]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blame_incremental - libctf/ctf-open.c
gdb/linux-nat: initialize lwp_info::syscall_state
[thirdparty/binutils-gdb.git] / libctf / ctf-open.c
... / ...
CommitLineData
1/* Opening CTF files.
2 Copyright (C) 2019-2025 Free Software Foundation, Inc.
3
4 This file is part of libctf.
5
6 libctf is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14 See the GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; see the file COPYING. If not see
18 <http://www.gnu.org/licenses/>. */
19
20#include <ctf-impl.h>
21#include <stddef.h>
22#include <string.h>
23#include <sys/types.h>
24#include <elf.h>
25#include "swap.h"
26#include <bfd.h>
27#include <zlib.h>
28
29static const ctf_dmodel_t _libctf_models[] = {
30 {"ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4},
31 {"LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8},
32 {NULL, 0, 0, 0, 0, 0, 0}
33};
34
35const char _CTF_SECTION[] = ".ctf";
36const char _CTF_NULLSTR[] = "";
37
38/* Version-sensitive accessors. */
39
40static uint32_t
41get_kind_v1 (uint32_t info)
42{
43 return (CTF_V1_INFO_KIND (info));
44}
45
46static uint32_t
47get_root_v1 (uint32_t info)
48{
49 return (CTF_V1_INFO_ISROOT (info));
50}
51
52static uint32_t
53get_vlen_v1 (uint32_t info)
54{
55 return (CTF_V1_INFO_VLEN (info));
56}
57
58static uint32_t
59get_kind_v2 (uint32_t info)
60{
61 return (CTF_V2_INFO_KIND (info));
62}
63
64static uint32_t
65get_root_v2 (uint32_t info)
66{
67 return (CTF_V2_INFO_ISROOT (info));
68}
69
70static uint32_t
71get_vlen_v2 (uint32_t info)
72{
73 return (CTF_V2_INFO_VLEN (info));
74}
75
76static inline ssize_t
77get_ctt_size_common (const ctf_dict_t *fp _libctf_unused_,
78 const ctf_type_t *tp _libctf_unused_,
79 ssize_t *sizep, ssize_t *incrementp, size_t lsize,
80 size_t csize, size_t ctf_type_size,
81 size_t ctf_stype_size, size_t ctf_lsize_sent)
82{
83 ssize_t size, increment;
84
85 if (csize == ctf_lsize_sent)
86 {
87 size = lsize;
88 increment = ctf_type_size;
89 }
90 else
91 {
92 size = csize;
93 increment = ctf_stype_size;
94 }
95
96 if (sizep)
97 *sizep = size;
98 if (incrementp)
99 *incrementp = increment;
100
101 return size;
102}
103
104static ssize_t
105get_ctt_size_v1 (const ctf_dict_t *fp, const ctf_type_t *tp,
106 ssize_t *sizep, ssize_t *incrementp)
107{
108 ctf_type_v1_t *t1p = (ctf_type_v1_t *) tp;
109
110 return (get_ctt_size_common (fp, tp, sizep, incrementp,
111 CTF_TYPE_LSIZE (t1p), t1p->ctt_size,
112 sizeof (ctf_type_v1_t), sizeof (ctf_stype_v1_t),
113 CTF_LSIZE_SENT_V1));
114}
115
116/* Return the size that a v1 will be once it is converted to v2. */
117
118static ssize_t
119get_ctt_size_v2_unconverted (const ctf_dict_t *fp, const ctf_type_t *tp,
120 ssize_t *sizep, ssize_t *incrementp)
121{
122 ctf_type_v1_t *t1p = (ctf_type_v1_t *) tp;
123
124 return (get_ctt_size_common (fp, tp, sizep, incrementp,
125 CTF_TYPE_LSIZE (t1p), t1p->ctt_size,
126 sizeof (ctf_type_t), sizeof (ctf_stype_t),
127 CTF_LSIZE_SENT));
128}
129
130static ssize_t
131get_ctt_size_v2 (const ctf_dict_t *fp, const ctf_type_t *tp,
132 ssize_t *sizep, ssize_t *incrementp)
133{
134 return (get_ctt_size_common (fp, tp, sizep, incrementp,
135 CTF_TYPE_LSIZE (tp), tp->ctt_size,
136 sizeof (ctf_type_t), sizeof (ctf_stype_t),
137 CTF_LSIZE_SENT));
138}
139
140static ssize_t
141get_vbytes_common (ctf_dict_t *fp, unsigned short kind,
142 ssize_t size _libctf_unused_, size_t vlen)
143{
144 switch (kind)
145 {
146 case CTF_K_INTEGER:
147 case CTF_K_FLOAT:
148 return (sizeof (uint32_t));
149 case CTF_K_SLICE:
150 return (sizeof (ctf_slice_t));
151 case CTF_K_ENUM:
152 return (sizeof (ctf_enum_t) * vlen);
153 case CTF_K_FORWARD:
154 case CTF_K_UNKNOWN:
155 case CTF_K_POINTER:
156 case CTF_K_TYPEDEF:
157 case CTF_K_VOLATILE:
158 case CTF_K_CONST:
159 case CTF_K_RESTRICT:
160 return 0;
161 default:
162 ctf_set_errno (fp, ECTF_CORRUPT);
163 ctf_err_warn (fp, 0, 0, _("detected invalid CTF kind: %x"), kind);
164 return -1;
165 }
166}
167
168static ssize_t
169get_vbytes_v1 (ctf_dict_t *fp, unsigned short kind, ssize_t size, size_t vlen)
170{
171 switch (kind)
172 {
173 case CTF_K_ARRAY:
174 return (sizeof (ctf_array_v1_t));
175 case CTF_K_FUNCTION:
176 return (sizeof (unsigned short) * (vlen + (vlen & 1)));
177 case CTF_K_STRUCT:
178 case CTF_K_UNION:
179 if (size < CTF_LSTRUCT_THRESH_V1)
180 return (sizeof (ctf_member_v1_t) * vlen);
181 else
182 return (sizeof (ctf_lmember_v1_t) * vlen);
183 }
184
185 return (get_vbytes_common (fp, kind, size, vlen));
186}
187
188static ssize_t
189get_vbytes_v2 (ctf_dict_t *fp, unsigned short kind, ssize_t size, size_t vlen)
190{
191 switch (kind)
192 {
193 case CTF_K_ARRAY:
194 return (sizeof (ctf_array_t));
195 case CTF_K_FUNCTION:
196 return (sizeof (uint32_t) * (vlen + (vlen & 1)));
197 case CTF_K_STRUCT:
198 case CTF_K_UNION:
199 if (size < CTF_LSTRUCT_THRESH)
200 return (sizeof (ctf_member_t) * vlen);
201 else
202 return (sizeof (ctf_lmember_t) * vlen);
203 }
204
205 return (get_vbytes_common (fp, kind, size, vlen));
206}
207
208static const ctf_dictops_t ctf_dictops[] = {
209 {NULL, NULL, NULL, NULL, NULL},
210 /* CTF_VERSION_1 */
211 {get_kind_v1, get_root_v1, get_vlen_v1, get_ctt_size_v1, get_vbytes_v1},
212 /* CTF_VERSION_1_UPGRADED_3 */
213 {get_kind_v2, get_root_v2, get_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
214 /* CTF_VERSION_2 */
215 {get_kind_v2, get_root_v2, get_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
216 /* CTF_VERSION_3, identical to 2: only new type kinds */
217 {get_kind_v2, get_root_v2, get_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
218};
219
220/* Initialize the symtab translation table as appropriate for its indexing
221 state. For unindexed symtypetabs, fill each entry with the offset of the CTF
222 type or function data corresponding to each STT_FUNC or STT_OBJECT entry in
223 the symbol table. For indexed symtypetabs, do nothing: the needed
224 initialization for indexed lookups may be quite expensive, so it is done only
225 as needed, when lookups happen. (In particular, the majority of indexed
226 symtypetabs come from the compiler, and all the linker does is iteration over
227 all entries, which doesn't need this initialization.)
228
229 The SP symbol table section may be NULL if there is no symtab.
230
231 If init_symtab works on one call, it cannot fail on future calls to the same
232 fp: ctf_symsect_endianness relies on this. */
233
234static int
235init_symtab (ctf_dict_t *fp, const ctf_header_t *hp, const ctf_sect_t *sp)
236{
237 const unsigned char *symp;
238 int skip_func_info = 0;
239 int i;
240 uint32_t *xp = fp->ctf_sxlate;
241 uint32_t *xend = PTR_ADD (xp, fp->ctf_nsyms);
242
243 uint32_t objtoff = hp->cth_objtoff;
244 uint32_t funcoff = hp->cth_funcoff;
245
246 /* If the CTF_F_NEWFUNCINFO flag is not set, pretend the func info section
247 is empty: this compiler is too old to emit a function info section we
248 understand. */
249
250 if (!(hp->cth_flags & CTF_F_NEWFUNCINFO))
251 skip_func_info = 1;
252
253 if (hp->cth_objtidxoff < hp->cth_funcidxoff)
254 fp->ctf_objtidx_names = (uint32_t *) (fp->ctf_buf + hp->cth_objtidxoff);
255 if (hp->cth_funcidxoff < hp->cth_varoff && !skip_func_info)
256 fp->ctf_funcidx_names = (uint32_t *) (fp->ctf_buf + hp->cth_funcidxoff);
257
258 /* Don't bother doing the rest if everything is indexed, or if we don't have a
259 symbol table: we will never use it. */
260 if ((fp->ctf_objtidx_names && fp->ctf_funcidx_names) || !sp || !sp->cts_data)
261 return 0;
262
263 /* The CTF data object and function type sections are ordered to match the
264 relative order of the respective symbol types in the symtab, unless there
265 is an index section, in which case the order is arbitrary and the index
266 gives the mapping. If no type information is available for a symbol table
267 entry, a pad is inserted in the CTF section. As a further optimization,
268 anonymous or undefined symbols are omitted from the CTF data. If an
269 index is available for function symbols but not object symbols, or vice
270 versa, we populate the xslate table for the unindexed symbols only. */
271
272 for (i = 0, symp = sp->cts_data; xp < xend; xp++, symp += sp->cts_entsize,
273 i++)
274 {
275 ctf_link_sym_t sym;
276
277 switch (sp->cts_entsize)
278 {
279 case sizeof (Elf64_Sym):
280 {
281 const Elf64_Sym *symp64 = (Elf64_Sym *) (uintptr_t) symp;
282 ctf_elf64_to_link_sym (fp, &sym, symp64, i);
283 }
284 break;
285 case sizeof (Elf32_Sym):
286 {
287 const Elf32_Sym *symp32 = (Elf32_Sym *) (uintptr_t) symp;
288 ctf_elf32_to_link_sym (fp, &sym, symp32, i);
289 }
290 break;
291 default:
292 return ECTF_SYMTAB;
293 }
294
295 /* This call may be led astray if our idea of the symtab's endianness is
296 wrong, but when this is fixed by a call to ctf_symsect_endianness,
297 init_symtab will be called again with the right endianness in
298 force. */
299 if (ctf_symtab_skippable (&sym))
300 {
301 *xp = -1u;
302 continue;
303 }
304
305 switch (sym.st_type)
306 {
307 case STT_OBJECT:
308 if (fp->ctf_objtidx_names || objtoff >= hp->cth_funcoff)
309 {
310 *xp = -1u;
311 break;
312 }
313
314 *xp = objtoff;
315 objtoff += sizeof (uint32_t);
316 break;
317
318 case STT_FUNC:
319 if (fp->ctf_funcidx_names || funcoff >= hp->cth_objtidxoff
320 || skip_func_info)
321 {
322 *xp = -1u;
323 break;
324 }
325
326 *xp = funcoff;
327 funcoff += sizeof (uint32_t);
328 break;
329
330 default:
331 *xp = -1u;
332 break;
333 }
334 }
335
336 ctf_dprintf ("loaded %lu symtab entries\n", fp->ctf_nsyms);
337 return 0;
338}
339
340/* Reset the CTF base pointer and derive the buf pointer from it, initializing
341 everything in the ctf_dict that depends on the base or buf pointers.
342
343 The original gap between the buf and base pointers, if any -- the original,
344 unconverted CTF header -- is kept, but its contents are not specified and are
345 never used. */
346
347static void
348ctf_set_base (ctf_dict_t *fp, const ctf_header_t *hp, unsigned char *base)
349{
350 fp->ctf_buf = base + (fp->ctf_buf - fp->ctf_base);
351 fp->ctf_base = base;
352 fp->ctf_vars = (ctf_varent_t *) ((const char *) fp->ctf_buf +
353 hp->cth_varoff);
354 fp->ctf_nvars = (hp->cth_typeoff - hp->cth_varoff) / sizeof (ctf_varent_t);
355
356 fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *) fp->ctf_buf
357 + hp->cth_stroff;
358 fp->ctf_str[CTF_STRTAB_0].cts_len = hp->cth_strlen;
359
360 /* If we have a parent dict name and label, store the relocated string
361 pointers in the CTF dict for easy access later. */
362
363 /* Note: before conversion, these will be set to values that will be
364 immediately invalidated by the conversion process, but the conversion
365 process will call ctf_set_base() again to fix things up. */
366
367 if (hp->cth_parlabel != 0)
368 fp->ctf_parlabel = ctf_strptr (fp, hp->cth_parlabel);
369 if (hp->cth_parname != 0)
370 fp->ctf_parname = ctf_strptr (fp, hp->cth_parname);
371 if (hp->cth_cuname != 0)
372 fp->ctf_cuname = ctf_strptr (fp, hp->cth_cuname);
373
374 if (fp->ctf_cuname)
375 ctf_dprintf ("ctf_set_base: CU name %s\n", fp->ctf_cuname);
376 if (fp->ctf_parname)
377 ctf_dprintf ("ctf_set_base: parent name %s (label %s)\n",
378 fp->ctf_parname,
379 fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
380}
381
382/* Set the version of the CTF file. */
383
384/* When this is reset, LCTF_* changes behaviour, but there is no guarantee that
385 the variable data list associated with each type has been upgraded: the
386 caller must ensure this has been done in advance. */
387
388static void
389ctf_set_version (ctf_dict_t *fp, ctf_header_t *cth, int ctf_version)
390{
391 fp->ctf_version = ctf_version;
392 cth->cth_version = ctf_version;
393 fp->ctf_dictops = &ctf_dictops[ctf_version];
394}
395
396
397/* Upgrade the header to CTF_VERSION_3. The upgrade is done in-place. */
398static void
399upgrade_header (ctf_header_t *hp)
400{
401 ctf_header_v2_t *oldhp = (ctf_header_v2_t *) hp;
402
403 hp->cth_strlen = oldhp->cth_strlen;
404 hp->cth_stroff = oldhp->cth_stroff;
405 hp->cth_typeoff = oldhp->cth_typeoff;
406 hp->cth_varoff = oldhp->cth_varoff;
407 hp->cth_funcidxoff = hp->cth_varoff; /* No index sections. */
408 hp->cth_objtidxoff = hp->cth_funcidxoff;
409 hp->cth_funcoff = oldhp->cth_funcoff;
410 hp->cth_objtoff = oldhp->cth_objtoff;
411 hp->cth_lbloff = oldhp->cth_lbloff;
412 hp->cth_cuname = 0; /* No CU name. */
413}
414
415/* Upgrade the type table to CTF_VERSION_3 (really CTF_VERSION_1_UPGRADED_3)
416 from CTF_VERSION_1.
417
418 The upgrade is not done in-place: the ctf_base is moved. ctf_strptr() must
419 not be called before reallocation is complete.
420
421 Sections not checked here due to nonexistence or nonpopulated state in older
422 formats: objtidx, funcidx.
423
424 Type kinds not checked here due to nonexistence in older formats:
425 CTF_K_SLICE. */
426static int
427upgrade_types_v1 (ctf_dict_t *fp, ctf_header_t *cth)
428{
429 const ctf_type_v1_t *tbuf;
430 const ctf_type_v1_t *tend;
431 unsigned char *ctf_base, *old_ctf_base = (unsigned char *) fp->ctf_dynbase;
432 ctf_type_t *t2buf;
433
434 ssize_t increase = 0, size, increment, v2increment, vbytes, v2bytes;
435 const ctf_type_v1_t *tp;
436 ctf_type_t *t2p;
437
438 tbuf = (ctf_type_v1_t *) (fp->ctf_buf + cth->cth_typeoff);
439 tend = (ctf_type_v1_t *) (fp->ctf_buf + cth->cth_stroff);
440
441 /* Much like init_static_types(), this is a two-pass process.
442
443 First, figure out the new type-section size needed. (It is possible,
444 in theory, for it to be less than the old size, but this is very
445 unlikely. It cannot be so small that cth_typeoff ends up of negative
446 size. We validate this with an assertion below.)
447
448 We must cater not only for changes in vlen and types sizes but also
449 for changes in 'increment', which happen because v2 places some types
450 into ctf_stype_t where v1 would be forced to use the larger non-stype. */
451
452 for (tp = tbuf; tp < tend;
453 tp = (ctf_type_v1_t *) ((uintptr_t) tp + increment + vbytes))
454 {
455 unsigned short kind = CTF_V1_INFO_KIND (tp->ctt_info);
456 unsigned long vlen = CTF_V1_INFO_VLEN (tp->ctt_info);
457
458 size = get_ctt_size_v1 (fp, (const ctf_type_t *) tp, NULL, &increment);
459 vbytes = get_vbytes_v1 (fp, kind, size, vlen);
460
461 get_ctt_size_v2_unconverted (fp, (const ctf_type_t *) tp, NULL,
462 &v2increment);
463 v2bytes = get_vbytes_v2 (fp, kind, size, vlen);
464
465 if ((vbytes < 0) || (size < 0))
466 return ECTF_CORRUPT;
467
468 increase += v2increment - increment; /* May be negative. */
469 increase += v2bytes - vbytes;
470 }
471
472 /* Allocate enough room for the new buffer, then copy everything but the type
473 section into place, and reset the base accordingly. Leave the version
474 number unchanged, so that LCTF_INFO_* still works on the
475 as-yet-untranslated type info. */
476
477 if ((ctf_base = malloc (fp->ctf_size + increase)) == NULL)
478 return ECTF_ZALLOC;
479
480 /* Start at ctf_buf, not ctf_base, to squeeze out the original header: we
481 never use it and it is unconverted. */
482
483 memcpy (ctf_base, fp->ctf_buf, cth->cth_typeoff);
484 memcpy (ctf_base + cth->cth_stroff + increase,
485 fp->ctf_buf + cth->cth_stroff, cth->cth_strlen);
486
487 memset (ctf_base + cth->cth_typeoff, 0, cth->cth_stroff - cth->cth_typeoff
488 + increase);
489
490 cth->cth_stroff += increase;
491 fp->ctf_size += increase;
492 assert (cth->cth_stroff >= cth->cth_typeoff);
493 fp->ctf_base = ctf_base;
494 fp->ctf_buf = ctf_base;
495 fp->ctf_dynbase = ctf_base;
496 ctf_set_base (fp, cth, ctf_base);
497
498 t2buf = (ctf_type_t *) (fp->ctf_buf + cth->cth_typeoff);
499
500 /* Iterate through all the types again, upgrading them.
501
502 Everything that hasn't changed can just be outright memcpy()ed.
503 Things that have changed need field-by-field consideration. */
504
505 for (tp = tbuf, t2p = t2buf; tp < tend;
506 tp = (ctf_type_v1_t *) ((uintptr_t) tp + increment + vbytes),
507 t2p = (ctf_type_t *) ((uintptr_t) t2p + v2increment + v2bytes))
508 {
509 unsigned short kind = CTF_V1_INFO_KIND (tp->ctt_info);
510 int isroot = CTF_V1_INFO_ISROOT (tp->ctt_info);
511 unsigned long vlen = CTF_V1_INFO_VLEN (tp->ctt_info);
512 ssize_t v2size;
513 void *vdata, *v2data;
514
515 size = get_ctt_size_v1 (fp, (const ctf_type_t *) tp, NULL, &increment);
516 vbytes = get_vbytes_v1 (fp, kind, size, vlen);
517
518 t2p->ctt_name = tp->ctt_name;
519 t2p->ctt_info = CTF_TYPE_INFO (kind, isroot, vlen);
520
521 switch (kind)
522 {
523 case CTF_K_FUNCTION:
524 case CTF_K_FORWARD:
525 case CTF_K_TYPEDEF:
526 case CTF_K_POINTER:
527 case CTF_K_VOLATILE:
528 case CTF_K_CONST:
529 case CTF_K_RESTRICT:
530 t2p->ctt_type = tp->ctt_type;
531 break;
532 case CTF_K_INTEGER:
533 case CTF_K_FLOAT:
534 case CTF_K_ARRAY:
535 case CTF_K_STRUCT:
536 case CTF_K_UNION:
537 case CTF_K_ENUM:
538 case CTF_K_UNKNOWN:
539 if ((size_t) size <= CTF_MAX_SIZE)
540 t2p->ctt_size = size;
541 else
542 {
543 t2p->ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size);
544 t2p->ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size);
545 }
546 break;
547 }
548
549 v2size = get_ctt_size_v2 (fp, t2p, NULL, &v2increment);
550 v2bytes = get_vbytes_v2 (fp, kind, v2size, vlen);
551
552 /* Catch out-of-sync get_ctt_size_*(). The count goes wrong if
553 these are not identical (and having them different makes no
554 sense semantically). */
555
556 assert (size == v2size);
557
558 /* Now the varlen info. */
559
560 vdata = (void *) ((uintptr_t) tp + increment);
561 v2data = (void *) ((uintptr_t) t2p + v2increment);
562
563 switch (kind)
564 {
565 case CTF_K_ARRAY:
566 {
567 const ctf_array_v1_t *ap = (const ctf_array_v1_t *) vdata;
568 ctf_array_t *a2p = (ctf_array_t *) v2data;
569
570 a2p->cta_contents = ap->cta_contents;
571 a2p->cta_index = ap->cta_index;
572 a2p->cta_nelems = ap->cta_nelems;
573 break;
574 }
575 case CTF_K_STRUCT:
576 case CTF_K_UNION:
577 {
578 ctf_member_t tmp;
579 const ctf_member_v1_t *m1 = (const ctf_member_v1_t *) vdata;
580 const ctf_lmember_v1_t *lm1 = (const ctf_lmember_v1_t *) m1;
581 ctf_member_t *m2 = (ctf_member_t *) v2data;
582 ctf_lmember_t *lm2 = (ctf_lmember_t *) m2;
583 unsigned long i;
584
585 /* We walk all four pointers forward, but only reference the two
586 that are valid for the given size, to avoid quadruplicating all
587 the code. */
588
589 for (i = vlen; i != 0; i--, m1++, lm1++, m2++, lm2++)
590 {
591 size_t offset;
592 if (size < CTF_LSTRUCT_THRESH_V1)
593 {
594 offset = m1->ctm_offset;
595 tmp.ctm_name = m1->ctm_name;
596 tmp.ctm_type = m1->ctm_type;
597 }
598 else
599 {
600 offset = CTF_LMEM_OFFSET (lm1);
601 tmp.ctm_name = lm1->ctlm_name;
602 tmp.ctm_type = lm1->ctlm_type;
603 }
604 if (size < CTF_LSTRUCT_THRESH)
605 {
606 m2->ctm_name = tmp.ctm_name;
607 m2->ctm_type = tmp.ctm_type;
608 m2->ctm_offset = offset;
609 }
610 else
611 {
612 lm2->ctlm_name = tmp.ctm_name;
613 lm2->ctlm_type = tmp.ctm_type;
614 lm2->ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (offset);
615 lm2->ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (offset);
616 }
617 }
618 break;
619 }
620 case CTF_K_FUNCTION:
621 {
622 unsigned long i;
623 unsigned short *a1 = (unsigned short *) vdata;
624 uint32_t *a2 = (uint32_t *) v2data;
625
626 for (i = vlen; i != 0; i--, a1++, a2++)
627 *a2 = *a1;
628 }
629 /* FALLTHRU */
630 default:
631 /* Catch out-of-sync get_vbytes_*(). */
632 assert (vbytes == v2bytes);
633 memcpy (v2data, vdata, vbytes);
634 }
635 }
636
637 /* Verify that the entire region was converted. If not, we are either
638 converting too much, or too little (leading to a buffer overrun either here
639 or at read time, in init_static_types().) */
640
641 assert ((size_t) t2p - (size_t) fp->ctf_buf == cth->cth_stroff);
642
643 ctf_set_version (fp, cth, CTF_VERSION_1_UPGRADED_3);
644 free (old_ctf_base);
645
646 return 0;
647}
648
649/* Upgrade from any earlier version. */
650static int
651upgrade_types (ctf_dict_t *fp, ctf_header_t *cth)
652{
653 switch (cth->cth_version)
654 {
655 /* v1 requires a full pass and reformatting. */
656 case CTF_VERSION_1:
657 upgrade_types_v1 (fp, cth);
658 /* FALLTHRU */
659 /* Already-converted v1 is just like later versions except that its
660 parent/child boundary is unchanged (and much lower). */
661
662 case CTF_VERSION_1_UPGRADED_3:
663 fp->ctf_parmax = CTF_MAX_PTYPE_V1;
664
665 /* v2 is just the same as v3 except for new types and sections:
666 no upgrading required. */
667 case CTF_VERSION_2: ;
668 /* FALLTHRU */
669 }
670 return 0;
671}
672
673static int
674init_static_types_internal (ctf_dict_t *fp, ctf_header_t *cth,
675 ctf_dynset_t *all_enums);
676
677/* Populate statically-defined types (those loaded from a saved buffer).
678
679 Initialize the type ID translation table with the byte offset of each type,
680 and initialize the hash tables of each named type. Upgrade the type table to
681 the latest supported representation in the process, if needed, and if this
682 recension of libctf supports upgrading.
683
684 Returns zero on success and a *positive* ECTF_* or errno value on error.
685
686 This is a wrapper to simplify memory allocation on error in the _internal
687 function that does all the actual work. */
688
689static int
690init_static_types (ctf_dict_t *fp, ctf_header_t *cth)
691{
692 ctf_dynset_t *all_enums;
693 int err;
694
695 if ((all_enums = ctf_dynset_create (htab_hash_pointer, htab_eq_pointer,
696 NULL)) == NULL)
697 return ENOMEM;
698
699 err = init_static_types_internal (fp, cth, all_enums);
700 ctf_dynset_destroy (all_enums);
701 return err;
702}
703
704static int
705init_static_types_internal (ctf_dict_t *fp, ctf_header_t *cth,
706 ctf_dynset_t *all_enums)
707{
708 const ctf_type_t *tbuf;
709 const ctf_type_t *tend;
710
711 unsigned long pop[CTF_K_MAX + 1] = { 0 };
712 int pop_enumerators = 0;
713 const ctf_type_t *tp;
714 uint32_t id;
715 uint32_t *xp;
716 unsigned long typemax = 0;
717 ctf_next_t *i = NULL;
718 void *k;
719
720 /* We determine whether the dict is a child or a parent based on the value of
721 cth_parname. */
722
723 int child = cth->cth_parname != 0;
724 int nlstructs = 0, nlunions = 0;
725 int err;
726
727 if (_libctf_unlikely_ (fp->ctf_version == CTF_VERSION_1))
728 {
729 int err;
730 if ((err = upgrade_types (fp, cth)) != 0)
731 return err; /* Upgrade failed. */
732 }
733
734 tbuf = (ctf_type_t *) (fp->ctf_buf + cth->cth_typeoff);
735 tend = (ctf_type_t *) (fp->ctf_buf + cth->cth_stroff);
736
737 /* We make two passes through the entire type section, and one third pass
738 through part of it. In this first pass, we count the number of each type
739 and type-like identifier (like enumerators) and the total number of
740 types. */
741
742 for (tp = tbuf; tp < tend; typemax++)
743 {
744 unsigned short kind = LCTF_INFO_KIND (fp, tp->ctt_info);
745 unsigned long vlen = LCTF_INFO_VLEN (fp, tp->ctt_info);
746 ssize_t size, increment, vbytes;
747
748 (void) ctf_get_ctt_size (fp, tp, &size, &increment);
749 vbytes = LCTF_VBYTES (fp, kind, size, vlen);
750
751 if (vbytes < 0)
752 return ECTF_CORRUPT;
753
754 /* For forward declarations, ctt_type is the CTF_K_* kind for the tag,
755 so bump that population count too. */
756 if (kind == CTF_K_FORWARD)
757 pop[tp->ctt_type]++;
758
759 tp = (ctf_type_t *) ((uintptr_t) tp + increment + vbytes);
760 pop[kind]++;
761
762 if (kind == CTF_K_ENUM)
763 pop_enumerators += vlen;
764 }
765
766 if (child)
767 {
768 ctf_dprintf ("CTF dict %p is a child\n", (void *) fp);
769 fp->ctf_flags |= LCTF_CHILD;
770 }
771 else
772 ctf_dprintf ("CTF dict %p is a parent\n", (void *) fp);
773
774 /* Now that we've counted up the number of each type, we can allocate
775 the hash tables, type translation table, and pointer table. */
776
777 if ((fp->ctf_structs
778 = ctf_dynhash_create_sized (pop[CTF_K_STRUCT], ctf_hash_string,
779 ctf_hash_eq_string, NULL, NULL)) == NULL)
780 return ENOMEM;
781
782 if ((fp->ctf_unions
783 = ctf_dynhash_create_sized (pop[CTF_K_UNION], ctf_hash_string,
784 ctf_hash_eq_string, NULL, NULL)) == NULL)
785 return ENOMEM;
786
787 if ((fp->ctf_enums
788 = ctf_dynhash_create_sized (pop[CTF_K_ENUM], ctf_hash_string,
789 ctf_hash_eq_string, NULL, NULL)) == NULL)
790 return ENOMEM;
791
792 if ((fp->ctf_names
793 = ctf_dynhash_create_sized (pop[CTF_K_UNKNOWN] +
794 pop[CTF_K_INTEGER] +
795 pop[CTF_K_FLOAT] +
796 pop[CTF_K_FUNCTION] +
797 pop[CTF_K_TYPEDEF] +
798 pop[CTF_K_POINTER] +
799 pop[CTF_K_VOLATILE] +
800 pop[CTF_K_CONST] +
801 pop[CTF_K_RESTRICT] +
802 pop_enumerators,
803 ctf_hash_string,
804 ctf_hash_eq_string, NULL, NULL)) == NULL)
805 return ENOMEM;
806
807 if ((fp->ctf_conflicting_enums
808 = ctf_dynset_create (htab_hash_string, htab_eq_string, NULL)) == NULL)
809 return ENOMEM;
810
811 /* The ptrtab and txlate can be appropriately sized for precisely this set
812 of types: the txlate because it is only used to look up static types,
813 so dynamic types added later will never go through it, and the ptrtab
814 because later-added types will call grow_ptrtab() automatically, as
815 needed. */
816
817 fp->ctf_txlate = malloc (sizeof (uint32_t) * (typemax + 1));
818 fp->ctf_ptrtab_len = typemax + 1;
819 fp->ctf_ptrtab = malloc (sizeof (uint32_t) * fp->ctf_ptrtab_len);
820 fp->ctf_stypes = typemax;
821
822 if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
823 return ENOMEM; /* Memory allocation failed. */
824
825 xp = fp->ctf_txlate;
826 *xp++ = 0; /* Type id 0 is used as a sentinel value. */
827
828 memset (fp->ctf_txlate, 0, sizeof (uint32_t) * (typemax + 1));
829 memset (fp->ctf_ptrtab, 0, sizeof (uint32_t) * (typemax + 1));
830
831 /* In the second pass through the types, we fill in each entry of the
832 type and pointer tables and add names to the appropriate hashes.
833
834 (Not all names are added in this pass, only type names. See below.)
835
836 Bump ctf_typemax as we go, but keep it one higher than normal, so that
837 the type being read in is considered a valid type and it is at least
838 barely possible to run simple lookups on it. */
839
840 for (id = 1, fp->ctf_typemax = 1, tp = tbuf; tp < tend; xp++, id++, fp->ctf_typemax++)
841 {
842 unsigned short kind = LCTF_INFO_KIND (fp, tp->ctt_info);
843 unsigned short isroot = LCTF_INFO_ISROOT (fp, tp->ctt_info);
844 unsigned long vlen = LCTF_INFO_VLEN (fp, tp->ctt_info);
845 ssize_t size, increment, vbytes;
846
847 const char *name;
848
849 (void) ctf_get_ctt_size (fp, tp, &size, &increment);
850 name = ctf_strptr (fp, tp->ctt_name);
851 /* Cannot fail: shielded by call in loop above. */
852 vbytes = LCTF_VBYTES (fp, kind, size, vlen);
853
854 *xp = (uint32_t) ((uintptr_t) tp - (uintptr_t) fp->ctf_buf);
855
856 switch (kind)
857 {
858 case CTF_K_UNKNOWN:
859 case CTF_K_INTEGER:
860 case CTF_K_FLOAT:
861 {
862 ctf_id_t existing;
863 ctf_encoding_t existing_en;
864 ctf_encoding_t this_en;
865
866 if (!isroot)
867 break;
868
869 /* Names are reused by bitfields, which are differentiated by
870 their encodings. So check for the type already existing, and
871 iff the new type is a root-visible non-bitfield, replace the
872 old one. It's a little hard to figure out whether a type is
873 a non-bitfield without already knowing that type's native
874 width, but we can converge on it by replacing an existing
875 type as long as the new type is zero-offset and has a
876 bit-width wider than the existing one, since the native type
877 must necessarily have a bit-width at least as wide as any
878 bitfield based on it. */
879
880 if (((existing = ctf_dynhash_lookup_type (fp->ctf_names, name)) == 0)
881 || ctf_type_encoding (fp, existing, &existing_en) != 0
882 || (ctf_type_encoding (fp, LCTF_INDEX_TO_TYPE (fp, id, child), &this_en) == 0
883 && this_en.cte_offset == 0
884 && (existing_en.cte_offset != 0
885 || existing_en.cte_bits < this_en.cte_bits)))
886 {
887 err = ctf_dynhash_insert_type (fp, fp->ctf_names,
888 LCTF_INDEX_TO_TYPE (fp, id, child),
889 tp->ctt_name);
890 if (err != 0)
891 return err * -1;
892 }
893 break;
894 }
895
896 /* These kinds have no name, so do not need interning into any
897 hashtables. */
898 case CTF_K_ARRAY:
899 case CTF_K_SLICE:
900 break;
901
902 case CTF_K_FUNCTION:
903 if (!isroot)
904 break;
905
906 err = ctf_dynhash_insert_type (fp, fp->ctf_names,
907 LCTF_INDEX_TO_TYPE (fp, id, child),
908 tp->ctt_name);
909 if (err != 0)
910 return err * -1;
911 break;
912
913 case CTF_K_STRUCT:
914 if (size >= CTF_LSTRUCT_THRESH)
915 nlstructs++;
916
917 if (!isroot)
918 break;
919
920 err = ctf_dynhash_insert_type (fp, fp->ctf_structs,
921 LCTF_INDEX_TO_TYPE (fp, id, child),
922 tp->ctt_name);
923
924 if (err != 0)
925 return err * -1;
926
927 break;
928
929 case CTF_K_UNION:
930 if (size >= CTF_LSTRUCT_THRESH)
931 nlunions++;
932
933 if (!isroot)
934 break;
935
936 err = ctf_dynhash_insert_type (fp, fp->ctf_unions,
937 LCTF_INDEX_TO_TYPE (fp, id, child),
938 tp->ctt_name);
939
940 if (err != 0)
941 return err * -1;
942 break;
943
944 case CTF_K_ENUM:
945 {
946 if (!isroot)
947 break;
948
949 err = ctf_dynhash_insert_type (fp, fp->ctf_enums,
950 LCTF_INDEX_TO_TYPE (fp, id, child),
951 tp->ctt_name);
952
953 if (err != 0)
954 return err * -1;
955
956 /* Remember all enums for later rescanning. */
957
958 err = ctf_dynset_insert (all_enums, (void *) (ptrdiff_t)
959 LCTF_INDEX_TO_TYPE (fp, id, child));
960 if (err != 0)
961 return err * -1;
962 break;
963 }
964
965 case CTF_K_TYPEDEF:
966 if (!isroot)
967 break;
968
969 err = ctf_dynhash_insert_type (fp, fp->ctf_names,
970 LCTF_INDEX_TO_TYPE (fp, id, child),
971 tp->ctt_name);
972 if (err != 0)
973 return err * -1;
974 break;
975
976 case CTF_K_FORWARD:
977 {
978 ctf_dynhash_t *h = ctf_name_table (fp, tp->ctt_type);
979
980 if (!isroot)
981 break;
982
983 /* Only insert forward tags into the given hash if the type or tag
984 name is not already present. */
985 if (ctf_dynhash_lookup_type (h, name) == 0)
986 {
987 err = ctf_dynhash_insert_type (fp, h, LCTF_INDEX_TO_TYPE (fp, id, child),
988 tp->ctt_name);
989 if (err != 0)
990 return err * -1;
991 }
992 break;
993 }
994
995 case CTF_K_POINTER:
996 /* If the type referenced by the pointer is in this CTF dict, then
997 store the index of the pointer type in fp->ctf_ptrtab[ index of
998 referenced type ]. */
999
1000 if (LCTF_TYPE_ISCHILD (fp, tp->ctt_type) == child
1001 && LCTF_TYPE_TO_INDEX (fp, tp->ctt_type) <= fp->ctf_typemax)
1002 fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, tp->ctt_type)] = id;
1003 /*FALLTHRU*/
1004
1005 case CTF_K_VOLATILE:
1006 case CTF_K_CONST:
1007 case CTF_K_RESTRICT:
1008 if (!isroot)
1009 break;
1010
1011 err = ctf_dynhash_insert_type (fp, fp->ctf_names,
1012 LCTF_INDEX_TO_TYPE (fp, id, child),
1013 tp->ctt_name);
1014 if (err != 0)
1015 return err * -1;
1016 break;
1017 default:
1018 ctf_err_warn (fp, 0, ECTF_CORRUPT,
1019 _("init_static_types(): unhandled CTF kind: %x"), kind);
1020 return ECTF_CORRUPT;
1021 }
1022 tp = (ctf_type_t *) ((uintptr_t) tp + increment + vbytes);
1023 }
1024 fp->ctf_typemax--;
1025 assert (fp->ctf_typemax == typemax);
1026
1027 ctf_dprintf ("%lu total types processed\n", fp->ctf_typemax);
1028
1029 /* In the third pass, we traverse the enums we spotted earlier and track all
1030 the enumeration constants to aid in future detection of duplicates.
1031
1032 Doing this in a third pass is necessary to avoid the case where an
1033 enum appears with a constant FOO, then later a type named FOO appears,
1034 too late to spot the conflict by checking the enum's constants. */
1035
1036 while ((err = ctf_dynset_next (all_enums, &i, &k)) == 0)
1037 {
1038 ctf_id_t enum_id = (uintptr_t) k;
1039 ctf_next_t *i_constants = NULL;
1040 const char *cte_name;
1041
1042 while ((cte_name = ctf_enum_next (fp, enum_id, &i_constants, NULL)) != NULL)
1043 {
1044 if (ctf_track_enumerator (fp, enum_id, cte_name) < 0)
1045 {
1046 ctf_next_destroy (i_constants);
1047 ctf_next_destroy (i);
1048 return ctf_errno (fp);
1049 }
1050 }
1051 if (ctf_errno (fp) != ECTF_NEXT_END)
1052 {
1053 ctf_next_destroy (i);
1054 return ctf_errno (fp);
1055 }
1056 }
1057 if (err != ECTF_NEXT_END)
1058 return err;
1059
1060 ctf_dprintf ("%zu enum names hashed\n",
1061 ctf_dynhash_elements (fp->ctf_enums));
1062 ctf_dprintf ("%zu conflicting enumerators identified\n",
1063 ctf_dynset_elements (fp->ctf_conflicting_enums));
1064 ctf_dprintf ("%zu struct names hashed (%d long)\n",
1065 ctf_dynhash_elements (fp->ctf_structs), nlstructs);
1066 ctf_dprintf ("%zu union names hashed (%d long)\n",
1067 ctf_dynhash_elements (fp->ctf_unions), nlunions);
1068 ctf_dprintf ("%zu base type names and identifiers hashed\n",
1069 ctf_dynhash_elements (fp->ctf_names));
1070
1071 return 0;
1072}
1073
1074/* Endianness-flipping routines.
1075
1076 We flip everything, mindlessly, even 1-byte entities, so that future
1077 expansions do not require changes to this code. */
1078
1079/* Flip the endianness of the CTF header. */
1080
1081void
1082ctf_flip_header (ctf_header_t *cth)
1083{
1084 swap_thing (cth->cth_preamble.ctp_magic);
1085 swap_thing (cth->cth_preamble.ctp_version);
1086 swap_thing (cth->cth_preamble.ctp_flags);
1087 swap_thing (cth->cth_parlabel);
1088 swap_thing (cth->cth_parname);
1089 swap_thing (cth->cth_cuname);
1090 swap_thing (cth->cth_objtoff);
1091 swap_thing (cth->cth_funcoff);
1092 swap_thing (cth->cth_objtidxoff);
1093 swap_thing (cth->cth_funcidxoff);
1094 swap_thing (cth->cth_varoff);
1095 swap_thing (cth->cth_typeoff);
1096 swap_thing (cth->cth_stroff);
1097 swap_thing (cth->cth_strlen);
1098}
1099
1100/* Flip the endianness of the label section, an array of ctf_lblent_t. */
1101
1102static void
1103flip_lbls (void *start, size_t len)
1104{
1105 ctf_lblent_t *lbl = start;
1106 ssize_t i;
1107
1108 for (i = len / sizeof (struct ctf_lblent); i > 0; lbl++, i--)
1109 {
1110 swap_thing (lbl->ctl_label);
1111 swap_thing (lbl->ctl_type);
1112 }
1113}
1114
1115/* Flip the endianness of the data-object or function sections or their indexes,
1116 all arrays of uint32_t. */
1117
1118static void
1119flip_objts (void *start, size_t len)
1120{
1121 uint32_t *obj = start;
1122 ssize_t i;
1123
1124 for (i = len / sizeof (uint32_t); i > 0; obj++, i--)
1125 swap_thing (*obj);
1126}
1127
1128/* Flip the endianness of the variable section, an array of ctf_varent_t. */
1129
1130static void
1131flip_vars (void *start, size_t len)
1132{
1133 ctf_varent_t *var = start;
1134 ssize_t i;
1135
1136 for (i = len / sizeof (struct ctf_varent); i > 0; var++, i--)
1137 {
1138 swap_thing (var->ctv_name);
1139 swap_thing (var->ctv_type);
1140 }
1141}
1142
1143/* Flip the endianness of the type section, a tagged array of ctf_type or
1144 ctf_stype followed by variable data. */
1145
1146static int
1147flip_types (ctf_dict_t *fp, void *start, size_t len, int to_foreign)
1148{
1149 ctf_type_t *t = start;
1150
1151 while ((uintptr_t) t < ((uintptr_t) start) + len)
1152 {
1153 uint32_t kind;
1154 size_t size;
1155 uint32_t vlen;
1156 size_t vbytes;
1157
1158 if (to_foreign)
1159 {
1160 kind = CTF_V2_INFO_KIND (t->ctt_info);
1161 size = t->ctt_size;
1162 vlen = CTF_V2_INFO_VLEN (t->ctt_info);
1163 vbytes = get_vbytes_v2 (fp, kind, size, vlen);
1164 }
1165
1166 swap_thing (t->ctt_name);
1167 swap_thing (t->ctt_info);
1168 swap_thing (t->ctt_size);
1169
1170 if (!to_foreign)
1171 {
1172 kind = CTF_V2_INFO_KIND (t->ctt_info);
1173 size = t->ctt_size;
1174 vlen = CTF_V2_INFO_VLEN (t->ctt_info);
1175 vbytes = get_vbytes_v2 (fp, kind, size, vlen);
1176 }
1177
1178 if (_libctf_unlikely_ (size == CTF_LSIZE_SENT))
1179 {
1180 if (to_foreign)
1181 size = CTF_TYPE_LSIZE (t);
1182
1183 swap_thing (t->ctt_lsizehi);
1184 swap_thing (t->ctt_lsizelo);
1185
1186 if (!to_foreign)
1187 size = CTF_TYPE_LSIZE (t);
1188
1189 t = (ctf_type_t *) ((uintptr_t) t + sizeof (ctf_type_t));
1190 }
1191 else
1192 t = (ctf_type_t *) ((uintptr_t) t + sizeof (ctf_stype_t));
1193
1194 switch (kind)
1195 {
1196 case CTF_K_FORWARD:
1197 case CTF_K_UNKNOWN:
1198 case CTF_K_POINTER:
1199 case CTF_K_TYPEDEF:
1200 case CTF_K_VOLATILE:
1201 case CTF_K_CONST:
1202 case CTF_K_RESTRICT:
1203 /* These types have no vlen data to swap. */
1204 assert (vbytes == 0);
1205 break;
1206
1207 case CTF_K_INTEGER:
1208 case CTF_K_FLOAT:
1209 {
1210 /* These types have a single uint32_t. */
1211
1212 uint32_t *item = (uint32_t *) t;
1213
1214 swap_thing (*item);
1215 break;
1216 }
1217
1218 case CTF_K_FUNCTION:
1219 {
1220 /* This type has a bunch of uint32_ts. */
1221
1222 uint32_t *item = (uint32_t *) t;
1223 ssize_t i;
1224
1225 for (i = vlen; i > 0; item++, i--)
1226 swap_thing (*item);
1227 break;
1228 }
1229
1230 case CTF_K_ARRAY:
1231 {
1232 /* This has a single ctf_array_t. */
1233
1234 ctf_array_t *a = (ctf_array_t *) t;
1235
1236 assert (vbytes == sizeof (ctf_array_t));
1237 swap_thing (a->cta_contents);
1238 swap_thing (a->cta_index);
1239 swap_thing (a->cta_nelems);
1240
1241 break;
1242 }
1243
1244 case CTF_K_SLICE:
1245 {
1246 /* This has a single ctf_slice_t. */
1247
1248 ctf_slice_t *s = (ctf_slice_t *) t;
1249
1250 assert (vbytes == sizeof (ctf_slice_t));
1251 swap_thing (s->cts_type);
1252 swap_thing (s->cts_offset);
1253 swap_thing (s->cts_bits);
1254
1255 break;
1256 }
1257
1258 case CTF_K_STRUCT:
1259 case CTF_K_UNION:
1260 {
1261 /* This has an array of ctf_member or ctf_lmember, depending on
1262 size. We could consider it to be a simple array of uint32_t,
1263 but for safety's sake in case these structures ever acquire
1264 non-uint32_t members, do it member by member. */
1265
1266 if (_libctf_unlikely_ (size >= CTF_LSTRUCT_THRESH))
1267 {
1268 ctf_lmember_t *lm = (ctf_lmember_t *) t;
1269 ssize_t i;
1270 for (i = vlen; i > 0; i--, lm++)
1271 {
1272 swap_thing (lm->ctlm_name);
1273 swap_thing (lm->ctlm_offsethi);
1274 swap_thing (lm->ctlm_type);
1275 swap_thing (lm->ctlm_offsetlo);
1276 }
1277 }
1278 else
1279 {
1280 ctf_member_t *m = (ctf_member_t *) t;
1281 ssize_t i;
1282 for (i = vlen; i > 0; i--, m++)
1283 {
1284 swap_thing (m->ctm_name);
1285 swap_thing (m->ctm_offset);
1286 swap_thing (m->ctm_type);
1287 }
1288 }
1289 break;
1290 }
1291
1292 case CTF_K_ENUM:
1293 {
1294 /* This has an array of ctf_enum_t. */
1295
1296 ctf_enum_t *item = (ctf_enum_t *) t;
1297 ssize_t i;
1298
1299 for (i = vlen; i > 0; item++, i--)
1300 {
1301 swap_thing (item->cte_name);
1302 swap_thing (item->cte_value);
1303 }
1304 break;
1305 }
1306 default:
1307 ctf_err_warn (fp, 0, ECTF_CORRUPT,
1308 _("unhandled CTF kind in endianness conversion: %x"),
1309 kind);
1310 return ECTF_CORRUPT;
1311 }
1312
1313 t = (ctf_type_t *) ((uintptr_t) t + vbytes);
1314 }
1315
1316 return 0;
1317}
1318
1319/* Flip the endianness of BUF, given the offsets in the (native-endianness) CTH.
1320 If TO_FOREIGN is set, flip to foreign-endianness; if not, flip away.
1321
1322 All of this stuff happens before the header is fully initialized, so the
1323 LCTF_*() macros cannot be used yet. Since we do not try to endian-convert v1
1324 data, this is no real loss. */
1325
1326int
1327ctf_flip (ctf_dict_t *fp, ctf_header_t *cth, unsigned char *buf,
1328 int to_foreign)
1329{
1330 ctf_dprintf("flipping endianness\n");
1331
1332 flip_lbls (buf + cth->cth_lbloff, cth->cth_objtoff - cth->cth_lbloff);
1333 flip_objts (buf + cth->cth_objtoff, cth->cth_funcoff - cth->cth_objtoff);
1334 flip_objts (buf + cth->cth_funcoff, cth->cth_objtidxoff - cth->cth_funcoff);
1335 flip_objts (buf + cth->cth_objtidxoff, cth->cth_funcidxoff - cth->cth_objtidxoff);
1336 flip_objts (buf + cth->cth_funcidxoff, cth->cth_varoff - cth->cth_funcidxoff);
1337 flip_vars (buf + cth->cth_varoff, cth->cth_typeoff - cth->cth_varoff);
1338 return flip_types (fp, buf + cth->cth_typeoff,
1339 cth->cth_stroff - cth->cth_typeoff, to_foreign);
1340}
1341
1342/* Set up the ctl hashes in a ctf_dict_t. Called by both writable and
1343 non-writable dictionary initialization. */
1344void ctf_set_ctl_hashes (ctf_dict_t *fp)
1345{
1346 /* Initialize the ctf_lookup_by_name top-level dictionary. We keep an
1347 array of type name prefixes and the corresponding ctf_hash to use. */
1348 fp->ctf_lookups[0].ctl_prefix = "struct";
1349 fp->ctf_lookups[0].ctl_len = strlen (fp->ctf_lookups[0].ctl_prefix);
1350 fp->ctf_lookups[0].ctl_hash = fp->ctf_structs;
1351 fp->ctf_lookups[1].ctl_prefix = "union";
1352 fp->ctf_lookups[1].ctl_len = strlen (fp->ctf_lookups[1].ctl_prefix);
1353 fp->ctf_lookups[1].ctl_hash = fp->ctf_unions;
1354 fp->ctf_lookups[2].ctl_prefix = "enum";
1355 fp->ctf_lookups[2].ctl_len = strlen (fp->ctf_lookups[2].ctl_prefix);
1356 fp->ctf_lookups[2].ctl_hash = fp->ctf_enums;
1357 fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
1358 fp->ctf_lookups[3].ctl_len = strlen (fp->ctf_lookups[3].ctl_prefix);
1359 fp->ctf_lookups[3].ctl_hash = fp->ctf_names;
1360 fp->ctf_lookups[4].ctl_prefix = NULL;
1361 fp->ctf_lookups[4].ctl_len = 0;
1362 fp->ctf_lookups[4].ctl_hash = NULL;
1363}
1364
1365/* Open a CTF file, mocking up a suitable ctf_sect. */
1366
1367ctf_dict_t *ctf_simple_open (const char *ctfsect, size_t ctfsect_size,
1368 const char *symsect, size_t symsect_size,
1369 size_t symsect_entsize,
1370 const char *strsect, size_t strsect_size,
1371 int *errp)
1372{
1373 ctf_sect_t skeleton;
1374
1375 ctf_sect_t ctf_sect, sym_sect, str_sect;
1376 ctf_sect_t *ctfsectp = NULL;
1377 ctf_sect_t *symsectp = NULL;
1378 ctf_sect_t *strsectp = NULL;
1379
1380 skeleton.cts_name = _CTF_SECTION;
1381 skeleton.cts_entsize = 1;
1382
1383 if (ctfsect)
1384 {
1385 memcpy (&ctf_sect, &skeleton, sizeof (struct ctf_sect));
1386 ctf_sect.cts_data = ctfsect;
1387 ctf_sect.cts_size = ctfsect_size;
1388 ctfsectp = &ctf_sect;
1389 }
1390
1391 if (symsect)
1392 {
1393 memcpy (&sym_sect, &skeleton, sizeof (struct ctf_sect));
1394 sym_sect.cts_data = symsect;
1395 sym_sect.cts_size = symsect_size;
1396 sym_sect.cts_entsize = symsect_entsize;
1397 symsectp = &sym_sect;
1398 }
1399
1400 if (strsect)
1401 {
1402 memcpy (&str_sect, &skeleton, sizeof (struct ctf_sect));
1403 str_sect.cts_data = strsect;
1404 str_sect.cts_size = strsect_size;
1405 strsectp = &str_sect;
1406 }
1407
1408 return ctf_bufopen (ctfsectp, symsectp, strsectp, errp);
1409}
1410
1411/* Decode the specified CTF buffer and optional symbol table, and create a new
1412 CTF dict representing the symbolic debugging information. This code can
1413 be used directly by the debugger, or it can be used as the engine for
1414 ctf_fdopen() or ctf_open(), below. */
1415
1416ctf_dict_t *
1417ctf_bufopen (const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
1418 const ctf_sect_t *strsect, int *errp)
1419{
1420 const ctf_preamble_t *pp;
1421 size_t hdrsz = sizeof (ctf_header_t);
1422 ctf_header_t *hp;
1423 ctf_dict_t *fp;
1424 int foreign_endian = 0;
1425 int err;
1426
1427 libctf_init_debug();
1428
1429 ctf_set_open_errno (errp, 0);
1430
1431 if ((ctfsect == NULL) || ((symsect != NULL) && (strsect == NULL)))
1432 return (ctf_set_open_errno (errp, EINVAL));
1433
1434 if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
1435 symsect->cts_entsize != sizeof (Elf64_Sym))
1436 return (ctf_set_open_errno (errp, ECTF_SYMTAB));
1437
1438 if (symsect != NULL && symsect->cts_data == NULL)
1439 return (ctf_set_open_errno (errp, ECTF_SYMBAD));
1440
1441 if (strsect != NULL && strsect->cts_data == NULL)
1442 return (ctf_set_open_errno (errp, ECTF_STRBAD));
1443
1444 if (ctfsect->cts_data == NULL
1445 || ctfsect->cts_size < sizeof (ctf_preamble_t))
1446 return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));
1447
1448 pp = (const ctf_preamble_t *) ctfsect->cts_data;
1449
1450 ctf_dprintf ("ctf_bufopen: magic=0x%x version=%u\n",
1451 pp->ctp_magic, pp->ctp_version);
1452
1453 /* Validate each part of the CTF header.
1454
1455 First, we validate the preamble (common to all versions). At that point,
1456 we know the endianness and specific header version, and can validate the
1457 version-specific parts including section offsets and alignments. */
1458
1459 if (_libctf_unlikely_ (pp->ctp_magic != CTF_MAGIC))
1460 {
1461 if (pp->ctp_magic == bswap_16 (CTF_MAGIC))
1462 foreign_endian = 1;
1463 else
1464 return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));
1465 }
1466
1467 if (_libctf_unlikely_ ((pp->ctp_version < CTF_VERSION_1)
1468 || (pp->ctp_version > CTF_VERSION_3)))
1469 return (ctf_set_open_errno (errp, ECTF_CTFVERS));
1470
1471 if ((symsect != NULL) && (pp->ctp_version < CTF_VERSION_2))
1472 {
1473 /* The symtab can contain function entries which contain embedded ctf
1474 info. We do not support dynamically upgrading such entries (none
1475 should exist in any case, since dwarf2ctf does not create them). */
1476
1477 ctf_err_warn (NULL, 0, ECTF_NOTSUP, _("ctf_bufopen: CTF version %d "
1478 "symsect not supported"),
1479 pp->ctp_version);
1480 return (ctf_set_open_errno (errp, ECTF_NOTSUP));
1481 }
1482
1483 if (pp->ctp_version < CTF_VERSION_3)
1484 hdrsz = sizeof (ctf_header_v2_t);
1485
1486 if (_libctf_unlikely_ (pp->ctp_flags > CTF_F_MAX))
1487 {
1488 ctf_err_warn (NULL, 0, ECTF_FLAGS, _("ctf_bufopen: invalid header "
1489 "flags: %x"),
1490 (unsigned int) pp->ctp_flags);
1491 return (ctf_set_open_errno (errp, ECTF_FLAGS));
1492 }
1493
1494 if (ctfsect->cts_size < hdrsz)
1495 return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));
1496
1497 if ((fp = malloc (sizeof (ctf_dict_t))) == NULL)
1498 return (ctf_set_open_errno (errp, ENOMEM));
1499
1500 memset (fp, 0, sizeof (ctf_dict_t));
1501
1502 if ((fp->ctf_header = malloc (sizeof (struct ctf_header))) == NULL)
1503 {
1504 free (fp);
1505 return (ctf_set_open_errno (errp, ENOMEM));
1506 }
1507 hp = fp->ctf_header;
1508 memcpy (hp, ctfsect->cts_data, hdrsz);
1509 if (pp->ctp_version < CTF_VERSION_3)
1510 upgrade_header (hp);
1511
1512 if (foreign_endian)
1513 ctf_flip_header (hp);
1514 fp->ctf_openflags = hp->cth_flags;
1515 fp->ctf_size = hp->cth_stroff + hp->cth_strlen;
1516
1517 ctf_dprintf ("ctf_bufopen: uncompressed size=%lu\n",
1518 (unsigned long) fp->ctf_size);
1519
1520 if (hp->cth_lbloff > fp->ctf_size || hp->cth_objtoff > fp->ctf_size
1521 || hp->cth_funcoff > fp->ctf_size || hp->cth_objtidxoff > fp->ctf_size
1522 || hp->cth_funcidxoff > fp->ctf_size || hp->cth_typeoff > fp->ctf_size
1523 || hp->cth_stroff > fp->ctf_size)
1524 {
1525 ctf_err_warn (NULL, 0, ECTF_CORRUPT, _("header offset exceeds CTF size"));
1526 return (ctf_set_open_errno (errp, ECTF_CORRUPT));
1527 }
1528
1529 if (hp->cth_lbloff > hp->cth_objtoff
1530 || hp->cth_objtoff > hp->cth_funcoff
1531 || hp->cth_funcoff > hp->cth_typeoff
1532 || hp->cth_funcoff > hp->cth_objtidxoff
1533 || hp->cth_objtidxoff > hp->cth_funcidxoff
1534 || hp->cth_funcidxoff > hp->cth_varoff
1535 || hp->cth_varoff > hp->cth_typeoff || hp->cth_typeoff > hp->cth_stroff)
1536 {
1537 ctf_err_warn (NULL, 0, ECTF_CORRUPT, _("overlapping CTF sections"));
1538 return (ctf_set_open_errno (errp, ECTF_CORRUPT));
1539 }
1540
1541 if ((hp->cth_lbloff & 3) || (hp->cth_objtoff & 2)
1542 || (hp->cth_funcoff & 2) || (hp->cth_objtidxoff & 2)
1543 || (hp->cth_funcidxoff & 2) || (hp->cth_varoff & 3)
1544 || (hp->cth_typeoff & 3))
1545 {
1546 ctf_err_warn (NULL, 0, ECTF_CORRUPT,
1547 _("CTF sections not properly aligned"));
1548 return (ctf_set_open_errno (errp, ECTF_CORRUPT));
1549 }
1550
1551 /* This invariant will be lifted in v4, but for now it is true. */
1552
1553 if ((hp->cth_funcidxoff - hp->cth_objtidxoff != 0) &&
1554 (hp->cth_funcidxoff - hp->cth_objtidxoff
1555 != hp->cth_funcoff - hp->cth_objtoff))
1556 {
1557 ctf_err_warn (NULL, 0, ECTF_CORRUPT,
1558 _("Object index section is neither empty nor the "
1559 "same length as the object section: %u versus %u "
1560 "bytes"), hp->cth_funcoff - hp->cth_objtoff,
1561 hp->cth_funcidxoff - hp->cth_objtidxoff);
1562 return (ctf_set_open_errno (errp, ECTF_CORRUPT));
1563 }
1564
1565 if ((hp->cth_varoff - hp->cth_funcidxoff != 0) &&
1566 (hp->cth_varoff - hp->cth_funcidxoff
1567 != hp->cth_objtidxoff - hp->cth_funcoff) &&
1568 (hp->cth_flags & CTF_F_NEWFUNCINFO))
1569 {
1570 ctf_err_warn (NULL, 0, ECTF_CORRUPT,
1571 _("Function index section is neither empty nor the "
1572 "same length as the function section: %u versus %u "
1573 "bytes"), hp->cth_objtidxoff - hp->cth_funcoff,
1574 hp->cth_varoff - hp->cth_funcidxoff);
1575 return (ctf_set_open_errno (errp, ECTF_CORRUPT));
1576 }
1577
1578 /* Once everything is determined to be valid, attempt to decompress the CTF
1579 data buffer if it is compressed, or copy it into new storage if it is not
1580 compressed but needs endian-flipping. Otherwise we just put the data
1581 section's buffer pointer into ctf_buf, below. */
1582
1583 /* Note: if this is a v1 buffer, it will be reallocated and expanded by
1584 init_static_types(). */
1585
1586 if (hp->cth_flags & CTF_F_COMPRESS)
1587 {
1588 size_t srclen;
1589 uLongf dstlen;
1590 const void *src;
1591 int rc = Z_OK;
1592
1593 /* We are allocating this ourselves, so we can drop the ctf header
1594 copy in favour of ctf->ctf_header. */
1595
1596 if ((fp->ctf_base = malloc (fp->ctf_size)) == NULL)
1597 {
1598 err = ECTF_ZALLOC;
1599 goto bad;
1600 }
1601 fp->ctf_dynbase = fp->ctf_base;
1602 hp->cth_flags &= ~CTF_F_COMPRESS;
1603
1604 src = (unsigned char *) ctfsect->cts_data + hdrsz;
1605 srclen = ctfsect->cts_size - hdrsz;
1606 dstlen = fp->ctf_size;
1607 fp->ctf_buf = fp->ctf_base;
1608
1609 if ((rc = uncompress (fp->ctf_base, &dstlen, src, srclen)) != Z_OK)
1610 {
1611 ctf_err_warn (NULL, 0, ECTF_DECOMPRESS, _("zlib inflate err: %s"),
1612 zError (rc));
1613 err = ECTF_DECOMPRESS;
1614 goto bad;
1615 }
1616
1617 if ((size_t) dstlen != fp->ctf_size)
1618 {
1619 ctf_err_warn (NULL, 0, ECTF_CORRUPT,
1620 _("zlib inflate short: got %lu of %lu bytes"),
1621 (unsigned long) dstlen, (unsigned long) fp->ctf_size);
1622 err = ECTF_CORRUPT;
1623 goto bad;
1624 }
1625 }
1626 else
1627 {
1628 if (_libctf_unlikely_ (ctfsect->cts_size < hdrsz + fp->ctf_size))
1629 {
1630 ctf_err_warn (NULL, 0, ECTF_CORRUPT,
1631 _("%lu byte long CTF dictionary overruns %lu byte long CTF section"),
1632 (unsigned long) ctfsect->cts_size,
1633 (unsigned long) (hdrsz + fp->ctf_size));
1634 err = ECTF_CORRUPT;
1635 goto bad;
1636 }
1637
1638 if (foreign_endian)
1639 {
1640 if ((fp->ctf_base = malloc (fp->ctf_size)) == NULL)
1641 {
1642 err = ECTF_ZALLOC;
1643 goto bad;
1644 }
1645 fp->ctf_dynbase = fp->ctf_base;
1646 memcpy (fp->ctf_base, ((unsigned char *) ctfsect->cts_data) + hdrsz,
1647 fp->ctf_size);
1648 fp->ctf_buf = fp->ctf_base;
1649 }
1650 else
1651 {
1652 /* We are just using the section passed in -- but its header may
1653 be an old version. Point ctf_buf past the old header, and
1654 never touch it again. */
1655 fp->ctf_base = (unsigned char *) ctfsect->cts_data;
1656 fp->ctf_dynbase = NULL;
1657 fp->ctf_buf = fp->ctf_base + hdrsz;
1658 }
1659 }
1660
1661 /* Once we have uncompressed and validated the CTF data buffer, we can
1662 proceed with initializing the ctf_dict_t we allocated above.
1663
1664 Nothing that depends on buf or base should be set directly in this function
1665 before the init_static_types() call, because it may be reallocated during
1666 transparent upgrade if this recension of libctf is so configured: see
1667 ctf_set_base(). */
1668
1669 ctf_set_version (fp, hp, hp->cth_version);
1670
1671 /* Temporary assignment, just enough to be able to initialize
1672 the atoms table. */
1673
1674 fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *) fp->ctf_buf
1675 + hp->cth_stroff;
1676 fp->ctf_str[CTF_STRTAB_0].cts_len = hp->cth_strlen;
1677 if (ctf_str_create_atoms (fp) < 0)
1678 {
1679 err = ENOMEM;
1680 goto bad;
1681 }
1682
1683 fp->ctf_parmax = CTF_MAX_PTYPE;
1684 memcpy (&fp->ctf_data, ctfsect, sizeof (ctf_sect_t));
1685
1686 if (symsect != NULL)
1687 {
1688 memcpy (&fp->ctf_ext_symtab, symsect, sizeof (ctf_sect_t));
1689 memcpy (&fp->ctf_ext_strtab, strsect, sizeof (ctf_sect_t));
1690 }
1691
1692 if (fp->ctf_data.cts_name != NULL)
1693 if ((fp->ctf_data.cts_name = strdup (fp->ctf_data.cts_name)) == NULL)
1694 {
1695 err = ENOMEM;
1696 goto bad;
1697 }
1698 if (fp->ctf_ext_symtab.cts_name != NULL)
1699 if ((fp->ctf_ext_symtab.cts_name = strdup (fp->ctf_ext_symtab.cts_name)) == NULL)
1700 {
1701 err = ENOMEM;
1702 goto bad;
1703 }
1704 if (fp->ctf_ext_strtab.cts_name != NULL)
1705 if ((fp->ctf_ext_strtab.cts_name = strdup (fp->ctf_ext_strtab.cts_name)) == NULL)
1706 {
1707 err = ENOMEM;
1708 goto bad;
1709 }
1710
1711 if (fp->ctf_data.cts_name == NULL)
1712 fp->ctf_data.cts_name = _CTF_NULLSTR;
1713 if (fp->ctf_ext_symtab.cts_name == NULL)
1714 fp->ctf_ext_symtab.cts_name = _CTF_NULLSTR;
1715 if (fp->ctf_ext_strtab.cts_name == NULL)
1716 fp->ctf_ext_strtab.cts_name = _CTF_NULLSTR;
1717
1718 if (strsect != NULL)
1719 {
1720 fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
1721 fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
1722 }
1723
1724 /* Dynamic state, for dynamic addition to this dict after loading. */
1725
1726 fp->ctf_dthash = ctf_dynhash_create (ctf_hash_integer, ctf_hash_eq_integer,
1727 NULL, NULL);
1728 fp->ctf_dvhash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
1729 NULL, NULL);
1730 fp->ctf_snapshots = 1;
1731
1732 fp->ctf_objthash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
1733 free, NULL);
1734 fp->ctf_funchash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
1735 free, NULL);
1736
1737 if (!fp->ctf_dthash || !fp->ctf_dvhash || !fp->ctf_snapshots ||
1738 !fp->ctf_objthash || !fp->ctf_funchash)
1739 {
1740 err = ENOMEM;
1741 goto bad;
1742 }
1743
1744 if (foreign_endian &&
1745 (err = ctf_flip (fp, hp, fp->ctf_buf, 0)) != 0)
1746 {
1747 /* We can be certain that ctf_flip() will have endian-flipped everything
1748 other than the types table when we return. In particular the header
1749 is fine, so set it, to allow freeing to use the usual code path. */
1750
1751 ctf_set_base (fp, hp, fp->ctf_base);
1752 goto bad;
1753 }
1754
1755 ctf_set_base (fp, hp, fp->ctf_base);
1756
1757 if ((err = init_static_types (fp, hp)) != 0)
1758 goto bad;
1759
1760 /* Allocate and initialize the symtab translation table, pointed to by
1761 ctf_sxlate, and the corresponding index sections. This table may be too
1762 large for the actual size of the object and function info sections: if so,
1763 ctf_nsyms will be adjusted and the excess will never be used. It's
1764 possible to do indexed symbol lookups even without a symbol table, so check
1765 even in that case. Initially, we assume the symtab is native-endian: if it
1766 isn't, the caller will inform us later by calling ctf_symsect_endianness. */
1767#ifdef WORDS_BIGENDIAN
1768 fp->ctf_symsect_little_endian = 0;
1769#else
1770 fp->ctf_symsect_little_endian = 1;
1771#endif
1772
1773 if (symsect != NULL)
1774 {
1775 fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
1776 fp->ctf_sxlate = malloc (fp->ctf_nsyms * sizeof (uint32_t));
1777
1778 if (fp->ctf_sxlate == NULL)
1779 {
1780 err = ENOMEM;
1781 goto bad;
1782 }
1783 }
1784
1785 if ((err = init_symtab (fp, hp, symsect)) != 0)
1786 goto bad;
1787
1788 ctf_set_ctl_hashes (fp);
1789
1790 if (symsect != NULL)
1791 {
1792 if (symsect->cts_entsize == sizeof (Elf64_Sym))
1793 (void) ctf_setmodel (fp, CTF_MODEL_LP64);
1794 else
1795 (void) ctf_setmodel (fp, CTF_MODEL_ILP32);
1796 }
1797 else
1798 (void) ctf_setmodel (fp, CTF_MODEL_NATIVE);
1799
1800 fp->ctf_refcnt = 1;
1801 return fp;
1802
1803bad:
1804 ctf_set_open_errno (errp, err);
1805 ctf_err_warn_to_open (fp);
1806 /* Without this, the refcnt is zero on entry and ctf_dict_close() won't
1807 actually do anything on the grounds that this is a recursive call via
1808 another dict being closed. */
1809 fp->ctf_refcnt = 1;
1810 ctf_dict_close (fp);
1811 return NULL;
1812}
1813
1814/* Bump the refcount on the specified CTF dict, to allow export of ctf_dict_t's
1815 from iterators that open and close the ctf_dict_t around the loop. (This
1816 does not extend their lifetime beyond that of the ctf_archive_t in which they
1817 are contained.) */
1818
1819void
1820ctf_ref (ctf_dict_t *fp)
1821{
1822 fp->ctf_refcnt++;
1823}
1824
1825/* Close the specified CTF dict and free associated data structures. Note that
1826 ctf_dict_close() is a reference counted operation: if the specified file is
1827 the parent of other active dict, its reference count will be greater than one
1828 and it will be freed later when no active children exist. */
1829
1830void
1831ctf_dict_close (ctf_dict_t *fp)
1832{
1833 ctf_dtdef_t *dtd, *ntd;
1834 ctf_dvdef_t *dvd, *nvd;
1835 ctf_in_flight_dynsym_t *did, *nid;
1836 ctf_err_warning_t *err, *nerr;
1837
1838 if (fp == NULL)
1839 return; /* Allow ctf_dict_close(NULL) to simplify caller code. */
1840
1841 ctf_dprintf ("ctf_dict_close(%p) refcnt=%u\n", (void *) fp, fp->ctf_refcnt);
1842
1843 if (fp->ctf_refcnt > 1)
1844 {
1845 fp->ctf_refcnt--;
1846 return;
1847 }
1848
1849 /* It is possible to recurse back in here, notably if dicts in the
1850 ctf_link_inputs or ctf_link_outputs cite this dict as a parent without
1851 using ctf_import_unref. Do nothing in that case. */
1852 if (fp->ctf_refcnt == 0)
1853 return;
1854
1855 fp->ctf_refcnt--;
1856 free (fp->ctf_dyncuname);
1857 free (fp->ctf_dynparname);
1858 if (fp->ctf_parent && !fp->ctf_parent_unreffed)
1859 ctf_dict_close (fp->ctf_parent);
1860
1861 for (dtd = ctf_list_next (&fp->ctf_dtdefs); dtd != NULL; dtd = ntd)
1862 {
1863 ntd = ctf_list_next (dtd);
1864 ctf_dtd_delete (fp, dtd);
1865 }
1866 ctf_dynhash_destroy (fp->ctf_dthash);
1867
1868 ctf_dynset_destroy (fp->ctf_conflicting_enums);
1869 ctf_dynhash_destroy (fp->ctf_structs);
1870 ctf_dynhash_destroy (fp->ctf_unions);
1871 ctf_dynhash_destroy (fp->ctf_enums);
1872 ctf_dynhash_destroy (fp->ctf_names);
1873
1874 for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL; dvd = nvd)
1875 {
1876 nvd = ctf_list_next (dvd);
1877 ctf_dvd_delete (fp, dvd);
1878 }
1879 ctf_dynhash_destroy (fp->ctf_dvhash);
1880
1881 ctf_dynhash_destroy (fp->ctf_symhash_func);
1882 ctf_dynhash_destroy (fp->ctf_symhash_objt);
1883 free (fp->ctf_funcidx_sxlate);
1884 free (fp->ctf_objtidx_sxlate);
1885 ctf_dynhash_destroy (fp->ctf_objthash);
1886 ctf_dynhash_destroy (fp->ctf_funchash);
1887 free (fp->ctf_dynsymidx);
1888 ctf_dynhash_destroy (fp->ctf_dynsyms);
1889 for (did = ctf_list_next (&fp->ctf_in_flight_dynsyms); did != NULL; did = nid)
1890 {
1891 nid = ctf_list_next (did);
1892 ctf_list_delete (&fp->ctf_in_flight_dynsyms, did);
1893 free (did);
1894 }
1895
1896 ctf_str_free_atoms (fp);
1897 free (fp->ctf_tmp_typeslice);
1898
1899 if (fp->ctf_data.cts_name != _CTF_NULLSTR)
1900 free ((char *) fp->ctf_data.cts_name);
1901
1902 if (fp->ctf_ext_symtab.cts_name != _CTF_NULLSTR)
1903 free ((char *) fp->ctf_ext_symtab.cts_name);
1904
1905 if (fp->ctf_ext_strtab.cts_name != _CTF_NULLSTR)
1906 free ((char *) fp->ctf_ext_strtab.cts_name);
1907 else if (fp->ctf_data_mmapped)
1908 ctf_munmap (fp->ctf_data_mmapped, fp->ctf_data_mmapped_len);
1909
1910 free (fp->ctf_dynbase);
1911
1912 ctf_dynhash_destroy (fp->ctf_syn_ext_strtab);
1913 ctf_dynhash_destroy (fp->ctf_link_inputs);
1914 ctf_dynhash_destroy (fp->ctf_link_outputs);
1915 ctf_dynhash_destroy (fp->ctf_link_type_mapping);
1916 ctf_dynhash_destroy (fp->ctf_link_in_cu_mapping);
1917 ctf_dynhash_destroy (fp->ctf_link_out_cu_mapping);
1918 ctf_dynhash_destroy (fp->ctf_add_processing);
1919 ctf_dedup_fini (fp, NULL, 0);
1920 ctf_dynset_destroy (fp->ctf_dedup_atoms_alloc);
1921
1922 for (err = ctf_list_next (&fp->ctf_errs_warnings); err != NULL; err = nerr)
1923 {
1924 nerr = ctf_list_next (err);
1925 ctf_list_delete (&fp->ctf_errs_warnings, err);
1926 free (err->cew_text);
1927 free (err);
1928 }
1929
1930 free (fp->ctf_sxlate);
1931 free (fp->ctf_txlate);
1932 free (fp->ctf_ptrtab);
1933 free (fp->ctf_pptrtab);
1934
1935 free (fp->ctf_header);
1936 free (fp);
1937}
1938
1939/* Backward compatibility. */
1940void
1941ctf_file_close (ctf_file_t *fp)
1942{
1943 ctf_dict_close (fp);
1944}
1945
1946/* The converse of ctf_open(). ctf_open() disguises whatever it opens as an
1947 archive, so closing one is just like closing an archive. */
1948void
1949ctf_close (ctf_archive_t *arc)
1950{
1951 ctf_arc_close (arc);
1952}
1953
1954/* Get the CTF archive from which this ctf_dict_t is derived. */
1955ctf_archive_t *
1956ctf_get_arc (const ctf_dict_t *fp)
1957{
1958 return fp->ctf_archive;
1959}
1960
1961/* Return the ctfsect out of the core ctf_impl. Useful for freeing the
1962 ctfsect's data * after ctf_dict_close(), which is why we return the actual
1963 structure, not a pointer to it, since that is likely to become a pointer to
1964 freed data before the return value is used under the expected use case of
1965 ctf_getsect()/ ctf_dict_close()/free(). */
1966ctf_sect_t
1967ctf_getdatasect (const ctf_dict_t *fp)
1968{
1969 return fp->ctf_data;
1970}
1971
1972ctf_sect_t
1973ctf_getsymsect (const ctf_dict_t *fp)
1974{
1975 return fp->ctf_ext_symtab;
1976}
1977
1978ctf_sect_t
1979ctf_getstrsect (const ctf_dict_t *fp)
1980{
1981 return fp->ctf_ext_strtab;
1982}
1983
1984/* Set the endianness of the symbol table attached to FP. */
1985void
1986ctf_symsect_endianness (ctf_dict_t *fp, int little_endian)
1987{
1988 int old_endianness = fp->ctf_symsect_little_endian;
1989
1990 fp->ctf_symsect_little_endian = !!little_endian;
1991
1992 /* If we already have a symtab translation table, we need to repopulate it if
1993 our idea of the endianness has changed. */
1994
1995 if (old_endianness != fp->ctf_symsect_little_endian
1996 && fp->ctf_sxlate != NULL && fp->ctf_ext_symtab.cts_data != NULL)
1997 assert (init_symtab (fp, fp->ctf_header, &fp->ctf_ext_symtab) == 0);
1998}
1999
2000/* Return the CTF handle for the parent CTF dict, if one exists. Otherwise
2001 return NULL to indicate this dict has no imported parent. */
2002ctf_dict_t *
2003ctf_parent_dict (ctf_dict_t *fp)
2004{
2005 return fp->ctf_parent;
2006}
2007
2008/* Backward compatibility. */
2009ctf_dict_t *
2010ctf_parent_file (ctf_dict_t *fp)
2011{
2012 return ctf_parent_dict (fp);
2013}
2014
2015/* Return the name of the parent CTF dict, if one exists, or NULL otherwise. */
2016const char *
2017ctf_parent_name (ctf_dict_t *fp)
2018{
2019 return fp->ctf_parname;
2020}
2021
2022/* Set the parent name. It is an error to call this routine without calling
2023 ctf_import() at some point. */
2024int
2025ctf_parent_name_set (ctf_dict_t *fp, const char *name)
2026{
2027 if (fp->ctf_dynparname != NULL)
2028 free (fp->ctf_dynparname);
2029
2030 if ((fp->ctf_dynparname = strdup (name)) == NULL)
2031 return (ctf_set_errno (fp, ENOMEM));
2032 fp->ctf_parname = fp->ctf_dynparname;
2033 return 0;
2034}
2035
2036/* Return the name of the compilation unit this CTF file applies to. Usually
2037 non-NULL only for non-parent dicts. */
2038const char *
2039ctf_cuname (ctf_dict_t *fp)
2040{
2041 return fp->ctf_cuname;
2042}
2043
2044/* Set the compilation unit name. */
2045int
2046ctf_cuname_set (ctf_dict_t *fp, const char *name)
2047{
2048 if (fp->ctf_dyncuname != NULL)
2049 free (fp->ctf_dyncuname);
2050
2051 if ((fp->ctf_dyncuname = strdup (name)) == NULL)
2052 return (ctf_set_errno (fp, ENOMEM));
2053 fp->ctf_cuname = fp->ctf_dyncuname;
2054 return 0;
2055}
2056
2057/* Import the types from the specified parent dict by storing a pointer to it in
2058 ctf_parent and incrementing its reference count. Only one parent is allowed:
2059 if a parent already exists, it is replaced by the new parent. The pptrtab
2060 is wiped, and will be refreshed by the next ctf_lookup_by_name call. */
2061int
2062ctf_import (ctf_dict_t *fp, ctf_dict_t *pfp)
2063{
2064 if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
2065 return (ctf_set_errno (fp, EINVAL));
2066
2067 if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
2068 return (ctf_set_errno (fp, ECTF_DMODEL));
2069
2070 if (fp->ctf_parent && !fp->ctf_parent_unreffed)
2071 ctf_dict_close (fp->ctf_parent);
2072 fp->ctf_parent = NULL;
2073
2074 free (fp->ctf_pptrtab);
2075 fp->ctf_pptrtab = NULL;
2076 fp->ctf_pptrtab_len = 0;
2077 fp->ctf_pptrtab_typemax = 0;
2078
2079 if (pfp != NULL)
2080 {
2081 int err;
2082
2083 if (fp->ctf_parname == NULL)
2084 if ((err = ctf_parent_name_set (fp, "PARENT")) < 0)
2085 return err;
2086
2087 fp->ctf_flags |= LCTF_CHILD;
2088 pfp->ctf_refcnt++;
2089 fp->ctf_parent_unreffed = 0;
2090 }
2091
2092 fp->ctf_parent = pfp;
2093 return 0;
2094}
2095
2096/* Like ctf_import, but does not increment the refcount on the imported parent
2097 or close it at any point: as a result it can go away at any time and the
2098 caller must do all freeing itself. Used internally to avoid refcount
2099 loops. */
2100int
2101ctf_import_unref (ctf_dict_t *fp, ctf_dict_t *pfp)
2102{
2103 if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
2104 return (ctf_set_errno (fp, EINVAL));
2105
2106 if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
2107 return (ctf_set_errno (fp, ECTF_DMODEL));
2108
2109 if (fp->ctf_parent && !fp->ctf_parent_unreffed)
2110 ctf_dict_close (fp->ctf_parent);
2111 fp->ctf_parent = NULL;
2112
2113 free (fp->ctf_pptrtab);
2114 fp->ctf_pptrtab = NULL;
2115 fp->ctf_pptrtab_len = 0;
2116 fp->ctf_pptrtab_typemax = 0;
2117 if (pfp != NULL)
2118 {
2119 int err;
2120
2121 if (fp->ctf_parname == NULL)
2122 if ((err = ctf_parent_name_set (fp, "PARENT")) < 0)
2123 return err;
2124
2125 fp->ctf_flags |= LCTF_CHILD;
2126 fp->ctf_parent_unreffed = 1;
2127 }
2128
2129 fp->ctf_parent = pfp;
2130 return 0;
2131}
2132
2133/* Set the data model constant for the CTF dict. */
2134int
2135ctf_setmodel (ctf_dict_t *fp, int model)
2136{
2137 const ctf_dmodel_t *dp;
2138
2139 for (dp = _libctf_models; dp->ctd_name != NULL; dp++)
2140 {
2141 if (dp->ctd_code == model)
2142 {
2143 fp->ctf_dmodel = dp;
2144 return 0;
2145 }
2146 }
2147
2148 return (ctf_set_errno (fp, EINVAL));
2149}
2150
2151/* Return the data model constant for the CTF dict. */
2152int
2153ctf_getmodel (ctf_dict_t *fp)
2154{
2155 return fp->ctf_dmodel->ctd_code;
2156}
2157
2158/* The caller can hang an arbitrary pointer off each ctf_dict_t using this
2159 function. */
2160void
2161ctf_setspecific (ctf_dict_t *fp, void *data)
2162{
2163 fp->ctf_specific = data;
2164}
2165
2166/* Retrieve the arbitrary pointer again. */
2167void *
2168ctf_getspecific (ctf_dict_t *fp)
2169{
2170 return fp->ctf_specific;
2171}