]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame_incremental - gdb/varobj.c
Copyright year update in most files of the GDB Project.
[thirdparty/binutils-gdb.git] / gdb / varobj.c
... / ...
CommitLineData
1/* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010, 2011 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19#include "defs.h"
20#include "exceptions.h"
21#include "value.h"
22#include "expression.h"
23#include "frame.h"
24#include "language.h"
25#include "wrapper.h"
26#include "gdbcmd.h"
27#include "block.h"
28#include "valprint.h"
29
30#include "gdb_assert.h"
31#include "gdb_string.h"
32#include "gdb_regex.h"
33
34#include "varobj.h"
35#include "vec.h"
36#include "gdbthread.h"
37#include "inferior.h"
38
39#if HAVE_PYTHON
40#include "python/python.h"
41#include "python/python-internal.h"
42#else
43typedef int PyObject;
44#endif
45
46/* Non-zero if we want to see trace of varobj level stuff. */
47
48int varobjdebug = 0;
49static void
50show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52{
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54}
55
56/* String representations of gdb's format codes. */
57char *varobj_format_string[] =
58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
59
60/* String representations of gdb's known languages. */
61char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
62
63/* True if we want to allow Python-based pretty-printing. */
64static int pretty_printing = 0;
65
66void
67varobj_enable_pretty_printing (void)
68{
69 pretty_printing = 1;
70}
71
72/* Data structures */
73
74/* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
76struct varobj_root
77{
78
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
81
82 /* Block for which this expression is valid. */
83 struct block *valid_block;
84
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
87 struct frame_id frame;
88
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame. */
99 int floating;
100
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
105 /* Language info for this variable and its children. */
106 struct language_specific *lang;
107
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
110
111 /* Next root variable */
112 struct varobj_root *next;
113};
114
115/* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
118struct varobj
119{
120
121 /* Alloc'd name of the variable for this object. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar). */
124 /* NOTE: This is the "expression". */
125 char *name;
126
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
133 char *obj_name;
134
135 /* Index of this variable in its parent or -1. */
136 int index;
137
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
141 struct type *type;
142
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
147 struct value *value;
148
149 /* The number of (immediate) children this variable has. */
150 int num_children;
151
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
154
155 /* Children of this object. */
156 VEC (varobj_p) *children;
157
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
164 /* Description of the root variable. Points to root variable for
165 children. */
166 struct varobj_root *root;
167
168 /* The format of the output for this object. */
169 enum varobj_display_formats format;
170
171 /* Was this variable updated via a varobj_set_value operation. */
172 int updated;
173
174 /* Last print value. */
175 char *print_value;
176
177 /* Is this variable frozen. Frozen variables are never implicitly
178 updated by -var-update *
179 or -var-update <direct-or-indirect-parent>. */
180 int frozen;
181
182 /* Is the value of this variable intentionally not fetched? It is
183 not fetched if either the variable is frozen, or any parents is
184 frozen. */
185 int not_fetched;
186
187 /* Sub-range of children which the MI consumer has requested. If
188 FROM < 0 or TO < 0, means that all children have been
189 requested. */
190 int from;
191 int to;
192
193 /* The pretty-printer constructor. If NULL, then the default
194 pretty-printer will be looked up. If None, then no
195 pretty-printer will be installed. */
196 PyObject *constructor;
197
198 /* The pretty-printer that has been constructed. If NULL, then a
199 new printer object is needed, and one will be constructed. */
200 PyObject *pretty_printer;
201
202 /* The iterator returned by the printer's 'children' method, or NULL
203 if not available. */
204 PyObject *child_iter;
205
206 /* We request one extra item from the iterator, so that we can
207 report to the caller whether there are more items than we have
208 already reported. However, we don't want to install this value
209 when we read it, because that will mess up future updates. So,
210 we stash it here instead. */
211 PyObject *saved_item;
212};
213
214struct cpstack
215{
216 char *name;
217 struct cpstack *next;
218};
219
220/* A list of varobjs */
221
222struct vlist
223{
224 struct varobj *var;
225 struct vlist *next;
226};
227
228/* Private function prototypes */
229
230/* Helper functions for the above subcommands. */
231
232static int delete_variable (struct cpstack **, struct varobj *, int);
233
234static void delete_variable_1 (struct cpstack **, int *,
235 struct varobj *, int, int);
236
237static int install_variable (struct varobj *);
238
239static void uninstall_variable (struct varobj *);
240
241static struct varobj *create_child (struct varobj *, int, char *);
242
243static struct varobj *
244create_child_with_value (struct varobj *parent, int index, const char *name,
245 struct value *value);
246
247/* Utility routines */
248
249static struct varobj *new_variable (void);
250
251static struct varobj *new_root_variable (void);
252
253static void free_variable (struct varobj *var);
254
255static struct cleanup *make_cleanup_free_variable (struct varobj *var);
256
257static struct type *get_type (struct varobj *var);
258
259static struct type *get_value_type (struct varobj *var);
260
261static struct type *get_target_type (struct type *);
262
263static enum varobj_display_formats variable_default_display (struct varobj *);
264
265static void cppush (struct cpstack **pstack, char *name);
266
267static char *cppop (struct cpstack **pstack);
268
269static int install_new_value (struct varobj *var, struct value *value,
270 int initial);
271
272/* Language-specific routines. */
273
274static enum varobj_languages variable_language (struct varobj *var);
275
276static int number_of_children (struct varobj *);
277
278static char *name_of_variable (struct varobj *);
279
280static char *name_of_child (struct varobj *, int);
281
282static struct value *value_of_root (struct varobj **var_handle, int *);
283
284static struct value *value_of_child (struct varobj *parent, int index);
285
286static char *my_value_of_variable (struct varobj *var,
287 enum varobj_display_formats format);
288
289static char *value_get_print_value (struct value *value,
290 enum varobj_display_formats format,
291 struct varobj *var);
292
293static int varobj_value_is_changeable_p (struct varobj *var);
294
295static int is_root_p (struct varobj *var);
296
297#if HAVE_PYTHON
298
299static struct varobj *varobj_add_child (struct varobj *var,
300 const char *name,
301 struct value *value);
302
303#endif /* HAVE_PYTHON */
304
305/* C implementation */
306
307static int c_number_of_children (struct varobj *var);
308
309static char *c_name_of_variable (struct varobj *parent);
310
311static char *c_name_of_child (struct varobj *parent, int index);
312
313static char *c_path_expr_of_child (struct varobj *child);
314
315static struct value *c_value_of_root (struct varobj **var_handle);
316
317static struct value *c_value_of_child (struct varobj *parent, int index);
318
319static struct type *c_type_of_child (struct varobj *parent, int index);
320
321static char *c_value_of_variable (struct varobj *var,
322 enum varobj_display_formats format);
323
324/* C++ implementation */
325
326static int cplus_number_of_children (struct varobj *var);
327
328static void cplus_class_num_children (struct type *type, int children[3]);
329
330static char *cplus_name_of_variable (struct varobj *parent);
331
332static char *cplus_name_of_child (struct varobj *parent, int index);
333
334static char *cplus_path_expr_of_child (struct varobj *child);
335
336static struct value *cplus_value_of_root (struct varobj **var_handle);
337
338static struct value *cplus_value_of_child (struct varobj *parent, int index);
339
340static struct type *cplus_type_of_child (struct varobj *parent, int index);
341
342static char *cplus_value_of_variable (struct varobj *var,
343 enum varobj_display_formats format);
344
345/* Java implementation */
346
347static int java_number_of_children (struct varobj *var);
348
349static char *java_name_of_variable (struct varobj *parent);
350
351static char *java_name_of_child (struct varobj *parent, int index);
352
353static char *java_path_expr_of_child (struct varobj *child);
354
355static struct value *java_value_of_root (struct varobj **var_handle);
356
357static struct value *java_value_of_child (struct varobj *parent, int index);
358
359static struct type *java_type_of_child (struct varobj *parent, int index);
360
361static char *java_value_of_variable (struct varobj *var,
362 enum varobj_display_formats format);
363
364/* Ada implementation */
365
366static int ada_number_of_children (struct varobj *var);
367
368static char *ada_name_of_variable (struct varobj *parent);
369
370static char *ada_name_of_child (struct varobj *parent, int index);
371
372static char *ada_path_expr_of_child (struct varobj *child);
373
374static struct value *ada_value_of_root (struct varobj **var_handle);
375
376static struct value *ada_value_of_child (struct varobj *parent, int index);
377
378static struct type *ada_type_of_child (struct varobj *parent, int index);
379
380static char *ada_value_of_variable (struct varobj *var,
381 enum varobj_display_formats format);
382
383/* The language specific vector */
384
385struct language_specific
386{
387
388 /* The language of this variable. */
389 enum varobj_languages language;
390
391 /* The number of children of PARENT. */
392 int (*number_of_children) (struct varobj * parent);
393
394 /* The name (expression) of a root varobj. */
395 char *(*name_of_variable) (struct varobj * parent);
396
397 /* The name of the INDEX'th child of PARENT. */
398 char *(*name_of_child) (struct varobj * parent, int index);
399
400 /* Returns the rooted expression of CHILD, which is a variable
401 obtain that has some parent. */
402 char *(*path_expr_of_child) (struct varobj * child);
403
404 /* The ``struct value *'' of the root variable ROOT. */
405 struct value *(*value_of_root) (struct varobj ** root_handle);
406
407 /* The ``struct value *'' of the INDEX'th child of PARENT. */
408 struct value *(*value_of_child) (struct varobj * parent, int index);
409
410 /* The type of the INDEX'th child of PARENT. */
411 struct type *(*type_of_child) (struct varobj * parent, int index);
412
413 /* The current value of VAR. */
414 char *(*value_of_variable) (struct varobj * var,
415 enum varobj_display_formats format);
416};
417
418/* Array of known source language routines. */
419static struct language_specific languages[vlang_end] = {
420 /* Unknown (try treating as C). */
421 {
422 vlang_unknown,
423 c_number_of_children,
424 c_name_of_variable,
425 c_name_of_child,
426 c_path_expr_of_child,
427 c_value_of_root,
428 c_value_of_child,
429 c_type_of_child,
430 c_value_of_variable}
431 ,
432 /* C */
433 {
434 vlang_c,
435 c_number_of_children,
436 c_name_of_variable,
437 c_name_of_child,
438 c_path_expr_of_child,
439 c_value_of_root,
440 c_value_of_child,
441 c_type_of_child,
442 c_value_of_variable}
443 ,
444 /* C++ */
445 {
446 vlang_cplus,
447 cplus_number_of_children,
448 cplus_name_of_variable,
449 cplus_name_of_child,
450 cplus_path_expr_of_child,
451 cplus_value_of_root,
452 cplus_value_of_child,
453 cplus_type_of_child,
454 cplus_value_of_variable}
455 ,
456 /* Java */
457 {
458 vlang_java,
459 java_number_of_children,
460 java_name_of_variable,
461 java_name_of_child,
462 java_path_expr_of_child,
463 java_value_of_root,
464 java_value_of_child,
465 java_type_of_child,
466 java_value_of_variable},
467 /* Ada */
468 {
469 vlang_ada,
470 ada_number_of_children,
471 ada_name_of_variable,
472 ada_name_of_child,
473 ada_path_expr_of_child,
474 ada_value_of_root,
475 ada_value_of_child,
476 ada_type_of_child,
477 ada_value_of_variable}
478};
479
480/* A little convenience enum for dealing with C++/Java. */
481enum vsections
482{
483 v_public = 0, v_private, v_protected
484};
485
486/* Private data */
487
488/* Mappings of varobj_display_formats enums to gdb's format codes. */
489static int format_code[] = { 0, 't', 'd', 'x', 'o' };
490
491/* Header of the list of root variable objects. */
492static struct varobj_root *rootlist;
493
494/* Prime number indicating the number of buckets in the hash table. */
495/* A prime large enough to avoid too many colisions. */
496#define VAROBJ_TABLE_SIZE 227
497
498/* Pointer to the varobj hash table (built at run time). */
499static struct vlist **varobj_table;
500
501/* Is the variable X one of our "fake" children? */
502#define CPLUS_FAKE_CHILD(x) \
503((x) != NULL && (x)->type == NULL && (x)->value == NULL)
504\f
505
506/* API Implementation */
507static int
508is_root_p (struct varobj *var)
509{
510 return (var->root->rootvar == var);
511}
512
513#ifdef HAVE_PYTHON
514/* Helper function to install a Python environment suitable for
515 use during operations on VAR. */
516struct cleanup *
517varobj_ensure_python_env (struct varobj *var)
518{
519 return ensure_python_env (var->root->exp->gdbarch,
520 var->root->exp->language_defn);
521}
522#endif
523
524/* Creates a varobj (not its children). */
525
526/* Return the full FRAME which corresponds to the given CORE_ADDR
527 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
528
529static struct frame_info *
530find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
531{
532 struct frame_info *frame = NULL;
533
534 if (frame_addr == (CORE_ADDR) 0)
535 return NULL;
536
537 for (frame = get_current_frame ();
538 frame != NULL;
539 frame = get_prev_frame (frame))
540 {
541 /* The CORE_ADDR we get as argument was parsed from a string GDB
542 output as $fp. This output got truncated to gdbarch_addr_bit.
543 Truncate the frame base address in the same manner before
544 comparing it against our argument. */
545 CORE_ADDR frame_base = get_frame_base_address (frame);
546 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
547
548 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
549 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
550
551 if (frame_base == frame_addr)
552 return frame;
553 }
554
555 return NULL;
556}
557
558struct varobj *
559varobj_create (char *objname,
560 char *expression, CORE_ADDR frame, enum varobj_type type)
561{
562 struct varobj *var;
563 struct cleanup *old_chain;
564
565 /* Fill out a varobj structure for the (root) variable being constructed. */
566 var = new_root_variable ();
567 old_chain = make_cleanup_free_variable (var);
568
569 if (expression != NULL)
570 {
571 struct frame_info *fi;
572 struct frame_id old_id = null_frame_id;
573 struct block *block;
574 char *p;
575 enum varobj_languages lang;
576 struct value *value = NULL;
577
578 /* Parse and evaluate the expression, filling in as much of the
579 variable's data as possible. */
580
581 if (has_stack_frames ())
582 {
583 /* Allow creator to specify context of variable. */
584 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
585 fi = get_selected_frame (NULL);
586 else
587 /* FIXME: cagney/2002-11-23: This code should be doing a
588 lookup using the frame ID and not just the frame's
589 ``address''. This, of course, means an interface
590 change. However, with out that interface change ISAs,
591 such as the ia64 with its two stacks, won't work.
592 Similar goes for the case where there is a frameless
593 function. */
594 fi = find_frame_addr_in_frame_chain (frame);
595 }
596 else
597 fi = NULL;
598
599 /* frame = -2 means always use selected frame. */
600 if (type == USE_SELECTED_FRAME)
601 var->root->floating = 1;
602
603 block = NULL;
604 if (fi != NULL)
605 block = get_frame_block (fi, 0);
606
607 p = expression;
608 innermost_block = NULL;
609 /* Wrap the call to parse expression, so we can
610 return a sensible error. */
611 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
612 {
613 do_cleanups (old_chain);
614 return NULL;
615 }
616
617 /* Don't allow variables to be created for types. */
618 if (var->root->exp->elts[0].opcode == OP_TYPE)
619 {
620 do_cleanups (old_chain);
621 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
622 " as an expression.\n");
623 return NULL;
624 }
625
626 var->format = variable_default_display (var);
627 var->root->valid_block = innermost_block;
628 var->name = xstrdup (expression);
629 /* For a root var, the name and the expr are the same. */
630 var->path_expr = xstrdup (expression);
631
632 /* When the frame is different from the current frame,
633 we must select the appropriate frame before parsing
634 the expression, otherwise the value will not be current.
635 Since select_frame is so benign, just call it for all cases. */
636 if (innermost_block)
637 {
638 /* User could specify explicit FRAME-ADDR which was not found but
639 EXPRESSION is frame specific and we would not be able to evaluate
640 it correctly next time. With VALID_BLOCK set we must also set
641 FRAME and THREAD_ID. */
642 if (fi == NULL)
643 error (_("Failed to find the specified frame"));
644
645 var->root->frame = get_frame_id (fi);
646 var->root->thread_id = pid_to_thread_id (inferior_ptid);
647 old_id = get_frame_id (get_selected_frame (NULL));
648 select_frame (fi);
649 }
650
651 /* We definitely need to catch errors here.
652 If evaluate_expression succeeds we got the value we wanted.
653 But if it fails, we still go on with a call to evaluate_type(). */
654 if (!gdb_evaluate_expression (var->root->exp, &value))
655 {
656 /* Error getting the value. Try to at least get the
657 right type. */
658 struct value *type_only_value = evaluate_type (var->root->exp);
659
660 var->type = value_type (type_only_value);
661 }
662 else
663 var->type = value_type (value);
664
665 install_new_value (var, value, 1 /* Initial assignment */);
666
667 /* Set language info */
668 lang = variable_language (var);
669 var->root->lang = &languages[lang];
670
671 /* Set ourselves as our root. */
672 var->root->rootvar = var;
673
674 /* Reset the selected frame. */
675 if (frame_id_p (old_id))
676 select_frame (frame_find_by_id (old_id));
677 }
678
679 /* If the variable object name is null, that means this
680 is a temporary variable, so don't install it. */
681
682 if ((var != NULL) && (objname != NULL))
683 {
684 var->obj_name = xstrdup (objname);
685
686 /* If a varobj name is duplicated, the install will fail so
687 we must cleanup. */
688 if (!install_variable (var))
689 {
690 do_cleanups (old_chain);
691 return NULL;
692 }
693 }
694
695 discard_cleanups (old_chain);
696 return var;
697}
698
699/* Generates an unique name that can be used for a varobj. */
700
701char *
702varobj_gen_name (void)
703{
704 static int id = 0;
705 char *obj_name;
706
707 /* Generate a name for this object. */
708 id++;
709 obj_name = xstrprintf ("var%d", id);
710
711 return obj_name;
712}
713
714/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
715 error if OBJNAME cannot be found. */
716
717struct varobj *
718varobj_get_handle (char *objname)
719{
720 struct vlist *cv;
721 const char *chp;
722 unsigned int index = 0;
723 unsigned int i = 1;
724
725 for (chp = objname; *chp; chp++)
726 {
727 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
728 }
729
730 cv = *(varobj_table + index);
731 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
732 cv = cv->next;
733
734 if (cv == NULL)
735 error (_("Variable object not found"));
736
737 return cv->var;
738}
739
740/* Given the handle, return the name of the object. */
741
742char *
743varobj_get_objname (struct varobj *var)
744{
745 return var->obj_name;
746}
747
748/* Given the handle, return the expression represented by the object. */
749
750char *
751varobj_get_expression (struct varobj *var)
752{
753 return name_of_variable (var);
754}
755
756/* Deletes a varobj and all its children if only_children == 0,
757 otherwise deletes only the children; returns a malloc'ed list of
758 all the (malloc'ed) names of the variables that have been deleted
759 (NULL terminated). */
760
761int
762varobj_delete (struct varobj *var, char ***dellist, int only_children)
763{
764 int delcount;
765 int mycount;
766 struct cpstack *result = NULL;
767 char **cp;
768
769 /* Initialize a stack for temporary results. */
770 cppush (&result, NULL);
771
772 if (only_children)
773 /* Delete only the variable children. */
774 delcount = delete_variable (&result, var, 1 /* only the children */ );
775 else
776 /* Delete the variable and all its children. */
777 delcount = delete_variable (&result, var, 0 /* parent+children */ );
778
779 /* We may have been asked to return a list of what has been deleted. */
780 if (dellist != NULL)
781 {
782 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
783
784 cp = *dellist;
785 mycount = delcount;
786 *cp = cppop (&result);
787 while ((*cp != NULL) && (mycount > 0))
788 {
789 mycount--;
790 cp++;
791 *cp = cppop (&result);
792 }
793
794 if (mycount || (*cp != NULL))
795 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
796 mycount);
797 }
798
799 return delcount;
800}
801
802#if HAVE_PYTHON
803
804/* Convenience function for varobj_set_visualizer. Instantiate a
805 pretty-printer for a given value. */
806static PyObject *
807instantiate_pretty_printer (PyObject *constructor, struct value *value)
808{
809 PyObject *val_obj = NULL;
810 PyObject *printer;
811
812 val_obj = value_to_value_object (value);
813 if (! val_obj)
814 return NULL;
815
816 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
817 Py_DECREF (val_obj);
818 return printer;
819}
820
821#endif
822
823/* Set/Get variable object display format. */
824
825enum varobj_display_formats
826varobj_set_display_format (struct varobj *var,
827 enum varobj_display_formats format)
828{
829 switch (format)
830 {
831 case FORMAT_NATURAL:
832 case FORMAT_BINARY:
833 case FORMAT_DECIMAL:
834 case FORMAT_HEXADECIMAL:
835 case FORMAT_OCTAL:
836 var->format = format;
837 break;
838
839 default:
840 var->format = variable_default_display (var);
841 }
842
843 if (varobj_value_is_changeable_p (var)
844 && var->value && !value_lazy (var->value))
845 {
846 xfree (var->print_value);
847 var->print_value = value_get_print_value (var->value, var->format, var);
848 }
849
850 return var->format;
851}
852
853enum varobj_display_formats
854varobj_get_display_format (struct varobj *var)
855{
856 return var->format;
857}
858
859char *
860varobj_get_display_hint (struct varobj *var)
861{
862 char *result = NULL;
863
864#if HAVE_PYTHON
865 struct cleanup *back_to = varobj_ensure_python_env (var);
866
867 if (var->pretty_printer)
868 result = gdbpy_get_display_hint (var->pretty_printer);
869
870 do_cleanups (back_to);
871#endif
872
873 return result;
874}
875
876/* Return true if the varobj has items after TO, false otherwise. */
877
878int
879varobj_has_more (struct varobj *var, int to)
880{
881 if (VEC_length (varobj_p, var->children) > to)
882 return 1;
883 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
884 && var->saved_item != NULL);
885}
886
887/* If the variable object is bound to a specific thread, that
888 is its evaluation can always be done in context of a frame
889 inside that thread, returns GDB id of the thread -- which
890 is always positive. Otherwise, returns -1. */
891int
892varobj_get_thread_id (struct varobj *var)
893{
894 if (var->root->valid_block && var->root->thread_id > 0)
895 return var->root->thread_id;
896 else
897 return -1;
898}
899
900void
901varobj_set_frozen (struct varobj *var, int frozen)
902{
903 /* When a variable is unfrozen, we don't fetch its value.
904 The 'not_fetched' flag remains set, so next -var-update
905 won't complain.
906
907 We don't fetch the value, because for structures the client
908 should do -var-update anyway. It would be bad to have different
909 client-size logic for structure and other types. */
910 var->frozen = frozen;
911}
912
913int
914varobj_get_frozen (struct varobj *var)
915{
916 return var->frozen;
917}
918
919/* A helper function that restricts a range to what is actually
920 available in a VEC. This follows the usual rules for the meaning
921 of FROM and TO -- if either is negative, the entire range is
922 used. */
923
924static void
925restrict_range (VEC (varobj_p) *children, int *from, int *to)
926{
927 if (*from < 0 || *to < 0)
928 {
929 *from = 0;
930 *to = VEC_length (varobj_p, children);
931 }
932 else
933 {
934 if (*from > VEC_length (varobj_p, children))
935 *from = VEC_length (varobj_p, children);
936 if (*to > VEC_length (varobj_p, children))
937 *to = VEC_length (varobj_p, children);
938 if (*from > *to)
939 *from = *to;
940 }
941}
942
943#if HAVE_PYTHON
944
945/* A helper for update_dynamic_varobj_children that installs a new
946 child when needed. */
947
948static void
949install_dynamic_child (struct varobj *var,
950 VEC (varobj_p) **changed,
951 VEC (varobj_p) **new,
952 VEC (varobj_p) **unchanged,
953 int *cchanged,
954 int index,
955 const char *name,
956 struct value *value)
957{
958 if (VEC_length (varobj_p, var->children) < index + 1)
959 {
960 /* There's no child yet. */
961 struct varobj *child = varobj_add_child (var, name, value);
962
963 if (new)
964 {
965 VEC_safe_push (varobj_p, *new, child);
966 *cchanged = 1;
967 }
968 }
969 else
970 {
971 varobj_p existing = VEC_index (varobj_p, var->children, index);
972
973 if (install_new_value (existing, value, 0))
974 {
975 if (changed)
976 VEC_safe_push (varobj_p, *changed, existing);
977 }
978 else if (unchanged)
979 VEC_safe_push (varobj_p, *unchanged, existing);
980 }
981}
982
983static int
984dynamic_varobj_has_child_method (struct varobj *var)
985{
986 struct cleanup *back_to;
987 PyObject *printer = var->pretty_printer;
988 int result;
989
990 back_to = varobj_ensure_python_env (var);
991 result = PyObject_HasAttr (printer, gdbpy_children_cst);
992 do_cleanups (back_to);
993 return result;
994}
995
996#endif
997
998static int
999update_dynamic_varobj_children (struct varobj *var,
1000 VEC (varobj_p) **changed,
1001 VEC (varobj_p) **new,
1002 VEC (varobj_p) **unchanged,
1003 int *cchanged,
1004 int update_children,
1005 int from,
1006 int to)
1007{
1008#if HAVE_PYTHON
1009 struct cleanup *back_to;
1010 PyObject *children;
1011 int i;
1012 PyObject *printer = var->pretty_printer;
1013
1014 back_to = varobj_ensure_python_env (var);
1015
1016 *cchanged = 0;
1017 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
1018 {
1019 do_cleanups (back_to);
1020 return 0;
1021 }
1022
1023 if (update_children || !var->child_iter)
1024 {
1025 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
1026 NULL);
1027
1028 if (!children)
1029 {
1030 gdbpy_print_stack ();
1031 error (_("Null value returned for children"));
1032 }
1033
1034 make_cleanup_py_decref (children);
1035
1036 if (!PyIter_Check (children))
1037 error (_("Returned value is not iterable"));
1038
1039 Py_XDECREF (var->child_iter);
1040 var->child_iter = PyObject_GetIter (children);
1041 if (!var->child_iter)
1042 {
1043 gdbpy_print_stack ();
1044 error (_("Could not get children iterator"));
1045 }
1046
1047 Py_XDECREF (var->saved_item);
1048 var->saved_item = NULL;
1049
1050 i = 0;
1051 }
1052 else
1053 i = VEC_length (varobj_p, var->children);
1054
1055 /* We ask for one extra child, so that MI can report whether there
1056 are more children. */
1057 for (; to < 0 || i < to + 1; ++i)
1058 {
1059 PyObject *item;
1060 int force_done = 0;
1061
1062 /* See if there was a leftover from last time. */
1063 if (var->saved_item)
1064 {
1065 item = var->saved_item;
1066 var->saved_item = NULL;
1067 }
1068 else
1069 item = PyIter_Next (var->child_iter);
1070
1071 if (!item)
1072 {
1073 /* Normal end of iteration. */
1074 if (!PyErr_Occurred ())
1075 break;
1076
1077 /* If we got a memory error, just use the text as the
1078 item. */
1079 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
1080 {
1081 PyObject *type, *value, *trace;
1082 char *name_str, *value_str;
1083
1084 PyErr_Fetch (&type, &value, &trace);
1085 value_str = gdbpy_exception_to_string (type, value);
1086 Py_XDECREF (type);
1087 Py_XDECREF (value);
1088 Py_XDECREF (trace);
1089 if (!value_str)
1090 {
1091 gdbpy_print_stack ();
1092 break;
1093 }
1094
1095 name_str = xstrprintf ("<error at %d>", i);
1096 item = Py_BuildValue ("(ss)", name_str, value_str);
1097 xfree (name_str);
1098 xfree (value_str);
1099 if (!item)
1100 {
1101 gdbpy_print_stack ();
1102 break;
1103 }
1104
1105 force_done = 1;
1106 }
1107 else
1108 {
1109 /* Any other kind of error. */
1110 gdbpy_print_stack ();
1111 break;
1112 }
1113 }
1114
1115 /* We don't want to push the extra child on any report list. */
1116 if (to < 0 || i < to)
1117 {
1118 PyObject *py_v;
1119 const char *name;
1120 struct value *v;
1121 struct cleanup *inner;
1122 int can_mention = from < 0 || i >= from;
1123
1124 inner = make_cleanup_py_decref (item);
1125
1126 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1127 {
1128 gdbpy_print_stack ();
1129 error (_("Invalid item from the child list"));
1130 }
1131
1132 v = convert_value_from_python (py_v);
1133 if (v == NULL)
1134 gdbpy_print_stack ();
1135 install_dynamic_child (var, can_mention ? changed : NULL,
1136 can_mention ? new : NULL,
1137 can_mention ? unchanged : NULL,
1138 can_mention ? cchanged : NULL, i, name, v);
1139 do_cleanups (inner);
1140 }
1141 else
1142 {
1143 Py_XDECREF (var->saved_item);
1144 var->saved_item = item;
1145
1146 /* We want to truncate the child list just before this
1147 element. */
1148 break;
1149 }
1150
1151 if (force_done)
1152 break;
1153 }
1154
1155 if (i < VEC_length (varobj_p, var->children))
1156 {
1157 int j;
1158
1159 *cchanged = 1;
1160 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1161 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1162 VEC_truncate (varobj_p, var->children, i);
1163 }
1164
1165 /* If there are fewer children than requested, note that the list of
1166 children changed. */
1167 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1168 *cchanged = 1;
1169
1170 var->num_children = VEC_length (varobj_p, var->children);
1171
1172 do_cleanups (back_to);
1173
1174 return 1;
1175#else
1176 gdb_assert (0 && "should never be called if Python is not enabled");
1177#endif
1178}
1179
1180int
1181varobj_get_num_children (struct varobj *var)
1182{
1183 if (var->num_children == -1)
1184 {
1185 if (var->pretty_printer)
1186 {
1187 int dummy;
1188
1189 /* If we have a dynamic varobj, don't report -1 children.
1190 So, try to fetch some children first. */
1191 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1192 0, 0, 0);
1193 }
1194 else
1195 var->num_children = number_of_children (var);
1196 }
1197
1198 return var->num_children >= 0 ? var->num_children : 0;
1199}
1200
1201/* Creates a list of the immediate children of a variable object;
1202 the return code is the number of such children or -1 on error. */
1203
1204VEC (varobj_p)*
1205varobj_list_children (struct varobj *var, int *from, int *to)
1206{
1207 char *name;
1208 int i, children_changed;
1209
1210 var->children_requested = 1;
1211
1212 if (var->pretty_printer)
1213 {
1214 /* This, in theory, can result in the number of children changing without
1215 frontend noticing. But well, calling -var-list-children on the same
1216 varobj twice is not something a sane frontend would do. */
1217 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1218 0, 0, *to);
1219 restrict_range (var->children, from, to);
1220 return var->children;
1221 }
1222
1223 if (var->num_children == -1)
1224 var->num_children = number_of_children (var);
1225
1226 /* If that failed, give up. */
1227 if (var->num_children == -1)
1228 return var->children;
1229
1230 /* If we're called when the list of children is not yet initialized,
1231 allocate enough elements in it. */
1232 while (VEC_length (varobj_p, var->children) < var->num_children)
1233 VEC_safe_push (varobj_p, var->children, NULL);
1234
1235 for (i = 0; i < var->num_children; i++)
1236 {
1237 varobj_p existing = VEC_index (varobj_p, var->children, i);
1238
1239 if (existing == NULL)
1240 {
1241 /* Either it's the first call to varobj_list_children for
1242 this variable object, and the child was never created,
1243 or it was explicitly deleted by the client. */
1244 name = name_of_child (var, i);
1245 existing = create_child (var, i, name);
1246 VEC_replace (varobj_p, var->children, i, existing);
1247 }
1248 }
1249
1250 restrict_range (var->children, from, to);
1251 return var->children;
1252}
1253
1254#if HAVE_PYTHON
1255
1256static struct varobj *
1257varobj_add_child (struct varobj *var, const char *name, struct value *value)
1258{
1259 varobj_p v = create_child_with_value (var,
1260 VEC_length (varobj_p, var->children),
1261 name, value);
1262
1263 VEC_safe_push (varobj_p, var->children, v);
1264 return v;
1265}
1266
1267#endif /* HAVE_PYTHON */
1268
1269/* Obtain the type of an object Variable as a string similar to the one gdb
1270 prints on the console. */
1271
1272char *
1273varobj_get_type (struct varobj *var)
1274{
1275 /* For the "fake" variables, do not return a type. (It's type is
1276 NULL, too.)
1277 Do not return a type for invalid variables as well. */
1278 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1279 return NULL;
1280
1281 return type_to_string (var->type);
1282}
1283
1284/* Obtain the type of an object variable. */
1285
1286struct type *
1287varobj_get_gdb_type (struct varobj *var)
1288{
1289 return var->type;
1290}
1291
1292/* Return a pointer to the full rooted expression of varobj VAR.
1293 If it has not been computed yet, compute it. */
1294char *
1295varobj_get_path_expr (struct varobj *var)
1296{
1297 if (var->path_expr != NULL)
1298 return var->path_expr;
1299 else
1300 {
1301 /* For root varobjs, we initialize path_expr
1302 when creating varobj, so here it should be
1303 child varobj. */
1304 gdb_assert (!is_root_p (var));
1305 return (*var->root->lang->path_expr_of_child) (var);
1306 }
1307}
1308
1309enum varobj_languages
1310varobj_get_language (struct varobj *var)
1311{
1312 return variable_language (var);
1313}
1314
1315int
1316varobj_get_attributes (struct varobj *var)
1317{
1318 int attributes = 0;
1319
1320 if (varobj_editable_p (var))
1321 /* FIXME: define masks for attributes. */
1322 attributes |= 0x00000001; /* Editable */
1323
1324 return attributes;
1325}
1326
1327int
1328varobj_pretty_printed_p (struct varobj *var)
1329{
1330 return var->pretty_printer != NULL;
1331}
1332
1333char *
1334varobj_get_formatted_value (struct varobj *var,
1335 enum varobj_display_formats format)
1336{
1337 return my_value_of_variable (var, format);
1338}
1339
1340char *
1341varobj_get_value (struct varobj *var)
1342{
1343 return my_value_of_variable (var, var->format);
1344}
1345
1346/* Set the value of an object variable (if it is editable) to the
1347 value of the given expression. */
1348/* Note: Invokes functions that can call error(). */
1349
1350int
1351varobj_set_value (struct varobj *var, char *expression)
1352{
1353 struct value *val;
1354
1355 /* The argument "expression" contains the variable's new value.
1356 We need to first construct a legal expression for this -- ugh! */
1357 /* Does this cover all the bases? */
1358 struct expression *exp;
1359 struct value *value;
1360 int saved_input_radix = input_radix;
1361 char *s = expression;
1362
1363 gdb_assert (varobj_editable_p (var));
1364
1365 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1366 exp = parse_exp_1 (&s, 0, 0);
1367 if (!gdb_evaluate_expression (exp, &value))
1368 {
1369 /* We cannot proceed without a valid expression. */
1370 xfree (exp);
1371 return 0;
1372 }
1373
1374 /* All types that are editable must also be changeable. */
1375 gdb_assert (varobj_value_is_changeable_p (var));
1376
1377 /* The value of a changeable variable object must not be lazy. */
1378 gdb_assert (!value_lazy (var->value));
1379
1380 /* Need to coerce the input. We want to check if the
1381 value of the variable object will be different
1382 after assignment, and the first thing value_assign
1383 does is coerce the input.
1384 For example, if we are assigning an array to a pointer variable we
1385 should compare the pointer with the array's address, not with the
1386 array's content. */
1387 value = coerce_array (value);
1388
1389 /* The new value may be lazy. gdb_value_assign, or
1390 rather value_contents, will take care of this.
1391 If fetching of the new value will fail, gdb_value_assign
1392 with catch the exception. */
1393 if (!gdb_value_assign (var->value, value, &val))
1394 return 0;
1395
1396 /* If the value has changed, record it, so that next -var-update can
1397 report this change. If a variable had a value of '1', we've set it
1398 to '333' and then set again to '1', when -var-update will report this
1399 variable as changed -- because the first assignment has set the
1400 'updated' flag. There's no need to optimize that, because return value
1401 of -var-update should be considered an approximation. */
1402 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1403 input_radix = saved_input_radix;
1404 return 1;
1405}
1406
1407#if HAVE_PYTHON
1408
1409/* A helper function to install a constructor function and visualizer
1410 in a varobj. */
1411
1412static void
1413install_visualizer (struct varobj *var, PyObject *constructor,
1414 PyObject *visualizer)
1415{
1416 Py_XDECREF (var->constructor);
1417 var->constructor = constructor;
1418
1419 Py_XDECREF (var->pretty_printer);
1420 var->pretty_printer = visualizer;
1421
1422 Py_XDECREF (var->child_iter);
1423 var->child_iter = NULL;
1424}
1425
1426/* Install the default visualizer for VAR. */
1427
1428static void
1429install_default_visualizer (struct varobj *var)
1430{
1431 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1432 if (CPLUS_FAKE_CHILD (var))
1433 return;
1434
1435 if (pretty_printing)
1436 {
1437 PyObject *pretty_printer = NULL;
1438
1439 if (var->value)
1440 {
1441 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1442 if (! pretty_printer)
1443 {
1444 gdbpy_print_stack ();
1445 error (_("Cannot instantiate printer for default visualizer"));
1446 }
1447 }
1448
1449 if (pretty_printer == Py_None)
1450 {
1451 Py_DECREF (pretty_printer);
1452 pretty_printer = NULL;
1453 }
1454
1455 install_visualizer (var, NULL, pretty_printer);
1456 }
1457}
1458
1459/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1460 make a new object. */
1461
1462static void
1463construct_visualizer (struct varobj *var, PyObject *constructor)
1464{
1465 PyObject *pretty_printer;
1466
1467 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1468 if (CPLUS_FAKE_CHILD (var))
1469 return;
1470
1471 Py_INCREF (constructor);
1472 if (constructor == Py_None)
1473 pretty_printer = NULL;
1474 else
1475 {
1476 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1477 if (! pretty_printer)
1478 {
1479 gdbpy_print_stack ();
1480 Py_DECREF (constructor);
1481 constructor = Py_None;
1482 Py_INCREF (constructor);
1483 }
1484
1485 if (pretty_printer == Py_None)
1486 {
1487 Py_DECREF (pretty_printer);
1488 pretty_printer = NULL;
1489 }
1490 }
1491
1492 install_visualizer (var, constructor, pretty_printer);
1493}
1494
1495#endif /* HAVE_PYTHON */
1496
1497/* A helper function for install_new_value. This creates and installs
1498 a visualizer for VAR, if appropriate. */
1499
1500static void
1501install_new_value_visualizer (struct varobj *var)
1502{
1503#if HAVE_PYTHON
1504 /* If the constructor is None, then we want the raw value. If VAR
1505 does not have a value, just skip this. */
1506 if (var->constructor != Py_None && var->value)
1507 {
1508 struct cleanup *cleanup;
1509
1510 cleanup = varobj_ensure_python_env (var);
1511
1512 if (!var->constructor)
1513 install_default_visualizer (var);
1514 else
1515 construct_visualizer (var, var->constructor);
1516
1517 do_cleanups (cleanup);
1518 }
1519#else
1520 /* Do nothing. */
1521#endif
1522}
1523
1524/* Assign a new value to a variable object. If INITIAL is non-zero,
1525 this is the first assignement after the variable object was just
1526 created, or changed type. In that case, just assign the value
1527 and return 0.
1528 Otherwise, assign the new value, and return 1 if the value is
1529 different from the current one, 0 otherwise. The comparison is
1530 done on textual representation of value. Therefore, some types
1531 need not be compared. E.g. for structures the reported value is
1532 always "{...}", so no comparison is necessary here. If the old
1533 value was NULL and new one is not, or vice versa, we always return 1.
1534
1535 The VALUE parameter should not be released -- the function will
1536 take care of releasing it when needed. */
1537static int
1538install_new_value (struct varobj *var, struct value *value, int initial)
1539{
1540 int changeable;
1541 int need_to_fetch;
1542 int changed = 0;
1543 int intentionally_not_fetched = 0;
1544 char *print_value = NULL;
1545
1546 /* We need to know the varobj's type to decide if the value should
1547 be fetched or not. C++ fake children (public/protected/private)
1548 don't have a type. */
1549 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1550 changeable = varobj_value_is_changeable_p (var);
1551
1552 /* If the type has custom visualizer, we consider it to be always
1553 changeable. FIXME: need to make sure this behaviour will not
1554 mess up read-sensitive values. */
1555 if (var->pretty_printer)
1556 changeable = 1;
1557
1558 need_to_fetch = changeable;
1559
1560 /* We are not interested in the address of references, and given
1561 that in C++ a reference is not rebindable, it cannot
1562 meaningfully change. So, get hold of the real value. */
1563 if (value)
1564 value = coerce_ref (value);
1565
1566 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1567 /* For unions, we need to fetch the value implicitly because
1568 of implementation of union member fetch. When gdb
1569 creates a value for a field and the value of the enclosing
1570 structure is not lazy, it immediately copies the necessary
1571 bytes from the enclosing values. If the enclosing value is
1572 lazy, the call to value_fetch_lazy on the field will read
1573 the data from memory. For unions, that means we'll read the
1574 same memory more than once, which is not desirable. So
1575 fetch now. */
1576 need_to_fetch = 1;
1577
1578 /* The new value might be lazy. If the type is changeable,
1579 that is we'll be comparing values of this type, fetch the
1580 value now. Otherwise, on the next update the old value
1581 will be lazy, which means we've lost that old value. */
1582 if (need_to_fetch && value && value_lazy (value))
1583 {
1584 struct varobj *parent = var->parent;
1585 int frozen = var->frozen;
1586
1587 for (; !frozen && parent; parent = parent->parent)
1588 frozen |= parent->frozen;
1589
1590 if (frozen && initial)
1591 {
1592 /* For variables that are frozen, or are children of frozen
1593 variables, we don't do fetch on initial assignment.
1594 For non-initial assignemnt we do the fetch, since it means we're
1595 explicitly asked to compare the new value with the old one. */
1596 intentionally_not_fetched = 1;
1597 }
1598 else if (!gdb_value_fetch_lazy (value))
1599 {
1600 /* Set the value to NULL, so that for the next -var-update,
1601 we don't try to compare the new value with this value,
1602 that we couldn't even read. */
1603 value = NULL;
1604 }
1605 }
1606
1607 /* Get a reference now, before possibly passing it to any Python
1608 code that might release it. */
1609 if (value != NULL)
1610 value_incref (value);
1611
1612 /* Below, we'll be comparing string rendering of old and new
1613 values. Don't get string rendering if the value is
1614 lazy -- if it is, the code above has decided that the value
1615 should not be fetched. */
1616 if (value && !value_lazy (value) && !var->pretty_printer)
1617 print_value = value_get_print_value (value, var->format, var);
1618
1619 /* If the type is changeable, compare the old and the new values.
1620 If this is the initial assignment, we don't have any old value
1621 to compare with. */
1622 if (!initial && changeable)
1623 {
1624 /* If the value of the varobj was changed by -var-set-value,
1625 then the value in the varobj and in the target is the same.
1626 However, that value is different from the value that the
1627 varobj had after the previous -var-update. So need to the
1628 varobj as changed. */
1629 if (var->updated)
1630 {
1631 changed = 1;
1632 }
1633 else if (! var->pretty_printer)
1634 {
1635 /* Try to compare the values. That requires that both
1636 values are non-lazy. */
1637 if (var->not_fetched && value_lazy (var->value))
1638 {
1639 /* This is a frozen varobj and the value was never read.
1640 Presumably, UI shows some "never read" indicator.
1641 Now that we've fetched the real value, we need to report
1642 this varobj as changed so that UI can show the real
1643 value. */
1644 changed = 1;
1645 }
1646 else if (var->value == NULL && value == NULL)
1647 /* Equal. */
1648 ;
1649 else if (var->value == NULL || value == NULL)
1650 {
1651 changed = 1;
1652 }
1653 else
1654 {
1655 gdb_assert (!value_lazy (var->value));
1656 gdb_assert (!value_lazy (value));
1657
1658 gdb_assert (var->print_value != NULL && print_value != NULL);
1659 if (strcmp (var->print_value, print_value) != 0)
1660 changed = 1;
1661 }
1662 }
1663 }
1664
1665 if (!initial && !changeable)
1666 {
1667 /* For values that are not changeable, we don't compare the values.
1668 However, we want to notice if a value was not NULL and now is NULL,
1669 or vise versa, so that we report when top-level varobjs come in scope
1670 and leave the scope. */
1671 changed = (var->value != NULL) != (value != NULL);
1672 }
1673
1674 /* We must always keep the new value, since children depend on it. */
1675 if (var->value != NULL && var->value != value)
1676 value_free (var->value);
1677 var->value = value;
1678 if (value && value_lazy (value) && intentionally_not_fetched)
1679 var->not_fetched = 1;
1680 else
1681 var->not_fetched = 0;
1682 var->updated = 0;
1683
1684 install_new_value_visualizer (var);
1685
1686 /* If we installed a pretty-printer, re-compare the printed version
1687 to see if the variable changed. */
1688 if (var->pretty_printer)
1689 {
1690 xfree (print_value);
1691 print_value = value_get_print_value (var->value, var->format, var);
1692 if ((var->print_value == NULL && print_value != NULL)
1693 || (var->print_value != NULL && print_value == NULL)
1694 || (var->print_value != NULL && print_value != NULL
1695 && strcmp (var->print_value, print_value) != 0))
1696 changed = 1;
1697 }
1698 if (var->print_value)
1699 xfree (var->print_value);
1700 var->print_value = print_value;
1701
1702 gdb_assert (!var->value || value_type (var->value));
1703
1704 return changed;
1705}
1706
1707/* Return the requested range for a varobj. VAR is the varobj. FROM
1708 and TO are out parameters; *FROM and *TO will be set to the
1709 selected sub-range of VAR. If no range was selected using
1710 -var-set-update-range, then both will be -1. */
1711void
1712varobj_get_child_range (struct varobj *var, int *from, int *to)
1713{
1714 *from = var->from;
1715 *to = var->to;
1716}
1717
1718/* Set the selected sub-range of children of VAR to start at index
1719 FROM and end at index TO. If either FROM or TO is less than zero,
1720 this is interpreted as a request for all children. */
1721void
1722varobj_set_child_range (struct varobj *var, int from, int to)
1723{
1724 var->from = from;
1725 var->to = to;
1726}
1727
1728void
1729varobj_set_visualizer (struct varobj *var, const char *visualizer)
1730{
1731#if HAVE_PYTHON
1732 PyObject *mainmod, *globals, *constructor;
1733 struct cleanup *back_to;
1734
1735 back_to = varobj_ensure_python_env (var);
1736
1737 mainmod = PyImport_AddModule ("__main__");
1738 globals = PyModule_GetDict (mainmod);
1739 Py_INCREF (globals);
1740 make_cleanup_py_decref (globals);
1741
1742 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1743
1744 if (! constructor)
1745 {
1746 gdbpy_print_stack ();
1747 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1748 }
1749
1750 construct_visualizer (var, constructor);
1751 Py_XDECREF (constructor);
1752
1753 /* If there are any children now, wipe them. */
1754 varobj_delete (var, NULL, 1 /* children only */);
1755 var->num_children = -1;
1756
1757 do_cleanups (back_to);
1758#else
1759 error (_("Python support required"));
1760#endif
1761}
1762
1763/* Update the values for a variable and its children. This is a
1764 two-pronged attack. First, re-parse the value for the root's
1765 expression to see if it's changed. Then go all the way
1766 through its children, reconstructing them and noting if they've
1767 changed.
1768
1769 The EXPLICIT parameter specifies if this call is result
1770 of MI request to update this specific variable, or
1771 result of implicit -var-update *. For implicit request, we don't
1772 update frozen variables.
1773
1774 NOTE: This function may delete the caller's varobj. If it
1775 returns TYPE_CHANGED, then it has done this and VARP will be modified
1776 to point to the new varobj. */
1777
1778VEC(varobj_update_result) *
1779varobj_update (struct varobj **varp, int explicit)
1780{
1781 int changed = 0;
1782 int type_changed = 0;
1783 int i;
1784 struct value *new;
1785 VEC (varobj_update_result) *stack = NULL;
1786 VEC (varobj_update_result) *result = NULL;
1787
1788 /* Frozen means frozen -- we don't check for any change in
1789 this varobj, including its going out of scope, or
1790 changing type. One use case for frozen varobjs is
1791 retaining previously evaluated expressions, and we don't
1792 want them to be reevaluated at all. */
1793 if (!explicit && (*varp)->frozen)
1794 return result;
1795
1796 if (!(*varp)->root->is_valid)
1797 {
1798 varobj_update_result r = {0};
1799
1800 r.varobj = *varp;
1801 r.status = VAROBJ_INVALID;
1802 VEC_safe_push (varobj_update_result, result, &r);
1803 return result;
1804 }
1805
1806 if ((*varp)->root->rootvar == *varp)
1807 {
1808 varobj_update_result r = {0};
1809
1810 r.varobj = *varp;
1811 r.status = VAROBJ_IN_SCOPE;
1812
1813 /* Update the root variable. value_of_root can return NULL
1814 if the variable is no longer around, i.e. we stepped out of
1815 the frame in which a local existed. We are letting the
1816 value_of_root variable dispose of the varobj if the type
1817 has changed. */
1818 new = value_of_root (varp, &type_changed);
1819 r.varobj = *varp;
1820
1821 r.type_changed = type_changed;
1822 if (install_new_value ((*varp), new, type_changed))
1823 r.changed = 1;
1824
1825 if (new == NULL)
1826 r.status = VAROBJ_NOT_IN_SCOPE;
1827 r.value_installed = 1;
1828
1829 if (r.status == VAROBJ_NOT_IN_SCOPE)
1830 {
1831 if (r.type_changed || r.changed)
1832 VEC_safe_push (varobj_update_result, result, &r);
1833 return result;
1834 }
1835
1836 VEC_safe_push (varobj_update_result, stack, &r);
1837 }
1838 else
1839 {
1840 varobj_update_result r = {0};
1841
1842 r.varobj = *varp;
1843 VEC_safe_push (varobj_update_result, stack, &r);
1844 }
1845
1846 /* Walk through the children, reconstructing them all. */
1847 while (!VEC_empty (varobj_update_result, stack))
1848 {
1849 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1850 struct varobj *v = r.varobj;
1851
1852 VEC_pop (varobj_update_result, stack);
1853
1854 /* Update this variable, unless it's a root, which is already
1855 updated. */
1856 if (!r.value_installed)
1857 {
1858 new = value_of_child (v->parent, v->index);
1859 if (install_new_value (v, new, 0 /* type not changed */))
1860 {
1861 r.changed = 1;
1862 v->updated = 0;
1863 }
1864 }
1865
1866 /* We probably should not get children of a varobj that has a
1867 pretty-printer, but for which -var-list-children was never
1868 invoked. */
1869 if (v->pretty_printer)
1870 {
1871 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1872 int i, children_changed = 0;
1873
1874 if (v->frozen)
1875 continue;
1876
1877 if (!v->children_requested)
1878 {
1879 int dummy;
1880
1881 /* If we initially did not have potential children, but
1882 now we do, consider the varobj as changed.
1883 Otherwise, if children were never requested, consider
1884 it as unchanged -- presumably, such varobj is not yet
1885 expanded in the UI, so we need not bother getting
1886 it. */
1887 if (!varobj_has_more (v, 0))
1888 {
1889 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1890 &dummy, 0, 0, 0);
1891 if (varobj_has_more (v, 0))
1892 r.changed = 1;
1893 }
1894
1895 if (r.changed)
1896 VEC_safe_push (varobj_update_result, result, &r);
1897
1898 continue;
1899 }
1900
1901 /* If update_dynamic_varobj_children returns 0, then we have
1902 a non-conforming pretty-printer, so we skip it. */
1903 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1904 &children_changed, 1,
1905 v->from, v->to))
1906 {
1907 if (children_changed || new)
1908 {
1909 r.children_changed = 1;
1910 r.new = new;
1911 }
1912 /* Push in reverse order so that the first child is
1913 popped from the work stack first, and so will be
1914 added to result first. This does not affect
1915 correctness, just "nicer". */
1916 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1917 {
1918 varobj_p tmp = VEC_index (varobj_p, changed, i);
1919 varobj_update_result r = {0};
1920
1921 r.varobj = tmp;
1922 r.changed = 1;
1923 r.value_installed = 1;
1924 VEC_safe_push (varobj_update_result, stack, &r);
1925 }
1926 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1927 {
1928 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1929
1930 if (!tmp->frozen)
1931 {
1932 varobj_update_result r = {0};
1933
1934 r.varobj = tmp;
1935 r.value_installed = 1;
1936 VEC_safe_push (varobj_update_result, stack, &r);
1937 }
1938 }
1939 if (r.changed || r.children_changed)
1940 VEC_safe_push (varobj_update_result, result, &r);
1941
1942 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1943 has been put into the result vector. */
1944 VEC_free (varobj_p, changed);
1945 VEC_free (varobj_p, unchanged);
1946
1947 continue;
1948 }
1949 }
1950
1951 /* Push any children. Use reverse order so that the first
1952 child is popped from the work stack first, and so
1953 will be added to result first. This does not
1954 affect correctness, just "nicer". */
1955 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1956 {
1957 varobj_p c = VEC_index (varobj_p, v->children, i);
1958
1959 /* Child may be NULL if explicitly deleted by -var-delete. */
1960 if (c != NULL && !c->frozen)
1961 {
1962 varobj_update_result r = {0};
1963
1964 r.varobj = c;
1965 VEC_safe_push (varobj_update_result, stack, &r);
1966 }
1967 }
1968
1969 if (r.changed || r.type_changed)
1970 VEC_safe_push (varobj_update_result, result, &r);
1971 }
1972
1973 VEC_free (varobj_update_result, stack);
1974
1975 return result;
1976}
1977\f
1978
1979/* Helper functions */
1980
1981/*
1982 * Variable object construction/destruction
1983 */
1984
1985static int
1986delete_variable (struct cpstack **resultp, struct varobj *var,
1987 int only_children_p)
1988{
1989 int delcount = 0;
1990
1991 delete_variable_1 (resultp, &delcount, var,
1992 only_children_p, 1 /* remove_from_parent_p */ );
1993
1994 return delcount;
1995}
1996
1997/* Delete the variable object VAR and its children. */
1998/* IMPORTANT NOTE: If we delete a variable which is a child
1999 and the parent is not removed we dump core. It must be always
2000 initially called with remove_from_parent_p set. */
2001static void
2002delete_variable_1 (struct cpstack **resultp, int *delcountp,
2003 struct varobj *var, int only_children_p,
2004 int remove_from_parent_p)
2005{
2006 int i;
2007
2008 /* Delete any children of this variable, too. */
2009 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
2010 {
2011 varobj_p child = VEC_index (varobj_p, var->children, i);
2012
2013 if (!child)
2014 continue;
2015 if (!remove_from_parent_p)
2016 child->parent = NULL;
2017 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
2018 }
2019 VEC_free (varobj_p, var->children);
2020
2021 /* if we were called to delete only the children we are done here. */
2022 if (only_children_p)
2023 return;
2024
2025 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2026 /* If the name is null, this is a temporary variable, that has not
2027 yet been installed, don't report it, it belongs to the caller... */
2028 if (var->obj_name != NULL)
2029 {
2030 cppush (resultp, xstrdup (var->obj_name));
2031 *delcountp = *delcountp + 1;
2032 }
2033
2034 /* If this variable has a parent, remove it from its parent's list. */
2035 /* OPTIMIZATION: if the parent of this variable is also being deleted,
2036 (as indicated by remove_from_parent_p) we don't bother doing an
2037 expensive list search to find the element to remove when we are
2038 discarding the list afterwards. */
2039 if ((remove_from_parent_p) && (var->parent != NULL))
2040 {
2041 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
2042 }
2043
2044 if (var->obj_name != NULL)
2045 uninstall_variable (var);
2046
2047 /* Free memory associated with this variable. */
2048 free_variable (var);
2049}
2050
2051/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
2052static int
2053install_variable (struct varobj *var)
2054{
2055 struct vlist *cv;
2056 struct vlist *newvl;
2057 const char *chp;
2058 unsigned int index = 0;
2059 unsigned int i = 1;
2060
2061 for (chp = var->obj_name; *chp; chp++)
2062 {
2063 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2064 }
2065
2066 cv = *(varobj_table + index);
2067 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2068 cv = cv->next;
2069
2070 if (cv != NULL)
2071 error (_("Duplicate variable object name"));
2072
2073 /* Add varobj to hash table. */
2074 newvl = xmalloc (sizeof (struct vlist));
2075 newvl->next = *(varobj_table + index);
2076 newvl->var = var;
2077 *(varobj_table + index) = newvl;
2078
2079 /* If root, add varobj to root list. */
2080 if (is_root_p (var))
2081 {
2082 /* Add to list of root variables. */
2083 if (rootlist == NULL)
2084 var->root->next = NULL;
2085 else
2086 var->root->next = rootlist;
2087 rootlist = var->root;
2088 }
2089
2090 return 1; /* OK */
2091}
2092
2093/* Unistall the object VAR. */
2094static void
2095uninstall_variable (struct varobj *var)
2096{
2097 struct vlist *cv;
2098 struct vlist *prev;
2099 struct varobj_root *cr;
2100 struct varobj_root *prer;
2101 const char *chp;
2102 unsigned int index = 0;
2103 unsigned int i = 1;
2104
2105 /* Remove varobj from hash table. */
2106 for (chp = var->obj_name; *chp; chp++)
2107 {
2108 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2109 }
2110
2111 cv = *(varobj_table + index);
2112 prev = NULL;
2113 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2114 {
2115 prev = cv;
2116 cv = cv->next;
2117 }
2118
2119 if (varobjdebug)
2120 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2121
2122 if (cv == NULL)
2123 {
2124 warning
2125 ("Assertion failed: Could not find variable object \"%s\" to delete",
2126 var->obj_name);
2127 return;
2128 }
2129
2130 if (prev == NULL)
2131 *(varobj_table + index) = cv->next;
2132 else
2133 prev->next = cv->next;
2134
2135 xfree (cv);
2136
2137 /* If root, remove varobj from root list. */
2138 if (is_root_p (var))
2139 {
2140 /* Remove from list of root variables. */
2141 if (rootlist == var->root)
2142 rootlist = var->root->next;
2143 else
2144 {
2145 prer = NULL;
2146 cr = rootlist;
2147 while ((cr != NULL) && (cr->rootvar != var))
2148 {
2149 prer = cr;
2150 cr = cr->next;
2151 }
2152 if (cr == NULL)
2153 {
2154 warning (_("Assertion failed: Could not find "
2155 "varobj \"%s\" in root list"),
2156 var->obj_name);
2157 return;
2158 }
2159 if (prer == NULL)
2160 rootlist = NULL;
2161 else
2162 prer->next = cr->next;
2163 }
2164 }
2165
2166}
2167
2168/* Create and install a child of the parent of the given name. */
2169static struct varobj *
2170create_child (struct varobj *parent, int index, char *name)
2171{
2172 return create_child_with_value (parent, index, name,
2173 value_of_child (parent, index));
2174}
2175
2176static struct varobj *
2177create_child_with_value (struct varobj *parent, int index, const char *name,
2178 struct value *value)
2179{
2180 struct varobj *child;
2181 char *childs_name;
2182
2183 child = new_variable ();
2184
2185 /* Name is allocated by name_of_child. */
2186 /* FIXME: xstrdup should not be here. */
2187 child->name = xstrdup (name);
2188 child->index = index;
2189 child->parent = parent;
2190 child->root = parent->root;
2191 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2192 child->obj_name = childs_name;
2193 install_variable (child);
2194
2195 /* Compute the type of the child. Must do this before
2196 calling install_new_value. */
2197 if (value != NULL)
2198 /* If the child had no evaluation errors, var->value
2199 will be non-NULL and contain a valid type. */
2200 child->type = value_type (value);
2201 else
2202 /* Otherwise, we must compute the type. */
2203 child->type = (*child->root->lang->type_of_child) (child->parent,
2204 child->index);
2205 install_new_value (child, value, 1);
2206
2207 return child;
2208}
2209\f
2210
2211/*
2212 * Miscellaneous utility functions.
2213 */
2214
2215/* Allocate memory and initialize a new variable. */
2216static struct varobj *
2217new_variable (void)
2218{
2219 struct varobj *var;
2220
2221 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2222 var->name = NULL;
2223 var->path_expr = NULL;
2224 var->obj_name = NULL;
2225 var->index = -1;
2226 var->type = NULL;
2227 var->value = NULL;
2228 var->num_children = -1;
2229 var->parent = NULL;
2230 var->children = NULL;
2231 var->format = 0;
2232 var->root = NULL;
2233 var->updated = 0;
2234 var->print_value = NULL;
2235 var->frozen = 0;
2236 var->not_fetched = 0;
2237 var->children_requested = 0;
2238 var->from = -1;
2239 var->to = -1;
2240 var->constructor = 0;
2241 var->pretty_printer = 0;
2242 var->child_iter = 0;
2243 var->saved_item = 0;
2244
2245 return var;
2246}
2247
2248/* Allocate memory and initialize a new root variable. */
2249static struct varobj *
2250new_root_variable (void)
2251{
2252 struct varobj *var = new_variable ();
2253
2254 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2255 var->root->lang = NULL;
2256 var->root->exp = NULL;
2257 var->root->valid_block = NULL;
2258 var->root->frame = null_frame_id;
2259 var->root->floating = 0;
2260 var->root->rootvar = NULL;
2261 var->root->is_valid = 1;
2262
2263 return var;
2264}
2265
2266/* Free any allocated memory associated with VAR. */
2267static void
2268free_variable (struct varobj *var)
2269{
2270#if HAVE_PYTHON
2271 if (var->pretty_printer)
2272 {
2273 struct cleanup *cleanup = varobj_ensure_python_env (var);
2274 Py_XDECREF (var->constructor);
2275 Py_XDECREF (var->pretty_printer);
2276 Py_XDECREF (var->child_iter);
2277 Py_XDECREF (var->saved_item);
2278 do_cleanups (cleanup);
2279 }
2280#endif
2281
2282 value_free (var->value);
2283
2284 /* Free the expression if this is a root variable. */
2285 if (is_root_p (var))
2286 {
2287 xfree (var->root->exp);
2288 xfree (var->root);
2289 }
2290
2291 xfree (var->name);
2292 xfree (var->obj_name);
2293 xfree (var->print_value);
2294 xfree (var->path_expr);
2295 xfree (var);
2296}
2297
2298static void
2299do_free_variable_cleanup (void *var)
2300{
2301 free_variable (var);
2302}
2303
2304static struct cleanup *
2305make_cleanup_free_variable (struct varobj *var)
2306{
2307 return make_cleanup (do_free_variable_cleanup, var);
2308}
2309
2310/* This returns the type of the variable. It also skips past typedefs
2311 to return the real type of the variable.
2312
2313 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2314 except within get_target_type and get_type. */
2315static struct type *
2316get_type (struct varobj *var)
2317{
2318 struct type *type;
2319
2320 type = var->type;
2321 if (type != NULL)
2322 type = check_typedef (type);
2323
2324 return type;
2325}
2326
2327/* Return the type of the value that's stored in VAR,
2328 or that would have being stored there if the
2329 value were accessible.
2330
2331 This differs from VAR->type in that VAR->type is always
2332 the true type of the expession in the source language.
2333 The return value of this function is the type we're
2334 actually storing in varobj, and using for displaying
2335 the values and for comparing previous and new values.
2336
2337 For example, top-level references are always stripped. */
2338static struct type *
2339get_value_type (struct varobj *var)
2340{
2341 struct type *type;
2342
2343 if (var->value)
2344 type = value_type (var->value);
2345 else
2346 type = var->type;
2347
2348 type = check_typedef (type);
2349
2350 if (TYPE_CODE (type) == TYPE_CODE_REF)
2351 type = get_target_type (type);
2352
2353 type = check_typedef (type);
2354
2355 return type;
2356}
2357
2358/* This returns the target type (or NULL) of TYPE, also skipping
2359 past typedefs, just like get_type ().
2360
2361 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2362 except within get_target_type and get_type. */
2363static struct type *
2364get_target_type (struct type *type)
2365{
2366 if (type != NULL)
2367 {
2368 type = TYPE_TARGET_TYPE (type);
2369 if (type != NULL)
2370 type = check_typedef (type);
2371 }
2372
2373 return type;
2374}
2375
2376/* What is the default display for this variable? We assume that
2377 everything is "natural". Any exceptions? */
2378static enum varobj_display_formats
2379variable_default_display (struct varobj *var)
2380{
2381 return FORMAT_NATURAL;
2382}
2383
2384/* FIXME: The following should be generic for any pointer. */
2385static void
2386cppush (struct cpstack **pstack, char *name)
2387{
2388 struct cpstack *s;
2389
2390 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2391 s->name = name;
2392 s->next = *pstack;
2393 *pstack = s;
2394}
2395
2396/* FIXME: The following should be generic for any pointer. */
2397static char *
2398cppop (struct cpstack **pstack)
2399{
2400 struct cpstack *s;
2401 char *v;
2402
2403 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2404 return NULL;
2405
2406 s = *pstack;
2407 v = s->name;
2408 *pstack = (*pstack)->next;
2409 xfree (s);
2410
2411 return v;
2412}
2413\f
2414/*
2415 * Language-dependencies
2416 */
2417
2418/* Common entry points */
2419
2420/* Get the language of variable VAR. */
2421static enum varobj_languages
2422variable_language (struct varobj *var)
2423{
2424 enum varobj_languages lang;
2425
2426 switch (var->root->exp->language_defn->la_language)
2427 {
2428 default:
2429 case language_c:
2430 lang = vlang_c;
2431 break;
2432 case language_cplus:
2433 lang = vlang_cplus;
2434 break;
2435 case language_java:
2436 lang = vlang_java;
2437 break;
2438 case language_ada:
2439 lang = vlang_ada;
2440 break;
2441 }
2442
2443 return lang;
2444}
2445
2446/* Return the number of children for a given variable.
2447 The result of this function is defined by the language
2448 implementation. The number of children returned by this function
2449 is the number of children that the user will see in the variable
2450 display. */
2451static int
2452number_of_children (struct varobj *var)
2453{
2454 return (*var->root->lang->number_of_children) (var);
2455}
2456
2457/* What is the expression for the root varobj VAR? Returns a malloc'd
2458 string. */
2459static char *
2460name_of_variable (struct varobj *var)
2461{
2462 return (*var->root->lang->name_of_variable) (var);
2463}
2464
2465/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2466 string. */
2467static char *
2468name_of_child (struct varobj *var, int index)
2469{
2470 return (*var->root->lang->name_of_child) (var, index);
2471}
2472
2473/* What is the ``struct value *'' of the root variable VAR?
2474 For floating variable object, evaluation can get us a value
2475 of different type from what is stored in varobj already. In
2476 that case:
2477 - *type_changed will be set to 1
2478 - old varobj will be freed, and new one will be
2479 created, with the same name.
2480 - *var_handle will be set to the new varobj
2481 Otherwise, *type_changed will be set to 0. */
2482static struct value *
2483value_of_root (struct varobj **var_handle, int *type_changed)
2484{
2485 struct varobj *var;
2486
2487 if (var_handle == NULL)
2488 return NULL;
2489
2490 var = *var_handle;
2491
2492 /* This should really be an exception, since this should
2493 only get called with a root variable. */
2494
2495 if (!is_root_p (var))
2496 return NULL;
2497
2498 if (var->root->floating)
2499 {
2500 struct varobj *tmp_var;
2501 char *old_type, *new_type;
2502
2503 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2504 USE_SELECTED_FRAME);
2505 if (tmp_var == NULL)
2506 {
2507 return NULL;
2508 }
2509 old_type = varobj_get_type (var);
2510 new_type = varobj_get_type (tmp_var);
2511 if (strcmp (old_type, new_type) == 0)
2512 {
2513 /* The expression presently stored inside var->root->exp
2514 remembers the locations of local variables relatively to
2515 the frame where the expression was created (in DWARF location
2516 button, for example). Naturally, those locations are not
2517 correct in other frames, so update the expression. */
2518
2519 struct expression *tmp_exp = var->root->exp;
2520
2521 var->root->exp = tmp_var->root->exp;
2522 tmp_var->root->exp = tmp_exp;
2523
2524 varobj_delete (tmp_var, NULL, 0);
2525 *type_changed = 0;
2526 }
2527 else
2528 {
2529 tmp_var->obj_name = xstrdup (var->obj_name);
2530 tmp_var->from = var->from;
2531 tmp_var->to = var->to;
2532 varobj_delete (var, NULL, 0);
2533
2534 install_variable (tmp_var);
2535 *var_handle = tmp_var;
2536 var = *var_handle;
2537 *type_changed = 1;
2538 }
2539 xfree (old_type);
2540 xfree (new_type);
2541 }
2542 else
2543 {
2544 *type_changed = 0;
2545 }
2546
2547 return (*var->root->lang->value_of_root) (var_handle);
2548}
2549
2550/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2551static struct value *
2552value_of_child (struct varobj *parent, int index)
2553{
2554 struct value *value;
2555
2556 value = (*parent->root->lang->value_of_child) (parent, index);
2557
2558 return value;
2559}
2560
2561/* GDB already has a command called "value_of_variable". Sigh. */
2562static char *
2563my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2564{
2565 if (var->root->is_valid)
2566 {
2567 if (var->pretty_printer)
2568 return value_get_print_value (var->value, var->format, var);
2569 return (*var->root->lang->value_of_variable) (var, format);
2570 }
2571 else
2572 return NULL;
2573}
2574
2575static char *
2576value_get_print_value (struct value *value, enum varobj_display_formats format,
2577 struct varobj *var)
2578{
2579 struct ui_file *stb;
2580 struct cleanup *old_chain;
2581 gdb_byte *thevalue = NULL;
2582 struct value_print_options opts;
2583 struct type *type = NULL;
2584 long len = 0;
2585 char *encoding = NULL;
2586 struct gdbarch *gdbarch = NULL;
2587 /* Initialize it just to avoid a GCC false warning. */
2588 CORE_ADDR str_addr = 0;
2589 int string_print = 0;
2590
2591 if (value == NULL)
2592 return NULL;
2593
2594 stb = mem_fileopen ();
2595 old_chain = make_cleanup_ui_file_delete (stb);
2596
2597 gdbarch = get_type_arch (value_type (value));
2598#if HAVE_PYTHON
2599 {
2600 PyObject *value_formatter = var->pretty_printer;
2601
2602 varobj_ensure_python_env (var);
2603
2604 if (value_formatter)
2605 {
2606 /* First check to see if we have any children at all. If so,
2607 we simply return {...}. */
2608 if (dynamic_varobj_has_child_method (var))
2609 {
2610 do_cleanups (old_chain);
2611 return xstrdup ("{...}");
2612 }
2613
2614 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2615 {
2616 struct value *replacement;
2617 PyObject *output = NULL;
2618
2619 output = apply_varobj_pretty_printer (value_formatter,
2620 &replacement,
2621 stb);
2622
2623 /* If we have string like output ... */
2624 if (output)
2625 {
2626 make_cleanup_py_decref (output);
2627
2628 /* If this is a lazy string, extract it. For lazy
2629 strings we always print as a string, so set
2630 string_print. */
2631 if (gdbpy_is_lazy_string (output))
2632 {
2633 gdbpy_extract_lazy_string (output, &str_addr, &type,
2634 &len, &encoding);
2635 make_cleanup (free_current_contents, &encoding);
2636 string_print = 1;
2637 }
2638 else
2639 {
2640 /* If it is a regular (non-lazy) string, extract
2641 it and copy the contents into THEVALUE. If the
2642 hint says to print it as a string, set
2643 string_print. Otherwise just return the extracted
2644 string as a value. */
2645
2646 PyObject *py_str
2647 = python_string_to_target_python_string (output);
2648
2649 if (py_str)
2650 {
2651 char *s = PyString_AsString (py_str);
2652 char *hint;
2653
2654 hint = gdbpy_get_display_hint (value_formatter);
2655 if (hint)
2656 {
2657 if (!strcmp (hint, "string"))
2658 string_print = 1;
2659 xfree (hint);
2660 }
2661
2662 len = PyString_Size (py_str);
2663 thevalue = xmemdup (s, len + 1, len + 1);
2664 type = builtin_type (gdbarch)->builtin_char;
2665 Py_DECREF (py_str);
2666
2667 if (!string_print)
2668 {
2669 do_cleanups (old_chain);
2670 return thevalue;
2671 }
2672
2673 make_cleanup (xfree, thevalue);
2674 }
2675 else
2676 gdbpy_print_stack ();
2677 }
2678 }
2679 /* If the printer returned a replacement value, set VALUE
2680 to REPLACEMENT. If there is not a replacement value,
2681 just use the value passed to this function. */
2682 if (replacement)
2683 value = replacement;
2684 }
2685 }
2686 }
2687#endif
2688
2689 get_formatted_print_options (&opts, format_code[(int) format]);
2690 opts.deref_ref = 0;
2691 opts.raw = 1;
2692
2693 /* If the THEVALUE has contents, it is a regular string. */
2694 if (thevalue)
2695 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2696 else if (string_print)
2697 /* Otherwise, if string_print is set, and it is not a regular
2698 string, it is a lazy string. */
2699 val_print_string (type, encoding, str_addr, len, stb, &opts);
2700 else
2701 /* All other cases. */
2702 common_val_print (value, stb, 0, &opts, current_language);
2703
2704 thevalue = ui_file_xstrdup (stb, NULL);
2705
2706 do_cleanups (old_chain);
2707 return thevalue;
2708}
2709
2710int
2711varobj_editable_p (struct varobj *var)
2712{
2713 struct type *type;
2714
2715 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2716 return 0;
2717
2718 type = get_value_type (var);
2719
2720 switch (TYPE_CODE (type))
2721 {
2722 case TYPE_CODE_STRUCT:
2723 case TYPE_CODE_UNION:
2724 case TYPE_CODE_ARRAY:
2725 case TYPE_CODE_FUNC:
2726 case TYPE_CODE_METHOD:
2727 return 0;
2728 break;
2729
2730 default:
2731 return 1;
2732 break;
2733 }
2734}
2735
2736/* Return non-zero if changes in value of VAR
2737 must be detected and reported by -var-update.
2738 Return zero is -var-update should never report
2739 changes of such values. This makes sense for structures
2740 (since the changes in children values will be reported separately),
2741 or for artifical objects (like 'public' pseudo-field in C++).
2742
2743 Return value of 0 means that gdb need not call value_fetch_lazy
2744 for the value of this variable object. */
2745static int
2746varobj_value_is_changeable_p (struct varobj *var)
2747{
2748 int r;
2749 struct type *type;
2750
2751 if (CPLUS_FAKE_CHILD (var))
2752 return 0;
2753
2754 type = get_value_type (var);
2755
2756 switch (TYPE_CODE (type))
2757 {
2758 case TYPE_CODE_STRUCT:
2759 case TYPE_CODE_UNION:
2760 case TYPE_CODE_ARRAY:
2761 r = 0;
2762 break;
2763
2764 default:
2765 r = 1;
2766 }
2767
2768 return r;
2769}
2770
2771/* Return 1 if that varobj is floating, that is is always evaluated in the
2772 selected frame, and not bound to thread/frame. Such variable objects
2773 are created using '@' as frame specifier to -var-create. */
2774int
2775varobj_floating_p (struct varobj *var)
2776{
2777 return var->root->floating;
2778}
2779
2780/* Given the value and the type of a variable object,
2781 adjust the value and type to those necessary
2782 for getting children of the variable object.
2783 This includes dereferencing top-level references
2784 to all types and dereferencing pointers to
2785 structures.
2786
2787 Both TYPE and *TYPE should be non-null. VALUE
2788 can be null if we want to only translate type.
2789 *VALUE can be null as well -- if the parent
2790 value is not known.
2791
2792 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2793 depending on whether pointer was dereferenced
2794 in this function. */
2795static void
2796adjust_value_for_child_access (struct value **value,
2797 struct type **type,
2798 int *was_ptr)
2799{
2800 gdb_assert (type && *type);
2801
2802 if (was_ptr)
2803 *was_ptr = 0;
2804
2805 *type = check_typedef (*type);
2806
2807 /* The type of value stored in varobj, that is passed
2808 to us, is already supposed to be
2809 reference-stripped. */
2810
2811 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2812
2813 /* Pointers to structures are treated just like
2814 structures when accessing children. Don't
2815 dererences pointers to other types. */
2816 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2817 {
2818 struct type *target_type = get_target_type (*type);
2819 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2820 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2821 {
2822 if (value && *value)
2823 {
2824 int success = gdb_value_ind (*value, value);
2825
2826 if (!success)
2827 *value = NULL;
2828 }
2829 *type = target_type;
2830 if (was_ptr)
2831 *was_ptr = 1;
2832 }
2833 }
2834
2835 /* The 'get_target_type' function calls check_typedef on
2836 result, so we can immediately check type code. No
2837 need to call check_typedef here. */
2838}
2839
2840/* C */
2841static int
2842c_number_of_children (struct varobj *var)
2843{
2844 struct type *type = get_value_type (var);
2845 int children = 0;
2846 struct type *target;
2847
2848 adjust_value_for_child_access (NULL, &type, NULL);
2849 target = get_target_type (type);
2850
2851 switch (TYPE_CODE (type))
2852 {
2853 case TYPE_CODE_ARRAY:
2854 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2855 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2856 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2857 else
2858 /* If we don't know how many elements there are, don't display
2859 any. */
2860 children = 0;
2861 break;
2862
2863 case TYPE_CODE_STRUCT:
2864 case TYPE_CODE_UNION:
2865 children = TYPE_NFIELDS (type);
2866 break;
2867
2868 case TYPE_CODE_PTR:
2869 /* The type here is a pointer to non-struct. Typically, pointers
2870 have one child, except for function ptrs, which have no children,
2871 and except for void*, as we don't know what to show.
2872
2873 We can show char* so we allow it to be dereferenced. If you decide
2874 to test for it, please mind that a little magic is necessary to
2875 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2876 TYPE_NAME == "char". */
2877 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2878 || TYPE_CODE (target) == TYPE_CODE_VOID)
2879 children = 0;
2880 else
2881 children = 1;
2882 break;
2883
2884 default:
2885 /* Other types have no children. */
2886 break;
2887 }
2888
2889 return children;
2890}
2891
2892static char *
2893c_name_of_variable (struct varobj *parent)
2894{
2895 return xstrdup (parent->name);
2896}
2897
2898/* Return the value of element TYPE_INDEX of a structure
2899 value VALUE. VALUE's type should be a structure,
2900 or union, or a typedef to struct/union.
2901
2902 Returns NULL if getting the value fails. Never throws. */
2903static struct value *
2904value_struct_element_index (struct value *value, int type_index)
2905{
2906 struct value *result = NULL;
2907 volatile struct gdb_exception e;
2908 struct type *type = value_type (value);
2909
2910 type = check_typedef (type);
2911
2912 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2913 || TYPE_CODE (type) == TYPE_CODE_UNION);
2914
2915 TRY_CATCH (e, RETURN_MASK_ERROR)
2916 {
2917 if (field_is_static (&TYPE_FIELD (type, type_index)))
2918 result = value_static_field (type, type_index);
2919 else
2920 result = value_primitive_field (value, 0, type_index, type);
2921 }
2922 if (e.reason < 0)
2923 {
2924 return NULL;
2925 }
2926 else
2927 {
2928 return result;
2929 }
2930}
2931
2932/* Obtain the information about child INDEX of the variable
2933 object PARENT.
2934 If CNAME is not null, sets *CNAME to the name of the child relative
2935 to the parent.
2936 If CVALUE is not null, sets *CVALUE to the value of the child.
2937 If CTYPE is not null, sets *CTYPE to the type of the child.
2938
2939 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2940 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2941 to NULL. */
2942static void
2943c_describe_child (struct varobj *parent, int index,
2944 char **cname, struct value **cvalue, struct type **ctype,
2945 char **cfull_expression)
2946{
2947 struct value *value = parent->value;
2948 struct type *type = get_value_type (parent);
2949 char *parent_expression = NULL;
2950 int was_ptr;
2951
2952 if (cname)
2953 *cname = NULL;
2954 if (cvalue)
2955 *cvalue = NULL;
2956 if (ctype)
2957 *ctype = NULL;
2958 if (cfull_expression)
2959 {
2960 *cfull_expression = NULL;
2961 parent_expression = varobj_get_path_expr (parent);
2962 }
2963 adjust_value_for_child_access (&value, &type, &was_ptr);
2964
2965 switch (TYPE_CODE (type))
2966 {
2967 case TYPE_CODE_ARRAY:
2968 if (cname)
2969 *cname
2970 = xstrdup (int_string (index
2971 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2972 10, 1, 0, 0));
2973
2974 if (cvalue && value)
2975 {
2976 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2977
2978 gdb_value_subscript (value, real_index, cvalue);
2979 }
2980
2981 if (ctype)
2982 *ctype = get_target_type (type);
2983
2984 if (cfull_expression)
2985 *cfull_expression =
2986 xstrprintf ("(%s)[%s]", parent_expression,
2987 int_string (index
2988 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2989 10, 1, 0, 0));
2990
2991
2992 break;
2993
2994 case TYPE_CODE_STRUCT:
2995 case TYPE_CODE_UNION:
2996 if (cname)
2997 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2998
2999 if (cvalue && value)
3000 {
3001 /* For C, varobj index is the same as type index. */
3002 *cvalue = value_struct_element_index (value, index);
3003 }
3004
3005 if (ctype)
3006 *ctype = TYPE_FIELD_TYPE (type, index);
3007
3008 if (cfull_expression)
3009 {
3010 char *join = was_ptr ? "->" : ".";
3011
3012 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
3013 TYPE_FIELD_NAME (type, index));
3014 }
3015
3016 break;
3017
3018 case TYPE_CODE_PTR:
3019 if (cname)
3020 *cname = xstrprintf ("*%s", parent->name);
3021
3022 if (cvalue && value)
3023 {
3024 int success = gdb_value_ind (value, cvalue);
3025
3026 if (!success)
3027 *cvalue = NULL;
3028 }
3029
3030 /* Don't use get_target_type because it calls
3031 check_typedef and here, we want to show the true
3032 declared type of the variable. */
3033 if (ctype)
3034 *ctype = TYPE_TARGET_TYPE (type);
3035
3036 if (cfull_expression)
3037 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
3038
3039 break;
3040
3041 default:
3042 /* This should not happen. */
3043 if (cname)
3044 *cname = xstrdup ("???");
3045 if (cfull_expression)
3046 *cfull_expression = xstrdup ("???");
3047 /* Don't set value and type, we don't know then. */
3048 }
3049}
3050
3051static char *
3052c_name_of_child (struct varobj *parent, int index)
3053{
3054 char *name;
3055
3056 c_describe_child (parent, index, &name, NULL, NULL, NULL);
3057 return name;
3058}
3059
3060static char *
3061c_path_expr_of_child (struct varobj *child)
3062{
3063 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
3064 &child->path_expr);
3065 return child->path_expr;
3066}
3067
3068/* If frame associated with VAR can be found, switch
3069 to it and return 1. Otherwise, return 0. */
3070static int
3071check_scope (struct varobj *var)
3072{
3073 struct frame_info *fi;
3074 int scope;
3075
3076 fi = frame_find_by_id (var->root->frame);
3077 scope = fi != NULL;
3078
3079 if (fi)
3080 {
3081 CORE_ADDR pc = get_frame_pc (fi);
3082
3083 if (pc < BLOCK_START (var->root->valid_block) ||
3084 pc >= BLOCK_END (var->root->valid_block))
3085 scope = 0;
3086 else
3087 select_frame (fi);
3088 }
3089 return scope;
3090}
3091
3092static struct value *
3093c_value_of_root (struct varobj **var_handle)
3094{
3095 struct value *new_val = NULL;
3096 struct varobj *var = *var_handle;
3097 int within_scope = 0;
3098 struct cleanup *back_to;
3099
3100 /* Only root variables can be updated... */
3101 if (!is_root_p (var))
3102 /* Not a root var. */
3103 return NULL;
3104
3105 back_to = make_cleanup_restore_current_thread ();
3106
3107 /* Determine whether the variable is still around. */
3108 if (var->root->valid_block == NULL || var->root->floating)
3109 within_scope = 1;
3110 else if (var->root->thread_id == 0)
3111 {
3112 /* The program was single-threaded when the variable object was
3113 created. Technically, it's possible that the program became
3114 multi-threaded since then, but we don't support such
3115 scenario yet. */
3116 within_scope = check_scope (var);
3117 }
3118 else
3119 {
3120 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3121 if (in_thread_list (ptid))
3122 {
3123 switch_to_thread (ptid);
3124 within_scope = check_scope (var);
3125 }
3126 }
3127
3128 if (within_scope)
3129 {
3130 /* We need to catch errors here, because if evaluate
3131 expression fails we want to just return NULL. */
3132 gdb_evaluate_expression (var->root->exp, &new_val);
3133 return new_val;
3134 }
3135
3136 do_cleanups (back_to);
3137
3138 return NULL;
3139}
3140
3141static struct value *
3142c_value_of_child (struct varobj *parent, int index)
3143{
3144 struct value *value = NULL;
3145
3146 c_describe_child (parent, index, NULL, &value, NULL, NULL);
3147 return value;
3148}
3149
3150static struct type *
3151c_type_of_child (struct varobj *parent, int index)
3152{
3153 struct type *type = NULL;
3154
3155 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3156 return type;
3157}
3158
3159static char *
3160c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3161{
3162 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3163 it will print out its children instead of "{...}". So we need to
3164 catch that case explicitly. */
3165 struct type *type = get_type (var);
3166
3167 /* If we have a custom formatter, return whatever string it has
3168 produced. */
3169 if (var->pretty_printer && var->print_value)
3170 return xstrdup (var->print_value);
3171
3172 /* Strip top-level references. */
3173 while (TYPE_CODE (type) == TYPE_CODE_REF)
3174 type = check_typedef (TYPE_TARGET_TYPE (type));
3175
3176 switch (TYPE_CODE (type))
3177 {
3178 case TYPE_CODE_STRUCT:
3179 case TYPE_CODE_UNION:
3180 return xstrdup ("{...}");
3181 /* break; */
3182
3183 case TYPE_CODE_ARRAY:
3184 {
3185 char *number;
3186
3187 number = xstrprintf ("[%d]", var->num_children);
3188 return (number);
3189 }
3190 /* break; */
3191
3192 default:
3193 {
3194 if (var->value == NULL)
3195 {
3196 /* This can happen if we attempt to get the value of a struct
3197 member when the parent is an invalid pointer. This is an
3198 error condition, so we should tell the caller. */
3199 return NULL;
3200 }
3201 else
3202 {
3203 if (var->not_fetched && value_lazy (var->value))
3204 /* Frozen variable and no value yet. We don't
3205 implicitly fetch the value. MI response will
3206 use empty string for the value, which is OK. */
3207 return NULL;
3208
3209 gdb_assert (varobj_value_is_changeable_p (var));
3210 gdb_assert (!value_lazy (var->value));
3211
3212 /* If the specified format is the current one,
3213 we can reuse print_value. */
3214 if (format == var->format)
3215 return xstrdup (var->print_value);
3216 else
3217 return value_get_print_value (var->value, format, var);
3218 }
3219 }
3220 }
3221}
3222\f
3223
3224/* C++ */
3225
3226static int
3227cplus_number_of_children (struct varobj *var)
3228{
3229 struct type *type;
3230 int children, dont_know;
3231
3232 dont_know = 1;
3233 children = 0;
3234
3235 if (!CPLUS_FAKE_CHILD (var))
3236 {
3237 type = get_value_type (var);
3238 adjust_value_for_child_access (NULL, &type, NULL);
3239
3240 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3241 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3242 {
3243 int kids[3];
3244
3245 cplus_class_num_children (type, kids);
3246 if (kids[v_public] != 0)
3247 children++;
3248 if (kids[v_private] != 0)
3249 children++;
3250 if (kids[v_protected] != 0)
3251 children++;
3252
3253 /* Add any baseclasses. */
3254 children += TYPE_N_BASECLASSES (type);
3255 dont_know = 0;
3256
3257 /* FIXME: save children in var. */
3258 }
3259 }
3260 else
3261 {
3262 int kids[3];
3263
3264 type = get_value_type (var->parent);
3265 adjust_value_for_child_access (NULL, &type, NULL);
3266
3267 cplus_class_num_children (type, kids);
3268 if (strcmp (var->name, "public") == 0)
3269 children = kids[v_public];
3270 else if (strcmp (var->name, "private") == 0)
3271 children = kids[v_private];
3272 else
3273 children = kids[v_protected];
3274 dont_know = 0;
3275 }
3276
3277 if (dont_know)
3278 children = c_number_of_children (var);
3279
3280 return children;
3281}
3282
3283/* Compute # of public, private, and protected variables in this class.
3284 That means we need to descend into all baseclasses and find out
3285 how many are there, too. */
3286static void
3287cplus_class_num_children (struct type *type, int children[3])
3288{
3289 int i, vptr_fieldno;
3290 struct type *basetype = NULL;
3291
3292 children[v_public] = 0;
3293 children[v_private] = 0;
3294 children[v_protected] = 0;
3295
3296 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3297 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3298 {
3299 /* If we have a virtual table pointer, omit it. Even if virtual
3300 table pointers are not specifically marked in the debug info,
3301 they should be artificial. */
3302 if ((type == basetype && i == vptr_fieldno)
3303 || TYPE_FIELD_ARTIFICIAL (type, i))
3304 continue;
3305
3306 if (TYPE_FIELD_PROTECTED (type, i))
3307 children[v_protected]++;
3308 else if (TYPE_FIELD_PRIVATE (type, i))
3309 children[v_private]++;
3310 else
3311 children[v_public]++;
3312 }
3313}
3314
3315static char *
3316cplus_name_of_variable (struct varobj *parent)
3317{
3318 return c_name_of_variable (parent);
3319}
3320
3321enum accessibility { private_field, protected_field, public_field };
3322
3323/* Check if field INDEX of TYPE has the specified accessibility.
3324 Return 0 if so and 1 otherwise. */
3325static int
3326match_accessibility (struct type *type, int index, enum accessibility acc)
3327{
3328 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3329 return 1;
3330 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3331 return 1;
3332 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3333 && !TYPE_FIELD_PROTECTED (type, index))
3334 return 1;
3335 else
3336 return 0;
3337}
3338
3339static void
3340cplus_describe_child (struct varobj *parent, int index,
3341 char **cname, struct value **cvalue, struct type **ctype,
3342 char **cfull_expression)
3343{
3344 struct value *value;
3345 struct type *type;
3346 int was_ptr;
3347 char *parent_expression = NULL;
3348
3349 if (cname)
3350 *cname = NULL;
3351 if (cvalue)
3352 *cvalue = NULL;
3353 if (ctype)
3354 *ctype = NULL;
3355 if (cfull_expression)
3356 *cfull_expression = NULL;
3357
3358 if (CPLUS_FAKE_CHILD (parent))
3359 {
3360 value = parent->parent->value;
3361 type = get_value_type (parent->parent);
3362 if (cfull_expression)
3363 parent_expression = varobj_get_path_expr (parent->parent);
3364 }
3365 else
3366 {
3367 value = parent->value;
3368 type = get_value_type (parent);
3369 if (cfull_expression)
3370 parent_expression = varobj_get_path_expr (parent);
3371 }
3372
3373 adjust_value_for_child_access (&value, &type, &was_ptr);
3374
3375 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3376 || TYPE_CODE (type) == TYPE_CODE_UNION)
3377 {
3378 char *join = was_ptr ? "->" : ".";
3379
3380 if (CPLUS_FAKE_CHILD (parent))
3381 {
3382 /* The fields of the class type are ordered as they
3383 appear in the class. We are given an index for a
3384 particular access control type ("public","protected",
3385 or "private"). We must skip over fields that don't
3386 have the access control we are looking for to properly
3387 find the indexed field. */
3388 int type_index = TYPE_N_BASECLASSES (type);
3389 enum accessibility acc = public_field;
3390 int vptr_fieldno;
3391 struct type *basetype = NULL;
3392
3393 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3394 if (strcmp (parent->name, "private") == 0)
3395 acc = private_field;
3396 else if (strcmp (parent->name, "protected") == 0)
3397 acc = protected_field;
3398
3399 while (index >= 0)
3400 {
3401 if ((type == basetype && type_index == vptr_fieldno)
3402 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3403 ; /* ignore vptr */
3404 else if (match_accessibility (type, type_index, acc))
3405 --index;
3406 ++type_index;
3407 }
3408 --type_index;
3409
3410 if (cname)
3411 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3412
3413 if (cvalue && value)
3414 *cvalue = value_struct_element_index (value, type_index);
3415
3416 if (ctype)
3417 *ctype = TYPE_FIELD_TYPE (type, type_index);
3418
3419 if (cfull_expression)
3420 *cfull_expression
3421 = xstrprintf ("((%s)%s%s)", parent_expression,
3422 join,
3423 TYPE_FIELD_NAME (type, type_index));
3424 }
3425 else if (index < TYPE_N_BASECLASSES (type))
3426 {
3427 /* This is a baseclass. */
3428 if (cname)
3429 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3430
3431 if (cvalue && value)
3432 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3433
3434 if (ctype)
3435 {
3436 *ctype = TYPE_FIELD_TYPE (type, index);
3437 }
3438
3439 if (cfull_expression)
3440 {
3441 char *ptr = was_ptr ? "*" : "";
3442
3443 /* Cast the parent to the base' type. Note that in gdb,
3444 expression like
3445 (Base1)d
3446 will create an lvalue, for all appearences, so we don't
3447 need to use more fancy:
3448 *(Base1*)(&d)
3449 construct.
3450
3451 When we are in the scope of the base class or of one
3452 of its children, the type field name will be interpreted
3453 as a constructor, if it exists. Therefore, we must
3454 indicate that the name is a class name by using the
3455 'class' keyword. See PR mi/11912 */
3456 *cfull_expression = xstrprintf ("(%s(class %s%s) %s)",
3457 ptr,
3458 TYPE_FIELD_NAME (type, index),
3459 ptr,
3460 parent_expression);
3461 }
3462 }
3463 else
3464 {
3465 char *access = NULL;
3466 int children[3];
3467
3468 cplus_class_num_children (type, children);
3469
3470 /* Everything beyond the baseclasses can
3471 only be "public", "private", or "protected"
3472
3473 The special "fake" children are always output by varobj in
3474 this order. So if INDEX == 2, it MUST be "protected". */
3475 index -= TYPE_N_BASECLASSES (type);
3476 switch (index)
3477 {
3478 case 0:
3479 if (children[v_public] > 0)
3480 access = "public";
3481 else if (children[v_private] > 0)
3482 access = "private";
3483 else
3484 access = "protected";
3485 break;
3486 case 1:
3487 if (children[v_public] > 0)
3488 {
3489 if (children[v_private] > 0)
3490 access = "private";
3491 else
3492 access = "protected";
3493 }
3494 else if (children[v_private] > 0)
3495 access = "protected";
3496 break;
3497 case 2:
3498 /* Must be protected. */
3499 access = "protected";
3500 break;
3501 default:
3502 /* error! */
3503 break;
3504 }
3505
3506 gdb_assert (access);
3507 if (cname)
3508 *cname = xstrdup (access);
3509
3510 /* Value and type and full expression are null here. */
3511 }
3512 }
3513 else
3514 {
3515 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3516 }
3517}
3518
3519static char *
3520cplus_name_of_child (struct varobj *parent, int index)
3521{
3522 char *name = NULL;
3523
3524 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3525 return name;
3526}
3527
3528static char *
3529cplus_path_expr_of_child (struct varobj *child)
3530{
3531 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3532 &child->path_expr);
3533 return child->path_expr;
3534}
3535
3536static struct value *
3537cplus_value_of_root (struct varobj **var_handle)
3538{
3539 return c_value_of_root (var_handle);
3540}
3541
3542static struct value *
3543cplus_value_of_child (struct varobj *parent, int index)
3544{
3545 struct value *value = NULL;
3546
3547 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3548 return value;
3549}
3550
3551static struct type *
3552cplus_type_of_child (struct varobj *parent, int index)
3553{
3554 struct type *type = NULL;
3555
3556 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3557 return type;
3558}
3559
3560static char *
3561cplus_value_of_variable (struct varobj *var,
3562 enum varobj_display_formats format)
3563{
3564
3565 /* If we have one of our special types, don't print out
3566 any value. */
3567 if (CPLUS_FAKE_CHILD (var))
3568 return xstrdup ("");
3569
3570 return c_value_of_variable (var, format);
3571}
3572\f
3573/* Java */
3574
3575static int
3576java_number_of_children (struct varobj *var)
3577{
3578 return cplus_number_of_children (var);
3579}
3580
3581static char *
3582java_name_of_variable (struct varobj *parent)
3583{
3584 char *p, *name;
3585
3586 name = cplus_name_of_variable (parent);
3587 /* If the name has "-" in it, it is because we
3588 needed to escape periods in the name... */
3589 p = name;
3590
3591 while (*p != '\000')
3592 {
3593 if (*p == '-')
3594 *p = '.';
3595 p++;
3596 }
3597
3598 return name;
3599}
3600
3601static char *
3602java_name_of_child (struct varobj *parent, int index)
3603{
3604 char *name, *p;
3605
3606 name = cplus_name_of_child (parent, index);
3607 /* Escape any periods in the name... */
3608 p = name;
3609
3610 while (*p != '\000')
3611 {
3612 if (*p == '.')
3613 *p = '-';
3614 p++;
3615 }
3616
3617 return name;
3618}
3619
3620static char *
3621java_path_expr_of_child (struct varobj *child)
3622{
3623 return NULL;
3624}
3625
3626static struct value *
3627java_value_of_root (struct varobj **var_handle)
3628{
3629 return cplus_value_of_root (var_handle);
3630}
3631
3632static struct value *
3633java_value_of_child (struct varobj *parent, int index)
3634{
3635 return cplus_value_of_child (parent, index);
3636}
3637
3638static struct type *
3639java_type_of_child (struct varobj *parent, int index)
3640{
3641 return cplus_type_of_child (parent, index);
3642}
3643
3644static char *
3645java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3646{
3647 return cplus_value_of_variable (var, format);
3648}
3649
3650/* Ada specific callbacks for VAROBJs. */
3651
3652static int
3653ada_number_of_children (struct varobj *var)
3654{
3655 return c_number_of_children (var);
3656}
3657
3658static char *
3659ada_name_of_variable (struct varobj *parent)
3660{
3661 return c_name_of_variable (parent);
3662}
3663
3664static char *
3665ada_name_of_child (struct varobj *parent, int index)
3666{
3667 return c_name_of_child (parent, index);
3668}
3669
3670static char*
3671ada_path_expr_of_child (struct varobj *child)
3672{
3673 return c_path_expr_of_child (child);
3674}
3675
3676static struct value *
3677ada_value_of_root (struct varobj **var_handle)
3678{
3679 return c_value_of_root (var_handle);
3680}
3681
3682static struct value *
3683ada_value_of_child (struct varobj *parent, int index)
3684{
3685 return c_value_of_child (parent, index);
3686}
3687
3688static struct type *
3689ada_type_of_child (struct varobj *parent, int index)
3690{
3691 return c_type_of_child (parent, index);
3692}
3693
3694static char *
3695ada_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3696{
3697 return c_value_of_variable (var, format);
3698}
3699
3700/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3701 with an arbitrary caller supplied DATA pointer. */
3702
3703void
3704all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3705{
3706 struct varobj_root *var_root, *var_root_next;
3707
3708 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3709
3710 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3711 {
3712 var_root_next = var_root->next;
3713
3714 (*func) (var_root->rootvar, data);
3715 }
3716}
3717\f
3718extern void _initialize_varobj (void);
3719void
3720_initialize_varobj (void)
3721{
3722 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3723
3724 varobj_table = xmalloc (sizeof_table);
3725 memset (varobj_table, 0, sizeof_table);
3726
3727 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3728 &varobjdebug,
3729 _("Set varobj debugging."),
3730 _("Show varobj debugging."),
3731 _("When non-zero, varobj debugging is enabled."),
3732 NULL, show_varobjdebug,
3733 &setlist, &showlist);
3734}
3735
3736/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3737 defined on globals. It is a helper for varobj_invalidate. */
3738
3739static void
3740varobj_invalidate_iter (struct varobj *var, void *unused)
3741{
3742 /* Floating varobjs are reparsed on each stop, so we don't care if the
3743 presently parsed expression refers to something that's gone. */
3744 if (var->root->floating)
3745 return;
3746
3747 /* global var must be re-evaluated. */
3748 if (var->root->valid_block == NULL)
3749 {
3750 struct varobj *tmp_var;
3751
3752 /* Try to create a varobj with same expression. If we succeed
3753 replace the old varobj, otherwise invalidate it. */
3754 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3755 USE_CURRENT_FRAME);
3756 if (tmp_var != NULL)
3757 {
3758 tmp_var->obj_name = xstrdup (var->obj_name);
3759 varobj_delete (var, NULL, 0);
3760 install_variable (tmp_var);
3761 }
3762 else
3763 var->root->is_valid = 0;
3764 }
3765 else /* locals must be invalidated. */
3766 var->root->is_valid = 0;
3767}
3768
3769/* Invalidate the varobjs that are tied to locals and re-create the ones that
3770 are defined on globals.
3771 Invalidated varobjs will be always printed in_scope="invalid". */
3772
3773void
3774varobj_invalidate (void)
3775{
3776 all_root_varobjs (varobj_invalidate_iter, NULL);
3777}