]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/coff-h8300.c
* coff-h8300.c: Add comments about relaxation.
[thirdparty/binutils-gdb.git] / bfd / coff-h8300.c
1 /* BFD back-end for Renesas H8/300 COFF binaries.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
5 Written by Steve Chamberlain, <sac@cygnus.com>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 #include "bfd.h"
24 #include "sysdep.h"
25 #include "libbfd.h"
26 #include "bfdlink.h"
27 #include "genlink.h"
28 #include "coff/h8300.h"
29 #include "coff/internal.h"
30 #include "libcoff.h"
31 #include "libiberty.h"
32
33 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
34
35 /* We derive a hash table from the basic BFD hash table to
36 hold entries in the function vector. Aside from the
37 info stored by the basic hash table, we need the offset
38 of a particular entry within the hash table as well as
39 the offset where we'll add the next entry. */
40
41 struct funcvec_hash_entry
42 {
43 /* The basic hash table entry. */
44 struct bfd_hash_entry root;
45
46 /* The offset within the vectors section where
47 this entry lives. */
48 bfd_vma offset;
49 };
50
51 struct funcvec_hash_table
52 {
53 /* The basic hash table. */
54 struct bfd_hash_table root;
55
56 bfd *abfd;
57
58 /* Offset at which we'll add the next entry. */
59 unsigned int offset;
60 };
61
62 static struct bfd_hash_entry *
63 funcvec_hash_newfunc
64 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
65
66 static bfd_boolean
67 funcvec_hash_table_init
68 (struct funcvec_hash_table *, bfd *,
69 struct bfd_hash_entry *(*) (struct bfd_hash_entry *,
70 struct bfd_hash_table *,
71 const char *));
72
73 static bfd_reloc_status_type special
74 (bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **);
75 static int select_reloc
76 (reloc_howto_type *);
77 static void rtype2howto
78 (arelent *, struct internal_reloc *);
79 static void reloc_processing
80 (arelent *, struct internal_reloc *, asymbol **, bfd *, asection *);
81 static bfd_boolean h8300_symbol_address_p
82 (bfd *, asection *, bfd_vma);
83 static int h8300_reloc16_estimate
84 (bfd *, asection *, arelent *, unsigned int,
85 struct bfd_link_info *);
86 static void h8300_reloc16_extra_cases
87 (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *,
88 bfd_byte *, unsigned int *, unsigned int *);
89 static bfd_boolean h8300_bfd_link_add_symbols
90 (bfd *, struct bfd_link_info *);
91
92 /* To lookup a value in the function vector hash table. */
93 #define funcvec_hash_lookup(table, string, create, copy) \
94 ((struct funcvec_hash_entry *) \
95 bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
96
97 /* The derived h8300 COFF linker table. Note it's derived from
98 the generic linker hash table, not the COFF backend linker hash
99 table! We use this to attach additional data structures we
100 need while linking on the h8300. */
101 struct h8300_coff_link_hash_table {
102 /* The main hash table. */
103 struct generic_link_hash_table root;
104
105 /* Section for the vectors table. This gets attached to a
106 random input bfd, we keep it here for easy access. */
107 asection *vectors_sec;
108
109 /* Hash table of the functions we need to enter into the function
110 vector. */
111 struct funcvec_hash_table *funcvec_hash_table;
112 };
113
114 static struct bfd_link_hash_table *h8300_coff_link_hash_table_create (bfd *);
115
116 /* Get the H8/300 COFF linker hash table from a link_info structure. */
117
118 #define h8300_coff_hash_table(p) \
119 ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
120
121 /* Initialize fields within a funcvec hash table entry. Called whenever
122 a new entry is added to the funcvec hash table. */
123
124 static struct bfd_hash_entry *
125 funcvec_hash_newfunc (struct bfd_hash_entry *entry,
126 struct bfd_hash_table *gen_table,
127 const char *string)
128 {
129 struct funcvec_hash_entry *ret;
130 struct funcvec_hash_table *table;
131
132 ret = (struct funcvec_hash_entry *) entry;
133 table = (struct funcvec_hash_table *) gen_table;
134
135 /* Allocate the structure if it has not already been allocated by a
136 subclass. */
137 if (ret == NULL)
138 ret = ((struct funcvec_hash_entry *)
139 bfd_hash_allocate (gen_table,
140 sizeof (struct funcvec_hash_entry)));
141 if (ret == NULL)
142 return NULL;
143
144 /* Call the allocation method of the superclass. */
145 ret = ((struct funcvec_hash_entry *)
146 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
147
148 if (ret == NULL)
149 return NULL;
150
151 /* Note where this entry will reside in the function vector table. */
152 ret->offset = table->offset;
153
154 /* Bump the offset at which we store entries in the function
155 vector. We'd like to bump up the size of the vectors section,
156 but it's not easily available here. */
157 switch (bfd_get_mach (table->abfd))
158 {
159 case bfd_mach_h8300:
160 case bfd_mach_h8300hn:
161 case bfd_mach_h8300sn:
162 table->offset += 2;
163 break;
164 case bfd_mach_h8300h:
165 case bfd_mach_h8300s:
166 table->offset += 4;
167 break;
168 default:
169 return NULL;
170 }
171
172 /* Everything went OK. */
173 return (struct bfd_hash_entry *) ret;
174 }
175
176 /* Initialize the function vector hash table. */
177
178 static bfd_boolean
179 funcvec_hash_table_init (struct funcvec_hash_table *table,
180 bfd *abfd,
181 struct bfd_hash_entry *(*newfunc)
182 (struct bfd_hash_entry *,
183 struct bfd_hash_table *,
184 const char *))
185 {
186 /* Initialize our local fields, then call the generic initialization
187 routine. */
188 table->offset = 0;
189 table->abfd = abfd;
190 return (bfd_hash_table_init (&table->root, newfunc));
191 }
192
193 /* Create the derived linker hash table. We use a derived hash table
194 basically to hold "static" information during an H8/300 coff link
195 without using static variables. */
196
197 static struct bfd_link_hash_table *
198 h8300_coff_link_hash_table_create (bfd *abfd)
199 {
200 struct h8300_coff_link_hash_table *ret;
201 bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
202
203 ret = (struct h8300_coff_link_hash_table *) bfd_malloc (amt);
204 if (ret == NULL)
205 return NULL;
206 if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
207 _bfd_generic_link_hash_newfunc))
208 {
209 free (ret);
210 return NULL;
211 }
212
213 /* Initialize our data. */
214 ret->vectors_sec = NULL;
215 ret->funcvec_hash_table = NULL;
216
217 /* OK. Everything's initialized, return the base pointer. */
218 return &ret->root.root;
219 }
220
221 /* Special handling for H8/300 relocs.
222 We only come here for pcrel stuff and return normally if not an -r link.
223 When doing -r, we can't do any arithmetic for the pcrel stuff, because
224 the code in reloc.c assumes that we can manipulate the targets of
225 the pcrel branches. This isn't so, since the H8/300 can do relaxing,
226 which means that the gap after the instruction may not be enough to
227 contain the offset required for the branch, so we have to use only
228 the addend until the final link. */
229
230 static bfd_reloc_status_type
231 special (bfd *abfd ATTRIBUTE_UNUSED,
232 arelent *reloc_entry ATTRIBUTE_UNUSED,
233 asymbol *symbol ATTRIBUTE_UNUSED,
234 PTR data ATTRIBUTE_UNUSED,
235 asection *input_section ATTRIBUTE_UNUSED,
236 bfd *output_bfd,
237 char **error_message ATTRIBUTE_UNUSED)
238 {
239 if (output_bfd == (bfd *) NULL)
240 return bfd_reloc_continue;
241
242 /* Adjust the reloc address to that in the output section. */
243 reloc_entry->address += input_section->output_offset;
244 return bfd_reloc_ok;
245 }
246
247 static reloc_howto_type howto_table[] = {
248 HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
249 HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
250 HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
251 HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
252 HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
253 HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
254 HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
255 HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
256 HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
257 HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
258 HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
259 HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
260 HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
261 HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
262
263 /* An indirect reference to a function. This causes the function's address
264 to be added to the function vector in lo-mem and puts the address of
265 the function vector's entry in the jsr instruction. */
266 HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),
267
268 /* Internal reloc for relaxing. This is created when a 16bit pc-relative
269 branch is turned into an 8bit pc-relative branch. */
270 HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
271
272 HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),
273
274 HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
275
276 HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),
277
278 HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
279 };
280
281 /* Turn a howto into a reloc number. */
282
283 #define SELECT_RELOC(x,howto) \
284 { x.r_type = select_reloc (howto); }
285
286 #define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
287 && H8300HNBADMAG(x) && H8300SNBADMAG(x))
288 #define H8300 1 /* Customize coffcode.h */
289 #define __A_MAGIC_SET__
290
291 /* Code to swap in the reloc. */
292 #define SWAP_IN_RELOC_OFFSET H_GET_32
293 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
294 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
295 dst->r_stuff[0] = 'S'; \
296 dst->r_stuff[1] = 'C';
297
298 static int
299 select_reloc (reloc_howto_type *howto)
300 {
301 return howto->type;
302 }
303
304 /* Code to turn a r_type into a howto ptr, uses the above howto table. */
305
306 static void
307 rtype2howto (arelent *internal, struct internal_reloc *dst)
308 {
309 switch (dst->r_type)
310 {
311 case R_RELBYTE:
312 internal->howto = howto_table + 0;
313 break;
314 case R_RELWORD:
315 internal->howto = howto_table + 1;
316 break;
317 case R_RELLONG:
318 internal->howto = howto_table + 2;
319 break;
320 case R_PCRBYTE:
321 internal->howto = howto_table + 3;
322 break;
323 case R_PCRWORD:
324 internal->howto = howto_table + 4;
325 break;
326 case R_PCRLONG:
327 internal->howto = howto_table + 5;
328 break;
329 case R_MOV16B1:
330 internal->howto = howto_table + 6;
331 break;
332 case R_MOV16B2:
333 internal->howto = howto_table + 7;
334 break;
335 case R_JMP1:
336 internal->howto = howto_table + 8;
337 break;
338 case R_JMP2:
339 internal->howto = howto_table + 9;
340 break;
341 case R_JMPL1:
342 internal->howto = howto_table + 10;
343 break;
344 case R_JMPL2:
345 internal->howto = howto_table + 11;
346 break;
347 case R_MOV24B1:
348 internal->howto = howto_table + 12;
349 break;
350 case R_MOV24B2:
351 internal->howto = howto_table + 13;
352 break;
353 case R_MEM_INDIRECT:
354 internal->howto = howto_table + 14;
355 break;
356 case R_PCRWORD_B:
357 internal->howto = howto_table + 15;
358 break;
359 case R_MOVL1:
360 internal->howto = howto_table + 16;
361 break;
362 case R_MOVL2:
363 internal->howto = howto_table + 17;
364 break;
365 case R_BCC_INV:
366 internal->howto = howto_table + 18;
367 break;
368 case R_JMP_DEL:
369 internal->howto = howto_table + 19;
370 break;
371 default:
372 abort ();
373 break;
374 }
375 }
376
377 #define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)
378
379 /* Perform any necessary magic to the addend in a reloc entry. */
380
381 #define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
382 cache_ptr->addend = ext_reloc.r_offset;
383
384 #define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
385 reloc_processing (relent, reloc, symbols, abfd, section)
386
387 static void
388 reloc_processing (arelent *relent, struct internal_reloc *reloc,
389 asymbol **symbols, bfd *abfd, asection *section)
390 {
391 relent->address = reloc->r_vaddr;
392 rtype2howto (relent, reloc);
393
394 if (((int) reloc->r_symndx) > 0)
395 relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
396 else
397 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
398
399 relent->addend = reloc->r_offset;
400
401 relent->address -= section->vma;
402 #if 0
403 relent->section = 0;
404 #endif
405 }
406
407 static bfd_boolean
408 h8300_symbol_address_p (bfd *abfd, asection *input_section, bfd_vma address)
409 {
410 asymbol **s;
411
412 s = _bfd_generic_link_get_symbols (abfd);
413 BFD_ASSERT (s != (asymbol **) NULL);
414
415 /* Search all the symbols for one in INPUT_SECTION with
416 address ADDRESS. */
417 while (*s)
418 {
419 asymbol *p = *s;
420
421 if (p->section == input_section
422 && (input_section->output_section->vma
423 + input_section->output_offset
424 + p->value) == address)
425 return TRUE;
426 s++;
427 }
428 return FALSE;
429 }
430
431 /* If RELOC represents a relaxable instruction/reloc, change it into
432 the relaxed reloc, notify the linker that symbol addresses
433 have changed (bfd_perform_slip) and return how much the current
434 section has shrunk by.
435
436 FIXME: Much of this code has knowledge of the ordering of entries
437 in the howto table. This needs to be fixed. */
438
439 static int
440 h8300_reloc16_estimate (bfd *abfd, asection *input_section, arelent *reloc,
441 unsigned int shrink, struct bfd_link_info *link_info)
442 {
443 bfd_vma value;
444 bfd_vma dot;
445 bfd_vma gap;
446 static asection *last_input_section = NULL;
447 static arelent *last_reloc = NULL;
448
449 /* The address of the thing to be relocated will have moved back by
450 the size of the shrink - but we don't change reloc->address here,
451 since we need it to know where the relocation lives in the source
452 uncooked section. */
453 bfd_vma address = reloc->address - shrink;
454
455 if (input_section != last_input_section)
456 last_reloc = NULL;
457
458 /* Only examine the relocs which might be relaxable. */
459 switch (reloc->howto->type)
460 {
461 /* This is the 16/24 bit absolute branch which could become an 8 bit
462 pc-relative branch. */
463 case R_JMP1:
464 case R_JMPL1:
465 /* Get the address of the target of this branch. */
466 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
467
468 /* Get the address of the next instruction (not the reloc). */
469 dot = (input_section->output_section->vma
470 + input_section->output_offset + address);
471
472 /* Adjust for R_JMP1 vs R_JMPL1. */
473 dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
474
475 /* Compute the distance from this insn to the branch target. */
476 gap = value - dot;
477
478 /* If the distance is within -128..+128 inclusive, then we can relax
479 this jump. +128 is valid since the target will move two bytes
480 closer if we do relax this branch. */
481 if ((int) gap >= -128 && (int) gap <= 128)
482 {
483 bfd_byte code;
484
485 if (!bfd_get_section_contents (abfd, input_section, & code,
486 reloc->address, 1))
487 break;
488 code = bfd_get_8 (abfd, & code);
489
490 /* It's possible we may be able to eliminate this branch entirely;
491 if the previous instruction is a branch around this instruction,
492 and there's no label at this instruction, then we can reverse
493 the condition on the previous branch and eliminate this jump.
494
495 original: new:
496 bCC lab1 bCC' lab2
497 jmp lab2
498 lab1: lab1:
499
500 This saves 4 bytes instead of two, and should be relatively
501 common.
502
503 Only perform this optimisation for jumps (code 0x5a) not
504 subroutine calls, as otherwise it could transform:
505
506 mov.w r0,r0
507 beq .L1
508 jsr @_bar
509 .L1: rts
510 _bar: rts
511 into:
512 mov.w r0,r0
513 bne _bar
514 rts
515 _bar: rts
516
517 which changes the call (jsr) into a branch (bne). */
518 if (code == 0x5a
519 && gap <= 126
520 && last_reloc
521 && last_reloc->howto->type == R_PCRBYTE)
522 {
523 bfd_vma last_value;
524 last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
525 input_section) + 1;
526
527 if (last_value == dot + 2
528 && last_reloc->address + 1 == reloc->address
529 && !h8300_symbol_address_p (abfd, input_section, dot - 2))
530 {
531 reloc->howto = howto_table + 19;
532 last_reloc->howto = howto_table + 18;
533 last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
534 last_reloc->addend = reloc->addend;
535 shrink += 4;
536 bfd_perform_slip (abfd, 4, input_section, address);
537 break;
538 }
539 }
540
541 /* Change the reloc type. */
542 reloc->howto = reloc->howto + 1;
543
544 /* This shrinks this section by two bytes. */
545 shrink += 2;
546 bfd_perform_slip (abfd, 2, input_section, address);
547 }
548 break;
549
550 /* This is the 16 bit pc-relative branch which could become an 8 bit
551 pc-relative branch. */
552 case R_PCRWORD:
553 /* Get the address of the target of this branch, add one to the value
554 because the addend field in PCrel jumps is off by -1. */
555 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
556
557 /* Get the address of the next instruction if we were to relax. */
558 dot = input_section->output_section->vma +
559 input_section->output_offset + address;
560
561 /* Compute the distance from this insn to the branch target. */
562 gap = value - dot;
563
564 /* If the distance is within -128..+128 inclusive, then we can relax
565 this jump. +128 is valid since the target will move two bytes
566 closer if we do relax this branch. */
567 if ((int) gap >= -128 && (int) gap <= 128)
568 {
569 /* Change the reloc type. */
570 reloc->howto = howto_table + 15;
571
572 /* This shrinks this section by two bytes. */
573 shrink += 2;
574 bfd_perform_slip (abfd, 2, input_section, address);
575 }
576 break;
577
578 /* This is a 16 bit absolute address in a mov.b insn, which can
579 become an 8 bit absolute address if it's in the right range. */
580 case R_MOV16B1:
581 /* Get the address of the data referenced by this mov.b insn. */
582 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
583 value = bfd_h8300_pad_address (abfd, value);
584
585 /* If the address is in the top 256 bytes of the address space
586 then we can relax this instruction. */
587 if (value >= 0xffffff00u)
588 {
589 /* Change the reloc type. */
590 reloc->howto = reloc->howto + 1;
591
592 /* This shrinks this section by two bytes. */
593 shrink += 2;
594 bfd_perform_slip (abfd, 2, input_section, address);
595 }
596 break;
597
598 /* Similarly for a 24 bit absolute address in a mov.b. Note that
599 if we can't relax this into an 8 bit absolute, we'll fall through
600 and try to relax it into a 16bit absolute. */
601 case R_MOV24B1:
602 /* Get the address of the data referenced by this mov.b insn. */
603 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
604 value = bfd_h8300_pad_address (abfd, value);
605
606 if (value >= 0xffffff00u)
607 {
608 /* Change the reloc type. */
609 reloc->howto = reloc->howto + 1;
610
611 /* This shrinks this section by four bytes. */
612 shrink += 4;
613 bfd_perform_slip (abfd, 4, input_section, address);
614
615 /* Done with this reloc. */
616 break;
617 }
618
619 /* FALLTHROUGH and try to turn the 32/24 bit reloc into a 16 bit
620 reloc. */
621
622 /* This is a 24/32 bit absolute address in a mov insn, which can
623 become an 16 bit absolute address if it's in the right range. */
624 case R_MOVL1:
625 /* Get the address of the data referenced by this mov insn. */
626 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
627 value = bfd_h8300_pad_address (abfd, value);
628
629 /* If the address is a sign-extended 16-bit value then we can
630 relax this instruction. */
631 if (value <= 0x7fff || value >= 0xffff8000u)
632 {
633 /* Change the reloc type. */
634 reloc->howto = howto_table + 17;
635
636 /* This shrinks this section by two bytes. */
637 shrink += 2;
638 bfd_perform_slip (abfd, 2, input_section, address);
639 }
640 break;
641
642 /* No other reloc types represent relaxing opportunities. */
643 default:
644 break;
645 }
646
647 last_reloc = reloc;
648 last_input_section = input_section;
649 return shrink;
650 }
651
652 /* Handle relocations for the H8/300, including relocs for relaxed
653 instructions.
654
655 FIXME: Not all relocations check for overflow! */
656
657 static void
658 h8300_reloc16_extra_cases (bfd *abfd, struct bfd_link_info *link_info,
659 struct bfd_link_order *link_order, arelent *reloc,
660 bfd_byte *data, unsigned int *src_ptr,
661 unsigned int *dst_ptr)
662 {
663 unsigned int src_address = *src_ptr;
664 unsigned int dst_address = *dst_ptr;
665 asection *input_section = link_order->u.indirect.section;
666 bfd_vma value;
667 bfd_vma dot;
668 int gap, tmp;
669 unsigned char temp_code;
670
671 switch (reloc->howto->type)
672 {
673 /* Generic 8bit pc-relative relocation. */
674 case R_PCRBYTE:
675 /* Get the address of the target of this branch. */
676 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
677
678 dot = (link_order->offset
679 + dst_address
680 + link_order->u.indirect.section->output_section->vma);
681
682 gap = value - dot;
683
684 /* Sanity check. */
685 if (gap < -128 || gap > 126)
686 {
687 if (! ((*link_info->callbacks->reloc_overflow)
688 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
689 reloc->howto->name, reloc->addend, input_section->owner,
690 input_section, reloc->address)))
691 abort ();
692 }
693
694 /* Everything looks OK. Apply the relocation and update the
695 src/dst address appropriately. */
696 bfd_put_8 (abfd, gap, data + dst_address);
697 dst_address++;
698 src_address++;
699
700 /* All done. */
701 break;
702
703 /* Generic 16bit pc-relative relocation. */
704 case R_PCRWORD:
705 /* Get the address of the target of this branch. */
706 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
707
708 /* Get the address of the instruction (not the reloc). */
709 dot = (link_order->offset
710 + dst_address
711 + link_order->u.indirect.section->output_section->vma + 1);
712
713 gap = value - dot;
714
715 /* Sanity check. */
716 if (gap > 32766 || gap < -32768)
717 {
718 if (! ((*link_info->callbacks->reloc_overflow)
719 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
720 reloc->howto->name, reloc->addend, input_section->owner,
721 input_section, reloc->address)))
722 abort ();
723 }
724
725 /* Everything looks OK. Apply the relocation and update the
726 src/dst address appropriately. */
727 bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
728 dst_address += 2;
729 src_address += 2;
730
731 /* All done. */
732 break;
733
734 /* Generic 8bit absolute relocation. */
735 case R_RELBYTE:
736 /* Get the address of the object referenced by this insn. */
737 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
738
739 bfd_put_8 (abfd, value & 0xff, data + dst_address);
740 dst_address += 1;
741 src_address += 1;
742
743 /* All done. */
744 break;
745
746 /* Various simple 16bit absolute relocations. */
747 case R_MOV16B1:
748 case R_JMP1:
749 case R_RELWORD:
750 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
751 bfd_put_16 (abfd, value, data + dst_address);
752 dst_address += 2;
753 src_address += 2;
754 break;
755
756 /* Various simple 24/32bit absolute relocations. */
757 case R_MOV24B1:
758 case R_MOVL1:
759 case R_RELLONG:
760 /* Get the address of the target of this branch. */
761 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
762 bfd_put_32 (abfd, value, data + dst_address);
763 dst_address += 4;
764 src_address += 4;
765 break;
766
767 /* Another 24/32bit absolute relocation. */
768 case R_JMPL1:
769 /* Get the address of the target of this branch. */
770 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
771
772 value = ((value & 0x00ffffff)
773 | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
774 bfd_put_32 (abfd, value, data + dst_address);
775 dst_address += 4;
776 src_address += 4;
777 break;
778
779 /* A 16bit absolute relocation that was formerly a 24/32bit
780 absolute relocation. */
781 case R_MOVL2:
782 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
783 value = bfd_h8300_pad_address (abfd, value);
784
785 /* Sanity check. */
786 if (value <= 0x7fff || value >= 0xffff8000u)
787 {
788 /* Insert the 16bit value into the proper location. */
789 bfd_put_16 (abfd, value, data + dst_address);
790
791 /* Fix the opcode. For all the move insns, we simply
792 need to turn off bit 0x20 in the previous byte. */
793 data[dst_address - 1] &= ~0x20;
794 dst_address += 2;
795 src_address += 4;
796 }
797 else
798 {
799 if (! ((*link_info->callbacks->reloc_overflow)
800 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
801 reloc->howto->name, reloc->addend, input_section->owner,
802 input_section, reloc->address)))
803 abort ();
804 }
805 break;
806
807 /* A 16bit absolute branch that is now an 8-bit pc-relative branch. */
808 case R_JMP2:
809 /* Get the address of the target of this branch. */
810 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
811
812 /* Get the address of the next instruction. */
813 dot = (link_order->offset
814 + dst_address
815 + link_order->u.indirect.section->output_section->vma + 1);
816
817 gap = value - dot;
818
819 /* Sanity check. */
820 if (gap < -128 || gap > 126)
821 {
822 if (! ((*link_info->callbacks->reloc_overflow)
823 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
824 reloc->howto->name, reloc->addend, input_section->owner,
825 input_section, reloc->address)))
826 abort ();
827 }
828
829 /* Now fix the instruction itself. */
830 switch (data[dst_address - 1])
831 {
832 case 0x5e:
833 /* jsr -> bsr */
834 bfd_put_8 (abfd, 0x55, data + dst_address - 1);
835 break;
836 case 0x5a:
837 /* jmp ->bra */
838 bfd_put_8 (abfd, 0x40, data + dst_address - 1);
839 break;
840
841 default:
842 abort ();
843 }
844
845 /* Write out the 8bit value. */
846 bfd_put_8 (abfd, gap, data + dst_address);
847
848 dst_address += 1;
849 src_address += 3;
850
851 break;
852
853 /* A 16bit pc-relative branch that is now an 8-bit pc-relative branch. */
854 case R_PCRWORD_B:
855 /* Get the address of the target of this branch. */
856 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
857
858 /* Get the address of the instruction (not the reloc). */
859 dot = (link_order->offset
860 + dst_address
861 + link_order->u.indirect.section->output_section->vma - 1);
862
863 gap = value - dot;
864
865 /* Sanity check. */
866 if (gap < -128 || gap > 126)
867 {
868 if (! ((*link_info->callbacks->reloc_overflow)
869 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
870 reloc->howto->name, reloc->addend, input_section->owner,
871 input_section, reloc->address)))
872 abort ();
873 }
874
875 /* Now fix the instruction. */
876 switch (data[dst_address - 2])
877 {
878 case 0x58:
879 /* bCC:16 -> bCC:8 */
880 /* Get the condition code from the original insn. */
881 tmp = data[dst_address - 1];
882 tmp &= 0xf0;
883 tmp >>= 4;
884
885 /* Now or in the high nibble of the opcode. */
886 tmp |= 0x40;
887
888 /* Write it. */
889 bfd_put_8 (abfd, tmp, data + dst_address - 2);
890 break;
891
892 case 0x5c:
893 /* bsr:16 -> bsr:8 */
894 bfd_put_8 (abfd, 0x55, data + dst_address - 2);
895 break;
896
897 default:
898 abort ();
899 }
900
901 /* Output the target. */
902 bfd_put_8 (abfd, gap, data + dst_address - 1);
903
904 /* We don't advance dst_address -- the 8bit reloc is applied at
905 dst_address - 1, so the next insn should begin at dst_address. */
906 src_address += 2;
907
908 break;
909
910 /* Similarly for a 24bit absolute that is now 8 bits. */
911 case R_JMPL2:
912 /* Get the address of the target of this branch. */
913 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
914
915 /* Get the address of the instruction (not the reloc). */
916 dot = (link_order->offset
917 + dst_address
918 + link_order->u.indirect.section->output_section->vma + 2);
919
920 gap = value - dot;
921
922 /* Fix the instruction. */
923 switch (data[src_address])
924 {
925 case 0x5e:
926 /* jsr -> bsr */
927 bfd_put_8 (abfd, 0x55, data + dst_address);
928 break;
929 case 0x5a:
930 /* jmp ->bra */
931 bfd_put_8 (abfd, 0x40, data + dst_address);
932 break;
933 default:
934 abort ();
935 }
936
937 bfd_put_8 (abfd, gap, data + dst_address + 1);
938 dst_address += 2;
939 src_address += 4;
940
941 break;
942
943 /* This is a 16-bit absolute address in one of the following
944 instructions:
945
946 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
947 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
948 "mov.b"
949
950 We may relax this into an 8-bit absolute address if it's in
951 the right range. */
952 case R_MOV16B2:
953 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
954
955 /* All instructions with R_H8_DIR16B2 start with 0x6a. */
956 if (data[dst_address - 2] != 0x6a)
957 abort ();
958
959 temp_code = data[src_address - 1];
960
961 /* If this is a mov.b instruction, clear the lower nibble, which
962 contains the source/destination register number. */
963 if ((temp_code & 0x10) != 0x10)
964 temp_code &= 0xf0;
965
966 /* Fix up the opcode. */
967 switch (temp_code)
968 {
969 case 0x00:
970 /* This is mov.b @aa:16,Rd. */
971 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
972 break;
973 case 0x80:
974 /* This is mov.b Rs,@aa:16. */
975 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
976 break;
977 case 0x18:
978 /* This is a bit-maniputation instruction that stores one
979 bit into memory, one of "bclr", "bist", "bnot", "bset",
980 and "bst". */
981 data[dst_address - 2] = 0x7f;
982 break;
983 case 0x10:
984 /* This is a bit-maniputation instruction that loads one bit
985 from memory, one of "band", "biand", "bild", "bior",
986 "bixor", "bld", "bor", "btst", and "bxor". */
987 data[dst_address - 2] = 0x7e;
988 break;
989 default:
990 abort ();
991 }
992
993 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
994 src_address += 2;
995 break;
996
997 /* This is a 24-bit absolute address in one of the following
998 instructions:
999
1000 "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
1001 "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
1002 "mov.b"
1003
1004 We may relax this into an 8-bit absolute address if it's in
1005 the right range. */
1006 case R_MOV24B2:
1007 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1008
1009 /* All instructions with R_MOV24B2 start with 0x6a. */
1010 if (data[dst_address - 2] != 0x6a)
1011 abort ();
1012
1013 temp_code = data[src_address - 1];
1014
1015 /* If this is a mov.b instruction, clear the lower nibble, which
1016 contains the source/destination register number. */
1017 if ((temp_code & 0x30) != 0x30)
1018 temp_code &= 0xf0;
1019
1020 /* Fix up the opcode. */
1021 switch (temp_code)
1022 {
1023 case 0x20:
1024 /* This is mov.b @aa:24/32,Rd. */
1025 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
1026 break;
1027 case 0xa0:
1028 /* This is mov.b Rs,@aa:24/32. */
1029 data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
1030 break;
1031 case 0x38:
1032 /* This is a bit-maniputation instruction that stores one
1033 bit into memory, one of "bclr", "bist", "bnot", "bset",
1034 and "bst". */
1035 data[dst_address - 2] = 0x7f;
1036 break;
1037 case 0x30:
1038 /* This is a bit-maniputation instruction that loads one bit
1039 from memory, one of "band", "biand", "bild", "bior",
1040 "bixor", "bld", "bor", "btst", and "bxor". */
1041 data[dst_address - 2] = 0x7e;
1042 break;
1043 default:
1044 abort ();
1045 }
1046
1047 bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1048 src_address += 4;
1049 break;
1050
1051 case R_BCC_INV:
1052 /* Get the address of the target of this branch. */
1053 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1054
1055 dot = (link_order->offset
1056 + dst_address
1057 + link_order->u.indirect.section->output_section->vma) + 1;
1058
1059 gap = value - dot;
1060
1061 /* Sanity check. */
1062 if (gap < -128 || gap > 126)
1063 {
1064 if (! ((*link_info->callbacks->reloc_overflow)
1065 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
1066 reloc->howto->name, reloc->addend, input_section->owner,
1067 input_section, reloc->address)))
1068 abort ();
1069 }
1070
1071 /* Everything looks OK. Fix the condition in the instruction, apply
1072 the relocation, and update the src/dst address appropriately. */
1073
1074 bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
1075 data + dst_address - 1);
1076 bfd_put_8 (abfd, gap, data + dst_address);
1077 dst_address++;
1078 src_address++;
1079
1080 /* All done. */
1081 break;
1082
1083 case R_JMP_DEL:
1084 src_address += 4;
1085 break;
1086
1087 /* An 8bit memory indirect instruction (jmp/jsr).
1088
1089 There's several things that need to be done to handle
1090 this relocation.
1091
1092 If this is a reloc against the absolute symbol, then
1093 we should handle it just R_RELBYTE. Likewise if it's
1094 for a symbol with a value ge 0 and le 0xff.
1095
1096 Otherwise it's a jump/call through the function vector,
1097 and the linker is expected to set up the function vector
1098 and put the right value into the jump/call instruction. */
1099 case R_MEM_INDIRECT:
1100 {
1101 /* We need to find the symbol so we can determine it's
1102 address in the function vector table. */
1103 asymbol *symbol;
1104 const char *name;
1105 struct funcvec_hash_table *ftab;
1106 struct funcvec_hash_entry *h;
1107 struct h8300_coff_link_hash_table *htab;
1108 asection *vectors_sec;
1109
1110 if (link_info->hash->creator != abfd->xvec)
1111 {
1112 (*_bfd_error_handler)
1113 (_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
1114 link_info->hash->creator->name);
1115
1116 /* What else can we do? This function doesn't allow return
1117 of an error, and we don't want to call abort as that
1118 indicates an internal error. */
1119 #ifndef EXIT_FAILURE
1120 #define EXIT_FAILURE 1
1121 #endif
1122 xexit (EXIT_FAILURE);
1123 }
1124 htab = h8300_coff_hash_table (link_info);
1125 vectors_sec = htab->vectors_sec;
1126
1127 /* First see if this is a reloc against the absolute symbol
1128 or against a symbol with a nonnegative value <= 0xff. */
1129 symbol = *(reloc->sym_ptr_ptr);
1130 value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1131 if (symbol == bfd_abs_section_ptr->symbol
1132 || value <= 0xff)
1133 {
1134 /* This should be handled in a manner very similar to
1135 R_RELBYTES. If the value is in range, then just slam
1136 the value into the right location. Else trigger a
1137 reloc overflow callback. */
1138 if (value <= 0xff)
1139 {
1140 bfd_put_8 (abfd, value, data + dst_address);
1141 dst_address += 1;
1142 src_address += 1;
1143 }
1144 else
1145 {
1146 if (! ((*link_info->callbacks->reloc_overflow)
1147 (link_info, bfd_asymbol_name (*reloc->sym_ptr_ptr),
1148 reloc->howto->name, reloc->addend, input_section->owner,
1149 input_section, reloc->address)))
1150 abort ();
1151 }
1152 break;
1153 }
1154
1155 /* This is a jump/call through a function vector, and we're
1156 expected to create the function vector ourselves.
1157
1158 First look up this symbol in the linker hash table -- we need
1159 the derived linker symbol which holds this symbol's index
1160 in the function vector. */
1161 name = symbol->name;
1162 if (symbol->flags & BSF_LOCAL)
1163 {
1164 char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 9);
1165
1166 if (new_name == NULL)
1167 abort ();
1168
1169 strcpy (new_name, name);
1170 sprintf (new_name + strlen (name), "_%08x",
1171 (int) symbol->section);
1172 name = new_name;
1173 }
1174
1175 ftab = htab->funcvec_hash_table;
1176 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1177
1178 /* This shouldn't ever happen. If it does that means we've got
1179 data corruption of some kind. Aborting seems like a reasonable
1180 thing to do here. */
1181 if (h == NULL || vectors_sec == NULL)
1182 abort ();
1183
1184 /* Place the address of the function vector entry into the
1185 reloc's address. */
1186 bfd_put_8 (abfd,
1187 vectors_sec->output_offset + h->offset,
1188 data + dst_address);
1189
1190 dst_address++;
1191 src_address++;
1192
1193 /* Now create an entry in the function vector itself. */
1194 switch (bfd_get_mach (input_section->owner))
1195 {
1196 case bfd_mach_h8300:
1197 case bfd_mach_h8300hn:
1198 case bfd_mach_h8300sn:
1199 bfd_put_16 (abfd,
1200 bfd_coff_reloc16_get_value (reloc,
1201 link_info,
1202 input_section),
1203 vectors_sec->contents + h->offset);
1204 break;
1205 case bfd_mach_h8300h:
1206 case bfd_mach_h8300s:
1207 bfd_put_32 (abfd,
1208 bfd_coff_reloc16_get_value (reloc,
1209 link_info,
1210 input_section),
1211 vectors_sec->contents + h->offset);
1212 break;
1213 default:
1214 abort ();
1215 }
1216
1217 /* Gross. We've already written the contents of the vector section
1218 before we get here... So we write it again with the new data. */
1219 bfd_set_section_contents (vectors_sec->output_section->owner,
1220 vectors_sec->output_section,
1221 vectors_sec->contents,
1222 (file_ptr) vectors_sec->output_offset,
1223 vectors_sec->_raw_size);
1224 break;
1225 }
1226
1227 default:
1228 abort ();
1229 break;
1230
1231 }
1232
1233 *src_ptr = src_address;
1234 *dst_ptr = dst_address;
1235 }
1236
1237 /* Routine for the h8300 linker.
1238
1239 This routine is necessary to handle the special R_MEM_INDIRECT
1240 relocs on the h8300. It's responsible for generating a vectors
1241 section and attaching it to an input bfd as well as sizing
1242 the vectors section. It also creates our vectors hash table.
1243
1244 It uses the generic linker routines to actually add the symbols.
1245 from this BFD to the bfd linker hash table. It may add a few
1246 selected static symbols to the bfd linker hash table. */
1247
1248 static bfd_boolean
1249 h8300_bfd_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
1250 {
1251 asection *sec;
1252 struct funcvec_hash_table *funcvec_hash_table;
1253 bfd_size_type amt;
1254 struct h8300_coff_link_hash_table *htab;
1255
1256 /* Add the symbols using the generic code. */
1257 _bfd_generic_link_add_symbols (abfd, info);
1258
1259 if (info->hash->creator != abfd->xvec)
1260 return TRUE;
1261
1262 htab = h8300_coff_hash_table (info);
1263
1264 /* If we haven't created a vectors section, do so now. */
1265 if (!htab->vectors_sec)
1266 {
1267 flagword flags;
1268
1269 /* Make sure the appropriate flags are set, including SEC_IN_MEMORY. */
1270 flags = (SEC_ALLOC | SEC_LOAD
1271 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
1272 htab->vectors_sec = bfd_make_section (abfd, ".vectors");
1273
1274 /* If the section wasn't created, or we couldn't set the flags,
1275 quit quickly now, rather than dying a painful death later. */
1276 if (!htab->vectors_sec
1277 || !bfd_set_section_flags (abfd, htab->vectors_sec, flags))
1278 return FALSE;
1279
1280 /* Also create the vector hash table. */
1281 amt = sizeof (struct funcvec_hash_table);
1282 funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
1283
1284 if (!funcvec_hash_table)
1285 return FALSE;
1286
1287 /* And initialize the funcvec hash table. */
1288 if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
1289 funcvec_hash_newfunc))
1290 {
1291 bfd_release (abfd, funcvec_hash_table);
1292 return FALSE;
1293 }
1294
1295 /* Store away a pointer to the funcvec hash table. */
1296 htab->funcvec_hash_table = funcvec_hash_table;
1297 }
1298
1299 /* Load up the function vector hash table. */
1300 funcvec_hash_table = htab->funcvec_hash_table;
1301
1302 /* Now scan the relocs for all the sections in this bfd; create
1303 additional space in the .vectors section as needed. */
1304 for (sec = abfd->sections; sec; sec = sec->next)
1305 {
1306 long reloc_size, reloc_count, i;
1307 asymbol **symbols;
1308 arelent **relocs;
1309
1310 /* Suck in the relocs, symbols & canonicalize them. */
1311 reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
1312 if (reloc_size <= 0)
1313 continue;
1314
1315 relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
1316 if (!relocs)
1317 return FALSE;
1318
1319 /* The symbols should have been read in by _bfd_generic link_add_symbols
1320 call abovec, so we can cheat and use the pointer to them that was
1321 saved in the above call. */
1322 symbols = _bfd_generic_link_get_symbols(abfd);
1323 reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
1324 if (reloc_count <= 0)
1325 {
1326 free (relocs);
1327 continue;
1328 }
1329
1330 /* Now walk through all the relocations in this section. */
1331 for (i = 0; i < reloc_count; i++)
1332 {
1333 arelent *reloc = relocs[i];
1334 asymbol *symbol = *(reloc->sym_ptr_ptr);
1335 const char *name;
1336
1337 /* We've got an indirect reloc. See if we need to add it
1338 to the function vector table. At this point, we have
1339 to add a new entry for each unique symbol referenced
1340 by an R_MEM_INDIRECT relocation except for a reloc
1341 against the absolute section symbol. */
1342 if (reloc->howto->type == R_MEM_INDIRECT
1343 && symbol != bfd_abs_section_ptr->symbol)
1344
1345 {
1346 struct funcvec_hash_table *ftab;
1347 struct funcvec_hash_entry *h;
1348
1349 name = symbol->name;
1350 if (symbol->flags & BSF_LOCAL)
1351 {
1352 char *new_name;
1353
1354 new_name = bfd_malloc ((bfd_size_type) strlen (name) + 9);
1355 if (new_name == NULL)
1356 abort ();
1357
1358 strcpy (new_name, name);
1359 sprintf (new_name + strlen (name), "_%08x",
1360 (int) symbol->section);
1361 name = new_name;
1362 }
1363
1364 /* Look this symbol up in the function vector hash table. */
1365 ftab = htab->funcvec_hash_table;
1366 h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1367
1368 /* If this symbol isn't already in the hash table, add
1369 it and bump up the size of the hash table. */
1370 if (h == NULL)
1371 {
1372 h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
1373 if (h == NULL)
1374 {
1375 free (relocs);
1376 return FALSE;
1377 }
1378
1379 /* Bump the size of the vectors section. Each vector
1380 takes 2 bytes on the h8300 and 4 bytes on the h8300h. */
1381 switch (bfd_get_mach (abfd))
1382 {
1383 case bfd_mach_h8300:
1384 case bfd_mach_h8300hn:
1385 case bfd_mach_h8300sn:
1386 htab->vectors_sec->_raw_size += 2;
1387 break;
1388 case bfd_mach_h8300h:
1389 case bfd_mach_h8300s:
1390 htab->vectors_sec->_raw_size += 4;
1391 break;
1392 default:
1393 abort ();
1394 }
1395 }
1396 }
1397 }
1398
1399 /* We're done with the relocations, release them. */
1400 free (relocs);
1401 }
1402
1403 /* Now actually allocate some space for the function vector. It's
1404 wasteful to do this more than once, but this is easier. */
1405 sec = htab->vectors_sec;
1406 if (sec->_raw_size != 0)
1407 {
1408 /* Free the old contents. */
1409 if (sec->contents)
1410 free (sec->contents);
1411
1412 /* Allocate new contents. */
1413 sec->contents = bfd_malloc (sec->_raw_size);
1414 }
1415
1416 return TRUE;
1417 }
1418
1419 #define coff_reloc16_extra_cases h8300_reloc16_extra_cases
1420 #define coff_reloc16_estimate h8300_reloc16_estimate
1421 #define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
1422 #define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
1423
1424 #define COFF_LONG_FILENAMES
1425 #include "coffcode.h"
1426
1427 #undef coff_bfd_get_relocated_section_contents
1428 #undef coff_bfd_relax_section
1429 #define coff_bfd_get_relocated_section_contents \
1430 bfd_coff_reloc16_get_relocated_section_contents
1431 #define coff_bfd_relax_section bfd_coff_reloc16_relax_section
1432
1433 CREATE_BIG_COFF_TARGET_VEC (h8300coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)