]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf.c
2007-08-09 H.J. Lu <hongjiu.lu@intel.com>
[thirdparty/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23
24 /*
25 SECTION
26 ELF backends
27
28 BFD support for ELF formats is being worked on.
29 Currently, the best supported back ends are for sparc and i386
30 (running svr4 or Solaris 2).
31
32 Documentation of the internals of the support code still needs
33 to be written. The code is changing quickly enough that we
34 haven't bothered yet. */
35
36 /* For sparc64-cross-sparc32. */
37 #define _SYSCALL32
38 #include "sysdep.h"
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46
47 static int elf_sort_sections (const void *, const void *);
48 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
49 static bfd_boolean prep_headers (bfd *);
50 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
51 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
52
53 /* Swap version information in and out. The version information is
54 currently size independent. If that ever changes, this code will
55 need to move into elfcode.h. */
56
57 /* Swap in a Verdef structure. */
58
59 void
60 _bfd_elf_swap_verdef_in (bfd *abfd,
61 const Elf_External_Verdef *src,
62 Elf_Internal_Verdef *dst)
63 {
64 dst->vd_version = H_GET_16 (abfd, src->vd_version);
65 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
66 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
67 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
68 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
69 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
70 dst->vd_next = H_GET_32 (abfd, src->vd_next);
71 }
72
73 /* Swap out a Verdef structure. */
74
75 void
76 _bfd_elf_swap_verdef_out (bfd *abfd,
77 const Elf_Internal_Verdef *src,
78 Elf_External_Verdef *dst)
79 {
80 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
81 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
82 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
83 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
84 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
85 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
86 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
87 }
88
89 /* Swap in a Verdaux structure. */
90
91 void
92 _bfd_elf_swap_verdaux_in (bfd *abfd,
93 const Elf_External_Verdaux *src,
94 Elf_Internal_Verdaux *dst)
95 {
96 dst->vda_name = H_GET_32 (abfd, src->vda_name);
97 dst->vda_next = H_GET_32 (abfd, src->vda_next);
98 }
99
100 /* Swap out a Verdaux structure. */
101
102 void
103 _bfd_elf_swap_verdaux_out (bfd *abfd,
104 const Elf_Internal_Verdaux *src,
105 Elf_External_Verdaux *dst)
106 {
107 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
108 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
109 }
110
111 /* Swap in a Verneed structure. */
112
113 void
114 _bfd_elf_swap_verneed_in (bfd *abfd,
115 const Elf_External_Verneed *src,
116 Elf_Internal_Verneed *dst)
117 {
118 dst->vn_version = H_GET_16 (abfd, src->vn_version);
119 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
120 dst->vn_file = H_GET_32 (abfd, src->vn_file);
121 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
122 dst->vn_next = H_GET_32 (abfd, src->vn_next);
123 }
124
125 /* Swap out a Verneed structure. */
126
127 void
128 _bfd_elf_swap_verneed_out (bfd *abfd,
129 const Elf_Internal_Verneed *src,
130 Elf_External_Verneed *dst)
131 {
132 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
133 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
134 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
135 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
136 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
137 }
138
139 /* Swap in a Vernaux structure. */
140
141 void
142 _bfd_elf_swap_vernaux_in (bfd *abfd,
143 const Elf_External_Vernaux *src,
144 Elf_Internal_Vernaux *dst)
145 {
146 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
147 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
148 dst->vna_other = H_GET_16 (abfd, src->vna_other);
149 dst->vna_name = H_GET_32 (abfd, src->vna_name);
150 dst->vna_next = H_GET_32 (abfd, src->vna_next);
151 }
152
153 /* Swap out a Vernaux structure. */
154
155 void
156 _bfd_elf_swap_vernaux_out (bfd *abfd,
157 const Elf_Internal_Vernaux *src,
158 Elf_External_Vernaux *dst)
159 {
160 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
161 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
162 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
163 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
164 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
165 }
166
167 /* Swap in a Versym structure. */
168
169 void
170 _bfd_elf_swap_versym_in (bfd *abfd,
171 const Elf_External_Versym *src,
172 Elf_Internal_Versym *dst)
173 {
174 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
175 }
176
177 /* Swap out a Versym structure. */
178
179 void
180 _bfd_elf_swap_versym_out (bfd *abfd,
181 const Elf_Internal_Versym *src,
182 Elf_External_Versym *dst)
183 {
184 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
185 }
186
187 /* Standard ELF hash function. Do not change this function; you will
188 cause invalid hash tables to be generated. */
189
190 unsigned long
191 bfd_elf_hash (const char *namearg)
192 {
193 const unsigned char *name = (const unsigned char *) namearg;
194 unsigned long h = 0;
195 unsigned long g;
196 int ch;
197
198 while ((ch = *name++) != '\0')
199 {
200 h = (h << 4) + ch;
201 if ((g = (h & 0xf0000000)) != 0)
202 {
203 h ^= g >> 24;
204 /* The ELF ABI says `h &= ~g', but this is equivalent in
205 this case and on some machines one insn instead of two. */
206 h ^= g;
207 }
208 }
209 return h & 0xffffffff;
210 }
211
212 /* DT_GNU_HASH hash function. Do not change this function; you will
213 cause invalid hash tables to be generated. */
214
215 unsigned long
216 bfd_elf_gnu_hash (const char *namearg)
217 {
218 const unsigned char *name = (const unsigned char *) namearg;
219 unsigned long h = 5381;
220 unsigned char ch;
221
222 while ((ch = *name++) != '\0')
223 h = (h << 5) + h + ch;
224 return h & 0xffffffff;
225 }
226
227 bfd_boolean
228 bfd_elf_mkobject (bfd *abfd)
229 {
230 if (abfd->tdata.any == NULL)
231 {
232 abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
233 if (abfd->tdata.any == NULL)
234 return FALSE;
235 }
236
237 elf_tdata (abfd)->program_header_size = (bfd_size_type) -1;
238
239 return TRUE;
240 }
241
242 bfd_boolean
243 bfd_elf_mkcorefile (bfd *abfd)
244 {
245 /* I think this can be done just like an object file. */
246 return bfd_elf_mkobject (abfd);
247 }
248
249 char *
250 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
251 {
252 Elf_Internal_Shdr **i_shdrp;
253 bfd_byte *shstrtab = NULL;
254 file_ptr offset;
255 bfd_size_type shstrtabsize;
256
257 i_shdrp = elf_elfsections (abfd);
258 if (i_shdrp == 0
259 || shindex >= elf_numsections (abfd)
260 || i_shdrp[shindex] == 0)
261 return NULL;
262
263 shstrtab = i_shdrp[shindex]->contents;
264 if (shstrtab == NULL)
265 {
266 /* No cached one, attempt to read, and cache what we read. */
267 offset = i_shdrp[shindex]->sh_offset;
268 shstrtabsize = i_shdrp[shindex]->sh_size;
269
270 /* Allocate and clear an extra byte at the end, to prevent crashes
271 in case the string table is not terminated. */
272 if (shstrtabsize + 1 == 0
273 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
274 || bfd_seek (abfd, offset, SEEK_SET) != 0)
275 shstrtab = NULL;
276 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
277 {
278 if (bfd_get_error () != bfd_error_system_call)
279 bfd_set_error (bfd_error_file_truncated);
280 shstrtab = NULL;
281 }
282 else
283 shstrtab[shstrtabsize] = '\0';
284 i_shdrp[shindex]->contents = shstrtab;
285 }
286 return (char *) shstrtab;
287 }
288
289 char *
290 bfd_elf_string_from_elf_section (bfd *abfd,
291 unsigned int shindex,
292 unsigned int strindex)
293 {
294 Elf_Internal_Shdr *hdr;
295
296 if (strindex == 0)
297 return "";
298
299 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
300 return NULL;
301
302 hdr = elf_elfsections (abfd)[shindex];
303
304 if (hdr->contents == NULL
305 && bfd_elf_get_str_section (abfd, shindex) == NULL)
306 return NULL;
307
308 if (strindex >= hdr->sh_size)
309 {
310 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
311 (*_bfd_error_handler)
312 (_("%B: invalid string offset %u >= %lu for section `%s'"),
313 abfd, strindex, (unsigned long) hdr->sh_size,
314 (shindex == shstrndx && strindex == hdr->sh_name
315 ? ".shstrtab"
316 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
317 return "";
318 }
319
320 return ((char *) hdr->contents) + strindex;
321 }
322
323 /* Read and convert symbols to internal format.
324 SYMCOUNT specifies the number of symbols to read, starting from
325 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
326 are non-NULL, they are used to store the internal symbols, external
327 symbols, and symbol section index extensions, respectively. */
328
329 Elf_Internal_Sym *
330 bfd_elf_get_elf_syms (bfd *ibfd,
331 Elf_Internal_Shdr *symtab_hdr,
332 size_t symcount,
333 size_t symoffset,
334 Elf_Internal_Sym *intsym_buf,
335 void *extsym_buf,
336 Elf_External_Sym_Shndx *extshndx_buf)
337 {
338 Elf_Internal_Shdr *shndx_hdr;
339 void *alloc_ext;
340 const bfd_byte *esym;
341 Elf_External_Sym_Shndx *alloc_extshndx;
342 Elf_External_Sym_Shndx *shndx;
343 Elf_Internal_Sym *isym;
344 Elf_Internal_Sym *isymend;
345 const struct elf_backend_data *bed;
346 size_t extsym_size;
347 bfd_size_type amt;
348 file_ptr pos;
349
350 if (symcount == 0)
351 return intsym_buf;
352
353 /* Normal syms might have section extension entries. */
354 shndx_hdr = NULL;
355 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
356 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
357
358 /* Read the symbols. */
359 alloc_ext = NULL;
360 alloc_extshndx = NULL;
361 bed = get_elf_backend_data (ibfd);
362 extsym_size = bed->s->sizeof_sym;
363 amt = symcount * extsym_size;
364 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
365 if (extsym_buf == NULL)
366 {
367 alloc_ext = bfd_malloc2 (symcount, extsym_size);
368 extsym_buf = alloc_ext;
369 }
370 if (extsym_buf == NULL
371 || bfd_seek (ibfd, pos, SEEK_SET) != 0
372 || bfd_bread (extsym_buf, amt, ibfd) != amt)
373 {
374 intsym_buf = NULL;
375 goto out;
376 }
377
378 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
379 extshndx_buf = NULL;
380 else
381 {
382 amt = symcount * sizeof (Elf_External_Sym_Shndx);
383 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
384 if (extshndx_buf == NULL)
385 {
386 alloc_extshndx = bfd_malloc2 (symcount,
387 sizeof (Elf_External_Sym_Shndx));
388 extshndx_buf = alloc_extshndx;
389 }
390 if (extshndx_buf == NULL
391 || bfd_seek (ibfd, pos, SEEK_SET) != 0
392 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
393 {
394 intsym_buf = NULL;
395 goto out;
396 }
397 }
398
399 if (intsym_buf == NULL)
400 {
401 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
402 if (intsym_buf == NULL)
403 goto out;
404 }
405
406 /* Convert the symbols to internal form. */
407 isymend = intsym_buf + symcount;
408 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
409 isym < isymend;
410 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
411 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
412 {
413 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
414 (*_bfd_error_handler) (_("%B symbol number %lu references "
415 "nonexistent SHT_SYMTAB_SHNDX section"),
416 ibfd, (unsigned long) symoffset);
417 intsym_buf = NULL;
418 goto out;
419 }
420
421 out:
422 if (alloc_ext != NULL)
423 free (alloc_ext);
424 if (alloc_extshndx != NULL)
425 free (alloc_extshndx);
426
427 return intsym_buf;
428 }
429
430 /* Look up a symbol name. */
431 const char *
432 bfd_elf_sym_name (bfd *abfd,
433 Elf_Internal_Shdr *symtab_hdr,
434 Elf_Internal_Sym *isym,
435 asection *sym_sec)
436 {
437 const char *name;
438 unsigned int iname = isym->st_name;
439 unsigned int shindex = symtab_hdr->sh_link;
440
441 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
442 /* Check for a bogus st_shndx to avoid crashing. */
443 && isym->st_shndx < elf_numsections (abfd)
444 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
445 {
446 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
447 shindex = elf_elfheader (abfd)->e_shstrndx;
448 }
449
450 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
451 if (name == NULL)
452 name = "(null)";
453 else if (sym_sec && *name == '\0')
454 name = bfd_section_name (abfd, sym_sec);
455
456 return name;
457 }
458
459 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
460 sections. The first element is the flags, the rest are section
461 pointers. */
462
463 typedef union elf_internal_group {
464 Elf_Internal_Shdr *shdr;
465 unsigned int flags;
466 } Elf_Internal_Group;
467
468 /* Return the name of the group signature symbol. Why isn't the
469 signature just a string? */
470
471 static const char *
472 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
473 {
474 Elf_Internal_Shdr *hdr;
475 unsigned char esym[sizeof (Elf64_External_Sym)];
476 Elf_External_Sym_Shndx eshndx;
477 Elf_Internal_Sym isym;
478
479 /* First we need to ensure the symbol table is available. Make sure
480 that it is a symbol table section. */
481 hdr = elf_elfsections (abfd) [ghdr->sh_link];
482 if (hdr->sh_type != SHT_SYMTAB
483 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
484 return NULL;
485
486 /* Go read the symbol. */
487 hdr = &elf_tdata (abfd)->symtab_hdr;
488 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
489 &isym, esym, &eshndx) == NULL)
490 return NULL;
491
492 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
493 }
494
495 /* Set next_in_group list pointer, and group name for NEWSECT. */
496
497 static bfd_boolean
498 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
499 {
500 unsigned int num_group = elf_tdata (abfd)->num_group;
501
502 /* If num_group is zero, read in all SHT_GROUP sections. The count
503 is set to -1 if there are no SHT_GROUP sections. */
504 if (num_group == 0)
505 {
506 unsigned int i, shnum;
507
508 /* First count the number of groups. If we have a SHT_GROUP
509 section with just a flag word (ie. sh_size is 4), ignore it. */
510 shnum = elf_numsections (abfd);
511 num_group = 0;
512
513 #define IS_VALID_GROUP_SECTION_HEADER(shdr) \
514 ( (shdr)->sh_type == SHT_GROUP \
515 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
516 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
517 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
518
519 for (i = 0; i < shnum; i++)
520 {
521 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
522
523 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
524 num_group += 1;
525 }
526
527 if (num_group == 0)
528 {
529 num_group = (unsigned) -1;
530 elf_tdata (abfd)->num_group = num_group;
531 }
532 else
533 {
534 /* We keep a list of elf section headers for group sections,
535 so we can find them quickly. */
536 bfd_size_type amt;
537
538 elf_tdata (abfd)->num_group = num_group;
539 elf_tdata (abfd)->group_sect_ptr
540 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
541 if (elf_tdata (abfd)->group_sect_ptr == NULL)
542 return FALSE;
543
544 num_group = 0;
545 for (i = 0; i < shnum; i++)
546 {
547 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
548
549 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
550 {
551 unsigned char *src;
552 Elf_Internal_Group *dest;
553
554 /* Add to list of sections. */
555 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
556 num_group += 1;
557
558 /* Read the raw contents. */
559 BFD_ASSERT (sizeof (*dest) >= 4);
560 amt = shdr->sh_size * sizeof (*dest) / 4;
561 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
562 sizeof (*dest) / 4);
563 /* PR binutils/4110: Handle corrupt group headers. */
564 if (shdr->contents == NULL)
565 {
566 _bfd_error_handler
567 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
568 bfd_set_error (bfd_error_bad_value);
569 return FALSE;
570 }
571
572 memset (shdr->contents, 0, amt);
573
574 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
575 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
576 != shdr->sh_size))
577 return FALSE;
578
579 /* Translate raw contents, a flag word followed by an
580 array of elf section indices all in target byte order,
581 to the flag word followed by an array of elf section
582 pointers. */
583 src = shdr->contents + shdr->sh_size;
584 dest = (Elf_Internal_Group *) (shdr->contents + amt);
585 while (1)
586 {
587 unsigned int idx;
588
589 src -= 4;
590 --dest;
591 idx = H_GET_32 (abfd, src);
592 if (src == shdr->contents)
593 {
594 dest->flags = idx;
595 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
596 shdr->bfd_section->flags
597 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
598 break;
599 }
600 if (idx >= shnum)
601 {
602 ((*_bfd_error_handler)
603 (_("%B: invalid SHT_GROUP entry"), abfd));
604 idx = 0;
605 }
606 dest->shdr = elf_elfsections (abfd)[idx];
607 }
608 }
609 }
610 }
611 }
612
613 if (num_group != (unsigned) -1)
614 {
615 unsigned int i;
616
617 for (i = 0; i < num_group; i++)
618 {
619 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
620 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
621 unsigned int n_elt = shdr->sh_size / 4;
622
623 /* Look through this group's sections to see if current
624 section is a member. */
625 while (--n_elt != 0)
626 if ((++idx)->shdr == hdr)
627 {
628 asection *s = NULL;
629
630 /* We are a member of this group. Go looking through
631 other members to see if any others are linked via
632 next_in_group. */
633 idx = (Elf_Internal_Group *) shdr->contents;
634 n_elt = shdr->sh_size / 4;
635 while (--n_elt != 0)
636 if ((s = (++idx)->shdr->bfd_section) != NULL
637 && elf_next_in_group (s) != NULL)
638 break;
639 if (n_elt != 0)
640 {
641 /* Snarf the group name from other member, and
642 insert current section in circular list. */
643 elf_group_name (newsect) = elf_group_name (s);
644 elf_next_in_group (newsect) = elf_next_in_group (s);
645 elf_next_in_group (s) = newsect;
646 }
647 else
648 {
649 const char *gname;
650
651 gname = group_signature (abfd, shdr);
652 if (gname == NULL)
653 return FALSE;
654 elf_group_name (newsect) = gname;
655
656 /* Start a circular list with one element. */
657 elf_next_in_group (newsect) = newsect;
658 }
659
660 /* If the group section has been created, point to the
661 new member. */
662 if (shdr->bfd_section != NULL)
663 elf_next_in_group (shdr->bfd_section) = newsect;
664
665 i = num_group - 1;
666 break;
667 }
668 }
669 }
670
671 if (elf_group_name (newsect) == NULL)
672 {
673 (*_bfd_error_handler) (_("%B: no group info for section %A"),
674 abfd, newsect);
675 }
676 return TRUE;
677 }
678
679 bfd_boolean
680 _bfd_elf_setup_sections (bfd *abfd)
681 {
682 unsigned int i;
683 unsigned int num_group = elf_tdata (abfd)->num_group;
684 bfd_boolean result = TRUE;
685 asection *s;
686
687 /* Process SHF_LINK_ORDER. */
688 for (s = abfd->sections; s != NULL; s = s->next)
689 {
690 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
691 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
692 {
693 unsigned int elfsec = this_hdr->sh_link;
694 /* FIXME: The old Intel compiler and old strip/objcopy may
695 not set the sh_link or sh_info fields. Hence we could
696 get the situation where elfsec is 0. */
697 if (elfsec == 0)
698 {
699 const struct elf_backend_data *bed
700 = get_elf_backend_data (abfd);
701 if (bed->link_order_error_handler)
702 bed->link_order_error_handler
703 (_("%B: warning: sh_link not set for section `%A'"),
704 abfd, s);
705 }
706 else
707 {
708 asection *link;
709
710 this_hdr = elf_elfsections (abfd)[elfsec];
711
712 /* PR 1991, 2008:
713 Some strip/objcopy may leave an incorrect value in
714 sh_link. We don't want to proceed. */
715 link = this_hdr->bfd_section;
716 if (link == NULL)
717 {
718 (*_bfd_error_handler)
719 (_("%B: sh_link [%d] in section `%A' is incorrect"),
720 s->owner, s, elfsec);
721 result = FALSE;
722 }
723
724 elf_linked_to_section (s) = link;
725 }
726 }
727 }
728
729 /* Process section groups. */
730 if (num_group == (unsigned) -1)
731 return result;
732
733 for (i = 0; i < num_group; i++)
734 {
735 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
736 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
737 unsigned int n_elt = shdr->sh_size / 4;
738
739 while (--n_elt != 0)
740 if ((++idx)->shdr->bfd_section)
741 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
742 else if (idx->shdr->sh_type == SHT_RELA
743 || idx->shdr->sh_type == SHT_REL)
744 /* We won't include relocation sections in section groups in
745 output object files. We adjust the group section size here
746 so that relocatable link will work correctly when
747 relocation sections are in section group in input object
748 files. */
749 shdr->bfd_section->size -= 4;
750 else
751 {
752 /* There are some unknown sections in the group. */
753 (*_bfd_error_handler)
754 (_("%B: unknown [%d] section `%s' in group [%s]"),
755 abfd,
756 (unsigned int) idx->shdr->sh_type,
757 bfd_elf_string_from_elf_section (abfd,
758 (elf_elfheader (abfd)
759 ->e_shstrndx),
760 idx->shdr->sh_name),
761 shdr->bfd_section->name);
762 result = FALSE;
763 }
764 }
765 return result;
766 }
767
768 bfd_boolean
769 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
770 {
771 return elf_next_in_group (sec) != NULL;
772 }
773
774 /* Make a BFD section from an ELF section. We store a pointer to the
775 BFD section in the bfd_section field of the header. */
776
777 bfd_boolean
778 _bfd_elf_make_section_from_shdr (bfd *abfd,
779 Elf_Internal_Shdr *hdr,
780 const char *name,
781 int shindex)
782 {
783 asection *newsect;
784 flagword flags;
785 const struct elf_backend_data *bed;
786
787 if (hdr->bfd_section != NULL)
788 {
789 BFD_ASSERT (strcmp (name,
790 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
791 return TRUE;
792 }
793
794 newsect = bfd_make_section_anyway (abfd, name);
795 if (newsect == NULL)
796 return FALSE;
797
798 hdr->bfd_section = newsect;
799 elf_section_data (newsect)->this_hdr = *hdr;
800 elf_section_data (newsect)->this_idx = shindex;
801
802 /* Always use the real type/flags. */
803 elf_section_type (newsect) = hdr->sh_type;
804 elf_section_flags (newsect) = hdr->sh_flags;
805
806 newsect->filepos = hdr->sh_offset;
807
808 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
809 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
810 || ! bfd_set_section_alignment (abfd, newsect,
811 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
812 return FALSE;
813
814 flags = SEC_NO_FLAGS;
815 if (hdr->sh_type != SHT_NOBITS)
816 flags |= SEC_HAS_CONTENTS;
817 if (hdr->sh_type == SHT_GROUP)
818 flags |= SEC_GROUP | SEC_EXCLUDE;
819 if ((hdr->sh_flags & SHF_ALLOC) != 0)
820 {
821 flags |= SEC_ALLOC;
822 if (hdr->sh_type != SHT_NOBITS)
823 flags |= SEC_LOAD;
824 }
825 if ((hdr->sh_flags & SHF_WRITE) == 0)
826 flags |= SEC_READONLY;
827 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
828 flags |= SEC_CODE;
829 else if ((flags & SEC_LOAD) != 0)
830 flags |= SEC_DATA;
831 if ((hdr->sh_flags & SHF_MERGE) != 0)
832 {
833 flags |= SEC_MERGE;
834 newsect->entsize = hdr->sh_entsize;
835 if ((hdr->sh_flags & SHF_STRINGS) != 0)
836 flags |= SEC_STRINGS;
837 }
838 if (hdr->sh_flags & SHF_GROUP)
839 if (!setup_group (abfd, hdr, newsect))
840 return FALSE;
841 if ((hdr->sh_flags & SHF_TLS) != 0)
842 flags |= SEC_THREAD_LOCAL;
843
844 if ((flags & SEC_ALLOC) == 0)
845 {
846 /* The debugging sections appear to be recognized only by name,
847 not any sort of flag. Their SEC_ALLOC bits are cleared. */
848 static const struct
849 {
850 const char *name;
851 int len;
852 } debug_sections [] =
853 {
854 { STRING_COMMA_LEN ("debug") }, /* 'd' */
855 { NULL, 0 }, /* 'e' */
856 { NULL, 0 }, /* 'f' */
857 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
858 { NULL, 0 }, /* 'h' */
859 { NULL, 0 }, /* 'i' */
860 { NULL, 0 }, /* 'j' */
861 { NULL, 0 }, /* 'k' */
862 { STRING_COMMA_LEN ("line") }, /* 'l' */
863 { NULL, 0 }, /* 'm' */
864 { NULL, 0 }, /* 'n' */
865 { NULL, 0 }, /* 'o' */
866 { NULL, 0 }, /* 'p' */
867 { NULL, 0 }, /* 'q' */
868 { NULL, 0 }, /* 'r' */
869 { STRING_COMMA_LEN ("stab") } /* 's' */
870 };
871
872 if (name [0] == '.')
873 {
874 int i = name [1] - 'd';
875 if (i >= 0
876 && i < (int) ARRAY_SIZE (debug_sections)
877 && debug_sections [i].name != NULL
878 && strncmp (&name [1], debug_sections [i].name,
879 debug_sections [i].len) == 0)
880 flags |= SEC_DEBUGGING;
881 }
882 }
883
884 /* As a GNU extension, if the name begins with .gnu.linkonce, we
885 only link a single copy of the section. This is used to support
886 g++. g++ will emit each template expansion in its own section.
887 The symbols will be defined as weak, so that multiple definitions
888 are permitted. The GNU linker extension is to actually discard
889 all but one of the sections. */
890 if (CONST_STRNEQ (name, ".gnu.linkonce")
891 && elf_next_in_group (newsect) == NULL)
892 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
893
894 bed = get_elf_backend_data (abfd);
895 if (bed->elf_backend_section_flags)
896 if (! bed->elf_backend_section_flags (&flags, hdr))
897 return FALSE;
898
899 if (! bfd_set_section_flags (abfd, newsect, flags))
900 return FALSE;
901
902 if ((flags & SEC_ALLOC) != 0)
903 {
904 Elf_Internal_Phdr *phdr;
905 unsigned int i;
906
907 /* Look through the phdrs to see if we need to adjust the lma.
908 If all the p_paddr fields are zero, we ignore them, since
909 some ELF linkers produce such output. */
910 phdr = elf_tdata (abfd)->phdr;
911 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
912 {
913 if (phdr->p_paddr != 0)
914 break;
915 }
916 if (i < elf_elfheader (abfd)->e_phnum)
917 {
918 phdr = elf_tdata (abfd)->phdr;
919 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
920 {
921 /* This section is part of this segment if its file
922 offset plus size lies within the segment's memory
923 span and, if the section is loaded, the extent of the
924 loaded data lies within the extent of the segment.
925
926 Note - we used to check the p_paddr field as well, and
927 refuse to set the LMA if it was 0. This is wrong
928 though, as a perfectly valid initialised segment can
929 have a p_paddr of zero. Some architectures, eg ARM,
930 place special significance on the address 0 and
931 executables need to be able to have a segment which
932 covers this address. */
933 if (phdr->p_type == PT_LOAD
934 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
935 && (hdr->sh_offset + hdr->sh_size
936 <= phdr->p_offset + phdr->p_memsz)
937 && ((flags & SEC_LOAD) == 0
938 || (hdr->sh_offset + hdr->sh_size
939 <= phdr->p_offset + phdr->p_filesz)))
940 {
941 if ((flags & SEC_LOAD) == 0)
942 newsect->lma = (phdr->p_paddr
943 + hdr->sh_addr - phdr->p_vaddr);
944 else
945 /* We used to use the same adjustment for SEC_LOAD
946 sections, but that doesn't work if the segment
947 is packed with code from multiple VMAs.
948 Instead we calculate the section LMA based on
949 the segment LMA. It is assumed that the
950 segment will contain sections with contiguous
951 LMAs, even if the VMAs are not. */
952 newsect->lma = (phdr->p_paddr
953 + hdr->sh_offset - phdr->p_offset);
954
955 /* With contiguous segments, we can't tell from file
956 offsets whether a section with zero size should
957 be placed at the end of one segment or the
958 beginning of the next. Decide based on vaddr. */
959 if (hdr->sh_addr >= phdr->p_vaddr
960 && (hdr->sh_addr + hdr->sh_size
961 <= phdr->p_vaddr + phdr->p_memsz))
962 break;
963 }
964 }
965 }
966 }
967
968 return TRUE;
969 }
970
971 /*
972 INTERNAL_FUNCTION
973 bfd_elf_find_section
974
975 SYNOPSIS
976 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
977
978 DESCRIPTION
979 Helper functions for GDB to locate the string tables.
980 Since BFD hides string tables from callers, GDB needs to use an
981 internal hook to find them. Sun's .stabstr, in particular,
982 isn't even pointed to by the .stab section, so ordinary
983 mechanisms wouldn't work to find it, even if we had some.
984 */
985
986 struct elf_internal_shdr *
987 bfd_elf_find_section (bfd *abfd, char *name)
988 {
989 Elf_Internal_Shdr **i_shdrp;
990 char *shstrtab;
991 unsigned int max;
992 unsigned int i;
993
994 i_shdrp = elf_elfsections (abfd);
995 if (i_shdrp != NULL)
996 {
997 shstrtab = bfd_elf_get_str_section (abfd,
998 elf_elfheader (abfd)->e_shstrndx);
999 if (shstrtab != NULL)
1000 {
1001 max = elf_numsections (abfd);
1002 for (i = 1; i < max; i++)
1003 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
1004 return i_shdrp[i];
1005 }
1006 }
1007 return 0;
1008 }
1009
1010 const char *const bfd_elf_section_type_names[] = {
1011 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1012 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1013 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1014 };
1015
1016 /* ELF relocs are against symbols. If we are producing relocatable
1017 output, and the reloc is against an external symbol, and nothing
1018 has given us any additional addend, the resulting reloc will also
1019 be against the same symbol. In such a case, we don't want to
1020 change anything about the way the reloc is handled, since it will
1021 all be done at final link time. Rather than put special case code
1022 into bfd_perform_relocation, all the reloc types use this howto
1023 function. It just short circuits the reloc if producing
1024 relocatable output against an external symbol. */
1025
1026 bfd_reloc_status_type
1027 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1028 arelent *reloc_entry,
1029 asymbol *symbol,
1030 void *data ATTRIBUTE_UNUSED,
1031 asection *input_section,
1032 bfd *output_bfd,
1033 char **error_message ATTRIBUTE_UNUSED)
1034 {
1035 if (output_bfd != NULL
1036 && (symbol->flags & BSF_SECTION_SYM) == 0
1037 && (! reloc_entry->howto->partial_inplace
1038 || reloc_entry->addend == 0))
1039 {
1040 reloc_entry->address += input_section->output_offset;
1041 return bfd_reloc_ok;
1042 }
1043
1044 return bfd_reloc_continue;
1045 }
1046 \f
1047 /* Copy the program header and other data from one object module to
1048 another. */
1049
1050 bfd_boolean
1051 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1052 {
1053 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1054 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1055 return TRUE;
1056
1057 BFD_ASSERT (!elf_flags_init (obfd)
1058 || (elf_elfheader (obfd)->e_flags
1059 == elf_elfheader (ibfd)->e_flags));
1060
1061 elf_gp (obfd) = elf_gp (ibfd);
1062 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1063 elf_flags_init (obfd) = TRUE;
1064
1065 /* Copy object attributes. */
1066 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1067
1068 return TRUE;
1069 }
1070
1071 static const char *
1072 get_segment_type (unsigned int p_type)
1073 {
1074 const char *pt;
1075 switch (p_type)
1076 {
1077 case PT_NULL: pt = "NULL"; break;
1078 case PT_LOAD: pt = "LOAD"; break;
1079 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1080 case PT_INTERP: pt = "INTERP"; break;
1081 case PT_NOTE: pt = "NOTE"; break;
1082 case PT_SHLIB: pt = "SHLIB"; break;
1083 case PT_PHDR: pt = "PHDR"; break;
1084 case PT_TLS: pt = "TLS"; break;
1085 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1086 case PT_GNU_STACK: pt = "STACK"; break;
1087 case PT_GNU_RELRO: pt = "RELRO"; break;
1088 default: pt = NULL; break;
1089 }
1090 return pt;
1091 }
1092
1093 /* Print out the program headers. */
1094
1095 bfd_boolean
1096 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1097 {
1098 FILE *f = farg;
1099 Elf_Internal_Phdr *p;
1100 asection *s;
1101 bfd_byte *dynbuf = NULL;
1102
1103 p = elf_tdata (abfd)->phdr;
1104 if (p != NULL)
1105 {
1106 unsigned int i, c;
1107
1108 fprintf (f, _("\nProgram Header:\n"));
1109 c = elf_elfheader (abfd)->e_phnum;
1110 for (i = 0; i < c; i++, p++)
1111 {
1112 const char *pt = get_segment_type (p->p_type);
1113 char buf[20];
1114
1115 if (pt == NULL)
1116 {
1117 sprintf (buf, "0x%lx", p->p_type);
1118 pt = buf;
1119 }
1120 fprintf (f, "%8s off 0x", pt);
1121 bfd_fprintf_vma (abfd, f, p->p_offset);
1122 fprintf (f, " vaddr 0x");
1123 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1124 fprintf (f, " paddr 0x");
1125 bfd_fprintf_vma (abfd, f, p->p_paddr);
1126 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1127 fprintf (f, " filesz 0x");
1128 bfd_fprintf_vma (abfd, f, p->p_filesz);
1129 fprintf (f, " memsz 0x");
1130 bfd_fprintf_vma (abfd, f, p->p_memsz);
1131 fprintf (f, " flags %c%c%c",
1132 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1133 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1134 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1135 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1136 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1137 fprintf (f, "\n");
1138 }
1139 }
1140
1141 s = bfd_get_section_by_name (abfd, ".dynamic");
1142 if (s != NULL)
1143 {
1144 int elfsec;
1145 unsigned long shlink;
1146 bfd_byte *extdyn, *extdynend;
1147 size_t extdynsize;
1148 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1149
1150 fprintf (f, _("\nDynamic Section:\n"));
1151
1152 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1153 goto error_return;
1154
1155 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1156 if (elfsec == -1)
1157 goto error_return;
1158 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1159
1160 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1161 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1162
1163 extdyn = dynbuf;
1164 extdynend = extdyn + s->size;
1165 for (; extdyn < extdynend; extdyn += extdynsize)
1166 {
1167 Elf_Internal_Dyn dyn;
1168 const char *name;
1169 char ab[20];
1170 bfd_boolean stringp;
1171
1172 (*swap_dyn_in) (abfd, extdyn, &dyn);
1173
1174 if (dyn.d_tag == DT_NULL)
1175 break;
1176
1177 stringp = FALSE;
1178 switch (dyn.d_tag)
1179 {
1180 default:
1181 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1182 name = ab;
1183 break;
1184
1185 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1186 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1187 case DT_PLTGOT: name = "PLTGOT"; break;
1188 case DT_HASH: name = "HASH"; break;
1189 case DT_STRTAB: name = "STRTAB"; break;
1190 case DT_SYMTAB: name = "SYMTAB"; break;
1191 case DT_RELA: name = "RELA"; break;
1192 case DT_RELASZ: name = "RELASZ"; break;
1193 case DT_RELAENT: name = "RELAENT"; break;
1194 case DT_STRSZ: name = "STRSZ"; break;
1195 case DT_SYMENT: name = "SYMENT"; break;
1196 case DT_INIT: name = "INIT"; break;
1197 case DT_FINI: name = "FINI"; break;
1198 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1199 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1200 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1201 case DT_REL: name = "REL"; break;
1202 case DT_RELSZ: name = "RELSZ"; break;
1203 case DT_RELENT: name = "RELENT"; break;
1204 case DT_PLTREL: name = "PLTREL"; break;
1205 case DT_DEBUG: name = "DEBUG"; break;
1206 case DT_TEXTREL: name = "TEXTREL"; break;
1207 case DT_JMPREL: name = "JMPREL"; break;
1208 case DT_BIND_NOW: name = "BIND_NOW"; break;
1209 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1210 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1211 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1212 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1213 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1214 case DT_FLAGS: name = "FLAGS"; break;
1215 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1216 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1217 case DT_CHECKSUM: name = "CHECKSUM"; break;
1218 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1219 case DT_MOVEENT: name = "MOVEENT"; break;
1220 case DT_MOVESZ: name = "MOVESZ"; break;
1221 case DT_FEATURE: name = "FEATURE"; break;
1222 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1223 case DT_SYMINSZ: name = "SYMINSZ"; break;
1224 case DT_SYMINENT: name = "SYMINENT"; break;
1225 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1226 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1227 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1228 case DT_PLTPAD: name = "PLTPAD"; break;
1229 case DT_MOVETAB: name = "MOVETAB"; break;
1230 case DT_SYMINFO: name = "SYMINFO"; break;
1231 case DT_RELACOUNT: name = "RELACOUNT"; break;
1232 case DT_RELCOUNT: name = "RELCOUNT"; break;
1233 case DT_FLAGS_1: name = "FLAGS_1"; break;
1234 case DT_VERSYM: name = "VERSYM"; break;
1235 case DT_VERDEF: name = "VERDEF"; break;
1236 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1237 case DT_VERNEED: name = "VERNEED"; break;
1238 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1239 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1240 case DT_USED: name = "USED"; break;
1241 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1242 case DT_GNU_HASH: name = "GNU_HASH"; break;
1243 }
1244
1245 fprintf (f, " %-11s ", name);
1246 if (! stringp)
1247 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1248 else
1249 {
1250 const char *string;
1251 unsigned int tagv = dyn.d_un.d_val;
1252
1253 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1254 if (string == NULL)
1255 goto error_return;
1256 fprintf (f, "%s", string);
1257 }
1258 fprintf (f, "\n");
1259 }
1260
1261 free (dynbuf);
1262 dynbuf = NULL;
1263 }
1264
1265 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1266 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1267 {
1268 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1269 return FALSE;
1270 }
1271
1272 if (elf_dynverdef (abfd) != 0)
1273 {
1274 Elf_Internal_Verdef *t;
1275
1276 fprintf (f, _("\nVersion definitions:\n"));
1277 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1278 {
1279 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1280 t->vd_flags, t->vd_hash,
1281 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1282 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1283 {
1284 Elf_Internal_Verdaux *a;
1285
1286 fprintf (f, "\t");
1287 for (a = t->vd_auxptr->vda_nextptr;
1288 a != NULL;
1289 a = a->vda_nextptr)
1290 fprintf (f, "%s ",
1291 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1292 fprintf (f, "\n");
1293 }
1294 }
1295 }
1296
1297 if (elf_dynverref (abfd) != 0)
1298 {
1299 Elf_Internal_Verneed *t;
1300
1301 fprintf (f, _("\nVersion References:\n"));
1302 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1303 {
1304 Elf_Internal_Vernaux *a;
1305
1306 fprintf (f, _(" required from %s:\n"),
1307 t->vn_filename ? t->vn_filename : "<corrupt>");
1308 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1309 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1310 a->vna_flags, a->vna_other,
1311 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1312 }
1313 }
1314
1315 return TRUE;
1316
1317 error_return:
1318 if (dynbuf != NULL)
1319 free (dynbuf);
1320 return FALSE;
1321 }
1322
1323 /* Display ELF-specific fields of a symbol. */
1324
1325 void
1326 bfd_elf_print_symbol (bfd *abfd,
1327 void *filep,
1328 asymbol *symbol,
1329 bfd_print_symbol_type how)
1330 {
1331 FILE *file = filep;
1332 switch (how)
1333 {
1334 case bfd_print_symbol_name:
1335 fprintf (file, "%s", symbol->name);
1336 break;
1337 case bfd_print_symbol_more:
1338 fprintf (file, "elf ");
1339 bfd_fprintf_vma (abfd, file, symbol->value);
1340 fprintf (file, " %lx", (long) symbol->flags);
1341 break;
1342 case bfd_print_symbol_all:
1343 {
1344 const char *section_name;
1345 const char *name = NULL;
1346 const struct elf_backend_data *bed;
1347 unsigned char st_other;
1348 bfd_vma val;
1349
1350 section_name = symbol->section ? symbol->section->name : "(*none*)";
1351
1352 bed = get_elf_backend_data (abfd);
1353 if (bed->elf_backend_print_symbol_all)
1354 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1355
1356 if (name == NULL)
1357 {
1358 name = symbol->name;
1359 bfd_print_symbol_vandf (abfd, file, symbol);
1360 }
1361
1362 fprintf (file, " %s\t", section_name);
1363 /* Print the "other" value for a symbol. For common symbols,
1364 we've already printed the size; now print the alignment.
1365 For other symbols, we have no specified alignment, and
1366 we've printed the address; now print the size. */
1367 if (symbol->section && bfd_is_com_section (symbol->section))
1368 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1369 else
1370 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1371 bfd_fprintf_vma (abfd, file, val);
1372
1373 /* If we have version information, print it. */
1374 if (elf_tdata (abfd)->dynversym_section != 0
1375 && (elf_tdata (abfd)->dynverdef_section != 0
1376 || elf_tdata (abfd)->dynverref_section != 0))
1377 {
1378 unsigned int vernum;
1379 const char *version_string;
1380
1381 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1382
1383 if (vernum == 0)
1384 version_string = "";
1385 else if (vernum == 1)
1386 version_string = "Base";
1387 else if (vernum <= elf_tdata (abfd)->cverdefs)
1388 version_string =
1389 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1390 else
1391 {
1392 Elf_Internal_Verneed *t;
1393
1394 version_string = "";
1395 for (t = elf_tdata (abfd)->verref;
1396 t != NULL;
1397 t = t->vn_nextref)
1398 {
1399 Elf_Internal_Vernaux *a;
1400
1401 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1402 {
1403 if (a->vna_other == vernum)
1404 {
1405 version_string = a->vna_nodename;
1406 break;
1407 }
1408 }
1409 }
1410 }
1411
1412 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1413 fprintf (file, " %-11s", version_string);
1414 else
1415 {
1416 int i;
1417
1418 fprintf (file, " (%s)", version_string);
1419 for (i = 10 - strlen (version_string); i > 0; --i)
1420 putc (' ', file);
1421 }
1422 }
1423
1424 /* If the st_other field is not zero, print it. */
1425 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1426
1427 switch (st_other)
1428 {
1429 case 0: break;
1430 case STV_INTERNAL: fprintf (file, " .internal"); break;
1431 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1432 case STV_PROTECTED: fprintf (file, " .protected"); break;
1433 default:
1434 /* Some other non-defined flags are also present, so print
1435 everything hex. */
1436 fprintf (file, " 0x%02x", (unsigned int) st_other);
1437 }
1438
1439 fprintf (file, " %s", name);
1440 }
1441 break;
1442 }
1443 }
1444
1445 /* Allocate an ELF string table--force the first byte to be zero. */
1446
1447 struct bfd_strtab_hash *
1448 _bfd_elf_stringtab_init (void)
1449 {
1450 struct bfd_strtab_hash *ret;
1451
1452 ret = _bfd_stringtab_init ();
1453 if (ret != NULL)
1454 {
1455 bfd_size_type loc;
1456
1457 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1458 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1459 if (loc == (bfd_size_type) -1)
1460 {
1461 _bfd_stringtab_free (ret);
1462 ret = NULL;
1463 }
1464 }
1465 return ret;
1466 }
1467 \f
1468 /* ELF .o/exec file reading */
1469
1470 /* Create a new bfd section from an ELF section header. */
1471
1472 bfd_boolean
1473 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1474 {
1475 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1476 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1477 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1478 const char *name;
1479
1480 name = bfd_elf_string_from_elf_section (abfd,
1481 elf_elfheader (abfd)->e_shstrndx,
1482 hdr->sh_name);
1483 if (name == NULL)
1484 return FALSE;
1485
1486 switch (hdr->sh_type)
1487 {
1488 case SHT_NULL:
1489 /* Inactive section. Throw it away. */
1490 return TRUE;
1491
1492 case SHT_PROGBITS: /* Normal section with contents. */
1493 case SHT_NOBITS: /* .bss section. */
1494 case SHT_HASH: /* .hash section. */
1495 case SHT_NOTE: /* .note section. */
1496 case SHT_INIT_ARRAY: /* .init_array section. */
1497 case SHT_FINI_ARRAY: /* .fini_array section. */
1498 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1499 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1500 case SHT_GNU_HASH: /* .gnu.hash section. */
1501 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1502
1503 case SHT_DYNAMIC: /* Dynamic linking information. */
1504 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1505 return FALSE;
1506 if (hdr->sh_link > elf_numsections (abfd)
1507 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1508 return FALSE;
1509 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1510 {
1511 Elf_Internal_Shdr *dynsymhdr;
1512
1513 /* The shared libraries distributed with hpux11 have a bogus
1514 sh_link field for the ".dynamic" section. Find the
1515 string table for the ".dynsym" section instead. */
1516 if (elf_dynsymtab (abfd) != 0)
1517 {
1518 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1519 hdr->sh_link = dynsymhdr->sh_link;
1520 }
1521 else
1522 {
1523 unsigned int i, num_sec;
1524
1525 num_sec = elf_numsections (abfd);
1526 for (i = 1; i < num_sec; i++)
1527 {
1528 dynsymhdr = elf_elfsections (abfd)[i];
1529 if (dynsymhdr->sh_type == SHT_DYNSYM)
1530 {
1531 hdr->sh_link = dynsymhdr->sh_link;
1532 break;
1533 }
1534 }
1535 }
1536 }
1537 break;
1538
1539 case SHT_SYMTAB: /* A symbol table */
1540 if (elf_onesymtab (abfd) == shindex)
1541 return TRUE;
1542
1543 if (hdr->sh_entsize != bed->s->sizeof_sym)
1544 return FALSE;
1545 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1546 elf_onesymtab (abfd) = shindex;
1547 elf_tdata (abfd)->symtab_hdr = *hdr;
1548 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1549 abfd->flags |= HAS_SYMS;
1550
1551 /* Sometimes a shared object will map in the symbol table. If
1552 SHF_ALLOC is set, and this is a shared object, then we also
1553 treat this section as a BFD section. We can not base the
1554 decision purely on SHF_ALLOC, because that flag is sometimes
1555 set in a relocatable object file, which would confuse the
1556 linker. */
1557 if ((hdr->sh_flags & SHF_ALLOC) != 0
1558 && (abfd->flags & DYNAMIC) != 0
1559 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1560 shindex))
1561 return FALSE;
1562
1563 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1564 can't read symbols without that section loaded as well. It
1565 is most likely specified by the next section header. */
1566 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1567 {
1568 unsigned int i, num_sec;
1569
1570 num_sec = elf_numsections (abfd);
1571 for (i = shindex + 1; i < num_sec; i++)
1572 {
1573 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1574 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1575 && hdr2->sh_link == shindex)
1576 break;
1577 }
1578 if (i == num_sec)
1579 for (i = 1; i < shindex; i++)
1580 {
1581 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1582 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1583 && hdr2->sh_link == shindex)
1584 break;
1585 }
1586 if (i != shindex)
1587 return bfd_section_from_shdr (abfd, i);
1588 }
1589 return TRUE;
1590
1591 case SHT_DYNSYM: /* A dynamic symbol table */
1592 if (elf_dynsymtab (abfd) == shindex)
1593 return TRUE;
1594
1595 if (hdr->sh_entsize != bed->s->sizeof_sym)
1596 return FALSE;
1597 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1598 elf_dynsymtab (abfd) = shindex;
1599 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1600 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1601 abfd->flags |= HAS_SYMS;
1602
1603 /* Besides being a symbol table, we also treat this as a regular
1604 section, so that objcopy can handle it. */
1605 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1606
1607 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1608 if (elf_symtab_shndx (abfd) == shindex)
1609 return TRUE;
1610
1611 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1612 elf_symtab_shndx (abfd) = shindex;
1613 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1614 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1615 return TRUE;
1616
1617 case SHT_STRTAB: /* A string table */
1618 if (hdr->bfd_section != NULL)
1619 return TRUE;
1620 if (ehdr->e_shstrndx == shindex)
1621 {
1622 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1623 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1624 return TRUE;
1625 }
1626 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1627 {
1628 symtab_strtab:
1629 elf_tdata (abfd)->strtab_hdr = *hdr;
1630 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1631 return TRUE;
1632 }
1633 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1634 {
1635 dynsymtab_strtab:
1636 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1637 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1638 elf_elfsections (abfd)[shindex] = hdr;
1639 /* We also treat this as a regular section, so that objcopy
1640 can handle it. */
1641 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1642 shindex);
1643 }
1644
1645 /* If the string table isn't one of the above, then treat it as a
1646 regular section. We need to scan all the headers to be sure,
1647 just in case this strtab section appeared before the above. */
1648 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1649 {
1650 unsigned int i, num_sec;
1651
1652 num_sec = elf_numsections (abfd);
1653 for (i = 1; i < num_sec; i++)
1654 {
1655 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1656 if (hdr2->sh_link == shindex)
1657 {
1658 /* Prevent endless recursion on broken objects. */
1659 if (i == shindex)
1660 return FALSE;
1661 if (! bfd_section_from_shdr (abfd, i))
1662 return FALSE;
1663 if (elf_onesymtab (abfd) == i)
1664 goto symtab_strtab;
1665 if (elf_dynsymtab (abfd) == i)
1666 goto dynsymtab_strtab;
1667 }
1668 }
1669 }
1670 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1671
1672 case SHT_REL:
1673 case SHT_RELA:
1674 /* *These* do a lot of work -- but build no sections! */
1675 {
1676 asection *target_sect;
1677 Elf_Internal_Shdr *hdr2;
1678 unsigned int num_sec = elf_numsections (abfd);
1679
1680 if (hdr->sh_entsize
1681 != (bfd_size_type) (hdr->sh_type == SHT_REL
1682 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1683 return FALSE;
1684
1685 /* Check for a bogus link to avoid crashing. */
1686 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1687 || hdr->sh_link >= num_sec)
1688 {
1689 ((*_bfd_error_handler)
1690 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1691 abfd, hdr->sh_link, name, shindex));
1692 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1693 shindex);
1694 }
1695
1696 /* For some incomprehensible reason Oracle distributes
1697 libraries for Solaris in which some of the objects have
1698 bogus sh_link fields. It would be nice if we could just
1699 reject them, but, unfortunately, some people need to use
1700 them. We scan through the section headers; if we find only
1701 one suitable symbol table, we clobber the sh_link to point
1702 to it. I hope this doesn't break anything. */
1703 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1704 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1705 {
1706 unsigned int scan;
1707 int found;
1708
1709 found = 0;
1710 for (scan = 1; scan < num_sec; scan++)
1711 {
1712 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1713 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1714 {
1715 if (found != 0)
1716 {
1717 found = 0;
1718 break;
1719 }
1720 found = scan;
1721 }
1722 }
1723 if (found != 0)
1724 hdr->sh_link = found;
1725 }
1726
1727 /* Get the symbol table. */
1728 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1729 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1730 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1731 return FALSE;
1732
1733 /* If this reloc section does not use the main symbol table we
1734 don't treat it as a reloc section. BFD can't adequately
1735 represent such a section, so at least for now, we don't
1736 try. We just present it as a normal section. We also
1737 can't use it as a reloc section if it points to the null
1738 section, an invalid section, or another reloc section. */
1739 if (hdr->sh_link != elf_onesymtab (abfd)
1740 || hdr->sh_info == SHN_UNDEF
1741 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
1742 || hdr->sh_info >= num_sec
1743 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1744 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1745 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1746 shindex);
1747
1748 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1749 return FALSE;
1750 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1751 if (target_sect == NULL)
1752 return FALSE;
1753
1754 if ((target_sect->flags & SEC_RELOC) == 0
1755 || target_sect->reloc_count == 0)
1756 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1757 else
1758 {
1759 bfd_size_type amt;
1760 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1761 amt = sizeof (*hdr2);
1762 hdr2 = bfd_alloc (abfd, amt);
1763 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1764 }
1765 *hdr2 = *hdr;
1766 elf_elfsections (abfd)[shindex] = hdr2;
1767 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1768 target_sect->flags |= SEC_RELOC;
1769 target_sect->relocation = NULL;
1770 target_sect->rel_filepos = hdr->sh_offset;
1771 /* In the section to which the relocations apply, mark whether
1772 its relocations are of the REL or RELA variety. */
1773 if (hdr->sh_size != 0)
1774 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1775 abfd->flags |= HAS_RELOC;
1776 return TRUE;
1777 }
1778
1779 case SHT_GNU_verdef:
1780 elf_dynverdef (abfd) = shindex;
1781 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1782 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1783
1784 case SHT_GNU_versym:
1785 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1786 return FALSE;
1787 elf_dynversym (abfd) = shindex;
1788 elf_tdata (abfd)->dynversym_hdr = *hdr;
1789 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1790
1791 case SHT_GNU_verneed:
1792 elf_dynverref (abfd) = shindex;
1793 elf_tdata (abfd)->dynverref_hdr = *hdr;
1794 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1795
1796 case SHT_SHLIB:
1797 return TRUE;
1798
1799 case SHT_GROUP:
1800 /* We need a BFD section for objcopy and relocatable linking,
1801 and it's handy to have the signature available as the section
1802 name. */
1803 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1804 return FALSE;
1805 name = group_signature (abfd, hdr);
1806 if (name == NULL)
1807 return FALSE;
1808 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1809 return FALSE;
1810 if (hdr->contents != NULL)
1811 {
1812 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1813 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1814 asection *s;
1815
1816 if (idx->flags & GRP_COMDAT)
1817 hdr->bfd_section->flags
1818 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1819
1820 /* We try to keep the same section order as it comes in. */
1821 idx += n_elt;
1822 while (--n_elt != 0)
1823 {
1824 --idx;
1825
1826 if (idx->shdr != NULL
1827 && (s = idx->shdr->bfd_section) != NULL
1828 && elf_next_in_group (s) != NULL)
1829 {
1830 elf_next_in_group (hdr->bfd_section) = s;
1831 break;
1832 }
1833 }
1834 }
1835 break;
1836
1837 default:
1838 /* Possibly an attributes section. */
1839 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1840 || hdr->sh_type == bed->obj_attrs_section_type)
1841 {
1842 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1843 return FALSE;
1844 _bfd_elf_parse_attributes (abfd, hdr);
1845 return TRUE;
1846 }
1847
1848 /* Check for any processor-specific section types. */
1849 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1850 return TRUE;
1851
1852 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1853 {
1854 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1855 /* FIXME: How to properly handle allocated section reserved
1856 for applications? */
1857 (*_bfd_error_handler)
1858 (_("%B: don't know how to handle allocated, application "
1859 "specific section `%s' [0x%8x]"),
1860 abfd, name, hdr->sh_type);
1861 else
1862 /* Allow sections reserved for applications. */
1863 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1864 shindex);
1865 }
1866 else if (hdr->sh_type >= SHT_LOPROC
1867 && hdr->sh_type <= SHT_HIPROC)
1868 /* FIXME: We should handle this section. */
1869 (*_bfd_error_handler)
1870 (_("%B: don't know how to handle processor specific section "
1871 "`%s' [0x%8x]"),
1872 abfd, name, hdr->sh_type);
1873 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1874 {
1875 /* Unrecognised OS-specific sections. */
1876 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1877 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1878 required to correctly process the section and the file should
1879 be rejected with an error message. */
1880 (*_bfd_error_handler)
1881 (_("%B: don't know how to handle OS specific section "
1882 "`%s' [0x%8x]"),
1883 abfd, name, hdr->sh_type);
1884 else
1885 /* Otherwise it should be processed. */
1886 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1887 }
1888 else
1889 /* FIXME: We should handle this section. */
1890 (*_bfd_error_handler)
1891 (_("%B: don't know how to handle section `%s' [0x%8x]"),
1892 abfd, name, hdr->sh_type);
1893
1894 return FALSE;
1895 }
1896
1897 return TRUE;
1898 }
1899
1900 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1901 Return SEC for sections that have no elf section, and NULL on error. */
1902
1903 asection *
1904 bfd_section_from_r_symndx (bfd *abfd,
1905 struct sym_sec_cache *cache,
1906 asection *sec,
1907 unsigned long r_symndx)
1908 {
1909 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1910 asection *s;
1911
1912 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
1913 {
1914 Elf_Internal_Shdr *symtab_hdr;
1915 unsigned char esym[sizeof (Elf64_External_Sym)];
1916 Elf_External_Sym_Shndx eshndx;
1917 Elf_Internal_Sym isym;
1918
1919 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1920 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1921 &isym, esym, &eshndx) == NULL)
1922 return NULL;
1923
1924 if (cache->abfd != abfd)
1925 {
1926 memset (cache->indx, -1, sizeof (cache->indx));
1927 cache->abfd = abfd;
1928 }
1929 cache->indx[ent] = r_symndx;
1930 cache->shndx[ent] = isym.st_shndx;
1931 }
1932
1933 s = bfd_section_from_elf_index (abfd, cache->shndx[ent]);
1934 if (s != NULL)
1935 return s;
1936
1937 return sec;
1938 }
1939
1940 /* Given an ELF section number, retrieve the corresponding BFD
1941 section. */
1942
1943 asection *
1944 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
1945 {
1946 if (index >= elf_numsections (abfd))
1947 return NULL;
1948 return elf_elfsections (abfd)[index]->bfd_section;
1949 }
1950
1951 static const struct bfd_elf_special_section special_sections_b[] =
1952 {
1953 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1954 { NULL, 0, 0, 0, 0 }
1955 };
1956
1957 static const struct bfd_elf_special_section special_sections_c[] =
1958 {
1959 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
1960 { NULL, 0, 0, 0, 0 }
1961 };
1962
1963 static const struct bfd_elf_special_section special_sections_d[] =
1964 {
1965 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1966 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1967 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
1968 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
1969 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
1970 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
1971 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
1972 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
1973 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
1974 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
1975 { NULL, 0, 0, 0, 0 }
1976 };
1977
1978 static const struct bfd_elf_special_section special_sections_f[] =
1979 {
1980 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
1981 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
1982 { NULL, 0, 0, 0, 0 }
1983 };
1984
1985 static const struct bfd_elf_special_section special_sections_g[] =
1986 {
1987 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1988 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1989 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
1990 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
1991 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
1992 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
1993 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
1994 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
1995 { NULL, 0, 0, 0, 0 }
1996 };
1997
1998 static const struct bfd_elf_special_section special_sections_h[] =
1999 {
2000 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2001 { NULL, 0, 0, 0, 0 }
2002 };
2003
2004 static const struct bfd_elf_special_section special_sections_i[] =
2005 {
2006 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2007 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2008 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2009 { NULL, 0, 0, 0, 0 }
2010 };
2011
2012 static const struct bfd_elf_special_section special_sections_l[] =
2013 {
2014 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2015 { NULL, 0, 0, 0, 0 }
2016 };
2017
2018 static const struct bfd_elf_special_section special_sections_n[] =
2019 {
2020 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2021 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2022 { NULL, 0, 0, 0, 0 }
2023 };
2024
2025 static const struct bfd_elf_special_section special_sections_p[] =
2026 {
2027 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2028 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2029 { NULL, 0, 0, 0, 0 }
2030 };
2031
2032 static const struct bfd_elf_special_section special_sections_r[] =
2033 {
2034 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2035 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2036 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2037 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2038 { NULL, 0, 0, 0, 0 }
2039 };
2040
2041 static const struct bfd_elf_special_section special_sections_s[] =
2042 {
2043 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2044 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2045 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2046 /* See struct bfd_elf_special_section declaration for the semantics of
2047 this special case where .prefix_length != strlen (.prefix). */
2048 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2049 { NULL, 0, 0, 0, 0 }
2050 };
2051
2052 static const struct bfd_elf_special_section special_sections_t[] =
2053 {
2054 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2055 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2056 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2057 { NULL, 0, 0, 0, 0 }
2058 };
2059
2060 static const struct bfd_elf_special_section *special_sections[] =
2061 {
2062 special_sections_b, /* 'b' */
2063 special_sections_c, /* 'b' */
2064 special_sections_d, /* 'd' */
2065 NULL, /* 'e' */
2066 special_sections_f, /* 'f' */
2067 special_sections_g, /* 'g' */
2068 special_sections_h, /* 'h' */
2069 special_sections_i, /* 'i' */
2070 NULL, /* 'j' */
2071 NULL, /* 'k' */
2072 special_sections_l, /* 'l' */
2073 NULL, /* 'm' */
2074 special_sections_n, /* 'n' */
2075 NULL, /* 'o' */
2076 special_sections_p, /* 'p' */
2077 NULL, /* 'q' */
2078 special_sections_r, /* 'r' */
2079 special_sections_s, /* 's' */
2080 special_sections_t, /* 't' */
2081 };
2082
2083 const struct bfd_elf_special_section *
2084 _bfd_elf_get_special_section (const char *name,
2085 const struct bfd_elf_special_section *spec,
2086 unsigned int rela)
2087 {
2088 int i;
2089 int len;
2090
2091 len = strlen (name);
2092
2093 for (i = 0; spec[i].prefix != NULL; i++)
2094 {
2095 int suffix_len;
2096 int prefix_len = spec[i].prefix_length;
2097
2098 if (len < prefix_len)
2099 continue;
2100 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2101 continue;
2102
2103 suffix_len = spec[i].suffix_length;
2104 if (suffix_len <= 0)
2105 {
2106 if (name[prefix_len] != 0)
2107 {
2108 if (suffix_len == 0)
2109 continue;
2110 if (name[prefix_len] != '.'
2111 && (suffix_len == -2
2112 || (rela && spec[i].type == SHT_REL)))
2113 continue;
2114 }
2115 }
2116 else
2117 {
2118 if (len < prefix_len + suffix_len)
2119 continue;
2120 if (memcmp (name + len - suffix_len,
2121 spec[i].prefix + prefix_len,
2122 suffix_len) != 0)
2123 continue;
2124 }
2125 return &spec[i];
2126 }
2127
2128 return NULL;
2129 }
2130
2131 const struct bfd_elf_special_section *
2132 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2133 {
2134 int i;
2135 const struct bfd_elf_special_section *spec;
2136 const struct elf_backend_data *bed;
2137
2138 /* See if this is one of the special sections. */
2139 if (sec->name == NULL)
2140 return NULL;
2141
2142 bed = get_elf_backend_data (abfd);
2143 spec = bed->special_sections;
2144 if (spec)
2145 {
2146 spec = _bfd_elf_get_special_section (sec->name,
2147 bed->special_sections,
2148 sec->use_rela_p);
2149 if (spec != NULL)
2150 return spec;
2151 }
2152
2153 if (sec->name[0] != '.')
2154 return NULL;
2155
2156 i = sec->name[1] - 'b';
2157 if (i < 0 || i > 't' - 'b')
2158 return NULL;
2159
2160 spec = special_sections[i];
2161
2162 if (spec == NULL)
2163 return NULL;
2164
2165 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2166 }
2167
2168 bfd_boolean
2169 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2170 {
2171 struct bfd_elf_section_data *sdata;
2172 const struct elf_backend_data *bed;
2173 const struct bfd_elf_special_section *ssect;
2174
2175 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2176 if (sdata == NULL)
2177 {
2178 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2179 if (sdata == NULL)
2180 return FALSE;
2181 sec->used_by_bfd = sdata;
2182 }
2183
2184 /* Indicate whether or not this section should use RELA relocations. */
2185 bed = get_elf_backend_data (abfd);
2186 sec->use_rela_p = bed->default_use_rela_p;
2187
2188 /* When we read a file, we don't need to set ELF section type and
2189 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2190 anyway. We will set ELF section type and flags for all linker
2191 created sections. If user specifies BFD section flags, we will
2192 set ELF section type and flags based on BFD section flags in
2193 elf_fake_sections. */
2194 if ((!sec->flags && abfd->direction != read_direction)
2195 || (sec->flags & SEC_LINKER_CREATED) != 0)
2196 {
2197 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2198 if (ssect != NULL)
2199 {
2200 elf_section_type (sec) = ssect->type;
2201 elf_section_flags (sec) = ssect->attr;
2202 }
2203 }
2204
2205 return _bfd_generic_new_section_hook (abfd, sec);
2206 }
2207
2208 /* Create a new bfd section from an ELF program header.
2209
2210 Since program segments have no names, we generate a synthetic name
2211 of the form segment<NUM>, where NUM is generally the index in the
2212 program header table. For segments that are split (see below) we
2213 generate the names segment<NUM>a and segment<NUM>b.
2214
2215 Note that some program segments may have a file size that is different than
2216 (less than) the memory size. All this means is that at execution the
2217 system must allocate the amount of memory specified by the memory size,
2218 but only initialize it with the first "file size" bytes read from the
2219 file. This would occur for example, with program segments consisting
2220 of combined data+bss.
2221
2222 To handle the above situation, this routine generates TWO bfd sections
2223 for the single program segment. The first has the length specified by
2224 the file size of the segment, and the second has the length specified
2225 by the difference between the two sizes. In effect, the segment is split
2226 into its initialized and uninitialized parts.
2227
2228 */
2229
2230 bfd_boolean
2231 _bfd_elf_make_section_from_phdr (bfd *abfd,
2232 Elf_Internal_Phdr *hdr,
2233 int index,
2234 const char *typename)
2235 {
2236 asection *newsect;
2237 char *name;
2238 char namebuf[64];
2239 size_t len;
2240 int split;
2241
2242 split = ((hdr->p_memsz > 0)
2243 && (hdr->p_filesz > 0)
2244 && (hdr->p_memsz > hdr->p_filesz));
2245
2246 if (hdr->p_filesz > 0)
2247 {
2248 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2249 len = strlen (namebuf) + 1;
2250 name = bfd_alloc (abfd, len);
2251 if (!name)
2252 return FALSE;
2253 memcpy (name, namebuf, len);
2254 newsect = bfd_make_section (abfd, name);
2255 if (newsect == NULL)
2256 return FALSE;
2257 newsect->vma = hdr->p_vaddr;
2258 newsect->lma = hdr->p_paddr;
2259 newsect->size = hdr->p_filesz;
2260 newsect->filepos = hdr->p_offset;
2261 newsect->flags |= SEC_HAS_CONTENTS;
2262 newsect->alignment_power = bfd_log2 (hdr->p_align);
2263 if (hdr->p_type == PT_LOAD)
2264 {
2265 newsect->flags |= SEC_ALLOC;
2266 newsect->flags |= SEC_LOAD;
2267 if (hdr->p_flags & PF_X)
2268 {
2269 /* FIXME: all we known is that it has execute PERMISSION,
2270 may be data. */
2271 newsect->flags |= SEC_CODE;
2272 }
2273 }
2274 if (!(hdr->p_flags & PF_W))
2275 {
2276 newsect->flags |= SEC_READONLY;
2277 }
2278 }
2279
2280 if (hdr->p_memsz > hdr->p_filesz)
2281 {
2282 bfd_vma align;
2283
2284 sprintf (namebuf, "%s%d%s", typename, index, split ? "b" : "");
2285 len = strlen (namebuf) + 1;
2286 name = bfd_alloc (abfd, len);
2287 if (!name)
2288 return FALSE;
2289 memcpy (name, namebuf, len);
2290 newsect = bfd_make_section (abfd, name);
2291 if (newsect == NULL)
2292 return FALSE;
2293 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2294 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2295 newsect->size = hdr->p_memsz - hdr->p_filesz;
2296 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2297 align = newsect->vma & -newsect->vma;
2298 if (align == 0 || align > hdr->p_align)
2299 align = hdr->p_align;
2300 newsect->alignment_power = bfd_log2 (align);
2301 if (hdr->p_type == PT_LOAD)
2302 {
2303 /* Hack for gdb. Segments that have not been modified do
2304 not have their contents written to a core file, on the
2305 assumption that a debugger can find the contents in the
2306 executable. We flag this case by setting the fake
2307 section size to zero. Note that "real" bss sections will
2308 always have their contents dumped to the core file. */
2309 if (bfd_get_format (abfd) == bfd_core)
2310 newsect->size = 0;
2311 newsect->flags |= SEC_ALLOC;
2312 if (hdr->p_flags & PF_X)
2313 newsect->flags |= SEC_CODE;
2314 }
2315 if (!(hdr->p_flags & PF_W))
2316 newsect->flags |= SEC_READONLY;
2317 }
2318
2319 return TRUE;
2320 }
2321
2322 bfd_boolean
2323 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2324 {
2325 const struct elf_backend_data *bed;
2326
2327 switch (hdr->p_type)
2328 {
2329 case PT_NULL:
2330 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2331
2332 case PT_LOAD:
2333 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2334
2335 case PT_DYNAMIC:
2336 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2337
2338 case PT_INTERP:
2339 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2340
2341 case PT_NOTE:
2342 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2343 return FALSE;
2344 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2345 return FALSE;
2346 return TRUE;
2347
2348 case PT_SHLIB:
2349 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2350
2351 case PT_PHDR:
2352 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2353
2354 case PT_GNU_EH_FRAME:
2355 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2356 "eh_frame_hdr");
2357
2358 case PT_GNU_STACK:
2359 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2360
2361 case PT_GNU_RELRO:
2362 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2363
2364 default:
2365 /* Check for any processor-specific program segment types. */
2366 bed = get_elf_backend_data (abfd);
2367 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2368 }
2369 }
2370
2371 /* Initialize REL_HDR, the section-header for new section, containing
2372 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2373 relocations; otherwise, we use REL relocations. */
2374
2375 bfd_boolean
2376 _bfd_elf_init_reloc_shdr (bfd *abfd,
2377 Elf_Internal_Shdr *rel_hdr,
2378 asection *asect,
2379 bfd_boolean use_rela_p)
2380 {
2381 char *name;
2382 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2383 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2384
2385 name = bfd_alloc (abfd, amt);
2386 if (name == NULL)
2387 return FALSE;
2388 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2389 rel_hdr->sh_name =
2390 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2391 FALSE);
2392 if (rel_hdr->sh_name == (unsigned int) -1)
2393 return FALSE;
2394 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2395 rel_hdr->sh_entsize = (use_rela_p
2396 ? bed->s->sizeof_rela
2397 : bed->s->sizeof_rel);
2398 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2399 rel_hdr->sh_flags = 0;
2400 rel_hdr->sh_addr = 0;
2401 rel_hdr->sh_size = 0;
2402 rel_hdr->sh_offset = 0;
2403
2404 return TRUE;
2405 }
2406
2407 /* Set up an ELF internal section header for a section. */
2408
2409 static void
2410 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2411 {
2412 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2413 bfd_boolean *failedptr = failedptrarg;
2414 Elf_Internal_Shdr *this_hdr;
2415 unsigned int sh_type;
2416
2417 if (*failedptr)
2418 {
2419 /* We already failed; just get out of the bfd_map_over_sections
2420 loop. */
2421 return;
2422 }
2423
2424 this_hdr = &elf_section_data (asect)->this_hdr;
2425
2426 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2427 asect->name, FALSE);
2428 if (this_hdr->sh_name == (unsigned int) -1)
2429 {
2430 *failedptr = TRUE;
2431 return;
2432 }
2433
2434 /* Don't clear sh_flags. Assembler may set additional bits. */
2435
2436 if ((asect->flags & SEC_ALLOC) != 0
2437 || asect->user_set_vma)
2438 this_hdr->sh_addr = asect->vma;
2439 else
2440 this_hdr->sh_addr = 0;
2441
2442 this_hdr->sh_offset = 0;
2443 this_hdr->sh_size = asect->size;
2444 this_hdr->sh_link = 0;
2445 this_hdr->sh_addralign = 1 << asect->alignment_power;
2446 /* The sh_entsize and sh_info fields may have been set already by
2447 copy_private_section_data. */
2448
2449 this_hdr->bfd_section = asect;
2450 this_hdr->contents = NULL;
2451
2452 /* If the section type is unspecified, we set it based on
2453 asect->flags. */
2454 if (this_hdr->sh_type == SHT_NULL)
2455 {
2456 if ((asect->flags & SEC_GROUP) != 0)
2457 this_hdr->sh_type = SHT_GROUP;
2458 else if ((asect->flags & SEC_ALLOC) != 0
2459 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2460 || (asect->flags & SEC_NEVER_LOAD) != 0))
2461 this_hdr->sh_type = SHT_NOBITS;
2462 else
2463 this_hdr->sh_type = SHT_PROGBITS;
2464 }
2465
2466 switch (this_hdr->sh_type)
2467 {
2468 default:
2469 break;
2470
2471 case SHT_STRTAB:
2472 case SHT_INIT_ARRAY:
2473 case SHT_FINI_ARRAY:
2474 case SHT_PREINIT_ARRAY:
2475 case SHT_NOTE:
2476 case SHT_NOBITS:
2477 case SHT_PROGBITS:
2478 break;
2479
2480 case SHT_HASH:
2481 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2482 break;
2483
2484 case SHT_DYNSYM:
2485 this_hdr->sh_entsize = bed->s->sizeof_sym;
2486 break;
2487
2488 case SHT_DYNAMIC:
2489 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2490 break;
2491
2492 case SHT_RELA:
2493 if (get_elf_backend_data (abfd)->may_use_rela_p)
2494 this_hdr->sh_entsize = bed->s->sizeof_rela;
2495 break;
2496
2497 case SHT_REL:
2498 if (get_elf_backend_data (abfd)->may_use_rel_p)
2499 this_hdr->sh_entsize = bed->s->sizeof_rel;
2500 break;
2501
2502 case SHT_GNU_versym:
2503 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2504 break;
2505
2506 case SHT_GNU_verdef:
2507 this_hdr->sh_entsize = 0;
2508 /* objcopy or strip will copy over sh_info, but may not set
2509 cverdefs. The linker will set cverdefs, but sh_info will be
2510 zero. */
2511 if (this_hdr->sh_info == 0)
2512 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2513 else
2514 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2515 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2516 break;
2517
2518 case SHT_GNU_verneed:
2519 this_hdr->sh_entsize = 0;
2520 /* objcopy or strip will copy over sh_info, but may not set
2521 cverrefs. The linker will set cverrefs, but sh_info will be
2522 zero. */
2523 if (this_hdr->sh_info == 0)
2524 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2525 else
2526 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2527 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2528 break;
2529
2530 case SHT_GROUP:
2531 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2532 break;
2533
2534 case SHT_GNU_HASH:
2535 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2536 break;
2537 }
2538
2539 if ((asect->flags & SEC_ALLOC) != 0)
2540 this_hdr->sh_flags |= SHF_ALLOC;
2541 if ((asect->flags & SEC_READONLY) == 0)
2542 this_hdr->sh_flags |= SHF_WRITE;
2543 if ((asect->flags & SEC_CODE) != 0)
2544 this_hdr->sh_flags |= SHF_EXECINSTR;
2545 if ((asect->flags & SEC_MERGE) != 0)
2546 {
2547 this_hdr->sh_flags |= SHF_MERGE;
2548 this_hdr->sh_entsize = asect->entsize;
2549 if ((asect->flags & SEC_STRINGS) != 0)
2550 this_hdr->sh_flags |= SHF_STRINGS;
2551 }
2552 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2553 this_hdr->sh_flags |= SHF_GROUP;
2554 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2555 {
2556 this_hdr->sh_flags |= SHF_TLS;
2557 if (asect->size == 0
2558 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2559 {
2560 struct bfd_link_order *o = asect->map_tail.link_order;
2561
2562 this_hdr->sh_size = 0;
2563 if (o != NULL)
2564 {
2565 this_hdr->sh_size = o->offset + o->size;
2566 if (this_hdr->sh_size != 0)
2567 this_hdr->sh_type = SHT_NOBITS;
2568 }
2569 }
2570 }
2571
2572 /* Check for processor-specific section types. */
2573 sh_type = this_hdr->sh_type;
2574 if (bed->elf_backend_fake_sections
2575 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2576 *failedptr = TRUE;
2577
2578 if (sh_type == SHT_NOBITS && asect->size != 0)
2579 {
2580 /* Don't change the header type from NOBITS if we are being
2581 called for objcopy --only-keep-debug. */
2582 this_hdr->sh_type = sh_type;
2583 }
2584
2585 /* If the section has relocs, set up a section header for the
2586 SHT_REL[A] section. If two relocation sections are required for
2587 this section, it is up to the processor-specific back-end to
2588 create the other. */
2589 if ((asect->flags & SEC_RELOC) != 0
2590 && !_bfd_elf_init_reloc_shdr (abfd,
2591 &elf_section_data (asect)->rel_hdr,
2592 asect,
2593 asect->use_rela_p))
2594 *failedptr = TRUE;
2595 }
2596
2597 /* Fill in the contents of a SHT_GROUP section. */
2598
2599 void
2600 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2601 {
2602 bfd_boolean *failedptr = failedptrarg;
2603 unsigned long symindx;
2604 asection *elt, *first;
2605 unsigned char *loc;
2606 bfd_boolean gas;
2607
2608 /* Ignore linker created group section. See elfNN_ia64_object_p in
2609 elfxx-ia64.c. */
2610 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2611 || *failedptr)
2612 return;
2613
2614 symindx = 0;
2615 if (elf_group_id (sec) != NULL)
2616 symindx = elf_group_id (sec)->udata.i;
2617
2618 if (symindx == 0)
2619 {
2620 /* If called from the assembler, swap_out_syms will have set up
2621 elf_section_syms; If called for "ld -r", use target_index. */
2622 if (elf_section_syms (abfd) != NULL)
2623 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2624 else
2625 symindx = sec->target_index;
2626 }
2627 elf_section_data (sec)->this_hdr.sh_info = symindx;
2628
2629 /* The contents won't be allocated for "ld -r" or objcopy. */
2630 gas = TRUE;
2631 if (sec->contents == NULL)
2632 {
2633 gas = FALSE;
2634 sec->contents = bfd_alloc (abfd, sec->size);
2635
2636 /* Arrange for the section to be written out. */
2637 elf_section_data (sec)->this_hdr.contents = sec->contents;
2638 if (sec->contents == NULL)
2639 {
2640 *failedptr = TRUE;
2641 return;
2642 }
2643 }
2644
2645 loc = sec->contents + sec->size;
2646
2647 /* Get the pointer to the first section in the group that gas
2648 squirreled away here. objcopy arranges for this to be set to the
2649 start of the input section group. */
2650 first = elt = elf_next_in_group (sec);
2651
2652 /* First element is a flag word. Rest of section is elf section
2653 indices for all the sections of the group. Write them backwards
2654 just to keep the group in the same order as given in .section
2655 directives, not that it matters. */
2656 while (elt != NULL)
2657 {
2658 asection *s;
2659 unsigned int idx;
2660
2661 loc -= 4;
2662 s = elt;
2663 if (!gas)
2664 s = s->output_section;
2665 idx = 0;
2666 if (s != NULL)
2667 idx = elf_section_data (s)->this_idx;
2668 H_PUT_32 (abfd, idx, loc);
2669 elt = elf_next_in_group (elt);
2670 if (elt == first)
2671 break;
2672 }
2673
2674 if ((loc -= 4) != sec->contents)
2675 abort ();
2676
2677 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2678 }
2679
2680 /* Assign all ELF section numbers. The dummy first section is handled here
2681 too. The link/info pointers for the standard section types are filled
2682 in here too, while we're at it. */
2683
2684 static bfd_boolean
2685 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2686 {
2687 struct elf_obj_tdata *t = elf_tdata (abfd);
2688 asection *sec;
2689 unsigned int section_number, secn;
2690 Elf_Internal_Shdr **i_shdrp;
2691 struct bfd_elf_section_data *d;
2692
2693 section_number = 1;
2694
2695 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2696
2697 /* SHT_GROUP sections are in relocatable files only. */
2698 if (link_info == NULL || link_info->relocatable)
2699 {
2700 /* Put SHT_GROUP sections first. */
2701 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2702 {
2703 d = elf_section_data (sec);
2704
2705 if (d->this_hdr.sh_type == SHT_GROUP)
2706 {
2707 if (sec->flags & SEC_LINKER_CREATED)
2708 {
2709 /* Remove the linker created SHT_GROUP sections. */
2710 bfd_section_list_remove (abfd, sec);
2711 abfd->section_count--;
2712 }
2713 else
2714 {
2715 if (section_number == SHN_LORESERVE)
2716 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2717 d->this_idx = section_number++;
2718 }
2719 }
2720 }
2721 }
2722
2723 for (sec = abfd->sections; sec; sec = sec->next)
2724 {
2725 d = elf_section_data (sec);
2726
2727 if (d->this_hdr.sh_type != SHT_GROUP)
2728 {
2729 if (section_number == SHN_LORESERVE)
2730 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2731 d->this_idx = section_number++;
2732 }
2733 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2734 if ((sec->flags & SEC_RELOC) == 0)
2735 d->rel_idx = 0;
2736 else
2737 {
2738 if (section_number == SHN_LORESERVE)
2739 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2740 d->rel_idx = section_number++;
2741 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2742 }
2743
2744 if (d->rel_hdr2)
2745 {
2746 if (section_number == SHN_LORESERVE)
2747 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2748 d->rel_idx2 = section_number++;
2749 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2750 }
2751 else
2752 d->rel_idx2 = 0;
2753 }
2754
2755 if (section_number == SHN_LORESERVE)
2756 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2757 t->shstrtab_section = section_number++;
2758 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2759 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2760
2761 if (bfd_get_symcount (abfd) > 0)
2762 {
2763 if (section_number == SHN_LORESERVE)
2764 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2765 t->symtab_section = section_number++;
2766 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2767 if (section_number > SHN_LORESERVE - 2)
2768 {
2769 if (section_number == SHN_LORESERVE)
2770 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2771 t->symtab_shndx_section = section_number++;
2772 t->symtab_shndx_hdr.sh_name
2773 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2774 ".symtab_shndx", FALSE);
2775 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2776 return FALSE;
2777 }
2778 if (section_number == SHN_LORESERVE)
2779 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2780 t->strtab_section = section_number++;
2781 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2782 }
2783
2784 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2785 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2786
2787 elf_numsections (abfd) = section_number;
2788 elf_elfheader (abfd)->e_shnum = section_number;
2789 if (section_number > SHN_LORESERVE)
2790 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2791
2792 /* Set up the list of section header pointers, in agreement with the
2793 indices. */
2794 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
2795 if (i_shdrp == NULL)
2796 return FALSE;
2797
2798 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
2799 if (i_shdrp[0] == NULL)
2800 {
2801 bfd_release (abfd, i_shdrp);
2802 return FALSE;
2803 }
2804
2805 elf_elfsections (abfd) = i_shdrp;
2806
2807 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2808 if (bfd_get_symcount (abfd) > 0)
2809 {
2810 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2811 if (elf_numsections (abfd) > SHN_LORESERVE)
2812 {
2813 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2814 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2815 }
2816 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2817 t->symtab_hdr.sh_link = t->strtab_section;
2818 }
2819
2820 for (sec = abfd->sections; sec; sec = sec->next)
2821 {
2822 struct bfd_elf_section_data *d = elf_section_data (sec);
2823 asection *s;
2824 const char *name;
2825
2826 i_shdrp[d->this_idx] = &d->this_hdr;
2827 if (d->rel_idx != 0)
2828 i_shdrp[d->rel_idx] = &d->rel_hdr;
2829 if (d->rel_idx2 != 0)
2830 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2831
2832 /* Fill in the sh_link and sh_info fields while we're at it. */
2833
2834 /* sh_link of a reloc section is the section index of the symbol
2835 table. sh_info is the section index of the section to which
2836 the relocation entries apply. */
2837 if (d->rel_idx != 0)
2838 {
2839 d->rel_hdr.sh_link = t->symtab_section;
2840 d->rel_hdr.sh_info = d->this_idx;
2841 }
2842 if (d->rel_idx2 != 0)
2843 {
2844 d->rel_hdr2->sh_link = t->symtab_section;
2845 d->rel_hdr2->sh_info = d->this_idx;
2846 }
2847
2848 /* We need to set up sh_link for SHF_LINK_ORDER. */
2849 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2850 {
2851 s = elf_linked_to_section (sec);
2852 if (s)
2853 {
2854 /* elf_linked_to_section points to the input section. */
2855 if (link_info != NULL)
2856 {
2857 /* Check discarded linkonce section. */
2858 if (elf_discarded_section (s))
2859 {
2860 asection *kept;
2861 (*_bfd_error_handler)
2862 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
2863 abfd, d->this_hdr.bfd_section,
2864 s, s->owner);
2865 /* Point to the kept section if it has the same
2866 size as the discarded one. */
2867 kept = _bfd_elf_check_kept_section (s, link_info);
2868 if (kept == NULL)
2869 {
2870 bfd_set_error (bfd_error_bad_value);
2871 return FALSE;
2872 }
2873 s = kept;
2874 }
2875
2876 s = s->output_section;
2877 BFD_ASSERT (s != NULL);
2878 }
2879 else
2880 {
2881 /* Handle objcopy. */
2882 if (s->output_section == NULL)
2883 {
2884 (*_bfd_error_handler)
2885 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
2886 abfd, d->this_hdr.bfd_section, s, s->owner);
2887 bfd_set_error (bfd_error_bad_value);
2888 return FALSE;
2889 }
2890 s = s->output_section;
2891 }
2892 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2893 }
2894 else
2895 {
2896 /* PR 290:
2897 The Intel C compiler generates SHT_IA_64_UNWIND with
2898 SHF_LINK_ORDER. But it doesn't set the sh_link or
2899 sh_info fields. Hence we could get the situation
2900 where s is NULL. */
2901 const struct elf_backend_data *bed
2902 = get_elf_backend_data (abfd);
2903 if (bed->link_order_error_handler)
2904 bed->link_order_error_handler
2905 (_("%B: warning: sh_link not set for section `%A'"),
2906 abfd, sec);
2907 }
2908 }
2909
2910 switch (d->this_hdr.sh_type)
2911 {
2912 case SHT_REL:
2913 case SHT_RELA:
2914 /* A reloc section which we are treating as a normal BFD
2915 section. sh_link is the section index of the symbol
2916 table. sh_info is the section index of the section to
2917 which the relocation entries apply. We assume that an
2918 allocated reloc section uses the dynamic symbol table.
2919 FIXME: How can we be sure? */
2920 s = bfd_get_section_by_name (abfd, ".dynsym");
2921 if (s != NULL)
2922 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2923
2924 /* We look up the section the relocs apply to by name. */
2925 name = sec->name;
2926 if (d->this_hdr.sh_type == SHT_REL)
2927 name += 4;
2928 else
2929 name += 5;
2930 s = bfd_get_section_by_name (abfd, name);
2931 if (s != NULL)
2932 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2933 break;
2934
2935 case SHT_STRTAB:
2936 /* We assume that a section named .stab*str is a stabs
2937 string section. We look for a section with the same name
2938 but without the trailing ``str'', and set its sh_link
2939 field to point to this section. */
2940 if (CONST_STRNEQ (sec->name, ".stab")
2941 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2942 {
2943 size_t len;
2944 char *alc;
2945
2946 len = strlen (sec->name);
2947 alc = bfd_malloc (len - 2);
2948 if (alc == NULL)
2949 return FALSE;
2950 memcpy (alc, sec->name, len - 3);
2951 alc[len - 3] = '\0';
2952 s = bfd_get_section_by_name (abfd, alc);
2953 free (alc);
2954 if (s != NULL)
2955 {
2956 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2957
2958 /* This is a .stab section. */
2959 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2960 elf_section_data (s)->this_hdr.sh_entsize
2961 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2962 }
2963 }
2964 break;
2965
2966 case SHT_DYNAMIC:
2967 case SHT_DYNSYM:
2968 case SHT_GNU_verneed:
2969 case SHT_GNU_verdef:
2970 /* sh_link is the section header index of the string table
2971 used for the dynamic entries, or the symbol table, or the
2972 version strings. */
2973 s = bfd_get_section_by_name (abfd, ".dynstr");
2974 if (s != NULL)
2975 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2976 break;
2977
2978 case SHT_GNU_LIBLIST:
2979 /* sh_link is the section header index of the prelink library
2980 list used for the dynamic entries, or the symbol table, or
2981 the version strings. */
2982 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
2983 ? ".dynstr" : ".gnu.libstr");
2984 if (s != NULL)
2985 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2986 break;
2987
2988 case SHT_HASH:
2989 case SHT_GNU_HASH:
2990 case SHT_GNU_versym:
2991 /* sh_link is the section header index of the symbol table
2992 this hash table or version table is for. */
2993 s = bfd_get_section_by_name (abfd, ".dynsym");
2994 if (s != NULL)
2995 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2996 break;
2997
2998 case SHT_GROUP:
2999 d->this_hdr.sh_link = t->symtab_section;
3000 }
3001 }
3002
3003 for (secn = 1; secn < section_number; ++secn)
3004 if (i_shdrp[secn] == NULL)
3005 i_shdrp[secn] = i_shdrp[0];
3006 else
3007 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3008 i_shdrp[secn]->sh_name);
3009 return TRUE;
3010 }
3011
3012 /* Map symbol from it's internal number to the external number, moving
3013 all local symbols to be at the head of the list. */
3014
3015 static bfd_boolean
3016 sym_is_global (bfd *abfd, asymbol *sym)
3017 {
3018 /* If the backend has a special mapping, use it. */
3019 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3020 if (bed->elf_backend_sym_is_global)
3021 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3022
3023 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3024 || bfd_is_und_section (bfd_get_section (sym))
3025 || bfd_is_com_section (bfd_get_section (sym)));
3026 }
3027
3028 /* Don't output section symbols for sections that are not going to be
3029 output. Also, don't output section symbols for reloc and other
3030 special sections. */
3031
3032 static bfd_boolean
3033 ignore_section_sym (bfd *abfd, asymbol *sym)
3034 {
3035 return ((sym->flags & BSF_SECTION_SYM) != 0
3036 && (sym->value != 0
3037 || (sym->section->owner != abfd
3038 && (sym->section->output_section->owner != abfd
3039 || sym->section->output_offset != 0))));
3040 }
3041
3042 static bfd_boolean
3043 elf_map_symbols (bfd *abfd)
3044 {
3045 unsigned int symcount = bfd_get_symcount (abfd);
3046 asymbol **syms = bfd_get_outsymbols (abfd);
3047 asymbol **sect_syms;
3048 unsigned int num_locals = 0;
3049 unsigned int num_globals = 0;
3050 unsigned int num_locals2 = 0;
3051 unsigned int num_globals2 = 0;
3052 int max_index = 0;
3053 unsigned int idx;
3054 asection *asect;
3055 asymbol **new_syms;
3056
3057 #ifdef DEBUG
3058 fprintf (stderr, "elf_map_symbols\n");
3059 fflush (stderr);
3060 #endif
3061
3062 for (asect = abfd->sections; asect; asect = asect->next)
3063 {
3064 if (max_index < asect->index)
3065 max_index = asect->index;
3066 }
3067
3068 max_index++;
3069 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3070 if (sect_syms == NULL)
3071 return FALSE;
3072 elf_section_syms (abfd) = sect_syms;
3073 elf_num_section_syms (abfd) = max_index;
3074
3075 /* Init sect_syms entries for any section symbols we have already
3076 decided to output. */
3077 for (idx = 0; idx < symcount; idx++)
3078 {
3079 asymbol *sym = syms[idx];
3080
3081 if ((sym->flags & BSF_SECTION_SYM) != 0
3082 && !ignore_section_sym (abfd, sym))
3083 {
3084 asection *sec = sym->section;
3085
3086 if (sec->owner != abfd)
3087 sec = sec->output_section;
3088
3089 sect_syms[sec->index] = syms[idx];
3090 }
3091 }
3092
3093 /* Classify all of the symbols. */
3094 for (idx = 0; idx < symcount; idx++)
3095 {
3096 if (ignore_section_sym (abfd, syms[idx]))
3097 continue;
3098 if (!sym_is_global (abfd, syms[idx]))
3099 num_locals++;
3100 else
3101 num_globals++;
3102 }
3103
3104 /* We will be adding a section symbol for each normal BFD section. Most
3105 sections will already have a section symbol in outsymbols, but
3106 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3107 at least in that case. */
3108 for (asect = abfd->sections; asect; asect = asect->next)
3109 {
3110 if (sect_syms[asect->index] == NULL)
3111 {
3112 if (!sym_is_global (abfd, asect->symbol))
3113 num_locals++;
3114 else
3115 num_globals++;
3116 }
3117 }
3118
3119 /* Now sort the symbols so the local symbols are first. */
3120 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3121
3122 if (new_syms == NULL)
3123 return FALSE;
3124
3125 for (idx = 0; idx < symcount; idx++)
3126 {
3127 asymbol *sym = syms[idx];
3128 unsigned int i;
3129
3130 if (ignore_section_sym (abfd, sym))
3131 continue;
3132 if (!sym_is_global (abfd, sym))
3133 i = num_locals2++;
3134 else
3135 i = num_locals + num_globals2++;
3136 new_syms[i] = sym;
3137 sym->udata.i = i + 1;
3138 }
3139 for (asect = abfd->sections; asect; asect = asect->next)
3140 {
3141 if (sect_syms[asect->index] == NULL)
3142 {
3143 asymbol *sym = asect->symbol;
3144 unsigned int i;
3145
3146 sect_syms[asect->index] = sym;
3147 if (!sym_is_global (abfd, sym))
3148 i = num_locals2++;
3149 else
3150 i = num_locals + num_globals2++;
3151 new_syms[i] = sym;
3152 sym->udata.i = i + 1;
3153 }
3154 }
3155
3156 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3157
3158 elf_num_locals (abfd) = num_locals;
3159 elf_num_globals (abfd) = num_globals;
3160 return TRUE;
3161 }
3162
3163 /* Align to the maximum file alignment that could be required for any
3164 ELF data structure. */
3165
3166 static inline file_ptr
3167 align_file_position (file_ptr off, int align)
3168 {
3169 return (off + align - 1) & ~(align - 1);
3170 }
3171
3172 /* Assign a file position to a section, optionally aligning to the
3173 required section alignment. */
3174
3175 file_ptr
3176 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3177 file_ptr offset,
3178 bfd_boolean align)
3179 {
3180 if (align)
3181 {
3182 unsigned int al;
3183
3184 al = i_shdrp->sh_addralign;
3185 if (al > 1)
3186 offset = BFD_ALIGN (offset, al);
3187 }
3188 i_shdrp->sh_offset = offset;
3189 if (i_shdrp->bfd_section != NULL)
3190 i_shdrp->bfd_section->filepos = offset;
3191 if (i_shdrp->sh_type != SHT_NOBITS)
3192 offset += i_shdrp->sh_size;
3193 return offset;
3194 }
3195
3196 /* Compute the file positions we are going to put the sections at, and
3197 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3198 is not NULL, this is being called by the ELF backend linker. */
3199
3200 bfd_boolean
3201 _bfd_elf_compute_section_file_positions (bfd *abfd,
3202 struct bfd_link_info *link_info)
3203 {
3204 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3205 bfd_boolean failed;
3206 struct bfd_strtab_hash *strtab = NULL;
3207 Elf_Internal_Shdr *shstrtab_hdr;
3208
3209 if (abfd->output_has_begun)
3210 return TRUE;
3211
3212 /* Do any elf backend specific processing first. */
3213 if (bed->elf_backend_begin_write_processing)
3214 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3215
3216 if (! prep_headers (abfd))
3217 return FALSE;
3218
3219 /* Post process the headers if necessary. */
3220 if (bed->elf_backend_post_process_headers)
3221 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3222
3223 failed = FALSE;
3224 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3225 if (failed)
3226 return FALSE;
3227
3228 if (!assign_section_numbers (abfd, link_info))
3229 return FALSE;
3230
3231 /* The backend linker builds symbol table information itself. */
3232 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3233 {
3234 /* Non-zero if doing a relocatable link. */
3235 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3236
3237 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3238 return FALSE;
3239 }
3240
3241 if (link_info == NULL)
3242 {
3243 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3244 if (failed)
3245 return FALSE;
3246 }
3247
3248 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3249 /* sh_name was set in prep_headers. */
3250 shstrtab_hdr->sh_type = SHT_STRTAB;
3251 shstrtab_hdr->sh_flags = 0;
3252 shstrtab_hdr->sh_addr = 0;
3253 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3254 shstrtab_hdr->sh_entsize = 0;
3255 shstrtab_hdr->sh_link = 0;
3256 shstrtab_hdr->sh_info = 0;
3257 /* sh_offset is set in assign_file_positions_except_relocs. */
3258 shstrtab_hdr->sh_addralign = 1;
3259
3260 if (!assign_file_positions_except_relocs (abfd, link_info))
3261 return FALSE;
3262
3263 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3264 {
3265 file_ptr off;
3266 Elf_Internal_Shdr *hdr;
3267
3268 off = elf_tdata (abfd)->next_file_pos;
3269
3270 hdr = &elf_tdata (abfd)->symtab_hdr;
3271 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3272
3273 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3274 if (hdr->sh_size != 0)
3275 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3276
3277 hdr = &elf_tdata (abfd)->strtab_hdr;
3278 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3279
3280 elf_tdata (abfd)->next_file_pos = off;
3281
3282 /* Now that we know where the .strtab section goes, write it
3283 out. */
3284 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3285 || ! _bfd_stringtab_emit (abfd, strtab))
3286 return FALSE;
3287 _bfd_stringtab_free (strtab);
3288 }
3289
3290 abfd->output_has_begun = TRUE;
3291
3292 return TRUE;
3293 }
3294
3295 /* Make an initial estimate of the size of the program header. If we
3296 get the number wrong here, we'll redo section placement. */
3297
3298 static bfd_size_type
3299 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3300 {
3301 size_t segs;
3302 asection *s;
3303 const struct elf_backend_data *bed;
3304
3305 /* Assume we will need exactly two PT_LOAD segments: one for text
3306 and one for data. */
3307 segs = 2;
3308
3309 s = bfd_get_section_by_name (abfd, ".interp");
3310 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3311 {
3312 /* If we have a loadable interpreter section, we need a
3313 PT_INTERP segment. In this case, assume we also need a
3314 PT_PHDR segment, although that may not be true for all
3315 targets. */
3316 segs += 2;
3317 }
3318
3319 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3320 {
3321 /* We need a PT_DYNAMIC segment. */
3322 ++segs;
3323
3324 if (elf_tdata (abfd)->relro)
3325 {
3326 /* We need a PT_GNU_RELRO segment only when there is a
3327 PT_DYNAMIC segment. */
3328 ++segs;
3329 }
3330 }
3331
3332 if (elf_tdata (abfd)->eh_frame_hdr)
3333 {
3334 /* We need a PT_GNU_EH_FRAME segment. */
3335 ++segs;
3336 }
3337
3338 if (elf_tdata (abfd)->stack_flags)
3339 {
3340 /* We need a PT_GNU_STACK segment. */
3341 ++segs;
3342 }
3343
3344 for (s = abfd->sections; s != NULL; s = s->next)
3345 {
3346 if ((s->flags & SEC_LOAD) != 0
3347 && CONST_STRNEQ (s->name, ".note"))
3348 {
3349 /* We need a PT_NOTE segment. */
3350 ++segs;
3351 /* Try to create just one PT_NOTE segment
3352 for all adjacent loadable .note* sections.
3353 gABI requires that within a PT_NOTE segment
3354 (and also inside of each SHT_NOTE section)
3355 each note is padded to a multiple of 4 size,
3356 so we check whether the sections are correctly
3357 aligned. */
3358 if (s->alignment_power == 2)
3359 while (s->next != NULL
3360 && s->next->alignment_power == 2
3361 && (s->next->flags & SEC_LOAD) != 0
3362 && CONST_STRNEQ (s->next->name, ".note"))
3363 s = s->next;
3364 }
3365 }
3366
3367 for (s = abfd->sections; s != NULL; s = s->next)
3368 {
3369 if (s->flags & SEC_THREAD_LOCAL)
3370 {
3371 /* We need a PT_TLS segment. */
3372 ++segs;
3373 break;
3374 }
3375 }
3376
3377 /* Let the backend count up any program headers it might need. */
3378 bed = get_elf_backend_data (abfd);
3379 if (bed->elf_backend_additional_program_headers)
3380 {
3381 int a;
3382
3383 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3384 if (a == -1)
3385 abort ();
3386 segs += a;
3387 }
3388
3389 return segs * bed->s->sizeof_phdr;
3390 }
3391
3392 /* Create a mapping from a set of sections to a program segment. */
3393
3394 static struct elf_segment_map *
3395 make_mapping (bfd *abfd,
3396 asection **sections,
3397 unsigned int from,
3398 unsigned int to,
3399 bfd_boolean phdr)
3400 {
3401 struct elf_segment_map *m;
3402 unsigned int i;
3403 asection **hdrpp;
3404 bfd_size_type amt;
3405
3406 amt = sizeof (struct elf_segment_map);
3407 amt += (to - from - 1) * sizeof (asection *);
3408 m = bfd_zalloc (abfd, amt);
3409 if (m == NULL)
3410 return NULL;
3411 m->next = NULL;
3412 m->p_type = PT_LOAD;
3413 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3414 m->sections[i - from] = *hdrpp;
3415 m->count = to - from;
3416
3417 if (from == 0 && phdr)
3418 {
3419 /* Include the headers in the first PT_LOAD segment. */
3420 m->includes_filehdr = 1;
3421 m->includes_phdrs = 1;
3422 }
3423
3424 return m;
3425 }
3426
3427 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3428 on failure. */
3429
3430 struct elf_segment_map *
3431 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3432 {
3433 struct elf_segment_map *m;
3434
3435 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3436 if (m == NULL)
3437 return NULL;
3438 m->next = NULL;
3439 m->p_type = PT_DYNAMIC;
3440 m->count = 1;
3441 m->sections[0] = dynsec;
3442
3443 return m;
3444 }
3445
3446 /* Possibly add or remove segments from the segment map. */
3447
3448 static bfd_boolean
3449 elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
3450 {
3451 struct elf_segment_map **m;
3452 const struct elf_backend_data *bed;
3453
3454 /* The placement algorithm assumes that non allocated sections are
3455 not in PT_LOAD segments. We ensure this here by removing such
3456 sections from the segment map. We also remove excluded
3457 sections. Finally, any PT_LOAD segment without sections is
3458 removed. */
3459 m = &elf_tdata (abfd)->segment_map;
3460 while (*m)
3461 {
3462 unsigned int i, new_count;
3463
3464 for (new_count = 0, i = 0; i < (*m)->count; i++)
3465 {
3466 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3467 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3468 || (*m)->p_type != PT_LOAD))
3469 {
3470 (*m)->sections[new_count] = (*m)->sections[i];
3471 new_count++;
3472 }
3473 }
3474 (*m)->count = new_count;
3475
3476 if ((*m)->p_type == PT_LOAD && (*m)->count == 0)
3477 *m = (*m)->next;
3478 else
3479 m = &(*m)->next;
3480 }
3481
3482 bed = get_elf_backend_data (abfd);
3483 if (bed->elf_backend_modify_segment_map != NULL)
3484 {
3485 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3486 return FALSE;
3487 }
3488
3489 return TRUE;
3490 }
3491
3492 /* Set up a mapping from BFD sections to program segments. */
3493
3494 bfd_boolean
3495 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3496 {
3497 unsigned int count;
3498 struct elf_segment_map *m;
3499 asection **sections = NULL;
3500 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3501
3502 if (elf_tdata (abfd)->segment_map == NULL
3503 && bfd_count_sections (abfd) != 0)
3504 {
3505 asection *s;
3506 unsigned int i;
3507 struct elf_segment_map *mfirst;
3508 struct elf_segment_map **pm;
3509 asection *last_hdr;
3510 bfd_vma last_size;
3511 unsigned int phdr_index;
3512 bfd_vma maxpagesize;
3513 asection **hdrpp;
3514 bfd_boolean phdr_in_segment = TRUE;
3515 bfd_boolean writable;
3516 int tls_count = 0;
3517 asection *first_tls = NULL;
3518 asection *dynsec, *eh_frame_hdr;
3519 bfd_size_type amt;
3520
3521 /* Select the allocated sections, and sort them. */
3522
3523 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3524 if (sections == NULL)
3525 goto error_return;
3526
3527 i = 0;
3528 for (s = abfd->sections; s != NULL; s = s->next)
3529 {
3530 if ((s->flags & SEC_ALLOC) != 0)
3531 {
3532 sections[i] = s;
3533 ++i;
3534 }
3535 }
3536 BFD_ASSERT (i <= bfd_count_sections (abfd));
3537 count = i;
3538
3539 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3540
3541 /* Build the mapping. */
3542
3543 mfirst = NULL;
3544 pm = &mfirst;
3545
3546 /* If we have a .interp section, then create a PT_PHDR segment for
3547 the program headers and a PT_INTERP segment for the .interp
3548 section. */
3549 s = bfd_get_section_by_name (abfd, ".interp");
3550 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3551 {
3552 amt = sizeof (struct elf_segment_map);
3553 m = bfd_zalloc (abfd, amt);
3554 if (m == NULL)
3555 goto error_return;
3556 m->next = NULL;
3557 m->p_type = PT_PHDR;
3558 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3559 m->p_flags = PF_R | PF_X;
3560 m->p_flags_valid = 1;
3561 m->includes_phdrs = 1;
3562
3563 *pm = m;
3564 pm = &m->next;
3565
3566 amt = sizeof (struct elf_segment_map);
3567 m = bfd_zalloc (abfd, amt);
3568 if (m == NULL)
3569 goto error_return;
3570 m->next = NULL;
3571 m->p_type = PT_INTERP;
3572 m->count = 1;
3573 m->sections[0] = s;
3574
3575 *pm = m;
3576 pm = &m->next;
3577 }
3578
3579 /* Look through the sections. We put sections in the same program
3580 segment when the start of the second section can be placed within
3581 a few bytes of the end of the first section. */
3582 last_hdr = NULL;
3583 last_size = 0;
3584 phdr_index = 0;
3585 maxpagesize = bed->maxpagesize;
3586 writable = FALSE;
3587 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3588 if (dynsec != NULL
3589 && (dynsec->flags & SEC_LOAD) == 0)
3590 dynsec = NULL;
3591
3592 /* Deal with -Ttext or something similar such that the first section
3593 is not adjacent to the program headers. This is an
3594 approximation, since at this point we don't know exactly how many
3595 program headers we will need. */
3596 if (count > 0)
3597 {
3598 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3599
3600 if (phdr_size == (bfd_size_type) -1)
3601 phdr_size = get_program_header_size (abfd, info);
3602 if ((abfd->flags & D_PAGED) == 0
3603 || sections[0]->lma < phdr_size
3604 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3605 phdr_in_segment = FALSE;
3606 }
3607
3608 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3609 {
3610 asection *hdr;
3611 bfd_boolean new_segment;
3612
3613 hdr = *hdrpp;
3614
3615 /* See if this section and the last one will fit in the same
3616 segment. */
3617
3618 if (last_hdr == NULL)
3619 {
3620 /* If we don't have a segment yet, then we don't need a new
3621 one (we build the last one after this loop). */
3622 new_segment = FALSE;
3623 }
3624 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3625 {
3626 /* If this section has a different relation between the
3627 virtual address and the load address, then we need a new
3628 segment. */
3629 new_segment = TRUE;
3630 }
3631 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3632 < BFD_ALIGN (hdr->lma, maxpagesize))
3633 {
3634 /* If putting this section in this segment would force us to
3635 skip a page in the segment, then we need a new segment. */
3636 new_segment = TRUE;
3637 }
3638 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3639 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3640 {
3641 /* We don't want to put a loadable section after a
3642 nonloadable section in the same segment.
3643 Consider .tbss sections as loadable for this purpose. */
3644 new_segment = TRUE;
3645 }
3646 else if ((abfd->flags & D_PAGED) == 0)
3647 {
3648 /* If the file is not demand paged, which means that we
3649 don't require the sections to be correctly aligned in the
3650 file, then there is no other reason for a new segment. */
3651 new_segment = FALSE;
3652 }
3653 else if (! writable
3654 && (hdr->flags & SEC_READONLY) == 0
3655 && (((last_hdr->lma + last_size - 1)
3656 & ~(maxpagesize - 1))
3657 != (hdr->lma & ~(maxpagesize - 1))))
3658 {
3659 /* We don't want to put a writable section in a read only
3660 segment, unless they are on the same page in memory
3661 anyhow. We already know that the last section does not
3662 bring us past the current section on the page, so the
3663 only case in which the new section is not on the same
3664 page as the previous section is when the previous section
3665 ends precisely on a page boundary. */
3666 new_segment = TRUE;
3667 }
3668 else
3669 {
3670 /* Otherwise, we can use the same segment. */
3671 new_segment = FALSE;
3672 }
3673
3674 /* Allow interested parties a chance to override our decision. */
3675 if (last_hdr && info->callbacks->override_segment_assignment)
3676 new_segment = info->callbacks->override_segment_assignment (info, abfd, hdr, last_hdr, new_segment);
3677
3678 if (! new_segment)
3679 {
3680 if ((hdr->flags & SEC_READONLY) == 0)
3681 writable = TRUE;
3682 last_hdr = hdr;
3683 /* .tbss sections effectively have zero size. */
3684 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3685 != SEC_THREAD_LOCAL)
3686 last_size = hdr->size;
3687 else
3688 last_size = 0;
3689 continue;
3690 }
3691
3692 /* We need a new program segment. We must create a new program
3693 header holding all the sections from phdr_index until hdr. */
3694
3695 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3696 if (m == NULL)
3697 goto error_return;
3698
3699 *pm = m;
3700 pm = &m->next;
3701
3702 if ((hdr->flags & SEC_READONLY) == 0)
3703 writable = TRUE;
3704 else
3705 writable = FALSE;
3706
3707 last_hdr = hdr;
3708 /* .tbss sections effectively have zero size. */
3709 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3710 last_size = hdr->size;
3711 else
3712 last_size = 0;
3713 phdr_index = i;
3714 phdr_in_segment = FALSE;
3715 }
3716
3717 /* Create a final PT_LOAD program segment. */
3718 if (last_hdr != NULL)
3719 {
3720 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3721 if (m == NULL)
3722 goto error_return;
3723
3724 *pm = m;
3725 pm = &m->next;
3726 }
3727
3728 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3729 if (dynsec != NULL)
3730 {
3731 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3732 if (m == NULL)
3733 goto error_return;
3734 *pm = m;
3735 pm = &m->next;
3736 }
3737
3738 /* For each batch of consecutive loadable .note sections,
3739 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
3740 because if we link together nonloadable .note sections and
3741 loadable .note sections, we will generate two .note sections
3742 in the output file. FIXME: Using names for section types is
3743 bogus anyhow. */
3744 for (s = abfd->sections; s != NULL; s = s->next)
3745 {
3746 if ((s->flags & SEC_LOAD) != 0
3747 && CONST_STRNEQ (s->name, ".note"))
3748 {
3749 asection *s2;
3750 unsigned count = 1;
3751 amt = sizeof (struct elf_segment_map);
3752 if (s->alignment_power == 2)
3753 for (s2 = s; s2->next != NULL; s2 = s2->next)
3754 {
3755 if (s2->next->alignment_power == 2
3756 && (s2->next->flags & SEC_LOAD) != 0
3757 && CONST_STRNEQ (s2->next->name, ".note")
3758 && align_power (s2->vma + s2->size, 2)
3759 == s2->next->vma)
3760 count++;
3761 else
3762 break;
3763 }
3764 amt += (count - 1) * sizeof (asection *);
3765 m = bfd_zalloc (abfd, amt);
3766 if (m == NULL)
3767 goto error_return;
3768 m->next = NULL;
3769 m->p_type = PT_NOTE;
3770 m->count = count;
3771 while (count > 1)
3772 {
3773 m->sections[m->count - count--] = s;
3774 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3775 s = s->next;
3776 }
3777 m->sections[m->count - 1] = s;
3778 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
3779 *pm = m;
3780 pm = &m->next;
3781 }
3782 if (s->flags & SEC_THREAD_LOCAL)
3783 {
3784 if (! tls_count)
3785 first_tls = s;
3786 tls_count++;
3787 }
3788 }
3789
3790 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3791 if (tls_count > 0)
3792 {
3793 int i;
3794
3795 amt = sizeof (struct elf_segment_map);
3796 amt += (tls_count - 1) * sizeof (asection *);
3797 m = bfd_zalloc (abfd, amt);
3798 if (m == NULL)
3799 goto error_return;
3800 m->next = NULL;
3801 m->p_type = PT_TLS;
3802 m->count = tls_count;
3803 /* Mandated PF_R. */
3804 m->p_flags = PF_R;
3805 m->p_flags_valid = 1;
3806 for (i = 0; i < tls_count; ++i)
3807 {
3808 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3809 m->sections[i] = first_tls;
3810 first_tls = first_tls->next;
3811 }
3812
3813 *pm = m;
3814 pm = &m->next;
3815 }
3816
3817 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3818 segment. */
3819 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3820 if (eh_frame_hdr != NULL
3821 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3822 {
3823 amt = sizeof (struct elf_segment_map);
3824 m = bfd_zalloc (abfd, amt);
3825 if (m == NULL)
3826 goto error_return;
3827 m->next = NULL;
3828 m->p_type = PT_GNU_EH_FRAME;
3829 m->count = 1;
3830 m->sections[0] = eh_frame_hdr->output_section;
3831
3832 *pm = m;
3833 pm = &m->next;
3834 }
3835
3836 if (elf_tdata (abfd)->stack_flags)
3837 {
3838 amt = sizeof (struct elf_segment_map);
3839 m = bfd_zalloc (abfd, amt);
3840 if (m == NULL)
3841 goto error_return;
3842 m->next = NULL;
3843 m->p_type = PT_GNU_STACK;
3844 m->p_flags = elf_tdata (abfd)->stack_flags;
3845 m->p_flags_valid = 1;
3846
3847 *pm = m;
3848 pm = &m->next;
3849 }
3850
3851 if (dynsec != NULL && elf_tdata (abfd)->relro)
3852 {
3853 /* We make a PT_GNU_RELRO segment only when there is a
3854 PT_DYNAMIC segment. */
3855 amt = sizeof (struct elf_segment_map);
3856 m = bfd_zalloc (abfd, amt);
3857 if (m == NULL)
3858 goto error_return;
3859 m->next = NULL;
3860 m->p_type = PT_GNU_RELRO;
3861 m->p_flags = PF_R;
3862 m->p_flags_valid = 1;
3863
3864 *pm = m;
3865 pm = &m->next;
3866 }
3867
3868 free (sections);
3869 elf_tdata (abfd)->segment_map = mfirst;
3870 }
3871
3872 if (!elf_modify_segment_map (abfd, info))
3873 return FALSE;
3874
3875 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3876 ++count;
3877 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
3878
3879 return TRUE;
3880
3881 error_return:
3882 if (sections != NULL)
3883 free (sections);
3884 return FALSE;
3885 }
3886
3887 /* Sort sections by address. */
3888
3889 static int
3890 elf_sort_sections (const void *arg1, const void *arg2)
3891 {
3892 const asection *sec1 = *(const asection **) arg1;
3893 const asection *sec2 = *(const asection **) arg2;
3894 bfd_size_type size1, size2;
3895
3896 /* Sort by LMA first, since this is the address used to
3897 place the section into a segment. */
3898 if (sec1->lma < sec2->lma)
3899 return -1;
3900 else if (sec1->lma > sec2->lma)
3901 return 1;
3902
3903 /* Then sort by VMA. Normally the LMA and the VMA will be
3904 the same, and this will do nothing. */
3905 if (sec1->vma < sec2->vma)
3906 return -1;
3907 else if (sec1->vma > sec2->vma)
3908 return 1;
3909
3910 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3911
3912 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3913
3914 if (TOEND (sec1))
3915 {
3916 if (TOEND (sec2))
3917 {
3918 /* If the indicies are the same, do not return 0
3919 here, but continue to try the next comparison. */
3920 if (sec1->target_index - sec2->target_index != 0)
3921 return sec1->target_index - sec2->target_index;
3922 }
3923 else
3924 return 1;
3925 }
3926 else if (TOEND (sec2))
3927 return -1;
3928
3929 #undef TOEND
3930
3931 /* Sort by size, to put zero sized sections
3932 before others at the same address. */
3933
3934 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3935 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3936
3937 if (size1 < size2)
3938 return -1;
3939 if (size1 > size2)
3940 return 1;
3941
3942 return sec1->target_index - sec2->target_index;
3943 }
3944
3945 /* Ian Lance Taylor writes:
3946
3947 We shouldn't be using % with a negative signed number. That's just
3948 not good. We have to make sure either that the number is not
3949 negative, or that the number has an unsigned type. When the types
3950 are all the same size they wind up as unsigned. When file_ptr is a
3951 larger signed type, the arithmetic winds up as signed long long,
3952 which is wrong.
3953
3954 What we're trying to say here is something like ``increase OFF by
3955 the least amount that will cause it to be equal to the VMA modulo
3956 the page size.'' */
3957 /* In other words, something like:
3958
3959 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3960 off_offset = off % bed->maxpagesize;
3961 if (vma_offset < off_offset)
3962 adjustment = vma_offset + bed->maxpagesize - off_offset;
3963 else
3964 adjustment = vma_offset - off_offset;
3965
3966 which can can be collapsed into the expression below. */
3967
3968 static file_ptr
3969 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3970 {
3971 return ((vma - off) % maxpagesize);
3972 }
3973
3974 static void
3975 print_segment_map (const struct elf_segment_map *m)
3976 {
3977 unsigned int j;
3978 const char *pt = get_segment_type (m->p_type);
3979 char buf[32];
3980
3981 if (pt == NULL)
3982 {
3983 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
3984 sprintf (buf, "LOPROC+%7.7x",
3985 (unsigned int) (m->p_type - PT_LOPROC));
3986 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
3987 sprintf (buf, "LOOS+%7.7x",
3988 (unsigned int) (m->p_type - PT_LOOS));
3989 else
3990 snprintf (buf, sizeof (buf), "%8.8x",
3991 (unsigned int) m->p_type);
3992 pt = buf;
3993 }
3994 fprintf (stderr, "%s:", pt);
3995 for (j = 0; j < m->count; j++)
3996 fprintf (stderr, " %s", m->sections [j]->name);
3997 putc ('\n',stderr);
3998 }
3999
4000 /* Assign file positions to the sections based on the mapping from
4001 sections to segments. This function also sets up some fields in
4002 the file header. */
4003
4004 static bfd_boolean
4005 assign_file_positions_for_load_sections (bfd *abfd,
4006 struct bfd_link_info *link_info)
4007 {
4008 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4009 struct elf_segment_map *m;
4010 Elf_Internal_Phdr *phdrs;
4011 Elf_Internal_Phdr *p;
4012 file_ptr off;
4013 bfd_size_type maxpagesize;
4014 unsigned int alloc;
4015 unsigned int i, j;
4016
4017 if (link_info == NULL
4018 && !elf_modify_segment_map (abfd, link_info))
4019 return FALSE;
4020
4021 alloc = 0;
4022 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4023 ++alloc;
4024
4025 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4026 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4027 elf_elfheader (abfd)->e_phnum = alloc;
4028
4029 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4030 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4031 else
4032 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4033 >= alloc * bed->s->sizeof_phdr);
4034
4035 if (alloc == 0)
4036 {
4037 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4038 return TRUE;
4039 }
4040
4041 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4042 elf_tdata (abfd)->phdr = phdrs;
4043 if (phdrs == NULL)
4044 return FALSE;
4045
4046 maxpagesize = 1;
4047 if ((abfd->flags & D_PAGED) != 0)
4048 maxpagesize = bed->maxpagesize;
4049
4050 off = bed->s->sizeof_ehdr;
4051 off += alloc * bed->s->sizeof_phdr;
4052
4053 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4054 m != NULL;
4055 m = m->next, p++, j++)
4056 {
4057 asection **secpp;
4058 bfd_vma off_adjust;
4059 bfd_boolean no_contents;
4060
4061 /* If elf_segment_map is not from map_sections_to_segments, the
4062 sections may not be correctly ordered. NOTE: sorting should
4063 not be done to the PT_NOTE section of a corefile, which may
4064 contain several pseudo-sections artificially created by bfd.
4065 Sorting these pseudo-sections breaks things badly. */
4066 if (m->count > 1
4067 && !(elf_elfheader (abfd)->e_type == ET_CORE
4068 && m->p_type == PT_NOTE))
4069 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4070 elf_sort_sections);
4071
4072 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4073 number of sections with contents contributing to both p_filesz
4074 and p_memsz, followed by a number of sections with no contents
4075 that just contribute to p_memsz. In this loop, OFF tracks next
4076 available file offset for PT_LOAD and PT_NOTE segments. */
4077 p->p_type = m->p_type;
4078 p->p_flags = m->p_flags;
4079
4080 if (m->count == 0)
4081 p->p_vaddr = 0;
4082 else
4083 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4084
4085 if (m->p_paddr_valid)
4086 p->p_paddr = m->p_paddr;
4087 else if (m->count == 0)
4088 p->p_paddr = 0;
4089 else
4090 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4091
4092 if (p->p_type == PT_LOAD
4093 && (abfd->flags & D_PAGED) != 0)
4094 {
4095 /* p_align in demand paged PT_LOAD segments effectively stores
4096 the maximum page size. When copying an executable with
4097 objcopy, we set m->p_align from the input file. Use this
4098 value for maxpagesize rather than bed->maxpagesize, which
4099 may be different. Note that we use maxpagesize for PT_TLS
4100 segment alignment later in this function, so we are relying
4101 on at least one PT_LOAD segment appearing before a PT_TLS
4102 segment. */
4103 if (m->p_align_valid)
4104 maxpagesize = m->p_align;
4105
4106 p->p_align = maxpagesize;
4107 }
4108 else if (m->count == 0)
4109 p->p_align = 1 << bed->s->log_file_align;
4110 else if (m->p_align_valid)
4111 p->p_align = m->p_align;
4112 else
4113 p->p_align = 0;
4114
4115 no_contents = FALSE;
4116 off_adjust = 0;
4117 if (p->p_type == PT_LOAD
4118 && m->count > 0)
4119 {
4120 bfd_size_type align;
4121 unsigned int align_power = 0;
4122
4123 if (m->p_align_valid)
4124 align = p->p_align;
4125 else
4126 {
4127 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4128 {
4129 unsigned int secalign;
4130
4131 secalign = bfd_get_section_alignment (abfd, *secpp);
4132 if (secalign > align_power)
4133 align_power = secalign;
4134 }
4135 align = (bfd_size_type) 1 << align_power;
4136 if (align < maxpagesize)
4137 align = maxpagesize;
4138 }
4139
4140 for (i = 0; i < m->count; i++)
4141 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4142 /* If we aren't making room for this section, then
4143 it must be SHT_NOBITS regardless of what we've
4144 set via struct bfd_elf_special_section. */
4145 elf_section_type (m->sections[i]) = SHT_NOBITS;
4146
4147 /* Find out whether this segment contains any loadable
4148 sections. If the first section isn't loadable, the same
4149 holds for any other sections. */
4150 i = 0;
4151 while (elf_section_type (m->sections[i]) == SHT_NOBITS)
4152 {
4153 /* If a segment starts with .tbss, we need to look
4154 at the next section to decide whether the segment
4155 has any loadable sections. */
4156 if ((elf_section_flags (m->sections[i]) & SHF_TLS) == 0
4157 || ++i >= m->count)
4158 {
4159 no_contents = TRUE;
4160 break;
4161 }
4162 }
4163
4164 off_adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4165 off += off_adjust;
4166 if (no_contents)
4167 {
4168 /* We shouldn't need to align the segment on disk since
4169 the segment doesn't need file space, but the gABI
4170 arguably requires the alignment and glibc ld.so
4171 checks it. So to comply with the alignment
4172 requirement but not waste file space, we adjust
4173 p_offset for just this segment. (OFF_ADJUST is
4174 subtracted from OFF later.) This may put p_offset
4175 past the end of file, but that shouldn't matter. */
4176 }
4177 else
4178 off_adjust = 0;
4179 }
4180 /* Make sure the .dynamic section is the first section in the
4181 PT_DYNAMIC segment. */
4182 else if (p->p_type == PT_DYNAMIC
4183 && m->count > 1
4184 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4185 {
4186 _bfd_error_handler
4187 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4188 abfd);
4189 bfd_set_error (bfd_error_bad_value);
4190 return FALSE;
4191 }
4192
4193 p->p_offset = 0;
4194 p->p_filesz = 0;
4195 p->p_memsz = 0;
4196
4197 if (m->includes_filehdr)
4198 {
4199 if (!m->p_flags_valid)
4200 p->p_flags |= PF_R;
4201 p->p_filesz = bed->s->sizeof_ehdr;
4202 p->p_memsz = bed->s->sizeof_ehdr;
4203 if (m->count > 0)
4204 {
4205 BFD_ASSERT (p->p_type == PT_LOAD);
4206
4207 if (p->p_vaddr < (bfd_vma) off)
4208 {
4209 (*_bfd_error_handler)
4210 (_("%B: Not enough room for program headers, try linking with -N"),
4211 abfd);
4212 bfd_set_error (bfd_error_bad_value);
4213 return FALSE;
4214 }
4215
4216 p->p_vaddr -= off;
4217 if (!m->p_paddr_valid)
4218 p->p_paddr -= off;
4219 }
4220 }
4221
4222 if (m->includes_phdrs)
4223 {
4224 if (!m->p_flags_valid)
4225 p->p_flags |= PF_R;
4226
4227 if (!m->includes_filehdr)
4228 {
4229 p->p_offset = bed->s->sizeof_ehdr;
4230
4231 if (m->count > 0)
4232 {
4233 BFD_ASSERT (p->p_type == PT_LOAD);
4234 p->p_vaddr -= off - p->p_offset;
4235 if (!m->p_paddr_valid)
4236 p->p_paddr -= off - p->p_offset;
4237 }
4238 }
4239
4240 p->p_filesz += alloc * bed->s->sizeof_phdr;
4241 p->p_memsz += alloc * bed->s->sizeof_phdr;
4242 }
4243
4244 if (p->p_type == PT_LOAD
4245 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4246 {
4247 if (!m->includes_filehdr && !m->includes_phdrs)
4248 p->p_offset = off;
4249 else
4250 {
4251 file_ptr adjust;
4252
4253 adjust = off - (p->p_offset + p->p_filesz);
4254 if (!no_contents)
4255 p->p_filesz += adjust;
4256 p->p_memsz += adjust;
4257 }
4258 }
4259
4260 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4261 maps. Set filepos for sections in PT_LOAD segments, and in
4262 core files, for sections in PT_NOTE segments.
4263 assign_file_positions_for_non_load_sections will set filepos
4264 for other sections and update p_filesz for other segments. */
4265 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4266 {
4267 asection *sec;
4268 bfd_size_type align;
4269 Elf_Internal_Shdr *this_hdr;
4270
4271 sec = *secpp;
4272 this_hdr = &elf_section_data (sec)->this_hdr;
4273 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4274
4275 if (p->p_type == PT_LOAD
4276 || p->p_type == PT_TLS)
4277 {
4278 bfd_signed_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
4279
4280 if (this_hdr->sh_type != SHT_NOBITS
4281 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4282 && ((this_hdr->sh_flags & SHF_TLS) == 0
4283 || p->p_type == PT_TLS)))
4284 {
4285 if (adjust < 0)
4286 {
4287 (*_bfd_error_handler)
4288 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4289 abfd, sec, (unsigned long) sec->lma);
4290 adjust = 0;
4291 }
4292 p->p_memsz += adjust;
4293
4294 if (this_hdr->sh_type != SHT_NOBITS)
4295 {
4296 off += adjust;
4297 p->p_filesz += adjust;
4298 }
4299 }
4300 }
4301
4302 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4303 {
4304 /* The section at i == 0 is the one that actually contains
4305 everything. */
4306 if (i == 0)
4307 {
4308 this_hdr->sh_offset = sec->filepos = off;
4309 off += this_hdr->sh_size;
4310 p->p_filesz = this_hdr->sh_size;
4311 p->p_memsz = 0;
4312 p->p_align = 1;
4313 }
4314 else
4315 {
4316 /* The rest are fake sections that shouldn't be written. */
4317 sec->filepos = 0;
4318 sec->size = 0;
4319 sec->flags = 0;
4320 continue;
4321 }
4322 }
4323 else
4324 {
4325 if (p->p_type == PT_LOAD)
4326 {
4327 this_hdr->sh_offset = sec->filepos = off;
4328 if (this_hdr->sh_type != SHT_NOBITS)
4329 off += this_hdr->sh_size;
4330 }
4331
4332 if (this_hdr->sh_type != SHT_NOBITS)
4333 {
4334 p->p_filesz += this_hdr->sh_size;
4335 /* A load section without SHF_ALLOC is something like
4336 a note section in a PT_NOTE segment. These take
4337 file space but are not loaded into memory. */
4338 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4339 p->p_memsz += this_hdr->sh_size;
4340 }
4341 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4342 {
4343 if (p->p_type == PT_TLS)
4344 p->p_memsz += this_hdr->sh_size;
4345
4346 /* .tbss is special. It doesn't contribute to p_memsz of
4347 normal segments. */
4348 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4349 p->p_memsz += this_hdr->sh_size;
4350 }
4351
4352 if (p->p_type == PT_GNU_RELRO)
4353 p->p_align = 1;
4354 else if (align > p->p_align
4355 && !m->p_align_valid
4356 && (p->p_type != PT_LOAD
4357 || (abfd->flags & D_PAGED) == 0))
4358 p->p_align = align;
4359 }
4360
4361 if (!m->p_flags_valid)
4362 {
4363 p->p_flags |= PF_R;
4364 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4365 p->p_flags |= PF_X;
4366 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4367 p->p_flags |= PF_W;
4368 }
4369 }
4370 off -= off_adjust;
4371
4372 /* Check that all sections are in a PT_LOAD segment.
4373 Don't check funky gdb generated core files. */
4374 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4375 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4376 {
4377 Elf_Internal_Shdr *this_hdr;
4378 asection *sec;
4379
4380 sec = *secpp;
4381 this_hdr = &(elf_section_data(sec)->this_hdr);
4382 if (this_hdr->sh_size != 0
4383 && !ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, p))
4384 {
4385 (*_bfd_error_handler)
4386 (_("%B: section `%A' can't be allocated in segment %d"),
4387 abfd, sec, j);
4388 print_segment_map (m);
4389 bfd_set_error (bfd_error_bad_value);
4390 return FALSE;
4391 }
4392 }
4393 }
4394
4395 elf_tdata (abfd)->next_file_pos = off;
4396 return TRUE;
4397 }
4398
4399 /* Assign file positions for the other sections. */
4400
4401 static bfd_boolean
4402 assign_file_positions_for_non_load_sections (bfd *abfd,
4403 struct bfd_link_info *link_info)
4404 {
4405 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4406 Elf_Internal_Shdr **i_shdrpp;
4407 Elf_Internal_Shdr **hdrpp;
4408 Elf_Internal_Phdr *phdrs;
4409 Elf_Internal_Phdr *p;
4410 struct elf_segment_map *m;
4411 bfd_vma filehdr_vaddr, filehdr_paddr;
4412 bfd_vma phdrs_vaddr, phdrs_paddr;
4413 file_ptr off;
4414 unsigned int num_sec;
4415 unsigned int i;
4416 unsigned int count;
4417
4418 i_shdrpp = elf_elfsections (abfd);
4419 num_sec = elf_numsections (abfd);
4420 off = elf_tdata (abfd)->next_file_pos;
4421 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4422 {
4423 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4424 Elf_Internal_Shdr *hdr;
4425
4426 hdr = *hdrpp;
4427 if (hdr->bfd_section != NULL
4428 && (hdr->bfd_section->filepos != 0
4429 || (hdr->sh_type == SHT_NOBITS
4430 && hdr->contents == NULL)))
4431 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4432 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4433 {
4434 if (hdr->sh_size != 0)
4435 ((*_bfd_error_handler)
4436 (_("%B: warning: allocated section `%s' not in segment"),
4437 abfd,
4438 (hdr->bfd_section == NULL
4439 ? "*unknown*"
4440 : hdr->bfd_section->name)));
4441 /* We don't need to page align empty sections. */
4442 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4443 off += vma_page_aligned_bias (hdr->sh_addr, off,
4444 bed->maxpagesize);
4445 else
4446 off += vma_page_aligned_bias (hdr->sh_addr, off,
4447 hdr->sh_addralign);
4448 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4449 FALSE);
4450 }
4451 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4452 && hdr->bfd_section == NULL)
4453 || hdr == i_shdrpp[tdata->symtab_section]
4454 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4455 || hdr == i_shdrpp[tdata->strtab_section])
4456 hdr->sh_offset = -1;
4457 else
4458 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4459
4460 if (i == SHN_LORESERVE - 1)
4461 {
4462 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4463 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4464 }
4465 }
4466
4467 /* Now that we have set the section file positions, we can set up
4468 the file positions for the non PT_LOAD segments. */
4469 count = 0;
4470 filehdr_vaddr = 0;
4471 filehdr_paddr = 0;
4472 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4473 phdrs_paddr = 0;
4474 phdrs = elf_tdata (abfd)->phdr;
4475 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4476 m != NULL;
4477 m = m->next, p++)
4478 {
4479 ++count;
4480 if (p->p_type != PT_LOAD)
4481 continue;
4482
4483 if (m->includes_filehdr)
4484 {
4485 filehdr_vaddr = p->p_vaddr;
4486 filehdr_paddr = p->p_paddr;
4487 }
4488 if (m->includes_phdrs)
4489 {
4490 phdrs_vaddr = p->p_vaddr;
4491 phdrs_paddr = p->p_paddr;
4492 if (m->includes_filehdr)
4493 {
4494 phdrs_vaddr += bed->s->sizeof_ehdr;
4495 phdrs_paddr += bed->s->sizeof_ehdr;
4496 }
4497 }
4498 }
4499
4500 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4501 m != NULL;
4502 m = m->next, p++)
4503 {
4504 if (m->count != 0)
4505 {
4506 if (p->p_type != PT_LOAD
4507 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4508 {
4509 Elf_Internal_Shdr *hdr;
4510 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4511
4512 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4513 p->p_filesz = (m->sections[m->count - 1]->filepos
4514 - m->sections[0]->filepos);
4515 if (hdr->sh_type != SHT_NOBITS)
4516 p->p_filesz += hdr->sh_size;
4517
4518 p->p_offset = m->sections[0]->filepos;
4519 }
4520 }
4521 else
4522 {
4523 if (m->includes_filehdr)
4524 {
4525 p->p_vaddr = filehdr_vaddr;
4526 if (! m->p_paddr_valid)
4527 p->p_paddr = filehdr_paddr;
4528 }
4529 else if (m->includes_phdrs)
4530 {
4531 p->p_vaddr = phdrs_vaddr;
4532 if (! m->p_paddr_valid)
4533 p->p_paddr = phdrs_paddr;
4534 }
4535 else if (p->p_type == PT_GNU_RELRO)
4536 {
4537 Elf_Internal_Phdr *lp;
4538
4539 for (lp = phdrs; lp < phdrs + count; ++lp)
4540 {
4541 if (lp->p_type == PT_LOAD
4542 && lp->p_vaddr <= link_info->relro_end
4543 && lp->p_vaddr >= link_info->relro_start
4544 && (lp->p_vaddr + lp->p_filesz
4545 >= link_info->relro_end))
4546 break;
4547 }
4548
4549 if (lp < phdrs + count
4550 && link_info->relro_end > lp->p_vaddr)
4551 {
4552 p->p_vaddr = lp->p_vaddr;
4553 p->p_paddr = lp->p_paddr;
4554 p->p_offset = lp->p_offset;
4555 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4556 p->p_memsz = p->p_filesz;
4557 p->p_align = 1;
4558 p->p_flags = (lp->p_flags & ~PF_W);
4559 }
4560 else
4561 {
4562 memset (p, 0, sizeof *p);
4563 p->p_type = PT_NULL;
4564 }
4565 }
4566 }
4567 }
4568
4569 elf_tdata (abfd)->next_file_pos = off;
4570
4571 return TRUE;
4572 }
4573
4574 /* Work out the file positions of all the sections. This is called by
4575 _bfd_elf_compute_section_file_positions. All the section sizes and
4576 VMAs must be known before this is called.
4577
4578 Reloc sections come in two flavours: Those processed specially as
4579 "side-channel" data attached to a section to which they apply, and
4580 those that bfd doesn't process as relocations. The latter sort are
4581 stored in a normal bfd section by bfd_section_from_shdr. We don't
4582 consider the former sort here, unless they form part of the loadable
4583 image. Reloc sections not assigned here will be handled later by
4584 assign_file_positions_for_relocs.
4585
4586 We also don't set the positions of the .symtab and .strtab here. */
4587
4588 static bfd_boolean
4589 assign_file_positions_except_relocs (bfd *abfd,
4590 struct bfd_link_info *link_info)
4591 {
4592 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4593 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4594 file_ptr off;
4595 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4596
4597 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4598 && bfd_get_format (abfd) != bfd_core)
4599 {
4600 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4601 unsigned int num_sec = elf_numsections (abfd);
4602 Elf_Internal_Shdr **hdrpp;
4603 unsigned int i;
4604
4605 /* Start after the ELF header. */
4606 off = i_ehdrp->e_ehsize;
4607
4608 /* We are not creating an executable, which means that we are
4609 not creating a program header, and that the actual order of
4610 the sections in the file is unimportant. */
4611 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4612 {
4613 Elf_Internal_Shdr *hdr;
4614
4615 hdr = *hdrpp;
4616 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4617 && hdr->bfd_section == NULL)
4618 || i == tdata->symtab_section
4619 || i == tdata->symtab_shndx_section
4620 || i == tdata->strtab_section)
4621 {
4622 hdr->sh_offset = -1;
4623 }
4624 else
4625 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4626
4627 if (i == SHN_LORESERVE - 1)
4628 {
4629 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4630 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4631 }
4632 }
4633 }
4634 else
4635 {
4636 unsigned int alloc;
4637
4638 /* Assign file positions for the loaded sections based on the
4639 assignment of sections to segments. */
4640 if (!assign_file_positions_for_load_sections (abfd, link_info))
4641 return FALSE;
4642
4643 /* And for non-load sections. */
4644 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4645 return FALSE;
4646
4647 if (bed->elf_backend_modify_program_headers != NULL)
4648 {
4649 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4650 return FALSE;
4651 }
4652
4653 /* Write out the program headers. */
4654 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4655 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4656 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4657 return FALSE;
4658
4659 off = tdata->next_file_pos;
4660 }
4661
4662 /* Place the section headers. */
4663 off = align_file_position (off, 1 << bed->s->log_file_align);
4664 i_ehdrp->e_shoff = off;
4665 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4666
4667 tdata->next_file_pos = off;
4668
4669 return TRUE;
4670 }
4671
4672 static bfd_boolean
4673 prep_headers (bfd *abfd)
4674 {
4675 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4676 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4677 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4678 struct elf_strtab_hash *shstrtab;
4679 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4680
4681 i_ehdrp = elf_elfheader (abfd);
4682 i_shdrp = elf_elfsections (abfd);
4683
4684 shstrtab = _bfd_elf_strtab_init ();
4685 if (shstrtab == NULL)
4686 return FALSE;
4687
4688 elf_shstrtab (abfd) = shstrtab;
4689
4690 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4691 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4692 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4693 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4694
4695 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4696 i_ehdrp->e_ident[EI_DATA] =
4697 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4698 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4699
4700 if ((abfd->flags & DYNAMIC) != 0)
4701 i_ehdrp->e_type = ET_DYN;
4702 else if ((abfd->flags & EXEC_P) != 0)
4703 i_ehdrp->e_type = ET_EXEC;
4704 else if (bfd_get_format (abfd) == bfd_core)
4705 i_ehdrp->e_type = ET_CORE;
4706 else
4707 i_ehdrp->e_type = ET_REL;
4708
4709 switch (bfd_get_arch (abfd))
4710 {
4711 case bfd_arch_unknown:
4712 i_ehdrp->e_machine = EM_NONE;
4713 break;
4714
4715 /* There used to be a long list of cases here, each one setting
4716 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4717 in the corresponding bfd definition. To avoid duplication,
4718 the switch was removed. Machines that need special handling
4719 can generally do it in elf_backend_final_write_processing(),
4720 unless they need the information earlier than the final write.
4721 Such need can generally be supplied by replacing the tests for
4722 e_machine with the conditions used to determine it. */
4723 default:
4724 i_ehdrp->e_machine = bed->elf_machine_code;
4725 }
4726
4727 i_ehdrp->e_version = bed->s->ev_current;
4728 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4729
4730 /* No program header, for now. */
4731 i_ehdrp->e_phoff = 0;
4732 i_ehdrp->e_phentsize = 0;
4733 i_ehdrp->e_phnum = 0;
4734
4735 /* Each bfd section is section header entry. */
4736 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4737 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4738
4739 /* If we're building an executable, we'll need a program header table. */
4740 if (abfd->flags & EXEC_P)
4741 /* It all happens later. */
4742 ;
4743 else
4744 {
4745 i_ehdrp->e_phentsize = 0;
4746 i_phdrp = 0;
4747 i_ehdrp->e_phoff = 0;
4748 }
4749
4750 elf_tdata (abfd)->symtab_hdr.sh_name =
4751 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4752 elf_tdata (abfd)->strtab_hdr.sh_name =
4753 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4754 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4755 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4756 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4757 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4758 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4759 return FALSE;
4760
4761 return TRUE;
4762 }
4763
4764 /* Assign file positions for all the reloc sections which are not part
4765 of the loadable file image. */
4766
4767 void
4768 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4769 {
4770 file_ptr off;
4771 unsigned int i, num_sec;
4772 Elf_Internal_Shdr **shdrpp;
4773
4774 off = elf_tdata (abfd)->next_file_pos;
4775
4776 num_sec = elf_numsections (abfd);
4777 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4778 {
4779 Elf_Internal_Shdr *shdrp;
4780
4781 shdrp = *shdrpp;
4782 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4783 && shdrp->sh_offset == -1)
4784 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4785 }
4786
4787 elf_tdata (abfd)->next_file_pos = off;
4788 }
4789
4790 bfd_boolean
4791 _bfd_elf_write_object_contents (bfd *abfd)
4792 {
4793 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4794 Elf_Internal_Ehdr *i_ehdrp;
4795 Elf_Internal_Shdr **i_shdrp;
4796 bfd_boolean failed;
4797 unsigned int count, num_sec;
4798
4799 if (! abfd->output_has_begun
4800 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4801 return FALSE;
4802
4803 i_shdrp = elf_elfsections (abfd);
4804 i_ehdrp = elf_elfheader (abfd);
4805
4806 failed = FALSE;
4807 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4808 if (failed)
4809 return FALSE;
4810
4811 _bfd_elf_assign_file_positions_for_relocs (abfd);
4812
4813 /* After writing the headers, we need to write the sections too... */
4814 num_sec = elf_numsections (abfd);
4815 for (count = 1; count < num_sec; count++)
4816 {
4817 if (bed->elf_backend_section_processing)
4818 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4819 if (i_shdrp[count]->contents)
4820 {
4821 bfd_size_type amt = i_shdrp[count]->sh_size;
4822
4823 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4824 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4825 return FALSE;
4826 }
4827 if (count == SHN_LORESERVE - 1)
4828 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4829 }
4830
4831 /* Write out the section header names. */
4832 if (elf_shstrtab (abfd) != NULL
4833 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4834 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
4835 return FALSE;
4836
4837 if (bed->elf_backend_final_write_processing)
4838 (*bed->elf_backend_final_write_processing) (abfd,
4839 elf_tdata (abfd)->linker);
4840
4841 if (!bed->s->write_shdrs_and_ehdr (abfd))
4842 return FALSE;
4843
4844 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
4845 if (elf_tdata (abfd)->after_write_object_contents)
4846 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
4847
4848 return TRUE;
4849 }
4850
4851 bfd_boolean
4852 _bfd_elf_write_corefile_contents (bfd *abfd)
4853 {
4854 /* Hopefully this can be done just like an object file. */
4855 return _bfd_elf_write_object_contents (abfd);
4856 }
4857
4858 /* Given a section, search the header to find them. */
4859
4860 int
4861 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4862 {
4863 const struct elf_backend_data *bed;
4864 int index;
4865
4866 if (elf_section_data (asect) != NULL
4867 && elf_section_data (asect)->this_idx != 0)
4868 return elf_section_data (asect)->this_idx;
4869
4870 if (bfd_is_abs_section (asect))
4871 index = SHN_ABS;
4872 else if (bfd_is_com_section (asect))
4873 index = SHN_COMMON;
4874 else if (bfd_is_und_section (asect))
4875 index = SHN_UNDEF;
4876 else
4877 index = -1;
4878
4879 bed = get_elf_backend_data (abfd);
4880 if (bed->elf_backend_section_from_bfd_section)
4881 {
4882 int retval = index;
4883
4884 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4885 return retval;
4886 }
4887
4888 if (index == -1)
4889 bfd_set_error (bfd_error_nonrepresentable_section);
4890
4891 return index;
4892 }
4893
4894 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4895 on error. */
4896
4897 int
4898 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4899 {
4900 asymbol *asym_ptr = *asym_ptr_ptr;
4901 int idx;
4902 flagword flags = asym_ptr->flags;
4903
4904 /* When gas creates relocations against local labels, it creates its
4905 own symbol for the section, but does put the symbol into the
4906 symbol chain, so udata is 0. When the linker is generating
4907 relocatable output, this section symbol may be for one of the
4908 input sections rather than the output section. */
4909 if (asym_ptr->udata.i == 0
4910 && (flags & BSF_SECTION_SYM)
4911 && asym_ptr->section)
4912 {
4913 asection *sec;
4914 int indx;
4915
4916 sec = asym_ptr->section;
4917 if (sec->owner != abfd && sec->output_section != NULL)
4918 sec = sec->output_section;
4919 if (sec->owner == abfd
4920 && (indx = sec->index) < elf_num_section_syms (abfd)
4921 && elf_section_syms (abfd)[indx] != NULL)
4922 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4923 }
4924
4925 idx = asym_ptr->udata.i;
4926
4927 if (idx == 0)
4928 {
4929 /* This case can occur when using --strip-symbol on a symbol
4930 which is used in a relocation entry. */
4931 (*_bfd_error_handler)
4932 (_("%B: symbol `%s' required but not present"),
4933 abfd, bfd_asymbol_name (asym_ptr));
4934 bfd_set_error (bfd_error_no_symbols);
4935 return -1;
4936 }
4937
4938 #if DEBUG & 4
4939 {
4940 fprintf (stderr,
4941 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4942 (long) asym_ptr, asym_ptr->name, idx, flags,
4943 elf_symbol_flags (flags));
4944 fflush (stderr);
4945 }
4946 #endif
4947
4948 return idx;
4949 }
4950
4951 /* Rewrite program header information. */
4952
4953 static bfd_boolean
4954 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
4955 {
4956 Elf_Internal_Ehdr *iehdr;
4957 struct elf_segment_map *map;
4958 struct elf_segment_map *map_first;
4959 struct elf_segment_map **pointer_to_map;
4960 Elf_Internal_Phdr *segment;
4961 asection *section;
4962 unsigned int i;
4963 unsigned int num_segments;
4964 bfd_boolean phdr_included = FALSE;
4965 bfd_vma maxpagesize;
4966 struct elf_segment_map *phdr_adjust_seg = NULL;
4967 unsigned int phdr_adjust_num = 0;
4968 const struct elf_backend_data *bed;
4969
4970 bed = get_elf_backend_data (ibfd);
4971 iehdr = elf_elfheader (ibfd);
4972
4973 map_first = NULL;
4974 pointer_to_map = &map_first;
4975
4976 num_segments = elf_elfheader (ibfd)->e_phnum;
4977 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4978
4979 /* Returns the end address of the segment + 1. */
4980 #define SEGMENT_END(segment, start) \
4981 (start + (segment->p_memsz > segment->p_filesz \
4982 ? segment->p_memsz : segment->p_filesz))
4983
4984 #define SECTION_SIZE(section, segment) \
4985 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4986 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4987 ? section->size : 0)
4988
4989 /* Returns TRUE if the given section is contained within
4990 the given segment. VMA addresses are compared. */
4991 #define IS_CONTAINED_BY_VMA(section, segment) \
4992 (section->vma >= segment->p_vaddr \
4993 && (section->vma + SECTION_SIZE (section, segment) \
4994 <= (SEGMENT_END (segment, segment->p_vaddr))))
4995
4996 /* Returns TRUE if the given section is contained within
4997 the given segment. LMA addresses are compared. */
4998 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4999 (section->lma >= base \
5000 && (section->lma + SECTION_SIZE (section, segment) \
5001 <= SEGMENT_END (segment, base)))
5002
5003 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5004 #define IS_COREFILE_NOTE(p, s) \
5005 (p->p_type == PT_NOTE \
5006 && bfd_get_format (ibfd) == bfd_core \
5007 && s->vma == 0 && s->lma == 0 \
5008 && (bfd_vma) s->filepos >= p->p_offset \
5009 && ((bfd_vma) s->filepos + s->size \
5010 <= p->p_offset + p->p_filesz))
5011
5012 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5013 linker, which generates a PT_INTERP section with p_vaddr and
5014 p_memsz set to 0. */
5015 #define IS_SOLARIS_PT_INTERP(p, s) \
5016 (p->p_vaddr == 0 \
5017 && p->p_paddr == 0 \
5018 && p->p_memsz == 0 \
5019 && p->p_filesz > 0 \
5020 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5021 && s->size > 0 \
5022 && (bfd_vma) s->filepos >= p->p_offset \
5023 && ((bfd_vma) s->filepos + s->size \
5024 <= p->p_offset + p->p_filesz))
5025
5026 /* Decide if the given section should be included in the given segment.
5027 A section will be included if:
5028 1. It is within the address space of the segment -- we use the LMA
5029 if that is set for the segment and the VMA otherwise,
5030 2. It is an allocated segment,
5031 3. There is an output section associated with it,
5032 4. The section has not already been allocated to a previous segment.
5033 5. PT_GNU_STACK segments do not include any sections.
5034 6. PT_TLS segment includes only SHF_TLS sections.
5035 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5036 8. PT_DYNAMIC should not contain empty sections at the beginning
5037 (with the possible exception of .dynamic). */
5038 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5039 ((((segment->p_paddr \
5040 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5041 : IS_CONTAINED_BY_VMA (section, segment)) \
5042 && (section->flags & SEC_ALLOC) != 0) \
5043 || IS_COREFILE_NOTE (segment, section)) \
5044 && segment->p_type != PT_GNU_STACK \
5045 && (segment->p_type != PT_TLS \
5046 || (section->flags & SEC_THREAD_LOCAL)) \
5047 && (segment->p_type == PT_LOAD \
5048 || segment->p_type == PT_TLS \
5049 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5050 && (segment->p_type != PT_DYNAMIC \
5051 || SECTION_SIZE (section, segment) > 0 \
5052 || (segment->p_paddr \
5053 ? segment->p_paddr != section->lma \
5054 : segment->p_vaddr != section->vma) \
5055 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5056 == 0)) \
5057 && ! section->segment_mark)
5058
5059 /* If the output section of a section in the input segment is NULL,
5060 it is removed from the corresponding output segment. */
5061 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5062 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5063 && section->output_section != NULL)
5064
5065 /* Returns TRUE iff seg1 starts after the end of seg2. */
5066 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5067 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5068
5069 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5070 their VMA address ranges and their LMA address ranges overlap.
5071 It is possible to have overlapping VMA ranges without overlapping LMA
5072 ranges. RedBoot images for example can have both .data and .bss mapped
5073 to the same VMA range, but with the .data section mapped to a different
5074 LMA. */
5075 #define SEGMENT_OVERLAPS(seg1, seg2) \
5076 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5077 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5078 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5079 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5080
5081 /* Initialise the segment mark field. */
5082 for (section = ibfd->sections; section != NULL; section = section->next)
5083 section->segment_mark = FALSE;
5084
5085 /* Scan through the segments specified in the program header
5086 of the input BFD. For this first scan we look for overlaps
5087 in the loadable segments. These can be created by weird
5088 parameters to objcopy. Also, fix some solaris weirdness. */
5089 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5090 i < num_segments;
5091 i++, segment++)
5092 {
5093 unsigned int j;
5094 Elf_Internal_Phdr *segment2;
5095
5096 if (segment->p_type == PT_INTERP)
5097 for (section = ibfd->sections; section; section = section->next)
5098 if (IS_SOLARIS_PT_INTERP (segment, section))
5099 {
5100 /* Mininal change so that the normal section to segment
5101 assignment code will work. */
5102 segment->p_vaddr = section->vma;
5103 break;
5104 }
5105
5106 if (segment->p_type != PT_LOAD)
5107 continue;
5108
5109 /* Determine if this segment overlaps any previous segments. */
5110 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5111 {
5112 bfd_signed_vma extra_length;
5113
5114 if (segment2->p_type != PT_LOAD
5115 || ! SEGMENT_OVERLAPS (segment, segment2))
5116 continue;
5117
5118 /* Merge the two segments together. */
5119 if (segment2->p_vaddr < segment->p_vaddr)
5120 {
5121 /* Extend SEGMENT2 to include SEGMENT and then delete
5122 SEGMENT. */
5123 extra_length =
5124 SEGMENT_END (segment, segment->p_vaddr)
5125 - SEGMENT_END (segment2, segment2->p_vaddr);
5126
5127 if (extra_length > 0)
5128 {
5129 segment2->p_memsz += extra_length;
5130 segment2->p_filesz += extra_length;
5131 }
5132
5133 segment->p_type = PT_NULL;
5134
5135 /* Since we have deleted P we must restart the outer loop. */
5136 i = 0;
5137 segment = elf_tdata (ibfd)->phdr;
5138 break;
5139 }
5140 else
5141 {
5142 /* Extend SEGMENT to include SEGMENT2 and then delete
5143 SEGMENT2. */
5144 extra_length =
5145 SEGMENT_END (segment2, segment2->p_vaddr)
5146 - SEGMENT_END (segment, segment->p_vaddr);
5147
5148 if (extra_length > 0)
5149 {
5150 segment->p_memsz += extra_length;
5151 segment->p_filesz += extra_length;
5152 }
5153
5154 segment2->p_type = PT_NULL;
5155 }
5156 }
5157 }
5158
5159 /* The second scan attempts to assign sections to segments. */
5160 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5161 i < num_segments;
5162 i ++, segment ++)
5163 {
5164 unsigned int section_count;
5165 asection ** sections;
5166 asection * output_section;
5167 unsigned int isec;
5168 bfd_vma matching_lma;
5169 bfd_vma suggested_lma;
5170 unsigned int j;
5171 bfd_size_type amt;
5172 asection * first_section;
5173
5174 if (segment->p_type == PT_NULL)
5175 continue;
5176
5177 first_section = NULL;
5178 /* Compute how many sections might be placed into this segment. */
5179 for (section = ibfd->sections, section_count = 0;
5180 section != NULL;
5181 section = section->next)
5182 {
5183 /* Find the first section in the input segment, which may be
5184 removed from the corresponding output segment. */
5185 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5186 {
5187 if (first_section == NULL)
5188 first_section = section;
5189 if (section->output_section != NULL)
5190 ++section_count;
5191 }
5192 }
5193
5194 /* Allocate a segment map big enough to contain
5195 all of the sections we have selected. */
5196 amt = sizeof (struct elf_segment_map);
5197 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5198 map = bfd_zalloc (obfd, amt);
5199 if (map == NULL)
5200 return FALSE;
5201
5202 /* Initialise the fields of the segment map. Default to
5203 using the physical address of the segment in the input BFD. */
5204 map->next = NULL;
5205 map->p_type = segment->p_type;
5206 map->p_flags = segment->p_flags;
5207 map->p_flags_valid = 1;
5208
5209 /* If the first section in the input segment is removed, there is
5210 no need to preserve segment physical address in the corresponding
5211 output segment. */
5212 if (!first_section || first_section->output_section != NULL)
5213 {
5214 map->p_paddr = segment->p_paddr;
5215 map->p_paddr_valid = 1;
5216 }
5217
5218 /* Determine if this segment contains the ELF file header
5219 and if it contains the program headers themselves. */
5220 map->includes_filehdr = (segment->p_offset == 0
5221 && segment->p_filesz >= iehdr->e_ehsize);
5222
5223 map->includes_phdrs = 0;
5224
5225 if (! phdr_included || segment->p_type != PT_LOAD)
5226 {
5227 map->includes_phdrs =
5228 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5229 && (segment->p_offset + segment->p_filesz
5230 >= ((bfd_vma) iehdr->e_phoff
5231 + iehdr->e_phnum * iehdr->e_phentsize)));
5232
5233 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5234 phdr_included = TRUE;
5235 }
5236
5237 if (section_count == 0)
5238 {
5239 /* Special segments, such as the PT_PHDR segment, may contain
5240 no sections, but ordinary, loadable segments should contain
5241 something. They are allowed by the ELF spec however, so only
5242 a warning is produced. */
5243 if (segment->p_type == PT_LOAD)
5244 (*_bfd_error_handler)
5245 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5246 ibfd);
5247
5248 map->count = 0;
5249 *pointer_to_map = map;
5250 pointer_to_map = &map->next;
5251
5252 continue;
5253 }
5254
5255 /* Now scan the sections in the input BFD again and attempt
5256 to add their corresponding output sections to the segment map.
5257 The problem here is how to handle an output section which has
5258 been moved (ie had its LMA changed). There are four possibilities:
5259
5260 1. None of the sections have been moved.
5261 In this case we can continue to use the segment LMA from the
5262 input BFD.
5263
5264 2. All of the sections have been moved by the same amount.
5265 In this case we can change the segment's LMA to match the LMA
5266 of the first section.
5267
5268 3. Some of the sections have been moved, others have not.
5269 In this case those sections which have not been moved can be
5270 placed in the current segment which will have to have its size,
5271 and possibly its LMA changed, and a new segment or segments will
5272 have to be created to contain the other sections.
5273
5274 4. The sections have been moved, but not by the same amount.
5275 In this case we can change the segment's LMA to match the LMA
5276 of the first section and we will have to create a new segment
5277 or segments to contain the other sections.
5278
5279 In order to save time, we allocate an array to hold the section
5280 pointers that we are interested in. As these sections get assigned
5281 to a segment, they are removed from this array. */
5282
5283 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5284 to work around this long long bug. */
5285 sections = bfd_malloc2 (section_count, sizeof (asection *));
5286 if (sections == NULL)
5287 return FALSE;
5288
5289 /* Step One: Scan for segment vs section LMA conflicts.
5290 Also add the sections to the section array allocated above.
5291 Also add the sections to the current segment. In the common
5292 case, where the sections have not been moved, this means that
5293 we have completely filled the segment, and there is nothing
5294 more to do. */
5295 isec = 0;
5296 matching_lma = 0;
5297 suggested_lma = 0;
5298
5299 for (j = 0, section = ibfd->sections;
5300 section != NULL;
5301 section = section->next)
5302 {
5303 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5304 {
5305 output_section = section->output_section;
5306
5307 sections[j ++] = section;
5308
5309 /* The Solaris native linker always sets p_paddr to 0.
5310 We try to catch that case here, and set it to the
5311 correct value. Note - some backends require that
5312 p_paddr be left as zero. */
5313 if (segment->p_paddr == 0
5314 && segment->p_vaddr != 0
5315 && (! bed->want_p_paddr_set_to_zero)
5316 && isec == 0
5317 && output_section->lma != 0
5318 && (output_section->vma == (segment->p_vaddr
5319 + (map->includes_filehdr
5320 ? iehdr->e_ehsize
5321 : 0)
5322 + (map->includes_phdrs
5323 ? (iehdr->e_phnum
5324 * iehdr->e_phentsize)
5325 : 0))))
5326 map->p_paddr = segment->p_vaddr;
5327
5328 /* Match up the physical address of the segment with the
5329 LMA address of the output section. */
5330 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5331 || IS_COREFILE_NOTE (segment, section)
5332 || (bed->want_p_paddr_set_to_zero &&
5333 IS_CONTAINED_BY_VMA (output_section, segment)))
5334 {
5335 if (matching_lma == 0 || output_section->lma < matching_lma)
5336 matching_lma = output_section->lma;
5337
5338 /* We assume that if the section fits within the segment
5339 then it does not overlap any other section within that
5340 segment. */
5341 map->sections[isec ++] = output_section;
5342 }
5343 else if (suggested_lma == 0)
5344 suggested_lma = output_section->lma;
5345 }
5346 }
5347
5348 BFD_ASSERT (j == section_count);
5349
5350 /* Step Two: Adjust the physical address of the current segment,
5351 if necessary. */
5352 if (isec == section_count)
5353 {
5354 /* All of the sections fitted within the segment as currently
5355 specified. This is the default case. Add the segment to
5356 the list of built segments and carry on to process the next
5357 program header in the input BFD. */
5358 map->count = section_count;
5359 *pointer_to_map = map;
5360 pointer_to_map = &map->next;
5361
5362 if (matching_lma != map->p_paddr
5363 && !map->includes_filehdr && !map->includes_phdrs)
5364 /* There is some padding before the first section in the
5365 segment. So, we must account for that in the output
5366 segment's vma. */
5367 map->p_vaddr_offset = matching_lma - map->p_paddr;
5368
5369 free (sections);
5370 continue;
5371 }
5372 else
5373 {
5374 if (matching_lma != 0)
5375 {
5376 /* At least one section fits inside the current segment.
5377 Keep it, but modify its physical address to match the
5378 LMA of the first section that fitted. */
5379 map->p_paddr = matching_lma;
5380 }
5381 else
5382 {
5383 /* None of the sections fitted inside the current segment.
5384 Change the current segment's physical address to match
5385 the LMA of the first section. */
5386 map->p_paddr = suggested_lma;
5387 }
5388
5389 /* Offset the segment physical address from the lma
5390 to allow for space taken up by elf headers. */
5391 if (map->includes_filehdr)
5392 map->p_paddr -= iehdr->e_ehsize;
5393
5394 if (map->includes_phdrs)
5395 {
5396 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5397
5398 /* iehdr->e_phnum is just an estimate of the number
5399 of program headers that we will need. Make a note
5400 here of the number we used and the segment we chose
5401 to hold these headers, so that we can adjust the
5402 offset when we know the correct value. */
5403 phdr_adjust_num = iehdr->e_phnum;
5404 phdr_adjust_seg = map;
5405 }
5406 }
5407
5408 /* Step Three: Loop over the sections again, this time assigning
5409 those that fit to the current segment and removing them from the
5410 sections array; but making sure not to leave large gaps. Once all
5411 possible sections have been assigned to the current segment it is
5412 added to the list of built segments and if sections still remain
5413 to be assigned, a new segment is constructed before repeating
5414 the loop. */
5415 isec = 0;
5416 do
5417 {
5418 map->count = 0;
5419 suggested_lma = 0;
5420
5421 /* Fill the current segment with sections that fit. */
5422 for (j = 0; j < section_count; j++)
5423 {
5424 section = sections[j];
5425
5426 if (section == NULL)
5427 continue;
5428
5429 output_section = section->output_section;
5430
5431 BFD_ASSERT (output_section != NULL);
5432
5433 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5434 || IS_COREFILE_NOTE (segment, section))
5435 {
5436 if (map->count == 0)
5437 {
5438 /* If the first section in a segment does not start at
5439 the beginning of the segment, then something is
5440 wrong. */
5441 if (output_section->lma !=
5442 (map->p_paddr
5443 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5444 + (map->includes_phdrs
5445 ? iehdr->e_phnum * iehdr->e_phentsize
5446 : 0)))
5447 abort ();
5448 }
5449 else
5450 {
5451 asection * prev_sec;
5452
5453 prev_sec = map->sections[map->count - 1];
5454
5455 /* If the gap between the end of the previous section
5456 and the start of this section is more than
5457 maxpagesize then we need to start a new segment. */
5458 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5459 maxpagesize)
5460 < BFD_ALIGN (output_section->lma, maxpagesize))
5461 || ((prev_sec->lma + prev_sec->size)
5462 > output_section->lma))
5463 {
5464 if (suggested_lma == 0)
5465 suggested_lma = output_section->lma;
5466
5467 continue;
5468 }
5469 }
5470
5471 map->sections[map->count++] = output_section;
5472 ++isec;
5473 sections[j] = NULL;
5474 section->segment_mark = TRUE;
5475 }
5476 else if (suggested_lma == 0)
5477 suggested_lma = output_section->lma;
5478 }
5479
5480 BFD_ASSERT (map->count > 0);
5481
5482 /* Add the current segment to the list of built segments. */
5483 *pointer_to_map = map;
5484 pointer_to_map = &map->next;
5485
5486 if (isec < section_count)
5487 {
5488 /* We still have not allocated all of the sections to
5489 segments. Create a new segment here, initialise it
5490 and carry on looping. */
5491 amt = sizeof (struct elf_segment_map);
5492 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5493 map = bfd_alloc (obfd, amt);
5494 if (map == NULL)
5495 {
5496 free (sections);
5497 return FALSE;
5498 }
5499
5500 /* Initialise the fields of the segment map. Set the physical
5501 physical address to the LMA of the first section that has
5502 not yet been assigned. */
5503 map->next = NULL;
5504 map->p_type = segment->p_type;
5505 map->p_flags = segment->p_flags;
5506 map->p_flags_valid = 1;
5507 map->p_paddr = suggested_lma;
5508 map->p_paddr_valid = 1;
5509 map->includes_filehdr = 0;
5510 map->includes_phdrs = 0;
5511 }
5512 }
5513 while (isec < section_count);
5514
5515 free (sections);
5516 }
5517
5518 /* The Solaris linker creates program headers in which all the
5519 p_paddr fields are zero. When we try to objcopy or strip such a
5520 file, we get confused. Check for this case, and if we find it
5521 reset the p_paddr_valid fields. */
5522 for (map = map_first; map != NULL; map = map->next)
5523 if (map->p_paddr != 0)
5524 break;
5525 if (map == NULL)
5526 for (map = map_first; map != NULL; map = map->next)
5527 map->p_paddr_valid = 0;
5528
5529 elf_tdata (obfd)->segment_map = map_first;
5530
5531 /* If we had to estimate the number of program headers that were
5532 going to be needed, then check our estimate now and adjust
5533 the offset if necessary. */
5534 if (phdr_adjust_seg != NULL)
5535 {
5536 unsigned int count;
5537
5538 for (count = 0, map = map_first; map != NULL; map = map->next)
5539 count++;
5540
5541 if (count > phdr_adjust_num)
5542 phdr_adjust_seg->p_paddr
5543 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5544 }
5545
5546 #undef SEGMENT_END
5547 #undef SECTION_SIZE
5548 #undef IS_CONTAINED_BY_VMA
5549 #undef IS_CONTAINED_BY_LMA
5550 #undef IS_COREFILE_NOTE
5551 #undef IS_SOLARIS_PT_INTERP
5552 #undef IS_SECTION_IN_INPUT_SEGMENT
5553 #undef INCLUDE_SECTION_IN_SEGMENT
5554 #undef SEGMENT_AFTER_SEGMENT
5555 #undef SEGMENT_OVERLAPS
5556 return TRUE;
5557 }
5558
5559 /* Copy ELF program header information. */
5560
5561 static bfd_boolean
5562 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5563 {
5564 Elf_Internal_Ehdr *iehdr;
5565 struct elf_segment_map *map;
5566 struct elf_segment_map *map_first;
5567 struct elf_segment_map **pointer_to_map;
5568 Elf_Internal_Phdr *segment;
5569 unsigned int i;
5570 unsigned int num_segments;
5571 bfd_boolean phdr_included = FALSE;
5572
5573 iehdr = elf_elfheader (ibfd);
5574
5575 map_first = NULL;
5576 pointer_to_map = &map_first;
5577
5578 num_segments = elf_elfheader (ibfd)->e_phnum;
5579 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5580 i < num_segments;
5581 i++, segment++)
5582 {
5583 asection *section;
5584 unsigned int section_count;
5585 bfd_size_type amt;
5586 Elf_Internal_Shdr *this_hdr;
5587 asection *first_section = NULL;
5588 asection *lowest_section = NULL;
5589
5590 /* FIXME: Do we need to copy PT_NULL segment? */
5591 if (segment->p_type == PT_NULL)
5592 continue;
5593
5594 /* Compute how many sections are in this segment. */
5595 for (section = ibfd->sections, section_count = 0;
5596 section != NULL;
5597 section = section->next)
5598 {
5599 this_hdr = &(elf_section_data(section)->this_hdr);
5600 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5601 {
5602 if (!first_section)
5603 first_section = lowest_section = section;
5604 if (section->lma < lowest_section->lma)
5605 lowest_section = section;
5606 section_count++;
5607 }
5608 }
5609
5610 /* Allocate a segment map big enough to contain
5611 all of the sections we have selected. */
5612 amt = sizeof (struct elf_segment_map);
5613 if (section_count != 0)
5614 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5615 map = bfd_zalloc (obfd, amt);
5616 if (map == NULL)
5617 return FALSE;
5618
5619 /* Initialize the fields of the output segment map with the
5620 input segment. */
5621 map->next = NULL;
5622 map->p_type = segment->p_type;
5623 map->p_flags = segment->p_flags;
5624 map->p_flags_valid = 1;
5625 map->p_paddr = segment->p_paddr;
5626 map->p_paddr_valid = 1;
5627 map->p_align = segment->p_align;
5628 map->p_align_valid = 1;
5629 map->p_vaddr_offset = 0;
5630
5631 /* Determine if this segment contains the ELF file header
5632 and if it contains the program headers themselves. */
5633 map->includes_filehdr = (segment->p_offset == 0
5634 && segment->p_filesz >= iehdr->e_ehsize);
5635
5636 map->includes_phdrs = 0;
5637 if (! phdr_included || segment->p_type != PT_LOAD)
5638 {
5639 map->includes_phdrs =
5640 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5641 && (segment->p_offset + segment->p_filesz
5642 >= ((bfd_vma) iehdr->e_phoff
5643 + iehdr->e_phnum * iehdr->e_phentsize)));
5644
5645 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5646 phdr_included = TRUE;
5647 }
5648
5649 if (!map->includes_phdrs && !map->includes_filehdr)
5650 /* There is some other padding before the first section. */
5651 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
5652 - segment->p_paddr);
5653
5654 if (section_count != 0)
5655 {
5656 unsigned int isec = 0;
5657
5658 for (section = first_section;
5659 section != NULL;
5660 section = section->next)
5661 {
5662 this_hdr = &(elf_section_data(section)->this_hdr);
5663 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5664 {
5665 map->sections[isec++] = section->output_section;
5666 if (isec == section_count)
5667 break;
5668 }
5669 }
5670 }
5671
5672 map->count = section_count;
5673 *pointer_to_map = map;
5674 pointer_to_map = &map->next;
5675 }
5676
5677 elf_tdata (obfd)->segment_map = map_first;
5678 return TRUE;
5679 }
5680
5681 /* Copy private BFD data. This copies or rewrites ELF program header
5682 information. */
5683
5684 static bfd_boolean
5685 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5686 {
5687 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5688 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5689 return TRUE;
5690
5691 if (elf_tdata (ibfd)->phdr == NULL)
5692 return TRUE;
5693
5694 if (ibfd->xvec == obfd->xvec)
5695 {
5696 /* Check to see if any sections in the input BFD
5697 covered by ELF program header have changed. */
5698 Elf_Internal_Phdr *segment;
5699 asection *section, *osec;
5700 unsigned int i, num_segments;
5701 Elf_Internal_Shdr *this_hdr;
5702
5703 /* Initialize the segment mark field. */
5704 for (section = obfd->sections; section != NULL;
5705 section = section->next)
5706 section->segment_mark = FALSE;
5707
5708 num_segments = elf_elfheader (ibfd)->e_phnum;
5709 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5710 i < num_segments;
5711 i++, segment++)
5712 {
5713 /* PR binutils/3535. The Solaris linker always sets the p_paddr
5714 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
5715 which severly confuses things, so always regenerate the segment
5716 map in this case. */
5717 if (segment->p_paddr == 0
5718 && segment->p_memsz == 0
5719 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
5720 goto rewrite;
5721
5722 for (section = ibfd->sections;
5723 section != NULL; section = section->next)
5724 {
5725 /* We mark the output section so that we know it comes
5726 from the input BFD. */
5727 osec = section->output_section;
5728 if (osec)
5729 osec->segment_mark = TRUE;
5730
5731 /* Check if this section is covered by the segment. */
5732 this_hdr = &(elf_section_data(section)->this_hdr);
5733 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5734 {
5735 /* FIXME: Check if its output section is changed or
5736 removed. What else do we need to check? */
5737 if (osec == NULL
5738 || section->flags != osec->flags
5739 || section->lma != osec->lma
5740 || section->vma != osec->vma
5741 || section->size != osec->size
5742 || section->rawsize != osec->rawsize
5743 || section->alignment_power != osec->alignment_power)
5744 goto rewrite;
5745 }
5746 }
5747 }
5748
5749 /* Check to see if any output section do not come from the
5750 input BFD. */
5751 for (section = obfd->sections; section != NULL;
5752 section = section->next)
5753 {
5754 if (section->segment_mark == FALSE)
5755 goto rewrite;
5756 else
5757 section->segment_mark = FALSE;
5758 }
5759
5760 return copy_elf_program_header (ibfd, obfd);
5761 }
5762
5763 rewrite:
5764 return rewrite_elf_program_header (ibfd, obfd);
5765 }
5766
5767 /* Initialize private output section information from input section. */
5768
5769 bfd_boolean
5770 _bfd_elf_init_private_section_data (bfd *ibfd,
5771 asection *isec,
5772 bfd *obfd,
5773 asection *osec,
5774 struct bfd_link_info *link_info)
5775
5776 {
5777 Elf_Internal_Shdr *ihdr, *ohdr;
5778 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5779
5780 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5781 || obfd->xvec->flavour != bfd_target_elf_flavour)
5782 return TRUE;
5783
5784 /* Don't copy the output ELF section type from input if the
5785 output BFD section flags have been set to something different.
5786 elf_fake_sections will set ELF section type based on BFD
5787 section flags. */
5788 if (elf_section_type (osec) == SHT_NULL
5789 && (osec->flags == isec->flags || !osec->flags))
5790 elf_section_type (osec) = elf_section_type (isec);
5791
5792 /* FIXME: Is this correct for all OS/PROC specific flags? */
5793 elf_section_flags (osec) |= (elf_section_flags (isec)
5794 & (SHF_MASKOS | SHF_MASKPROC));
5795
5796 /* Set things up for objcopy and relocatable link. The output
5797 SHT_GROUP section will have its elf_next_in_group pointing back
5798 to the input group members. Ignore linker created group section.
5799 See elfNN_ia64_object_p in elfxx-ia64.c. */
5800 if (need_group)
5801 {
5802 if (elf_sec_group (isec) == NULL
5803 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5804 {
5805 if (elf_section_flags (isec) & SHF_GROUP)
5806 elf_section_flags (osec) |= SHF_GROUP;
5807 elf_next_in_group (osec) = elf_next_in_group (isec);
5808 elf_group_name (osec) = elf_group_name (isec);
5809 }
5810 }
5811
5812 ihdr = &elf_section_data (isec)->this_hdr;
5813
5814 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5815 don't use the output section of the linked-to section since it
5816 may be NULL at this point. */
5817 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5818 {
5819 ohdr = &elf_section_data (osec)->this_hdr;
5820 ohdr->sh_flags |= SHF_LINK_ORDER;
5821 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5822 }
5823
5824 osec->use_rela_p = isec->use_rela_p;
5825
5826 return TRUE;
5827 }
5828
5829 /* Copy private section information. This copies over the entsize
5830 field, and sometimes the info field. */
5831
5832 bfd_boolean
5833 _bfd_elf_copy_private_section_data (bfd *ibfd,
5834 asection *isec,
5835 bfd *obfd,
5836 asection *osec)
5837 {
5838 Elf_Internal_Shdr *ihdr, *ohdr;
5839
5840 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5841 || obfd->xvec->flavour != bfd_target_elf_flavour)
5842 return TRUE;
5843
5844 ihdr = &elf_section_data (isec)->this_hdr;
5845 ohdr = &elf_section_data (osec)->this_hdr;
5846
5847 ohdr->sh_entsize = ihdr->sh_entsize;
5848
5849 if (ihdr->sh_type == SHT_SYMTAB
5850 || ihdr->sh_type == SHT_DYNSYM
5851 || ihdr->sh_type == SHT_GNU_verneed
5852 || ihdr->sh_type == SHT_GNU_verdef)
5853 ohdr->sh_info = ihdr->sh_info;
5854
5855 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
5856 NULL);
5857 }
5858
5859 /* Copy private header information. */
5860
5861 bfd_boolean
5862 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5863 {
5864 asection *isec;
5865
5866 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5867 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5868 return TRUE;
5869
5870 /* Copy over private BFD data if it has not already been copied.
5871 This must be done here, rather than in the copy_private_bfd_data
5872 entry point, because the latter is called after the section
5873 contents have been set, which means that the program headers have
5874 already been worked out. */
5875 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5876 {
5877 if (! copy_private_bfd_data (ibfd, obfd))
5878 return FALSE;
5879 }
5880
5881 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
5882 but this might be wrong if we deleted the group section. */
5883 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
5884 if (elf_section_type (isec) == SHT_GROUP
5885 && isec->output_section == NULL)
5886 {
5887 asection *first = elf_next_in_group (isec);
5888 asection *s = first;
5889 while (s != NULL)
5890 {
5891 if (s->output_section != NULL)
5892 {
5893 elf_section_flags (s->output_section) &= ~SHF_GROUP;
5894 elf_group_name (s->output_section) = NULL;
5895 }
5896 s = elf_next_in_group (s);
5897 if (s == first)
5898 break;
5899 }
5900 }
5901
5902 return TRUE;
5903 }
5904
5905 /* Copy private symbol information. If this symbol is in a section
5906 which we did not map into a BFD section, try to map the section
5907 index correctly. We use special macro definitions for the mapped
5908 section indices; these definitions are interpreted by the
5909 swap_out_syms function. */
5910
5911 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5912 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5913 #define MAP_STRTAB (SHN_HIOS + 3)
5914 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5915 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5916
5917 bfd_boolean
5918 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5919 asymbol *isymarg,
5920 bfd *obfd,
5921 asymbol *osymarg)
5922 {
5923 elf_symbol_type *isym, *osym;
5924
5925 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5926 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5927 return TRUE;
5928
5929 isym = elf_symbol_from (ibfd, isymarg);
5930 osym = elf_symbol_from (obfd, osymarg);
5931
5932 if (isym != NULL
5933 && osym != NULL
5934 && bfd_is_abs_section (isym->symbol.section))
5935 {
5936 unsigned int shndx;
5937
5938 shndx = isym->internal_elf_sym.st_shndx;
5939 if (shndx == elf_onesymtab (ibfd))
5940 shndx = MAP_ONESYMTAB;
5941 else if (shndx == elf_dynsymtab (ibfd))
5942 shndx = MAP_DYNSYMTAB;
5943 else if (shndx == elf_tdata (ibfd)->strtab_section)
5944 shndx = MAP_STRTAB;
5945 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5946 shndx = MAP_SHSTRTAB;
5947 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5948 shndx = MAP_SYM_SHNDX;
5949 osym->internal_elf_sym.st_shndx = shndx;
5950 }
5951
5952 return TRUE;
5953 }
5954
5955 /* Swap out the symbols. */
5956
5957 static bfd_boolean
5958 swap_out_syms (bfd *abfd,
5959 struct bfd_strtab_hash **sttp,
5960 int relocatable_p)
5961 {
5962 const struct elf_backend_data *bed;
5963 int symcount;
5964 asymbol **syms;
5965 struct bfd_strtab_hash *stt;
5966 Elf_Internal_Shdr *symtab_hdr;
5967 Elf_Internal_Shdr *symtab_shndx_hdr;
5968 Elf_Internal_Shdr *symstrtab_hdr;
5969 bfd_byte *outbound_syms;
5970 bfd_byte *outbound_shndx;
5971 int idx;
5972 bfd_size_type amt;
5973 bfd_boolean name_local_sections;
5974
5975 if (!elf_map_symbols (abfd))
5976 return FALSE;
5977
5978 /* Dump out the symtabs. */
5979 stt = _bfd_elf_stringtab_init ();
5980 if (stt == NULL)
5981 return FALSE;
5982
5983 bed = get_elf_backend_data (abfd);
5984 symcount = bfd_get_symcount (abfd);
5985 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5986 symtab_hdr->sh_type = SHT_SYMTAB;
5987 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5988 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5989 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5990 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5991
5992 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5993 symstrtab_hdr->sh_type = SHT_STRTAB;
5994
5995 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
5996 if (outbound_syms == NULL)
5997 {
5998 _bfd_stringtab_free (stt);
5999 return FALSE;
6000 }
6001 symtab_hdr->contents = outbound_syms;
6002
6003 outbound_shndx = NULL;
6004 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6005 if (symtab_shndx_hdr->sh_name != 0)
6006 {
6007 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6008 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6009 sizeof (Elf_External_Sym_Shndx));
6010 if (outbound_shndx == NULL)
6011 {
6012 _bfd_stringtab_free (stt);
6013 return FALSE;
6014 }
6015
6016 symtab_shndx_hdr->contents = outbound_shndx;
6017 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6018 symtab_shndx_hdr->sh_size = amt;
6019 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6020 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6021 }
6022
6023 /* Now generate the data (for "contents"). */
6024 {
6025 /* Fill in zeroth symbol and swap it out. */
6026 Elf_Internal_Sym sym;
6027 sym.st_name = 0;
6028 sym.st_value = 0;
6029 sym.st_size = 0;
6030 sym.st_info = 0;
6031 sym.st_other = 0;
6032 sym.st_shndx = SHN_UNDEF;
6033 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6034 outbound_syms += bed->s->sizeof_sym;
6035 if (outbound_shndx != NULL)
6036 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6037 }
6038
6039 name_local_sections
6040 = (bed->elf_backend_name_local_section_symbols
6041 && bed->elf_backend_name_local_section_symbols (abfd));
6042
6043 syms = bfd_get_outsymbols (abfd);
6044 for (idx = 0; idx < symcount; idx++)
6045 {
6046 Elf_Internal_Sym sym;
6047 bfd_vma value = syms[idx]->value;
6048 elf_symbol_type *type_ptr;
6049 flagword flags = syms[idx]->flags;
6050 int type;
6051
6052 if (!name_local_sections
6053 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6054 {
6055 /* Local section symbols have no name. */
6056 sym.st_name = 0;
6057 }
6058 else
6059 {
6060 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6061 syms[idx]->name,
6062 TRUE, FALSE);
6063 if (sym.st_name == (unsigned long) -1)
6064 {
6065 _bfd_stringtab_free (stt);
6066 return FALSE;
6067 }
6068 }
6069
6070 type_ptr = elf_symbol_from (abfd, syms[idx]);
6071
6072 if ((flags & BSF_SECTION_SYM) == 0
6073 && bfd_is_com_section (syms[idx]->section))
6074 {
6075 /* ELF common symbols put the alignment into the `value' field,
6076 and the size into the `size' field. This is backwards from
6077 how BFD handles it, so reverse it here. */
6078 sym.st_size = value;
6079 if (type_ptr == NULL
6080 || type_ptr->internal_elf_sym.st_value == 0)
6081 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6082 else
6083 sym.st_value = type_ptr->internal_elf_sym.st_value;
6084 sym.st_shndx = _bfd_elf_section_from_bfd_section
6085 (abfd, syms[idx]->section);
6086 }
6087 else
6088 {
6089 asection *sec = syms[idx]->section;
6090 int shndx;
6091
6092 if (sec->output_section)
6093 {
6094 value += sec->output_offset;
6095 sec = sec->output_section;
6096 }
6097
6098 /* Don't add in the section vma for relocatable output. */
6099 if (! relocatable_p)
6100 value += sec->vma;
6101 sym.st_value = value;
6102 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6103
6104 if (bfd_is_abs_section (sec)
6105 && type_ptr != NULL
6106 && type_ptr->internal_elf_sym.st_shndx != 0)
6107 {
6108 /* This symbol is in a real ELF section which we did
6109 not create as a BFD section. Undo the mapping done
6110 by copy_private_symbol_data. */
6111 shndx = type_ptr->internal_elf_sym.st_shndx;
6112 switch (shndx)
6113 {
6114 case MAP_ONESYMTAB:
6115 shndx = elf_onesymtab (abfd);
6116 break;
6117 case MAP_DYNSYMTAB:
6118 shndx = elf_dynsymtab (abfd);
6119 break;
6120 case MAP_STRTAB:
6121 shndx = elf_tdata (abfd)->strtab_section;
6122 break;
6123 case MAP_SHSTRTAB:
6124 shndx = elf_tdata (abfd)->shstrtab_section;
6125 break;
6126 case MAP_SYM_SHNDX:
6127 shndx = elf_tdata (abfd)->symtab_shndx_section;
6128 break;
6129 default:
6130 break;
6131 }
6132 }
6133 else
6134 {
6135 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6136
6137 if (shndx == -1)
6138 {
6139 asection *sec2;
6140
6141 /* Writing this would be a hell of a lot easier if
6142 we had some decent documentation on bfd, and
6143 knew what to expect of the library, and what to
6144 demand of applications. For example, it
6145 appears that `objcopy' might not set the
6146 section of a symbol to be a section that is
6147 actually in the output file. */
6148 sec2 = bfd_get_section_by_name (abfd, sec->name);
6149 if (sec2 == NULL)
6150 {
6151 _bfd_error_handler (_("\
6152 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6153 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6154 sec->name);
6155 bfd_set_error (bfd_error_invalid_operation);
6156 _bfd_stringtab_free (stt);
6157 return FALSE;
6158 }
6159
6160 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6161 BFD_ASSERT (shndx != -1);
6162 }
6163 }
6164
6165 sym.st_shndx = shndx;
6166 }
6167
6168 if ((flags & BSF_THREAD_LOCAL) != 0)
6169 type = STT_TLS;
6170 else if ((flags & BSF_FUNCTION) != 0)
6171 type = STT_FUNC;
6172 else if ((flags & BSF_OBJECT) != 0)
6173 type = STT_OBJECT;
6174 else if ((flags & BSF_RELC) != 0)
6175 type = STT_RELC;
6176 else if ((flags & BSF_SRELC) != 0)
6177 type = STT_SRELC;
6178 else
6179 type = STT_NOTYPE;
6180
6181 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6182 type = STT_TLS;
6183
6184 /* Processor-specific types. */
6185 if (type_ptr != NULL
6186 && bed->elf_backend_get_symbol_type)
6187 type = ((*bed->elf_backend_get_symbol_type)
6188 (&type_ptr->internal_elf_sym, type));
6189
6190 if (flags & BSF_SECTION_SYM)
6191 {
6192 if (flags & BSF_GLOBAL)
6193 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6194 else
6195 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6196 }
6197 else if (bfd_is_com_section (syms[idx]->section))
6198 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6199 else if (bfd_is_und_section (syms[idx]->section))
6200 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6201 ? STB_WEAK
6202 : STB_GLOBAL),
6203 type);
6204 else if (flags & BSF_FILE)
6205 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6206 else
6207 {
6208 int bind = STB_LOCAL;
6209
6210 if (flags & BSF_LOCAL)
6211 bind = STB_LOCAL;
6212 else if (flags & BSF_WEAK)
6213 bind = STB_WEAK;
6214 else if (flags & BSF_GLOBAL)
6215 bind = STB_GLOBAL;
6216
6217 sym.st_info = ELF_ST_INFO (bind, type);
6218 }
6219
6220 if (type_ptr != NULL)
6221 sym.st_other = type_ptr->internal_elf_sym.st_other;
6222 else
6223 sym.st_other = 0;
6224
6225 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6226 outbound_syms += bed->s->sizeof_sym;
6227 if (outbound_shndx != NULL)
6228 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6229 }
6230
6231 *sttp = stt;
6232 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6233 symstrtab_hdr->sh_type = SHT_STRTAB;
6234
6235 symstrtab_hdr->sh_flags = 0;
6236 symstrtab_hdr->sh_addr = 0;
6237 symstrtab_hdr->sh_entsize = 0;
6238 symstrtab_hdr->sh_link = 0;
6239 symstrtab_hdr->sh_info = 0;
6240 symstrtab_hdr->sh_addralign = 1;
6241
6242 return TRUE;
6243 }
6244
6245 /* Return the number of bytes required to hold the symtab vector.
6246
6247 Note that we base it on the count plus 1, since we will null terminate
6248 the vector allocated based on this size. However, the ELF symbol table
6249 always has a dummy entry as symbol #0, so it ends up even. */
6250
6251 long
6252 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6253 {
6254 long symcount;
6255 long symtab_size;
6256 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6257
6258 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6259 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6260 if (symcount > 0)
6261 symtab_size -= sizeof (asymbol *);
6262
6263 return symtab_size;
6264 }
6265
6266 long
6267 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6268 {
6269 long symcount;
6270 long symtab_size;
6271 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6272
6273 if (elf_dynsymtab (abfd) == 0)
6274 {
6275 bfd_set_error (bfd_error_invalid_operation);
6276 return -1;
6277 }
6278
6279 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6280 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6281 if (symcount > 0)
6282 symtab_size -= sizeof (asymbol *);
6283
6284 return symtab_size;
6285 }
6286
6287 long
6288 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6289 sec_ptr asect)
6290 {
6291 return (asect->reloc_count + 1) * sizeof (arelent *);
6292 }
6293
6294 /* Canonicalize the relocs. */
6295
6296 long
6297 _bfd_elf_canonicalize_reloc (bfd *abfd,
6298 sec_ptr section,
6299 arelent **relptr,
6300 asymbol **symbols)
6301 {
6302 arelent *tblptr;
6303 unsigned int i;
6304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6305
6306 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6307 return -1;
6308
6309 tblptr = section->relocation;
6310 for (i = 0; i < section->reloc_count; i++)
6311 *relptr++ = tblptr++;
6312
6313 *relptr = NULL;
6314
6315 return section->reloc_count;
6316 }
6317
6318 long
6319 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6320 {
6321 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6322 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6323
6324 if (symcount >= 0)
6325 bfd_get_symcount (abfd) = symcount;
6326 return symcount;
6327 }
6328
6329 long
6330 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6331 asymbol **allocation)
6332 {
6333 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6334 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6335
6336 if (symcount >= 0)
6337 bfd_get_dynamic_symcount (abfd) = symcount;
6338 return symcount;
6339 }
6340
6341 /* Return the size required for the dynamic reloc entries. Any loadable
6342 section that was actually installed in the BFD, and has type SHT_REL
6343 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6344 dynamic reloc section. */
6345
6346 long
6347 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6348 {
6349 long ret;
6350 asection *s;
6351
6352 if (elf_dynsymtab (abfd) == 0)
6353 {
6354 bfd_set_error (bfd_error_invalid_operation);
6355 return -1;
6356 }
6357
6358 ret = sizeof (arelent *);
6359 for (s = abfd->sections; s != NULL; s = s->next)
6360 if ((s->flags & SEC_LOAD) != 0
6361 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6362 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6363 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6364 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6365 * sizeof (arelent *));
6366
6367 return ret;
6368 }
6369
6370 /* Canonicalize the dynamic relocation entries. Note that we return the
6371 dynamic relocations as a single block, although they are actually
6372 associated with particular sections; the interface, which was
6373 designed for SunOS style shared libraries, expects that there is only
6374 one set of dynamic relocs. Any loadable section that was actually
6375 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6376 dynamic symbol table, is considered to be a dynamic reloc section. */
6377
6378 long
6379 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6380 arelent **storage,
6381 asymbol **syms)
6382 {
6383 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6384 asection *s;
6385 long ret;
6386
6387 if (elf_dynsymtab (abfd) == 0)
6388 {
6389 bfd_set_error (bfd_error_invalid_operation);
6390 return -1;
6391 }
6392
6393 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6394 ret = 0;
6395 for (s = abfd->sections; s != NULL; s = s->next)
6396 {
6397 if ((s->flags & SEC_LOAD) != 0
6398 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6399 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6400 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6401 {
6402 arelent *p;
6403 long count, i;
6404
6405 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6406 return -1;
6407 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6408 p = s->relocation;
6409 for (i = 0; i < count; i++)
6410 *storage++ = p++;
6411 ret += count;
6412 }
6413 }
6414
6415 *storage = NULL;
6416
6417 return ret;
6418 }
6419 \f
6420 /* Read in the version information. */
6421
6422 bfd_boolean
6423 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6424 {
6425 bfd_byte *contents = NULL;
6426 unsigned int freeidx = 0;
6427
6428 if (elf_dynverref (abfd) != 0)
6429 {
6430 Elf_Internal_Shdr *hdr;
6431 Elf_External_Verneed *everneed;
6432 Elf_Internal_Verneed *iverneed;
6433 unsigned int i;
6434 bfd_byte *contents_end;
6435
6436 hdr = &elf_tdata (abfd)->dynverref_hdr;
6437
6438 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6439 sizeof (Elf_Internal_Verneed));
6440 if (elf_tdata (abfd)->verref == NULL)
6441 goto error_return;
6442
6443 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6444
6445 contents = bfd_malloc (hdr->sh_size);
6446 if (contents == NULL)
6447 {
6448 error_return_verref:
6449 elf_tdata (abfd)->verref = NULL;
6450 elf_tdata (abfd)->cverrefs = 0;
6451 goto error_return;
6452 }
6453 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6454 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6455 goto error_return_verref;
6456
6457 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6458 goto error_return_verref;
6459
6460 BFD_ASSERT (sizeof (Elf_External_Verneed)
6461 == sizeof (Elf_External_Vernaux));
6462 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6463 everneed = (Elf_External_Verneed *) contents;
6464 iverneed = elf_tdata (abfd)->verref;
6465 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6466 {
6467 Elf_External_Vernaux *evernaux;
6468 Elf_Internal_Vernaux *ivernaux;
6469 unsigned int j;
6470
6471 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6472
6473 iverneed->vn_bfd = abfd;
6474
6475 iverneed->vn_filename =
6476 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6477 iverneed->vn_file);
6478 if (iverneed->vn_filename == NULL)
6479 goto error_return_verref;
6480
6481 if (iverneed->vn_cnt == 0)
6482 iverneed->vn_auxptr = NULL;
6483 else
6484 {
6485 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6486 sizeof (Elf_Internal_Vernaux));
6487 if (iverneed->vn_auxptr == NULL)
6488 goto error_return_verref;
6489 }
6490
6491 if (iverneed->vn_aux
6492 > (size_t) (contents_end - (bfd_byte *) everneed))
6493 goto error_return_verref;
6494
6495 evernaux = ((Elf_External_Vernaux *)
6496 ((bfd_byte *) everneed + iverneed->vn_aux));
6497 ivernaux = iverneed->vn_auxptr;
6498 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6499 {
6500 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6501
6502 ivernaux->vna_nodename =
6503 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6504 ivernaux->vna_name);
6505 if (ivernaux->vna_nodename == NULL)
6506 goto error_return_verref;
6507
6508 if (j + 1 < iverneed->vn_cnt)
6509 ivernaux->vna_nextptr = ivernaux + 1;
6510 else
6511 ivernaux->vna_nextptr = NULL;
6512
6513 if (ivernaux->vna_next
6514 > (size_t) (contents_end - (bfd_byte *) evernaux))
6515 goto error_return_verref;
6516
6517 evernaux = ((Elf_External_Vernaux *)
6518 ((bfd_byte *) evernaux + ivernaux->vna_next));
6519
6520 if (ivernaux->vna_other > freeidx)
6521 freeidx = ivernaux->vna_other;
6522 }
6523
6524 if (i + 1 < hdr->sh_info)
6525 iverneed->vn_nextref = iverneed + 1;
6526 else
6527 iverneed->vn_nextref = NULL;
6528
6529 if (iverneed->vn_next
6530 > (size_t) (contents_end - (bfd_byte *) everneed))
6531 goto error_return_verref;
6532
6533 everneed = ((Elf_External_Verneed *)
6534 ((bfd_byte *) everneed + iverneed->vn_next));
6535 }
6536
6537 free (contents);
6538 contents = NULL;
6539 }
6540
6541 if (elf_dynverdef (abfd) != 0)
6542 {
6543 Elf_Internal_Shdr *hdr;
6544 Elf_External_Verdef *everdef;
6545 Elf_Internal_Verdef *iverdef;
6546 Elf_Internal_Verdef *iverdefarr;
6547 Elf_Internal_Verdef iverdefmem;
6548 unsigned int i;
6549 unsigned int maxidx;
6550 bfd_byte *contents_end_def, *contents_end_aux;
6551
6552 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6553
6554 contents = bfd_malloc (hdr->sh_size);
6555 if (contents == NULL)
6556 goto error_return;
6557 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6558 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6559 goto error_return;
6560
6561 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6562 goto error_return;
6563
6564 BFD_ASSERT (sizeof (Elf_External_Verdef)
6565 >= sizeof (Elf_External_Verdaux));
6566 contents_end_def = contents + hdr->sh_size
6567 - sizeof (Elf_External_Verdef);
6568 contents_end_aux = contents + hdr->sh_size
6569 - sizeof (Elf_External_Verdaux);
6570
6571 /* We know the number of entries in the section but not the maximum
6572 index. Therefore we have to run through all entries and find
6573 the maximum. */
6574 everdef = (Elf_External_Verdef *) contents;
6575 maxidx = 0;
6576 for (i = 0; i < hdr->sh_info; ++i)
6577 {
6578 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6579
6580 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6581 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6582
6583 if (iverdefmem.vd_next
6584 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6585 goto error_return;
6586
6587 everdef = ((Elf_External_Verdef *)
6588 ((bfd_byte *) everdef + iverdefmem.vd_next));
6589 }
6590
6591 if (default_imported_symver)
6592 {
6593 if (freeidx > maxidx)
6594 maxidx = ++freeidx;
6595 else
6596 freeidx = ++maxidx;
6597 }
6598 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6599 sizeof (Elf_Internal_Verdef));
6600 if (elf_tdata (abfd)->verdef == NULL)
6601 goto error_return;
6602
6603 elf_tdata (abfd)->cverdefs = maxidx;
6604
6605 everdef = (Elf_External_Verdef *) contents;
6606 iverdefarr = elf_tdata (abfd)->verdef;
6607 for (i = 0; i < hdr->sh_info; i++)
6608 {
6609 Elf_External_Verdaux *everdaux;
6610 Elf_Internal_Verdaux *iverdaux;
6611 unsigned int j;
6612
6613 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6614
6615 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6616 {
6617 error_return_verdef:
6618 elf_tdata (abfd)->verdef = NULL;
6619 elf_tdata (abfd)->cverdefs = 0;
6620 goto error_return;
6621 }
6622
6623 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6624 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6625
6626 iverdef->vd_bfd = abfd;
6627
6628 if (iverdef->vd_cnt == 0)
6629 iverdef->vd_auxptr = NULL;
6630 else
6631 {
6632 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6633 sizeof (Elf_Internal_Verdaux));
6634 if (iverdef->vd_auxptr == NULL)
6635 goto error_return_verdef;
6636 }
6637
6638 if (iverdef->vd_aux
6639 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6640 goto error_return_verdef;
6641
6642 everdaux = ((Elf_External_Verdaux *)
6643 ((bfd_byte *) everdef + iverdef->vd_aux));
6644 iverdaux = iverdef->vd_auxptr;
6645 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6646 {
6647 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6648
6649 iverdaux->vda_nodename =
6650 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6651 iverdaux->vda_name);
6652 if (iverdaux->vda_nodename == NULL)
6653 goto error_return_verdef;
6654
6655 if (j + 1 < iverdef->vd_cnt)
6656 iverdaux->vda_nextptr = iverdaux + 1;
6657 else
6658 iverdaux->vda_nextptr = NULL;
6659
6660 if (iverdaux->vda_next
6661 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6662 goto error_return_verdef;
6663
6664 everdaux = ((Elf_External_Verdaux *)
6665 ((bfd_byte *) everdaux + iverdaux->vda_next));
6666 }
6667
6668 if (iverdef->vd_cnt)
6669 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6670
6671 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6672 iverdef->vd_nextdef = iverdef + 1;
6673 else
6674 iverdef->vd_nextdef = NULL;
6675
6676 everdef = ((Elf_External_Verdef *)
6677 ((bfd_byte *) everdef + iverdef->vd_next));
6678 }
6679
6680 free (contents);
6681 contents = NULL;
6682 }
6683 else if (default_imported_symver)
6684 {
6685 if (freeidx < 3)
6686 freeidx = 3;
6687 else
6688 freeidx++;
6689
6690 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6691 sizeof (Elf_Internal_Verdef));
6692 if (elf_tdata (abfd)->verdef == NULL)
6693 goto error_return;
6694
6695 elf_tdata (abfd)->cverdefs = freeidx;
6696 }
6697
6698 /* Create a default version based on the soname. */
6699 if (default_imported_symver)
6700 {
6701 Elf_Internal_Verdef *iverdef;
6702 Elf_Internal_Verdaux *iverdaux;
6703
6704 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6705
6706 iverdef->vd_version = VER_DEF_CURRENT;
6707 iverdef->vd_flags = 0;
6708 iverdef->vd_ndx = freeidx;
6709 iverdef->vd_cnt = 1;
6710
6711 iverdef->vd_bfd = abfd;
6712
6713 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6714 if (iverdef->vd_nodename == NULL)
6715 goto error_return_verdef;
6716 iverdef->vd_nextdef = NULL;
6717 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6718 if (iverdef->vd_auxptr == NULL)
6719 goto error_return_verdef;
6720
6721 iverdaux = iverdef->vd_auxptr;
6722 iverdaux->vda_nodename = iverdef->vd_nodename;
6723 iverdaux->vda_nextptr = NULL;
6724 }
6725
6726 return TRUE;
6727
6728 error_return:
6729 if (contents != NULL)
6730 free (contents);
6731 return FALSE;
6732 }
6733 \f
6734 asymbol *
6735 _bfd_elf_make_empty_symbol (bfd *abfd)
6736 {
6737 elf_symbol_type *newsym;
6738 bfd_size_type amt = sizeof (elf_symbol_type);
6739
6740 newsym = bfd_zalloc (abfd, amt);
6741 if (!newsym)
6742 return NULL;
6743 else
6744 {
6745 newsym->symbol.the_bfd = abfd;
6746 return &newsym->symbol;
6747 }
6748 }
6749
6750 void
6751 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6752 asymbol *symbol,
6753 symbol_info *ret)
6754 {
6755 bfd_symbol_info (symbol, ret);
6756 }
6757
6758 /* Return whether a symbol name implies a local symbol. Most targets
6759 use this function for the is_local_label_name entry point, but some
6760 override it. */
6761
6762 bfd_boolean
6763 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6764 const char *name)
6765 {
6766 /* Normal local symbols start with ``.L''. */
6767 if (name[0] == '.' && name[1] == 'L')
6768 return TRUE;
6769
6770 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6771 DWARF debugging symbols starting with ``..''. */
6772 if (name[0] == '.' && name[1] == '.')
6773 return TRUE;
6774
6775 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6776 emitting DWARF debugging output. I suspect this is actually a
6777 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6778 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6779 underscore to be emitted on some ELF targets). For ease of use,
6780 we treat such symbols as local. */
6781 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6782 return TRUE;
6783
6784 return FALSE;
6785 }
6786
6787 alent *
6788 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6789 asymbol *symbol ATTRIBUTE_UNUSED)
6790 {
6791 abort ();
6792 return NULL;
6793 }
6794
6795 bfd_boolean
6796 _bfd_elf_set_arch_mach (bfd *abfd,
6797 enum bfd_architecture arch,
6798 unsigned long machine)
6799 {
6800 /* If this isn't the right architecture for this backend, and this
6801 isn't the generic backend, fail. */
6802 if (arch != get_elf_backend_data (abfd)->arch
6803 && arch != bfd_arch_unknown
6804 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6805 return FALSE;
6806
6807 return bfd_default_set_arch_mach (abfd, arch, machine);
6808 }
6809
6810 /* Find the function to a particular section and offset,
6811 for error reporting. */
6812
6813 static bfd_boolean
6814 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6815 asection *section,
6816 asymbol **symbols,
6817 bfd_vma offset,
6818 const char **filename_ptr,
6819 const char **functionname_ptr)
6820 {
6821 const char *filename;
6822 asymbol *func, *file;
6823 bfd_vma low_func;
6824 asymbol **p;
6825 /* ??? Given multiple file symbols, it is impossible to reliably
6826 choose the right file name for global symbols. File symbols are
6827 local symbols, and thus all file symbols must sort before any
6828 global symbols. The ELF spec may be interpreted to say that a
6829 file symbol must sort before other local symbols, but currently
6830 ld -r doesn't do this. So, for ld -r output, it is possible to
6831 make a better choice of file name for local symbols by ignoring
6832 file symbols appearing after a given local symbol. */
6833 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6834
6835 filename = NULL;
6836 func = NULL;
6837 file = NULL;
6838 low_func = 0;
6839 state = nothing_seen;
6840
6841 for (p = symbols; *p != NULL; p++)
6842 {
6843 elf_symbol_type *q;
6844
6845 q = (elf_symbol_type *) *p;
6846
6847 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6848 {
6849 default:
6850 break;
6851 case STT_FILE:
6852 file = &q->symbol;
6853 if (state == symbol_seen)
6854 state = file_after_symbol_seen;
6855 continue;
6856 case STT_NOTYPE:
6857 case STT_FUNC:
6858 if (bfd_get_section (&q->symbol) == section
6859 && q->symbol.value >= low_func
6860 && q->symbol.value <= offset)
6861 {
6862 func = (asymbol *) q;
6863 low_func = q->symbol.value;
6864 filename = NULL;
6865 if (file != NULL
6866 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
6867 || state != file_after_symbol_seen))
6868 filename = bfd_asymbol_name (file);
6869 }
6870 break;
6871 }
6872 if (state == nothing_seen)
6873 state = symbol_seen;
6874 }
6875
6876 if (func == NULL)
6877 return FALSE;
6878
6879 if (filename_ptr)
6880 *filename_ptr = filename;
6881 if (functionname_ptr)
6882 *functionname_ptr = bfd_asymbol_name (func);
6883
6884 return TRUE;
6885 }
6886
6887 /* Find the nearest line to a particular section and offset,
6888 for error reporting. */
6889
6890 bfd_boolean
6891 _bfd_elf_find_nearest_line (bfd *abfd,
6892 asection *section,
6893 asymbol **symbols,
6894 bfd_vma offset,
6895 const char **filename_ptr,
6896 const char **functionname_ptr,
6897 unsigned int *line_ptr)
6898 {
6899 bfd_boolean found;
6900
6901 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6902 filename_ptr, functionname_ptr,
6903 line_ptr))
6904 {
6905 if (!*functionname_ptr)
6906 elf_find_function (abfd, section, symbols, offset,
6907 *filename_ptr ? NULL : filename_ptr,
6908 functionname_ptr);
6909
6910 return TRUE;
6911 }
6912
6913 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6914 filename_ptr, functionname_ptr,
6915 line_ptr, 0,
6916 &elf_tdata (abfd)->dwarf2_find_line_info))
6917 {
6918 if (!*functionname_ptr)
6919 elf_find_function (abfd, section, symbols, offset,
6920 *filename_ptr ? NULL : filename_ptr,
6921 functionname_ptr);
6922
6923 return TRUE;
6924 }
6925
6926 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6927 &found, filename_ptr,
6928 functionname_ptr, line_ptr,
6929 &elf_tdata (abfd)->line_info))
6930 return FALSE;
6931 if (found && (*functionname_ptr || *line_ptr))
6932 return TRUE;
6933
6934 if (symbols == NULL)
6935 return FALSE;
6936
6937 if (! elf_find_function (abfd, section, symbols, offset,
6938 filename_ptr, functionname_ptr))
6939 return FALSE;
6940
6941 *line_ptr = 0;
6942 return TRUE;
6943 }
6944
6945 /* Find the line for a symbol. */
6946
6947 bfd_boolean
6948 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
6949 const char **filename_ptr, unsigned int *line_ptr)
6950 {
6951 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
6952 filename_ptr, line_ptr, 0,
6953 &elf_tdata (abfd)->dwarf2_find_line_info);
6954 }
6955
6956 /* After a call to bfd_find_nearest_line, successive calls to
6957 bfd_find_inliner_info can be used to get source information about
6958 each level of function inlining that terminated at the address
6959 passed to bfd_find_nearest_line. Currently this is only supported
6960 for DWARF2 with appropriate DWARF3 extensions. */
6961
6962 bfd_boolean
6963 _bfd_elf_find_inliner_info (bfd *abfd,
6964 const char **filename_ptr,
6965 const char **functionname_ptr,
6966 unsigned int *line_ptr)
6967 {
6968 bfd_boolean found;
6969 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
6970 functionname_ptr, line_ptr,
6971 & elf_tdata (abfd)->dwarf2_find_line_info);
6972 return found;
6973 }
6974
6975 int
6976 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
6977 {
6978 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6979 int ret = bed->s->sizeof_ehdr;
6980
6981 if (!info->relocatable)
6982 {
6983 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
6984
6985 if (phdr_size == (bfd_size_type) -1)
6986 {
6987 struct elf_segment_map *m;
6988
6989 phdr_size = 0;
6990 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
6991 phdr_size += bed->s->sizeof_phdr;
6992
6993 if (phdr_size == 0)
6994 phdr_size = get_program_header_size (abfd, info);
6995 }
6996
6997 elf_tdata (abfd)->program_header_size = phdr_size;
6998 ret += phdr_size;
6999 }
7000
7001 return ret;
7002 }
7003
7004 bfd_boolean
7005 _bfd_elf_set_section_contents (bfd *abfd,
7006 sec_ptr section,
7007 const void *location,
7008 file_ptr offset,
7009 bfd_size_type count)
7010 {
7011 Elf_Internal_Shdr *hdr;
7012 bfd_signed_vma pos;
7013
7014 if (! abfd->output_has_begun
7015 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7016 return FALSE;
7017
7018 hdr = &elf_section_data (section)->this_hdr;
7019 pos = hdr->sh_offset + offset;
7020 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7021 || bfd_bwrite (location, count, abfd) != count)
7022 return FALSE;
7023
7024 return TRUE;
7025 }
7026
7027 void
7028 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7029 arelent *cache_ptr ATTRIBUTE_UNUSED,
7030 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7031 {
7032 abort ();
7033 }
7034
7035 /* Try to convert a non-ELF reloc into an ELF one. */
7036
7037 bfd_boolean
7038 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7039 {
7040 /* Check whether we really have an ELF howto. */
7041
7042 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7043 {
7044 bfd_reloc_code_real_type code;
7045 reloc_howto_type *howto;
7046
7047 /* Alien reloc: Try to determine its type to replace it with an
7048 equivalent ELF reloc. */
7049
7050 if (areloc->howto->pc_relative)
7051 {
7052 switch (areloc->howto->bitsize)
7053 {
7054 case 8:
7055 code = BFD_RELOC_8_PCREL;
7056 break;
7057 case 12:
7058 code = BFD_RELOC_12_PCREL;
7059 break;
7060 case 16:
7061 code = BFD_RELOC_16_PCREL;
7062 break;
7063 case 24:
7064 code = BFD_RELOC_24_PCREL;
7065 break;
7066 case 32:
7067 code = BFD_RELOC_32_PCREL;
7068 break;
7069 case 64:
7070 code = BFD_RELOC_64_PCREL;
7071 break;
7072 default:
7073 goto fail;
7074 }
7075
7076 howto = bfd_reloc_type_lookup (abfd, code);
7077
7078 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7079 {
7080 if (howto->pcrel_offset)
7081 areloc->addend += areloc->address;
7082 else
7083 areloc->addend -= areloc->address; /* addend is unsigned!! */
7084 }
7085 }
7086 else
7087 {
7088 switch (areloc->howto->bitsize)
7089 {
7090 case 8:
7091 code = BFD_RELOC_8;
7092 break;
7093 case 14:
7094 code = BFD_RELOC_14;
7095 break;
7096 case 16:
7097 code = BFD_RELOC_16;
7098 break;
7099 case 26:
7100 code = BFD_RELOC_26;
7101 break;
7102 case 32:
7103 code = BFD_RELOC_32;
7104 break;
7105 case 64:
7106 code = BFD_RELOC_64;
7107 break;
7108 default:
7109 goto fail;
7110 }
7111
7112 howto = bfd_reloc_type_lookup (abfd, code);
7113 }
7114
7115 if (howto)
7116 areloc->howto = howto;
7117 else
7118 goto fail;
7119 }
7120
7121 return TRUE;
7122
7123 fail:
7124 (*_bfd_error_handler)
7125 (_("%B: unsupported relocation type %s"),
7126 abfd, areloc->howto->name);
7127 bfd_set_error (bfd_error_bad_value);
7128 return FALSE;
7129 }
7130
7131 bfd_boolean
7132 _bfd_elf_close_and_cleanup (bfd *abfd)
7133 {
7134 if (bfd_get_format (abfd) == bfd_object)
7135 {
7136 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7137 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7138 _bfd_dwarf2_cleanup_debug_info (abfd);
7139 }
7140
7141 return _bfd_generic_close_and_cleanup (abfd);
7142 }
7143
7144 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7145 in the relocation's offset. Thus we cannot allow any sort of sanity
7146 range-checking to interfere. There is nothing else to do in processing
7147 this reloc. */
7148
7149 bfd_reloc_status_type
7150 _bfd_elf_rel_vtable_reloc_fn
7151 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7152 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7153 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7154 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7155 {
7156 return bfd_reloc_ok;
7157 }
7158 \f
7159 /* Elf core file support. Much of this only works on native
7160 toolchains, since we rely on knowing the
7161 machine-dependent procfs structure in order to pick
7162 out details about the corefile. */
7163
7164 #ifdef HAVE_SYS_PROCFS_H
7165 # include <sys/procfs.h>
7166 #endif
7167
7168 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7169
7170 static int
7171 elfcore_make_pid (bfd *abfd)
7172 {
7173 return ((elf_tdata (abfd)->core_lwpid << 16)
7174 + (elf_tdata (abfd)->core_pid));
7175 }
7176
7177 /* If there isn't a section called NAME, make one, using
7178 data from SECT. Note, this function will generate a
7179 reference to NAME, so you shouldn't deallocate or
7180 overwrite it. */
7181
7182 static bfd_boolean
7183 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7184 {
7185 asection *sect2;
7186
7187 if (bfd_get_section_by_name (abfd, name) != NULL)
7188 return TRUE;
7189
7190 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7191 if (sect2 == NULL)
7192 return FALSE;
7193
7194 sect2->size = sect->size;
7195 sect2->filepos = sect->filepos;
7196 sect2->alignment_power = sect->alignment_power;
7197 return TRUE;
7198 }
7199
7200 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7201 actually creates up to two pseudosections:
7202 - For the single-threaded case, a section named NAME, unless
7203 such a section already exists.
7204 - For the multi-threaded case, a section named "NAME/PID", where
7205 PID is elfcore_make_pid (abfd).
7206 Both pseudosections have identical contents. */
7207 bfd_boolean
7208 _bfd_elfcore_make_pseudosection (bfd *abfd,
7209 char *name,
7210 size_t size,
7211 ufile_ptr filepos)
7212 {
7213 char buf[100];
7214 char *threaded_name;
7215 size_t len;
7216 asection *sect;
7217
7218 /* Build the section name. */
7219
7220 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7221 len = strlen (buf) + 1;
7222 threaded_name = bfd_alloc (abfd, len);
7223 if (threaded_name == NULL)
7224 return FALSE;
7225 memcpy (threaded_name, buf, len);
7226
7227 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7228 SEC_HAS_CONTENTS);
7229 if (sect == NULL)
7230 return FALSE;
7231 sect->size = size;
7232 sect->filepos = filepos;
7233 sect->alignment_power = 2;
7234
7235 return elfcore_maybe_make_sect (abfd, name, sect);
7236 }
7237
7238 /* prstatus_t exists on:
7239 solaris 2.5+
7240 linux 2.[01] + glibc
7241 unixware 4.2
7242 */
7243
7244 #if defined (HAVE_PRSTATUS_T)
7245
7246 static bfd_boolean
7247 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7248 {
7249 size_t size;
7250 int offset;
7251
7252 if (note->descsz == sizeof (prstatus_t))
7253 {
7254 prstatus_t prstat;
7255
7256 size = sizeof (prstat.pr_reg);
7257 offset = offsetof (prstatus_t, pr_reg);
7258 memcpy (&prstat, note->descdata, sizeof (prstat));
7259
7260 /* Do not overwrite the core signal if it
7261 has already been set by another thread. */
7262 if (elf_tdata (abfd)->core_signal == 0)
7263 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7264 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7265
7266 /* pr_who exists on:
7267 solaris 2.5+
7268 unixware 4.2
7269 pr_who doesn't exist on:
7270 linux 2.[01]
7271 */
7272 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7273 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7274 #endif
7275 }
7276 #if defined (HAVE_PRSTATUS32_T)
7277 else if (note->descsz == sizeof (prstatus32_t))
7278 {
7279 /* 64-bit host, 32-bit corefile */
7280 prstatus32_t prstat;
7281
7282 size = sizeof (prstat.pr_reg);
7283 offset = offsetof (prstatus32_t, pr_reg);
7284 memcpy (&prstat, note->descdata, sizeof (prstat));
7285
7286 /* Do not overwrite the core signal if it
7287 has already been set by another thread. */
7288 if (elf_tdata (abfd)->core_signal == 0)
7289 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7290 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7291
7292 /* pr_who exists on:
7293 solaris 2.5+
7294 unixware 4.2
7295 pr_who doesn't exist on:
7296 linux 2.[01]
7297 */
7298 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7299 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7300 #endif
7301 }
7302 #endif /* HAVE_PRSTATUS32_T */
7303 else
7304 {
7305 /* Fail - we don't know how to handle any other
7306 note size (ie. data object type). */
7307 return TRUE;
7308 }
7309
7310 /* Make a ".reg/999" section and a ".reg" section. */
7311 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7312 size, note->descpos + offset);
7313 }
7314 #endif /* defined (HAVE_PRSTATUS_T) */
7315
7316 /* Create a pseudosection containing the exact contents of NOTE. */
7317 static bfd_boolean
7318 elfcore_make_note_pseudosection (bfd *abfd,
7319 char *name,
7320 Elf_Internal_Note *note)
7321 {
7322 return _bfd_elfcore_make_pseudosection (abfd, name,
7323 note->descsz, note->descpos);
7324 }
7325
7326 /* There isn't a consistent prfpregset_t across platforms,
7327 but it doesn't matter, because we don't have to pick this
7328 data structure apart. */
7329
7330 static bfd_boolean
7331 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7332 {
7333 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7334 }
7335
7336 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7337 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7338 literally. */
7339
7340 static bfd_boolean
7341 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7342 {
7343 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7344 }
7345
7346 #if defined (HAVE_PRPSINFO_T)
7347 typedef prpsinfo_t elfcore_psinfo_t;
7348 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7349 typedef prpsinfo32_t elfcore_psinfo32_t;
7350 #endif
7351 #endif
7352
7353 #if defined (HAVE_PSINFO_T)
7354 typedef psinfo_t elfcore_psinfo_t;
7355 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7356 typedef psinfo32_t elfcore_psinfo32_t;
7357 #endif
7358 #endif
7359
7360 /* return a malloc'ed copy of a string at START which is at
7361 most MAX bytes long, possibly without a terminating '\0'.
7362 the copy will always have a terminating '\0'. */
7363
7364 char *
7365 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7366 {
7367 char *dups;
7368 char *end = memchr (start, '\0', max);
7369 size_t len;
7370
7371 if (end == NULL)
7372 len = max;
7373 else
7374 len = end - start;
7375
7376 dups = bfd_alloc (abfd, len + 1);
7377 if (dups == NULL)
7378 return NULL;
7379
7380 memcpy (dups, start, len);
7381 dups[len] = '\0';
7382
7383 return dups;
7384 }
7385
7386 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7387 static bfd_boolean
7388 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7389 {
7390 if (note->descsz == sizeof (elfcore_psinfo_t))
7391 {
7392 elfcore_psinfo_t psinfo;
7393
7394 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7395
7396 elf_tdata (abfd)->core_program
7397 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7398 sizeof (psinfo.pr_fname));
7399
7400 elf_tdata (abfd)->core_command
7401 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7402 sizeof (psinfo.pr_psargs));
7403 }
7404 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7405 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7406 {
7407 /* 64-bit host, 32-bit corefile */
7408 elfcore_psinfo32_t psinfo;
7409
7410 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7411
7412 elf_tdata (abfd)->core_program
7413 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7414 sizeof (psinfo.pr_fname));
7415
7416 elf_tdata (abfd)->core_command
7417 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7418 sizeof (psinfo.pr_psargs));
7419 }
7420 #endif
7421
7422 else
7423 {
7424 /* Fail - we don't know how to handle any other
7425 note size (ie. data object type). */
7426 return TRUE;
7427 }
7428
7429 /* Note that for some reason, a spurious space is tacked
7430 onto the end of the args in some (at least one anyway)
7431 implementations, so strip it off if it exists. */
7432
7433 {
7434 char *command = elf_tdata (abfd)->core_command;
7435 int n = strlen (command);
7436
7437 if (0 < n && command[n - 1] == ' ')
7438 command[n - 1] = '\0';
7439 }
7440
7441 return TRUE;
7442 }
7443 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7444
7445 #if defined (HAVE_PSTATUS_T)
7446 static bfd_boolean
7447 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7448 {
7449 if (note->descsz == sizeof (pstatus_t)
7450 #if defined (HAVE_PXSTATUS_T)
7451 || note->descsz == sizeof (pxstatus_t)
7452 #endif
7453 )
7454 {
7455 pstatus_t pstat;
7456
7457 memcpy (&pstat, note->descdata, sizeof (pstat));
7458
7459 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7460 }
7461 #if defined (HAVE_PSTATUS32_T)
7462 else if (note->descsz == sizeof (pstatus32_t))
7463 {
7464 /* 64-bit host, 32-bit corefile */
7465 pstatus32_t pstat;
7466
7467 memcpy (&pstat, note->descdata, sizeof (pstat));
7468
7469 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7470 }
7471 #endif
7472 /* Could grab some more details from the "representative"
7473 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7474 NT_LWPSTATUS note, presumably. */
7475
7476 return TRUE;
7477 }
7478 #endif /* defined (HAVE_PSTATUS_T) */
7479
7480 #if defined (HAVE_LWPSTATUS_T)
7481 static bfd_boolean
7482 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7483 {
7484 lwpstatus_t lwpstat;
7485 char buf[100];
7486 char *name;
7487 size_t len;
7488 asection *sect;
7489
7490 if (note->descsz != sizeof (lwpstat)
7491 #if defined (HAVE_LWPXSTATUS_T)
7492 && note->descsz != sizeof (lwpxstatus_t)
7493 #endif
7494 )
7495 return TRUE;
7496
7497 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7498
7499 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7500 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7501
7502 /* Make a ".reg/999" section. */
7503
7504 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7505 len = strlen (buf) + 1;
7506 name = bfd_alloc (abfd, len);
7507 if (name == NULL)
7508 return FALSE;
7509 memcpy (name, buf, len);
7510
7511 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7512 if (sect == NULL)
7513 return FALSE;
7514
7515 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7516 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7517 sect->filepos = note->descpos
7518 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7519 #endif
7520
7521 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7522 sect->size = sizeof (lwpstat.pr_reg);
7523 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7524 #endif
7525
7526 sect->alignment_power = 2;
7527
7528 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7529 return FALSE;
7530
7531 /* Make a ".reg2/999" section */
7532
7533 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7534 len = strlen (buf) + 1;
7535 name = bfd_alloc (abfd, len);
7536 if (name == NULL)
7537 return FALSE;
7538 memcpy (name, buf, len);
7539
7540 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7541 if (sect == NULL)
7542 return FALSE;
7543
7544 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7545 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7546 sect->filepos = note->descpos
7547 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7548 #endif
7549
7550 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7551 sect->size = sizeof (lwpstat.pr_fpreg);
7552 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7553 #endif
7554
7555 sect->alignment_power = 2;
7556
7557 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7558 }
7559 #endif /* defined (HAVE_LWPSTATUS_T) */
7560
7561 #if defined (HAVE_WIN32_PSTATUS_T)
7562 static bfd_boolean
7563 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7564 {
7565 char buf[30];
7566 char *name;
7567 size_t len;
7568 asection *sect;
7569 win32_pstatus_t pstatus;
7570
7571 if (note->descsz < sizeof (pstatus))
7572 return TRUE;
7573
7574 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7575
7576 switch (pstatus.data_type)
7577 {
7578 case NOTE_INFO_PROCESS:
7579 /* FIXME: need to add ->core_command. */
7580 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7581 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7582 break;
7583
7584 case NOTE_INFO_THREAD:
7585 /* Make a ".reg/999" section. */
7586 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7587
7588 len = strlen (buf) + 1;
7589 name = bfd_alloc (abfd, len);
7590 if (name == NULL)
7591 return FALSE;
7592
7593 memcpy (name, buf, len);
7594
7595 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7596 if (sect == NULL)
7597 return FALSE;
7598
7599 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7600 sect->filepos = (note->descpos
7601 + offsetof (struct win32_pstatus,
7602 data.thread_info.thread_context));
7603 sect->alignment_power = 2;
7604
7605 if (pstatus.data.thread_info.is_active_thread)
7606 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7607 return FALSE;
7608 break;
7609
7610 case NOTE_INFO_MODULE:
7611 /* Make a ".module/xxxxxxxx" section. */
7612 sprintf (buf, ".module/%08lx",
7613 (long) pstatus.data.module_info.base_address);
7614
7615 len = strlen (buf) + 1;
7616 name = bfd_alloc (abfd, len);
7617 if (name == NULL)
7618 return FALSE;
7619
7620 memcpy (name, buf, len);
7621
7622 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7623
7624 if (sect == NULL)
7625 return FALSE;
7626
7627 sect->size = note->descsz;
7628 sect->filepos = note->descpos;
7629 sect->alignment_power = 2;
7630 break;
7631
7632 default:
7633 return TRUE;
7634 }
7635
7636 return TRUE;
7637 }
7638 #endif /* HAVE_WIN32_PSTATUS_T */
7639
7640 static bfd_boolean
7641 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7642 {
7643 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7644
7645 switch (note->type)
7646 {
7647 default:
7648 return TRUE;
7649
7650 case NT_PRSTATUS:
7651 if (bed->elf_backend_grok_prstatus)
7652 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7653 return TRUE;
7654 #if defined (HAVE_PRSTATUS_T)
7655 return elfcore_grok_prstatus (abfd, note);
7656 #else
7657 return TRUE;
7658 #endif
7659
7660 #if defined (HAVE_PSTATUS_T)
7661 case NT_PSTATUS:
7662 return elfcore_grok_pstatus (abfd, note);
7663 #endif
7664
7665 #if defined (HAVE_LWPSTATUS_T)
7666 case NT_LWPSTATUS:
7667 return elfcore_grok_lwpstatus (abfd, note);
7668 #endif
7669
7670 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7671 return elfcore_grok_prfpreg (abfd, note);
7672
7673 #if defined (HAVE_WIN32_PSTATUS_T)
7674 case NT_WIN32PSTATUS:
7675 return elfcore_grok_win32pstatus (abfd, note);
7676 #endif
7677
7678 case NT_PRXFPREG: /* Linux SSE extension */
7679 if (note->namesz == 6
7680 && strcmp (note->namedata, "LINUX") == 0)
7681 return elfcore_grok_prxfpreg (abfd, note);
7682 else
7683 return TRUE;
7684
7685 case NT_PRPSINFO:
7686 case NT_PSINFO:
7687 if (bed->elf_backend_grok_psinfo)
7688 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7689 return TRUE;
7690 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7691 return elfcore_grok_psinfo (abfd, note);
7692 #else
7693 return TRUE;
7694 #endif
7695
7696 case NT_AUXV:
7697 {
7698 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7699 SEC_HAS_CONTENTS);
7700
7701 if (sect == NULL)
7702 return FALSE;
7703 sect->size = note->descsz;
7704 sect->filepos = note->descpos;
7705 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7706
7707 return TRUE;
7708 }
7709 }
7710 }
7711
7712 static bfd_boolean
7713 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7714 {
7715 char *cp;
7716
7717 cp = strchr (note->namedata, '@');
7718 if (cp != NULL)
7719 {
7720 *lwpidp = atoi(cp + 1);
7721 return TRUE;
7722 }
7723 return FALSE;
7724 }
7725
7726 static bfd_boolean
7727 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7728 {
7729 /* Signal number at offset 0x08. */
7730 elf_tdata (abfd)->core_signal
7731 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7732
7733 /* Process ID at offset 0x50. */
7734 elf_tdata (abfd)->core_pid
7735 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7736
7737 /* Command name at 0x7c (max 32 bytes, including nul). */
7738 elf_tdata (abfd)->core_command
7739 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7740
7741 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7742 note);
7743 }
7744
7745 static bfd_boolean
7746 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7747 {
7748 int lwp;
7749
7750 if (elfcore_netbsd_get_lwpid (note, &lwp))
7751 elf_tdata (abfd)->core_lwpid = lwp;
7752
7753 if (note->type == NT_NETBSDCORE_PROCINFO)
7754 {
7755 /* NetBSD-specific core "procinfo". Note that we expect to
7756 find this note before any of the others, which is fine,
7757 since the kernel writes this note out first when it
7758 creates a core file. */
7759
7760 return elfcore_grok_netbsd_procinfo (abfd, note);
7761 }
7762
7763 /* As of Jan 2002 there are no other machine-independent notes
7764 defined for NetBSD core files. If the note type is less
7765 than the start of the machine-dependent note types, we don't
7766 understand it. */
7767
7768 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7769 return TRUE;
7770
7771
7772 switch (bfd_get_arch (abfd))
7773 {
7774 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7775 PT_GETFPREGS == mach+2. */
7776
7777 case bfd_arch_alpha:
7778 case bfd_arch_sparc:
7779 switch (note->type)
7780 {
7781 case NT_NETBSDCORE_FIRSTMACH+0:
7782 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7783
7784 case NT_NETBSDCORE_FIRSTMACH+2:
7785 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7786
7787 default:
7788 return TRUE;
7789 }
7790
7791 /* On all other arch's, PT_GETREGS == mach+1 and
7792 PT_GETFPREGS == mach+3. */
7793
7794 default:
7795 switch (note->type)
7796 {
7797 case NT_NETBSDCORE_FIRSTMACH+1:
7798 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7799
7800 case NT_NETBSDCORE_FIRSTMACH+3:
7801 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7802
7803 default:
7804 return TRUE;
7805 }
7806 }
7807 /* NOTREACHED */
7808 }
7809
7810 static bfd_boolean
7811 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
7812 {
7813 void *ddata = note->descdata;
7814 char buf[100];
7815 char *name;
7816 asection *sect;
7817 short sig;
7818 unsigned flags;
7819
7820 /* nto_procfs_status 'pid' field is at offset 0. */
7821 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7822
7823 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7824 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7825
7826 /* nto_procfs_status 'flags' field is at offset 8. */
7827 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7828
7829 /* nto_procfs_status 'what' field is at offset 14. */
7830 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7831 {
7832 elf_tdata (abfd)->core_signal = sig;
7833 elf_tdata (abfd)->core_lwpid = *tid;
7834 }
7835
7836 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7837 do not come from signals so we make sure we set the current
7838 thread just in case. */
7839 if (flags & 0x00000080)
7840 elf_tdata (abfd)->core_lwpid = *tid;
7841
7842 /* Make a ".qnx_core_status/%d" section. */
7843 sprintf (buf, ".qnx_core_status/%ld", *tid);
7844
7845 name = bfd_alloc (abfd, strlen (buf) + 1);
7846 if (name == NULL)
7847 return FALSE;
7848 strcpy (name, buf);
7849
7850 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7851 if (sect == NULL)
7852 return FALSE;
7853
7854 sect->size = note->descsz;
7855 sect->filepos = note->descpos;
7856 sect->alignment_power = 2;
7857
7858 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7859 }
7860
7861 static bfd_boolean
7862 elfcore_grok_nto_regs (bfd *abfd,
7863 Elf_Internal_Note *note,
7864 long tid,
7865 char *base)
7866 {
7867 char buf[100];
7868 char *name;
7869 asection *sect;
7870
7871 /* Make a "(base)/%d" section. */
7872 sprintf (buf, "%s/%ld", base, tid);
7873
7874 name = bfd_alloc (abfd, strlen (buf) + 1);
7875 if (name == NULL)
7876 return FALSE;
7877 strcpy (name, buf);
7878
7879 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7880 if (sect == NULL)
7881 return FALSE;
7882
7883 sect->size = note->descsz;
7884 sect->filepos = note->descpos;
7885 sect->alignment_power = 2;
7886
7887 /* This is the current thread. */
7888 if (elf_tdata (abfd)->core_lwpid == tid)
7889 return elfcore_maybe_make_sect (abfd, base, sect);
7890
7891 return TRUE;
7892 }
7893
7894 #define BFD_QNT_CORE_INFO 7
7895 #define BFD_QNT_CORE_STATUS 8
7896 #define BFD_QNT_CORE_GREG 9
7897 #define BFD_QNT_CORE_FPREG 10
7898
7899 static bfd_boolean
7900 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7901 {
7902 /* Every GREG section has a STATUS section before it. Store the
7903 tid from the previous call to pass down to the next gregs
7904 function. */
7905 static long tid = 1;
7906
7907 switch (note->type)
7908 {
7909 case BFD_QNT_CORE_INFO:
7910 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7911 case BFD_QNT_CORE_STATUS:
7912 return elfcore_grok_nto_status (abfd, note, &tid);
7913 case BFD_QNT_CORE_GREG:
7914 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7915 case BFD_QNT_CORE_FPREG:
7916 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7917 default:
7918 return TRUE;
7919 }
7920 }
7921
7922 /* Function: elfcore_write_note
7923
7924 Inputs:
7925 buffer to hold note, and current size of buffer
7926 name of note
7927 type of note
7928 data for note
7929 size of data for note
7930
7931 Writes note to end of buffer. ELF64 notes are written exactly as
7932 for ELF32, despite the current (as of 2006) ELF gabi specifying
7933 that they ought to have 8-byte namesz and descsz field, and have
7934 8-byte alignment. Other writers, eg. Linux kernel, do the same.
7935
7936 Return:
7937 Pointer to realloc'd buffer, *BUFSIZ updated. */
7938
7939 char *
7940 elfcore_write_note (bfd *abfd,
7941 char *buf,
7942 int *bufsiz,
7943 const char *name,
7944 int type,
7945 const void *input,
7946 int size)
7947 {
7948 Elf_External_Note *xnp;
7949 size_t namesz;
7950 size_t newspace;
7951 char *dest;
7952
7953 namesz = 0;
7954 if (name != NULL)
7955 namesz = strlen (name) + 1;
7956
7957 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
7958
7959 buf = realloc (buf, *bufsiz + newspace);
7960 dest = buf + *bufsiz;
7961 *bufsiz += newspace;
7962 xnp = (Elf_External_Note *) dest;
7963 H_PUT_32 (abfd, namesz, xnp->namesz);
7964 H_PUT_32 (abfd, size, xnp->descsz);
7965 H_PUT_32 (abfd, type, xnp->type);
7966 dest = xnp->name;
7967 if (name != NULL)
7968 {
7969 memcpy (dest, name, namesz);
7970 dest += namesz;
7971 while (namesz & 3)
7972 {
7973 *dest++ = '\0';
7974 ++namesz;
7975 }
7976 }
7977 memcpy (dest, input, size);
7978 dest += size;
7979 while (size & 3)
7980 {
7981 *dest++ = '\0';
7982 ++size;
7983 }
7984 return buf;
7985 }
7986
7987 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7988 char *
7989 elfcore_write_prpsinfo (bfd *abfd,
7990 char *buf,
7991 int *bufsiz,
7992 const char *fname,
7993 const char *psargs)
7994 {
7995 const char *note_name = "CORE";
7996 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7997
7998 if (bed->elf_backend_write_core_note != NULL)
7999 {
8000 char *ret;
8001 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8002 NT_PRPSINFO, fname, psargs);
8003 if (ret != NULL)
8004 return ret;
8005 }
8006
8007 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8008 if (bed->s->elfclass == ELFCLASS32)
8009 {
8010 #if defined (HAVE_PSINFO32_T)
8011 psinfo32_t data;
8012 int note_type = NT_PSINFO;
8013 #else
8014 prpsinfo32_t data;
8015 int note_type = NT_PRPSINFO;
8016 #endif
8017
8018 memset (&data, 0, sizeof (data));
8019 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8020 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8021 return elfcore_write_note (abfd, buf, bufsiz,
8022 note_name, note_type, &data, sizeof (data));
8023 }
8024 else
8025 #endif
8026 {
8027 #if defined (HAVE_PSINFO_T)
8028 psinfo_t data;
8029 int note_type = NT_PSINFO;
8030 #else
8031 prpsinfo_t data;
8032 int note_type = NT_PRPSINFO;
8033 #endif
8034
8035 memset (&data, 0, sizeof (data));
8036 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8037 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8038 return elfcore_write_note (abfd, buf, bufsiz,
8039 note_name, note_type, &data, sizeof (data));
8040 }
8041 }
8042 #endif /* PSINFO_T or PRPSINFO_T */
8043
8044 #if defined (HAVE_PRSTATUS_T)
8045 char *
8046 elfcore_write_prstatus (bfd *abfd,
8047 char *buf,
8048 int *bufsiz,
8049 long pid,
8050 int cursig,
8051 const void *gregs)
8052 {
8053 const char *note_name = "CORE";
8054 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8055
8056 if (bed->elf_backend_write_core_note != NULL)
8057 {
8058 char *ret;
8059 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8060 NT_PRSTATUS,
8061 pid, cursig, gregs);
8062 if (ret != NULL)
8063 return ret;
8064 }
8065
8066 #if defined (HAVE_PRSTATUS32_T)
8067 if (bed->s->elfclass == ELFCLASS32)
8068 {
8069 prstatus32_t prstat;
8070
8071 memset (&prstat, 0, sizeof (prstat));
8072 prstat.pr_pid = pid;
8073 prstat.pr_cursig = cursig;
8074 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8075 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8076 NT_PRSTATUS, &prstat, sizeof (prstat));
8077 }
8078 else
8079 #endif
8080 {
8081 prstatus_t prstat;
8082
8083 memset (&prstat, 0, sizeof (prstat));
8084 prstat.pr_pid = pid;
8085 prstat.pr_cursig = cursig;
8086 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8087 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8088 NT_PRSTATUS, &prstat, sizeof (prstat));
8089 }
8090 }
8091 #endif /* HAVE_PRSTATUS_T */
8092
8093 #if defined (HAVE_LWPSTATUS_T)
8094 char *
8095 elfcore_write_lwpstatus (bfd *abfd,
8096 char *buf,
8097 int *bufsiz,
8098 long pid,
8099 int cursig,
8100 const void *gregs)
8101 {
8102 lwpstatus_t lwpstat;
8103 const char *note_name = "CORE";
8104
8105 memset (&lwpstat, 0, sizeof (lwpstat));
8106 lwpstat.pr_lwpid = pid >> 16;
8107 lwpstat.pr_cursig = cursig;
8108 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8109 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8110 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8111 #if !defined(gregs)
8112 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8113 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8114 #else
8115 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8116 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8117 #endif
8118 #endif
8119 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8120 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8121 }
8122 #endif /* HAVE_LWPSTATUS_T */
8123
8124 #if defined (HAVE_PSTATUS_T)
8125 char *
8126 elfcore_write_pstatus (bfd *abfd,
8127 char *buf,
8128 int *bufsiz,
8129 long pid,
8130 int cursig ATTRIBUTE_UNUSED,
8131 const void *gregs ATTRIBUTE_UNUSED)
8132 {
8133 const char *note_name = "CORE";
8134 #if defined (HAVE_PSTATUS32_T)
8135 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8136
8137 if (bed->s->elfclass == ELFCLASS32)
8138 {
8139 pstatus32_t pstat;
8140
8141 memset (&pstat, 0, sizeof (pstat));
8142 pstat.pr_pid = pid & 0xffff;
8143 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8144 NT_PSTATUS, &pstat, sizeof (pstat));
8145 return buf;
8146 }
8147 else
8148 #endif
8149 {
8150 pstatus_t pstat;
8151
8152 memset (&pstat, 0, sizeof (pstat));
8153 pstat.pr_pid = pid & 0xffff;
8154 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8155 NT_PSTATUS, &pstat, sizeof (pstat));
8156 return buf;
8157 }
8158 }
8159 #endif /* HAVE_PSTATUS_T */
8160
8161 char *
8162 elfcore_write_prfpreg (bfd *abfd,
8163 char *buf,
8164 int *bufsiz,
8165 const void *fpregs,
8166 int size)
8167 {
8168 const char *note_name = "CORE";
8169 return elfcore_write_note (abfd, buf, bufsiz,
8170 note_name, NT_FPREGSET, fpregs, size);
8171 }
8172
8173 char *
8174 elfcore_write_prxfpreg (bfd *abfd,
8175 char *buf,
8176 int *bufsiz,
8177 const void *xfpregs,
8178 int size)
8179 {
8180 char *note_name = "LINUX";
8181 return elfcore_write_note (abfd, buf, bufsiz,
8182 note_name, NT_PRXFPREG, xfpregs, size);
8183 }
8184
8185 static bfd_boolean
8186 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8187 {
8188 char *buf;
8189 char *p;
8190
8191 if (size <= 0)
8192 return TRUE;
8193
8194 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8195 return FALSE;
8196
8197 buf = bfd_malloc (size);
8198 if (buf == NULL)
8199 return FALSE;
8200
8201 if (bfd_bread (buf, size, abfd) != size)
8202 {
8203 error:
8204 free (buf);
8205 return FALSE;
8206 }
8207
8208 p = buf;
8209 while (p < buf + size)
8210 {
8211 /* FIXME: bad alignment assumption. */
8212 Elf_External_Note *xnp = (Elf_External_Note *) p;
8213 Elf_Internal_Note in;
8214
8215 in.type = H_GET_32 (abfd, xnp->type);
8216
8217 in.namesz = H_GET_32 (abfd, xnp->namesz);
8218 in.namedata = xnp->name;
8219
8220 in.descsz = H_GET_32 (abfd, xnp->descsz);
8221 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8222 in.descpos = offset + (in.descdata - buf);
8223
8224 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8225 {
8226 if (! elfcore_grok_netbsd_note (abfd, &in))
8227 goto error;
8228 }
8229 else if (CONST_STRNEQ (in.namedata, "QNX"))
8230 {
8231 if (! elfcore_grok_nto_note (abfd, &in))
8232 goto error;
8233 }
8234 else
8235 {
8236 if (! elfcore_grok_note (abfd, &in))
8237 goto error;
8238 }
8239
8240 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8241 }
8242
8243 free (buf);
8244 return TRUE;
8245 }
8246 \f
8247 /* Providing external access to the ELF program header table. */
8248
8249 /* Return an upper bound on the number of bytes required to store a
8250 copy of ABFD's program header table entries. Return -1 if an error
8251 occurs; bfd_get_error will return an appropriate code. */
8252
8253 long
8254 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8255 {
8256 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8257 {
8258 bfd_set_error (bfd_error_wrong_format);
8259 return -1;
8260 }
8261
8262 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8263 }
8264
8265 /* Copy ABFD's program header table entries to *PHDRS. The entries
8266 will be stored as an array of Elf_Internal_Phdr structures, as
8267 defined in include/elf/internal.h. To find out how large the
8268 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8269
8270 Return the number of program header table entries read, or -1 if an
8271 error occurs; bfd_get_error will return an appropriate code. */
8272
8273 int
8274 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8275 {
8276 int num_phdrs;
8277
8278 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8279 {
8280 bfd_set_error (bfd_error_wrong_format);
8281 return -1;
8282 }
8283
8284 num_phdrs = elf_elfheader (abfd)->e_phnum;
8285 memcpy (phdrs, elf_tdata (abfd)->phdr,
8286 num_phdrs * sizeof (Elf_Internal_Phdr));
8287
8288 return num_phdrs;
8289 }
8290
8291 void
8292 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8293 {
8294 #ifdef BFD64
8295 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8296
8297 i_ehdrp = elf_elfheader (abfd);
8298 if (i_ehdrp == NULL)
8299 sprintf_vma (buf, value);
8300 else
8301 {
8302 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8303 {
8304 #if BFD_HOST_64BIT_LONG
8305 sprintf (buf, "%016lx", value);
8306 #else
8307 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8308 _bfd_int64_low (value));
8309 #endif
8310 }
8311 else
8312 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8313 }
8314 #else
8315 sprintf_vma (buf, value);
8316 #endif
8317 }
8318
8319 void
8320 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8321 {
8322 #ifdef BFD64
8323 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8324
8325 i_ehdrp = elf_elfheader (abfd);
8326 if (i_ehdrp == NULL)
8327 fprintf_vma ((FILE *) stream, value);
8328 else
8329 {
8330 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8331 {
8332 #if BFD_HOST_64BIT_LONG
8333 fprintf ((FILE *) stream, "%016lx", value);
8334 #else
8335 fprintf ((FILE *) stream, "%08lx%08lx",
8336 _bfd_int64_high (value), _bfd_int64_low (value));
8337 #endif
8338 }
8339 else
8340 fprintf ((FILE *) stream, "%08lx",
8341 (unsigned long) (value & 0xffffffff));
8342 }
8343 #else
8344 fprintf_vma ((FILE *) stream, value);
8345 #endif
8346 }
8347
8348 enum elf_reloc_type_class
8349 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8350 {
8351 return reloc_class_normal;
8352 }
8353
8354 /* For RELA architectures, return the relocation value for a
8355 relocation against a local symbol. */
8356
8357 bfd_vma
8358 _bfd_elf_rela_local_sym (bfd *abfd,
8359 Elf_Internal_Sym *sym,
8360 asection **psec,
8361 Elf_Internal_Rela *rel)
8362 {
8363 asection *sec = *psec;
8364 bfd_vma relocation;
8365
8366 relocation = (sec->output_section->vma
8367 + sec->output_offset
8368 + sym->st_value);
8369 if ((sec->flags & SEC_MERGE)
8370 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8371 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8372 {
8373 rel->r_addend =
8374 _bfd_merged_section_offset (abfd, psec,
8375 elf_section_data (sec)->sec_info,
8376 sym->st_value + rel->r_addend);
8377 if (sec != *psec)
8378 {
8379 /* If we have changed the section, and our original section is
8380 marked with SEC_EXCLUDE, it means that the original
8381 SEC_MERGE section has been completely subsumed in some
8382 other SEC_MERGE section. In this case, we need to leave
8383 some info around for --emit-relocs. */
8384 if ((sec->flags & SEC_EXCLUDE) != 0)
8385 sec->kept_section = *psec;
8386 sec = *psec;
8387 }
8388 rel->r_addend -= relocation;
8389 rel->r_addend += sec->output_section->vma + sec->output_offset;
8390 }
8391 return relocation;
8392 }
8393
8394 bfd_vma
8395 _bfd_elf_rel_local_sym (bfd *abfd,
8396 Elf_Internal_Sym *sym,
8397 asection **psec,
8398 bfd_vma addend)
8399 {
8400 asection *sec = *psec;
8401
8402 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8403 return sym->st_value + addend;
8404
8405 return _bfd_merged_section_offset (abfd, psec,
8406 elf_section_data (sec)->sec_info,
8407 sym->st_value + addend);
8408 }
8409
8410 bfd_vma
8411 _bfd_elf_section_offset (bfd *abfd,
8412 struct bfd_link_info *info,
8413 asection *sec,
8414 bfd_vma offset)
8415 {
8416 switch (sec->sec_info_type)
8417 {
8418 case ELF_INFO_TYPE_STABS:
8419 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8420 offset);
8421 case ELF_INFO_TYPE_EH_FRAME:
8422 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8423 default:
8424 return offset;
8425 }
8426 }
8427 \f
8428 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8429 reconstruct an ELF file by reading the segments out of remote memory
8430 based on the ELF file header at EHDR_VMA and the ELF program headers it
8431 points to. If not null, *LOADBASEP is filled in with the difference
8432 between the VMAs from which the segments were read, and the VMAs the
8433 file headers (and hence BFD's idea of each section's VMA) put them at.
8434
8435 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8436 remote memory at target address VMA into the local buffer at MYADDR; it
8437 should return zero on success or an `errno' code on failure. TEMPL must
8438 be a BFD for an ELF target with the word size and byte order found in
8439 the remote memory. */
8440
8441 bfd *
8442 bfd_elf_bfd_from_remote_memory
8443 (bfd *templ,
8444 bfd_vma ehdr_vma,
8445 bfd_vma *loadbasep,
8446 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8447 {
8448 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8449 (templ, ehdr_vma, loadbasep, target_read_memory);
8450 }
8451 \f
8452 long
8453 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8454 long symcount ATTRIBUTE_UNUSED,
8455 asymbol **syms ATTRIBUTE_UNUSED,
8456 long dynsymcount,
8457 asymbol **dynsyms,
8458 asymbol **ret)
8459 {
8460 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8461 asection *relplt;
8462 asymbol *s;
8463 const char *relplt_name;
8464 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8465 arelent *p;
8466 long count, i, n;
8467 size_t size;
8468 Elf_Internal_Shdr *hdr;
8469 char *names;
8470 asection *plt;
8471
8472 *ret = NULL;
8473
8474 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8475 return 0;
8476
8477 if (dynsymcount <= 0)
8478 return 0;
8479
8480 if (!bed->plt_sym_val)
8481 return 0;
8482
8483 relplt_name = bed->relplt_name;
8484 if (relplt_name == NULL)
8485 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8486 relplt = bfd_get_section_by_name (abfd, relplt_name);
8487 if (relplt == NULL)
8488 return 0;
8489
8490 hdr = &elf_section_data (relplt)->this_hdr;
8491 if (hdr->sh_link != elf_dynsymtab (abfd)
8492 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8493 return 0;
8494
8495 plt = bfd_get_section_by_name (abfd, ".plt");
8496 if (plt == NULL)
8497 return 0;
8498
8499 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8500 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8501 return -1;
8502
8503 count = relplt->size / hdr->sh_entsize;
8504 size = count * sizeof (asymbol);
8505 p = relplt->relocation;
8506 for (i = 0; i < count; i++, p++)
8507 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8508
8509 s = *ret = bfd_malloc (size);
8510 if (s == NULL)
8511 return -1;
8512
8513 names = (char *) (s + count);
8514 p = relplt->relocation;
8515 n = 0;
8516 for (i = 0; i < count; i++, s++, p++)
8517 {
8518 size_t len;
8519 bfd_vma addr;
8520
8521 addr = bed->plt_sym_val (i, plt, p);
8522 if (addr == (bfd_vma) -1)
8523 continue;
8524
8525 *s = **p->sym_ptr_ptr;
8526 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8527 we are defining a symbol, ensure one of them is set. */
8528 if ((s->flags & BSF_LOCAL) == 0)
8529 s->flags |= BSF_GLOBAL;
8530 s->section = plt;
8531 s->value = addr - plt->vma;
8532 s->name = names;
8533 len = strlen ((*p->sym_ptr_ptr)->name);
8534 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8535 names += len;
8536 memcpy (names, "@plt", sizeof ("@plt"));
8537 names += sizeof ("@plt");
8538 ++n;
8539 }
8540
8541 return n;
8542 }
8543
8544 /* It is only used by x86-64 so far. */
8545 asection _bfd_elf_large_com_section
8546 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8547 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8548
8549 void
8550 _bfd_elf_set_osabi (bfd * abfd,
8551 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
8552 {
8553 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
8554
8555 i_ehdrp = elf_elfheader (abfd);
8556
8557 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
8558 }
8559
8560
8561 /* Return TRUE for ELF symbol types that represent functions.
8562 This is the default version of this function, which is sufficient for
8563 most targets. It returns true if TYPE is STT_FUNC. */
8564
8565 bfd_boolean
8566 _bfd_elf_is_function_type (unsigned int type)
8567 {
8568 return (type == STT_FUNC);
8569 }