct target_ops *ops)
3351{
3352 target_interrupt (inferior_ptid);
3353}
3354
3355/* See target/target.h. */
3356
3357void
3358target_stop_and_wait (ptid_t ptid)
3359{
3360 struct target_waitstatus status;
3361 int was_non_stop = non_stop;
3362
3363 non_stop = 1;
3364 target_stop (ptid);
3365
3366 memset (&status, 0, sizeof (status));
3367 target_wait (ptid, &status, 0);
3368
3369 non_stop = was_non_stop;
3370}
3371
3372/* See target/target.h. */
3373
3374void
3375target_continue_no_signal (ptid_t ptid)
3376{
3377 target_resume (ptid, 0, GDB_SIGNAL_0);
3378}
3379
3380/* See target/target.h. */
3381
3382void
3383target_continue (ptid_t ptid, enum gdb_signal signal)
3384{
3385 target_resume (ptid, 0, signal);
3386}
3387
3388/* Concatenate ELEM to LIST, a comma separate list, and return the
3389 result. The LIST incoming argument is released. */
3390
3391static char *
3392str_comma_list_concat_elem (char *list, const char *elem)
3393{
3394 if (list == NULL)
3395 return xstrdup (elem);
3396 else
3397 return reconcat (list, list, ", ", elem, (char *) NULL);
3398}
3399
3400/* Helper for target_options_to_string. If OPT is present in
3401 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3402 Returns the new resulting string. OPT is removed from
3403 TARGET_OPTIONS. */
3404
3405static char *
3406do_option (int *target_options, char *ret,
3407 int opt, const char *opt_str)
3408{
3409 if ((*target_options & opt) != 0)
3410 {
3411 ret = str_comma_list_concat_elem (ret, opt_str);
3412 *target_options &= ~opt;
3413 }
3414
3415 return ret;
3416}
3417
3418char *
3419target_options_to_string (int target_options)
3420{
3421 char *ret = NULL;
3422
3423#define DO_TARG_OPTION(OPT) \
3424 ret = do_option (&target_options, ret, OPT, #OPT)
3425
3426 DO_TARG_OPTION (TARGET_WNOHANG);
3427
3428 if (target_options != 0)
3429 ret = str_comma_list_concat_elem (ret, "unknown???");
3430
3431 if (ret == NULL)
3432 ret = xstrdup ("");
3433 return ret;
3434}
3435
3436void
3437target_fetch_registers (struct regcache *regcache, int regno)
3438{
3439 current_target.to_fetch_registers (&current_target, regcache, regno);
3440 if (targetdebug)
3441 regcache->debug_print_register ("target_fetch_registers", regno);
3442}
3443
3444void
3445target_store_registers (struct regcache *regcache, int regno)
3446{
3447 if (!may_write_registers)
3448 error (_("Writing to registers is not allowed (regno %d)"), regno);
3449
3450 current_target.to_store_registers (&current_target, regcache, regno);
3451 if (targetdebug)
3452 {
3453 regcache->debug_print_register ("target_store_registers", regno);
3454 }
3455}
3456
3457int
3458target_core_of_thread (ptid_t ptid)
3459{
3460 return current_target.to_core_of_thread (&current_target, ptid);
3461}
3462
3463int
3464simple_verify_memory (struct target_ops *ops,
3465 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3466{
3467 LONGEST total_xfered = 0;
3468
3469 while (total_xfered < size)
3470 {
3471 ULONGEST xfered_len;
3472 enum target_xfer_status status;
3473 gdb_byte buf[1024];
3474 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3475
3476 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3477 buf, NULL, lma + total_xfered, howmuch,
3478 &xfered_len);
3479 if (status == TARGET_XFER_OK
3480 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3481 {
3482 total_xfered += xfered_len;
3483 QUIT;
3484 }
3485 else
3486 return 0;
3487 }
3488 return 1;
3489}
3490
3491/* Default implementation of memory verification. */
3492
3493static int
3494default_verify_memory (struct target_ops *self,
3495 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3496{
3497 /* Start over from the top of the target stack. */
3498 return simple_verify_memory (current_target.beneath,
3499 data, memaddr, size);
3500}
3501
3502int
3503target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3504{
3505 return current_target.to_verify_memory (&current_target,
3506 data, memaddr, size);
3507}
3508
3509/* The documentation for this function is in its prototype declaration in
3510 target.h. */
3511
3512int
3513target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3514 enum target_hw_bp_type rw)
3515{
3516 return current_target.to_insert_mask_watchpoint (&current_target,
3517 addr, mask, rw);
3518}
3519
3520/* The documentation for this function is in its prototype declaration in
3521 target.h. */
3522
3523int
3524target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3525 enum target_hw_bp_type rw)
3526{
3527 return current_target.to_remove_mask_watchpoint (&current_target,
3528 addr, mask, rw);
3529}
3530
3531/* The documentation for this function is in its prototype declaration
3532 in target.h. */
3533
3534int
3535target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3536{
3537 return current_target.to_masked_watch_num_registers (&current_target,
3538 addr, mask);
3539}
3540
3541/* The documentation for this function is in its prototype declaration
3542 in target.h. */
3543
3544int
3545target_ranged_break_num_registers (void)
3546{
3547 return current_target.to_ranged_break_num_registers (&current_target);
3548}
3549
3550/* See target.h. */
3551
3552int
3553target_supports_btrace (enum btrace_format format)
3554{
3555 return current_target.to_supports_btrace (&current_target, format);
3556}
3557
3558/* See target.h. */
3559
3560struct btrace_target_info *
3561target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3562{
3563 return current_target.to_enable_btrace (&current_target, ptid, conf);
3564}
3565
3566/* See target.h. */
3567
3568void
3569target_disable_btrace (struct btrace_target_info *btinfo)
3570{
3571 current_target.to_disable_btrace (&current_target, btinfo);
3572}
3573
3574/* See target.h. */
3575
3576void
3577target_teardown_btrace (struct btrace_target_info *btinfo)
3578{
3579 current_target.to_teardown_btrace (&current_target, btinfo);
3580}
3581
3582/* See target.h. */
3583
3584enum btrace_error
3585target_read_btrace (struct btrace_data *btrace,
3586 struct btrace_target_info *btinfo,
3587 enum btrace_read_type type)
3588{
3589 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3590}
3591
3592/* See target.h. */
3593
3594const struct btrace_config *
3595target_btrace_conf (const struct btrace_target_info *btinfo)
3596{
3597 return current_target.to_btrace_conf (&current_target, btinfo);
3598}
3599
3600/* See target.h. */
3601
3602void
3603target_stop_recording (void)
3604{
3605 current_target.to_stop_recording (&current_target);
3606}
3607
3608/* See target.h. */
3609
3610void
3611target_save_record (const char *filename)
3612{
3613 current_target.to_save_record (&current_target, filename);
3614}
3615
3616/* See target.h. */
3617
3618int
3619target_supports_delete_record (void)
3620{
3621 struct target_ops *t;
3622
3623 for (t = current_target.beneath; t != NULL; t = t->beneath)
3624 if (t->to_delete_record != delegate_delete_record
3625 && t->to_delete_record != tdefault_delete_record)
3626 return 1;
3627
3628 return 0;
3629}
3630
3631/* See target.h. */
3632
3633void
3634target_delete_record (void)
3635{
3636 current_target.to_delete_record (&current_target);
3637}
3638
3639/* See target.h. */
3640
3641enum record_method
3642target_record_method (ptid_t ptid)
3643{
3644 return current_target.to_record_method (&current_target, ptid);
3645}
3646
3647/* See target.h. */
3648
3649int
3650target_record_is_replaying (ptid_t ptid)
3651{
3652 return current_target.to_record_is_replaying (&current_target, ptid);
3653}
3654
3655/* See target.h. */
3656
3657int
3658target_record_will_replay (ptid_t ptid, int dir)
3659{
3660 return current_target.to_record_will_replay (&current_target, ptid, dir);
3661}
3662
3663/* See target.h. */
3664
3665void
3666target_record_stop_replaying (void)
3667{
3668 current_target.to_record_stop_replaying (&current_target);
3669}
3670
3671/* See target.h. */
3672
3673void
3674target_goto_record_begin (void)
3675{
3676 current_target.to_goto_record_begin (&current_target);
3677}
3678
3679/* See target.h. */
3680
3681void
3682target_goto_record_end (void)
3683{
3684 current_target.to_goto_record_end (&current_target);
3685}
3686
3687/* See target.h. */
3688
3689void
3690target_goto_record (ULONGEST insn)
3691{
3692 current_target.to_goto_record (&current_target, insn);
3693}
3694
3695/* See target.h. */
3696
3697void
3698target_insn_history (int size, gdb_disassembly_flags flags)
3699{
3700 current_target.to_insn_history (&current_target, size, flags);
3701}
3702
3703/* See target.h. */
3704
3705void
3706target_insn_history_from (ULONGEST from, int size,
3707 gdb_disassembly_flags flags)
3708{
3709 current_target.to_insn_history_from (&current_target, from, size, flags);
3710}
3711
3712/* See target.h. */
3713
3714void
3715target_insn_history_range (ULONGEST begin, ULONGEST end,
3716 gdb_disassembly_flags flags)
3717{
3718 current_target.to_insn_history_range (&current_target, begin, end, flags);
3719}
3720
3721/* See target.h. */
3722
3723void
3724target_call_history (int size, int flags)
3725{
3726 current_target.to_call_history (&current_target, size, flags);
3727}
3728
3729/* See target.h. */
3730
3731void
3732target_call_history_from (ULONGEST begin, int size, int flags)
3733{
3734 current_target.to_call_history_from (&current_target, begin, size, flags);
3735}
3736
3737/* See target.h. */
3738
3739void
3740target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3741{
3742 current_target.to_call_history_range (&current_target, begin, end, flags);
3743}
3744
3745/* See target.h. */
3746
3747const struct frame_unwind *
3748target_get_unwinder (void)
3749{
3750 return current_target.to_get_unwinder (&current_target);
3751}
3752
3753/* See target.h. */
3754
3755const struct frame_unwind *
3756target_get_tailcall_unwinder (void)
3757{
3758 return current_target.to_get_tailcall_unwinder (&current_target);
3759}
3760
3761/* See target.h. */
3762
3763void
3764target_prepare_to_generate_core (void)
3765{
3766 current_target.to_prepare_to_generate_core (&current_target);
3767}
3768
3769/* See target.h. */
3770
3771void
3772target_done_generating_core (void)
3773{
3774 current_target.to_done_generating_core (&current_target);
3775}
3776
3777static void
3778setup_target_debug (void)
3779{
3780 memcpy (&debug_target, &current_target, sizeof debug_target);
3781
3782 init_debug_target (&current_target);
3783}
3784\f
3785
3786static char targ_desc[] =
3787"Names of targets and files being debugged.\nShows the entire \
3788stack of targets currently in use (including the exec-file,\n\
3789core-file, and process, if any), as well as the symbol file name.";
3790
3791static void
3792default_rcmd (struct target_ops *self, const char *command,
3793 struct ui_file *output)
3794{
3795 error (_("\"monitor\" command not supported by this target."));
3796}
3797
3798static void
3799do_monitor_command (const char *cmd, int from_tty)
3800{
3801 target_rcmd (cmd, gdb_stdtarg);
3802}
3803
3804/* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3805 ignored. */
3806
3807void
3808flash_erase_command (const char *cmd, int from_tty)
3809{
3810 /* Used to communicate termination of flash operations to the target. */
3811 bool found_flash_region = false;
3812 struct gdbarch *gdbarch = target_gdbarch ();
3813
3814 std::vector<mem_region> mem_regions = target_memory_map ();
3815
3816 /* Iterate over all memory regions. */
3817 for (const mem_region &m : mem_regions)
3818 {
3819 /* Is this a flash memory region? */
3820 if (m.attrib.mode == MEM_FLASH)
3821 {
3822 found_flash_region = true;
3823 target_flash_erase (m.lo, m.hi - m.lo);
3824
3825 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3826
3827 current_uiout->message (_("Erasing flash memory region at address "));
3828 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3829 current_uiout->message (", size = ");
3830 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3831 current_uiout->message ("\n");
3832 }
3833 }
3834
3835 /* Did we do any flash operations? If so, we need to finalize them. */
3836 if (found_flash_region)
3837 target_flash_done ();
3838 else
3839 current_uiout->message (_("No flash memory regions found.\n"));
3840}
3841
3842/* Print the name of each layers of our target stack. */
3843
3844static void
3845maintenance_print_target_stack (const char *cmd, int from_tty)
3846{
3847 struct target_ops *t;
3848
3849 printf_filtered (_("The current target stack is:\n"));
3850
3851 for (t = target_stack; t != NULL; t = t->beneath)
3852 {
3853 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3854 }
3855}
3856
3857/* See target.h. */
3858
3859void
3860target_async (int enable)
3861{
3862 infrun_async (enable);
3863 current_target.to_async (&current_target, enable);
3864}
3865
3866/* See target.h. */
3867
3868void
3869target_thread_events (int enable)
3870{
3871 current_target.to_thread_events (&current_target, enable);
3872}
3873
3874/* Controls if targets can report that they can/are async. This is
3875 just for maintainers to use when debugging gdb. */
3876int target_async_permitted = 1;
3877
3878/* The set command writes to this variable. If the inferior is
3879 executing, target_async_permitted is *not* updated. */
3880static int target_async_permitted_1 = 1;
3881
3882static void
3883maint_set_target_async_command (char *args, int from_tty,
3884 struct cmd_list_element *c)
3885{
3886 if (have_live_inferiors ())
3887 {
3888 target_async_permitted_1 = target_async_permitted;
3889 error (_("Cannot change this setting while the inferior is running."));
3890 }
3891
3892 target_async_permitted = target_async_permitted_1;
3893}
3894
3895static void
3896maint_show_target_async_command (struct ui_file *file, int from_tty,
3897 struct cmd_list_element *c,
3898 const char *value)
3899{
3900 fprintf_filtered (file,
3901 _("Controlling the inferior in "
3902 "asynchronous mode is %s.\n"), value);
3903}
3904
3905/* Return true if the target operates in non-stop mode even with "set
3906 non-stop off". */
3907
3908static int
3909target_always_non_stop_p (void)
3910{
3911 return current_target.to_always_non_stop_p (&current_target);
3912}
3913
3914/* See target.h. */
3915
3916int
3917target_is_non_stop_p (void)
3918{
3919 return (non_stop
3920 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3921 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3922 && target_always_non_stop_p ()));
3923}
3924
3925/* Controls if targets can report that they always run in non-stop
3926 mode. This is just for maintainers to use when debugging gdb. */
3927enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3928
3929/* The set command writes to this variable. If the inferior is
3930 executing, target_non_stop_enabled is *not* updated. */
3931static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3932
3933/* Implementation of "maint set target-non-stop". */
3934
3935static void
3936maint_set_target_non_stop_command (char *args, int from_tty,
3937 struct cmd_list_element *c)
3938{
3939 if (have_live_inferiors ())
3940 {
3941 target_non_stop_enabled_1 = target_non_stop_enabled;
3942 error (_("Cannot change this setting while the inferior is running."));
3943 }
3944
3945 target_non_stop_enabled = target_non_stop_enabled_1;
3946}
3947
3948/* Implementation of "maint show target-non-stop". */
3949
3950static void
3951maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3952 struct cmd_list_element *c,
3953 const char *value)
3954{
3955 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3956 fprintf_filtered (file,
3957 _("Whether the target is always in non-stop mode "
3958 "is %s (currently %s).\n"), value,
3959 target_always_non_stop_p () ? "on" : "off");
3960 else
3961 fprintf_filtered (file,
3962 _("Whether the target is always in non-stop mode "
3963 "is %s.\n"), value);
3964}
3965
3966/* Temporary copies of permission settings. */
3967
3968static int may_write_registers_1 = 1;
3969static int may_write_memory_1 = 1;
3970static int may_insert_breakpoints_1 = 1;
3971static int may_insert_tracepoints_1 = 1;
3972static int may_insert_fast_tracepoints_1 = 1;
3973static int may_stop_1 = 1;
3974
3975/* Make the user-set values match the real values again. */
3976
3977void
3978update_target_permissions (void)
3979{
3980 may_write_registers_1 = may_write_registers;
3981 may_write_memory_1 = may_write_memory;
3982 may_insert_breakpoints_1 = may_insert_breakpoints;
3983 may_insert_tracepoints_1 = may_insert_tracepoints;
3984 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3985 may_stop_1 = may_stop;
3986}
3987
3988/* The one function handles (most of) the permission flags in the same
3989 way. */
3990
3991static void
3992set_target_permissions (char *args, int from_tty,
3993 struct cmd_list_element *c)
3994{
3995 if (target_has_execution)
3996 {
3997 update_target_permissions ();
3998 error (_("Cannot change this setting while the inferior is running."));
3999 }
4000
4001 /* Make the real values match the user-changed values. */
4002 may_write_registers = may_write_registers_1;
4003 may_insert_breakpoints = may_insert_breakpoints_1;
4004 may_insert_tracepoints = may_insert_tracepoints_1;
4005 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4006 may_stop = may_stop_1;
4007 update_observer_mode ();
4008}
4009
4010/* Set memory write permission independently of observer mode. */
4011
4012static void
4013set_write_memory_permission (char *args, int from_tty,
4014 struct cmd_list_element *c)
4015{
4016 /* Make the real values match the user-changed values. */
4017 may_write_memory = may_write_memory_1;
4018 update_observer_mode ();
4019}
4020
4021
4022void
4023initialize_targets (void)
4024{
4025 init_dummy_target ();
4026 push_target (&dummy_target);
4027
4028 add_info ("target", info_target_command, targ_desc);
4029 add_info ("files", info_target_command, targ_desc);
4030
4031 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4032Set target debugging."), _("\
4033Show target debugging."), _("\
4034When non-zero, target debugging is enabled. Higher numbers are more\n\
4035verbose."),
4036 set_targetdebug,
4037 show_targetdebug,
4038 &setdebuglist, &showdebuglist);
4039
4040 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4041 &trust_readonly, _("\
4042Set mode for reading from readonly sections."), _("\
4043Show mode for reading from readonly sections."), _("\
4044When this mode is on, memory reads from readonly sections (such as .text)\n\
4045will be read from the object file instead of from the target. This will\n\
4046result in significant performance improvement for remote targets."),
4047 NULL,
4048 show_trust_readonly,
4049 &setlist, &showlist);
4050
4051 add_com ("monitor", class_obscure, do_monitor_command,
4052 _("Send a command to the remote monitor (remote targets only)."));
4053
4054 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4055 _("Print the name of each layer of the internal target stack."),
4056 &maintenanceprintlist);
4057
4058 add_setshow_boolean_cmd ("target-async", no_class,
4059 &target_async_permitted_1, _("\
4060Set whether gdb controls the inferior in asynchronous mode."), _("\
4061Show whether gdb controls the inferior in asynchronous mode."), _("\
4062Tells gdb whether to control the inferior in asynchronous mode."),
4063 maint_set_target_async_command,
4064 maint_show_target_async_command,
4065 &maintenance_set_cmdlist,
4066 &maintenance_show_cmdlist);
4067
4068 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4069 &target_non_stop_enabled_1, _("\
4070Set whether gdb always controls the inferior in non-stop mode."), _("\
4071Show whether gdb always controls the inferior in non-stop mode."), _("\
4072Tells gdb whether to control the inferior in non-stop mode."),
4073 maint_set_target_non_stop_command,
4074 maint_show_target_non_stop_command,
4075 &maintenance_set_cmdlist,
4076 &maintenance_show_cmdlist);
4077
4078 add_setshow_boolean_cmd ("may-write-registers", class_support,
4079 &may_write_registers_1, _("\
4080Set permission to write into registers."), _("\
4081Show permission to write into registers."), _("\
4082When this permission is on, GDB may write into the target's registers.\n\
4083Otherwise, any sort of write attempt will result in an error."),
4084 set_target_permissions, NULL,
4085 &setlist, &showlist);
4086
4087 add_setshow_boolean_cmd ("may-write-memory", class_support,
4088 &may_write_memory_1, _("\
4089Set permission to write into target memory."), _("\
4090Show permission to write into target memory."), _("\
4091When this permission is on, GDB may write into the target's memory.\n\
4092Otherwise, any sort of write attempt will result in an error."),
4093 set_write_memory_permission, NULL,
4094 &setlist, &showlist);
4095
4096 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4097 &may_insert_breakpoints_1, _("\
4098Set permission to insert breakpoints in the target."), _("\
4099Show permission to insert breakpoints in the target."), _("\
4100When this permission is on, GDB may insert breakpoints in the program.\n\
4101Otherwise, any sort of insertion attempt will result in an error."),
4102 set_target_permissions, NULL,
4103 &setlist, &showlist);
4104
4105 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4106 &may_insert_tracepoints_1, _("\
4107Set permission to insert tracepoints in the target."), _("\
4108Show permission to insert tracepoints in the target."), _("\
4109When this permission is on, GDB may insert tracepoints in the program.\n\
4110Otherwise, any sort of insertion attempt will result in an error."),
4111 set_target_permissions, NULL,
4112 &setlist, &showlist);
4113
4114 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4115 &may_insert_fast_tracepoints_1, _("\
4116Set permission to insert fast tracepoints in the target."), _("\
4117Show permission to insert fast tracepoints in the target."), _("\
4118When this permission is on, GDB may insert fast tracepoints.\n\
4119Otherwise, any sort of insertion attempt will result in an error."),
4120 set_target_permissions, NULL,
4121 &setlist, &showlist);
4122
4123 add_setshow_boolean_cmd ("may-interrupt", class_support,
4124 &may_stop_1, _("\
4125Set permission to interrupt or signal the target."), _("\
4126Show permission to interrupt or signal the target."), _("\
4127When this permission is on, GDB may interrupt/stop the target's execution.\n\
4128Otherwise, any attempt to interrupt or stop will be ignored."),
4129 set_target_permissions, NULL,
4130 &setlist, &showlist);
4131
4132 add_com ("flash-erase", no_class, flash_erase_command,
4133 _("Erase all flash memory regions."));
4134
4135 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4136 &auto_connect_native_target, _("\
4137Set whether GDB may automatically connect to the native target."), _("\
4138Show whether GDB may automatically connect to the native target."), _("\
4139When on, and GDB is not connected to a target yet, GDB\n\
4140attempts \"run\" and other commands with the native target."),
4141 NULL, show_auto_connect_native_target,
4142 &setlist, &showlist);
4143}