]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf.c
Place .shstrtab section after .symtab and .strtab, thus restoring monotonically incre...
[thirdparty/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2016 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 static char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
302 shstrtab = NULL;
303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
304 {
305 if (bfd_get_error () != bfd_error_system_call)
306 bfd_set_error (bfd_error_file_truncated);
307 bfd_release (abfd, shstrtab);
308 shstrtab = NULL;
309 /* Once we've failed to read it, make sure we don't keep
310 trying. Otherwise, we'll keep allocating space for
311 the string table over and over. */
312 i_shdrp[shindex]->sh_size = 0;
313 }
314 else
315 shstrtab[shstrtabsize] = '\0';
316 i_shdrp[shindex]->contents = shstrtab;
317 }
318 return (char *) shstrtab;
319 }
320
321 char *
322 bfd_elf_string_from_elf_section (bfd *abfd,
323 unsigned int shindex,
324 unsigned int strindex)
325 {
326 Elf_Internal_Shdr *hdr;
327
328 if (strindex == 0)
329 return "";
330
331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
332 return NULL;
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL)
337 {
338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
339 {
340 /* PR 17512: file: f057ec89. */
341 _bfd_error_handler (_("%B: attempt to load strings from a non-string section (number %d)"),
342 abfd, shindex);
343 return NULL;
344 }
345
346 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
347 return NULL;
348 }
349
350 if (strindex >= hdr->sh_size)
351 {
352 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
353 (*_bfd_error_handler)
354 (_("%B: invalid string offset %u >= %lu for section `%s'"),
355 abfd, strindex, (unsigned long) hdr->sh_size,
356 (shindex == shstrndx && strindex == hdr->sh_name
357 ? ".shstrtab"
358 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
359 return NULL;
360 }
361
362 return ((char *) hdr->contents) + strindex;
363 }
364
365 /* Read and convert symbols to internal format.
366 SYMCOUNT specifies the number of symbols to read, starting from
367 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
368 are non-NULL, they are used to store the internal symbols, external
369 symbols, and symbol section index extensions, respectively.
370 Returns a pointer to the internal symbol buffer (malloced if necessary)
371 or NULL if there were no symbols or some kind of problem. */
372
373 Elf_Internal_Sym *
374 bfd_elf_get_elf_syms (bfd *ibfd,
375 Elf_Internal_Shdr *symtab_hdr,
376 size_t symcount,
377 size_t symoffset,
378 Elf_Internal_Sym *intsym_buf,
379 void *extsym_buf,
380 Elf_External_Sym_Shndx *extshndx_buf)
381 {
382 Elf_Internal_Shdr *shndx_hdr;
383 void *alloc_ext;
384 const bfd_byte *esym;
385 Elf_External_Sym_Shndx *alloc_extshndx;
386 Elf_External_Sym_Shndx *shndx;
387 Elf_Internal_Sym *alloc_intsym;
388 Elf_Internal_Sym *isym;
389 Elf_Internal_Sym *isymend;
390 const struct elf_backend_data *bed;
391 size_t extsym_size;
392 bfd_size_type amt;
393 file_ptr pos;
394
395 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
396 abort ();
397
398 if (symcount == 0)
399 return intsym_buf;
400
401 /* Normal syms might have section extension entries. */
402 shndx_hdr = NULL;
403 if (elf_symtab_shndx_list (ibfd) != NULL)
404 {
405 elf_section_list * entry;
406 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
407
408 /* Find an index section that is linked to this symtab section. */
409 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
410 {
411 /* PR 20063. */
412 if (entry->hdr.sh_link >= elf_numsections (ibfd))
413 continue;
414
415 if (sections[entry->hdr.sh_link] == symtab_hdr)
416 {
417 shndx_hdr = & entry->hdr;
418 break;
419 };
420 }
421
422 if (shndx_hdr == NULL)
423 {
424 if (symtab_hdr == & elf_symtab_hdr (ibfd))
425 /* Not really accurate, but this was how the old code used to work. */
426 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
427 /* Otherwise we do nothing. The assumption is that
428 the index table will not be needed. */
429 }
430 }
431
432 /* Read the symbols. */
433 alloc_ext = NULL;
434 alloc_extshndx = NULL;
435 alloc_intsym = NULL;
436 bed = get_elf_backend_data (ibfd);
437 extsym_size = bed->s->sizeof_sym;
438 amt = (bfd_size_type) symcount * extsym_size;
439 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
440 if (extsym_buf == NULL)
441 {
442 alloc_ext = bfd_malloc2 (symcount, extsym_size);
443 extsym_buf = alloc_ext;
444 }
445 if (extsym_buf == NULL
446 || bfd_seek (ibfd, pos, SEEK_SET) != 0
447 || bfd_bread (extsym_buf, amt, ibfd) != amt)
448 {
449 intsym_buf = NULL;
450 goto out;
451 }
452
453 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
454 extshndx_buf = NULL;
455 else
456 {
457 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
458 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
459 if (extshndx_buf == NULL)
460 {
461 alloc_extshndx = (Elf_External_Sym_Shndx *)
462 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
463 extshndx_buf = alloc_extshndx;
464 }
465 if (extshndx_buf == NULL
466 || bfd_seek (ibfd, pos, SEEK_SET) != 0
467 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
468 {
469 intsym_buf = NULL;
470 goto out;
471 }
472 }
473
474 if (intsym_buf == NULL)
475 {
476 alloc_intsym = (Elf_Internal_Sym *)
477 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
478 intsym_buf = alloc_intsym;
479 if (intsym_buf == NULL)
480 goto out;
481 }
482
483 /* Convert the symbols to internal form. */
484 isymend = intsym_buf + symcount;
485 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
486 shndx = extshndx_buf;
487 isym < isymend;
488 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
489 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
490 {
491 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
492 (*_bfd_error_handler) (_("%B symbol number %lu references "
493 "nonexistent SHT_SYMTAB_SHNDX section"),
494 ibfd, (unsigned long) symoffset);
495 if (alloc_intsym != NULL)
496 free (alloc_intsym);
497 intsym_buf = NULL;
498 goto out;
499 }
500
501 out:
502 if (alloc_ext != NULL)
503 free (alloc_ext);
504 if (alloc_extshndx != NULL)
505 free (alloc_extshndx);
506
507 return intsym_buf;
508 }
509
510 /* Look up a symbol name. */
511 const char *
512 bfd_elf_sym_name (bfd *abfd,
513 Elf_Internal_Shdr *symtab_hdr,
514 Elf_Internal_Sym *isym,
515 asection *sym_sec)
516 {
517 const char *name;
518 unsigned int iname = isym->st_name;
519 unsigned int shindex = symtab_hdr->sh_link;
520
521 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
522 /* Check for a bogus st_shndx to avoid crashing. */
523 && isym->st_shndx < elf_numsections (abfd))
524 {
525 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
526 shindex = elf_elfheader (abfd)->e_shstrndx;
527 }
528
529 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
530 if (name == NULL)
531 name = "(null)";
532 else if (sym_sec && *name == '\0')
533 name = bfd_section_name (abfd, sym_sec);
534
535 return name;
536 }
537
538 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
539 sections. The first element is the flags, the rest are section
540 pointers. */
541
542 typedef union elf_internal_group {
543 Elf_Internal_Shdr *shdr;
544 unsigned int flags;
545 } Elf_Internal_Group;
546
547 /* Return the name of the group signature symbol. Why isn't the
548 signature just a string? */
549
550 static const char *
551 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
552 {
553 Elf_Internal_Shdr *hdr;
554 unsigned char esym[sizeof (Elf64_External_Sym)];
555 Elf_External_Sym_Shndx eshndx;
556 Elf_Internal_Sym isym;
557
558 /* First we need to ensure the symbol table is available. Make sure
559 that it is a symbol table section. */
560 if (ghdr->sh_link >= elf_numsections (abfd))
561 return NULL;
562 hdr = elf_elfsections (abfd) [ghdr->sh_link];
563 if (hdr->sh_type != SHT_SYMTAB
564 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
565 return NULL;
566
567 /* Go read the symbol. */
568 hdr = &elf_tdata (abfd)->symtab_hdr;
569 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
570 &isym, esym, &eshndx) == NULL)
571 return NULL;
572
573 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
574 }
575
576 /* Set next_in_group list pointer, and group name for NEWSECT. */
577
578 static bfd_boolean
579 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
580 {
581 unsigned int num_group = elf_tdata (abfd)->num_group;
582
583 /* If num_group is zero, read in all SHT_GROUP sections. The count
584 is set to -1 if there are no SHT_GROUP sections. */
585 if (num_group == 0)
586 {
587 unsigned int i, shnum;
588
589 /* First count the number of groups. If we have a SHT_GROUP
590 section with just a flag word (ie. sh_size is 4), ignore it. */
591 shnum = elf_numsections (abfd);
592 num_group = 0;
593
594 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
595 ( (shdr)->sh_type == SHT_GROUP \
596 && (shdr)->sh_size >= minsize \
597 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
598 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
599
600 for (i = 0; i < shnum; i++)
601 {
602 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
603
604 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
605 num_group += 1;
606 }
607
608 if (num_group == 0)
609 {
610 num_group = (unsigned) -1;
611 elf_tdata (abfd)->num_group = num_group;
612 }
613 else
614 {
615 /* We keep a list of elf section headers for group sections,
616 so we can find them quickly. */
617 bfd_size_type amt;
618
619 elf_tdata (abfd)->num_group = num_group;
620 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
621 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
622 if (elf_tdata (abfd)->group_sect_ptr == NULL)
623 return FALSE;
624
625 num_group = 0;
626 for (i = 0; i < shnum; i++)
627 {
628 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
629
630 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
631 {
632 unsigned char *src;
633 Elf_Internal_Group *dest;
634
635 /* Add to list of sections. */
636 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
637 num_group += 1;
638
639 /* Read the raw contents. */
640 BFD_ASSERT (sizeof (*dest) >= 4);
641 amt = shdr->sh_size * sizeof (*dest) / 4;
642 shdr->contents = (unsigned char *)
643 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
644 /* PR binutils/4110: Handle corrupt group headers. */
645 if (shdr->contents == NULL)
646 {
647 _bfd_error_handler
648 (_("%B: corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
649 bfd_set_error (bfd_error_bad_value);
650 -- num_group;
651 continue;
652 }
653
654 memset (shdr->contents, 0, amt);
655
656 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
657 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
658 != shdr->sh_size))
659 {
660 _bfd_error_handler
661 (_("%B: invalid size field in group section header: 0x%lx"), abfd, shdr->sh_size);
662 bfd_set_error (bfd_error_bad_value);
663 -- num_group;
664 /* PR 17510: If the group contents are even partially
665 corrupt, do not allow any of the contents to be used. */
666 memset (shdr->contents, 0, amt);
667 continue;
668 }
669
670 /* Translate raw contents, a flag word followed by an
671 array of elf section indices all in target byte order,
672 to the flag word followed by an array of elf section
673 pointers. */
674 src = shdr->contents + shdr->sh_size;
675 dest = (Elf_Internal_Group *) (shdr->contents + amt);
676
677 while (1)
678 {
679 unsigned int idx;
680
681 src -= 4;
682 --dest;
683 idx = H_GET_32 (abfd, src);
684 if (src == shdr->contents)
685 {
686 dest->flags = idx;
687 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
688 shdr->bfd_section->flags
689 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
690 break;
691 }
692 if (idx >= shnum)
693 {
694 ((*_bfd_error_handler)
695 (_("%B: invalid SHT_GROUP entry"), abfd));
696 idx = 0;
697 }
698 dest->shdr = elf_elfsections (abfd)[idx];
699 }
700 }
701 }
702
703 /* PR 17510: Corrupt binaries might contain invalid groups. */
704 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
705 {
706 elf_tdata (abfd)->num_group = num_group;
707
708 /* If all groups are invalid then fail. */
709 if (num_group == 0)
710 {
711 elf_tdata (abfd)->group_sect_ptr = NULL;
712 elf_tdata (abfd)->num_group = num_group = -1;
713 (*_bfd_error_handler) (_("%B: no valid group sections found"), abfd);
714 bfd_set_error (bfd_error_bad_value);
715 }
716 }
717 }
718 }
719
720 if (num_group != (unsigned) -1)
721 {
722 unsigned int i;
723
724 for (i = 0; i < num_group; i++)
725 {
726 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
727 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
728 unsigned int n_elt = shdr->sh_size / 4;
729
730 /* Look through this group's sections to see if current
731 section is a member. */
732 while (--n_elt != 0)
733 if ((++idx)->shdr == hdr)
734 {
735 asection *s = NULL;
736
737 /* We are a member of this group. Go looking through
738 other members to see if any others are linked via
739 next_in_group. */
740 idx = (Elf_Internal_Group *) shdr->contents;
741 n_elt = shdr->sh_size / 4;
742 while (--n_elt != 0)
743 if ((s = (++idx)->shdr->bfd_section) != NULL
744 && elf_next_in_group (s) != NULL)
745 break;
746 if (n_elt != 0)
747 {
748 /* Snarf the group name from other member, and
749 insert current section in circular list. */
750 elf_group_name (newsect) = elf_group_name (s);
751 elf_next_in_group (newsect) = elf_next_in_group (s);
752 elf_next_in_group (s) = newsect;
753 }
754 else
755 {
756 const char *gname;
757
758 gname = group_signature (abfd, shdr);
759 if (gname == NULL)
760 return FALSE;
761 elf_group_name (newsect) = gname;
762
763 /* Start a circular list with one element. */
764 elf_next_in_group (newsect) = newsect;
765 }
766
767 /* If the group section has been created, point to the
768 new member. */
769 if (shdr->bfd_section != NULL)
770 elf_next_in_group (shdr->bfd_section) = newsect;
771
772 i = num_group - 1;
773 break;
774 }
775 }
776 }
777
778 if (elf_group_name (newsect) == NULL)
779 {
780 (*_bfd_error_handler) (_("%B: no group info for section %A"),
781 abfd, newsect);
782 return FALSE;
783 }
784 return TRUE;
785 }
786
787 bfd_boolean
788 _bfd_elf_setup_sections (bfd *abfd)
789 {
790 unsigned int i;
791 unsigned int num_group = elf_tdata (abfd)->num_group;
792 bfd_boolean result = TRUE;
793 asection *s;
794
795 /* Process SHF_LINK_ORDER. */
796 for (s = abfd->sections; s != NULL; s = s->next)
797 {
798 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
799 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
800 {
801 unsigned int elfsec = this_hdr->sh_link;
802 /* FIXME: The old Intel compiler and old strip/objcopy may
803 not set the sh_link or sh_info fields. Hence we could
804 get the situation where elfsec is 0. */
805 if (elfsec == 0)
806 {
807 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
808 if (bed->link_order_error_handler)
809 bed->link_order_error_handler
810 (_("%B: warning: sh_link not set for section `%A'"),
811 abfd, s);
812 }
813 else
814 {
815 asection *linksec = NULL;
816
817 if (elfsec < elf_numsections (abfd))
818 {
819 this_hdr = elf_elfsections (abfd)[elfsec];
820 linksec = this_hdr->bfd_section;
821 }
822
823 /* PR 1991, 2008:
824 Some strip/objcopy may leave an incorrect value in
825 sh_link. We don't want to proceed. */
826 if (linksec == NULL)
827 {
828 (*_bfd_error_handler)
829 (_("%B: sh_link [%d] in section `%A' is incorrect"),
830 s->owner, s, elfsec);
831 result = FALSE;
832 }
833
834 elf_linked_to_section (s) = linksec;
835 }
836 }
837 }
838
839 /* Process section groups. */
840 if (num_group == (unsigned) -1)
841 return result;
842
843 for (i = 0; i < num_group; i++)
844 {
845 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
846 Elf_Internal_Group *idx;
847 unsigned int n_elt;
848
849 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
850 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
851 {
852 (*_bfd_error_handler)
853 (_("%B: section group entry number %u is corrupt"),
854 abfd, i);
855 result = FALSE;
856 continue;
857 }
858
859 idx = (Elf_Internal_Group *) shdr->contents;
860 n_elt = shdr->sh_size / 4;
861
862 while (--n_elt != 0)
863 if ((++idx)->shdr->bfd_section)
864 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
865 else if (idx->shdr->sh_type == SHT_RELA
866 || idx->shdr->sh_type == SHT_REL)
867 /* We won't include relocation sections in section groups in
868 output object files. We adjust the group section size here
869 so that relocatable link will work correctly when
870 relocation sections are in section group in input object
871 files. */
872 shdr->bfd_section->size -= 4;
873 else
874 {
875 /* There are some unknown sections in the group. */
876 (*_bfd_error_handler)
877 (_("%B: unknown [%d] section `%s' in group [%s]"),
878 abfd,
879 (unsigned int) idx->shdr->sh_type,
880 bfd_elf_string_from_elf_section (abfd,
881 (elf_elfheader (abfd)
882 ->e_shstrndx),
883 idx->shdr->sh_name),
884 shdr->bfd_section->name);
885 result = FALSE;
886 }
887 }
888 return result;
889 }
890
891 bfd_boolean
892 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
893 {
894 return elf_next_in_group (sec) != NULL;
895 }
896
897 static char *
898 convert_debug_to_zdebug (bfd *abfd, const char *name)
899 {
900 unsigned int len = strlen (name);
901 char *new_name = bfd_alloc (abfd, len + 2);
902 if (new_name == NULL)
903 return NULL;
904 new_name[0] = '.';
905 new_name[1] = 'z';
906 memcpy (new_name + 2, name + 1, len);
907 return new_name;
908 }
909
910 static char *
911 convert_zdebug_to_debug (bfd *abfd, const char *name)
912 {
913 unsigned int len = strlen (name);
914 char *new_name = bfd_alloc (abfd, len);
915 if (new_name == NULL)
916 return NULL;
917 new_name[0] = '.';
918 memcpy (new_name + 1, name + 2, len - 1);
919 return new_name;
920 }
921
922 /* Make a BFD section from an ELF section. We store a pointer to the
923 BFD section in the bfd_section field of the header. */
924
925 bfd_boolean
926 _bfd_elf_make_section_from_shdr (bfd *abfd,
927 Elf_Internal_Shdr *hdr,
928 const char *name,
929 int shindex)
930 {
931 asection *newsect;
932 flagword flags;
933 const struct elf_backend_data *bed;
934
935 if (hdr->bfd_section != NULL)
936 return TRUE;
937
938 newsect = bfd_make_section_anyway (abfd, name);
939 if (newsect == NULL)
940 return FALSE;
941
942 hdr->bfd_section = newsect;
943 elf_section_data (newsect)->this_hdr = *hdr;
944 elf_section_data (newsect)->this_idx = shindex;
945
946 /* Always use the real type/flags. */
947 elf_section_type (newsect) = hdr->sh_type;
948 elf_section_flags (newsect) = hdr->sh_flags;
949
950 newsect->filepos = hdr->sh_offset;
951
952 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
953 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
954 || ! bfd_set_section_alignment (abfd, newsect,
955 bfd_log2 (hdr->sh_addralign)))
956 return FALSE;
957
958 flags = SEC_NO_FLAGS;
959 if (hdr->sh_type != SHT_NOBITS)
960 flags |= SEC_HAS_CONTENTS;
961 if (hdr->sh_type == SHT_GROUP)
962 flags |= SEC_GROUP | SEC_EXCLUDE;
963 if ((hdr->sh_flags & SHF_ALLOC) != 0)
964 {
965 flags |= SEC_ALLOC;
966 if (hdr->sh_type != SHT_NOBITS)
967 flags |= SEC_LOAD;
968 }
969 if ((hdr->sh_flags & SHF_WRITE) == 0)
970 flags |= SEC_READONLY;
971 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
972 flags |= SEC_CODE;
973 else if ((flags & SEC_LOAD) != 0)
974 flags |= SEC_DATA;
975 if ((hdr->sh_flags & SHF_MERGE) != 0)
976 {
977 flags |= SEC_MERGE;
978 newsect->entsize = hdr->sh_entsize;
979 }
980 if ((hdr->sh_flags & SHF_STRINGS) != 0)
981 flags |= SEC_STRINGS;
982 if (hdr->sh_flags & SHF_GROUP)
983 if (!setup_group (abfd, hdr, newsect))
984 return FALSE;
985 if ((hdr->sh_flags & SHF_TLS) != 0)
986 flags |= SEC_THREAD_LOCAL;
987 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
988 flags |= SEC_EXCLUDE;
989
990 if ((flags & SEC_ALLOC) == 0)
991 {
992 /* The debugging sections appear to be recognized only by name,
993 not any sort of flag. Their SEC_ALLOC bits are cleared. */
994 if (name [0] == '.')
995 {
996 const char *p;
997 int n;
998 if (name[1] == 'd')
999 p = ".debug", n = 6;
1000 else if (name[1] == 'g' && name[2] == 'n')
1001 p = ".gnu.linkonce.wi.", n = 17;
1002 else if (name[1] == 'g' && name[2] == 'd')
1003 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1004 else if (name[1] == 'l')
1005 p = ".line", n = 5;
1006 else if (name[1] == 's')
1007 p = ".stab", n = 5;
1008 else if (name[1] == 'z')
1009 p = ".zdebug", n = 7;
1010 else
1011 p = NULL, n = 0;
1012 if (p != NULL && strncmp (name, p, n) == 0)
1013 flags |= SEC_DEBUGGING;
1014 }
1015 }
1016
1017 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1018 only link a single copy of the section. This is used to support
1019 g++. g++ will emit each template expansion in its own section.
1020 The symbols will be defined as weak, so that multiple definitions
1021 are permitted. The GNU linker extension is to actually discard
1022 all but one of the sections. */
1023 if (CONST_STRNEQ (name, ".gnu.linkonce")
1024 && elf_next_in_group (newsect) == NULL)
1025 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1026
1027 bed = get_elf_backend_data (abfd);
1028 if (bed->elf_backend_section_flags)
1029 if (! bed->elf_backend_section_flags (&flags, hdr))
1030 return FALSE;
1031
1032 if (! bfd_set_section_flags (abfd, newsect, flags))
1033 return FALSE;
1034
1035 /* We do not parse the PT_NOTE segments as we are interested even in the
1036 separate debug info files which may have the segments offsets corrupted.
1037 PT_NOTEs from the core files are currently not parsed using BFD. */
1038 if (hdr->sh_type == SHT_NOTE)
1039 {
1040 bfd_byte *contents;
1041
1042 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1043 return FALSE;
1044
1045 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
1046 free (contents);
1047 }
1048
1049 if ((flags & SEC_ALLOC) != 0)
1050 {
1051 Elf_Internal_Phdr *phdr;
1052 unsigned int i, nload;
1053
1054 /* Some ELF linkers produce binaries with all the program header
1055 p_paddr fields zero. If we have such a binary with more than
1056 one PT_LOAD header, then leave the section lma equal to vma
1057 so that we don't create sections with overlapping lma. */
1058 phdr = elf_tdata (abfd)->phdr;
1059 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1060 if (phdr->p_paddr != 0)
1061 break;
1062 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1063 ++nload;
1064 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1065 return TRUE;
1066
1067 phdr = elf_tdata (abfd)->phdr;
1068 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1069 {
1070 if (((phdr->p_type == PT_LOAD
1071 && (hdr->sh_flags & SHF_TLS) == 0)
1072 || phdr->p_type == PT_TLS)
1073 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1074 {
1075 if ((flags & SEC_LOAD) == 0)
1076 newsect->lma = (phdr->p_paddr
1077 + hdr->sh_addr - phdr->p_vaddr);
1078 else
1079 /* We used to use the same adjustment for SEC_LOAD
1080 sections, but that doesn't work if the segment
1081 is packed with code from multiple VMAs.
1082 Instead we calculate the section LMA based on
1083 the segment LMA. It is assumed that the
1084 segment will contain sections with contiguous
1085 LMAs, even if the VMAs are not. */
1086 newsect->lma = (phdr->p_paddr
1087 + hdr->sh_offset - phdr->p_offset);
1088
1089 /* With contiguous segments, we can't tell from file
1090 offsets whether a section with zero size should
1091 be placed at the end of one segment or the
1092 beginning of the next. Decide based on vaddr. */
1093 if (hdr->sh_addr >= phdr->p_vaddr
1094 && (hdr->sh_addr + hdr->sh_size
1095 <= phdr->p_vaddr + phdr->p_memsz))
1096 break;
1097 }
1098 }
1099 }
1100
1101 /* Compress/decompress DWARF debug sections with names: .debug_* and
1102 .zdebug_*, after the section flags is set. */
1103 if ((flags & SEC_DEBUGGING)
1104 && ((name[1] == 'd' && name[6] == '_')
1105 || (name[1] == 'z' && name[7] == '_')))
1106 {
1107 enum { nothing, compress, decompress } action = nothing;
1108 int compression_header_size;
1109 bfd_size_type uncompressed_size;
1110 bfd_boolean compressed
1111 = bfd_is_section_compressed_with_header (abfd, newsect,
1112 &compression_header_size,
1113 &uncompressed_size);
1114
1115 if (compressed)
1116 {
1117 /* Compressed section. Check if we should decompress. */
1118 if ((abfd->flags & BFD_DECOMPRESS))
1119 action = decompress;
1120 }
1121
1122 /* Compress the uncompressed section or convert from/to .zdebug*
1123 section. Check if we should compress. */
1124 if (action == nothing)
1125 {
1126 if (newsect->size != 0
1127 && (abfd->flags & BFD_COMPRESS)
1128 && compression_header_size >= 0
1129 && uncompressed_size > 0
1130 && (!compressed
1131 || ((compression_header_size > 0)
1132 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1133 action = compress;
1134 else
1135 return TRUE;
1136 }
1137
1138 if (action == compress)
1139 {
1140 if (!bfd_init_section_compress_status (abfd, newsect))
1141 {
1142 (*_bfd_error_handler)
1143 (_("%B: unable to initialize compress status for section %s"),
1144 abfd, name);
1145 return FALSE;
1146 }
1147 }
1148 else
1149 {
1150 if (!bfd_init_section_decompress_status (abfd, newsect))
1151 {
1152 (*_bfd_error_handler)
1153 (_("%B: unable to initialize decompress status for section %s"),
1154 abfd, name);
1155 return FALSE;
1156 }
1157 }
1158
1159 if (abfd->is_linker_input)
1160 {
1161 if (name[1] == 'z'
1162 && (action == decompress
1163 || (action == compress
1164 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1165 {
1166 /* Convert section name from .zdebug_* to .debug_* so
1167 that linker will consider this section as a debug
1168 section. */
1169 char *new_name = convert_zdebug_to_debug (abfd, name);
1170 if (new_name == NULL)
1171 return FALSE;
1172 bfd_rename_section (abfd, newsect, new_name);
1173 }
1174 }
1175 else
1176 /* For objdump, don't rename the section. For objcopy, delay
1177 section rename to elf_fake_sections. */
1178 newsect->flags |= SEC_ELF_RENAME;
1179 }
1180
1181 return TRUE;
1182 }
1183
1184 const char *const bfd_elf_section_type_names[] =
1185 {
1186 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1187 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1188 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1189 };
1190
1191 /* ELF relocs are against symbols. If we are producing relocatable
1192 output, and the reloc is against an external symbol, and nothing
1193 has given us any additional addend, the resulting reloc will also
1194 be against the same symbol. In such a case, we don't want to
1195 change anything about the way the reloc is handled, since it will
1196 all be done at final link time. Rather than put special case code
1197 into bfd_perform_relocation, all the reloc types use this howto
1198 function. It just short circuits the reloc if producing
1199 relocatable output against an external symbol. */
1200
1201 bfd_reloc_status_type
1202 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1203 arelent *reloc_entry,
1204 asymbol *symbol,
1205 void *data ATTRIBUTE_UNUSED,
1206 asection *input_section,
1207 bfd *output_bfd,
1208 char **error_message ATTRIBUTE_UNUSED)
1209 {
1210 if (output_bfd != NULL
1211 && (symbol->flags & BSF_SECTION_SYM) == 0
1212 && (! reloc_entry->howto->partial_inplace
1213 || reloc_entry->addend == 0))
1214 {
1215 reloc_entry->address += input_section->output_offset;
1216 return bfd_reloc_ok;
1217 }
1218
1219 return bfd_reloc_continue;
1220 }
1221 \f
1222 /* Returns TRUE if section A matches section B.
1223 Names, addresses and links may be different, but everything else
1224 should be the same. */
1225
1226 static bfd_boolean
1227 section_match (const Elf_Internal_Shdr * a,
1228 const Elf_Internal_Shdr * b)
1229 {
1230 return
1231 a->sh_type == b->sh_type
1232 && (a->sh_flags & ~ SHF_INFO_LINK)
1233 == (b->sh_flags & ~ SHF_INFO_LINK)
1234 && a->sh_addralign == b->sh_addralign
1235 && a->sh_size == b->sh_size
1236 && a->sh_entsize == b->sh_entsize
1237 /* FIXME: Check sh_addr ? */
1238 ;
1239 }
1240
1241 /* Find a section in OBFD that has the same characteristics
1242 as IHEADER. Return the index of this section or SHN_UNDEF if
1243 none can be found. Check's section HINT first, as this is likely
1244 to be the correct section. */
1245
1246 static unsigned int
1247 find_link (const bfd * obfd, const Elf_Internal_Shdr * iheader, const unsigned int hint)
1248 {
1249 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1250 unsigned int i;
1251
1252 if (section_match (oheaders[hint], iheader))
1253 return hint;
1254
1255 for (i = 1; i < elf_numsections (obfd); i++)
1256 {
1257 Elf_Internal_Shdr * oheader = oheaders[i];
1258
1259 if (section_match (oheader, iheader))
1260 /* FIXME: Do we care if there is a potential for
1261 multiple matches ? */
1262 return i;
1263 }
1264
1265 return SHN_UNDEF;
1266 }
1267
1268 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1269 Processor specific section, based upon a matching input section.
1270 Returns TRUE upon success, FALSE otherwise. */
1271
1272 static bfd_boolean
1273 copy_special_section_fields (const bfd *ibfd,
1274 bfd *obfd,
1275 const Elf_Internal_Shdr *iheader,
1276 Elf_Internal_Shdr *oheader,
1277 const unsigned int secnum)
1278 {
1279 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1280 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1281 bfd_boolean changed = FALSE;
1282 unsigned int sh_link;
1283
1284 if (oheader->sh_type == SHT_NOBITS)
1285 {
1286 /* This is a feature for objcopy --only-keep-debug:
1287 When a section's type is changed to NOBITS, we preserve
1288 the sh_link and sh_info fields so that they can be
1289 matched up with the original.
1290
1291 Note: Strictly speaking these assignments are wrong.
1292 The sh_link and sh_info fields should point to the
1293 relevent sections in the output BFD, which may not be in
1294 the same location as they were in the input BFD. But
1295 the whole point of this action is to preserve the
1296 original values of the sh_link and sh_info fields, so
1297 that they can be matched up with the section headers in
1298 the original file. So strictly speaking we may be
1299 creating an invalid ELF file, but it is only for a file
1300 that just contains debug info and only for sections
1301 without any contents. */
1302 if (oheader->sh_link == 0)
1303 oheader->sh_link = iheader->sh_link;
1304 if (oheader->sh_info == 0)
1305 oheader->sh_info = iheader->sh_info;
1306 return TRUE;
1307 }
1308
1309 /* Allow the target a chance to decide how these fields should be set. */
1310 if (bed->elf_backend_copy_special_section_fields != NULL
1311 && bed->elf_backend_copy_special_section_fields
1312 (ibfd, obfd, iheader, oheader))
1313 return TRUE;
1314
1315 /* We have an iheader which might match oheader, and which has non-zero
1316 sh_info and/or sh_link fields. Attempt to follow those links and find
1317 the section in the output bfd which corresponds to the linked section
1318 in the input bfd. */
1319 if (iheader->sh_link != SHN_UNDEF)
1320 {
1321 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1322 if (sh_link != SHN_UNDEF)
1323 {
1324 oheader->sh_link = sh_link;
1325 changed = TRUE;
1326 }
1327 else
1328 /* FIXME: Should we install iheader->sh_link
1329 if we could not find a match ? */
1330 (* _bfd_error_handler)
1331 (_("%B: Failed to find link section for section %d"), obfd, secnum);
1332 }
1333
1334 if (iheader->sh_info)
1335 {
1336 /* The sh_info field can hold arbitrary information, but if the
1337 SHF_LINK_INFO flag is set then it should be interpreted as a
1338 section index. */
1339 if (iheader->sh_flags & SHF_INFO_LINK)
1340 {
1341 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1342 iheader->sh_info);
1343 if (sh_link != SHN_UNDEF)
1344 oheader->sh_flags |= SHF_INFO_LINK;
1345 }
1346 else
1347 /* No idea what it means - just copy it. */
1348 sh_link = iheader->sh_info;
1349
1350 if (sh_link != SHN_UNDEF)
1351 {
1352 oheader->sh_info = sh_link;
1353 changed = TRUE;
1354 }
1355 else
1356 (* _bfd_error_handler)
1357 (_("%B: Failed to find info section for section %d"), obfd, secnum);
1358 }
1359
1360 return changed;
1361 }
1362
1363 /* Copy the program header and other data from one object module to
1364 another. */
1365
1366 bfd_boolean
1367 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1368 {
1369 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1370 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1371 const struct elf_backend_data *bed;
1372 unsigned int i;
1373
1374 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1375 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1376 return TRUE;
1377
1378 if (!elf_flags_init (obfd))
1379 {
1380 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1381 elf_flags_init (obfd) = TRUE;
1382 }
1383
1384 elf_gp (obfd) = elf_gp (ibfd);
1385
1386 /* Also copy the EI_OSABI field. */
1387 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1388 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1389
1390 /* If set, copy the EI_ABIVERSION field. */
1391 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1392 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1393 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1394
1395 /* Copy object attributes. */
1396 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1397
1398 if (iheaders == NULL || oheaders == NULL)
1399 return TRUE;
1400
1401 bed = get_elf_backend_data (obfd);
1402
1403 /* Possibly copy other fields in the section header. */
1404 for (i = 1; i < elf_numsections (obfd); i++)
1405 {
1406 unsigned int j;
1407 Elf_Internal_Shdr * oheader = oheaders[i];
1408
1409 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1410 because of a special case need for generating separate debug info
1411 files. See below for more details. */
1412 if (oheader == NULL
1413 || (oheader->sh_type != SHT_NOBITS
1414 && oheader->sh_type < SHT_LOOS))
1415 continue;
1416
1417 /* Ignore empty sections, and sections whose
1418 fields have already been initialised. */
1419 if (oheader->sh_size == 0
1420 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1421 continue;
1422
1423 /* Scan for the matching section in the input bfd.
1424 First we try for a direct mapping between the input and output sections. */
1425 for (j = 1; j < elf_numsections (ibfd); j++)
1426 {
1427 const Elf_Internal_Shdr * iheader = iheaders[j];
1428
1429 if (iheader == NULL)
1430 continue;
1431
1432 if (oheader->bfd_section != NULL
1433 && iheader->bfd_section != NULL
1434 && iheader->bfd_section->output_section != NULL
1435 && iheader->bfd_section->output_section == oheader->bfd_section)
1436 {
1437 /* We have found a connection from the input section to the
1438 output section. Attempt to copy the header fields. If
1439 this fails then do not try any further sections - there
1440 should only be a one-to-one mapping between input and output. */
1441 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1442 j = elf_numsections (ibfd);
1443 break;
1444 }
1445 }
1446
1447 if (j < elf_numsections (ibfd))
1448 continue;
1449
1450 /* That failed. So try to deduce the corresponding input section.
1451 Unfortunately we cannot compare names as the output string table
1452 is empty, so instead we check size, address and type. */
1453 for (j = 1; j < elf_numsections (ibfd); j++)
1454 {
1455 const Elf_Internal_Shdr * iheader = iheaders[j];
1456
1457 if (iheader == NULL)
1458 continue;
1459
1460 /* Try matching fields in the input section's header.
1461 Since --only-keep-debug turns all non-debug sections into
1462 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1463 input type. */
1464 if ((oheader->sh_type == SHT_NOBITS
1465 || iheader->sh_type == oheader->sh_type)
1466 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1467 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1468 && iheader->sh_addralign == oheader->sh_addralign
1469 && iheader->sh_entsize == oheader->sh_entsize
1470 && iheader->sh_size == oheader->sh_size
1471 && iheader->sh_addr == oheader->sh_addr
1472 && (iheader->sh_info != oheader->sh_info
1473 || iheader->sh_link != oheader->sh_link))
1474 {
1475 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1476 break;
1477 }
1478 }
1479
1480 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1481 {
1482 /* Final attempt. Call the backend copy function
1483 with a NULL input section. */
1484 if (bed->elf_backend_copy_special_section_fields != NULL)
1485 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1486 }
1487 }
1488
1489 return TRUE;
1490 }
1491
1492 static const char *
1493 get_segment_type (unsigned int p_type)
1494 {
1495 const char *pt;
1496 switch (p_type)
1497 {
1498 case PT_NULL: pt = "NULL"; break;
1499 case PT_LOAD: pt = "LOAD"; break;
1500 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1501 case PT_INTERP: pt = "INTERP"; break;
1502 case PT_NOTE: pt = "NOTE"; break;
1503 case PT_SHLIB: pt = "SHLIB"; break;
1504 case PT_PHDR: pt = "PHDR"; break;
1505 case PT_TLS: pt = "TLS"; break;
1506 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1507 case PT_GNU_STACK: pt = "STACK"; break;
1508 case PT_GNU_RELRO: pt = "RELRO"; break;
1509 default: pt = NULL; break;
1510 }
1511 return pt;
1512 }
1513
1514 /* Print out the program headers. */
1515
1516 bfd_boolean
1517 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1518 {
1519 FILE *f = (FILE *) farg;
1520 Elf_Internal_Phdr *p;
1521 asection *s;
1522 bfd_byte *dynbuf = NULL;
1523
1524 p = elf_tdata (abfd)->phdr;
1525 if (p != NULL)
1526 {
1527 unsigned int i, c;
1528
1529 fprintf (f, _("\nProgram Header:\n"));
1530 c = elf_elfheader (abfd)->e_phnum;
1531 for (i = 0; i < c; i++, p++)
1532 {
1533 const char *pt = get_segment_type (p->p_type);
1534 char buf[20];
1535
1536 if (pt == NULL)
1537 {
1538 sprintf (buf, "0x%lx", p->p_type);
1539 pt = buf;
1540 }
1541 fprintf (f, "%8s off 0x", pt);
1542 bfd_fprintf_vma (abfd, f, p->p_offset);
1543 fprintf (f, " vaddr 0x");
1544 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1545 fprintf (f, " paddr 0x");
1546 bfd_fprintf_vma (abfd, f, p->p_paddr);
1547 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1548 fprintf (f, " filesz 0x");
1549 bfd_fprintf_vma (abfd, f, p->p_filesz);
1550 fprintf (f, " memsz 0x");
1551 bfd_fprintf_vma (abfd, f, p->p_memsz);
1552 fprintf (f, " flags %c%c%c",
1553 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1554 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1555 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1556 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1557 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1558 fprintf (f, "\n");
1559 }
1560 }
1561
1562 s = bfd_get_section_by_name (abfd, ".dynamic");
1563 if (s != NULL)
1564 {
1565 unsigned int elfsec;
1566 unsigned long shlink;
1567 bfd_byte *extdyn, *extdynend;
1568 size_t extdynsize;
1569 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1570
1571 fprintf (f, _("\nDynamic Section:\n"));
1572
1573 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1574 goto error_return;
1575
1576 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1577 if (elfsec == SHN_BAD)
1578 goto error_return;
1579 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1580
1581 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1582 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1583
1584 extdyn = dynbuf;
1585 /* PR 17512: file: 6f427532. */
1586 if (s->size < extdynsize)
1587 goto error_return;
1588 extdynend = extdyn + s->size;
1589 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1590 Fix range check. */
1591 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1592 {
1593 Elf_Internal_Dyn dyn;
1594 const char *name = "";
1595 char ab[20];
1596 bfd_boolean stringp;
1597 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1598
1599 (*swap_dyn_in) (abfd, extdyn, &dyn);
1600
1601 if (dyn.d_tag == DT_NULL)
1602 break;
1603
1604 stringp = FALSE;
1605 switch (dyn.d_tag)
1606 {
1607 default:
1608 if (bed->elf_backend_get_target_dtag)
1609 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1610
1611 if (!strcmp (name, ""))
1612 {
1613 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1614 name = ab;
1615 }
1616 break;
1617
1618 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1619 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1620 case DT_PLTGOT: name = "PLTGOT"; break;
1621 case DT_HASH: name = "HASH"; break;
1622 case DT_STRTAB: name = "STRTAB"; break;
1623 case DT_SYMTAB: name = "SYMTAB"; break;
1624 case DT_RELA: name = "RELA"; break;
1625 case DT_RELASZ: name = "RELASZ"; break;
1626 case DT_RELAENT: name = "RELAENT"; break;
1627 case DT_STRSZ: name = "STRSZ"; break;
1628 case DT_SYMENT: name = "SYMENT"; break;
1629 case DT_INIT: name = "INIT"; break;
1630 case DT_FINI: name = "FINI"; break;
1631 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1632 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1633 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1634 case DT_REL: name = "REL"; break;
1635 case DT_RELSZ: name = "RELSZ"; break;
1636 case DT_RELENT: name = "RELENT"; break;
1637 case DT_PLTREL: name = "PLTREL"; break;
1638 case DT_DEBUG: name = "DEBUG"; break;
1639 case DT_TEXTREL: name = "TEXTREL"; break;
1640 case DT_JMPREL: name = "JMPREL"; break;
1641 case DT_BIND_NOW: name = "BIND_NOW"; break;
1642 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1643 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1644 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1645 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1646 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1647 case DT_FLAGS: name = "FLAGS"; break;
1648 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1649 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1650 case DT_CHECKSUM: name = "CHECKSUM"; break;
1651 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1652 case DT_MOVEENT: name = "MOVEENT"; break;
1653 case DT_MOVESZ: name = "MOVESZ"; break;
1654 case DT_FEATURE: name = "FEATURE"; break;
1655 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1656 case DT_SYMINSZ: name = "SYMINSZ"; break;
1657 case DT_SYMINENT: name = "SYMINENT"; break;
1658 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1659 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1660 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1661 case DT_PLTPAD: name = "PLTPAD"; break;
1662 case DT_MOVETAB: name = "MOVETAB"; break;
1663 case DT_SYMINFO: name = "SYMINFO"; break;
1664 case DT_RELACOUNT: name = "RELACOUNT"; break;
1665 case DT_RELCOUNT: name = "RELCOUNT"; break;
1666 case DT_FLAGS_1: name = "FLAGS_1"; break;
1667 case DT_VERSYM: name = "VERSYM"; break;
1668 case DT_VERDEF: name = "VERDEF"; break;
1669 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1670 case DT_VERNEED: name = "VERNEED"; break;
1671 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1672 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1673 case DT_USED: name = "USED"; break;
1674 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1675 case DT_GNU_HASH: name = "GNU_HASH"; break;
1676 }
1677
1678 fprintf (f, " %-20s ", name);
1679 if (! stringp)
1680 {
1681 fprintf (f, "0x");
1682 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1683 }
1684 else
1685 {
1686 const char *string;
1687 unsigned int tagv = dyn.d_un.d_val;
1688
1689 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1690 if (string == NULL)
1691 goto error_return;
1692 fprintf (f, "%s", string);
1693 }
1694 fprintf (f, "\n");
1695 }
1696
1697 free (dynbuf);
1698 dynbuf = NULL;
1699 }
1700
1701 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1702 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1703 {
1704 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1705 return FALSE;
1706 }
1707
1708 if (elf_dynverdef (abfd) != 0)
1709 {
1710 Elf_Internal_Verdef *t;
1711
1712 fprintf (f, _("\nVersion definitions:\n"));
1713 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1714 {
1715 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1716 t->vd_flags, t->vd_hash,
1717 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1718 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1719 {
1720 Elf_Internal_Verdaux *a;
1721
1722 fprintf (f, "\t");
1723 for (a = t->vd_auxptr->vda_nextptr;
1724 a != NULL;
1725 a = a->vda_nextptr)
1726 fprintf (f, "%s ",
1727 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1728 fprintf (f, "\n");
1729 }
1730 }
1731 }
1732
1733 if (elf_dynverref (abfd) != 0)
1734 {
1735 Elf_Internal_Verneed *t;
1736
1737 fprintf (f, _("\nVersion References:\n"));
1738 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1739 {
1740 Elf_Internal_Vernaux *a;
1741
1742 fprintf (f, _(" required from %s:\n"),
1743 t->vn_filename ? t->vn_filename : "<corrupt>");
1744 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1745 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1746 a->vna_flags, a->vna_other,
1747 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1748 }
1749 }
1750
1751 return TRUE;
1752
1753 error_return:
1754 if (dynbuf != NULL)
1755 free (dynbuf);
1756 return FALSE;
1757 }
1758
1759 /* Get version string. */
1760
1761 const char *
1762 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1763 bfd_boolean *hidden)
1764 {
1765 const char *version_string = NULL;
1766 if (elf_dynversym (abfd) != 0
1767 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1768 {
1769 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1770
1771 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1772 vernum &= VERSYM_VERSION;
1773
1774 if (vernum == 0)
1775 version_string = "";
1776 else if (vernum == 1)
1777 version_string = "Base";
1778 else if (vernum <= elf_tdata (abfd)->cverdefs)
1779 version_string =
1780 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1781 else
1782 {
1783 Elf_Internal_Verneed *t;
1784
1785 version_string = "";
1786 for (t = elf_tdata (abfd)->verref;
1787 t != NULL;
1788 t = t->vn_nextref)
1789 {
1790 Elf_Internal_Vernaux *a;
1791
1792 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1793 {
1794 if (a->vna_other == vernum)
1795 {
1796 version_string = a->vna_nodename;
1797 break;
1798 }
1799 }
1800 }
1801 }
1802 }
1803 return version_string;
1804 }
1805
1806 /* Display ELF-specific fields of a symbol. */
1807
1808 void
1809 bfd_elf_print_symbol (bfd *abfd,
1810 void *filep,
1811 asymbol *symbol,
1812 bfd_print_symbol_type how)
1813 {
1814 FILE *file = (FILE *) filep;
1815 switch (how)
1816 {
1817 case bfd_print_symbol_name:
1818 fprintf (file, "%s", symbol->name);
1819 break;
1820 case bfd_print_symbol_more:
1821 fprintf (file, "elf ");
1822 bfd_fprintf_vma (abfd, file, symbol->value);
1823 fprintf (file, " %lx", (unsigned long) symbol->flags);
1824 break;
1825 case bfd_print_symbol_all:
1826 {
1827 const char *section_name;
1828 const char *name = NULL;
1829 const struct elf_backend_data *bed;
1830 unsigned char st_other;
1831 bfd_vma val;
1832 const char *version_string;
1833 bfd_boolean hidden;
1834
1835 section_name = symbol->section ? symbol->section->name : "(*none*)";
1836
1837 bed = get_elf_backend_data (abfd);
1838 if (bed->elf_backend_print_symbol_all)
1839 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1840
1841 if (name == NULL)
1842 {
1843 name = symbol->name;
1844 bfd_print_symbol_vandf (abfd, file, symbol);
1845 }
1846
1847 fprintf (file, " %s\t", section_name);
1848 /* Print the "other" value for a symbol. For common symbols,
1849 we've already printed the size; now print the alignment.
1850 For other symbols, we have no specified alignment, and
1851 we've printed the address; now print the size. */
1852 if (symbol->section && bfd_is_com_section (symbol->section))
1853 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1854 else
1855 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1856 bfd_fprintf_vma (abfd, file, val);
1857
1858 /* If we have version information, print it. */
1859 version_string = _bfd_elf_get_symbol_version_string (abfd,
1860 symbol,
1861 &hidden);
1862 if (version_string)
1863 {
1864 if (!hidden)
1865 fprintf (file, " %-11s", version_string);
1866 else
1867 {
1868 int i;
1869
1870 fprintf (file, " (%s)", version_string);
1871 for (i = 10 - strlen (version_string); i > 0; --i)
1872 putc (' ', file);
1873 }
1874 }
1875
1876 /* If the st_other field is not zero, print it. */
1877 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1878
1879 switch (st_other)
1880 {
1881 case 0: break;
1882 case STV_INTERNAL: fprintf (file, " .internal"); break;
1883 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1884 case STV_PROTECTED: fprintf (file, " .protected"); break;
1885 default:
1886 /* Some other non-defined flags are also present, so print
1887 everything hex. */
1888 fprintf (file, " 0x%02x", (unsigned int) st_other);
1889 }
1890
1891 fprintf (file, " %s", name);
1892 }
1893 break;
1894 }
1895 }
1896 \f
1897 /* ELF .o/exec file reading */
1898
1899 /* Create a new bfd section from an ELF section header. */
1900
1901 bfd_boolean
1902 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1903 {
1904 Elf_Internal_Shdr *hdr;
1905 Elf_Internal_Ehdr *ehdr;
1906 const struct elf_backend_data *bed;
1907 const char *name;
1908 bfd_boolean ret = TRUE;
1909 static bfd_boolean * sections_being_created = NULL;
1910 static bfd * sections_being_created_abfd = NULL;
1911 static unsigned int nesting = 0;
1912
1913 if (shindex >= elf_numsections (abfd))
1914 return FALSE;
1915
1916 if (++ nesting > 3)
1917 {
1918 /* PR17512: A corrupt ELF binary might contain a recursive group of
1919 sections, with each the string indicies pointing to the next in the
1920 loop. Detect this here, by refusing to load a section that we are
1921 already in the process of loading. We only trigger this test if
1922 we have nested at least three sections deep as normal ELF binaries
1923 can expect to recurse at least once.
1924
1925 FIXME: It would be better if this array was attached to the bfd,
1926 rather than being held in a static pointer. */
1927
1928 if (sections_being_created_abfd != abfd)
1929 sections_being_created = NULL;
1930 if (sections_being_created == NULL)
1931 {
1932 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
1933 sections_being_created = (bfd_boolean *)
1934 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
1935 sections_being_created_abfd = abfd;
1936 }
1937 if (sections_being_created [shindex])
1938 {
1939 (*_bfd_error_handler)
1940 (_("%B: warning: loop in section dependencies detected"), abfd);
1941 return FALSE;
1942 }
1943 sections_being_created [shindex] = TRUE;
1944 }
1945
1946 hdr = elf_elfsections (abfd)[shindex];
1947 ehdr = elf_elfheader (abfd);
1948 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1949 hdr->sh_name);
1950 if (name == NULL)
1951 goto fail;
1952
1953 bed = get_elf_backend_data (abfd);
1954 switch (hdr->sh_type)
1955 {
1956 case SHT_NULL:
1957 /* Inactive section. Throw it away. */
1958 goto success;
1959
1960 case SHT_PROGBITS: /* Normal section with contents. */
1961 case SHT_NOBITS: /* .bss section. */
1962 case SHT_HASH: /* .hash section. */
1963 case SHT_NOTE: /* .note section. */
1964 case SHT_INIT_ARRAY: /* .init_array section. */
1965 case SHT_FINI_ARRAY: /* .fini_array section. */
1966 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1967 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1968 case SHT_GNU_HASH: /* .gnu.hash section. */
1969 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1970 goto success;
1971
1972 case SHT_DYNAMIC: /* Dynamic linking information. */
1973 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1974 goto fail;
1975
1976 if (hdr->sh_link > elf_numsections (abfd))
1977 {
1978 /* PR 10478: Accept Solaris binaries with a sh_link
1979 field set to SHN_BEFORE or SHN_AFTER. */
1980 switch (bfd_get_arch (abfd))
1981 {
1982 case bfd_arch_i386:
1983 case bfd_arch_sparc:
1984 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1985 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1986 break;
1987 /* Otherwise fall through. */
1988 default:
1989 goto fail;
1990 }
1991 }
1992 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1993 goto fail;
1994 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1995 {
1996 Elf_Internal_Shdr *dynsymhdr;
1997
1998 /* The shared libraries distributed with hpux11 have a bogus
1999 sh_link field for the ".dynamic" section. Find the
2000 string table for the ".dynsym" section instead. */
2001 if (elf_dynsymtab (abfd) != 0)
2002 {
2003 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2004 hdr->sh_link = dynsymhdr->sh_link;
2005 }
2006 else
2007 {
2008 unsigned int i, num_sec;
2009
2010 num_sec = elf_numsections (abfd);
2011 for (i = 1; i < num_sec; i++)
2012 {
2013 dynsymhdr = elf_elfsections (abfd)[i];
2014 if (dynsymhdr->sh_type == SHT_DYNSYM)
2015 {
2016 hdr->sh_link = dynsymhdr->sh_link;
2017 break;
2018 }
2019 }
2020 }
2021 }
2022 goto success;
2023
2024 case SHT_SYMTAB: /* A symbol table. */
2025 if (elf_onesymtab (abfd) == shindex)
2026 goto success;
2027
2028 if (hdr->sh_entsize != bed->s->sizeof_sym)
2029 goto fail;
2030
2031 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2032 {
2033 if (hdr->sh_size != 0)
2034 goto fail;
2035 /* Some assemblers erroneously set sh_info to one with a
2036 zero sh_size. ld sees this as a global symbol count
2037 of (unsigned) -1. Fix it here. */
2038 hdr->sh_info = 0;
2039 goto success;
2040 }
2041
2042 /* PR 18854: A binary might contain more than one symbol table.
2043 Unusual, but possible. Warn, but continue. */
2044 if (elf_onesymtab (abfd) != 0)
2045 {
2046 (*_bfd_error_handler)
2047 (_("%B: warning: multiple symbol tables detected - ignoring the table in section %u"),
2048 abfd, shindex);
2049 goto success;
2050 }
2051 elf_onesymtab (abfd) = shindex;
2052 elf_symtab_hdr (abfd) = *hdr;
2053 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2054 abfd->flags |= HAS_SYMS;
2055
2056 /* Sometimes a shared object will map in the symbol table. If
2057 SHF_ALLOC is set, and this is a shared object, then we also
2058 treat this section as a BFD section. We can not base the
2059 decision purely on SHF_ALLOC, because that flag is sometimes
2060 set in a relocatable object file, which would confuse the
2061 linker. */
2062 if ((hdr->sh_flags & SHF_ALLOC) != 0
2063 && (abfd->flags & DYNAMIC) != 0
2064 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2065 shindex))
2066 goto fail;
2067
2068 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2069 can't read symbols without that section loaded as well. It
2070 is most likely specified by the next section header. */
2071 {
2072 elf_section_list * entry;
2073 unsigned int i, num_sec;
2074
2075 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2076 if (entry->hdr.sh_link == shindex)
2077 goto success;
2078
2079 num_sec = elf_numsections (abfd);
2080 for (i = shindex + 1; i < num_sec; i++)
2081 {
2082 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2083
2084 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2085 && hdr2->sh_link == shindex)
2086 break;
2087 }
2088
2089 if (i == num_sec)
2090 for (i = 1; i < shindex; i++)
2091 {
2092 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2093
2094 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2095 && hdr2->sh_link == shindex)
2096 break;
2097 }
2098
2099 if (i != shindex)
2100 ret = bfd_section_from_shdr (abfd, i);
2101 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2102 goto success;
2103 }
2104
2105 case SHT_DYNSYM: /* A dynamic symbol table. */
2106 if (elf_dynsymtab (abfd) == shindex)
2107 goto success;
2108
2109 if (hdr->sh_entsize != bed->s->sizeof_sym)
2110 goto fail;
2111
2112 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2113 {
2114 if (hdr->sh_size != 0)
2115 goto fail;
2116
2117 /* Some linkers erroneously set sh_info to one with a
2118 zero sh_size. ld sees this as a global symbol count
2119 of (unsigned) -1. Fix it here. */
2120 hdr->sh_info = 0;
2121 goto success;
2122 }
2123
2124 /* PR 18854: A binary might contain more than one dynamic symbol table.
2125 Unusual, but possible. Warn, but continue. */
2126 if (elf_dynsymtab (abfd) != 0)
2127 {
2128 (*_bfd_error_handler)
2129 (_("%B: warning: multiple dynamic symbol tables detected - ignoring the table in section %u"),
2130 abfd, shindex);
2131 goto success;
2132 }
2133 elf_dynsymtab (abfd) = shindex;
2134 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2135 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2136 abfd->flags |= HAS_SYMS;
2137
2138 /* Besides being a symbol table, we also treat this as a regular
2139 section, so that objcopy can handle it. */
2140 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2141 goto success;
2142
2143 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2144 {
2145 elf_section_list * entry;
2146
2147 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2148 if (entry->ndx == shindex)
2149 goto success;
2150
2151 entry = bfd_alloc (abfd, sizeof * entry);
2152 if (entry == NULL)
2153 goto fail;
2154 entry->ndx = shindex;
2155 entry->hdr = * hdr;
2156 entry->next = elf_symtab_shndx_list (abfd);
2157 elf_symtab_shndx_list (abfd) = entry;
2158 elf_elfsections (abfd)[shindex] = & entry->hdr;
2159 goto success;
2160 }
2161
2162 case SHT_STRTAB: /* A string table. */
2163 if (hdr->bfd_section != NULL)
2164 goto success;
2165
2166 if (ehdr->e_shstrndx == shindex)
2167 {
2168 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2169 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2170 goto success;
2171 }
2172
2173 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2174 {
2175 symtab_strtab:
2176 elf_tdata (abfd)->strtab_hdr = *hdr;
2177 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2178 goto success;
2179 }
2180
2181 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2182 {
2183 dynsymtab_strtab:
2184 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2185 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2186 elf_elfsections (abfd)[shindex] = hdr;
2187 /* We also treat this as a regular section, so that objcopy
2188 can handle it. */
2189 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2190 shindex);
2191 goto success;
2192 }
2193
2194 /* If the string table isn't one of the above, then treat it as a
2195 regular section. We need to scan all the headers to be sure,
2196 just in case this strtab section appeared before the above. */
2197 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2198 {
2199 unsigned int i, num_sec;
2200
2201 num_sec = elf_numsections (abfd);
2202 for (i = 1; i < num_sec; i++)
2203 {
2204 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2205 if (hdr2->sh_link == shindex)
2206 {
2207 /* Prevent endless recursion on broken objects. */
2208 if (i == shindex)
2209 goto fail;
2210 if (! bfd_section_from_shdr (abfd, i))
2211 goto fail;
2212 if (elf_onesymtab (abfd) == i)
2213 goto symtab_strtab;
2214 if (elf_dynsymtab (abfd) == i)
2215 goto dynsymtab_strtab;
2216 }
2217 }
2218 }
2219 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2220 goto success;
2221
2222 case SHT_REL:
2223 case SHT_RELA:
2224 /* *These* do a lot of work -- but build no sections! */
2225 {
2226 asection *target_sect;
2227 Elf_Internal_Shdr *hdr2, **p_hdr;
2228 unsigned int num_sec = elf_numsections (abfd);
2229 struct bfd_elf_section_data *esdt;
2230
2231 if (hdr->sh_entsize
2232 != (bfd_size_type) (hdr->sh_type == SHT_REL
2233 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2234 goto fail;
2235
2236 /* Check for a bogus link to avoid crashing. */
2237 if (hdr->sh_link >= num_sec)
2238 {
2239 ((*_bfd_error_handler)
2240 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2241 abfd, hdr->sh_link, name, shindex));
2242 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2243 shindex);
2244 goto success;
2245 }
2246
2247 /* For some incomprehensible reason Oracle distributes
2248 libraries for Solaris in which some of the objects have
2249 bogus sh_link fields. It would be nice if we could just
2250 reject them, but, unfortunately, some people need to use
2251 them. We scan through the section headers; if we find only
2252 one suitable symbol table, we clobber the sh_link to point
2253 to it. I hope this doesn't break anything.
2254
2255 Don't do it on executable nor shared library. */
2256 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2257 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2258 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2259 {
2260 unsigned int scan;
2261 int found;
2262
2263 found = 0;
2264 for (scan = 1; scan < num_sec; scan++)
2265 {
2266 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2267 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2268 {
2269 if (found != 0)
2270 {
2271 found = 0;
2272 break;
2273 }
2274 found = scan;
2275 }
2276 }
2277 if (found != 0)
2278 hdr->sh_link = found;
2279 }
2280
2281 /* Get the symbol table. */
2282 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2283 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2284 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2285 goto fail;
2286
2287 /* If this reloc section does not use the main symbol table we
2288 don't treat it as a reloc section. BFD can't adequately
2289 represent such a section, so at least for now, we don't
2290 try. We just present it as a normal section. We also
2291 can't use it as a reloc section if it points to the null
2292 section, an invalid section, another reloc section, or its
2293 sh_link points to the null section. */
2294 if (hdr->sh_link != elf_onesymtab (abfd)
2295 || hdr->sh_link == SHN_UNDEF
2296 || hdr->sh_info == SHN_UNDEF
2297 || hdr->sh_info >= num_sec
2298 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2299 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2300 {
2301 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2302 shindex);
2303 goto success;
2304 }
2305
2306 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2307 goto fail;
2308
2309 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2310 if (target_sect == NULL)
2311 goto fail;
2312
2313 esdt = elf_section_data (target_sect);
2314 if (hdr->sh_type == SHT_RELA)
2315 p_hdr = &esdt->rela.hdr;
2316 else
2317 p_hdr = &esdt->rel.hdr;
2318
2319 /* PR 17512: file: 0b4f81b7. */
2320 if (*p_hdr != NULL)
2321 goto fail;
2322 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2323 if (hdr2 == NULL)
2324 goto fail;
2325 *hdr2 = *hdr;
2326 *p_hdr = hdr2;
2327 elf_elfsections (abfd)[shindex] = hdr2;
2328 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2329 target_sect->flags |= SEC_RELOC;
2330 target_sect->relocation = NULL;
2331 target_sect->rel_filepos = hdr->sh_offset;
2332 /* In the section to which the relocations apply, mark whether
2333 its relocations are of the REL or RELA variety. */
2334 if (hdr->sh_size != 0)
2335 {
2336 if (hdr->sh_type == SHT_RELA)
2337 target_sect->use_rela_p = 1;
2338 }
2339 abfd->flags |= HAS_RELOC;
2340 goto success;
2341 }
2342
2343 case SHT_GNU_verdef:
2344 elf_dynverdef (abfd) = shindex;
2345 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2346 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2347 goto success;
2348
2349 case SHT_GNU_versym:
2350 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2351 goto fail;
2352
2353 elf_dynversym (abfd) = shindex;
2354 elf_tdata (abfd)->dynversym_hdr = *hdr;
2355 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2356 goto success;
2357
2358 case SHT_GNU_verneed:
2359 elf_dynverref (abfd) = shindex;
2360 elf_tdata (abfd)->dynverref_hdr = *hdr;
2361 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2362 goto success;
2363
2364 case SHT_SHLIB:
2365 goto success;
2366
2367 case SHT_GROUP:
2368 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2369 goto fail;
2370
2371 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2372 goto fail;
2373
2374 if (hdr->contents != NULL)
2375 {
2376 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2377 unsigned int n_elt = hdr->sh_size / sizeof (* idx);
2378 asection *s;
2379
2380 if (n_elt == 0)
2381 goto fail;
2382 if (idx->flags & GRP_COMDAT)
2383 hdr->bfd_section->flags
2384 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2385
2386 /* We try to keep the same section order as it comes in. */
2387 idx += n_elt;
2388
2389 while (--n_elt != 0)
2390 {
2391 --idx;
2392
2393 if (idx->shdr != NULL
2394 && (s = idx->shdr->bfd_section) != NULL
2395 && elf_next_in_group (s) != NULL)
2396 {
2397 elf_next_in_group (hdr->bfd_section) = s;
2398 break;
2399 }
2400 }
2401 }
2402 goto success;
2403
2404 default:
2405 /* Possibly an attributes section. */
2406 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2407 || hdr->sh_type == bed->obj_attrs_section_type)
2408 {
2409 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2410 goto fail;
2411 _bfd_elf_parse_attributes (abfd, hdr);
2412 goto success;
2413 }
2414
2415 /* Check for any processor-specific section types. */
2416 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2417 goto success;
2418
2419 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2420 {
2421 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2422 /* FIXME: How to properly handle allocated section reserved
2423 for applications? */
2424 (*_bfd_error_handler)
2425 (_("%B: don't know how to handle allocated, application "
2426 "specific section `%s' [0x%8x]"),
2427 abfd, name, hdr->sh_type);
2428 else
2429 {
2430 /* Allow sections reserved for applications. */
2431 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2432 shindex);
2433 goto success;
2434 }
2435 }
2436 else if (hdr->sh_type >= SHT_LOPROC
2437 && hdr->sh_type <= SHT_HIPROC)
2438 /* FIXME: We should handle this section. */
2439 (*_bfd_error_handler)
2440 (_("%B: don't know how to handle processor specific section "
2441 "`%s' [0x%8x]"),
2442 abfd, name, hdr->sh_type);
2443 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2444 {
2445 /* Unrecognised OS-specific sections. */
2446 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2447 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2448 required to correctly process the section and the file should
2449 be rejected with an error message. */
2450 (*_bfd_error_handler)
2451 (_("%B: don't know how to handle OS specific section "
2452 "`%s' [0x%8x]"),
2453 abfd, name, hdr->sh_type);
2454 else
2455 {
2456 /* Otherwise it should be processed. */
2457 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2458 goto success;
2459 }
2460 }
2461 else
2462 /* FIXME: We should handle this section. */
2463 (*_bfd_error_handler)
2464 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2465 abfd, name, hdr->sh_type);
2466
2467 goto fail;
2468 }
2469
2470 fail:
2471 ret = FALSE;
2472 success:
2473 if (sections_being_created && sections_being_created_abfd == abfd)
2474 sections_being_created [shindex] = FALSE;
2475 if (-- nesting == 0)
2476 {
2477 sections_being_created = NULL;
2478 sections_being_created_abfd = abfd;
2479 }
2480 return ret;
2481 }
2482
2483 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2484
2485 Elf_Internal_Sym *
2486 bfd_sym_from_r_symndx (struct sym_cache *cache,
2487 bfd *abfd,
2488 unsigned long r_symndx)
2489 {
2490 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2491
2492 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2493 {
2494 Elf_Internal_Shdr *symtab_hdr;
2495 unsigned char esym[sizeof (Elf64_External_Sym)];
2496 Elf_External_Sym_Shndx eshndx;
2497
2498 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2499 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2500 &cache->sym[ent], esym, &eshndx) == NULL)
2501 return NULL;
2502
2503 if (cache->abfd != abfd)
2504 {
2505 memset (cache->indx, -1, sizeof (cache->indx));
2506 cache->abfd = abfd;
2507 }
2508 cache->indx[ent] = r_symndx;
2509 }
2510
2511 return &cache->sym[ent];
2512 }
2513
2514 /* Given an ELF section number, retrieve the corresponding BFD
2515 section. */
2516
2517 asection *
2518 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2519 {
2520 if (sec_index >= elf_numsections (abfd))
2521 return NULL;
2522 return elf_elfsections (abfd)[sec_index]->bfd_section;
2523 }
2524
2525 static const struct bfd_elf_special_section special_sections_b[] =
2526 {
2527 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2528 { NULL, 0, 0, 0, 0 }
2529 };
2530
2531 static const struct bfd_elf_special_section special_sections_c[] =
2532 {
2533 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2534 { NULL, 0, 0, 0, 0 }
2535 };
2536
2537 static const struct bfd_elf_special_section special_sections_d[] =
2538 {
2539 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2540 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2541 /* There are more DWARF sections than these, but they needn't be added here
2542 unless you have to cope with broken compilers that don't emit section
2543 attributes or you want to help the user writing assembler. */
2544 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2545 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2546 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2547 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2548 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2549 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2550 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2551 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2552 { NULL, 0, 0, 0, 0 }
2553 };
2554
2555 static const struct bfd_elf_special_section special_sections_f[] =
2556 {
2557 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2558 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2559 { NULL, 0, 0, 0, 0 }
2560 };
2561
2562 static const struct bfd_elf_special_section special_sections_g[] =
2563 {
2564 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2565 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2566 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2567 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2568 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2569 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2570 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2571 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2572 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2573 { NULL, 0, 0, 0, 0 }
2574 };
2575
2576 static const struct bfd_elf_special_section special_sections_h[] =
2577 {
2578 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2579 { NULL, 0, 0, 0, 0 }
2580 };
2581
2582 static const struct bfd_elf_special_section special_sections_i[] =
2583 {
2584 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2585 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2586 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2587 { NULL, 0, 0, 0, 0 }
2588 };
2589
2590 static const struct bfd_elf_special_section special_sections_l[] =
2591 {
2592 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2593 { NULL, 0, 0, 0, 0 }
2594 };
2595
2596 static const struct bfd_elf_special_section special_sections_n[] =
2597 {
2598 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2599 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2600 { NULL, 0, 0, 0, 0 }
2601 };
2602
2603 static const struct bfd_elf_special_section special_sections_p[] =
2604 {
2605 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2606 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2607 { NULL, 0, 0, 0, 0 }
2608 };
2609
2610 static const struct bfd_elf_special_section special_sections_r[] =
2611 {
2612 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2613 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2614 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2615 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2616 { NULL, 0, 0, 0, 0 }
2617 };
2618
2619 static const struct bfd_elf_special_section special_sections_s[] =
2620 {
2621 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2622 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2623 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2624 /* See struct bfd_elf_special_section declaration for the semantics of
2625 this special case where .prefix_length != strlen (.prefix). */
2626 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2627 { NULL, 0, 0, 0, 0 }
2628 };
2629
2630 static const struct bfd_elf_special_section special_sections_t[] =
2631 {
2632 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2633 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2634 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2635 { NULL, 0, 0, 0, 0 }
2636 };
2637
2638 static const struct bfd_elf_special_section special_sections_z[] =
2639 {
2640 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2641 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2642 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2643 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2644 { NULL, 0, 0, 0, 0 }
2645 };
2646
2647 static const struct bfd_elf_special_section * const special_sections[] =
2648 {
2649 special_sections_b, /* 'b' */
2650 special_sections_c, /* 'c' */
2651 special_sections_d, /* 'd' */
2652 NULL, /* 'e' */
2653 special_sections_f, /* 'f' */
2654 special_sections_g, /* 'g' */
2655 special_sections_h, /* 'h' */
2656 special_sections_i, /* 'i' */
2657 NULL, /* 'j' */
2658 NULL, /* 'k' */
2659 special_sections_l, /* 'l' */
2660 NULL, /* 'm' */
2661 special_sections_n, /* 'n' */
2662 NULL, /* 'o' */
2663 special_sections_p, /* 'p' */
2664 NULL, /* 'q' */
2665 special_sections_r, /* 'r' */
2666 special_sections_s, /* 's' */
2667 special_sections_t, /* 't' */
2668 NULL, /* 'u' */
2669 NULL, /* 'v' */
2670 NULL, /* 'w' */
2671 NULL, /* 'x' */
2672 NULL, /* 'y' */
2673 special_sections_z /* 'z' */
2674 };
2675
2676 const struct bfd_elf_special_section *
2677 _bfd_elf_get_special_section (const char *name,
2678 const struct bfd_elf_special_section *spec,
2679 unsigned int rela)
2680 {
2681 int i;
2682 int len;
2683
2684 len = strlen (name);
2685
2686 for (i = 0; spec[i].prefix != NULL; i++)
2687 {
2688 int suffix_len;
2689 int prefix_len = spec[i].prefix_length;
2690
2691 if (len < prefix_len)
2692 continue;
2693 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2694 continue;
2695
2696 suffix_len = spec[i].suffix_length;
2697 if (suffix_len <= 0)
2698 {
2699 if (name[prefix_len] != 0)
2700 {
2701 if (suffix_len == 0)
2702 continue;
2703 if (name[prefix_len] != '.'
2704 && (suffix_len == -2
2705 || (rela && spec[i].type == SHT_REL)))
2706 continue;
2707 }
2708 }
2709 else
2710 {
2711 if (len < prefix_len + suffix_len)
2712 continue;
2713 if (memcmp (name + len - suffix_len,
2714 spec[i].prefix + prefix_len,
2715 suffix_len) != 0)
2716 continue;
2717 }
2718 return &spec[i];
2719 }
2720
2721 return NULL;
2722 }
2723
2724 const struct bfd_elf_special_section *
2725 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2726 {
2727 int i;
2728 const struct bfd_elf_special_section *spec;
2729 const struct elf_backend_data *bed;
2730
2731 /* See if this is one of the special sections. */
2732 if (sec->name == NULL)
2733 return NULL;
2734
2735 bed = get_elf_backend_data (abfd);
2736 spec = bed->special_sections;
2737 if (spec)
2738 {
2739 spec = _bfd_elf_get_special_section (sec->name,
2740 bed->special_sections,
2741 sec->use_rela_p);
2742 if (spec != NULL)
2743 return spec;
2744 }
2745
2746 if (sec->name[0] != '.')
2747 return NULL;
2748
2749 i = sec->name[1] - 'b';
2750 if (i < 0 || i > 'z' - 'b')
2751 return NULL;
2752
2753 spec = special_sections[i];
2754
2755 if (spec == NULL)
2756 return NULL;
2757
2758 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2759 }
2760
2761 bfd_boolean
2762 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2763 {
2764 struct bfd_elf_section_data *sdata;
2765 const struct elf_backend_data *bed;
2766 const struct bfd_elf_special_section *ssect;
2767
2768 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2769 if (sdata == NULL)
2770 {
2771 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2772 sizeof (*sdata));
2773 if (sdata == NULL)
2774 return FALSE;
2775 sec->used_by_bfd = sdata;
2776 }
2777
2778 /* Indicate whether or not this section should use RELA relocations. */
2779 bed = get_elf_backend_data (abfd);
2780 sec->use_rela_p = bed->default_use_rela_p;
2781
2782 /* When we read a file, we don't need to set ELF section type and
2783 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2784 anyway. We will set ELF section type and flags for all linker
2785 created sections. If user specifies BFD section flags, we will
2786 set ELF section type and flags based on BFD section flags in
2787 elf_fake_sections. Special handling for .init_array/.fini_array
2788 output sections since they may contain .ctors/.dtors input
2789 sections. We don't want _bfd_elf_init_private_section_data to
2790 copy ELF section type from .ctors/.dtors input sections. */
2791 if (abfd->direction != read_direction
2792 || (sec->flags & SEC_LINKER_CREATED) != 0)
2793 {
2794 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2795 if (ssect != NULL
2796 && (!sec->flags
2797 || (sec->flags & SEC_LINKER_CREATED) != 0
2798 || ssect->type == SHT_INIT_ARRAY
2799 || ssect->type == SHT_FINI_ARRAY))
2800 {
2801 elf_section_type (sec) = ssect->type;
2802 elf_section_flags (sec) = ssect->attr;
2803 }
2804 }
2805
2806 return _bfd_generic_new_section_hook (abfd, sec);
2807 }
2808
2809 /* Create a new bfd section from an ELF program header.
2810
2811 Since program segments have no names, we generate a synthetic name
2812 of the form segment<NUM>, where NUM is generally the index in the
2813 program header table. For segments that are split (see below) we
2814 generate the names segment<NUM>a and segment<NUM>b.
2815
2816 Note that some program segments may have a file size that is different than
2817 (less than) the memory size. All this means is that at execution the
2818 system must allocate the amount of memory specified by the memory size,
2819 but only initialize it with the first "file size" bytes read from the
2820 file. This would occur for example, with program segments consisting
2821 of combined data+bss.
2822
2823 To handle the above situation, this routine generates TWO bfd sections
2824 for the single program segment. The first has the length specified by
2825 the file size of the segment, and the second has the length specified
2826 by the difference between the two sizes. In effect, the segment is split
2827 into its initialized and uninitialized parts.
2828
2829 */
2830
2831 bfd_boolean
2832 _bfd_elf_make_section_from_phdr (bfd *abfd,
2833 Elf_Internal_Phdr *hdr,
2834 int hdr_index,
2835 const char *type_name)
2836 {
2837 asection *newsect;
2838 char *name;
2839 char namebuf[64];
2840 size_t len;
2841 int split;
2842
2843 split = ((hdr->p_memsz > 0)
2844 && (hdr->p_filesz > 0)
2845 && (hdr->p_memsz > hdr->p_filesz));
2846
2847 if (hdr->p_filesz > 0)
2848 {
2849 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2850 len = strlen (namebuf) + 1;
2851 name = (char *) bfd_alloc (abfd, len);
2852 if (!name)
2853 return FALSE;
2854 memcpy (name, namebuf, len);
2855 newsect = bfd_make_section (abfd, name);
2856 if (newsect == NULL)
2857 return FALSE;
2858 newsect->vma = hdr->p_vaddr;
2859 newsect->lma = hdr->p_paddr;
2860 newsect->size = hdr->p_filesz;
2861 newsect->filepos = hdr->p_offset;
2862 newsect->flags |= SEC_HAS_CONTENTS;
2863 newsect->alignment_power = bfd_log2 (hdr->p_align);
2864 if (hdr->p_type == PT_LOAD)
2865 {
2866 newsect->flags |= SEC_ALLOC;
2867 newsect->flags |= SEC_LOAD;
2868 if (hdr->p_flags & PF_X)
2869 {
2870 /* FIXME: all we known is that it has execute PERMISSION,
2871 may be data. */
2872 newsect->flags |= SEC_CODE;
2873 }
2874 }
2875 if (!(hdr->p_flags & PF_W))
2876 {
2877 newsect->flags |= SEC_READONLY;
2878 }
2879 }
2880
2881 if (hdr->p_memsz > hdr->p_filesz)
2882 {
2883 bfd_vma align;
2884
2885 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2886 len = strlen (namebuf) + 1;
2887 name = (char *) bfd_alloc (abfd, len);
2888 if (!name)
2889 return FALSE;
2890 memcpy (name, namebuf, len);
2891 newsect = bfd_make_section (abfd, name);
2892 if (newsect == NULL)
2893 return FALSE;
2894 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2895 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2896 newsect->size = hdr->p_memsz - hdr->p_filesz;
2897 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2898 align = newsect->vma & -newsect->vma;
2899 if (align == 0 || align > hdr->p_align)
2900 align = hdr->p_align;
2901 newsect->alignment_power = bfd_log2 (align);
2902 if (hdr->p_type == PT_LOAD)
2903 {
2904 /* Hack for gdb. Segments that have not been modified do
2905 not have their contents written to a core file, on the
2906 assumption that a debugger can find the contents in the
2907 executable. We flag this case by setting the fake
2908 section size to zero. Note that "real" bss sections will
2909 always have their contents dumped to the core file. */
2910 if (bfd_get_format (abfd) == bfd_core)
2911 newsect->size = 0;
2912 newsect->flags |= SEC_ALLOC;
2913 if (hdr->p_flags & PF_X)
2914 newsect->flags |= SEC_CODE;
2915 }
2916 if (!(hdr->p_flags & PF_W))
2917 newsect->flags |= SEC_READONLY;
2918 }
2919
2920 return TRUE;
2921 }
2922
2923 bfd_boolean
2924 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2925 {
2926 const struct elf_backend_data *bed;
2927
2928 switch (hdr->p_type)
2929 {
2930 case PT_NULL:
2931 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2932
2933 case PT_LOAD:
2934 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2935
2936 case PT_DYNAMIC:
2937 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2938
2939 case PT_INTERP:
2940 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2941
2942 case PT_NOTE:
2943 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2944 return FALSE;
2945 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2946 return FALSE;
2947 return TRUE;
2948
2949 case PT_SHLIB:
2950 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2951
2952 case PT_PHDR:
2953 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2954
2955 case PT_GNU_EH_FRAME:
2956 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2957 "eh_frame_hdr");
2958
2959 case PT_GNU_STACK:
2960 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2961
2962 case PT_GNU_RELRO:
2963 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2964
2965 default:
2966 /* Check for any processor-specific program segment types. */
2967 bed = get_elf_backend_data (abfd);
2968 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2969 }
2970 }
2971
2972 /* Return the REL_HDR for SEC, assuming there is only a single one, either
2973 REL or RELA. */
2974
2975 Elf_Internal_Shdr *
2976 _bfd_elf_single_rel_hdr (asection *sec)
2977 {
2978 if (elf_section_data (sec)->rel.hdr)
2979 {
2980 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2981 return elf_section_data (sec)->rel.hdr;
2982 }
2983 else
2984 return elf_section_data (sec)->rela.hdr;
2985 }
2986
2987 static bfd_boolean
2988 _bfd_elf_set_reloc_sh_name (bfd *abfd,
2989 Elf_Internal_Shdr *rel_hdr,
2990 const char *sec_name,
2991 bfd_boolean use_rela_p)
2992 {
2993 char *name = (char *) bfd_alloc (abfd,
2994 sizeof ".rela" + strlen (sec_name));
2995 if (name == NULL)
2996 return FALSE;
2997
2998 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
2999 rel_hdr->sh_name =
3000 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3001 FALSE);
3002 if (rel_hdr->sh_name == (unsigned int) -1)
3003 return FALSE;
3004
3005 return TRUE;
3006 }
3007
3008 /* Allocate and initialize a section-header for a new reloc section,
3009 containing relocations against ASECT. It is stored in RELDATA. If
3010 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3011 relocations. */
3012
3013 static bfd_boolean
3014 _bfd_elf_init_reloc_shdr (bfd *abfd,
3015 struct bfd_elf_section_reloc_data *reldata,
3016 const char *sec_name,
3017 bfd_boolean use_rela_p,
3018 bfd_boolean delay_st_name_p)
3019 {
3020 Elf_Internal_Shdr *rel_hdr;
3021 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3022
3023 BFD_ASSERT (reldata->hdr == NULL);
3024 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3025 reldata->hdr = rel_hdr;
3026
3027 if (delay_st_name_p)
3028 rel_hdr->sh_name = (unsigned int) -1;
3029 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3030 use_rela_p))
3031 return FALSE;
3032 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3033 rel_hdr->sh_entsize = (use_rela_p
3034 ? bed->s->sizeof_rela
3035 : bed->s->sizeof_rel);
3036 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3037 rel_hdr->sh_flags = 0;
3038 rel_hdr->sh_addr = 0;
3039 rel_hdr->sh_size = 0;
3040 rel_hdr->sh_offset = 0;
3041
3042 return TRUE;
3043 }
3044
3045 /* Return the default section type based on the passed in section flags. */
3046
3047 int
3048 bfd_elf_get_default_section_type (flagword flags)
3049 {
3050 if ((flags & SEC_ALLOC) != 0
3051 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3052 return SHT_NOBITS;
3053 return SHT_PROGBITS;
3054 }
3055
3056 struct fake_section_arg
3057 {
3058 struct bfd_link_info *link_info;
3059 bfd_boolean failed;
3060 };
3061
3062 /* Set up an ELF internal section header for a section. */
3063
3064 static void
3065 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3066 {
3067 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3068 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3069 struct bfd_elf_section_data *esd = elf_section_data (asect);
3070 Elf_Internal_Shdr *this_hdr;
3071 unsigned int sh_type;
3072 const char *name = asect->name;
3073 bfd_boolean delay_st_name_p = FALSE;
3074
3075 if (arg->failed)
3076 {
3077 /* We already failed; just get out of the bfd_map_over_sections
3078 loop. */
3079 return;
3080 }
3081
3082 this_hdr = &esd->this_hdr;
3083
3084 if (arg->link_info)
3085 {
3086 /* ld: compress DWARF debug sections with names: .debug_*. */
3087 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3088 && (asect->flags & SEC_DEBUGGING)
3089 && name[1] == 'd'
3090 && name[6] == '_')
3091 {
3092 /* Set SEC_ELF_COMPRESS to indicate this section should be
3093 compressed. */
3094 asect->flags |= SEC_ELF_COMPRESS;
3095
3096 /* If this section will be compressed, delay adding section
3097 name to section name section after it is compressed in
3098 _bfd_elf_assign_file_positions_for_non_load. */
3099 delay_st_name_p = TRUE;
3100 }
3101 }
3102 else if ((asect->flags & SEC_ELF_RENAME))
3103 {
3104 /* objcopy: rename output DWARF debug section. */
3105 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3106 {
3107 /* When we decompress or compress with SHF_COMPRESSED,
3108 convert section name from .zdebug_* to .debug_* if
3109 needed. */
3110 if (name[1] == 'z')
3111 {
3112 char *new_name = convert_zdebug_to_debug (abfd, name);
3113 if (new_name == NULL)
3114 {
3115 arg->failed = TRUE;
3116 return;
3117 }
3118 name = new_name;
3119 }
3120 }
3121 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3122 {
3123 /* PR binutils/18087: Compression does not always make a
3124 section smaller. So only rename the section when
3125 compression has actually taken place. If input section
3126 name is .zdebug_*, we should never compress it again. */
3127 char *new_name = convert_debug_to_zdebug (abfd, name);
3128 if (new_name == NULL)
3129 {
3130 arg->failed = TRUE;
3131 return;
3132 }
3133 BFD_ASSERT (name[1] != 'z');
3134 name = new_name;
3135 }
3136 }
3137
3138 if (delay_st_name_p)
3139 this_hdr->sh_name = (unsigned int) -1;
3140 else
3141 {
3142 this_hdr->sh_name
3143 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3144 name, FALSE);
3145 if (this_hdr->sh_name == (unsigned int) -1)
3146 {
3147 arg->failed = TRUE;
3148 return;
3149 }
3150 }
3151
3152 /* Don't clear sh_flags. Assembler may set additional bits. */
3153
3154 if ((asect->flags & SEC_ALLOC) != 0
3155 || asect->user_set_vma)
3156 this_hdr->sh_addr = asect->vma;
3157 else
3158 this_hdr->sh_addr = 0;
3159
3160 this_hdr->sh_offset = 0;
3161 this_hdr->sh_size = asect->size;
3162 this_hdr->sh_link = 0;
3163 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3164 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3165 {
3166 (*_bfd_error_handler)
3167 (_("%B: error: Alignment power %d of section `%A' is too big"),
3168 abfd, asect, asect->alignment_power);
3169 arg->failed = TRUE;
3170 return;
3171 }
3172 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3173 /* The sh_entsize and sh_info fields may have been set already by
3174 copy_private_section_data. */
3175
3176 this_hdr->bfd_section = asect;
3177 this_hdr->contents = NULL;
3178
3179 /* If the section type is unspecified, we set it based on
3180 asect->flags. */
3181 if ((asect->flags & SEC_GROUP) != 0)
3182 sh_type = SHT_GROUP;
3183 else
3184 sh_type = bfd_elf_get_default_section_type (asect->flags);
3185
3186 if (this_hdr->sh_type == SHT_NULL)
3187 this_hdr->sh_type = sh_type;
3188 else if (this_hdr->sh_type == SHT_NOBITS
3189 && sh_type == SHT_PROGBITS
3190 && (asect->flags & SEC_ALLOC) != 0)
3191 {
3192 /* Warn if we are changing a NOBITS section to PROGBITS, but
3193 allow the link to proceed. This can happen when users link
3194 non-bss input sections to bss output sections, or emit data
3195 to a bss output section via a linker script. */
3196 (*_bfd_error_handler)
3197 (_("warning: section `%A' type changed to PROGBITS"), asect);
3198 this_hdr->sh_type = sh_type;
3199 }
3200
3201 switch (this_hdr->sh_type)
3202 {
3203 default:
3204 break;
3205
3206 case SHT_STRTAB:
3207 case SHT_NOTE:
3208 case SHT_NOBITS:
3209 case SHT_PROGBITS:
3210 break;
3211
3212 case SHT_INIT_ARRAY:
3213 case SHT_FINI_ARRAY:
3214 case SHT_PREINIT_ARRAY:
3215 this_hdr->sh_entsize = bed->s->arch_size / 8;
3216 break;
3217
3218 case SHT_HASH:
3219 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3220 break;
3221
3222 case SHT_DYNSYM:
3223 this_hdr->sh_entsize = bed->s->sizeof_sym;
3224 break;
3225
3226 case SHT_DYNAMIC:
3227 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3228 break;
3229
3230 case SHT_RELA:
3231 if (get_elf_backend_data (abfd)->may_use_rela_p)
3232 this_hdr->sh_entsize = bed->s->sizeof_rela;
3233 break;
3234
3235 case SHT_REL:
3236 if (get_elf_backend_data (abfd)->may_use_rel_p)
3237 this_hdr->sh_entsize = bed->s->sizeof_rel;
3238 break;
3239
3240 case SHT_GNU_versym:
3241 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3242 break;
3243
3244 case SHT_GNU_verdef:
3245 this_hdr->sh_entsize = 0;
3246 /* objcopy or strip will copy over sh_info, but may not set
3247 cverdefs. The linker will set cverdefs, but sh_info will be
3248 zero. */
3249 if (this_hdr->sh_info == 0)
3250 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3251 else
3252 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3253 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3254 break;
3255
3256 case SHT_GNU_verneed:
3257 this_hdr->sh_entsize = 0;
3258 /* objcopy or strip will copy over sh_info, but may not set
3259 cverrefs. The linker will set cverrefs, but sh_info will be
3260 zero. */
3261 if (this_hdr->sh_info == 0)
3262 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3263 else
3264 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3265 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3266 break;
3267
3268 case SHT_GROUP:
3269 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3270 break;
3271
3272 case SHT_GNU_HASH:
3273 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3274 break;
3275 }
3276
3277 if ((asect->flags & SEC_ALLOC) != 0)
3278 this_hdr->sh_flags |= SHF_ALLOC;
3279 if ((asect->flags & SEC_READONLY) == 0)
3280 this_hdr->sh_flags |= SHF_WRITE;
3281 if ((asect->flags & SEC_CODE) != 0)
3282 this_hdr->sh_flags |= SHF_EXECINSTR;
3283 if ((asect->flags & SEC_MERGE) != 0)
3284 {
3285 this_hdr->sh_flags |= SHF_MERGE;
3286 this_hdr->sh_entsize = asect->entsize;
3287 }
3288 if ((asect->flags & SEC_STRINGS) != 0)
3289 this_hdr->sh_flags |= SHF_STRINGS;
3290 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3291 this_hdr->sh_flags |= SHF_GROUP;
3292 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3293 {
3294 this_hdr->sh_flags |= SHF_TLS;
3295 if (asect->size == 0
3296 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3297 {
3298 struct bfd_link_order *o = asect->map_tail.link_order;
3299
3300 this_hdr->sh_size = 0;
3301 if (o != NULL)
3302 {
3303 this_hdr->sh_size = o->offset + o->size;
3304 if (this_hdr->sh_size != 0)
3305 this_hdr->sh_type = SHT_NOBITS;
3306 }
3307 }
3308 }
3309 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3310 this_hdr->sh_flags |= SHF_EXCLUDE;
3311
3312 /* If the section has relocs, set up a section header for the
3313 SHT_REL[A] section. If two relocation sections are required for
3314 this section, it is up to the processor-specific back-end to
3315 create the other. */
3316 if ((asect->flags & SEC_RELOC) != 0)
3317 {
3318 /* When doing a relocatable link, create both REL and RELA sections if
3319 needed. */
3320 if (arg->link_info
3321 /* Do the normal setup if we wouldn't create any sections here. */
3322 && esd->rel.count + esd->rela.count > 0
3323 && (bfd_link_relocatable (arg->link_info)
3324 || arg->link_info->emitrelocations))
3325 {
3326 if (esd->rel.count && esd->rel.hdr == NULL
3327 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name, FALSE,
3328 delay_st_name_p))
3329 {
3330 arg->failed = TRUE;
3331 return;
3332 }
3333 if (esd->rela.count && esd->rela.hdr == NULL
3334 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name, TRUE,
3335 delay_st_name_p))
3336 {
3337 arg->failed = TRUE;
3338 return;
3339 }
3340 }
3341 else if (!_bfd_elf_init_reloc_shdr (abfd,
3342 (asect->use_rela_p
3343 ? &esd->rela : &esd->rel),
3344 name,
3345 asect->use_rela_p,
3346 delay_st_name_p))
3347 arg->failed = TRUE;
3348 }
3349
3350 /* Check for processor-specific section types. */
3351 sh_type = this_hdr->sh_type;
3352 if (bed->elf_backend_fake_sections
3353 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3354 arg->failed = TRUE;
3355
3356 if (sh_type == SHT_NOBITS && asect->size != 0)
3357 {
3358 /* Don't change the header type from NOBITS if we are being
3359 called for objcopy --only-keep-debug. */
3360 this_hdr->sh_type = sh_type;
3361 }
3362 }
3363
3364 /* Fill in the contents of a SHT_GROUP section. Called from
3365 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3366 when ELF targets use the generic linker, ld. Called for ld -r
3367 from bfd_elf_final_link. */
3368
3369 void
3370 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3371 {
3372 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3373 asection *elt, *first;
3374 unsigned char *loc;
3375 bfd_boolean gas;
3376
3377 /* Ignore linker created group section. See elfNN_ia64_object_p in
3378 elfxx-ia64.c. */
3379 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3380 || *failedptr)
3381 return;
3382
3383 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3384 {
3385 unsigned long symindx = 0;
3386
3387 /* elf_group_id will have been set up by objcopy and the
3388 generic linker. */
3389 if (elf_group_id (sec) != NULL)
3390 symindx = elf_group_id (sec)->udata.i;
3391
3392 if (symindx == 0)
3393 {
3394 /* If called from the assembler, swap_out_syms will have set up
3395 elf_section_syms. */
3396 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3397 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3398 }
3399 elf_section_data (sec)->this_hdr.sh_info = symindx;
3400 }
3401 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3402 {
3403 /* The ELF backend linker sets sh_info to -2 when the group
3404 signature symbol is global, and thus the index can't be
3405 set until all local symbols are output. */
3406 asection *igroup = elf_sec_group (elf_next_in_group (sec));
3407 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
3408 unsigned long symndx = sec_data->this_hdr.sh_info;
3409 unsigned long extsymoff = 0;
3410 struct elf_link_hash_entry *h;
3411
3412 if (!elf_bad_symtab (igroup->owner))
3413 {
3414 Elf_Internal_Shdr *symtab_hdr;
3415
3416 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3417 extsymoff = symtab_hdr->sh_info;
3418 }
3419 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3420 while (h->root.type == bfd_link_hash_indirect
3421 || h->root.type == bfd_link_hash_warning)
3422 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3423
3424 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3425 }
3426
3427 /* The contents won't be allocated for "ld -r" or objcopy. */
3428 gas = TRUE;
3429 if (sec->contents == NULL)
3430 {
3431 gas = FALSE;
3432 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3433
3434 /* Arrange for the section to be written out. */
3435 elf_section_data (sec)->this_hdr.contents = sec->contents;
3436 if (sec->contents == NULL)
3437 {
3438 *failedptr = TRUE;
3439 return;
3440 }
3441 }
3442
3443 loc = sec->contents + sec->size;
3444
3445 /* Get the pointer to the first section in the group that gas
3446 squirreled away here. objcopy arranges for this to be set to the
3447 start of the input section group. */
3448 first = elt = elf_next_in_group (sec);
3449
3450 /* First element is a flag word. Rest of section is elf section
3451 indices for all the sections of the group. Write them backwards
3452 just to keep the group in the same order as given in .section
3453 directives, not that it matters. */
3454 while (elt != NULL)
3455 {
3456 asection *s;
3457
3458 s = elt;
3459 if (!gas)
3460 s = s->output_section;
3461 if (s != NULL
3462 && !bfd_is_abs_section (s))
3463 {
3464 unsigned int idx = elf_section_data (s)->this_idx;
3465
3466 loc -= 4;
3467 H_PUT_32 (abfd, idx, loc);
3468 }
3469 elt = elf_next_in_group (elt);
3470 if (elt == first)
3471 break;
3472 }
3473
3474 if ((loc -= 4) != sec->contents)
3475 abort ();
3476
3477 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3478 }
3479
3480 /* Return the section which RELOC_SEC applies to. */
3481
3482 asection *
3483 _bfd_elf_get_reloc_section (asection *reloc_sec)
3484 {
3485 const char *name;
3486 unsigned int type;
3487 bfd *abfd;
3488
3489 if (reloc_sec == NULL)
3490 return NULL;
3491
3492 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3493 if (type != SHT_REL && type != SHT_RELA)
3494 return NULL;
3495
3496 /* We look up the section the relocs apply to by name. */
3497 name = reloc_sec->name;
3498 if (type == SHT_REL)
3499 name += 4;
3500 else
3501 name += 5;
3502
3503 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3504 section apply to .got.plt section. */
3505 abfd = reloc_sec->owner;
3506 if (get_elf_backend_data (abfd)->want_got_plt
3507 && strcmp (name, ".plt") == 0)
3508 {
3509 /* .got.plt is a linker created input section. It may be mapped
3510 to some other output section. Try two likely sections. */
3511 name = ".got.plt";
3512 reloc_sec = bfd_get_section_by_name (abfd, name);
3513 if (reloc_sec != NULL)
3514 return reloc_sec;
3515 name = ".got";
3516 }
3517
3518 reloc_sec = bfd_get_section_by_name (abfd, name);
3519 return reloc_sec;
3520 }
3521
3522 /* Assign all ELF section numbers. The dummy first section is handled here
3523 too. The link/info pointers for the standard section types are filled
3524 in here too, while we're at it. */
3525
3526 static bfd_boolean
3527 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3528 {
3529 struct elf_obj_tdata *t = elf_tdata (abfd);
3530 asection *sec;
3531 unsigned int section_number;
3532 Elf_Internal_Shdr **i_shdrp;
3533 struct bfd_elf_section_data *d;
3534 bfd_boolean need_symtab;
3535
3536 section_number = 1;
3537
3538 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3539
3540 /* SHT_GROUP sections are in relocatable files only. */
3541 if (link_info == NULL || bfd_link_relocatable (link_info))
3542 {
3543 size_t reloc_count = 0;
3544
3545 /* Put SHT_GROUP sections first. */
3546 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3547 {
3548 d = elf_section_data (sec);
3549
3550 if (d->this_hdr.sh_type == SHT_GROUP)
3551 {
3552 if (sec->flags & SEC_LINKER_CREATED)
3553 {
3554 /* Remove the linker created SHT_GROUP sections. */
3555 bfd_section_list_remove (abfd, sec);
3556 abfd->section_count--;
3557 }
3558 else
3559 d->this_idx = section_number++;
3560 }
3561
3562 /* Count relocations. */
3563 reloc_count += sec->reloc_count;
3564 }
3565
3566 /* Clear HAS_RELOC if there are no relocations. */
3567 if (reloc_count == 0)
3568 abfd->flags &= ~HAS_RELOC;
3569 }
3570
3571 for (sec = abfd->sections; sec; sec = sec->next)
3572 {
3573 d = elf_section_data (sec);
3574
3575 if (d->this_hdr.sh_type != SHT_GROUP)
3576 d->this_idx = section_number++;
3577 if (d->this_hdr.sh_name != (unsigned int) -1)
3578 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3579 if (d->rel.hdr)
3580 {
3581 d->rel.idx = section_number++;
3582 if (d->rel.hdr->sh_name != (unsigned int) -1)
3583 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3584 }
3585 else
3586 d->rel.idx = 0;
3587
3588 if (d->rela.hdr)
3589 {
3590 d->rela.idx = section_number++;
3591 if (d->rela.hdr->sh_name != (unsigned int) -1)
3592 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3593 }
3594 else
3595 d->rela.idx = 0;
3596 }
3597
3598 need_symtab = (bfd_get_symcount (abfd) > 0
3599 || (link_info == NULL
3600 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3601 == HAS_RELOC)));
3602 if (need_symtab)
3603 {
3604 elf_onesymtab (abfd) = section_number++;
3605 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3606 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3607 {
3608 elf_section_list * entry;
3609
3610 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3611
3612 entry = bfd_zalloc (abfd, sizeof * entry);
3613 entry->ndx = section_number++;
3614 elf_symtab_shndx_list (abfd) = entry;
3615 entry->hdr.sh_name
3616 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3617 ".symtab_shndx", FALSE);
3618 if (entry->hdr.sh_name == (unsigned int) -1)
3619 return FALSE;
3620 }
3621 elf_strtab_sec (abfd) = section_number++;
3622 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3623 }
3624
3625 elf_shstrtab_sec (abfd) = section_number++;
3626 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3627 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3628
3629 if (section_number >= SHN_LORESERVE)
3630 {
3631 _bfd_error_handler (_("%B: too many sections: %u"),
3632 abfd, section_number);
3633 return FALSE;
3634 }
3635
3636 elf_numsections (abfd) = section_number;
3637 elf_elfheader (abfd)->e_shnum = section_number;
3638
3639 /* Set up the list of section header pointers, in agreement with the
3640 indices. */
3641 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3642 sizeof (Elf_Internal_Shdr *));
3643 if (i_shdrp == NULL)
3644 return FALSE;
3645
3646 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3647 sizeof (Elf_Internal_Shdr));
3648 if (i_shdrp[0] == NULL)
3649 {
3650 bfd_release (abfd, i_shdrp);
3651 return FALSE;
3652 }
3653
3654 elf_elfsections (abfd) = i_shdrp;
3655
3656 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3657 if (need_symtab)
3658 {
3659 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3660 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3661 {
3662 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3663 BFD_ASSERT (entry != NULL);
3664 i_shdrp[entry->ndx] = & entry->hdr;
3665 entry->hdr.sh_link = elf_onesymtab (abfd);
3666 }
3667 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3668 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3669 }
3670
3671 for (sec = abfd->sections; sec; sec = sec->next)
3672 {
3673 asection *s;
3674
3675 d = elf_section_data (sec);
3676
3677 i_shdrp[d->this_idx] = &d->this_hdr;
3678 if (d->rel.idx != 0)
3679 i_shdrp[d->rel.idx] = d->rel.hdr;
3680 if (d->rela.idx != 0)
3681 i_shdrp[d->rela.idx] = d->rela.hdr;
3682
3683 /* Fill in the sh_link and sh_info fields while we're at it. */
3684
3685 /* sh_link of a reloc section is the section index of the symbol
3686 table. sh_info is the section index of the section to which
3687 the relocation entries apply. */
3688 if (d->rel.idx != 0)
3689 {
3690 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3691 d->rel.hdr->sh_info = d->this_idx;
3692 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3693 }
3694 if (d->rela.idx != 0)
3695 {
3696 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3697 d->rela.hdr->sh_info = d->this_idx;
3698 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3699 }
3700
3701 /* We need to set up sh_link for SHF_LINK_ORDER. */
3702 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3703 {
3704 s = elf_linked_to_section (sec);
3705 if (s)
3706 {
3707 /* elf_linked_to_section points to the input section. */
3708 if (link_info != NULL)
3709 {
3710 /* Check discarded linkonce section. */
3711 if (discarded_section (s))
3712 {
3713 asection *kept;
3714 (*_bfd_error_handler)
3715 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3716 abfd, d->this_hdr.bfd_section,
3717 s, s->owner);
3718 /* Point to the kept section if it has the same
3719 size as the discarded one. */
3720 kept = _bfd_elf_check_kept_section (s, link_info);
3721 if (kept == NULL)
3722 {
3723 bfd_set_error (bfd_error_bad_value);
3724 return FALSE;
3725 }
3726 s = kept;
3727 }
3728
3729 s = s->output_section;
3730 BFD_ASSERT (s != NULL);
3731 }
3732 else
3733 {
3734 /* Handle objcopy. */
3735 if (s->output_section == NULL)
3736 {
3737 (*_bfd_error_handler)
3738 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3739 abfd, d->this_hdr.bfd_section, s, s->owner);
3740 bfd_set_error (bfd_error_bad_value);
3741 return FALSE;
3742 }
3743 s = s->output_section;
3744 }
3745 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3746 }
3747 else
3748 {
3749 /* PR 290:
3750 The Intel C compiler generates SHT_IA_64_UNWIND with
3751 SHF_LINK_ORDER. But it doesn't set the sh_link or
3752 sh_info fields. Hence we could get the situation
3753 where s is NULL. */
3754 const struct elf_backend_data *bed
3755 = get_elf_backend_data (abfd);
3756 if (bed->link_order_error_handler)
3757 bed->link_order_error_handler
3758 (_("%B: warning: sh_link not set for section `%A'"),
3759 abfd, sec);
3760 }
3761 }
3762
3763 switch (d->this_hdr.sh_type)
3764 {
3765 case SHT_REL:
3766 case SHT_RELA:
3767 /* A reloc section which we are treating as a normal BFD
3768 section. sh_link is the section index of the symbol
3769 table. sh_info is the section index of the section to
3770 which the relocation entries apply. We assume that an
3771 allocated reloc section uses the dynamic symbol table.
3772 FIXME: How can we be sure? */
3773 s = bfd_get_section_by_name (abfd, ".dynsym");
3774 if (s != NULL)
3775 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3776
3777 s = get_elf_backend_data (abfd)->get_reloc_section (sec);
3778 if (s != NULL)
3779 {
3780 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3781 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3782 }
3783 break;
3784
3785 case SHT_STRTAB:
3786 /* We assume that a section named .stab*str is a stabs
3787 string section. We look for a section with the same name
3788 but without the trailing ``str'', and set its sh_link
3789 field to point to this section. */
3790 if (CONST_STRNEQ (sec->name, ".stab")
3791 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3792 {
3793 size_t len;
3794 char *alc;
3795
3796 len = strlen (sec->name);
3797 alc = (char *) bfd_malloc (len - 2);
3798 if (alc == NULL)
3799 return FALSE;
3800 memcpy (alc, sec->name, len - 3);
3801 alc[len - 3] = '\0';
3802 s = bfd_get_section_by_name (abfd, alc);
3803 free (alc);
3804 if (s != NULL)
3805 {
3806 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3807
3808 /* This is a .stab section. */
3809 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3810 elf_section_data (s)->this_hdr.sh_entsize
3811 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3812 }
3813 }
3814 break;
3815
3816 case SHT_DYNAMIC:
3817 case SHT_DYNSYM:
3818 case SHT_GNU_verneed:
3819 case SHT_GNU_verdef:
3820 /* sh_link is the section header index of the string table
3821 used for the dynamic entries, or the symbol table, or the
3822 version strings. */
3823 s = bfd_get_section_by_name (abfd, ".dynstr");
3824 if (s != NULL)
3825 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3826 break;
3827
3828 case SHT_GNU_LIBLIST:
3829 /* sh_link is the section header index of the prelink library
3830 list used for the dynamic entries, or the symbol table, or
3831 the version strings. */
3832 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3833 ? ".dynstr" : ".gnu.libstr");
3834 if (s != NULL)
3835 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3836 break;
3837
3838 case SHT_HASH:
3839 case SHT_GNU_HASH:
3840 case SHT_GNU_versym:
3841 /* sh_link is the section header index of the symbol table
3842 this hash table or version table is for. */
3843 s = bfd_get_section_by_name (abfd, ".dynsym");
3844 if (s != NULL)
3845 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3846 break;
3847
3848 case SHT_GROUP:
3849 d->this_hdr.sh_link = elf_onesymtab (abfd);
3850 }
3851 }
3852
3853 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3854 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3855 debug section name from .debug_* to .zdebug_* if needed. */
3856
3857 return TRUE;
3858 }
3859
3860 static bfd_boolean
3861 sym_is_global (bfd *abfd, asymbol *sym)
3862 {
3863 /* If the backend has a special mapping, use it. */
3864 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3865 if (bed->elf_backend_sym_is_global)
3866 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3867
3868 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3869 || bfd_is_und_section (bfd_get_section (sym))
3870 || bfd_is_com_section (bfd_get_section (sym)));
3871 }
3872
3873 /* Filter global symbols of ABFD to include in the import library. All
3874 SYMCOUNT symbols of ABFD can be examined from their pointers in
3875 SYMS. Pointers of symbols to keep should be stored contiguously at
3876 the beginning of that array.
3877
3878 Returns the number of symbols to keep. */
3879
3880 unsigned int
3881 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
3882 asymbol **syms, long symcount)
3883 {
3884 long src_count, dst_count = 0;
3885
3886 for (src_count = 0; src_count < symcount; src_count++)
3887 {
3888 asymbol *sym = syms[src_count];
3889 char *name = (char *) bfd_asymbol_name (sym);
3890 struct bfd_link_hash_entry *h;
3891
3892 if (!sym_is_global (abfd, sym))
3893 continue;
3894
3895 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
3896 if (h == NULL)
3897 continue;
3898 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
3899 continue;
3900 if (h->linker_def || h->ldscript_def)
3901 continue;
3902
3903 syms[dst_count++] = sym;
3904 }
3905
3906 syms[dst_count] = NULL;
3907
3908 return dst_count;
3909 }
3910
3911 /* Don't output section symbols for sections that are not going to be
3912 output, that are duplicates or there is no BFD section. */
3913
3914 static bfd_boolean
3915 ignore_section_sym (bfd *abfd, asymbol *sym)
3916 {
3917 elf_symbol_type *type_ptr;
3918
3919 if ((sym->flags & BSF_SECTION_SYM) == 0)
3920 return FALSE;
3921
3922 type_ptr = elf_symbol_from (abfd, sym);
3923 return ((type_ptr != NULL
3924 && type_ptr->internal_elf_sym.st_shndx != 0
3925 && bfd_is_abs_section (sym->section))
3926 || !(sym->section->owner == abfd
3927 || (sym->section->output_section->owner == abfd
3928 && sym->section->output_offset == 0)
3929 || bfd_is_abs_section (sym->section)));
3930 }
3931
3932 /* Map symbol from it's internal number to the external number, moving
3933 all local symbols to be at the head of the list. */
3934
3935 static bfd_boolean
3936 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
3937 {
3938 unsigned int symcount = bfd_get_symcount (abfd);
3939 asymbol **syms = bfd_get_outsymbols (abfd);
3940 asymbol **sect_syms;
3941 unsigned int num_locals = 0;
3942 unsigned int num_globals = 0;
3943 unsigned int num_locals2 = 0;
3944 unsigned int num_globals2 = 0;
3945 unsigned int max_index = 0;
3946 unsigned int idx;
3947 asection *asect;
3948 asymbol **new_syms;
3949
3950 #ifdef DEBUG
3951 fprintf (stderr, "elf_map_symbols\n");
3952 fflush (stderr);
3953 #endif
3954
3955 for (asect = abfd->sections; asect; asect = asect->next)
3956 {
3957 if (max_index < asect->index)
3958 max_index = asect->index;
3959 }
3960
3961 max_index++;
3962 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3963 if (sect_syms == NULL)
3964 return FALSE;
3965 elf_section_syms (abfd) = sect_syms;
3966 elf_num_section_syms (abfd) = max_index;
3967
3968 /* Init sect_syms entries for any section symbols we have already
3969 decided to output. */
3970 for (idx = 0; idx < symcount; idx++)
3971 {
3972 asymbol *sym = syms[idx];
3973
3974 if ((sym->flags & BSF_SECTION_SYM) != 0
3975 && sym->value == 0
3976 && !ignore_section_sym (abfd, sym)
3977 && !bfd_is_abs_section (sym->section))
3978 {
3979 asection *sec = sym->section;
3980
3981 if (sec->owner != abfd)
3982 sec = sec->output_section;
3983
3984 sect_syms[sec->index] = syms[idx];
3985 }
3986 }
3987
3988 /* Classify all of the symbols. */
3989 for (idx = 0; idx < symcount; idx++)
3990 {
3991 if (sym_is_global (abfd, syms[idx]))
3992 num_globals++;
3993 else if (!ignore_section_sym (abfd, syms[idx]))
3994 num_locals++;
3995 }
3996
3997 /* We will be adding a section symbol for each normal BFD section. Most
3998 sections will already have a section symbol in outsymbols, but
3999 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4000 at least in that case. */
4001 for (asect = abfd->sections; asect; asect = asect->next)
4002 {
4003 if (sect_syms[asect->index] == NULL)
4004 {
4005 if (!sym_is_global (abfd, asect->symbol))
4006 num_locals++;
4007 else
4008 num_globals++;
4009 }
4010 }
4011
4012 /* Now sort the symbols so the local symbols are first. */
4013 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4014 sizeof (asymbol *));
4015
4016 if (new_syms == NULL)
4017 return FALSE;
4018
4019 for (idx = 0; idx < symcount; idx++)
4020 {
4021 asymbol *sym = syms[idx];
4022 unsigned int i;
4023
4024 if (sym_is_global (abfd, sym))
4025 i = num_locals + num_globals2++;
4026 else if (!ignore_section_sym (abfd, sym))
4027 i = num_locals2++;
4028 else
4029 continue;
4030 new_syms[i] = sym;
4031 sym->udata.i = i + 1;
4032 }
4033 for (asect = abfd->sections; asect; asect = asect->next)
4034 {
4035 if (sect_syms[asect->index] == NULL)
4036 {
4037 asymbol *sym = asect->symbol;
4038 unsigned int i;
4039
4040 sect_syms[asect->index] = sym;
4041 if (!sym_is_global (abfd, sym))
4042 i = num_locals2++;
4043 else
4044 i = num_locals + num_globals2++;
4045 new_syms[i] = sym;
4046 sym->udata.i = i + 1;
4047 }
4048 }
4049
4050 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4051
4052 *pnum_locals = num_locals;
4053 return TRUE;
4054 }
4055
4056 /* Align to the maximum file alignment that could be required for any
4057 ELF data structure. */
4058
4059 static inline file_ptr
4060 align_file_position (file_ptr off, int align)
4061 {
4062 return (off + align - 1) & ~(align - 1);
4063 }
4064
4065 /* Assign a file position to a section, optionally aligning to the
4066 required section alignment. */
4067
4068 file_ptr
4069 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4070 file_ptr offset,
4071 bfd_boolean align)
4072 {
4073 if (align && i_shdrp->sh_addralign > 1)
4074 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4075 i_shdrp->sh_offset = offset;
4076 if (i_shdrp->bfd_section != NULL)
4077 i_shdrp->bfd_section->filepos = offset;
4078 if (i_shdrp->sh_type != SHT_NOBITS)
4079 offset += i_shdrp->sh_size;
4080 return offset;
4081 }
4082
4083 /* Compute the file positions we are going to put the sections at, and
4084 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4085 is not NULL, this is being called by the ELF backend linker. */
4086
4087 bfd_boolean
4088 _bfd_elf_compute_section_file_positions (bfd *abfd,
4089 struct bfd_link_info *link_info)
4090 {
4091 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4092 struct fake_section_arg fsargs;
4093 bfd_boolean failed;
4094 struct elf_strtab_hash *strtab = NULL;
4095 Elf_Internal_Shdr *shstrtab_hdr;
4096 bfd_boolean need_symtab;
4097
4098 if (abfd->output_has_begun)
4099 return TRUE;
4100
4101 /* Do any elf backend specific processing first. */
4102 if (bed->elf_backend_begin_write_processing)
4103 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4104
4105 if (! prep_headers (abfd))
4106 return FALSE;
4107
4108 /* Post process the headers if necessary. */
4109 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4110
4111 fsargs.failed = FALSE;
4112 fsargs.link_info = link_info;
4113 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4114 if (fsargs.failed)
4115 return FALSE;
4116
4117 if (!assign_section_numbers (abfd, link_info))
4118 return FALSE;
4119
4120 /* The backend linker builds symbol table information itself. */
4121 need_symtab = (link_info == NULL
4122 && (bfd_get_symcount (abfd) > 0
4123 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4124 == HAS_RELOC)));
4125 if (need_symtab)
4126 {
4127 /* Non-zero if doing a relocatable link. */
4128 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4129
4130 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4131 return FALSE;
4132 }
4133
4134 failed = FALSE;
4135 if (link_info == NULL)
4136 {
4137 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4138 if (failed)
4139 return FALSE;
4140 }
4141
4142 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4143 /* sh_name was set in prep_headers. */
4144 shstrtab_hdr->sh_type = SHT_STRTAB;
4145 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4146 shstrtab_hdr->sh_addr = 0;
4147 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4148 shstrtab_hdr->sh_entsize = 0;
4149 shstrtab_hdr->sh_link = 0;
4150 shstrtab_hdr->sh_info = 0;
4151 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4152 shstrtab_hdr->sh_addralign = 1;
4153
4154 if (!assign_file_positions_except_relocs (abfd, link_info))
4155 return FALSE;
4156
4157 if (need_symtab)
4158 {
4159 file_ptr off;
4160 Elf_Internal_Shdr *hdr;
4161
4162 off = elf_next_file_pos (abfd);
4163
4164 hdr = & elf_symtab_hdr (abfd);
4165 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4166
4167 if (elf_symtab_shndx_list (abfd) != NULL)
4168 {
4169 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4170 if (hdr->sh_size != 0)
4171 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4172 /* FIXME: What about other symtab_shndx sections in the list ? */
4173 }
4174
4175 hdr = &elf_tdata (abfd)->strtab_hdr;
4176 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4177
4178 elf_next_file_pos (abfd) = off;
4179
4180 /* Now that we know where the .strtab section goes, write it
4181 out. */
4182 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4183 || ! _bfd_elf_strtab_emit (abfd, strtab))
4184 return FALSE;
4185 _bfd_elf_strtab_free (strtab);
4186 }
4187
4188 abfd->output_has_begun = TRUE;
4189
4190 return TRUE;
4191 }
4192
4193 /* Make an initial estimate of the size of the program header. If we
4194 get the number wrong here, we'll redo section placement. */
4195
4196 static bfd_size_type
4197 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4198 {
4199 size_t segs;
4200 asection *s;
4201 const struct elf_backend_data *bed;
4202
4203 /* Assume we will need exactly two PT_LOAD segments: one for text
4204 and one for data. */
4205 segs = 2;
4206
4207 s = bfd_get_section_by_name (abfd, ".interp");
4208 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4209 {
4210 /* If we have a loadable interpreter section, we need a
4211 PT_INTERP segment. In this case, assume we also need a
4212 PT_PHDR segment, although that may not be true for all
4213 targets. */
4214 segs += 2;
4215 }
4216
4217 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4218 {
4219 /* We need a PT_DYNAMIC segment. */
4220 ++segs;
4221 }
4222
4223 if (info != NULL && info->relro)
4224 {
4225 /* We need a PT_GNU_RELRO segment. */
4226 ++segs;
4227 }
4228
4229 if (elf_eh_frame_hdr (abfd))
4230 {
4231 /* We need a PT_GNU_EH_FRAME segment. */
4232 ++segs;
4233 }
4234
4235 if (elf_stack_flags (abfd))
4236 {
4237 /* We need a PT_GNU_STACK segment. */
4238 ++segs;
4239 }
4240
4241 for (s = abfd->sections; s != NULL; s = s->next)
4242 {
4243 if ((s->flags & SEC_LOAD) != 0
4244 && CONST_STRNEQ (s->name, ".note"))
4245 {
4246 /* We need a PT_NOTE segment. */
4247 ++segs;
4248 /* Try to create just one PT_NOTE segment
4249 for all adjacent loadable .note* sections.
4250 gABI requires that within a PT_NOTE segment
4251 (and also inside of each SHT_NOTE section)
4252 each note is padded to a multiple of 4 size,
4253 so we check whether the sections are correctly
4254 aligned. */
4255 if (s->alignment_power == 2)
4256 while (s->next != NULL
4257 && s->next->alignment_power == 2
4258 && (s->next->flags & SEC_LOAD) != 0
4259 && CONST_STRNEQ (s->next->name, ".note"))
4260 s = s->next;
4261 }
4262 }
4263
4264 for (s = abfd->sections; s != NULL; s = s->next)
4265 {
4266 if (s->flags & SEC_THREAD_LOCAL)
4267 {
4268 /* We need a PT_TLS segment. */
4269 ++segs;
4270 break;
4271 }
4272 }
4273
4274 /* Let the backend count up any program headers it might need. */
4275 bed = get_elf_backend_data (abfd);
4276 if (bed->elf_backend_additional_program_headers)
4277 {
4278 int a;
4279
4280 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4281 if (a == -1)
4282 abort ();
4283 segs += a;
4284 }
4285
4286 return segs * bed->s->sizeof_phdr;
4287 }
4288
4289 /* Find the segment that contains the output_section of section. */
4290
4291 Elf_Internal_Phdr *
4292 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4293 {
4294 struct elf_segment_map *m;
4295 Elf_Internal_Phdr *p;
4296
4297 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4298 m != NULL;
4299 m = m->next, p++)
4300 {
4301 int i;
4302
4303 for (i = m->count - 1; i >= 0; i--)
4304 if (m->sections[i] == section)
4305 return p;
4306 }
4307
4308 return NULL;
4309 }
4310
4311 /* Create a mapping from a set of sections to a program segment. */
4312
4313 static struct elf_segment_map *
4314 make_mapping (bfd *abfd,
4315 asection **sections,
4316 unsigned int from,
4317 unsigned int to,
4318 bfd_boolean phdr)
4319 {
4320 struct elf_segment_map *m;
4321 unsigned int i;
4322 asection **hdrpp;
4323 bfd_size_type amt;
4324
4325 amt = sizeof (struct elf_segment_map);
4326 amt += (to - from - 1) * sizeof (asection *);
4327 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4328 if (m == NULL)
4329 return NULL;
4330 m->next = NULL;
4331 m->p_type = PT_LOAD;
4332 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4333 m->sections[i - from] = *hdrpp;
4334 m->count = to - from;
4335
4336 if (from == 0 && phdr)
4337 {
4338 /* Include the headers in the first PT_LOAD segment. */
4339 m->includes_filehdr = 1;
4340 m->includes_phdrs = 1;
4341 }
4342
4343 return m;
4344 }
4345
4346 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4347 on failure. */
4348
4349 struct elf_segment_map *
4350 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4351 {
4352 struct elf_segment_map *m;
4353
4354 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4355 sizeof (struct elf_segment_map));
4356 if (m == NULL)
4357 return NULL;
4358 m->next = NULL;
4359 m->p_type = PT_DYNAMIC;
4360 m->count = 1;
4361 m->sections[0] = dynsec;
4362
4363 return m;
4364 }
4365
4366 /* Possibly add or remove segments from the segment map. */
4367
4368 static bfd_boolean
4369 elf_modify_segment_map (bfd *abfd,
4370 struct bfd_link_info *info,
4371 bfd_boolean remove_empty_load)
4372 {
4373 struct elf_segment_map **m;
4374 const struct elf_backend_data *bed;
4375
4376 /* The placement algorithm assumes that non allocated sections are
4377 not in PT_LOAD segments. We ensure this here by removing such
4378 sections from the segment map. We also remove excluded
4379 sections. Finally, any PT_LOAD segment without sections is
4380 removed. */
4381 m = &elf_seg_map (abfd);
4382 while (*m)
4383 {
4384 unsigned int i, new_count;
4385
4386 for (new_count = 0, i = 0; i < (*m)->count; i++)
4387 {
4388 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4389 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4390 || (*m)->p_type != PT_LOAD))
4391 {
4392 (*m)->sections[new_count] = (*m)->sections[i];
4393 new_count++;
4394 }
4395 }
4396 (*m)->count = new_count;
4397
4398 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
4399 *m = (*m)->next;
4400 else
4401 m = &(*m)->next;
4402 }
4403
4404 bed = get_elf_backend_data (abfd);
4405 if (bed->elf_backend_modify_segment_map != NULL)
4406 {
4407 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4408 return FALSE;
4409 }
4410
4411 return TRUE;
4412 }
4413
4414 /* Set up a mapping from BFD sections to program segments. */
4415
4416 bfd_boolean
4417 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4418 {
4419 unsigned int count;
4420 struct elf_segment_map *m;
4421 asection **sections = NULL;
4422 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4423 bfd_boolean no_user_phdrs;
4424
4425 no_user_phdrs = elf_seg_map (abfd) == NULL;
4426
4427 if (info != NULL)
4428 info->user_phdrs = !no_user_phdrs;
4429
4430 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4431 {
4432 asection *s;
4433 unsigned int i;
4434 struct elf_segment_map *mfirst;
4435 struct elf_segment_map **pm;
4436 asection *last_hdr;
4437 bfd_vma last_size;
4438 unsigned int phdr_index;
4439 bfd_vma maxpagesize;
4440 asection **hdrpp;
4441 bfd_boolean phdr_in_segment = TRUE;
4442 bfd_boolean writable;
4443 int tls_count = 0;
4444 asection *first_tls = NULL;
4445 asection *dynsec, *eh_frame_hdr;
4446 bfd_size_type amt;
4447 bfd_vma addr_mask, wrap_to = 0;
4448
4449 /* Select the allocated sections, and sort them. */
4450
4451 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4452 sizeof (asection *));
4453 if (sections == NULL)
4454 goto error_return;
4455
4456 /* Calculate top address, avoiding undefined behaviour of shift
4457 left operator when shift count is equal to size of type
4458 being shifted. */
4459 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4460 addr_mask = (addr_mask << 1) + 1;
4461
4462 i = 0;
4463 for (s = abfd->sections; s != NULL; s = s->next)
4464 {
4465 if ((s->flags & SEC_ALLOC) != 0)
4466 {
4467 sections[i] = s;
4468 ++i;
4469 /* A wrapping section potentially clashes with header. */
4470 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4471 wrap_to = (s->lma + s->size) & addr_mask;
4472 }
4473 }
4474 BFD_ASSERT (i <= bfd_count_sections (abfd));
4475 count = i;
4476
4477 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4478
4479 /* Build the mapping. */
4480
4481 mfirst = NULL;
4482 pm = &mfirst;
4483
4484 /* If we have a .interp section, then create a PT_PHDR segment for
4485 the program headers and a PT_INTERP segment for the .interp
4486 section. */
4487 s = bfd_get_section_by_name (abfd, ".interp");
4488 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4489 {
4490 amt = sizeof (struct elf_segment_map);
4491 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4492 if (m == NULL)
4493 goto error_return;
4494 m->next = NULL;
4495 m->p_type = PT_PHDR;
4496 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
4497 m->p_flags = PF_R | PF_X;
4498 m->p_flags_valid = 1;
4499 m->includes_phdrs = 1;
4500
4501 *pm = m;
4502 pm = &m->next;
4503
4504 amt = sizeof (struct elf_segment_map);
4505 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4506 if (m == NULL)
4507 goto error_return;
4508 m->next = NULL;
4509 m->p_type = PT_INTERP;
4510 m->count = 1;
4511 m->sections[0] = s;
4512
4513 *pm = m;
4514 pm = &m->next;
4515 }
4516
4517 /* Look through the sections. We put sections in the same program
4518 segment when the start of the second section can be placed within
4519 a few bytes of the end of the first section. */
4520 last_hdr = NULL;
4521 last_size = 0;
4522 phdr_index = 0;
4523 maxpagesize = bed->maxpagesize;
4524 /* PR 17512: file: c8455299.
4525 Avoid divide-by-zero errors later on.
4526 FIXME: Should we abort if the maxpagesize is zero ? */
4527 if (maxpagesize == 0)
4528 maxpagesize = 1;
4529 writable = FALSE;
4530 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4531 if (dynsec != NULL
4532 && (dynsec->flags & SEC_LOAD) == 0)
4533 dynsec = NULL;
4534
4535 /* Deal with -Ttext or something similar such that the first section
4536 is not adjacent to the program headers. This is an
4537 approximation, since at this point we don't know exactly how many
4538 program headers we will need. */
4539 if (count > 0)
4540 {
4541 bfd_size_type phdr_size = elf_program_header_size (abfd);
4542
4543 if (phdr_size == (bfd_size_type) -1)
4544 phdr_size = get_program_header_size (abfd, info);
4545 phdr_size += bed->s->sizeof_ehdr;
4546 if ((abfd->flags & D_PAGED) == 0
4547 || (sections[0]->lma & addr_mask) < phdr_size
4548 || ((sections[0]->lma & addr_mask) % maxpagesize
4549 < phdr_size % maxpagesize)
4550 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4551 phdr_in_segment = FALSE;
4552 }
4553
4554 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4555 {
4556 asection *hdr;
4557 bfd_boolean new_segment;
4558
4559 hdr = *hdrpp;
4560
4561 /* See if this section and the last one will fit in the same
4562 segment. */
4563
4564 if (last_hdr == NULL)
4565 {
4566 /* If we don't have a segment yet, then we don't need a new
4567 one (we build the last one after this loop). */
4568 new_segment = FALSE;
4569 }
4570 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4571 {
4572 /* If this section has a different relation between the
4573 virtual address and the load address, then we need a new
4574 segment. */
4575 new_segment = TRUE;
4576 }
4577 else if (hdr->lma < last_hdr->lma + last_size
4578 || last_hdr->lma + last_size < last_hdr->lma)
4579 {
4580 /* If this section has a load address that makes it overlap
4581 the previous section, then we need a new segment. */
4582 new_segment = TRUE;
4583 }
4584 /* In the next test we have to be careful when last_hdr->lma is close
4585 to the end of the address space. If the aligned address wraps
4586 around to the start of the address space, then there are no more
4587 pages left in memory and it is OK to assume that the current
4588 section can be included in the current segment. */
4589 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4590 > last_hdr->lma)
4591 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
4592 <= hdr->lma))
4593 {
4594 /* If putting this section in this segment would force us to
4595 skip a page in the segment, then we need a new segment. */
4596 new_segment = TRUE;
4597 }
4598 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4599 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0
4600 && ((abfd->flags & D_PAGED) == 0
4601 || (((last_hdr->lma + last_size - 1) & -maxpagesize)
4602 != (hdr->lma & -maxpagesize))))
4603 {
4604 /* We don't want to put a loaded section after a
4605 nonloaded (ie. bss style) section in the same segment
4606 as that will force the non-loaded section to be loaded.
4607 Consider .tbss sections as loaded for this purpose.
4608 However, like the writable/non-writable case below,
4609 if they are on the same page then they must be put
4610 in the same segment. */
4611 new_segment = TRUE;
4612 }
4613 else if ((abfd->flags & D_PAGED) == 0)
4614 {
4615 /* If the file is not demand paged, which means that we
4616 don't require the sections to be correctly aligned in the
4617 file, then there is no other reason for a new segment. */
4618 new_segment = FALSE;
4619 }
4620 else if (! writable
4621 && (hdr->flags & SEC_READONLY) == 0
4622 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4623 != (hdr->lma & -maxpagesize)))
4624 {
4625 /* We don't want to put a writable section in a read only
4626 segment, unless they are on the same page in memory
4627 anyhow. We already know that the last section does not
4628 bring us past the current section on the page, so the
4629 only case in which the new section is not on the same
4630 page as the previous section is when the previous section
4631 ends precisely on a page boundary. */
4632 new_segment = TRUE;
4633 }
4634 else
4635 {
4636 /* Otherwise, we can use the same segment. */
4637 new_segment = FALSE;
4638 }
4639
4640 /* Allow interested parties a chance to override our decision. */
4641 if (last_hdr != NULL
4642 && info != NULL
4643 && info->callbacks->override_segment_assignment != NULL)
4644 new_segment
4645 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4646 last_hdr,
4647 new_segment);
4648
4649 if (! new_segment)
4650 {
4651 if ((hdr->flags & SEC_READONLY) == 0)
4652 writable = TRUE;
4653 last_hdr = hdr;
4654 /* .tbss sections effectively have zero size. */
4655 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4656 != SEC_THREAD_LOCAL)
4657 last_size = hdr->size;
4658 else
4659 last_size = 0;
4660 continue;
4661 }
4662
4663 /* We need a new program segment. We must create a new program
4664 header holding all the sections from phdr_index until hdr. */
4665
4666 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4667 if (m == NULL)
4668 goto error_return;
4669
4670 *pm = m;
4671 pm = &m->next;
4672
4673 if ((hdr->flags & SEC_READONLY) == 0)
4674 writable = TRUE;
4675 else
4676 writable = FALSE;
4677
4678 last_hdr = hdr;
4679 /* .tbss sections effectively have zero size. */
4680 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4681 last_size = hdr->size;
4682 else
4683 last_size = 0;
4684 phdr_index = i;
4685 phdr_in_segment = FALSE;
4686 }
4687
4688 /* Create a final PT_LOAD program segment, but not if it's just
4689 for .tbss. */
4690 if (last_hdr != NULL
4691 && (i - phdr_index != 1
4692 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4693 != SEC_THREAD_LOCAL)))
4694 {
4695 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4696 if (m == NULL)
4697 goto error_return;
4698
4699 *pm = m;
4700 pm = &m->next;
4701 }
4702
4703 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4704 if (dynsec != NULL)
4705 {
4706 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4707 if (m == NULL)
4708 goto error_return;
4709 *pm = m;
4710 pm = &m->next;
4711 }
4712
4713 /* For each batch of consecutive loadable .note sections,
4714 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4715 because if we link together nonloadable .note sections and
4716 loadable .note sections, we will generate two .note sections
4717 in the output file. FIXME: Using names for section types is
4718 bogus anyhow. */
4719 for (s = abfd->sections; s != NULL; s = s->next)
4720 {
4721 if ((s->flags & SEC_LOAD) != 0
4722 && CONST_STRNEQ (s->name, ".note"))
4723 {
4724 asection *s2;
4725
4726 count = 1;
4727 amt = sizeof (struct elf_segment_map);
4728 if (s->alignment_power == 2)
4729 for (s2 = s; s2->next != NULL; s2 = s2->next)
4730 {
4731 if (s2->next->alignment_power == 2
4732 && (s2->next->flags & SEC_LOAD) != 0
4733 && CONST_STRNEQ (s2->next->name, ".note")
4734 && align_power (s2->lma + s2->size, 2)
4735 == s2->next->lma)
4736 count++;
4737 else
4738 break;
4739 }
4740 amt += (count - 1) * sizeof (asection *);
4741 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4742 if (m == NULL)
4743 goto error_return;
4744 m->next = NULL;
4745 m->p_type = PT_NOTE;
4746 m->count = count;
4747 while (count > 1)
4748 {
4749 m->sections[m->count - count--] = s;
4750 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4751 s = s->next;
4752 }
4753 m->sections[m->count - 1] = s;
4754 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4755 *pm = m;
4756 pm = &m->next;
4757 }
4758 if (s->flags & SEC_THREAD_LOCAL)
4759 {
4760 if (! tls_count)
4761 first_tls = s;
4762 tls_count++;
4763 }
4764 }
4765
4766 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4767 if (tls_count > 0)
4768 {
4769 amt = sizeof (struct elf_segment_map);
4770 amt += (tls_count - 1) * sizeof (asection *);
4771 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4772 if (m == NULL)
4773 goto error_return;
4774 m->next = NULL;
4775 m->p_type = PT_TLS;
4776 m->count = tls_count;
4777 /* Mandated PF_R. */
4778 m->p_flags = PF_R;
4779 m->p_flags_valid = 1;
4780 s = first_tls;
4781 for (i = 0; i < (unsigned int) tls_count; ++i)
4782 {
4783 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4784 {
4785 _bfd_error_handler
4786 (_("%B: TLS sections are not adjacent:"), abfd);
4787 s = first_tls;
4788 i = 0;
4789 while (i < (unsigned int) tls_count)
4790 {
4791 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4792 {
4793 _bfd_error_handler (_(" TLS: %A"), s);
4794 i++;
4795 }
4796 else
4797 _bfd_error_handler (_(" non-TLS: %A"), s);
4798 s = s->next;
4799 }
4800 bfd_set_error (bfd_error_bad_value);
4801 goto error_return;
4802 }
4803 m->sections[i] = s;
4804 s = s->next;
4805 }
4806
4807 *pm = m;
4808 pm = &m->next;
4809 }
4810
4811 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4812 segment. */
4813 eh_frame_hdr = elf_eh_frame_hdr (abfd);
4814 if (eh_frame_hdr != NULL
4815 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4816 {
4817 amt = sizeof (struct elf_segment_map);
4818 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4819 if (m == NULL)
4820 goto error_return;
4821 m->next = NULL;
4822 m->p_type = PT_GNU_EH_FRAME;
4823 m->count = 1;
4824 m->sections[0] = eh_frame_hdr->output_section;
4825
4826 *pm = m;
4827 pm = &m->next;
4828 }
4829
4830 if (elf_stack_flags (abfd))
4831 {
4832 amt = sizeof (struct elf_segment_map);
4833 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4834 if (m == NULL)
4835 goto error_return;
4836 m->next = NULL;
4837 m->p_type = PT_GNU_STACK;
4838 m->p_flags = elf_stack_flags (abfd);
4839 m->p_align = bed->stack_align;
4840 m->p_flags_valid = 1;
4841 m->p_align_valid = m->p_align != 0;
4842 if (info->stacksize > 0)
4843 {
4844 m->p_size = info->stacksize;
4845 m->p_size_valid = 1;
4846 }
4847
4848 *pm = m;
4849 pm = &m->next;
4850 }
4851
4852 if (info != NULL && info->relro)
4853 {
4854 for (m = mfirst; m != NULL; m = m->next)
4855 {
4856 if (m->p_type == PT_LOAD
4857 && m->count != 0
4858 && m->sections[0]->vma >= info->relro_start
4859 && m->sections[0]->vma < info->relro_end)
4860 {
4861 i = m->count;
4862 while (--i != (unsigned) -1)
4863 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4864 == (SEC_LOAD | SEC_HAS_CONTENTS))
4865 break;
4866
4867 if (i != (unsigned) -1)
4868 break;
4869 }
4870 }
4871
4872 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4873 if (m != NULL)
4874 {
4875 amt = sizeof (struct elf_segment_map);
4876 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4877 if (m == NULL)
4878 goto error_return;
4879 m->next = NULL;
4880 m->p_type = PT_GNU_RELRO;
4881 *pm = m;
4882 pm = &m->next;
4883 }
4884 }
4885
4886 free (sections);
4887 elf_seg_map (abfd) = mfirst;
4888 }
4889
4890 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4891 return FALSE;
4892
4893 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
4894 ++count;
4895 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
4896
4897 return TRUE;
4898
4899 error_return:
4900 if (sections != NULL)
4901 free (sections);
4902 return FALSE;
4903 }
4904
4905 /* Sort sections by address. */
4906
4907 static int
4908 elf_sort_sections (const void *arg1, const void *arg2)
4909 {
4910 const asection *sec1 = *(const asection **) arg1;
4911 const asection *sec2 = *(const asection **) arg2;
4912 bfd_size_type size1, size2;
4913
4914 /* Sort by LMA first, since this is the address used to
4915 place the section into a segment. */
4916 if (sec1->lma < sec2->lma)
4917 return -1;
4918 else if (sec1->lma > sec2->lma)
4919 return 1;
4920
4921 /* Then sort by VMA. Normally the LMA and the VMA will be
4922 the same, and this will do nothing. */
4923 if (sec1->vma < sec2->vma)
4924 return -1;
4925 else if (sec1->vma > sec2->vma)
4926 return 1;
4927
4928 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4929
4930 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4931
4932 if (TOEND (sec1))
4933 {
4934 if (TOEND (sec2))
4935 {
4936 /* If the indicies are the same, do not return 0
4937 here, but continue to try the next comparison. */
4938 if (sec1->target_index - sec2->target_index != 0)
4939 return sec1->target_index - sec2->target_index;
4940 }
4941 else
4942 return 1;
4943 }
4944 else if (TOEND (sec2))
4945 return -1;
4946
4947 #undef TOEND
4948
4949 /* Sort by size, to put zero sized sections
4950 before others at the same address. */
4951
4952 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4953 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4954
4955 if (size1 < size2)
4956 return -1;
4957 if (size1 > size2)
4958 return 1;
4959
4960 return sec1->target_index - sec2->target_index;
4961 }
4962
4963 /* Ian Lance Taylor writes:
4964
4965 We shouldn't be using % with a negative signed number. That's just
4966 not good. We have to make sure either that the number is not
4967 negative, or that the number has an unsigned type. When the types
4968 are all the same size they wind up as unsigned. When file_ptr is a
4969 larger signed type, the arithmetic winds up as signed long long,
4970 which is wrong.
4971
4972 What we're trying to say here is something like ``increase OFF by
4973 the least amount that will cause it to be equal to the VMA modulo
4974 the page size.'' */
4975 /* In other words, something like:
4976
4977 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4978 off_offset = off % bed->maxpagesize;
4979 if (vma_offset < off_offset)
4980 adjustment = vma_offset + bed->maxpagesize - off_offset;
4981 else
4982 adjustment = vma_offset - off_offset;
4983
4984 which can can be collapsed into the expression below. */
4985
4986 static file_ptr
4987 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4988 {
4989 /* PR binutils/16199: Handle an alignment of zero. */
4990 if (maxpagesize == 0)
4991 maxpagesize = 1;
4992 return ((vma - off) % maxpagesize);
4993 }
4994
4995 static void
4996 print_segment_map (const struct elf_segment_map *m)
4997 {
4998 unsigned int j;
4999 const char *pt = get_segment_type (m->p_type);
5000 char buf[32];
5001
5002 if (pt == NULL)
5003 {
5004 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5005 sprintf (buf, "LOPROC+%7.7x",
5006 (unsigned int) (m->p_type - PT_LOPROC));
5007 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5008 sprintf (buf, "LOOS+%7.7x",
5009 (unsigned int) (m->p_type - PT_LOOS));
5010 else
5011 snprintf (buf, sizeof (buf), "%8.8x",
5012 (unsigned int) m->p_type);
5013 pt = buf;
5014 }
5015 fflush (stdout);
5016 fprintf (stderr, "%s:", pt);
5017 for (j = 0; j < m->count; j++)
5018 fprintf (stderr, " %s", m->sections [j]->name);
5019 putc ('\n',stderr);
5020 fflush (stderr);
5021 }
5022
5023 static bfd_boolean
5024 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5025 {
5026 void *buf;
5027 bfd_boolean ret;
5028
5029 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5030 return FALSE;
5031 buf = bfd_zmalloc (len);
5032 if (buf == NULL)
5033 return FALSE;
5034 ret = bfd_bwrite (buf, len, abfd) == len;
5035 free (buf);
5036 return ret;
5037 }
5038
5039 /* Assign file positions to the sections based on the mapping from
5040 sections to segments. This function also sets up some fields in
5041 the file header. */
5042
5043 static bfd_boolean
5044 assign_file_positions_for_load_sections (bfd *abfd,
5045 struct bfd_link_info *link_info)
5046 {
5047 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5048 struct elf_segment_map *m;
5049 Elf_Internal_Phdr *phdrs;
5050 Elf_Internal_Phdr *p;
5051 file_ptr off;
5052 bfd_size_type maxpagesize;
5053 unsigned int alloc;
5054 unsigned int i, j;
5055 bfd_vma header_pad = 0;
5056
5057 if (link_info == NULL
5058 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5059 return FALSE;
5060
5061 alloc = 0;
5062 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5063 {
5064 ++alloc;
5065 if (m->header_size)
5066 header_pad = m->header_size;
5067 }
5068
5069 if (alloc)
5070 {
5071 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5072 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5073 }
5074 else
5075 {
5076 /* PR binutils/12467. */
5077 elf_elfheader (abfd)->e_phoff = 0;
5078 elf_elfheader (abfd)->e_phentsize = 0;
5079 }
5080
5081 elf_elfheader (abfd)->e_phnum = alloc;
5082
5083 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5084 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5085 else
5086 BFD_ASSERT (elf_program_header_size (abfd)
5087 >= alloc * bed->s->sizeof_phdr);
5088
5089 if (alloc == 0)
5090 {
5091 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5092 return TRUE;
5093 }
5094
5095 /* We're writing the size in elf_program_header_size (abfd),
5096 see assign_file_positions_except_relocs, so make sure we have
5097 that amount allocated, with trailing space cleared.
5098 The variable alloc contains the computed need, while
5099 elf_program_header_size (abfd) contains the size used for the
5100 layout.
5101 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5102 where the layout is forced to according to a larger size in the
5103 last iterations for the testcase ld-elf/header. */
5104 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5105 == 0);
5106 phdrs = (Elf_Internal_Phdr *)
5107 bfd_zalloc2 (abfd,
5108 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5109 sizeof (Elf_Internal_Phdr));
5110 elf_tdata (abfd)->phdr = phdrs;
5111 if (phdrs == NULL)
5112 return FALSE;
5113
5114 maxpagesize = 1;
5115 if ((abfd->flags & D_PAGED) != 0)
5116 maxpagesize = bed->maxpagesize;
5117
5118 off = bed->s->sizeof_ehdr;
5119 off += alloc * bed->s->sizeof_phdr;
5120 if (header_pad < (bfd_vma) off)
5121 header_pad = 0;
5122 else
5123 header_pad -= off;
5124 off += header_pad;
5125
5126 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5127 m != NULL;
5128 m = m->next, p++, j++)
5129 {
5130 asection **secpp;
5131 bfd_vma off_adjust;
5132 bfd_boolean no_contents;
5133
5134 /* If elf_segment_map is not from map_sections_to_segments, the
5135 sections may not be correctly ordered. NOTE: sorting should
5136 not be done to the PT_NOTE section of a corefile, which may
5137 contain several pseudo-sections artificially created by bfd.
5138 Sorting these pseudo-sections breaks things badly. */
5139 if (m->count > 1
5140 && !(elf_elfheader (abfd)->e_type == ET_CORE
5141 && m->p_type == PT_NOTE))
5142 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5143 elf_sort_sections);
5144
5145 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5146 number of sections with contents contributing to both p_filesz
5147 and p_memsz, followed by a number of sections with no contents
5148 that just contribute to p_memsz. In this loop, OFF tracks next
5149 available file offset for PT_LOAD and PT_NOTE segments. */
5150 p->p_type = m->p_type;
5151 p->p_flags = m->p_flags;
5152
5153 if (m->count == 0)
5154 p->p_vaddr = 0;
5155 else
5156 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
5157
5158 if (m->p_paddr_valid)
5159 p->p_paddr = m->p_paddr;
5160 else if (m->count == 0)
5161 p->p_paddr = 0;
5162 else
5163 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
5164
5165 if (p->p_type == PT_LOAD
5166 && (abfd->flags & D_PAGED) != 0)
5167 {
5168 /* p_align in demand paged PT_LOAD segments effectively stores
5169 the maximum page size. When copying an executable with
5170 objcopy, we set m->p_align from the input file. Use this
5171 value for maxpagesize rather than bed->maxpagesize, which
5172 may be different. Note that we use maxpagesize for PT_TLS
5173 segment alignment later in this function, so we are relying
5174 on at least one PT_LOAD segment appearing before a PT_TLS
5175 segment. */
5176 if (m->p_align_valid)
5177 maxpagesize = m->p_align;
5178
5179 p->p_align = maxpagesize;
5180 }
5181 else if (m->p_align_valid)
5182 p->p_align = m->p_align;
5183 else if (m->count == 0)
5184 p->p_align = 1 << bed->s->log_file_align;
5185 else
5186 p->p_align = 0;
5187
5188 no_contents = FALSE;
5189 off_adjust = 0;
5190 if (p->p_type == PT_LOAD
5191 && m->count > 0)
5192 {
5193 bfd_size_type align;
5194 unsigned int align_power = 0;
5195
5196 if (m->p_align_valid)
5197 align = p->p_align;
5198 else
5199 {
5200 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5201 {
5202 unsigned int secalign;
5203
5204 secalign = bfd_get_section_alignment (abfd, *secpp);
5205 if (secalign > align_power)
5206 align_power = secalign;
5207 }
5208 align = (bfd_size_type) 1 << align_power;
5209 if (align < maxpagesize)
5210 align = maxpagesize;
5211 }
5212
5213 for (i = 0; i < m->count; i++)
5214 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5215 /* If we aren't making room for this section, then
5216 it must be SHT_NOBITS regardless of what we've
5217 set via struct bfd_elf_special_section. */
5218 elf_section_type (m->sections[i]) = SHT_NOBITS;
5219
5220 /* Find out whether this segment contains any loadable
5221 sections. */
5222 no_contents = TRUE;
5223 for (i = 0; i < m->count; i++)
5224 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5225 {
5226 no_contents = FALSE;
5227 break;
5228 }
5229
5230 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5231 off += off_adjust;
5232 if (no_contents)
5233 {
5234 /* We shouldn't need to align the segment on disk since
5235 the segment doesn't need file space, but the gABI
5236 arguably requires the alignment and glibc ld.so
5237 checks it. So to comply with the alignment
5238 requirement but not waste file space, we adjust
5239 p_offset for just this segment. (OFF_ADJUST is
5240 subtracted from OFF later.) This may put p_offset
5241 past the end of file, but that shouldn't matter. */
5242 }
5243 else
5244 off_adjust = 0;
5245 }
5246 /* Make sure the .dynamic section is the first section in the
5247 PT_DYNAMIC segment. */
5248 else if (p->p_type == PT_DYNAMIC
5249 && m->count > 1
5250 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5251 {
5252 _bfd_error_handler
5253 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
5254 abfd);
5255 bfd_set_error (bfd_error_bad_value);
5256 return FALSE;
5257 }
5258 /* Set the note section type to SHT_NOTE. */
5259 else if (p->p_type == PT_NOTE)
5260 for (i = 0; i < m->count; i++)
5261 elf_section_type (m->sections[i]) = SHT_NOTE;
5262
5263 p->p_offset = 0;
5264 p->p_filesz = 0;
5265 p->p_memsz = 0;
5266
5267 if (m->includes_filehdr)
5268 {
5269 if (!m->p_flags_valid)
5270 p->p_flags |= PF_R;
5271 p->p_filesz = bed->s->sizeof_ehdr;
5272 p->p_memsz = bed->s->sizeof_ehdr;
5273 if (m->count > 0)
5274 {
5275 if (p->p_vaddr < (bfd_vma) off
5276 || (!m->p_paddr_valid
5277 && p->p_paddr < (bfd_vma) off))
5278 {
5279 (*_bfd_error_handler)
5280 (_("%B: Not enough room for program headers, try linking with -N"),
5281 abfd);
5282 bfd_set_error (bfd_error_bad_value);
5283 return FALSE;
5284 }
5285
5286 p->p_vaddr -= off;
5287 if (!m->p_paddr_valid)
5288 p->p_paddr -= off;
5289 }
5290 }
5291
5292 if (m->includes_phdrs)
5293 {
5294 if (!m->p_flags_valid)
5295 p->p_flags |= PF_R;
5296
5297 if (!m->includes_filehdr)
5298 {
5299 p->p_offset = bed->s->sizeof_ehdr;
5300
5301 if (m->count > 0)
5302 {
5303 p->p_vaddr -= off - p->p_offset;
5304 if (!m->p_paddr_valid)
5305 p->p_paddr -= off - p->p_offset;
5306 }
5307 }
5308
5309 p->p_filesz += alloc * bed->s->sizeof_phdr;
5310 p->p_memsz += alloc * bed->s->sizeof_phdr;
5311 if (m->count)
5312 {
5313 p->p_filesz += header_pad;
5314 p->p_memsz += header_pad;
5315 }
5316 }
5317
5318 if (p->p_type == PT_LOAD
5319 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5320 {
5321 if (!m->includes_filehdr && !m->includes_phdrs)
5322 p->p_offset = off;
5323 else
5324 {
5325 file_ptr adjust;
5326
5327 adjust = off - (p->p_offset + p->p_filesz);
5328 if (!no_contents)
5329 p->p_filesz += adjust;
5330 p->p_memsz += adjust;
5331 }
5332 }
5333
5334 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5335 maps. Set filepos for sections in PT_LOAD segments, and in
5336 core files, for sections in PT_NOTE segments.
5337 assign_file_positions_for_non_load_sections will set filepos
5338 for other sections and update p_filesz for other segments. */
5339 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5340 {
5341 asection *sec;
5342 bfd_size_type align;
5343 Elf_Internal_Shdr *this_hdr;
5344
5345 sec = *secpp;
5346 this_hdr = &elf_section_data (sec)->this_hdr;
5347 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5348
5349 if ((p->p_type == PT_LOAD
5350 || p->p_type == PT_TLS)
5351 && (this_hdr->sh_type != SHT_NOBITS
5352 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5353 && ((this_hdr->sh_flags & SHF_TLS) == 0
5354 || p->p_type == PT_TLS))))
5355 {
5356 bfd_vma p_start = p->p_paddr;
5357 bfd_vma p_end = p_start + p->p_memsz;
5358 bfd_vma s_start = sec->lma;
5359 bfd_vma adjust = s_start - p_end;
5360
5361 if (adjust != 0
5362 && (s_start < p_end
5363 || p_end < p_start))
5364 {
5365 (*_bfd_error_handler)
5366 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
5367 (unsigned long) s_start, (unsigned long) p_end);
5368 adjust = 0;
5369 sec->lma = p_end;
5370 }
5371 p->p_memsz += adjust;
5372
5373 if (this_hdr->sh_type != SHT_NOBITS)
5374 {
5375 if (p->p_filesz + adjust < p->p_memsz)
5376 {
5377 /* We have a PROGBITS section following NOBITS ones.
5378 Allocate file space for the NOBITS section(s) and
5379 zero it. */
5380 adjust = p->p_memsz - p->p_filesz;
5381 if (!write_zeros (abfd, off, adjust))
5382 return FALSE;
5383 }
5384 off += adjust;
5385 p->p_filesz += adjust;
5386 }
5387 }
5388
5389 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5390 {
5391 /* The section at i == 0 is the one that actually contains
5392 everything. */
5393 if (i == 0)
5394 {
5395 this_hdr->sh_offset = sec->filepos = off;
5396 off += this_hdr->sh_size;
5397 p->p_filesz = this_hdr->sh_size;
5398 p->p_memsz = 0;
5399 p->p_align = 1;
5400 }
5401 else
5402 {
5403 /* The rest are fake sections that shouldn't be written. */
5404 sec->filepos = 0;
5405 sec->size = 0;
5406 sec->flags = 0;
5407 continue;
5408 }
5409 }
5410 else
5411 {
5412 if (p->p_type == PT_LOAD)
5413 {
5414 this_hdr->sh_offset = sec->filepos = off;
5415 if (this_hdr->sh_type != SHT_NOBITS)
5416 off += this_hdr->sh_size;
5417 }
5418 else if (this_hdr->sh_type == SHT_NOBITS
5419 && (this_hdr->sh_flags & SHF_TLS) != 0
5420 && this_hdr->sh_offset == 0)
5421 {
5422 /* This is a .tbss section that didn't get a PT_LOAD.
5423 (See _bfd_elf_map_sections_to_segments "Create a
5424 final PT_LOAD".) Set sh_offset to the value it
5425 would have if we had created a zero p_filesz and
5426 p_memsz PT_LOAD header for the section. This
5427 also makes the PT_TLS header have the same
5428 p_offset value. */
5429 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5430 off, align);
5431 this_hdr->sh_offset = sec->filepos = off + adjust;
5432 }
5433
5434 if (this_hdr->sh_type != SHT_NOBITS)
5435 {
5436 p->p_filesz += this_hdr->sh_size;
5437 /* A load section without SHF_ALLOC is something like
5438 a note section in a PT_NOTE segment. These take
5439 file space but are not loaded into memory. */
5440 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5441 p->p_memsz += this_hdr->sh_size;
5442 }
5443 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5444 {
5445 if (p->p_type == PT_TLS)
5446 p->p_memsz += this_hdr->sh_size;
5447
5448 /* .tbss is special. It doesn't contribute to p_memsz of
5449 normal segments. */
5450 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5451 p->p_memsz += this_hdr->sh_size;
5452 }
5453
5454 if (align > p->p_align
5455 && !m->p_align_valid
5456 && (p->p_type != PT_LOAD
5457 || (abfd->flags & D_PAGED) == 0))
5458 p->p_align = align;
5459 }
5460
5461 if (!m->p_flags_valid)
5462 {
5463 p->p_flags |= PF_R;
5464 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5465 p->p_flags |= PF_X;
5466 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5467 p->p_flags |= PF_W;
5468 }
5469 }
5470
5471 off -= off_adjust;
5472
5473 /* Check that all sections are in a PT_LOAD segment.
5474 Don't check funky gdb generated core files. */
5475 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5476 {
5477 bfd_boolean check_vma = TRUE;
5478
5479 for (i = 1; i < m->count; i++)
5480 if (m->sections[i]->vma == m->sections[i - 1]->vma
5481 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5482 ->this_hdr), p) != 0
5483 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5484 ->this_hdr), p) != 0)
5485 {
5486 /* Looks like we have overlays packed into the segment. */
5487 check_vma = FALSE;
5488 break;
5489 }
5490
5491 for (i = 0; i < m->count; i++)
5492 {
5493 Elf_Internal_Shdr *this_hdr;
5494 asection *sec;
5495
5496 sec = m->sections[i];
5497 this_hdr = &(elf_section_data(sec)->this_hdr);
5498 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5499 && !ELF_TBSS_SPECIAL (this_hdr, p))
5500 {
5501 (*_bfd_error_handler)
5502 (_("%B: section `%A' can't be allocated in segment %d"),
5503 abfd, sec, j);
5504 print_segment_map (m);
5505 }
5506 }
5507 }
5508 }
5509
5510 elf_next_file_pos (abfd) = off;
5511 return TRUE;
5512 }
5513
5514 /* Assign file positions for the other sections. */
5515
5516 static bfd_boolean
5517 assign_file_positions_for_non_load_sections (bfd *abfd,
5518 struct bfd_link_info *link_info)
5519 {
5520 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5521 Elf_Internal_Shdr **i_shdrpp;
5522 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5523 Elf_Internal_Phdr *phdrs;
5524 Elf_Internal_Phdr *p;
5525 struct elf_segment_map *m;
5526 struct elf_segment_map *hdrs_segment;
5527 bfd_vma filehdr_vaddr, filehdr_paddr;
5528 bfd_vma phdrs_vaddr, phdrs_paddr;
5529 file_ptr off;
5530 unsigned int count;
5531
5532 i_shdrpp = elf_elfsections (abfd);
5533 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5534 off = elf_next_file_pos (abfd);
5535 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5536 {
5537 Elf_Internal_Shdr *hdr;
5538
5539 hdr = *hdrpp;
5540 if (hdr->bfd_section != NULL
5541 && (hdr->bfd_section->filepos != 0
5542 || (hdr->sh_type == SHT_NOBITS
5543 && hdr->contents == NULL)))
5544 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5545 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5546 {
5547 if (hdr->sh_size != 0)
5548 (*_bfd_error_handler)
5549 (_("%B: warning: allocated section `%s' not in segment"),
5550 abfd,
5551 (hdr->bfd_section == NULL
5552 ? "*unknown*"
5553 : hdr->bfd_section->name));
5554 /* We don't need to page align empty sections. */
5555 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5556 off += vma_page_aligned_bias (hdr->sh_addr, off,
5557 bed->maxpagesize);
5558 else
5559 off += vma_page_aligned_bias (hdr->sh_addr, off,
5560 hdr->sh_addralign);
5561 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5562 FALSE);
5563 }
5564 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5565 && hdr->bfd_section == NULL)
5566 || (hdr->bfd_section != NULL
5567 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5568 /* Compress DWARF debug sections. */
5569 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5570 || (elf_symtab_shndx_list (abfd) != NULL
5571 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5572 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5573 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5574 hdr->sh_offset = -1;
5575 else
5576 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5577 }
5578
5579 /* Now that we have set the section file positions, we can set up
5580 the file positions for the non PT_LOAD segments. */
5581 count = 0;
5582 filehdr_vaddr = 0;
5583 filehdr_paddr = 0;
5584 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5585 phdrs_paddr = 0;
5586 hdrs_segment = NULL;
5587 phdrs = elf_tdata (abfd)->phdr;
5588 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5589 {
5590 ++count;
5591 if (p->p_type != PT_LOAD)
5592 continue;
5593
5594 if (m->includes_filehdr)
5595 {
5596 filehdr_vaddr = p->p_vaddr;
5597 filehdr_paddr = p->p_paddr;
5598 }
5599 if (m->includes_phdrs)
5600 {
5601 phdrs_vaddr = p->p_vaddr;
5602 phdrs_paddr = p->p_paddr;
5603 if (m->includes_filehdr)
5604 {
5605 hdrs_segment = m;
5606 phdrs_vaddr += bed->s->sizeof_ehdr;
5607 phdrs_paddr += bed->s->sizeof_ehdr;
5608 }
5609 }
5610 }
5611
5612 if (hdrs_segment != NULL && link_info != NULL)
5613 {
5614 /* There is a segment that contains both the file headers and the
5615 program headers, so provide a symbol __ehdr_start pointing there.
5616 A program can use this to examine itself robustly. */
5617
5618 struct elf_link_hash_entry *hash
5619 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5620 FALSE, FALSE, TRUE);
5621 /* If the symbol was referenced and not defined, define it. */
5622 if (hash != NULL
5623 && (hash->root.type == bfd_link_hash_new
5624 || hash->root.type == bfd_link_hash_undefined
5625 || hash->root.type == bfd_link_hash_undefweak
5626 || hash->root.type == bfd_link_hash_common))
5627 {
5628 asection *s = NULL;
5629 if (hdrs_segment->count != 0)
5630 /* The segment contains sections, so use the first one. */
5631 s = hdrs_segment->sections[0];
5632 else
5633 /* Use the first (i.e. lowest-addressed) section in any segment. */
5634 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5635 if (m->count != 0)
5636 {
5637 s = m->sections[0];
5638 break;
5639 }
5640
5641 if (s != NULL)
5642 {
5643 hash->root.u.def.value = filehdr_vaddr - s->vma;
5644 hash->root.u.def.section = s;
5645 }
5646 else
5647 {
5648 hash->root.u.def.value = filehdr_vaddr;
5649 hash->root.u.def.section = bfd_abs_section_ptr;
5650 }
5651
5652 hash->root.type = bfd_link_hash_defined;
5653 hash->def_regular = 1;
5654 hash->non_elf = 0;
5655 }
5656 }
5657
5658 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5659 {
5660 if (p->p_type == PT_GNU_RELRO)
5661 {
5662 const Elf_Internal_Phdr *lp;
5663 struct elf_segment_map *lm;
5664
5665 if (link_info != NULL)
5666 {
5667 /* During linking the range of the RELRO segment is passed
5668 in link_info. */
5669 for (lm = elf_seg_map (abfd), lp = phdrs;
5670 lm != NULL;
5671 lm = lm->next, lp++)
5672 {
5673 if (lp->p_type == PT_LOAD
5674 && lp->p_vaddr < link_info->relro_end
5675 && lm->count != 0
5676 && lm->sections[0]->vma >= link_info->relro_start)
5677 break;
5678 }
5679
5680 BFD_ASSERT (lm != NULL);
5681 }
5682 else
5683 {
5684 /* Otherwise we are copying an executable or shared
5685 library, but we need to use the same linker logic. */
5686 for (lp = phdrs; lp < phdrs + count; ++lp)
5687 {
5688 if (lp->p_type == PT_LOAD
5689 && lp->p_paddr == p->p_paddr)
5690 break;
5691 }
5692 }
5693
5694 if (lp < phdrs + count)
5695 {
5696 p->p_vaddr = lp->p_vaddr;
5697 p->p_paddr = lp->p_paddr;
5698 p->p_offset = lp->p_offset;
5699 if (link_info != NULL)
5700 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5701 else if (m->p_size_valid)
5702 p->p_filesz = m->p_size;
5703 else
5704 abort ();
5705 p->p_memsz = p->p_filesz;
5706 /* Preserve the alignment and flags if they are valid. The
5707 gold linker generates RW/4 for the PT_GNU_RELRO section.
5708 It is better for objcopy/strip to honor these attributes
5709 otherwise gdb will choke when using separate debug files.
5710 */
5711 if (!m->p_align_valid)
5712 p->p_align = 1;
5713 if (!m->p_flags_valid)
5714 p->p_flags = PF_R;
5715 }
5716 else
5717 {
5718 memset (p, 0, sizeof *p);
5719 p->p_type = PT_NULL;
5720 }
5721 }
5722 else if (p->p_type == PT_GNU_STACK)
5723 {
5724 if (m->p_size_valid)
5725 p->p_memsz = m->p_size;
5726 }
5727 else if (m->count != 0)
5728 {
5729 unsigned int i;
5730 if (p->p_type != PT_LOAD
5731 && (p->p_type != PT_NOTE
5732 || bfd_get_format (abfd) != bfd_core))
5733 {
5734 if (m->includes_filehdr || m->includes_phdrs)
5735 {
5736 /* PR 17512: file: 2195325e. */
5737 (*_bfd_error_handler)
5738 (_("%B: warning: non-load segment includes file header and/or program header"),
5739 abfd);
5740 return FALSE;
5741 }
5742
5743 p->p_filesz = 0;
5744 p->p_offset = m->sections[0]->filepos;
5745 for (i = m->count; i-- != 0;)
5746 {
5747 asection *sect = m->sections[i];
5748 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5749 if (hdr->sh_type != SHT_NOBITS)
5750 {
5751 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5752 + hdr->sh_size);
5753 break;
5754 }
5755 }
5756 }
5757 }
5758 else if (m->includes_filehdr)
5759 {
5760 p->p_vaddr = filehdr_vaddr;
5761 if (! m->p_paddr_valid)
5762 p->p_paddr = filehdr_paddr;
5763 }
5764 else if (m->includes_phdrs)
5765 {
5766 p->p_vaddr = phdrs_vaddr;
5767 if (! m->p_paddr_valid)
5768 p->p_paddr = phdrs_paddr;
5769 }
5770 }
5771
5772 elf_next_file_pos (abfd) = off;
5773
5774 return TRUE;
5775 }
5776
5777 static elf_section_list *
5778 find_section_in_list (unsigned int i, elf_section_list * list)
5779 {
5780 for (;list != NULL; list = list->next)
5781 if (list->ndx == i)
5782 break;
5783 return list;
5784 }
5785
5786 /* Work out the file positions of all the sections. This is called by
5787 _bfd_elf_compute_section_file_positions. All the section sizes and
5788 VMAs must be known before this is called.
5789
5790 Reloc sections come in two flavours: Those processed specially as
5791 "side-channel" data attached to a section to which they apply, and
5792 those that bfd doesn't process as relocations. The latter sort are
5793 stored in a normal bfd section by bfd_section_from_shdr. We don't
5794 consider the former sort here, unless they form part of the loadable
5795 image. Reloc sections not assigned here will be handled later by
5796 assign_file_positions_for_relocs.
5797
5798 We also don't set the positions of the .symtab and .strtab here. */
5799
5800 static bfd_boolean
5801 assign_file_positions_except_relocs (bfd *abfd,
5802 struct bfd_link_info *link_info)
5803 {
5804 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5805 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5806 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5807
5808 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5809 && bfd_get_format (abfd) != bfd_core)
5810 {
5811 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5812 unsigned int num_sec = elf_numsections (abfd);
5813 Elf_Internal_Shdr **hdrpp;
5814 unsigned int i;
5815 file_ptr off;
5816
5817 /* Start after the ELF header. */
5818 off = i_ehdrp->e_ehsize;
5819
5820 /* We are not creating an executable, which means that we are
5821 not creating a program header, and that the actual order of
5822 the sections in the file is unimportant. */
5823 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5824 {
5825 Elf_Internal_Shdr *hdr;
5826
5827 hdr = *hdrpp;
5828 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5829 && hdr->bfd_section == NULL)
5830 || (hdr->bfd_section != NULL
5831 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5832 /* Compress DWARF debug sections. */
5833 || i == elf_onesymtab (abfd)
5834 || (elf_symtab_shndx_list (abfd) != NULL
5835 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5836 || i == elf_strtab_sec (abfd)
5837 || i == elf_shstrtab_sec (abfd))
5838 {
5839 hdr->sh_offset = -1;
5840 }
5841 else
5842 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5843 }
5844
5845 elf_next_file_pos (abfd) = off;
5846 }
5847 else
5848 {
5849 unsigned int alloc;
5850
5851 /* Assign file positions for the loaded sections based on the
5852 assignment of sections to segments. */
5853 if (!assign_file_positions_for_load_sections (abfd, link_info))
5854 return FALSE;
5855
5856 /* And for non-load sections. */
5857 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5858 return FALSE;
5859
5860 if (bed->elf_backend_modify_program_headers != NULL)
5861 {
5862 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5863 return FALSE;
5864 }
5865
5866 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
5867 if (link_info != NULL && bfd_link_pie (link_info))
5868 {
5869 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
5870 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
5871 Elf_Internal_Phdr *end_segment = &segment[num_segments];
5872
5873 /* Find the lowest p_vaddr in PT_LOAD segments. */
5874 bfd_vma p_vaddr = (bfd_vma) -1;
5875 for (; segment < end_segment; segment++)
5876 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
5877 p_vaddr = segment->p_vaddr;
5878
5879 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
5880 segments is non-zero. */
5881 if (p_vaddr)
5882 i_ehdrp->e_type = ET_EXEC;
5883 }
5884
5885 /* Write out the program headers. */
5886 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5887 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5888 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5889 return FALSE;
5890 }
5891
5892 return TRUE;
5893 }
5894
5895 static bfd_boolean
5896 prep_headers (bfd *abfd)
5897 {
5898 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5899 struct elf_strtab_hash *shstrtab;
5900 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5901
5902 i_ehdrp = elf_elfheader (abfd);
5903
5904 shstrtab = _bfd_elf_strtab_init ();
5905 if (shstrtab == NULL)
5906 return FALSE;
5907
5908 elf_shstrtab (abfd) = shstrtab;
5909
5910 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5911 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5912 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5913 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5914
5915 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5916 i_ehdrp->e_ident[EI_DATA] =
5917 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5918 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5919
5920 if ((abfd->flags & DYNAMIC) != 0)
5921 i_ehdrp->e_type = ET_DYN;
5922 else if ((abfd->flags & EXEC_P) != 0)
5923 i_ehdrp->e_type = ET_EXEC;
5924 else if (bfd_get_format (abfd) == bfd_core)
5925 i_ehdrp->e_type = ET_CORE;
5926 else
5927 i_ehdrp->e_type = ET_REL;
5928
5929 switch (bfd_get_arch (abfd))
5930 {
5931 case bfd_arch_unknown:
5932 i_ehdrp->e_machine = EM_NONE;
5933 break;
5934
5935 /* There used to be a long list of cases here, each one setting
5936 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5937 in the corresponding bfd definition. To avoid duplication,
5938 the switch was removed. Machines that need special handling
5939 can generally do it in elf_backend_final_write_processing(),
5940 unless they need the information earlier than the final write.
5941 Such need can generally be supplied by replacing the tests for
5942 e_machine with the conditions used to determine it. */
5943 default:
5944 i_ehdrp->e_machine = bed->elf_machine_code;
5945 }
5946
5947 i_ehdrp->e_version = bed->s->ev_current;
5948 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5949
5950 /* No program header, for now. */
5951 i_ehdrp->e_phoff = 0;
5952 i_ehdrp->e_phentsize = 0;
5953 i_ehdrp->e_phnum = 0;
5954
5955 /* Each bfd section is section header entry. */
5956 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5957 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5958
5959 /* If we're building an executable, we'll need a program header table. */
5960 if (abfd->flags & EXEC_P)
5961 /* It all happens later. */
5962 ;
5963 else
5964 {
5965 i_ehdrp->e_phentsize = 0;
5966 i_ehdrp->e_phoff = 0;
5967 }
5968
5969 elf_tdata (abfd)->symtab_hdr.sh_name =
5970 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5971 elf_tdata (abfd)->strtab_hdr.sh_name =
5972 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5973 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5974 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5975 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5976 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
5977 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5978 return FALSE;
5979
5980 return TRUE;
5981 }
5982
5983 /* Assign file positions for all the reloc sections which are not part
5984 of the loadable file image, and the file position of section headers. */
5985
5986 static bfd_boolean
5987 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
5988 {
5989 file_ptr off;
5990 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
5991 Elf_Internal_Shdr *shdrp;
5992 Elf_Internal_Ehdr *i_ehdrp;
5993 const struct elf_backend_data *bed;
5994
5995 off = elf_next_file_pos (abfd);
5996
5997 shdrpp = elf_elfsections (abfd);
5998 end_shdrpp = shdrpp + elf_numsections (abfd);
5999 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6000 {
6001 shdrp = *shdrpp;
6002 if (shdrp->sh_offset == -1)
6003 {
6004 asection *sec = shdrp->bfd_section;
6005 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6006 || shdrp->sh_type == SHT_RELA);
6007 if (is_rel
6008 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6009 {
6010 if (!is_rel)
6011 {
6012 const char *name = sec->name;
6013 struct bfd_elf_section_data *d;
6014
6015 /* Compress DWARF debug sections. */
6016 if (!bfd_compress_section (abfd, sec,
6017 shdrp->contents))
6018 return FALSE;
6019
6020 if (sec->compress_status == COMPRESS_SECTION_DONE
6021 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6022 {
6023 /* If section is compressed with zlib-gnu, convert
6024 section name from .debug_* to .zdebug_*. */
6025 char *new_name
6026 = convert_debug_to_zdebug (abfd, name);
6027 if (new_name == NULL)
6028 return FALSE;
6029 name = new_name;
6030 }
6031 /* Add section name to section name section. */
6032 if (shdrp->sh_name != (unsigned int) -1)
6033 abort ();
6034 shdrp->sh_name
6035 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6036 name, FALSE);
6037 d = elf_section_data (sec);
6038
6039 /* Add reloc section name to section name section. */
6040 if (d->rel.hdr
6041 && !_bfd_elf_set_reloc_sh_name (abfd,
6042 d->rel.hdr,
6043 name, FALSE))
6044 return FALSE;
6045 if (d->rela.hdr
6046 && !_bfd_elf_set_reloc_sh_name (abfd,
6047 d->rela.hdr,
6048 name, TRUE))
6049 return FALSE;
6050
6051 /* Update section size and contents. */
6052 shdrp->sh_size = sec->size;
6053 shdrp->contents = sec->contents;
6054 shdrp->bfd_section->contents = NULL;
6055 }
6056 off = _bfd_elf_assign_file_position_for_section (shdrp,
6057 off,
6058 TRUE);
6059 }
6060 }
6061 }
6062
6063 /* Place section name section after DWARF debug sections have been
6064 compressed. */
6065 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6066 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6067 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6068 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6069
6070 /* Place the section headers. */
6071 i_ehdrp = elf_elfheader (abfd);
6072 bed = get_elf_backend_data (abfd);
6073 off = align_file_position (off, 1 << bed->s->log_file_align);
6074 i_ehdrp->e_shoff = off;
6075 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6076 elf_next_file_pos (abfd) = off;
6077
6078 return TRUE;
6079 }
6080
6081 bfd_boolean
6082 _bfd_elf_write_object_contents (bfd *abfd)
6083 {
6084 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6085 Elf_Internal_Shdr **i_shdrp;
6086 bfd_boolean failed;
6087 unsigned int count, num_sec;
6088 struct elf_obj_tdata *t;
6089
6090 if (! abfd->output_has_begun
6091 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6092 return FALSE;
6093
6094 i_shdrp = elf_elfsections (abfd);
6095
6096 failed = FALSE;
6097 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6098 if (failed)
6099 return FALSE;
6100
6101 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6102 return FALSE;
6103
6104 /* After writing the headers, we need to write the sections too... */
6105 num_sec = elf_numsections (abfd);
6106 for (count = 1; count < num_sec; count++)
6107 {
6108 i_shdrp[count]->sh_name
6109 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6110 i_shdrp[count]->sh_name);
6111 if (bed->elf_backend_section_processing)
6112 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
6113 if (i_shdrp[count]->contents)
6114 {
6115 bfd_size_type amt = i_shdrp[count]->sh_size;
6116
6117 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6118 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6119 return FALSE;
6120 }
6121 }
6122
6123 /* Write out the section header names. */
6124 t = elf_tdata (abfd);
6125 if (elf_shstrtab (abfd) != NULL
6126 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6127 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6128 return FALSE;
6129
6130 if (bed->elf_backend_final_write_processing)
6131 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6132
6133 if (!bed->s->write_shdrs_and_ehdr (abfd))
6134 return FALSE;
6135
6136 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6137 if (t->o->build_id.after_write_object_contents != NULL)
6138 return (*t->o->build_id.after_write_object_contents) (abfd);
6139
6140 return TRUE;
6141 }
6142
6143 bfd_boolean
6144 _bfd_elf_write_corefile_contents (bfd *abfd)
6145 {
6146 /* Hopefully this can be done just like an object file. */
6147 return _bfd_elf_write_object_contents (abfd);
6148 }
6149
6150 /* Given a section, search the header to find them. */
6151
6152 unsigned int
6153 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6154 {
6155 const struct elf_backend_data *bed;
6156 unsigned int sec_index;
6157
6158 if (elf_section_data (asect) != NULL
6159 && elf_section_data (asect)->this_idx != 0)
6160 return elf_section_data (asect)->this_idx;
6161
6162 if (bfd_is_abs_section (asect))
6163 sec_index = SHN_ABS;
6164 else if (bfd_is_com_section (asect))
6165 sec_index = SHN_COMMON;
6166 else if (bfd_is_und_section (asect))
6167 sec_index = SHN_UNDEF;
6168 else
6169 sec_index = SHN_BAD;
6170
6171 bed = get_elf_backend_data (abfd);
6172 if (bed->elf_backend_section_from_bfd_section)
6173 {
6174 int retval = sec_index;
6175
6176 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6177 return retval;
6178 }
6179
6180 if (sec_index == SHN_BAD)
6181 bfd_set_error (bfd_error_nonrepresentable_section);
6182
6183 return sec_index;
6184 }
6185
6186 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6187 on error. */
6188
6189 int
6190 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6191 {
6192 asymbol *asym_ptr = *asym_ptr_ptr;
6193 int idx;
6194 flagword flags = asym_ptr->flags;
6195
6196 /* When gas creates relocations against local labels, it creates its
6197 own symbol for the section, but does put the symbol into the
6198 symbol chain, so udata is 0. When the linker is generating
6199 relocatable output, this section symbol may be for one of the
6200 input sections rather than the output section. */
6201 if (asym_ptr->udata.i == 0
6202 && (flags & BSF_SECTION_SYM)
6203 && asym_ptr->section)
6204 {
6205 asection *sec;
6206 int indx;
6207
6208 sec = asym_ptr->section;
6209 if (sec->owner != abfd && sec->output_section != NULL)
6210 sec = sec->output_section;
6211 if (sec->owner == abfd
6212 && (indx = sec->index) < elf_num_section_syms (abfd)
6213 && elf_section_syms (abfd)[indx] != NULL)
6214 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6215 }
6216
6217 idx = asym_ptr->udata.i;
6218
6219 if (idx == 0)
6220 {
6221 /* This case can occur when using --strip-symbol on a symbol
6222 which is used in a relocation entry. */
6223 (*_bfd_error_handler)
6224 (_("%B: symbol `%s' required but not present"),
6225 abfd, bfd_asymbol_name (asym_ptr));
6226 bfd_set_error (bfd_error_no_symbols);
6227 return -1;
6228 }
6229
6230 #if DEBUG & 4
6231 {
6232 fprintf (stderr,
6233 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
6234 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
6235 fflush (stderr);
6236 }
6237 #endif
6238
6239 return idx;
6240 }
6241
6242 /* Rewrite program header information. */
6243
6244 static bfd_boolean
6245 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6246 {
6247 Elf_Internal_Ehdr *iehdr;
6248 struct elf_segment_map *map;
6249 struct elf_segment_map *map_first;
6250 struct elf_segment_map **pointer_to_map;
6251 Elf_Internal_Phdr *segment;
6252 asection *section;
6253 unsigned int i;
6254 unsigned int num_segments;
6255 bfd_boolean phdr_included = FALSE;
6256 bfd_boolean p_paddr_valid;
6257 bfd_vma maxpagesize;
6258 struct elf_segment_map *phdr_adjust_seg = NULL;
6259 unsigned int phdr_adjust_num = 0;
6260 const struct elf_backend_data *bed;
6261
6262 bed = get_elf_backend_data (ibfd);
6263 iehdr = elf_elfheader (ibfd);
6264
6265 map_first = NULL;
6266 pointer_to_map = &map_first;
6267
6268 num_segments = elf_elfheader (ibfd)->e_phnum;
6269 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6270
6271 /* Returns the end address of the segment + 1. */
6272 #define SEGMENT_END(segment, start) \
6273 (start + (segment->p_memsz > segment->p_filesz \
6274 ? segment->p_memsz : segment->p_filesz))
6275
6276 #define SECTION_SIZE(section, segment) \
6277 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6278 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6279 ? section->size : 0)
6280
6281 /* Returns TRUE if the given section is contained within
6282 the given segment. VMA addresses are compared. */
6283 #define IS_CONTAINED_BY_VMA(section, segment) \
6284 (section->vma >= segment->p_vaddr \
6285 && (section->vma + SECTION_SIZE (section, segment) \
6286 <= (SEGMENT_END (segment, segment->p_vaddr))))
6287
6288 /* Returns TRUE if the given section is contained within
6289 the given segment. LMA addresses are compared. */
6290 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6291 (section->lma >= base \
6292 && (section->lma + SECTION_SIZE (section, segment) \
6293 <= SEGMENT_END (segment, base)))
6294
6295 /* Handle PT_NOTE segment. */
6296 #define IS_NOTE(p, s) \
6297 (p->p_type == PT_NOTE \
6298 && elf_section_type (s) == SHT_NOTE \
6299 && (bfd_vma) s->filepos >= p->p_offset \
6300 && ((bfd_vma) s->filepos + s->size \
6301 <= p->p_offset + p->p_filesz))
6302
6303 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6304 etc. */
6305 #define IS_COREFILE_NOTE(p, s) \
6306 (IS_NOTE (p, s) \
6307 && bfd_get_format (ibfd) == bfd_core \
6308 && s->vma == 0 \
6309 && s->lma == 0)
6310
6311 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6312 linker, which generates a PT_INTERP section with p_vaddr and
6313 p_memsz set to 0. */
6314 #define IS_SOLARIS_PT_INTERP(p, s) \
6315 (p->p_vaddr == 0 \
6316 && p->p_paddr == 0 \
6317 && p->p_memsz == 0 \
6318 && p->p_filesz > 0 \
6319 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6320 && s->size > 0 \
6321 && (bfd_vma) s->filepos >= p->p_offset \
6322 && ((bfd_vma) s->filepos + s->size \
6323 <= p->p_offset + p->p_filesz))
6324
6325 /* Decide if the given section should be included in the given segment.
6326 A section will be included if:
6327 1. It is within the address space of the segment -- we use the LMA
6328 if that is set for the segment and the VMA otherwise,
6329 2. It is an allocated section or a NOTE section in a PT_NOTE
6330 segment.
6331 3. There is an output section associated with it,
6332 4. The section has not already been allocated to a previous segment.
6333 5. PT_GNU_STACK segments do not include any sections.
6334 6. PT_TLS segment includes only SHF_TLS sections.
6335 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6336 8. PT_DYNAMIC should not contain empty sections at the beginning
6337 (with the possible exception of .dynamic). */
6338 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6339 ((((segment->p_paddr \
6340 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6341 : IS_CONTAINED_BY_VMA (section, segment)) \
6342 && (section->flags & SEC_ALLOC) != 0) \
6343 || IS_NOTE (segment, section)) \
6344 && segment->p_type != PT_GNU_STACK \
6345 && (segment->p_type != PT_TLS \
6346 || (section->flags & SEC_THREAD_LOCAL)) \
6347 && (segment->p_type == PT_LOAD \
6348 || segment->p_type == PT_TLS \
6349 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6350 && (segment->p_type != PT_DYNAMIC \
6351 || SECTION_SIZE (section, segment) > 0 \
6352 || (segment->p_paddr \
6353 ? segment->p_paddr != section->lma \
6354 : segment->p_vaddr != section->vma) \
6355 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6356 == 0)) \
6357 && !section->segment_mark)
6358
6359 /* If the output section of a section in the input segment is NULL,
6360 it is removed from the corresponding output segment. */
6361 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6362 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6363 && section->output_section != NULL)
6364
6365 /* Returns TRUE iff seg1 starts after the end of seg2. */
6366 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6367 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6368
6369 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6370 their VMA address ranges and their LMA address ranges overlap.
6371 It is possible to have overlapping VMA ranges without overlapping LMA
6372 ranges. RedBoot images for example can have both .data and .bss mapped
6373 to the same VMA range, but with the .data section mapped to a different
6374 LMA. */
6375 #define SEGMENT_OVERLAPS(seg1, seg2) \
6376 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6377 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6378 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6379 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6380
6381 /* Initialise the segment mark field. */
6382 for (section = ibfd->sections; section != NULL; section = section->next)
6383 section->segment_mark = FALSE;
6384
6385 /* The Solaris linker creates program headers in which all the
6386 p_paddr fields are zero. When we try to objcopy or strip such a
6387 file, we get confused. Check for this case, and if we find it
6388 don't set the p_paddr_valid fields. */
6389 p_paddr_valid = FALSE;
6390 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6391 i < num_segments;
6392 i++, segment++)
6393 if (segment->p_paddr != 0)
6394 {
6395 p_paddr_valid = TRUE;
6396 break;
6397 }
6398
6399 /* Scan through the segments specified in the program header
6400 of the input BFD. For this first scan we look for overlaps
6401 in the loadable segments. These can be created by weird
6402 parameters to objcopy. Also, fix some solaris weirdness. */
6403 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6404 i < num_segments;
6405 i++, segment++)
6406 {
6407 unsigned int j;
6408 Elf_Internal_Phdr *segment2;
6409
6410 if (segment->p_type == PT_INTERP)
6411 for (section = ibfd->sections; section; section = section->next)
6412 if (IS_SOLARIS_PT_INTERP (segment, section))
6413 {
6414 /* Mininal change so that the normal section to segment
6415 assignment code will work. */
6416 segment->p_vaddr = section->vma;
6417 break;
6418 }
6419
6420 if (segment->p_type != PT_LOAD)
6421 {
6422 /* Remove PT_GNU_RELRO segment. */
6423 if (segment->p_type == PT_GNU_RELRO)
6424 segment->p_type = PT_NULL;
6425 continue;
6426 }
6427
6428 /* Determine if this segment overlaps any previous segments. */
6429 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6430 {
6431 bfd_signed_vma extra_length;
6432
6433 if (segment2->p_type != PT_LOAD
6434 || !SEGMENT_OVERLAPS (segment, segment2))
6435 continue;
6436
6437 /* Merge the two segments together. */
6438 if (segment2->p_vaddr < segment->p_vaddr)
6439 {
6440 /* Extend SEGMENT2 to include SEGMENT and then delete
6441 SEGMENT. */
6442 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6443 - SEGMENT_END (segment2, segment2->p_vaddr));
6444
6445 if (extra_length > 0)
6446 {
6447 segment2->p_memsz += extra_length;
6448 segment2->p_filesz += extra_length;
6449 }
6450
6451 segment->p_type = PT_NULL;
6452
6453 /* Since we have deleted P we must restart the outer loop. */
6454 i = 0;
6455 segment = elf_tdata (ibfd)->phdr;
6456 break;
6457 }
6458 else
6459 {
6460 /* Extend SEGMENT to include SEGMENT2 and then delete
6461 SEGMENT2. */
6462 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6463 - SEGMENT_END (segment, segment->p_vaddr));
6464
6465 if (extra_length > 0)
6466 {
6467 segment->p_memsz += extra_length;
6468 segment->p_filesz += extra_length;
6469 }
6470
6471 segment2->p_type = PT_NULL;
6472 }
6473 }
6474 }
6475
6476 /* The second scan attempts to assign sections to segments. */
6477 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6478 i < num_segments;
6479 i++, segment++)
6480 {
6481 unsigned int section_count;
6482 asection **sections;
6483 asection *output_section;
6484 unsigned int isec;
6485 bfd_vma matching_lma;
6486 bfd_vma suggested_lma;
6487 unsigned int j;
6488 bfd_size_type amt;
6489 asection *first_section;
6490 bfd_boolean first_matching_lma;
6491 bfd_boolean first_suggested_lma;
6492
6493 if (segment->p_type == PT_NULL)
6494 continue;
6495
6496 first_section = NULL;
6497 /* Compute how many sections might be placed into this segment. */
6498 for (section = ibfd->sections, section_count = 0;
6499 section != NULL;
6500 section = section->next)
6501 {
6502 /* Find the first section in the input segment, which may be
6503 removed from the corresponding output segment. */
6504 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6505 {
6506 if (first_section == NULL)
6507 first_section = section;
6508 if (section->output_section != NULL)
6509 ++section_count;
6510 }
6511 }
6512
6513 /* Allocate a segment map big enough to contain
6514 all of the sections we have selected. */
6515 amt = sizeof (struct elf_segment_map);
6516 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6517 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6518 if (map == NULL)
6519 return FALSE;
6520
6521 /* Initialise the fields of the segment map. Default to
6522 using the physical address of the segment in the input BFD. */
6523 map->next = NULL;
6524 map->p_type = segment->p_type;
6525 map->p_flags = segment->p_flags;
6526 map->p_flags_valid = 1;
6527
6528 /* If the first section in the input segment is removed, there is
6529 no need to preserve segment physical address in the corresponding
6530 output segment. */
6531 if (!first_section || first_section->output_section != NULL)
6532 {
6533 map->p_paddr = segment->p_paddr;
6534 map->p_paddr_valid = p_paddr_valid;
6535 }
6536
6537 /* Determine if this segment contains the ELF file header
6538 and if it contains the program headers themselves. */
6539 map->includes_filehdr = (segment->p_offset == 0
6540 && segment->p_filesz >= iehdr->e_ehsize);
6541 map->includes_phdrs = 0;
6542
6543 if (!phdr_included || segment->p_type != PT_LOAD)
6544 {
6545 map->includes_phdrs =
6546 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6547 && (segment->p_offset + segment->p_filesz
6548 >= ((bfd_vma) iehdr->e_phoff
6549 + iehdr->e_phnum * iehdr->e_phentsize)));
6550
6551 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6552 phdr_included = TRUE;
6553 }
6554
6555 if (section_count == 0)
6556 {
6557 /* Special segments, such as the PT_PHDR segment, may contain
6558 no sections, but ordinary, loadable segments should contain
6559 something. They are allowed by the ELF spec however, so only
6560 a warning is produced. */
6561 if (segment->p_type == PT_LOAD)
6562 (*_bfd_error_handler) (_("\
6563 %B: warning: Empty loadable segment detected, is this intentional ?"),
6564 ibfd);
6565
6566 map->count = 0;
6567 *pointer_to_map = map;
6568 pointer_to_map = &map->next;
6569
6570 continue;
6571 }
6572
6573 /* Now scan the sections in the input BFD again and attempt
6574 to add their corresponding output sections to the segment map.
6575 The problem here is how to handle an output section which has
6576 been moved (ie had its LMA changed). There are four possibilities:
6577
6578 1. None of the sections have been moved.
6579 In this case we can continue to use the segment LMA from the
6580 input BFD.
6581
6582 2. All of the sections have been moved by the same amount.
6583 In this case we can change the segment's LMA to match the LMA
6584 of the first section.
6585
6586 3. Some of the sections have been moved, others have not.
6587 In this case those sections which have not been moved can be
6588 placed in the current segment which will have to have its size,
6589 and possibly its LMA changed, and a new segment or segments will
6590 have to be created to contain the other sections.
6591
6592 4. The sections have been moved, but not by the same amount.
6593 In this case we can change the segment's LMA to match the LMA
6594 of the first section and we will have to create a new segment
6595 or segments to contain the other sections.
6596
6597 In order to save time, we allocate an array to hold the section
6598 pointers that we are interested in. As these sections get assigned
6599 to a segment, they are removed from this array. */
6600
6601 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6602 if (sections == NULL)
6603 return FALSE;
6604
6605 /* Step One: Scan for segment vs section LMA conflicts.
6606 Also add the sections to the section array allocated above.
6607 Also add the sections to the current segment. In the common
6608 case, where the sections have not been moved, this means that
6609 we have completely filled the segment, and there is nothing
6610 more to do. */
6611 isec = 0;
6612 matching_lma = 0;
6613 suggested_lma = 0;
6614 first_matching_lma = TRUE;
6615 first_suggested_lma = TRUE;
6616
6617 for (section = first_section, j = 0;
6618 section != NULL;
6619 section = section->next)
6620 {
6621 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6622 {
6623 output_section = section->output_section;
6624
6625 sections[j++] = section;
6626
6627 /* The Solaris native linker always sets p_paddr to 0.
6628 We try to catch that case here, and set it to the
6629 correct value. Note - some backends require that
6630 p_paddr be left as zero. */
6631 if (!p_paddr_valid
6632 && segment->p_vaddr != 0
6633 && !bed->want_p_paddr_set_to_zero
6634 && isec == 0
6635 && output_section->lma != 0
6636 && output_section->vma == (segment->p_vaddr
6637 + (map->includes_filehdr
6638 ? iehdr->e_ehsize
6639 : 0)
6640 + (map->includes_phdrs
6641 ? (iehdr->e_phnum
6642 * iehdr->e_phentsize)
6643 : 0)))
6644 map->p_paddr = segment->p_vaddr;
6645
6646 /* Match up the physical address of the segment with the
6647 LMA address of the output section. */
6648 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6649 || IS_COREFILE_NOTE (segment, section)
6650 || (bed->want_p_paddr_set_to_zero
6651 && IS_CONTAINED_BY_VMA (output_section, segment)))
6652 {
6653 if (first_matching_lma || output_section->lma < matching_lma)
6654 {
6655 matching_lma = output_section->lma;
6656 first_matching_lma = FALSE;
6657 }
6658
6659 /* We assume that if the section fits within the segment
6660 then it does not overlap any other section within that
6661 segment. */
6662 map->sections[isec++] = output_section;
6663 }
6664 else if (first_suggested_lma)
6665 {
6666 suggested_lma = output_section->lma;
6667 first_suggested_lma = FALSE;
6668 }
6669
6670 if (j == section_count)
6671 break;
6672 }
6673 }
6674
6675 BFD_ASSERT (j == section_count);
6676
6677 /* Step Two: Adjust the physical address of the current segment,
6678 if necessary. */
6679 if (isec == section_count)
6680 {
6681 /* All of the sections fitted within the segment as currently
6682 specified. This is the default case. Add the segment to
6683 the list of built segments and carry on to process the next
6684 program header in the input BFD. */
6685 map->count = section_count;
6686 *pointer_to_map = map;
6687 pointer_to_map = &map->next;
6688
6689 if (p_paddr_valid
6690 && !bed->want_p_paddr_set_to_zero
6691 && matching_lma != map->p_paddr
6692 && !map->includes_filehdr
6693 && !map->includes_phdrs)
6694 /* There is some padding before the first section in the
6695 segment. So, we must account for that in the output
6696 segment's vma. */
6697 map->p_vaddr_offset = matching_lma - map->p_paddr;
6698
6699 free (sections);
6700 continue;
6701 }
6702 else
6703 {
6704 if (!first_matching_lma)
6705 {
6706 /* At least one section fits inside the current segment.
6707 Keep it, but modify its physical address to match the
6708 LMA of the first section that fitted. */
6709 map->p_paddr = matching_lma;
6710 }
6711 else
6712 {
6713 /* None of the sections fitted inside the current segment.
6714 Change the current segment's physical address to match
6715 the LMA of the first section. */
6716 map->p_paddr = suggested_lma;
6717 }
6718
6719 /* Offset the segment physical address from the lma
6720 to allow for space taken up by elf headers. */
6721 if (map->includes_filehdr)
6722 {
6723 if (map->p_paddr >= iehdr->e_ehsize)
6724 map->p_paddr -= iehdr->e_ehsize;
6725 else
6726 {
6727 map->includes_filehdr = FALSE;
6728 map->includes_phdrs = FALSE;
6729 }
6730 }
6731
6732 if (map->includes_phdrs)
6733 {
6734 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6735 {
6736 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6737
6738 /* iehdr->e_phnum is just an estimate of the number
6739 of program headers that we will need. Make a note
6740 here of the number we used and the segment we chose
6741 to hold these headers, so that we can adjust the
6742 offset when we know the correct value. */
6743 phdr_adjust_num = iehdr->e_phnum;
6744 phdr_adjust_seg = map;
6745 }
6746 else
6747 map->includes_phdrs = FALSE;
6748 }
6749 }
6750
6751 /* Step Three: Loop over the sections again, this time assigning
6752 those that fit to the current segment and removing them from the
6753 sections array; but making sure not to leave large gaps. Once all
6754 possible sections have been assigned to the current segment it is
6755 added to the list of built segments and if sections still remain
6756 to be assigned, a new segment is constructed before repeating
6757 the loop. */
6758 isec = 0;
6759 do
6760 {
6761 map->count = 0;
6762 suggested_lma = 0;
6763 first_suggested_lma = TRUE;
6764
6765 /* Fill the current segment with sections that fit. */
6766 for (j = 0; j < section_count; j++)
6767 {
6768 section = sections[j];
6769
6770 if (section == NULL)
6771 continue;
6772
6773 output_section = section->output_section;
6774
6775 BFD_ASSERT (output_section != NULL);
6776
6777 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6778 || IS_COREFILE_NOTE (segment, section))
6779 {
6780 if (map->count == 0)
6781 {
6782 /* If the first section in a segment does not start at
6783 the beginning of the segment, then something is
6784 wrong. */
6785 if (output_section->lma
6786 != (map->p_paddr
6787 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
6788 + (map->includes_phdrs
6789 ? iehdr->e_phnum * iehdr->e_phentsize
6790 : 0)))
6791 abort ();
6792 }
6793 else
6794 {
6795 asection *prev_sec;
6796
6797 prev_sec = map->sections[map->count - 1];
6798
6799 /* If the gap between the end of the previous section
6800 and the start of this section is more than
6801 maxpagesize then we need to start a new segment. */
6802 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
6803 maxpagesize)
6804 < BFD_ALIGN (output_section->lma, maxpagesize))
6805 || (prev_sec->lma + prev_sec->size
6806 > output_section->lma))
6807 {
6808 if (first_suggested_lma)
6809 {
6810 suggested_lma = output_section->lma;
6811 first_suggested_lma = FALSE;
6812 }
6813
6814 continue;
6815 }
6816 }
6817
6818 map->sections[map->count++] = output_section;
6819 ++isec;
6820 sections[j] = NULL;
6821 section->segment_mark = TRUE;
6822 }
6823 else if (first_suggested_lma)
6824 {
6825 suggested_lma = output_section->lma;
6826 first_suggested_lma = FALSE;
6827 }
6828 }
6829
6830 BFD_ASSERT (map->count > 0);
6831
6832 /* Add the current segment to the list of built segments. */
6833 *pointer_to_map = map;
6834 pointer_to_map = &map->next;
6835
6836 if (isec < section_count)
6837 {
6838 /* We still have not allocated all of the sections to
6839 segments. Create a new segment here, initialise it
6840 and carry on looping. */
6841 amt = sizeof (struct elf_segment_map);
6842 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6843 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6844 if (map == NULL)
6845 {
6846 free (sections);
6847 return FALSE;
6848 }
6849
6850 /* Initialise the fields of the segment map. Set the physical
6851 physical address to the LMA of the first section that has
6852 not yet been assigned. */
6853 map->next = NULL;
6854 map->p_type = segment->p_type;
6855 map->p_flags = segment->p_flags;
6856 map->p_flags_valid = 1;
6857 map->p_paddr = suggested_lma;
6858 map->p_paddr_valid = p_paddr_valid;
6859 map->includes_filehdr = 0;
6860 map->includes_phdrs = 0;
6861 }
6862 }
6863 while (isec < section_count);
6864
6865 free (sections);
6866 }
6867
6868 elf_seg_map (obfd) = map_first;
6869
6870 /* If we had to estimate the number of program headers that were
6871 going to be needed, then check our estimate now and adjust
6872 the offset if necessary. */
6873 if (phdr_adjust_seg != NULL)
6874 {
6875 unsigned int count;
6876
6877 for (count = 0, map = map_first; map != NULL; map = map->next)
6878 count++;
6879
6880 if (count > phdr_adjust_num)
6881 phdr_adjust_seg->p_paddr
6882 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6883 }
6884
6885 #undef SEGMENT_END
6886 #undef SECTION_SIZE
6887 #undef IS_CONTAINED_BY_VMA
6888 #undef IS_CONTAINED_BY_LMA
6889 #undef IS_NOTE
6890 #undef IS_COREFILE_NOTE
6891 #undef IS_SOLARIS_PT_INTERP
6892 #undef IS_SECTION_IN_INPUT_SEGMENT
6893 #undef INCLUDE_SECTION_IN_SEGMENT
6894 #undef SEGMENT_AFTER_SEGMENT
6895 #undef SEGMENT_OVERLAPS
6896 return TRUE;
6897 }
6898
6899 /* Copy ELF program header information. */
6900
6901 static bfd_boolean
6902 copy_elf_program_header (bfd *ibfd, bfd *obfd)
6903 {
6904 Elf_Internal_Ehdr *iehdr;
6905 struct elf_segment_map *map;
6906 struct elf_segment_map *map_first;
6907 struct elf_segment_map **pointer_to_map;
6908 Elf_Internal_Phdr *segment;
6909 unsigned int i;
6910 unsigned int num_segments;
6911 bfd_boolean phdr_included = FALSE;
6912 bfd_boolean p_paddr_valid;
6913
6914 iehdr = elf_elfheader (ibfd);
6915
6916 map_first = NULL;
6917 pointer_to_map = &map_first;
6918
6919 /* If all the segment p_paddr fields are zero, don't set
6920 map->p_paddr_valid. */
6921 p_paddr_valid = FALSE;
6922 num_segments = elf_elfheader (ibfd)->e_phnum;
6923 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6924 i < num_segments;
6925 i++, segment++)
6926 if (segment->p_paddr != 0)
6927 {
6928 p_paddr_valid = TRUE;
6929 break;
6930 }
6931
6932 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6933 i < num_segments;
6934 i++, segment++)
6935 {
6936 asection *section;
6937 unsigned int section_count;
6938 bfd_size_type amt;
6939 Elf_Internal_Shdr *this_hdr;
6940 asection *first_section = NULL;
6941 asection *lowest_section;
6942
6943 /* Compute how many sections are in this segment. */
6944 for (section = ibfd->sections, section_count = 0;
6945 section != NULL;
6946 section = section->next)
6947 {
6948 this_hdr = &(elf_section_data(section)->this_hdr);
6949 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6950 {
6951 if (first_section == NULL)
6952 first_section = section;
6953 section_count++;
6954 }
6955 }
6956
6957 /* Allocate a segment map big enough to contain
6958 all of the sections we have selected. */
6959 amt = sizeof (struct elf_segment_map);
6960 if (section_count != 0)
6961 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6962 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6963 if (map == NULL)
6964 return FALSE;
6965
6966 /* Initialize the fields of the output segment map with the
6967 input segment. */
6968 map->next = NULL;
6969 map->p_type = segment->p_type;
6970 map->p_flags = segment->p_flags;
6971 map->p_flags_valid = 1;
6972 map->p_paddr = segment->p_paddr;
6973 map->p_paddr_valid = p_paddr_valid;
6974 map->p_align = segment->p_align;
6975 map->p_align_valid = 1;
6976 map->p_vaddr_offset = 0;
6977
6978 if (map->p_type == PT_GNU_RELRO
6979 || map->p_type == PT_GNU_STACK)
6980 {
6981 /* The PT_GNU_RELRO segment may contain the first a few
6982 bytes in the .got.plt section even if the whole .got.plt
6983 section isn't in the PT_GNU_RELRO segment. We won't
6984 change the size of the PT_GNU_RELRO segment.
6985 Similarly, PT_GNU_STACK size is significant on uclinux
6986 systems. */
6987 map->p_size = segment->p_memsz;
6988 map->p_size_valid = 1;
6989 }
6990
6991 /* Determine if this segment contains the ELF file header
6992 and if it contains the program headers themselves. */
6993 map->includes_filehdr = (segment->p_offset == 0
6994 && segment->p_filesz >= iehdr->e_ehsize);
6995
6996 map->includes_phdrs = 0;
6997 if (! phdr_included || segment->p_type != PT_LOAD)
6998 {
6999 map->includes_phdrs =
7000 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7001 && (segment->p_offset + segment->p_filesz
7002 >= ((bfd_vma) iehdr->e_phoff
7003 + iehdr->e_phnum * iehdr->e_phentsize)));
7004
7005 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7006 phdr_included = TRUE;
7007 }
7008
7009 lowest_section = NULL;
7010 if (section_count != 0)
7011 {
7012 unsigned int isec = 0;
7013
7014 for (section = first_section;
7015 section != NULL;
7016 section = section->next)
7017 {
7018 this_hdr = &(elf_section_data(section)->this_hdr);
7019 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7020 {
7021 map->sections[isec++] = section->output_section;
7022 if ((section->flags & SEC_ALLOC) != 0)
7023 {
7024 bfd_vma seg_off;
7025
7026 if (lowest_section == NULL
7027 || section->lma < lowest_section->lma)
7028 lowest_section = section;
7029
7030 /* Section lmas are set up from PT_LOAD header
7031 p_paddr in _bfd_elf_make_section_from_shdr.
7032 If this header has a p_paddr that disagrees
7033 with the section lma, flag the p_paddr as
7034 invalid. */
7035 if ((section->flags & SEC_LOAD) != 0)
7036 seg_off = this_hdr->sh_offset - segment->p_offset;
7037 else
7038 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7039 if (section->lma - segment->p_paddr != seg_off)
7040 map->p_paddr_valid = FALSE;
7041 }
7042 if (isec == section_count)
7043 break;
7044 }
7045 }
7046 }
7047
7048 if (map->includes_filehdr && lowest_section != NULL)
7049 /* We need to keep the space used by the headers fixed. */
7050 map->header_size = lowest_section->vma - segment->p_vaddr;
7051
7052 if (!map->includes_phdrs
7053 && !map->includes_filehdr
7054 && map->p_paddr_valid)
7055 /* There is some other padding before the first section. */
7056 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
7057 - segment->p_paddr);
7058
7059 map->count = section_count;
7060 *pointer_to_map = map;
7061 pointer_to_map = &map->next;
7062 }
7063
7064 elf_seg_map (obfd) = map_first;
7065 return TRUE;
7066 }
7067
7068 /* Copy private BFD data. This copies or rewrites ELF program header
7069 information. */
7070
7071 static bfd_boolean
7072 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7073 {
7074 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7075 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7076 return TRUE;
7077
7078 if (elf_tdata (ibfd)->phdr == NULL)
7079 return TRUE;
7080
7081 if (ibfd->xvec == obfd->xvec)
7082 {
7083 /* Check to see if any sections in the input BFD
7084 covered by ELF program header have changed. */
7085 Elf_Internal_Phdr *segment;
7086 asection *section, *osec;
7087 unsigned int i, num_segments;
7088 Elf_Internal_Shdr *this_hdr;
7089 const struct elf_backend_data *bed;
7090
7091 bed = get_elf_backend_data (ibfd);
7092
7093 /* Regenerate the segment map if p_paddr is set to 0. */
7094 if (bed->want_p_paddr_set_to_zero)
7095 goto rewrite;
7096
7097 /* Initialize the segment mark field. */
7098 for (section = obfd->sections; section != NULL;
7099 section = section->next)
7100 section->segment_mark = FALSE;
7101
7102 num_segments = elf_elfheader (ibfd)->e_phnum;
7103 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7104 i < num_segments;
7105 i++, segment++)
7106 {
7107 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7108 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7109 which severly confuses things, so always regenerate the segment
7110 map in this case. */
7111 if (segment->p_paddr == 0
7112 && segment->p_memsz == 0
7113 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7114 goto rewrite;
7115
7116 for (section = ibfd->sections;
7117 section != NULL; section = section->next)
7118 {
7119 /* We mark the output section so that we know it comes
7120 from the input BFD. */
7121 osec = section->output_section;
7122 if (osec)
7123 osec->segment_mark = TRUE;
7124
7125 /* Check if this section is covered by the segment. */
7126 this_hdr = &(elf_section_data(section)->this_hdr);
7127 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7128 {
7129 /* FIXME: Check if its output section is changed or
7130 removed. What else do we need to check? */
7131 if (osec == NULL
7132 || section->flags != osec->flags
7133 || section->lma != osec->lma
7134 || section->vma != osec->vma
7135 || section->size != osec->size
7136 || section->rawsize != osec->rawsize
7137 || section->alignment_power != osec->alignment_power)
7138 goto rewrite;
7139 }
7140 }
7141 }
7142
7143 /* Check to see if any output section do not come from the
7144 input BFD. */
7145 for (section = obfd->sections; section != NULL;
7146 section = section->next)
7147 {
7148 if (section->segment_mark == FALSE)
7149 goto rewrite;
7150 else
7151 section->segment_mark = FALSE;
7152 }
7153
7154 return copy_elf_program_header (ibfd, obfd);
7155 }
7156
7157 rewrite:
7158 if (ibfd->xvec == obfd->xvec)
7159 {
7160 /* When rewriting program header, set the output maxpagesize to
7161 the maximum alignment of input PT_LOAD segments. */
7162 Elf_Internal_Phdr *segment;
7163 unsigned int i;
7164 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7165 bfd_vma maxpagesize = 0;
7166
7167 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7168 i < num_segments;
7169 i++, segment++)
7170 if (segment->p_type == PT_LOAD
7171 && maxpagesize < segment->p_align)
7172 {
7173 /* PR 17512: file: f17299af. */
7174 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7175 (*_bfd_error_handler) (_("\
7176 %B: warning: segment alignment of 0x%llx is too large"),
7177 ibfd, (long long) segment->p_align);
7178 else
7179 maxpagesize = segment->p_align;
7180 }
7181
7182 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7183 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7184 }
7185
7186 return rewrite_elf_program_header (ibfd, obfd);
7187 }
7188
7189 /* Initialize private output section information from input section. */
7190
7191 bfd_boolean
7192 _bfd_elf_init_private_section_data (bfd *ibfd,
7193 asection *isec,
7194 bfd *obfd,
7195 asection *osec,
7196 struct bfd_link_info *link_info)
7197
7198 {
7199 Elf_Internal_Shdr *ihdr, *ohdr;
7200 bfd_boolean final_link = (link_info != NULL
7201 && !bfd_link_relocatable (link_info));
7202
7203 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7204 || obfd->xvec->flavour != bfd_target_elf_flavour)
7205 return TRUE;
7206
7207 BFD_ASSERT (elf_section_data (osec) != NULL);
7208
7209 /* For objcopy and relocatable link, don't copy the output ELF
7210 section type from input if the output BFD section flags have been
7211 set to something different. For a final link allow some flags
7212 that the linker clears to differ. */
7213 if (elf_section_type (osec) == SHT_NULL
7214 && (osec->flags == isec->flags
7215 || (final_link
7216 && ((osec->flags ^ isec->flags)
7217 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7218 elf_section_type (osec) = elf_section_type (isec);
7219
7220 /* FIXME: Is this correct for all OS/PROC specific flags? */
7221 elf_section_flags (osec) |= (elf_section_flags (isec)
7222 & (SHF_MASKOS | SHF_MASKPROC));
7223
7224 /* Set things up for objcopy and relocatable link. The output
7225 SHT_GROUP section will have its elf_next_in_group pointing back
7226 to the input group members. Ignore linker created group section.
7227 See elfNN_ia64_object_p in elfxx-ia64.c. */
7228 if (!final_link)
7229 {
7230 if (elf_sec_group (isec) == NULL
7231 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
7232 {
7233 if (elf_section_flags (isec) & SHF_GROUP)
7234 elf_section_flags (osec) |= SHF_GROUP;
7235 elf_next_in_group (osec) = elf_next_in_group (isec);
7236 elf_section_data (osec)->group = elf_section_data (isec)->group;
7237 }
7238
7239 /* If not decompress, preserve SHF_COMPRESSED. */
7240 if ((ibfd->flags & BFD_DECOMPRESS) == 0)
7241 elf_section_flags (osec) |= (elf_section_flags (isec)
7242 & SHF_COMPRESSED);
7243 }
7244
7245 ihdr = &elf_section_data (isec)->this_hdr;
7246
7247 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7248 don't use the output section of the linked-to section since it
7249 may be NULL at this point. */
7250 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7251 {
7252 ohdr = &elf_section_data (osec)->this_hdr;
7253 ohdr->sh_flags |= SHF_LINK_ORDER;
7254 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7255 }
7256
7257 osec->use_rela_p = isec->use_rela_p;
7258
7259 return TRUE;
7260 }
7261
7262 /* Copy private section information. This copies over the entsize
7263 field, and sometimes the info field. */
7264
7265 bfd_boolean
7266 _bfd_elf_copy_private_section_data (bfd *ibfd,
7267 asection *isec,
7268 bfd *obfd,
7269 asection *osec)
7270 {
7271 Elf_Internal_Shdr *ihdr, *ohdr;
7272
7273 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7274 || obfd->xvec->flavour != bfd_target_elf_flavour)
7275 return TRUE;
7276
7277 ihdr = &elf_section_data (isec)->this_hdr;
7278 ohdr = &elf_section_data (osec)->this_hdr;
7279
7280 ohdr->sh_entsize = ihdr->sh_entsize;
7281
7282 if (ihdr->sh_type == SHT_SYMTAB
7283 || ihdr->sh_type == SHT_DYNSYM
7284 || ihdr->sh_type == SHT_GNU_verneed
7285 || ihdr->sh_type == SHT_GNU_verdef)
7286 ohdr->sh_info = ihdr->sh_info;
7287
7288 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7289 NULL);
7290 }
7291
7292 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7293 necessary if we are removing either the SHT_GROUP section or any of
7294 the group member sections. DISCARDED is the value that a section's
7295 output_section has if the section will be discarded, NULL when this
7296 function is called from objcopy, bfd_abs_section_ptr when called
7297 from the linker. */
7298
7299 bfd_boolean
7300 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7301 {
7302 asection *isec;
7303
7304 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7305 if (elf_section_type (isec) == SHT_GROUP)
7306 {
7307 asection *first = elf_next_in_group (isec);
7308 asection *s = first;
7309 bfd_size_type removed = 0;
7310
7311 while (s != NULL)
7312 {
7313 /* If this member section is being output but the
7314 SHT_GROUP section is not, then clear the group info
7315 set up by _bfd_elf_copy_private_section_data. */
7316 if (s->output_section != discarded
7317 && isec->output_section == discarded)
7318 {
7319 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7320 elf_group_name (s->output_section) = NULL;
7321 }
7322 /* Conversely, if the member section is not being output
7323 but the SHT_GROUP section is, then adjust its size. */
7324 else if (s->output_section == discarded
7325 && isec->output_section != discarded)
7326 removed += 4;
7327 s = elf_next_in_group (s);
7328 if (s == first)
7329 break;
7330 }
7331 if (removed != 0)
7332 {
7333 if (discarded != NULL)
7334 {
7335 /* If we've been called for ld -r, then we need to
7336 adjust the input section size. This function may
7337 be called multiple times, so save the original
7338 size. */
7339 if (isec->rawsize == 0)
7340 isec->rawsize = isec->size;
7341 isec->size = isec->rawsize - removed;
7342 }
7343 else
7344 {
7345 /* Adjust the output section size when called from
7346 objcopy. */
7347 isec->output_section->size -= removed;
7348 }
7349 }
7350 }
7351
7352 return TRUE;
7353 }
7354
7355 /* Copy private header information. */
7356
7357 bfd_boolean
7358 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7359 {
7360 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7361 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7362 return TRUE;
7363
7364 /* Copy over private BFD data if it has not already been copied.
7365 This must be done here, rather than in the copy_private_bfd_data
7366 entry point, because the latter is called after the section
7367 contents have been set, which means that the program headers have
7368 already been worked out. */
7369 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7370 {
7371 if (! copy_private_bfd_data (ibfd, obfd))
7372 return FALSE;
7373 }
7374
7375 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7376 }
7377
7378 /* Copy private symbol information. If this symbol is in a section
7379 which we did not map into a BFD section, try to map the section
7380 index correctly. We use special macro definitions for the mapped
7381 section indices; these definitions are interpreted by the
7382 swap_out_syms function. */
7383
7384 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7385 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7386 #define MAP_STRTAB (SHN_HIOS + 3)
7387 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7388 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7389
7390 bfd_boolean
7391 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7392 asymbol *isymarg,
7393 bfd *obfd,
7394 asymbol *osymarg)
7395 {
7396 elf_symbol_type *isym, *osym;
7397
7398 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7399 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7400 return TRUE;
7401
7402 isym = elf_symbol_from (ibfd, isymarg);
7403 osym = elf_symbol_from (obfd, osymarg);
7404
7405 if (isym != NULL
7406 && isym->internal_elf_sym.st_shndx != 0
7407 && osym != NULL
7408 && bfd_is_abs_section (isym->symbol.section))
7409 {
7410 unsigned int shndx;
7411
7412 shndx = isym->internal_elf_sym.st_shndx;
7413 if (shndx == elf_onesymtab (ibfd))
7414 shndx = MAP_ONESYMTAB;
7415 else if (shndx == elf_dynsymtab (ibfd))
7416 shndx = MAP_DYNSYMTAB;
7417 else if (shndx == elf_strtab_sec (ibfd))
7418 shndx = MAP_STRTAB;
7419 else if (shndx == elf_shstrtab_sec (ibfd))
7420 shndx = MAP_SHSTRTAB;
7421 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7422 shndx = MAP_SYM_SHNDX;
7423 osym->internal_elf_sym.st_shndx = shndx;
7424 }
7425
7426 return TRUE;
7427 }
7428
7429 /* Swap out the symbols. */
7430
7431 static bfd_boolean
7432 swap_out_syms (bfd *abfd,
7433 struct elf_strtab_hash **sttp,
7434 int relocatable_p)
7435 {
7436 const struct elf_backend_data *bed;
7437 int symcount;
7438 asymbol **syms;
7439 struct elf_strtab_hash *stt;
7440 Elf_Internal_Shdr *symtab_hdr;
7441 Elf_Internal_Shdr *symtab_shndx_hdr;
7442 Elf_Internal_Shdr *symstrtab_hdr;
7443 struct elf_sym_strtab *symstrtab;
7444 bfd_byte *outbound_syms;
7445 bfd_byte *outbound_shndx;
7446 unsigned long outbound_syms_index;
7447 unsigned long outbound_shndx_index;
7448 int idx;
7449 unsigned int num_locals;
7450 bfd_size_type amt;
7451 bfd_boolean name_local_sections;
7452
7453 if (!elf_map_symbols (abfd, &num_locals))
7454 return FALSE;
7455
7456 /* Dump out the symtabs. */
7457 stt = _bfd_elf_strtab_init ();
7458 if (stt == NULL)
7459 return FALSE;
7460
7461 bed = get_elf_backend_data (abfd);
7462 symcount = bfd_get_symcount (abfd);
7463 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7464 symtab_hdr->sh_type = SHT_SYMTAB;
7465 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7466 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7467 symtab_hdr->sh_info = num_locals + 1;
7468 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7469
7470 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7471 symstrtab_hdr->sh_type = SHT_STRTAB;
7472
7473 /* Allocate buffer to swap out the .strtab section. */
7474 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7475 * sizeof (*symstrtab));
7476 if (symstrtab == NULL)
7477 {
7478 _bfd_elf_strtab_free (stt);
7479 return FALSE;
7480 }
7481
7482 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7483 bed->s->sizeof_sym);
7484 if (outbound_syms == NULL)
7485 {
7486 error_return:
7487 _bfd_elf_strtab_free (stt);
7488 free (symstrtab);
7489 return FALSE;
7490 }
7491 symtab_hdr->contents = outbound_syms;
7492 outbound_syms_index = 0;
7493
7494 outbound_shndx = NULL;
7495 outbound_shndx_index = 0;
7496
7497 if (elf_symtab_shndx_list (abfd))
7498 {
7499 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7500 if (symtab_shndx_hdr->sh_name != 0)
7501 {
7502 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7503 outbound_shndx = (bfd_byte *)
7504 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7505 if (outbound_shndx == NULL)
7506 goto error_return;
7507
7508 symtab_shndx_hdr->contents = outbound_shndx;
7509 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7510 symtab_shndx_hdr->sh_size = amt;
7511 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7512 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7513 }
7514 /* FIXME: What about any other headers in the list ? */
7515 }
7516
7517 /* Now generate the data (for "contents"). */
7518 {
7519 /* Fill in zeroth symbol and swap it out. */
7520 Elf_Internal_Sym sym;
7521 sym.st_name = 0;
7522 sym.st_value = 0;
7523 sym.st_size = 0;
7524 sym.st_info = 0;
7525 sym.st_other = 0;
7526 sym.st_shndx = SHN_UNDEF;
7527 sym.st_target_internal = 0;
7528 symstrtab[0].sym = sym;
7529 symstrtab[0].dest_index = outbound_syms_index;
7530 symstrtab[0].destshndx_index = outbound_shndx_index;
7531 outbound_syms_index++;
7532 if (outbound_shndx != NULL)
7533 outbound_shndx_index++;
7534 }
7535
7536 name_local_sections
7537 = (bed->elf_backend_name_local_section_symbols
7538 && bed->elf_backend_name_local_section_symbols (abfd));
7539
7540 syms = bfd_get_outsymbols (abfd);
7541 for (idx = 0; idx < symcount;)
7542 {
7543 Elf_Internal_Sym sym;
7544 bfd_vma value = syms[idx]->value;
7545 elf_symbol_type *type_ptr;
7546 flagword flags = syms[idx]->flags;
7547 int type;
7548
7549 if (!name_local_sections
7550 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7551 {
7552 /* Local section symbols have no name. */
7553 sym.st_name = (unsigned long) -1;
7554 }
7555 else
7556 {
7557 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7558 to get the final offset for st_name. */
7559 sym.st_name
7560 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7561 FALSE);
7562 if (sym.st_name == (unsigned long) -1)
7563 goto error_return;
7564 }
7565
7566 type_ptr = elf_symbol_from (abfd, syms[idx]);
7567
7568 if ((flags & BSF_SECTION_SYM) == 0
7569 && bfd_is_com_section (syms[idx]->section))
7570 {
7571 /* ELF common symbols put the alignment into the `value' field,
7572 and the size into the `size' field. This is backwards from
7573 how BFD handles it, so reverse it here. */
7574 sym.st_size = value;
7575 if (type_ptr == NULL
7576 || type_ptr->internal_elf_sym.st_value == 0)
7577 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7578 else
7579 sym.st_value = type_ptr->internal_elf_sym.st_value;
7580 sym.st_shndx = _bfd_elf_section_from_bfd_section
7581 (abfd, syms[idx]->section);
7582 }
7583 else
7584 {
7585 asection *sec = syms[idx]->section;
7586 unsigned int shndx;
7587
7588 if (sec->output_section)
7589 {
7590 value += sec->output_offset;
7591 sec = sec->output_section;
7592 }
7593
7594 /* Don't add in the section vma for relocatable output. */
7595 if (! relocatable_p)
7596 value += sec->vma;
7597 sym.st_value = value;
7598 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7599
7600 if (bfd_is_abs_section (sec)
7601 && type_ptr != NULL
7602 && type_ptr->internal_elf_sym.st_shndx != 0)
7603 {
7604 /* This symbol is in a real ELF section which we did
7605 not create as a BFD section. Undo the mapping done
7606 by copy_private_symbol_data. */
7607 shndx = type_ptr->internal_elf_sym.st_shndx;
7608 switch (shndx)
7609 {
7610 case MAP_ONESYMTAB:
7611 shndx = elf_onesymtab (abfd);
7612 break;
7613 case MAP_DYNSYMTAB:
7614 shndx = elf_dynsymtab (abfd);
7615 break;
7616 case MAP_STRTAB:
7617 shndx = elf_strtab_sec (abfd);
7618 break;
7619 case MAP_SHSTRTAB:
7620 shndx = elf_shstrtab_sec (abfd);
7621 break;
7622 case MAP_SYM_SHNDX:
7623 if (elf_symtab_shndx_list (abfd))
7624 shndx = elf_symtab_shndx_list (abfd)->ndx;
7625 break;
7626 default:
7627 shndx = SHN_ABS;
7628 break;
7629 }
7630 }
7631 else
7632 {
7633 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7634
7635 if (shndx == SHN_BAD)
7636 {
7637 asection *sec2;
7638
7639 /* Writing this would be a hell of a lot easier if
7640 we had some decent documentation on bfd, and
7641 knew what to expect of the library, and what to
7642 demand of applications. For example, it
7643 appears that `objcopy' might not set the
7644 section of a symbol to be a section that is
7645 actually in the output file. */
7646 sec2 = bfd_get_section_by_name (abfd, sec->name);
7647 if (sec2 != NULL)
7648 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7649 if (shndx == SHN_BAD)
7650 {
7651 _bfd_error_handler (_("\
7652 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7653 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7654 sec->name);
7655 bfd_set_error (bfd_error_invalid_operation);
7656 goto error_return;
7657 }
7658 }
7659 }
7660
7661 sym.st_shndx = shndx;
7662 }
7663
7664 if ((flags & BSF_THREAD_LOCAL) != 0)
7665 type = STT_TLS;
7666 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7667 type = STT_GNU_IFUNC;
7668 else if ((flags & BSF_FUNCTION) != 0)
7669 type = STT_FUNC;
7670 else if ((flags & BSF_OBJECT) != 0)
7671 type = STT_OBJECT;
7672 else if ((flags & BSF_RELC) != 0)
7673 type = STT_RELC;
7674 else if ((flags & BSF_SRELC) != 0)
7675 type = STT_SRELC;
7676 else
7677 type = STT_NOTYPE;
7678
7679 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7680 type = STT_TLS;
7681
7682 /* Processor-specific types. */
7683 if (type_ptr != NULL
7684 && bed->elf_backend_get_symbol_type)
7685 type = ((*bed->elf_backend_get_symbol_type)
7686 (&type_ptr->internal_elf_sym, type));
7687
7688 if (flags & BSF_SECTION_SYM)
7689 {
7690 if (flags & BSF_GLOBAL)
7691 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7692 else
7693 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7694 }
7695 else if (bfd_is_com_section (syms[idx]->section))
7696 {
7697 if (type != STT_TLS)
7698 {
7699 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
7700 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
7701 ? STT_COMMON : STT_OBJECT);
7702 else
7703 type = ((flags & BSF_ELF_COMMON) != 0
7704 ? STT_COMMON : STT_OBJECT);
7705 }
7706 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
7707 }
7708 else if (bfd_is_und_section (syms[idx]->section))
7709 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
7710 ? STB_WEAK
7711 : STB_GLOBAL),
7712 type);
7713 else if (flags & BSF_FILE)
7714 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7715 else
7716 {
7717 int bind = STB_LOCAL;
7718
7719 if (flags & BSF_LOCAL)
7720 bind = STB_LOCAL;
7721 else if (flags & BSF_GNU_UNIQUE)
7722 bind = STB_GNU_UNIQUE;
7723 else if (flags & BSF_WEAK)
7724 bind = STB_WEAK;
7725 else if (flags & BSF_GLOBAL)
7726 bind = STB_GLOBAL;
7727
7728 sym.st_info = ELF_ST_INFO (bind, type);
7729 }
7730
7731 if (type_ptr != NULL)
7732 {
7733 sym.st_other = type_ptr->internal_elf_sym.st_other;
7734 sym.st_target_internal
7735 = type_ptr->internal_elf_sym.st_target_internal;
7736 }
7737 else
7738 {
7739 sym.st_other = 0;
7740 sym.st_target_internal = 0;
7741 }
7742
7743 idx++;
7744 symstrtab[idx].sym = sym;
7745 symstrtab[idx].dest_index = outbound_syms_index;
7746 symstrtab[idx].destshndx_index = outbound_shndx_index;
7747
7748 outbound_syms_index++;
7749 if (outbound_shndx != NULL)
7750 outbound_shndx_index++;
7751 }
7752
7753 /* Finalize the .strtab section. */
7754 _bfd_elf_strtab_finalize (stt);
7755
7756 /* Swap out the .strtab section. */
7757 for (idx = 0; idx <= symcount; idx++)
7758 {
7759 struct elf_sym_strtab *elfsym = &symstrtab[idx];
7760 if (elfsym->sym.st_name == (unsigned long) -1)
7761 elfsym->sym.st_name = 0;
7762 else
7763 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
7764 elfsym->sym.st_name);
7765 bed->s->swap_symbol_out (abfd, &elfsym->sym,
7766 (outbound_syms
7767 + (elfsym->dest_index
7768 * bed->s->sizeof_sym)),
7769 (outbound_shndx
7770 + (elfsym->destshndx_index
7771 * sizeof (Elf_External_Sym_Shndx))));
7772 }
7773 free (symstrtab);
7774
7775 *sttp = stt;
7776 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
7777 symstrtab_hdr->sh_type = SHT_STRTAB;
7778 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
7779 symstrtab_hdr->sh_addr = 0;
7780 symstrtab_hdr->sh_entsize = 0;
7781 symstrtab_hdr->sh_link = 0;
7782 symstrtab_hdr->sh_info = 0;
7783 symstrtab_hdr->sh_addralign = 1;
7784
7785 return TRUE;
7786 }
7787
7788 /* Return the number of bytes required to hold the symtab vector.
7789
7790 Note that we base it on the count plus 1, since we will null terminate
7791 the vector allocated based on this size. However, the ELF symbol table
7792 always has a dummy entry as symbol #0, so it ends up even. */
7793
7794 long
7795 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
7796 {
7797 long symcount;
7798 long symtab_size;
7799 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
7800
7801 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7802 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7803 if (symcount > 0)
7804 symtab_size -= sizeof (asymbol *);
7805
7806 return symtab_size;
7807 }
7808
7809 long
7810 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
7811 {
7812 long symcount;
7813 long symtab_size;
7814 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
7815
7816 if (elf_dynsymtab (abfd) == 0)
7817 {
7818 bfd_set_error (bfd_error_invalid_operation);
7819 return -1;
7820 }
7821
7822 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
7823 symtab_size = (symcount + 1) * (sizeof (asymbol *));
7824 if (symcount > 0)
7825 symtab_size -= sizeof (asymbol *);
7826
7827 return symtab_size;
7828 }
7829
7830 long
7831 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
7832 sec_ptr asect)
7833 {
7834 return (asect->reloc_count + 1) * sizeof (arelent *);
7835 }
7836
7837 /* Canonicalize the relocs. */
7838
7839 long
7840 _bfd_elf_canonicalize_reloc (bfd *abfd,
7841 sec_ptr section,
7842 arelent **relptr,
7843 asymbol **symbols)
7844 {
7845 arelent *tblptr;
7846 unsigned int i;
7847 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7848
7849 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
7850 return -1;
7851
7852 tblptr = section->relocation;
7853 for (i = 0; i < section->reloc_count; i++)
7854 *relptr++ = tblptr++;
7855
7856 *relptr = NULL;
7857
7858 return section->reloc_count;
7859 }
7860
7861 long
7862 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
7863 {
7864 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7865 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
7866
7867 if (symcount >= 0)
7868 bfd_get_symcount (abfd) = symcount;
7869 return symcount;
7870 }
7871
7872 long
7873 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
7874 asymbol **allocation)
7875 {
7876 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7877 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
7878
7879 if (symcount >= 0)
7880 bfd_get_dynamic_symcount (abfd) = symcount;
7881 return symcount;
7882 }
7883
7884 /* Return the size required for the dynamic reloc entries. Any loadable
7885 section that was actually installed in the BFD, and has type SHT_REL
7886 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
7887 dynamic reloc section. */
7888
7889 long
7890 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
7891 {
7892 long ret;
7893 asection *s;
7894
7895 if (elf_dynsymtab (abfd) == 0)
7896 {
7897 bfd_set_error (bfd_error_invalid_operation);
7898 return -1;
7899 }
7900
7901 ret = sizeof (arelent *);
7902 for (s = abfd->sections; s != NULL; s = s->next)
7903 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7904 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7905 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7906 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7907 * sizeof (arelent *));
7908
7909 return ret;
7910 }
7911
7912 /* Canonicalize the dynamic relocation entries. Note that we return the
7913 dynamic relocations as a single block, although they are actually
7914 associated with particular sections; the interface, which was
7915 designed for SunOS style shared libraries, expects that there is only
7916 one set of dynamic relocs. Any loadable section that was actually
7917 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7918 dynamic symbol table, is considered to be a dynamic reloc section. */
7919
7920 long
7921 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7922 arelent **storage,
7923 asymbol **syms)
7924 {
7925 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7926 asection *s;
7927 long ret;
7928
7929 if (elf_dynsymtab (abfd) == 0)
7930 {
7931 bfd_set_error (bfd_error_invalid_operation);
7932 return -1;
7933 }
7934
7935 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7936 ret = 0;
7937 for (s = abfd->sections; s != NULL; s = s->next)
7938 {
7939 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7940 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7941 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7942 {
7943 arelent *p;
7944 long count, i;
7945
7946 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7947 return -1;
7948 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7949 p = s->relocation;
7950 for (i = 0; i < count; i++)
7951 *storage++ = p++;
7952 ret += count;
7953 }
7954 }
7955
7956 *storage = NULL;
7957
7958 return ret;
7959 }
7960 \f
7961 /* Read in the version information. */
7962
7963 bfd_boolean
7964 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7965 {
7966 bfd_byte *contents = NULL;
7967 unsigned int freeidx = 0;
7968
7969 if (elf_dynverref (abfd) != 0)
7970 {
7971 Elf_Internal_Shdr *hdr;
7972 Elf_External_Verneed *everneed;
7973 Elf_Internal_Verneed *iverneed;
7974 unsigned int i;
7975 bfd_byte *contents_end;
7976
7977 hdr = &elf_tdata (abfd)->dynverref_hdr;
7978
7979 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verneed))
7980 {
7981 error_return_bad_verref:
7982 (*_bfd_error_handler)
7983 (_("%B: .gnu.version_r invalid entry"), abfd);
7984 bfd_set_error (bfd_error_bad_value);
7985 error_return_verref:
7986 elf_tdata (abfd)->verref = NULL;
7987 elf_tdata (abfd)->cverrefs = 0;
7988 goto error_return;
7989 }
7990
7991 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7992 if (contents == NULL)
7993 goto error_return_verref;
7994
7995 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7996 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7997 goto error_return_verref;
7998
7999 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8000 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8001
8002 if (elf_tdata (abfd)->verref == NULL)
8003 goto error_return_verref;
8004
8005 BFD_ASSERT (sizeof (Elf_External_Verneed)
8006 == sizeof (Elf_External_Vernaux));
8007 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8008 everneed = (Elf_External_Verneed *) contents;
8009 iverneed = elf_tdata (abfd)->verref;
8010 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8011 {
8012 Elf_External_Vernaux *evernaux;
8013 Elf_Internal_Vernaux *ivernaux;
8014 unsigned int j;
8015
8016 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8017
8018 iverneed->vn_bfd = abfd;
8019
8020 iverneed->vn_filename =
8021 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8022 iverneed->vn_file);
8023 if (iverneed->vn_filename == NULL)
8024 goto error_return_bad_verref;
8025
8026 if (iverneed->vn_cnt == 0)
8027 iverneed->vn_auxptr = NULL;
8028 else
8029 {
8030 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8031 bfd_alloc2 (abfd, iverneed->vn_cnt,
8032 sizeof (Elf_Internal_Vernaux));
8033 if (iverneed->vn_auxptr == NULL)
8034 goto error_return_verref;
8035 }
8036
8037 if (iverneed->vn_aux
8038 > (size_t) (contents_end - (bfd_byte *) everneed))
8039 goto error_return_bad_verref;
8040
8041 evernaux = ((Elf_External_Vernaux *)
8042 ((bfd_byte *) everneed + iverneed->vn_aux));
8043 ivernaux = iverneed->vn_auxptr;
8044 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8045 {
8046 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8047
8048 ivernaux->vna_nodename =
8049 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8050 ivernaux->vna_name);
8051 if (ivernaux->vna_nodename == NULL)
8052 goto error_return_bad_verref;
8053
8054 if (ivernaux->vna_other > freeidx)
8055 freeidx = ivernaux->vna_other;
8056
8057 ivernaux->vna_nextptr = NULL;
8058 if (ivernaux->vna_next == 0)
8059 {
8060 iverneed->vn_cnt = j + 1;
8061 break;
8062 }
8063 if (j + 1 < iverneed->vn_cnt)
8064 ivernaux->vna_nextptr = ivernaux + 1;
8065
8066 if (ivernaux->vna_next
8067 > (size_t) (contents_end - (bfd_byte *) evernaux))
8068 goto error_return_bad_verref;
8069
8070 evernaux = ((Elf_External_Vernaux *)
8071 ((bfd_byte *) evernaux + ivernaux->vna_next));
8072 }
8073
8074 iverneed->vn_nextref = NULL;
8075 if (iverneed->vn_next == 0)
8076 break;
8077 if (i + 1 < hdr->sh_info)
8078 iverneed->vn_nextref = iverneed + 1;
8079
8080 if (iverneed->vn_next
8081 > (size_t) (contents_end - (bfd_byte *) everneed))
8082 goto error_return_bad_verref;
8083
8084 everneed = ((Elf_External_Verneed *)
8085 ((bfd_byte *) everneed + iverneed->vn_next));
8086 }
8087 elf_tdata (abfd)->cverrefs = i;
8088
8089 free (contents);
8090 contents = NULL;
8091 }
8092
8093 if (elf_dynverdef (abfd) != 0)
8094 {
8095 Elf_Internal_Shdr *hdr;
8096 Elf_External_Verdef *everdef;
8097 Elf_Internal_Verdef *iverdef;
8098 Elf_Internal_Verdef *iverdefarr;
8099 Elf_Internal_Verdef iverdefmem;
8100 unsigned int i;
8101 unsigned int maxidx;
8102 bfd_byte *contents_end_def, *contents_end_aux;
8103
8104 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8105
8106 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8107 {
8108 error_return_bad_verdef:
8109 (*_bfd_error_handler)
8110 (_("%B: .gnu.version_d invalid entry"), abfd);
8111 bfd_set_error (bfd_error_bad_value);
8112 error_return_verdef:
8113 elf_tdata (abfd)->verdef = NULL;
8114 elf_tdata (abfd)->cverdefs = 0;
8115 goto error_return;
8116 }
8117
8118 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8119 if (contents == NULL)
8120 goto error_return_verdef;
8121 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8122 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8123 goto error_return_verdef;
8124
8125 BFD_ASSERT (sizeof (Elf_External_Verdef)
8126 >= sizeof (Elf_External_Verdaux));
8127 contents_end_def = contents + hdr->sh_size
8128 - sizeof (Elf_External_Verdef);
8129 contents_end_aux = contents + hdr->sh_size
8130 - sizeof (Elf_External_Verdaux);
8131
8132 /* We know the number of entries in the section but not the maximum
8133 index. Therefore we have to run through all entries and find
8134 the maximum. */
8135 everdef = (Elf_External_Verdef *) contents;
8136 maxidx = 0;
8137 for (i = 0; i < hdr->sh_info; ++i)
8138 {
8139 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8140
8141 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8142 goto error_return_bad_verdef;
8143 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8144 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8145
8146 if (iverdefmem.vd_next == 0)
8147 break;
8148
8149 if (iverdefmem.vd_next
8150 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8151 goto error_return_bad_verdef;
8152
8153 everdef = ((Elf_External_Verdef *)
8154 ((bfd_byte *) everdef + iverdefmem.vd_next));
8155 }
8156
8157 if (default_imported_symver)
8158 {
8159 if (freeidx > maxidx)
8160 maxidx = ++freeidx;
8161 else
8162 freeidx = ++maxidx;
8163 }
8164
8165 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8166 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8167 if (elf_tdata (abfd)->verdef == NULL)
8168 goto error_return_verdef;
8169
8170 elf_tdata (abfd)->cverdefs = maxidx;
8171
8172 everdef = (Elf_External_Verdef *) contents;
8173 iverdefarr = elf_tdata (abfd)->verdef;
8174 for (i = 0; i < hdr->sh_info; i++)
8175 {
8176 Elf_External_Verdaux *everdaux;
8177 Elf_Internal_Verdaux *iverdaux;
8178 unsigned int j;
8179
8180 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8181
8182 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8183 goto error_return_bad_verdef;
8184
8185 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8186 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8187
8188 iverdef->vd_bfd = abfd;
8189
8190 if (iverdef->vd_cnt == 0)
8191 iverdef->vd_auxptr = NULL;
8192 else
8193 {
8194 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8195 bfd_alloc2 (abfd, iverdef->vd_cnt,
8196 sizeof (Elf_Internal_Verdaux));
8197 if (iverdef->vd_auxptr == NULL)
8198 goto error_return_verdef;
8199 }
8200
8201 if (iverdef->vd_aux
8202 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8203 goto error_return_bad_verdef;
8204
8205 everdaux = ((Elf_External_Verdaux *)
8206 ((bfd_byte *) everdef + iverdef->vd_aux));
8207 iverdaux = iverdef->vd_auxptr;
8208 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8209 {
8210 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8211
8212 iverdaux->vda_nodename =
8213 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8214 iverdaux->vda_name);
8215 if (iverdaux->vda_nodename == NULL)
8216 goto error_return_bad_verdef;
8217
8218 iverdaux->vda_nextptr = NULL;
8219 if (iverdaux->vda_next == 0)
8220 {
8221 iverdef->vd_cnt = j + 1;
8222 break;
8223 }
8224 if (j + 1 < iverdef->vd_cnt)
8225 iverdaux->vda_nextptr = iverdaux + 1;
8226
8227 if (iverdaux->vda_next
8228 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8229 goto error_return_bad_verdef;
8230
8231 everdaux = ((Elf_External_Verdaux *)
8232 ((bfd_byte *) everdaux + iverdaux->vda_next));
8233 }
8234
8235 iverdef->vd_nodename = NULL;
8236 if (iverdef->vd_cnt)
8237 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8238
8239 iverdef->vd_nextdef = NULL;
8240 if (iverdef->vd_next == 0)
8241 break;
8242 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8243 iverdef->vd_nextdef = iverdef + 1;
8244
8245 everdef = ((Elf_External_Verdef *)
8246 ((bfd_byte *) everdef + iverdef->vd_next));
8247 }
8248
8249 free (contents);
8250 contents = NULL;
8251 }
8252 else if (default_imported_symver)
8253 {
8254 if (freeidx < 3)
8255 freeidx = 3;
8256 else
8257 freeidx++;
8258
8259 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8260 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8261 if (elf_tdata (abfd)->verdef == NULL)
8262 goto error_return;
8263
8264 elf_tdata (abfd)->cverdefs = freeidx;
8265 }
8266
8267 /* Create a default version based on the soname. */
8268 if (default_imported_symver)
8269 {
8270 Elf_Internal_Verdef *iverdef;
8271 Elf_Internal_Verdaux *iverdaux;
8272
8273 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8274
8275 iverdef->vd_version = VER_DEF_CURRENT;
8276 iverdef->vd_flags = 0;
8277 iverdef->vd_ndx = freeidx;
8278 iverdef->vd_cnt = 1;
8279
8280 iverdef->vd_bfd = abfd;
8281
8282 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8283 if (iverdef->vd_nodename == NULL)
8284 goto error_return_verdef;
8285 iverdef->vd_nextdef = NULL;
8286 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8287 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8288 if (iverdef->vd_auxptr == NULL)
8289 goto error_return_verdef;
8290
8291 iverdaux = iverdef->vd_auxptr;
8292 iverdaux->vda_nodename = iverdef->vd_nodename;
8293 }
8294
8295 return TRUE;
8296
8297 error_return:
8298 if (contents != NULL)
8299 free (contents);
8300 return FALSE;
8301 }
8302 \f
8303 asymbol *
8304 _bfd_elf_make_empty_symbol (bfd *abfd)
8305 {
8306 elf_symbol_type *newsym;
8307
8308 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8309 if (!newsym)
8310 return NULL;
8311 newsym->symbol.the_bfd = abfd;
8312 return &newsym->symbol;
8313 }
8314
8315 void
8316 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8317 asymbol *symbol,
8318 symbol_info *ret)
8319 {
8320 bfd_symbol_info (symbol, ret);
8321 }
8322
8323 /* Return whether a symbol name implies a local symbol. Most targets
8324 use this function for the is_local_label_name entry point, but some
8325 override it. */
8326
8327 bfd_boolean
8328 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8329 const char *name)
8330 {
8331 /* Normal local symbols start with ``.L''. */
8332 if (name[0] == '.' && name[1] == 'L')
8333 return TRUE;
8334
8335 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8336 DWARF debugging symbols starting with ``..''. */
8337 if (name[0] == '.' && name[1] == '.')
8338 return TRUE;
8339
8340 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8341 emitting DWARF debugging output. I suspect this is actually a
8342 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8343 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8344 underscore to be emitted on some ELF targets). For ease of use,
8345 we treat such symbols as local. */
8346 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8347 return TRUE;
8348
8349 /* Treat assembler generated fake symbols, dollar local labels and
8350 forward-backward labels (aka local labels) as locals.
8351 These labels have the form:
8352
8353 L0^A.* (fake symbols)
8354
8355 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8356
8357 Versions which start with .L will have already been matched above,
8358 so we only need to match the rest. */
8359 if (name[0] == 'L' && ISDIGIT (name[1]))
8360 {
8361 bfd_boolean ret = FALSE;
8362 const char * p;
8363 char c;
8364
8365 for (p = name + 2; (c = *p); p++)
8366 {
8367 if (c == 1 || c == 2)
8368 {
8369 if (c == 1 && p == name + 2)
8370 /* A fake symbol. */
8371 return TRUE;
8372
8373 /* FIXME: We are being paranoid here and treating symbols like
8374 L0^Bfoo as if there were non-local, on the grounds that the
8375 assembler will never generate them. But can any symbol
8376 containing an ASCII value in the range 1-31 ever be anything
8377 other than some kind of local ? */
8378 ret = TRUE;
8379 }
8380
8381 if (! ISDIGIT (c))
8382 {
8383 ret = FALSE;
8384 break;
8385 }
8386 }
8387 return ret;
8388 }
8389
8390 return FALSE;
8391 }
8392
8393 alent *
8394 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8395 asymbol *symbol ATTRIBUTE_UNUSED)
8396 {
8397 abort ();
8398 return NULL;
8399 }
8400
8401 bfd_boolean
8402 _bfd_elf_set_arch_mach (bfd *abfd,
8403 enum bfd_architecture arch,
8404 unsigned long machine)
8405 {
8406 /* If this isn't the right architecture for this backend, and this
8407 isn't the generic backend, fail. */
8408 if (arch != get_elf_backend_data (abfd)->arch
8409 && arch != bfd_arch_unknown
8410 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8411 return FALSE;
8412
8413 return bfd_default_set_arch_mach (abfd, arch, machine);
8414 }
8415
8416 /* Find the nearest line to a particular section and offset,
8417 for error reporting. */
8418
8419 bfd_boolean
8420 _bfd_elf_find_nearest_line (bfd *abfd,
8421 asymbol **symbols,
8422 asection *section,
8423 bfd_vma offset,
8424 const char **filename_ptr,
8425 const char **functionname_ptr,
8426 unsigned int *line_ptr,
8427 unsigned int *discriminator_ptr)
8428 {
8429 bfd_boolean found;
8430
8431 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8432 filename_ptr, functionname_ptr,
8433 line_ptr, discriminator_ptr,
8434 dwarf_debug_sections, 0,
8435 &elf_tdata (abfd)->dwarf2_find_line_info)
8436 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8437 filename_ptr, functionname_ptr,
8438 line_ptr))
8439 {
8440 if (!*functionname_ptr)
8441 _bfd_elf_find_function (abfd, symbols, section, offset,
8442 *filename_ptr ? NULL : filename_ptr,
8443 functionname_ptr);
8444 return TRUE;
8445 }
8446
8447 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8448 &found, filename_ptr,
8449 functionname_ptr, line_ptr,
8450 &elf_tdata (abfd)->line_info))
8451 return FALSE;
8452 if (found && (*functionname_ptr || *line_ptr))
8453 return TRUE;
8454
8455 if (symbols == NULL)
8456 return FALSE;
8457
8458 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8459 filename_ptr, functionname_ptr))
8460 return FALSE;
8461
8462 *line_ptr = 0;
8463 return TRUE;
8464 }
8465
8466 /* Find the line for a symbol. */
8467
8468 bfd_boolean
8469 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8470 const char **filename_ptr, unsigned int *line_ptr)
8471 {
8472 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8473 filename_ptr, NULL, line_ptr, NULL,
8474 dwarf_debug_sections, 0,
8475 &elf_tdata (abfd)->dwarf2_find_line_info);
8476 }
8477
8478 /* After a call to bfd_find_nearest_line, successive calls to
8479 bfd_find_inliner_info can be used to get source information about
8480 each level of function inlining that terminated at the address
8481 passed to bfd_find_nearest_line. Currently this is only supported
8482 for DWARF2 with appropriate DWARF3 extensions. */
8483
8484 bfd_boolean
8485 _bfd_elf_find_inliner_info (bfd *abfd,
8486 const char **filename_ptr,
8487 const char **functionname_ptr,
8488 unsigned int *line_ptr)
8489 {
8490 bfd_boolean found;
8491 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8492 functionname_ptr, line_ptr,
8493 & elf_tdata (abfd)->dwarf2_find_line_info);
8494 return found;
8495 }
8496
8497 int
8498 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8499 {
8500 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8501 int ret = bed->s->sizeof_ehdr;
8502
8503 if (!bfd_link_relocatable (info))
8504 {
8505 bfd_size_type phdr_size = elf_program_header_size (abfd);
8506
8507 if (phdr_size == (bfd_size_type) -1)
8508 {
8509 struct elf_segment_map *m;
8510
8511 phdr_size = 0;
8512 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8513 phdr_size += bed->s->sizeof_phdr;
8514
8515 if (phdr_size == 0)
8516 phdr_size = get_program_header_size (abfd, info);
8517 }
8518
8519 elf_program_header_size (abfd) = phdr_size;
8520 ret += phdr_size;
8521 }
8522
8523 return ret;
8524 }
8525
8526 bfd_boolean
8527 _bfd_elf_set_section_contents (bfd *abfd,
8528 sec_ptr section,
8529 const void *location,
8530 file_ptr offset,
8531 bfd_size_type count)
8532 {
8533 Elf_Internal_Shdr *hdr;
8534 file_ptr pos;
8535
8536 if (! abfd->output_has_begun
8537 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8538 return FALSE;
8539
8540 if (!count)
8541 return TRUE;
8542
8543 hdr = &elf_section_data (section)->this_hdr;
8544 if (hdr->sh_offset == (file_ptr) -1)
8545 {
8546 /* We must compress this section. Write output to the buffer. */
8547 unsigned char *contents = hdr->contents;
8548 if ((offset + count) > hdr->sh_size
8549 || (section->flags & SEC_ELF_COMPRESS) == 0
8550 || contents == NULL)
8551 abort ();
8552 memcpy (contents + offset, location, count);
8553 return TRUE;
8554 }
8555 pos = hdr->sh_offset + offset;
8556 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8557 || bfd_bwrite (location, count, abfd) != count)
8558 return FALSE;
8559
8560 return TRUE;
8561 }
8562
8563 void
8564 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8565 arelent *cache_ptr ATTRIBUTE_UNUSED,
8566 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8567 {
8568 abort ();
8569 }
8570
8571 /* Try to convert a non-ELF reloc into an ELF one. */
8572
8573 bfd_boolean
8574 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8575 {
8576 /* Check whether we really have an ELF howto. */
8577
8578 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8579 {
8580 bfd_reloc_code_real_type code;
8581 reloc_howto_type *howto;
8582
8583 /* Alien reloc: Try to determine its type to replace it with an
8584 equivalent ELF reloc. */
8585
8586 if (areloc->howto->pc_relative)
8587 {
8588 switch (areloc->howto->bitsize)
8589 {
8590 case 8:
8591 code = BFD_RELOC_8_PCREL;
8592 break;
8593 case 12:
8594 code = BFD_RELOC_12_PCREL;
8595 break;
8596 case 16:
8597 code = BFD_RELOC_16_PCREL;
8598 break;
8599 case 24:
8600 code = BFD_RELOC_24_PCREL;
8601 break;
8602 case 32:
8603 code = BFD_RELOC_32_PCREL;
8604 break;
8605 case 64:
8606 code = BFD_RELOC_64_PCREL;
8607 break;
8608 default:
8609 goto fail;
8610 }
8611
8612 howto = bfd_reloc_type_lookup (abfd, code);
8613
8614 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8615 {
8616 if (howto->pcrel_offset)
8617 areloc->addend += areloc->address;
8618 else
8619 areloc->addend -= areloc->address; /* addend is unsigned!! */
8620 }
8621 }
8622 else
8623 {
8624 switch (areloc->howto->bitsize)
8625 {
8626 case 8:
8627 code = BFD_RELOC_8;
8628 break;
8629 case 14:
8630 code = BFD_RELOC_14;
8631 break;
8632 case 16:
8633 code = BFD_RELOC_16;
8634 break;
8635 case 26:
8636 code = BFD_RELOC_26;
8637 break;
8638 case 32:
8639 code = BFD_RELOC_32;
8640 break;
8641 case 64:
8642 code = BFD_RELOC_64;
8643 break;
8644 default:
8645 goto fail;
8646 }
8647
8648 howto = bfd_reloc_type_lookup (abfd, code);
8649 }
8650
8651 if (howto)
8652 areloc->howto = howto;
8653 else
8654 goto fail;
8655 }
8656
8657 return TRUE;
8658
8659 fail:
8660 (*_bfd_error_handler)
8661 (_("%B: unsupported relocation type %s"),
8662 abfd, areloc->howto->name);
8663 bfd_set_error (bfd_error_bad_value);
8664 return FALSE;
8665 }
8666
8667 bfd_boolean
8668 _bfd_elf_close_and_cleanup (bfd *abfd)
8669 {
8670 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8671 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8672 {
8673 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8674 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8675 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8676 }
8677
8678 return _bfd_generic_close_and_cleanup (abfd);
8679 }
8680
8681 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8682 in the relocation's offset. Thus we cannot allow any sort of sanity
8683 range-checking to interfere. There is nothing else to do in processing
8684 this reloc. */
8685
8686 bfd_reloc_status_type
8687 _bfd_elf_rel_vtable_reloc_fn
8688 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8689 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8690 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8691 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8692 {
8693 return bfd_reloc_ok;
8694 }
8695 \f
8696 /* Elf core file support. Much of this only works on native
8697 toolchains, since we rely on knowing the
8698 machine-dependent procfs structure in order to pick
8699 out details about the corefile. */
8700
8701 #ifdef HAVE_SYS_PROCFS_H
8702 /* Needed for new procfs interface on sparc-solaris. */
8703 # define _STRUCTURED_PROC 1
8704 # include <sys/procfs.h>
8705 #endif
8706
8707 /* Return a PID that identifies a "thread" for threaded cores, or the
8708 PID of the main process for non-threaded cores. */
8709
8710 static int
8711 elfcore_make_pid (bfd *abfd)
8712 {
8713 int pid;
8714
8715 pid = elf_tdata (abfd)->core->lwpid;
8716 if (pid == 0)
8717 pid = elf_tdata (abfd)->core->pid;
8718
8719 return pid;
8720 }
8721
8722 /* If there isn't a section called NAME, make one, using
8723 data from SECT. Note, this function will generate a
8724 reference to NAME, so you shouldn't deallocate or
8725 overwrite it. */
8726
8727 static bfd_boolean
8728 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8729 {
8730 asection *sect2;
8731
8732 if (bfd_get_section_by_name (abfd, name) != NULL)
8733 return TRUE;
8734
8735 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8736 if (sect2 == NULL)
8737 return FALSE;
8738
8739 sect2->size = sect->size;
8740 sect2->filepos = sect->filepos;
8741 sect2->alignment_power = sect->alignment_power;
8742 return TRUE;
8743 }
8744
8745 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
8746 actually creates up to two pseudosections:
8747 - For the single-threaded case, a section named NAME, unless
8748 such a section already exists.
8749 - For the multi-threaded case, a section named "NAME/PID", where
8750 PID is elfcore_make_pid (abfd).
8751 Both pseudosections have identical contents. */
8752 bfd_boolean
8753 _bfd_elfcore_make_pseudosection (bfd *abfd,
8754 char *name,
8755 size_t size,
8756 ufile_ptr filepos)
8757 {
8758 char buf[100];
8759 char *threaded_name;
8760 size_t len;
8761 asection *sect;
8762
8763 /* Build the section name. */
8764
8765 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
8766 len = strlen (buf) + 1;
8767 threaded_name = (char *) bfd_alloc (abfd, len);
8768 if (threaded_name == NULL)
8769 return FALSE;
8770 memcpy (threaded_name, buf, len);
8771
8772 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
8773 SEC_HAS_CONTENTS);
8774 if (sect == NULL)
8775 return FALSE;
8776 sect->size = size;
8777 sect->filepos = filepos;
8778 sect->alignment_power = 2;
8779
8780 return elfcore_maybe_make_sect (abfd, name, sect);
8781 }
8782
8783 /* prstatus_t exists on:
8784 solaris 2.5+
8785 linux 2.[01] + glibc
8786 unixware 4.2
8787 */
8788
8789 #if defined (HAVE_PRSTATUS_T)
8790
8791 static bfd_boolean
8792 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
8793 {
8794 size_t size;
8795 int offset;
8796
8797 if (note->descsz == sizeof (prstatus_t))
8798 {
8799 prstatus_t prstat;
8800
8801 size = sizeof (prstat.pr_reg);
8802 offset = offsetof (prstatus_t, pr_reg);
8803 memcpy (&prstat, note->descdata, sizeof (prstat));
8804
8805 /* Do not overwrite the core signal if it
8806 has already been set by another thread. */
8807 if (elf_tdata (abfd)->core->signal == 0)
8808 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8809 if (elf_tdata (abfd)->core->pid == 0)
8810 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8811
8812 /* pr_who exists on:
8813 solaris 2.5+
8814 unixware 4.2
8815 pr_who doesn't exist on:
8816 linux 2.[01]
8817 */
8818 #if defined (HAVE_PRSTATUS_T_PR_WHO)
8819 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8820 #else
8821 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8822 #endif
8823 }
8824 #if defined (HAVE_PRSTATUS32_T)
8825 else if (note->descsz == sizeof (prstatus32_t))
8826 {
8827 /* 64-bit host, 32-bit corefile */
8828 prstatus32_t prstat;
8829
8830 size = sizeof (prstat.pr_reg);
8831 offset = offsetof (prstatus32_t, pr_reg);
8832 memcpy (&prstat, note->descdata, sizeof (prstat));
8833
8834 /* Do not overwrite the core signal if it
8835 has already been set by another thread. */
8836 if (elf_tdata (abfd)->core->signal == 0)
8837 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
8838 if (elf_tdata (abfd)->core->pid == 0)
8839 elf_tdata (abfd)->core->pid = prstat.pr_pid;
8840
8841 /* pr_who exists on:
8842 solaris 2.5+
8843 unixware 4.2
8844 pr_who doesn't exist on:
8845 linux 2.[01]
8846 */
8847 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
8848 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
8849 #else
8850 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
8851 #endif
8852 }
8853 #endif /* HAVE_PRSTATUS32_T */
8854 else
8855 {
8856 /* Fail - we don't know how to handle any other
8857 note size (ie. data object type). */
8858 return TRUE;
8859 }
8860
8861 /* Make a ".reg/999" section and a ".reg" section. */
8862 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
8863 size, note->descpos + offset);
8864 }
8865 #endif /* defined (HAVE_PRSTATUS_T) */
8866
8867 /* Create a pseudosection containing the exact contents of NOTE. */
8868 static bfd_boolean
8869 elfcore_make_note_pseudosection (bfd *abfd,
8870 char *name,
8871 Elf_Internal_Note *note)
8872 {
8873 return _bfd_elfcore_make_pseudosection (abfd, name,
8874 note->descsz, note->descpos);
8875 }
8876
8877 /* There isn't a consistent prfpregset_t across platforms,
8878 but it doesn't matter, because we don't have to pick this
8879 data structure apart. */
8880
8881 static bfd_boolean
8882 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8883 {
8884 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8885 }
8886
8887 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8888 type of NT_PRXFPREG. Just include the whole note's contents
8889 literally. */
8890
8891 static bfd_boolean
8892 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8893 {
8894 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8895 }
8896
8897 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8898 with a note type of NT_X86_XSTATE. Just include the whole note's
8899 contents literally. */
8900
8901 static bfd_boolean
8902 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8903 {
8904 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8905 }
8906
8907 static bfd_boolean
8908 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8909 {
8910 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8911 }
8912
8913 static bfd_boolean
8914 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8915 {
8916 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8917 }
8918
8919 static bfd_boolean
8920 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8921 {
8922 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8923 }
8924
8925 static bfd_boolean
8926 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8927 {
8928 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8929 }
8930
8931 static bfd_boolean
8932 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8933 {
8934 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8935 }
8936
8937 static bfd_boolean
8938 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8939 {
8940 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8941 }
8942
8943 static bfd_boolean
8944 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8945 {
8946 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8947 }
8948
8949 static bfd_boolean
8950 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8951 {
8952 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8953 }
8954
8955 static bfd_boolean
8956 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8957 {
8958 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8959 }
8960
8961 static bfd_boolean
8962 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8963 {
8964 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8965 }
8966
8967 static bfd_boolean
8968 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
8969 {
8970 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
8971 }
8972
8973 static bfd_boolean
8974 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
8975 {
8976 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
8977 }
8978
8979 static bfd_boolean
8980 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
8981 {
8982 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
8983 }
8984
8985 static bfd_boolean
8986 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8987 {
8988 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8989 }
8990
8991 static bfd_boolean
8992 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
8993 {
8994 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
8995 }
8996
8997 static bfd_boolean
8998 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
8999 {
9000 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9001 }
9002
9003 static bfd_boolean
9004 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9005 {
9006 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9007 }
9008
9009 #if defined (HAVE_PRPSINFO_T)
9010 typedef prpsinfo_t elfcore_psinfo_t;
9011 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9012 typedef prpsinfo32_t elfcore_psinfo32_t;
9013 #endif
9014 #endif
9015
9016 #if defined (HAVE_PSINFO_T)
9017 typedef psinfo_t elfcore_psinfo_t;
9018 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9019 typedef psinfo32_t elfcore_psinfo32_t;
9020 #endif
9021 #endif
9022
9023 /* return a malloc'ed copy of a string at START which is at
9024 most MAX bytes long, possibly without a terminating '\0'.
9025 the copy will always have a terminating '\0'. */
9026
9027 char *
9028 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9029 {
9030 char *dups;
9031 char *end = (char *) memchr (start, '\0', max);
9032 size_t len;
9033
9034 if (end == NULL)
9035 len = max;
9036 else
9037 len = end - start;
9038
9039 dups = (char *) bfd_alloc (abfd, len + 1);
9040 if (dups == NULL)
9041 return NULL;
9042
9043 memcpy (dups, start, len);
9044 dups[len] = '\0';
9045
9046 return dups;
9047 }
9048
9049 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9050 static bfd_boolean
9051 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9052 {
9053 if (note->descsz == sizeof (elfcore_psinfo_t))
9054 {
9055 elfcore_psinfo_t psinfo;
9056
9057 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9058
9059 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9060 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9061 #endif
9062 elf_tdata (abfd)->core->program
9063 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9064 sizeof (psinfo.pr_fname));
9065
9066 elf_tdata (abfd)->core->command
9067 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9068 sizeof (psinfo.pr_psargs));
9069 }
9070 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9071 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9072 {
9073 /* 64-bit host, 32-bit corefile */
9074 elfcore_psinfo32_t psinfo;
9075
9076 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9077
9078 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9079 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9080 #endif
9081 elf_tdata (abfd)->core->program
9082 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9083 sizeof (psinfo.pr_fname));
9084
9085 elf_tdata (abfd)->core->command
9086 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9087 sizeof (psinfo.pr_psargs));
9088 }
9089 #endif
9090
9091 else
9092 {
9093 /* Fail - we don't know how to handle any other
9094 note size (ie. data object type). */
9095 return TRUE;
9096 }
9097
9098 /* Note that for some reason, a spurious space is tacked
9099 onto the end of the args in some (at least one anyway)
9100 implementations, so strip it off if it exists. */
9101
9102 {
9103 char *command = elf_tdata (abfd)->core->command;
9104 int n = strlen (command);
9105
9106 if (0 < n && command[n - 1] == ' ')
9107 command[n - 1] = '\0';
9108 }
9109
9110 return TRUE;
9111 }
9112 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9113
9114 #if defined (HAVE_PSTATUS_T)
9115 static bfd_boolean
9116 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9117 {
9118 if (note->descsz == sizeof (pstatus_t)
9119 #if defined (HAVE_PXSTATUS_T)
9120 || note->descsz == sizeof (pxstatus_t)
9121 #endif
9122 )
9123 {
9124 pstatus_t pstat;
9125
9126 memcpy (&pstat, note->descdata, sizeof (pstat));
9127
9128 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9129 }
9130 #if defined (HAVE_PSTATUS32_T)
9131 else if (note->descsz == sizeof (pstatus32_t))
9132 {
9133 /* 64-bit host, 32-bit corefile */
9134 pstatus32_t pstat;
9135
9136 memcpy (&pstat, note->descdata, sizeof (pstat));
9137
9138 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9139 }
9140 #endif
9141 /* Could grab some more details from the "representative"
9142 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9143 NT_LWPSTATUS note, presumably. */
9144
9145 return TRUE;
9146 }
9147 #endif /* defined (HAVE_PSTATUS_T) */
9148
9149 #if defined (HAVE_LWPSTATUS_T)
9150 static bfd_boolean
9151 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9152 {
9153 lwpstatus_t lwpstat;
9154 char buf[100];
9155 char *name;
9156 size_t len;
9157 asection *sect;
9158
9159 if (note->descsz != sizeof (lwpstat)
9160 #if defined (HAVE_LWPXSTATUS_T)
9161 && note->descsz != sizeof (lwpxstatus_t)
9162 #endif
9163 )
9164 return TRUE;
9165
9166 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9167
9168 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9169 /* Do not overwrite the core signal if it has already been set by
9170 another thread. */
9171 if (elf_tdata (abfd)->core->signal == 0)
9172 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9173
9174 /* Make a ".reg/999" section. */
9175
9176 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9177 len = strlen (buf) + 1;
9178 name = bfd_alloc (abfd, len);
9179 if (name == NULL)
9180 return FALSE;
9181 memcpy (name, buf, len);
9182
9183 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9184 if (sect == NULL)
9185 return FALSE;
9186
9187 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9188 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9189 sect->filepos = note->descpos
9190 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9191 #endif
9192
9193 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9194 sect->size = sizeof (lwpstat.pr_reg);
9195 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9196 #endif
9197
9198 sect->alignment_power = 2;
9199
9200 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9201 return FALSE;
9202
9203 /* Make a ".reg2/999" section */
9204
9205 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9206 len = strlen (buf) + 1;
9207 name = bfd_alloc (abfd, len);
9208 if (name == NULL)
9209 return FALSE;
9210 memcpy (name, buf, len);
9211
9212 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9213 if (sect == NULL)
9214 return FALSE;
9215
9216 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9217 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9218 sect->filepos = note->descpos
9219 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9220 #endif
9221
9222 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9223 sect->size = sizeof (lwpstat.pr_fpreg);
9224 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9225 #endif
9226
9227 sect->alignment_power = 2;
9228
9229 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9230 }
9231 #endif /* defined (HAVE_LWPSTATUS_T) */
9232
9233 static bfd_boolean
9234 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9235 {
9236 char buf[30];
9237 char *name;
9238 size_t len;
9239 asection *sect;
9240 int type;
9241 int is_active_thread;
9242 bfd_vma base_addr;
9243
9244 if (note->descsz < 728)
9245 return TRUE;
9246
9247 if (! CONST_STRNEQ (note->namedata, "win32"))
9248 return TRUE;
9249
9250 type = bfd_get_32 (abfd, note->descdata);
9251
9252 switch (type)
9253 {
9254 case 1 /* NOTE_INFO_PROCESS */:
9255 /* FIXME: need to add ->core->command. */
9256 /* process_info.pid */
9257 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9258 /* process_info.signal */
9259 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9260 break;
9261
9262 case 2 /* NOTE_INFO_THREAD */:
9263 /* Make a ".reg/999" section. */
9264 /* thread_info.tid */
9265 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9266
9267 len = strlen (buf) + 1;
9268 name = (char *) bfd_alloc (abfd, len);
9269 if (name == NULL)
9270 return FALSE;
9271
9272 memcpy (name, buf, len);
9273
9274 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9275 if (sect == NULL)
9276 return FALSE;
9277
9278 /* sizeof (thread_info.thread_context) */
9279 sect->size = 716;
9280 /* offsetof (thread_info.thread_context) */
9281 sect->filepos = note->descpos + 12;
9282 sect->alignment_power = 2;
9283
9284 /* thread_info.is_active_thread */
9285 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9286
9287 if (is_active_thread)
9288 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9289 return FALSE;
9290 break;
9291
9292 case 3 /* NOTE_INFO_MODULE */:
9293 /* Make a ".module/xxxxxxxx" section. */
9294 /* module_info.base_address */
9295 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9296 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9297
9298 len = strlen (buf) + 1;
9299 name = (char *) bfd_alloc (abfd, len);
9300 if (name == NULL)
9301 return FALSE;
9302
9303 memcpy (name, buf, len);
9304
9305 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9306
9307 if (sect == NULL)
9308 return FALSE;
9309
9310 sect->size = note->descsz;
9311 sect->filepos = note->descpos;
9312 sect->alignment_power = 2;
9313 break;
9314
9315 default:
9316 return TRUE;
9317 }
9318
9319 return TRUE;
9320 }
9321
9322 static bfd_boolean
9323 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9324 {
9325 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9326
9327 switch (note->type)
9328 {
9329 default:
9330 return TRUE;
9331
9332 case NT_PRSTATUS:
9333 if (bed->elf_backend_grok_prstatus)
9334 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9335 return TRUE;
9336 #if defined (HAVE_PRSTATUS_T)
9337 return elfcore_grok_prstatus (abfd, note);
9338 #else
9339 return TRUE;
9340 #endif
9341
9342 #if defined (HAVE_PSTATUS_T)
9343 case NT_PSTATUS:
9344 return elfcore_grok_pstatus (abfd, note);
9345 #endif
9346
9347 #if defined (HAVE_LWPSTATUS_T)
9348 case NT_LWPSTATUS:
9349 return elfcore_grok_lwpstatus (abfd, note);
9350 #endif
9351
9352 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9353 return elfcore_grok_prfpreg (abfd, note);
9354
9355 case NT_WIN32PSTATUS:
9356 return elfcore_grok_win32pstatus (abfd, note);
9357
9358 case NT_PRXFPREG: /* Linux SSE extension */
9359 if (note->namesz == 6
9360 && strcmp (note->namedata, "LINUX") == 0)
9361 return elfcore_grok_prxfpreg (abfd, note);
9362 else
9363 return TRUE;
9364
9365 case NT_X86_XSTATE: /* Linux XSAVE extension */
9366 if (note->namesz == 6
9367 && strcmp (note->namedata, "LINUX") == 0)
9368 return elfcore_grok_xstatereg (abfd, note);
9369 else
9370 return TRUE;
9371
9372 case NT_PPC_VMX:
9373 if (note->namesz == 6
9374 && strcmp (note->namedata, "LINUX") == 0)
9375 return elfcore_grok_ppc_vmx (abfd, note);
9376 else
9377 return TRUE;
9378
9379 case NT_PPC_VSX:
9380 if (note->namesz == 6
9381 && strcmp (note->namedata, "LINUX") == 0)
9382 return elfcore_grok_ppc_vsx (abfd, note);
9383 else
9384 return TRUE;
9385
9386 case NT_S390_HIGH_GPRS:
9387 if (note->namesz == 6
9388 && strcmp (note->namedata, "LINUX") == 0)
9389 return elfcore_grok_s390_high_gprs (abfd, note);
9390 else
9391 return TRUE;
9392
9393 case NT_S390_TIMER:
9394 if (note->namesz == 6
9395 && strcmp (note->namedata, "LINUX") == 0)
9396 return elfcore_grok_s390_timer (abfd, note);
9397 else
9398 return TRUE;
9399
9400 case NT_S390_TODCMP:
9401 if (note->namesz == 6
9402 && strcmp (note->namedata, "LINUX") == 0)
9403 return elfcore_grok_s390_todcmp (abfd, note);
9404 else
9405 return TRUE;
9406
9407 case NT_S390_TODPREG:
9408 if (note->namesz == 6
9409 && strcmp (note->namedata, "LINUX") == 0)
9410 return elfcore_grok_s390_todpreg (abfd, note);
9411 else
9412 return TRUE;
9413
9414 case NT_S390_CTRS:
9415 if (note->namesz == 6
9416 && strcmp (note->namedata, "LINUX") == 0)
9417 return elfcore_grok_s390_ctrs (abfd, note);
9418 else
9419 return TRUE;
9420
9421 case NT_S390_PREFIX:
9422 if (note->namesz == 6
9423 && strcmp (note->namedata, "LINUX") == 0)
9424 return elfcore_grok_s390_prefix (abfd, note);
9425 else
9426 return TRUE;
9427
9428 case NT_S390_LAST_BREAK:
9429 if (note->namesz == 6
9430 && strcmp (note->namedata, "LINUX") == 0)
9431 return elfcore_grok_s390_last_break (abfd, note);
9432 else
9433 return TRUE;
9434
9435 case NT_S390_SYSTEM_CALL:
9436 if (note->namesz == 6
9437 && strcmp (note->namedata, "LINUX") == 0)
9438 return elfcore_grok_s390_system_call (abfd, note);
9439 else
9440 return TRUE;
9441
9442 case NT_S390_TDB:
9443 if (note->namesz == 6
9444 && strcmp (note->namedata, "LINUX") == 0)
9445 return elfcore_grok_s390_tdb (abfd, note);
9446 else
9447 return TRUE;
9448
9449 case NT_S390_VXRS_LOW:
9450 if (note->namesz == 6
9451 && strcmp (note->namedata, "LINUX") == 0)
9452 return elfcore_grok_s390_vxrs_low (abfd, note);
9453 else
9454 return TRUE;
9455
9456 case NT_S390_VXRS_HIGH:
9457 if (note->namesz == 6
9458 && strcmp (note->namedata, "LINUX") == 0)
9459 return elfcore_grok_s390_vxrs_high (abfd, note);
9460 else
9461 return TRUE;
9462
9463 case NT_ARM_VFP:
9464 if (note->namesz == 6
9465 && strcmp (note->namedata, "LINUX") == 0)
9466 return elfcore_grok_arm_vfp (abfd, note);
9467 else
9468 return TRUE;
9469
9470 case NT_ARM_TLS:
9471 if (note->namesz == 6
9472 && strcmp (note->namedata, "LINUX") == 0)
9473 return elfcore_grok_aarch_tls (abfd, note);
9474 else
9475 return TRUE;
9476
9477 case NT_ARM_HW_BREAK:
9478 if (note->namesz == 6
9479 && strcmp (note->namedata, "LINUX") == 0)
9480 return elfcore_grok_aarch_hw_break (abfd, note);
9481 else
9482 return TRUE;
9483
9484 case NT_ARM_HW_WATCH:
9485 if (note->namesz == 6
9486 && strcmp (note->namedata, "LINUX") == 0)
9487 return elfcore_grok_aarch_hw_watch (abfd, note);
9488 else
9489 return TRUE;
9490
9491 case NT_PRPSINFO:
9492 case NT_PSINFO:
9493 if (bed->elf_backend_grok_psinfo)
9494 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9495 return TRUE;
9496 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9497 return elfcore_grok_psinfo (abfd, note);
9498 #else
9499 return TRUE;
9500 #endif
9501
9502 case NT_AUXV:
9503 {
9504 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9505 SEC_HAS_CONTENTS);
9506
9507 if (sect == NULL)
9508 return FALSE;
9509 sect->size = note->descsz;
9510 sect->filepos = note->descpos;
9511 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9512
9513 return TRUE;
9514 }
9515
9516 case NT_FILE:
9517 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9518 note);
9519
9520 case NT_SIGINFO:
9521 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9522 note);
9523
9524 }
9525 }
9526
9527 static bfd_boolean
9528 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9529 {
9530 struct bfd_build_id* build_id;
9531
9532 if (note->descsz == 0)
9533 return FALSE;
9534
9535 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
9536 if (build_id == NULL)
9537 return FALSE;
9538
9539 build_id->size = note->descsz;
9540 memcpy (build_id->data, note->descdata, note->descsz);
9541 abfd->build_id = build_id;
9542
9543 return TRUE;
9544 }
9545
9546 static bfd_boolean
9547 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9548 {
9549 switch (note->type)
9550 {
9551 default:
9552 return TRUE;
9553
9554 case NT_GNU_BUILD_ID:
9555 return elfobj_grok_gnu_build_id (abfd, note);
9556 }
9557 }
9558
9559 static bfd_boolean
9560 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9561 {
9562 struct sdt_note *cur =
9563 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9564 + note->descsz);
9565
9566 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9567 cur->size = (bfd_size_type) note->descsz;
9568 memcpy (cur->data, note->descdata, note->descsz);
9569
9570 elf_tdata (abfd)->sdt_note_head = cur;
9571
9572 return TRUE;
9573 }
9574
9575 static bfd_boolean
9576 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9577 {
9578 switch (note->type)
9579 {
9580 case NT_STAPSDT:
9581 return elfobj_grok_stapsdt_note_1 (abfd, note);
9582
9583 default:
9584 return TRUE;
9585 }
9586 }
9587
9588 static bfd_boolean
9589 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
9590 {
9591 size_t offset;
9592
9593 switch (abfd->arch_info->bits_per_word)
9594 {
9595 case 32:
9596 if (note->descsz < 108)
9597 return FALSE;
9598 break;
9599
9600 case 64:
9601 if (note->descsz < 120)
9602 return FALSE;
9603 break;
9604
9605 default:
9606 return FALSE;
9607 }
9608
9609 /* Check for version 1 in pr_version. */
9610 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9611 return FALSE;
9612 offset = 4;
9613
9614 /* Skip over pr_psinfosz. */
9615 if (abfd->arch_info->bits_per_word == 32)
9616 offset += 4;
9617 else
9618 {
9619 offset += 4; /* Padding before pr_psinfosz. */
9620 offset += 8;
9621 }
9622
9623 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
9624 elf_tdata (abfd)->core->program
9625 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
9626 offset += 17;
9627
9628 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
9629 elf_tdata (abfd)->core->command
9630 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
9631 offset += 81;
9632
9633 /* Padding before pr_pid. */
9634 offset += 2;
9635
9636 /* The pr_pid field was added in version "1a". */
9637 if (note->descsz < offset + 4)
9638 return TRUE;
9639
9640 elf_tdata (abfd)->core->pid
9641 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9642
9643 return TRUE;
9644 }
9645
9646 static bfd_boolean
9647 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
9648 {
9649 size_t offset;
9650 size_t size;
9651
9652 /* Check for version 1 in pr_version. */
9653 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9654 return FALSE;
9655 offset = 4;
9656
9657 /* Skip over pr_statussz. */
9658 switch (abfd->arch_info->bits_per_word)
9659 {
9660 case 32:
9661 offset += 4;
9662 break;
9663
9664 case 64:
9665 offset += 4; /* Padding before pr_statussz. */
9666 offset += 8;
9667 break;
9668
9669 default:
9670 return FALSE;
9671 }
9672
9673 /* Extract size of pr_reg from pr_gregsetsz. */
9674 if (abfd->arch_info->bits_per_word == 32)
9675 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9676 else
9677 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
9678
9679 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
9680 offset += (abfd->arch_info->bits_per_word / 8) * 2;
9681
9682 /* Skip over pr_osreldate. */
9683 offset += 4;
9684
9685 /* Read signal from pr_cursig. */
9686 if (elf_tdata (abfd)->core->signal == 0)
9687 elf_tdata (abfd)->core->signal
9688 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9689 offset += 4;
9690
9691 /* Read TID from pr_pid. */
9692 elf_tdata (abfd)->core->lwpid
9693 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9694 offset += 4;
9695
9696 /* Padding before pr_reg. */
9697 if (abfd->arch_info->bits_per_word == 64)
9698 offset += 4;
9699
9700 /* Make a ".reg/999" section and a ".reg" section. */
9701 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9702 size, note->descpos + offset);
9703 }
9704
9705 static bfd_boolean
9706 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
9707 {
9708 switch (note->type)
9709 {
9710 case NT_PRSTATUS:
9711 return elfcore_grok_freebsd_prstatus (abfd, note);
9712
9713 case NT_FPREGSET:
9714 return elfcore_grok_prfpreg (abfd, note);
9715
9716 case NT_PRPSINFO:
9717 return elfcore_grok_freebsd_psinfo (abfd, note);
9718
9719 case NT_FREEBSD_THRMISC:
9720 if (note->namesz == 8)
9721 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
9722 else
9723 return TRUE;
9724
9725 case NT_FREEBSD_PROCSTAT_AUXV:
9726 {
9727 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9728 SEC_HAS_CONTENTS);
9729
9730 if (sect == NULL)
9731 return FALSE;
9732 sect->size = note->descsz - 4;
9733 sect->filepos = note->descpos + 4;
9734 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9735
9736 return TRUE;
9737 }
9738
9739 case NT_X86_XSTATE:
9740 if (note->namesz == 8)
9741 return elfcore_grok_xstatereg (abfd, note);
9742 else
9743 return TRUE;
9744
9745 default:
9746 return TRUE;
9747 }
9748 }
9749
9750 static bfd_boolean
9751 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
9752 {
9753 char *cp;
9754
9755 cp = strchr (note->namedata, '@');
9756 if (cp != NULL)
9757 {
9758 *lwpidp = atoi(cp + 1);
9759 return TRUE;
9760 }
9761 return FALSE;
9762 }
9763
9764 static bfd_boolean
9765 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9766 {
9767 /* Signal number at offset 0x08. */
9768 elf_tdata (abfd)->core->signal
9769 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9770
9771 /* Process ID at offset 0x50. */
9772 elf_tdata (abfd)->core->pid
9773 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
9774
9775 /* Command name at 0x7c (max 32 bytes, including nul). */
9776 elf_tdata (abfd)->core->command
9777 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
9778
9779 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
9780 note);
9781 }
9782
9783 static bfd_boolean
9784 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
9785 {
9786 int lwp;
9787
9788 if (elfcore_netbsd_get_lwpid (note, &lwp))
9789 elf_tdata (abfd)->core->lwpid = lwp;
9790
9791 if (note->type == NT_NETBSDCORE_PROCINFO)
9792 {
9793 /* NetBSD-specific core "procinfo". Note that we expect to
9794 find this note before any of the others, which is fine,
9795 since the kernel writes this note out first when it
9796 creates a core file. */
9797
9798 return elfcore_grok_netbsd_procinfo (abfd, note);
9799 }
9800
9801 /* As of Jan 2002 there are no other machine-independent notes
9802 defined for NetBSD core files. If the note type is less
9803 than the start of the machine-dependent note types, we don't
9804 understand it. */
9805
9806 if (note->type < NT_NETBSDCORE_FIRSTMACH)
9807 return TRUE;
9808
9809
9810 switch (bfd_get_arch (abfd))
9811 {
9812 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
9813 PT_GETFPREGS == mach+2. */
9814
9815 case bfd_arch_alpha:
9816 case bfd_arch_sparc:
9817 switch (note->type)
9818 {
9819 case NT_NETBSDCORE_FIRSTMACH+0:
9820 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9821
9822 case NT_NETBSDCORE_FIRSTMACH+2:
9823 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9824
9825 default:
9826 return TRUE;
9827 }
9828
9829 /* On all other arch's, PT_GETREGS == mach+1 and
9830 PT_GETFPREGS == mach+3. */
9831
9832 default:
9833 switch (note->type)
9834 {
9835 case NT_NETBSDCORE_FIRSTMACH+1:
9836 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9837
9838 case NT_NETBSDCORE_FIRSTMACH+3:
9839 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9840
9841 default:
9842 return TRUE;
9843 }
9844 }
9845 /* NOTREACHED */
9846 }
9847
9848 static bfd_boolean
9849 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
9850 {
9851 /* Signal number at offset 0x08. */
9852 elf_tdata (abfd)->core->signal
9853 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
9854
9855 /* Process ID at offset 0x20. */
9856 elf_tdata (abfd)->core->pid
9857 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
9858
9859 /* Command name at 0x48 (max 32 bytes, including nul). */
9860 elf_tdata (abfd)->core->command
9861 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
9862
9863 return TRUE;
9864 }
9865
9866 static bfd_boolean
9867 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
9868 {
9869 if (note->type == NT_OPENBSD_PROCINFO)
9870 return elfcore_grok_openbsd_procinfo (abfd, note);
9871
9872 if (note->type == NT_OPENBSD_REGS)
9873 return elfcore_make_note_pseudosection (abfd, ".reg", note);
9874
9875 if (note->type == NT_OPENBSD_FPREGS)
9876 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9877
9878 if (note->type == NT_OPENBSD_XFPREGS)
9879 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9880
9881 if (note->type == NT_OPENBSD_AUXV)
9882 {
9883 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9884 SEC_HAS_CONTENTS);
9885
9886 if (sect == NULL)
9887 return FALSE;
9888 sect->size = note->descsz;
9889 sect->filepos = note->descpos;
9890 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9891
9892 return TRUE;
9893 }
9894
9895 if (note->type == NT_OPENBSD_WCOOKIE)
9896 {
9897 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
9898 SEC_HAS_CONTENTS);
9899
9900 if (sect == NULL)
9901 return FALSE;
9902 sect->size = note->descsz;
9903 sect->filepos = note->descpos;
9904 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9905
9906 return TRUE;
9907 }
9908
9909 return TRUE;
9910 }
9911
9912 static bfd_boolean
9913 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
9914 {
9915 void *ddata = note->descdata;
9916 char buf[100];
9917 char *name;
9918 asection *sect;
9919 short sig;
9920 unsigned flags;
9921
9922 /* nto_procfs_status 'pid' field is at offset 0. */
9923 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
9924
9925 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
9926 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
9927
9928 /* nto_procfs_status 'flags' field is at offset 8. */
9929 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
9930
9931 /* nto_procfs_status 'what' field is at offset 14. */
9932 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
9933 {
9934 elf_tdata (abfd)->core->signal = sig;
9935 elf_tdata (abfd)->core->lwpid = *tid;
9936 }
9937
9938 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
9939 do not come from signals so we make sure we set the current
9940 thread just in case. */
9941 if (flags & 0x00000080)
9942 elf_tdata (abfd)->core->lwpid = *tid;
9943
9944 /* Make a ".qnx_core_status/%d" section. */
9945 sprintf (buf, ".qnx_core_status/%ld", *tid);
9946
9947 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9948 if (name == NULL)
9949 return FALSE;
9950 strcpy (name, buf);
9951
9952 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9953 if (sect == NULL)
9954 return FALSE;
9955
9956 sect->size = note->descsz;
9957 sect->filepos = note->descpos;
9958 sect->alignment_power = 2;
9959
9960 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
9961 }
9962
9963 static bfd_boolean
9964 elfcore_grok_nto_regs (bfd *abfd,
9965 Elf_Internal_Note *note,
9966 long tid,
9967 char *base)
9968 {
9969 char buf[100];
9970 char *name;
9971 asection *sect;
9972
9973 /* Make a "(base)/%d" section. */
9974 sprintf (buf, "%s/%ld", base, tid);
9975
9976 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
9977 if (name == NULL)
9978 return FALSE;
9979 strcpy (name, buf);
9980
9981 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9982 if (sect == NULL)
9983 return FALSE;
9984
9985 sect->size = note->descsz;
9986 sect->filepos = note->descpos;
9987 sect->alignment_power = 2;
9988
9989 /* This is the current thread. */
9990 if (elf_tdata (abfd)->core->lwpid == tid)
9991 return elfcore_maybe_make_sect (abfd, base, sect);
9992
9993 return TRUE;
9994 }
9995
9996 #define BFD_QNT_CORE_INFO 7
9997 #define BFD_QNT_CORE_STATUS 8
9998 #define BFD_QNT_CORE_GREG 9
9999 #define BFD_QNT_CORE_FPREG 10
10000
10001 static bfd_boolean
10002 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10003 {
10004 /* Every GREG section has a STATUS section before it. Store the
10005 tid from the previous call to pass down to the next gregs
10006 function. */
10007 static long tid = 1;
10008
10009 switch (note->type)
10010 {
10011 case BFD_QNT_CORE_INFO:
10012 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10013 case BFD_QNT_CORE_STATUS:
10014 return elfcore_grok_nto_status (abfd, note, &tid);
10015 case BFD_QNT_CORE_GREG:
10016 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10017 case BFD_QNT_CORE_FPREG:
10018 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10019 default:
10020 return TRUE;
10021 }
10022 }
10023
10024 static bfd_boolean
10025 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10026 {
10027 char *name;
10028 asection *sect;
10029 size_t len;
10030
10031 /* Use note name as section name. */
10032 len = note->namesz;
10033 name = (char *) bfd_alloc (abfd, len);
10034 if (name == NULL)
10035 return FALSE;
10036 memcpy (name, note->namedata, len);
10037 name[len - 1] = '\0';
10038
10039 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10040 if (sect == NULL)
10041 return FALSE;
10042
10043 sect->size = note->descsz;
10044 sect->filepos = note->descpos;
10045 sect->alignment_power = 1;
10046
10047 return TRUE;
10048 }
10049
10050 /* Function: elfcore_write_note
10051
10052 Inputs:
10053 buffer to hold note, and current size of buffer
10054 name of note
10055 type of note
10056 data for note
10057 size of data for note
10058
10059 Writes note to end of buffer. ELF64 notes are written exactly as
10060 for ELF32, despite the current (as of 2006) ELF gabi specifying
10061 that they ought to have 8-byte namesz and descsz field, and have
10062 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10063
10064 Return:
10065 Pointer to realloc'd buffer, *BUFSIZ updated. */
10066
10067 char *
10068 elfcore_write_note (bfd *abfd,
10069 char *buf,
10070 int *bufsiz,
10071 const char *name,
10072 int type,
10073 const void *input,
10074 int size)
10075 {
10076 Elf_External_Note *xnp;
10077 size_t namesz;
10078 size_t newspace;
10079 char *dest;
10080
10081 namesz = 0;
10082 if (name != NULL)
10083 namesz = strlen (name) + 1;
10084
10085 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10086
10087 buf = (char *) realloc (buf, *bufsiz + newspace);
10088 if (buf == NULL)
10089 return buf;
10090 dest = buf + *bufsiz;
10091 *bufsiz += newspace;
10092 xnp = (Elf_External_Note *) dest;
10093 H_PUT_32 (abfd, namesz, xnp->namesz);
10094 H_PUT_32 (abfd, size, xnp->descsz);
10095 H_PUT_32 (abfd, type, xnp->type);
10096 dest = xnp->name;
10097 if (name != NULL)
10098 {
10099 memcpy (dest, name, namesz);
10100 dest += namesz;
10101 while (namesz & 3)
10102 {
10103 *dest++ = '\0';
10104 ++namesz;
10105 }
10106 }
10107 memcpy (dest, input, size);
10108 dest += size;
10109 while (size & 3)
10110 {
10111 *dest++ = '\0';
10112 ++size;
10113 }
10114 return buf;
10115 }
10116
10117 char *
10118 elfcore_write_prpsinfo (bfd *abfd,
10119 char *buf,
10120 int *bufsiz,
10121 const char *fname,
10122 const char *psargs)
10123 {
10124 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10125
10126 if (bed->elf_backend_write_core_note != NULL)
10127 {
10128 char *ret;
10129 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10130 NT_PRPSINFO, fname, psargs);
10131 if (ret != NULL)
10132 return ret;
10133 }
10134
10135 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10136 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10137 if (bed->s->elfclass == ELFCLASS32)
10138 {
10139 #if defined (HAVE_PSINFO32_T)
10140 psinfo32_t data;
10141 int note_type = NT_PSINFO;
10142 #else
10143 prpsinfo32_t data;
10144 int note_type = NT_PRPSINFO;
10145 #endif
10146
10147 memset (&data, 0, sizeof (data));
10148 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10149 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10150 return elfcore_write_note (abfd, buf, bufsiz,
10151 "CORE", note_type, &data, sizeof (data));
10152 }
10153 else
10154 #endif
10155 {
10156 #if defined (HAVE_PSINFO_T)
10157 psinfo_t data;
10158 int note_type = NT_PSINFO;
10159 #else
10160 prpsinfo_t data;
10161 int note_type = NT_PRPSINFO;
10162 #endif
10163
10164 memset (&data, 0, sizeof (data));
10165 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10166 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10167 return elfcore_write_note (abfd, buf, bufsiz,
10168 "CORE", note_type, &data, sizeof (data));
10169 }
10170 #endif /* PSINFO_T or PRPSINFO_T */
10171
10172 free (buf);
10173 return NULL;
10174 }
10175
10176 char *
10177 elfcore_write_linux_prpsinfo32
10178 (bfd *abfd, char *buf, int *bufsiz,
10179 const struct elf_internal_linux_prpsinfo *prpsinfo)
10180 {
10181 struct elf_external_linux_prpsinfo32 data;
10182
10183 swap_linux_prpsinfo32_out (abfd, prpsinfo, &data);
10184 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10185 &data, sizeof (data));
10186 }
10187
10188 char *
10189 elfcore_write_linux_prpsinfo64
10190 (bfd *abfd, char *buf, int *bufsiz,
10191 const struct elf_internal_linux_prpsinfo *prpsinfo)
10192 {
10193 struct elf_external_linux_prpsinfo64 data;
10194
10195 swap_linux_prpsinfo64_out (abfd, prpsinfo, &data);
10196 return elfcore_write_note (abfd, buf, bufsiz,
10197 "CORE", NT_PRPSINFO, &data, sizeof (data));
10198 }
10199
10200 char *
10201 elfcore_write_prstatus (bfd *abfd,
10202 char *buf,
10203 int *bufsiz,
10204 long pid,
10205 int cursig,
10206 const void *gregs)
10207 {
10208 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10209
10210 if (bed->elf_backend_write_core_note != NULL)
10211 {
10212 char *ret;
10213 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10214 NT_PRSTATUS,
10215 pid, cursig, gregs);
10216 if (ret != NULL)
10217 return ret;
10218 }
10219
10220 #if defined (HAVE_PRSTATUS_T)
10221 #if defined (HAVE_PRSTATUS32_T)
10222 if (bed->s->elfclass == ELFCLASS32)
10223 {
10224 prstatus32_t prstat;
10225
10226 memset (&prstat, 0, sizeof (prstat));
10227 prstat.pr_pid = pid;
10228 prstat.pr_cursig = cursig;
10229 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10230 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10231 NT_PRSTATUS, &prstat, sizeof (prstat));
10232 }
10233 else
10234 #endif
10235 {
10236 prstatus_t prstat;
10237
10238 memset (&prstat, 0, sizeof (prstat));
10239 prstat.pr_pid = pid;
10240 prstat.pr_cursig = cursig;
10241 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10242 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10243 NT_PRSTATUS, &prstat, sizeof (prstat));
10244 }
10245 #endif /* HAVE_PRSTATUS_T */
10246
10247 free (buf);
10248 return NULL;
10249 }
10250
10251 #if defined (HAVE_LWPSTATUS_T)
10252 char *
10253 elfcore_write_lwpstatus (bfd *abfd,
10254 char *buf,
10255 int *bufsiz,
10256 long pid,
10257 int cursig,
10258 const void *gregs)
10259 {
10260 lwpstatus_t lwpstat;
10261 const char *note_name = "CORE";
10262
10263 memset (&lwpstat, 0, sizeof (lwpstat));
10264 lwpstat.pr_lwpid = pid >> 16;
10265 lwpstat.pr_cursig = cursig;
10266 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10267 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
10268 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10269 #if !defined(gregs)
10270 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
10271 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
10272 #else
10273 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
10274 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
10275 #endif
10276 #endif
10277 return elfcore_write_note (abfd, buf, bufsiz, note_name,
10278 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
10279 }
10280 #endif /* HAVE_LWPSTATUS_T */
10281
10282 #if defined (HAVE_PSTATUS_T)
10283 char *
10284 elfcore_write_pstatus (bfd *abfd,
10285 char *buf,
10286 int *bufsiz,
10287 long pid,
10288 int cursig ATTRIBUTE_UNUSED,
10289 const void *gregs ATTRIBUTE_UNUSED)
10290 {
10291 const char *note_name = "CORE";
10292 #if defined (HAVE_PSTATUS32_T)
10293 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10294
10295 if (bed->s->elfclass == ELFCLASS32)
10296 {
10297 pstatus32_t pstat;
10298
10299 memset (&pstat, 0, sizeof (pstat));
10300 pstat.pr_pid = pid & 0xffff;
10301 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10302 NT_PSTATUS, &pstat, sizeof (pstat));
10303 return buf;
10304 }
10305 else
10306 #endif
10307 {
10308 pstatus_t pstat;
10309
10310 memset (&pstat, 0, sizeof (pstat));
10311 pstat.pr_pid = pid & 0xffff;
10312 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10313 NT_PSTATUS, &pstat, sizeof (pstat));
10314 return buf;
10315 }
10316 }
10317 #endif /* HAVE_PSTATUS_T */
10318
10319 char *
10320 elfcore_write_prfpreg (bfd *abfd,
10321 char *buf,
10322 int *bufsiz,
10323 const void *fpregs,
10324 int size)
10325 {
10326 const char *note_name = "CORE";
10327 return elfcore_write_note (abfd, buf, bufsiz,
10328 note_name, NT_FPREGSET, fpregs, size);
10329 }
10330
10331 char *
10332 elfcore_write_prxfpreg (bfd *abfd,
10333 char *buf,
10334 int *bufsiz,
10335 const void *xfpregs,
10336 int size)
10337 {
10338 char *note_name = "LINUX";
10339 return elfcore_write_note (abfd, buf, bufsiz,
10340 note_name, NT_PRXFPREG, xfpregs, size);
10341 }
10342
10343 char *
10344 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
10345 const void *xfpregs, int size)
10346 {
10347 char *note_name;
10348 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
10349 note_name = "FreeBSD";
10350 else
10351 note_name = "LINUX";
10352 return elfcore_write_note (abfd, buf, bufsiz,
10353 note_name, NT_X86_XSTATE, xfpregs, size);
10354 }
10355
10356 char *
10357 elfcore_write_ppc_vmx (bfd *abfd,
10358 char *buf,
10359 int *bufsiz,
10360 const void *ppc_vmx,
10361 int size)
10362 {
10363 char *note_name = "LINUX";
10364 return elfcore_write_note (abfd, buf, bufsiz,
10365 note_name, NT_PPC_VMX, ppc_vmx, size);
10366 }
10367
10368 char *
10369 elfcore_write_ppc_vsx (bfd *abfd,
10370 char *buf,
10371 int *bufsiz,
10372 const void *ppc_vsx,
10373 int size)
10374 {
10375 char *note_name = "LINUX";
10376 return elfcore_write_note (abfd, buf, bufsiz,
10377 note_name, NT_PPC_VSX, ppc_vsx, size);
10378 }
10379
10380 static char *
10381 elfcore_write_s390_high_gprs (bfd *abfd,
10382 char *buf,
10383 int *bufsiz,
10384 const void *s390_high_gprs,
10385 int size)
10386 {
10387 char *note_name = "LINUX";
10388 return elfcore_write_note (abfd, buf, bufsiz,
10389 note_name, NT_S390_HIGH_GPRS,
10390 s390_high_gprs, size);
10391 }
10392
10393 char *
10394 elfcore_write_s390_timer (bfd *abfd,
10395 char *buf,
10396 int *bufsiz,
10397 const void *s390_timer,
10398 int size)
10399 {
10400 char *note_name = "LINUX";
10401 return elfcore_write_note (abfd, buf, bufsiz,
10402 note_name, NT_S390_TIMER, s390_timer, size);
10403 }
10404
10405 char *
10406 elfcore_write_s390_todcmp (bfd *abfd,
10407 char *buf,
10408 int *bufsiz,
10409 const void *s390_todcmp,
10410 int size)
10411 {
10412 char *note_name = "LINUX";
10413 return elfcore_write_note (abfd, buf, bufsiz,
10414 note_name, NT_S390_TODCMP, s390_todcmp, size);
10415 }
10416
10417 char *
10418 elfcore_write_s390_todpreg (bfd *abfd,
10419 char *buf,
10420 int *bufsiz,
10421 const void *s390_todpreg,
10422 int size)
10423 {
10424 char *note_name = "LINUX";
10425 return elfcore_write_note (abfd, buf, bufsiz,
10426 note_name, NT_S390_TODPREG, s390_todpreg, size);
10427 }
10428
10429 char *
10430 elfcore_write_s390_ctrs (bfd *abfd,
10431 char *buf,
10432 int *bufsiz,
10433 const void *s390_ctrs,
10434 int size)
10435 {
10436 char *note_name = "LINUX";
10437 return elfcore_write_note (abfd, buf, bufsiz,
10438 note_name, NT_S390_CTRS, s390_ctrs, size);
10439 }
10440
10441 char *
10442 elfcore_write_s390_prefix (bfd *abfd,
10443 char *buf,
10444 int *bufsiz,
10445 const void *s390_prefix,
10446 int size)
10447 {
10448 char *note_name = "LINUX";
10449 return elfcore_write_note (abfd, buf, bufsiz,
10450 note_name, NT_S390_PREFIX, s390_prefix, size);
10451 }
10452
10453 char *
10454 elfcore_write_s390_last_break (bfd *abfd,
10455 char *buf,
10456 int *bufsiz,
10457 const void *s390_last_break,
10458 int size)
10459 {
10460 char *note_name = "LINUX";
10461 return elfcore_write_note (abfd, buf, bufsiz,
10462 note_name, NT_S390_LAST_BREAK,
10463 s390_last_break, size);
10464 }
10465
10466 char *
10467 elfcore_write_s390_system_call (bfd *abfd,
10468 char *buf,
10469 int *bufsiz,
10470 const void *s390_system_call,
10471 int size)
10472 {
10473 char *note_name = "LINUX";
10474 return elfcore_write_note (abfd, buf, bufsiz,
10475 note_name, NT_S390_SYSTEM_CALL,
10476 s390_system_call, size);
10477 }
10478
10479 char *
10480 elfcore_write_s390_tdb (bfd *abfd,
10481 char *buf,
10482 int *bufsiz,
10483 const void *s390_tdb,
10484 int size)
10485 {
10486 char *note_name = "LINUX";
10487 return elfcore_write_note (abfd, buf, bufsiz,
10488 note_name, NT_S390_TDB, s390_tdb, size);
10489 }
10490
10491 char *
10492 elfcore_write_s390_vxrs_low (bfd *abfd,
10493 char *buf,
10494 int *bufsiz,
10495 const void *s390_vxrs_low,
10496 int size)
10497 {
10498 char *note_name = "LINUX";
10499 return elfcore_write_note (abfd, buf, bufsiz,
10500 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
10501 }
10502
10503 char *
10504 elfcore_write_s390_vxrs_high (bfd *abfd,
10505 char *buf,
10506 int *bufsiz,
10507 const void *s390_vxrs_high,
10508 int size)
10509 {
10510 char *note_name = "LINUX";
10511 return elfcore_write_note (abfd, buf, bufsiz,
10512 note_name, NT_S390_VXRS_HIGH,
10513 s390_vxrs_high, size);
10514 }
10515
10516 char *
10517 elfcore_write_arm_vfp (bfd *abfd,
10518 char *buf,
10519 int *bufsiz,
10520 const void *arm_vfp,
10521 int size)
10522 {
10523 char *note_name = "LINUX";
10524 return elfcore_write_note (abfd, buf, bufsiz,
10525 note_name, NT_ARM_VFP, arm_vfp, size);
10526 }
10527
10528 char *
10529 elfcore_write_aarch_tls (bfd *abfd,
10530 char *buf,
10531 int *bufsiz,
10532 const void *aarch_tls,
10533 int size)
10534 {
10535 char *note_name = "LINUX";
10536 return elfcore_write_note (abfd, buf, bufsiz,
10537 note_name, NT_ARM_TLS, aarch_tls, size);
10538 }
10539
10540 char *
10541 elfcore_write_aarch_hw_break (bfd *abfd,
10542 char *buf,
10543 int *bufsiz,
10544 const void *aarch_hw_break,
10545 int size)
10546 {
10547 char *note_name = "LINUX";
10548 return elfcore_write_note (abfd, buf, bufsiz,
10549 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
10550 }
10551
10552 char *
10553 elfcore_write_aarch_hw_watch (bfd *abfd,
10554 char *buf,
10555 int *bufsiz,
10556 const void *aarch_hw_watch,
10557 int size)
10558 {
10559 char *note_name = "LINUX";
10560 return elfcore_write_note (abfd, buf, bufsiz,
10561 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
10562 }
10563
10564 char *
10565 elfcore_write_register_note (bfd *abfd,
10566 char *buf,
10567 int *bufsiz,
10568 const char *section,
10569 const void *data,
10570 int size)
10571 {
10572 if (strcmp (section, ".reg2") == 0)
10573 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
10574 if (strcmp (section, ".reg-xfp") == 0)
10575 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
10576 if (strcmp (section, ".reg-xstate") == 0)
10577 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
10578 if (strcmp (section, ".reg-ppc-vmx") == 0)
10579 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
10580 if (strcmp (section, ".reg-ppc-vsx") == 0)
10581 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
10582 if (strcmp (section, ".reg-s390-high-gprs") == 0)
10583 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
10584 if (strcmp (section, ".reg-s390-timer") == 0)
10585 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
10586 if (strcmp (section, ".reg-s390-todcmp") == 0)
10587 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
10588 if (strcmp (section, ".reg-s390-todpreg") == 0)
10589 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
10590 if (strcmp (section, ".reg-s390-ctrs") == 0)
10591 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
10592 if (strcmp (section, ".reg-s390-prefix") == 0)
10593 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
10594 if (strcmp (section, ".reg-s390-last-break") == 0)
10595 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
10596 if (strcmp (section, ".reg-s390-system-call") == 0)
10597 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
10598 if (strcmp (section, ".reg-s390-tdb") == 0)
10599 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
10600 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
10601 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
10602 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
10603 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
10604 if (strcmp (section, ".reg-arm-vfp") == 0)
10605 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
10606 if (strcmp (section, ".reg-aarch-tls") == 0)
10607 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
10608 if (strcmp (section, ".reg-aarch-hw-break") == 0)
10609 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
10610 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
10611 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
10612 return NULL;
10613 }
10614
10615 static bfd_boolean
10616 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
10617 {
10618 char *p;
10619
10620 p = buf;
10621 while (p < buf + size)
10622 {
10623 /* FIXME: bad alignment assumption. */
10624 Elf_External_Note *xnp = (Elf_External_Note *) p;
10625 Elf_Internal_Note in;
10626
10627 if (offsetof (Elf_External_Note, name) > buf - p + size)
10628 return FALSE;
10629
10630 in.type = H_GET_32 (abfd, xnp->type);
10631
10632 in.namesz = H_GET_32 (abfd, xnp->namesz);
10633 in.namedata = xnp->name;
10634 if (in.namesz > buf - in.namedata + size)
10635 return FALSE;
10636
10637 in.descsz = H_GET_32 (abfd, xnp->descsz);
10638 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
10639 in.descpos = offset + (in.descdata - buf);
10640 if (in.descsz != 0
10641 && (in.descdata >= buf + size
10642 || in.descsz > buf - in.descdata + size))
10643 return FALSE;
10644
10645 switch (bfd_get_format (abfd))
10646 {
10647 default:
10648 return TRUE;
10649
10650 case bfd_core:
10651 {
10652 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
10653 struct
10654 {
10655 const char * string;
10656 size_t len;
10657 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
10658 }
10659 grokers[] =
10660 {
10661 GROKER_ELEMENT ("", elfcore_grok_note),
10662 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
10663 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
10664 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
10665 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
10666 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
10667 };
10668 #undef GROKER_ELEMENT
10669 int i;
10670
10671 for (i = ARRAY_SIZE (grokers); i--;)
10672 {
10673 if (in.namesz >= grokers[i].len
10674 && strncmp (in.namedata, grokers[i].string,
10675 grokers[i].len) == 0)
10676 {
10677 if (! grokers[i].func (abfd, & in))
10678 return FALSE;
10679 break;
10680 }
10681 }
10682 break;
10683 }
10684
10685 case bfd_object:
10686 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
10687 {
10688 if (! elfobj_grok_gnu_note (abfd, &in))
10689 return FALSE;
10690 }
10691 else if (in.namesz == sizeof "stapsdt"
10692 && strcmp (in.namedata, "stapsdt") == 0)
10693 {
10694 if (! elfobj_grok_stapsdt_note (abfd, &in))
10695 return FALSE;
10696 }
10697 break;
10698 }
10699
10700 p = in.descdata + BFD_ALIGN (in.descsz, 4);
10701 }
10702
10703 return TRUE;
10704 }
10705
10706 static bfd_boolean
10707 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
10708 {
10709 char *buf;
10710
10711 if (size <= 0)
10712 return TRUE;
10713
10714 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
10715 return FALSE;
10716
10717 buf = (char *) bfd_malloc (size + 1);
10718 if (buf == NULL)
10719 return FALSE;
10720
10721 /* PR 17512: file: ec08f814
10722 0-termintate the buffer so that string searches will not overflow. */
10723 buf[size] = 0;
10724
10725 if (bfd_bread (buf, size, abfd) != size
10726 || !elf_parse_notes (abfd, buf, size, offset))
10727 {
10728 free (buf);
10729 return FALSE;
10730 }
10731
10732 free (buf);
10733 return TRUE;
10734 }
10735 \f
10736 /* Providing external access to the ELF program header table. */
10737
10738 /* Return an upper bound on the number of bytes required to store a
10739 copy of ABFD's program header table entries. Return -1 if an error
10740 occurs; bfd_get_error will return an appropriate code. */
10741
10742 long
10743 bfd_get_elf_phdr_upper_bound (bfd *abfd)
10744 {
10745 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10746 {
10747 bfd_set_error (bfd_error_wrong_format);
10748 return -1;
10749 }
10750
10751 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
10752 }
10753
10754 /* Copy ABFD's program header table entries to *PHDRS. The entries
10755 will be stored as an array of Elf_Internal_Phdr structures, as
10756 defined in include/elf/internal.h. To find out how large the
10757 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
10758
10759 Return the number of program header table entries read, or -1 if an
10760 error occurs; bfd_get_error will return an appropriate code. */
10761
10762 int
10763 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
10764 {
10765 int num_phdrs;
10766
10767 if (abfd->xvec->flavour != bfd_target_elf_flavour)
10768 {
10769 bfd_set_error (bfd_error_wrong_format);
10770 return -1;
10771 }
10772
10773 num_phdrs = elf_elfheader (abfd)->e_phnum;
10774 memcpy (phdrs, elf_tdata (abfd)->phdr,
10775 num_phdrs * sizeof (Elf_Internal_Phdr));
10776
10777 return num_phdrs;
10778 }
10779
10780 enum elf_reloc_type_class
10781 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
10782 const asection *rel_sec ATTRIBUTE_UNUSED,
10783 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
10784 {
10785 return reloc_class_normal;
10786 }
10787
10788 /* For RELA architectures, return the relocation value for a
10789 relocation against a local symbol. */
10790
10791 bfd_vma
10792 _bfd_elf_rela_local_sym (bfd *abfd,
10793 Elf_Internal_Sym *sym,
10794 asection **psec,
10795 Elf_Internal_Rela *rel)
10796 {
10797 asection *sec = *psec;
10798 bfd_vma relocation;
10799
10800 relocation = (sec->output_section->vma
10801 + sec->output_offset
10802 + sym->st_value);
10803 if ((sec->flags & SEC_MERGE)
10804 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
10805 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
10806 {
10807 rel->r_addend =
10808 _bfd_merged_section_offset (abfd, psec,
10809 elf_section_data (sec)->sec_info,
10810 sym->st_value + rel->r_addend);
10811 if (sec != *psec)
10812 {
10813 /* If we have changed the section, and our original section is
10814 marked with SEC_EXCLUDE, it means that the original
10815 SEC_MERGE section has been completely subsumed in some
10816 other SEC_MERGE section. In this case, we need to leave
10817 some info around for --emit-relocs. */
10818 if ((sec->flags & SEC_EXCLUDE) != 0)
10819 sec->kept_section = *psec;
10820 sec = *psec;
10821 }
10822 rel->r_addend -= relocation;
10823 rel->r_addend += sec->output_section->vma + sec->output_offset;
10824 }
10825 return relocation;
10826 }
10827
10828 bfd_vma
10829 _bfd_elf_rel_local_sym (bfd *abfd,
10830 Elf_Internal_Sym *sym,
10831 asection **psec,
10832 bfd_vma addend)
10833 {
10834 asection *sec = *psec;
10835
10836 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
10837 return sym->st_value + addend;
10838
10839 return _bfd_merged_section_offset (abfd, psec,
10840 elf_section_data (sec)->sec_info,
10841 sym->st_value + addend);
10842 }
10843
10844 /* Adjust an address within a section. Given OFFSET within SEC, return
10845 the new offset within the section, based upon changes made to the
10846 section. Returns -1 if the offset is now invalid.
10847 The offset (in abnd out) is in target sized bytes, however big a
10848 byte may be. */
10849
10850 bfd_vma
10851 _bfd_elf_section_offset (bfd *abfd,
10852 struct bfd_link_info *info,
10853 asection *sec,
10854 bfd_vma offset)
10855 {
10856 switch (sec->sec_info_type)
10857 {
10858 case SEC_INFO_TYPE_STABS:
10859 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
10860 offset);
10861 case SEC_INFO_TYPE_EH_FRAME:
10862 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
10863
10864 default:
10865 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
10866 {
10867 /* Reverse the offset. */
10868 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10869 bfd_size_type address_size = bed->s->arch_size / 8;
10870
10871 /* address_size and sec->size are in octets. Convert
10872 to bytes before subtracting the original offset. */
10873 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
10874 }
10875 return offset;
10876 }
10877 }
10878 \f
10879 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
10880 reconstruct an ELF file by reading the segments out of remote memory
10881 based on the ELF file header at EHDR_VMA and the ELF program headers it
10882 points to. If not null, *LOADBASEP is filled in with the difference
10883 between the VMAs from which the segments were read, and the VMAs the
10884 file headers (and hence BFD's idea of each section's VMA) put them at.
10885
10886 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
10887 remote memory at target address VMA into the local buffer at MYADDR; it
10888 should return zero on success or an `errno' code on failure. TEMPL must
10889 be a BFD for an ELF target with the word size and byte order found in
10890 the remote memory. */
10891
10892 bfd *
10893 bfd_elf_bfd_from_remote_memory
10894 (bfd *templ,
10895 bfd_vma ehdr_vma,
10896 bfd_size_type size,
10897 bfd_vma *loadbasep,
10898 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
10899 {
10900 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
10901 (templ, ehdr_vma, size, loadbasep, target_read_memory);
10902 }
10903 \f
10904 long
10905 _bfd_elf_get_synthetic_symtab (bfd *abfd,
10906 long symcount ATTRIBUTE_UNUSED,
10907 asymbol **syms ATTRIBUTE_UNUSED,
10908 long dynsymcount,
10909 asymbol **dynsyms,
10910 asymbol **ret)
10911 {
10912 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10913 asection *relplt;
10914 asymbol *s;
10915 const char *relplt_name;
10916 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
10917 arelent *p;
10918 long count, i, n;
10919 size_t size;
10920 Elf_Internal_Shdr *hdr;
10921 char *names;
10922 asection *plt;
10923
10924 *ret = NULL;
10925
10926 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
10927 return 0;
10928
10929 if (dynsymcount <= 0)
10930 return 0;
10931
10932 if (!bed->plt_sym_val)
10933 return 0;
10934
10935 relplt_name = bed->relplt_name;
10936 if (relplt_name == NULL)
10937 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
10938 relplt = bfd_get_section_by_name (abfd, relplt_name);
10939 if (relplt == NULL)
10940 return 0;
10941
10942 hdr = &elf_section_data (relplt)->this_hdr;
10943 if (hdr->sh_link != elf_dynsymtab (abfd)
10944 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
10945 return 0;
10946
10947 plt = bfd_get_section_by_name (abfd, ".plt");
10948 if (plt == NULL)
10949 return 0;
10950
10951 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
10952 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
10953 return -1;
10954
10955 count = relplt->size / hdr->sh_entsize;
10956 size = count * sizeof (asymbol);
10957 p = relplt->relocation;
10958 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10959 {
10960 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
10961 if (p->addend != 0)
10962 {
10963 #ifdef BFD64
10964 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
10965 #else
10966 size += sizeof ("+0x") - 1 + 8;
10967 #endif
10968 }
10969 }
10970
10971 s = *ret = (asymbol *) bfd_malloc (size);
10972 if (s == NULL)
10973 return -1;
10974
10975 names = (char *) (s + count);
10976 p = relplt->relocation;
10977 n = 0;
10978 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
10979 {
10980 size_t len;
10981 bfd_vma addr;
10982
10983 addr = bed->plt_sym_val (i, plt, p);
10984 if (addr == (bfd_vma) -1)
10985 continue;
10986
10987 *s = **p->sym_ptr_ptr;
10988 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
10989 we are defining a symbol, ensure one of them is set. */
10990 if ((s->flags & BSF_LOCAL) == 0)
10991 s->flags |= BSF_GLOBAL;
10992 s->flags |= BSF_SYNTHETIC;
10993 s->section = plt;
10994 s->value = addr - plt->vma;
10995 s->name = names;
10996 s->udata.p = NULL;
10997 len = strlen ((*p->sym_ptr_ptr)->name);
10998 memcpy (names, (*p->sym_ptr_ptr)->name, len);
10999 names += len;
11000 if (p->addend != 0)
11001 {
11002 char buf[30], *a;
11003
11004 memcpy (names, "+0x", sizeof ("+0x") - 1);
11005 names += sizeof ("+0x") - 1;
11006 bfd_sprintf_vma (abfd, buf, p->addend);
11007 for (a = buf; *a == '0'; ++a)
11008 ;
11009 len = strlen (a);
11010 memcpy (names, a, len);
11011 names += len;
11012 }
11013 memcpy (names, "@plt", sizeof ("@plt"));
11014 names += sizeof ("@plt");
11015 ++s, ++n;
11016 }
11017
11018 return n;
11019 }
11020
11021 /* It is only used by x86-64 so far. */
11022 asection _bfd_elf_large_com_section
11023 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
11024 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
11025
11026 void
11027 _bfd_elf_post_process_headers (bfd * abfd,
11028 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11029 {
11030 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11031
11032 i_ehdrp = elf_elfheader (abfd);
11033
11034 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
11035
11036 /* To make things simpler for the loader on Linux systems we set the
11037 osabi field to ELFOSABI_GNU if the binary contains symbols of
11038 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
11039 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
11040 && elf_tdata (abfd)->has_gnu_symbols)
11041 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
11042 }
11043
11044
11045 /* Return TRUE for ELF symbol types that represent functions.
11046 This is the default version of this function, which is sufficient for
11047 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
11048
11049 bfd_boolean
11050 _bfd_elf_is_function_type (unsigned int type)
11051 {
11052 return (type == STT_FUNC
11053 || type == STT_GNU_IFUNC);
11054 }
11055
11056 /* If the ELF symbol SYM might be a function in SEC, return the
11057 function size and set *CODE_OFF to the function's entry point,
11058 otherwise return zero. */
11059
11060 bfd_size_type
11061 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
11062 bfd_vma *code_off)
11063 {
11064 bfd_size_type size;
11065
11066 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
11067 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
11068 || sym->section != sec)
11069 return 0;
11070
11071 *code_off = sym->value;
11072 size = 0;
11073 if (!(sym->flags & BSF_SYNTHETIC))
11074 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
11075 if (size == 0)
11076 size = 1;
11077 return size;
11078 }