]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf.c
include/elf/
[thirdparty/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23
24 /*
25 SECTION
26 ELF backends
27
28 BFD support for ELF formats is being worked on.
29 Currently, the best supported back ends are for sparc and i386
30 (running svr4 or Solaris 2).
31
32 Documentation of the internals of the support code still needs
33 to be written. The code is changing quickly enough that we
34 haven't bothered yet. */
35
36 /* For sparc64-cross-sparc32. */
37 #define _SYSCALL32
38 #include "sysdep.h"
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46
47 static int elf_sort_sections (const void *, const void *);
48 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
49 static bfd_boolean prep_headers (bfd *);
50 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
51 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
52 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
53 file_ptr offset);
54
55 /* Swap version information in and out. The version information is
56 currently size independent. If that ever changes, this code will
57 need to move into elfcode.h. */
58
59 /* Swap in a Verdef structure. */
60
61 void
62 _bfd_elf_swap_verdef_in (bfd *abfd,
63 const Elf_External_Verdef *src,
64 Elf_Internal_Verdef *dst)
65 {
66 dst->vd_version = H_GET_16 (abfd, src->vd_version);
67 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
68 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
69 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
70 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
71 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
72 dst->vd_next = H_GET_32 (abfd, src->vd_next);
73 }
74
75 /* Swap out a Verdef structure. */
76
77 void
78 _bfd_elf_swap_verdef_out (bfd *abfd,
79 const Elf_Internal_Verdef *src,
80 Elf_External_Verdef *dst)
81 {
82 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
83 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
84 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
85 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
86 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
87 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
88 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
89 }
90
91 /* Swap in a Verdaux structure. */
92
93 void
94 _bfd_elf_swap_verdaux_in (bfd *abfd,
95 const Elf_External_Verdaux *src,
96 Elf_Internal_Verdaux *dst)
97 {
98 dst->vda_name = H_GET_32 (abfd, src->vda_name);
99 dst->vda_next = H_GET_32 (abfd, src->vda_next);
100 }
101
102 /* Swap out a Verdaux structure. */
103
104 void
105 _bfd_elf_swap_verdaux_out (bfd *abfd,
106 const Elf_Internal_Verdaux *src,
107 Elf_External_Verdaux *dst)
108 {
109 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
110 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
111 }
112
113 /* Swap in a Verneed structure. */
114
115 void
116 _bfd_elf_swap_verneed_in (bfd *abfd,
117 const Elf_External_Verneed *src,
118 Elf_Internal_Verneed *dst)
119 {
120 dst->vn_version = H_GET_16 (abfd, src->vn_version);
121 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
122 dst->vn_file = H_GET_32 (abfd, src->vn_file);
123 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
124 dst->vn_next = H_GET_32 (abfd, src->vn_next);
125 }
126
127 /* Swap out a Verneed structure. */
128
129 void
130 _bfd_elf_swap_verneed_out (bfd *abfd,
131 const Elf_Internal_Verneed *src,
132 Elf_External_Verneed *dst)
133 {
134 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
135 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
136 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
137 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
138 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
139 }
140
141 /* Swap in a Vernaux structure. */
142
143 void
144 _bfd_elf_swap_vernaux_in (bfd *abfd,
145 const Elf_External_Vernaux *src,
146 Elf_Internal_Vernaux *dst)
147 {
148 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
149 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
150 dst->vna_other = H_GET_16 (abfd, src->vna_other);
151 dst->vna_name = H_GET_32 (abfd, src->vna_name);
152 dst->vna_next = H_GET_32 (abfd, src->vna_next);
153 }
154
155 /* Swap out a Vernaux structure. */
156
157 void
158 _bfd_elf_swap_vernaux_out (bfd *abfd,
159 const Elf_Internal_Vernaux *src,
160 Elf_External_Vernaux *dst)
161 {
162 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
163 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
164 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
165 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
166 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
167 }
168
169 /* Swap in a Versym structure. */
170
171 void
172 _bfd_elf_swap_versym_in (bfd *abfd,
173 const Elf_External_Versym *src,
174 Elf_Internal_Versym *dst)
175 {
176 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
177 }
178
179 /* Swap out a Versym structure. */
180
181 void
182 _bfd_elf_swap_versym_out (bfd *abfd,
183 const Elf_Internal_Versym *src,
184 Elf_External_Versym *dst)
185 {
186 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
187 }
188
189 /* Standard ELF hash function. Do not change this function; you will
190 cause invalid hash tables to be generated. */
191
192 unsigned long
193 bfd_elf_hash (const char *namearg)
194 {
195 const unsigned char *name = (const unsigned char *) namearg;
196 unsigned long h = 0;
197 unsigned long g;
198 int ch;
199
200 while ((ch = *name++) != '\0')
201 {
202 h = (h << 4) + ch;
203 if ((g = (h & 0xf0000000)) != 0)
204 {
205 h ^= g >> 24;
206 /* The ELF ABI says `h &= ~g', but this is equivalent in
207 this case and on some machines one insn instead of two. */
208 h ^= g;
209 }
210 }
211 return h & 0xffffffff;
212 }
213
214 /* DT_GNU_HASH hash function. Do not change this function; you will
215 cause invalid hash tables to be generated. */
216
217 unsigned long
218 bfd_elf_gnu_hash (const char *namearg)
219 {
220 const unsigned char *name = (const unsigned char *) namearg;
221 unsigned long h = 5381;
222 unsigned char ch;
223
224 while ((ch = *name++) != '\0')
225 h = (h << 5) + h + ch;
226 return h & 0xffffffff;
227 }
228
229 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
230 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
231 bfd_boolean
232 bfd_elf_allocate_object (bfd *abfd,
233 size_t object_size,
234 enum elf_object_id object_id)
235 {
236 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
237 abfd->tdata.any = bfd_zalloc (abfd, object_size);
238 if (abfd->tdata.any == NULL)
239 return FALSE;
240
241 elf_object_id (abfd) = object_id;
242 elf_program_header_size (abfd) = (bfd_size_type) -1;
243 return TRUE;
244 }
245
246
247 bfd_boolean
248 bfd_elf_make_generic_object (bfd *abfd)
249 {
250 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
251 GENERIC_ELF_TDATA);
252 }
253
254 bfd_boolean
255 bfd_elf_mkcorefile (bfd *abfd)
256 {
257 /* I think this can be done just like an object file. */
258 return bfd_elf_make_generic_object (abfd);
259 }
260
261 char *
262 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
263 {
264 Elf_Internal_Shdr **i_shdrp;
265 bfd_byte *shstrtab = NULL;
266 file_ptr offset;
267 bfd_size_type shstrtabsize;
268
269 i_shdrp = elf_elfsections (abfd);
270 if (i_shdrp == 0
271 || shindex >= elf_numsections (abfd)
272 || i_shdrp[shindex] == 0)
273 return NULL;
274
275 shstrtab = i_shdrp[shindex]->contents;
276 if (shstrtab == NULL)
277 {
278 /* No cached one, attempt to read, and cache what we read. */
279 offset = i_shdrp[shindex]->sh_offset;
280 shstrtabsize = i_shdrp[shindex]->sh_size;
281
282 /* Allocate and clear an extra byte at the end, to prevent crashes
283 in case the string table is not terminated. */
284 if (shstrtabsize + 1 == 0
285 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
286 || bfd_seek (abfd, offset, SEEK_SET) != 0)
287 shstrtab = NULL;
288 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
289 {
290 if (bfd_get_error () != bfd_error_system_call)
291 bfd_set_error (bfd_error_file_truncated);
292 shstrtab = NULL;
293 }
294 else
295 shstrtab[shstrtabsize] = '\0';
296 i_shdrp[shindex]->contents = shstrtab;
297 }
298 return (char *) shstrtab;
299 }
300
301 char *
302 bfd_elf_string_from_elf_section (bfd *abfd,
303 unsigned int shindex,
304 unsigned int strindex)
305 {
306 Elf_Internal_Shdr *hdr;
307
308 if (strindex == 0)
309 return "";
310
311 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
312 return NULL;
313
314 hdr = elf_elfsections (abfd)[shindex];
315
316 if (hdr->contents == NULL
317 && bfd_elf_get_str_section (abfd, shindex) == NULL)
318 return NULL;
319
320 if (strindex >= hdr->sh_size)
321 {
322 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
323 (*_bfd_error_handler)
324 (_("%B: invalid string offset %u >= %lu for section `%s'"),
325 abfd, strindex, (unsigned long) hdr->sh_size,
326 (shindex == shstrndx && strindex == hdr->sh_name
327 ? ".shstrtab"
328 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
329 return "";
330 }
331
332 return ((char *) hdr->contents) + strindex;
333 }
334
335 /* Read and convert symbols to internal format.
336 SYMCOUNT specifies the number of symbols to read, starting from
337 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
338 are non-NULL, they are used to store the internal symbols, external
339 symbols, and symbol section index extensions, respectively.
340 Returns a pointer to the internal symbol buffer (malloced if necessary)
341 or NULL if there were no symbols or some kind of problem. */
342
343 Elf_Internal_Sym *
344 bfd_elf_get_elf_syms (bfd *ibfd,
345 Elf_Internal_Shdr *symtab_hdr,
346 size_t symcount,
347 size_t symoffset,
348 Elf_Internal_Sym *intsym_buf,
349 void *extsym_buf,
350 Elf_External_Sym_Shndx *extshndx_buf)
351 {
352 Elf_Internal_Shdr *shndx_hdr;
353 void *alloc_ext;
354 const bfd_byte *esym;
355 Elf_External_Sym_Shndx *alloc_extshndx;
356 Elf_External_Sym_Shndx *shndx;
357 Elf_Internal_Sym *isym;
358 Elf_Internal_Sym *isymend;
359 const struct elf_backend_data *bed;
360 size_t extsym_size;
361 bfd_size_type amt;
362 file_ptr pos;
363
364 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
365 abort ();
366
367 if (symcount == 0)
368 return intsym_buf;
369
370 /* Normal syms might have section extension entries. */
371 shndx_hdr = NULL;
372 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
373 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
374
375 /* Read the symbols. */
376 alloc_ext = NULL;
377 alloc_extshndx = NULL;
378 bed = get_elf_backend_data (ibfd);
379 extsym_size = bed->s->sizeof_sym;
380 amt = symcount * extsym_size;
381 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
382 if (extsym_buf == NULL)
383 {
384 alloc_ext = bfd_malloc2 (symcount, extsym_size);
385 extsym_buf = alloc_ext;
386 }
387 if (extsym_buf == NULL
388 || bfd_seek (ibfd, pos, SEEK_SET) != 0
389 || bfd_bread (extsym_buf, amt, ibfd) != amt)
390 {
391 intsym_buf = NULL;
392 goto out;
393 }
394
395 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
396 extshndx_buf = NULL;
397 else
398 {
399 amt = symcount * sizeof (Elf_External_Sym_Shndx);
400 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
401 if (extshndx_buf == NULL)
402 {
403 alloc_extshndx = bfd_malloc2 (symcount,
404 sizeof (Elf_External_Sym_Shndx));
405 extshndx_buf = alloc_extshndx;
406 }
407 if (extshndx_buf == NULL
408 || bfd_seek (ibfd, pos, SEEK_SET) != 0
409 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
410 {
411 intsym_buf = NULL;
412 goto out;
413 }
414 }
415
416 if (intsym_buf == NULL)
417 {
418 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
419 if (intsym_buf == NULL)
420 goto out;
421 }
422
423 /* Convert the symbols to internal form. */
424 isymend = intsym_buf + symcount;
425 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
426 isym < isymend;
427 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
428 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
429 {
430 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
431 (*_bfd_error_handler) (_("%B symbol number %lu references "
432 "nonexistent SHT_SYMTAB_SHNDX section"),
433 ibfd, (unsigned long) symoffset);
434 intsym_buf = NULL;
435 goto out;
436 }
437
438 out:
439 if (alloc_ext != NULL)
440 free (alloc_ext);
441 if (alloc_extshndx != NULL)
442 free (alloc_extshndx);
443
444 return intsym_buf;
445 }
446
447 /* Look up a symbol name. */
448 const char *
449 bfd_elf_sym_name (bfd *abfd,
450 Elf_Internal_Shdr *symtab_hdr,
451 Elf_Internal_Sym *isym,
452 asection *sym_sec)
453 {
454 const char *name;
455 unsigned int iname = isym->st_name;
456 unsigned int shindex = symtab_hdr->sh_link;
457
458 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
459 /* Check for a bogus st_shndx to avoid crashing. */
460 && isym->st_shndx < elf_numsections (abfd))
461 {
462 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
463 shindex = elf_elfheader (abfd)->e_shstrndx;
464 }
465
466 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
467 if (name == NULL)
468 name = "(null)";
469 else if (sym_sec && *name == '\0')
470 name = bfd_section_name (abfd, sym_sec);
471
472 return name;
473 }
474
475 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
476 sections. The first element is the flags, the rest are section
477 pointers. */
478
479 typedef union elf_internal_group {
480 Elf_Internal_Shdr *shdr;
481 unsigned int flags;
482 } Elf_Internal_Group;
483
484 /* Return the name of the group signature symbol. Why isn't the
485 signature just a string? */
486
487 static const char *
488 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
489 {
490 Elf_Internal_Shdr *hdr;
491 unsigned char esym[sizeof (Elf64_External_Sym)];
492 Elf_External_Sym_Shndx eshndx;
493 Elf_Internal_Sym isym;
494
495 /* First we need to ensure the symbol table is available. Make sure
496 that it is a symbol table section. */
497 if (ghdr->sh_link >= elf_numsections (abfd))
498 return NULL;
499 hdr = elf_elfsections (abfd) [ghdr->sh_link];
500 if (hdr->sh_type != SHT_SYMTAB
501 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
502 return NULL;
503
504 /* Go read the symbol. */
505 hdr = &elf_tdata (abfd)->symtab_hdr;
506 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
507 &isym, esym, &eshndx) == NULL)
508 return NULL;
509
510 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
511 }
512
513 /* Set next_in_group list pointer, and group name for NEWSECT. */
514
515 static bfd_boolean
516 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
517 {
518 unsigned int num_group = elf_tdata (abfd)->num_group;
519
520 /* If num_group is zero, read in all SHT_GROUP sections. The count
521 is set to -1 if there are no SHT_GROUP sections. */
522 if (num_group == 0)
523 {
524 unsigned int i, shnum;
525
526 /* First count the number of groups. If we have a SHT_GROUP
527 section with just a flag word (ie. sh_size is 4), ignore it. */
528 shnum = elf_numsections (abfd);
529 num_group = 0;
530
531 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
532 ( (shdr)->sh_type == SHT_GROUP \
533 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
534 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
535 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
536
537 for (i = 0; i < shnum; i++)
538 {
539 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
540
541 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
542 num_group += 1;
543 }
544
545 if (num_group == 0)
546 {
547 num_group = (unsigned) -1;
548 elf_tdata (abfd)->num_group = num_group;
549 }
550 else
551 {
552 /* We keep a list of elf section headers for group sections,
553 so we can find them quickly. */
554 bfd_size_type amt;
555
556 elf_tdata (abfd)->num_group = num_group;
557 elf_tdata (abfd)->group_sect_ptr
558 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
559 if (elf_tdata (abfd)->group_sect_ptr == NULL)
560 return FALSE;
561
562 num_group = 0;
563 for (i = 0; i < shnum; i++)
564 {
565 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
566
567 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
568 {
569 unsigned char *src;
570 Elf_Internal_Group *dest;
571
572 /* Add to list of sections. */
573 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
574 num_group += 1;
575
576 /* Read the raw contents. */
577 BFD_ASSERT (sizeof (*dest) >= 4);
578 amt = shdr->sh_size * sizeof (*dest) / 4;
579 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
580 sizeof (*dest) / 4);
581 /* PR binutils/4110: Handle corrupt group headers. */
582 if (shdr->contents == NULL)
583 {
584 _bfd_error_handler
585 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
586 bfd_set_error (bfd_error_bad_value);
587 return FALSE;
588 }
589
590 memset (shdr->contents, 0, amt);
591
592 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
593 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
594 != shdr->sh_size))
595 return FALSE;
596
597 /* Translate raw contents, a flag word followed by an
598 array of elf section indices all in target byte order,
599 to the flag word followed by an array of elf section
600 pointers. */
601 src = shdr->contents + shdr->sh_size;
602 dest = (Elf_Internal_Group *) (shdr->contents + amt);
603 while (1)
604 {
605 unsigned int idx;
606
607 src -= 4;
608 --dest;
609 idx = H_GET_32 (abfd, src);
610 if (src == shdr->contents)
611 {
612 dest->flags = idx;
613 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
614 shdr->bfd_section->flags
615 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
616 break;
617 }
618 if (idx >= shnum)
619 {
620 ((*_bfd_error_handler)
621 (_("%B: invalid SHT_GROUP entry"), abfd));
622 idx = 0;
623 }
624 dest->shdr = elf_elfsections (abfd)[idx];
625 }
626 }
627 }
628 }
629 }
630
631 if (num_group != (unsigned) -1)
632 {
633 unsigned int i;
634
635 for (i = 0; i < num_group; i++)
636 {
637 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
638 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
639 unsigned int n_elt = shdr->sh_size / 4;
640
641 /* Look through this group's sections to see if current
642 section is a member. */
643 while (--n_elt != 0)
644 if ((++idx)->shdr == hdr)
645 {
646 asection *s = NULL;
647
648 /* We are a member of this group. Go looking through
649 other members to see if any others are linked via
650 next_in_group. */
651 idx = (Elf_Internal_Group *) shdr->contents;
652 n_elt = shdr->sh_size / 4;
653 while (--n_elt != 0)
654 if ((s = (++idx)->shdr->bfd_section) != NULL
655 && elf_next_in_group (s) != NULL)
656 break;
657 if (n_elt != 0)
658 {
659 /* Snarf the group name from other member, and
660 insert current section in circular list. */
661 elf_group_name (newsect) = elf_group_name (s);
662 elf_next_in_group (newsect) = elf_next_in_group (s);
663 elf_next_in_group (s) = newsect;
664 }
665 else
666 {
667 const char *gname;
668
669 gname = group_signature (abfd, shdr);
670 if (gname == NULL)
671 return FALSE;
672 elf_group_name (newsect) = gname;
673
674 /* Start a circular list with one element. */
675 elf_next_in_group (newsect) = newsect;
676 }
677
678 /* If the group section has been created, point to the
679 new member. */
680 if (shdr->bfd_section != NULL)
681 elf_next_in_group (shdr->bfd_section) = newsect;
682
683 i = num_group - 1;
684 break;
685 }
686 }
687 }
688
689 if (elf_group_name (newsect) == NULL)
690 {
691 (*_bfd_error_handler) (_("%B: no group info for section %A"),
692 abfd, newsect);
693 }
694 return TRUE;
695 }
696
697 bfd_boolean
698 _bfd_elf_setup_sections (bfd *abfd)
699 {
700 unsigned int i;
701 unsigned int num_group = elf_tdata (abfd)->num_group;
702 bfd_boolean result = TRUE;
703 asection *s;
704
705 /* Process SHF_LINK_ORDER. */
706 for (s = abfd->sections; s != NULL; s = s->next)
707 {
708 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
709 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
710 {
711 unsigned int elfsec = this_hdr->sh_link;
712 /* FIXME: The old Intel compiler and old strip/objcopy may
713 not set the sh_link or sh_info fields. Hence we could
714 get the situation where elfsec is 0. */
715 if (elfsec == 0)
716 {
717 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
718 if (bed->link_order_error_handler)
719 bed->link_order_error_handler
720 (_("%B: warning: sh_link not set for section `%A'"),
721 abfd, s);
722 }
723 else
724 {
725 asection *link = NULL;
726
727 if (elfsec < elf_numsections (abfd))
728 {
729 this_hdr = elf_elfsections (abfd)[elfsec];
730 link = this_hdr->bfd_section;
731 }
732
733 /* PR 1991, 2008:
734 Some strip/objcopy may leave an incorrect value in
735 sh_link. We don't want to proceed. */
736 if (link == NULL)
737 {
738 (*_bfd_error_handler)
739 (_("%B: sh_link [%d] in section `%A' is incorrect"),
740 s->owner, s, elfsec);
741 result = FALSE;
742 }
743
744 elf_linked_to_section (s) = link;
745 }
746 }
747 }
748
749 /* Process section groups. */
750 if (num_group == (unsigned) -1)
751 return result;
752
753 for (i = 0; i < num_group; i++)
754 {
755 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
756 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
757 unsigned int n_elt = shdr->sh_size / 4;
758
759 while (--n_elt != 0)
760 if ((++idx)->shdr->bfd_section)
761 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
762 else if (idx->shdr->sh_type == SHT_RELA
763 || idx->shdr->sh_type == SHT_REL)
764 /* We won't include relocation sections in section groups in
765 output object files. We adjust the group section size here
766 so that relocatable link will work correctly when
767 relocation sections are in section group in input object
768 files. */
769 shdr->bfd_section->size -= 4;
770 else
771 {
772 /* There are some unknown sections in the group. */
773 (*_bfd_error_handler)
774 (_("%B: unknown [%d] section `%s' in group [%s]"),
775 abfd,
776 (unsigned int) idx->shdr->sh_type,
777 bfd_elf_string_from_elf_section (abfd,
778 (elf_elfheader (abfd)
779 ->e_shstrndx),
780 idx->shdr->sh_name),
781 shdr->bfd_section->name);
782 result = FALSE;
783 }
784 }
785 return result;
786 }
787
788 bfd_boolean
789 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
790 {
791 return elf_next_in_group (sec) != NULL;
792 }
793
794 /* Make a BFD section from an ELF section. We store a pointer to the
795 BFD section in the bfd_section field of the header. */
796
797 bfd_boolean
798 _bfd_elf_make_section_from_shdr (bfd *abfd,
799 Elf_Internal_Shdr *hdr,
800 const char *name,
801 int shindex)
802 {
803 asection *newsect;
804 flagword flags;
805 const struct elf_backend_data *bed;
806
807 if (hdr->bfd_section != NULL)
808 {
809 BFD_ASSERT (strcmp (name,
810 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
811 return TRUE;
812 }
813
814 newsect = bfd_make_section_anyway (abfd, name);
815 if (newsect == NULL)
816 return FALSE;
817
818 hdr->bfd_section = newsect;
819 elf_section_data (newsect)->this_hdr = *hdr;
820 elf_section_data (newsect)->this_idx = shindex;
821
822 /* Always use the real type/flags. */
823 elf_section_type (newsect) = hdr->sh_type;
824 elf_section_flags (newsect) = hdr->sh_flags;
825
826 newsect->filepos = hdr->sh_offset;
827
828 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
829 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
830 || ! bfd_set_section_alignment (abfd, newsect,
831 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
832 return FALSE;
833
834 flags = SEC_NO_FLAGS;
835 if (hdr->sh_type != SHT_NOBITS)
836 flags |= SEC_HAS_CONTENTS;
837 if (hdr->sh_type == SHT_GROUP)
838 flags |= SEC_GROUP | SEC_EXCLUDE;
839 if ((hdr->sh_flags & SHF_ALLOC) != 0)
840 {
841 flags |= SEC_ALLOC;
842 if (hdr->sh_type != SHT_NOBITS)
843 flags |= SEC_LOAD;
844 }
845 if ((hdr->sh_flags & SHF_WRITE) == 0)
846 flags |= SEC_READONLY;
847 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
848 flags |= SEC_CODE;
849 else if ((flags & SEC_LOAD) != 0)
850 flags |= SEC_DATA;
851 if ((hdr->sh_flags & SHF_MERGE) != 0)
852 {
853 flags |= SEC_MERGE;
854 newsect->entsize = hdr->sh_entsize;
855 if ((hdr->sh_flags & SHF_STRINGS) != 0)
856 flags |= SEC_STRINGS;
857 }
858 if (hdr->sh_flags & SHF_GROUP)
859 if (!setup_group (abfd, hdr, newsect))
860 return FALSE;
861 if ((hdr->sh_flags & SHF_TLS) != 0)
862 flags |= SEC_THREAD_LOCAL;
863
864 if ((flags & SEC_ALLOC) == 0)
865 {
866 /* The debugging sections appear to be recognized only by name,
867 not any sort of flag. Their SEC_ALLOC bits are cleared. */
868 static const struct
869 {
870 const char *name;
871 int len;
872 } debug_sections [] =
873 {
874 { STRING_COMMA_LEN ("debug") }, /* 'd' */
875 { NULL, 0 }, /* 'e' */
876 { NULL, 0 }, /* 'f' */
877 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
878 { NULL, 0 }, /* 'h' */
879 { NULL, 0 }, /* 'i' */
880 { NULL, 0 }, /* 'j' */
881 { NULL, 0 }, /* 'k' */
882 { STRING_COMMA_LEN ("line") }, /* 'l' */
883 { NULL, 0 }, /* 'm' */
884 { NULL, 0 }, /* 'n' */
885 { NULL, 0 }, /* 'o' */
886 { NULL, 0 }, /* 'p' */
887 { NULL, 0 }, /* 'q' */
888 { NULL, 0 }, /* 'r' */
889 { STRING_COMMA_LEN ("stab") } /* 's' */
890 };
891
892 if (name [0] == '.')
893 {
894 int i = name [1] - 'd';
895 if (i >= 0
896 && i < (int) ARRAY_SIZE (debug_sections)
897 && debug_sections [i].name != NULL
898 && strncmp (&name [1], debug_sections [i].name,
899 debug_sections [i].len) == 0)
900 flags |= SEC_DEBUGGING;
901 }
902 }
903
904 /* As a GNU extension, if the name begins with .gnu.linkonce, we
905 only link a single copy of the section. This is used to support
906 g++. g++ will emit each template expansion in its own section.
907 The symbols will be defined as weak, so that multiple definitions
908 are permitted. The GNU linker extension is to actually discard
909 all but one of the sections. */
910 if (CONST_STRNEQ (name, ".gnu.linkonce")
911 && elf_next_in_group (newsect) == NULL)
912 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
913
914 bed = get_elf_backend_data (abfd);
915 if (bed->elf_backend_section_flags)
916 if (! bed->elf_backend_section_flags (&flags, hdr))
917 return FALSE;
918
919 if (! bfd_set_section_flags (abfd, newsect, flags))
920 return FALSE;
921
922 /* We do not parse the PT_NOTE segments as we are interested even in the
923 separate debug info files which may have the segments offsets corrupted.
924 PT_NOTEs from the core files are currently not parsed using BFD. */
925 if (hdr->sh_type == SHT_NOTE)
926 {
927 char *contents;
928
929 contents = bfd_malloc (hdr->sh_size);
930 if (!contents)
931 return FALSE;
932
933 if (!bfd_get_section_contents (abfd, hdr->bfd_section, contents, 0,
934 hdr->sh_size)
935 || !elf_parse_notes (abfd, contents, hdr->sh_size, -1))
936 {
937 free (contents);
938 return FALSE;
939 }
940
941 free (contents);
942 }
943
944 if ((flags & SEC_ALLOC) != 0)
945 {
946 Elf_Internal_Phdr *phdr;
947 unsigned int i;
948
949 /* Look through the phdrs to see if we need to adjust the lma.
950 If all the p_paddr fields are zero, we ignore them, since
951 some ELF linkers produce such output. */
952 phdr = elf_tdata (abfd)->phdr;
953 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
954 {
955 if (phdr->p_paddr != 0)
956 break;
957 }
958 if (i < elf_elfheader (abfd)->e_phnum)
959 {
960 phdr = elf_tdata (abfd)->phdr;
961 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
962 {
963 /* This section is part of this segment if its file
964 offset plus size lies within the segment's memory
965 span and, if the section is loaded, the extent of the
966 loaded data lies within the extent of the segment.
967
968 Note - we used to check the p_paddr field as well, and
969 refuse to set the LMA if it was 0. This is wrong
970 though, as a perfectly valid initialised segment can
971 have a p_paddr of zero. Some architectures, eg ARM,
972 place special significance on the address 0 and
973 executables need to be able to have a segment which
974 covers this address. */
975 if (phdr->p_type == PT_LOAD
976 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
977 && (hdr->sh_offset + hdr->sh_size
978 <= phdr->p_offset + phdr->p_memsz)
979 && ((flags & SEC_LOAD) == 0
980 || (hdr->sh_offset + hdr->sh_size
981 <= phdr->p_offset + phdr->p_filesz)))
982 {
983 if ((flags & SEC_LOAD) == 0)
984 newsect->lma = (phdr->p_paddr
985 + hdr->sh_addr - phdr->p_vaddr);
986 else
987 /* We used to use the same adjustment for SEC_LOAD
988 sections, but that doesn't work if the segment
989 is packed with code from multiple VMAs.
990 Instead we calculate the section LMA based on
991 the segment LMA. It is assumed that the
992 segment will contain sections with contiguous
993 LMAs, even if the VMAs are not. */
994 newsect->lma = (phdr->p_paddr
995 + hdr->sh_offset - phdr->p_offset);
996
997 /* With contiguous segments, we can't tell from file
998 offsets whether a section with zero size should
999 be placed at the end of one segment or the
1000 beginning of the next. Decide based on vaddr. */
1001 if (hdr->sh_addr >= phdr->p_vaddr
1002 && (hdr->sh_addr + hdr->sh_size
1003 <= phdr->p_vaddr + phdr->p_memsz))
1004 break;
1005 }
1006 }
1007 }
1008 }
1009
1010 return TRUE;
1011 }
1012
1013 /*
1014 INTERNAL_FUNCTION
1015 bfd_elf_find_section
1016
1017 SYNOPSIS
1018 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
1019
1020 DESCRIPTION
1021 Helper functions for GDB to locate the string tables.
1022 Since BFD hides string tables from callers, GDB needs to use an
1023 internal hook to find them. Sun's .stabstr, in particular,
1024 isn't even pointed to by the .stab section, so ordinary
1025 mechanisms wouldn't work to find it, even if we had some.
1026 */
1027
1028 struct elf_internal_shdr *
1029 bfd_elf_find_section (bfd *abfd, char *name)
1030 {
1031 Elf_Internal_Shdr **i_shdrp;
1032 char *shstrtab;
1033 unsigned int max;
1034 unsigned int i;
1035
1036 i_shdrp = elf_elfsections (abfd);
1037 if (i_shdrp != NULL)
1038 {
1039 shstrtab = bfd_elf_get_str_section (abfd,
1040 elf_elfheader (abfd)->e_shstrndx);
1041 if (shstrtab != NULL)
1042 {
1043 max = elf_numsections (abfd);
1044 for (i = 1; i < max; i++)
1045 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
1046 return i_shdrp[i];
1047 }
1048 }
1049 return 0;
1050 }
1051
1052 const char *const bfd_elf_section_type_names[] = {
1053 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1054 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1055 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1056 };
1057
1058 /* ELF relocs are against symbols. If we are producing relocatable
1059 output, and the reloc is against an external symbol, and nothing
1060 has given us any additional addend, the resulting reloc will also
1061 be against the same symbol. In such a case, we don't want to
1062 change anything about the way the reloc is handled, since it will
1063 all be done at final link time. Rather than put special case code
1064 into bfd_perform_relocation, all the reloc types use this howto
1065 function. It just short circuits the reloc if producing
1066 relocatable output against an external symbol. */
1067
1068 bfd_reloc_status_type
1069 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1070 arelent *reloc_entry,
1071 asymbol *symbol,
1072 void *data ATTRIBUTE_UNUSED,
1073 asection *input_section,
1074 bfd *output_bfd,
1075 char **error_message ATTRIBUTE_UNUSED)
1076 {
1077 if (output_bfd != NULL
1078 && (symbol->flags & BSF_SECTION_SYM) == 0
1079 && (! reloc_entry->howto->partial_inplace
1080 || reloc_entry->addend == 0))
1081 {
1082 reloc_entry->address += input_section->output_offset;
1083 return bfd_reloc_ok;
1084 }
1085
1086 return bfd_reloc_continue;
1087 }
1088 \f
1089 /* Copy the program header and other data from one object module to
1090 another. */
1091
1092 bfd_boolean
1093 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1094 {
1095 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1096 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1097 return TRUE;
1098
1099 BFD_ASSERT (!elf_flags_init (obfd)
1100 || (elf_elfheader (obfd)->e_flags
1101 == elf_elfheader (ibfd)->e_flags));
1102
1103 elf_gp (obfd) = elf_gp (ibfd);
1104 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1105 elf_flags_init (obfd) = TRUE;
1106
1107 /* Copy object attributes. */
1108 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1109
1110 return TRUE;
1111 }
1112
1113 static const char *
1114 get_segment_type (unsigned int p_type)
1115 {
1116 const char *pt;
1117 switch (p_type)
1118 {
1119 case PT_NULL: pt = "NULL"; break;
1120 case PT_LOAD: pt = "LOAD"; break;
1121 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1122 case PT_INTERP: pt = "INTERP"; break;
1123 case PT_NOTE: pt = "NOTE"; break;
1124 case PT_SHLIB: pt = "SHLIB"; break;
1125 case PT_PHDR: pt = "PHDR"; break;
1126 case PT_TLS: pt = "TLS"; break;
1127 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1128 case PT_GNU_STACK: pt = "STACK"; break;
1129 case PT_GNU_RELRO: pt = "RELRO"; break;
1130 default: pt = NULL; break;
1131 }
1132 return pt;
1133 }
1134
1135 /* Print out the program headers. */
1136
1137 bfd_boolean
1138 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1139 {
1140 FILE *f = farg;
1141 Elf_Internal_Phdr *p;
1142 asection *s;
1143 bfd_byte *dynbuf = NULL;
1144
1145 p = elf_tdata (abfd)->phdr;
1146 if (p != NULL)
1147 {
1148 unsigned int i, c;
1149
1150 fprintf (f, _("\nProgram Header:\n"));
1151 c = elf_elfheader (abfd)->e_phnum;
1152 for (i = 0; i < c; i++, p++)
1153 {
1154 const char *pt = get_segment_type (p->p_type);
1155 char buf[20];
1156
1157 if (pt == NULL)
1158 {
1159 sprintf (buf, "0x%lx", p->p_type);
1160 pt = buf;
1161 }
1162 fprintf (f, "%8s off 0x", pt);
1163 bfd_fprintf_vma (abfd, f, p->p_offset);
1164 fprintf (f, " vaddr 0x");
1165 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1166 fprintf (f, " paddr 0x");
1167 bfd_fprintf_vma (abfd, f, p->p_paddr);
1168 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1169 fprintf (f, " filesz 0x");
1170 bfd_fprintf_vma (abfd, f, p->p_filesz);
1171 fprintf (f, " memsz 0x");
1172 bfd_fprintf_vma (abfd, f, p->p_memsz);
1173 fprintf (f, " flags %c%c%c",
1174 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1175 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1176 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1177 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1178 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1179 fprintf (f, "\n");
1180 }
1181 }
1182
1183 s = bfd_get_section_by_name (abfd, ".dynamic");
1184 if (s != NULL)
1185 {
1186 unsigned int elfsec;
1187 unsigned long shlink;
1188 bfd_byte *extdyn, *extdynend;
1189 size_t extdynsize;
1190 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1191
1192 fprintf (f, _("\nDynamic Section:\n"));
1193
1194 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1195 goto error_return;
1196
1197 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1198 if (elfsec == SHN_BAD)
1199 goto error_return;
1200 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1201
1202 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1203 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1204
1205 extdyn = dynbuf;
1206 extdynend = extdyn + s->size;
1207 for (; extdyn < extdynend; extdyn += extdynsize)
1208 {
1209 Elf_Internal_Dyn dyn;
1210 const char *name = "";
1211 char ab[20];
1212 bfd_boolean stringp;
1213 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1214
1215 (*swap_dyn_in) (abfd, extdyn, &dyn);
1216
1217 if (dyn.d_tag == DT_NULL)
1218 break;
1219
1220 stringp = FALSE;
1221 switch (dyn.d_tag)
1222 {
1223 default:
1224 if (bed->elf_backend_get_target_dtag)
1225 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1226
1227 if (!strcmp (name, ""))
1228 {
1229 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1230 name = ab;
1231 }
1232 break;
1233
1234 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1235 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1236 case DT_PLTGOT: name = "PLTGOT"; break;
1237 case DT_HASH: name = "HASH"; break;
1238 case DT_STRTAB: name = "STRTAB"; break;
1239 case DT_SYMTAB: name = "SYMTAB"; break;
1240 case DT_RELA: name = "RELA"; break;
1241 case DT_RELASZ: name = "RELASZ"; break;
1242 case DT_RELAENT: name = "RELAENT"; break;
1243 case DT_STRSZ: name = "STRSZ"; break;
1244 case DT_SYMENT: name = "SYMENT"; break;
1245 case DT_INIT: name = "INIT"; break;
1246 case DT_FINI: name = "FINI"; break;
1247 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1248 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1249 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1250 case DT_REL: name = "REL"; break;
1251 case DT_RELSZ: name = "RELSZ"; break;
1252 case DT_RELENT: name = "RELENT"; break;
1253 case DT_PLTREL: name = "PLTREL"; break;
1254 case DT_DEBUG: name = "DEBUG"; break;
1255 case DT_TEXTREL: name = "TEXTREL"; break;
1256 case DT_JMPREL: name = "JMPREL"; break;
1257 case DT_BIND_NOW: name = "BIND_NOW"; break;
1258 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1259 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1260 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1261 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1262 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1263 case DT_FLAGS: name = "FLAGS"; break;
1264 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1265 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1266 case DT_CHECKSUM: name = "CHECKSUM"; break;
1267 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1268 case DT_MOVEENT: name = "MOVEENT"; break;
1269 case DT_MOVESZ: name = "MOVESZ"; break;
1270 case DT_FEATURE: name = "FEATURE"; break;
1271 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1272 case DT_SYMINSZ: name = "SYMINSZ"; break;
1273 case DT_SYMINENT: name = "SYMINENT"; break;
1274 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1275 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1276 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1277 case DT_PLTPAD: name = "PLTPAD"; break;
1278 case DT_MOVETAB: name = "MOVETAB"; break;
1279 case DT_SYMINFO: name = "SYMINFO"; break;
1280 case DT_RELACOUNT: name = "RELACOUNT"; break;
1281 case DT_RELCOUNT: name = "RELCOUNT"; break;
1282 case DT_FLAGS_1: name = "FLAGS_1"; break;
1283 case DT_VERSYM: name = "VERSYM"; break;
1284 case DT_VERDEF: name = "VERDEF"; break;
1285 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1286 case DT_VERNEED: name = "VERNEED"; break;
1287 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1288 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1289 case DT_USED: name = "USED"; break;
1290 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1291 case DT_GNU_HASH: name = "GNU_HASH"; break;
1292 }
1293
1294 fprintf (f, " %-20s ", name);
1295 if (! stringp)
1296 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1297 else
1298 {
1299 const char *string;
1300 unsigned int tagv = dyn.d_un.d_val;
1301
1302 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1303 if (string == NULL)
1304 goto error_return;
1305 fprintf (f, "%s", string);
1306 }
1307 fprintf (f, "\n");
1308 }
1309
1310 free (dynbuf);
1311 dynbuf = NULL;
1312 }
1313
1314 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1315 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1316 {
1317 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1318 return FALSE;
1319 }
1320
1321 if (elf_dynverdef (abfd) != 0)
1322 {
1323 Elf_Internal_Verdef *t;
1324
1325 fprintf (f, _("\nVersion definitions:\n"));
1326 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1327 {
1328 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1329 t->vd_flags, t->vd_hash,
1330 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1331 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1332 {
1333 Elf_Internal_Verdaux *a;
1334
1335 fprintf (f, "\t");
1336 for (a = t->vd_auxptr->vda_nextptr;
1337 a != NULL;
1338 a = a->vda_nextptr)
1339 fprintf (f, "%s ",
1340 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1341 fprintf (f, "\n");
1342 }
1343 }
1344 }
1345
1346 if (elf_dynverref (abfd) != 0)
1347 {
1348 Elf_Internal_Verneed *t;
1349
1350 fprintf (f, _("\nVersion References:\n"));
1351 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1352 {
1353 Elf_Internal_Vernaux *a;
1354
1355 fprintf (f, _(" required from %s:\n"),
1356 t->vn_filename ? t->vn_filename : "<corrupt>");
1357 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1358 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1359 a->vna_flags, a->vna_other,
1360 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1361 }
1362 }
1363
1364 return TRUE;
1365
1366 error_return:
1367 if (dynbuf != NULL)
1368 free (dynbuf);
1369 return FALSE;
1370 }
1371
1372 /* Display ELF-specific fields of a symbol. */
1373
1374 void
1375 bfd_elf_print_symbol (bfd *abfd,
1376 void *filep,
1377 asymbol *symbol,
1378 bfd_print_symbol_type how)
1379 {
1380 FILE *file = filep;
1381 switch (how)
1382 {
1383 case bfd_print_symbol_name:
1384 fprintf (file, "%s", symbol->name);
1385 break;
1386 case bfd_print_symbol_more:
1387 fprintf (file, "elf ");
1388 bfd_fprintf_vma (abfd, file, symbol->value);
1389 fprintf (file, " %lx", (long) symbol->flags);
1390 break;
1391 case bfd_print_symbol_all:
1392 {
1393 const char *section_name;
1394 const char *name = NULL;
1395 const struct elf_backend_data *bed;
1396 unsigned char st_other;
1397 bfd_vma val;
1398
1399 section_name = symbol->section ? symbol->section->name : "(*none*)";
1400
1401 bed = get_elf_backend_data (abfd);
1402 if (bed->elf_backend_print_symbol_all)
1403 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1404
1405 if (name == NULL)
1406 {
1407 name = symbol->name;
1408 bfd_print_symbol_vandf (abfd, file, symbol);
1409 }
1410
1411 fprintf (file, " %s\t", section_name);
1412 /* Print the "other" value for a symbol. For common symbols,
1413 we've already printed the size; now print the alignment.
1414 For other symbols, we have no specified alignment, and
1415 we've printed the address; now print the size. */
1416 if (symbol->section && bfd_is_com_section (symbol->section))
1417 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1418 else
1419 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1420 bfd_fprintf_vma (abfd, file, val);
1421
1422 /* If we have version information, print it. */
1423 if (elf_tdata (abfd)->dynversym_section != 0
1424 && (elf_tdata (abfd)->dynverdef_section != 0
1425 || elf_tdata (abfd)->dynverref_section != 0))
1426 {
1427 unsigned int vernum;
1428 const char *version_string;
1429
1430 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1431
1432 if (vernum == 0)
1433 version_string = "";
1434 else if (vernum == 1)
1435 version_string = "Base";
1436 else if (vernum <= elf_tdata (abfd)->cverdefs)
1437 version_string =
1438 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1439 else
1440 {
1441 Elf_Internal_Verneed *t;
1442
1443 version_string = "";
1444 for (t = elf_tdata (abfd)->verref;
1445 t != NULL;
1446 t = t->vn_nextref)
1447 {
1448 Elf_Internal_Vernaux *a;
1449
1450 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1451 {
1452 if (a->vna_other == vernum)
1453 {
1454 version_string = a->vna_nodename;
1455 break;
1456 }
1457 }
1458 }
1459 }
1460
1461 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1462 fprintf (file, " %-11s", version_string);
1463 else
1464 {
1465 int i;
1466
1467 fprintf (file, " (%s)", version_string);
1468 for (i = 10 - strlen (version_string); i > 0; --i)
1469 putc (' ', file);
1470 }
1471 }
1472
1473 /* If the st_other field is not zero, print it. */
1474 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1475
1476 switch (st_other)
1477 {
1478 case 0: break;
1479 case STV_INTERNAL: fprintf (file, " .internal"); break;
1480 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1481 case STV_PROTECTED: fprintf (file, " .protected"); break;
1482 default:
1483 /* Some other non-defined flags are also present, so print
1484 everything hex. */
1485 fprintf (file, " 0x%02x", (unsigned int) st_other);
1486 }
1487
1488 fprintf (file, " %s", name);
1489 }
1490 break;
1491 }
1492 }
1493
1494 /* Allocate an ELF string table--force the first byte to be zero. */
1495
1496 struct bfd_strtab_hash *
1497 _bfd_elf_stringtab_init (void)
1498 {
1499 struct bfd_strtab_hash *ret;
1500
1501 ret = _bfd_stringtab_init ();
1502 if (ret != NULL)
1503 {
1504 bfd_size_type loc;
1505
1506 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1507 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1508 if (loc == (bfd_size_type) -1)
1509 {
1510 _bfd_stringtab_free (ret);
1511 ret = NULL;
1512 }
1513 }
1514 return ret;
1515 }
1516 \f
1517 /* ELF .o/exec file reading */
1518
1519 /* Create a new bfd section from an ELF section header. */
1520
1521 bfd_boolean
1522 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1523 {
1524 Elf_Internal_Shdr *hdr;
1525 Elf_Internal_Ehdr *ehdr;
1526 const struct elf_backend_data *bed;
1527 const char *name;
1528
1529 if (shindex >= elf_numsections (abfd))
1530 return FALSE;
1531
1532 hdr = elf_elfsections (abfd)[shindex];
1533 ehdr = elf_elfheader (abfd);
1534 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1535 hdr->sh_name);
1536 if (name == NULL)
1537 return FALSE;
1538
1539 bed = get_elf_backend_data (abfd);
1540 switch (hdr->sh_type)
1541 {
1542 case SHT_NULL:
1543 /* Inactive section. Throw it away. */
1544 return TRUE;
1545
1546 case SHT_PROGBITS: /* Normal section with contents. */
1547 case SHT_NOBITS: /* .bss section. */
1548 case SHT_HASH: /* .hash section. */
1549 case SHT_NOTE: /* .note section. */
1550 case SHT_INIT_ARRAY: /* .init_array section. */
1551 case SHT_FINI_ARRAY: /* .fini_array section. */
1552 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1553 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1554 case SHT_GNU_HASH: /* .gnu.hash section. */
1555 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1556
1557 case SHT_DYNAMIC: /* Dynamic linking information. */
1558 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1559 return FALSE;
1560 if (hdr->sh_link > elf_numsections (abfd)
1561 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1562 return FALSE;
1563 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1564 {
1565 Elf_Internal_Shdr *dynsymhdr;
1566
1567 /* The shared libraries distributed with hpux11 have a bogus
1568 sh_link field for the ".dynamic" section. Find the
1569 string table for the ".dynsym" section instead. */
1570 if (elf_dynsymtab (abfd) != 0)
1571 {
1572 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1573 hdr->sh_link = dynsymhdr->sh_link;
1574 }
1575 else
1576 {
1577 unsigned int i, num_sec;
1578
1579 num_sec = elf_numsections (abfd);
1580 for (i = 1; i < num_sec; i++)
1581 {
1582 dynsymhdr = elf_elfsections (abfd)[i];
1583 if (dynsymhdr->sh_type == SHT_DYNSYM)
1584 {
1585 hdr->sh_link = dynsymhdr->sh_link;
1586 break;
1587 }
1588 }
1589 }
1590 }
1591 break;
1592
1593 case SHT_SYMTAB: /* A symbol table */
1594 if (elf_onesymtab (abfd) == shindex)
1595 return TRUE;
1596
1597 if (hdr->sh_entsize != bed->s->sizeof_sym)
1598 return FALSE;
1599 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1600 elf_onesymtab (abfd) = shindex;
1601 elf_tdata (abfd)->symtab_hdr = *hdr;
1602 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1603 abfd->flags |= HAS_SYMS;
1604
1605 /* Sometimes a shared object will map in the symbol table. If
1606 SHF_ALLOC is set, and this is a shared object, then we also
1607 treat this section as a BFD section. We can not base the
1608 decision purely on SHF_ALLOC, because that flag is sometimes
1609 set in a relocatable object file, which would confuse the
1610 linker. */
1611 if ((hdr->sh_flags & SHF_ALLOC) != 0
1612 && (abfd->flags & DYNAMIC) != 0
1613 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1614 shindex))
1615 return FALSE;
1616
1617 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1618 can't read symbols without that section loaded as well. It
1619 is most likely specified by the next section header. */
1620 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1621 {
1622 unsigned int i, num_sec;
1623
1624 num_sec = elf_numsections (abfd);
1625 for (i = shindex + 1; i < num_sec; i++)
1626 {
1627 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1628 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1629 && hdr2->sh_link == shindex)
1630 break;
1631 }
1632 if (i == num_sec)
1633 for (i = 1; i < shindex; i++)
1634 {
1635 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1636 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1637 && hdr2->sh_link == shindex)
1638 break;
1639 }
1640 if (i != shindex)
1641 return bfd_section_from_shdr (abfd, i);
1642 }
1643 return TRUE;
1644
1645 case SHT_DYNSYM: /* A dynamic symbol table */
1646 if (elf_dynsymtab (abfd) == shindex)
1647 return TRUE;
1648
1649 if (hdr->sh_entsize != bed->s->sizeof_sym)
1650 return FALSE;
1651 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1652 elf_dynsymtab (abfd) = shindex;
1653 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1654 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1655 abfd->flags |= HAS_SYMS;
1656
1657 /* Besides being a symbol table, we also treat this as a regular
1658 section, so that objcopy can handle it. */
1659 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1660
1661 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1662 if (elf_symtab_shndx (abfd) == shindex)
1663 return TRUE;
1664
1665 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1666 elf_symtab_shndx (abfd) = shindex;
1667 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1668 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1669 return TRUE;
1670
1671 case SHT_STRTAB: /* A string table */
1672 if (hdr->bfd_section != NULL)
1673 return TRUE;
1674 if (ehdr->e_shstrndx == shindex)
1675 {
1676 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1677 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1678 return TRUE;
1679 }
1680 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1681 {
1682 symtab_strtab:
1683 elf_tdata (abfd)->strtab_hdr = *hdr;
1684 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1685 return TRUE;
1686 }
1687 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1688 {
1689 dynsymtab_strtab:
1690 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1691 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1692 elf_elfsections (abfd)[shindex] = hdr;
1693 /* We also treat this as a regular section, so that objcopy
1694 can handle it. */
1695 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1696 shindex);
1697 }
1698
1699 /* If the string table isn't one of the above, then treat it as a
1700 regular section. We need to scan all the headers to be sure,
1701 just in case this strtab section appeared before the above. */
1702 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1703 {
1704 unsigned int i, num_sec;
1705
1706 num_sec = elf_numsections (abfd);
1707 for (i = 1; i < num_sec; i++)
1708 {
1709 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1710 if (hdr2->sh_link == shindex)
1711 {
1712 /* Prevent endless recursion on broken objects. */
1713 if (i == shindex)
1714 return FALSE;
1715 if (! bfd_section_from_shdr (abfd, i))
1716 return FALSE;
1717 if (elf_onesymtab (abfd) == i)
1718 goto symtab_strtab;
1719 if (elf_dynsymtab (abfd) == i)
1720 goto dynsymtab_strtab;
1721 }
1722 }
1723 }
1724 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1725
1726 case SHT_REL:
1727 case SHT_RELA:
1728 /* *These* do a lot of work -- but build no sections! */
1729 {
1730 asection *target_sect;
1731 Elf_Internal_Shdr *hdr2;
1732 unsigned int num_sec = elf_numsections (abfd);
1733
1734 if (hdr->sh_entsize
1735 != (bfd_size_type) (hdr->sh_type == SHT_REL
1736 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1737 return FALSE;
1738
1739 /* Check for a bogus link to avoid crashing. */
1740 if (hdr->sh_link >= num_sec)
1741 {
1742 ((*_bfd_error_handler)
1743 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1744 abfd, hdr->sh_link, name, shindex));
1745 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1746 shindex);
1747 }
1748
1749 /* For some incomprehensible reason Oracle distributes
1750 libraries for Solaris in which some of the objects have
1751 bogus sh_link fields. It would be nice if we could just
1752 reject them, but, unfortunately, some people need to use
1753 them. We scan through the section headers; if we find only
1754 one suitable symbol table, we clobber the sh_link to point
1755 to it. I hope this doesn't break anything. */
1756 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1757 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1758 {
1759 unsigned int scan;
1760 int found;
1761
1762 found = 0;
1763 for (scan = 1; scan < num_sec; scan++)
1764 {
1765 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1766 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1767 {
1768 if (found != 0)
1769 {
1770 found = 0;
1771 break;
1772 }
1773 found = scan;
1774 }
1775 }
1776 if (found != 0)
1777 hdr->sh_link = found;
1778 }
1779
1780 /* Get the symbol table. */
1781 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1782 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1783 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1784 return FALSE;
1785
1786 /* If this reloc section does not use the main symbol table we
1787 don't treat it as a reloc section. BFD can't adequately
1788 represent such a section, so at least for now, we don't
1789 try. We just present it as a normal section. We also
1790 can't use it as a reloc section if it points to the null
1791 section, an invalid section, or another reloc section. */
1792 if (hdr->sh_link != elf_onesymtab (abfd)
1793 || hdr->sh_info == SHN_UNDEF
1794 || hdr->sh_info >= num_sec
1795 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1796 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1797 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1798 shindex);
1799
1800 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1801 return FALSE;
1802 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1803 if (target_sect == NULL)
1804 return FALSE;
1805
1806 if ((target_sect->flags & SEC_RELOC) == 0
1807 || target_sect->reloc_count == 0)
1808 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1809 else
1810 {
1811 bfd_size_type amt;
1812 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1813 amt = sizeof (*hdr2);
1814 hdr2 = bfd_alloc (abfd, amt);
1815 if (hdr2 == NULL)
1816 return FALSE;
1817 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1818 }
1819 *hdr2 = *hdr;
1820 elf_elfsections (abfd)[shindex] = hdr2;
1821 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1822 target_sect->flags |= SEC_RELOC;
1823 target_sect->relocation = NULL;
1824 target_sect->rel_filepos = hdr->sh_offset;
1825 /* In the section to which the relocations apply, mark whether
1826 its relocations are of the REL or RELA variety. */
1827 if (hdr->sh_size != 0)
1828 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1829 abfd->flags |= HAS_RELOC;
1830 return TRUE;
1831 }
1832
1833 case SHT_GNU_verdef:
1834 elf_dynverdef (abfd) = shindex;
1835 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1836 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1837
1838 case SHT_GNU_versym:
1839 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1840 return FALSE;
1841 elf_dynversym (abfd) = shindex;
1842 elf_tdata (abfd)->dynversym_hdr = *hdr;
1843 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1844
1845 case SHT_GNU_verneed:
1846 elf_dynverref (abfd) = shindex;
1847 elf_tdata (abfd)->dynverref_hdr = *hdr;
1848 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1849
1850 case SHT_SHLIB:
1851 return TRUE;
1852
1853 case SHT_GROUP:
1854 /* We need a BFD section for objcopy and relocatable linking,
1855 and it's handy to have the signature available as the section
1856 name. */
1857 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1858 return FALSE;
1859 name = group_signature (abfd, hdr);
1860 if (name == NULL)
1861 return FALSE;
1862 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1863 return FALSE;
1864 if (hdr->contents != NULL)
1865 {
1866 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1867 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1868 asection *s;
1869
1870 if (idx->flags & GRP_COMDAT)
1871 hdr->bfd_section->flags
1872 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1873
1874 /* We try to keep the same section order as it comes in. */
1875 idx += n_elt;
1876 while (--n_elt != 0)
1877 {
1878 --idx;
1879
1880 if (idx->shdr != NULL
1881 && (s = idx->shdr->bfd_section) != NULL
1882 && elf_next_in_group (s) != NULL)
1883 {
1884 elf_next_in_group (hdr->bfd_section) = s;
1885 break;
1886 }
1887 }
1888 }
1889 break;
1890
1891 default:
1892 /* Possibly an attributes section. */
1893 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1894 || hdr->sh_type == bed->obj_attrs_section_type)
1895 {
1896 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1897 return FALSE;
1898 _bfd_elf_parse_attributes (abfd, hdr);
1899 return TRUE;
1900 }
1901
1902 /* Check for any processor-specific section types. */
1903 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1904 return TRUE;
1905
1906 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1907 {
1908 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1909 /* FIXME: How to properly handle allocated section reserved
1910 for applications? */
1911 (*_bfd_error_handler)
1912 (_("%B: don't know how to handle allocated, application "
1913 "specific section `%s' [0x%8x]"),
1914 abfd, name, hdr->sh_type);
1915 else
1916 /* Allow sections reserved for applications. */
1917 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1918 shindex);
1919 }
1920 else if (hdr->sh_type >= SHT_LOPROC
1921 && hdr->sh_type <= SHT_HIPROC)
1922 /* FIXME: We should handle this section. */
1923 (*_bfd_error_handler)
1924 (_("%B: don't know how to handle processor specific section "
1925 "`%s' [0x%8x]"),
1926 abfd, name, hdr->sh_type);
1927 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1928 {
1929 /* Unrecognised OS-specific sections. */
1930 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1931 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1932 required to correctly process the section and the file should
1933 be rejected with an error message. */
1934 (*_bfd_error_handler)
1935 (_("%B: don't know how to handle OS specific section "
1936 "`%s' [0x%8x]"),
1937 abfd, name, hdr->sh_type);
1938 else
1939 /* Otherwise it should be processed. */
1940 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1941 }
1942 else
1943 /* FIXME: We should handle this section. */
1944 (*_bfd_error_handler)
1945 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1946 abfd, name, hdr->sh_type);
1947
1948 return FALSE;
1949 }
1950
1951 return TRUE;
1952 }
1953
1954 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1955 Return SEC for sections that have no elf section, and NULL on error. */
1956
1957 asection *
1958 bfd_section_from_r_symndx (bfd *abfd,
1959 struct sym_sec_cache *cache,
1960 asection *sec,
1961 unsigned long r_symndx)
1962 {
1963 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1964 asection *s;
1965
1966 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1967 {
1968 Elf_Internal_Shdr *symtab_hdr;
1969 unsigned char esym[sizeof (Elf64_External_Sym)];
1970 Elf_External_Sym_Shndx eshndx;
1971 Elf_Internal_Sym isym;
1972
1973 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1974 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1975 &isym, esym, &eshndx) == NULL)
1976 return NULL;
1977
1978 if (cache->abfd != abfd)
1979 {
1980 memset (cache->indx, -1, sizeof (cache->indx));
1981 cache->abfd = abfd;
1982 }
1983 cache->indx[ent] = r_symndx;
1984 cache->shndx[ent] = isym.st_shndx;
1985 }
1986
1987 s = bfd_section_from_elf_index (abfd, cache->shndx[ent]);
1988 if (s != NULL)
1989 return s;
1990
1991 return sec;
1992 }
1993
1994 /* Given an ELF section number, retrieve the corresponding BFD
1995 section. */
1996
1997 asection *
1998 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
1999 {
2000 if (index >= elf_numsections (abfd))
2001 return NULL;
2002 return elf_elfsections (abfd)[index]->bfd_section;
2003 }
2004
2005 static const struct bfd_elf_special_section special_sections_b[] =
2006 {
2007 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2008 { NULL, 0, 0, 0, 0 }
2009 };
2010
2011 static const struct bfd_elf_special_section special_sections_c[] =
2012 {
2013 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2014 { NULL, 0, 0, 0, 0 }
2015 };
2016
2017 static const struct bfd_elf_special_section special_sections_d[] =
2018 {
2019 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2020 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2021 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2022 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2023 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2024 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2025 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2026 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2027 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2028 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2029 { NULL, 0, 0, 0, 0 }
2030 };
2031
2032 static const struct bfd_elf_special_section special_sections_f[] =
2033 {
2034 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2035 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2036 { NULL, 0, 0, 0, 0 }
2037 };
2038
2039 static const struct bfd_elf_special_section special_sections_g[] =
2040 {
2041 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2042 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2043 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2044 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2045 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2046 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2047 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2048 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2049 { NULL, 0, 0, 0, 0 }
2050 };
2051
2052 static const struct bfd_elf_special_section special_sections_h[] =
2053 {
2054 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2055 { NULL, 0, 0, 0, 0 }
2056 };
2057
2058 static const struct bfd_elf_special_section special_sections_i[] =
2059 {
2060 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2061 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2062 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2063 { NULL, 0, 0, 0, 0 }
2064 };
2065
2066 static const struct bfd_elf_special_section special_sections_l[] =
2067 {
2068 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2069 { NULL, 0, 0, 0, 0 }
2070 };
2071
2072 static const struct bfd_elf_special_section special_sections_n[] =
2073 {
2074 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2075 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2076 { NULL, 0, 0, 0, 0 }
2077 };
2078
2079 static const struct bfd_elf_special_section special_sections_p[] =
2080 {
2081 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2082 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2083 { NULL, 0, 0, 0, 0 }
2084 };
2085
2086 static const struct bfd_elf_special_section special_sections_r[] =
2087 {
2088 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2089 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2090 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2091 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2092 { NULL, 0, 0, 0, 0 }
2093 };
2094
2095 static const struct bfd_elf_special_section special_sections_s[] =
2096 {
2097 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2098 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2099 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2100 /* See struct bfd_elf_special_section declaration for the semantics of
2101 this special case where .prefix_length != strlen (.prefix). */
2102 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2103 { NULL, 0, 0, 0, 0 }
2104 };
2105
2106 static const struct bfd_elf_special_section special_sections_t[] =
2107 {
2108 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2109 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2110 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2111 { NULL, 0, 0, 0, 0 }
2112 };
2113
2114 static const struct bfd_elf_special_section *special_sections[] =
2115 {
2116 special_sections_b, /* 'b' */
2117 special_sections_c, /* 'c' */
2118 special_sections_d, /* 'd' */
2119 NULL, /* 'e' */
2120 special_sections_f, /* 'f' */
2121 special_sections_g, /* 'g' */
2122 special_sections_h, /* 'h' */
2123 special_sections_i, /* 'i' */
2124 NULL, /* 'j' */
2125 NULL, /* 'k' */
2126 special_sections_l, /* 'l' */
2127 NULL, /* 'm' */
2128 special_sections_n, /* 'n' */
2129 NULL, /* 'o' */
2130 special_sections_p, /* 'p' */
2131 NULL, /* 'q' */
2132 special_sections_r, /* 'r' */
2133 special_sections_s, /* 's' */
2134 special_sections_t, /* 't' */
2135 };
2136
2137 const struct bfd_elf_special_section *
2138 _bfd_elf_get_special_section (const char *name,
2139 const struct bfd_elf_special_section *spec,
2140 unsigned int rela)
2141 {
2142 int i;
2143 int len;
2144
2145 len = strlen (name);
2146
2147 for (i = 0; spec[i].prefix != NULL; i++)
2148 {
2149 int suffix_len;
2150 int prefix_len = spec[i].prefix_length;
2151
2152 if (len < prefix_len)
2153 continue;
2154 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2155 continue;
2156
2157 suffix_len = spec[i].suffix_length;
2158 if (suffix_len <= 0)
2159 {
2160 if (name[prefix_len] != 0)
2161 {
2162 if (suffix_len == 0)
2163 continue;
2164 if (name[prefix_len] != '.'
2165 && (suffix_len == -2
2166 || (rela && spec[i].type == SHT_REL)))
2167 continue;
2168 }
2169 }
2170 else
2171 {
2172 if (len < prefix_len + suffix_len)
2173 continue;
2174 if (memcmp (name + len - suffix_len,
2175 spec[i].prefix + prefix_len,
2176 suffix_len) != 0)
2177 continue;
2178 }
2179 return &spec[i];
2180 }
2181
2182 return NULL;
2183 }
2184
2185 const struct bfd_elf_special_section *
2186 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2187 {
2188 int i;
2189 const struct bfd_elf_special_section *spec;
2190 const struct elf_backend_data *bed;
2191
2192 /* See if this is one of the special sections. */
2193 if (sec->name == NULL)
2194 return NULL;
2195
2196 bed = get_elf_backend_data (abfd);
2197 spec = bed->special_sections;
2198 if (spec)
2199 {
2200 spec = _bfd_elf_get_special_section (sec->name,
2201 bed->special_sections,
2202 sec->use_rela_p);
2203 if (spec != NULL)
2204 return spec;
2205 }
2206
2207 if (sec->name[0] != '.')
2208 return NULL;
2209
2210 i = sec->name[1] - 'b';
2211 if (i < 0 || i > 't' - 'b')
2212 return NULL;
2213
2214 spec = special_sections[i];
2215
2216 if (spec == NULL)
2217 return NULL;
2218
2219 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2220 }
2221
2222 bfd_boolean
2223 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2224 {
2225 struct bfd_elf_section_data *sdata;
2226 const struct elf_backend_data *bed;
2227 const struct bfd_elf_special_section *ssect;
2228
2229 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2230 if (sdata == NULL)
2231 {
2232 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2233 if (sdata == NULL)
2234 return FALSE;
2235 sec->used_by_bfd = sdata;
2236 }
2237
2238 /* Indicate whether or not this section should use RELA relocations. */
2239 bed = get_elf_backend_data (abfd);
2240 sec->use_rela_p = bed->default_use_rela_p;
2241
2242 /* When we read a file, we don't need to set ELF section type and
2243 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2244 anyway. We will set ELF section type and flags for all linker
2245 created sections. If user specifies BFD section flags, we will
2246 set ELF section type and flags based on BFD section flags in
2247 elf_fake_sections. */
2248 if ((!sec->flags && abfd->direction != read_direction)
2249 || (sec->flags & SEC_LINKER_CREATED) != 0)
2250 {
2251 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2252 if (ssect != NULL)
2253 {
2254 elf_section_type (sec) = ssect->type;
2255 elf_section_flags (sec) = ssect->attr;
2256 }
2257 }
2258
2259 return _bfd_generic_new_section_hook (abfd, sec);
2260 }
2261
2262 /* Create a new bfd section from an ELF program header.
2263
2264 Since program segments have no names, we generate a synthetic name
2265 of the form segment<NUM>, where NUM is generally the index in the
2266 program header table. For segments that are split (see below) we
2267 generate the names segment<NUM>a and segment<NUM>b.
2268
2269 Note that some program segments may have a file size that is different than
2270 (less than) the memory size. All this means is that at execution the
2271 system must allocate the amount of memory specified by the memory size,
2272 but only initialize it with the first "file size" bytes read from the
2273 file. This would occur for example, with program segments consisting
2274 of combined data+bss.
2275
2276 To handle the above situation, this routine generates TWO bfd sections
2277 for the single program segment. The first has the length specified by
2278 the file size of the segment, and the second has the length specified
2279 by the difference between the two sizes. In effect, the segment is split
2280 into its initialized and uninitialized parts.
2281
2282 */
2283
2284 bfd_boolean
2285 _bfd_elf_make_section_from_phdr (bfd *abfd,
2286 Elf_Internal_Phdr *hdr,
2287 int index,
2288 const char *typename)
2289 {
2290 asection *newsect;
2291 char *name;
2292 char namebuf[64];
2293 size_t len;
2294 int split;
2295
2296 split = ((hdr->p_memsz > 0)
2297 && (hdr->p_filesz > 0)
2298 && (hdr->p_memsz > hdr->p_filesz));
2299
2300 if (hdr->p_filesz > 0)
2301 {
2302 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2303 len = strlen (namebuf) + 1;
2304 name = bfd_alloc (abfd, len);
2305 if (!name)
2306 return FALSE;
2307 memcpy (name, namebuf, len);
2308 newsect = bfd_make_section (abfd, name);
2309 if (newsect == NULL)
2310 return FALSE;
2311 newsect->vma = hdr->p_vaddr;
2312 newsect->lma = hdr->p_paddr;
2313 newsect->size = hdr->p_filesz;
2314 newsect->filepos = hdr->p_offset;
2315 newsect->flags |= SEC_HAS_CONTENTS;
2316 newsect->alignment_power = bfd_log2 (hdr->p_align);
2317 if (hdr->p_type == PT_LOAD)
2318 {
2319 newsect->flags |= SEC_ALLOC;
2320 newsect->flags |= SEC_LOAD;
2321 if (hdr->p_flags & PF_X)
2322 {
2323 /* FIXME: all we known is that it has execute PERMISSION,
2324 may be data. */
2325 newsect->flags |= SEC_CODE;
2326 }
2327 }
2328 if (!(hdr->p_flags & PF_W))
2329 {
2330 newsect->flags |= SEC_READONLY;
2331 }
2332 }
2333
2334 if (hdr->p_memsz > hdr->p_filesz)
2335 {
2336 bfd_vma align;
2337
2338 sprintf (namebuf, "%s%d%s", typename, index, split ? "b" : "");
2339 len = strlen (namebuf) + 1;
2340 name = bfd_alloc (abfd, len);
2341 if (!name)
2342 return FALSE;
2343 memcpy (name, namebuf, len);
2344 newsect = bfd_make_section (abfd, name);
2345 if (newsect == NULL)
2346 return FALSE;
2347 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2348 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2349 newsect->size = hdr->p_memsz - hdr->p_filesz;
2350 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2351 align = newsect->vma & -newsect->vma;
2352 if (align == 0 || align > hdr->p_align)
2353 align = hdr->p_align;
2354 newsect->alignment_power = bfd_log2 (align);
2355 if (hdr->p_type == PT_LOAD)
2356 {
2357 /* Hack for gdb. Segments that have not been modified do
2358 not have their contents written to a core file, on the
2359 assumption that a debugger can find the contents in the
2360 executable. We flag this case by setting the fake
2361 section size to zero. Note that "real" bss sections will
2362 always have their contents dumped to the core file. */
2363 if (bfd_get_format (abfd) == bfd_core)
2364 newsect->size = 0;
2365 newsect->flags |= SEC_ALLOC;
2366 if (hdr->p_flags & PF_X)
2367 newsect->flags |= SEC_CODE;
2368 }
2369 if (!(hdr->p_flags & PF_W))
2370 newsect->flags |= SEC_READONLY;
2371 }
2372
2373 return TRUE;
2374 }
2375
2376 bfd_boolean
2377 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2378 {
2379 const struct elf_backend_data *bed;
2380
2381 switch (hdr->p_type)
2382 {
2383 case PT_NULL:
2384 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2385
2386 case PT_LOAD:
2387 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2388
2389 case PT_DYNAMIC:
2390 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2391
2392 case PT_INTERP:
2393 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2394
2395 case PT_NOTE:
2396 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2397 return FALSE;
2398 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2399 return FALSE;
2400 return TRUE;
2401
2402 case PT_SHLIB:
2403 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2404
2405 case PT_PHDR:
2406 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2407
2408 case PT_GNU_EH_FRAME:
2409 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2410 "eh_frame_hdr");
2411
2412 case PT_GNU_STACK:
2413 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2414
2415 case PT_GNU_RELRO:
2416 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2417
2418 default:
2419 /* Check for any processor-specific program segment types. */
2420 bed = get_elf_backend_data (abfd);
2421 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2422 }
2423 }
2424
2425 /* Initialize REL_HDR, the section-header for new section, containing
2426 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2427 relocations; otherwise, we use REL relocations. */
2428
2429 bfd_boolean
2430 _bfd_elf_init_reloc_shdr (bfd *abfd,
2431 Elf_Internal_Shdr *rel_hdr,
2432 asection *asect,
2433 bfd_boolean use_rela_p)
2434 {
2435 char *name;
2436 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2437 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2438
2439 name = bfd_alloc (abfd, amt);
2440 if (name == NULL)
2441 return FALSE;
2442 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2443 rel_hdr->sh_name =
2444 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2445 FALSE);
2446 if (rel_hdr->sh_name == (unsigned int) -1)
2447 return FALSE;
2448 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2449 rel_hdr->sh_entsize = (use_rela_p
2450 ? bed->s->sizeof_rela
2451 : bed->s->sizeof_rel);
2452 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2453 rel_hdr->sh_flags = 0;
2454 rel_hdr->sh_addr = 0;
2455 rel_hdr->sh_size = 0;
2456 rel_hdr->sh_offset = 0;
2457
2458 return TRUE;
2459 }
2460
2461 /* Set up an ELF internal section header for a section. */
2462
2463 static void
2464 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2465 {
2466 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2467 bfd_boolean *failedptr = failedptrarg;
2468 Elf_Internal_Shdr *this_hdr;
2469 unsigned int sh_type;
2470
2471 if (*failedptr)
2472 {
2473 /* We already failed; just get out of the bfd_map_over_sections
2474 loop. */
2475 return;
2476 }
2477
2478 this_hdr = &elf_section_data (asect)->this_hdr;
2479
2480 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2481 asect->name, FALSE);
2482 if (this_hdr->sh_name == (unsigned int) -1)
2483 {
2484 *failedptr = TRUE;
2485 return;
2486 }
2487
2488 /* Don't clear sh_flags. Assembler may set additional bits. */
2489
2490 if ((asect->flags & SEC_ALLOC) != 0
2491 || asect->user_set_vma)
2492 this_hdr->sh_addr = asect->vma;
2493 else
2494 this_hdr->sh_addr = 0;
2495
2496 this_hdr->sh_offset = 0;
2497 this_hdr->sh_size = asect->size;
2498 this_hdr->sh_link = 0;
2499 this_hdr->sh_addralign = 1 << asect->alignment_power;
2500 /* The sh_entsize and sh_info fields may have been set already by
2501 copy_private_section_data. */
2502
2503 this_hdr->bfd_section = asect;
2504 this_hdr->contents = NULL;
2505
2506 /* If the section type is unspecified, we set it based on
2507 asect->flags. */
2508 if ((asect->flags & SEC_GROUP) != 0)
2509 sh_type = SHT_GROUP;
2510 else if ((asect->flags & SEC_ALLOC) != 0
2511 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2512 || (asect->flags & SEC_NEVER_LOAD) != 0))
2513 sh_type = SHT_NOBITS;
2514 else
2515 sh_type = SHT_PROGBITS;
2516
2517 if (this_hdr->sh_type == SHT_NULL)
2518 this_hdr->sh_type = sh_type;
2519 else if (this_hdr->sh_type == SHT_NOBITS
2520 && sh_type == SHT_PROGBITS
2521 && (asect->flags & SEC_ALLOC) != 0)
2522 {
2523 /* Warn if we are changing a NOBITS section to PROGBITS, but
2524 allow the link to proceed. This can happen when users link
2525 non-bss input sections to bss output sections, or emit data
2526 to a bss output section via a linker script. */
2527 (*_bfd_error_handler)
2528 (_("warning: section `%A' type changed to PROGBITS"), asect);
2529 this_hdr->sh_type = sh_type;
2530 }
2531
2532 switch (this_hdr->sh_type)
2533 {
2534 default:
2535 break;
2536
2537 case SHT_STRTAB:
2538 case SHT_INIT_ARRAY:
2539 case SHT_FINI_ARRAY:
2540 case SHT_PREINIT_ARRAY:
2541 case SHT_NOTE:
2542 case SHT_NOBITS:
2543 case SHT_PROGBITS:
2544 break;
2545
2546 case SHT_HASH:
2547 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2548 break;
2549
2550 case SHT_DYNSYM:
2551 this_hdr->sh_entsize = bed->s->sizeof_sym;
2552 break;
2553
2554 case SHT_DYNAMIC:
2555 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2556 break;
2557
2558 case SHT_RELA:
2559 if (get_elf_backend_data (abfd)->may_use_rela_p)
2560 this_hdr->sh_entsize = bed->s->sizeof_rela;
2561 break;
2562
2563 case SHT_REL:
2564 if (get_elf_backend_data (abfd)->may_use_rel_p)
2565 this_hdr->sh_entsize = bed->s->sizeof_rel;
2566 break;
2567
2568 case SHT_GNU_versym:
2569 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2570 break;
2571
2572 case SHT_GNU_verdef:
2573 this_hdr->sh_entsize = 0;
2574 /* objcopy or strip will copy over sh_info, but may not set
2575 cverdefs. The linker will set cverdefs, but sh_info will be
2576 zero. */
2577 if (this_hdr->sh_info == 0)
2578 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2579 else
2580 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2581 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2582 break;
2583
2584 case SHT_GNU_verneed:
2585 this_hdr->sh_entsize = 0;
2586 /* objcopy or strip will copy over sh_info, but may not set
2587 cverrefs. The linker will set cverrefs, but sh_info will be
2588 zero. */
2589 if (this_hdr->sh_info == 0)
2590 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2591 else
2592 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2593 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2594 break;
2595
2596 case SHT_GROUP:
2597 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2598 break;
2599
2600 case SHT_GNU_HASH:
2601 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2602 break;
2603 }
2604
2605 if ((asect->flags & SEC_ALLOC) != 0)
2606 this_hdr->sh_flags |= SHF_ALLOC;
2607 if ((asect->flags & SEC_READONLY) == 0)
2608 this_hdr->sh_flags |= SHF_WRITE;
2609 if ((asect->flags & SEC_CODE) != 0)
2610 this_hdr->sh_flags |= SHF_EXECINSTR;
2611 if ((asect->flags & SEC_MERGE) != 0)
2612 {
2613 this_hdr->sh_flags |= SHF_MERGE;
2614 this_hdr->sh_entsize = asect->entsize;
2615 if ((asect->flags & SEC_STRINGS) != 0)
2616 this_hdr->sh_flags |= SHF_STRINGS;
2617 }
2618 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2619 this_hdr->sh_flags |= SHF_GROUP;
2620 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2621 {
2622 this_hdr->sh_flags |= SHF_TLS;
2623 if (asect->size == 0
2624 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2625 {
2626 struct bfd_link_order *o = asect->map_tail.link_order;
2627
2628 this_hdr->sh_size = 0;
2629 if (o != NULL)
2630 {
2631 this_hdr->sh_size = o->offset + o->size;
2632 if (this_hdr->sh_size != 0)
2633 this_hdr->sh_type = SHT_NOBITS;
2634 }
2635 }
2636 }
2637
2638 /* Check for processor-specific section types. */
2639 sh_type = this_hdr->sh_type;
2640 if (bed->elf_backend_fake_sections
2641 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2642 *failedptr = TRUE;
2643
2644 if (sh_type == SHT_NOBITS && asect->size != 0)
2645 {
2646 /* Don't change the header type from NOBITS if we are being
2647 called for objcopy --only-keep-debug. */
2648 this_hdr->sh_type = sh_type;
2649 }
2650
2651 /* If the section has relocs, set up a section header for the
2652 SHT_REL[A] section. If two relocation sections are required for
2653 this section, it is up to the processor-specific back-end to
2654 create the other. */
2655 if ((asect->flags & SEC_RELOC) != 0
2656 && !_bfd_elf_init_reloc_shdr (abfd,
2657 &elf_section_data (asect)->rel_hdr,
2658 asect,
2659 asect->use_rela_p))
2660 *failedptr = TRUE;
2661 }
2662
2663 /* Fill in the contents of a SHT_GROUP section. */
2664
2665 void
2666 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2667 {
2668 bfd_boolean *failedptr = failedptrarg;
2669 unsigned long symindx;
2670 asection *elt, *first;
2671 unsigned char *loc;
2672 bfd_boolean gas;
2673
2674 /* Ignore linker created group section. See elfNN_ia64_object_p in
2675 elfxx-ia64.c. */
2676 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2677 || *failedptr)
2678 return;
2679
2680 symindx = 0;
2681 if (elf_group_id (sec) != NULL)
2682 symindx = elf_group_id (sec)->udata.i;
2683
2684 if (symindx == 0)
2685 {
2686 /* If called from the assembler, swap_out_syms will have set up
2687 elf_section_syms; If called for "ld -r", use target_index. */
2688 if (elf_section_syms (abfd) != NULL)
2689 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2690 else
2691 symindx = sec->target_index;
2692 }
2693 elf_section_data (sec)->this_hdr.sh_info = symindx;
2694
2695 /* The contents won't be allocated for "ld -r" or objcopy. */
2696 gas = TRUE;
2697 if (sec->contents == NULL)
2698 {
2699 gas = FALSE;
2700 sec->contents = bfd_alloc (abfd, sec->size);
2701
2702 /* Arrange for the section to be written out. */
2703 elf_section_data (sec)->this_hdr.contents = sec->contents;
2704 if (sec->contents == NULL)
2705 {
2706 *failedptr = TRUE;
2707 return;
2708 }
2709 }
2710
2711 loc = sec->contents + sec->size;
2712
2713 /* Get the pointer to the first section in the group that gas
2714 squirreled away here. objcopy arranges for this to be set to the
2715 start of the input section group. */
2716 first = elt = elf_next_in_group (sec);
2717
2718 /* First element is a flag word. Rest of section is elf section
2719 indices for all the sections of the group. Write them backwards
2720 just to keep the group in the same order as given in .section
2721 directives, not that it matters. */
2722 while (elt != NULL)
2723 {
2724 asection *s;
2725 unsigned int idx;
2726
2727 loc -= 4;
2728 s = elt;
2729 if (!gas)
2730 s = s->output_section;
2731 idx = 0;
2732 if (s != NULL)
2733 idx = elf_section_data (s)->this_idx;
2734 H_PUT_32 (abfd, idx, loc);
2735 elt = elf_next_in_group (elt);
2736 if (elt == first)
2737 break;
2738 }
2739
2740 if ((loc -= 4) != sec->contents)
2741 abort ();
2742
2743 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2744 }
2745
2746 /* Assign all ELF section numbers. The dummy first section is handled here
2747 too. The link/info pointers for the standard section types are filled
2748 in here too, while we're at it. */
2749
2750 static bfd_boolean
2751 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2752 {
2753 struct elf_obj_tdata *t = elf_tdata (abfd);
2754 asection *sec;
2755 unsigned int section_number, secn;
2756 Elf_Internal_Shdr **i_shdrp;
2757 struct bfd_elf_section_data *d;
2758
2759 section_number = 1;
2760
2761 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2762
2763 /* SHT_GROUP sections are in relocatable files only. */
2764 if (link_info == NULL || link_info->relocatable)
2765 {
2766 /* Put SHT_GROUP sections first. */
2767 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2768 {
2769 d = elf_section_data (sec);
2770
2771 if (d->this_hdr.sh_type == SHT_GROUP)
2772 {
2773 if (sec->flags & SEC_LINKER_CREATED)
2774 {
2775 /* Remove the linker created SHT_GROUP sections. */
2776 bfd_section_list_remove (abfd, sec);
2777 abfd->section_count--;
2778 }
2779 else
2780 d->this_idx = section_number++;
2781 }
2782 }
2783 }
2784
2785 for (sec = abfd->sections; sec; sec = sec->next)
2786 {
2787 d = elf_section_data (sec);
2788
2789 if (d->this_hdr.sh_type != SHT_GROUP)
2790 d->this_idx = section_number++;
2791 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2792 if ((sec->flags & SEC_RELOC) == 0)
2793 d->rel_idx = 0;
2794 else
2795 {
2796 d->rel_idx = section_number++;
2797 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2798 }
2799
2800 if (d->rel_hdr2)
2801 {
2802 d->rel_idx2 = section_number++;
2803 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2804 }
2805 else
2806 d->rel_idx2 = 0;
2807 }
2808
2809 t->shstrtab_section = section_number++;
2810 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2811 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2812
2813 if (bfd_get_symcount (abfd) > 0)
2814 {
2815 t->symtab_section = section_number++;
2816 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2817 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2818 {
2819 t->symtab_shndx_section = section_number++;
2820 t->symtab_shndx_hdr.sh_name
2821 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2822 ".symtab_shndx", FALSE);
2823 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2824 return FALSE;
2825 }
2826 t->strtab_section = section_number++;
2827 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2828 }
2829
2830 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2831 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2832
2833 elf_numsections (abfd) = section_number;
2834 elf_elfheader (abfd)->e_shnum = section_number;
2835
2836 /* Set up the list of section header pointers, in agreement with the
2837 indices. */
2838 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
2839 if (i_shdrp == NULL)
2840 return FALSE;
2841
2842 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2843 if (i_shdrp[0] == NULL)
2844 {
2845 bfd_release (abfd, i_shdrp);
2846 return FALSE;
2847 }
2848
2849 elf_elfsections (abfd) = i_shdrp;
2850
2851 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2852 if (bfd_get_symcount (abfd) > 0)
2853 {
2854 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2855 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
2856 {
2857 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2858 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2859 }
2860 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2861 t->symtab_hdr.sh_link = t->strtab_section;
2862 }
2863
2864 for (sec = abfd->sections; sec; sec = sec->next)
2865 {
2866 struct bfd_elf_section_data *d = elf_section_data (sec);
2867 asection *s;
2868 const char *name;
2869
2870 i_shdrp[d->this_idx] = &d->this_hdr;
2871 if (d->rel_idx != 0)
2872 i_shdrp[d->rel_idx] = &d->rel_hdr;
2873 if (d->rel_idx2 != 0)
2874 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2875
2876 /* Fill in the sh_link and sh_info fields while we're at it. */
2877
2878 /* sh_link of a reloc section is the section index of the symbol
2879 table. sh_info is the section index of the section to which
2880 the relocation entries apply. */
2881 if (d->rel_idx != 0)
2882 {
2883 d->rel_hdr.sh_link = t->symtab_section;
2884 d->rel_hdr.sh_info = d->this_idx;
2885 }
2886 if (d->rel_idx2 != 0)
2887 {
2888 d->rel_hdr2->sh_link = t->symtab_section;
2889 d->rel_hdr2->sh_info = d->this_idx;
2890 }
2891
2892 /* We need to set up sh_link for SHF_LINK_ORDER. */
2893 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2894 {
2895 s = elf_linked_to_section (sec);
2896 if (s)
2897 {
2898 /* elf_linked_to_section points to the input section. */
2899 if (link_info != NULL)
2900 {
2901 /* Check discarded linkonce section. */
2902 if (elf_discarded_section (s))
2903 {
2904 asection *kept;
2905 (*_bfd_error_handler)
2906 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2907 abfd, d->this_hdr.bfd_section,
2908 s, s->owner);
2909 /* Point to the kept section if it has the same
2910 size as the discarded one. */
2911 kept = _bfd_elf_check_kept_section (s, link_info);
2912 if (kept == NULL)
2913 {
2914 bfd_set_error (bfd_error_bad_value);
2915 return FALSE;
2916 }
2917 s = kept;
2918 }
2919
2920 s = s->output_section;
2921 BFD_ASSERT (s != NULL);
2922 }
2923 else
2924 {
2925 /* Handle objcopy. */
2926 if (s->output_section == NULL)
2927 {
2928 (*_bfd_error_handler)
2929 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2930 abfd, d->this_hdr.bfd_section, s, s->owner);
2931 bfd_set_error (bfd_error_bad_value);
2932 return FALSE;
2933 }
2934 s = s->output_section;
2935 }
2936 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2937 }
2938 else
2939 {
2940 /* PR 290:
2941 The Intel C compiler generates SHT_IA_64_UNWIND with
2942 SHF_LINK_ORDER. But it doesn't set the sh_link or
2943 sh_info fields. Hence we could get the situation
2944 where s is NULL. */
2945 const struct elf_backend_data *bed
2946 = get_elf_backend_data (abfd);
2947 if (bed->link_order_error_handler)
2948 bed->link_order_error_handler
2949 (_("%B: warning: sh_link not set for section `%A'"),
2950 abfd, sec);
2951 }
2952 }
2953
2954 switch (d->this_hdr.sh_type)
2955 {
2956 case SHT_REL:
2957 case SHT_RELA:
2958 /* A reloc section which we are treating as a normal BFD
2959 section. sh_link is the section index of the symbol
2960 table. sh_info is the section index of the section to
2961 which the relocation entries apply. We assume that an
2962 allocated reloc section uses the dynamic symbol table.
2963 FIXME: How can we be sure? */
2964 s = bfd_get_section_by_name (abfd, ".dynsym");
2965 if (s != NULL)
2966 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2967
2968 /* We look up the section the relocs apply to by name. */
2969 name = sec->name;
2970 if (d->this_hdr.sh_type == SHT_REL)
2971 name += 4;
2972 else
2973 name += 5;
2974 s = bfd_get_section_by_name (abfd, name);
2975 if (s != NULL)
2976 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2977 break;
2978
2979 case SHT_STRTAB:
2980 /* We assume that a section named .stab*str is a stabs
2981 string section. We look for a section with the same name
2982 but without the trailing ``str'', and set its sh_link
2983 field to point to this section. */
2984 if (CONST_STRNEQ (sec->name, ".stab")
2985 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2986 {
2987 size_t len;
2988 char *alc;
2989
2990 len = strlen (sec->name);
2991 alc = bfd_malloc (len - 2);
2992 if (alc == NULL)
2993 return FALSE;
2994 memcpy (alc, sec->name, len - 3);
2995 alc[len - 3] = '\0';
2996 s = bfd_get_section_by_name (abfd, alc);
2997 free (alc);
2998 if (s != NULL)
2999 {
3000 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3001
3002 /* This is a .stab section. */
3003 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3004 elf_section_data (s)->this_hdr.sh_entsize
3005 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3006 }
3007 }
3008 break;
3009
3010 case SHT_DYNAMIC:
3011 case SHT_DYNSYM:
3012 case SHT_GNU_verneed:
3013 case SHT_GNU_verdef:
3014 /* sh_link is the section header index of the string table
3015 used for the dynamic entries, or the symbol table, or the
3016 version strings. */
3017 s = bfd_get_section_by_name (abfd, ".dynstr");
3018 if (s != NULL)
3019 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3020 break;
3021
3022 case SHT_GNU_LIBLIST:
3023 /* sh_link is the section header index of the prelink library
3024 list used for the dynamic entries, or the symbol table, or
3025 the version strings. */
3026 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3027 ? ".dynstr" : ".gnu.libstr");
3028 if (s != NULL)
3029 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3030 break;
3031
3032 case SHT_HASH:
3033 case SHT_GNU_HASH:
3034 case SHT_GNU_versym:
3035 /* sh_link is the section header index of the symbol table
3036 this hash table or version table is for. */
3037 s = bfd_get_section_by_name (abfd, ".dynsym");
3038 if (s != NULL)
3039 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3040 break;
3041
3042 case SHT_GROUP:
3043 d->this_hdr.sh_link = t->symtab_section;
3044 }
3045 }
3046
3047 for (secn = 1; secn < section_number; ++secn)
3048 if (i_shdrp[secn] == NULL)
3049 i_shdrp[secn] = i_shdrp[0];
3050 else
3051 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3052 i_shdrp[secn]->sh_name);
3053 return TRUE;
3054 }
3055
3056 /* Map symbol from it's internal number to the external number, moving
3057 all local symbols to be at the head of the list. */
3058
3059 static bfd_boolean
3060 sym_is_global (bfd *abfd, asymbol *sym)
3061 {
3062 /* If the backend has a special mapping, use it. */
3063 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3064 if (bed->elf_backend_sym_is_global)
3065 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3066
3067 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3068 || bfd_is_und_section (bfd_get_section (sym))
3069 || bfd_is_com_section (bfd_get_section (sym)));
3070 }
3071
3072 /* Don't output section symbols for sections that are not going to be
3073 output. Also, don't output section symbols for reloc and other
3074 special sections. */
3075
3076 static bfd_boolean
3077 ignore_section_sym (bfd *abfd, asymbol *sym)
3078 {
3079 return ((sym->flags & BSF_SECTION_SYM) != 0
3080 && (sym->value != 0
3081 || (sym->section->owner != abfd
3082 && (sym->section->output_section->owner != abfd
3083 || sym->section->output_offset != 0))));
3084 }
3085
3086 static bfd_boolean
3087 elf_map_symbols (bfd *abfd)
3088 {
3089 unsigned int symcount = bfd_get_symcount (abfd);
3090 asymbol **syms = bfd_get_outsymbols (abfd);
3091 asymbol **sect_syms;
3092 unsigned int num_locals = 0;
3093 unsigned int num_globals = 0;
3094 unsigned int num_locals2 = 0;
3095 unsigned int num_globals2 = 0;
3096 int max_index = 0;
3097 unsigned int idx;
3098 asection *asect;
3099 asymbol **new_syms;
3100
3101 #ifdef DEBUG
3102 fprintf (stderr, "elf_map_symbols\n");
3103 fflush (stderr);
3104 #endif
3105
3106 for (asect = abfd->sections; asect; asect = asect->next)
3107 {
3108 if (max_index < asect->index)
3109 max_index = asect->index;
3110 }
3111
3112 max_index++;
3113 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3114 if (sect_syms == NULL)
3115 return FALSE;
3116 elf_section_syms (abfd) = sect_syms;
3117 elf_num_section_syms (abfd) = max_index;
3118
3119 /* Init sect_syms entries for any section symbols we have already
3120 decided to output. */
3121 for (idx = 0; idx < symcount; idx++)
3122 {
3123 asymbol *sym = syms[idx];
3124
3125 if ((sym->flags & BSF_SECTION_SYM) != 0
3126 && !ignore_section_sym (abfd, sym))
3127 {
3128 asection *sec = sym->section;
3129
3130 if (sec->owner != abfd)
3131 sec = sec->output_section;
3132
3133 sect_syms[sec->index] = syms[idx];
3134 }
3135 }
3136
3137 /* Classify all of the symbols. */
3138 for (idx = 0; idx < symcount; idx++)
3139 {
3140 if (ignore_section_sym (abfd, syms[idx]))
3141 continue;
3142 if (!sym_is_global (abfd, syms[idx]))
3143 num_locals++;
3144 else
3145 num_globals++;
3146 }
3147
3148 /* We will be adding a section symbol for each normal BFD section. Most
3149 sections will already have a section symbol in outsymbols, but
3150 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3151 at least in that case. */
3152 for (asect = abfd->sections; asect; asect = asect->next)
3153 {
3154 if (sect_syms[asect->index] == NULL)
3155 {
3156 if (!sym_is_global (abfd, asect->symbol))
3157 num_locals++;
3158 else
3159 num_globals++;
3160 }
3161 }
3162
3163 /* Now sort the symbols so the local symbols are first. */
3164 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3165
3166 if (new_syms == NULL)
3167 return FALSE;
3168
3169 for (idx = 0; idx < symcount; idx++)
3170 {
3171 asymbol *sym = syms[idx];
3172 unsigned int i;
3173
3174 if (ignore_section_sym (abfd, sym))
3175 continue;
3176 if (!sym_is_global (abfd, sym))
3177 i = num_locals2++;
3178 else
3179 i = num_locals + num_globals2++;
3180 new_syms[i] = sym;
3181 sym->udata.i = i + 1;
3182 }
3183 for (asect = abfd->sections; asect; asect = asect->next)
3184 {
3185 if (sect_syms[asect->index] == NULL)
3186 {
3187 asymbol *sym = asect->symbol;
3188 unsigned int i;
3189
3190 sect_syms[asect->index] = sym;
3191 if (!sym_is_global (abfd, sym))
3192 i = num_locals2++;
3193 else
3194 i = num_locals + num_globals2++;
3195 new_syms[i] = sym;
3196 sym->udata.i = i + 1;
3197 }
3198 }
3199
3200 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3201
3202 elf_num_locals (abfd) = num_locals;
3203 elf_num_globals (abfd) = num_globals;
3204 return TRUE;
3205 }
3206
3207 /* Align to the maximum file alignment that could be required for any
3208 ELF data structure. */
3209
3210 static inline file_ptr
3211 align_file_position (file_ptr off, int align)
3212 {
3213 return (off + align - 1) & ~(align - 1);
3214 }
3215
3216 /* Assign a file position to a section, optionally aligning to the
3217 required section alignment. */
3218
3219 file_ptr
3220 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3221 file_ptr offset,
3222 bfd_boolean align)
3223 {
3224 if (align)
3225 {
3226 unsigned int al;
3227
3228 al = i_shdrp->sh_addralign;
3229 if (al > 1)
3230 offset = BFD_ALIGN (offset, al);
3231 }
3232 i_shdrp->sh_offset = offset;
3233 if (i_shdrp->bfd_section != NULL)
3234 i_shdrp->bfd_section->filepos = offset;
3235 if (i_shdrp->sh_type != SHT_NOBITS)
3236 offset += i_shdrp->sh_size;
3237 return offset;
3238 }
3239
3240 /* Compute the file positions we are going to put the sections at, and
3241 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3242 is not NULL, this is being called by the ELF backend linker. */
3243
3244 bfd_boolean
3245 _bfd_elf_compute_section_file_positions (bfd *abfd,
3246 struct bfd_link_info *link_info)
3247 {
3248 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3249 bfd_boolean failed;
3250 struct bfd_strtab_hash *strtab = NULL;
3251 Elf_Internal_Shdr *shstrtab_hdr;
3252
3253 if (abfd->output_has_begun)
3254 return TRUE;
3255
3256 /* Do any elf backend specific processing first. */
3257 if (bed->elf_backend_begin_write_processing)
3258 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3259
3260 if (! prep_headers (abfd))
3261 return FALSE;
3262
3263 /* Post process the headers if necessary. */
3264 if (bed->elf_backend_post_process_headers)
3265 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3266
3267 failed = FALSE;
3268 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3269 if (failed)
3270 return FALSE;
3271
3272 if (!assign_section_numbers (abfd, link_info))
3273 return FALSE;
3274
3275 /* The backend linker builds symbol table information itself. */
3276 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3277 {
3278 /* Non-zero if doing a relocatable link. */
3279 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3280
3281 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3282 return FALSE;
3283 }
3284
3285 if (link_info == NULL)
3286 {
3287 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3288 if (failed)
3289 return FALSE;
3290 }
3291
3292 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3293 /* sh_name was set in prep_headers. */
3294 shstrtab_hdr->sh_type = SHT_STRTAB;
3295 shstrtab_hdr->sh_flags = 0;
3296 shstrtab_hdr->sh_addr = 0;
3297 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3298 shstrtab_hdr->sh_entsize = 0;
3299 shstrtab_hdr->sh_link = 0;
3300 shstrtab_hdr->sh_info = 0;
3301 /* sh_offset is set in assign_file_positions_except_relocs. */
3302 shstrtab_hdr->sh_addralign = 1;
3303
3304 if (!assign_file_positions_except_relocs (abfd, link_info))
3305 return FALSE;
3306
3307 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3308 {
3309 file_ptr off;
3310 Elf_Internal_Shdr *hdr;
3311
3312 off = elf_tdata (abfd)->next_file_pos;
3313
3314 hdr = &elf_tdata (abfd)->symtab_hdr;
3315 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3316
3317 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3318 if (hdr->sh_size != 0)
3319 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3320
3321 hdr = &elf_tdata (abfd)->strtab_hdr;
3322 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3323
3324 elf_tdata (abfd)->next_file_pos = off;
3325
3326 /* Now that we know where the .strtab section goes, write it
3327 out. */
3328 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3329 || ! _bfd_stringtab_emit (abfd, strtab))
3330 return FALSE;
3331 _bfd_stringtab_free (strtab);
3332 }
3333
3334 abfd->output_has_begun = TRUE;
3335
3336 return TRUE;
3337 }
3338
3339 /* Make an initial estimate of the size of the program header. If we
3340 get the number wrong here, we'll redo section placement. */
3341
3342 static bfd_size_type
3343 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3344 {
3345 size_t segs;
3346 asection *s;
3347 const struct elf_backend_data *bed;
3348
3349 /* Assume we will need exactly two PT_LOAD segments: one for text
3350 and one for data. */
3351 segs = 2;
3352
3353 s = bfd_get_section_by_name (abfd, ".interp");
3354 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3355 {
3356 /* If we have a loadable interpreter section, we need a
3357 PT_INTERP segment. In this case, assume we also need a
3358 PT_PHDR segment, although that may not be true for all
3359 targets. */
3360 segs += 2;
3361 }
3362
3363 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3364 {
3365 /* We need a PT_DYNAMIC segment. */
3366 ++segs;
3367 }
3368
3369 if (info->relro)
3370 {
3371 /* We need a PT_GNU_RELRO segment. */
3372 ++segs;
3373 }
3374
3375 if (elf_tdata (abfd)->eh_frame_hdr)
3376 {
3377 /* We need a PT_GNU_EH_FRAME segment. */
3378 ++segs;
3379 }
3380
3381 if (elf_tdata (abfd)->stack_flags)
3382 {
3383 /* We need a PT_GNU_STACK segment. */
3384 ++segs;
3385 }
3386
3387 for (s = abfd->sections; s != NULL; s = s->next)
3388 {
3389 if ((s->flags & SEC_LOAD) != 0
3390 && CONST_STRNEQ (s->name, ".note"))
3391 {
3392 /* We need a PT_NOTE segment. */
3393 ++segs;
3394 /* Try to create just one PT_NOTE segment
3395 for all adjacent loadable .note* sections.
3396 gABI requires that within a PT_NOTE segment
3397 (and also inside of each SHT_NOTE section)
3398 each note is padded to a multiple of 4 size,
3399 so we check whether the sections are correctly
3400 aligned. */
3401 if (s->alignment_power == 2)
3402 while (s->next != NULL
3403 && s->next->alignment_power == 2
3404 && (s->next->flags & SEC_LOAD) != 0
3405 && CONST_STRNEQ (s->next->name, ".note"))
3406 s = s->next;
3407 }
3408 }
3409
3410 for (s = abfd->sections; s != NULL; s = s->next)
3411 {
3412 if (s->flags & SEC_THREAD_LOCAL)
3413 {
3414 /* We need a PT_TLS segment. */
3415 ++segs;
3416 break;
3417 }
3418 }
3419
3420 /* Let the backend count up any program headers it might need. */
3421 bed = get_elf_backend_data (abfd);
3422 if (bed->elf_backend_additional_program_headers)
3423 {
3424 int a;
3425
3426 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3427 if (a == -1)
3428 abort ();
3429 segs += a;
3430 }
3431
3432 return segs * bed->s->sizeof_phdr;
3433 }
3434
3435 /* Find the segment that contains the output_section of section. */
3436
3437 Elf_Internal_Phdr *
3438 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3439 {
3440 struct elf_segment_map *m;
3441 Elf_Internal_Phdr *p;
3442
3443 for (m = elf_tdata (abfd)->segment_map,
3444 p = elf_tdata (abfd)->phdr;
3445 m != NULL;
3446 m = m->next, p++)
3447 {
3448 int i;
3449
3450 for (i = m->count - 1; i >= 0; i--)
3451 if (m->sections[i] == section)
3452 return p;
3453 }
3454
3455 return NULL;
3456 }
3457
3458 /* Create a mapping from a set of sections to a program segment. */
3459
3460 static struct elf_segment_map *
3461 make_mapping (bfd *abfd,
3462 asection **sections,
3463 unsigned int from,
3464 unsigned int to,
3465 bfd_boolean phdr)
3466 {
3467 struct elf_segment_map *m;
3468 unsigned int i;
3469 asection **hdrpp;
3470 bfd_size_type amt;
3471
3472 amt = sizeof (struct elf_segment_map);
3473 amt += (to - from - 1) * sizeof (asection *);
3474 m = bfd_zalloc (abfd, amt);
3475 if (m == NULL)
3476 return NULL;
3477 m->next = NULL;
3478 m->p_type = PT_LOAD;
3479 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3480 m->sections[i - from] = *hdrpp;
3481 m->count = to - from;
3482
3483 if (from == 0 && phdr)
3484 {
3485 /* Include the headers in the first PT_LOAD segment. */
3486 m->includes_filehdr = 1;
3487 m->includes_phdrs = 1;
3488 }
3489
3490 return m;
3491 }
3492
3493 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3494 on failure. */
3495
3496 struct elf_segment_map *
3497 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3498 {
3499 struct elf_segment_map *m;
3500
3501 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3502 if (m == NULL)
3503 return NULL;
3504 m->next = NULL;
3505 m->p_type = PT_DYNAMIC;
3506 m->count = 1;
3507 m->sections[0] = dynsec;
3508
3509 return m;
3510 }
3511
3512 /* Possibly add or remove segments from the segment map. */
3513
3514 static bfd_boolean
3515 elf_modify_segment_map (bfd *abfd,
3516 struct bfd_link_info *info,
3517 bfd_boolean remove_empty_load)
3518 {
3519 struct elf_segment_map **m;
3520 const struct elf_backend_data *bed;
3521
3522 /* The placement algorithm assumes that non allocated sections are
3523 not in PT_LOAD segments. We ensure this here by removing such
3524 sections from the segment map. We also remove excluded
3525 sections. Finally, any PT_LOAD segment without sections is
3526 removed. */
3527 m = &elf_tdata (abfd)->segment_map;
3528 while (*m)
3529 {
3530 unsigned int i, new_count;
3531
3532 for (new_count = 0, i = 0; i < (*m)->count; i++)
3533 {
3534 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3535 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3536 || (*m)->p_type != PT_LOAD))
3537 {
3538 (*m)->sections[new_count] = (*m)->sections[i];
3539 new_count++;
3540 }
3541 }
3542 (*m)->count = new_count;
3543
3544 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3545 *m = (*m)->next;
3546 else
3547 m = &(*m)->next;
3548 }
3549
3550 bed = get_elf_backend_data (abfd);
3551 if (bed->elf_backend_modify_segment_map != NULL)
3552 {
3553 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3554 return FALSE;
3555 }
3556
3557 return TRUE;
3558 }
3559
3560 /* Set up a mapping from BFD sections to program segments. */
3561
3562 bfd_boolean
3563 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3564 {
3565 unsigned int count;
3566 struct elf_segment_map *m;
3567 asection **sections = NULL;
3568 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3569 bfd_boolean no_user_phdrs;
3570
3571 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3572 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3573 {
3574 asection *s;
3575 unsigned int i;
3576 struct elf_segment_map *mfirst;
3577 struct elf_segment_map **pm;
3578 asection *last_hdr;
3579 bfd_vma last_size;
3580 unsigned int phdr_index;
3581 bfd_vma maxpagesize;
3582 asection **hdrpp;
3583 bfd_boolean phdr_in_segment = TRUE;
3584 bfd_boolean writable;
3585 int tls_count = 0;
3586 asection *first_tls = NULL;
3587 asection *dynsec, *eh_frame_hdr;
3588 bfd_size_type amt;
3589
3590 /* Select the allocated sections, and sort them. */
3591
3592 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3593 if (sections == NULL)
3594 goto error_return;
3595
3596 i = 0;
3597 for (s = abfd->sections; s != NULL; s = s->next)
3598 {
3599 if ((s->flags & SEC_ALLOC) != 0)
3600 {
3601 sections[i] = s;
3602 ++i;
3603 }
3604 }
3605 BFD_ASSERT (i <= bfd_count_sections (abfd));
3606 count = i;
3607
3608 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3609
3610 /* Build the mapping. */
3611
3612 mfirst = NULL;
3613 pm = &mfirst;
3614
3615 /* If we have a .interp section, then create a PT_PHDR segment for
3616 the program headers and a PT_INTERP segment for the .interp
3617 section. */
3618 s = bfd_get_section_by_name (abfd, ".interp");
3619 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3620 {
3621 amt = sizeof (struct elf_segment_map);
3622 m = bfd_zalloc (abfd, amt);
3623 if (m == NULL)
3624 goto error_return;
3625 m->next = NULL;
3626 m->p_type = PT_PHDR;
3627 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3628 m->p_flags = PF_R | PF_X;
3629 m->p_flags_valid = 1;
3630 m->includes_phdrs = 1;
3631
3632 *pm = m;
3633 pm = &m->next;
3634
3635 amt = sizeof (struct elf_segment_map);
3636 m = bfd_zalloc (abfd, amt);
3637 if (m == NULL)
3638 goto error_return;
3639 m->next = NULL;
3640 m->p_type = PT_INTERP;
3641 m->count = 1;
3642 m->sections[0] = s;
3643
3644 *pm = m;
3645 pm = &m->next;
3646 }
3647
3648 /* Look through the sections. We put sections in the same program
3649 segment when the start of the second section can be placed within
3650 a few bytes of the end of the first section. */
3651 last_hdr = NULL;
3652 last_size = 0;
3653 phdr_index = 0;
3654 maxpagesize = bed->maxpagesize;
3655 writable = FALSE;
3656 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3657 if (dynsec != NULL
3658 && (dynsec->flags & SEC_LOAD) == 0)
3659 dynsec = NULL;
3660
3661 /* Deal with -Ttext or something similar such that the first section
3662 is not adjacent to the program headers. This is an
3663 approximation, since at this point we don't know exactly how many
3664 program headers we will need. */
3665 if (count > 0)
3666 {
3667 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3668
3669 if (phdr_size == (bfd_size_type) -1)
3670 phdr_size = get_program_header_size (abfd, info);
3671 if ((abfd->flags & D_PAGED) == 0
3672 || sections[0]->lma < phdr_size
3673 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3674 phdr_in_segment = FALSE;
3675 }
3676
3677 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3678 {
3679 asection *hdr;
3680 bfd_boolean new_segment;
3681
3682 hdr = *hdrpp;
3683
3684 /* See if this section and the last one will fit in the same
3685 segment. */
3686
3687 if (last_hdr == NULL)
3688 {
3689 /* If we don't have a segment yet, then we don't need a new
3690 one (we build the last one after this loop). */
3691 new_segment = FALSE;
3692 }
3693 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3694 {
3695 /* If this section has a different relation between the
3696 virtual address and the load address, then we need a new
3697 segment. */
3698 new_segment = TRUE;
3699 }
3700 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3701 < BFD_ALIGN (hdr->lma, maxpagesize))
3702 {
3703 /* If putting this section in this segment would force us to
3704 skip a page in the segment, then we need a new segment. */
3705 new_segment = TRUE;
3706 }
3707 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3708 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3709 {
3710 /* We don't want to put a loadable section after a
3711 nonloadable section in the same segment.
3712 Consider .tbss sections as loadable for this purpose. */
3713 new_segment = TRUE;
3714 }
3715 else if ((abfd->flags & D_PAGED) == 0)
3716 {
3717 /* If the file is not demand paged, which means that we
3718 don't require the sections to be correctly aligned in the
3719 file, then there is no other reason for a new segment. */
3720 new_segment = FALSE;
3721 }
3722 else if (! writable
3723 && (hdr->flags & SEC_READONLY) == 0
3724 && (((last_hdr->lma + last_size - 1)
3725 & ~(maxpagesize - 1))
3726 != (hdr->lma & ~(maxpagesize - 1))))
3727 {
3728 /* We don't want to put a writable section in a read only
3729 segment, unless they are on the same page in memory
3730 anyhow. We already know that the last section does not
3731 bring us past the current section on the page, so the
3732 only case in which the new section is not on the same
3733 page as the previous section is when the previous section
3734 ends precisely on a page boundary. */
3735 new_segment = TRUE;
3736 }
3737 else
3738 {
3739 /* Otherwise, we can use the same segment. */
3740 new_segment = FALSE;
3741 }
3742
3743 /* Allow interested parties a chance to override our decision. */
3744 if (last_hdr && info->callbacks->override_segment_assignment)
3745 new_segment = info->callbacks->override_segment_assignment (info, abfd, hdr, last_hdr, new_segment);
3746
3747 if (! new_segment)
3748 {
3749 if ((hdr->flags & SEC_READONLY) == 0)
3750 writable = TRUE;
3751 last_hdr = hdr;
3752 /* .tbss sections effectively have zero size. */
3753 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3754 != SEC_THREAD_LOCAL)
3755 last_size = hdr->size;
3756 else
3757 last_size = 0;
3758 continue;
3759 }
3760
3761 /* We need a new program segment. We must create a new program
3762 header holding all the sections from phdr_index until hdr. */
3763
3764 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3765 if (m == NULL)
3766 goto error_return;
3767
3768 *pm = m;
3769 pm = &m->next;
3770
3771 if ((hdr->flags & SEC_READONLY) == 0)
3772 writable = TRUE;
3773 else
3774 writable = FALSE;
3775
3776 last_hdr = hdr;
3777 /* .tbss sections effectively have zero size. */
3778 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3779 last_size = hdr->size;
3780 else
3781 last_size = 0;
3782 phdr_index = i;
3783 phdr_in_segment = FALSE;
3784 }
3785
3786 /* Create a final PT_LOAD program segment. */
3787 if (last_hdr != NULL)
3788 {
3789 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3790 if (m == NULL)
3791 goto error_return;
3792
3793 *pm = m;
3794 pm = &m->next;
3795 }
3796
3797 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3798 if (dynsec != NULL)
3799 {
3800 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3801 if (m == NULL)
3802 goto error_return;
3803 *pm = m;
3804 pm = &m->next;
3805 }
3806
3807 /* For each batch of consecutive loadable .note sections,
3808 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3809 because if we link together nonloadable .note sections and
3810 loadable .note sections, we will generate two .note sections
3811 in the output file. FIXME: Using names for section types is
3812 bogus anyhow. */
3813 for (s = abfd->sections; s != NULL; s = s->next)
3814 {
3815 if ((s->flags & SEC_LOAD) != 0
3816 && CONST_STRNEQ (s->name, ".note"))
3817 {
3818 asection *s2;
3819 unsigned count = 1;
3820 amt = sizeof (struct elf_segment_map);
3821 if (s->alignment_power == 2)
3822 for (s2 = s; s2->next != NULL; s2 = s2->next)
3823 {
3824 if (s2->next->alignment_power == 2
3825 && (s2->next->flags & SEC_LOAD) != 0
3826 && CONST_STRNEQ (s2->next->name, ".note")
3827 && align_power (s2->vma + s2->size, 2)
3828 == s2->next->vma)
3829 count++;
3830 else
3831 break;
3832 }
3833 amt += (count - 1) * sizeof (asection *);
3834 m = bfd_zalloc (abfd, amt);
3835 if (m == NULL)
3836 goto error_return;
3837 m->next = NULL;
3838 m->p_type = PT_NOTE;
3839 m->count = count;
3840 while (count > 1)
3841 {
3842 m->sections[m->count - count--] = s;
3843 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3844 s = s->next;
3845 }
3846 m->sections[m->count - 1] = s;
3847 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3848 *pm = m;
3849 pm = &m->next;
3850 }
3851 if (s->flags & SEC_THREAD_LOCAL)
3852 {
3853 if (! tls_count)
3854 first_tls = s;
3855 tls_count++;
3856 }
3857 }
3858
3859 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3860 if (tls_count > 0)
3861 {
3862 int i;
3863
3864 amt = sizeof (struct elf_segment_map);
3865 amt += (tls_count - 1) * sizeof (asection *);
3866 m = bfd_zalloc (abfd, amt);
3867 if (m == NULL)
3868 goto error_return;
3869 m->next = NULL;
3870 m->p_type = PT_TLS;
3871 m->count = tls_count;
3872 /* Mandated PF_R. */
3873 m->p_flags = PF_R;
3874 m->p_flags_valid = 1;
3875 for (i = 0; i < tls_count; ++i)
3876 {
3877 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3878 m->sections[i] = first_tls;
3879 first_tls = first_tls->next;
3880 }
3881
3882 *pm = m;
3883 pm = &m->next;
3884 }
3885
3886 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3887 segment. */
3888 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3889 if (eh_frame_hdr != NULL
3890 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3891 {
3892 amt = sizeof (struct elf_segment_map);
3893 m = bfd_zalloc (abfd, amt);
3894 if (m == NULL)
3895 goto error_return;
3896 m->next = NULL;
3897 m->p_type = PT_GNU_EH_FRAME;
3898 m->count = 1;
3899 m->sections[0] = eh_frame_hdr->output_section;
3900
3901 *pm = m;
3902 pm = &m->next;
3903 }
3904
3905 if (elf_tdata (abfd)->stack_flags)
3906 {
3907 amt = sizeof (struct elf_segment_map);
3908 m = bfd_zalloc (abfd, amt);
3909 if (m == NULL)
3910 goto error_return;
3911 m->next = NULL;
3912 m->p_type = PT_GNU_STACK;
3913 m->p_flags = elf_tdata (abfd)->stack_flags;
3914 m->p_flags_valid = 1;
3915
3916 *pm = m;
3917 pm = &m->next;
3918 }
3919
3920 if (info->relro)
3921 {
3922 for (m = mfirst; m != NULL; m = m->next)
3923 {
3924 if (m->p_type == PT_LOAD)
3925 {
3926 asection *last = m->sections[m->count - 1];
3927 bfd_vma vaddr = m->sections[0]->vma;
3928 bfd_vma filesz = last->vma - vaddr + last->size;
3929
3930 if (vaddr < info->relro_end
3931 && vaddr >= info->relro_start
3932 && (vaddr + filesz) >= info->relro_end)
3933 break;
3934 }
3935 }
3936
3937 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
3938 if (m != NULL)
3939 {
3940 amt = sizeof (struct elf_segment_map);
3941 m = bfd_zalloc (abfd, amt);
3942 if (m == NULL)
3943 goto error_return;
3944 m->next = NULL;
3945 m->p_type = PT_GNU_RELRO;
3946 m->p_flags = PF_R;
3947 m->p_flags_valid = 1;
3948
3949 *pm = m;
3950 pm = &m->next;
3951 }
3952 }
3953
3954 free (sections);
3955 elf_tdata (abfd)->segment_map = mfirst;
3956 }
3957
3958 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
3959 return FALSE;
3960
3961 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3962 ++count;
3963 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
3964
3965 return TRUE;
3966
3967 error_return:
3968 if (sections != NULL)
3969 free (sections);
3970 return FALSE;
3971 }
3972
3973 /* Sort sections by address. */
3974
3975 static int
3976 elf_sort_sections (const void *arg1, const void *arg2)
3977 {
3978 const asection *sec1 = *(const asection **) arg1;
3979 const asection *sec2 = *(const asection **) arg2;
3980 bfd_size_type size1, size2;
3981
3982 /* Sort by LMA first, since this is the address used to
3983 place the section into a segment. */
3984 if (sec1->lma < sec2->lma)
3985 return -1;
3986 else if (sec1->lma > sec2->lma)
3987 return 1;
3988
3989 /* Then sort by VMA. Normally the LMA and the VMA will be
3990 the same, and this will do nothing. */
3991 if (sec1->vma < sec2->vma)
3992 return -1;
3993 else if (sec1->vma > sec2->vma)
3994 return 1;
3995
3996 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3997
3998 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3999
4000 if (TOEND (sec1))
4001 {
4002 if (TOEND (sec2))
4003 {
4004 /* If the indicies are the same, do not return 0
4005 here, but continue to try the next comparison. */
4006 if (sec1->target_index - sec2->target_index != 0)
4007 return sec1->target_index - sec2->target_index;
4008 }
4009 else
4010 return 1;
4011 }
4012 else if (TOEND (sec2))
4013 return -1;
4014
4015 #undef TOEND
4016
4017 /* Sort by size, to put zero sized sections
4018 before others at the same address. */
4019
4020 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4021 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4022
4023 if (size1 < size2)
4024 return -1;
4025 if (size1 > size2)
4026 return 1;
4027
4028 return sec1->target_index - sec2->target_index;
4029 }
4030
4031 /* Ian Lance Taylor writes:
4032
4033 We shouldn't be using % with a negative signed number. That's just
4034 not good. We have to make sure either that the number is not
4035 negative, or that the number has an unsigned type. When the types
4036 are all the same size they wind up as unsigned. When file_ptr is a
4037 larger signed type, the arithmetic winds up as signed long long,
4038 which is wrong.
4039
4040 What we're trying to say here is something like ``increase OFF by
4041 the least amount that will cause it to be equal to the VMA modulo
4042 the page size.'' */
4043 /* In other words, something like:
4044
4045 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4046 off_offset = off % bed->maxpagesize;
4047 if (vma_offset < off_offset)
4048 adjustment = vma_offset + bed->maxpagesize - off_offset;
4049 else
4050 adjustment = vma_offset - off_offset;
4051
4052 which can can be collapsed into the expression below. */
4053
4054 static file_ptr
4055 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4056 {
4057 return ((vma - off) % maxpagesize);
4058 }
4059
4060 static void
4061 print_segment_map (const struct elf_segment_map *m)
4062 {
4063 unsigned int j;
4064 const char *pt = get_segment_type (m->p_type);
4065 char buf[32];
4066
4067 if (pt == NULL)
4068 {
4069 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4070 sprintf (buf, "LOPROC+%7.7x",
4071 (unsigned int) (m->p_type - PT_LOPROC));
4072 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4073 sprintf (buf, "LOOS+%7.7x",
4074 (unsigned int) (m->p_type - PT_LOOS));
4075 else
4076 snprintf (buf, sizeof (buf), "%8.8x",
4077 (unsigned int) m->p_type);
4078 pt = buf;
4079 }
4080 fprintf (stderr, "%s:", pt);
4081 for (j = 0; j < m->count; j++)
4082 fprintf (stderr, " %s", m->sections [j]->name);
4083 putc ('\n',stderr);
4084 }
4085
4086 /* Assign file positions to the sections based on the mapping from
4087 sections to segments. This function also sets up some fields in
4088 the file header. */
4089
4090 static bfd_boolean
4091 assign_file_positions_for_load_sections (bfd *abfd,
4092 struct bfd_link_info *link_info)
4093 {
4094 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4095 struct elf_segment_map *m;
4096 Elf_Internal_Phdr *phdrs;
4097 Elf_Internal_Phdr *p;
4098 file_ptr off;
4099 bfd_size_type maxpagesize;
4100 unsigned int alloc;
4101 unsigned int i, j;
4102
4103 if (link_info == NULL
4104 && !elf_modify_segment_map (abfd, link_info, FALSE))
4105 return FALSE;
4106
4107 alloc = 0;
4108 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4109 ++alloc;
4110
4111 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4112 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4113 elf_elfheader (abfd)->e_phnum = alloc;
4114
4115 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4116 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4117 else
4118 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4119 >= alloc * bed->s->sizeof_phdr);
4120
4121 if (alloc == 0)
4122 {
4123 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4124 return TRUE;
4125 }
4126
4127 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4128 elf_tdata (abfd)->phdr = phdrs;
4129 if (phdrs == NULL)
4130 return FALSE;
4131
4132 maxpagesize = 1;
4133 if ((abfd->flags & D_PAGED) != 0)
4134 maxpagesize = bed->maxpagesize;
4135
4136 off = bed->s->sizeof_ehdr;
4137 off += alloc * bed->s->sizeof_phdr;
4138
4139 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4140 m != NULL;
4141 m = m->next, p++, j++)
4142 {
4143 asection **secpp;
4144 bfd_vma off_adjust;
4145 bfd_boolean no_contents;
4146
4147 /* If elf_segment_map is not from map_sections_to_segments, the
4148 sections may not be correctly ordered. NOTE: sorting should
4149 not be done to the PT_NOTE section of a corefile, which may
4150 contain several pseudo-sections artificially created by bfd.
4151 Sorting these pseudo-sections breaks things badly. */
4152 if (m->count > 1
4153 && !(elf_elfheader (abfd)->e_type == ET_CORE
4154 && m->p_type == PT_NOTE))
4155 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4156 elf_sort_sections);
4157
4158 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4159 number of sections with contents contributing to both p_filesz
4160 and p_memsz, followed by a number of sections with no contents
4161 that just contribute to p_memsz. In this loop, OFF tracks next
4162 available file offset for PT_LOAD and PT_NOTE segments. */
4163 p->p_type = m->p_type;
4164 p->p_flags = m->p_flags;
4165
4166 if (m->count == 0)
4167 p->p_vaddr = 0;
4168 else
4169 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4170
4171 if (m->p_paddr_valid)
4172 p->p_paddr = m->p_paddr;
4173 else if (m->count == 0)
4174 p->p_paddr = 0;
4175 else
4176 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4177
4178 if (p->p_type == PT_LOAD
4179 && (abfd->flags & D_PAGED) != 0)
4180 {
4181 /* p_align in demand paged PT_LOAD segments effectively stores
4182 the maximum page size. When copying an executable with
4183 objcopy, we set m->p_align from the input file. Use this
4184 value for maxpagesize rather than bed->maxpagesize, which
4185 may be different. Note that we use maxpagesize for PT_TLS
4186 segment alignment later in this function, so we are relying
4187 on at least one PT_LOAD segment appearing before a PT_TLS
4188 segment. */
4189 if (m->p_align_valid)
4190 maxpagesize = m->p_align;
4191
4192 p->p_align = maxpagesize;
4193 }
4194 else if (m->p_align_valid)
4195 p->p_align = m->p_align;
4196 else if (m->count == 0)
4197 p->p_align = 1 << bed->s->log_file_align;
4198 else
4199 p->p_align = 0;
4200
4201 no_contents = FALSE;
4202 off_adjust = 0;
4203 if (p->p_type == PT_LOAD
4204 && m->count > 0)
4205 {
4206 bfd_size_type align;
4207 unsigned int align_power = 0;
4208
4209 if (m->p_align_valid)
4210 align = p->p_align;
4211 else
4212 {
4213 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4214 {
4215 unsigned int secalign;
4216
4217 secalign = bfd_get_section_alignment (abfd, *secpp);
4218 if (secalign > align_power)
4219 align_power = secalign;
4220 }
4221 align = (bfd_size_type) 1 << align_power;
4222 if (align < maxpagesize)
4223 align = maxpagesize;
4224 }
4225
4226 for (i = 0; i < m->count; i++)
4227 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4228 /* If we aren't making room for this section, then
4229 it must be SHT_NOBITS regardless of what we've
4230 set via struct bfd_elf_special_section. */
4231 elf_section_type (m->sections[i]) = SHT_NOBITS;
4232
4233 /* Find out whether this segment contains any loadable
4234 sections. If the first section isn't loadable, the same
4235 holds for any other sections. */
4236 i = 0;
4237 while (elf_section_type (m->sections[i]) == SHT_NOBITS)
4238 {
4239 /* If a segment starts with .tbss, we need to look
4240 at the next section to decide whether the segment
4241 has any loadable sections. */
4242 if ((elf_section_flags (m->sections[i]) & SHF_TLS) == 0
4243 || ++i >= m->count)
4244 {
4245 no_contents = TRUE;
4246 break;
4247 }
4248 }
4249
4250 off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4251 off += off_adjust;
4252 if (no_contents)
4253 {
4254 /* We shouldn't need to align the segment on disk since
4255 the segment doesn't need file space, but the gABI
4256 arguably requires the alignment and glibc ld.so
4257 checks it. So to comply with the alignment
4258 requirement but not waste file space, we adjust
4259 p_offset for just this segment. (OFF_ADJUST is
4260 subtracted from OFF later.) This may put p_offset
4261 past the end of file, but that shouldn't matter. */
4262 }
4263 else
4264 off_adjust = 0;
4265 }
4266 /* Make sure the .dynamic section is the first section in the
4267 PT_DYNAMIC segment. */
4268 else if (p->p_type == PT_DYNAMIC
4269 && m->count > 1
4270 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4271 {
4272 _bfd_error_handler
4273 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4274 abfd);
4275 bfd_set_error (bfd_error_bad_value);
4276 return FALSE;
4277 }
4278 /* Set the note section type to SHT_NOTE. */
4279 else if (p->p_type == PT_NOTE)
4280 for (i = 0; i < m->count; i++)
4281 elf_section_type (m->sections[i]) = SHT_NOTE;
4282
4283 p->p_offset = 0;
4284 p->p_filesz = 0;
4285 p->p_memsz = 0;
4286
4287 if (m->includes_filehdr)
4288 {
4289 if (!m->p_flags_valid)
4290 p->p_flags |= PF_R;
4291 p->p_filesz = bed->s->sizeof_ehdr;
4292 p->p_memsz = bed->s->sizeof_ehdr;
4293 if (m->count > 0)
4294 {
4295 BFD_ASSERT (p->p_type == PT_LOAD);
4296
4297 if (p->p_vaddr < (bfd_vma) off)
4298 {
4299 (*_bfd_error_handler)
4300 (_("%B: Not enough room for program headers, try linking with -N"),
4301 abfd);
4302 bfd_set_error (bfd_error_bad_value);
4303 return FALSE;
4304 }
4305
4306 p->p_vaddr -= off;
4307 if (!m->p_paddr_valid)
4308 p->p_paddr -= off;
4309 }
4310 }
4311
4312 if (m->includes_phdrs)
4313 {
4314 if (!m->p_flags_valid)
4315 p->p_flags |= PF_R;
4316
4317 if (!m->includes_filehdr)
4318 {
4319 p->p_offset = bed->s->sizeof_ehdr;
4320
4321 if (m->count > 0)
4322 {
4323 BFD_ASSERT (p->p_type == PT_LOAD);
4324 p->p_vaddr -= off - p->p_offset;
4325 if (!m->p_paddr_valid)
4326 p->p_paddr -= off - p->p_offset;
4327 }
4328 }
4329
4330 p->p_filesz += alloc * bed->s->sizeof_phdr;
4331 p->p_memsz += alloc * bed->s->sizeof_phdr;
4332 }
4333
4334 if (p->p_type == PT_LOAD
4335 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4336 {
4337 if (!m->includes_filehdr && !m->includes_phdrs)
4338 p->p_offset = off;
4339 else
4340 {
4341 file_ptr adjust;
4342
4343 adjust = off - (p->p_offset + p->p_filesz);
4344 if (!no_contents)
4345 p->p_filesz += adjust;
4346 p->p_memsz += adjust;
4347 }
4348 }
4349
4350 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4351 maps. Set filepos for sections in PT_LOAD segments, and in
4352 core files, for sections in PT_NOTE segments.
4353 assign_file_positions_for_non_load_sections will set filepos
4354 for other sections and update p_filesz for other segments. */
4355 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4356 {
4357 asection *sec;
4358 bfd_size_type align;
4359 Elf_Internal_Shdr *this_hdr;
4360
4361 sec = *secpp;
4362 this_hdr = &elf_section_data (sec)->this_hdr;
4363 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4364
4365 if (p->p_type == PT_LOAD
4366 || p->p_type == PT_TLS)
4367 {
4368 bfd_signed_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
4369
4370 if (this_hdr->sh_type != SHT_NOBITS
4371 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4372 && ((this_hdr->sh_flags & SHF_TLS) == 0
4373 || p->p_type == PT_TLS)))
4374 {
4375 if (adjust < 0)
4376 {
4377 (*_bfd_error_handler)
4378 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4379 abfd, sec, (unsigned long) sec->lma);
4380 adjust = 0;
4381 }
4382 p->p_memsz += adjust;
4383
4384 if (this_hdr->sh_type != SHT_NOBITS)
4385 {
4386 off += adjust;
4387 p->p_filesz += adjust;
4388 }
4389 }
4390 }
4391
4392 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4393 {
4394 /* The section at i == 0 is the one that actually contains
4395 everything. */
4396 if (i == 0)
4397 {
4398 this_hdr->sh_offset = sec->filepos = off;
4399 off += this_hdr->sh_size;
4400 p->p_filesz = this_hdr->sh_size;
4401 p->p_memsz = 0;
4402 p->p_align = 1;
4403 }
4404 else
4405 {
4406 /* The rest are fake sections that shouldn't be written. */
4407 sec->filepos = 0;
4408 sec->size = 0;
4409 sec->flags = 0;
4410 continue;
4411 }
4412 }
4413 else
4414 {
4415 if (p->p_type == PT_LOAD)
4416 {
4417 this_hdr->sh_offset = sec->filepos = off;
4418 if (this_hdr->sh_type != SHT_NOBITS)
4419 off += this_hdr->sh_size;
4420 }
4421
4422 if (this_hdr->sh_type != SHT_NOBITS)
4423 {
4424 p->p_filesz += this_hdr->sh_size;
4425 /* A load section without SHF_ALLOC is something like
4426 a note section in a PT_NOTE segment. These take
4427 file space but are not loaded into memory. */
4428 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4429 p->p_memsz += this_hdr->sh_size;
4430 }
4431 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4432 {
4433 if (p->p_type == PT_TLS)
4434 p->p_memsz += this_hdr->sh_size;
4435
4436 /* .tbss is special. It doesn't contribute to p_memsz of
4437 normal segments. */
4438 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4439 p->p_memsz += this_hdr->sh_size;
4440 }
4441
4442 if (align > p->p_align
4443 && !m->p_align_valid
4444 && (p->p_type != PT_LOAD
4445 || (abfd->flags & D_PAGED) == 0))
4446 p->p_align = align;
4447 }
4448
4449 if (!m->p_flags_valid)
4450 {
4451 p->p_flags |= PF_R;
4452 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4453 p->p_flags |= PF_X;
4454 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4455 p->p_flags |= PF_W;
4456 }
4457 }
4458 off -= off_adjust;
4459
4460 /* Check that all sections are in a PT_LOAD segment.
4461 Don't check funky gdb generated core files. */
4462 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4463 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4464 {
4465 Elf_Internal_Shdr *this_hdr;
4466 asection *sec;
4467
4468 sec = *secpp;
4469 this_hdr = &(elf_section_data(sec)->this_hdr);
4470 if (this_hdr->sh_size != 0
4471 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4472 {
4473 (*_bfd_error_handler)
4474 (_("%B: section `%A' can't be allocated in segment %d"),
4475 abfd, sec, j);
4476 print_segment_map (m);
4477 bfd_set_error (bfd_error_bad_value);
4478 return FALSE;
4479 }
4480 }
4481 }
4482
4483 elf_tdata (abfd)->next_file_pos = off;
4484 return TRUE;
4485 }
4486
4487 /* Assign file positions for the other sections. */
4488
4489 static bfd_boolean
4490 assign_file_positions_for_non_load_sections (bfd *abfd,
4491 struct bfd_link_info *link_info)
4492 {
4493 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4494 Elf_Internal_Shdr **i_shdrpp;
4495 Elf_Internal_Shdr **hdrpp;
4496 Elf_Internal_Phdr *phdrs;
4497 Elf_Internal_Phdr *p;
4498 struct elf_segment_map *m;
4499 bfd_vma filehdr_vaddr, filehdr_paddr;
4500 bfd_vma phdrs_vaddr, phdrs_paddr;
4501 file_ptr off;
4502 unsigned int num_sec;
4503 unsigned int i;
4504 unsigned int count;
4505
4506 i_shdrpp = elf_elfsections (abfd);
4507 num_sec = elf_numsections (abfd);
4508 off = elf_tdata (abfd)->next_file_pos;
4509 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4510 {
4511 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4512 Elf_Internal_Shdr *hdr;
4513
4514 hdr = *hdrpp;
4515 if (hdr->bfd_section != NULL
4516 && (hdr->bfd_section->filepos != 0
4517 || (hdr->sh_type == SHT_NOBITS
4518 && hdr->contents == NULL)))
4519 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4520 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4521 {
4522 if (hdr->sh_size != 0)
4523 ((*_bfd_error_handler)
4524 (_("%B: warning: allocated section `%s' not in segment"),
4525 abfd,
4526 (hdr->bfd_section == NULL
4527 ? "*unknown*"
4528 : hdr->bfd_section->name)));
4529 /* We don't need to page align empty sections. */
4530 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4531 off += vma_page_aligned_bias (hdr->sh_addr, off,
4532 bed->maxpagesize);
4533 else
4534 off += vma_page_aligned_bias (hdr->sh_addr, off,
4535 hdr->sh_addralign);
4536 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4537 FALSE);
4538 }
4539 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4540 && hdr->bfd_section == NULL)
4541 || hdr == i_shdrpp[tdata->symtab_section]
4542 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4543 || hdr == i_shdrpp[tdata->strtab_section])
4544 hdr->sh_offset = -1;
4545 else
4546 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4547 }
4548
4549 /* Now that we have set the section file positions, we can set up
4550 the file positions for the non PT_LOAD segments. */
4551 count = 0;
4552 filehdr_vaddr = 0;
4553 filehdr_paddr = 0;
4554 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4555 phdrs_paddr = 0;
4556 phdrs = elf_tdata (abfd)->phdr;
4557 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4558 m != NULL;
4559 m = m->next, p++)
4560 {
4561 ++count;
4562 if (p->p_type != PT_LOAD)
4563 continue;
4564
4565 if (m->includes_filehdr)
4566 {
4567 filehdr_vaddr = p->p_vaddr;
4568 filehdr_paddr = p->p_paddr;
4569 }
4570 if (m->includes_phdrs)
4571 {
4572 phdrs_vaddr = p->p_vaddr;
4573 phdrs_paddr = p->p_paddr;
4574 if (m->includes_filehdr)
4575 {
4576 phdrs_vaddr += bed->s->sizeof_ehdr;
4577 phdrs_paddr += bed->s->sizeof_ehdr;
4578 }
4579 }
4580 }
4581
4582 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4583 m != NULL;
4584 m = m->next, p++)
4585 {
4586 if (m->count != 0)
4587 {
4588 if (p->p_type != PT_LOAD
4589 && (p->p_type != PT_NOTE
4590 || bfd_get_format (abfd) != bfd_core))
4591 {
4592 Elf_Internal_Shdr *hdr;
4593 asection *sect;
4594
4595 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4596
4597 sect = m->sections[m->count - 1];
4598 hdr = &elf_section_data (sect)->this_hdr;
4599 p->p_filesz = sect->filepos - m->sections[0]->filepos;
4600 if (hdr->sh_type != SHT_NOBITS)
4601 p->p_filesz += hdr->sh_size;
4602
4603 if (p->p_type == PT_GNU_RELRO)
4604 {
4605 /* When we get here, we are copying executable
4606 or shared library. But we need to use the same
4607 linker logic. */
4608 Elf_Internal_Phdr *lp;
4609
4610 for (lp = phdrs; lp < phdrs + count; ++lp)
4611 {
4612 if (lp->p_type == PT_LOAD
4613 && lp->p_paddr == p->p_paddr)
4614 break;
4615 }
4616
4617 if (lp < phdrs + count)
4618 {
4619 /* We should use p_size if it is valid since it
4620 may contain the first few bytes of the next
4621 SEC_ALLOC section. */
4622 if (m->p_size_valid)
4623 p->p_filesz = m->p_size;
4624 else
4625 abort ();
4626 p->p_vaddr = lp->p_vaddr;
4627 p->p_offset = lp->p_offset;
4628 p->p_memsz = p->p_filesz;
4629 p->p_align = 1;
4630 }
4631 else
4632 abort ();
4633 }
4634 else
4635 p->p_offset = m->sections[0]->filepos;
4636 }
4637 }
4638 else
4639 {
4640 if (m->includes_filehdr)
4641 {
4642 p->p_vaddr = filehdr_vaddr;
4643 if (! m->p_paddr_valid)
4644 p->p_paddr = filehdr_paddr;
4645 }
4646 else if (m->includes_phdrs)
4647 {
4648 p->p_vaddr = phdrs_vaddr;
4649 if (! m->p_paddr_valid)
4650 p->p_paddr = phdrs_paddr;
4651 }
4652 else if (p->p_type == PT_GNU_RELRO)
4653 {
4654 Elf_Internal_Phdr *lp;
4655
4656 for (lp = phdrs; lp < phdrs + count; ++lp)
4657 {
4658 if (lp->p_type == PT_LOAD
4659 && lp->p_vaddr <= link_info->relro_end
4660 && lp->p_vaddr >= link_info->relro_start
4661 && (lp->p_vaddr + lp->p_filesz
4662 >= link_info->relro_end))
4663 break;
4664 }
4665
4666 if (lp < phdrs + count
4667 && link_info->relro_end > lp->p_vaddr)
4668 {
4669 p->p_vaddr = lp->p_vaddr;
4670 p->p_paddr = lp->p_paddr;
4671 p->p_offset = lp->p_offset;
4672 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4673 p->p_memsz = p->p_filesz;
4674 p->p_align = 1;
4675 p->p_flags = (lp->p_flags & ~PF_W);
4676 }
4677 else
4678 {
4679 memset (p, 0, sizeof *p);
4680 p->p_type = PT_NULL;
4681 }
4682 }
4683 }
4684 }
4685
4686 elf_tdata (abfd)->next_file_pos = off;
4687
4688 return TRUE;
4689 }
4690
4691 /* Work out the file positions of all the sections. This is called by
4692 _bfd_elf_compute_section_file_positions. All the section sizes and
4693 VMAs must be known before this is called.
4694
4695 Reloc sections come in two flavours: Those processed specially as
4696 "side-channel" data attached to a section to which they apply, and
4697 those that bfd doesn't process as relocations. The latter sort are
4698 stored in a normal bfd section by bfd_section_from_shdr. We don't
4699 consider the former sort here, unless they form part of the loadable
4700 image. Reloc sections not assigned here will be handled later by
4701 assign_file_positions_for_relocs.
4702
4703 We also don't set the positions of the .symtab and .strtab here. */
4704
4705 static bfd_boolean
4706 assign_file_positions_except_relocs (bfd *abfd,
4707 struct bfd_link_info *link_info)
4708 {
4709 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4710 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4711 file_ptr off;
4712 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4713
4714 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4715 && bfd_get_format (abfd) != bfd_core)
4716 {
4717 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4718 unsigned int num_sec = elf_numsections (abfd);
4719 Elf_Internal_Shdr **hdrpp;
4720 unsigned int i;
4721
4722 /* Start after the ELF header. */
4723 off = i_ehdrp->e_ehsize;
4724
4725 /* We are not creating an executable, which means that we are
4726 not creating a program header, and that the actual order of
4727 the sections in the file is unimportant. */
4728 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4729 {
4730 Elf_Internal_Shdr *hdr;
4731
4732 hdr = *hdrpp;
4733 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4734 && hdr->bfd_section == NULL)
4735 || i == tdata->symtab_section
4736 || i == tdata->symtab_shndx_section
4737 || i == tdata->strtab_section)
4738 {
4739 hdr->sh_offset = -1;
4740 }
4741 else
4742 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4743 }
4744 }
4745 else
4746 {
4747 unsigned int alloc;
4748
4749 /* Assign file positions for the loaded sections based on the
4750 assignment of sections to segments. */
4751 if (!assign_file_positions_for_load_sections (abfd, link_info))
4752 return FALSE;
4753
4754 /* And for non-load sections. */
4755 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4756 return FALSE;
4757
4758 if (bed->elf_backend_modify_program_headers != NULL)
4759 {
4760 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4761 return FALSE;
4762 }
4763
4764 /* Write out the program headers. */
4765 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4766 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4767 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4768 return FALSE;
4769
4770 off = tdata->next_file_pos;
4771 }
4772
4773 /* Place the section headers. */
4774 off = align_file_position (off, 1 << bed->s->log_file_align);
4775 i_ehdrp->e_shoff = off;
4776 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4777
4778 tdata->next_file_pos = off;
4779
4780 return TRUE;
4781 }
4782
4783 static bfd_boolean
4784 prep_headers (bfd *abfd)
4785 {
4786 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4787 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4788 struct elf_strtab_hash *shstrtab;
4789 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4790
4791 i_ehdrp = elf_elfheader (abfd);
4792
4793 shstrtab = _bfd_elf_strtab_init ();
4794 if (shstrtab == NULL)
4795 return FALSE;
4796
4797 elf_shstrtab (abfd) = shstrtab;
4798
4799 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4800 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4801 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4802 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4803
4804 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4805 i_ehdrp->e_ident[EI_DATA] =
4806 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4807 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4808
4809 if ((abfd->flags & DYNAMIC) != 0)
4810 i_ehdrp->e_type = ET_DYN;
4811 else if ((abfd->flags & EXEC_P) != 0)
4812 i_ehdrp->e_type = ET_EXEC;
4813 else if (bfd_get_format (abfd) == bfd_core)
4814 i_ehdrp->e_type = ET_CORE;
4815 else
4816 i_ehdrp->e_type = ET_REL;
4817
4818 switch (bfd_get_arch (abfd))
4819 {
4820 case bfd_arch_unknown:
4821 i_ehdrp->e_machine = EM_NONE;
4822 break;
4823
4824 /* There used to be a long list of cases here, each one setting
4825 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4826 in the corresponding bfd definition. To avoid duplication,
4827 the switch was removed. Machines that need special handling
4828 can generally do it in elf_backend_final_write_processing(),
4829 unless they need the information earlier than the final write.
4830 Such need can generally be supplied by replacing the tests for
4831 e_machine with the conditions used to determine it. */
4832 default:
4833 i_ehdrp->e_machine = bed->elf_machine_code;
4834 }
4835
4836 i_ehdrp->e_version = bed->s->ev_current;
4837 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4838
4839 /* No program header, for now. */
4840 i_ehdrp->e_phoff = 0;
4841 i_ehdrp->e_phentsize = 0;
4842 i_ehdrp->e_phnum = 0;
4843
4844 /* Each bfd section is section header entry. */
4845 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4846 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4847
4848 /* If we're building an executable, we'll need a program header table. */
4849 if (abfd->flags & EXEC_P)
4850 /* It all happens later. */
4851 ;
4852 else
4853 {
4854 i_ehdrp->e_phentsize = 0;
4855 i_phdrp = 0;
4856 i_ehdrp->e_phoff = 0;
4857 }
4858
4859 elf_tdata (abfd)->symtab_hdr.sh_name =
4860 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4861 elf_tdata (abfd)->strtab_hdr.sh_name =
4862 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4863 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4864 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4865 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4866 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4867 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4868 return FALSE;
4869
4870 return TRUE;
4871 }
4872
4873 /* Assign file positions for all the reloc sections which are not part
4874 of the loadable file image. */
4875
4876 void
4877 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4878 {
4879 file_ptr off;
4880 unsigned int i, num_sec;
4881 Elf_Internal_Shdr **shdrpp;
4882
4883 off = elf_tdata (abfd)->next_file_pos;
4884
4885 num_sec = elf_numsections (abfd);
4886 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4887 {
4888 Elf_Internal_Shdr *shdrp;
4889
4890 shdrp = *shdrpp;
4891 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4892 && shdrp->sh_offset == -1)
4893 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4894 }
4895
4896 elf_tdata (abfd)->next_file_pos = off;
4897 }
4898
4899 bfd_boolean
4900 _bfd_elf_write_object_contents (bfd *abfd)
4901 {
4902 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4903 Elf_Internal_Ehdr *i_ehdrp;
4904 Elf_Internal_Shdr **i_shdrp;
4905 bfd_boolean failed;
4906 unsigned int count, num_sec;
4907
4908 if (! abfd->output_has_begun
4909 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4910 return FALSE;
4911
4912 i_shdrp = elf_elfsections (abfd);
4913 i_ehdrp = elf_elfheader (abfd);
4914
4915 failed = FALSE;
4916 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4917 if (failed)
4918 return FALSE;
4919
4920 _bfd_elf_assign_file_positions_for_relocs (abfd);
4921
4922 /* After writing the headers, we need to write the sections too... */
4923 num_sec = elf_numsections (abfd);
4924 for (count = 1; count < num_sec; count++)
4925 {
4926 if (bed->elf_backend_section_processing)
4927 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4928 if (i_shdrp[count]->contents)
4929 {
4930 bfd_size_type amt = i_shdrp[count]->sh_size;
4931
4932 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4933 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4934 return FALSE;
4935 }
4936 }
4937
4938 /* Write out the section header names. */
4939 if (elf_shstrtab (abfd) != NULL
4940 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4941 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4942 return FALSE;
4943
4944 if (bed->elf_backend_final_write_processing)
4945 (*bed->elf_backend_final_write_processing) (abfd,
4946 elf_tdata (abfd)->linker);
4947
4948 if (!bed->s->write_shdrs_and_ehdr (abfd))
4949 return FALSE;
4950
4951 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
4952 if (elf_tdata (abfd)->after_write_object_contents)
4953 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
4954
4955 return TRUE;
4956 }
4957
4958 bfd_boolean
4959 _bfd_elf_write_corefile_contents (bfd *abfd)
4960 {
4961 /* Hopefully this can be done just like an object file. */
4962 return _bfd_elf_write_object_contents (abfd);
4963 }
4964
4965 /* Given a section, search the header to find them. */
4966
4967 unsigned int
4968 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4969 {
4970 const struct elf_backend_data *bed;
4971 unsigned int index;
4972
4973 if (elf_section_data (asect) != NULL
4974 && elf_section_data (asect)->this_idx != 0)
4975 return elf_section_data (asect)->this_idx;
4976
4977 if (bfd_is_abs_section (asect))
4978 index = SHN_ABS;
4979 else if (bfd_is_com_section (asect))
4980 index = SHN_COMMON;
4981 else if (bfd_is_und_section (asect))
4982 index = SHN_UNDEF;
4983 else
4984 index = SHN_BAD;
4985
4986 bed = get_elf_backend_data (abfd);
4987 if (bed->elf_backend_section_from_bfd_section)
4988 {
4989 int retval = index;
4990
4991 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4992 return retval;
4993 }
4994
4995 if (index == SHN_BAD)
4996 bfd_set_error (bfd_error_nonrepresentable_section);
4997
4998 return index;
4999 }
5000
5001 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5002 on error. */
5003
5004 int
5005 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5006 {
5007 asymbol *asym_ptr = *asym_ptr_ptr;
5008 int idx;
5009 flagword flags = asym_ptr->flags;
5010
5011 /* When gas creates relocations against local labels, it creates its
5012 own symbol for the section, but does put the symbol into the
5013 symbol chain, so udata is 0. When the linker is generating
5014 relocatable output, this section symbol may be for one of the
5015 input sections rather than the output section. */
5016 if (asym_ptr->udata.i == 0
5017 && (flags & BSF_SECTION_SYM)
5018 && asym_ptr->section)
5019 {
5020 asection *sec;
5021 int indx;
5022
5023 sec = asym_ptr->section;
5024 if (sec->owner != abfd && sec->output_section != NULL)
5025 sec = sec->output_section;
5026 if (sec->owner == abfd
5027 && (indx = sec->index) < elf_num_section_syms (abfd)
5028 && elf_section_syms (abfd)[indx] != NULL)
5029 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5030 }
5031
5032 idx = asym_ptr->udata.i;
5033
5034 if (idx == 0)
5035 {
5036 /* This case can occur when using --strip-symbol on a symbol
5037 which is used in a relocation entry. */
5038 (*_bfd_error_handler)
5039 (_("%B: symbol `%s' required but not present"),
5040 abfd, bfd_asymbol_name (asym_ptr));
5041 bfd_set_error (bfd_error_no_symbols);
5042 return -1;
5043 }
5044
5045 #if DEBUG & 4
5046 {
5047 fprintf (stderr,
5048 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5049 (long) asym_ptr, asym_ptr->name, idx, flags,
5050 elf_symbol_flags (flags));
5051 fflush (stderr);
5052 }
5053 #endif
5054
5055 return idx;
5056 }
5057
5058 /* Rewrite program header information. */
5059
5060 static bfd_boolean
5061 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5062 {
5063 Elf_Internal_Ehdr *iehdr;
5064 struct elf_segment_map *map;
5065 struct elf_segment_map *map_first;
5066 struct elf_segment_map **pointer_to_map;
5067 Elf_Internal_Phdr *segment;
5068 asection *section;
5069 unsigned int i;
5070 unsigned int num_segments;
5071 bfd_boolean phdr_included = FALSE;
5072 bfd_vma maxpagesize;
5073 struct elf_segment_map *phdr_adjust_seg = NULL;
5074 unsigned int phdr_adjust_num = 0;
5075 const struct elf_backend_data *bed;
5076
5077 bed = get_elf_backend_data (ibfd);
5078 iehdr = elf_elfheader (ibfd);
5079
5080 map_first = NULL;
5081 pointer_to_map = &map_first;
5082
5083 num_segments = elf_elfheader (ibfd)->e_phnum;
5084 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5085
5086 /* Returns the end address of the segment + 1. */
5087 #define SEGMENT_END(segment, start) \
5088 (start + (segment->p_memsz > segment->p_filesz \
5089 ? segment->p_memsz : segment->p_filesz))
5090
5091 #define SECTION_SIZE(section, segment) \
5092 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5093 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5094 ? section->size : 0)
5095
5096 /* Returns TRUE if the given section is contained within
5097 the given segment. VMA addresses are compared. */
5098 #define IS_CONTAINED_BY_VMA(section, segment) \
5099 (section->vma >= segment->p_vaddr \
5100 && (section->vma + SECTION_SIZE (section, segment) \
5101 <= (SEGMENT_END (segment, segment->p_vaddr))))
5102
5103 /* Returns TRUE if the given section is contained within
5104 the given segment. LMA addresses are compared. */
5105 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5106 (section->lma >= base \
5107 && (section->lma + SECTION_SIZE (section, segment) \
5108 <= SEGMENT_END (segment, base)))
5109
5110 /* Handle PT_NOTE segment. */
5111 #define IS_NOTE(p, s) \
5112 (p->p_type == PT_NOTE \
5113 && elf_section_type (s) == SHT_NOTE \
5114 && (bfd_vma) s->filepos >= p->p_offset \
5115 && ((bfd_vma) s->filepos + s->size \
5116 <= p->p_offset + p->p_filesz))
5117
5118 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5119 etc. */
5120 #define IS_COREFILE_NOTE(p, s) \
5121 (IS_NOTE (p, s) \
5122 && bfd_get_format (ibfd) == bfd_core \
5123 && s->vma == 0 \
5124 && s->lma == 0)
5125
5126 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5127 linker, which generates a PT_INTERP section with p_vaddr and
5128 p_memsz set to 0. */
5129 #define IS_SOLARIS_PT_INTERP(p, s) \
5130 (p->p_vaddr == 0 \
5131 && p->p_paddr == 0 \
5132 && p->p_memsz == 0 \
5133 && p->p_filesz > 0 \
5134 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5135 && s->size > 0 \
5136 && (bfd_vma) s->filepos >= p->p_offset \
5137 && ((bfd_vma) s->filepos + s->size \
5138 <= p->p_offset + p->p_filesz))
5139
5140 /* Decide if the given section should be included in the given segment.
5141 A section will be included if:
5142 1. It is within the address space of the segment -- we use the LMA
5143 if that is set for the segment and the VMA otherwise,
5144 2. It is an allocated section or a NOTE section in a PT_NOTE
5145 segment.
5146 3. There is an output section associated with it,
5147 4. The section has not already been allocated to a previous segment.
5148 5. PT_GNU_STACK segments do not include any sections.
5149 6. PT_TLS segment includes only SHF_TLS sections.
5150 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5151 8. PT_DYNAMIC should not contain empty sections at the beginning
5152 (with the possible exception of .dynamic). */
5153 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5154 ((((segment->p_paddr \
5155 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5156 : IS_CONTAINED_BY_VMA (section, segment)) \
5157 && (section->flags & SEC_ALLOC) != 0) \
5158 || IS_NOTE (segment, section)) \
5159 && segment->p_type != PT_GNU_STACK \
5160 && (segment->p_type != PT_TLS \
5161 || (section->flags & SEC_THREAD_LOCAL)) \
5162 && (segment->p_type == PT_LOAD \
5163 || segment->p_type == PT_TLS \
5164 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5165 && (segment->p_type != PT_DYNAMIC \
5166 || SECTION_SIZE (section, segment) > 0 \
5167 || (segment->p_paddr \
5168 ? segment->p_paddr != section->lma \
5169 : segment->p_vaddr != section->vma) \
5170 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5171 == 0)) \
5172 && !section->segment_mark)
5173
5174 /* If the output section of a section in the input segment is NULL,
5175 it is removed from the corresponding output segment. */
5176 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5177 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5178 && section->output_section != NULL)
5179
5180 /* Returns TRUE iff seg1 starts after the end of seg2. */
5181 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5182 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5183
5184 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5185 their VMA address ranges and their LMA address ranges overlap.
5186 It is possible to have overlapping VMA ranges without overlapping LMA
5187 ranges. RedBoot images for example can have both .data and .bss mapped
5188 to the same VMA range, but with the .data section mapped to a different
5189 LMA. */
5190 #define SEGMENT_OVERLAPS(seg1, seg2) \
5191 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5192 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5193 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5194 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5195
5196 /* Initialise the segment mark field. */
5197 for (section = ibfd->sections; section != NULL; section = section->next)
5198 section->segment_mark = FALSE;
5199
5200 /* Scan through the segments specified in the program header
5201 of the input BFD. For this first scan we look for overlaps
5202 in the loadable segments. These can be created by weird
5203 parameters to objcopy. Also, fix some solaris weirdness. */
5204 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5205 i < num_segments;
5206 i++, segment++)
5207 {
5208 unsigned int j;
5209 Elf_Internal_Phdr *segment2;
5210
5211 if (segment->p_type == PT_INTERP)
5212 for (section = ibfd->sections; section; section = section->next)
5213 if (IS_SOLARIS_PT_INTERP (segment, section))
5214 {
5215 /* Mininal change so that the normal section to segment
5216 assignment code will work. */
5217 segment->p_vaddr = section->vma;
5218 break;
5219 }
5220
5221 if (segment->p_type != PT_LOAD)
5222 {
5223 /* Remove PT_GNU_RELRO segment. */
5224 if (segment->p_type == PT_GNU_RELRO)
5225 segment->p_type = PT_NULL;
5226 continue;
5227 }
5228
5229 /* Determine if this segment overlaps any previous segments. */
5230 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5231 {
5232 bfd_signed_vma extra_length;
5233
5234 if (segment2->p_type != PT_LOAD
5235 || !SEGMENT_OVERLAPS (segment, segment2))
5236 continue;
5237
5238 /* Merge the two segments together. */
5239 if (segment2->p_vaddr < segment->p_vaddr)
5240 {
5241 /* Extend SEGMENT2 to include SEGMENT and then delete
5242 SEGMENT. */
5243 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5244 - SEGMENT_END (segment2, segment2->p_vaddr));
5245
5246 if (extra_length > 0)
5247 {
5248 segment2->p_memsz += extra_length;
5249 segment2->p_filesz += extra_length;
5250 }
5251
5252 segment->p_type = PT_NULL;
5253
5254 /* Since we have deleted P we must restart the outer loop. */
5255 i = 0;
5256 segment = elf_tdata (ibfd)->phdr;
5257 break;
5258 }
5259 else
5260 {
5261 /* Extend SEGMENT to include SEGMENT2 and then delete
5262 SEGMENT2. */
5263 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5264 - SEGMENT_END (segment, segment->p_vaddr));
5265
5266 if (extra_length > 0)
5267 {
5268 segment->p_memsz += extra_length;
5269 segment->p_filesz += extra_length;
5270 }
5271
5272 segment2->p_type = PT_NULL;
5273 }
5274 }
5275 }
5276
5277 /* The second scan attempts to assign sections to segments. */
5278 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5279 i < num_segments;
5280 i++, segment++)
5281 {
5282 unsigned int section_count;
5283 asection **sections;
5284 asection *output_section;
5285 unsigned int isec;
5286 bfd_vma matching_lma;
5287 bfd_vma suggested_lma;
5288 unsigned int j;
5289 bfd_size_type amt;
5290 asection *first_section;
5291 bfd_boolean first_matching_lma;
5292 bfd_boolean first_suggested_lma;
5293
5294 if (segment->p_type == PT_NULL)
5295 continue;
5296
5297 first_section = NULL;
5298 /* Compute how many sections might be placed into this segment. */
5299 for (section = ibfd->sections, section_count = 0;
5300 section != NULL;
5301 section = section->next)
5302 {
5303 /* Find the first section in the input segment, which may be
5304 removed from the corresponding output segment. */
5305 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5306 {
5307 if (first_section == NULL)
5308 first_section = section;
5309 if (section->output_section != NULL)
5310 ++section_count;
5311 }
5312 }
5313
5314 /* Allocate a segment map big enough to contain
5315 all of the sections we have selected. */
5316 amt = sizeof (struct elf_segment_map);
5317 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5318 map = bfd_zalloc (obfd, amt);
5319 if (map == NULL)
5320 return FALSE;
5321
5322 /* Initialise the fields of the segment map. Default to
5323 using the physical address of the segment in the input BFD. */
5324 map->next = NULL;
5325 map->p_type = segment->p_type;
5326 map->p_flags = segment->p_flags;
5327 map->p_flags_valid = 1;
5328
5329 /* If the first section in the input segment is removed, there is
5330 no need to preserve segment physical address in the corresponding
5331 output segment. */
5332 if (!first_section || first_section->output_section != NULL)
5333 {
5334 map->p_paddr = segment->p_paddr;
5335 map->p_paddr_valid = 1;
5336 }
5337
5338 /* Determine if this segment contains the ELF file header
5339 and if it contains the program headers themselves. */
5340 map->includes_filehdr = (segment->p_offset == 0
5341 && segment->p_filesz >= iehdr->e_ehsize);
5342 map->includes_phdrs = 0;
5343
5344 if (!phdr_included || segment->p_type != PT_LOAD)
5345 {
5346 map->includes_phdrs =
5347 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5348 && (segment->p_offset + segment->p_filesz
5349 >= ((bfd_vma) iehdr->e_phoff
5350 + iehdr->e_phnum * iehdr->e_phentsize)));
5351
5352 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5353 phdr_included = TRUE;
5354 }
5355
5356 if (section_count == 0)
5357 {
5358 /* Special segments, such as the PT_PHDR segment, may contain
5359 no sections, but ordinary, loadable segments should contain
5360 something. They are allowed by the ELF spec however, so only
5361 a warning is produced. */
5362 if (segment->p_type == PT_LOAD)
5363 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5364 " detected, is this intentional ?\n"),
5365 ibfd);
5366
5367 map->count = 0;
5368 *pointer_to_map = map;
5369 pointer_to_map = &map->next;
5370
5371 continue;
5372 }
5373
5374 /* Now scan the sections in the input BFD again and attempt
5375 to add their corresponding output sections to the segment map.
5376 The problem here is how to handle an output section which has
5377 been moved (ie had its LMA changed). There are four possibilities:
5378
5379 1. None of the sections have been moved.
5380 In this case we can continue to use the segment LMA from the
5381 input BFD.
5382
5383 2. All of the sections have been moved by the same amount.
5384 In this case we can change the segment's LMA to match the LMA
5385 of the first section.
5386
5387 3. Some of the sections have been moved, others have not.
5388 In this case those sections which have not been moved can be
5389 placed in the current segment which will have to have its size,
5390 and possibly its LMA changed, and a new segment or segments will
5391 have to be created to contain the other sections.
5392
5393 4. The sections have been moved, but not by the same amount.
5394 In this case we can change the segment's LMA to match the LMA
5395 of the first section and we will have to create a new segment
5396 or segments to contain the other sections.
5397
5398 In order to save time, we allocate an array to hold the section
5399 pointers that we are interested in. As these sections get assigned
5400 to a segment, they are removed from this array. */
5401
5402 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5403 to work around this long long bug. */
5404 sections = bfd_malloc2 (section_count, sizeof (asection *));
5405 if (sections == NULL)
5406 return FALSE;
5407
5408 /* Step One: Scan for segment vs section LMA conflicts.
5409 Also add the sections to the section array allocated above.
5410 Also add the sections to the current segment. In the common
5411 case, where the sections have not been moved, this means that
5412 we have completely filled the segment, and there is nothing
5413 more to do. */
5414 isec = 0;
5415 matching_lma = 0;
5416 suggested_lma = 0;
5417 first_matching_lma = TRUE;
5418 first_suggested_lma = TRUE;
5419
5420 for (section = ibfd->sections;
5421 section != NULL;
5422 section = section->next)
5423 if (section == first_section)
5424 break;
5425
5426 for (j = 0; section != NULL; section = section->next)
5427 {
5428 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5429 {
5430 output_section = section->output_section;
5431
5432 sections[j++] = section;
5433
5434 /* The Solaris native linker always sets p_paddr to 0.
5435 We try to catch that case here, and set it to the
5436 correct value. Note - some backends require that
5437 p_paddr be left as zero. */
5438 if (segment->p_paddr == 0
5439 && segment->p_vaddr != 0
5440 && !bed->want_p_paddr_set_to_zero
5441 && isec == 0
5442 && output_section->lma != 0
5443 && output_section->vma == (segment->p_vaddr
5444 + (map->includes_filehdr
5445 ? iehdr->e_ehsize
5446 : 0)
5447 + (map->includes_phdrs
5448 ? (iehdr->e_phnum
5449 * iehdr->e_phentsize)
5450 : 0)))
5451 map->p_paddr = segment->p_vaddr;
5452
5453 /* Match up the physical address of the segment with the
5454 LMA address of the output section. */
5455 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5456 || IS_COREFILE_NOTE (segment, section)
5457 || (bed->want_p_paddr_set_to_zero
5458 && IS_CONTAINED_BY_VMA (output_section, segment)))
5459 {
5460 if (first_matching_lma || output_section->lma < matching_lma)
5461 {
5462 matching_lma = output_section->lma;
5463 first_matching_lma = FALSE;
5464 }
5465
5466 /* We assume that if the section fits within the segment
5467 then it does not overlap any other section within that
5468 segment. */
5469 map->sections[isec++] = output_section;
5470 }
5471 else if (first_suggested_lma)
5472 {
5473 suggested_lma = output_section->lma;
5474 first_suggested_lma = FALSE;
5475 }
5476
5477 if (j == section_count)
5478 break;
5479 }
5480 }
5481
5482 BFD_ASSERT (j == section_count);
5483
5484 /* Step Two: Adjust the physical address of the current segment,
5485 if necessary. */
5486 if (isec == section_count)
5487 {
5488 /* All of the sections fitted within the segment as currently
5489 specified. This is the default case. Add the segment to
5490 the list of built segments and carry on to process the next
5491 program header in the input BFD. */
5492 map->count = section_count;
5493 *pointer_to_map = map;
5494 pointer_to_map = &map->next;
5495
5496 if (!bed->want_p_paddr_set_to_zero
5497 && matching_lma != map->p_paddr
5498 && !map->includes_filehdr && !map->includes_phdrs)
5499 /* There is some padding before the first section in the
5500 segment. So, we must account for that in the output
5501 segment's vma. */
5502 map->p_vaddr_offset = matching_lma - map->p_paddr;
5503
5504 free (sections);
5505 continue;
5506 }
5507 else
5508 {
5509 if (!first_matching_lma)
5510 {
5511 /* At least one section fits inside the current segment.
5512 Keep it, but modify its physical address to match the
5513 LMA of the first section that fitted. */
5514 map->p_paddr = matching_lma;
5515 }
5516 else
5517 {
5518 /* None of the sections fitted inside the current segment.
5519 Change the current segment's physical address to match
5520 the LMA of the first section. */
5521 map->p_paddr = suggested_lma;
5522 }
5523
5524 /* Offset the segment physical address from the lma
5525 to allow for space taken up by elf headers. */
5526 if (map->includes_filehdr)
5527 map->p_paddr -= iehdr->e_ehsize;
5528
5529 if (map->includes_phdrs)
5530 {
5531 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5532
5533 /* iehdr->e_phnum is just an estimate of the number
5534 of program headers that we will need. Make a note
5535 here of the number we used and the segment we chose
5536 to hold these headers, so that we can adjust the
5537 offset when we know the correct value. */
5538 phdr_adjust_num = iehdr->e_phnum;
5539 phdr_adjust_seg = map;
5540 }
5541 }
5542
5543 /* Step Three: Loop over the sections again, this time assigning
5544 those that fit to the current segment and removing them from the
5545 sections array; but making sure not to leave large gaps. Once all
5546 possible sections have been assigned to the current segment it is
5547 added to the list of built segments and if sections still remain
5548 to be assigned, a new segment is constructed before repeating
5549 the loop. */
5550 isec = 0;
5551 do
5552 {
5553 map->count = 0;
5554 suggested_lma = 0;
5555 first_suggested_lma = TRUE;
5556
5557 /* Fill the current segment with sections that fit. */
5558 for (j = 0; j < section_count; j++)
5559 {
5560 section = sections[j];
5561
5562 if (section == NULL)
5563 continue;
5564
5565 output_section = section->output_section;
5566
5567 BFD_ASSERT (output_section != NULL);
5568
5569 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5570 || IS_COREFILE_NOTE (segment, section))
5571 {
5572 if (map->count == 0)
5573 {
5574 /* If the first section in a segment does not start at
5575 the beginning of the segment, then something is
5576 wrong. */
5577 if (output_section->lma
5578 != (map->p_paddr
5579 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5580 + (map->includes_phdrs
5581 ? iehdr->e_phnum * iehdr->e_phentsize
5582 : 0)))
5583 abort ();
5584 }
5585 else
5586 {
5587 asection *prev_sec;
5588
5589 prev_sec = map->sections[map->count - 1];
5590
5591 /* If the gap between the end of the previous section
5592 and the start of this section is more than
5593 maxpagesize then we need to start a new segment. */
5594 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5595 maxpagesize)
5596 < BFD_ALIGN (output_section->lma, maxpagesize))
5597 || (prev_sec->lma + prev_sec->size
5598 > output_section->lma))
5599 {
5600 if (first_suggested_lma)
5601 {
5602 suggested_lma = output_section->lma;
5603 first_suggested_lma = FALSE;
5604 }
5605
5606 continue;
5607 }
5608 }
5609
5610 map->sections[map->count++] = output_section;
5611 ++isec;
5612 sections[j] = NULL;
5613 section->segment_mark = TRUE;
5614 }
5615 else if (first_suggested_lma)
5616 {
5617 suggested_lma = output_section->lma;
5618 first_suggested_lma = FALSE;
5619 }
5620 }
5621
5622 BFD_ASSERT (map->count > 0);
5623
5624 /* Add the current segment to the list of built segments. */
5625 *pointer_to_map = map;
5626 pointer_to_map = &map->next;
5627
5628 if (isec < section_count)
5629 {
5630 /* We still have not allocated all of the sections to
5631 segments. Create a new segment here, initialise it
5632 and carry on looping. */
5633 amt = sizeof (struct elf_segment_map);
5634 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5635 map = bfd_alloc (obfd, amt);
5636 if (map == NULL)
5637 {
5638 free (sections);
5639 return FALSE;
5640 }
5641
5642 /* Initialise the fields of the segment map. Set the physical
5643 physical address to the LMA of the first section that has
5644 not yet been assigned. */
5645 map->next = NULL;
5646 map->p_type = segment->p_type;
5647 map->p_flags = segment->p_flags;
5648 map->p_flags_valid = 1;
5649 map->p_paddr = suggested_lma;
5650 map->p_paddr_valid = 1;
5651 map->includes_filehdr = 0;
5652 map->includes_phdrs = 0;
5653 }
5654 }
5655 while (isec < section_count);
5656
5657 free (sections);
5658 }
5659
5660 /* The Solaris linker creates program headers in which all the
5661 p_paddr fields are zero. When we try to objcopy or strip such a
5662 file, we get confused. Check for this case, and if we find it
5663 reset the p_paddr_valid fields. */
5664 for (map = map_first; map != NULL; map = map->next)
5665 if (map->p_paddr != 0)
5666 break;
5667 if (map == NULL)
5668 for (map = map_first; map != NULL; map = map->next)
5669 map->p_paddr_valid = 0;
5670
5671 elf_tdata (obfd)->segment_map = map_first;
5672
5673 /* If we had to estimate the number of program headers that were
5674 going to be needed, then check our estimate now and adjust
5675 the offset if necessary. */
5676 if (phdr_adjust_seg != NULL)
5677 {
5678 unsigned int count;
5679
5680 for (count = 0, map = map_first; map != NULL; map = map->next)
5681 count++;
5682
5683 if (count > phdr_adjust_num)
5684 phdr_adjust_seg->p_paddr
5685 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5686 }
5687
5688 #undef SEGMENT_END
5689 #undef SECTION_SIZE
5690 #undef IS_CONTAINED_BY_VMA
5691 #undef IS_CONTAINED_BY_LMA
5692 #undef IS_NOTE
5693 #undef IS_COREFILE_NOTE
5694 #undef IS_SOLARIS_PT_INTERP
5695 #undef IS_SECTION_IN_INPUT_SEGMENT
5696 #undef INCLUDE_SECTION_IN_SEGMENT
5697 #undef SEGMENT_AFTER_SEGMENT
5698 #undef SEGMENT_OVERLAPS
5699 return TRUE;
5700 }
5701
5702 /* Copy ELF program header information. */
5703
5704 static bfd_boolean
5705 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5706 {
5707 Elf_Internal_Ehdr *iehdr;
5708 struct elf_segment_map *map;
5709 struct elf_segment_map *map_first;
5710 struct elf_segment_map **pointer_to_map;
5711 Elf_Internal_Phdr *segment;
5712 unsigned int i;
5713 unsigned int num_segments;
5714 bfd_boolean phdr_included = FALSE;
5715
5716 iehdr = elf_elfheader (ibfd);
5717
5718 map_first = NULL;
5719 pointer_to_map = &map_first;
5720
5721 num_segments = elf_elfheader (ibfd)->e_phnum;
5722 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5723 i < num_segments;
5724 i++, segment++)
5725 {
5726 asection *section;
5727 unsigned int section_count;
5728 bfd_size_type amt;
5729 Elf_Internal_Shdr *this_hdr;
5730 asection *first_section = NULL;
5731 asection *lowest_section = NULL;
5732
5733 /* Compute how many sections are in this segment. */
5734 for (section = ibfd->sections, section_count = 0;
5735 section != NULL;
5736 section = section->next)
5737 {
5738 this_hdr = &(elf_section_data(section)->this_hdr);
5739 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5740 {
5741 if (!first_section)
5742 first_section = lowest_section = section;
5743 if (section->lma < lowest_section->lma)
5744 lowest_section = section;
5745 section_count++;
5746 }
5747 }
5748
5749 /* Allocate a segment map big enough to contain
5750 all of the sections we have selected. */
5751 amt = sizeof (struct elf_segment_map);
5752 if (section_count != 0)
5753 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5754 map = bfd_zalloc (obfd, amt);
5755 if (map == NULL)
5756 return FALSE;
5757
5758 /* Initialize the fields of the output segment map with the
5759 input segment. */
5760 map->next = NULL;
5761 map->p_type = segment->p_type;
5762 map->p_flags = segment->p_flags;
5763 map->p_flags_valid = 1;
5764 map->p_paddr = segment->p_paddr;
5765 map->p_paddr_valid = 1;
5766 map->p_align = segment->p_align;
5767 map->p_align_valid = 1;
5768 map->p_vaddr_offset = 0;
5769
5770 if (map->p_type == PT_GNU_RELRO
5771 && segment->p_filesz == segment->p_memsz)
5772 {
5773 /* The PT_GNU_RELRO segment may contain the first a few
5774 bytes in the .got.plt section even if the whole .got.plt
5775 section isn't in the PT_GNU_RELRO segment. We won't
5776 change the size of the PT_GNU_RELRO segment. */
5777 map->p_size = segment->p_filesz;
5778 map->p_size_valid = 1;
5779 }
5780
5781 /* Determine if this segment contains the ELF file header
5782 and if it contains the program headers themselves. */
5783 map->includes_filehdr = (segment->p_offset == 0
5784 && segment->p_filesz >= iehdr->e_ehsize);
5785
5786 map->includes_phdrs = 0;
5787 if (! phdr_included || segment->p_type != PT_LOAD)
5788 {
5789 map->includes_phdrs =
5790 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5791 && (segment->p_offset + segment->p_filesz
5792 >= ((bfd_vma) iehdr->e_phoff
5793 + iehdr->e_phnum * iehdr->e_phentsize)));
5794
5795 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5796 phdr_included = TRUE;
5797 }
5798
5799 if (!map->includes_phdrs && !map->includes_filehdr)
5800 /* There is some other padding before the first section. */
5801 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
5802 - segment->p_paddr);
5803
5804 if (section_count != 0)
5805 {
5806 unsigned int isec = 0;
5807
5808 for (section = first_section;
5809 section != NULL;
5810 section = section->next)
5811 {
5812 this_hdr = &(elf_section_data(section)->this_hdr);
5813 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5814 {
5815 map->sections[isec++] = section->output_section;
5816 if (isec == section_count)
5817 break;
5818 }
5819 }
5820 }
5821
5822 map->count = section_count;
5823 *pointer_to_map = map;
5824 pointer_to_map = &map->next;
5825 }
5826
5827 elf_tdata (obfd)->segment_map = map_first;
5828 return TRUE;
5829 }
5830
5831 /* Copy private BFD data. This copies or rewrites ELF program header
5832 information. */
5833
5834 static bfd_boolean
5835 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5836 {
5837 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5838 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5839 return TRUE;
5840
5841 if (elf_tdata (ibfd)->phdr == NULL)
5842 return TRUE;
5843
5844 if (ibfd->xvec == obfd->xvec)
5845 {
5846 /* Check to see if any sections in the input BFD
5847 covered by ELF program header have changed. */
5848 Elf_Internal_Phdr *segment;
5849 asection *section, *osec;
5850 unsigned int i, num_segments;
5851 Elf_Internal_Shdr *this_hdr;
5852 const struct elf_backend_data *bed;
5853
5854 bed = get_elf_backend_data (ibfd);
5855
5856 /* Regenerate the segment map if p_paddr is set to 0. */
5857 if (bed->want_p_paddr_set_to_zero)
5858 goto rewrite;
5859
5860 /* Initialize the segment mark field. */
5861 for (section = obfd->sections; section != NULL;
5862 section = section->next)
5863 section->segment_mark = FALSE;
5864
5865 num_segments = elf_elfheader (ibfd)->e_phnum;
5866 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5867 i < num_segments;
5868 i++, segment++)
5869 {
5870 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5871 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5872 which severly confuses things, so always regenerate the segment
5873 map in this case. */
5874 if (segment->p_paddr == 0
5875 && segment->p_memsz == 0
5876 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
5877 goto rewrite;
5878
5879 for (section = ibfd->sections;
5880 section != NULL; section = section->next)
5881 {
5882 /* We mark the output section so that we know it comes
5883 from the input BFD. */
5884 osec = section->output_section;
5885 if (osec)
5886 osec->segment_mark = TRUE;
5887
5888 /* Check if this section is covered by the segment. */
5889 this_hdr = &(elf_section_data(section)->this_hdr);
5890 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5891 {
5892 /* FIXME: Check if its output section is changed or
5893 removed. What else do we need to check? */
5894 if (osec == NULL
5895 || section->flags != osec->flags
5896 || section->lma != osec->lma
5897 || section->vma != osec->vma
5898 || section->size != osec->size
5899 || section->rawsize != osec->rawsize
5900 || section->alignment_power != osec->alignment_power)
5901 goto rewrite;
5902 }
5903 }
5904 }
5905
5906 /* Check to see if any output section do not come from the
5907 input BFD. */
5908 for (section = obfd->sections; section != NULL;
5909 section = section->next)
5910 {
5911 if (section->segment_mark == FALSE)
5912 goto rewrite;
5913 else
5914 section->segment_mark = FALSE;
5915 }
5916
5917 return copy_elf_program_header (ibfd, obfd);
5918 }
5919
5920 rewrite:
5921 return rewrite_elf_program_header (ibfd, obfd);
5922 }
5923
5924 /* Initialize private output section information from input section. */
5925
5926 bfd_boolean
5927 _bfd_elf_init_private_section_data (bfd *ibfd,
5928 asection *isec,
5929 bfd *obfd,
5930 asection *osec,
5931 struct bfd_link_info *link_info)
5932
5933 {
5934 Elf_Internal_Shdr *ihdr, *ohdr;
5935 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5936
5937 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5938 || obfd->xvec->flavour != bfd_target_elf_flavour)
5939 return TRUE;
5940
5941 /* Don't copy the output ELF section type from input if the
5942 output BFD section flags have been set to something different.
5943 elf_fake_sections will set ELF section type based on BFD
5944 section flags. */
5945 if (elf_section_type (osec) == SHT_NULL
5946 && (osec->flags == isec->flags || !osec->flags))
5947 elf_section_type (osec) = elf_section_type (isec);
5948
5949 /* FIXME: Is this correct for all OS/PROC specific flags? */
5950 elf_section_flags (osec) |= (elf_section_flags (isec)
5951 & (SHF_MASKOS | SHF_MASKPROC));
5952
5953 /* Set things up for objcopy and relocatable link. The output
5954 SHT_GROUP section will have its elf_next_in_group pointing back
5955 to the input group members. Ignore linker created group section.
5956 See elfNN_ia64_object_p in elfxx-ia64.c. */
5957 if (need_group)
5958 {
5959 if (elf_sec_group (isec) == NULL
5960 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5961 {
5962 if (elf_section_flags (isec) & SHF_GROUP)
5963 elf_section_flags (osec) |= SHF_GROUP;
5964 elf_next_in_group (osec) = elf_next_in_group (isec);
5965 elf_group_name (osec) = elf_group_name (isec);
5966 }
5967 }
5968
5969 ihdr = &elf_section_data (isec)->this_hdr;
5970
5971 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5972 don't use the output section of the linked-to section since it
5973 may be NULL at this point. */
5974 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5975 {
5976 ohdr = &elf_section_data (osec)->this_hdr;
5977 ohdr->sh_flags |= SHF_LINK_ORDER;
5978 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5979 }
5980
5981 osec->use_rela_p = isec->use_rela_p;
5982
5983 return TRUE;
5984 }
5985
5986 /* Copy private section information. This copies over the entsize
5987 field, and sometimes the info field. */
5988
5989 bfd_boolean
5990 _bfd_elf_copy_private_section_data (bfd *ibfd,
5991 asection *isec,
5992 bfd *obfd,
5993 asection *osec)
5994 {
5995 Elf_Internal_Shdr *ihdr, *ohdr;
5996
5997 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5998 || obfd->xvec->flavour != bfd_target_elf_flavour)
5999 return TRUE;
6000
6001 ihdr = &elf_section_data (isec)->this_hdr;
6002 ohdr = &elf_section_data (osec)->this_hdr;
6003
6004 ohdr->sh_entsize = ihdr->sh_entsize;
6005
6006 if (ihdr->sh_type == SHT_SYMTAB
6007 || ihdr->sh_type == SHT_DYNSYM
6008 || ihdr->sh_type == SHT_GNU_verneed
6009 || ihdr->sh_type == SHT_GNU_verdef)
6010 ohdr->sh_info = ihdr->sh_info;
6011
6012 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6013 NULL);
6014 }
6015
6016 /* Copy private header information. */
6017
6018 bfd_boolean
6019 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6020 {
6021 asection *isec;
6022
6023 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6024 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6025 return TRUE;
6026
6027 /* Copy over private BFD data if it has not already been copied.
6028 This must be done here, rather than in the copy_private_bfd_data
6029 entry point, because the latter is called after the section
6030 contents have been set, which means that the program headers have
6031 already been worked out. */
6032 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6033 {
6034 if (! copy_private_bfd_data (ibfd, obfd))
6035 return FALSE;
6036 }
6037
6038 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6039 but this might be wrong if we deleted the group section. */
6040 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6041 if (elf_section_type (isec) == SHT_GROUP
6042 && isec->output_section == NULL)
6043 {
6044 asection *first = elf_next_in_group (isec);
6045 asection *s = first;
6046 while (s != NULL)
6047 {
6048 if (s->output_section != NULL)
6049 {
6050 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6051 elf_group_name (s->output_section) = NULL;
6052 }
6053 s = elf_next_in_group (s);
6054 if (s == first)
6055 break;
6056 }
6057 }
6058
6059 return TRUE;
6060 }
6061
6062 /* Copy private symbol information. If this symbol is in a section
6063 which we did not map into a BFD section, try to map the section
6064 index correctly. We use special macro definitions for the mapped
6065 section indices; these definitions are interpreted by the
6066 swap_out_syms function. */
6067
6068 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6069 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6070 #define MAP_STRTAB (SHN_HIOS + 3)
6071 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6072 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6073
6074 bfd_boolean
6075 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6076 asymbol *isymarg,
6077 bfd *obfd,
6078 asymbol *osymarg)
6079 {
6080 elf_symbol_type *isym, *osym;
6081
6082 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6083 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6084 return TRUE;
6085
6086 isym = elf_symbol_from (ibfd, isymarg);
6087 osym = elf_symbol_from (obfd, osymarg);
6088
6089 if (isym != NULL
6090 && isym->internal_elf_sym.st_shndx != 0
6091 && osym != NULL
6092 && bfd_is_abs_section (isym->symbol.section))
6093 {
6094 unsigned int shndx;
6095
6096 shndx = isym->internal_elf_sym.st_shndx;
6097 if (shndx == elf_onesymtab (ibfd))
6098 shndx = MAP_ONESYMTAB;
6099 else if (shndx == elf_dynsymtab (ibfd))
6100 shndx = MAP_DYNSYMTAB;
6101 else if (shndx == elf_tdata (ibfd)->strtab_section)
6102 shndx = MAP_STRTAB;
6103 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6104 shndx = MAP_SHSTRTAB;
6105 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6106 shndx = MAP_SYM_SHNDX;
6107 osym->internal_elf_sym.st_shndx = shndx;
6108 }
6109
6110 return TRUE;
6111 }
6112
6113 /* Swap out the symbols. */
6114
6115 static bfd_boolean
6116 swap_out_syms (bfd *abfd,
6117 struct bfd_strtab_hash **sttp,
6118 int relocatable_p)
6119 {
6120 const struct elf_backend_data *bed;
6121 int symcount;
6122 asymbol **syms;
6123 struct bfd_strtab_hash *stt;
6124 Elf_Internal_Shdr *symtab_hdr;
6125 Elf_Internal_Shdr *symtab_shndx_hdr;
6126 Elf_Internal_Shdr *symstrtab_hdr;
6127 bfd_byte *outbound_syms;
6128 bfd_byte *outbound_shndx;
6129 int idx;
6130 bfd_size_type amt;
6131 bfd_boolean name_local_sections;
6132
6133 if (!elf_map_symbols (abfd))
6134 return FALSE;
6135
6136 /* Dump out the symtabs. */
6137 stt = _bfd_elf_stringtab_init ();
6138 if (stt == NULL)
6139 return FALSE;
6140
6141 bed = get_elf_backend_data (abfd);
6142 symcount = bfd_get_symcount (abfd);
6143 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6144 symtab_hdr->sh_type = SHT_SYMTAB;
6145 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6146 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6147 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6148 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6149
6150 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6151 symstrtab_hdr->sh_type = SHT_STRTAB;
6152
6153 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6154 if (outbound_syms == NULL)
6155 {
6156 _bfd_stringtab_free (stt);
6157 return FALSE;
6158 }
6159 symtab_hdr->contents = outbound_syms;
6160
6161 outbound_shndx = NULL;
6162 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6163 if (symtab_shndx_hdr->sh_name != 0)
6164 {
6165 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6166 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6167 sizeof (Elf_External_Sym_Shndx));
6168 if (outbound_shndx == NULL)
6169 {
6170 _bfd_stringtab_free (stt);
6171 return FALSE;
6172 }
6173
6174 symtab_shndx_hdr->contents = outbound_shndx;
6175 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6176 symtab_shndx_hdr->sh_size = amt;
6177 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6178 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6179 }
6180
6181 /* Now generate the data (for "contents"). */
6182 {
6183 /* Fill in zeroth symbol and swap it out. */
6184 Elf_Internal_Sym sym;
6185 sym.st_name = 0;
6186 sym.st_value = 0;
6187 sym.st_size = 0;
6188 sym.st_info = 0;
6189 sym.st_other = 0;
6190 sym.st_shndx = SHN_UNDEF;
6191 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6192 outbound_syms += bed->s->sizeof_sym;
6193 if (outbound_shndx != NULL)
6194 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6195 }
6196
6197 name_local_sections
6198 = (bed->elf_backend_name_local_section_symbols
6199 && bed->elf_backend_name_local_section_symbols (abfd));
6200
6201 syms = bfd_get_outsymbols (abfd);
6202 for (idx = 0; idx < symcount; idx++)
6203 {
6204 Elf_Internal_Sym sym;
6205 bfd_vma value = syms[idx]->value;
6206 elf_symbol_type *type_ptr;
6207 flagword flags = syms[idx]->flags;
6208 int type;
6209
6210 if (!name_local_sections
6211 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6212 {
6213 /* Local section symbols have no name. */
6214 sym.st_name = 0;
6215 }
6216 else
6217 {
6218 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6219 syms[idx]->name,
6220 TRUE, FALSE);
6221 if (sym.st_name == (unsigned long) -1)
6222 {
6223 _bfd_stringtab_free (stt);
6224 return FALSE;
6225 }
6226 }
6227
6228 type_ptr = elf_symbol_from (abfd, syms[idx]);
6229
6230 if ((flags & BSF_SECTION_SYM) == 0
6231 && bfd_is_com_section (syms[idx]->section))
6232 {
6233 /* ELF common symbols put the alignment into the `value' field,
6234 and the size into the `size' field. This is backwards from
6235 how BFD handles it, so reverse it here. */
6236 sym.st_size = value;
6237 if (type_ptr == NULL
6238 || type_ptr->internal_elf_sym.st_value == 0)
6239 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6240 else
6241 sym.st_value = type_ptr->internal_elf_sym.st_value;
6242 sym.st_shndx = _bfd_elf_section_from_bfd_section
6243 (abfd, syms[idx]->section);
6244 }
6245 else
6246 {
6247 asection *sec = syms[idx]->section;
6248 unsigned int shndx;
6249
6250 if (sec->output_section)
6251 {
6252 value += sec->output_offset;
6253 sec = sec->output_section;
6254 }
6255
6256 /* Don't add in the section vma for relocatable output. */
6257 if (! relocatable_p)
6258 value += sec->vma;
6259 sym.st_value = value;
6260 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6261
6262 if (bfd_is_abs_section (sec)
6263 && type_ptr != NULL
6264 && type_ptr->internal_elf_sym.st_shndx != 0)
6265 {
6266 /* This symbol is in a real ELF section which we did
6267 not create as a BFD section. Undo the mapping done
6268 by copy_private_symbol_data. */
6269 shndx = type_ptr->internal_elf_sym.st_shndx;
6270 switch (shndx)
6271 {
6272 case MAP_ONESYMTAB:
6273 shndx = elf_onesymtab (abfd);
6274 break;
6275 case MAP_DYNSYMTAB:
6276 shndx = elf_dynsymtab (abfd);
6277 break;
6278 case MAP_STRTAB:
6279 shndx = elf_tdata (abfd)->strtab_section;
6280 break;
6281 case MAP_SHSTRTAB:
6282 shndx = elf_tdata (abfd)->shstrtab_section;
6283 break;
6284 case MAP_SYM_SHNDX:
6285 shndx = elf_tdata (abfd)->symtab_shndx_section;
6286 break;
6287 default:
6288 break;
6289 }
6290 }
6291 else
6292 {
6293 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6294
6295 if (shndx == SHN_BAD)
6296 {
6297 asection *sec2;
6298
6299 /* Writing this would be a hell of a lot easier if
6300 we had some decent documentation on bfd, and
6301 knew what to expect of the library, and what to
6302 demand of applications. For example, it
6303 appears that `objcopy' might not set the
6304 section of a symbol to be a section that is
6305 actually in the output file. */
6306 sec2 = bfd_get_section_by_name (abfd, sec->name);
6307 if (sec2 == NULL)
6308 {
6309 _bfd_error_handler (_("\
6310 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6311 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6312 sec->name);
6313 bfd_set_error (bfd_error_invalid_operation);
6314 _bfd_stringtab_free (stt);
6315 return FALSE;
6316 }
6317
6318 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6319 BFD_ASSERT (shndx != SHN_BAD);
6320 }
6321 }
6322
6323 sym.st_shndx = shndx;
6324 }
6325
6326 if ((flags & BSF_THREAD_LOCAL) != 0)
6327 type = STT_TLS;
6328 else if ((flags & BSF_FUNCTION) != 0)
6329 type = STT_FUNC;
6330 else if ((flags & BSF_OBJECT) != 0)
6331 type = STT_OBJECT;
6332 else if ((flags & BSF_RELC) != 0)
6333 type = STT_RELC;
6334 else if ((flags & BSF_SRELC) != 0)
6335 type = STT_SRELC;
6336 else
6337 type = STT_NOTYPE;
6338
6339 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6340 type = STT_TLS;
6341
6342 /* Processor-specific types. */
6343 if (type_ptr != NULL
6344 && bed->elf_backend_get_symbol_type)
6345 type = ((*bed->elf_backend_get_symbol_type)
6346 (&type_ptr->internal_elf_sym, type));
6347
6348 if (flags & BSF_SECTION_SYM)
6349 {
6350 if (flags & BSF_GLOBAL)
6351 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6352 else
6353 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6354 }
6355 else if (bfd_is_com_section (syms[idx]->section))
6356 {
6357 #ifdef USE_STT_COMMON
6358 if (type == STT_OBJECT)
6359 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6360 else
6361 #else
6362 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6363 #endif
6364 }
6365 else if (bfd_is_und_section (syms[idx]->section))
6366 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6367 ? STB_WEAK
6368 : STB_GLOBAL),
6369 type);
6370 else if (flags & BSF_FILE)
6371 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6372 else
6373 {
6374 int bind = STB_LOCAL;
6375
6376 if (flags & BSF_LOCAL)
6377 bind = STB_LOCAL;
6378 else if (flags & BSF_WEAK)
6379 bind = STB_WEAK;
6380 else if (flags & BSF_GLOBAL)
6381 bind = STB_GLOBAL;
6382
6383 sym.st_info = ELF_ST_INFO (bind, type);
6384 }
6385
6386 if (type_ptr != NULL)
6387 sym.st_other = type_ptr->internal_elf_sym.st_other;
6388 else
6389 sym.st_other = 0;
6390
6391 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6392 outbound_syms += bed->s->sizeof_sym;
6393 if (outbound_shndx != NULL)
6394 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6395 }
6396
6397 *sttp = stt;
6398 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6399 symstrtab_hdr->sh_type = SHT_STRTAB;
6400
6401 symstrtab_hdr->sh_flags = 0;
6402 symstrtab_hdr->sh_addr = 0;
6403 symstrtab_hdr->sh_entsize = 0;
6404 symstrtab_hdr->sh_link = 0;
6405 symstrtab_hdr->sh_info = 0;
6406 symstrtab_hdr->sh_addralign = 1;
6407
6408 return TRUE;
6409 }
6410
6411 /* Return the number of bytes required to hold the symtab vector.
6412
6413 Note that we base it on the count plus 1, since we will null terminate
6414 the vector allocated based on this size. However, the ELF symbol table
6415 always has a dummy entry as symbol #0, so it ends up even. */
6416
6417 long
6418 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6419 {
6420 long symcount;
6421 long symtab_size;
6422 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6423
6424 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6425 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6426 if (symcount > 0)
6427 symtab_size -= sizeof (asymbol *);
6428
6429 return symtab_size;
6430 }
6431
6432 long
6433 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6434 {
6435 long symcount;
6436 long symtab_size;
6437 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6438
6439 if (elf_dynsymtab (abfd) == 0)
6440 {
6441 bfd_set_error (bfd_error_invalid_operation);
6442 return -1;
6443 }
6444
6445 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6446 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6447 if (symcount > 0)
6448 symtab_size -= sizeof (asymbol *);
6449
6450 return symtab_size;
6451 }
6452
6453 long
6454 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6455 sec_ptr asect)
6456 {
6457 return (asect->reloc_count + 1) * sizeof (arelent *);
6458 }
6459
6460 /* Canonicalize the relocs. */
6461
6462 long
6463 _bfd_elf_canonicalize_reloc (bfd *abfd,
6464 sec_ptr section,
6465 arelent **relptr,
6466 asymbol **symbols)
6467 {
6468 arelent *tblptr;
6469 unsigned int i;
6470 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6471
6472 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6473 return -1;
6474
6475 tblptr = section->relocation;
6476 for (i = 0; i < section->reloc_count; i++)
6477 *relptr++ = tblptr++;
6478
6479 *relptr = NULL;
6480
6481 return section->reloc_count;
6482 }
6483
6484 long
6485 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6486 {
6487 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6488 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6489
6490 if (symcount >= 0)
6491 bfd_get_symcount (abfd) = symcount;
6492 return symcount;
6493 }
6494
6495 long
6496 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6497 asymbol **allocation)
6498 {
6499 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6500 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6501
6502 if (symcount >= 0)
6503 bfd_get_dynamic_symcount (abfd) = symcount;
6504 return symcount;
6505 }
6506
6507 /* Return the size required for the dynamic reloc entries. Any loadable
6508 section that was actually installed in the BFD, and has type SHT_REL
6509 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6510 dynamic reloc section. */
6511
6512 long
6513 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6514 {
6515 long ret;
6516 asection *s;
6517
6518 if (elf_dynsymtab (abfd) == 0)
6519 {
6520 bfd_set_error (bfd_error_invalid_operation);
6521 return -1;
6522 }
6523
6524 ret = sizeof (arelent *);
6525 for (s = abfd->sections; s != NULL; s = s->next)
6526 if ((s->flags & SEC_LOAD) != 0
6527 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6528 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6529 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6530 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6531 * sizeof (arelent *));
6532
6533 return ret;
6534 }
6535
6536 /* Canonicalize the dynamic relocation entries. Note that we return the
6537 dynamic relocations as a single block, although they are actually
6538 associated with particular sections; the interface, which was
6539 designed for SunOS style shared libraries, expects that there is only
6540 one set of dynamic relocs. Any loadable section that was actually
6541 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6542 dynamic symbol table, is considered to be a dynamic reloc section. */
6543
6544 long
6545 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6546 arelent **storage,
6547 asymbol **syms)
6548 {
6549 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6550 asection *s;
6551 long ret;
6552
6553 if (elf_dynsymtab (abfd) == 0)
6554 {
6555 bfd_set_error (bfd_error_invalid_operation);
6556 return -1;
6557 }
6558
6559 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6560 ret = 0;
6561 for (s = abfd->sections; s != NULL; s = s->next)
6562 {
6563 if ((s->flags & SEC_LOAD) != 0
6564 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6565 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6566 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6567 {
6568 arelent *p;
6569 long count, i;
6570
6571 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6572 return -1;
6573 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6574 p = s->relocation;
6575 for (i = 0; i < count; i++)
6576 *storage++ = p++;
6577 ret += count;
6578 }
6579 }
6580
6581 *storage = NULL;
6582
6583 return ret;
6584 }
6585 \f
6586 /* Read in the version information. */
6587
6588 bfd_boolean
6589 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6590 {
6591 bfd_byte *contents = NULL;
6592 unsigned int freeidx = 0;
6593
6594 if (elf_dynverref (abfd) != 0)
6595 {
6596 Elf_Internal_Shdr *hdr;
6597 Elf_External_Verneed *everneed;
6598 Elf_Internal_Verneed *iverneed;
6599 unsigned int i;
6600 bfd_byte *contents_end;
6601
6602 hdr = &elf_tdata (abfd)->dynverref_hdr;
6603
6604 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6605 sizeof (Elf_Internal_Verneed));
6606 if (elf_tdata (abfd)->verref == NULL)
6607 goto error_return;
6608
6609 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6610
6611 contents = bfd_malloc (hdr->sh_size);
6612 if (contents == NULL)
6613 {
6614 error_return_verref:
6615 elf_tdata (abfd)->verref = NULL;
6616 elf_tdata (abfd)->cverrefs = 0;
6617 goto error_return;
6618 }
6619 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6620 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6621 goto error_return_verref;
6622
6623 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6624 goto error_return_verref;
6625
6626 BFD_ASSERT (sizeof (Elf_External_Verneed)
6627 == sizeof (Elf_External_Vernaux));
6628 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6629 everneed = (Elf_External_Verneed *) contents;
6630 iverneed = elf_tdata (abfd)->verref;
6631 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6632 {
6633 Elf_External_Vernaux *evernaux;
6634 Elf_Internal_Vernaux *ivernaux;
6635 unsigned int j;
6636
6637 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6638
6639 iverneed->vn_bfd = abfd;
6640
6641 iverneed->vn_filename =
6642 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6643 iverneed->vn_file);
6644 if (iverneed->vn_filename == NULL)
6645 goto error_return_verref;
6646
6647 if (iverneed->vn_cnt == 0)
6648 iverneed->vn_auxptr = NULL;
6649 else
6650 {
6651 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6652 sizeof (Elf_Internal_Vernaux));
6653 if (iverneed->vn_auxptr == NULL)
6654 goto error_return_verref;
6655 }
6656
6657 if (iverneed->vn_aux
6658 > (size_t) (contents_end - (bfd_byte *) everneed))
6659 goto error_return_verref;
6660
6661 evernaux = ((Elf_External_Vernaux *)
6662 ((bfd_byte *) everneed + iverneed->vn_aux));
6663 ivernaux = iverneed->vn_auxptr;
6664 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6665 {
6666 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6667
6668 ivernaux->vna_nodename =
6669 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6670 ivernaux->vna_name);
6671 if (ivernaux->vna_nodename == NULL)
6672 goto error_return_verref;
6673
6674 if (j + 1 < iverneed->vn_cnt)
6675 ivernaux->vna_nextptr = ivernaux + 1;
6676 else
6677 ivernaux->vna_nextptr = NULL;
6678
6679 if (ivernaux->vna_next
6680 > (size_t) (contents_end - (bfd_byte *) evernaux))
6681 goto error_return_verref;
6682
6683 evernaux = ((Elf_External_Vernaux *)
6684 ((bfd_byte *) evernaux + ivernaux->vna_next));
6685
6686 if (ivernaux->vna_other > freeidx)
6687 freeidx = ivernaux->vna_other;
6688 }
6689
6690 if (i + 1 < hdr->sh_info)
6691 iverneed->vn_nextref = iverneed + 1;
6692 else
6693 iverneed->vn_nextref = NULL;
6694
6695 if (iverneed->vn_next
6696 > (size_t) (contents_end - (bfd_byte *) everneed))
6697 goto error_return_verref;
6698
6699 everneed = ((Elf_External_Verneed *)
6700 ((bfd_byte *) everneed + iverneed->vn_next));
6701 }
6702
6703 free (contents);
6704 contents = NULL;
6705 }
6706
6707 if (elf_dynverdef (abfd) != 0)
6708 {
6709 Elf_Internal_Shdr *hdr;
6710 Elf_External_Verdef *everdef;
6711 Elf_Internal_Verdef *iverdef;
6712 Elf_Internal_Verdef *iverdefarr;
6713 Elf_Internal_Verdef iverdefmem;
6714 unsigned int i;
6715 unsigned int maxidx;
6716 bfd_byte *contents_end_def, *contents_end_aux;
6717
6718 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6719
6720 contents = bfd_malloc (hdr->sh_size);
6721 if (contents == NULL)
6722 goto error_return;
6723 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6724 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6725 goto error_return;
6726
6727 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6728 goto error_return;
6729
6730 BFD_ASSERT (sizeof (Elf_External_Verdef)
6731 >= sizeof (Elf_External_Verdaux));
6732 contents_end_def = contents + hdr->sh_size
6733 - sizeof (Elf_External_Verdef);
6734 contents_end_aux = contents + hdr->sh_size
6735 - sizeof (Elf_External_Verdaux);
6736
6737 /* We know the number of entries in the section but not the maximum
6738 index. Therefore we have to run through all entries and find
6739 the maximum. */
6740 everdef = (Elf_External_Verdef *) contents;
6741 maxidx = 0;
6742 for (i = 0; i < hdr->sh_info; ++i)
6743 {
6744 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6745
6746 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6747 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6748
6749 if (iverdefmem.vd_next
6750 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6751 goto error_return;
6752
6753 everdef = ((Elf_External_Verdef *)
6754 ((bfd_byte *) everdef + iverdefmem.vd_next));
6755 }
6756
6757 if (default_imported_symver)
6758 {
6759 if (freeidx > maxidx)
6760 maxidx = ++freeidx;
6761 else
6762 freeidx = ++maxidx;
6763 }
6764 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6765 sizeof (Elf_Internal_Verdef));
6766 if (elf_tdata (abfd)->verdef == NULL)
6767 goto error_return;
6768
6769 elf_tdata (abfd)->cverdefs = maxidx;
6770
6771 everdef = (Elf_External_Verdef *) contents;
6772 iverdefarr = elf_tdata (abfd)->verdef;
6773 for (i = 0; i < hdr->sh_info; i++)
6774 {
6775 Elf_External_Verdaux *everdaux;
6776 Elf_Internal_Verdaux *iverdaux;
6777 unsigned int j;
6778
6779 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6780
6781 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6782 {
6783 error_return_verdef:
6784 elf_tdata (abfd)->verdef = NULL;
6785 elf_tdata (abfd)->cverdefs = 0;
6786 goto error_return;
6787 }
6788
6789 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6790 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6791
6792 iverdef->vd_bfd = abfd;
6793
6794 if (iverdef->vd_cnt == 0)
6795 iverdef->vd_auxptr = NULL;
6796 else
6797 {
6798 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6799 sizeof (Elf_Internal_Verdaux));
6800 if (iverdef->vd_auxptr == NULL)
6801 goto error_return_verdef;
6802 }
6803
6804 if (iverdef->vd_aux
6805 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6806 goto error_return_verdef;
6807
6808 everdaux = ((Elf_External_Verdaux *)
6809 ((bfd_byte *) everdef + iverdef->vd_aux));
6810 iverdaux = iverdef->vd_auxptr;
6811 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6812 {
6813 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6814
6815 iverdaux->vda_nodename =
6816 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6817 iverdaux->vda_name);
6818 if (iverdaux->vda_nodename == NULL)
6819 goto error_return_verdef;
6820
6821 if (j + 1 < iverdef->vd_cnt)
6822 iverdaux->vda_nextptr = iverdaux + 1;
6823 else
6824 iverdaux->vda_nextptr = NULL;
6825
6826 if (iverdaux->vda_next
6827 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6828 goto error_return_verdef;
6829
6830 everdaux = ((Elf_External_Verdaux *)
6831 ((bfd_byte *) everdaux + iverdaux->vda_next));
6832 }
6833
6834 if (iverdef->vd_cnt)
6835 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6836
6837 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6838 iverdef->vd_nextdef = iverdef + 1;
6839 else
6840 iverdef->vd_nextdef = NULL;
6841
6842 everdef = ((Elf_External_Verdef *)
6843 ((bfd_byte *) everdef + iverdef->vd_next));
6844 }
6845
6846 free (contents);
6847 contents = NULL;
6848 }
6849 else if (default_imported_symver)
6850 {
6851 if (freeidx < 3)
6852 freeidx = 3;
6853 else
6854 freeidx++;
6855
6856 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6857 sizeof (Elf_Internal_Verdef));
6858 if (elf_tdata (abfd)->verdef == NULL)
6859 goto error_return;
6860
6861 elf_tdata (abfd)->cverdefs = freeidx;
6862 }
6863
6864 /* Create a default version based on the soname. */
6865 if (default_imported_symver)
6866 {
6867 Elf_Internal_Verdef *iverdef;
6868 Elf_Internal_Verdaux *iverdaux;
6869
6870 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6871
6872 iverdef->vd_version = VER_DEF_CURRENT;
6873 iverdef->vd_flags = 0;
6874 iverdef->vd_ndx = freeidx;
6875 iverdef->vd_cnt = 1;
6876
6877 iverdef->vd_bfd = abfd;
6878
6879 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6880 if (iverdef->vd_nodename == NULL)
6881 goto error_return_verdef;
6882 iverdef->vd_nextdef = NULL;
6883 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6884 if (iverdef->vd_auxptr == NULL)
6885 goto error_return_verdef;
6886
6887 iverdaux = iverdef->vd_auxptr;
6888 iverdaux->vda_nodename = iverdef->vd_nodename;
6889 iverdaux->vda_nextptr = NULL;
6890 }
6891
6892 return TRUE;
6893
6894 error_return:
6895 if (contents != NULL)
6896 free (contents);
6897 return FALSE;
6898 }
6899 \f
6900 asymbol *
6901 _bfd_elf_make_empty_symbol (bfd *abfd)
6902 {
6903 elf_symbol_type *newsym;
6904 bfd_size_type amt = sizeof (elf_symbol_type);
6905
6906 newsym = bfd_zalloc (abfd, amt);
6907 if (!newsym)
6908 return NULL;
6909 else
6910 {
6911 newsym->symbol.the_bfd = abfd;
6912 return &newsym->symbol;
6913 }
6914 }
6915
6916 void
6917 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6918 asymbol *symbol,
6919 symbol_info *ret)
6920 {
6921 bfd_symbol_info (symbol, ret);
6922 }
6923
6924 /* Return whether a symbol name implies a local symbol. Most targets
6925 use this function for the is_local_label_name entry point, but some
6926 override it. */
6927
6928 bfd_boolean
6929 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6930 const char *name)
6931 {
6932 /* Normal local symbols start with ``.L''. */
6933 if (name[0] == '.' && name[1] == 'L')
6934 return TRUE;
6935
6936 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6937 DWARF debugging symbols starting with ``..''. */
6938 if (name[0] == '.' && name[1] == '.')
6939 return TRUE;
6940
6941 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6942 emitting DWARF debugging output. I suspect this is actually a
6943 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6944 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6945 underscore to be emitted on some ELF targets). For ease of use,
6946 we treat such symbols as local. */
6947 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6948 return TRUE;
6949
6950 return FALSE;
6951 }
6952
6953 alent *
6954 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6955 asymbol *symbol ATTRIBUTE_UNUSED)
6956 {
6957 abort ();
6958 return NULL;
6959 }
6960
6961 bfd_boolean
6962 _bfd_elf_set_arch_mach (bfd *abfd,
6963 enum bfd_architecture arch,
6964 unsigned long machine)
6965 {
6966 /* If this isn't the right architecture for this backend, and this
6967 isn't the generic backend, fail. */
6968 if (arch != get_elf_backend_data (abfd)->arch
6969 && arch != bfd_arch_unknown
6970 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6971 return FALSE;
6972
6973 return bfd_default_set_arch_mach (abfd, arch, machine);
6974 }
6975
6976 /* Find the function to a particular section and offset,
6977 for error reporting. */
6978
6979 static bfd_boolean
6980 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6981 asection *section,
6982 asymbol **symbols,
6983 bfd_vma offset,
6984 const char **filename_ptr,
6985 const char **functionname_ptr)
6986 {
6987 const char *filename;
6988 asymbol *func, *file;
6989 bfd_vma low_func;
6990 asymbol **p;
6991 /* ??? Given multiple file symbols, it is impossible to reliably
6992 choose the right file name for global symbols. File symbols are
6993 local symbols, and thus all file symbols must sort before any
6994 global symbols. The ELF spec may be interpreted to say that a
6995 file symbol must sort before other local symbols, but currently
6996 ld -r doesn't do this. So, for ld -r output, it is possible to
6997 make a better choice of file name for local symbols by ignoring
6998 file symbols appearing after a given local symbol. */
6999 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7000
7001 filename = NULL;
7002 func = NULL;
7003 file = NULL;
7004 low_func = 0;
7005 state = nothing_seen;
7006
7007 for (p = symbols; *p != NULL; p++)
7008 {
7009 elf_symbol_type *q;
7010
7011 q = (elf_symbol_type *) *p;
7012
7013 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7014 {
7015 default:
7016 break;
7017 case STT_FILE:
7018 file = &q->symbol;
7019 if (state == symbol_seen)
7020 state = file_after_symbol_seen;
7021 continue;
7022 case STT_NOTYPE:
7023 case STT_FUNC:
7024 if (bfd_get_section (&q->symbol) == section
7025 && q->symbol.value >= low_func
7026 && q->symbol.value <= offset)
7027 {
7028 func = (asymbol *) q;
7029 low_func = q->symbol.value;
7030 filename = NULL;
7031 if (file != NULL
7032 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7033 || state != file_after_symbol_seen))
7034 filename = bfd_asymbol_name (file);
7035 }
7036 break;
7037 }
7038 if (state == nothing_seen)
7039 state = symbol_seen;
7040 }
7041
7042 if (func == NULL)
7043 return FALSE;
7044
7045 if (filename_ptr)
7046 *filename_ptr = filename;
7047 if (functionname_ptr)
7048 *functionname_ptr = bfd_asymbol_name (func);
7049
7050 return TRUE;
7051 }
7052
7053 /* Find the nearest line to a particular section and offset,
7054 for error reporting. */
7055
7056 bfd_boolean
7057 _bfd_elf_find_nearest_line (bfd *abfd,
7058 asection *section,
7059 asymbol **symbols,
7060 bfd_vma offset,
7061 const char **filename_ptr,
7062 const char **functionname_ptr,
7063 unsigned int *line_ptr)
7064 {
7065 bfd_boolean found;
7066
7067 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7068 filename_ptr, functionname_ptr,
7069 line_ptr))
7070 {
7071 if (!*functionname_ptr)
7072 elf_find_function (abfd, section, symbols, offset,
7073 *filename_ptr ? NULL : filename_ptr,
7074 functionname_ptr);
7075
7076 return TRUE;
7077 }
7078
7079 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7080 filename_ptr, functionname_ptr,
7081 line_ptr, 0,
7082 &elf_tdata (abfd)->dwarf2_find_line_info))
7083 {
7084 if (!*functionname_ptr)
7085 elf_find_function (abfd, section, symbols, offset,
7086 *filename_ptr ? NULL : filename_ptr,
7087 functionname_ptr);
7088
7089 return TRUE;
7090 }
7091
7092 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7093 &found, filename_ptr,
7094 functionname_ptr, line_ptr,
7095 &elf_tdata (abfd)->line_info))
7096 return FALSE;
7097 if (found && (*functionname_ptr || *line_ptr))
7098 return TRUE;
7099
7100 if (symbols == NULL)
7101 return FALSE;
7102
7103 if (! elf_find_function (abfd, section, symbols, offset,
7104 filename_ptr, functionname_ptr))
7105 return FALSE;
7106
7107 *line_ptr = 0;
7108 return TRUE;
7109 }
7110
7111 /* Find the line for a symbol. */
7112
7113 bfd_boolean
7114 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7115 const char **filename_ptr, unsigned int *line_ptr)
7116 {
7117 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7118 filename_ptr, line_ptr, 0,
7119 &elf_tdata (abfd)->dwarf2_find_line_info);
7120 }
7121
7122 /* After a call to bfd_find_nearest_line, successive calls to
7123 bfd_find_inliner_info can be used to get source information about
7124 each level of function inlining that terminated at the address
7125 passed to bfd_find_nearest_line. Currently this is only supported
7126 for DWARF2 with appropriate DWARF3 extensions. */
7127
7128 bfd_boolean
7129 _bfd_elf_find_inliner_info (bfd *abfd,
7130 const char **filename_ptr,
7131 const char **functionname_ptr,
7132 unsigned int *line_ptr)
7133 {
7134 bfd_boolean found;
7135 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7136 functionname_ptr, line_ptr,
7137 & elf_tdata (abfd)->dwarf2_find_line_info);
7138 return found;
7139 }
7140
7141 int
7142 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7143 {
7144 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7145 int ret = bed->s->sizeof_ehdr;
7146
7147 if (!info->relocatable)
7148 {
7149 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7150
7151 if (phdr_size == (bfd_size_type) -1)
7152 {
7153 struct elf_segment_map *m;
7154
7155 phdr_size = 0;
7156 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7157 phdr_size += bed->s->sizeof_phdr;
7158
7159 if (phdr_size == 0)
7160 phdr_size = get_program_header_size (abfd, info);
7161 }
7162
7163 elf_tdata (abfd)->program_header_size = phdr_size;
7164 ret += phdr_size;
7165 }
7166
7167 return ret;
7168 }
7169
7170 bfd_boolean
7171 _bfd_elf_set_section_contents (bfd *abfd,
7172 sec_ptr section,
7173 const void *location,
7174 file_ptr offset,
7175 bfd_size_type count)
7176 {
7177 Elf_Internal_Shdr *hdr;
7178 bfd_signed_vma pos;
7179
7180 if (! abfd->output_has_begun
7181 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7182 return FALSE;
7183
7184 hdr = &elf_section_data (section)->this_hdr;
7185 pos = hdr->sh_offset + offset;
7186 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7187 || bfd_bwrite (location, count, abfd) != count)
7188 return FALSE;
7189
7190 return TRUE;
7191 }
7192
7193 void
7194 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7195 arelent *cache_ptr ATTRIBUTE_UNUSED,
7196 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7197 {
7198 abort ();
7199 }
7200
7201 /* Try to convert a non-ELF reloc into an ELF one. */
7202
7203 bfd_boolean
7204 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7205 {
7206 /* Check whether we really have an ELF howto. */
7207
7208 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7209 {
7210 bfd_reloc_code_real_type code;
7211 reloc_howto_type *howto;
7212
7213 /* Alien reloc: Try to determine its type to replace it with an
7214 equivalent ELF reloc. */
7215
7216 if (areloc->howto->pc_relative)
7217 {
7218 switch (areloc->howto->bitsize)
7219 {
7220 case 8:
7221 code = BFD_RELOC_8_PCREL;
7222 break;
7223 case 12:
7224 code = BFD_RELOC_12_PCREL;
7225 break;
7226 case 16:
7227 code = BFD_RELOC_16_PCREL;
7228 break;
7229 case 24:
7230 code = BFD_RELOC_24_PCREL;
7231 break;
7232 case 32:
7233 code = BFD_RELOC_32_PCREL;
7234 break;
7235 case 64:
7236 code = BFD_RELOC_64_PCREL;
7237 break;
7238 default:
7239 goto fail;
7240 }
7241
7242 howto = bfd_reloc_type_lookup (abfd, code);
7243
7244 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7245 {
7246 if (howto->pcrel_offset)
7247 areloc->addend += areloc->address;
7248 else
7249 areloc->addend -= areloc->address; /* addend is unsigned!! */
7250 }
7251 }
7252 else
7253 {
7254 switch (areloc->howto->bitsize)
7255 {
7256 case 8:
7257 code = BFD_RELOC_8;
7258 break;
7259 case 14:
7260 code = BFD_RELOC_14;
7261 break;
7262 case 16:
7263 code = BFD_RELOC_16;
7264 break;
7265 case 26:
7266 code = BFD_RELOC_26;
7267 break;
7268 case 32:
7269 code = BFD_RELOC_32;
7270 break;
7271 case 64:
7272 code = BFD_RELOC_64;
7273 break;
7274 default:
7275 goto fail;
7276 }
7277
7278 howto = bfd_reloc_type_lookup (abfd, code);
7279 }
7280
7281 if (howto)
7282 areloc->howto = howto;
7283 else
7284 goto fail;
7285 }
7286
7287 return TRUE;
7288
7289 fail:
7290 (*_bfd_error_handler)
7291 (_("%B: unsupported relocation type %s"),
7292 abfd, areloc->howto->name);
7293 bfd_set_error (bfd_error_bad_value);
7294 return FALSE;
7295 }
7296
7297 bfd_boolean
7298 _bfd_elf_close_and_cleanup (bfd *abfd)
7299 {
7300 if (bfd_get_format (abfd) == bfd_object)
7301 {
7302 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7303 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7304 _bfd_dwarf2_cleanup_debug_info (abfd);
7305 }
7306
7307 return _bfd_generic_close_and_cleanup (abfd);
7308 }
7309
7310 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7311 in the relocation's offset. Thus we cannot allow any sort of sanity
7312 range-checking to interfere. There is nothing else to do in processing
7313 this reloc. */
7314
7315 bfd_reloc_status_type
7316 _bfd_elf_rel_vtable_reloc_fn
7317 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7318 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7319 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7320 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7321 {
7322 return bfd_reloc_ok;
7323 }
7324 \f
7325 /* Elf core file support. Much of this only works on native
7326 toolchains, since we rely on knowing the
7327 machine-dependent procfs structure in order to pick
7328 out details about the corefile. */
7329
7330 #ifdef HAVE_SYS_PROCFS_H
7331 # include <sys/procfs.h>
7332 #endif
7333
7334 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7335
7336 static int
7337 elfcore_make_pid (bfd *abfd)
7338 {
7339 return ((elf_tdata (abfd)->core_lwpid << 16)
7340 + (elf_tdata (abfd)->core_pid));
7341 }
7342
7343 /* If there isn't a section called NAME, make one, using
7344 data from SECT. Note, this function will generate a
7345 reference to NAME, so you shouldn't deallocate or
7346 overwrite it. */
7347
7348 static bfd_boolean
7349 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7350 {
7351 asection *sect2;
7352
7353 if (bfd_get_section_by_name (abfd, name) != NULL)
7354 return TRUE;
7355
7356 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7357 if (sect2 == NULL)
7358 return FALSE;
7359
7360 sect2->size = sect->size;
7361 sect2->filepos = sect->filepos;
7362 sect2->alignment_power = sect->alignment_power;
7363 return TRUE;
7364 }
7365
7366 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7367 actually creates up to two pseudosections:
7368 - For the single-threaded case, a section named NAME, unless
7369 such a section already exists.
7370 - For the multi-threaded case, a section named "NAME/PID", where
7371 PID is elfcore_make_pid (abfd).
7372 Both pseudosections have identical contents. */
7373 bfd_boolean
7374 _bfd_elfcore_make_pseudosection (bfd *abfd,
7375 char *name,
7376 size_t size,
7377 ufile_ptr filepos)
7378 {
7379 char buf[100];
7380 char *threaded_name;
7381 size_t len;
7382 asection *sect;
7383
7384 /* Build the section name. */
7385
7386 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7387 len = strlen (buf) + 1;
7388 threaded_name = bfd_alloc (abfd, len);
7389 if (threaded_name == NULL)
7390 return FALSE;
7391 memcpy (threaded_name, buf, len);
7392
7393 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7394 SEC_HAS_CONTENTS);
7395 if (sect == NULL)
7396 return FALSE;
7397 sect->size = size;
7398 sect->filepos = filepos;
7399 sect->alignment_power = 2;
7400
7401 return elfcore_maybe_make_sect (abfd, name, sect);
7402 }
7403
7404 /* prstatus_t exists on:
7405 solaris 2.5+
7406 linux 2.[01] + glibc
7407 unixware 4.2
7408 */
7409
7410 #if defined (HAVE_PRSTATUS_T)
7411
7412 static bfd_boolean
7413 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7414 {
7415 size_t size;
7416 int offset;
7417
7418 if (note->descsz == sizeof (prstatus_t))
7419 {
7420 prstatus_t prstat;
7421
7422 size = sizeof (prstat.pr_reg);
7423 offset = offsetof (prstatus_t, pr_reg);
7424 memcpy (&prstat, note->descdata, sizeof (prstat));
7425
7426 /* Do not overwrite the core signal if it
7427 has already been set by another thread. */
7428 if (elf_tdata (abfd)->core_signal == 0)
7429 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7430 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7431
7432 /* pr_who exists on:
7433 solaris 2.5+
7434 unixware 4.2
7435 pr_who doesn't exist on:
7436 linux 2.[01]
7437 */
7438 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7439 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7440 #endif
7441 }
7442 #if defined (HAVE_PRSTATUS32_T)
7443 else if (note->descsz == sizeof (prstatus32_t))
7444 {
7445 /* 64-bit host, 32-bit corefile */
7446 prstatus32_t prstat;
7447
7448 size = sizeof (prstat.pr_reg);
7449 offset = offsetof (prstatus32_t, pr_reg);
7450 memcpy (&prstat, note->descdata, sizeof (prstat));
7451
7452 /* Do not overwrite the core signal if it
7453 has already been set by another thread. */
7454 if (elf_tdata (abfd)->core_signal == 0)
7455 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7456 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7457
7458 /* pr_who exists on:
7459 solaris 2.5+
7460 unixware 4.2
7461 pr_who doesn't exist on:
7462 linux 2.[01]
7463 */
7464 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7465 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7466 #endif
7467 }
7468 #endif /* HAVE_PRSTATUS32_T */
7469 else
7470 {
7471 /* Fail - we don't know how to handle any other
7472 note size (ie. data object type). */
7473 return TRUE;
7474 }
7475
7476 /* Make a ".reg/999" section and a ".reg" section. */
7477 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7478 size, note->descpos + offset);
7479 }
7480 #endif /* defined (HAVE_PRSTATUS_T) */
7481
7482 /* Create a pseudosection containing the exact contents of NOTE. */
7483 static bfd_boolean
7484 elfcore_make_note_pseudosection (bfd *abfd,
7485 char *name,
7486 Elf_Internal_Note *note)
7487 {
7488 return _bfd_elfcore_make_pseudosection (abfd, name,
7489 note->descsz, note->descpos);
7490 }
7491
7492 /* There isn't a consistent prfpregset_t across platforms,
7493 but it doesn't matter, because we don't have to pick this
7494 data structure apart. */
7495
7496 static bfd_boolean
7497 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7498 {
7499 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7500 }
7501
7502 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7503 type of NT_PRXFPREG. Just include the whole note's contents
7504 literally. */
7505
7506 static bfd_boolean
7507 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7508 {
7509 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7510 }
7511
7512 static bfd_boolean
7513 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7514 {
7515 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7516 }
7517
7518
7519 #if defined (HAVE_PRPSINFO_T)
7520 typedef prpsinfo_t elfcore_psinfo_t;
7521 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7522 typedef prpsinfo32_t elfcore_psinfo32_t;
7523 #endif
7524 #endif
7525
7526 #if defined (HAVE_PSINFO_T)
7527 typedef psinfo_t elfcore_psinfo_t;
7528 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7529 typedef psinfo32_t elfcore_psinfo32_t;
7530 #endif
7531 #endif
7532
7533 /* return a malloc'ed copy of a string at START which is at
7534 most MAX bytes long, possibly without a terminating '\0'.
7535 the copy will always have a terminating '\0'. */
7536
7537 char *
7538 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7539 {
7540 char *dups;
7541 char *end = memchr (start, '\0', max);
7542 size_t len;
7543
7544 if (end == NULL)
7545 len = max;
7546 else
7547 len = end - start;
7548
7549 dups = bfd_alloc (abfd, len + 1);
7550 if (dups == NULL)
7551 return NULL;
7552
7553 memcpy (dups, start, len);
7554 dups[len] = '\0';
7555
7556 return dups;
7557 }
7558
7559 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7560 static bfd_boolean
7561 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7562 {
7563 if (note->descsz == sizeof (elfcore_psinfo_t))
7564 {
7565 elfcore_psinfo_t psinfo;
7566
7567 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7568
7569 elf_tdata (abfd)->core_program
7570 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7571 sizeof (psinfo.pr_fname));
7572
7573 elf_tdata (abfd)->core_command
7574 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7575 sizeof (psinfo.pr_psargs));
7576 }
7577 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7578 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7579 {
7580 /* 64-bit host, 32-bit corefile */
7581 elfcore_psinfo32_t psinfo;
7582
7583 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7584
7585 elf_tdata (abfd)->core_program
7586 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7587 sizeof (psinfo.pr_fname));
7588
7589 elf_tdata (abfd)->core_command
7590 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7591 sizeof (psinfo.pr_psargs));
7592 }
7593 #endif
7594
7595 else
7596 {
7597 /* Fail - we don't know how to handle any other
7598 note size (ie. data object type). */
7599 return TRUE;
7600 }
7601
7602 /* Note that for some reason, a spurious space is tacked
7603 onto the end of the args in some (at least one anyway)
7604 implementations, so strip it off if it exists. */
7605
7606 {
7607 char *command = elf_tdata (abfd)->core_command;
7608 int n = strlen (command);
7609
7610 if (0 < n && command[n - 1] == ' ')
7611 command[n - 1] = '\0';
7612 }
7613
7614 return TRUE;
7615 }
7616 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7617
7618 #if defined (HAVE_PSTATUS_T)
7619 static bfd_boolean
7620 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7621 {
7622 if (note->descsz == sizeof (pstatus_t)
7623 #if defined (HAVE_PXSTATUS_T)
7624 || note->descsz == sizeof (pxstatus_t)
7625 #endif
7626 )
7627 {
7628 pstatus_t pstat;
7629
7630 memcpy (&pstat, note->descdata, sizeof (pstat));
7631
7632 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7633 }
7634 #if defined (HAVE_PSTATUS32_T)
7635 else if (note->descsz == sizeof (pstatus32_t))
7636 {
7637 /* 64-bit host, 32-bit corefile */
7638 pstatus32_t pstat;
7639
7640 memcpy (&pstat, note->descdata, sizeof (pstat));
7641
7642 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7643 }
7644 #endif
7645 /* Could grab some more details from the "representative"
7646 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7647 NT_LWPSTATUS note, presumably. */
7648
7649 return TRUE;
7650 }
7651 #endif /* defined (HAVE_PSTATUS_T) */
7652
7653 #if defined (HAVE_LWPSTATUS_T)
7654 static bfd_boolean
7655 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7656 {
7657 lwpstatus_t lwpstat;
7658 char buf[100];
7659 char *name;
7660 size_t len;
7661 asection *sect;
7662
7663 if (note->descsz != sizeof (lwpstat)
7664 #if defined (HAVE_LWPXSTATUS_T)
7665 && note->descsz != sizeof (lwpxstatus_t)
7666 #endif
7667 )
7668 return TRUE;
7669
7670 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7671
7672 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7673 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7674
7675 /* Make a ".reg/999" section. */
7676
7677 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7678 len = strlen (buf) + 1;
7679 name = bfd_alloc (abfd, len);
7680 if (name == NULL)
7681 return FALSE;
7682 memcpy (name, buf, len);
7683
7684 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7685 if (sect == NULL)
7686 return FALSE;
7687
7688 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7689 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7690 sect->filepos = note->descpos
7691 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7692 #endif
7693
7694 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7695 sect->size = sizeof (lwpstat.pr_reg);
7696 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7697 #endif
7698
7699 sect->alignment_power = 2;
7700
7701 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7702 return FALSE;
7703
7704 /* Make a ".reg2/999" section */
7705
7706 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7707 len = strlen (buf) + 1;
7708 name = bfd_alloc (abfd, len);
7709 if (name == NULL)
7710 return FALSE;
7711 memcpy (name, buf, len);
7712
7713 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7714 if (sect == NULL)
7715 return FALSE;
7716
7717 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7718 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7719 sect->filepos = note->descpos
7720 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7721 #endif
7722
7723 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7724 sect->size = sizeof (lwpstat.pr_fpreg);
7725 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7726 #endif
7727
7728 sect->alignment_power = 2;
7729
7730 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7731 }
7732 #endif /* defined (HAVE_LWPSTATUS_T) */
7733
7734 static bfd_boolean
7735 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7736 {
7737 char buf[30];
7738 char *name;
7739 size_t len;
7740 asection *sect;
7741 int type;
7742 int is_active_thread;
7743 bfd_vma base_addr;
7744
7745 if (note->descsz < 728)
7746 return TRUE;
7747
7748 if (! CONST_STRNEQ (note->namedata, "win32"))
7749 return TRUE;
7750
7751 type = bfd_get_32 (abfd, note->descdata);
7752
7753 switch (type)
7754 {
7755 case 1 /* NOTE_INFO_PROCESS */:
7756 /* FIXME: need to add ->core_command. */
7757 /* process_info.pid */
7758 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
7759 /* process_info.signal */
7760 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
7761 break;
7762
7763 case 2 /* NOTE_INFO_THREAD */:
7764 /* Make a ".reg/999" section. */
7765 /* thread_info.tid */
7766 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
7767
7768 len = strlen (buf) + 1;
7769 name = bfd_alloc (abfd, len);
7770 if (name == NULL)
7771 return FALSE;
7772
7773 memcpy (name, buf, len);
7774
7775 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7776 if (sect == NULL)
7777 return FALSE;
7778
7779 /* sizeof (thread_info.thread_context) */
7780 sect->size = 716;
7781 /* offsetof (thread_info.thread_context) */
7782 sect->filepos = note->descpos + 12;
7783 sect->alignment_power = 2;
7784
7785 /* thread_info.is_active_thread */
7786 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
7787
7788 if (is_active_thread)
7789 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7790 return FALSE;
7791 break;
7792
7793 case 3 /* NOTE_INFO_MODULE */:
7794 /* Make a ".module/xxxxxxxx" section. */
7795 /* module_info.base_address */
7796 base_addr = bfd_get_32 (abfd, note->descdata + 4);
7797 sprintf (buf, ".module/%08lx", (long) base_addr);
7798
7799 len = strlen (buf) + 1;
7800 name = bfd_alloc (abfd, len);
7801 if (name == NULL)
7802 return FALSE;
7803
7804 memcpy (name, buf, len);
7805
7806 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7807
7808 if (sect == NULL)
7809 return FALSE;
7810
7811 sect->size = note->descsz;
7812 sect->filepos = note->descpos;
7813 sect->alignment_power = 2;
7814 break;
7815
7816 default:
7817 return TRUE;
7818 }
7819
7820 return TRUE;
7821 }
7822
7823 static bfd_boolean
7824 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7825 {
7826 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7827
7828 switch (note->type)
7829 {
7830 default:
7831 return TRUE;
7832
7833 case NT_PRSTATUS:
7834 if (bed->elf_backend_grok_prstatus)
7835 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7836 return TRUE;
7837 #if defined (HAVE_PRSTATUS_T)
7838 return elfcore_grok_prstatus (abfd, note);
7839 #else
7840 return TRUE;
7841 #endif
7842
7843 #if defined (HAVE_PSTATUS_T)
7844 case NT_PSTATUS:
7845 return elfcore_grok_pstatus (abfd, note);
7846 #endif
7847
7848 #if defined (HAVE_LWPSTATUS_T)
7849 case NT_LWPSTATUS:
7850 return elfcore_grok_lwpstatus (abfd, note);
7851 #endif
7852
7853 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7854 return elfcore_grok_prfpreg (abfd, note);
7855
7856 case NT_WIN32PSTATUS:
7857 return elfcore_grok_win32pstatus (abfd, note);
7858
7859 case NT_PRXFPREG: /* Linux SSE extension */
7860 if (note->namesz == 6
7861 && strcmp (note->namedata, "LINUX") == 0)
7862 return elfcore_grok_prxfpreg (abfd, note);
7863 else
7864 return TRUE;
7865
7866 case NT_PPC_VMX:
7867 if (note->namesz == 6
7868 && strcmp (note->namedata, "LINUX") == 0)
7869 return elfcore_grok_ppc_vmx (abfd, note);
7870 else
7871 return TRUE;
7872
7873 case NT_PRPSINFO:
7874 case NT_PSINFO:
7875 if (bed->elf_backend_grok_psinfo)
7876 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7877 return TRUE;
7878 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7879 return elfcore_grok_psinfo (abfd, note);
7880 #else
7881 return TRUE;
7882 #endif
7883
7884 case NT_AUXV:
7885 {
7886 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7887 SEC_HAS_CONTENTS);
7888
7889 if (sect == NULL)
7890 return FALSE;
7891 sect->size = note->descsz;
7892 sect->filepos = note->descpos;
7893 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7894
7895 return TRUE;
7896 }
7897 }
7898 }
7899
7900 static bfd_boolean
7901 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
7902 {
7903 elf_tdata (abfd)->build_id_size = note->descsz;
7904 elf_tdata (abfd)->build_id = bfd_alloc (abfd, note->descsz);
7905 if (elf_tdata (abfd)->build_id == NULL)
7906 return FALSE;
7907
7908 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
7909
7910 return TRUE;
7911 }
7912
7913 static bfd_boolean
7914 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
7915 {
7916 switch (note->type)
7917 {
7918 default:
7919 return TRUE;
7920
7921 case NT_GNU_BUILD_ID:
7922 return elfobj_grok_gnu_build_id (abfd, note);
7923 }
7924 }
7925
7926 static bfd_boolean
7927 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7928 {
7929 char *cp;
7930
7931 cp = strchr (note->namedata, '@');
7932 if (cp != NULL)
7933 {
7934 *lwpidp = atoi(cp + 1);
7935 return TRUE;
7936 }
7937 return FALSE;
7938 }
7939
7940 static bfd_boolean
7941 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7942 {
7943 /* Signal number at offset 0x08. */
7944 elf_tdata (abfd)->core_signal
7945 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7946
7947 /* Process ID at offset 0x50. */
7948 elf_tdata (abfd)->core_pid
7949 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7950
7951 /* Command name at 0x7c (max 32 bytes, including nul). */
7952 elf_tdata (abfd)->core_command
7953 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7954
7955 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7956 note);
7957 }
7958
7959 static bfd_boolean
7960 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7961 {
7962 int lwp;
7963
7964 if (elfcore_netbsd_get_lwpid (note, &lwp))
7965 elf_tdata (abfd)->core_lwpid = lwp;
7966
7967 if (note->type == NT_NETBSDCORE_PROCINFO)
7968 {
7969 /* NetBSD-specific core "procinfo". Note that we expect to
7970 find this note before any of the others, which is fine,
7971 since the kernel writes this note out first when it
7972 creates a core file. */
7973
7974 return elfcore_grok_netbsd_procinfo (abfd, note);
7975 }
7976
7977 /* As of Jan 2002 there are no other machine-independent notes
7978 defined for NetBSD core files. If the note type is less
7979 than the start of the machine-dependent note types, we don't
7980 understand it. */
7981
7982 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7983 return TRUE;
7984
7985
7986 switch (bfd_get_arch (abfd))
7987 {
7988 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7989 PT_GETFPREGS == mach+2. */
7990
7991 case bfd_arch_alpha:
7992 case bfd_arch_sparc:
7993 switch (note->type)
7994 {
7995 case NT_NETBSDCORE_FIRSTMACH+0:
7996 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7997
7998 case NT_NETBSDCORE_FIRSTMACH+2:
7999 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8000
8001 default:
8002 return TRUE;
8003 }
8004
8005 /* On all other arch's, PT_GETREGS == mach+1 and
8006 PT_GETFPREGS == mach+3. */
8007
8008 default:
8009 switch (note->type)
8010 {
8011 case NT_NETBSDCORE_FIRSTMACH+1:
8012 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8013
8014 case NT_NETBSDCORE_FIRSTMACH+3:
8015 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8016
8017 default:
8018 return TRUE;
8019 }
8020 }
8021 /* NOTREACHED */
8022 }
8023
8024 static bfd_boolean
8025 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8026 {
8027 void *ddata = note->descdata;
8028 char buf[100];
8029 char *name;
8030 asection *sect;
8031 short sig;
8032 unsigned flags;
8033
8034 /* nto_procfs_status 'pid' field is at offset 0. */
8035 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8036
8037 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8038 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8039
8040 /* nto_procfs_status 'flags' field is at offset 8. */
8041 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8042
8043 /* nto_procfs_status 'what' field is at offset 14. */
8044 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8045 {
8046 elf_tdata (abfd)->core_signal = sig;
8047 elf_tdata (abfd)->core_lwpid = *tid;
8048 }
8049
8050 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8051 do not come from signals so we make sure we set the current
8052 thread just in case. */
8053 if (flags & 0x00000080)
8054 elf_tdata (abfd)->core_lwpid = *tid;
8055
8056 /* Make a ".qnx_core_status/%d" section. */
8057 sprintf (buf, ".qnx_core_status/%ld", *tid);
8058
8059 name = bfd_alloc (abfd, strlen (buf) + 1);
8060 if (name == NULL)
8061 return FALSE;
8062 strcpy (name, buf);
8063
8064 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8065 if (sect == NULL)
8066 return FALSE;
8067
8068 sect->size = note->descsz;
8069 sect->filepos = note->descpos;
8070 sect->alignment_power = 2;
8071
8072 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8073 }
8074
8075 static bfd_boolean
8076 elfcore_grok_nto_regs (bfd *abfd,
8077 Elf_Internal_Note *note,
8078 long tid,
8079 char *base)
8080 {
8081 char buf[100];
8082 char *name;
8083 asection *sect;
8084
8085 /* Make a "(base)/%d" section. */
8086 sprintf (buf, "%s/%ld", base, tid);
8087
8088 name = bfd_alloc (abfd, strlen (buf) + 1);
8089 if (name == NULL)
8090 return FALSE;
8091 strcpy (name, buf);
8092
8093 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8094 if (sect == NULL)
8095 return FALSE;
8096
8097 sect->size = note->descsz;
8098 sect->filepos = note->descpos;
8099 sect->alignment_power = 2;
8100
8101 /* This is the current thread. */
8102 if (elf_tdata (abfd)->core_lwpid == tid)
8103 return elfcore_maybe_make_sect (abfd, base, sect);
8104
8105 return TRUE;
8106 }
8107
8108 #define BFD_QNT_CORE_INFO 7
8109 #define BFD_QNT_CORE_STATUS 8
8110 #define BFD_QNT_CORE_GREG 9
8111 #define BFD_QNT_CORE_FPREG 10
8112
8113 static bfd_boolean
8114 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8115 {
8116 /* Every GREG section has a STATUS section before it. Store the
8117 tid from the previous call to pass down to the next gregs
8118 function. */
8119 static long tid = 1;
8120
8121 switch (note->type)
8122 {
8123 case BFD_QNT_CORE_INFO:
8124 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8125 case BFD_QNT_CORE_STATUS:
8126 return elfcore_grok_nto_status (abfd, note, &tid);
8127 case BFD_QNT_CORE_GREG:
8128 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8129 case BFD_QNT_CORE_FPREG:
8130 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8131 default:
8132 return TRUE;
8133 }
8134 }
8135
8136 static bfd_boolean
8137 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8138 {
8139 char *name;
8140 asection *sect;
8141 size_t len;
8142
8143 /* Use note name as section name. */
8144 len = note->namesz;
8145 name = bfd_alloc (abfd, len);
8146 if (name == NULL)
8147 return FALSE;
8148 memcpy (name, note->namedata, len);
8149 name[len - 1] = '\0';
8150
8151 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8152 if (sect == NULL)
8153 return FALSE;
8154
8155 sect->size = note->descsz;
8156 sect->filepos = note->descpos;
8157 sect->alignment_power = 1;
8158
8159 return TRUE;
8160 }
8161
8162 /* Function: elfcore_write_note
8163
8164 Inputs:
8165 buffer to hold note, and current size of buffer
8166 name of note
8167 type of note
8168 data for note
8169 size of data for note
8170
8171 Writes note to end of buffer. ELF64 notes are written exactly as
8172 for ELF32, despite the current (as of 2006) ELF gabi specifying
8173 that they ought to have 8-byte namesz and descsz field, and have
8174 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8175
8176 Return:
8177 Pointer to realloc'd buffer, *BUFSIZ updated. */
8178
8179 char *
8180 elfcore_write_note (bfd *abfd,
8181 char *buf,
8182 int *bufsiz,
8183 const char *name,
8184 int type,
8185 const void *input,
8186 int size)
8187 {
8188 Elf_External_Note *xnp;
8189 size_t namesz;
8190 size_t newspace;
8191 char *dest;
8192
8193 namesz = 0;
8194 if (name != NULL)
8195 namesz = strlen (name) + 1;
8196
8197 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8198
8199 buf = realloc (buf, *bufsiz + newspace);
8200 if (buf == NULL)
8201 return buf;
8202 dest = buf + *bufsiz;
8203 *bufsiz += newspace;
8204 xnp = (Elf_External_Note *) dest;
8205 H_PUT_32 (abfd, namesz, xnp->namesz);
8206 H_PUT_32 (abfd, size, xnp->descsz);
8207 H_PUT_32 (abfd, type, xnp->type);
8208 dest = xnp->name;
8209 if (name != NULL)
8210 {
8211 memcpy (dest, name, namesz);
8212 dest += namesz;
8213 while (namesz & 3)
8214 {
8215 *dest++ = '\0';
8216 ++namesz;
8217 }
8218 }
8219 memcpy (dest, input, size);
8220 dest += size;
8221 while (size & 3)
8222 {
8223 *dest++ = '\0';
8224 ++size;
8225 }
8226 return buf;
8227 }
8228
8229 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8230 char *
8231 elfcore_write_prpsinfo (bfd *abfd,
8232 char *buf,
8233 int *bufsiz,
8234 const char *fname,
8235 const char *psargs)
8236 {
8237 const char *note_name = "CORE";
8238 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8239
8240 if (bed->elf_backend_write_core_note != NULL)
8241 {
8242 char *ret;
8243 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8244 NT_PRPSINFO, fname, psargs);
8245 if (ret != NULL)
8246 return ret;
8247 }
8248
8249 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8250 if (bed->s->elfclass == ELFCLASS32)
8251 {
8252 #if defined (HAVE_PSINFO32_T)
8253 psinfo32_t data;
8254 int note_type = NT_PSINFO;
8255 #else
8256 prpsinfo32_t data;
8257 int note_type = NT_PRPSINFO;
8258 #endif
8259
8260 memset (&data, 0, sizeof (data));
8261 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8262 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8263 return elfcore_write_note (abfd, buf, bufsiz,
8264 note_name, note_type, &data, sizeof (data));
8265 }
8266 else
8267 #endif
8268 {
8269 #if defined (HAVE_PSINFO_T)
8270 psinfo_t data;
8271 int note_type = NT_PSINFO;
8272 #else
8273 prpsinfo_t data;
8274 int note_type = NT_PRPSINFO;
8275 #endif
8276
8277 memset (&data, 0, sizeof (data));
8278 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8279 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8280 return elfcore_write_note (abfd, buf, bufsiz,
8281 note_name, note_type, &data, sizeof (data));
8282 }
8283 }
8284 #endif /* PSINFO_T or PRPSINFO_T */
8285
8286 #if defined (HAVE_PRSTATUS_T)
8287 char *
8288 elfcore_write_prstatus (bfd *abfd,
8289 char *buf,
8290 int *bufsiz,
8291 long pid,
8292 int cursig,
8293 const void *gregs)
8294 {
8295 const char *note_name = "CORE";
8296 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8297
8298 if (bed->elf_backend_write_core_note != NULL)
8299 {
8300 char *ret;
8301 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8302 NT_PRSTATUS,
8303 pid, cursig, gregs);
8304 if (ret != NULL)
8305 return ret;
8306 }
8307
8308 #if defined (HAVE_PRSTATUS32_T)
8309 if (bed->s->elfclass == ELFCLASS32)
8310 {
8311 prstatus32_t prstat;
8312
8313 memset (&prstat, 0, sizeof (prstat));
8314 prstat.pr_pid = pid;
8315 prstat.pr_cursig = cursig;
8316 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8317 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8318 NT_PRSTATUS, &prstat, sizeof (prstat));
8319 }
8320 else
8321 #endif
8322 {
8323 prstatus_t prstat;
8324
8325 memset (&prstat, 0, sizeof (prstat));
8326 prstat.pr_pid = pid;
8327 prstat.pr_cursig = cursig;
8328 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8329 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8330 NT_PRSTATUS, &prstat, sizeof (prstat));
8331 }
8332 }
8333 #endif /* HAVE_PRSTATUS_T */
8334
8335 #if defined (HAVE_LWPSTATUS_T)
8336 char *
8337 elfcore_write_lwpstatus (bfd *abfd,
8338 char *buf,
8339 int *bufsiz,
8340 long pid,
8341 int cursig,
8342 const void *gregs)
8343 {
8344 lwpstatus_t lwpstat;
8345 const char *note_name = "CORE";
8346
8347 memset (&lwpstat, 0, sizeof (lwpstat));
8348 lwpstat.pr_lwpid = pid >> 16;
8349 lwpstat.pr_cursig = cursig;
8350 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8351 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8352 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8353 #if !defined(gregs)
8354 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8355 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8356 #else
8357 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8358 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8359 #endif
8360 #endif
8361 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8362 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8363 }
8364 #endif /* HAVE_LWPSTATUS_T */
8365
8366 #if defined (HAVE_PSTATUS_T)
8367 char *
8368 elfcore_write_pstatus (bfd *abfd,
8369 char *buf,
8370 int *bufsiz,
8371 long pid,
8372 int cursig ATTRIBUTE_UNUSED,
8373 const void *gregs ATTRIBUTE_UNUSED)
8374 {
8375 const char *note_name = "CORE";
8376 #if defined (HAVE_PSTATUS32_T)
8377 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8378
8379 if (bed->s->elfclass == ELFCLASS32)
8380 {
8381 pstatus32_t pstat;
8382
8383 memset (&pstat, 0, sizeof (pstat));
8384 pstat.pr_pid = pid & 0xffff;
8385 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8386 NT_PSTATUS, &pstat, sizeof (pstat));
8387 return buf;
8388 }
8389 else
8390 #endif
8391 {
8392 pstatus_t pstat;
8393
8394 memset (&pstat, 0, sizeof (pstat));
8395 pstat.pr_pid = pid & 0xffff;
8396 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8397 NT_PSTATUS, &pstat, sizeof (pstat));
8398 return buf;
8399 }
8400 }
8401 #endif /* HAVE_PSTATUS_T */
8402
8403 char *
8404 elfcore_write_prfpreg (bfd *abfd,
8405 char *buf,
8406 int *bufsiz,
8407 const void *fpregs,
8408 int size)
8409 {
8410 const char *note_name = "CORE";
8411 return elfcore_write_note (abfd, buf, bufsiz,
8412 note_name, NT_FPREGSET, fpregs, size);
8413 }
8414
8415 char *
8416 elfcore_write_prxfpreg (bfd *abfd,
8417 char *buf,
8418 int *bufsiz,
8419 const void *xfpregs,
8420 int size)
8421 {
8422 char *note_name = "LINUX";
8423 return elfcore_write_note (abfd, buf, bufsiz,
8424 note_name, NT_PRXFPREG, xfpregs, size);
8425 }
8426
8427 char *
8428 elfcore_write_ppc_vmx (bfd *abfd,
8429 char *buf,
8430 int *bufsiz,
8431 const void *ppc_vmx,
8432 int size)
8433 {
8434 char *note_name = "LINUX";
8435 return elfcore_write_note (abfd, buf, bufsiz,
8436 note_name, NT_PPC_VMX, ppc_vmx, size);
8437 }
8438
8439 static bfd_boolean
8440 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
8441 {
8442 char *p;
8443
8444 p = buf;
8445 while (p < buf + size)
8446 {
8447 /* FIXME: bad alignment assumption. */
8448 Elf_External_Note *xnp = (Elf_External_Note *) p;
8449 Elf_Internal_Note in;
8450
8451 in.type = H_GET_32 (abfd, xnp->type);
8452
8453 in.namesz = H_GET_32 (abfd, xnp->namesz);
8454 in.namedata = xnp->name;
8455
8456 in.descsz = H_GET_32 (abfd, xnp->descsz);
8457 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8458 in.descpos = offset + (in.descdata - buf);
8459
8460 switch (bfd_get_format (abfd))
8461 {
8462 default:
8463 return TRUE;
8464
8465 case bfd_core:
8466 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8467 {
8468 if (! elfcore_grok_netbsd_note (abfd, &in))
8469 return FALSE;
8470 }
8471 else if (CONST_STRNEQ (in.namedata, "QNX"))
8472 {
8473 if (! elfcore_grok_nto_note (abfd, &in))
8474 return FALSE;
8475 }
8476 else if (CONST_STRNEQ (in.namedata, "SPU/"))
8477 {
8478 if (! elfcore_grok_spu_note (abfd, &in))
8479 return FALSE;
8480 }
8481 else
8482 {
8483 if (! elfcore_grok_note (abfd, &in))
8484 return FALSE;
8485 }
8486 break;
8487
8488 case bfd_object:
8489 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
8490 {
8491 if (! elfobj_grok_gnu_note (abfd, &in))
8492 return FALSE;
8493 }
8494 break;
8495 }
8496
8497 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8498 }
8499
8500 return TRUE;
8501 }
8502
8503 static bfd_boolean
8504 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8505 {
8506 char *buf;
8507
8508 if (size <= 0)
8509 return TRUE;
8510
8511 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8512 return FALSE;
8513
8514 buf = bfd_malloc (size);
8515 if (buf == NULL)
8516 return FALSE;
8517
8518 if (bfd_bread (buf, size, abfd) != size
8519 || !elf_parse_notes (abfd, buf, size, offset))
8520 {
8521 free (buf);
8522 return FALSE;
8523 }
8524
8525 free (buf);
8526 return TRUE;
8527 }
8528 \f
8529 /* Providing external access to the ELF program header table. */
8530
8531 /* Return an upper bound on the number of bytes required to store a
8532 copy of ABFD's program header table entries. Return -1 if an error
8533 occurs; bfd_get_error will return an appropriate code. */
8534
8535 long
8536 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8537 {
8538 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8539 {
8540 bfd_set_error (bfd_error_wrong_format);
8541 return -1;
8542 }
8543
8544 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8545 }
8546
8547 /* Copy ABFD's program header table entries to *PHDRS. The entries
8548 will be stored as an array of Elf_Internal_Phdr structures, as
8549 defined in include/elf/internal.h. To find out how large the
8550 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8551
8552 Return the number of program header table entries read, or -1 if an
8553 error occurs; bfd_get_error will return an appropriate code. */
8554
8555 int
8556 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8557 {
8558 int num_phdrs;
8559
8560 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8561 {
8562 bfd_set_error (bfd_error_wrong_format);
8563 return -1;
8564 }
8565
8566 num_phdrs = elf_elfheader (abfd)->e_phnum;
8567 memcpy (phdrs, elf_tdata (abfd)->phdr,
8568 num_phdrs * sizeof (Elf_Internal_Phdr));
8569
8570 return num_phdrs;
8571 }
8572
8573 enum elf_reloc_type_class
8574 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8575 {
8576 return reloc_class_normal;
8577 }
8578
8579 /* For RELA architectures, return the relocation value for a
8580 relocation against a local symbol. */
8581
8582 bfd_vma
8583 _bfd_elf_rela_local_sym (bfd *abfd,
8584 Elf_Internal_Sym *sym,
8585 asection **psec,
8586 Elf_Internal_Rela *rel)
8587 {
8588 asection *sec = *psec;
8589 bfd_vma relocation;
8590
8591 relocation = (sec->output_section->vma
8592 + sec->output_offset
8593 + sym->st_value);
8594 if ((sec->flags & SEC_MERGE)
8595 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8596 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8597 {
8598 rel->r_addend =
8599 _bfd_merged_section_offset (abfd, psec,
8600 elf_section_data (sec)->sec_info,
8601 sym->st_value + rel->r_addend);
8602 if (sec != *psec)
8603 {
8604 /* If we have changed the section, and our original section is
8605 marked with SEC_EXCLUDE, it means that the original
8606 SEC_MERGE section has been completely subsumed in some
8607 other SEC_MERGE section. In this case, we need to leave
8608 some info around for --emit-relocs. */
8609 if ((sec->flags & SEC_EXCLUDE) != 0)
8610 sec->kept_section = *psec;
8611 sec = *psec;
8612 }
8613 rel->r_addend -= relocation;
8614 rel->r_addend += sec->output_section->vma + sec->output_offset;
8615 }
8616 return relocation;
8617 }
8618
8619 bfd_vma
8620 _bfd_elf_rel_local_sym (bfd *abfd,
8621 Elf_Internal_Sym *sym,
8622 asection **psec,
8623 bfd_vma addend)
8624 {
8625 asection *sec = *psec;
8626
8627 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8628 return sym->st_value + addend;
8629
8630 return _bfd_merged_section_offset (abfd, psec,
8631 elf_section_data (sec)->sec_info,
8632 sym->st_value + addend);
8633 }
8634
8635 bfd_vma
8636 _bfd_elf_section_offset (bfd *abfd,
8637 struct bfd_link_info *info,
8638 asection *sec,
8639 bfd_vma offset)
8640 {
8641 switch (sec->sec_info_type)
8642 {
8643 case ELF_INFO_TYPE_STABS:
8644 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8645 offset);
8646 case ELF_INFO_TYPE_EH_FRAME:
8647 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8648 default:
8649 return offset;
8650 }
8651 }
8652 \f
8653 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8654 reconstruct an ELF file by reading the segments out of remote memory
8655 based on the ELF file header at EHDR_VMA and the ELF program headers it
8656 points to. If not null, *LOADBASEP is filled in with the difference
8657 between the VMAs from which the segments were read, and the VMAs the
8658 file headers (and hence BFD's idea of each section's VMA) put them at.
8659
8660 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8661 remote memory at target address VMA into the local buffer at MYADDR; it
8662 should return zero on success or an `errno' code on failure. TEMPL must
8663 be a BFD for an ELF target with the word size and byte order found in
8664 the remote memory. */
8665
8666 bfd *
8667 bfd_elf_bfd_from_remote_memory
8668 (bfd *templ,
8669 bfd_vma ehdr_vma,
8670 bfd_vma *loadbasep,
8671 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8672 {
8673 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8674 (templ, ehdr_vma, loadbasep, target_read_memory);
8675 }
8676 \f
8677 long
8678 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8679 long symcount ATTRIBUTE_UNUSED,
8680 asymbol **syms ATTRIBUTE_UNUSED,
8681 long dynsymcount,
8682 asymbol **dynsyms,
8683 asymbol **ret)
8684 {
8685 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8686 asection *relplt;
8687 asymbol *s;
8688 const char *relplt_name;
8689 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8690 arelent *p;
8691 long count, i, n;
8692 size_t size;
8693 Elf_Internal_Shdr *hdr;
8694 char *names;
8695 asection *plt;
8696
8697 *ret = NULL;
8698
8699 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8700 return 0;
8701
8702 if (dynsymcount <= 0)
8703 return 0;
8704
8705 if (!bed->plt_sym_val)
8706 return 0;
8707
8708 relplt_name = bed->relplt_name;
8709 if (relplt_name == NULL)
8710 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8711 relplt = bfd_get_section_by_name (abfd, relplt_name);
8712 if (relplt == NULL)
8713 return 0;
8714
8715 hdr = &elf_section_data (relplt)->this_hdr;
8716 if (hdr->sh_link != elf_dynsymtab (abfd)
8717 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8718 return 0;
8719
8720 plt = bfd_get_section_by_name (abfd, ".plt");
8721 if (plt == NULL)
8722 return 0;
8723
8724 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8725 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8726 return -1;
8727
8728 count = relplt->size / hdr->sh_entsize;
8729 size = count * sizeof (asymbol);
8730 p = relplt->relocation;
8731 for (i = 0; i < count; i++, p++)
8732 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8733
8734 s = *ret = bfd_malloc (size);
8735 if (s == NULL)
8736 return -1;
8737
8738 names = (char *) (s + count);
8739 p = relplt->relocation;
8740 n = 0;
8741 for (i = 0; i < count; i++, p++)
8742 {
8743 size_t len;
8744 bfd_vma addr;
8745
8746 addr = bed->plt_sym_val (i, plt, p);
8747 if (addr == (bfd_vma) -1)
8748 continue;
8749
8750 *s = **p->sym_ptr_ptr;
8751 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8752 we are defining a symbol, ensure one of them is set. */
8753 if ((s->flags & BSF_LOCAL) == 0)
8754 s->flags |= BSF_GLOBAL;
8755 s->section = plt;
8756 s->value = addr - plt->vma;
8757 s->name = names;
8758 s->udata.p = NULL;
8759 len = strlen ((*p->sym_ptr_ptr)->name);
8760 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8761 names += len;
8762 memcpy (names, "@plt", sizeof ("@plt"));
8763 names += sizeof ("@plt");
8764 ++s, ++n;
8765 }
8766
8767 return n;
8768 }
8769
8770 /* It is only used by x86-64 so far. */
8771 asection _bfd_elf_large_com_section
8772 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8773 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8774
8775 void
8776 _bfd_elf_set_osabi (bfd * abfd,
8777 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
8778 {
8779 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
8780
8781 i_ehdrp = elf_elfheader (abfd);
8782
8783 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
8784 }
8785
8786
8787 /* Return TRUE for ELF symbol types that represent functions.
8788 This is the default version of this function, which is sufficient for
8789 most targets. It returns true if TYPE is STT_FUNC. */
8790
8791 bfd_boolean
8792 _bfd_elf_is_function_type (unsigned int type)
8793 {
8794 return (type == STT_FUNC);
8795 }