]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf.c
* elf.c (elfcore_write_note): Pad note descriptor to 4-byte
[thirdparty/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* DT_GNU_HASH hash function. Do not change this function; you will
210 cause invalid hash tables to be generated. */
211
212 unsigned long
213 bfd_elf_gnu_hash (const char *namearg)
214 {
215 const unsigned char *name = (const unsigned char *) namearg;
216 unsigned long h = 5381;
217 unsigned char ch;
218
219 while ((ch = *name++) != '\0')
220 h = (h << 5) + h + ch;
221 return h & 0xffffffff;
222 }
223
224 bfd_boolean
225 bfd_elf_mkobject (bfd *abfd)
226 {
227 if (abfd->tdata.any == NULL)
228 {
229 abfd->tdata.any = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
230 if (abfd->tdata.any == NULL)
231 return FALSE;
232 }
233
234 elf_tdata (abfd)->program_header_size = (bfd_size_type) -1;
235
236 return TRUE;
237 }
238
239 bfd_boolean
240 bfd_elf_mkcorefile (bfd *abfd)
241 {
242 /* I think this can be done just like an object file. */
243 return bfd_elf_mkobject (abfd);
244 }
245
246 char *
247 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
248 {
249 Elf_Internal_Shdr **i_shdrp;
250 bfd_byte *shstrtab = NULL;
251 file_ptr offset;
252 bfd_size_type shstrtabsize;
253
254 i_shdrp = elf_elfsections (abfd);
255 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
256 return NULL;
257
258 shstrtab = i_shdrp[shindex]->contents;
259 if (shstrtab == NULL)
260 {
261 /* No cached one, attempt to read, and cache what we read. */
262 offset = i_shdrp[shindex]->sh_offset;
263 shstrtabsize = i_shdrp[shindex]->sh_size;
264
265 /* Allocate and clear an extra byte at the end, to prevent crashes
266 in case the string table is not terminated. */
267 if (shstrtabsize + 1 == 0
268 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
269 || bfd_seek (abfd, offset, SEEK_SET) != 0)
270 shstrtab = NULL;
271 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
272 {
273 if (bfd_get_error () != bfd_error_system_call)
274 bfd_set_error (bfd_error_file_truncated);
275 shstrtab = NULL;
276 }
277 else
278 shstrtab[shstrtabsize] = '\0';
279 i_shdrp[shindex]->contents = shstrtab;
280 }
281 return (char *) shstrtab;
282 }
283
284 char *
285 bfd_elf_string_from_elf_section (bfd *abfd,
286 unsigned int shindex,
287 unsigned int strindex)
288 {
289 Elf_Internal_Shdr *hdr;
290
291 if (strindex == 0)
292 return "";
293
294 hdr = elf_elfsections (abfd)[shindex];
295
296 if (hdr->contents == NULL
297 && bfd_elf_get_str_section (abfd, shindex) == NULL)
298 return NULL;
299
300 if (strindex >= hdr->sh_size)
301 {
302 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
303 (*_bfd_error_handler)
304 (_("%B: invalid string offset %u >= %lu for section `%s'"),
305 abfd, strindex, (unsigned long) hdr->sh_size,
306 (shindex == shstrndx && strindex == hdr->sh_name
307 ? ".shstrtab"
308 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
309 return "";
310 }
311
312 return ((char *) hdr->contents) + strindex;
313 }
314
315 /* Read and convert symbols to internal format.
316 SYMCOUNT specifies the number of symbols to read, starting from
317 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
318 are non-NULL, they are used to store the internal symbols, external
319 symbols, and symbol section index extensions, respectively. */
320
321 Elf_Internal_Sym *
322 bfd_elf_get_elf_syms (bfd *ibfd,
323 Elf_Internal_Shdr *symtab_hdr,
324 size_t symcount,
325 size_t symoffset,
326 Elf_Internal_Sym *intsym_buf,
327 void *extsym_buf,
328 Elf_External_Sym_Shndx *extshndx_buf)
329 {
330 Elf_Internal_Shdr *shndx_hdr;
331 void *alloc_ext;
332 const bfd_byte *esym;
333 Elf_External_Sym_Shndx *alloc_extshndx;
334 Elf_External_Sym_Shndx *shndx;
335 Elf_Internal_Sym *isym;
336 Elf_Internal_Sym *isymend;
337 const struct elf_backend_data *bed;
338 size_t extsym_size;
339 bfd_size_type amt;
340 file_ptr pos;
341
342 if (symcount == 0)
343 return intsym_buf;
344
345 /* Normal syms might have section extension entries. */
346 shndx_hdr = NULL;
347 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
348 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
349
350 /* Read the symbols. */
351 alloc_ext = NULL;
352 alloc_extshndx = NULL;
353 bed = get_elf_backend_data (ibfd);
354 extsym_size = bed->s->sizeof_sym;
355 amt = symcount * extsym_size;
356 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
357 if (extsym_buf == NULL)
358 {
359 alloc_ext = bfd_malloc2 (symcount, extsym_size);
360 extsym_buf = alloc_ext;
361 }
362 if (extsym_buf == NULL
363 || bfd_seek (ibfd, pos, SEEK_SET) != 0
364 || bfd_bread (extsym_buf, amt, ibfd) != amt)
365 {
366 intsym_buf = NULL;
367 goto out;
368 }
369
370 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
371 extshndx_buf = NULL;
372 else
373 {
374 amt = symcount * sizeof (Elf_External_Sym_Shndx);
375 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
376 if (extshndx_buf == NULL)
377 {
378 alloc_extshndx = bfd_malloc2 (symcount,
379 sizeof (Elf_External_Sym_Shndx));
380 extshndx_buf = alloc_extshndx;
381 }
382 if (extshndx_buf == NULL
383 || bfd_seek (ibfd, pos, SEEK_SET) != 0
384 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
385 {
386 intsym_buf = NULL;
387 goto out;
388 }
389 }
390
391 if (intsym_buf == NULL)
392 {
393 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
394 if (intsym_buf == NULL)
395 goto out;
396 }
397
398 /* Convert the symbols to internal form. */
399 isymend = intsym_buf + symcount;
400 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
401 isym < isymend;
402 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
403 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
404 {
405 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
406 (*_bfd_error_handler) (_("%B symbol number %lu references "
407 "nonexistent SHT_SYMTAB_SHNDX section"),
408 ibfd, (unsigned long) symoffset);
409 intsym_buf = NULL;
410 goto out;
411 }
412
413 out:
414 if (alloc_ext != NULL)
415 free (alloc_ext);
416 if (alloc_extshndx != NULL)
417 free (alloc_extshndx);
418
419 return intsym_buf;
420 }
421
422 /* Look up a symbol name. */
423 const char *
424 bfd_elf_sym_name (bfd *abfd,
425 Elf_Internal_Shdr *symtab_hdr,
426 Elf_Internal_Sym *isym,
427 asection *sym_sec)
428 {
429 const char *name;
430 unsigned int iname = isym->st_name;
431 unsigned int shindex = symtab_hdr->sh_link;
432
433 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
434 /* Check for a bogus st_shndx to avoid crashing. */
435 && isym->st_shndx < elf_numsections (abfd)
436 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
437 {
438 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
439 shindex = elf_elfheader (abfd)->e_shstrndx;
440 }
441
442 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
443 if (name == NULL)
444 name = "(null)";
445 else if (sym_sec && *name == '\0')
446 name = bfd_section_name (abfd, sym_sec);
447
448 return name;
449 }
450
451 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
452 sections. The first element is the flags, the rest are section
453 pointers. */
454
455 typedef union elf_internal_group {
456 Elf_Internal_Shdr *shdr;
457 unsigned int flags;
458 } Elf_Internal_Group;
459
460 /* Return the name of the group signature symbol. Why isn't the
461 signature just a string? */
462
463 static const char *
464 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
465 {
466 Elf_Internal_Shdr *hdr;
467 unsigned char esym[sizeof (Elf64_External_Sym)];
468 Elf_External_Sym_Shndx eshndx;
469 Elf_Internal_Sym isym;
470
471 /* First we need to ensure the symbol table is available. Make sure
472 that it is a symbol table section. */
473 hdr = elf_elfsections (abfd) [ghdr->sh_link];
474 if (hdr->sh_type != SHT_SYMTAB
475 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
476 return NULL;
477
478 /* Go read the symbol. */
479 hdr = &elf_tdata (abfd)->symtab_hdr;
480 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
481 &isym, esym, &eshndx) == NULL)
482 return NULL;
483
484 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
485 }
486
487 /* Set next_in_group list pointer, and group name for NEWSECT. */
488
489 static bfd_boolean
490 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
491 {
492 unsigned int num_group = elf_tdata (abfd)->num_group;
493
494 /* If num_group is zero, read in all SHT_GROUP sections. The count
495 is set to -1 if there are no SHT_GROUP sections. */
496 if (num_group == 0)
497 {
498 unsigned int i, shnum;
499
500 /* First count the number of groups. If we have a SHT_GROUP
501 section with just a flag word (ie. sh_size is 4), ignore it. */
502 shnum = elf_numsections (abfd);
503 num_group = 0;
504 for (i = 0; i < shnum; i++)
505 {
506 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
507 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
508 num_group += 1;
509 }
510
511 if (num_group == 0)
512 {
513 num_group = (unsigned) -1;
514 elf_tdata (abfd)->num_group = num_group;
515 }
516 else
517 {
518 /* We keep a list of elf section headers for group sections,
519 so we can find them quickly. */
520 bfd_size_type amt;
521
522 elf_tdata (abfd)->num_group = num_group;
523 elf_tdata (abfd)->group_sect_ptr
524 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
525 if (elf_tdata (abfd)->group_sect_ptr == NULL)
526 return FALSE;
527
528 num_group = 0;
529 for (i = 0; i < shnum; i++)
530 {
531 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
532 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
533 {
534 unsigned char *src;
535 Elf_Internal_Group *dest;
536
537 /* Add to list of sections. */
538 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
539 num_group += 1;
540
541 /* Read the raw contents. */
542 BFD_ASSERT (sizeof (*dest) >= 4);
543 amt = shdr->sh_size * sizeof (*dest) / 4;
544 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
545 sizeof (*dest) / 4);
546 if (shdr->contents == NULL
547 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
548 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
549 != shdr->sh_size))
550 return FALSE;
551
552 /* Translate raw contents, a flag word followed by an
553 array of elf section indices all in target byte order,
554 to the flag word followed by an array of elf section
555 pointers. */
556 src = shdr->contents + shdr->sh_size;
557 dest = (Elf_Internal_Group *) (shdr->contents + amt);
558 while (1)
559 {
560 unsigned int idx;
561
562 src -= 4;
563 --dest;
564 idx = H_GET_32 (abfd, src);
565 if (src == shdr->contents)
566 {
567 dest->flags = idx;
568 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
569 shdr->bfd_section->flags
570 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
571 break;
572 }
573 if (idx >= shnum)
574 {
575 ((*_bfd_error_handler)
576 (_("%B: invalid SHT_GROUP entry"), abfd));
577 idx = 0;
578 }
579 dest->shdr = elf_elfsections (abfd)[idx];
580 }
581 }
582 }
583 }
584 }
585
586 if (num_group != (unsigned) -1)
587 {
588 unsigned int i;
589
590 for (i = 0; i < num_group; i++)
591 {
592 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
593 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
594 unsigned int n_elt = shdr->sh_size / 4;
595
596 /* Look through this group's sections to see if current
597 section is a member. */
598 while (--n_elt != 0)
599 if ((++idx)->shdr == hdr)
600 {
601 asection *s = NULL;
602
603 /* We are a member of this group. Go looking through
604 other members to see if any others are linked via
605 next_in_group. */
606 idx = (Elf_Internal_Group *) shdr->contents;
607 n_elt = shdr->sh_size / 4;
608 while (--n_elt != 0)
609 if ((s = (++idx)->shdr->bfd_section) != NULL
610 && elf_next_in_group (s) != NULL)
611 break;
612 if (n_elt != 0)
613 {
614 /* Snarf the group name from other member, and
615 insert current section in circular list. */
616 elf_group_name (newsect) = elf_group_name (s);
617 elf_next_in_group (newsect) = elf_next_in_group (s);
618 elf_next_in_group (s) = newsect;
619 }
620 else
621 {
622 const char *gname;
623
624 gname = group_signature (abfd, shdr);
625 if (gname == NULL)
626 return FALSE;
627 elf_group_name (newsect) = gname;
628
629 /* Start a circular list with one element. */
630 elf_next_in_group (newsect) = newsect;
631 }
632
633 /* If the group section has been created, point to the
634 new member. */
635 if (shdr->bfd_section != NULL)
636 elf_next_in_group (shdr->bfd_section) = newsect;
637
638 i = num_group - 1;
639 break;
640 }
641 }
642 }
643
644 if (elf_group_name (newsect) == NULL)
645 {
646 (*_bfd_error_handler) (_("%B: no group info for section %A"),
647 abfd, newsect);
648 }
649 return TRUE;
650 }
651
652 bfd_boolean
653 _bfd_elf_setup_sections (bfd *abfd)
654 {
655 unsigned int i;
656 unsigned int num_group = elf_tdata (abfd)->num_group;
657 bfd_boolean result = TRUE;
658 asection *s;
659
660 /* Process SHF_LINK_ORDER. */
661 for (s = abfd->sections; s != NULL; s = s->next)
662 {
663 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
664 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
665 {
666 unsigned int elfsec = this_hdr->sh_link;
667 /* FIXME: The old Intel compiler and old strip/objcopy may
668 not set the sh_link or sh_info fields. Hence we could
669 get the situation where elfsec is 0. */
670 if (elfsec == 0)
671 {
672 const struct elf_backend_data *bed
673 = get_elf_backend_data (abfd);
674 if (bed->link_order_error_handler)
675 bed->link_order_error_handler
676 (_("%B: warning: sh_link not set for section `%A'"),
677 abfd, s);
678 }
679 else
680 {
681 asection *link;
682
683 this_hdr = elf_elfsections (abfd)[elfsec];
684
685 /* PR 1991, 2008:
686 Some strip/objcopy may leave an incorrect value in
687 sh_link. We don't want to proceed. */
688 link = this_hdr->bfd_section;
689 if (link == NULL)
690 {
691 (*_bfd_error_handler)
692 (_("%B: sh_link [%d] in section `%A' is incorrect"),
693 s->owner, s, elfsec);
694 result = FALSE;
695 }
696
697 elf_linked_to_section (s) = link;
698 }
699 }
700 }
701
702 /* Process section groups. */
703 if (num_group == (unsigned) -1)
704 return result;
705
706 for (i = 0; i < num_group; i++)
707 {
708 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
709 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
710 unsigned int n_elt = shdr->sh_size / 4;
711
712 while (--n_elt != 0)
713 if ((++idx)->shdr->bfd_section)
714 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
715 else if (idx->shdr->sh_type == SHT_RELA
716 || idx->shdr->sh_type == SHT_REL)
717 /* We won't include relocation sections in section groups in
718 output object files. We adjust the group section size here
719 so that relocatable link will work correctly when
720 relocation sections are in section group in input object
721 files. */
722 shdr->bfd_section->size -= 4;
723 else
724 {
725 /* There are some unknown sections in the group. */
726 (*_bfd_error_handler)
727 (_("%B: unknown [%d] section `%s' in group [%s]"),
728 abfd,
729 (unsigned int) idx->shdr->sh_type,
730 bfd_elf_string_from_elf_section (abfd,
731 (elf_elfheader (abfd)
732 ->e_shstrndx),
733 idx->shdr->sh_name),
734 shdr->bfd_section->name);
735 result = FALSE;
736 }
737 }
738 return result;
739 }
740
741 bfd_boolean
742 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
743 {
744 return elf_next_in_group (sec) != NULL;
745 }
746
747 /* Make a BFD section from an ELF section. We store a pointer to the
748 BFD section in the bfd_section field of the header. */
749
750 bfd_boolean
751 _bfd_elf_make_section_from_shdr (bfd *abfd,
752 Elf_Internal_Shdr *hdr,
753 const char *name,
754 int shindex)
755 {
756 asection *newsect;
757 flagword flags;
758 const struct elf_backend_data *bed;
759
760 if (hdr->bfd_section != NULL)
761 {
762 BFD_ASSERT (strcmp (name,
763 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
764 return TRUE;
765 }
766
767 newsect = bfd_make_section_anyway (abfd, name);
768 if (newsect == NULL)
769 return FALSE;
770
771 hdr->bfd_section = newsect;
772 elf_section_data (newsect)->this_hdr = *hdr;
773 elf_section_data (newsect)->this_idx = shindex;
774
775 /* Always use the real type/flags. */
776 elf_section_type (newsect) = hdr->sh_type;
777 elf_section_flags (newsect) = hdr->sh_flags;
778
779 newsect->filepos = hdr->sh_offset;
780
781 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
782 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
783 || ! bfd_set_section_alignment (abfd, newsect,
784 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
785 return FALSE;
786
787 flags = SEC_NO_FLAGS;
788 if (hdr->sh_type != SHT_NOBITS)
789 flags |= SEC_HAS_CONTENTS;
790 if (hdr->sh_type == SHT_GROUP)
791 flags |= SEC_GROUP | SEC_EXCLUDE;
792 if ((hdr->sh_flags & SHF_ALLOC) != 0)
793 {
794 flags |= SEC_ALLOC;
795 if (hdr->sh_type != SHT_NOBITS)
796 flags |= SEC_LOAD;
797 }
798 if ((hdr->sh_flags & SHF_WRITE) == 0)
799 flags |= SEC_READONLY;
800 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
801 flags |= SEC_CODE;
802 else if ((flags & SEC_LOAD) != 0)
803 flags |= SEC_DATA;
804 if ((hdr->sh_flags & SHF_MERGE) != 0)
805 {
806 flags |= SEC_MERGE;
807 newsect->entsize = hdr->sh_entsize;
808 if ((hdr->sh_flags & SHF_STRINGS) != 0)
809 flags |= SEC_STRINGS;
810 }
811 if (hdr->sh_flags & SHF_GROUP)
812 if (!setup_group (abfd, hdr, newsect))
813 return FALSE;
814 if ((hdr->sh_flags & SHF_TLS) != 0)
815 flags |= SEC_THREAD_LOCAL;
816
817 if ((flags & SEC_ALLOC) == 0)
818 {
819 /* The debugging sections appear to be recognized only by name,
820 not any sort of flag. Their SEC_ALLOC bits are cleared. */
821 static const struct
822 {
823 const char *name;
824 int len;
825 } debug_sections [] =
826 {
827 { STRING_COMMA_LEN ("debug") }, /* 'd' */
828 { NULL, 0 }, /* 'e' */
829 { NULL, 0 }, /* 'f' */
830 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
831 { NULL, 0 }, /* 'h' */
832 { NULL, 0 }, /* 'i' */
833 { NULL, 0 }, /* 'j' */
834 { NULL, 0 }, /* 'k' */
835 { STRING_COMMA_LEN ("line") }, /* 'l' */
836 { NULL, 0 }, /* 'm' */
837 { NULL, 0 }, /* 'n' */
838 { NULL, 0 }, /* 'o' */
839 { NULL, 0 }, /* 'p' */
840 { NULL, 0 }, /* 'q' */
841 { NULL, 0 }, /* 'r' */
842 { STRING_COMMA_LEN ("stab") } /* 's' */
843 };
844
845 if (name [0] == '.')
846 {
847 int i = name [1] - 'd';
848 if (i >= 0
849 && i < (int) ARRAY_SIZE (debug_sections)
850 && debug_sections [i].name != NULL
851 && strncmp (&name [1], debug_sections [i].name,
852 debug_sections [i].len) == 0)
853 flags |= SEC_DEBUGGING;
854 }
855 }
856
857 /* As a GNU extension, if the name begins with .gnu.linkonce, we
858 only link a single copy of the section. This is used to support
859 g++. g++ will emit each template expansion in its own section.
860 The symbols will be defined as weak, so that multiple definitions
861 are permitted. The GNU linker extension is to actually discard
862 all but one of the sections. */
863 if (CONST_STRNEQ (name, ".gnu.linkonce")
864 && elf_next_in_group (newsect) == NULL)
865 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
866
867 bed = get_elf_backend_data (abfd);
868 if (bed->elf_backend_section_flags)
869 if (! bed->elf_backend_section_flags (&flags, hdr))
870 return FALSE;
871
872 if (! bfd_set_section_flags (abfd, newsect, flags))
873 return FALSE;
874
875 if ((flags & SEC_ALLOC) != 0)
876 {
877 Elf_Internal_Phdr *phdr;
878 unsigned int i;
879
880 /* Look through the phdrs to see if we need to adjust the lma.
881 If all the p_paddr fields are zero, we ignore them, since
882 some ELF linkers produce such output. */
883 phdr = elf_tdata (abfd)->phdr;
884 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
885 {
886 if (phdr->p_paddr != 0)
887 break;
888 }
889 if (i < elf_elfheader (abfd)->e_phnum)
890 {
891 phdr = elf_tdata (abfd)->phdr;
892 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
893 {
894 /* This section is part of this segment if its file
895 offset plus size lies within the segment's memory
896 span and, if the section is loaded, the extent of the
897 loaded data lies within the extent of the segment.
898
899 Note - we used to check the p_paddr field as well, and
900 refuse to set the LMA if it was 0. This is wrong
901 though, as a perfectly valid initialised segment can
902 have a p_paddr of zero. Some architectures, eg ARM,
903 place special significance on the address 0 and
904 executables need to be able to have a segment which
905 covers this address. */
906 if (phdr->p_type == PT_LOAD
907 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
908 && (hdr->sh_offset + hdr->sh_size
909 <= phdr->p_offset + phdr->p_memsz)
910 && ((flags & SEC_LOAD) == 0
911 || (hdr->sh_offset + hdr->sh_size
912 <= phdr->p_offset + phdr->p_filesz)))
913 {
914 if ((flags & SEC_LOAD) == 0)
915 newsect->lma = (phdr->p_paddr
916 + hdr->sh_addr - phdr->p_vaddr);
917 else
918 /* We used to use the same adjustment for SEC_LOAD
919 sections, but that doesn't work if the segment
920 is packed with code from multiple VMAs.
921 Instead we calculate the section LMA based on
922 the segment LMA. It is assumed that the
923 segment will contain sections with contiguous
924 LMAs, even if the VMAs are not. */
925 newsect->lma = (phdr->p_paddr
926 + hdr->sh_offset - phdr->p_offset);
927
928 /* With contiguous segments, we can't tell from file
929 offsets whether a section with zero size should
930 be placed at the end of one segment or the
931 beginning of the next. Decide based on vaddr. */
932 if (hdr->sh_addr >= phdr->p_vaddr
933 && (hdr->sh_addr + hdr->sh_size
934 <= phdr->p_vaddr + phdr->p_memsz))
935 break;
936 }
937 }
938 }
939 }
940
941 return TRUE;
942 }
943
944 /*
945 INTERNAL_FUNCTION
946 bfd_elf_find_section
947
948 SYNOPSIS
949 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
950
951 DESCRIPTION
952 Helper functions for GDB to locate the string tables.
953 Since BFD hides string tables from callers, GDB needs to use an
954 internal hook to find them. Sun's .stabstr, in particular,
955 isn't even pointed to by the .stab section, so ordinary
956 mechanisms wouldn't work to find it, even if we had some.
957 */
958
959 struct elf_internal_shdr *
960 bfd_elf_find_section (bfd *abfd, char *name)
961 {
962 Elf_Internal_Shdr **i_shdrp;
963 char *shstrtab;
964 unsigned int max;
965 unsigned int i;
966
967 i_shdrp = elf_elfsections (abfd);
968 if (i_shdrp != NULL)
969 {
970 shstrtab = bfd_elf_get_str_section (abfd,
971 elf_elfheader (abfd)->e_shstrndx);
972 if (shstrtab != NULL)
973 {
974 max = elf_numsections (abfd);
975 for (i = 1; i < max; i++)
976 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
977 return i_shdrp[i];
978 }
979 }
980 return 0;
981 }
982
983 const char *const bfd_elf_section_type_names[] = {
984 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
985 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
986 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
987 };
988
989 /* ELF relocs are against symbols. If we are producing relocatable
990 output, and the reloc is against an external symbol, and nothing
991 has given us any additional addend, the resulting reloc will also
992 be against the same symbol. In such a case, we don't want to
993 change anything about the way the reloc is handled, since it will
994 all be done at final link time. Rather than put special case code
995 into bfd_perform_relocation, all the reloc types use this howto
996 function. It just short circuits the reloc if producing
997 relocatable output against an external symbol. */
998
999 bfd_reloc_status_type
1000 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1001 arelent *reloc_entry,
1002 asymbol *symbol,
1003 void *data ATTRIBUTE_UNUSED,
1004 asection *input_section,
1005 bfd *output_bfd,
1006 char **error_message ATTRIBUTE_UNUSED)
1007 {
1008 if (output_bfd != NULL
1009 && (symbol->flags & BSF_SECTION_SYM) == 0
1010 && (! reloc_entry->howto->partial_inplace
1011 || reloc_entry->addend == 0))
1012 {
1013 reloc_entry->address += input_section->output_offset;
1014 return bfd_reloc_ok;
1015 }
1016
1017 return bfd_reloc_continue;
1018 }
1019 \f
1020 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
1021
1022 static void
1023 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1024 asection *sec)
1025 {
1026 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1027 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1028 }
1029
1030 /* Finish SHF_MERGE section merging. */
1031
1032 bfd_boolean
1033 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1034 {
1035 bfd *ibfd;
1036 asection *sec;
1037
1038 if (!is_elf_hash_table (info->hash))
1039 return FALSE;
1040
1041 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1042 if ((ibfd->flags & DYNAMIC) == 0)
1043 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1044 if ((sec->flags & SEC_MERGE) != 0
1045 && !bfd_is_abs_section (sec->output_section))
1046 {
1047 struct bfd_elf_section_data *secdata;
1048
1049 secdata = elf_section_data (sec);
1050 if (! _bfd_add_merge_section (abfd,
1051 &elf_hash_table (info)->merge_info,
1052 sec, &secdata->sec_info))
1053 return FALSE;
1054 else if (secdata->sec_info)
1055 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1056 }
1057
1058 if (elf_hash_table (info)->merge_info != NULL)
1059 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1060 merge_sections_remove_hook);
1061 return TRUE;
1062 }
1063
1064 void
1065 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1066 {
1067 sec->output_section = bfd_abs_section_ptr;
1068 sec->output_offset = sec->vma;
1069 if (!is_elf_hash_table (info->hash))
1070 return;
1071
1072 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1073 }
1074 \f
1075 /* Copy the program header and other data from one object module to
1076 another. */
1077
1078 bfd_boolean
1079 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1080 {
1081 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1082 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1083 return TRUE;
1084
1085 BFD_ASSERT (!elf_flags_init (obfd)
1086 || (elf_elfheader (obfd)->e_flags
1087 == elf_elfheader (ibfd)->e_flags));
1088
1089 elf_gp (obfd) = elf_gp (ibfd);
1090 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1091 elf_flags_init (obfd) = TRUE;
1092 return TRUE;
1093 }
1094
1095 static const char *
1096 get_segment_type (unsigned int p_type)
1097 {
1098 const char *pt;
1099 switch (p_type)
1100 {
1101 case PT_NULL: pt = "NULL"; break;
1102 case PT_LOAD: pt = "LOAD"; break;
1103 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1104 case PT_INTERP: pt = "INTERP"; break;
1105 case PT_NOTE: pt = "NOTE"; break;
1106 case PT_SHLIB: pt = "SHLIB"; break;
1107 case PT_PHDR: pt = "PHDR"; break;
1108 case PT_TLS: pt = "TLS"; break;
1109 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1110 case PT_GNU_STACK: pt = "STACK"; break;
1111 case PT_GNU_RELRO: pt = "RELRO"; break;
1112 default: pt = NULL; break;
1113 }
1114 return pt;
1115 }
1116
1117 /* Print out the program headers. */
1118
1119 bfd_boolean
1120 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1121 {
1122 FILE *f = farg;
1123 Elf_Internal_Phdr *p;
1124 asection *s;
1125 bfd_byte *dynbuf = NULL;
1126
1127 p = elf_tdata (abfd)->phdr;
1128 if (p != NULL)
1129 {
1130 unsigned int i, c;
1131
1132 fprintf (f, _("\nProgram Header:\n"));
1133 c = elf_elfheader (abfd)->e_phnum;
1134 for (i = 0; i < c; i++, p++)
1135 {
1136 const char *pt = get_segment_type (p->p_type);
1137 char buf[20];
1138
1139 if (pt == NULL)
1140 {
1141 sprintf (buf, "0x%lx", p->p_type);
1142 pt = buf;
1143 }
1144 fprintf (f, "%8s off 0x", pt);
1145 bfd_fprintf_vma (abfd, f, p->p_offset);
1146 fprintf (f, " vaddr 0x");
1147 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1148 fprintf (f, " paddr 0x");
1149 bfd_fprintf_vma (abfd, f, p->p_paddr);
1150 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1151 fprintf (f, " filesz 0x");
1152 bfd_fprintf_vma (abfd, f, p->p_filesz);
1153 fprintf (f, " memsz 0x");
1154 bfd_fprintf_vma (abfd, f, p->p_memsz);
1155 fprintf (f, " flags %c%c%c",
1156 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1157 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1158 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1159 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1160 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1161 fprintf (f, "\n");
1162 }
1163 }
1164
1165 s = bfd_get_section_by_name (abfd, ".dynamic");
1166 if (s != NULL)
1167 {
1168 int elfsec;
1169 unsigned long shlink;
1170 bfd_byte *extdyn, *extdynend;
1171 size_t extdynsize;
1172 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1173
1174 fprintf (f, _("\nDynamic Section:\n"));
1175
1176 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1177 goto error_return;
1178
1179 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1180 if (elfsec == -1)
1181 goto error_return;
1182 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1183
1184 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1185 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1186
1187 extdyn = dynbuf;
1188 extdynend = extdyn + s->size;
1189 for (; extdyn < extdynend; extdyn += extdynsize)
1190 {
1191 Elf_Internal_Dyn dyn;
1192 const char *name;
1193 char ab[20];
1194 bfd_boolean stringp;
1195
1196 (*swap_dyn_in) (abfd, extdyn, &dyn);
1197
1198 if (dyn.d_tag == DT_NULL)
1199 break;
1200
1201 stringp = FALSE;
1202 switch (dyn.d_tag)
1203 {
1204 default:
1205 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1206 name = ab;
1207 break;
1208
1209 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1210 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1211 case DT_PLTGOT: name = "PLTGOT"; break;
1212 case DT_HASH: name = "HASH"; break;
1213 case DT_STRTAB: name = "STRTAB"; break;
1214 case DT_SYMTAB: name = "SYMTAB"; break;
1215 case DT_RELA: name = "RELA"; break;
1216 case DT_RELASZ: name = "RELASZ"; break;
1217 case DT_RELAENT: name = "RELAENT"; break;
1218 case DT_STRSZ: name = "STRSZ"; break;
1219 case DT_SYMENT: name = "SYMENT"; break;
1220 case DT_INIT: name = "INIT"; break;
1221 case DT_FINI: name = "FINI"; break;
1222 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1223 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1224 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1225 case DT_REL: name = "REL"; break;
1226 case DT_RELSZ: name = "RELSZ"; break;
1227 case DT_RELENT: name = "RELENT"; break;
1228 case DT_PLTREL: name = "PLTREL"; break;
1229 case DT_DEBUG: name = "DEBUG"; break;
1230 case DT_TEXTREL: name = "TEXTREL"; break;
1231 case DT_JMPREL: name = "JMPREL"; break;
1232 case DT_BIND_NOW: name = "BIND_NOW"; break;
1233 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1234 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1235 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1236 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1237 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1238 case DT_FLAGS: name = "FLAGS"; break;
1239 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1240 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1241 case DT_CHECKSUM: name = "CHECKSUM"; break;
1242 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1243 case DT_MOVEENT: name = "MOVEENT"; break;
1244 case DT_MOVESZ: name = "MOVESZ"; break;
1245 case DT_FEATURE: name = "FEATURE"; break;
1246 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1247 case DT_SYMINSZ: name = "SYMINSZ"; break;
1248 case DT_SYMINENT: name = "SYMINENT"; break;
1249 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1250 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1251 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1252 case DT_PLTPAD: name = "PLTPAD"; break;
1253 case DT_MOVETAB: name = "MOVETAB"; break;
1254 case DT_SYMINFO: name = "SYMINFO"; break;
1255 case DT_RELACOUNT: name = "RELACOUNT"; break;
1256 case DT_RELCOUNT: name = "RELCOUNT"; break;
1257 case DT_FLAGS_1: name = "FLAGS_1"; break;
1258 case DT_VERSYM: name = "VERSYM"; break;
1259 case DT_VERDEF: name = "VERDEF"; break;
1260 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1261 case DT_VERNEED: name = "VERNEED"; break;
1262 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1263 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1264 case DT_USED: name = "USED"; break;
1265 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1266 case DT_GNU_HASH: name = "GNU_HASH"; break;
1267 }
1268
1269 fprintf (f, " %-11s ", name);
1270 if (! stringp)
1271 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1272 else
1273 {
1274 const char *string;
1275 unsigned int tagv = dyn.d_un.d_val;
1276
1277 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1278 if (string == NULL)
1279 goto error_return;
1280 fprintf (f, "%s", string);
1281 }
1282 fprintf (f, "\n");
1283 }
1284
1285 free (dynbuf);
1286 dynbuf = NULL;
1287 }
1288
1289 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1290 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1291 {
1292 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1293 return FALSE;
1294 }
1295
1296 if (elf_dynverdef (abfd) != 0)
1297 {
1298 Elf_Internal_Verdef *t;
1299
1300 fprintf (f, _("\nVersion definitions:\n"));
1301 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1302 {
1303 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1304 t->vd_flags, t->vd_hash,
1305 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1306 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1307 {
1308 Elf_Internal_Verdaux *a;
1309
1310 fprintf (f, "\t");
1311 for (a = t->vd_auxptr->vda_nextptr;
1312 a != NULL;
1313 a = a->vda_nextptr)
1314 fprintf (f, "%s ",
1315 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1316 fprintf (f, "\n");
1317 }
1318 }
1319 }
1320
1321 if (elf_dynverref (abfd) != 0)
1322 {
1323 Elf_Internal_Verneed *t;
1324
1325 fprintf (f, _("\nVersion References:\n"));
1326 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1327 {
1328 Elf_Internal_Vernaux *a;
1329
1330 fprintf (f, _(" required from %s:\n"),
1331 t->vn_filename ? t->vn_filename : "<corrupt>");
1332 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1333 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1334 a->vna_flags, a->vna_other,
1335 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1336 }
1337 }
1338
1339 return TRUE;
1340
1341 error_return:
1342 if (dynbuf != NULL)
1343 free (dynbuf);
1344 return FALSE;
1345 }
1346
1347 /* Display ELF-specific fields of a symbol. */
1348
1349 void
1350 bfd_elf_print_symbol (bfd *abfd,
1351 void *filep,
1352 asymbol *symbol,
1353 bfd_print_symbol_type how)
1354 {
1355 FILE *file = filep;
1356 switch (how)
1357 {
1358 case bfd_print_symbol_name:
1359 fprintf (file, "%s", symbol->name);
1360 break;
1361 case bfd_print_symbol_more:
1362 fprintf (file, "elf ");
1363 bfd_fprintf_vma (abfd, file, symbol->value);
1364 fprintf (file, " %lx", (long) symbol->flags);
1365 break;
1366 case bfd_print_symbol_all:
1367 {
1368 const char *section_name;
1369 const char *name = NULL;
1370 const struct elf_backend_data *bed;
1371 unsigned char st_other;
1372 bfd_vma val;
1373
1374 section_name = symbol->section ? symbol->section->name : "(*none*)";
1375
1376 bed = get_elf_backend_data (abfd);
1377 if (bed->elf_backend_print_symbol_all)
1378 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1379
1380 if (name == NULL)
1381 {
1382 name = symbol->name;
1383 bfd_print_symbol_vandf (abfd, file, symbol);
1384 }
1385
1386 fprintf (file, " %s\t", section_name);
1387 /* Print the "other" value for a symbol. For common symbols,
1388 we've already printed the size; now print the alignment.
1389 For other symbols, we have no specified alignment, and
1390 we've printed the address; now print the size. */
1391 if (bfd_is_com_section (symbol->section))
1392 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1393 else
1394 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1395 bfd_fprintf_vma (abfd, file, val);
1396
1397 /* If we have version information, print it. */
1398 if (elf_tdata (abfd)->dynversym_section != 0
1399 && (elf_tdata (abfd)->dynverdef_section != 0
1400 || elf_tdata (abfd)->dynverref_section != 0))
1401 {
1402 unsigned int vernum;
1403 const char *version_string;
1404
1405 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1406
1407 if (vernum == 0)
1408 version_string = "";
1409 else if (vernum == 1)
1410 version_string = "Base";
1411 else if (vernum <= elf_tdata (abfd)->cverdefs)
1412 version_string =
1413 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1414 else
1415 {
1416 Elf_Internal_Verneed *t;
1417
1418 version_string = "";
1419 for (t = elf_tdata (abfd)->verref;
1420 t != NULL;
1421 t = t->vn_nextref)
1422 {
1423 Elf_Internal_Vernaux *a;
1424
1425 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1426 {
1427 if (a->vna_other == vernum)
1428 {
1429 version_string = a->vna_nodename;
1430 break;
1431 }
1432 }
1433 }
1434 }
1435
1436 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1437 fprintf (file, " %-11s", version_string);
1438 else
1439 {
1440 int i;
1441
1442 fprintf (file, " (%s)", version_string);
1443 for (i = 10 - strlen (version_string); i > 0; --i)
1444 putc (' ', file);
1445 }
1446 }
1447
1448 /* If the st_other field is not zero, print it. */
1449 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1450
1451 switch (st_other)
1452 {
1453 case 0: break;
1454 case STV_INTERNAL: fprintf (file, " .internal"); break;
1455 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1456 case STV_PROTECTED: fprintf (file, " .protected"); break;
1457 default:
1458 /* Some other non-defined flags are also present, so print
1459 everything hex. */
1460 fprintf (file, " 0x%02x", (unsigned int) st_other);
1461 }
1462
1463 fprintf (file, " %s", name);
1464 }
1465 break;
1466 }
1467 }
1468 \f
1469 /* Create an entry in an ELF linker hash table. */
1470
1471 struct bfd_hash_entry *
1472 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1473 struct bfd_hash_table *table,
1474 const char *string)
1475 {
1476 /* Allocate the structure if it has not already been allocated by a
1477 subclass. */
1478 if (entry == NULL)
1479 {
1480 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1481 if (entry == NULL)
1482 return entry;
1483 }
1484
1485 /* Call the allocation method of the superclass. */
1486 entry = _bfd_link_hash_newfunc (entry, table, string);
1487 if (entry != NULL)
1488 {
1489 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1490 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1491
1492 /* Set local fields. */
1493 ret->indx = -1;
1494 ret->dynindx = -1;
1495 ret->got = htab->init_got_refcount;
1496 ret->plt = htab->init_plt_refcount;
1497 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1498 - offsetof (struct elf_link_hash_entry, size)));
1499 /* Assume that we have been called by a non-ELF symbol reader.
1500 This flag is then reset by the code which reads an ELF input
1501 file. This ensures that a symbol created by a non-ELF symbol
1502 reader will have the flag set correctly. */
1503 ret->non_elf = 1;
1504 }
1505
1506 return entry;
1507 }
1508
1509 /* Copy data from an indirect symbol to its direct symbol, hiding the
1510 old indirect symbol. Also used for copying flags to a weakdef. */
1511
1512 void
1513 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1514 struct elf_link_hash_entry *dir,
1515 struct elf_link_hash_entry *ind)
1516 {
1517 struct elf_link_hash_table *htab;
1518
1519 /* Copy down any references that we may have already seen to the
1520 symbol which just became indirect. */
1521
1522 dir->ref_dynamic |= ind->ref_dynamic;
1523 dir->ref_regular |= ind->ref_regular;
1524 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1525 dir->non_got_ref |= ind->non_got_ref;
1526 dir->needs_plt |= ind->needs_plt;
1527 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1528
1529 if (ind->root.type != bfd_link_hash_indirect)
1530 return;
1531
1532 /* Copy over the global and procedure linkage table refcount entries.
1533 These may have been already set up by a check_relocs routine. */
1534 htab = elf_hash_table (info);
1535 if (ind->got.refcount > htab->init_got_refcount.refcount)
1536 {
1537 if (dir->got.refcount < 0)
1538 dir->got.refcount = 0;
1539 dir->got.refcount += ind->got.refcount;
1540 ind->got.refcount = htab->init_got_refcount.refcount;
1541 }
1542
1543 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1544 {
1545 if (dir->plt.refcount < 0)
1546 dir->plt.refcount = 0;
1547 dir->plt.refcount += ind->plt.refcount;
1548 ind->plt.refcount = htab->init_plt_refcount.refcount;
1549 }
1550
1551 if (ind->dynindx != -1)
1552 {
1553 if (dir->dynindx != -1)
1554 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1555 dir->dynindx = ind->dynindx;
1556 dir->dynstr_index = ind->dynstr_index;
1557 ind->dynindx = -1;
1558 ind->dynstr_index = 0;
1559 }
1560 }
1561
1562 void
1563 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1564 struct elf_link_hash_entry *h,
1565 bfd_boolean force_local)
1566 {
1567 h->plt = elf_hash_table (info)->init_plt_offset;
1568 h->needs_plt = 0;
1569 if (force_local)
1570 {
1571 h->forced_local = 1;
1572 if (h->dynindx != -1)
1573 {
1574 h->dynindx = -1;
1575 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1576 h->dynstr_index);
1577 }
1578 }
1579 }
1580
1581 /* Initialize an ELF linker hash table. */
1582
1583 bfd_boolean
1584 _bfd_elf_link_hash_table_init
1585 (struct elf_link_hash_table *table,
1586 bfd *abfd,
1587 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1588 struct bfd_hash_table *,
1589 const char *),
1590 unsigned int entsize)
1591 {
1592 bfd_boolean ret;
1593 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1594
1595 table->dynamic_sections_created = FALSE;
1596 table->dynobj = NULL;
1597 table->init_got_refcount.refcount = can_refcount - 1;
1598 table->init_plt_refcount.refcount = can_refcount - 1;
1599 table->init_got_offset.offset = -(bfd_vma) 1;
1600 table->init_plt_offset.offset = -(bfd_vma) 1;
1601 /* The first dynamic symbol is a dummy. */
1602 table->dynsymcount = 1;
1603 table->dynstr = NULL;
1604 table->bucketcount = 0;
1605 table->needed = NULL;
1606 table->hgot = NULL;
1607 table->hplt = NULL;
1608 table->merge_info = NULL;
1609 memset (&table->stab_info, 0, sizeof (table->stab_info));
1610 memset (&table->eh_info, 0, sizeof (table->eh_info));
1611 table->dynlocal = NULL;
1612 table->runpath = NULL;
1613 table->tls_sec = NULL;
1614 table->tls_size = 0;
1615 table->loaded = NULL;
1616 table->is_relocatable_executable = FALSE;
1617
1618 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1619 table->root.type = bfd_link_elf_hash_table;
1620
1621 return ret;
1622 }
1623
1624 /* Create an ELF linker hash table. */
1625
1626 struct bfd_link_hash_table *
1627 _bfd_elf_link_hash_table_create (bfd *abfd)
1628 {
1629 struct elf_link_hash_table *ret;
1630 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1631
1632 ret = bfd_malloc (amt);
1633 if (ret == NULL)
1634 return NULL;
1635
1636 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1637 sizeof (struct elf_link_hash_entry)))
1638 {
1639 free (ret);
1640 return NULL;
1641 }
1642
1643 return &ret->root;
1644 }
1645
1646 /* This is a hook for the ELF emulation code in the generic linker to
1647 tell the backend linker what file name to use for the DT_NEEDED
1648 entry for a dynamic object. */
1649
1650 void
1651 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1652 {
1653 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1654 && bfd_get_format (abfd) == bfd_object)
1655 elf_dt_name (abfd) = name;
1656 }
1657
1658 int
1659 bfd_elf_get_dyn_lib_class (bfd *abfd)
1660 {
1661 int lib_class;
1662 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1663 && bfd_get_format (abfd) == bfd_object)
1664 lib_class = elf_dyn_lib_class (abfd);
1665 else
1666 lib_class = 0;
1667 return lib_class;
1668 }
1669
1670 void
1671 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
1672 {
1673 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1674 && bfd_get_format (abfd) == bfd_object)
1675 elf_dyn_lib_class (abfd) = lib_class;
1676 }
1677
1678 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1679 the linker ELF emulation code. */
1680
1681 struct bfd_link_needed_list *
1682 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1683 struct bfd_link_info *info)
1684 {
1685 if (! is_elf_hash_table (info->hash))
1686 return NULL;
1687 return elf_hash_table (info)->needed;
1688 }
1689
1690 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1691 hook for the linker ELF emulation code. */
1692
1693 struct bfd_link_needed_list *
1694 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1695 struct bfd_link_info *info)
1696 {
1697 if (! is_elf_hash_table (info->hash))
1698 return NULL;
1699 return elf_hash_table (info)->runpath;
1700 }
1701
1702 /* Get the name actually used for a dynamic object for a link. This
1703 is the SONAME entry if there is one. Otherwise, it is the string
1704 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1705
1706 const char *
1707 bfd_elf_get_dt_soname (bfd *abfd)
1708 {
1709 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1710 && bfd_get_format (abfd) == bfd_object)
1711 return elf_dt_name (abfd);
1712 return NULL;
1713 }
1714
1715 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1716 the ELF linker emulation code. */
1717
1718 bfd_boolean
1719 bfd_elf_get_bfd_needed_list (bfd *abfd,
1720 struct bfd_link_needed_list **pneeded)
1721 {
1722 asection *s;
1723 bfd_byte *dynbuf = NULL;
1724 int elfsec;
1725 unsigned long shlink;
1726 bfd_byte *extdyn, *extdynend;
1727 size_t extdynsize;
1728 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1729
1730 *pneeded = NULL;
1731
1732 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1733 || bfd_get_format (abfd) != bfd_object)
1734 return TRUE;
1735
1736 s = bfd_get_section_by_name (abfd, ".dynamic");
1737 if (s == NULL || s->size == 0)
1738 return TRUE;
1739
1740 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1741 goto error_return;
1742
1743 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1744 if (elfsec == -1)
1745 goto error_return;
1746
1747 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1748
1749 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1750 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1751
1752 extdyn = dynbuf;
1753 extdynend = extdyn + s->size;
1754 for (; extdyn < extdynend; extdyn += extdynsize)
1755 {
1756 Elf_Internal_Dyn dyn;
1757
1758 (*swap_dyn_in) (abfd, extdyn, &dyn);
1759
1760 if (dyn.d_tag == DT_NULL)
1761 break;
1762
1763 if (dyn.d_tag == DT_NEEDED)
1764 {
1765 const char *string;
1766 struct bfd_link_needed_list *l;
1767 unsigned int tagv = dyn.d_un.d_val;
1768 bfd_size_type amt;
1769
1770 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1771 if (string == NULL)
1772 goto error_return;
1773
1774 amt = sizeof *l;
1775 l = bfd_alloc (abfd, amt);
1776 if (l == NULL)
1777 goto error_return;
1778
1779 l->by = abfd;
1780 l->name = string;
1781 l->next = *pneeded;
1782 *pneeded = l;
1783 }
1784 }
1785
1786 free (dynbuf);
1787
1788 return TRUE;
1789
1790 error_return:
1791 if (dynbuf != NULL)
1792 free (dynbuf);
1793 return FALSE;
1794 }
1795 \f
1796 /* Allocate an ELF string table--force the first byte to be zero. */
1797
1798 struct bfd_strtab_hash *
1799 _bfd_elf_stringtab_init (void)
1800 {
1801 struct bfd_strtab_hash *ret;
1802
1803 ret = _bfd_stringtab_init ();
1804 if (ret != NULL)
1805 {
1806 bfd_size_type loc;
1807
1808 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1809 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1810 if (loc == (bfd_size_type) -1)
1811 {
1812 _bfd_stringtab_free (ret);
1813 ret = NULL;
1814 }
1815 }
1816 return ret;
1817 }
1818 \f
1819 /* ELF .o/exec file reading */
1820
1821 /* Create a new bfd section from an ELF section header. */
1822
1823 bfd_boolean
1824 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1825 {
1826 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1827 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1828 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1829 const char *name;
1830
1831 name = bfd_elf_string_from_elf_section (abfd,
1832 elf_elfheader (abfd)->e_shstrndx,
1833 hdr->sh_name);
1834 if (name == NULL)
1835 return FALSE;
1836
1837 switch (hdr->sh_type)
1838 {
1839 case SHT_NULL:
1840 /* Inactive section. Throw it away. */
1841 return TRUE;
1842
1843 case SHT_PROGBITS: /* Normal section with contents. */
1844 case SHT_NOBITS: /* .bss section. */
1845 case SHT_HASH: /* .hash section. */
1846 case SHT_NOTE: /* .note section. */
1847 case SHT_INIT_ARRAY: /* .init_array section. */
1848 case SHT_FINI_ARRAY: /* .fini_array section. */
1849 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1850 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1851 case SHT_GNU_HASH: /* .gnu.hash section. */
1852 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1853
1854 case SHT_DYNAMIC: /* Dynamic linking information. */
1855 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1856 return FALSE;
1857 if (hdr->sh_link > elf_numsections (abfd)
1858 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1859 return FALSE;
1860 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1861 {
1862 Elf_Internal_Shdr *dynsymhdr;
1863
1864 /* The shared libraries distributed with hpux11 have a bogus
1865 sh_link field for the ".dynamic" section. Find the
1866 string table for the ".dynsym" section instead. */
1867 if (elf_dynsymtab (abfd) != 0)
1868 {
1869 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1870 hdr->sh_link = dynsymhdr->sh_link;
1871 }
1872 else
1873 {
1874 unsigned int i, num_sec;
1875
1876 num_sec = elf_numsections (abfd);
1877 for (i = 1; i < num_sec; i++)
1878 {
1879 dynsymhdr = elf_elfsections (abfd)[i];
1880 if (dynsymhdr->sh_type == SHT_DYNSYM)
1881 {
1882 hdr->sh_link = dynsymhdr->sh_link;
1883 break;
1884 }
1885 }
1886 }
1887 }
1888 break;
1889
1890 case SHT_SYMTAB: /* A symbol table */
1891 if (elf_onesymtab (abfd) == shindex)
1892 return TRUE;
1893
1894 if (hdr->sh_entsize != bed->s->sizeof_sym)
1895 return FALSE;
1896 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1897 elf_onesymtab (abfd) = shindex;
1898 elf_tdata (abfd)->symtab_hdr = *hdr;
1899 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1900 abfd->flags |= HAS_SYMS;
1901
1902 /* Sometimes a shared object will map in the symbol table. If
1903 SHF_ALLOC is set, and this is a shared object, then we also
1904 treat this section as a BFD section. We can not base the
1905 decision purely on SHF_ALLOC, because that flag is sometimes
1906 set in a relocatable object file, which would confuse the
1907 linker. */
1908 if ((hdr->sh_flags & SHF_ALLOC) != 0
1909 && (abfd->flags & DYNAMIC) != 0
1910 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1911 shindex))
1912 return FALSE;
1913
1914 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1915 can't read symbols without that section loaded as well. It
1916 is most likely specified by the next section header. */
1917 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1918 {
1919 unsigned int i, num_sec;
1920
1921 num_sec = elf_numsections (abfd);
1922 for (i = shindex + 1; i < num_sec; i++)
1923 {
1924 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1925 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1926 && hdr2->sh_link == shindex)
1927 break;
1928 }
1929 if (i == num_sec)
1930 for (i = 1; i < shindex; i++)
1931 {
1932 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1933 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1934 && hdr2->sh_link == shindex)
1935 break;
1936 }
1937 if (i != shindex)
1938 return bfd_section_from_shdr (abfd, i);
1939 }
1940 return TRUE;
1941
1942 case SHT_DYNSYM: /* A dynamic symbol table */
1943 if (elf_dynsymtab (abfd) == shindex)
1944 return TRUE;
1945
1946 if (hdr->sh_entsize != bed->s->sizeof_sym)
1947 return FALSE;
1948 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1949 elf_dynsymtab (abfd) = shindex;
1950 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1951 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1952 abfd->flags |= HAS_SYMS;
1953
1954 /* Besides being a symbol table, we also treat this as a regular
1955 section, so that objcopy can handle it. */
1956 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1957
1958 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1959 if (elf_symtab_shndx (abfd) == shindex)
1960 return TRUE;
1961
1962 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1963 elf_symtab_shndx (abfd) = shindex;
1964 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1965 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1966 return TRUE;
1967
1968 case SHT_STRTAB: /* A string table */
1969 if (hdr->bfd_section != NULL)
1970 return TRUE;
1971 if (ehdr->e_shstrndx == shindex)
1972 {
1973 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1974 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1975 return TRUE;
1976 }
1977 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1978 {
1979 symtab_strtab:
1980 elf_tdata (abfd)->strtab_hdr = *hdr;
1981 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1982 return TRUE;
1983 }
1984 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1985 {
1986 dynsymtab_strtab:
1987 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1988 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1989 elf_elfsections (abfd)[shindex] = hdr;
1990 /* We also treat this as a regular section, so that objcopy
1991 can handle it. */
1992 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1993 shindex);
1994 }
1995
1996 /* If the string table isn't one of the above, then treat it as a
1997 regular section. We need to scan all the headers to be sure,
1998 just in case this strtab section appeared before the above. */
1999 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2000 {
2001 unsigned int i, num_sec;
2002
2003 num_sec = elf_numsections (abfd);
2004 for (i = 1; i < num_sec; i++)
2005 {
2006 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2007 if (hdr2->sh_link == shindex)
2008 {
2009 /* Prevent endless recursion on broken objects. */
2010 if (i == shindex)
2011 return FALSE;
2012 if (! bfd_section_from_shdr (abfd, i))
2013 return FALSE;
2014 if (elf_onesymtab (abfd) == i)
2015 goto symtab_strtab;
2016 if (elf_dynsymtab (abfd) == i)
2017 goto dynsymtab_strtab;
2018 }
2019 }
2020 }
2021 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2022
2023 case SHT_REL:
2024 case SHT_RELA:
2025 /* *These* do a lot of work -- but build no sections! */
2026 {
2027 asection *target_sect;
2028 Elf_Internal_Shdr *hdr2;
2029 unsigned int num_sec = elf_numsections (abfd);
2030
2031 if (hdr->sh_entsize
2032 != (bfd_size_type) (hdr->sh_type == SHT_REL
2033 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2034 return FALSE;
2035
2036 /* Check for a bogus link to avoid crashing. */
2037 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2038 || hdr->sh_link >= num_sec)
2039 {
2040 ((*_bfd_error_handler)
2041 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2042 abfd, hdr->sh_link, name, shindex));
2043 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2044 shindex);
2045 }
2046
2047 /* For some incomprehensible reason Oracle distributes
2048 libraries for Solaris in which some of the objects have
2049 bogus sh_link fields. It would be nice if we could just
2050 reject them, but, unfortunately, some people need to use
2051 them. We scan through the section headers; if we find only
2052 one suitable symbol table, we clobber the sh_link to point
2053 to it. I hope this doesn't break anything. */
2054 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2055 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2056 {
2057 unsigned int scan;
2058 int found;
2059
2060 found = 0;
2061 for (scan = 1; scan < num_sec; scan++)
2062 {
2063 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2064 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2065 {
2066 if (found != 0)
2067 {
2068 found = 0;
2069 break;
2070 }
2071 found = scan;
2072 }
2073 }
2074 if (found != 0)
2075 hdr->sh_link = found;
2076 }
2077
2078 /* Get the symbol table. */
2079 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2080 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2081 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2082 return FALSE;
2083
2084 /* If this reloc section does not use the main symbol table we
2085 don't treat it as a reloc section. BFD can't adequately
2086 represent such a section, so at least for now, we don't
2087 try. We just present it as a normal section. We also
2088 can't use it as a reloc section if it points to the null
2089 section, an invalid section, or another reloc section. */
2090 if (hdr->sh_link != elf_onesymtab (abfd)
2091 || hdr->sh_info == SHN_UNDEF
2092 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2093 || hdr->sh_info >= num_sec
2094 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2095 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2096 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2097 shindex);
2098
2099 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2100 return FALSE;
2101 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2102 if (target_sect == NULL)
2103 return FALSE;
2104
2105 if ((target_sect->flags & SEC_RELOC) == 0
2106 || target_sect->reloc_count == 0)
2107 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2108 else
2109 {
2110 bfd_size_type amt;
2111 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2112 amt = sizeof (*hdr2);
2113 hdr2 = bfd_alloc (abfd, amt);
2114 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2115 }
2116 *hdr2 = *hdr;
2117 elf_elfsections (abfd)[shindex] = hdr2;
2118 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2119 target_sect->flags |= SEC_RELOC;
2120 target_sect->relocation = NULL;
2121 target_sect->rel_filepos = hdr->sh_offset;
2122 /* In the section to which the relocations apply, mark whether
2123 its relocations are of the REL or RELA variety. */
2124 if (hdr->sh_size != 0)
2125 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2126 abfd->flags |= HAS_RELOC;
2127 return TRUE;
2128 }
2129
2130 case SHT_GNU_verdef:
2131 elf_dynverdef (abfd) = shindex;
2132 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2133 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2134
2135 case SHT_GNU_versym:
2136 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2137 return FALSE;
2138 elf_dynversym (abfd) = shindex;
2139 elf_tdata (abfd)->dynversym_hdr = *hdr;
2140 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2141
2142 case SHT_GNU_verneed:
2143 elf_dynverref (abfd) = shindex;
2144 elf_tdata (abfd)->dynverref_hdr = *hdr;
2145 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2146
2147 case SHT_SHLIB:
2148 return TRUE;
2149
2150 case SHT_GROUP:
2151 /* We need a BFD section for objcopy and relocatable linking,
2152 and it's handy to have the signature available as the section
2153 name. */
2154 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2155 return FALSE;
2156 name = group_signature (abfd, hdr);
2157 if (name == NULL)
2158 return FALSE;
2159 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2160 return FALSE;
2161 if (hdr->contents != NULL)
2162 {
2163 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2164 unsigned int n_elt = hdr->sh_size / 4;
2165 asection *s;
2166
2167 if (idx->flags & GRP_COMDAT)
2168 hdr->bfd_section->flags
2169 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2170
2171 /* We try to keep the same section order as it comes in. */
2172 idx += n_elt;
2173 while (--n_elt != 0)
2174 if ((s = (--idx)->shdr->bfd_section) != NULL
2175 && elf_next_in_group (s) != NULL)
2176 {
2177 elf_next_in_group (hdr->bfd_section) = s;
2178 break;
2179 }
2180 }
2181 break;
2182
2183 default:
2184 /* Check for any processor-specific section types. */
2185 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2186 return TRUE;
2187
2188 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2189 {
2190 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2191 /* FIXME: How to properly handle allocated section reserved
2192 for applications? */
2193 (*_bfd_error_handler)
2194 (_("%B: don't know how to handle allocated, application "
2195 "specific section `%s' [0x%8x]"),
2196 abfd, name, hdr->sh_type);
2197 else
2198 /* Allow sections reserved for applications. */
2199 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2200 shindex);
2201 }
2202 else if (hdr->sh_type >= SHT_LOPROC
2203 && hdr->sh_type <= SHT_HIPROC)
2204 /* FIXME: We should handle this section. */
2205 (*_bfd_error_handler)
2206 (_("%B: don't know how to handle processor specific section "
2207 "`%s' [0x%8x]"),
2208 abfd, name, hdr->sh_type);
2209 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2210 {
2211 /* Unrecognised OS-specific sections. */
2212 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2213 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2214 required to correctly process the section and the file should
2215 be rejected with an error message. */
2216 (*_bfd_error_handler)
2217 (_("%B: don't know how to handle OS specific section "
2218 "`%s' [0x%8x]"),
2219 abfd, name, hdr->sh_type);
2220 else
2221 /* Otherwise it should be processed. */
2222 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2223 }
2224 else
2225 /* FIXME: We should handle this section. */
2226 (*_bfd_error_handler)
2227 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2228 abfd, name, hdr->sh_type);
2229
2230 return FALSE;
2231 }
2232
2233 return TRUE;
2234 }
2235
2236 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2237 Return SEC for sections that have no elf section, and NULL on error. */
2238
2239 asection *
2240 bfd_section_from_r_symndx (bfd *abfd,
2241 struct sym_sec_cache *cache,
2242 asection *sec,
2243 unsigned long r_symndx)
2244 {
2245 Elf_Internal_Shdr *symtab_hdr;
2246 unsigned char esym[sizeof (Elf64_External_Sym)];
2247 Elf_External_Sym_Shndx eshndx;
2248 Elf_Internal_Sym isym;
2249 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2250
2251 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2252 return cache->sec[ent];
2253
2254 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2255 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2256 &isym, esym, &eshndx) == NULL)
2257 return NULL;
2258
2259 if (cache->abfd != abfd)
2260 {
2261 memset (cache->indx, -1, sizeof (cache->indx));
2262 cache->abfd = abfd;
2263 }
2264 cache->indx[ent] = r_symndx;
2265 cache->sec[ent] = sec;
2266 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2267 || isym.st_shndx > SHN_HIRESERVE)
2268 {
2269 asection *s;
2270 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2271 if (s != NULL)
2272 cache->sec[ent] = s;
2273 }
2274 return cache->sec[ent];
2275 }
2276
2277 /* Given an ELF section number, retrieve the corresponding BFD
2278 section. */
2279
2280 asection *
2281 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2282 {
2283 if (index >= elf_numsections (abfd))
2284 return NULL;
2285 return elf_elfsections (abfd)[index]->bfd_section;
2286 }
2287
2288 static const struct bfd_elf_special_section special_sections_b[] =
2289 {
2290 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2291 { NULL, 0, 0, 0, 0 }
2292 };
2293
2294 static const struct bfd_elf_special_section special_sections_c[] =
2295 {
2296 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2297 { NULL, 0, 0, 0, 0 }
2298 };
2299
2300 static const struct bfd_elf_special_section special_sections_d[] =
2301 {
2302 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2303 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2304 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2305 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2306 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2307 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2308 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2309 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2310 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2311 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2312 { NULL, 0, 0, 0, 0 }
2313 };
2314
2315 static const struct bfd_elf_special_section special_sections_f[] =
2316 {
2317 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2318 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2319 { NULL, 0, 0, 0, 0 }
2320 };
2321
2322 static const struct bfd_elf_special_section special_sections_g[] =
2323 {
2324 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2325 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2326 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2327 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2328 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2329 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2330 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2331 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2332 { NULL, 0, 0, 0, 0 }
2333 };
2334
2335 static const struct bfd_elf_special_section special_sections_h[] =
2336 {
2337 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2338 { NULL, 0, 0, 0, 0 }
2339 };
2340
2341 static const struct bfd_elf_special_section special_sections_i[] =
2342 {
2343 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2344 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2345 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2346 { NULL, 0, 0, 0, 0 }
2347 };
2348
2349 static const struct bfd_elf_special_section special_sections_l[] =
2350 {
2351 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2352 { NULL, 0, 0, 0, 0 }
2353 };
2354
2355 static const struct bfd_elf_special_section special_sections_n[] =
2356 {
2357 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2358 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2359 { NULL, 0, 0, 0, 0 }
2360 };
2361
2362 static const struct bfd_elf_special_section special_sections_p[] =
2363 {
2364 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2365 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2366 { NULL, 0, 0, 0, 0 }
2367 };
2368
2369 static const struct bfd_elf_special_section special_sections_r[] =
2370 {
2371 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2372 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2373 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2374 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2375 { NULL, 0, 0, 0, 0 }
2376 };
2377
2378 static const struct bfd_elf_special_section special_sections_s[] =
2379 {
2380 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2381 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2382 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2383 /* See struct bfd_elf_special_section declaration for the semantics of
2384 this special case where .prefix_length != strlen (.prefix). */
2385 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2386 { NULL, 0, 0, 0, 0 }
2387 };
2388
2389 static const struct bfd_elf_special_section special_sections_t[] =
2390 {
2391 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2392 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2393 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2394 { NULL, 0, 0, 0, 0 }
2395 };
2396
2397 static const struct bfd_elf_special_section *special_sections[] =
2398 {
2399 special_sections_b, /* 'b' */
2400 special_sections_c, /* 'b' */
2401 special_sections_d, /* 'd' */
2402 NULL, /* 'e' */
2403 special_sections_f, /* 'f' */
2404 special_sections_g, /* 'g' */
2405 special_sections_h, /* 'h' */
2406 special_sections_i, /* 'i' */
2407 NULL, /* 'j' */
2408 NULL, /* 'k' */
2409 special_sections_l, /* 'l' */
2410 NULL, /* 'm' */
2411 special_sections_n, /* 'n' */
2412 NULL, /* 'o' */
2413 special_sections_p, /* 'p' */
2414 NULL, /* 'q' */
2415 special_sections_r, /* 'r' */
2416 special_sections_s, /* 's' */
2417 special_sections_t, /* 't' */
2418 };
2419
2420 const struct bfd_elf_special_section *
2421 _bfd_elf_get_special_section (const char *name,
2422 const struct bfd_elf_special_section *spec,
2423 unsigned int rela)
2424 {
2425 int i;
2426 int len;
2427
2428 len = strlen (name);
2429
2430 for (i = 0; spec[i].prefix != NULL; i++)
2431 {
2432 int suffix_len;
2433 int prefix_len = spec[i].prefix_length;
2434
2435 if (len < prefix_len)
2436 continue;
2437 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2438 continue;
2439
2440 suffix_len = spec[i].suffix_length;
2441 if (suffix_len <= 0)
2442 {
2443 if (name[prefix_len] != 0)
2444 {
2445 if (suffix_len == 0)
2446 continue;
2447 if (name[prefix_len] != '.'
2448 && (suffix_len == -2
2449 || (rela && spec[i].type == SHT_REL)))
2450 continue;
2451 }
2452 }
2453 else
2454 {
2455 if (len < prefix_len + suffix_len)
2456 continue;
2457 if (memcmp (name + len - suffix_len,
2458 spec[i].prefix + prefix_len,
2459 suffix_len) != 0)
2460 continue;
2461 }
2462 return &spec[i];
2463 }
2464
2465 return NULL;
2466 }
2467
2468 const struct bfd_elf_special_section *
2469 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2470 {
2471 int i;
2472 const struct bfd_elf_special_section *spec;
2473 const struct elf_backend_data *bed;
2474
2475 /* See if this is one of the special sections. */
2476 if (sec->name == NULL)
2477 return NULL;
2478
2479 bed = get_elf_backend_data (abfd);
2480 spec = bed->special_sections;
2481 if (spec)
2482 {
2483 spec = _bfd_elf_get_special_section (sec->name,
2484 bed->special_sections,
2485 sec->use_rela_p);
2486 if (spec != NULL)
2487 return spec;
2488 }
2489
2490 if (sec->name[0] != '.')
2491 return NULL;
2492
2493 i = sec->name[1] - 'b';
2494 if (i < 0 || i > 't' - 'b')
2495 return NULL;
2496
2497 spec = special_sections[i];
2498
2499 if (spec == NULL)
2500 return NULL;
2501
2502 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2503 }
2504
2505 bfd_boolean
2506 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2507 {
2508 struct bfd_elf_section_data *sdata;
2509 const struct elf_backend_data *bed;
2510 const struct bfd_elf_special_section *ssect;
2511
2512 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2513 if (sdata == NULL)
2514 {
2515 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2516 if (sdata == NULL)
2517 return FALSE;
2518 sec->used_by_bfd = sdata;
2519 }
2520
2521 /* Indicate whether or not this section should use RELA relocations. */
2522 bed = get_elf_backend_data (abfd);
2523 sec->use_rela_p = bed->default_use_rela_p;
2524
2525 /* When we read a file, we don't need to set ELF section type and
2526 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2527 anyway. We will set ELF section type and flags for all linker
2528 created sections. If user specifies BFD section flags, we will
2529 set ELF section type and flags based on BFD section flags in
2530 elf_fake_sections. */
2531 if ((!sec->flags && abfd->direction != read_direction)
2532 || (sec->flags & SEC_LINKER_CREATED) != 0)
2533 {
2534 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2535 if (ssect != NULL)
2536 {
2537 elf_section_type (sec) = ssect->type;
2538 elf_section_flags (sec) = ssect->attr;
2539 }
2540 }
2541
2542 return _bfd_generic_new_section_hook (abfd, sec);
2543 }
2544
2545 /* Create a new bfd section from an ELF program header.
2546
2547 Since program segments have no names, we generate a synthetic name
2548 of the form segment<NUM>, where NUM is generally the index in the
2549 program header table. For segments that are split (see below) we
2550 generate the names segment<NUM>a and segment<NUM>b.
2551
2552 Note that some program segments may have a file size that is different than
2553 (less than) the memory size. All this means is that at execution the
2554 system must allocate the amount of memory specified by the memory size,
2555 but only initialize it with the first "file size" bytes read from the
2556 file. This would occur for example, with program segments consisting
2557 of combined data+bss.
2558
2559 To handle the above situation, this routine generates TWO bfd sections
2560 for the single program segment. The first has the length specified by
2561 the file size of the segment, and the second has the length specified
2562 by the difference between the two sizes. In effect, the segment is split
2563 into it's initialized and uninitialized parts.
2564
2565 */
2566
2567 bfd_boolean
2568 _bfd_elf_make_section_from_phdr (bfd *abfd,
2569 Elf_Internal_Phdr *hdr,
2570 int index,
2571 const char *typename)
2572 {
2573 asection *newsect;
2574 char *name;
2575 char namebuf[64];
2576 size_t len;
2577 int split;
2578
2579 split = ((hdr->p_memsz > 0)
2580 && (hdr->p_filesz > 0)
2581 && (hdr->p_memsz > hdr->p_filesz));
2582 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2583 len = strlen (namebuf) + 1;
2584 name = bfd_alloc (abfd, len);
2585 if (!name)
2586 return FALSE;
2587 memcpy (name, namebuf, len);
2588 newsect = bfd_make_section (abfd, name);
2589 if (newsect == NULL)
2590 return FALSE;
2591 newsect->vma = hdr->p_vaddr;
2592 newsect->lma = hdr->p_paddr;
2593 newsect->size = hdr->p_filesz;
2594 newsect->filepos = hdr->p_offset;
2595 newsect->flags |= SEC_HAS_CONTENTS;
2596 newsect->alignment_power = bfd_log2 (hdr->p_align);
2597 if (hdr->p_type == PT_LOAD)
2598 {
2599 newsect->flags |= SEC_ALLOC;
2600 newsect->flags |= SEC_LOAD;
2601 if (hdr->p_flags & PF_X)
2602 {
2603 /* FIXME: all we known is that it has execute PERMISSION,
2604 may be data. */
2605 newsect->flags |= SEC_CODE;
2606 }
2607 }
2608 if (!(hdr->p_flags & PF_W))
2609 {
2610 newsect->flags |= SEC_READONLY;
2611 }
2612
2613 if (split)
2614 {
2615 sprintf (namebuf, "%s%db", typename, index);
2616 len = strlen (namebuf) + 1;
2617 name = bfd_alloc (abfd, len);
2618 if (!name)
2619 return FALSE;
2620 memcpy (name, namebuf, len);
2621 newsect = bfd_make_section (abfd, name);
2622 if (newsect == NULL)
2623 return FALSE;
2624 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2625 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2626 newsect->size = hdr->p_memsz - hdr->p_filesz;
2627 if (hdr->p_type == PT_LOAD)
2628 {
2629 newsect->flags |= SEC_ALLOC;
2630 if (hdr->p_flags & PF_X)
2631 newsect->flags |= SEC_CODE;
2632 }
2633 if (!(hdr->p_flags & PF_W))
2634 newsect->flags |= SEC_READONLY;
2635 }
2636
2637 return TRUE;
2638 }
2639
2640 bfd_boolean
2641 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2642 {
2643 const struct elf_backend_data *bed;
2644
2645 switch (hdr->p_type)
2646 {
2647 case PT_NULL:
2648 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2649
2650 case PT_LOAD:
2651 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2652
2653 case PT_DYNAMIC:
2654 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2655
2656 case PT_INTERP:
2657 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2658
2659 case PT_NOTE:
2660 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2661 return FALSE;
2662 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2663 return FALSE;
2664 return TRUE;
2665
2666 case PT_SHLIB:
2667 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2668
2669 case PT_PHDR:
2670 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2671
2672 case PT_GNU_EH_FRAME:
2673 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2674 "eh_frame_hdr");
2675
2676 case PT_GNU_STACK:
2677 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2678
2679 case PT_GNU_RELRO:
2680 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2681
2682 default:
2683 /* Check for any processor-specific program segment types. */
2684 bed = get_elf_backend_data (abfd);
2685 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2686 }
2687 }
2688
2689 /* Initialize REL_HDR, the section-header for new section, containing
2690 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2691 relocations; otherwise, we use REL relocations. */
2692
2693 bfd_boolean
2694 _bfd_elf_init_reloc_shdr (bfd *abfd,
2695 Elf_Internal_Shdr *rel_hdr,
2696 asection *asect,
2697 bfd_boolean use_rela_p)
2698 {
2699 char *name;
2700 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2701 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2702
2703 name = bfd_alloc (abfd, amt);
2704 if (name == NULL)
2705 return FALSE;
2706 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2707 rel_hdr->sh_name =
2708 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2709 FALSE);
2710 if (rel_hdr->sh_name == (unsigned int) -1)
2711 return FALSE;
2712 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2713 rel_hdr->sh_entsize = (use_rela_p
2714 ? bed->s->sizeof_rela
2715 : bed->s->sizeof_rel);
2716 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2717 rel_hdr->sh_flags = 0;
2718 rel_hdr->sh_addr = 0;
2719 rel_hdr->sh_size = 0;
2720 rel_hdr->sh_offset = 0;
2721
2722 return TRUE;
2723 }
2724
2725 /* Set up an ELF internal section header for a section. */
2726
2727 static void
2728 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2729 {
2730 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2731 bfd_boolean *failedptr = failedptrarg;
2732 Elf_Internal_Shdr *this_hdr;
2733
2734 if (*failedptr)
2735 {
2736 /* We already failed; just get out of the bfd_map_over_sections
2737 loop. */
2738 return;
2739 }
2740
2741 this_hdr = &elf_section_data (asect)->this_hdr;
2742
2743 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2744 asect->name, FALSE);
2745 if (this_hdr->sh_name == (unsigned int) -1)
2746 {
2747 *failedptr = TRUE;
2748 return;
2749 }
2750
2751 /* Don't clear sh_flags. Assembler may set additional bits. */
2752
2753 if ((asect->flags & SEC_ALLOC) != 0
2754 || asect->user_set_vma)
2755 this_hdr->sh_addr = asect->vma;
2756 else
2757 this_hdr->sh_addr = 0;
2758
2759 this_hdr->sh_offset = 0;
2760 this_hdr->sh_size = asect->size;
2761 this_hdr->sh_link = 0;
2762 this_hdr->sh_addralign = 1 << asect->alignment_power;
2763 /* The sh_entsize and sh_info fields may have been set already by
2764 copy_private_section_data. */
2765
2766 this_hdr->bfd_section = asect;
2767 this_hdr->contents = NULL;
2768
2769 /* If the section type is unspecified, we set it based on
2770 asect->flags. */
2771 if (this_hdr->sh_type == SHT_NULL)
2772 {
2773 if ((asect->flags & SEC_GROUP) != 0)
2774 this_hdr->sh_type = SHT_GROUP;
2775 else if ((asect->flags & SEC_ALLOC) != 0
2776 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2777 || (asect->flags & SEC_NEVER_LOAD) != 0))
2778 this_hdr->sh_type = SHT_NOBITS;
2779 else
2780 this_hdr->sh_type = SHT_PROGBITS;
2781 }
2782
2783 switch (this_hdr->sh_type)
2784 {
2785 default:
2786 break;
2787
2788 case SHT_STRTAB:
2789 case SHT_INIT_ARRAY:
2790 case SHT_FINI_ARRAY:
2791 case SHT_PREINIT_ARRAY:
2792 case SHT_NOTE:
2793 case SHT_NOBITS:
2794 case SHT_PROGBITS:
2795 break;
2796
2797 case SHT_HASH:
2798 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2799 break;
2800
2801 case SHT_DYNSYM:
2802 this_hdr->sh_entsize = bed->s->sizeof_sym;
2803 break;
2804
2805 case SHT_DYNAMIC:
2806 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2807 break;
2808
2809 case SHT_RELA:
2810 if (get_elf_backend_data (abfd)->may_use_rela_p)
2811 this_hdr->sh_entsize = bed->s->sizeof_rela;
2812 break;
2813
2814 case SHT_REL:
2815 if (get_elf_backend_data (abfd)->may_use_rel_p)
2816 this_hdr->sh_entsize = bed->s->sizeof_rel;
2817 break;
2818
2819 case SHT_GNU_versym:
2820 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2821 break;
2822
2823 case SHT_GNU_verdef:
2824 this_hdr->sh_entsize = 0;
2825 /* objcopy or strip will copy over sh_info, but may not set
2826 cverdefs. The linker will set cverdefs, but sh_info will be
2827 zero. */
2828 if (this_hdr->sh_info == 0)
2829 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2830 else
2831 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2832 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2833 break;
2834
2835 case SHT_GNU_verneed:
2836 this_hdr->sh_entsize = 0;
2837 /* objcopy or strip will copy over sh_info, but may not set
2838 cverrefs. The linker will set cverrefs, but sh_info will be
2839 zero. */
2840 if (this_hdr->sh_info == 0)
2841 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2842 else
2843 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2844 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2845 break;
2846
2847 case SHT_GROUP:
2848 this_hdr->sh_entsize = 4;
2849 break;
2850
2851 case SHT_GNU_HASH:
2852 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2853 break;
2854 }
2855
2856 if ((asect->flags & SEC_ALLOC) != 0)
2857 this_hdr->sh_flags |= SHF_ALLOC;
2858 if ((asect->flags & SEC_READONLY) == 0)
2859 this_hdr->sh_flags |= SHF_WRITE;
2860 if ((asect->flags & SEC_CODE) != 0)
2861 this_hdr->sh_flags |= SHF_EXECINSTR;
2862 if ((asect->flags & SEC_MERGE) != 0)
2863 {
2864 this_hdr->sh_flags |= SHF_MERGE;
2865 this_hdr->sh_entsize = asect->entsize;
2866 if ((asect->flags & SEC_STRINGS) != 0)
2867 this_hdr->sh_flags |= SHF_STRINGS;
2868 }
2869 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2870 this_hdr->sh_flags |= SHF_GROUP;
2871 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2872 {
2873 this_hdr->sh_flags |= SHF_TLS;
2874 if (asect->size == 0
2875 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2876 {
2877 struct bfd_link_order *o = asect->map_tail.link_order;
2878
2879 this_hdr->sh_size = 0;
2880 if (o != NULL)
2881 {
2882 this_hdr->sh_size = o->offset + o->size;
2883 if (this_hdr->sh_size != 0)
2884 this_hdr->sh_type = SHT_NOBITS;
2885 }
2886 }
2887 }
2888
2889 /* Check for processor-specific section types. */
2890 if (bed->elf_backend_fake_sections
2891 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2892 *failedptr = TRUE;
2893
2894 /* If the section has relocs, set up a section header for the
2895 SHT_REL[A] section. If two relocation sections are required for
2896 this section, it is up to the processor-specific back-end to
2897 create the other. */
2898 if ((asect->flags & SEC_RELOC) != 0
2899 && !_bfd_elf_init_reloc_shdr (abfd,
2900 &elf_section_data (asect)->rel_hdr,
2901 asect,
2902 asect->use_rela_p))
2903 *failedptr = TRUE;
2904 }
2905
2906 /* Fill in the contents of a SHT_GROUP section. */
2907
2908 void
2909 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2910 {
2911 bfd_boolean *failedptr = failedptrarg;
2912 unsigned long symindx;
2913 asection *elt, *first;
2914 unsigned char *loc;
2915 bfd_boolean gas;
2916
2917 /* Ignore linker created group section. See elfNN_ia64_object_p in
2918 elfxx-ia64.c. */
2919 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2920 || *failedptr)
2921 return;
2922
2923 symindx = 0;
2924 if (elf_group_id (sec) != NULL)
2925 symindx = elf_group_id (sec)->udata.i;
2926
2927 if (symindx == 0)
2928 {
2929 /* If called from the assembler, swap_out_syms will have set up
2930 elf_section_syms; If called for "ld -r", use target_index. */
2931 if (elf_section_syms (abfd) != NULL)
2932 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2933 else
2934 symindx = sec->target_index;
2935 }
2936 elf_section_data (sec)->this_hdr.sh_info = symindx;
2937
2938 /* The contents won't be allocated for "ld -r" or objcopy. */
2939 gas = TRUE;
2940 if (sec->contents == NULL)
2941 {
2942 gas = FALSE;
2943 sec->contents = bfd_alloc (abfd, sec->size);
2944
2945 /* Arrange for the section to be written out. */
2946 elf_section_data (sec)->this_hdr.contents = sec->contents;
2947 if (sec->contents == NULL)
2948 {
2949 *failedptr = TRUE;
2950 return;
2951 }
2952 }
2953
2954 loc = sec->contents + sec->size;
2955
2956 /* Get the pointer to the first section in the group that gas
2957 squirreled away here. objcopy arranges for this to be set to the
2958 start of the input section group. */
2959 first = elt = elf_next_in_group (sec);
2960
2961 /* First element is a flag word. Rest of section is elf section
2962 indices for all the sections of the group. Write them backwards
2963 just to keep the group in the same order as given in .section
2964 directives, not that it matters. */
2965 while (elt != NULL)
2966 {
2967 asection *s;
2968 unsigned int idx;
2969
2970 loc -= 4;
2971 s = elt;
2972 if (!gas)
2973 s = s->output_section;
2974 idx = 0;
2975 if (s != NULL)
2976 idx = elf_section_data (s)->this_idx;
2977 H_PUT_32 (abfd, idx, loc);
2978 elt = elf_next_in_group (elt);
2979 if (elt == first)
2980 break;
2981 }
2982
2983 if ((loc -= 4) != sec->contents)
2984 abort ();
2985
2986 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2987 }
2988
2989 /* Assign all ELF section numbers. The dummy first section is handled here
2990 too. The link/info pointers for the standard section types are filled
2991 in here too, while we're at it. */
2992
2993 static bfd_boolean
2994 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2995 {
2996 struct elf_obj_tdata *t = elf_tdata (abfd);
2997 asection *sec;
2998 unsigned int section_number, secn;
2999 Elf_Internal_Shdr **i_shdrp;
3000 struct bfd_elf_section_data *d;
3001
3002 section_number = 1;
3003
3004 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3005
3006 /* SHT_GROUP sections are in relocatable files only. */
3007 if (link_info == NULL || link_info->relocatable)
3008 {
3009 /* Put SHT_GROUP sections first. */
3010 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3011 {
3012 d = elf_section_data (sec);
3013
3014 if (d->this_hdr.sh_type == SHT_GROUP)
3015 {
3016 if (sec->flags & SEC_LINKER_CREATED)
3017 {
3018 /* Remove the linker created SHT_GROUP sections. */
3019 bfd_section_list_remove (abfd, sec);
3020 abfd->section_count--;
3021 }
3022 else
3023 {
3024 if (section_number == SHN_LORESERVE)
3025 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3026 d->this_idx = section_number++;
3027 }
3028 }
3029 }
3030 }
3031
3032 for (sec = abfd->sections; sec; sec = sec->next)
3033 {
3034 d = elf_section_data (sec);
3035
3036 if (d->this_hdr.sh_type != SHT_GROUP)
3037 {
3038 if (section_number == SHN_LORESERVE)
3039 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3040 d->this_idx = section_number++;
3041 }
3042 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3043 if ((sec->flags & SEC_RELOC) == 0)
3044 d->rel_idx = 0;
3045 else
3046 {
3047 if (section_number == SHN_LORESERVE)
3048 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3049 d->rel_idx = section_number++;
3050 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3051 }
3052
3053 if (d->rel_hdr2)
3054 {
3055 if (section_number == SHN_LORESERVE)
3056 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3057 d->rel_idx2 = section_number++;
3058 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3059 }
3060 else
3061 d->rel_idx2 = 0;
3062 }
3063
3064 if (section_number == SHN_LORESERVE)
3065 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3066 t->shstrtab_section = section_number++;
3067 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3068 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3069
3070 if (bfd_get_symcount (abfd) > 0)
3071 {
3072 if (section_number == SHN_LORESERVE)
3073 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3074 t->symtab_section = section_number++;
3075 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3076 if (section_number > SHN_LORESERVE - 2)
3077 {
3078 if (section_number == SHN_LORESERVE)
3079 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3080 t->symtab_shndx_section = section_number++;
3081 t->symtab_shndx_hdr.sh_name
3082 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3083 ".symtab_shndx", FALSE);
3084 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3085 return FALSE;
3086 }
3087 if (section_number == SHN_LORESERVE)
3088 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3089 t->strtab_section = section_number++;
3090 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3091 }
3092
3093 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3094 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3095
3096 elf_numsections (abfd) = section_number;
3097 elf_elfheader (abfd)->e_shnum = section_number;
3098 if (section_number > SHN_LORESERVE)
3099 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3100
3101 /* Set up the list of section header pointers, in agreement with the
3102 indices. */
3103 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3104 if (i_shdrp == NULL)
3105 return FALSE;
3106
3107 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3108 if (i_shdrp[0] == NULL)
3109 {
3110 bfd_release (abfd, i_shdrp);
3111 return FALSE;
3112 }
3113
3114 elf_elfsections (abfd) = i_shdrp;
3115
3116 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3117 if (bfd_get_symcount (abfd) > 0)
3118 {
3119 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3120 if (elf_numsections (abfd) > SHN_LORESERVE)
3121 {
3122 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3123 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3124 }
3125 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3126 t->symtab_hdr.sh_link = t->strtab_section;
3127 }
3128
3129 for (sec = abfd->sections; sec; sec = sec->next)
3130 {
3131 struct bfd_elf_section_data *d = elf_section_data (sec);
3132 asection *s;
3133 const char *name;
3134
3135 i_shdrp[d->this_idx] = &d->this_hdr;
3136 if (d->rel_idx != 0)
3137 i_shdrp[d->rel_idx] = &d->rel_hdr;
3138 if (d->rel_idx2 != 0)
3139 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3140
3141 /* Fill in the sh_link and sh_info fields while we're at it. */
3142
3143 /* sh_link of a reloc section is the section index of the symbol
3144 table. sh_info is the section index of the section to which
3145 the relocation entries apply. */
3146 if (d->rel_idx != 0)
3147 {
3148 d->rel_hdr.sh_link = t->symtab_section;
3149 d->rel_hdr.sh_info = d->this_idx;
3150 }
3151 if (d->rel_idx2 != 0)
3152 {
3153 d->rel_hdr2->sh_link = t->symtab_section;
3154 d->rel_hdr2->sh_info = d->this_idx;
3155 }
3156
3157 /* We need to set up sh_link for SHF_LINK_ORDER. */
3158 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3159 {
3160 s = elf_linked_to_section (sec);
3161 if (s)
3162 {
3163 /* elf_linked_to_section points to the input section. */
3164 if (link_info != NULL)
3165 {
3166 /* Check discarded linkonce section. */
3167 if (elf_discarded_section (s))
3168 {
3169 asection *kept;
3170 (*_bfd_error_handler)
3171 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3172 abfd, d->this_hdr.bfd_section,
3173 s, s->owner);
3174 /* Point to the kept section if it has the same
3175 size as the discarded one. */
3176 kept = _bfd_elf_check_kept_section (s, link_info);
3177 if (kept == NULL)
3178 {
3179 bfd_set_error (bfd_error_bad_value);
3180 return FALSE;
3181 }
3182 s = kept;
3183 }
3184
3185 s = s->output_section;
3186 BFD_ASSERT (s != NULL);
3187 }
3188 else
3189 {
3190 /* Handle objcopy. */
3191 if (s->output_section == NULL)
3192 {
3193 (*_bfd_error_handler)
3194 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3195 abfd, d->this_hdr.bfd_section, s, s->owner);
3196 bfd_set_error (bfd_error_bad_value);
3197 return FALSE;
3198 }
3199 s = s->output_section;
3200 }
3201 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3202 }
3203 else
3204 {
3205 /* PR 290:
3206 The Intel C compiler generates SHT_IA_64_UNWIND with
3207 SHF_LINK_ORDER. But it doesn't set the sh_link or
3208 sh_info fields. Hence we could get the situation
3209 where s is NULL. */
3210 const struct elf_backend_data *bed
3211 = get_elf_backend_data (abfd);
3212 if (bed->link_order_error_handler)
3213 bed->link_order_error_handler
3214 (_("%B: warning: sh_link not set for section `%A'"),
3215 abfd, sec);
3216 }
3217 }
3218
3219 switch (d->this_hdr.sh_type)
3220 {
3221 case SHT_REL:
3222 case SHT_RELA:
3223 /* A reloc section which we are treating as a normal BFD
3224 section. sh_link is the section index of the symbol
3225 table. sh_info is the section index of the section to
3226 which the relocation entries apply. We assume that an
3227 allocated reloc section uses the dynamic symbol table.
3228 FIXME: How can we be sure? */
3229 s = bfd_get_section_by_name (abfd, ".dynsym");
3230 if (s != NULL)
3231 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3232
3233 /* We look up the section the relocs apply to by name. */
3234 name = sec->name;
3235 if (d->this_hdr.sh_type == SHT_REL)
3236 name += 4;
3237 else
3238 name += 5;
3239 s = bfd_get_section_by_name (abfd, name);
3240 if (s != NULL)
3241 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3242 break;
3243
3244 case SHT_STRTAB:
3245 /* We assume that a section named .stab*str is a stabs
3246 string section. We look for a section with the same name
3247 but without the trailing ``str'', and set its sh_link
3248 field to point to this section. */
3249 if (CONST_STRNEQ (sec->name, ".stab")
3250 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3251 {
3252 size_t len;
3253 char *alc;
3254
3255 len = strlen (sec->name);
3256 alc = bfd_malloc (len - 2);
3257 if (alc == NULL)
3258 return FALSE;
3259 memcpy (alc, sec->name, len - 3);
3260 alc[len - 3] = '\0';
3261 s = bfd_get_section_by_name (abfd, alc);
3262 free (alc);
3263 if (s != NULL)
3264 {
3265 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3266
3267 /* This is a .stab section. */
3268 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3269 elf_section_data (s)->this_hdr.sh_entsize
3270 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3271 }
3272 }
3273 break;
3274
3275 case SHT_DYNAMIC:
3276 case SHT_DYNSYM:
3277 case SHT_GNU_verneed:
3278 case SHT_GNU_verdef:
3279 /* sh_link is the section header index of the string table
3280 used for the dynamic entries, or the symbol table, or the
3281 version strings. */
3282 s = bfd_get_section_by_name (abfd, ".dynstr");
3283 if (s != NULL)
3284 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3285 break;
3286
3287 case SHT_GNU_LIBLIST:
3288 /* sh_link is the section header index of the prelink library
3289 list
3290 used for the dynamic entries, or the symbol table, or the
3291 version strings. */
3292 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3293 ? ".dynstr" : ".gnu.libstr");
3294 if (s != NULL)
3295 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3296 break;
3297
3298 case SHT_HASH:
3299 case SHT_GNU_HASH:
3300 case SHT_GNU_versym:
3301 /* sh_link is the section header index of the symbol table
3302 this hash table or version table is for. */
3303 s = bfd_get_section_by_name (abfd, ".dynsym");
3304 if (s != NULL)
3305 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3306 break;
3307
3308 case SHT_GROUP:
3309 d->this_hdr.sh_link = t->symtab_section;
3310 }
3311 }
3312
3313 for (secn = 1; secn < section_number; ++secn)
3314 if (i_shdrp[secn] == NULL)
3315 i_shdrp[secn] = i_shdrp[0];
3316 else
3317 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3318 i_shdrp[secn]->sh_name);
3319 return TRUE;
3320 }
3321
3322 /* Map symbol from it's internal number to the external number, moving
3323 all local symbols to be at the head of the list. */
3324
3325 static bfd_boolean
3326 sym_is_global (bfd *abfd, asymbol *sym)
3327 {
3328 /* If the backend has a special mapping, use it. */
3329 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3330 if (bed->elf_backend_sym_is_global)
3331 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3332
3333 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3334 || bfd_is_und_section (bfd_get_section (sym))
3335 || bfd_is_com_section (bfd_get_section (sym)));
3336 }
3337
3338 /* Don't output section symbols for sections that are not going to be
3339 output. Also, don't output section symbols for reloc and other
3340 special sections. */
3341
3342 static bfd_boolean
3343 ignore_section_sym (bfd *abfd, asymbol *sym)
3344 {
3345 return ((sym->flags & BSF_SECTION_SYM) != 0
3346 && (sym->value != 0
3347 || (sym->section->owner != abfd
3348 && (sym->section->output_section->owner != abfd
3349 || sym->section->output_offset != 0))));
3350 }
3351
3352 static bfd_boolean
3353 elf_map_symbols (bfd *abfd)
3354 {
3355 unsigned int symcount = bfd_get_symcount (abfd);
3356 asymbol **syms = bfd_get_outsymbols (abfd);
3357 asymbol **sect_syms;
3358 unsigned int num_locals = 0;
3359 unsigned int num_globals = 0;
3360 unsigned int num_locals2 = 0;
3361 unsigned int num_globals2 = 0;
3362 int max_index = 0;
3363 unsigned int idx;
3364 asection *asect;
3365 asymbol **new_syms;
3366
3367 #ifdef DEBUG
3368 fprintf (stderr, "elf_map_symbols\n");
3369 fflush (stderr);
3370 #endif
3371
3372 for (asect = abfd->sections; asect; asect = asect->next)
3373 {
3374 if (max_index < asect->index)
3375 max_index = asect->index;
3376 }
3377
3378 max_index++;
3379 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3380 if (sect_syms == NULL)
3381 return FALSE;
3382 elf_section_syms (abfd) = sect_syms;
3383 elf_num_section_syms (abfd) = max_index;
3384
3385 /* Init sect_syms entries for any section symbols we have already
3386 decided to output. */
3387 for (idx = 0; idx < symcount; idx++)
3388 {
3389 asymbol *sym = syms[idx];
3390
3391 if ((sym->flags & BSF_SECTION_SYM) != 0
3392 && !ignore_section_sym (abfd, sym))
3393 {
3394 asection *sec = sym->section;
3395
3396 if (sec->owner != abfd)
3397 sec = sec->output_section;
3398
3399 sect_syms[sec->index] = syms[idx];
3400 }
3401 }
3402
3403 /* Classify all of the symbols. */
3404 for (idx = 0; idx < symcount; idx++)
3405 {
3406 if (ignore_section_sym (abfd, syms[idx]))
3407 continue;
3408 if (!sym_is_global (abfd, syms[idx]))
3409 num_locals++;
3410 else
3411 num_globals++;
3412 }
3413
3414 /* We will be adding a section symbol for each normal BFD section. Most
3415 sections will already have a section symbol in outsymbols, but
3416 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3417 at least in that case. */
3418 for (asect = abfd->sections; asect; asect = asect->next)
3419 {
3420 if (sect_syms[asect->index] == NULL)
3421 {
3422 if (!sym_is_global (abfd, asect->symbol))
3423 num_locals++;
3424 else
3425 num_globals++;
3426 }
3427 }
3428
3429 /* Now sort the symbols so the local symbols are first. */
3430 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3431
3432 if (new_syms == NULL)
3433 return FALSE;
3434
3435 for (idx = 0; idx < symcount; idx++)
3436 {
3437 asymbol *sym = syms[idx];
3438 unsigned int i;
3439
3440 if (ignore_section_sym (abfd, sym))
3441 continue;
3442 if (!sym_is_global (abfd, sym))
3443 i = num_locals2++;
3444 else
3445 i = num_locals + num_globals2++;
3446 new_syms[i] = sym;
3447 sym->udata.i = i + 1;
3448 }
3449 for (asect = abfd->sections; asect; asect = asect->next)
3450 {
3451 if (sect_syms[asect->index] == NULL)
3452 {
3453 asymbol *sym = asect->symbol;
3454 unsigned int i;
3455
3456 sect_syms[asect->index] = sym;
3457 if (!sym_is_global (abfd, sym))
3458 i = num_locals2++;
3459 else
3460 i = num_locals + num_globals2++;
3461 new_syms[i] = sym;
3462 sym->udata.i = i + 1;
3463 }
3464 }
3465
3466 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3467
3468 elf_num_locals (abfd) = num_locals;
3469 elf_num_globals (abfd) = num_globals;
3470 return TRUE;
3471 }
3472
3473 /* Align to the maximum file alignment that could be required for any
3474 ELF data structure. */
3475
3476 static inline file_ptr
3477 align_file_position (file_ptr off, int align)
3478 {
3479 return (off + align - 1) & ~(align - 1);
3480 }
3481
3482 /* Assign a file position to a section, optionally aligning to the
3483 required section alignment. */
3484
3485 file_ptr
3486 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3487 file_ptr offset,
3488 bfd_boolean align)
3489 {
3490 if (align)
3491 {
3492 unsigned int al;
3493
3494 al = i_shdrp->sh_addralign;
3495 if (al > 1)
3496 offset = BFD_ALIGN (offset, al);
3497 }
3498 i_shdrp->sh_offset = offset;
3499 if (i_shdrp->bfd_section != NULL)
3500 i_shdrp->bfd_section->filepos = offset;
3501 if (i_shdrp->sh_type != SHT_NOBITS)
3502 offset += i_shdrp->sh_size;
3503 return offset;
3504 }
3505
3506 /* Compute the file positions we are going to put the sections at, and
3507 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3508 is not NULL, this is being called by the ELF backend linker. */
3509
3510 bfd_boolean
3511 _bfd_elf_compute_section_file_positions (bfd *abfd,
3512 struct bfd_link_info *link_info)
3513 {
3514 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3515 bfd_boolean failed;
3516 struct bfd_strtab_hash *strtab = NULL;
3517 Elf_Internal_Shdr *shstrtab_hdr;
3518
3519 if (abfd->output_has_begun)
3520 return TRUE;
3521
3522 /* Do any elf backend specific processing first. */
3523 if (bed->elf_backend_begin_write_processing)
3524 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3525
3526 if (! prep_headers (abfd))
3527 return FALSE;
3528
3529 /* Post process the headers if necessary. */
3530 if (bed->elf_backend_post_process_headers)
3531 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3532
3533 failed = FALSE;
3534 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3535 if (failed)
3536 return FALSE;
3537
3538 if (!assign_section_numbers (abfd, link_info))
3539 return FALSE;
3540
3541 /* The backend linker builds symbol table information itself. */
3542 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3543 {
3544 /* Non-zero if doing a relocatable link. */
3545 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3546
3547 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3548 return FALSE;
3549 }
3550
3551 if (link_info == NULL)
3552 {
3553 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3554 if (failed)
3555 return FALSE;
3556 }
3557
3558 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3559 /* sh_name was set in prep_headers. */
3560 shstrtab_hdr->sh_type = SHT_STRTAB;
3561 shstrtab_hdr->sh_flags = 0;
3562 shstrtab_hdr->sh_addr = 0;
3563 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3564 shstrtab_hdr->sh_entsize = 0;
3565 shstrtab_hdr->sh_link = 0;
3566 shstrtab_hdr->sh_info = 0;
3567 /* sh_offset is set in assign_file_positions_except_relocs. */
3568 shstrtab_hdr->sh_addralign = 1;
3569
3570 if (!assign_file_positions_except_relocs (abfd, link_info))
3571 return FALSE;
3572
3573 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3574 {
3575 file_ptr off;
3576 Elf_Internal_Shdr *hdr;
3577
3578 off = elf_tdata (abfd)->next_file_pos;
3579
3580 hdr = &elf_tdata (abfd)->symtab_hdr;
3581 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3582
3583 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3584 if (hdr->sh_size != 0)
3585 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3586
3587 hdr = &elf_tdata (abfd)->strtab_hdr;
3588 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3589
3590 elf_tdata (abfd)->next_file_pos = off;
3591
3592 /* Now that we know where the .strtab section goes, write it
3593 out. */
3594 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3595 || ! _bfd_stringtab_emit (abfd, strtab))
3596 return FALSE;
3597 _bfd_stringtab_free (strtab);
3598 }
3599
3600 abfd->output_has_begun = TRUE;
3601
3602 return TRUE;
3603 }
3604
3605 /* Make an initial estimate of the size of the program header. If we
3606 get the number wrong here, we'll redo section placement. */
3607
3608 static bfd_size_type
3609 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3610 {
3611 size_t segs;
3612 asection *s;
3613 const struct elf_backend_data *bed;
3614
3615 /* Assume we will need exactly two PT_LOAD segments: one for text
3616 and one for data. */
3617 segs = 2;
3618
3619 s = bfd_get_section_by_name (abfd, ".interp");
3620 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3621 {
3622 /* If we have a loadable interpreter section, we need a
3623 PT_INTERP segment. In this case, assume we also need a
3624 PT_PHDR segment, although that may not be true for all
3625 targets. */
3626 segs += 2;
3627 }
3628
3629 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3630 {
3631 /* We need a PT_DYNAMIC segment. */
3632 ++segs;
3633
3634 if (elf_tdata (abfd)->relro)
3635 {
3636 /* We need a PT_GNU_RELRO segment only when there is a
3637 PT_DYNAMIC segment. */
3638 ++segs;
3639 }
3640 }
3641
3642 if (elf_tdata (abfd)->eh_frame_hdr)
3643 {
3644 /* We need a PT_GNU_EH_FRAME segment. */
3645 ++segs;
3646 }
3647
3648 if (elf_tdata (abfd)->stack_flags)
3649 {
3650 /* We need a PT_GNU_STACK segment. */
3651 ++segs;
3652 }
3653
3654 for (s = abfd->sections; s != NULL; s = s->next)
3655 {
3656 if ((s->flags & SEC_LOAD) != 0
3657 && CONST_STRNEQ (s->name, ".note"))
3658 {
3659 /* We need a PT_NOTE segment. */
3660 ++segs;
3661 }
3662 }
3663
3664 for (s = abfd->sections; s != NULL; s = s->next)
3665 {
3666 if (s->flags & SEC_THREAD_LOCAL)
3667 {
3668 /* We need a PT_TLS segment. */
3669 ++segs;
3670 break;
3671 }
3672 }
3673
3674 /* Let the backend count up any program headers it might need. */
3675 bed = get_elf_backend_data (abfd);
3676 if (bed->elf_backend_additional_program_headers)
3677 {
3678 int a;
3679
3680 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3681 if (a == -1)
3682 abort ();
3683 segs += a;
3684 }
3685
3686 return segs * bed->s->sizeof_phdr;
3687 }
3688
3689 /* Create a mapping from a set of sections to a program segment. */
3690
3691 static struct elf_segment_map *
3692 make_mapping (bfd *abfd,
3693 asection **sections,
3694 unsigned int from,
3695 unsigned int to,
3696 bfd_boolean phdr)
3697 {
3698 struct elf_segment_map *m;
3699 unsigned int i;
3700 asection **hdrpp;
3701 bfd_size_type amt;
3702
3703 amt = sizeof (struct elf_segment_map);
3704 amt += (to - from - 1) * sizeof (asection *);
3705 m = bfd_zalloc (abfd, amt);
3706 if (m == NULL)
3707 return NULL;
3708 m->next = NULL;
3709 m->p_type = PT_LOAD;
3710 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3711 m->sections[i - from] = *hdrpp;
3712 m->count = to - from;
3713
3714 if (from == 0 && phdr)
3715 {
3716 /* Include the headers in the first PT_LOAD segment. */
3717 m->includes_filehdr = 1;
3718 m->includes_phdrs = 1;
3719 }
3720
3721 return m;
3722 }
3723
3724 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3725 on failure. */
3726
3727 struct elf_segment_map *
3728 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3729 {
3730 struct elf_segment_map *m;
3731
3732 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3733 if (m == NULL)
3734 return NULL;
3735 m->next = NULL;
3736 m->p_type = PT_DYNAMIC;
3737 m->count = 1;
3738 m->sections[0] = dynsec;
3739
3740 return m;
3741 }
3742
3743 /* Possibly add or remove segments from the segment map. */
3744
3745 static bfd_boolean
3746 elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
3747 {
3748 struct elf_segment_map **m;
3749 const struct elf_backend_data *bed;
3750
3751 /* The placement algorithm assumes that non allocated sections are
3752 not in PT_LOAD segments. We ensure this here by removing such
3753 sections from the segment map. We also remove excluded
3754 sections. Finally, any PT_LOAD segment without sections is
3755 removed. */
3756 m = &elf_tdata (abfd)->segment_map;
3757 while (*m)
3758 {
3759 unsigned int i, new_count;
3760
3761 for (new_count = 0, i = 0; i < (*m)->count; i++)
3762 {
3763 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3764 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3765 || (*m)->p_type != PT_LOAD))
3766 {
3767 (*m)->sections[new_count] = (*m)->sections[i];
3768 new_count++;
3769 }
3770 }
3771 (*m)->count = new_count;
3772
3773 if ((*m)->p_type == PT_LOAD && (*m)->count == 0)
3774 *m = (*m)->next;
3775 else
3776 m = &(*m)->next;
3777 }
3778
3779 bed = get_elf_backend_data (abfd);
3780 if (bed->elf_backend_modify_segment_map != NULL)
3781 {
3782 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3783 return FALSE;
3784 }
3785
3786 return TRUE;
3787 }
3788
3789 /* Set up a mapping from BFD sections to program segments. */
3790
3791 bfd_boolean
3792 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3793 {
3794 unsigned int count;
3795 struct elf_segment_map *m;
3796 asection **sections = NULL;
3797 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3798
3799 if (elf_tdata (abfd)->segment_map == NULL
3800 && bfd_count_sections (abfd) != 0)
3801 {
3802 asection *s;
3803 unsigned int i;
3804 struct elf_segment_map *mfirst;
3805 struct elf_segment_map **pm;
3806 asection *last_hdr;
3807 bfd_vma last_size;
3808 unsigned int phdr_index;
3809 bfd_vma maxpagesize;
3810 asection **hdrpp;
3811 bfd_boolean phdr_in_segment = TRUE;
3812 bfd_boolean writable;
3813 int tls_count = 0;
3814 asection *first_tls = NULL;
3815 asection *dynsec, *eh_frame_hdr;
3816 bfd_size_type amt;
3817
3818 /* Select the allocated sections, and sort them. */
3819
3820 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3821 if (sections == NULL)
3822 goto error_return;
3823
3824 i = 0;
3825 for (s = abfd->sections; s != NULL; s = s->next)
3826 {
3827 if ((s->flags & SEC_ALLOC) != 0)
3828 {
3829 sections[i] = s;
3830 ++i;
3831 }
3832 }
3833 BFD_ASSERT (i <= bfd_count_sections (abfd));
3834 count = i;
3835
3836 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3837
3838 /* Build the mapping. */
3839
3840 mfirst = NULL;
3841 pm = &mfirst;
3842
3843 /* If we have a .interp section, then create a PT_PHDR segment for
3844 the program headers and a PT_INTERP segment for the .interp
3845 section. */
3846 s = bfd_get_section_by_name (abfd, ".interp");
3847 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3848 {
3849 amt = sizeof (struct elf_segment_map);
3850 m = bfd_zalloc (abfd, amt);
3851 if (m == NULL)
3852 goto error_return;
3853 m->next = NULL;
3854 m->p_type = PT_PHDR;
3855 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3856 m->p_flags = PF_R | PF_X;
3857 m->p_flags_valid = 1;
3858 m->includes_phdrs = 1;
3859
3860 *pm = m;
3861 pm = &m->next;
3862
3863 amt = sizeof (struct elf_segment_map);
3864 m = bfd_zalloc (abfd, amt);
3865 if (m == NULL)
3866 goto error_return;
3867 m->next = NULL;
3868 m->p_type = PT_INTERP;
3869 m->count = 1;
3870 m->sections[0] = s;
3871
3872 *pm = m;
3873 pm = &m->next;
3874 }
3875
3876 /* Look through the sections. We put sections in the same program
3877 segment when the start of the second section can be placed within
3878 a few bytes of the end of the first section. */
3879 last_hdr = NULL;
3880 last_size = 0;
3881 phdr_index = 0;
3882 maxpagesize = bed->maxpagesize;
3883 writable = FALSE;
3884 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3885 if (dynsec != NULL
3886 && (dynsec->flags & SEC_LOAD) == 0)
3887 dynsec = NULL;
3888
3889 /* Deal with -Ttext or something similar such that the first section
3890 is not adjacent to the program headers. This is an
3891 approximation, since at this point we don't know exactly how many
3892 program headers we will need. */
3893 if (count > 0)
3894 {
3895 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3896
3897 if (phdr_size == (bfd_size_type) -1)
3898 phdr_size = get_program_header_size (abfd, info);
3899 if ((abfd->flags & D_PAGED) == 0
3900 || sections[0]->lma < phdr_size
3901 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3902 phdr_in_segment = FALSE;
3903 }
3904
3905 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3906 {
3907 asection *hdr;
3908 bfd_boolean new_segment;
3909
3910 hdr = *hdrpp;
3911
3912 /* See if this section and the last one will fit in the same
3913 segment. */
3914
3915 if (last_hdr == NULL)
3916 {
3917 /* If we don't have a segment yet, then we don't need a new
3918 one (we build the last one after this loop). */
3919 new_segment = FALSE;
3920 }
3921 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3922 {
3923 /* If this section has a different relation between the
3924 virtual address and the load address, then we need a new
3925 segment. */
3926 new_segment = TRUE;
3927 }
3928 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3929 < BFD_ALIGN (hdr->lma, maxpagesize))
3930 {
3931 /* If putting this section in this segment would force us to
3932 skip a page in the segment, then we need a new segment. */
3933 new_segment = TRUE;
3934 }
3935 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3936 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3937 {
3938 /* We don't want to put a loadable section after a
3939 nonloadable section in the same segment.
3940 Consider .tbss sections as loadable for this purpose. */
3941 new_segment = TRUE;
3942 }
3943 else if ((abfd->flags & D_PAGED) == 0)
3944 {
3945 /* If the file is not demand paged, which means that we
3946 don't require the sections to be correctly aligned in the
3947 file, then there is no other reason for a new segment. */
3948 new_segment = FALSE;
3949 }
3950 else if (! writable
3951 && (hdr->flags & SEC_READONLY) == 0
3952 && (((last_hdr->lma + last_size - 1)
3953 & ~(maxpagesize - 1))
3954 != (hdr->lma & ~(maxpagesize - 1))))
3955 {
3956 /* We don't want to put a writable section in a read only
3957 segment, unless they are on the same page in memory
3958 anyhow. We already know that the last section does not
3959 bring us past the current section on the page, so the
3960 only case in which the new section is not on the same
3961 page as the previous section is when the previous section
3962 ends precisely on a page boundary. */
3963 new_segment = TRUE;
3964 }
3965 else
3966 {
3967 /* Otherwise, we can use the same segment. */
3968 new_segment = FALSE;
3969 }
3970
3971 if (! new_segment)
3972 {
3973 if ((hdr->flags & SEC_READONLY) == 0)
3974 writable = TRUE;
3975 last_hdr = hdr;
3976 /* .tbss sections effectively have zero size. */
3977 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3978 != SEC_THREAD_LOCAL)
3979 last_size = hdr->size;
3980 else
3981 last_size = 0;
3982 continue;
3983 }
3984
3985 /* We need a new program segment. We must create a new program
3986 header holding all the sections from phdr_index until hdr. */
3987
3988 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3989 if (m == NULL)
3990 goto error_return;
3991
3992 *pm = m;
3993 pm = &m->next;
3994
3995 if ((hdr->flags & SEC_READONLY) == 0)
3996 writable = TRUE;
3997 else
3998 writable = FALSE;
3999
4000 last_hdr = hdr;
4001 /* .tbss sections effectively have zero size. */
4002 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4003 last_size = hdr->size;
4004 else
4005 last_size = 0;
4006 phdr_index = i;
4007 phdr_in_segment = FALSE;
4008 }
4009
4010 /* Create a final PT_LOAD program segment. */
4011 if (last_hdr != NULL)
4012 {
4013 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4014 if (m == NULL)
4015 goto error_return;
4016
4017 *pm = m;
4018 pm = &m->next;
4019 }
4020
4021 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4022 if (dynsec != NULL)
4023 {
4024 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4025 if (m == NULL)
4026 goto error_return;
4027 *pm = m;
4028 pm = &m->next;
4029 }
4030
4031 /* For each loadable .note section, add a PT_NOTE segment. We don't
4032 use bfd_get_section_by_name, because if we link together
4033 nonloadable .note sections and loadable .note sections, we will
4034 generate two .note sections in the output file. FIXME: Using
4035 names for section types is bogus anyhow. */
4036 for (s = abfd->sections; s != NULL; s = s->next)
4037 {
4038 if ((s->flags & SEC_LOAD) != 0
4039 && CONST_STRNEQ (s->name, ".note"))
4040 {
4041 amt = sizeof (struct elf_segment_map);
4042 m = bfd_zalloc (abfd, amt);
4043 if (m == NULL)
4044 goto error_return;
4045 m->next = NULL;
4046 m->p_type = PT_NOTE;
4047 m->count = 1;
4048 m->sections[0] = s;
4049
4050 *pm = m;
4051 pm = &m->next;
4052 }
4053 if (s->flags & SEC_THREAD_LOCAL)
4054 {
4055 if (! tls_count)
4056 first_tls = s;
4057 tls_count++;
4058 }
4059 }
4060
4061 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4062 if (tls_count > 0)
4063 {
4064 int i;
4065
4066 amt = sizeof (struct elf_segment_map);
4067 amt += (tls_count - 1) * sizeof (asection *);
4068 m = bfd_zalloc (abfd, amt);
4069 if (m == NULL)
4070 goto error_return;
4071 m->next = NULL;
4072 m->p_type = PT_TLS;
4073 m->count = tls_count;
4074 /* Mandated PF_R. */
4075 m->p_flags = PF_R;
4076 m->p_flags_valid = 1;
4077 for (i = 0; i < tls_count; ++i)
4078 {
4079 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4080 m->sections[i] = first_tls;
4081 first_tls = first_tls->next;
4082 }
4083
4084 *pm = m;
4085 pm = &m->next;
4086 }
4087
4088 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4089 segment. */
4090 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4091 if (eh_frame_hdr != NULL
4092 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4093 {
4094 amt = sizeof (struct elf_segment_map);
4095 m = bfd_zalloc (abfd, amt);
4096 if (m == NULL)
4097 goto error_return;
4098 m->next = NULL;
4099 m->p_type = PT_GNU_EH_FRAME;
4100 m->count = 1;
4101 m->sections[0] = eh_frame_hdr->output_section;
4102
4103 *pm = m;
4104 pm = &m->next;
4105 }
4106
4107 if (elf_tdata (abfd)->stack_flags)
4108 {
4109 amt = sizeof (struct elf_segment_map);
4110 m = bfd_zalloc (abfd, amt);
4111 if (m == NULL)
4112 goto error_return;
4113 m->next = NULL;
4114 m->p_type = PT_GNU_STACK;
4115 m->p_flags = elf_tdata (abfd)->stack_flags;
4116 m->p_flags_valid = 1;
4117
4118 *pm = m;
4119 pm = &m->next;
4120 }
4121
4122 if (dynsec != NULL && elf_tdata (abfd)->relro)
4123 {
4124 /* We make a PT_GNU_RELRO segment only when there is a
4125 PT_DYNAMIC segment. */
4126 amt = sizeof (struct elf_segment_map);
4127 m = bfd_zalloc (abfd, amt);
4128 if (m == NULL)
4129 goto error_return;
4130 m->next = NULL;
4131 m->p_type = PT_GNU_RELRO;
4132 m->p_flags = PF_R;
4133 m->p_flags_valid = 1;
4134
4135 *pm = m;
4136 pm = &m->next;
4137 }
4138
4139 free (sections);
4140 elf_tdata (abfd)->segment_map = mfirst;
4141 }
4142
4143 if (!elf_modify_segment_map (abfd, info))
4144 return FALSE;
4145
4146 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4147 ++count;
4148 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4149
4150 return TRUE;
4151
4152 error_return:
4153 if (sections != NULL)
4154 free (sections);
4155 return FALSE;
4156 }
4157
4158 /* Sort sections by address. */
4159
4160 static int
4161 elf_sort_sections (const void *arg1, const void *arg2)
4162 {
4163 const asection *sec1 = *(const asection **) arg1;
4164 const asection *sec2 = *(const asection **) arg2;
4165 bfd_size_type size1, size2;
4166
4167 /* Sort by LMA first, since this is the address used to
4168 place the section into a segment. */
4169 if (sec1->lma < sec2->lma)
4170 return -1;
4171 else if (sec1->lma > sec2->lma)
4172 return 1;
4173
4174 /* Then sort by VMA. Normally the LMA and the VMA will be
4175 the same, and this will do nothing. */
4176 if (sec1->vma < sec2->vma)
4177 return -1;
4178 else if (sec1->vma > sec2->vma)
4179 return 1;
4180
4181 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4182
4183 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4184
4185 if (TOEND (sec1))
4186 {
4187 if (TOEND (sec2))
4188 {
4189 /* If the indicies are the same, do not return 0
4190 here, but continue to try the next comparison. */
4191 if (sec1->target_index - sec2->target_index != 0)
4192 return sec1->target_index - sec2->target_index;
4193 }
4194 else
4195 return 1;
4196 }
4197 else if (TOEND (sec2))
4198 return -1;
4199
4200 #undef TOEND
4201
4202 /* Sort by size, to put zero sized sections
4203 before others at the same address. */
4204
4205 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4206 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4207
4208 if (size1 < size2)
4209 return -1;
4210 if (size1 > size2)
4211 return 1;
4212
4213 return sec1->target_index - sec2->target_index;
4214 }
4215
4216 /* Ian Lance Taylor writes:
4217
4218 We shouldn't be using % with a negative signed number. That's just
4219 not good. We have to make sure either that the number is not
4220 negative, or that the number has an unsigned type. When the types
4221 are all the same size they wind up as unsigned. When file_ptr is a
4222 larger signed type, the arithmetic winds up as signed long long,
4223 which is wrong.
4224
4225 What we're trying to say here is something like ``increase OFF by
4226 the least amount that will cause it to be equal to the VMA modulo
4227 the page size.'' */
4228 /* In other words, something like:
4229
4230 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4231 off_offset = off % bed->maxpagesize;
4232 if (vma_offset < off_offset)
4233 adjustment = vma_offset + bed->maxpagesize - off_offset;
4234 else
4235 adjustment = vma_offset - off_offset;
4236
4237 which can can be collapsed into the expression below. */
4238
4239 static file_ptr
4240 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4241 {
4242 return ((vma - off) % maxpagesize);
4243 }
4244
4245 /* Assign file positions to the sections based on the mapping from
4246 sections to segments. This function also sets up some fields in
4247 the file header. */
4248
4249 static bfd_boolean
4250 assign_file_positions_for_load_sections (bfd *abfd,
4251 struct bfd_link_info *link_info)
4252 {
4253 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4254 struct elf_segment_map *m;
4255 Elf_Internal_Phdr *phdrs;
4256 Elf_Internal_Phdr *p;
4257 file_ptr off, voff;
4258 bfd_size_type maxpagesize;
4259 unsigned int alloc;
4260 unsigned int i;
4261
4262 if (link_info == NULL
4263 && !elf_modify_segment_map (abfd, link_info))
4264 return FALSE;
4265
4266 alloc = 0;
4267 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4268 ++alloc;
4269
4270 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4271 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4272 elf_elfheader (abfd)->e_phnum = alloc;
4273
4274 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4275 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4276 else
4277 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4278 == alloc * bed->s->sizeof_phdr);
4279
4280 if (alloc == 0)
4281 {
4282 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4283 return TRUE;
4284 }
4285
4286 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4287 elf_tdata (abfd)->phdr = phdrs;
4288 if (phdrs == NULL)
4289 return FALSE;
4290
4291 maxpagesize = 1;
4292 if ((abfd->flags & D_PAGED) != 0)
4293 maxpagesize = bed->maxpagesize;
4294
4295 off = bed->s->sizeof_ehdr;
4296 off += alloc * bed->s->sizeof_phdr;
4297
4298 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4299 m != NULL;
4300 m = m->next, p++)
4301 {
4302 asection **secpp;
4303
4304 /* If elf_segment_map is not from map_sections_to_segments, the
4305 sections may not be correctly ordered. NOTE: sorting should
4306 not be done to the PT_NOTE section of a corefile, which may
4307 contain several pseudo-sections artificially created by bfd.
4308 Sorting these pseudo-sections breaks things badly. */
4309 if (m->count > 1
4310 && !(elf_elfheader (abfd)->e_type == ET_CORE
4311 && m->p_type == PT_NOTE))
4312 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4313 elf_sort_sections);
4314
4315 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4316 number of sections with contents contributing to both p_filesz
4317 and p_memsz, followed by a number of sections with no contents
4318 that just contribute to p_memsz. In this loop, OFF tracks next
4319 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4320 an adjustment we use for segments that have no file contents
4321 but need zero filled memory allocation. */
4322 voff = 0;
4323 p->p_type = m->p_type;
4324 p->p_flags = m->p_flags;
4325
4326 if (m->count == 0)
4327 p->p_vaddr = 0;
4328 else
4329 p->p_vaddr = m->sections[0]->vma;
4330
4331 if (m->p_paddr_valid)
4332 p->p_paddr = m->p_paddr;
4333 else if (m->count == 0)
4334 p->p_paddr = 0;
4335 else
4336 p->p_paddr = m->sections[0]->lma;
4337
4338 if (p->p_type == PT_LOAD
4339 && (abfd->flags & D_PAGED) != 0)
4340 {
4341 /* p_align in demand paged PT_LOAD segments effectively stores
4342 the maximum page size. When copying an executable with
4343 objcopy, we set m->p_align from the input file. Use this
4344 value for maxpagesize rather than bed->maxpagesize, which
4345 may be different. Note that we use maxpagesize for PT_TLS
4346 segment alignment later in this function, so we are relying
4347 on at least one PT_LOAD segment appearing before a PT_TLS
4348 segment. */
4349 if (m->p_align_valid)
4350 maxpagesize = m->p_align;
4351
4352 p->p_align = maxpagesize;
4353 }
4354 else if (m->count == 0)
4355 p->p_align = 1 << bed->s->log_file_align;
4356 else
4357 p->p_align = 0;
4358
4359 if (p->p_type == PT_LOAD
4360 && m->count > 0)
4361 {
4362 bfd_size_type align;
4363 bfd_vma adjust;
4364 unsigned int align_power = 0;
4365
4366 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4367 {
4368 unsigned int secalign;
4369
4370 secalign = bfd_get_section_alignment (abfd, *secpp);
4371 if (secalign > align_power)
4372 align_power = secalign;
4373 }
4374 align = (bfd_size_type) 1 << align_power;
4375
4376 if (align < maxpagesize)
4377 align = maxpagesize;
4378
4379 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4380 off += adjust;
4381 if (adjust != 0
4382 && !m->includes_filehdr
4383 && !m->includes_phdrs
4384 && (ufile_ptr) off >= align)
4385 {
4386 /* If the first section isn't loadable, the same holds for
4387 any other sections. Since the segment won't need file
4388 space, we can make p_offset overlap some prior segment.
4389 However, .tbss is special. If a segment starts with
4390 .tbss, we need to look at the next section to decide
4391 whether the segment has any loadable sections. */
4392 i = 0;
4393 while ((m->sections[i]->flags & SEC_LOAD) == 0
4394 && (m->sections[i]->flags & SEC_HAS_CONTENTS) == 0)
4395 {
4396 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4397 || ++i >= m->count)
4398 {
4399 off -= adjust;
4400 voff = adjust - align;
4401 break;
4402 }
4403 }
4404 }
4405 }
4406 /* Make sure the .dynamic section is the first section in the
4407 PT_DYNAMIC segment. */
4408 else if (p->p_type == PT_DYNAMIC
4409 && m->count > 1
4410 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4411 {
4412 _bfd_error_handler
4413 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4414 abfd);
4415 bfd_set_error (bfd_error_bad_value);
4416 return FALSE;
4417 }
4418
4419 p->p_offset = 0;
4420 p->p_filesz = 0;
4421 p->p_memsz = 0;
4422
4423 if (m->includes_filehdr)
4424 {
4425 if (! m->p_flags_valid)
4426 p->p_flags |= PF_R;
4427 p->p_offset = 0;
4428 p->p_filesz = bed->s->sizeof_ehdr;
4429 p->p_memsz = bed->s->sizeof_ehdr;
4430 if (m->count > 0)
4431 {
4432 BFD_ASSERT (p->p_type == PT_LOAD);
4433
4434 if (p->p_vaddr < (bfd_vma) off)
4435 {
4436 (*_bfd_error_handler)
4437 (_("%B: Not enough room for program headers, try linking with -N"),
4438 abfd);
4439 bfd_set_error (bfd_error_bad_value);
4440 return FALSE;
4441 }
4442
4443 p->p_vaddr -= off;
4444 if (! m->p_paddr_valid)
4445 p->p_paddr -= off;
4446 }
4447 }
4448
4449 if (m->includes_phdrs)
4450 {
4451 if (! m->p_flags_valid)
4452 p->p_flags |= PF_R;
4453
4454 if (!m->includes_filehdr)
4455 {
4456 p->p_offset = bed->s->sizeof_ehdr;
4457
4458 if (m->count > 0)
4459 {
4460 BFD_ASSERT (p->p_type == PT_LOAD);
4461 p->p_vaddr -= off - p->p_offset;
4462 if (! m->p_paddr_valid)
4463 p->p_paddr -= off - p->p_offset;
4464 }
4465 }
4466
4467 p->p_filesz += alloc * bed->s->sizeof_phdr;
4468 p->p_memsz += alloc * bed->s->sizeof_phdr;
4469 }
4470
4471 if (p->p_type == PT_LOAD
4472 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4473 {
4474 if (! m->includes_filehdr && ! m->includes_phdrs)
4475 p->p_offset = off + voff;
4476 else
4477 {
4478 file_ptr adjust;
4479
4480 adjust = off - (p->p_offset + p->p_filesz);
4481 p->p_filesz += adjust;
4482 p->p_memsz += adjust;
4483 }
4484 }
4485
4486 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4487 maps. Set filepos for sections in PT_LOAD segments, and in
4488 core files, for sections in PT_NOTE segments.
4489 assign_file_positions_for_non_load_sections will set filepos
4490 for other sections and update p_filesz for other segments. */
4491 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4492 {
4493 asection *sec;
4494 flagword flags;
4495 bfd_size_type align;
4496
4497 sec = *secpp;
4498 flags = sec->flags;
4499 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4500
4501 if (p->p_type == PT_LOAD
4502 || p->p_type == PT_TLS)
4503 {
4504 bfd_signed_vma adjust;
4505
4506 if ((flags & SEC_LOAD) != 0)
4507 {
4508 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4509 if (adjust < 0)
4510 {
4511 (*_bfd_error_handler)
4512 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4513 abfd, sec, (unsigned long) sec->lma);
4514 adjust = 0;
4515 }
4516 off += adjust;
4517 p->p_filesz += adjust;
4518 p->p_memsz += adjust;
4519 }
4520 /* .tbss is special. It doesn't contribute to p_memsz of
4521 normal segments. */
4522 else if ((flags & SEC_ALLOC) != 0
4523 && ((flags & SEC_THREAD_LOCAL) == 0
4524 || p->p_type == PT_TLS))
4525 {
4526 /* The section VMA must equal the file position
4527 modulo the page size. */
4528 bfd_size_type page = align;
4529 if (page < maxpagesize)
4530 page = maxpagesize;
4531 adjust = vma_page_aligned_bias (sec->vma,
4532 p->p_vaddr + p->p_memsz,
4533 page);
4534 p->p_memsz += adjust;
4535 }
4536 }
4537
4538 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4539 {
4540 /* The section at i == 0 is the one that actually contains
4541 everything. */
4542 if (i == 0)
4543 {
4544 sec->filepos = off;
4545 off += sec->size;
4546 p->p_filesz = sec->size;
4547 p->p_memsz = 0;
4548 p->p_align = 1;
4549 }
4550 else
4551 {
4552 /* The rest are fake sections that shouldn't be written. */
4553 sec->filepos = 0;
4554 sec->size = 0;
4555 sec->flags = 0;
4556 continue;
4557 }
4558 }
4559 else
4560 {
4561 if (p->p_type == PT_LOAD)
4562 {
4563 sec->filepos = off + voff;
4564 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4565 1997, and the exact reason for it isn't clear. One
4566 plausible explanation is that it is to work around
4567 a problem we have with linker scripts using data
4568 statements in NOLOAD sections. I don't think it
4569 makes a great deal of sense to have such a section
4570 assigned to a PT_LOAD segment, but apparently
4571 people do this. The data statement results in a
4572 bfd_data_link_order being built, and these need
4573 section contents to write into. Eventually, we get
4574 to _bfd_elf_write_object_contents which writes any
4575 section with contents to the output. Make room
4576 here for the write, so that following segments are
4577 not trashed. */
4578 if ((flags & SEC_LOAD) != 0
4579 || (flags & SEC_HAS_CONTENTS) != 0)
4580 off += sec->size;
4581 }
4582
4583 if ((flags & SEC_LOAD) != 0)
4584 {
4585 p->p_filesz += sec->size;
4586 p->p_memsz += sec->size;
4587 }
4588
4589 /* .tbss is special. It doesn't contribute to p_memsz of
4590 normal segments. */
4591 else if ((flags & SEC_ALLOC) != 0
4592 && ((flags & SEC_THREAD_LOCAL) == 0
4593 || p->p_type == PT_TLS))
4594 p->p_memsz += sec->size;
4595
4596 if (p->p_type == PT_TLS
4597 && sec->size == 0
4598 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4599 {
4600 struct bfd_link_order *o = sec->map_tail.link_order;
4601 if (o != NULL)
4602 p->p_memsz += o->offset + o->size;
4603 }
4604
4605 if (p->p_type == PT_GNU_RELRO)
4606 p->p_align = 1;
4607 else if (align > p->p_align
4608 && (p->p_type != PT_LOAD
4609 || (abfd->flags & D_PAGED) == 0))
4610 p->p_align = align;
4611 }
4612
4613 if (! m->p_flags_valid)
4614 {
4615 p->p_flags |= PF_R;
4616 if ((flags & SEC_CODE) != 0)
4617 p->p_flags |= PF_X;
4618 if ((flags & SEC_READONLY) == 0)
4619 p->p_flags |= PF_W;
4620 }
4621 }
4622 }
4623
4624 elf_tdata (abfd)->next_file_pos = off;
4625 return TRUE;
4626 }
4627
4628 /* Assign file positions for the other sections. */
4629
4630 static bfd_boolean
4631 assign_file_positions_for_non_load_sections (bfd *abfd,
4632 struct bfd_link_info *link_info)
4633 {
4634 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4635 Elf_Internal_Shdr **i_shdrpp;
4636 Elf_Internal_Shdr **hdrpp;
4637 Elf_Internal_Phdr *phdrs;
4638 Elf_Internal_Phdr *p;
4639 struct elf_segment_map *m;
4640 bfd_vma filehdr_vaddr, filehdr_paddr;
4641 bfd_vma phdrs_vaddr, phdrs_paddr;
4642 file_ptr off;
4643 unsigned int num_sec;
4644 unsigned int i;
4645 unsigned int count;
4646
4647 i_shdrpp = elf_elfsections (abfd);
4648 num_sec = elf_numsections (abfd);
4649 off = elf_tdata (abfd)->next_file_pos;
4650 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4651 {
4652 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4653 Elf_Internal_Shdr *hdr;
4654
4655 hdr = *hdrpp;
4656 if (hdr->bfd_section != NULL
4657 && (hdr->bfd_section->filepos != 0
4658 || (hdr->sh_type == SHT_NOBITS
4659 && hdr->contents == NULL)))
4660 hdr->sh_offset = hdr->bfd_section->filepos;
4661 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4662 {
4663 if (hdr->sh_size != 0)
4664 ((*_bfd_error_handler)
4665 (_("%B: warning: allocated section `%s' not in segment"),
4666 abfd,
4667 (hdr->bfd_section == NULL
4668 ? "*unknown*"
4669 : hdr->bfd_section->name)));
4670 /* We don't need to page align empty sections. */
4671 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4672 off += vma_page_aligned_bias (hdr->sh_addr, off,
4673 bed->maxpagesize);
4674 else
4675 off += vma_page_aligned_bias (hdr->sh_addr, off,
4676 hdr->sh_addralign);
4677 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4678 FALSE);
4679 }
4680 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4681 && hdr->bfd_section == NULL)
4682 || hdr == i_shdrpp[tdata->symtab_section]
4683 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4684 || hdr == i_shdrpp[tdata->strtab_section])
4685 hdr->sh_offset = -1;
4686 else
4687 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4688
4689 if (i == SHN_LORESERVE - 1)
4690 {
4691 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4692 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4693 }
4694 }
4695
4696 /* Now that we have set the section file positions, we can set up
4697 the file positions for the non PT_LOAD segments. */
4698 count = 0;
4699 filehdr_vaddr = 0;
4700 filehdr_paddr = 0;
4701 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4702 phdrs_paddr = 0;
4703 phdrs = elf_tdata (abfd)->phdr;
4704 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4705 m != NULL;
4706 m = m->next, p++)
4707 {
4708 ++count;
4709 if (p->p_type != PT_LOAD)
4710 continue;
4711
4712 if (m->includes_filehdr)
4713 {
4714 filehdr_vaddr = p->p_vaddr;
4715 filehdr_paddr = p->p_paddr;
4716 }
4717 if (m->includes_phdrs)
4718 {
4719 phdrs_vaddr = p->p_vaddr;
4720 phdrs_paddr = p->p_paddr;
4721 if (m->includes_filehdr)
4722 {
4723 phdrs_vaddr += bed->s->sizeof_ehdr;
4724 phdrs_paddr += bed->s->sizeof_ehdr;
4725 }
4726 }
4727 }
4728
4729 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4730 m != NULL;
4731 m = m->next, p++)
4732 {
4733 if (m->count != 0)
4734 {
4735 if (p->p_type != PT_LOAD
4736 && (p->p_type != PT_NOTE || bfd_get_format (abfd) != bfd_core))
4737 {
4738 Elf_Internal_Shdr *hdr;
4739 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4740
4741 hdr = &elf_section_data (m->sections[m->count - 1])->this_hdr;
4742 p->p_filesz = (m->sections[m->count - 1]->filepos
4743 - m->sections[0]->filepos);
4744 if (hdr->sh_type != SHT_NOBITS)
4745 p->p_filesz += hdr->sh_size;
4746
4747 p->p_offset = m->sections[0]->filepos;
4748 }
4749 }
4750 else
4751 {
4752 if (m->includes_filehdr)
4753 {
4754 p->p_vaddr = filehdr_vaddr;
4755 if (! m->p_paddr_valid)
4756 p->p_paddr = filehdr_paddr;
4757 }
4758 else if (m->includes_phdrs)
4759 {
4760 p->p_vaddr = phdrs_vaddr;
4761 if (! m->p_paddr_valid)
4762 p->p_paddr = phdrs_paddr;
4763 }
4764 else if (p->p_type == PT_GNU_RELRO)
4765 {
4766 Elf_Internal_Phdr *lp;
4767
4768 for (lp = phdrs; lp < phdrs + count; ++lp)
4769 {
4770 if (lp->p_type == PT_LOAD
4771 && lp->p_vaddr <= link_info->relro_end
4772 && lp->p_vaddr >= link_info->relro_start
4773 && (lp->p_vaddr + lp->p_filesz
4774 >= link_info->relro_end))
4775 break;
4776 }
4777
4778 if (lp < phdrs + count
4779 && link_info->relro_end > lp->p_vaddr)
4780 {
4781 p->p_vaddr = lp->p_vaddr;
4782 p->p_paddr = lp->p_paddr;
4783 p->p_offset = lp->p_offset;
4784 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4785 p->p_memsz = p->p_filesz;
4786 p->p_align = 1;
4787 p->p_flags = (lp->p_flags & ~PF_W);
4788 }
4789 else
4790 {
4791 memset (p, 0, sizeof *p);
4792 p->p_type = PT_NULL;
4793 }
4794 }
4795 }
4796 }
4797
4798 elf_tdata (abfd)->next_file_pos = off;
4799
4800 return TRUE;
4801 }
4802
4803 /* Work out the file positions of all the sections. This is called by
4804 _bfd_elf_compute_section_file_positions. All the section sizes and
4805 VMAs must be known before this is called.
4806
4807 Reloc sections come in two flavours: Those processed specially as
4808 "side-channel" data attached to a section to which they apply, and
4809 those that bfd doesn't process as relocations. The latter sort are
4810 stored in a normal bfd section by bfd_section_from_shdr. We don't
4811 consider the former sort here, unless they form part of the loadable
4812 image. Reloc sections not assigned here will be handled later by
4813 assign_file_positions_for_relocs.
4814
4815 We also don't set the positions of the .symtab and .strtab here. */
4816
4817 static bfd_boolean
4818 assign_file_positions_except_relocs (bfd *abfd,
4819 struct bfd_link_info *link_info)
4820 {
4821 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4822 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4823 file_ptr off;
4824 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4825
4826 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4827 && bfd_get_format (abfd) != bfd_core)
4828 {
4829 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4830 unsigned int num_sec = elf_numsections (abfd);
4831 Elf_Internal_Shdr **hdrpp;
4832 unsigned int i;
4833
4834 /* Start after the ELF header. */
4835 off = i_ehdrp->e_ehsize;
4836
4837 /* We are not creating an executable, which means that we are
4838 not creating a program header, and that the actual order of
4839 the sections in the file is unimportant. */
4840 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4841 {
4842 Elf_Internal_Shdr *hdr;
4843
4844 hdr = *hdrpp;
4845 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4846 && hdr->bfd_section == NULL)
4847 || i == tdata->symtab_section
4848 || i == tdata->symtab_shndx_section
4849 || i == tdata->strtab_section)
4850 {
4851 hdr->sh_offset = -1;
4852 }
4853 else
4854 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4855
4856 if (i == SHN_LORESERVE - 1)
4857 {
4858 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4859 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4860 }
4861 }
4862 }
4863 else
4864 {
4865 unsigned int alloc;
4866
4867 /* Assign file positions for the loaded sections based on the
4868 assignment of sections to segments. */
4869 if (!assign_file_positions_for_load_sections (abfd, link_info))
4870 return FALSE;
4871
4872 /* And for non-load sections. */
4873 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
4874 return FALSE;
4875
4876 if (bed->elf_backend_modify_program_headers != NULL)
4877 {
4878 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
4879 return FALSE;
4880 }
4881
4882 /* Write out the program headers. */
4883 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
4884 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4885 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
4886 return FALSE;
4887
4888 off = tdata->next_file_pos;
4889 }
4890
4891 /* Place the section headers. */
4892 off = align_file_position (off, 1 << bed->s->log_file_align);
4893 i_ehdrp->e_shoff = off;
4894 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4895
4896 tdata->next_file_pos = off;
4897
4898 return TRUE;
4899 }
4900
4901 static bfd_boolean
4902 prep_headers (bfd *abfd)
4903 {
4904 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4905 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4906 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4907 struct elf_strtab_hash *shstrtab;
4908 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4909
4910 i_ehdrp = elf_elfheader (abfd);
4911 i_shdrp = elf_elfsections (abfd);
4912
4913 shstrtab = _bfd_elf_strtab_init ();
4914 if (shstrtab == NULL)
4915 return FALSE;
4916
4917 elf_shstrtab (abfd) = shstrtab;
4918
4919 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4920 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4921 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4922 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4923
4924 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4925 i_ehdrp->e_ident[EI_DATA] =
4926 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4927 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4928
4929 if ((abfd->flags & DYNAMIC) != 0)
4930 i_ehdrp->e_type = ET_DYN;
4931 else if ((abfd->flags & EXEC_P) != 0)
4932 i_ehdrp->e_type = ET_EXEC;
4933 else if (bfd_get_format (abfd) == bfd_core)
4934 i_ehdrp->e_type = ET_CORE;
4935 else
4936 i_ehdrp->e_type = ET_REL;
4937
4938 switch (bfd_get_arch (abfd))
4939 {
4940 case bfd_arch_unknown:
4941 i_ehdrp->e_machine = EM_NONE;
4942 break;
4943
4944 /* There used to be a long list of cases here, each one setting
4945 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4946 in the corresponding bfd definition. To avoid duplication,
4947 the switch was removed. Machines that need special handling
4948 can generally do it in elf_backend_final_write_processing(),
4949 unless they need the information earlier than the final write.
4950 Such need can generally be supplied by replacing the tests for
4951 e_machine with the conditions used to determine it. */
4952 default:
4953 i_ehdrp->e_machine = bed->elf_machine_code;
4954 }
4955
4956 i_ehdrp->e_version = bed->s->ev_current;
4957 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4958
4959 /* No program header, for now. */
4960 i_ehdrp->e_phoff = 0;
4961 i_ehdrp->e_phentsize = 0;
4962 i_ehdrp->e_phnum = 0;
4963
4964 /* Each bfd section is section header entry. */
4965 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4966 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4967
4968 /* If we're building an executable, we'll need a program header table. */
4969 if (abfd->flags & EXEC_P)
4970 /* It all happens later. */
4971 ;
4972 else
4973 {
4974 i_ehdrp->e_phentsize = 0;
4975 i_phdrp = 0;
4976 i_ehdrp->e_phoff = 0;
4977 }
4978
4979 elf_tdata (abfd)->symtab_hdr.sh_name =
4980 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4981 elf_tdata (abfd)->strtab_hdr.sh_name =
4982 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4983 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4984 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4985 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4986 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4987 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4988 return FALSE;
4989
4990 return TRUE;
4991 }
4992
4993 /* Assign file positions for all the reloc sections which are not part
4994 of the loadable file image. */
4995
4996 void
4997 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4998 {
4999 file_ptr off;
5000 unsigned int i, num_sec;
5001 Elf_Internal_Shdr **shdrpp;
5002
5003 off = elf_tdata (abfd)->next_file_pos;
5004
5005 num_sec = elf_numsections (abfd);
5006 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5007 {
5008 Elf_Internal_Shdr *shdrp;
5009
5010 shdrp = *shdrpp;
5011 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5012 && shdrp->sh_offset == -1)
5013 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5014 }
5015
5016 elf_tdata (abfd)->next_file_pos = off;
5017 }
5018
5019 bfd_boolean
5020 _bfd_elf_write_object_contents (bfd *abfd)
5021 {
5022 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5023 Elf_Internal_Ehdr *i_ehdrp;
5024 Elf_Internal_Shdr **i_shdrp;
5025 bfd_boolean failed;
5026 unsigned int count, num_sec;
5027
5028 if (! abfd->output_has_begun
5029 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5030 return FALSE;
5031
5032 i_shdrp = elf_elfsections (abfd);
5033 i_ehdrp = elf_elfheader (abfd);
5034
5035 failed = FALSE;
5036 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5037 if (failed)
5038 return FALSE;
5039
5040 _bfd_elf_assign_file_positions_for_relocs (abfd);
5041
5042 /* After writing the headers, we need to write the sections too... */
5043 num_sec = elf_numsections (abfd);
5044 for (count = 1; count < num_sec; count++)
5045 {
5046 if (bed->elf_backend_section_processing)
5047 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5048 if (i_shdrp[count]->contents)
5049 {
5050 bfd_size_type amt = i_shdrp[count]->sh_size;
5051
5052 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5053 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5054 return FALSE;
5055 }
5056 if (count == SHN_LORESERVE - 1)
5057 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5058 }
5059
5060 /* Write out the section header names. */
5061 if (elf_shstrtab (abfd) != NULL
5062 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5063 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5064 return FALSE;
5065
5066 if (bed->elf_backend_final_write_processing)
5067 (*bed->elf_backend_final_write_processing) (abfd,
5068 elf_tdata (abfd)->linker);
5069
5070 return bed->s->write_shdrs_and_ehdr (abfd);
5071 }
5072
5073 bfd_boolean
5074 _bfd_elf_write_corefile_contents (bfd *abfd)
5075 {
5076 /* Hopefully this can be done just like an object file. */
5077 return _bfd_elf_write_object_contents (abfd);
5078 }
5079
5080 /* Given a section, search the header to find them. */
5081
5082 int
5083 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5084 {
5085 const struct elf_backend_data *bed;
5086 int index;
5087
5088 if (elf_section_data (asect) != NULL
5089 && elf_section_data (asect)->this_idx != 0)
5090 return elf_section_data (asect)->this_idx;
5091
5092 if (bfd_is_abs_section (asect))
5093 index = SHN_ABS;
5094 else if (bfd_is_com_section (asect))
5095 index = SHN_COMMON;
5096 else if (bfd_is_und_section (asect))
5097 index = SHN_UNDEF;
5098 else
5099 index = -1;
5100
5101 bed = get_elf_backend_data (abfd);
5102 if (bed->elf_backend_section_from_bfd_section)
5103 {
5104 int retval = index;
5105
5106 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5107 return retval;
5108 }
5109
5110 if (index == -1)
5111 bfd_set_error (bfd_error_nonrepresentable_section);
5112
5113 return index;
5114 }
5115
5116 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5117 on error. */
5118
5119 int
5120 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5121 {
5122 asymbol *asym_ptr = *asym_ptr_ptr;
5123 int idx;
5124 flagword flags = asym_ptr->flags;
5125
5126 /* When gas creates relocations against local labels, it creates its
5127 own symbol for the section, but does put the symbol into the
5128 symbol chain, so udata is 0. When the linker is generating
5129 relocatable output, this section symbol may be for one of the
5130 input sections rather than the output section. */
5131 if (asym_ptr->udata.i == 0
5132 && (flags & BSF_SECTION_SYM)
5133 && asym_ptr->section)
5134 {
5135 asection *sec;
5136 int indx;
5137
5138 sec = asym_ptr->section;
5139 if (sec->owner != abfd && sec->output_section != NULL)
5140 sec = sec->output_section;
5141 if (sec->owner == abfd
5142 && (indx = sec->index) < elf_num_section_syms (abfd)
5143 && elf_section_syms (abfd)[indx] != NULL)
5144 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5145 }
5146
5147 idx = asym_ptr->udata.i;
5148
5149 if (idx == 0)
5150 {
5151 /* This case can occur when using --strip-symbol on a symbol
5152 which is used in a relocation entry. */
5153 (*_bfd_error_handler)
5154 (_("%B: symbol `%s' required but not present"),
5155 abfd, bfd_asymbol_name (asym_ptr));
5156 bfd_set_error (bfd_error_no_symbols);
5157 return -1;
5158 }
5159
5160 #if DEBUG & 4
5161 {
5162 fprintf (stderr,
5163 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5164 (long) asym_ptr, asym_ptr->name, idx, flags,
5165 elf_symbol_flags (flags));
5166 fflush (stderr);
5167 }
5168 #endif
5169
5170 return idx;
5171 }
5172
5173 /* Rewrite program header information. */
5174
5175 static bfd_boolean
5176 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5177 {
5178 Elf_Internal_Ehdr *iehdr;
5179 struct elf_segment_map *map;
5180 struct elf_segment_map *map_first;
5181 struct elf_segment_map **pointer_to_map;
5182 Elf_Internal_Phdr *segment;
5183 asection *section;
5184 unsigned int i;
5185 unsigned int num_segments;
5186 bfd_boolean phdr_included = FALSE;
5187 bfd_vma maxpagesize;
5188 struct elf_segment_map *phdr_adjust_seg = NULL;
5189 unsigned int phdr_adjust_num = 0;
5190 const struct elf_backend_data *bed;
5191
5192 bed = get_elf_backend_data (ibfd);
5193 iehdr = elf_elfheader (ibfd);
5194
5195 map_first = NULL;
5196 pointer_to_map = &map_first;
5197
5198 num_segments = elf_elfheader (ibfd)->e_phnum;
5199 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5200
5201 /* Returns the end address of the segment + 1. */
5202 #define SEGMENT_END(segment, start) \
5203 (start + (segment->p_memsz > segment->p_filesz \
5204 ? segment->p_memsz : segment->p_filesz))
5205
5206 #define SECTION_SIZE(section, segment) \
5207 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5208 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5209 ? section->size : 0)
5210
5211 /* Returns TRUE if the given section is contained within
5212 the given segment. VMA addresses are compared. */
5213 #define IS_CONTAINED_BY_VMA(section, segment) \
5214 (section->vma >= segment->p_vaddr \
5215 && (section->vma + SECTION_SIZE (section, segment) \
5216 <= (SEGMENT_END (segment, segment->p_vaddr))))
5217
5218 /* Returns TRUE if the given section is contained within
5219 the given segment. LMA addresses are compared. */
5220 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5221 (section->lma >= base \
5222 && (section->lma + SECTION_SIZE (section, segment) \
5223 <= SEGMENT_END (segment, base)))
5224
5225 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5226 #define IS_COREFILE_NOTE(p, s) \
5227 (p->p_type == PT_NOTE \
5228 && bfd_get_format (ibfd) == bfd_core \
5229 && s->vma == 0 && s->lma == 0 \
5230 && (bfd_vma) s->filepos >= p->p_offset \
5231 && ((bfd_vma) s->filepos + s->size \
5232 <= p->p_offset + p->p_filesz))
5233
5234 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5235 linker, which generates a PT_INTERP section with p_vaddr and
5236 p_memsz set to 0. */
5237 #define IS_SOLARIS_PT_INTERP(p, s) \
5238 (p->p_vaddr == 0 \
5239 && p->p_paddr == 0 \
5240 && p->p_memsz == 0 \
5241 && p->p_filesz > 0 \
5242 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5243 && s->size > 0 \
5244 && (bfd_vma) s->filepos >= p->p_offset \
5245 && ((bfd_vma) s->filepos + s->size \
5246 <= p->p_offset + p->p_filesz))
5247
5248 /* Decide if the given section should be included in the given segment.
5249 A section will be included if:
5250 1. It is within the address space of the segment -- we use the LMA
5251 if that is set for the segment and the VMA otherwise,
5252 2. It is an allocated segment,
5253 3. There is an output section associated with it,
5254 4. The section has not already been allocated to a previous segment.
5255 5. PT_GNU_STACK segments do not include any sections.
5256 6. PT_TLS segment includes only SHF_TLS sections.
5257 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5258 8. PT_DYNAMIC should not contain empty sections at the beginning
5259 (with the possible exception of .dynamic). */
5260 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5261 ((((segment->p_paddr \
5262 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5263 : IS_CONTAINED_BY_VMA (section, segment)) \
5264 && (section->flags & SEC_ALLOC) != 0) \
5265 || IS_COREFILE_NOTE (segment, section)) \
5266 && section->output_section != NULL \
5267 && segment->p_type != PT_GNU_STACK \
5268 && (segment->p_type != PT_TLS \
5269 || (section->flags & SEC_THREAD_LOCAL)) \
5270 && (segment->p_type == PT_LOAD \
5271 || segment->p_type == PT_TLS \
5272 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5273 && (segment->p_type != PT_DYNAMIC \
5274 || SECTION_SIZE (section, segment) > 0 \
5275 || (segment->p_paddr \
5276 ? segment->p_paddr != section->lma \
5277 : segment->p_vaddr != section->vma) \
5278 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5279 == 0)) \
5280 && ! section->segment_mark)
5281
5282 /* Returns TRUE iff seg1 starts after the end of seg2. */
5283 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5284 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5285
5286 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5287 their VMA address ranges and their LMA address ranges overlap.
5288 It is possible to have overlapping VMA ranges without overlapping LMA
5289 ranges. RedBoot images for example can have both .data and .bss mapped
5290 to the same VMA range, but with the .data section mapped to a different
5291 LMA. */
5292 #define SEGMENT_OVERLAPS(seg1, seg2) \
5293 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5294 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5295 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5296 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5297
5298 /* Initialise the segment mark field. */
5299 for (section = ibfd->sections; section != NULL; section = section->next)
5300 section->segment_mark = FALSE;
5301
5302 /* Scan through the segments specified in the program header
5303 of the input BFD. For this first scan we look for overlaps
5304 in the loadable segments. These can be created by weird
5305 parameters to objcopy. Also, fix some solaris weirdness. */
5306 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5307 i < num_segments;
5308 i++, segment++)
5309 {
5310 unsigned int j;
5311 Elf_Internal_Phdr *segment2;
5312
5313 if (segment->p_type == PT_INTERP)
5314 for (section = ibfd->sections; section; section = section->next)
5315 if (IS_SOLARIS_PT_INTERP (segment, section))
5316 {
5317 /* Mininal change so that the normal section to segment
5318 assignment code will work. */
5319 segment->p_vaddr = section->vma;
5320 break;
5321 }
5322
5323 if (segment->p_type != PT_LOAD)
5324 continue;
5325
5326 /* Determine if this segment overlaps any previous segments. */
5327 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5328 {
5329 bfd_signed_vma extra_length;
5330
5331 if (segment2->p_type != PT_LOAD
5332 || ! SEGMENT_OVERLAPS (segment, segment2))
5333 continue;
5334
5335 /* Merge the two segments together. */
5336 if (segment2->p_vaddr < segment->p_vaddr)
5337 {
5338 /* Extend SEGMENT2 to include SEGMENT and then delete
5339 SEGMENT. */
5340 extra_length =
5341 SEGMENT_END (segment, segment->p_vaddr)
5342 - SEGMENT_END (segment2, segment2->p_vaddr);
5343
5344 if (extra_length > 0)
5345 {
5346 segment2->p_memsz += extra_length;
5347 segment2->p_filesz += extra_length;
5348 }
5349
5350 segment->p_type = PT_NULL;
5351
5352 /* Since we have deleted P we must restart the outer loop. */
5353 i = 0;
5354 segment = elf_tdata (ibfd)->phdr;
5355 break;
5356 }
5357 else
5358 {
5359 /* Extend SEGMENT to include SEGMENT2 and then delete
5360 SEGMENT2. */
5361 extra_length =
5362 SEGMENT_END (segment2, segment2->p_vaddr)
5363 - SEGMENT_END (segment, segment->p_vaddr);
5364
5365 if (extra_length > 0)
5366 {
5367 segment->p_memsz += extra_length;
5368 segment->p_filesz += extra_length;
5369 }
5370
5371 segment2->p_type = PT_NULL;
5372 }
5373 }
5374 }
5375
5376 /* The second scan attempts to assign sections to segments. */
5377 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5378 i < num_segments;
5379 i ++, segment ++)
5380 {
5381 unsigned int section_count;
5382 asection ** sections;
5383 asection * output_section;
5384 unsigned int isec;
5385 bfd_vma matching_lma;
5386 bfd_vma suggested_lma;
5387 unsigned int j;
5388 bfd_size_type amt;
5389
5390 if (segment->p_type == PT_NULL)
5391 continue;
5392
5393 /* Compute how many sections might be placed into this segment. */
5394 for (section = ibfd->sections, section_count = 0;
5395 section != NULL;
5396 section = section->next)
5397 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5398 ++section_count;
5399
5400 /* Allocate a segment map big enough to contain
5401 all of the sections we have selected. */
5402 amt = sizeof (struct elf_segment_map);
5403 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5404 map = bfd_zalloc (obfd, amt);
5405 if (map == NULL)
5406 return FALSE;
5407
5408 /* Initialise the fields of the segment map. Default to
5409 using the physical address of the segment in the input BFD. */
5410 map->next = NULL;
5411 map->p_type = segment->p_type;
5412 map->p_flags = segment->p_flags;
5413 map->p_flags_valid = 1;
5414 map->p_paddr = segment->p_paddr;
5415 map->p_paddr_valid = 1;
5416
5417 /* Determine if this segment contains the ELF file header
5418 and if it contains the program headers themselves. */
5419 map->includes_filehdr = (segment->p_offset == 0
5420 && segment->p_filesz >= iehdr->e_ehsize);
5421
5422 map->includes_phdrs = 0;
5423
5424 if (! phdr_included || segment->p_type != PT_LOAD)
5425 {
5426 map->includes_phdrs =
5427 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5428 && (segment->p_offset + segment->p_filesz
5429 >= ((bfd_vma) iehdr->e_phoff
5430 + iehdr->e_phnum * iehdr->e_phentsize)));
5431
5432 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5433 phdr_included = TRUE;
5434 }
5435
5436 if (section_count == 0)
5437 {
5438 /* Special segments, such as the PT_PHDR segment, may contain
5439 no sections, but ordinary, loadable segments should contain
5440 something. They are allowed by the ELF spec however, so only
5441 a warning is produced. */
5442 if (segment->p_type == PT_LOAD)
5443 (*_bfd_error_handler)
5444 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5445 ibfd);
5446
5447 map->count = 0;
5448 *pointer_to_map = map;
5449 pointer_to_map = &map->next;
5450
5451 continue;
5452 }
5453
5454 /* Now scan the sections in the input BFD again and attempt
5455 to add their corresponding output sections to the segment map.
5456 The problem here is how to handle an output section which has
5457 been moved (ie had its LMA changed). There are four possibilities:
5458
5459 1. None of the sections have been moved.
5460 In this case we can continue to use the segment LMA from the
5461 input BFD.
5462
5463 2. All of the sections have been moved by the same amount.
5464 In this case we can change the segment's LMA to match the LMA
5465 of the first section.
5466
5467 3. Some of the sections have been moved, others have not.
5468 In this case those sections which have not been moved can be
5469 placed in the current segment which will have to have its size,
5470 and possibly its LMA changed, and a new segment or segments will
5471 have to be created to contain the other sections.
5472
5473 4. The sections have been moved, but not by the same amount.
5474 In this case we can change the segment's LMA to match the LMA
5475 of the first section and we will have to create a new segment
5476 or segments to contain the other sections.
5477
5478 In order to save time, we allocate an array to hold the section
5479 pointers that we are interested in. As these sections get assigned
5480 to a segment, they are removed from this array. */
5481
5482 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5483 to work around this long long bug. */
5484 sections = bfd_malloc2 (section_count, sizeof (asection *));
5485 if (sections == NULL)
5486 return FALSE;
5487
5488 /* Step One: Scan for segment vs section LMA conflicts.
5489 Also add the sections to the section array allocated above.
5490 Also add the sections to the current segment. In the common
5491 case, where the sections have not been moved, this means that
5492 we have completely filled the segment, and there is nothing
5493 more to do. */
5494 isec = 0;
5495 matching_lma = 0;
5496 suggested_lma = 0;
5497
5498 for (j = 0, section = ibfd->sections;
5499 section != NULL;
5500 section = section->next)
5501 {
5502 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5503 {
5504 output_section = section->output_section;
5505
5506 sections[j ++] = section;
5507
5508 /* The Solaris native linker always sets p_paddr to 0.
5509 We try to catch that case here, and set it to the
5510 correct value. Note - some backends require that
5511 p_paddr be left as zero. */
5512 if (segment->p_paddr == 0
5513 && segment->p_vaddr != 0
5514 && (! bed->want_p_paddr_set_to_zero)
5515 && isec == 0
5516 && output_section->lma != 0
5517 && (output_section->vma == (segment->p_vaddr
5518 + (map->includes_filehdr
5519 ? iehdr->e_ehsize
5520 : 0)
5521 + (map->includes_phdrs
5522 ? (iehdr->e_phnum
5523 * iehdr->e_phentsize)
5524 : 0))))
5525 map->p_paddr = segment->p_vaddr;
5526
5527 /* Match up the physical address of the segment with the
5528 LMA address of the output section. */
5529 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5530 || IS_COREFILE_NOTE (segment, section)
5531 || (bed->want_p_paddr_set_to_zero &&
5532 IS_CONTAINED_BY_VMA (output_section, segment))
5533 )
5534 {
5535 if (matching_lma == 0)
5536 matching_lma = output_section->lma;
5537
5538 /* We assume that if the section fits within the segment
5539 then it does not overlap any other section within that
5540 segment. */
5541 map->sections[isec ++] = output_section;
5542 }
5543 else if (suggested_lma == 0)
5544 suggested_lma = output_section->lma;
5545 }
5546 }
5547
5548 BFD_ASSERT (j == section_count);
5549
5550 /* Step Two: Adjust the physical address of the current segment,
5551 if necessary. */
5552 if (isec == section_count)
5553 {
5554 /* All of the sections fitted within the segment as currently
5555 specified. This is the default case. Add the segment to
5556 the list of built segments and carry on to process the next
5557 program header in the input BFD. */
5558 map->count = section_count;
5559 *pointer_to_map = map;
5560 pointer_to_map = &map->next;
5561
5562 free (sections);
5563 continue;
5564 }
5565 else
5566 {
5567 if (matching_lma != 0)
5568 {
5569 /* At least one section fits inside the current segment.
5570 Keep it, but modify its physical address to match the
5571 LMA of the first section that fitted. */
5572 map->p_paddr = matching_lma;
5573 }
5574 else
5575 {
5576 /* None of the sections fitted inside the current segment.
5577 Change the current segment's physical address to match
5578 the LMA of the first section. */
5579 map->p_paddr = suggested_lma;
5580 }
5581
5582 /* Offset the segment physical address from the lma
5583 to allow for space taken up by elf headers. */
5584 if (map->includes_filehdr)
5585 map->p_paddr -= iehdr->e_ehsize;
5586
5587 if (map->includes_phdrs)
5588 {
5589 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5590
5591 /* iehdr->e_phnum is just an estimate of the number
5592 of program headers that we will need. Make a note
5593 here of the number we used and the segment we chose
5594 to hold these headers, so that we can adjust the
5595 offset when we know the correct value. */
5596 phdr_adjust_num = iehdr->e_phnum;
5597 phdr_adjust_seg = map;
5598 }
5599 }
5600
5601 /* Step Three: Loop over the sections again, this time assigning
5602 those that fit to the current segment and removing them from the
5603 sections array; but making sure not to leave large gaps. Once all
5604 possible sections have been assigned to the current segment it is
5605 added to the list of built segments and if sections still remain
5606 to be assigned, a new segment is constructed before repeating
5607 the loop. */
5608 isec = 0;
5609 do
5610 {
5611 map->count = 0;
5612 suggested_lma = 0;
5613
5614 /* Fill the current segment with sections that fit. */
5615 for (j = 0; j < section_count; j++)
5616 {
5617 section = sections[j];
5618
5619 if (section == NULL)
5620 continue;
5621
5622 output_section = section->output_section;
5623
5624 BFD_ASSERT (output_section != NULL);
5625
5626 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5627 || IS_COREFILE_NOTE (segment, section))
5628 {
5629 if (map->count == 0)
5630 {
5631 /* If the first section in a segment does not start at
5632 the beginning of the segment, then something is
5633 wrong. */
5634 if (output_section->lma !=
5635 (map->p_paddr
5636 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5637 + (map->includes_phdrs
5638 ? iehdr->e_phnum * iehdr->e_phentsize
5639 : 0)))
5640 abort ();
5641 }
5642 else
5643 {
5644 asection * prev_sec;
5645
5646 prev_sec = map->sections[map->count - 1];
5647
5648 /* If the gap between the end of the previous section
5649 and the start of this section is more than
5650 maxpagesize then we need to start a new segment. */
5651 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5652 maxpagesize)
5653 < BFD_ALIGN (output_section->lma, maxpagesize))
5654 || ((prev_sec->lma + prev_sec->size)
5655 > output_section->lma))
5656 {
5657 if (suggested_lma == 0)
5658 suggested_lma = output_section->lma;
5659
5660 continue;
5661 }
5662 }
5663
5664 map->sections[map->count++] = output_section;
5665 ++isec;
5666 sections[j] = NULL;
5667 section->segment_mark = TRUE;
5668 }
5669 else if (suggested_lma == 0)
5670 suggested_lma = output_section->lma;
5671 }
5672
5673 BFD_ASSERT (map->count > 0);
5674
5675 /* Add the current segment to the list of built segments. */
5676 *pointer_to_map = map;
5677 pointer_to_map = &map->next;
5678
5679 if (isec < section_count)
5680 {
5681 /* We still have not allocated all of the sections to
5682 segments. Create a new segment here, initialise it
5683 and carry on looping. */
5684 amt = sizeof (struct elf_segment_map);
5685 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5686 map = bfd_alloc (obfd, amt);
5687 if (map == NULL)
5688 {
5689 free (sections);
5690 return FALSE;
5691 }
5692
5693 /* Initialise the fields of the segment map. Set the physical
5694 physical address to the LMA of the first section that has
5695 not yet been assigned. */
5696 map->next = NULL;
5697 map->p_type = segment->p_type;
5698 map->p_flags = segment->p_flags;
5699 map->p_flags_valid = 1;
5700 map->p_paddr = suggested_lma;
5701 map->p_paddr_valid = 1;
5702 map->includes_filehdr = 0;
5703 map->includes_phdrs = 0;
5704 }
5705 }
5706 while (isec < section_count);
5707
5708 free (sections);
5709 }
5710
5711 /* The Solaris linker creates program headers in which all the
5712 p_paddr fields are zero. When we try to objcopy or strip such a
5713 file, we get confused. Check for this case, and if we find it
5714 reset the p_paddr_valid fields. */
5715 for (map = map_first; map != NULL; map = map->next)
5716 if (map->p_paddr != 0)
5717 break;
5718 if (map == NULL)
5719 for (map = map_first; map != NULL; map = map->next)
5720 map->p_paddr_valid = 0;
5721
5722 elf_tdata (obfd)->segment_map = map_first;
5723
5724 /* If we had to estimate the number of program headers that were
5725 going to be needed, then check our estimate now and adjust
5726 the offset if necessary. */
5727 if (phdr_adjust_seg != NULL)
5728 {
5729 unsigned int count;
5730
5731 for (count = 0, map = map_first; map != NULL; map = map->next)
5732 count++;
5733
5734 if (count > phdr_adjust_num)
5735 phdr_adjust_seg->p_paddr
5736 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5737 }
5738
5739 #undef SEGMENT_END
5740 #undef SECTION_SIZE
5741 #undef IS_CONTAINED_BY_VMA
5742 #undef IS_CONTAINED_BY_LMA
5743 #undef IS_COREFILE_NOTE
5744 #undef IS_SOLARIS_PT_INTERP
5745 #undef INCLUDE_SECTION_IN_SEGMENT
5746 #undef SEGMENT_AFTER_SEGMENT
5747 #undef SEGMENT_OVERLAPS
5748 return TRUE;
5749 }
5750
5751 /* Copy ELF program header information. */
5752
5753 static bfd_boolean
5754 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5755 {
5756 Elf_Internal_Ehdr *iehdr;
5757 struct elf_segment_map *map;
5758 struct elf_segment_map *map_first;
5759 struct elf_segment_map **pointer_to_map;
5760 Elf_Internal_Phdr *segment;
5761 unsigned int i;
5762 unsigned int num_segments;
5763 bfd_boolean phdr_included = FALSE;
5764
5765 iehdr = elf_elfheader (ibfd);
5766
5767 map_first = NULL;
5768 pointer_to_map = &map_first;
5769
5770 num_segments = elf_elfheader (ibfd)->e_phnum;
5771 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5772 i < num_segments;
5773 i++, segment++)
5774 {
5775 asection *section;
5776 unsigned int section_count;
5777 bfd_size_type amt;
5778 Elf_Internal_Shdr *this_hdr;
5779
5780 /* FIXME: Do we need to copy PT_NULL segment? */
5781 if (segment->p_type == PT_NULL)
5782 continue;
5783
5784 /* Compute how many sections are in this segment. */
5785 for (section = ibfd->sections, section_count = 0;
5786 section != NULL;
5787 section = section->next)
5788 {
5789 this_hdr = &(elf_section_data(section)->this_hdr);
5790 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5791 section_count++;
5792 }
5793
5794 /* Allocate a segment map big enough to contain
5795 all of the sections we have selected. */
5796 amt = sizeof (struct elf_segment_map);
5797 if (section_count != 0)
5798 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5799 map = bfd_zalloc (obfd, amt);
5800 if (map == NULL)
5801 return FALSE;
5802
5803 /* Initialize the fields of the output segment map with the
5804 input segment. */
5805 map->next = NULL;
5806 map->p_type = segment->p_type;
5807 map->p_flags = segment->p_flags;
5808 map->p_flags_valid = 1;
5809 map->p_paddr = segment->p_paddr;
5810 map->p_paddr_valid = 1;
5811 map->p_align = segment->p_align;
5812 map->p_align_valid = 1;
5813
5814 /* Determine if this segment contains the ELF file header
5815 and if it contains the program headers themselves. */
5816 map->includes_filehdr = (segment->p_offset == 0
5817 && segment->p_filesz >= iehdr->e_ehsize);
5818
5819 map->includes_phdrs = 0;
5820 if (! phdr_included || segment->p_type != PT_LOAD)
5821 {
5822 map->includes_phdrs =
5823 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5824 && (segment->p_offset + segment->p_filesz
5825 >= ((bfd_vma) iehdr->e_phoff
5826 + iehdr->e_phnum * iehdr->e_phentsize)));
5827
5828 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5829 phdr_included = TRUE;
5830 }
5831
5832 if (section_count != 0)
5833 {
5834 unsigned int isec = 0;
5835
5836 for (section = ibfd->sections;
5837 section != NULL;
5838 section = section->next)
5839 {
5840 this_hdr = &(elf_section_data(section)->this_hdr);
5841 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5842 map->sections[isec++] = section->output_section;
5843 }
5844 }
5845
5846 map->count = section_count;
5847 *pointer_to_map = map;
5848 pointer_to_map = &map->next;
5849 }
5850
5851 elf_tdata (obfd)->segment_map = map_first;
5852 return TRUE;
5853 }
5854
5855 /* Copy private BFD data. This copies or rewrites ELF program header
5856 information. */
5857
5858 static bfd_boolean
5859 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5860 {
5861 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5862 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5863 return TRUE;
5864
5865 if (elf_tdata (ibfd)->phdr == NULL)
5866 return TRUE;
5867
5868 if (ibfd->xvec == obfd->xvec)
5869 {
5870 /* Check if any sections in the input BFD covered by ELF program
5871 header are changed. */
5872 Elf_Internal_Phdr *segment;
5873 asection *section, *osec;
5874 unsigned int i, num_segments;
5875 Elf_Internal_Shdr *this_hdr;
5876
5877 /* Initialize the segment mark field. */
5878 for (section = obfd->sections; section != NULL;
5879 section = section->next)
5880 section->segment_mark = FALSE;
5881
5882 num_segments = elf_elfheader (ibfd)->e_phnum;
5883 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5884 i < num_segments;
5885 i++, segment++)
5886 {
5887 for (section = ibfd->sections;
5888 section != NULL; section = section->next)
5889 {
5890 /* We mark the output section so that we know it comes
5891 from the input BFD. */
5892 osec = section->output_section;
5893 if (osec)
5894 osec->segment_mark = TRUE;
5895
5896 /* Check if this section is covered by the segment. */
5897 this_hdr = &(elf_section_data(section)->this_hdr);
5898 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5899 {
5900 /* FIXME: Check if its output section is changed or
5901 removed. What else do we need to check? */
5902 if (osec == NULL
5903 || section->flags != osec->flags
5904 || section->lma != osec->lma
5905 || section->vma != osec->vma
5906 || section->size != osec->size
5907 || section->rawsize != osec->rawsize
5908 || section->alignment_power != osec->alignment_power)
5909 goto rewrite;
5910 }
5911 }
5912 }
5913
5914 /* Check to see if any output section doesn't come from the
5915 input BFD. */
5916 for (section = obfd->sections; section != NULL;
5917 section = section->next)
5918 {
5919 if (section->segment_mark == FALSE)
5920 goto rewrite;
5921 else
5922 section->segment_mark = FALSE;
5923 }
5924
5925 return copy_elf_program_header (ibfd, obfd);
5926 }
5927
5928 rewrite:
5929 return rewrite_elf_program_header (ibfd, obfd);
5930 }
5931
5932 /* Initialize private output section information from input section. */
5933
5934 bfd_boolean
5935 _bfd_elf_init_private_section_data (bfd *ibfd,
5936 asection *isec,
5937 bfd *obfd,
5938 asection *osec,
5939 struct bfd_link_info *link_info)
5940
5941 {
5942 Elf_Internal_Shdr *ihdr, *ohdr;
5943 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5944
5945 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5946 || obfd->xvec->flavour != bfd_target_elf_flavour)
5947 return TRUE;
5948
5949 /* Don't copy the output ELF section type from input if the
5950 output BFD section flags have been set to something different.
5951 elf_fake_sections will set ELF section type based on BFD
5952 section flags. */
5953 if (osec->flags == isec->flags || !osec->flags)
5954 {
5955 BFD_ASSERT (osec->flags == isec->flags
5956 || (!osec->flags
5957 && elf_section_type (osec) == SHT_NULL));
5958 elf_section_type (osec) = elf_section_type (isec);
5959 }
5960
5961 /* FIXME: Is this correct for all OS/PROC specific flags? */
5962 elf_section_flags (osec) |= (elf_section_flags (isec)
5963 & (SHF_MASKOS | SHF_MASKPROC));
5964
5965 /* Set things up for objcopy and relocatable link. The output
5966 SHT_GROUP section will have its elf_next_in_group pointing back
5967 to the input group members. Ignore linker created group section.
5968 See elfNN_ia64_object_p in elfxx-ia64.c. */
5969 if (need_group)
5970 {
5971 if (elf_sec_group (isec) == NULL
5972 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5973 {
5974 if (elf_section_flags (isec) & SHF_GROUP)
5975 elf_section_flags (osec) |= SHF_GROUP;
5976 elf_next_in_group (osec) = elf_next_in_group (isec);
5977 elf_group_name (osec) = elf_group_name (isec);
5978 }
5979 }
5980
5981 ihdr = &elf_section_data (isec)->this_hdr;
5982
5983 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5984 don't use the output section of the linked-to section since it
5985 may be NULL at this point. */
5986 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5987 {
5988 ohdr = &elf_section_data (osec)->this_hdr;
5989 ohdr->sh_flags |= SHF_LINK_ORDER;
5990 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5991 }
5992
5993 osec->use_rela_p = isec->use_rela_p;
5994
5995 return TRUE;
5996 }
5997
5998 /* Copy private section information. This copies over the entsize
5999 field, and sometimes the info field. */
6000
6001 bfd_boolean
6002 _bfd_elf_copy_private_section_data (bfd *ibfd,
6003 asection *isec,
6004 bfd *obfd,
6005 asection *osec)
6006 {
6007 Elf_Internal_Shdr *ihdr, *ohdr;
6008
6009 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6010 || obfd->xvec->flavour != bfd_target_elf_flavour)
6011 return TRUE;
6012
6013 ihdr = &elf_section_data (isec)->this_hdr;
6014 ohdr = &elf_section_data (osec)->this_hdr;
6015
6016 ohdr->sh_entsize = ihdr->sh_entsize;
6017
6018 if (ihdr->sh_type == SHT_SYMTAB
6019 || ihdr->sh_type == SHT_DYNSYM
6020 || ihdr->sh_type == SHT_GNU_verneed
6021 || ihdr->sh_type == SHT_GNU_verdef)
6022 ohdr->sh_info = ihdr->sh_info;
6023
6024 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6025 NULL);
6026 }
6027
6028 /* Copy private header information. */
6029
6030 bfd_boolean
6031 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6032 {
6033 asection *isec;
6034
6035 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6036 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6037 return TRUE;
6038
6039 /* Copy over private BFD data if it has not already been copied.
6040 This must be done here, rather than in the copy_private_bfd_data
6041 entry point, because the latter is called after the section
6042 contents have been set, which means that the program headers have
6043 already been worked out. */
6044 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6045 {
6046 if (! copy_private_bfd_data (ibfd, obfd))
6047 return FALSE;
6048 }
6049
6050 /* _bfd_elf_copy_private_section_data copied over the SHF_GROUP flag
6051 but this might be wrong if we deleted the group section. */
6052 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6053 if (elf_section_type (isec) == SHT_GROUP
6054 && isec->output_section == NULL)
6055 {
6056 asection *first = elf_next_in_group (isec);
6057 asection *s = first;
6058 while (s != NULL)
6059 {
6060 if (s->output_section != NULL)
6061 {
6062 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6063 elf_group_name (s->output_section) = NULL;
6064 }
6065 s = elf_next_in_group (s);
6066 if (s == first)
6067 break;
6068 }
6069 }
6070
6071 return TRUE;
6072 }
6073
6074 /* Copy private symbol information. If this symbol is in a section
6075 which we did not map into a BFD section, try to map the section
6076 index correctly. We use special macro definitions for the mapped
6077 section indices; these definitions are interpreted by the
6078 swap_out_syms function. */
6079
6080 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6081 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6082 #define MAP_STRTAB (SHN_HIOS + 3)
6083 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6084 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6085
6086 bfd_boolean
6087 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6088 asymbol *isymarg,
6089 bfd *obfd,
6090 asymbol *osymarg)
6091 {
6092 elf_symbol_type *isym, *osym;
6093
6094 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6095 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6096 return TRUE;
6097
6098 isym = elf_symbol_from (ibfd, isymarg);
6099 osym = elf_symbol_from (obfd, osymarg);
6100
6101 if (isym != NULL
6102 && osym != NULL
6103 && bfd_is_abs_section (isym->symbol.section))
6104 {
6105 unsigned int shndx;
6106
6107 shndx = isym->internal_elf_sym.st_shndx;
6108 if (shndx == elf_onesymtab (ibfd))
6109 shndx = MAP_ONESYMTAB;
6110 else if (shndx == elf_dynsymtab (ibfd))
6111 shndx = MAP_DYNSYMTAB;
6112 else if (shndx == elf_tdata (ibfd)->strtab_section)
6113 shndx = MAP_STRTAB;
6114 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6115 shndx = MAP_SHSTRTAB;
6116 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6117 shndx = MAP_SYM_SHNDX;
6118 osym->internal_elf_sym.st_shndx = shndx;
6119 }
6120
6121 return TRUE;
6122 }
6123
6124 /* Swap out the symbols. */
6125
6126 static bfd_boolean
6127 swap_out_syms (bfd *abfd,
6128 struct bfd_strtab_hash **sttp,
6129 int relocatable_p)
6130 {
6131 const struct elf_backend_data *bed;
6132 int symcount;
6133 asymbol **syms;
6134 struct bfd_strtab_hash *stt;
6135 Elf_Internal_Shdr *symtab_hdr;
6136 Elf_Internal_Shdr *symtab_shndx_hdr;
6137 Elf_Internal_Shdr *symstrtab_hdr;
6138 bfd_byte *outbound_syms;
6139 bfd_byte *outbound_shndx;
6140 int idx;
6141 bfd_size_type amt;
6142 bfd_boolean name_local_sections;
6143
6144 if (!elf_map_symbols (abfd))
6145 return FALSE;
6146
6147 /* Dump out the symtabs. */
6148 stt = _bfd_elf_stringtab_init ();
6149 if (stt == NULL)
6150 return FALSE;
6151
6152 bed = get_elf_backend_data (abfd);
6153 symcount = bfd_get_symcount (abfd);
6154 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6155 symtab_hdr->sh_type = SHT_SYMTAB;
6156 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6157 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6158 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6159 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6160
6161 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6162 symstrtab_hdr->sh_type = SHT_STRTAB;
6163
6164 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6165 if (outbound_syms == NULL)
6166 {
6167 _bfd_stringtab_free (stt);
6168 return FALSE;
6169 }
6170 symtab_hdr->contents = outbound_syms;
6171
6172 outbound_shndx = NULL;
6173 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6174 if (symtab_shndx_hdr->sh_name != 0)
6175 {
6176 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6177 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6178 sizeof (Elf_External_Sym_Shndx));
6179 if (outbound_shndx == NULL)
6180 {
6181 _bfd_stringtab_free (stt);
6182 return FALSE;
6183 }
6184
6185 symtab_shndx_hdr->contents = outbound_shndx;
6186 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6187 symtab_shndx_hdr->sh_size = amt;
6188 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6189 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6190 }
6191
6192 /* Now generate the data (for "contents"). */
6193 {
6194 /* Fill in zeroth symbol and swap it out. */
6195 Elf_Internal_Sym sym;
6196 sym.st_name = 0;
6197 sym.st_value = 0;
6198 sym.st_size = 0;
6199 sym.st_info = 0;
6200 sym.st_other = 0;
6201 sym.st_shndx = SHN_UNDEF;
6202 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6203 outbound_syms += bed->s->sizeof_sym;
6204 if (outbound_shndx != NULL)
6205 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6206 }
6207
6208 name_local_sections
6209 = (bed->elf_backend_name_local_section_symbols
6210 && bed->elf_backend_name_local_section_symbols (abfd));
6211
6212 syms = bfd_get_outsymbols (abfd);
6213 for (idx = 0; idx < symcount; idx++)
6214 {
6215 Elf_Internal_Sym sym;
6216 bfd_vma value = syms[idx]->value;
6217 elf_symbol_type *type_ptr;
6218 flagword flags = syms[idx]->flags;
6219 int type;
6220
6221 if (!name_local_sections
6222 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6223 {
6224 /* Local section symbols have no name. */
6225 sym.st_name = 0;
6226 }
6227 else
6228 {
6229 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6230 syms[idx]->name,
6231 TRUE, FALSE);
6232 if (sym.st_name == (unsigned long) -1)
6233 {
6234 _bfd_stringtab_free (stt);
6235 return FALSE;
6236 }
6237 }
6238
6239 type_ptr = elf_symbol_from (abfd, syms[idx]);
6240
6241 if ((flags & BSF_SECTION_SYM) == 0
6242 && bfd_is_com_section (syms[idx]->section))
6243 {
6244 /* ELF common symbols put the alignment into the `value' field,
6245 and the size into the `size' field. This is backwards from
6246 how BFD handles it, so reverse it here. */
6247 sym.st_size = value;
6248 if (type_ptr == NULL
6249 || type_ptr->internal_elf_sym.st_value == 0)
6250 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6251 else
6252 sym.st_value = type_ptr->internal_elf_sym.st_value;
6253 sym.st_shndx = _bfd_elf_section_from_bfd_section
6254 (abfd, syms[idx]->section);
6255 }
6256 else
6257 {
6258 asection *sec = syms[idx]->section;
6259 int shndx;
6260
6261 if (sec->output_section)
6262 {
6263 value += sec->output_offset;
6264 sec = sec->output_section;
6265 }
6266
6267 /* Don't add in the section vma for relocatable output. */
6268 if (! relocatable_p)
6269 value += sec->vma;
6270 sym.st_value = value;
6271 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6272
6273 if (bfd_is_abs_section (sec)
6274 && type_ptr != NULL
6275 && type_ptr->internal_elf_sym.st_shndx != 0)
6276 {
6277 /* This symbol is in a real ELF section which we did
6278 not create as a BFD section. Undo the mapping done
6279 by copy_private_symbol_data. */
6280 shndx = type_ptr->internal_elf_sym.st_shndx;
6281 switch (shndx)
6282 {
6283 case MAP_ONESYMTAB:
6284 shndx = elf_onesymtab (abfd);
6285 break;
6286 case MAP_DYNSYMTAB:
6287 shndx = elf_dynsymtab (abfd);
6288 break;
6289 case MAP_STRTAB:
6290 shndx = elf_tdata (abfd)->strtab_section;
6291 break;
6292 case MAP_SHSTRTAB:
6293 shndx = elf_tdata (abfd)->shstrtab_section;
6294 break;
6295 case MAP_SYM_SHNDX:
6296 shndx = elf_tdata (abfd)->symtab_shndx_section;
6297 break;
6298 default:
6299 break;
6300 }
6301 }
6302 else
6303 {
6304 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6305
6306 if (shndx == -1)
6307 {
6308 asection *sec2;
6309
6310 /* Writing this would be a hell of a lot easier if
6311 we had some decent documentation on bfd, and
6312 knew what to expect of the library, and what to
6313 demand of applications. For example, it
6314 appears that `objcopy' might not set the
6315 section of a symbol to be a section that is
6316 actually in the output file. */
6317 sec2 = bfd_get_section_by_name (abfd, sec->name);
6318 if (sec2 == NULL)
6319 {
6320 _bfd_error_handler (_("\
6321 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6322 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6323 sec->name);
6324 bfd_set_error (bfd_error_invalid_operation);
6325 _bfd_stringtab_free (stt);
6326 return FALSE;
6327 }
6328
6329 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6330 BFD_ASSERT (shndx != -1);
6331 }
6332 }
6333
6334 sym.st_shndx = shndx;
6335 }
6336
6337 if ((flags & BSF_THREAD_LOCAL) != 0)
6338 type = STT_TLS;
6339 else if ((flags & BSF_FUNCTION) != 0)
6340 type = STT_FUNC;
6341 else if ((flags & BSF_OBJECT) != 0)
6342 type = STT_OBJECT;
6343 else
6344 type = STT_NOTYPE;
6345
6346 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6347 type = STT_TLS;
6348
6349 /* Processor-specific types. */
6350 if (type_ptr != NULL
6351 && bed->elf_backend_get_symbol_type)
6352 type = ((*bed->elf_backend_get_symbol_type)
6353 (&type_ptr->internal_elf_sym, type));
6354
6355 if (flags & BSF_SECTION_SYM)
6356 {
6357 if (flags & BSF_GLOBAL)
6358 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6359 else
6360 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6361 }
6362 else if (bfd_is_com_section (syms[idx]->section))
6363 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6364 else if (bfd_is_und_section (syms[idx]->section))
6365 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6366 ? STB_WEAK
6367 : STB_GLOBAL),
6368 type);
6369 else if (flags & BSF_FILE)
6370 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6371 else
6372 {
6373 int bind = STB_LOCAL;
6374
6375 if (flags & BSF_LOCAL)
6376 bind = STB_LOCAL;
6377 else if (flags & BSF_WEAK)
6378 bind = STB_WEAK;
6379 else if (flags & BSF_GLOBAL)
6380 bind = STB_GLOBAL;
6381
6382 sym.st_info = ELF_ST_INFO (bind, type);
6383 }
6384
6385 if (type_ptr != NULL)
6386 sym.st_other = type_ptr->internal_elf_sym.st_other;
6387 else
6388 sym.st_other = 0;
6389
6390 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6391 outbound_syms += bed->s->sizeof_sym;
6392 if (outbound_shndx != NULL)
6393 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6394 }
6395
6396 *sttp = stt;
6397 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6398 symstrtab_hdr->sh_type = SHT_STRTAB;
6399
6400 symstrtab_hdr->sh_flags = 0;
6401 symstrtab_hdr->sh_addr = 0;
6402 symstrtab_hdr->sh_entsize = 0;
6403 symstrtab_hdr->sh_link = 0;
6404 symstrtab_hdr->sh_info = 0;
6405 symstrtab_hdr->sh_addralign = 1;
6406
6407 return TRUE;
6408 }
6409
6410 /* Return the number of bytes required to hold the symtab vector.
6411
6412 Note that we base it on the count plus 1, since we will null terminate
6413 the vector allocated based on this size. However, the ELF symbol table
6414 always has a dummy entry as symbol #0, so it ends up even. */
6415
6416 long
6417 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6418 {
6419 long symcount;
6420 long symtab_size;
6421 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6422
6423 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6424 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6425 if (symcount > 0)
6426 symtab_size -= sizeof (asymbol *);
6427
6428 return symtab_size;
6429 }
6430
6431 long
6432 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6433 {
6434 long symcount;
6435 long symtab_size;
6436 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6437
6438 if (elf_dynsymtab (abfd) == 0)
6439 {
6440 bfd_set_error (bfd_error_invalid_operation);
6441 return -1;
6442 }
6443
6444 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6445 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6446 if (symcount > 0)
6447 symtab_size -= sizeof (asymbol *);
6448
6449 return symtab_size;
6450 }
6451
6452 long
6453 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6454 sec_ptr asect)
6455 {
6456 return (asect->reloc_count + 1) * sizeof (arelent *);
6457 }
6458
6459 /* Canonicalize the relocs. */
6460
6461 long
6462 _bfd_elf_canonicalize_reloc (bfd *abfd,
6463 sec_ptr section,
6464 arelent **relptr,
6465 asymbol **symbols)
6466 {
6467 arelent *tblptr;
6468 unsigned int i;
6469 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6470
6471 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6472 return -1;
6473
6474 tblptr = section->relocation;
6475 for (i = 0; i < section->reloc_count; i++)
6476 *relptr++ = tblptr++;
6477
6478 *relptr = NULL;
6479
6480 return section->reloc_count;
6481 }
6482
6483 long
6484 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6485 {
6486 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6487 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6488
6489 if (symcount >= 0)
6490 bfd_get_symcount (abfd) = symcount;
6491 return symcount;
6492 }
6493
6494 long
6495 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6496 asymbol **allocation)
6497 {
6498 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6499 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6500
6501 if (symcount >= 0)
6502 bfd_get_dynamic_symcount (abfd) = symcount;
6503 return symcount;
6504 }
6505
6506 /* Return the size required for the dynamic reloc entries. Any loadable
6507 section that was actually installed in the BFD, and has type SHT_REL
6508 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6509 dynamic reloc section. */
6510
6511 long
6512 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6513 {
6514 long ret;
6515 asection *s;
6516
6517 if (elf_dynsymtab (abfd) == 0)
6518 {
6519 bfd_set_error (bfd_error_invalid_operation);
6520 return -1;
6521 }
6522
6523 ret = sizeof (arelent *);
6524 for (s = abfd->sections; s != NULL; s = s->next)
6525 if ((s->flags & SEC_LOAD) != 0
6526 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6527 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6528 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6529 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6530 * sizeof (arelent *));
6531
6532 return ret;
6533 }
6534
6535 /* Canonicalize the dynamic relocation entries. Note that we return the
6536 dynamic relocations as a single block, although they are actually
6537 associated with particular sections; the interface, which was
6538 designed for SunOS style shared libraries, expects that there is only
6539 one set of dynamic relocs. Any loadable section that was actually
6540 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6541 dynamic symbol table, is considered to be a dynamic reloc section. */
6542
6543 long
6544 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6545 arelent **storage,
6546 asymbol **syms)
6547 {
6548 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6549 asection *s;
6550 long ret;
6551
6552 if (elf_dynsymtab (abfd) == 0)
6553 {
6554 bfd_set_error (bfd_error_invalid_operation);
6555 return -1;
6556 }
6557
6558 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6559 ret = 0;
6560 for (s = abfd->sections; s != NULL; s = s->next)
6561 {
6562 if ((s->flags & SEC_LOAD) != 0
6563 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6564 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6565 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6566 {
6567 arelent *p;
6568 long count, i;
6569
6570 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6571 return -1;
6572 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6573 p = s->relocation;
6574 for (i = 0; i < count; i++)
6575 *storage++ = p++;
6576 ret += count;
6577 }
6578 }
6579
6580 *storage = NULL;
6581
6582 return ret;
6583 }
6584 \f
6585 /* Read in the version information. */
6586
6587 bfd_boolean
6588 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6589 {
6590 bfd_byte *contents = NULL;
6591 unsigned int freeidx = 0;
6592
6593 if (elf_dynverref (abfd) != 0)
6594 {
6595 Elf_Internal_Shdr *hdr;
6596 Elf_External_Verneed *everneed;
6597 Elf_Internal_Verneed *iverneed;
6598 unsigned int i;
6599 bfd_byte *contents_end;
6600
6601 hdr = &elf_tdata (abfd)->dynverref_hdr;
6602
6603 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6604 sizeof (Elf_Internal_Verneed));
6605 if (elf_tdata (abfd)->verref == NULL)
6606 goto error_return;
6607
6608 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6609
6610 contents = bfd_malloc (hdr->sh_size);
6611 if (contents == NULL)
6612 {
6613 error_return_verref:
6614 elf_tdata (abfd)->verref = NULL;
6615 elf_tdata (abfd)->cverrefs = 0;
6616 goto error_return;
6617 }
6618 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6619 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6620 goto error_return_verref;
6621
6622 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6623 goto error_return_verref;
6624
6625 BFD_ASSERT (sizeof (Elf_External_Verneed)
6626 == sizeof (Elf_External_Vernaux));
6627 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6628 everneed = (Elf_External_Verneed *) contents;
6629 iverneed = elf_tdata (abfd)->verref;
6630 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6631 {
6632 Elf_External_Vernaux *evernaux;
6633 Elf_Internal_Vernaux *ivernaux;
6634 unsigned int j;
6635
6636 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6637
6638 iverneed->vn_bfd = abfd;
6639
6640 iverneed->vn_filename =
6641 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6642 iverneed->vn_file);
6643 if (iverneed->vn_filename == NULL)
6644 goto error_return_verref;
6645
6646 if (iverneed->vn_cnt == 0)
6647 iverneed->vn_auxptr = NULL;
6648 else
6649 {
6650 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6651 sizeof (Elf_Internal_Vernaux));
6652 if (iverneed->vn_auxptr == NULL)
6653 goto error_return_verref;
6654 }
6655
6656 if (iverneed->vn_aux
6657 > (size_t) (contents_end - (bfd_byte *) everneed))
6658 goto error_return_verref;
6659
6660 evernaux = ((Elf_External_Vernaux *)
6661 ((bfd_byte *) everneed + iverneed->vn_aux));
6662 ivernaux = iverneed->vn_auxptr;
6663 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6664 {
6665 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6666
6667 ivernaux->vna_nodename =
6668 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6669 ivernaux->vna_name);
6670 if (ivernaux->vna_nodename == NULL)
6671 goto error_return_verref;
6672
6673 if (j + 1 < iverneed->vn_cnt)
6674 ivernaux->vna_nextptr = ivernaux + 1;
6675 else
6676 ivernaux->vna_nextptr = NULL;
6677
6678 if (ivernaux->vna_next
6679 > (size_t) (contents_end - (bfd_byte *) evernaux))
6680 goto error_return_verref;
6681
6682 evernaux = ((Elf_External_Vernaux *)
6683 ((bfd_byte *) evernaux + ivernaux->vna_next));
6684
6685 if (ivernaux->vna_other > freeidx)
6686 freeidx = ivernaux->vna_other;
6687 }
6688
6689 if (i + 1 < hdr->sh_info)
6690 iverneed->vn_nextref = iverneed + 1;
6691 else
6692 iverneed->vn_nextref = NULL;
6693
6694 if (iverneed->vn_next
6695 > (size_t) (contents_end - (bfd_byte *) everneed))
6696 goto error_return_verref;
6697
6698 everneed = ((Elf_External_Verneed *)
6699 ((bfd_byte *) everneed + iverneed->vn_next));
6700 }
6701
6702 free (contents);
6703 contents = NULL;
6704 }
6705
6706 if (elf_dynverdef (abfd) != 0)
6707 {
6708 Elf_Internal_Shdr *hdr;
6709 Elf_External_Verdef *everdef;
6710 Elf_Internal_Verdef *iverdef;
6711 Elf_Internal_Verdef *iverdefarr;
6712 Elf_Internal_Verdef iverdefmem;
6713 unsigned int i;
6714 unsigned int maxidx;
6715 bfd_byte *contents_end_def, *contents_end_aux;
6716
6717 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6718
6719 contents = bfd_malloc (hdr->sh_size);
6720 if (contents == NULL)
6721 goto error_return;
6722 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6723 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6724 goto error_return;
6725
6726 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6727 goto error_return;
6728
6729 BFD_ASSERT (sizeof (Elf_External_Verdef)
6730 >= sizeof (Elf_External_Verdaux));
6731 contents_end_def = contents + hdr->sh_size
6732 - sizeof (Elf_External_Verdef);
6733 contents_end_aux = contents + hdr->sh_size
6734 - sizeof (Elf_External_Verdaux);
6735
6736 /* We know the number of entries in the section but not the maximum
6737 index. Therefore we have to run through all entries and find
6738 the maximum. */
6739 everdef = (Elf_External_Verdef *) contents;
6740 maxidx = 0;
6741 for (i = 0; i < hdr->sh_info; ++i)
6742 {
6743 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6744
6745 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6746 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6747
6748 if (iverdefmem.vd_next
6749 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6750 goto error_return;
6751
6752 everdef = ((Elf_External_Verdef *)
6753 ((bfd_byte *) everdef + iverdefmem.vd_next));
6754 }
6755
6756 if (default_imported_symver)
6757 {
6758 if (freeidx > maxidx)
6759 maxidx = ++freeidx;
6760 else
6761 freeidx = ++maxidx;
6762 }
6763 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6764 sizeof (Elf_Internal_Verdef));
6765 if (elf_tdata (abfd)->verdef == NULL)
6766 goto error_return;
6767
6768 elf_tdata (abfd)->cverdefs = maxidx;
6769
6770 everdef = (Elf_External_Verdef *) contents;
6771 iverdefarr = elf_tdata (abfd)->verdef;
6772 for (i = 0; i < hdr->sh_info; i++)
6773 {
6774 Elf_External_Verdaux *everdaux;
6775 Elf_Internal_Verdaux *iverdaux;
6776 unsigned int j;
6777
6778 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6779
6780 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6781 {
6782 error_return_verdef:
6783 elf_tdata (abfd)->verdef = NULL;
6784 elf_tdata (abfd)->cverdefs = 0;
6785 goto error_return;
6786 }
6787
6788 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6789 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6790
6791 iverdef->vd_bfd = abfd;
6792
6793 if (iverdef->vd_cnt == 0)
6794 iverdef->vd_auxptr = NULL;
6795 else
6796 {
6797 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6798 sizeof (Elf_Internal_Verdaux));
6799 if (iverdef->vd_auxptr == NULL)
6800 goto error_return_verdef;
6801 }
6802
6803 if (iverdef->vd_aux
6804 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6805 goto error_return_verdef;
6806
6807 everdaux = ((Elf_External_Verdaux *)
6808 ((bfd_byte *) everdef + iverdef->vd_aux));
6809 iverdaux = iverdef->vd_auxptr;
6810 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6811 {
6812 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6813
6814 iverdaux->vda_nodename =
6815 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6816 iverdaux->vda_name);
6817 if (iverdaux->vda_nodename == NULL)
6818 goto error_return_verdef;
6819
6820 if (j + 1 < iverdef->vd_cnt)
6821 iverdaux->vda_nextptr = iverdaux + 1;
6822 else
6823 iverdaux->vda_nextptr = NULL;
6824
6825 if (iverdaux->vda_next
6826 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6827 goto error_return_verdef;
6828
6829 everdaux = ((Elf_External_Verdaux *)
6830 ((bfd_byte *) everdaux + iverdaux->vda_next));
6831 }
6832
6833 if (iverdef->vd_cnt)
6834 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6835
6836 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6837 iverdef->vd_nextdef = iverdef + 1;
6838 else
6839 iverdef->vd_nextdef = NULL;
6840
6841 everdef = ((Elf_External_Verdef *)
6842 ((bfd_byte *) everdef + iverdef->vd_next));
6843 }
6844
6845 free (contents);
6846 contents = NULL;
6847 }
6848 else if (default_imported_symver)
6849 {
6850 if (freeidx < 3)
6851 freeidx = 3;
6852 else
6853 freeidx++;
6854
6855 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6856 sizeof (Elf_Internal_Verdef));
6857 if (elf_tdata (abfd)->verdef == NULL)
6858 goto error_return;
6859
6860 elf_tdata (abfd)->cverdefs = freeidx;
6861 }
6862
6863 /* Create a default version based on the soname. */
6864 if (default_imported_symver)
6865 {
6866 Elf_Internal_Verdef *iverdef;
6867 Elf_Internal_Verdaux *iverdaux;
6868
6869 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6870
6871 iverdef->vd_version = VER_DEF_CURRENT;
6872 iverdef->vd_flags = 0;
6873 iverdef->vd_ndx = freeidx;
6874 iverdef->vd_cnt = 1;
6875
6876 iverdef->vd_bfd = abfd;
6877
6878 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6879 if (iverdef->vd_nodename == NULL)
6880 goto error_return_verdef;
6881 iverdef->vd_nextdef = NULL;
6882 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6883 if (iverdef->vd_auxptr == NULL)
6884 goto error_return_verdef;
6885
6886 iverdaux = iverdef->vd_auxptr;
6887 iverdaux->vda_nodename = iverdef->vd_nodename;
6888 iverdaux->vda_nextptr = NULL;
6889 }
6890
6891 return TRUE;
6892
6893 error_return:
6894 if (contents != NULL)
6895 free (contents);
6896 return FALSE;
6897 }
6898 \f
6899 asymbol *
6900 _bfd_elf_make_empty_symbol (bfd *abfd)
6901 {
6902 elf_symbol_type *newsym;
6903 bfd_size_type amt = sizeof (elf_symbol_type);
6904
6905 newsym = bfd_zalloc (abfd, amt);
6906 if (!newsym)
6907 return NULL;
6908 else
6909 {
6910 newsym->symbol.the_bfd = abfd;
6911 return &newsym->symbol;
6912 }
6913 }
6914
6915 void
6916 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6917 asymbol *symbol,
6918 symbol_info *ret)
6919 {
6920 bfd_symbol_info (symbol, ret);
6921 }
6922
6923 /* Return whether a symbol name implies a local symbol. Most targets
6924 use this function for the is_local_label_name entry point, but some
6925 override it. */
6926
6927 bfd_boolean
6928 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6929 const char *name)
6930 {
6931 /* Normal local symbols start with ``.L''. */
6932 if (name[0] == '.' && name[1] == 'L')
6933 return TRUE;
6934
6935 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6936 DWARF debugging symbols starting with ``..''. */
6937 if (name[0] == '.' && name[1] == '.')
6938 return TRUE;
6939
6940 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6941 emitting DWARF debugging output. I suspect this is actually a
6942 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6943 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6944 underscore to be emitted on some ELF targets). For ease of use,
6945 we treat such symbols as local. */
6946 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6947 return TRUE;
6948
6949 return FALSE;
6950 }
6951
6952 alent *
6953 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6954 asymbol *symbol ATTRIBUTE_UNUSED)
6955 {
6956 abort ();
6957 return NULL;
6958 }
6959
6960 bfd_boolean
6961 _bfd_elf_set_arch_mach (bfd *abfd,
6962 enum bfd_architecture arch,
6963 unsigned long machine)
6964 {
6965 /* If this isn't the right architecture for this backend, and this
6966 isn't the generic backend, fail. */
6967 if (arch != get_elf_backend_data (abfd)->arch
6968 && arch != bfd_arch_unknown
6969 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6970 return FALSE;
6971
6972 return bfd_default_set_arch_mach (abfd, arch, machine);
6973 }
6974
6975 /* Find the function to a particular section and offset,
6976 for error reporting. */
6977
6978 static bfd_boolean
6979 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6980 asection *section,
6981 asymbol **symbols,
6982 bfd_vma offset,
6983 const char **filename_ptr,
6984 const char **functionname_ptr)
6985 {
6986 const char *filename;
6987 asymbol *func, *file;
6988 bfd_vma low_func;
6989 asymbol **p;
6990 /* ??? Given multiple file symbols, it is impossible to reliably
6991 choose the right file name for global symbols. File symbols are
6992 local symbols, and thus all file symbols must sort before any
6993 global symbols. The ELF spec may be interpreted to say that a
6994 file symbol must sort before other local symbols, but currently
6995 ld -r doesn't do this. So, for ld -r output, it is possible to
6996 make a better choice of file name for local symbols by ignoring
6997 file symbols appearing after a given local symbol. */
6998 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6999
7000 filename = NULL;
7001 func = NULL;
7002 file = NULL;
7003 low_func = 0;
7004 state = nothing_seen;
7005
7006 for (p = symbols; *p != NULL; p++)
7007 {
7008 elf_symbol_type *q;
7009
7010 q = (elf_symbol_type *) *p;
7011
7012 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7013 {
7014 default:
7015 break;
7016 case STT_FILE:
7017 file = &q->symbol;
7018 if (state == symbol_seen)
7019 state = file_after_symbol_seen;
7020 continue;
7021 case STT_NOTYPE:
7022 case STT_FUNC:
7023 if (bfd_get_section (&q->symbol) == section
7024 && q->symbol.value >= low_func
7025 && q->symbol.value <= offset)
7026 {
7027 func = (asymbol *) q;
7028 low_func = q->symbol.value;
7029 filename = NULL;
7030 if (file != NULL
7031 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
7032 || state != file_after_symbol_seen))
7033 filename = bfd_asymbol_name (file);
7034 }
7035 break;
7036 }
7037 if (state == nothing_seen)
7038 state = symbol_seen;
7039 }
7040
7041 if (func == NULL)
7042 return FALSE;
7043
7044 if (filename_ptr)
7045 *filename_ptr = filename;
7046 if (functionname_ptr)
7047 *functionname_ptr = bfd_asymbol_name (func);
7048
7049 return TRUE;
7050 }
7051
7052 /* Find the nearest line to a particular section and offset,
7053 for error reporting. */
7054
7055 bfd_boolean
7056 _bfd_elf_find_nearest_line (bfd *abfd,
7057 asection *section,
7058 asymbol **symbols,
7059 bfd_vma offset,
7060 const char **filename_ptr,
7061 const char **functionname_ptr,
7062 unsigned int *line_ptr)
7063 {
7064 bfd_boolean found;
7065
7066 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7067 filename_ptr, functionname_ptr,
7068 line_ptr))
7069 {
7070 if (!*functionname_ptr)
7071 elf_find_function (abfd, section, symbols, offset,
7072 *filename_ptr ? NULL : filename_ptr,
7073 functionname_ptr);
7074
7075 return TRUE;
7076 }
7077
7078 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7079 filename_ptr, functionname_ptr,
7080 line_ptr, 0,
7081 &elf_tdata (abfd)->dwarf2_find_line_info))
7082 {
7083 if (!*functionname_ptr)
7084 elf_find_function (abfd, section, symbols, offset,
7085 *filename_ptr ? NULL : filename_ptr,
7086 functionname_ptr);
7087
7088 return TRUE;
7089 }
7090
7091 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7092 &found, filename_ptr,
7093 functionname_ptr, line_ptr,
7094 &elf_tdata (abfd)->line_info))
7095 return FALSE;
7096 if (found && (*functionname_ptr || *line_ptr))
7097 return TRUE;
7098
7099 if (symbols == NULL)
7100 return FALSE;
7101
7102 if (! elf_find_function (abfd, section, symbols, offset,
7103 filename_ptr, functionname_ptr))
7104 return FALSE;
7105
7106 *line_ptr = 0;
7107 return TRUE;
7108 }
7109
7110 /* Find the line for a symbol. */
7111
7112 bfd_boolean
7113 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7114 const char **filename_ptr, unsigned int *line_ptr)
7115 {
7116 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7117 filename_ptr, line_ptr, 0,
7118 &elf_tdata (abfd)->dwarf2_find_line_info);
7119 }
7120
7121 /* After a call to bfd_find_nearest_line, successive calls to
7122 bfd_find_inliner_info can be used to get source information about
7123 each level of function inlining that terminated at the address
7124 passed to bfd_find_nearest_line. Currently this is only supported
7125 for DWARF2 with appropriate DWARF3 extensions. */
7126
7127 bfd_boolean
7128 _bfd_elf_find_inliner_info (bfd *abfd,
7129 const char **filename_ptr,
7130 const char **functionname_ptr,
7131 unsigned int *line_ptr)
7132 {
7133 bfd_boolean found;
7134 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7135 functionname_ptr, line_ptr,
7136 & elf_tdata (abfd)->dwarf2_find_line_info);
7137 return found;
7138 }
7139
7140 int
7141 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7142 {
7143 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7144 int ret = bed->s->sizeof_ehdr;
7145
7146 if (!info->relocatable)
7147 {
7148 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7149
7150 if (phdr_size == (bfd_size_type) -1)
7151 {
7152 struct elf_segment_map *m;
7153
7154 phdr_size = 0;
7155 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7156 phdr_size += bed->s->sizeof_phdr;
7157
7158 if (phdr_size == 0)
7159 phdr_size = get_program_header_size (abfd, info);
7160 }
7161
7162 elf_tdata (abfd)->program_header_size = phdr_size;
7163 ret += phdr_size;
7164 }
7165
7166 return ret;
7167 }
7168
7169 bfd_boolean
7170 _bfd_elf_set_section_contents (bfd *abfd,
7171 sec_ptr section,
7172 const void *location,
7173 file_ptr offset,
7174 bfd_size_type count)
7175 {
7176 Elf_Internal_Shdr *hdr;
7177 bfd_signed_vma pos;
7178
7179 if (! abfd->output_has_begun
7180 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7181 return FALSE;
7182
7183 hdr = &elf_section_data (section)->this_hdr;
7184 pos = hdr->sh_offset + offset;
7185 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7186 || bfd_bwrite (location, count, abfd) != count)
7187 return FALSE;
7188
7189 return TRUE;
7190 }
7191
7192 void
7193 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7194 arelent *cache_ptr ATTRIBUTE_UNUSED,
7195 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7196 {
7197 abort ();
7198 }
7199
7200 /* Try to convert a non-ELF reloc into an ELF one. */
7201
7202 bfd_boolean
7203 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7204 {
7205 /* Check whether we really have an ELF howto. */
7206
7207 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7208 {
7209 bfd_reloc_code_real_type code;
7210 reloc_howto_type *howto;
7211
7212 /* Alien reloc: Try to determine its type to replace it with an
7213 equivalent ELF reloc. */
7214
7215 if (areloc->howto->pc_relative)
7216 {
7217 switch (areloc->howto->bitsize)
7218 {
7219 case 8:
7220 code = BFD_RELOC_8_PCREL;
7221 break;
7222 case 12:
7223 code = BFD_RELOC_12_PCREL;
7224 break;
7225 case 16:
7226 code = BFD_RELOC_16_PCREL;
7227 break;
7228 case 24:
7229 code = BFD_RELOC_24_PCREL;
7230 break;
7231 case 32:
7232 code = BFD_RELOC_32_PCREL;
7233 break;
7234 case 64:
7235 code = BFD_RELOC_64_PCREL;
7236 break;
7237 default:
7238 goto fail;
7239 }
7240
7241 howto = bfd_reloc_type_lookup (abfd, code);
7242
7243 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7244 {
7245 if (howto->pcrel_offset)
7246 areloc->addend += areloc->address;
7247 else
7248 areloc->addend -= areloc->address; /* addend is unsigned!! */
7249 }
7250 }
7251 else
7252 {
7253 switch (areloc->howto->bitsize)
7254 {
7255 case 8:
7256 code = BFD_RELOC_8;
7257 break;
7258 case 14:
7259 code = BFD_RELOC_14;
7260 break;
7261 case 16:
7262 code = BFD_RELOC_16;
7263 break;
7264 case 26:
7265 code = BFD_RELOC_26;
7266 break;
7267 case 32:
7268 code = BFD_RELOC_32;
7269 break;
7270 case 64:
7271 code = BFD_RELOC_64;
7272 break;
7273 default:
7274 goto fail;
7275 }
7276
7277 howto = bfd_reloc_type_lookup (abfd, code);
7278 }
7279
7280 if (howto)
7281 areloc->howto = howto;
7282 else
7283 goto fail;
7284 }
7285
7286 return TRUE;
7287
7288 fail:
7289 (*_bfd_error_handler)
7290 (_("%B: unsupported relocation type %s"),
7291 abfd, areloc->howto->name);
7292 bfd_set_error (bfd_error_bad_value);
7293 return FALSE;
7294 }
7295
7296 bfd_boolean
7297 _bfd_elf_close_and_cleanup (bfd *abfd)
7298 {
7299 if (bfd_get_format (abfd) == bfd_object)
7300 {
7301 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7302 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7303 _bfd_dwarf2_cleanup_debug_info (abfd);
7304 }
7305
7306 return _bfd_generic_close_and_cleanup (abfd);
7307 }
7308
7309 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7310 in the relocation's offset. Thus we cannot allow any sort of sanity
7311 range-checking to interfere. There is nothing else to do in processing
7312 this reloc. */
7313
7314 bfd_reloc_status_type
7315 _bfd_elf_rel_vtable_reloc_fn
7316 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7317 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7318 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7319 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7320 {
7321 return bfd_reloc_ok;
7322 }
7323 \f
7324 /* Elf core file support. Much of this only works on native
7325 toolchains, since we rely on knowing the
7326 machine-dependent procfs structure in order to pick
7327 out details about the corefile. */
7328
7329 #ifdef HAVE_SYS_PROCFS_H
7330 # include <sys/procfs.h>
7331 #endif
7332
7333 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7334
7335 static int
7336 elfcore_make_pid (bfd *abfd)
7337 {
7338 return ((elf_tdata (abfd)->core_lwpid << 16)
7339 + (elf_tdata (abfd)->core_pid));
7340 }
7341
7342 /* If there isn't a section called NAME, make one, using
7343 data from SECT. Note, this function will generate a
7344 reference to NAME, so you shouldn't deallocate or
7345 overwrite it. */
7346
7347 static bfd_boolean
7348 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7349 {
7350 asection *sect2;
7351
7352 if (bfd_get_section_by_name (abfd, name) != NULL)
7353 return TRUE;
7354
7355 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7356 if (sect2 == NULL)
7357 return FALSE;
7358
7359 sect2->size = sect->size;
7360 sect2->filepos = sect->filepos;
7361 sect2->alignment_power = sect->alignment_power;
7362 return TRUE;
7363 }
7364
7365 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7366 actually creates up to two pseudosections:
7367 - For the single-threaded case, a section named NAME, unless
7368 such a section already exists.
7369 - For the multi-threaded case, a section named "NAME/PID", where
7370 PID is elfcore_make_pid (abfd).
7371 Both pseudosections have identical contents. */
7372 bfd_boolean
7373 _bfd_elfcore_make_pseudosection (bfd *abfd,
7374 char *name,
7375 size_t size,
7376 ufile_ptr filepos)
7377 {
7378 char buf[100];
7379 char *threaded_name;
7380 size_t len;
7381 asection *sect;
7382
7383 /* Build the section name. */
7384
7385 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7386 len = strlen (buf) + 1;
7387 threaded_name = bfd_alloc (abfd, len);
7388 if (threaded_name == NULL)
7389 return FALSE;
7390 memcpy (threaded_name, buf, len);
7391
7392 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7393 SEC_HAS_CONTENTS);
7394 if (sect == NULL)
7395 return FALSE;
7396 sect->size = size;
7397 sect->filepos = filepos;
7398 sect->alignment_power = 2;
7399
7400 return elfcore_maybe_make_sect (abfd, name, sect);
7401 }
7402
7403 /* prstatus_t exists on:
7404 solaris 2.5+
7405 linux 2.[01] + glibc
7406 unixware 4.2
7407 */
7408
7409 #if defined (HAVE_PRSTATUS_T)
7410
7411 static bfd_boolean
7412 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7413 {
7414 size_t size;
7415 int offset;
7416
7417 if (note->descsz == sizeof (prstatus_t))
7418 {
7419 prstatus_t prstat;
7420
7421 size = sizeof (prstat.pr_reg);
7422 offset = offsetof (prstatus_t, pr_reg);
7423 memcpy (&prstat, note->descdata, sizeof (prstat));
7424
7425 /* Do not overwrite the core signal if it
7426 has already been set by another thread. */
7427 if (elf_tdata (abfd)->core_signal == 0)
7428 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7429 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7430
7431 /* pr_who exists on:
7432 solaris 2.5+
7433 unixware 4.2
7434 pr_who doesn't exist on:
7435 linux 2.[01]
7436 */
7437 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7438 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7439 #endif
7440 }
7441 #if defined (HAVE_PRSTATUS32_T)
7442 else if (note->descsz == sizeof (prstatus32_t))
7443 {
7444 /* 64-bit host, 32-bit corefile */
7445 prstatus32_t prstat;
7446
7447 size = sizeof (prstat.pr_reg);
7448 offset = offsetof (prstatus32_t, pr_reg);
7449 memcpy (&prstat, note->descdata, sizeof (prstat));
7450
7451 /* Do not overwrite the core signal if it
7452 has already been set by another thread. */
7453 if (elf_tdata (abfd)->core_signal == 0)
7454 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7455 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7456
7457 /* pr_who exists on:
7458 solaris 2.5+
7459 unixware 4.2
7460 pr_who doesn't exist on:
7461 linux 2.[01]
7462 */
7463 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7464 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7465 #endif
7466 }
7467 #endif /* HAVE_PRSTATUS32_T */
7468 else
7469 {
7470 /* Fail - we don't know how to handle any other
7471 note size (ie. data object type). */
7472 return TRUE;
7473 }
7474
7475 /* Make a ".reg/999" section and a ".reg" section. */
7476 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7477 size, note->descpos + offset);
7478 }
7479 #endif /* defined (HAVE_PRSTATUS_T) */
7480
7481 /* Create a pseudosection containing the exact contents of NOTE. */
7482 static bfd_boolean
7483 elfcore_make_note_pseudosection (bfd *abfd,
7484 char *name,
7485 Elf_Internal_Note *note)
7486 {
7487 return _bfd_elfcore_make_pseudosection (abfd, name,
7488 note->descsz, note->descpos);
7489 }
7490
7491 /* There isn't a consistent prfpregset_t across platforms,
7492 but it doesn't matter, because we don't have to pick this
7493 data structure apart. */
7494
7495 static bfd_boolean
7496 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7497 {
7498 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7499 }
7500
7501 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7502 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7503 literally. */
7504
7505 static bfd_boolean
7506 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7507 {
7508 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7509 }
7510
7511 #if defined (HAVE_PRPSINFO_T)
7512 typedef prpsinfo_t elfcore_psinfo_t;
7513 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7514 typedef prpsinfo32_t elfcore_psinfo32_t;
7515 #endif
7516 #endif
7517
7518 #if defined (HAVE_PSINFO_T)
7519 typedef psinfo_t elfcore_psinfo_t;
7520 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7521 typedef psinfo32_t elfcore_psinfo32_t;
7522 #endif
7523 #endif
7524
7525 /* return a malloc'ed copy of a string at START which is at
7526 most MAX bytes long, possibly without a terminating '\0'.
7527 the copy will always have a terminating '\0'. */
7528
7529 char *
7530 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7531 {
7532 char *dups;
7533 char *end = memchr (start, '\0', max);
7534 size_t len;
7535
7536 if (end == NULL)
7537 len = max;
7538 else
7539 len = end - start;
7540
7541 dups = bfd_alloc (abfd, len + 1);
7542 if (dups == NULL)
7543 return NULL;
7544
7545 memcpy (dups, start, len);
7546 dups[len] = '\0';
7547
7548 return dups;
7549 }
7550
7551 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7552 static bfd_boolean
7553 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7554 {
7555 if (note->descsz == sizeof (elfcore_psinfo_t))
7556 {
7557 elfcore_psinfo_t psinfo;
7558
7559 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7560
7561 elf_tdata (abfd)->core_program
7562 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7563 sizeof (psinfo.pr_fname));
7564
7565 elf_tdata (abfd)->core_command
7566 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7567 sizeof (psinfo.pr_psargs));
7568 }
7569 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7570 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7571 {
7572 /* 64-bit host, 32-bit corefile */
7573 elfcore_psinfo32_t psinfo;
7574
7575 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7576
7577 elf_tdata (abfd)->core_program
7578 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7579 sizeof (psinfo.pr_fname));
7580
7581 elf_tdata (abfd)->core_command
7582 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7583 sizeof (psinfo.pr_psargs));
7584 }
7585 #endif
7586
7587 else
7588 {
7589 /* Fail - we don't know how to handle any other
7590 note size (ie. data object type). */
7591 return TRUE;
7592 }
7593
7594 /* Note that for some reason, a spurious space is tacked
7595 onto the end of the args in some (at least one anyway)
7596 implementations, so strip it off if it exists. */
7597
7598 {
7599 char *command = elf_tdata (abfd)->core_command;
7600 int n = strlen (command);
7601
7602 if (0 < n && command[n - 1] == ' ')
7603 command[n - 1] = '\0';
7604 }
7605
7606 return TRUE;
7607 }
7608 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7609
7610 #if defined (HAVE_PSTATUS_T)
7611 static bfd_boolean
7612 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7613 {
7614 if (note->descsz == sizeof (pstatus_t)
7615 #if defined (HAVE_PXSTATUS_T)
7616 || note->descsz == sizeof (pxstatus_t)
7617 #endif
7618 )
7619 {
7620 pstatus_t pstat;
7621
7622 memcpy (&pstat, note->descdata, sizeof (pstat));
7623
7624 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7625 }
7626 #if defined (HAVE_PSTATUS32_T)
7627 else if (note->descsz == sizeof (pstatus32_t))
7628 {
7629 /* 64-bit host, 32-bit corefile */
7630 pstatus32_t pstat;
7631
7632 memcpy (&pstat, note->descdata, sizeof (pstat));
7633
7634 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7635 }
7636 #endif
7637 /* Could grab some more details from the "representative"
7638 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7639 NT_LWPSTATUS note, presumably. */
7640
7641 return TRUE;
7642 }
7643 #endif /* defined (HAVE_PSTATUS_T) */
7644
7645 #if defined (HAVE_LWPSTATUS_T)
7646 static bfd_boolean
7647 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7648 {
7649 lwpstatus_t lwpstat;
7650 char buf[100];
7651 char *name;
7652 size_t len;
7653 asection *sect;
7654
7655 if (note->descsz != sizeof (lwpstat)
7656 #if defined (HAVE_LWPXSTATUS_T)
7657 && note->descsz != sizeof (lwpxstatus_t)
7658 #endif
7659 )
7660 return TRUE;
7661
7662 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7663
7664 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7665 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7666
7667 /* Make a ".reg/999" section. */
7668
7669 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7670 len = strlen (buf) + 1;
7671 name = bfd_alloc (abfd, len);
7672 if (name == NULL)
7673 return FALSE;
7674 memcpy (name, buf, len);
7675
7676 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7677 if (sect == NULL)
7678 return FALSE;
7679
7680 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7681 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7682 sect->filepos = note->descpos
7683 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7684 #endif
7685
7686 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7687 sect->size = sizeof (lwpstat.pr_reg);
7688 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7689 #endif
7690
7691 sect->alignment_power = 2;
7692
7693 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7694 return FALSE;
7695
7696 /* Make a ".reg2/999" section */
7697
7698 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7699 len = strlen (buf) + 1;
7700 name = bfd_alloc (abfd, len);
7701 if (name == NULL)
7702 return FALSE;
7703 memcpy (name, buf, len);
7704
7705 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7706 if (sect == NULL)
7707 return FALSE;
7708
7709 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7710 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7711 sect->filepos = note->descpos
7712 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7713 #endif
7714
7715 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7716 sect->size = sizeof (lwpstat.pr_fpreg);
7717 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7718 #endif
7719
7720 sect->alignment_power = 2;
7721
7722 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7723 }
7724 #endif /* defined (HAVE_LWPSTATUS_T) */
7725
7726 #if defined (HAVE_WIN32_PSTATUS_T)
7727 static bfd_boolean
7728 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7729 {
7730 char buf[30];
7731 char *name;
7732 size_t len;
7733 asection *sect;
7734 win32_pstatus_t pstatus;
7735
7736 if (note->descsz < sizeof (pstatus))
7737 return TRUE;
7738
7739 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7740
7741 switch (pstatus.data_type)
7742 {
7743 case NOTE_INFO_PROCESS:
7744 /* FIXME: need to add ->core_command. */
7745 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7746 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7747 break;
7748
7749 case NOTE_INFO_THREAD:
7750 /* Make a ".reg/999" section. */
7751 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7752
7753 len = strlen (buf) + 1;
7754 name = bfd_alloc (abfd, len);
7755 if (name == NULL)
7756 return FALSE;
7757
7758 memcpy (name, buf, len);
7759
7760 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7761 if (sect == NULL)
7762 return FALSE;
7763
7764 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7765 sect->filepos = (note->descpos
7766 + offsetof (struct win32_pstatus,
7767 data.thread_info.thread_context));
7768 sect->alignment_power = 2;
7769
7770 if (pstatus.data.thread_info.is_active_thread)
7771 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7772 return FALSE;
7773 break;
7774
7775 case NOTE_INFO_MODULE:
7776 /* Make a ".module/xxxxxxxx" section. */
7777 sprintf (buf, ".module/%08lx",
7778 (long) pstatus.data.module_info.base_address);
7779
7780 len = strlen (buf) + 1;
7781 name = bfd_alloc (abfd, len);
7782 if (name == NULL)
7783 return FALSE;
7784
7785 memcpy (name, buf, len);
7786
7787 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
7788
7789 if (sect == NULL)
7790 return FALSE;
7791
7792 sect->size = note->descsz;
7793 sect->filepos = note->descpos;
7794 sect->alignment_power = 2;
7795 break;
7796
7797 default:
7798 return TRUE;
7799 }
7800
7801 return TRUE;
7802 }
7803 #endif /* HAVE_WIN32_PSTATUS_T */
7804
7805 static bfd_boolean
7806 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7807 {
7808 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7809
7810 switch (note->type)
7811 {
7812 default:
7813 return TRUE;
7814
7815 case NT_PRSTATUS:
7816 if (bed->elf_backend_grok_prstatus)
7817 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7818 return TRUE;
7819 #if defined (HAVE_PRSTATUS_T)
7820 return elfcore_grok_prstatus (abfd, note);
7821 #else
7822 return TRUE;
7823 #endif
7824
7825 #if defined (HAVE_PSTATUS_T)
7826 case NT_PSTATUS:
7827 return elfcore_grok_pstatus (abfd, note);
7828 #endif
7829
7830 #if defined (HAVE_LWPSTATUS_T)
7831 case NT_LWPSTATUS:
7832 return elfcore_grok_lwpstatus (abfd, note);
7833 #endif
7834
7835 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7836 return elfcore_grok_prfpreg (abfd, note);
7837
7838 #if defined (HAVE_WIN32_PSTATUS_T)
7839 case NT_WIN32PSTATUS:
7840 return elfcore_grok_win32pstatus (abfd, note);
7841 #endif
7842
7843 case NT_PRXFPREG: /* Linux SSE extension */
7844 if (note->namesz == 6
7845 && strcmp (note->namedata, "LINUX") == 0)
7846 return elfcore_grok_prxfpreg (abfd, note);
7847 else
7848 return TRUE;
7849
7850 case NT_PRPSINFO:
7851 case NT_PSINFO:
7852 if (bed->elf_backend_grok_psinfo)
7853 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7854 return TRUE;
7855 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7856 return elfcore_grok_psinfo (abfd, note);
7857 #else
7858 return TRUE;
7859 #endif
7860
7861 case NT_AUXV:
7862 {
7863 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
7864 SEC_HAS_CONTENTS);
7865
7866 if (sect == NULL)
7867 return FALSE;
7868 sect->size = note->descsz;
7869 sect->filepos = note->descpos;
7870 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7871
7872 return TRUE;
7873 }
7874 }
7875 }
7876
7877 static bfd_boolean
7878 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7879 {
7880 char *cp;
7881
7882 cp = strchr (note->namedata, '@');
7883 if (cp != NULL)
7884 {
7885 *lwpidp = atoi(cp + 1);
7886 return TRUE;
7887 }
7888 return FALSE;
7889 }
7890
7891 static bfd_boolean
7892 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7893 {
7894
7895 /* Signal number at offset 0x08. */
7896 elf_tdata (abfd)->core_signal
7897 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7898
7899 /* Process ID at offset 0x50. */
7900 elf_tdata (abfd)->core_pid
7901 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7902
7903 /* Command name at 0x7c (max 32 bytes, including nul). */
7904 elf_tdata (abfd)->core_command
7905 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7906
7907 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7908 note);
7909 }
7910
7911 static bfd_boolean
7912 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7913 {
7914 int lwp;
7915
7916 if (elfcore_netbsd_get_lwpid (note, &lwp))
7917 elf_tdata (abfd)->core_lwpid = lwp;
7918
7919 if (note->type == NT_NETBSDCORE_PROCINFO)
7920 {
7921 /* NetBSD-specific core "procinfo". Note that we expect to
7922 find this note before any of the others, which is fine,
7923 since the kernel writes this note out first when it
7924 creates a core file. */
7925
7926 return elfcore_grok_netbsd_procinfo (abfd, note);
7927 }
7928
7929 /* As of Jan 2002 there are no other machine-independent notes
7930 defined for NetBSD core files. If the note type is less
7931 than the start of the machine-dependent note types, we don't
7932 understand it. */
7933
7934 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7935 return TRUE;
7936
7937
7938 switch (bfd_get_arch (abfd))
7939 {
7940 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7941 PT_GETFPREGS == mach+2. */
7942
7943 case bfd_arch_alpha:
7944 case bfd_arch_sparc:
7945 switch (note->type)
7946 {
7947 case NT_NETBSDCORE_FIRSTMACH+0:
7948 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7949
7950 case NT_NETBSDCORE_FIRSTMACH+2:
7951 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7952
7953 default:
7954 return TRUE;
7955 }
7956
7957 /* On all other arch's, PT_GETREGS == mach+1 and
7958 PT_GETFPREGS == mach+3. */
7959
7960 default:
7961 switch (note->type)
7962 {
7963 case NT_NETBSDCORE_FIRSTMACH+1:
7964 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7965
7966 case NT_NETBSDCORE_FIRSTMACH+3:
7967 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7968
7969 default:
7970 return TRUE;
7971 }
7972 }
7973 /* NOTREACHED */
7974 }
7975
7976 static bfd_boolean
7977 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
7978 {
7979 void *ddata = note->descdata;
7980 char buf[100];
7981 char *name;
7982 asection *sect;
7983 short sig;
7984 unsigned flags;
7985
7986 /* nto_procfs_status 'pid' field is at offset 0. */
7987 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7988
7989 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7990 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7991
7992 /* nto_procfs_status 'flags' field is at offset 8. */
7993 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7994
7995 /* nto_procfs_status 'what' field is at offset 14. */
7996 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7997 {
7998 elf_tdata (abfd)->core_signal = sig;
7999 elf_tdata (abfd)->core_lwpid = *tid;
8000 }
8001
8002 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8003 do not come from signals so we make sure we set the current
8004 thread just in case. */
8005 if (flags & 0x00000080)
8006 elf_tdata (abfd)->core_lwpid = *tid;
8007
8008 /* Make a ".qnx_core_status/%d" section. */
8009 sprintf (buf, ".qnx_core_status/%ld", *tid);
8010
8011 name = bfd_alloc (abfd, strlen (buf) + 1);
8012 if (name == NULL)
8013 return FALSE;
8014 strcpy (name, buf);
8015
8016 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8017 if (sect == NULL)
8018 return FALSE;
8019
8020 sect->size = note->descsz;
8021 sect->filepos = note->descpos;
8022 sect->alignment_power = 2;
8023
8024 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8025 }
8026
8027 static bfd_boolean
8028 elfcore_grok_nto_regs (bfd *abfd,
8029 Elf_Internal_Note *note,
8030 long tid,
8031 char *base)
8032 {
8033 char buf[100];
8034 char *name;
8035 asection *sect;
8036
8037 /* Make a "(base)/%d" section. */
8038 sprintf (buf, "%s/%ld", base, tid);
8039
8040 name = bfd_alloc (abfd, strlen (buf) + 1);
8041 if (name == NULL)
8042 return FALSE;
8043 strcpy (name, buf);
8044
8045 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8046 if (sect == NULL)
8047 return FALSE;
8048
8049 sect->size = note->descsz;
8050 sect->filepos = note->descpos;
8051 sect->alignment_power = 2;
8052
8053 /* This is the current thread. */
8054 if (elf_tdata (abfd)->core_lwpid == tid)
8055 return elfcore_maybe_make_sect (abfd, base, sect);
8056
8057 return TRUE;
8058 }
8059
8060 #define BFD_QNT_CORE_INFO 7
8061 #define BFD_QNT_CORE_STATUS 8
8062 #define BFD_QNT_CORE_GREG 9
8063 #define BFD_QNT_CORE_FPREG 10
8064
8065 static bfd_boolean
8066 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8067 {
8068 /* Every GREG section has a STATUS section before it. Store the
8069 tid from the previous call to pass down to the next gregs
8070 function. */
8071 static long tid = 1;
8072
8073 switch (note->type)
8074 {
8075 case BFD_QNT_CORE_INFO:
8076 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8077 case BFD_QNT_CORE_STATUS:
8078 return elfcore_grok_nto_status (abfd, note, &tid);
8079 case BFD_QNT_CORE_GREG:
8080 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8081 case BFD_QNT_CORE_FPREG:
8082 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8083 default:
8084 return TRUE;
8085 }
8086 }
8087
8088 /* Function: elfcore_write_note
8089
8090 Inputs:
8091 buffer to hold note, and current size of buffer
8092 name of note
8093 type of note
8094 data for note
8095 size of data for note
8096
8097 Writes note to end of buffer. ELF64 notes are written exactly as
8098 for ELF32, despite the current (as of 2006) ELF gabi specifying
8099 that they ought to have 8-byte namesz and descsz field, and have
8100 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8101
8102 Return:
8103 Pointer to realloc'd buffer, *BUFSIZ updated. */
8104
8105 char *
8106 elfcore_write_note (bfd *abfd,
8107 char *buf,
8108 int *bufsiz,
8109 const char *name,
8110 int type,
8111 const void *input,
8112 int size)
8113 {
8114 Elf_External_Note *xnp;
8115 size_t namesz;
8116 size_t newspace;
8117 char *dest;
8118
8119 namesz = 0;
8120 if (name != NULL)
8121 namesz = strlen (name) + 1;
8122
8123 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8124
8125 buf = realloc (buf, *bufsiz + newspace);
8126 dest = buf + *bufsiz;
8127 *bufsiz += newspace;
8128 xnp = (Elf_External_Note *) dest;
8129 H_PUT_32 (abfd, namesz, xnp->namesz);
8130 H_PUT_32 (abfd, size, xnp->descsz);
8131 H_PUT_32 (abfd, type, xnp->type);
8132 dest = xnp->name;
8133 if (name != NULL)
8134 {
8135 memcpy (dest, name, namesz);
8136 dest += namesz;
8137 while (namesz & 3)
8138 {
8139 *dest++ = '\0';
8140 ++namesz;
8141 }
8142 }
8143 memcpy (dest, input, size);
8144 dest += size;
8145 while (size & 3)
8146 {
8147 *dest++ = '\0';
8148 ++size;
8149 }
8150 return buf;
8151 }
8152
8153 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8154 char *
8155 elfcore_write_prpsinfo (bfd *abfd,
8156 char *buf,
8157 int *bufsiz,
8158 const char *fname,
8159 const char *psargs)
8160 {
8161 int note_type;
8162 char *note_name = "CORE";
8163
8164 #if defined (HAVE_PSINFO_T)
8165 psinfo_t data;
8166 note_type = NT_PSINFO;
8167 #else
8168 prpsinfo_t data;
8169 note_type = NT_PRPSINFO;
8170 #endif
8171
8172 memset (&data, 0, sizeof (data));
8173 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8174 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8175 return elfcore_write_note (abfd, buf, bufsiz,
8176 note_name, note_type, &data, sizeof (data));
8177 }
8178 #endif /* PSINFO_T or PRPSINFO_T */
8179
8180 #if defined (HAVE_PRSTATUS_T)
8181 char *
8182 elfcore_write_prstatus (bfd *abfd,
8183 char *buf,
8184 int *bufsiz,
8185 long pid,
8186 int cursig,
8187 const void *gregs)
8188 {
8189 prstatus_t prstat;
8190 char *note_name = "CORE";
8191
8192 memset (&prstat, 0, sizeof (prstat));
8193 prstat.pr_pid = pid;
8194 prstat.pr_cursig = cursig;
8195 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8196 return elfcore_write_note (abfd, buf, bufsiz,
8197 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8198 }
8199 #endif /* HAVE_PRSTATUS_T */
8200
8201 #if defined (HAVE_LWPSTATUS_T)
8202 char *
8203 elfcore_write_lwpstatus (bfd *abfd,
8204 char *buf,
8205 int *bufsiz,
8206 long pid,
8207 int cursig,
8208 const void *gregs)
8209 {
8210 lwpstatus_t lwpstat;
8211 char *note_name = "CORE";
8212
8213 memset (&lwpstat, 0, sizeof (lwpstat));
8214 lwpstat.pr_lwpid = pid >> 16;
8215 lwpstat.pr_cursig = cursig;
8216 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8217 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8218 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8219 #if !defined(gregs)
8220 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8221 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8222 #else
8223 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8224 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8225 #endif
8226 #endif
8227 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8228 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8229 }
8230 #endif /* HAVE_LWPSTATUS_T */
8231
8232 #if defined (HAVE_PSTATUS_T)
8233 char *
8234 elfcore_write_pstatus (bfd *abfd,
8235 char *buf,
8236 int *bufsiz,
8237 long pid,
8238 int cursig ATTRIBUTE_UNUSED,
8239 const void *gregs ATTRIBUTE_UNUSED)
8240 {
8241 pstatus_t pstat;
8242 char *note_name = "CORE";
8243
8244 memset (&pstat, 0, sizeof (pstat));
8245 pstat.pr_pid = pid & 0xffff;
8246 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8247 NT_PSTATUS, &pstat, sizeof (pstat));
8248 return buf;
8249 }
8250 #endif /* HAVE_PSTATUS_T */
8251
8252 char *
8253 elfcore_write_prfpreg (bfd *abfd,
8254 char *buf,
8255 int *bufsiz,
8256 const void *fpregs,
8257 int size)
8258 {
8259 char *note_name = "CORE";
8260 return elfcore_write_note (abfd, buf, bufsiz,
8261 note_name, NT_FPREGSET, fpregs, size);
8262 }
8263
8264 char *
8265 elfcore_write_prxfpreg (bfd *abfd,
8266 char *buf,
8267 int *bufsiz,
8268 const void *xfpregs,
8269 int size)
8270 {
8271 char *note_name = "LINUX";
8272 return elfcore_write_note (abfd, buf, bufsiz,
8273 note_name, NT_PRXFPREG, xfpregs, size);
8274 }
8275
8276 static bfd_boolean
8277 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8278 {
8279 char *buf;
8280 char *p;
8281
8282 if (size <= 0)
8283 return TRUE;
8284
8285 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8286 return FALSE;
8287
8288 buf = bfd_malloc (size);
8289 if (buf == NULL)
8290 return FALSE;
8291
8292 if (bfd_bread (buf, size, abfd) != size)
8293 {
8294 error:
8295 free (buf);
8296 return FALSE;
8297 }
8298
8299 p = buf;
8300 while (p < buf + size)
8301 {
8302 /* FIXME: bad alignment assumption. */
8303 Elf_External_Note *xnp = (Elf_External_Note *) p;
8304 Elf_Internal_Note in;
8305
8306 in.type = H_GET_32 (abfd, xnp->type);
8307
8308 in.namesz = H_GET_32 (abfd, xnp->namesz);
8309 in.namedata = xnp->name;
8310
8311 in.descsz = H_GET_32 (abfd, xnp->descsz);
8312 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8313 in.descpos = offset + (in.descdata - buf);
8314
8315 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
8316 {
8317 if (! elfcore_grok_netbsd_note (abfd, &in))
8318 goto error;
8319 }
8320 else if (CONST_STRNEQ (in.namedata, "QNX"))
8321 {
8322 if (! elfcore_grok_nto_note (abfd, &in))
8323 goto error;
8324 }
8325 else
8326 {
8327 if (! elfcore_grok_note (abfd, &in))
8328 goto error;
8329 }
8330
8331 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8332 }
8333
8334 free (buf);
8335 return TRUE;
8336 }
8337 \f
8338 /* Providing external access to the ELF program header table. */
8339
8340 /* Return an upper bound on the number of bytes required to store a
8341 copy of ABFD's program header table entries. Return -1 if an error
8342 occurs; bfd_get_error will return an appropriate code. */
8343
8344 long
8345 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8346 {
8347 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8348 {
8349 bfd_set_error (bfd_error_wrong_format);
8350 return -1;
8351 }
8352
8353 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8354 }
8355
8356 /* Copy ABFD's program header table entries to *PHDRS. The entries
8357 will be stored as an array of Elf_Internal_Phdr structures, as
8358 defined in include/elf/internal.h. To find out how large the
8359 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8360
8361 Return the number of program header table entries read, or -1 if an
8362 error occurs; bfd_get_error will return an appropriate code. */
8363
8364 int
8365 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8366 {
8367 int num_phdrs;
8368
8369 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8370 {
8371 bfd_set_error (bfd_error_wrong_format);
8372 return -1;
8373 }
8374
8375 num_phdrs = elf_elfheader (abfd)->e_phnum;
8376 memcpy (phdrs, elf_tdata (abfd)->phdr,
8377 num_phdrs * sizeof (Elf_Internal_Phdr));
8378
8379 return num_phdrs;
8380 }
8381
8382 void
8383 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8384 {
8385 #ifdef BFD64
8386 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8387
8388 i_ehdrp = elf_elfheader (abfd);
8389 if (i_ehdrp == NULL)
8390 sprintf_vma (buf, value);
8391 else
8392 {
8393 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8394 {
8395 #if BFD_HOST_64BIT_LONG
8396 sprintf (buf, "%016lx", value);
8397 #else
8398 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8399 _bfd_int64_low (value));
8400 #endif
8401 }
8402 else
8403 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8404 }
8405 #else
8406 sprintf_vma (buf, value);
8407 #endif
8408 }
8409
8410 void
8411 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8412 {
8413 #ifdef BFD64
8414 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8415
8416 i_ehdrp = elf_elfheader (abfd);
8417 if (i_ehdrp == NULL)
8418 fprintf_vma ((FILE *) stream, value);
8419 else
8420 {
8421 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8422 {
8423 #if BFD_HOST_64BIT_LONG
8424 fprintf ((FILE *) stream, "%016lx", value);
8425 #else
8426 fprintf ((FILE *) stream, "%08lx%08lx",
8427 _bfd_int64_high (value), _bfd_int64_low (value));
8428 #endif
8429 }
8430 else
8431 fprintf ((FILE *) stream, "%08lx",
8432 (unsigned long) (value & 0xffffffff));
8433 }
8434 #else
8435 fprintf_vma ((FILE *) stream, value);
8436 #endif
8437 }
8438
8439 enum elf_reloc_type_class
8440 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8441 {
8442 return reloc_class_normal;
8443 }
8444
8445 /* For RELA architectures, return the relocation value for a
8446 relocation against a local symbol. */
8447
8448 bfd_vma
8449 _bfd_elf_rela_local_sym (bfd *abfd,
8450 Elf_Internal_Sym *sym,
8451 asection **psec,
8452 Elf_Internal_Rela *rel)
8453 {
8454 asection *sec = *psec;
8455 bfd_vma relocation;
8456
8457 relocation = (sec->output_section->vma
8458 + sec->output_offset
8459 + sym->st_value);
8460 if ((sec->flags & SEC_MERGE)
8461 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8462 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8463 {
8464 rel->r_addend =
8465 _bfd_merged_section_offset (abfd, psec,
8466 elf_section_data (sec)->sec_info,
8467 sym->st_value + rel->r_addend);
8468 if (sec != *psec)
8469 {
8470 /* If we have changed the section, and our original section is
8471 marked with SEC_EXCLUDE, it means that the original
8472 SEC_MERGE section has been completely subsumed in some
8473 other SEC_MERGE section. In this case, we need to leave
8474 some info around for --emit-relocs. */
8475 if ((sec->flags & SEC_EXCLUDE) != 0)
8476 sec->kept_section = *psec;
8477 sec = *psec;
8478 }
8479 rel->r_addend -= relocation;
8480 rel->r_addend += sec->output_section->vma + sec->output_offset;
8481 }
8482 return relocation;
8483 }
8484
8485 bfd_vma
8486 _bfd_elf_rel_local_sym (bfd *abfd,
8487 Elf_Internal_Sym *sym,
8488 asection **psec,
8489 bfd_vma addend)
8490 {
8491 asection *sec = *psec;
8492
8493 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8494 return sym->st_value + addend;
8495
8496 return _bfd_merged_section_offset (abfd, psec,
8497 elf_section_data (sec)->sec_info,
8498 sym->st_value + addend);
8499 }
8500
8501 bfd_vma
8502 _bfd_elf_section_offset (bfd *abfd,
8503 struct bfd_link_info *info,
8504 asection *sec,
8505 bfd_vma offset)
8506 {
8507 switch (sec->sec_info_type)
8508 {
8509 case ELF_INFO_TYPE_STABS:
8510 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8511 offset);
8512 case ELF_INFO_TYPE_EH_FRAME:
8513 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8514 default:
8515 return offset;
8516 }
8517 }
8518 \f
8519 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8520 reconstruct an ELF file by reading the segments out of remote memory
8521 based on the ELF file header at EHDR_VMA and the ELF program headers it
8522 points to. If not null, *LOADBASEP is filled in with the difference
8523 between the VMAs from which the segments were read, and the VMAs the
8524 file headers (and hence BFD's idea of each section's VMA) put them at.
8525
8526 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8527 remote memory at target address VMA into the local buffer at MYADDR; it
8528 should return zero on success or an `errno' code on failure. TEMPL must
8529 be a BFD for an ELF target with the word size and byte order found in
8530 the remote memory. */
8531
8532 bfd *
8533 bfd_elf_bfd_from_remote_memory
8534 (bfd *templ,
8535 bfd_vma ehdr_vma,
8536 bfd_vma *loadbasep,
8537 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8538 {
8539 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8540 (templ, ehdr_vma, loadbasep, target_read_memory);
8541 }
8542 \f
8543 long
8544 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8545 long symcount ATTRIBUTE_UNUSED,
8546 asymbol **syms ATTRIBUTE_UNUSED,
8547 long dynsymcount,
8548 asymbol **dynsyms,
8549 asymbol **ret)
8550 {
8551 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8552 asection *relplt;
8553 asymbol *s;
8554 const char *relplt_name;
8555 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8556 arelent *p;
8557 long count, i, n;
8558 size_t size;
8559 Elf_Internal_Shdr *hdr;
8560 char *names;
8561 asection *plt;
8562
8563 *ret = NULL;
8564
8565 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8566 return 0;
8567
8568 if (dynsymcount <= 0)
8569 return 0;
8570
8571 if (!bed->plt_sym_val)
8572 return 0;
8573
8574 relplt_name = bed->relplt_name;
8575 if (relplt_name == NULL)
8576 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8577 relplt = bfd_get_section_by_name (abfd, relplt_name);
8578 if (relplt == NULL)
8579 return 0;
8580
8581 hdr = &elf_section_data (relplt)->this_hdr;
8582 if (hdr->sh_link != elf_dynsymtab (abfd)
8583 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8584 return 0;
8585
8586 plt = bfd_get_section_by_name (abfd, ".plt");
8587 if (plt == NULL)
8588 return 0;
8589
8590 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8591 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8592 return -1;
8593
8594 count = relplt->size / hdr->sh_entsize;
8595 size = count * sizeof (asymbol);
8596 p = relplt->relocation;
8597 for (i = 0; i < count; i++, s++, p++)
8598 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8599
8600 s = *ret = bfd_malloc (size);
8601 if (s == NULL)
8602 return -1;
8603
8604 names = (char *) (s + count);
8605 p = relplt->relocation;
8606 n = 0;
8607 for (i = 0; i < count; i++, s++, p++)
8608 {
8609 size_t len;
8610 bfd_vma addr;
8611
8612 addr = bed->plt_sym_val (i, plt, p);
8613 if (addr == (bfd_vma) -1)
8614 continue;
8615
8616 *s = **p->sym_ptr_ptr;
8617 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8618 we are defining a symbol, ensure one of them is set. */
8619 if ((s->flags & BSF_LOCAL) == 0)
8620 s->flags |= BSF_GLOBAL;
8621 s->section = plt;
8622 s->value = addr - plt->vma;
8623 s->name = names;
8624 len = strlen ((*p->sym_ptr_ptr)->name);
8625 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8626 names += len;
8627 memcpy (names, "@plt", sizeof ("@plt"));
8628 names += sizeof ("@plt");
8629 ++n;
8630 }
8631
8632 return n;
8633 }
8634
8635 /* Sort symbol by binding and section. We want to put definitions
8636 sorted by section at the beginning. */
8637
8638 static int
8639 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8640 {
8641 const Elf_Internal_Sym *s1;
8642 const Elf_Internal_Sym *s2;
8643 int shndx;
8644
8645 /* Make sure that undefined symbols are at the end. */
8646 s1 = (const Elf_Internal_Sym *) arg1;
8647 if (s1->st_shndx == SHN_UNDEF)
8648 return 1;
8649 s2 = (const Elf_Internal_Sym *) arg2;
8650 if (s2->st_shndx == SHN_UNDEF)
8651 return -1;
8652
8653 /* Sorted by section index. */
8654 shndx = s1->st_shndx - s2->st_shndx;
8655 if (shndx != 0)
8656 return shndx;
8657
8658 /* Sorted by binding. */
8659 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8660 }
8661
8662 struct elf_symbol
8663 {
8664 Elf_Internal_Sym *sym;
8665 const char *name;
8666 };
8667
8668 static int
8669 elf_sym_name_compare (const void *arg1, const void *arg2)
8670 {
8671 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8672 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8673 return strcmp (s1->name, s2->name);
8674 }
8675
8676 /* Check if 2 sections define the same set of local and global
8677 symbols. */
8678
8679 bfd_boolean
8680 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8681 struct bfd_link_info *info)
8682 {
8683 bfd *bfd1, *bfd2;
8684 const struct elf_backend_data *bed1, *bed2;
8685 Elf_Internal_Shdr *hdr1, *hdr2;
8686 bfd_size_type symcount1, symcount2;
8687 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8688 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8689 Elf_Internal_Sym *isymend;
8690 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8691 bfd_size_type count1, count2, i;
8692 int shndx1, shndx2;
8693 bfd_boolean result;
8694
8695 bfd1 = sec1->owner;
8696 bfd2 = sec2->owner;
8697
8698 /* If both are .gnu.linkonce sections, they have to have the same
8699 section name. */
8700 if (CONST_STRNEQ (sec1->name, ".gnu.linkonce")
8701 && CONST_STRNEQ (sec2->name, ".gnu.linkonce"))
8702 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8703 sec2->name + sizeof ".gnu.linkonce") == 0;
8704
8705 /* Both sections have to be in ELF. */
8706 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8707 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8708 return FALSE;
8709
8710 if (elf_section_type (sec1) != elf_section_type (sec2))
8711 return FALSE;
8712
8713 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8714 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8715 {
8716 /* If both are members of section groups, they have to have the
8717 same group name. */
8718 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8719 return FALSE;
8720 }
8721
8722 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8723 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8724 if (shndx1 == -1 || shndx2 == -1)
8725 return FALSE;
8726
8727 bed1 = get_elf_backend_data (bfd1);
8728 bed2 = get_elf_backend_data (bfd2);
8729 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8730 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8731 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8732 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8733
8734 if (symcount1 == 0 || symcount2 == 0)
8735 return FALSE;
8736
8737 result = FALSE;
8738 isymbuf1 = elf_tdata (bfd1)->symbuf;
8739 isymbuf2 = elf_tdata (bfd2)->symbuf;
8740
8741 if (isymbuf1 == NULL)
8742 {
8743 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8744 NULL, NULL, NULL);
8745 if (isymbuf1 == NULL)
8746 goto done;
8747 /* Sort symbols by binding and section. Global definitions are at
8748 the beginning. */
8749 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8750 elf_sort_elf_symbol);
8751 if (!info->reduce_memory_overheads)
8752 elf_tdata (bfd1)->symbuf = isymbuf1;
8753 }
8754
8755 if (isymbuf2 == NULL)
8756 {
8757 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8758 NULL, NULL, NULL);
8759 if (isymbuf2 == NULL)
8760 goto done;
8761 /* Sort symbols by binding and section. Global definitions are at
8762 the beginning. */
8763 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8764 elf_sort_elf_symbol);
8765 if (!info->reduce_memory_overheads)
8766 elf_tdata (bfd2)->symbuf = isymbuf2;
8767 }
8768
8769 /* Count definitions in the section. */
8770 count1 = 0;
8771 for (isym = isymbuf1, isymend = isym + symcount1;
8772 isym < isymend; isym++)
8773 {
8774 if (isym->st_shndx == (unsigned int) shndx1)
8775 {
8776 if (count1 == 0)
8777 isymstart1 = isym;
8778 count1++;
8779 }
8780
8781 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8782 break;
8783 }
8784
8785 count2 = 0;
8786 for (isym = isymbuf2, isymend = isym + symcount2;
8787 isym < isymend; isym++)
8788 {
8789 if (isym->st_shndx == (unsigned int) shndx2)
8790 {
8791 if (count2 == 0)
8792 isymstart2 = isym;
8793 count2++;
8794 }
8795
8796 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8797 break;
8798 }
8799
8800 if (count1 == 0 || count2 == 0 || count1 != count2)
8801 goto done;
8802
8803 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8804 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8805
8806 if (symtable1 == NULL || symtable2 == NULL)
8807 goto done;
8808
8809 symp = symtable1;
8810 for (isym = isymstart1, isymend = isym + count1;
8811 isym < isymend; isym++)
8812 {
8813 symp->sym = isym;
8814 symp->name = bfd_elf_string_from_elf_section (bfd1,
8815 hdr1->sh_link,
8816 isym->st_name);
8817 symp++;
8818 }
8819
8820 symp = symtable2;
8821 for (isym = isymstart2, isymend = isym + count1;
8822 isym < isymend; isym++)
8823 {
8824 symp->sym = isym;
8825 symp->name = bfd_elf_string_from_elf_section (bfd2,
8826 hdr2->sh_link,
8827 isym->st_name);
8828 symp++;
8829 }
8830
8831 /* Sort symbol by name. */
8832 qsort (symtable1, count1, sizeof (struct elf_symbol),
8833 elf_sym_name_compare);
8834 qsort (symtable2, count1, sizeof (struct elf_symbol),
8835 elf_sym_name_compare);
8836
8837 for (i = 0; i < count1; i++)
8838 /* Two symbols must have the same binding, type and name. */
8839 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8840 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8841 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8842 goto done;
8843
8844 result = TRUE;
8845
8846 done:
8847 if (symtable1)
8848 free (symtable1);
8849 if (symtable2)
8850 free (symtable2);
8851 if (info->reduce_memory_overheads)
8852 {
8853 if (isymbuf1)
8854 free (isymbuf1);
8855 if (isymbuf2)
8856 free (isymbuf2);
8857 }
8858
8859 return result;
8860 }
8861
8862 /* It is only used by x86-64 so far. */
8863 asection _bfd_elf_large_com_section
8864 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8865 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
8866
8867 /* Return TRUE if 2 section types are compatible. */
8868
8869 bfd_boolean
8870 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8871 bfd *bbfd, const asection *bsec)
8872 {
8873 if (asec == NULL
8874 || bsec == NULL
8875 || abfd->xvec->flavour != bfd_target_elf_flavour
8876 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8877 return TRUE;
8878
8879 return elf_section_type (asec) == elf_section_type (bsec);
8880 }