]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame_incremental - gdb/target.h
[ia64-hpux] unwinding bsp value from system call
[thirdparty/binutils-gdb.git] / gdb / target.h
... / ...
CommitLineData
1/* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24#if !defined (TARGET_H)
25#define TARGET_H
26
27struct objfile;
28struct ui_file;
29struct mem_attrib;
30struct target_ops;
31struct bp_target_info;
32struct regcache;
33struct target_section_table;
34struct trace_state_variable;
35struct trace_status;
36struct uploaded_tsv;
37struct uploaded_tp;
38struct static_tracepoint_marker;
39
40struct expression;
41
42/* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61#include "bfd.h"
62#include "symtab.h"
63#include "memattr.h"
64#include "vec.h"
65#include "gdb_signals.h"
66
67enum strata
68 {
69 dummy_stratum, /* The lowest of the low */
70 file_stratum, /* Executable files, etc */
71 process_stratum, /* Executing processes or core dump files */
72 thread_stratum, /* Executing threads */
73 record_stratum, /* Support record debugging */
74 arch_stratum /* Architecture overrides */
75 };
76
77enum thread_control_capabilities
78 {
79 tc_none = 0, /* Default: can't control thread execution. */
80 tc_schedlock = 1, /* Can lock the thread scheduler. */
81 };
82
83/* Stuff for target_wait. */
84
85/* Generally, what has the program done? */
86enum target_waitkind
87 {
88 /* The program has exited. The exit status is in value.integer. */
89 TARGET_WAITKIND_EXITED,
90
91 /* The program has stopped with a signal. Which signal is in
92 value.sig. */
93 TARGET_WAITKIND_STOPPED,
94
95 /* The program has terminated with a signal. Which signal is in
96 value.sig. */
97 TARGET_WAITKIND_SIGNALLED,
98
99 /* The program is letting us know that it dynamically loaded something
100 (e.g. it called load(2) on AIX). */
101 TARGET_WAITKIND_LOADED,
102
103 /* The program has forked. A "related" process' PTID is in
104 value.related_pid. I.e., if the child forks, value.related_pid
105 is the parent's ID. */
106
107 TARGET_WAITKIND_FORKED,
108
109 /* The program has vforked. A "related" process's PTID is in
110 value.related_pid. */
111
112 TARGET_WAITKIND_VFORKED,
113
114 /* The program has exec'ed a new executable file. The new file's
115 pathname is pointed to by value.execd_pathname. */
116
117 TARGET_WAITKIND_EXECD,
118
119 /* The program had previously vforked, and now the child is done
120 with the shared memory region, because it exec'ed or exited.
121 Note that the event is reported to the vfork parent. This is
122 only used if GDB did not stay attached to the vfork child,
123 otherwise, a TARGET_WAITKIND_EXECD or
124 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
125 has the same effect. */
126 TARGET_WAITKIND_VFORK_DONE,
127
128 /* The program has entered or returned from a system call. On
129 HP-UX, this is used in the hardware watchpoint implementation.
130 The syscall's unique integer ID number is in value.syscall_id. */
131
132 TARGET_WAITKIND_SYSCALL_ENTRY,
133 TARGET_WAITKIND_SYSCALL_RETURN,
134
135 /* Nothing happened, but we stopped anyway. This perhaps should be handled
136 within target_wait, but I'm not sure target_wait should be resuming the
137 inferior. */
138 TARGET_WAITKIND_SPURIOUS,
139
140 /* An event has occured, but we should wait again.
141 Remote_async_wait() returns this when there is an event
142 on the inferior, but the rest of the world is not interested in
143 it. The inferior has not stopped, but has just sent some output
144 to the console, for instance. In this case, we want to go back
145 to the event loop and wait there for another event from the
146 inferior, rather than being stuck in the remote_async_wait()
147 function. sThis way the event loop is responsive to other events,
148 like for instance the user typing. */
149 TARGET_WAITKIND_IGNORE,
150
151 /* The target has run out of history information,
152 and cannot run backward any further. */
153 TARGET_WAITKIND_NO_HISTORY
154 };
155
156struct target_waitstatus
157 {
158 enum target_waitkind kind;
159
160 /* Forked child pid, execd pathname, exit status, signal number or
161 syscall number. */
162 union
163 {
164 int integer;
165 enum target_signal sig;
166 ptid_t related_pid;
167 char *execd_pathname;
168 int syscall_number;
169 }
170 value;
171 };
172
173/* Options that can be passed to target_wait. */
174
175/* Return immediately if there's no event already queued. If this
176 options is not requested, target_wait blocks waiting for an
177 event. */
178#define TARGET_WNOHANG 1
179
180/* The structure below stores information about a system call.
181 It is basically used in the "catch syscall" command, and in
182 every function that gives information about a system call.
183
184 It's also good to mention that its fields represent everything
185 that we currently know about a syscall in GDB. */
186struct syscall
187 {
188 /* The syscall number. */
189 int number;
190
191 /* The syscall name. */
192 const char *name;
193 };
194
195/* Return a pretty printed form of target_waitstatus.
196 Space for the result is malloc'd, caller must free. */
197extern char *target_waitstatus_to_string (const struct target_waitstatus *);
198
199/* Possible types of events that the inferior handler will have to
200 deal with. */
201enum inferior_event_type
202 {
203 /* There is a request to quit the inferior, abandon it. */
204 INF_QUIT_REQ,
205 /* Process a normal inferior event which will result in target_wait
206 being called. */
207 INF_REG_EVENT,
208 /* Deal with an error on the inferior. */
209 INF_ERROR,
210 /* We are called because a timer went off. */
211 INF_TIMER,
212 /* We are called to do stuff after the inferior stops. */
213 INF_EXEC_COMPLETE,
214 /* We are called to do some stuff after the inferior stops, but we
215 are expected to reenter the proceed() and
216 handle_inferior_event() functions. This is used only in case of
217 'step n' like commands. */
218 INF_EXEC_CONTINUE
219 };
220\f
221/* Target objects which can be transfered using target_read,
222 target_write, et cetera. */
223
224enum target_object
225{
226 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
227 TARGET_OBJECT_AVR,
228 /* SPU target specific transfer. See "spu-tdep.c". */
229 TARGET_OBJECT_SPU,
230 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
231 TARGET_OBJECT_MEMORY,
232 /* Memory, avoiding GDB's data cache and trusting the executable.
233 Target implementations of to_xfer_partial never need to handle
234 this object, and most callers should not use it. */
235 TARGET_OBJECT_RAW_MEMORY,
236 /* Memory known to be part of the target's stack. This is cached even
237 if it is not in a region marked as such, since it is known to be
238 "normal" RAM. */
239 TARGET_OBJECT_STACK_MEMORY,
240 /* Kernel Unwind Table. See "ia64-tdep.c". */
241 TARGET_OBJECT_UNWIND_TABLE,
242 /* Transfer auxilliary vector. */
243 TARGET_OBJECT_AUXV,
244 /* StackGhost cookie. See "sparc-tdep.c". */
245 TARGET_OBJECT_WCOOKIE,
246 /* Target memory map in XML format. */
247 TARGET_OBJECT_MEMORY_MAP,
248 /* Flash memory. This object can be used to write contents to
249 a previously erased flash memory. Using it without erasing
250 flash can have unexpected results. Addresses are physical
251 address on target, and not relative to flash start. */
252 TARGET_OBJECT_FLASH,
253 /* Available target-specific features, e.g. registers and coprocessors.
254 See "target-descriptions.c". ANNEX should never be empty. */
255 TARGET_OBJECT_AVAILABLE_FEATURES,
256 /* Currently loaded libraries, in XML format. */
257 TARGET_OBJECT_LIBRARIES,
258 /* Get OS specific data. The ANNEX specifies the type (running
259 processes, etc.). The data being transfered is expected to follow
260 the DTD specified in features/osdata.dtd. */
261 TARGET_OBJECT_OSDATA,
262 /* Extra signal info. Usually the contents of `siginfo_t' on unix
263 platforms. */
264 TARGET_OBJECT_SIGNAL_INFO,
265 /* The list of threads that are being debugged. */
266 TARGET_OBJECT_THREADS,
267 /* Collected static trace data. */
268 TARGET_OBJECT_STATIC_TRACE_DATA,
269 /* The HP-UX registers (those that can be obtained or modified by using
270 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
271 TARGET_OBJECT_HPUX_UREGS,
272 /* Possible future objects: TARGET_OBJECT_FILE, ... */
273};
274
275/* Enumeration of the kinds of traceframe searches that a target may
276 be able to perform. */
277
278enum trace_find_type
279 {
280 tfind_number,
281 tfind_pc,
282 tfind_tp,
283 tfind_range,
284 tfind_outside,
285 };
286
287typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
288DEF_VEC_P(static_tracepoint_marker_p);
289
290/* Request that OPS transfer up to LEN 8-bit bytes of the target's
291 OBJECT. The OFFSET, for a seekable object, specifies the
292 starting point. The ANNEX can be used to provide additional
293 data-specific information to the target.
294
295 Return the number of bytes actually transfered, or -1 if the
296 transfer is not supported or otherwise fails. Return of a positive
297 value less than LEN indicates that no further transfer is possible.
298 Unlike the raw to_xfer_partial interface, callers of these
299 functions do not need to retry partial transfers. */
300
301extern LONGEST target_read (struct target_ops *ops,
302 enum target_object object,
303 const char *annex, gdb_byte *buf,
304 ULONGEST offset, LONGEST len);
305
306struct memory_read_result
307 {
308 /* First address that was read. */
309 ULONGEST begin;
310 /* Past-the-end address. */
311 ULONGEST end;
312 /* The data. */
313 gdb_byte *data;
314};
315typedef struct memory_read_result memory_read_result_s;
316DEF_VEC_O(memory_read_result_s);
317
318extern void free_memory_read_result_vector (void *);
319
320extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
321 ULONGEST offset,
322 LONGEST len);
323
324extern LONGEST target_write (struct target_ops *ops,
325 enum target_object object,
326 const char *annex, const gdb_byte *buf,
327 ULONGEST offset, LONGEST len);
328
329/* Similar to target_write, except that it also calls PROGRESS with
330 the number of bytes written and the opaque BATON after every
331 successful partial write (and before the first write). This is
332 useful for progress reporting and user interaction while writing
333 data. To abort the transfer, the progress callback can throw an
334 exception. */
335
336LONGEST target_write_with_progress (struct target_ops *ops,
337 enum target_object object,
338 const char *annex, const gdb_byte *buf,
339 ULONGEST offset, LONGEST len,
340 void (*progress) (ULONGEST, void *),
341 void *baton);
342
343/* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
344 be read using OPS. The return value will be -1 if the transfer
345 fails or is not supported; 0 if the object is empty; or the length
346 of the object otherwise. If a positive value is returned, a
347 sufficiently large buffer will be allocated using xmalloc and
348 returned in *BUF_P containing the contents of the object.
349
350 This method should be used for objects sufficiently small to store
351 in a single xmalloc'd buffer, when no fixed bound on the object's
352 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
353 through this function. */
354
355extern LONGEST target_read_alloc (struct target_ops *ops,
356 enum target_object object,
357 const char *annex, gdb_byte **buf_p);
358
359/* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
360 returned as a string, allocated using xmalloc. If an error occurs
361 or the transfer is unsupported, NULL is returned. Empty objects
362 are returned as allocated but empty strings. A warning is issued
363 if the result contains any embedded NUL bytes. */
364
365extern char *target_read_stralloc (struct target_ops *ops,
366 enum target_object object,
367 const char *annex);
368
369/* Wrappers to target read/write that perform memory transfers. They
370 throw an error if the memory transfer fails.
371
372 NOTE: cagney/2003-10-23: The naming schema is lifted from
373 "frame.h". The parameter order is lifted from get_frame_memory,
374 which in turn lifted it from read_memory. */
375
376extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
377 gdb_byte *buf, LONGEST len);
378extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
379 CORE_ADDR addr, int len,
380 enum bfd_endian byte_order);
381\f
382struct thread_info; /* fwd decl for parameter list below: */
383
384struct target_ops
385 {
386 struct target_ops *beneath; /* To the target under this one. */
387 char *to_shortname; /* Name this target type */
388 char *to_longname; /* Name for printing */
389 char *to_doc; /* Documentation. Does not include trailing
390 newline, and starts with a one-line descrip-
391 tion (probably similar to to_longname). */
392 /* Per-target scratch pad. */
393 void *to_data;
394 /* The open routine takes the rest of the parameters from the
395 command, and (if successful) pushes a new target onto the
396 stack. Targets should supply this routine, if only to provide
397 an error message. */
398 void (*to_open) (char *, int);
399 /* Old targets with a static target vector provide "to_close".
400 New re-entrant targets provide "to_xclose" and that is expected
401 to xfree everything (including the "struct target_ops"). */
402 void (*to_xclose) (struct target_ops *targ, int quitting);
403 void (*to_close) (int);
404 void (*to_attach) (struct target_ops *ops, char *, int);
405 void (*to_post_attach) (int);
406 void (*to_detach) (struct target_ops *ops, char *, int);
407 void (*to_disconnect) (struct target_ops *, char *, int);
408 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
409 ptid_t (*to_wait) (struct target_ops *,
410 ptid_t, struct target_waitstatus *, int);
411 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
412 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
413 void (*to_prepare_to_store) (struct regcache *);
414
415 /* Transfer LEN bytes of memory between GDB address MYADDR and
416 target address MEMADDR. If WRITE, transfer them to the target, else
417 transfer them from the target. TARGET is the target from which we
418 get this function.
419
420 Return value, N, is one of the following:
421
422 0 means that we can't handle this. If errno has been set, it is the
423 error which prevented us from doing it (FIXME: What about bfd_error?).
424
425 positive (call it N) means that we have transferred N bytes
426 starting at MEMADDR. We might be able to handle more bytes
427 beyond this length, but no promises.
428
429 negative (call its absolute value N) means that we cannot
430 transfer right at MEMADDR, but we could transfer at least
431 something at MEMADDR + N.
432
433 NOTE: cagney/2004-10-01: This has been entirely superseeded by
434 to_xfer_partial and inferior inheritance. */
435
436 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
437 int len, int write,
438 struct mem_attrib *attrib,
439 struct target_ops *target);
440
441 void (*to_files_info) (struct target_ops *);
442 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
443 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
444 int (*to_can_use_hw_breakpoint) (int, int, int);
445 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
446 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
447
448 /* Documentation of what the two routines below are expected to do is
449 provided with the corresponding target_* macros. */
450 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
451 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
452
453 int (*to_stopped_by_watchpoint) (void);
454 int to_have_steppable_watchpoint;
455 int to_have_continuable_watchpoint;
456 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
457 int (*to_watchpoint_addr_within_range) (struct target_ops *,
458 CORE_ADDR, CORE_ADDR, int);
459
460 /* Documentation of this routine is provided with the corresponding
461 target_* macro. */
462 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
463
464 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
465 struct expression *);
466 void (*to_terminal_init) (void);
467 void (*to_terminal_inferior) (void);
468 void (*to_terminal_ours_for_output) (void);
469 void (*to_terminal_ours) (void);
470 void (*to_terminal_save_ours) (void);
471 void (*to_terminal_info) (char *, int);
472 void (*to_kill) (struct target_ops *);
473 void (*to_load) (char *, int);
474 int (*to_lookup_symbol) (char *, CORE_ADDR *);
475 void (*to_create_inferior) (struct target_ops *,
476 char *, char *, char **, int);
477 void (*to_post_startup_inferior) (ptid_t);
478 int (*to_insert_fork_catchpoint) (int);
479 int (*to_remove_fork_catchpoint) (int);
480 int (*to_insert_vfork_catchpoint) (int);
481 int (*to_remove_vfork_catchpoint) (int);
482 int (*to_follow_fork) (struct target_ops *, int);
483 int (*to_insert_exec_catchpoint) (int);
484 int (*to_remove_exec_catchpoint) (int);
485 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
486 int (*to_has_exited) (int, int, int *);
487 void (*to_mourn_inferior) (struct target_ops *);
488 int (*to_can_run) (void);
489 void (*to_notice_signals) (ptid_t ptid);
490 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
491 void (*to_find_new_threads) (struct target_ops *);
492 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
493 char *(*to_extra_thread_info) (struct thread_info *);
494 void (*to_stop) (ptid_t);
495 void (*to_rcmd) (char *command, struct ui_file *output);
496 char *(*to_pid_to_exec_file) (int pid);
497 void (*to_log_command) (const char *);
498 struct target_section_table *(*to_get_section_table) (struct target_ops *);
499 enum strata to_stratum;
500 int (*to_has_all_memory) (struct target_ops *);
501 int (*to_has_memory) (struct target_ops *);
502 int (*to_has_stack) (struct target_ops *);
503 int (*to_has_registers) (struct target_ops *);
504 int (*to_has_execution) (struct target_ops *);
505 int to_has_thread_control; /* control thread execution */
506 int to_attach_no_wait;
507 /* ASYNC target controls */
508 int (*to_can_async_p) (void);
509 int (*to_is_async_p) (void);
510 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
511 int (*to_async_mask) (int);
512 int (*to_supports_non_stop) (void);
513 /* find_memory_regions support method for gcore */
514 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
515 /* make_corefile_notes support method for gcore */
516 char * (*to_make_corefile_notes) (bfd *, int *);
517 /* get_bookmark support method for bookmarks */
518 gdb_byte * (*to_get_bookmark) (char *, int);
519 /* goto_bookmark support method for bookmarks */
520 void (*to_goto_bookmark) (gdb_byte *, int);
521 /* Return the thread-local address at OFFSET in the
522 thread-local storage for the thread PTID and the shared library
523 or executable file given by OBJFILE. If that block of
524 thread-local storage hasn't been allocated yet, this function
525 may return an error. */
526 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
527 ptid_t ptid,
528 CORE_ADDR load_module_addr,
529 CORE_ADDR offset);
530
531 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
532 OBJECT. The OFFSET, for a seekable object, specifies the
533 starting point. The ANNEX can be used to provide additional
534 data-specific information to the target.
535
536 Return the number of bytes actually transfered, zero when no
537 further transfer is possible, and -1 when the transfer is not
538 supported. Return of a positive value smaller than LEN does
539 not indicate the end of the object, only the end of the
540 transfer; higher level code should continue transferring if
541 desired. This is handled in target.c.
542
543 The interface does not support a "retry" mechanism. Instead it
544 assumes that at least one byte will be transfered on each
545 successful call.
546
547 NOTE: cagney/2003-10-17: The current interface can lead to
548 fragmented transfers. Lower target levels should not implement
549 hacks, such as enlarging the transfer, in an attempt to
550 compensate for this. Instead, the target stack should be
551 extended so that it implements supply/collect methods and a
552 look-aside object cache. With that available, the lowest
553 target can safely and freely "push" data up the stack.
554
555 See target_read and target_write for more information. One,
556 and only one, of readbuf or writebuf must be non-NULL. */
557
558 LONGEST (*to_xfer_partial) (struct target_ops *ops,
559 enum target_object object, const char *annex,
560 gdb_byte *readbuf, const gdb_byte *writebuf,
561 ULONGEST offset, LONGEST len);
562
563 /* Returns the memory map for the target. A return value of NULL
564 means that no memory map is available. If a memory address
565 does not fall within any returned regions, it's assumed to be
566 RAM. The returned memory regions should not overlap.
567
568 The order of regions does not matter; target_memory_map will
569 sort regions by starting address. For that reason, this
570 function should not be called directly except via
571 target_memory_map.
572
573 This method should not cache data; if the memory map could
574 change unexpectedly, it should be invalidated, and higher
575 layers will re-fetch it. */
576 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
577
578 /* Erases the region of flash memory starting at ADDRESS, of
579 length LENGTH.
580
581 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
582 on flash block boundaries, as reported by 'to_memory_map'. */
583 void (*to_flash_erase) (struct target_ops *,
584 ULONGEST address, LONGEST length);
585
586 /* Finishes a flash memory write sequence. After this operation
587 all flash memory should be available for writing and the result
588 of reading from areas written by 'to_flash_write' should be
589 equal to what was written. */
590 void (*to_flash_done) (struct target_ops *);
591
592 /* Describe the architecture-specific features of this target.
593 Returns the description found, or NULL if no description
594 was available. */
595 const struct target_desc *(*to_read_description) (struct target_ops *ops);
596
597 /* Build the PTID of the thread on which a given task is running,
598 based on LWP and THREAD. These values are extracted from the
599 task Private_Data section of the Ada Task Control Block, and
600 their interpretation depends on the target. */
601 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
602
603 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
604 Return 0 if *READPTR is already at the end of the buffer.
605 Return -1 if there is insufficient buffer for a whole entry.
606 Return 1 if an entry was read into *TYPEP and *VALP. */
607 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
608 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
609
610 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
611 sequence of bytes in PATTERN with length PATTERN_LEN.
612
613 The result is 1 if found, 0 if not found, and -1 if there was an error
614 requiring halting of the search (e.g. memory read error).
615 If the pattern is found the address is recorded in FOUND_ADDRP. */
616 int (*to_search_memory) (struct target_ops *ops,
617 CORE_ADDR start_addr, ULONGEST search_space_len,
618 const gdb_byte *pattern, ULONGEST pattern_len,
619 CORE_ADDR *found_addrp);
620
621 /* Can target execute in reverse? */
622 int (*to_can_execute_reverse) (void);
623
624 /* Does this target support debugging multiple processes
625 simultaneously? */
626 int (*to_supports_multi_process) (void);
627
628 /* Determine current architecture of thread PTID.
629
630 The target is supposed to determine the architecture of the code where
631 the target is currently stopped at (on Cell, if a target is in spu_run,
632 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
633 This is architecture used to perform decr_pc_after_break adjustment,
634 and also determines the frame architecture of the innermost frame.
635 ptrace operations need to operate according to target_gdbarch.
636
637 The default implementation always returns target_gdbarch. */
638 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
639
640 /* Determine current address space of thread PTID.
641
642 The default implementation always returns the inferior's
643 address space. */
644 struct address_space *(*to_thread_address_space) (struct target_ops *,
645 ptid_t);
646
647 /* Tracepoint-related operations. */
648
649 /* Prepare the target for a tracing run. */
650 void (*to_trace_init) (void);
651
652 /* Send full details of a tracepoint to the target. */
653 void (*to_download_tracepoint) (struct breakpoint *t);
654
655 /* Send full details of a trace state variable to the target. */
656 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
657
658 /* Inform the target info of memory regions that are readonly
659 (such as text sections), and so it should return data from
660 those rather than look in the trace buffer. */
661 void (*to_trace_set_readonly_regions) (void);
662
663 /* Start a trace run. */
664 void (*to_trace_start) (void);
665
666 /* Get the current status of a tracing run. */
667 int (*to_get_trace_status) (struct trace_status *ts);
668
669 /* Stop a trace run. */
670 void (*to_trace_stop) (void);
671
672 /* Ask the target to find a trace frame of the given type TYPE,
673 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
674 number of the trace frame, and also the tracepoint number at
675 TPP. If no trace frame matches, return -1. May throw if the
676 operation fails. */
677 int (*to_trace_find) (enum trace_find_type type, int num,
678 ULONGEST addr1, ULONGEST addr2, int *tpp);
679
680 /* Get the value of the trace state variable number TSV, returning
681 1 if the value is known and writing the value itself into the
682 location pointed to by VAL, else returning 0. */
683 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
684
685 int (*to_save_trace_data) (const char *filename);
686
687 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
688
689 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
690
691 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
692 ULONGEST offset, LONGEST len);
693
694 /* Set the target's tracing behavior in response to unexpected
695 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
696 void (*to_set_disconnected_tracing) (int val);
697 void (*to_set_circular_trace_buffer) (int val);
698
699 /* Return the processor core that thread PTID was last seen on.
700 This information is updated only when:
701 - update_thread_list is called
702 - thread stops
703 If the core cannot be determined -- either for the specified
704 thread, or right now, or in this debug session, or for this
705 target -- return -1. */
706 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
707
708 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
709 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
710 a match, 0 if there's a mismatch, and -1 if an error is
711 encountered while reading memory. */
712 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
713 CORE_ADDR memaddr, ULONGEST size);
714
715 /* Return the address of the start of the Thread Information Block
716 a Windows OS specific feature. */
717 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
718
719 /* Send the new settings of write permission variables. */
720 void (*to_set_permissions) (void);
721
722 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
723 with its details. Return 1 on success, 0 on failure. */
724 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
725 struct static_tracepoint_marker *marker);
726
727 /* Return a vector of all tracepoints markers string id ID, or all
728 markers if ID is NULL. */
729 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
730 (const char *id);
731
732 int to_magic;
733 /* Need sub-structure for target machine related rather than comm related?
734 */
735 };
736
737/* Magic number for checking ops size. If a struct doesn't end with this
738 number, somebody changed the declaration but didn't change all the
739 places that initialize one. */
740
741#define OPS_MAGIC 3840
742
743/* The ops structure for our "current" target process. This should
744 never be NULL. If there is no target, it points to the dummy_target. */
745
746extern struct target_ops current_target;
747
748/* Define easy words for doing these operations on our current target. */
749
750#define target_shortname (current_target.to_shortname)
751#define target_longname (current_target.to_longname)
752
753/* Does whatever cleanup is required for a target that we are no
754 longer going to be calling. QUITTING indicates that GDB is exiting
755 and should not get hung on an error (otherwise it is important to
756 perform clean termination, even if it takes a while). This routine
757 is automatically always called when popping the target off the
758 target stack (to_beneath is undefined). Closing file descriptors
759 and freeing all memory allocated memory are typical things it
760 should do. */
761
762void target_close (struct target_ops *targ, int quitting);
763
764/* Attaches to a process on the target side. Arguments are as passed
765 to the `attach' command by the user. This routine can be called
766 when the target is not on the target-stack, if the target_can_run
767 routine returns 1; in that case, it must push itself onto the stack.
768 Upon exit, the target should be ready for normal operations, and
769 should be ready to deliver the status of the process immediately
770 (without waiting) to an upcoming target_wait call. */
771
772void target_attach (char *, int);
773
774/* Some targets don't generate traps when attaching to the inferior,
775 or their target_attach implementation takes care of the waiting.
776 These targets must set to_attach_no_wait. */
777
778#define target_attach_no_wait \
779 (current_target.to_attach_no_wait)
780
781/* The target_attach operation places a process under debugger control,
782 and stops the process.
783
784 This operation provides a target-specific hook that allows the
785 necessary bookkeeping to be performed after an attach completes. */
786#define target_post_attach(pid) \
787 (*current_target.to_post_attach) (pid)
788
789/* Takes a program previously attached to and detaches it.
790 The program may resume execution (some targets do, some don't) and will
791 no longer stop on signals, etc. We better not have left any breakpoints
792 in the program or it'll die when it hits one. ARGS is arguments
793 typed by the user (e.g. a signal to send the process). FROM_TTY
794 says whether to be verbose or not. */
795
796extern void target_detach (char *, int);
797
798/* Disconnect from the current target without resuming it (leaving it
799 waiting for a debugger). */
800
801extern void target_disconnect (char *, int);
802
803/* Resume execution of the target process PTID. STEP says whether to
804 single-step or to run free; SIGGNAL is the signal to be given to
805 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
806 pass TARGET_SIGNAL_DEFAULT. */
807
808extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
809
810/* Wait for process pid to do something. PTID = -1 to wait for any
811 pid to do something. Return pid of child, or -1 in case of error;
812 store status through argument pointer STATUS. Note that it is
813 _NOT_ OK to throw_exception() out of target_wait() without popping
814 the debugging target from the stack; GDB isn't prepared to get back
815 to the prompt with a debugging target but without the frame cache,
816 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
817 options. */
818
819extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
820 int options);
821
822/* Fetch at least register REGNO, or all regs if regno == -1. No result. */
823
824extern void target_fetch_registers (struct regcache *regcache, int regno);
825
826/* Store at least register REGNO, or all regs if REGNO == -1.
827 It can store as many registers as it wants to, so target_prepare_to_store
828 must have been previously called. Calls error() if there are problems. */
829
830extern void target_store_registers (struct regcache *regcache, int regs);
831
832/* Get ready to modify the registers array. On machines which store
833 individual registers, this doesn't need to do anything. On machines
834 which store all the registers in one fell swoop, this makes sure
835 that REGISTERS contains all the registers from the program being
836 debugged. */
837
838#define target_prepare_to_store(regcache) \
839 (*current_target.to_prepare_to_store) (regcache)
840
841/* Determine current address space of thread PTID. */
842
843struct address_space *target_thread_address_space (ptid_t);
844
845/* Returns true if this target can debug multiple processes
846 simultaneously. */
847
848#define target_supports_multi_process() \
849 (*current_target.to_supports_multi_process) ()
850
851/* Invalidate all target dcaches. */
852extern void target_dcache_invalidate (void);
853
854extern int target_read_string (CORE_ADDR, char **, int, int *);
855
856extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
857
858extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
859
860extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
861 int len);
862
863/* Fetches the target's memory map. If one is found it is sorted
864 and returned, after some consistency checking. Otherwise, NULL
865 is returned. */
866VEC(mem_region_s) *target_memory_map (void);
867
868/* Erase the specified flash region. */
869void target_flash_erase (ULONGEST address, LONGEST length);
870
871/* Finish a sequence of flash operations. */
872void target_flash_done (void);
873
874/* Describes a request for a memory write operation. */
875struct memory_write_request
876 {
877 /* Begining address that must be written. */
878 ULONGEST begin;
879 /* Past-the-end address. */
880 ULONGEST end;
881 /* The data to write. */
882 gdb_byte *data;
883 /* A callback baton for progress reporting for this request. */
884 void *baton;
885 };
886typedef struct memory_write_request memory_write_request_s;
887DEF_VEC_O(memory_write_request_s);
888
889/* Enumeration specifying different flash preservation behaviour. */
890enum flash_preserve_mode
891 {
892 flash_preserve,
893 flash_discard
894 };
895
896/* Write several memory blocks at once. This version can be more
897 efficient than making several calls to target_write_memory, in
898 particular because it can optimize accesses to flash memory.
899
900 Moreover, this is currently the only memory access function in gdb
901 that supports writing to flash memory, and it should be used for
902 all cases where access to flash memory is desirable.
903
904 REQUESTS is the vector (see vec.h) of memory_write_request.
905 PRESERVE_FLASH_P indicates what to do with blocks which must be
906 erased, but not completely rewritten.
907 PROGRESS_CB is a function that will be periodically called to provide
908 feedback to user. It will be called with the baton corresponding
909 to the request currently being written. It may also be called
910 with a NULL baton, when preserved flash sectors are being rewritten.
911
912 The function returns 0 on success, and error otherwise. */
913int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
914 enum flash_preserve_mode preserve_flash_p,
915 void (*progress_cb) (ULONGEST, void *));
916
917/* From infrun.c. */
918
919extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
920
921extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
922
923extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
924
925extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
926
927/* Print a line about the current target. */
928
929#define target_files_info() \
930 (*current_target.to_files_info) (&current_target)
931
932/* Insert a breakpoint at address BP_TGT->placed_address in the target
933 machine. Result is 0 for success, or an errno value. */
934
935extern int target_insert_breakpoint (struct gdbarch *gdbarch,
936 struct bp_target_info *bp_tgt);
937
938/* Remove a breakpoint at address BP_TGT->placed_address in the target
939 machine. Result is 0 for success, or an errno value. */
940
941extern int target_remove_breakpoint (struct gdbarch *gdbarch,
942 struct bp_target_info *bp_tgt);
943
944/* Initialize the terminal settings we record for the inferior,
945 before we actually run the inferior. */
946
947#define target_terminal_init() \
948 (*current_target.to_terminal_init) ()
949
950/* Put the inferior's terminal settings into effect.
951 This is preparation for starting or resuming the inferior. */
952
953extern void target_terminal_inferior (void);
954
955/* Put some of our terminal settings into effect,
956 enough to get proper results from our output,
957 but do not change into or out of RAW mode
958 so that no input is discarded.
959
960 After doing this, either terminal_ours or terminal_inferior
961 should be called to get back to a normal state of affairs. */
962
963#define target_terminal_ours_for_output() \
964 (*current_target.to_terminal_ours_for_output) ()
965
966/* Put our terminal settings into effect.
967 First record the inferior's terminal settings
968 so they can be restored properly later. */
969
970#define target_terminal_ours() \
971 (*current_target.to_terminal_ours) ()
972
973/* Save our terminal settings.
974 This is called from TUI after entering or leaving the curses
975 mode. Since curses modifies our terminal this call is here
976 to take this change into account. */
977
978#define target_terminal_save_ours() \
979 (*current_target.to_terminal_save_ours) ()
980
981/* Print useful information about our terminal status, if such a thing
982 exists. */
983
984#define target_terminal_info(arg, from_tty) \
985 (*current_target.to_terminal_info) (arg, from_tty)
986
987/* Kill the inferior process. Make it go away. */
988
989extern void target_kill (void);
990
991/* Load an executable file into the target process. This is expected
992 to not only bring new code into the target process, but also to
993 update GDB's symbol tables to match.
994
995 ARG contains command-line arguments, to be broken down with
996 buildargv (). The first non-switch argument is the filename to
997 load, FILE; the second is a number (as parsed by strtoul (..., ...,
998 0)), which is an offset to apply to the load addresses of FILE's
999 sections. The target may define switches, or other non-switch
1000 arguments, as it pleases. */
1001
1002extern void target_load (char *arg, int from_tty);
1003
1004/* Look up a symbol in the target's symbol table. NAME is the symbol
1005 name. ADDRP is a CORE_ADDR * pointing to where the value of the
1006 symbol should be returned. The result is 0 if successful, nonzero
1007 if the symbol does not exist in the target environment. This
1008 function should not call error() if communication with the target
1009 is interrupted, since it is called from symbol reading, but should
1010 return nonzero, possibly doing a complain(). */
1011
1012#define target_lookup_symbol(name, addrp) \
1013 (*current_target.to_lookup_symbol) (name, addrp)
1014
1015/* Start an inferior process and set inferior_ptid to its pid.
1016 EXEC_FILE is the file to run.
1017 ALLARGS is a string containing the arguments to the program.
1018 ENV is the environment vector to pass. Errors reported with error().
1019 On VxWorks and various standalone systems, we ignore exec_file. */
1020
1021void target_create_inferior (char *exec_file, char *args,
1022 char **env, int from_tty);
1023
1024/* Some targets (such as ttrace-based HPUX) don't allow us to request
1025 notification of inferior events such as fork and vork immediately
1026 after the inferior is created. (This because of how gdb gets an
1027 inferior created via invoking a shell to do it. In such a scenario,
1028 if the shell init file has commands in it, the shell will fork and
1029 exec for each of those commands, and we will see each such fork
1030 event. Very bad.)
1031
1032 Such targets will supply an appropriate definition for this function. */
1033
1034#define target_post_startup_inferior(ptid) \
1035 (*current_target.to_post_startup_inferior) (ptid)
1036
1037/* On some targets, we can catch an inferior fork or vfork event when
1038 it occurs. These functions insert/remove an already-created
1039 catchpoint for such events. They return 0 for success, 1 if the
1040 catchpoint type is not supported and -1 for failure. */
1041
1042#define target_insert_fork_catchpoint(pid) \
1043 (*current_target.to_insert_fork_catchpoint) (pid)
1044
1045#define target_remove_fork_catchpoint(pid) \
1046 (*current_target.to_remove_fork_catchpoint) (pid)
1047
1048#define target_insert_vfork_catchpoint(pid) \
1049 (*current_target.to_insert_vfork_catchpoint) (pid)
1050
1051#define target_remove_vfork_catchpoint(pid) \
1052 (*current_target.to_remove_vfork_catchpoint) (pid)
1053
1054/* If the inferior forks or vforks, this function will be called at
1055 the next resume in order to perform any bookkeeping and fiddling
1056 necessary to continue debugging either the parent or child, as
1057 requested, and releasing the other. Information about the fork
1058 or vfork event is available via get_last_target_status ().
1059 This function returns 1 if the inferior should not be resumed
1060 (i.e. there is another event pending). */
1061
1062int target_follow_fork (int follow_child);
1063
1064/* On some targets, we can catch an inferior exec event when it
1065 occurs. These functions insert/remove an already-created
1066 catchpoint for such events. They return 0 for success, 1 if the
1067 catchpoint type is not supported and -1 for failure. */
1068
1069#define target_insert_exec_catchpoint(pid) \
1070 (*current_target.to_insert_exec_catchpoint) (pid)
1071
1072#define target_remove_exec_catchpoint(pid) \
1073 (*current_target.to_remove_exec_catchpoint) (pid)
1074
1075/* Syscall catch.
1076
1077 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1078 If NEEDED is zero, it means the target can disable the mechanism to
1079 catch system calls because there are no more catchpoints of this type.
1080
1081 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1082 being requested. In this case, both TABLE_SIZE and TABLE should
1083 be ignored.
1084
1085 TABLE_SIZE is the number of elements in TABLE. It only matters if
1086 ANY_COUNT is zero.
1087
1088 TABLE is an array of ints, indexed by syscall number. An element in
1089 this array is nonzero if that syscall should be caught. This argument
1090 only matters if ANY_COUNT is zero.
1091
1092 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1093 for failure. */
1094
1095#define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1096 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1097 table_size, table)
1098
1099/* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1100 exit code of PID, if any. */
1101
1102#define target_has_exited(pid,wait_status,exit_status) \
1103 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1104
1105/* The debugger has completed a blocking wait() call. There is now
1106 some process event that must be processed. This function should
1107 be defined by those targets that require the debugger to perform
1108 cleanup or internal state changes in response to the process event. */
1109
1110/* The inferior process has died. Do what is right. */
1111
1112void target_mourn_inferior (void);
1113
1114/* Does target have enough data to do a run or attach command? */
1115
1116#define target_can_run(t) \
1117 ((t)->to_can_run) ()
1118
1119/* post process changes to signal handling in the inferior. */
1120
1121#define target_notice_signals(ptid) \
1122 (*current_target.to_notice_signals) (ptid)
1123
1124/* Check to see if a thread is still alive. */
1125
1126extern int target_thread_alive (ptid_t ptid);
1127
1128/* Query for new threads and add them to the thread list. */
1129
1130extern void target_find_new_threads (void);
1131
1132/* Make target stop in a continuable fashion. (For instance, under
1133 Unix, this should act like SIGSTOP). This function is normally
1134 used by GUIs to implement a stop button. */
1135
1136extern void target_stop (ptid_t ptid);
1137
1138/* Send the specified COMMAND to the target's monitor
1139 (shell,interpreter) for execution. The result of the query is
1140 placed in OUTBUF. */
1141
1142#define target_rcmd(command, outbuf) \
1143 (*current_target.to_rcmd) (command, outbuf)
1144
1145
1146/* Does the target include all of memory, or only part of it? This
1147 determines whether we look up the target chain for other parts of
1148 memory if this target can't satisfy a request. */
1149
1150extern int target_has_all_memory_1 (void);
1151#define target_has_all_memory target_has_all_memory_1 ()
1152
1153/* Does the target include memory? (Dummy targets don't.) */
1154
1155extern int target_has_memory_1 (void);
1156#define target_has_memory target_has_memory_1 ()
1157
1158/* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1159 we start a process.) */
1160
1161extern int target_has_stack_1 (void);
1162#define target_has_stack target_has_stack_1 ()
1163
1164/* Does the target have registers? (Exec files don't.) */
1165
1166extern int target_has_registers_1 (void);
1167#define target_has_registers target_has_registers_1 ()
1168
1169/* Does the target have execution? Can we make it jump (through
1170 hoops), or pop its stack a few times? This means that the current
1171 target is currently executing; for some targets, that's the same as
1172 whether or not the target is capable of execution, but there are
1173 also targets which can be current while not executing. In that
1174 case this will become true after target_create_inferior or
1175 target_attach. */
1176
1177extern int target_has_execution_1 (void);
1178#define target_has_execution target_has_execution_1 ()
1179
1180/* Default implementations for process_stratum targets. Return true
1181 if there's a selected inferior, false otherwise. */
1182
1183extern int default_child_has_all_memory (struct target_ops *ops);
1184extern int default_child_has_memory (struct target_ops *ops);
1185extern int default_child_has_stack (struct target_ops *ops);
1186extern int default_child_has_registers (struct target_ops *ops);
1187extern int default_child_has_execution (struct target_ops *ops);
1188
1189/* Can the target support the debugger control of thread execution?
1190 Can it lock the thread scheduler? */
1191
1192#define target_can_lock_scheduler \
1193 (current_target.to_has_thread_control & tc_schedlock)
1194
1195/* Should the target enable async mode if it is supported? Temporary
1196 cludge until async mode is a strict superset of sync mode. */
1197extern int target_async_permitted;
1198
1199/* Can the target support asynchronous execution? */
1200#define target_can_async_p() (current_target.to_can_async_p ())
1201
1202/* Is the target in asynchronous execution mode? */
1203#define target_is_async_p() (current_target.to_is_async_p ())
1204
1205int target_supports_non_stop (void);
1206
1207/* Put the target in async mode with the specified callback function. */
1208#define target_async(CALLBACK,CONTEXT) \
1209 (current_target.to_async ((CALLBACK), (CONTEXT)))
1210
1211/* This is to be used ONLY within call_function_by_hand(). It provides
1212 a workaround, to have inferior function calls done in sychronous
1213 mode, even though the target is asynchronous. After
1214 target_async_mask(0) is called, calls to target_can_async_p() will
1215 return FALSE , so that target_resume() will not try to start the
1216 target asynchronously. After the inferior stops, we IMMEDIATELY
1217 restore the previous nature of the target, by calling
1218 target_async_mask(1). After that, target_can_async_p() will return
1219 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1220
1221 FIXME ezannoni 1999-12-13: we won't need this once we move
1222 the turning async on and off to the single execution commands,
1223 from where it is done currently, in remote_resume(). */
1224
1225#define target_async_mask(MASK) \
1226 (current_target.to_async_mask (MASK))
1227
1228/* Converts a process id to a string. Usually, the string just contains
1229 `process xyz', but on some systems it may contain
1230 `process xyz thread abc'. */
1231
1232extern char *target_pid_to_str (ptid_t ptid);
1233
1234extern char *normal_pid_to_str (ptid_t ptid);
1235
1236/* Return a short string describing extra information about PID,
1237 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1238 is okay. */
1239
1240#define target_extra_thread_info(TP) \
1241 (current_target.to_extra_thread_info (TP))
1242
1243/* Attempts to find the pathname of the executable file
1244 that was run to create a specified process.
1245
1246 The process PID must be stopped when this operation is used.
1247
1248 If the executable file cannot be determined, NULL is returned.
1249
1250 Else, a pointer to a character string containing the pathname
1251 is returned. This string should be copied into a buffer by
1252 the client if the string will not be immediately used, or if
1253 it must persist. */
1254
1255#define target_pid_to_exec_file(pid) \
1256 (current_target.to_pid_to_exec_file) (pid)
1257
1258/* See the to_thread_architecture description in struct target_ops. */
1259
1260#define target_thread_architecture(ptid) \
1261 (current_target.to_thread_architecture (&current_target, ptid))
1262
1263/*
1264 * Iterator function for target memory regions.
1265 * Calls a callback function once for each memory region 'mapped'
1266 * in the child process. Defined as a simple macro rather than
1267 * as a function macro so that it can be tested for nullity.
1268 */
1269
1270#define target_find_memory_regions(FUNC, DATA) \
1271 (current_target.to_find_memory_regions) (FUNC, DATA)
1272
1273/*
1274 * Compose corefile .note section.
1275 */
1276
1277#define target_make_corefile_notes(BFD, SIZE_P) \
1278 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1279
1280/* Bookmark interfaces. */
1281#define target_get_bookmark(ARGS, FROM_TTY) \
1282 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1283
1284#define target_goto_bookmark(ARG, FROM_TTY) \
1285 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1286
1287/* Hardware watchpoint interfaces. */
1288
1289/* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1290 write). Only the INFERIOR_PTID task is being queried. */
1291
1292#define target_stopped_by_watchpoint \
1293 (*current_target.to_stopped_by_watchpoint)
1294
1295/* Non-zero if we have steppable watchpoints */
1296
1297#define target_have_steppable_watchpoint \
1298 (current_target.to_have_steppable_watchpoint)
1299
1300/* Non-zero if we have continuable watchpoints */
1301
1302#define target_have_continuable_watchpoint \
1303 (current_target.to_have_continuable_watchpoint)
1304
1305/* Provide defaults for hardware watchpoint functions. */
1306
1307/* If the *_hw_beakpoint functions have not been defined
1308 elsewhere use the definitions in the target vector. */
1309
1310/* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1311 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1312 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1313 (including this one?). OTHERTYPE is who knows what... */
1314
1315#define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1316 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1317
1318/* Returns the number of debug registers needed to watch the given
1319 memory region, or zero if not supported. */
1320
1321#define target_region_ok_for_hw_watchpoint(addr, len) \
1322 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1323
1324
1325/* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1326 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1327 COND is the expression for its condition, or NULL if there's none.
1328 Returns 0 for success, 1 if the watchpoint type is not supported,
1329 -1 for failure. */
1330
1331#define target_insert_watchpoint(addr, len, type, cond) \
1332 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1333
1334#define target_remove_watchpoint(addr, len, type, cond) \
1335 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1336
1337#define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1338 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1339
1340#define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1341 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1342
1343/* Return non-zero if target knows the data address which triggered this
1344 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1345 INFERIOR_PTID task is being queried. */
1346#define target_stopped_data_address(target, addr_p) \
1347 (*target.to_stopped_data_address) (target, addr_p)
1348
1349#define target_watchpoint_addr_within_range(target, addr, start, length) \
1350 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1351
1352/* Return non-zero if the target is capable of using hardware to evaluate
1353 the condition expression. In this case, if the condition is false when
1354 the watched memory location changes, execution may continue without the
1355 debugger being notified.
1356
1357 Due to limitations in the hardware implementation, it may be capable of
1358 avoiding triggering the watchpoint in some cases where the condition
1359 expression is false, but may report some false positives as well.
1360 For this reason, GDB will still evaluate the condition expression when
1361 the watchpoint triggers. */
1362#define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1363 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1364
1365/* Target can execute in reverse? */
1366#define target_can_execute_reverse \
1367 (current_target.to_can_execute_reverse ? \
1368 current_target.to_can_execute_reverse () : 0)
1369
1370extern const struct target_desc *target_read_description (struct target_ops *);
1371
1372#define target_get_ada_task_ptid(lwp, tid) \
1373 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1374
1375/* Utility implementation of searching memory. */
1376extern int simple_search_memory (struct target_ops* ops,
1377 CORE_ADDR start_addr,
1378 ULONGEST search_space_len,
1379 const gdb_byte *pattern,
1380 ULONGEST pattern_len,
1381 CORE_ADDR *found_addrp);
1382
1383/* Main entry point for searching memory. */
1384extern int target_search_memory (CORE_ADDR start_addr,
1385 ULONGEST search_space_len,
1386 const gdb_byte *pattern,
1387 ULONGEST pattern_len,
1388 CORE_ADDR *found_addrp);
1389
1390/* Tracepoint-related operations. */
1391
1392#define target_trace_init() \
1393 (*current_target.to_trace_init) ()
1394
1395#define target_download_tracepoint(t) \
1396 (*current_target.to_download_tracepoint) (t)
1397
1398#define target_download_trace_state_variable(tsv) \
1399 (*current_target.to_download_trace_state_variable) (tsv)
1400
1401#define target_trace_start() \
1402 (*current_target.to_trace_start) ()
1403
1404#define target_trace_set_readonly_regions() \
1405 (*current_target.to_trace_set_readonly_regions) ()
1406
1407#define target_get_trace_status(ts) \
1408 (*current_target.to_get_trace_status) (ts)
1409
1410#define target_trace_stop() \
1411 (*current_target.to_trace_stop) ()
1412
1413#define target_trace_find(type,num,addr1,addr2,tpp) \
1414 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1415
1416#define target_get_trace_state_variable_value(tsv,val) \
1417 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1418
1419#define target_save_trace_data(filename) \
1420 (*current_target.to_save_trace_data) (filename)
1421
1422#define target_upload_tracepoints(utpp) \
1423 (*current_target.to_upload_tracepoints) (utpp)
1424
1425#define target_upload_trace_state_variables(utsvp) \
1426 (*current_target.to_upload_trace_state_variables) (utsvp)
1427
1428#define target_get_raw_trace_data(buf,offset,len) \
1429 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1430
1431#define target_set_disconnected_tracing(val) \
1432 (*current_target.to_set_disconnected_tracing) (val)
1433
1434#define target_set_circular_trace_buffer(val) \
1435 (*current_target.to_set_circular_trace_buffer) (val)
1436
1437#define target_get_tib_address(ptid, addr) \
1438 (*current_target.to_get_tib_address) ((ptid), (addr))
1439
1440#define target_set_permissions() \
1441 (*current_target.to_set_permissions) ()
1442
1443#define target_static_tracepoint_marker_at(addr, marker) \
1444 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1445
1446#define target_static_tracepoint_markers_by_strid(marker_id) \
1447 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1448
1449/* Command logging facility. */
1450
1451#define target_log_command(p) \
1452 do \
1453 if (current_target.to_log_command) \
1454 (*current_target.to_log_command) (p); \
1455 while (0)
1456
1457
1458extern int target_core_of_thread (ptid_t ptid);
1459
1460/* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1461 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1462 if there's a mismatch, and -1 if an error is encountered while
1463 reading memory. Throws an error if the functionality is found not
1464 to be supported by the current target. */
1465int target_verify_memory (const gdb_byte *data,
1466 CORE_ADDR memaddr, ULONGEST size);
1467
1468/* Routines for maintenance of the target structures...
1469
1470 add_target: Add a target to the list of all possible targets.
1471
1472 push_target: Make this target the top of the stack of currently used
1473 targets, within its particular stratum of the stack. Result
1474 is 0 if now atop the stack, nonzero if not on top (maybe
1475 should warn user).
1476
1477 unpush_target: Remove this from the stack of currently used targets,
1478 no matter where it is on the list. Returns 0 if no
1479 change, 1 if removed from stack.
1480
1481 pop_target: Remove the top thing on the stack of current targets. */
1482
1483extern void add_target (struct target_ops *);
1484
1485extern void push_target (struct target_ops *);
1486
1487extern int unpush_target (struct target_ops *);
1488
1489extern void target_pre_inferior (int);
1490
1491extern void target_preopen (int);
1492
1493extern void pop_target (void);
1494
1495/* Does whatever cleanup is required to get rid of all pushed targets.
1496 QUITTING is propagated to target_close; it indicates that GDB is
1497 exiting and should not get hung on an error (otherwise it is
1498 important to perform clean termination, even if it takes a
1499 while). */
1500extern void pop_all_targets (int quitting);
1501
1502/* Like pop_all_targets, but pops only targets whose stratum is
1503 strictly above ABOVE_STRATUM. */
1504extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1505
1506extern int target_is_pushed (struct target_ops *t);
1507
1508extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1509 CORE_ADDR offset);
1510
1511/* Struct target_section maps address ranges to file sections. It is
1512 mostly used with BFD files, but can be used without (e.g. for handling
1513 raw disks, or files not in formats handled by BFD). */
1514
1515struct target_section
1516 {
1517 CORE_ADDR addr; /* Lowest address in section */
1518 CORE_ADDR endaddr; /* 1+highest address in section */
1519
1520 struct bfd_section *the_bfd_section;
1521
1522 bfd *bfd; /* BFD file pointer */
1523 };
1524
1525/* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1526
1527struct target_section_table
1528{
1529 struct target_section *sections;
1530 struct target_section *sections_end;
1531};
1532
1533/* Return the "section" containing the specified address. */
1534struct target_section *target_section_by_addr (struct target_ops *target,
1535 CORE_ADDR addr);
1536
1537/* Return the target section table this target (or the targets
1538 beneath) currently manipulate. */
1539
1540extern struct target_section_table *target_get_section_table
1541 (struct target_ops *target);
1542
1543/* From mem-break.c */
1544
1545extern int memory_remove_breakpoint (struct gdbarch *,
1546 struct bp_target_info *);
1547
1548extern int memory_insert_breakpoint (struct gdbarch *,
1549 struct bp_target_info *);
1550
1551extern int default_memory_remove_breakpoint (struct gdbarch *,
1552 struct bp_target_info *);
1553
1554extern int default_memory_insert_breakpoint (struct gdbarch *,
1555 struct bp_target_info *);
1556
1557
1558/* From target.c */
1559
1560extern void initialize_targets (void);
1561
1562extern void noprocess (void) ATTRIBUTE_NORETURN;
1563
1564extern void target_require_runnable (void);
1565
1566extern void find_default_attach (struct target_ops *, char *, int);
1567
1568extern void find_default_create_inferior (struct target_ops *,
1569 char *, char *, char **, int);
1570
1571extern struct target_ops *find_run_target (void);
1572
1573extern struct target_ops *find_target_beneath (struct target_ops *);
1574
1575/* Read OS data object of type TYPE from the target, and return it in
1576 XML format. The result is NUL-terminated and returned as a string,
1577 allocated using xmalloc. If an error occurs or the transfer is
1578 unsupported, NULL is returned. Empty objects are returned as
1579 allocated but empty strings. */
1580
1581extern char *target_get_osdata (const char *type);
1582
1583\f
1584/* Stuff that should be shared among the various remote targets. */
1585
1586/* Debugging level. 0 is off, and non-zero values mean to print some debug
1587 information (higher values, more information). */
1588extern int remote_debug;
1589
1590/* Speed in bits per second, or -1 which means don't mess with the speed. */
1591extern int baud_rate;
1592/* Timeout limit for response from target. */
1593extern int remote_timeout;
1594
1595\f
1596/* Functions for helping to write a native target. */
1597
1598/* This is for native targets which use a unix/POSIX-style waitstatus. */
1599extern void store_waitstatus (struct target_waitstatus *, int);
1600
1601/* These are in common/signals.c, but they're only used by gdb. */
1602extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1603 int);
1604extern int default_target_signal_to_host (struct gdbarch *,
1605 enum target_signal);
1606
1607/* Convert from a number used in a GDB command to an enum target_signal. */
1608extern enum target_signal target_signal_from_command (int);
1609/* End of files in common/signals.c. */
1610
1611/* Set the show memory breakpoints mode to show, and installs a cleanup
1612 to restore it back to the current value. */
1613extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1614
1615extern int may_write_registers;
1616extern int may_write_memory;
1617extern int may_insert_breakpoints;
1618extern int may_insert_tracepoints;
1619extern int may_insert_fast_tracepoints;
1620extern int may_stop;
1621
1622extern void update_target_permissions (void);
1623
1624\f
1625/* Imported from machine dependent code. */
1626
1627/* Blank target vector entries are initialized to target_ignore. */
1628void target_ignore (void);
1629
1630extern struct target_ops deprecated_child_ops;
1631
1632#endif /* !defined (TARGET_H) */