]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf.c
2006-04-25 H.J. Lu <hongjiu.lu@intel.com>
[thirdparty/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /*
23 SECTION
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 bfd_boolean
210 bfd_elf_mkobject (bfd *abfd)
211 {
212 /* This just does initialization. */
213 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
214 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
215 if (elf_tdata (abfd) == 0)
216 return FALSE;
217 /* Since everything is done at close time, do we need any
218 initialization? */
219
220 return TRUE;
221 }
222
223 bfd_boolean
224 bfd_elf_mkcorefile (bfd *abfd)
225 {
226 /* I think this can be done just like an object file. */
227 return bfd_elf_mkobject (abfd);
228 }
229
230 char *
231 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
232 {
233 Elf_Internal_Shdr **i_shdrp;
234 bfd_byte *shstrtab = NULL;
235 file_ptr offset;
236 bfd_size_type shstrtabsize;
237
238 i_shdrp = elf_elfsections (abfd);
239 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
240 return NULL;
241
242 shstrtab = i_shdrp[shindex]->contents;
243 if (shstrtab == NULL)
244 {
245 /* No cached one, attempt to read, and cache what we read. */
246 offset = i_shdrp[shindex]->sh_offset;
247 shstrtabsize = i_shdrp[shindex]->sh_size;
248
249 /* Allocate and clear an extra byte at the end, to prevent crashes
250 in case the string table is not terminated. */
251 if (shstrtabsize + 1 == 0
252 || (shstrtab = bfd_alloc (abfd, shstrtabsize + 1)) == NULL
253 || bfd_seek (abfd, offset, SEEK_SET) != 0)
254 shstrtab = NULL;
255 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
256 {
257 if (bfd_get_error () != bfd_error_system_call)
258 bfd_set_error (bfd_error_file_truncated);
259 shstrtab = NULL;
260 }
261 else
262 shstrtab[shstrtabsize] = '\0';
263 i_shdrp[shindex]->contents = shstrtab;
264 }
265 return (char *) shstrtab;
266 }
267
268 char *
269 bfd_elf_string_from_elf_section (bfd *abfd,
270 unsigned int shindex,
271 unsigned int strindex)
272 {
273 Elf_Internal_Shdr *hdr;
274
275 if (strindex == 0)
276 return "";
277
278 hdr = elf_elfsections (abfd)[shindex];
279
280 if (hdr->contents == NULL
281 && bfd_elf_get_str_section (abfd, shindex) == NULL)
282 return NULL;
283
284 if (strindex >= hdr->sh_size)
285 {
286 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
287 (*_bfd_error_handler)
288 (_("%B: invalid string offset %u >= %lu for section `%s'"),
289 abfd, strindex, (unsigned long) hdr->sh_size,
290 (shindex == shstrndx && strindex == hdr->sh_name
291 ? ".shstrtab"
292 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
293 return "";
294 }
295
296 return ((char *) hdr->contents) + strindex;
297 }
298
299 /* Read and convert symbols to internal format.
300 SYMCOUNT specifies the number of symbols to read, starting from
301 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
302 are non-NULL, they are used to store the internal symbols, external
303 symbols, and symbol section index extensions, respectively. */
304
305 Elf_Internal_Sym *
306 bfd_elf_get_elf_syms (bfd *ibfd,
307 Elf_Internal_Shdr *symtab_hdr,
308 size_t symcount,
309 size_t symoffset,
310 Elf_Internal_Sym *intsym_buf,
311 void *extsym_buf,
312 Elf_External_Sym_Shndx *extshndx_buf)
313 {
314 Elf_Internal_Shdr *shndx_hdr;
315 void *alloc_ext;
316 const bfd_byte *esym;
317 Elf_External_Sym_Shndx *alloc_extshndx;
318 Elf_External_Sym_Shndx *shndx;
319 Elf_Internal_Sym *isym;
320 Elf_Internal_Sym *isymend;
321 const struct elf_backend_data *bed;
322 size_t extsym_size;
323 bfd_size_type amt;
324 file_ptr pos;
325
326 if (symcount == 0)
327 return intsym_buf;
328
329 /* Normal syms might have section extension entries. */
330 shndx_hdr = NULL;
331 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
332 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
333
334 /* Read the symbols. */
335 alloc_ext = NULL;
336 alloc_extshndx = NULL;
337 bed = get_elf_backend_data (ibfd);
338 extsym_size = bed->s->sizeof_sym;
339 amt = symcount * extsym_size;
340 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
341 if (extsym_buf == NULL)
342 {
343 alloc_ext = bfd_malloc2 (symcount, extsym_size);
344 extsym_buf = alloc_ext;
345 }
346 if (extsym_buf == NULL
347 || bfd_seek (ibfd, pos, SEEK_SET) != 0
348 || bfd_bread (extsym_buf, amt, ibfd) != amt)
349 {
350 intsym_buf = NULL;
351 goto out;
352 }
353
354 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
355 extshndx_buf = NULL;
356 else
357 {
358 amt = symcount * sizeof (Elf_External_Sym_Shndx);
359 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
360 if (extshndx_buf == NULL)
361 {
362 alloc_extshndx = bfd_malloc2 (symcount,
363 sizeof (Elf_External_Sym_Shndx));
364 extshndx_buf = alloc_extshndx;
365 }
366 if (extshndx_buf == NULL
367 || bfd_seek (ibfd, pos, SEEK_SET) != 0
368 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
369 {
370 intsym_buf = NULL;
371 goto out;
372 }
373 }
374
375 if (intsym_buf == NULL)
376 {
377 intsym_buf = bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
378 if (intsym_buf == NULL)
379 goto out;
380 }
381
382 /* Convert the symbols to internal form. */
383 isymend = intsym_buf + symcount;
384 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
385 isym < isymend;
386 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
387 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
388
389 out:
390 if (alloc_ext != NULL)
391 free (alloc_ext);
392 if (alloc_extshndx != NULL)
393 free (alloc_extshndx);
394
395 return intsym_buf;
396 }
397
398 /* Look up a symbol name. */
399 const char *
400 bfd_elf_sym_name (bfd *abfd,
401 Elf_Internal_Shdr *symtab_hdr,
402 Elf_Internal_Sym *isym,
403 asection *sym_sec)
404 {
405 const char *name;
406 unsigned int iname = isym->st_name;
407 unsigned int shindex = symtab_hdr->sh_link;
408
409 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
410 /* Check for a bogus st_shndx to avoid crashing. */
411 && isym->st_shndx < elf_numsections (abfd)
412 && !(isym->st_shndx >= SHN_LORESERVE && isym->st_shndx <= SHN_HIRESERVE))
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 if (name == NULL)
420 name = "(null)";
421 else if (sym_sec && *name == '\0')
422 name = bfd_section_name (abfd, sym_sec);
423
424 return name;
425 }
426
427 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
428 sections. The first element is the flags, the rest are section
429 pointers. */
430
431 typedef union elf_internal_group {
432 Elf_Internal_Shdr *shdr;
433 unsigned int flags;
434 } Elf_Internal_Group;
435
436 /* Return the name of the group signature symbol. Why isn't the
437 signature just a string? */
438
439 static const char *
440 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
441 {
442 Elf_Internal_Shdr *hdr;
443 unsigned char esym[sizeof (Elf64_External_Sym)];
444 Elf_External_Sym_Shndx eshndx;
445 Elf_Internal_Sym isym;
446
447 /* First we need to ensure the symbol table is available. Make sure
448 that it is a symbol table section. */
449 hdr = elf_elfsections (abfd) [ghdr->sh_link];
450 if (hdr->sh_type != SHT_SYMTAB
451 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
452 return NULL;
453
454 /* Go read the symbol. */
455 hdr = &elf_tdata (abfd)->symtab_hdr;
456 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
457 &isym, esym, &eshndx) == NULL)
458 return NULL;
459
460 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
461 }
462
463 /* Set next_in_group list pointer, and group name for NEWSECT. */
464
465 static bfd_boolean
466 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
467 {
468 unsigned int num_group = elf_tdata (abfd)->num_group;
469
470 /* If num_group is zero, read in all SHT_GROUP sections. The count
471 is set to -1 if there are no SHT_GROUP sections. */
472 if (num_group == 0)
473 {
474 unsigned int i, shnum;
475
476 /* First count the number of groups. If we have a SHT_GROUP
477 section with just a flag word (ie. sh_size is 4), ignore it. */
478 shnum = elf_numsections (abfd);
479 num_group = 0;
480 for (i = 0; i < shnum; i++)
481 {
482 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
483 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
484 num_group += 1;
485 }
486
487 if (num_group == 0)
488 {
489 num_group = (unsigned) -1;
490 elf_tdata (abfd)->num_group = num_group;
491 }
492 else
493 {
494 /* We keep a list of elf section headers for group sections,
495 so we can find them quickly. */
496 bfd_size_type amt;
497
498 elf_tdata (abfd)->num_group = num_group;
499 elf_tdata (abfd)->group_sect_ptr
500 = bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
501 if (elf_tdata (abfd)->group_sect_ptr == NULL)
502 return FALSE;
503
504 num_group = 0;
505 for (i = 0; i < shnum; i++)
506 {
507 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
508 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
509 {
510 unsigned char *src;
511 Elf_Internal_Group *dest;
512
513 /* Add to list of sections. */
514 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
515 num_group += 1;
516
517 /* Read the raw contents. */
518 BFD_ASSERT (sizeof (*dest) >= 4);
519 amt = shdr->sh_size * sizeof (*dest) / 4;
520 shdr->contents = bfd_alloc2 (abfd, shdr->sh_size,
521 sizeof (*dest) / 4);
522 if (shdr->contents == NULL
523 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
524 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
525 != shdr->sh_size))
526 return FALSE;
527
528 /* Translate raw contents, a flag word followed by an
529 array of elf section indices all in target byte order,
530 to the flag word followed by an array of elf section
531 pointers. */
532 src = shdr->contents + shdr->sh_size;
533 dest = (Elf_Internal_Group *) (shdr->contents + amt);
534 while (1)
535 {
536 unsigned int idx;
537
538 src -= 4;
539 --dest;
540 idx = H_GET_32 (abfd, src);
541 if (src == shdr->contents)
542 {
543 dest->flags = idx;
544 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
545 shdr->bfd_section->flags
546 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
547 break;
548 }
549 if (idx >= shnum)
550 {
551 ((*_bfd_error_handler)
552 (_("%B: invalid SHT_GROUP entry"), abfd));
553 idx = 0;
554 }
555 dest->shdr = elf_elfsections (abfd)[idx];
556 }
557 }
558 }
559 }
560 }
561
562 if (num_group != (unsigned) -1)
563 {
564 unsigned int i;
565
566 for (i = 0; i < num_group; i++)
567 {
568 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
569 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
570 unsigned int n_elt = shdr->sh_size / 4;
571
572 /* Look through this group's sections to see if current
573 section is a member. */
574 while (--n_elt != 0)
575 if ((++idx)->shdr == hdr)
576 {
577 asection *s = NULL;
578
579 /* We are a member of this group. Go looking through
580 other members to see if any others are linked via
581 next_in_group. */
582 idx = (Elf_Internal_Group *) shdr->contents;
583 n_elt = shdr->sh_size / 4;
584 while (--n_elt != 0)
585 if ((s = (++idx)->shdr->bfd_section) != NULL
586 && elf_next_in_group (s) != NULL)
587 break;
588 if (n_elt != 0)
589 {
590 /* Snarf the group name from other member, and
591 insert current section in circular list. */
592 elf_group_name (newsect) = elf_group_name (s);
593 elf_next_in_group (newsect) = elf_next_in_group (s);
594 elf_next_in_group (s) = newsect;
595 }
596 else
597 {
598 const char *gname;
599
600 gname = group_signature (abfd, shdr);
601 if (gname == NULL)
602 return FALSE;
603 elf_group_name (newsect) = gname;
604
605 /* Start a circular list with one element. */
606 elf_next_in_group (newsect) = newsect;
607 }
608
609 /* If the group section has been created, point to the
610 new member. */
611 if (shdr->bfd_section != NULL)
612 elf_next_in_group (shdr->bfd_section) = newsect;
613
614 i = num_group - 1;
615 break;
616 }
617 }
618 }
619
620 if (elf_group_name (newsect) == NULL)
621 {
622 (*_bfd_error_handler) (_("%B: no group info for section %A"),
623 abfd, newsect);
624 }
625 return TRUE;
626 }
627
628 bfd_boolean
629 _bfd_elf_setup_sections (bfd *abfd)
630 {
631 unsigned int i;
632 unsigned int num_group = elf_tdata (abfd)->num_group;
633 bfd_boolean result = TRUE;
634 asection *s;
635
636 /* Process SHF_LINK_ORDER. */
637 for (s = abfd->sections; s != NULL; s = s->next)
638 {
639 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
640 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
641 {
642 unsigned int elfsec = this_hdr->sh_link;
643 /* FIXME: The old Intel compiler and old strip/objcopy may
644 not set the sh_link or sh_info fields. Hence we could
645 get the situation where elfsec is 0. */
646 if (elfsec == 0)
647 {
648 const struct elf_backend_data *bed
649 = get_elf_backend_data (abfd);
650 if (bed->link_order_error_handler)
651 bed->link_order_error_handler
652 (_("%B: warning: sh_link not set for section `%A'"),
653 abfd, s);
654 }
655 else
656 {
657 asection *link;
658
659 this_hdr = elf_elfsections (abfd)[elfsec];
660
661 /* PR 1991, 2008:
662 Some strip/objcopy may leave an incorrect value in
663 sh_link. We don't want to proceed. */
664 link = this_hdr->bfd_section;
665 if (link == NULL)
666 {
667 (*_bfd_error_handler)
668 (_("%B: sh_link [%d] in section `%A' is incorrect"),
669 s->owner, s, elfsec);
670 result = FALSE;
671 }
672
673 elf_linked_to_section (s) = link;
674 }
675 }
676 }
677
678 /* Process section groups. */
679 if (num_group == (unsigned) -1)
680 return result;
681
682 for (i = 0; i < num_group; i++)
683 {
684 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
685 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
686 unsigned int n_elt = shdr->sh_size / 4;
687
688 while (--n_elt != 0)
689 if ((++idx)->shdr->bfd_section)
690 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
691 else if (idx->shdr->sh_type == SHT_RELA
692 || idx->shdr->sh_type == SHT_REL)
693 /* We won't include relocation sections in section groups in
694 output object files. We adjust the group section size here
695 so that relocatable link will work correctly when
696 relocation sections are in section group in input object
697 files. */
698 shdr->bfd_section->size -= 4;
699 else
700 {
701 /* There are some unknown sections in the group. */
702 (*_bfd_error_handler)
703 (_("%B: unknown [%d] section `%s' in group [%s]"),
704 abfd,
705 (unsigned int) idx->shdr->sh_type,
706 bfd_elf_string_from_elf_section (abfd,
707 (elf_elfheader (abfd)
708 ->e_shstrndx),
709 idx->shdr->sh_name),
710 shdr->bfd_section->name);
711 result = FALSE;
712 }
713 }
714 return result;
715 }
716
717 bfd_boolean
718 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
719 {
720 return elf_next_in_group (sec) != NULL;
721 }
722
723 /* Make a BFD section from an ELF section. We store a pointer to the
724 BFD section in the bfd_section field of the header. */
725
726 bfd_boolean
727 _bfd_elf_make_section_from_shdr (bfd *abfd,
728 Elf_Internal_Shdr *hdr,
729 const char *name,
730 int shindex)
731 {
732 asection *newsect;
733 flagword flags;
734 const struct elf_backend_data *bed;
735
736 if (hdr->bfd_section != NULL)
737 {
738 BFD_ASSERT (strcmp (name,
739 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
740 return TRUE;
741 }
742
743 newsect = bfd_make_section_anyway (abfd, name);
744 if (newsect == NULL)
745 return FALSE;
746
747 hdr->bfd_section = newsect;
748 elf_section_data (newsect)->this_hdr = *hdr;
749 elf_section_data (newsect)->this_idx = shindex;
750
751 /* Always use the real type/flags. */
752 elf_section_type (newsect) = hdr->sh_type;
753 elf_section_flags (newsect) = hdr->sh_flags;
754
755 newsect->filepos = hdr->sh_offset;
756
757 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
758 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
759 || ! bfd_set_section_alignment (abfd, newsect,
760 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
761 return FALSE;
762
763 flags = SEC_NO_FLAGS;
764 if (hdr->sh_type != SHT_NOBITS)
765 flags |= SEC_HAS_CONTENTS;
766 if (hdr->sh_type == SHT_GROUP)
767 flags |= SEC_GROUP | SEC_EXCLUDE;
768 if ((hdr->sh_flags & SHF_ALLOC) != 0)
769 {
770 flags |= SEC_ALLOC;
771 if (hdr->sh_type != SHT_NOBITS)
772 flags |= SEC_LOAD;
773 }
774 if ((hdr->sh_flags & SHF_WRITE) == 0)
775 flags |= SEC_READONLY;
776 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
777 flags |= SEC_CODE;
778 else if ((flags & SEC_LOAD) != 0)
779 flags |= SEC_DATA;
780 if ((hdr->sh_flags & SHF_MERGE) != 0)
781 {
782 flags |= SEC_MERGE;
783 newsect->entsize = hdr->sh_entsize;
784 if ((hdr->sh_flags & SHF_STRINGS) != 0)
785 flags |= SEC_STRINGS;
786 }
787 if (hdr->sh_flags & SHF_GROUP)
788 if (!setup_group (abfd, hdr, newsect))
789 return FALSE;
790 if ((hdr->sh_flags & SHF_TLS) != 0)
791 flags |= SEC_THREAD_LOCAL;
792
793 if ((flags & SEC_ALLOC) == 0)
794 {
795 /* The debugging sections appear to be recognized only by name,
796 not any sort of flag. Their SEC_ALLOC bits are cleared. */
797 static const struct
798 {
799 const char *name;
800 int len;
801 } debug_sections [] =
802 {
803 { "debug", 5 }, /* 'd' */
804 { NULL, 0 }, /* 'e' */
805 { NULL, 0 }, /* 'f' */
806 { "gnu.linkonce.wi.", 17 }, /* 'g' */
807 { NULL, 0 }, /* 'h' */
808 { NULL, 0 }, /* 'i' */
809 { NULL, 0 }, /* 'j' */
810 { NULL, 0 }, /* 'k' */
811 { "line", 4 }, /* 'l' */
812 { NULL, 0 }, /* 'm' */
813 { NULL, 0 }, /* 'n' */
814 { NULL, 0 }, /* 'o' */
815 { NULL, 0 }, /* 'p' */
816 { NULL, 0 }, /* 'q' */
817 { NULL, 0 }, /* 'r' */
818 { "stab", 4 } /* 's' */
819 };
820
821 if (name [0] == '.')
822 {
823 int i = name [1] - 'd';
824 if (i >= 0
825 && i < (int) ARRAY_SIZE (debug_sections)
826 && debug_sections [i].name != NULL
827 && strncmp (&name [1], debug_sections [i].name,
828 debug_sections [i].len) == 0)
829 flags |= SEC_DEBUGGING;
830 }
831 }
832
833 /* As a GNU extension, if the name begins with .gnu.linkonce, we
834 only link a single copy of the section. This is used to support
835 g++. g++ will emit each template expansion in its own section.
836 The symbols will be defined as weak, so that multiple definitions
837 are permitted. The GNU linker extension is to actually discard
838 all but one of the sections. */
839 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
840 && elf_next_in_group (newsect) == NULL)
841 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
842
843 bed = get_elf_backend_data (abfd);
844 if (bed->elf_backend_section_flags)
845 if (! bed->elf_backend_section_flags (&flags, hdr))
846 return FALSE;
847
848 if (! bfd_set_section_flags (abfd, newsect, flags))
849 return FALSE;
850
851 if ((flags & SEC_ALLOC) != 0)
852 {
853 Elf_Internal_Phdr *phdr;
854 unsigned int i;
855
856 /* Look through the phdrs to see if we need to adjust the lma.
857 If all the p_paddr fields are zero, we ignore them, since
858 some ELF linkers produce such output. */
859 phdr = elf_tdata (abfd)->phdr;
860 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
861 {
862 if (phdr->p_paddr != 0)
863 break;
864 }
865 if (i < elf_elfheader (abfd)->e_phnum)
866 {
867 phdr = elf_tdata (abfd)->phdr;
868 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
869 {
870 /* This section is part of this segment if its file
871 offset plus size lies within the segment's memory
872 span and, if the section is loaded, the extent of the
873 loaded data lies within the extent of the segment.
874
875 Note - we used to check the p_paddr field as well, and
876 refuse to set the LMA if it was 0. This is wrong
877 though, as a perfectly valid initialised segment can
878 have a p_paddr of zero. Some architectures, eg ARM,
879 place special significance on the address 0 and
880 executables need to be able to have a segment which
881 covers this address. */
882 if (phdr->p_type == PT_LOAD
883 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
884 && (hdr->sh_offset + hdr->sh_size
885 <= phdr->p_offset + phdr->p_memsz)
886 && ((flags & SEC_LOAD) == 0
887 || (hdr->sh_offset + hdr->sh_size
888 <= phdr->p_offset + phdr->p_filesz)))
889 {
890 if ((flags & SEC_LOAD) == 0)
891 newsect->lma = (phdr->p_paddr
892 + hdr->sh_addr - phdr->p_vaddr);
893 else
894 /* We used to use the same adjustment for SEC_LOAD
895 sections, but that doesn't work if the segment
896 is packed with code from multiple VMAs.
897 Instead we calculate the section LMA based on
898 the segment LMA. It is assumed that the
899 segment will contain sections with contiguous
900 LMAs, even if the VMAs are not. */
901 newsect->lma = (phdr->p_paddr
902 + hdr->sh_offset - phdr->p_offset);
903
904 /* With contiguous segments, we can't tell from file
905 offsets whether a section with zero size should
906 be placed at the end of one segment or the
907 beginning of the next. Decide based on vaddr. */
908 if (hdr->sh_addr >= phdr->p_vaddr
909 && (hdr->sh_addr + hdr->sh_size
910 <= phdr->p_vaddr + phdr->p_memsz))
911 break;
912 }
913 }
914 }
915 }
916
917 return TRUE;
918 }
919
920 /*
921 INTERNAL_FUNCTION
922 bfd_elf_find_section
923
924 SYNOPSIS
925 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
926
927 DESCRIPTION
928 Helper functions for GDB to locate the string tables.
929 Since BFD hides string tables from callers, GDB needs to use an
930 internal hook to find them. Sun's .stabstr, in particular,
931 isn't even pointed to by the .stab section, so ordinary
932 mechanisms wouldn't work to find it, even if we had some.
933 */
934
935 struct elf_internal_shdr *
936 bfd_elf_find_section (bfd *abfd, char *name)
937 {
938 Elf_Internal_Shdr **i_shdrp;
939 char *shstrtab;
940 unsigned int max;
941 unsigned int i;
942
943 i_shdrp = elf_elfsections (abfd);
944 if (i_shdrp != NULL)
945 {
946 shstrtab = bfd_elf_get_str_section (abfd,
947 elf_elfheader (abfd)->e_shstrndx);
948 if (shstrtab != NULL)
949 {
950 max = elf_numsections (abfd);
951 for (i = 1; i < max; i++)
952 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
953 return i_shdrp[i];
954 }
955 }
956 return 0;
957 }
958
959 const char *const bfd_elf_section_type_names[] = {
960 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
961 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
962 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
963 };
964
965 /* ELF relocs are against symbols. If we are producing relocatable
966 output, and the reloc is against an external symbol, and nothing
967 has given us any additional addend, the resulting reloc will also
968 be against the same symbol. In such a case, we don't want to
969 change anything about the way the reloc is handled, since it will
970 all be done at final link time. Rather than put special case code
971 into bfd_perform_relocation, all the reloc types use this howto
972 function. It just short circuits the reloc if producing
973 relocatable output against an external symbol. */
974
975 bfd_reloc_status_type
976 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
977 arelent *reloc_entry,
978 asymbol *symbol,
979 void *data ATTRIBUTE_UNUSED,
980 asection *input_section,
981 bfd *output_bfd,
982 char **error_message ATTRIBUTE_UNUSED)
983 {
984 if (output_bfd != NULL
985 && (symbol->flags & BSF_SECTION_SYM) == 0
986 && (! reloc_entry->howto->partial_inplace
987 || reloc_entry->addend == 0))
988 {
989 reloc_entry->address += input_section->output_offset;
990 return bfd_reloc_ok;
991 }
992
993 return bfd_reloc_continue;
994 }
995 \f
996 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
997
998 static void
999 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
1000 asection *sec)
1001 {
1002 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
1003 sec->sec_info_type = ELF_INFO_TYPE_NONE;
1004 }
1005
1006 /* Finish SHF_MERGE section merging. */
1007
1008 bfd_boolean
1009 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
1010 {
1011 bfd *ibfd;
1012 asection *sec;
1013
1014 if (!is_elf_hash_table (info->hash))
1015 return FALSE;
1016
1017 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1018 if ((ibfd->flags & DYNAMIC) == 0)
1019 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1020 if ((sec->flags & SEC_MERGE) != 0
1021 && !bfd_is_abs_section (sec->output_section))
1022 {
1023 struct bfd_elf_section_data *secdata;
1024
1025 secdata = elf_section_data (sec);
1026 if (! _bfd_add_merge_section (abfd,
1027 &elf_hash_table (info)->merge_info,
1028 sec, &secdata->sec_info))
1029 return FALSE;
1030 else if (secdata->sec_info)
1031 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
1032 }
1033
1034 if (elf_hash_table (info)->merge_info != NULL)
1035 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
1036 merge_sections_remove_hook);
1037 return TRUE;
1038 }
1039
1040 void
1041 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
1042 {
1043 sec->output_section = bfd_abs_section_ptr;
1044 sec->output_offset = sec->vma;
1045 if (!is_elf_hash_table (info->hash))
1046 return;
1047
1048 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
1049 }
1050 \f
1051 /* Copy the program header and other data from one object module to
1052 another. */
1053
1054 bfd_boolean
1055 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1056 {
1057 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1058 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1059 return TRUE;
1060
1061 BFD_ASSERT (!elf_flags_init (obfd)
1062 || (elf_elfheader (obfd)->e_flags
1063 == elf_elfheader (ibfd)->e_flags));
1064
1065 elf_gp (obfd) = elf_gp (ibfd);
1066 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1067 elf_flags_init (obfd) = TRUE;
1068 return TRUE;
1069 }
1070
1071 static const char *
1072 get_segment_type (unsigned int p_type)
1073 {
1074 const char *pt;
1075 switch (p_type)
1076 {
1077 case PT_NULL: pt = "NULL"; break;
1078 case PT_LOAD: pt = "LOAD"; break;
1079 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1080 case PT_INTERP: pt = "INTERP"; break;
1081 case PT_NOTE: pt = "NOTE"; break;
1082 case PT_SHLIB: pt = "SHLIB"; break;
1083 case PT_PHDR: pt = "PHDR"; break;
1084 case PT_TLS: pt = "TLS"; break;
1085 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1086 case PT_GNU_STACK: pt = "STACK"; break;
1087 case PT_GNU_RELRO: pt = "RELRO"; break;
1088 default: pt = NULL; break;
1089 }
1090 return pt;
1091 }
1092
1093 /* Print out the program headers. */
1094
1095 bfd_boolean
1096 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1097 {
1098 FILE *f = farg;
1099 Elf_Internal_Phdr *p;
1100 asection *s;
1101 bfd_byte *dynbuf = NULL;
1102
1103 p = elf_tdata (abfd)->phdr;
1104 if (p != NULL)
1105 {
1106 unsigned int i, c;
1107
1108 fprintf (f, _("\nProgram Header:\n"));
1109 c = elf_elfheader (abfd)->e_phnum;
1110 for (i = 0; i < c; i++, p++)
1111 {
1112 const char *pt = get_segment_type (p->p_type);
1113 char buf[20];
1114
1115 if (pt == NULL)
1116 {
1117 sprintf (buf, "0x%lx", p->p_type);
1118 pt = buf;
1119 }
1120 fprintf (f, "%8s off 0x", pt);
1121 bfd_fprintf_vma (abfd, f, p->p_offset);
1122 fprintf (f, " vaddr 0x");
1123 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1124 fprintf (f, " paddr 0x");
1125 bfd_fprintf_vma (abfd, f, p->p_paddr);
1126 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1127 fprintf (f, " filesz 0x");
1128 bfd_fprintf_vma (abfd, f, p->p_filesz);
1129 fprintf (f, " memsz 0x");
1130 bfd_fprintf_vma (abfd, f, p->p_memsz);
1131 fprintf (f, " flags %c%c%c",
1132 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1133 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1134 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1135 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1136 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1137 fprintf (f, "\n");
1138 }
1139 }
1140
1141 s = bfd_get_section_by_name (abfd, ".dynamic");
1142 if (s != NULL)
1143 {
1144 int elfsec;
1145 unsigned long shlink;
1146 bfd_byte *extdyn, *extdynend;
1147 size_t extdynsize;
1148 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1149
1150 fprintf (f, _("\nDynamic Section:\n"));
1151
1152 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1153 goto error_return;
1154
1155 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1156 if (elfsec == -1)
1157 goto error_return;
1158 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1159
1160 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1161 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1162
1163 extdyn = dynbuf;
1164 extdynend = extdyn + s->size;
1165 for (; extdyn < extdynend; extdyn += extdynsize)
1166 {
1167 Elf_Internal_Dyn dyn;
1168 const char *name;
1169 char ab[20];
1170 bfd_boolean stringp;
1171
1172 (*swap_dyn_in) (abfd, extdyn, &dyn);
1173
1174 if (dyn.d_tag == DT_NULL)
1175 break;
1176
1177 stringp = FALSE;
1178 switch (dyn.d_tag)
1179 {
1180 default:
1181 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1182 name = ab;
1183 break;
1184
1185 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1186 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1187 case DT_PLTGOT: name = "PLTGOT"; break;
1188 case DT_HASH: name = "HASH"; break;
1189 case DT_STRTAB: name = "STRTAB"; break;
1190 case DT_SYMTAB: name = "SYMTAB"; break;
1191 case DT_RELA: name = "RELA"; break;
1192 case DT_RELASZ: name = "RELASZ"; break;
1193 case DT_RELAENT: name = "RELAENT"; break;
1194 case DT_STRSZ: name = "STRSZ"; break;
1195 case DT_SYMENT: name = "SYMENT"; break;
1196 case DT_INIT: name = "INIT"; break;
1197 case DT_FINI: name = "FINI"; break;
1198 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1199 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1200 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1201 case DT_REL: name = "REL"; break;
1202 case DT_RELSZ: name = "RELSZ"; break;
1203 case DT_RELENT: name = "RELENT"; break;
1204 case DT_PLTREL: name = "PLTREL"; break;
1205 case DT_DEBUG: name = "DEBUG"; break;
1206 case DT_TEXTREL: name = "TEXTREL"; break;
1207 case DT_JMPREL: name = "JMPREL"; break;
1208 case DT_BIND_NOW: name = "BIND_NOW"; break;
1209 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1210 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1211 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1212 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1213 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1214 case DT_FLAGS: name = "FLAGS"; break;
1215 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1216 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1217 case DT_CHECKSUM: name = "CHECKSUM"; break;
1218 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1219 case DT_MOVEENT: name = "MOVEENT"; break;
1220 case DT_MOVESZ: name = "MOVESZ"; break;
1221 case DT_FEATURE: name = "FEATURE"; break;
1222 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1223 case DT_SYMINSZ: name = "SYMINSZ"; break;
1224 case DT_SYMINENT: name = "SYMINENT"; break;
1225 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1226 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1227 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1228 case DT_PLTPAD: name = "PLTPAD"; break;
1229 case DT_MOVETAB: name = "MOVETAB"; break;
1230 case DT_SYMINFO: name = "SYMINFO"; break;
1231 case DT_RELACOUNT: name = "RELACOUNT"; break;
1232 case DT_RELCOUNT: name = "RELCOUNT"; break;
1233 case DT_FLAGS_1: name = "FLAGS_1"; break;
1234 case DT_VERSYM: name = "VERSYM"; break;
1235 case DT_VERDEF: name = "VERDEF"; break;
1236 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1237 case DT_VERNEED: name = "VERNEED"; break;
1238 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1239 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1240 case DT_USED: name = "USED"; break;
1241 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1242 }
1243
1244 fprintf (f, " %-11s ", name);
1245 if (! stringp)
1246 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1247 else
1248 {
1249 const char *string;
1250 unsigned int tagv = dyn.d_un.d_val;
1251
1252 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1253 if (string == NULL)
1254 goto error_return;
1255 fprintf (f, "%s", string);
1256 }
1257 fprintf (f, "\n");
1258 }
1259
1260 free (dynbuf);
1261 dynbuf = NULL;
1262 }
1263
1264 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1265 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1266 {
1267 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1268 return FALSE;
1269 }
1270
1271 if (elf_dynverdef (abfd) != 0)
1272 {
1273 Elf_Internal_Verdef *t;
1274
1275 fprintf (f, _("\nVersion definitions:\n"));
1276 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1277 {
1278 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1279 t->vd_flags, t->vd_hash,
1280 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1281 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1282 {
1283 Elf_Internal_Verdaux *a;
1284
1285 fprintf (f, "\t");
1286 for (a = t->vd_auxptr->vda_nextptr;
1287 a != NULL;
1288 a = a->vda_nextptr)
1289 fprintf (f, "%s ",
1290 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1291 fprintf (f, "\n");
1292 }
1293 }
1294 }
1295
1296 if (elf_dynverref (abfd) != 0)
1297 {
1298 Elf_Internal_Verneed *t;
1299
1300 fprintf (f, _("\nVersion References:\n"));
1301 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1302 {
1303 Elf_Internal_Vernaux *a;
1304
1305 fprintf (f, _(" required from %s:\n"),
1306 t->vn_filename ? t->vn_filename : "<corrupt>");
1307 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1308 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1309 a->vna_flags, a->vna_other,
1310 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1311 }
1312 }
1313
1314 return TRUE;
1315
1316 error_return:
1317 if (dynbuf != NULL)
1318 free (dynbuf);
1319 return FALSE;
1320 }
1321
1322 /* Display ELF-specific fields of a symbol. */
1323
1324 void
1325 bfd_elf_print_symbol (bfd *abfd,
1326 void *filep,
1327 asymbol *symbol,
1328 bfd_print_symbol_type how)
1329 {
1330 FILE *file = filep;
1331 switch (how)
1332 {
1333 case bfd_print_symbol_name:
1334 fprintf (file, "%s", symbol->name);
1335 break;
1336 case bfd_print_symbol_more:
1337 fprintf (file, "elf ");
1338 bfd_fprintf_vma (abfd, file, symbol->value);
1339 fprintf (file, " %lx", (long) symbol->flags);
1340 break;
1341 case bfd_print_symbol_all:
1342 {
1343 const char *section_name;
1344 const char *name = NULL;
1345 const struct elf_backend_data *bed;
1346 unsigned char st_other;
1347 bfd_vma val;
1348
1349 section_name = symbol->section ? symbol->section->name : "(*none*)";
1350
1351 bed = get_elf_backend_data (abfd);
1352 if (bed->elf_backend_print_symbol_all)
1353 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1354
1355 if (name == NULL)
1356 {
1357 name = symbol->name;
1358 bfd_print_symbol_vandf (abfd, file, symbol);
1359 }
1360
1361 fprintf (file, " %s\t", section_name);
1362 /* Print the "other" value for a symbol. For common symbols,
1363 we've already printed the size; now print the alignment.
1364 For other symbols, we have no specified alignment, and
1365 we've printed the address; now print the size. */
1366 if (bfd_is_com_section (symbol->section))
1367 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1368 else
1369 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1370 bfd_fprintf_vma (abfd, file, val);
1371
1372 /* If we have version information, print it. */
1373 if (elf_tdata (abfd)->dynversym_section != 0
1374 && (elf_tdata (abfd)->dynverdef_section != 0
1375 || elf_tdata (abfd)->dynverref_section != 0))
1376 {
1377 unsigned int vernum;
1378 const char *version_string;
1379
1380 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1381
1382 if (vernum == 0)
1383 version_string = "";
1384 else if (vernum == 1)
1385 version_string = "Base";
1386 else if (vernum <= elf_tdata (abfd)->cverdefs)
1387 version_string =
1388 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1389 else
1390 {
1391 Elf_Internal_Verneed *t;
1392
1393 version_string = "";
1394 for (t = elf_tdata (abfd)->verref;
1395 t != NULL;
1396 t = t->vn_nextref)
1397 {
1398 Elf_Internal_Vernaux *a;
1399
1400 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1401 {
1402 if (a->vna_other == vernum)
1403 {
1404 version_string = a->vna_nodename;
1405 break;
1406 }
1407 }
1408 }
1409 }
1410
1411 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1412 fprintf (file, " %-11s", version_string);
1413 else
1414 {
1415 int i;
1416
1417 fprintf (file, " (%s)", version_string);
1418 for (i = 10 - strlen (version_string); i > 0; --i)
1419 putc (' ', file);
1420 }
1421 }
1422
1423 /* If the st_other field is not zero, print it. */
1424 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1425
1426 switch (st_other)
1427 {
1428 case 0: break;
1429 case STV_INTERNAL: fprintf (file, " .internal"); break;
1430 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1431 case STV_PROTECTED: fprintf (file, " .protected"); break;
1432 default:
1433 /* Some other non-defined flags are also present, so print
1434 everything hex. */
1435 fprintf (file, " 0x%02x", (unsigned int) st_other);
1436 }
1437
1438 fprintf (file, " %s", name);
1439 }
1440 break;
1441 }
1442 }
1443 \f
1444 /* Create an entry in an ELF linker hash table. */
1445
1446 struct bfd_hash_entry *
1447 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1448 struct bfd_hash_table *table,
1449 const char *string)
1450 {
1451 /* Allocate the structure if it has not already been allocated by a
1452 subclass. */
1453 if (entry == NULL)
1454 {
1455 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1456 if (entry == NULL)
1457 return entry;
1458 }
1459
1460 /* Call the allocation method of the superclass. */
1461 entry = _bfd_link_hash_newfunc (entry, table, string);
1462 if (entry != NULL)
1463 {
1464 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1465 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1466
1467 /* Set local fields. */
1468 ret->indx = -1;
1469 ret->dynindx = -1;
1470 ret->got = htab->init_got_refcount;
1471 ret->plt = htab->init_plt_refcount;
1472 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1473 - offsetof (struct elf_link_hash_entry, size)));
1474 /* Assume that we have been called by a non-ELF symbol reader.
1475 This flag is then reset by the code which reads an ELF input
1476 file. This ensures that a symbol created by a non-ELF symbol
1477 reader will have the flag set correctly. */
1478 ret->non_elf = 1;
1479 }
1480
1481 return entry;
1482 }
1483
1484 /* Copy data from an indirect symbol to its direct symbol, hiding the
1485 old indirect symbol. Also used for copying flags to a weakdef. */
1486
1487 void
1488 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
1489 struct elf_link_hash_entry *dir,
1490 struct elf_link_hash_entry *ind)
1491 {
1492 struct elf_link_hash_table *htab;
1493
1494 /* Copy down any references that we may have already seen to the
1495 symbol which just became indirect. */
1496
1497 dir->ref_dynamic |= ind->ref_dynamic;
1498 dir->ref_regular |= ind->ref_regular;
1499 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1500 dir->non_got_ref |= ind->non_got_ref;
1501 dir->needs_plt |= ind->needs_plt;
1502 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1503
1504 if (ind->root.type != bfd_link_hash_indirect)
1505 return;
1506
1507 /* Copy over the global and procedure linkage table refcount entries.
1508 These may have been already set up by a check_relocs routine. */
1509 htab = elf_hash_table (info);
1510 if (ind->got.refcount > htab->init_got_refcount.refcount)
1511 {
1512 if (dir->got.refcount < 0)
1513 dir->got.refcount = 0;
1514 dir->got.refcount += ind->got.refcount;
1515 ind->got.refcount = htab->init_got_refcount.refcount;
1516 }
1517
1518 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
1519 {
1520 if (dir->plt.refcount < 0)
1521 dir->plt.refcount = 0;
1522 dir->plt.refcount += ind->plt.refcount;
1523 ind->plt.refcount = htab->init_plt_refcount.refcount;
1524 }
1525
1526 if (ind->dynindx != -1)
1527 {
1528 if (dir->dynindx != -1)
1529 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
1530 dir->dynindx = ind->dynindx;
1531 dir->dynstr_index = ind->dynstr_index;
1532 ind->dynindx = -1;
1533 ind->dynstr_index = 0;
1534 }
1535 }
1536
1537 void
1538 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1539 struct elf_link_hash_entry *h,
1540 bfd_boolean force_local)
1541 {
1542 h->plt = elf_hash_table (info)->init_plt_offset;
1543 h->needs_plt = 0;
1544 if (force_local)
1545 {
1546 h->forced_local = 1;
1547 if (h->dynindx != -1)
1548 {
1549 h->dynindx = -1;
1550 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1551 h->dynstr_index);
1552 }
1553 }
1554 }
1555
1556 /* Initialize an ELF linker hash table. */
1557
1558 bfd_boolean
1559 _bfd_elf_link_hash_table_init
1560 (struct elf_link_hash_table *table,
1561 bfd *abfd,
1562 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1563 struct bfd_hash_table *,
1564 const char *),
1565 unsigned int entsize)
1566 {
1567 bfd_boolean ret;
1568 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
1569
1570 table->dynamic_sections_created = FALSE;
1571 table->dynobj = NULL;
1572 table->init_got_refcount.refcount = can_refcount - 1;
1573 table->init_plt_refcount.refcount = can_refcount - 1;
1574 table->init_got_offset.offset = -(bfd_vma) 1;
1575 table->init_plt_offset.offset = -(bfd_vma) 1;
1576 /* The first dynamic symbol is a dummy. */
1577 table->dynsymcount = 1;
1578 table->dynstr = NULL;
1579 table->bucketcount = 0;
1580 table->needed = NULL;
1581 table->hgot = NULL;
1582 table->merge_info = NULL;
1583 memset (&table->stab_info, 0, sizeof (table->stab_info));
1584 memset (&table->eh_info, 0, sizeof (table->eh_info));
1585 table->dynlocal = NULL;
1586 table->runpath = NULL;
1587 table->tls_sec = NULL;
1588 table->tls_size = 0;
1589 table->loaded = NULL;
1590 table->is_relocatable_executable = FALSE;
1591
1592 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
1593 table->root.type = bfd_link_elf_hash_table;
1594
1595 return ret;
1596 }
1597
1598 /* Create an ELF linker hash table. */
1599
1600 struct bfd_link_hash_table *
1601 _bfd_elf_link_hash_table_create (bfd *abfd)
1602 {
1603 struct elf_link_hash_table *ret;
1604 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1605
1606 ret = bfd_malloc (amt);
1607 if (ret == NULL)
1608 return NULL;
1609
1610 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
1611 sizeof (struct elf_link_hash_entry)))
1612 {
1613 free (ret);
1614 return NULL;
1615 }
1616
1617 return &ret->root;
1618 }
1619
1620 /* This is a hook for the ELF emulation code in the generic linker to
1621 tell the backend linker what file name to use for the DT_NEEDED
1622 entry for a dynamic object. */
1623
1624 void
1625 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1626 {
1627 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1628 && bfd_get_format (abfd) == bfd_object)
1629 elf_dt_name (abfd) = name;
1630 }
1631
1632 int
1633 bfd_elf_get_dyn_lib_class (bfd *abfd)
1634 {
1635 int lib_class;
1636 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1637 && bfd_get_format (abfd) == bfd_object)
1638 lib_class = elf_dyn_lib_class (abfd);
1639 else
1640 lib_class = 0;
1641 return lib_class;
1642 }
1643
1644 void
1645 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1646 {
1647 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1648 && bfd_get_format (abfd) == bfd_object)
1649 elf_dyn_lib_class (abfd) = lib_class;
1650 }
1651
1652 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1653 the linker ELF emulation code. */
1654
1655 struct bfd_link_needed_list *
1656 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1657 struct bfd_link_info *info)
1658 {
1659 if (! is_elf_hash_table (info->hash))
1660 return NULL;
1661 return elf_hash_table (info)->needed;
1662 }
1663
1664 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1665 hook for the linker ELF emulation code. */
1666
1667 struct bfd_link_needed_list *
1668 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1669 struct bfd_link_info *info)
1670 {
1671 if (! is_elf_hash_table (info->hash))
1672 return NULL;
1673 return elf_hash_table (info)->runpath;
1674 }
1675
1676 /* Get the name actually used for a dynamic object for a link. This
1677 is the SONAME entry if there is one. Otherwise, it is the string
1678 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1679
1680 const char *
1681 bfd_elf_get_dt_soname (bfd *abfd)
1682 {
1683 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1684 && bfd_get_format (abfd) == bfd_object)
1685 return elf_dt_name (abfd);
1686 return NULL;
1687 }
1688
1689 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1690 the ELF linker emulation code. */
1691
1692 bfd_boolean
1693 bfd_elf_get_bfd_needed_list (bfd *abfd,
1694 struct bfd_link_needed_list **pneeded)
1695 {
1696 asection *s;
1697 bfd_byte *dynbuf = NULL;
1698 int elfsec;
1699 unsigned long shlink;
1700 bfd_byte *extdyn, *extdynend;
1701 size_t extdynsize;
1702 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1703
1704 *pneeded = NULL;
1705
1706 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1707 || bfd_get_format (abfd) != bfd_object)
1708 return TRUE;
1709
1710 s = bfd_get_section_by_name (abfd, ".dynamic");
1711 if (s == NULL || s->size == 0)
1712 return TRUE;
1713
1714 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1715 goto error_return;
1716
1717 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1718 if (elfsec == -1)
1719 goto error_return;
1720
1721 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1722
1723 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1724 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1725
1726 extdyn = dynbuf;
1727 extdynend = extdyn + s->size;
1728 for (; extdyn < extdynend; extdyn += extdynsize)
1729 {
1730 Elf_Internal_Dyn dyn;
1731
1732 (*swap_dyn_in) (abfd, extdyn, &dyn);
1733
1734 if (dyn.d_tag == DT_NULL)
1735 break;
1736
1737 if (dyn.d_tag == DT_NEEDED)
1738 {
1739 const char *string;
1740 struct bfd_link_needed_list *l;
1741 unsigned int tagv = dyn.d_un.d_val;
1742 bfd_size_type amt;
1743
1744 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1745 if (string == NULL)
1746 goto error_return;
1747
1748 amt = sizeof *l;
1749 l = bfd_alloc (abfd, amt);
1750 if (l == NULL)
1751 goto error_return;
1752
1753 l->by = abfd;
1754 l->name = string;
1755 l->next = *pneeded;
1756 *pneeded = l;
1757 }
1758 }
1759
1760 free (dynbuf);
1761
1762 return TRUE;
1763
1764 error_return:
1765 if (dynbuf != NULL)
1766 free (dynbuf);
1767 return FALSE;
1768 }
1769 \f
1770 /* Allocate an ELF string table--force the first byte to be zero. */
1771
1772 struct bfd_strtab_hash *
1773 _bfd_elf_stringtab_init (void)
1774 {
1775 struct bfd_strtab_hash *ret;
1776
1777 ret = _bfd_stringtab_init ();
1778 if (ret != NULL)
1779 {
1780 bfd_size_type loc;
1781
1782 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1783 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1784 if (loc == (bfd_size_type) -1)
1785 {
1786 _bfd_stringtab_free (ret);
1787 ret = NULL;
1788 }
1789 }
1790 return ret;
1791 }
1792 \f
1793 /* ELF .o/exec file reading */
1794
1795 /* Create a new bfd section from an ELF section header. */
1796
1797 bfd_boolean
1798 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1799 {
1800 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1801 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1802 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1803 const char *name;
1804
1805 name = bfd_elf_string_from_elf_section (abfd,
1806 elf_elfheader (abfd)->e_shstrndx,
1807 hdr->sh_name);
1808 if (name == NULL)
1809 return FALSE;
1810
1811 switch (hdr->sh_type)
1812 {
1813 case SHT_NULL:
1814 /* Inactive section. Throw it away. */
1815 return TRUE;
1816
1817 case SHT_PROGBITS: /* Normal section with contents. */
1818 case SHT_NOBITS: /* .bss section. */
1819 case SHT_HASH: /* .hash section. */
1820 case SHT_NOTE: /* .note section. */
1821 case SHT_INIT_ARRAY: /* .init_array section. */
1822 case SHT_FINI_ARRAY: /* .fini_array section. */
1823 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1824 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1825 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1826
1827 case SHT_DYNAMIC: /* Dynamic linking information. */
1828 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1829 return FALSE;
1830 if (hdr->sh_link > elf_numsections (abfd)
1831 || elf_elfsections (abfd)[hdr->sh_link] == NULL)
1832 return FALSE;
1833 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1834 {
1835 Elf_Internal_Shdr *dynsymhdr;
1836
1837 /* The shared libraries distributed with hpux11 have a bogus
1838 sh_link field for the ".dynamic" section. Find the
1839 string table for the ".dynsym" section instead. */
1840 if (elf_dynsymtab (abfd) != 0)
1841 {
1842 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1843 hdr->sh_link = dynsymhdr->sh_link;
1844 }
1845 else
1846 {
1847 unsigned int i, num_sec;
1848
1849 num_sec = elf_numsections (abfd);
1850 for (i = 1; i < num_sec; i++)
1851 {
1852 dynsymhdr = elf_elfsections (abfd)[i];
1853 if (dynsymhdr->sh_type == SHT_DYNSYM)
1854 {
1855 hdr->sh_link = dynsymhdr->sh_link;
1856 break;
1857 }
1858 }
1859 }
1860 }
1861 break;
1862
1863 case SHT_SYMTAB: /* A symbol table */
1864 if (elf_onesymtab (abfd) == shindex)
1865 return TRUE;
1866
1867 if (hdr->sh_entsize != bed->s->sizeof_sym)
1868 return FALSE;
1869 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1870 elf_onesymtab (abfd) = shindex;
1871 elf_tdata (abfd)->symtab_hdr = *hdr;
1872 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1873 abfd->flags |= HAS_SYMS;
1874
1875 /* Sometimes a shared object will map in the symbol table. If
1876 SHF_ALLOC is set, and this is a shared object, then we also
1877 treat this section as a BFD section. We can not base the
1878 decision purely on SHF_ALLOC, because that flag is sometimes
1879 set in a relocatable object file, which would confuse the
1880 linker. */
1881 if ((hdr->sh_flags & SHF_ALLOC) != 0
1882 && (abfd->flags & DYNAMIC) != 0
1883 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1884 shindex))
1885 return FALSE;
1886
1887 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1888 can't read symbols without that section loaded as well. It
1889 is most likely specified by the next section header. */
1890 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1891 {
1892 unsigned int i, num_sec;
1893
1894 num_sec = elf_numsections (abfd);
1895 for (i = shindex + 1; i < num_sec; i++)
1896 {
1897 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1898 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1899 && hdr2->sh_link == shindex)
1900 break;
1901 }
1902 if (i == num_sec)
1903 for (i = 1; i < shindex; i++)
1904 {
1905 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1906 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1907 && hdr2->sh_link == shindex)
1908 break;
1909 }
1910 if (i != shindex)
1911 return bfd_section_from_shdr (abfd, i);
1912 }
1913 return TRUE;
1914
1915 case SHT_DYNSYM: /* A dynamic symbol table */
1916 if (elf_dynsymtab (abfd) == shindex)
1917 return TRUE;
1918
1919 if (hdr->sh_entsize != bed->s->sizeof_sym)
1920 return FALSE;
1921 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1922 elf_dynsymtab (abfd) = shindex;
1923 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1924 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1925 abfd->flags |= HAS_SYMS;
1926
1927 /* Besides being a symbol table, we also treat this as a regular
1928 section, so that objcopy can handle it. */
1929 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1930
1931 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1932 if (elf_symtab_shndx (abfd) == shindex)
1933 return TRUE;
1934
1935 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1936 elf_symtab_shndx (abfd) = shindex;
1937 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1938 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1939 return TRUE;
1940
1941 case SHT_STRTAB: /* A string table */
1942 if (hdr->bfd_section != NULL)
1943 return TRUE;
1944 if (ehdr->e_shstrndx == shindex)
1945 {
1946 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1947 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1948 return TRUE;
1949 }
1950 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1951 {
1952 symtab_strtab:
1953 elf_tdata (abfd)->strtab_hdr = *hdr;
1954 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1955 return TRUE;
1956 }
1957 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1958 {
1959 dynsymtab_strtab:
1960 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1961 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1962 elf_elfsections (abfd)[shindex] = hdr;
1963 /* We also treat this as a regular section, so that objcopy
1964 can handle it. */
1965 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1966 shindex);
1967 }
1968
1969 /* If the string table isn't one of the above, then treat it as a
1970 regular section. We need to scan all the headers to be sure,
1971 just in case this strtab section appeared before the above. */
1972 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1973 {
1974 unsigned int i, num_sec;
1975
1976 num_sec = elf_numsections (abfd);
1977 for (i = 1; i < num_sec; i++)
1978 {
1979 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1980 if (hdr2->sh_link == shindex)
1981 {
1982 /* Prevent endless recursion on broken objects. */
1983 if (i == shindex)
1984 return FALSE;
1985 if (! bfd_section_from_shdr (abfd, i))
1986 return FALSE;
1987 if (elf_onesymtab (abfd) == i)
1988 goto symtab_strtab;
1989 if (elf_dynsymtab (abfd) == i)
1990 goto dynsymtab_strtab;
1991 }
1992 }
1993 }
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1995
1996 case SHT_REL:
1997 case SHT_RELA:
1998 /* *These* do a lot of work -- but build no sections! */
1999 {
2000 asection *target_sect;
2001 Elf_Internal_Shdr *hdr2;
2002 unsigned int num_sec = elf_numsections (abfd);
2003
2004 if (hdr->sh_entsize
2005 != (bfd_size_type) (hdr->sh_type == SHT_REL
2006 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2007 return FALSE;
2008
2009 /* Check for a bogus link to avoid crashing. */
2010 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
2011 || hdr->sh_link >= num_sec)
2012 {
2013 ((*_bfd_error_handler)
2014 (_("%B: invalid link %lu for reloc section %s (index %u)"),
2015 abfd, hdr->sh_link, name, shindex));
2016 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2017 shindex);
2018 }
2019
2020 /* For some incomprehensible reason Oracle distributes
2021 libraries for Solaris in which some of the objects have
2022 bogus sh_link fields. It would be nice if we could just
2023 reject them, but, unfortunately, some people need to use
2024 them. We scan through the section headers; if we find only
2025 one suitable symbol table, we clobber the sh_link to point
2026 to it. I hope this doesn't break anything. */
2027 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2028 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2029 {
2030 unsigned int scan;
2031 int found;
2032
2033 found = 0;
2034 for (scan = 1; scan < num_sec; scan++)
2035 {
2036 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2037 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2038 {
2039 if (found != 0)
2040 {
2041 found = 0;
2042 break;
2043 }
2044 found = scan;
2045 }
2046 }
2047 if (found != 0)
2048 hdr->sh_link = found;
2049 }
2050
2051 /* Get the symbol table. */
2052 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2053 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2054 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2055 return FALSE;
2056
2057 /* If this reloc section does not use the main symbol table we
2058 don't treat it as a reloc section. BFD can't adequately
2059 represent such a section, so at least for now, we don't
2060 try. We just present it as a normal section. We also
2061 can't use it as a reloc section if it points to the null
2062 section, an invalid section, or another reloc section. */
2063 if (hdr->sh_link != elf_onesymtab (abfd)
2064 || hdr->sh_info == SHN_UNDEF
2065 || (hdr->sh_info >= SHN_LORESERVE && hdr->sh_info <= SHN_HIRESERVE)
2066 || hdr->sh_info >= num_sec
2067 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2068 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2069 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2070 shindex);
2071
2072 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2073 return FALSE;
2074 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2075 if (target_sect == NULL)
2076 return FALSE;
2077
2078 if ((target_sect->flags & SEC_RELOC) == 0
2079 || target_sect->reloc_count == 0)
2080 hdr2 = &elf_section_data (target_sect)->rel_hdr;
2081 else
2082 {
2083 bfd_size_type amt;
2084 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
2085 amt = sizeof (*hdr2);
2086 hdr2 = bfd_alloc (abfd, amt);
2087 elf_section_data (target_sect)->rel_hdr2 = hdr2;
2088 }
2089 *hdr2 = *hdr;
2090 elf_elfsections (abfd)[shindex] = hdr2;
2091 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
2092 target_sect->flags |= SEC_RELOC;
2093 target_sect->relocation = NULL;
2094 target_sect->rel_filepos = hdr->sh_offset;
2095 /* In the section to which the relocations apply, mark whether
2096 its relocations are of the REL or RELA variety. */
2097 if (hdr->sh_size != 0)
2098 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
2099 abfd->flags |= HAS_RELOC;
2100 return TRUE;
2101 }
2102 break;
2103
2104 case SHT_GNU_verdef:
2105 elf_dynverdef (abfd) = shindex;
2106 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2107 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2108 break;
2109
2110 case SHT_GNU_versym:
2111 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2112 return FALSE;
2113 elf_dynversym (abfd) = shindex;
2114 elf_tdata (abfd)->dynversym_hdr = *hdr;
2115 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2116 break;
2117
2118 case SHT_GNU_verneed:
2119 elf_dynverref (abfd) = shindex;
2120 elf_tdata (abfd)->dynverref_hdr = *hdr;
2121 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2122 break;
2123
2124 case SHT_SHLIB:
2125 return TRUE;
2126
2127 case SHT_GROUP:
2128 /* We need a BFD section for objcopy and relocatable linking,
2129 and it's handy to have the signature available as the section
2130 name. */
2131 if (hdr->sh_entsize != GRP_ENTRY_SIZE)
2132 return FALSE;
2133 name = group_signature (abfd, hdr);
2134 if (name == NULL)
2135 return FALSE;
2136 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2137 return FALSE;
2138 if (hdr->contents != NULL)
2139 {
2140 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2141 unsigned int n_elt = hdr->sh_size / 4;
2142 asection *s;
2143
2144 if (idx->flags & GRP_COMDAT)
2145 hdr->bfd_section->flags
2146 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2147
2148 /* We try to keep the same section order as it comes in. */
2149 idx += n_elt;
2150 while (--n_elt != 0)
2151 if ((s = (--idx)->shdr->bfd_section) != NULL
2152 && elf_next_in_group (s) != NULL)
2153 {
2154 elf_next_in_group (hdr->bfd_section) = s;
2155 break;
2156 }
2157 }
2158 break;
2159
2160 default:
2161 /* Check for any processor-specific section types. */
2162 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2163 return TRUE;
2164
2165 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2166 {
2167 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2168 /* FIXME: How to properly handle allocated section reserved
2169 for applications? */
2170 (*_bfd_error_handler)
2171 (_("%B: don't know how to handle allocated, application "
2172 "specific section `%s' [0x%8x]"),
2173 abfd, name, hdr->sh_type);
2174 else
2175 /* Allow sections reserved for applications. */
2176 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2177 shindex);
2178 }
2179 else if (hdr->sh_type >= SHT_LOPROC
2180 && hdr->sh_type <= SHT_HIPROC)
2181 /* FIXME: We should handle this section. */
2182 (*_bfd_error_handler)
2183 (_("%B: don't know how to handle processor specific section "
2184 "`%s' [0x%8x]"),
2185 abfd, name, hdr->sh_type);
2186 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2187 /* FIXME: We should handle this section. */
2188 (*_bfd_error_handler)
2189 (_("%B: don't know how to handle OS specific section "
2190 "`%s' [0x%8x]"),
2191 abfd, name, hdr->sh_type);
2192 else
2193 /* FIXME: We should handle this section. */
2194 (*_bfd_error_handler)
2195 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2196 abfd, name, hdr->sh_type);
2197
2198 return FALSE;
2199 }
2200
2201 return TRUE;
2202 }
2203
2204 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2205 Return SEC for sections that have no elf section, and NULL on error. */
2206
2207 asection *
2208 bfd_section_from_r_symndx (bfd *abfd,
2209 struct sym_sec_cache *cache,
2210 asection *sec,
2211 unsigned long r_symndx)
2212 {
2213 Elf_Internal_Shdr *symtab_hdr;
2214 unsigned char esym[sizeof (Elf64_External_Sym)];
2215 Elf_External_Sym_Shndx eshndx;
2216 Elf_Internal_Sym isym;
2217 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2218
2219 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2220 return cache->sec[ent];
2221
2222 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2223 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2224 &isym, esym, &eshndx) == NULL)
2225 return NULL;
2226
2227 if (cache->abfd != abfd)
2228 {
2229 memset (cache->indx, -1, sizeof (cache->indx));
2230 cache->abfd = abfd;
2231 }
2232 cache->indx[ent] = r_symndx;
2233 cache->sec[ent] = sec;
2234 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2235 || isym.st_shndx > SHN_HIRESERVE)
2236 {
2237 asection *s;
2238 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2239 if (s != NULL)
2240 cache->sec[ent] = s;
2241 }
2242 return cache->sec[ent];
2243 }
2244
2245 /* Given an ELF section number, retrieve the corresponding BFD
2246 section. */
2247
2248 asection *
2249 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2250 {
2251 if (index >= elf_numsections (abfd))
2252 return NULL;
2253 return elf_elfsections (abfd)[index]->bfd_section;
2254 }
2255
2256 static const struct bfd_elf_special_section special_sections_b[] =
2257 {
2258 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2259 { NULL, 0, 0, 0, 0 }
2260 };
2261
2262 static const struct bfd_elf_special_section special_sections_c[] =
2263 {
2264 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2265 { NULL, 0, 0, 0, 0 }
2266 };
2267
2268 static const struct bfd_elf_special_section special_sections_d[] =
2269 {
2270 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2271 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2272 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2273 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2274 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2275 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2276 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2277 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2278 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2279 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2280 { NULL, 0, 0, 0, 0 }
2281 };
2282
2283 static const struct bfd_elf_special_section special_sections_f[] =
2284 {
2285 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2286 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2287 { NULL, 0, 0, 0, 0 }
2288 };
2289
2290 static const struct bfd_elf_special_section special_sections_g[] =
2291 {
2292 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2293 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2294 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2295 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2296 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2297 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2298 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2299 { NULL, 0, 0, 0, 0 }
2300 };
2301
2302 static const struct bfd_elf_special_section special_sections_h[] =
2303 {
2304 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2305 { NULL, 0, 0, 0, 0 }
2306 };
2307
2308 static const struct bfd_elf_special_section special_sections_i[] =
2309 {
2310 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2311 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2312 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2313 { NULL, 0, 0, 0, 0 }
2314 };
2315
2316 static const struct bfd_elf_special_section special_sections_l[] =
2317 {
2318 { ".line", 5, 0, SHT_PROGBITS, 0 },
2319 { NULL, 0, 0, 0, 0 }
2320 };
2321
2322 static const struct bfd_elf_special_section special_sections_n[] =
2323 {
2324 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2325 { ".note", 5, -1, SHT_NOTE, 0 },
2326 { NULL, 0, 0, 0, 0 }
2327 };
2328
2329 static const struct bfd_elf_special_section special_sections_p[] =
2330 {
2331 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2332 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2333 { NULL, 0, 0, 0, 0 }
2334 };
2335
2336 static const struct bfd_elf_special_section special_sections_r[] =
2337 {
2338 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2339 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2340 { ".rela", 5, -1, SHT_RELA, 0 },
2341 { ".rel", 4, -1, SHT_REL, 0 },
2342 { NULL, 0, 0, 0, 0 }
2343 };
2344
2345 static const struct bfd_elf_special_section special_sections_s[] =
2346 {
2347 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2348 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2349 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2350 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2351 { NULL, 0, 0, 0, 0 }
2352 };
2353
2354 static const struct bfd_elf_special_section special_sections_t[] =
2355 {
2356 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2357 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2358 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2359 { NULL, 0, 0, 0, 0 }
2360 };
2361
2362 static const struct bfd_elf_special_section *special_sections[] =
2363 {
2364 special_sections_b, /* 'b' */
2365 special_sections_c, /* 'b' */
2366 special_sections_d, /* 'd' */
2367 NULL, /* 'e' */
2368 special_sections_f, /* 'f' */
2369 special_sections_g, /* 'g' */
2370 special_sections_h, /* 'h' */
2371 special_sections_i, /* 'i' */
2372 NULL, /* 'j' */
2373 NULL, /* 'k' */
2374 special_sections_l, /* 'l' */
2375 NULL, /* 'm' */
2376 special_sections_n, /* 'n' */
2377 NULL, /* 'o' */
2378 special_sections_p, /* 'p' */
2379 NULL, /* 'q' */
2380 special_sections_r, /* 'r' */
2381 special_sections_s, /* 's' */
2382 special_sections_t, /* 't' */
2383 };
2384
2385 const struct bfd_elf_special_section *
2386 _bfd_elf_get_special_section (const char *name,
2387 const struct bfd_elf_special_section *spec,
2388 unsigned int rela)
2389 {
2390 int i;
2391 int len;
2392
2393 len = strlen (name);
2394
2395 for (i = 0; spec[i].prefix != NULL; i++)
2396 {
2397 int suffix_len;
2398 int prefix_len = spec[i].prefix_length;
2399
2400 if (len < prefix_len)
2401 continue;
2402 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2403 continue;
2404
2405 suffix_len = spec[i].suffix_length;
2406 if (suffix_len <= 0)
2407 {
2408 if (name[prefix_len] != 0)
2409 {
2410 if (suffix_len == 0)
2411 continue;
2412 if (name[prefix_len] != '.'
2413 && (suffix_len == -2
2414 || (rela && spec[i].type == SHT_REL)))
2415 continue;
2416 }
2417 }
2418 else
2419 {
2420 if (len < prefix_len + suffix_len)
2421 continue;
2422 if (memcmp (name + len - suffix_len,
2423 spec[i].prefix + prefix_len,
2424 suffix_len) != 0)
2425 continue;
2426 }
2427 return &spec[i];
2428 }
2429
2430 return NULL;
2431 }
2432
2433 const struct bfd_elf_special_section *
2434 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2435 {
2436 int i;
2437 const struct bfd_elf_special_section *spec;
2438 const struct elf_backend_data *bed;
2439
2440 /* See if this is one of the special sections. */
2441 if (sec->name == NULL)
2442 return NULL;
2443
2444 bed = get_elf_backend_data (abfd);
2445 spec = bed->special_sections;
2446 if (spec)
2447 {
2448 spec = _bfd_elf_get_special_section (sec->name,
2449 bed->special_sections,
2450 sec->use_rela_p);
2451 if (spec != NULL)
2452 return spec;
2453 }
2454
2455 if (sec->name[0] != '.')
2456 return NULL;
2457
2458 i = sec->name[1] - 'b';
2459 if (i < 0 || i > 't' - 'b')
2460 return NULL;
2461
2462 spec = special_sections[i];
2463
2464 if (spec == NULL)
2465 return NULL;
2466
2467 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2468 }
2469
2470 bfd_boolean
2471 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2472 {
2473 struct bfd_elf_section_data *sdata;
2474 const struct elf_backend_data *bed;
2475 const struct bfd_elf_special_section *ssect;
2476
2477 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2478 if (sdata == NULL)
2479 {
2480 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2481 if (sdata == NULL)
2482 return FALSE;
2483 sec->used_by_bfd = sdata;
2484 }
2485
2486 /* Indicate whether or not this section should use RELA relocations. */
2487 bed = get_elf_backend_data (abfd);
2488 sec->use_rela_p = bed->default_use_rela_p;
2489
2490 /* When we read a file, we don't need section type and flags unless
2491 it is a linker created section. They will be overridden in
2492 _bfd_elf_make_section_from_shdr anyway. */
2493 if (abfd->direction != read_direction
2494 || (sec->flags & SEC_LINKER_CREATED) != 0)
2495 {
2496 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2497 if (ssect != NULL)
2498 {
2499 elf_section_type (sec) = ssect->type;
2500 elf_section_flags (sec) = ssect->attr;
2501 }
2502 }
2503
2504 return TRUE;
2505 }
2506
2507 /* Create a new bfd section from an ELF program header.
2508
2509 Since program segments have no names, we generate a synthetic name
2510 of the form segment<NUM>, where NUM is generally the index in the
2511 program header table. For segments that are split (see below) we
2512 generate the names segment<NUM>a and segment<NUM>b.
2513
2514 Note that some program segments may have a file size that is different than
2515 (less than) the memory size. All this means is that at execution the
2516 system must allocate the amount of memory specified by the memory size,
2517 but only initialize it with the first "file size" bytes read from the
2518 file. This would occur for example, with program segments consisting
2519 of combined data+bss.
2520
2521 To handle the above situation, this routine generates TWO bfd sections
2522 for the single program segment. The first has the length specified by
2523 the file size of the segment, and the second has the length specified
2524 by the difference between the two sizes. In effect, the segment is split
2525 into it's initialized and uninitialized parts.
2526
2527 */
2528
2529 bfd_boolean
2530 _bfd_elf_make_section_from_phdr (bfd *abfd,
2531 Elf_Internal_Phdr *hdr,
2532 int index,
2533 const char *typename)
2534 {
2535 asection *newsect;
2536 char *name;
2537 char namebuf[64];
2538 size_t len;
2539 int split;
2540
2541 split = ((hdr->p_memsz > 0)
2542 && (hdr->p_filesz > 0)
2543 && (hdr->p_memsz > hdr->p_filesz));
2544 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2545 len = strlen (namebuf) + 1;
2546 name = bfd_alloc (abfd, len);
2547 if (!name)
2548 return FALSE;
2549 memcpy (name, namebuf, len);
2550 newsect = bfd_make_section (abfd, name);
2551 if (newsect == NULL)
2552 return FALSE;
2553 newsect->vma = hdr->p_vaddr;
2554 newsect->lma = hdr->p_paddr;
2555 newsect->size = hdr->p_filesz;
2556 newsect->filepos = hdr->p_offset;
2557 newsect->flags |= SEC_HAS_CONTENTS;
2558 newsect->alignment_power = bfd_log2 (hdr->p_align);
2559 if (hdr->p_type == PT_LOAD)
2560 {
2561 newsect->flags |= SEC_ALLOC;
2562 newsect->flags |= SEC_LOAD;
2563 if (hdr->p_flags & PF_X)
2564 {
2565 /* FIXME: all we known is that it has execute PERMISSION,
2566 may be data. */
2567 newsect->flags |= SEC_CODE;
2568 }
2569 }
2570 if (!(hdr->p_flags & PF_W))
2571 {
2572 newsect->flags |= SEC_READONLY;
2573 }
2574
2575 if (split)
2576 {
2577 sprintf (namebuf, "%s%db", typename, index);
2578 len = strlen (namebuf) + 1;
2579 name = bfd_alloc (abfd, len);
2580 if (!name)
2581 return FALSE;
2582 memcpy (name, namebuf, len);
2583 newsect = bfd_make_section (abfd, name);
2584 if (newsect == NULL)
2585 return FALSE;
2586 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2587 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2588 newsect->size = hdr->p_memsz - hdr->p_filesz;
2589 if (hdr->p_type == PT_LOAD)
2590 {
2591 newsect->flags |= SEC_ALLOC;
2592 if (hdr->p_flags & PF_X)
2593 newsect->flags |= SEC_CODE;
2594 }
2595 if (!(hdr->p_flags & PF_W))
2596 newsect->flags |= SEC_READONLY;
2597 }
2598
2599 return TRUE;
2600 }
2601
2602 bfd_boolean
2603 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2604 {
2605 const struct elf_backend_data *bed;
2606
2607 switch (hdr->p_type)
2608 {
2609 case PT_NULL:
2610 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2611
2612 case PT_LOAD:
2613 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2614
2615 case PT_DYNAMIC:
2616 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2617
2618 case PT_INTERP:
2619 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2620
2621 case PT_NOTE:
2622 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2623 return FALSE;
2624 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2625 return FALSE;
2626 return TRUE;
2627
2628 case PT_SHLIB:
2629 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2630
2631 case PT_PHDR:
2632 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2633
2634 case PT_GNU_EH_FRAME:
2635 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2636 "eh_frame_hdr");
2637
2638 case PT_GNU_STACK:
2639 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2640
2641 case PT_GNU_RELRO:
2642 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2643
2644 default:
2645 /* Check for any processor-specific program segment types. */
2646 bed = get_elf_backend_data (abfd);
2647 return bed->elf_backend_section_from_phdr (abfd, hdr, index, "proc");
2648 }
2649 }
2650
2651 /* Initialize REL_HDR, the section-header for new section, containing
2652 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2653 relocations; otherwise, we use REL relocations. */
2654
2655 bfd_boolean
2656 _bfd_elf_init_reloc_shdr (bfd *abfd,
2657 Elf_Internal_Shdr *rel_hdr,
2658 asection *asect,
2659 bfd_boolean use_rela_p)
2660 {
2661 char *name;
2662 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2663 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2664
2665 name = bfd_alloc (abfd, amt);
2666 if (name == NULL)
2667 return FALSE;
2668 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2669 rel_hdr->sh_name =
2670 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2671 FALSE);
2672 if (rel_hdr->sh_name == (unsigned int) -1)
2673 return FALSE;
2674 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2675 rel_hdr->sh_entsize = (use_rela_p
2676 ? bed->s->sizeof_rela
2677 : bed->s->sizeof_rel);
2678 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2679 rel_hdr->sh_flags = 0;
2680 rel_hdr->sh_addr = 0;
2681 rel_hdr->sh_size = 0;
2682 rel_hdr->sh_offset = 0;
2683
2684 return TRUE;
2685 }
2686
2687 /* Set up an ELF internal section header for a section. */
2688
2689 static void
2690 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2691 {
2692 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2693 bfd_boolean *failedptr = failedptrarg;
2694 Elf_Internal_Shdr *this_hdr;
2695
2696 if (*failedptr)
2697 {
2698 /* We already failed; just get out of the bfd_map_over_sections
2699 loop. */
2700 return;
2701 }
2702
2703 this_hdr = &elf_section_data (asect)->this_hdr;
2704
2705 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2706 asect->name, FALSE);
2707 if (this_hdr->sh_name == (unsigned int) -1)
2708 {
2709 *failedptr = TRUE;
2710 return;
2711 }
2712
2713 /* Don't clear sh_flags. Assembler may set additional bits. */
2714
2715 if ((asect->flags & SEC_ALLOC) != 0
2716 || asect->user_set_vma)
2717 this_hdr->sh_addr = asect->vma;
2718 else
2719 this_hdr->sh_addr = 0;
2720
2721 this_hdr->sh_offset = 0;
2722 this_hdr->sh_size = asect->size;
2723 this_hdr->sh_link = 0;
2724 this_hdr->sh_addralign = 1 << asect->alignment_power;
2725 /* The sh_entsize and sh_info fields may have been set already by
2726 copy_private_section_data. */
2727
2728 this_hdr->bfd_section = asect;
2729 this_hdr->contents = NULL;
2730
2731 /* If the section type is unspecified, we set it based on
2732 asect->flags. */
2733 if (this_hdr->sh_type == SHT_NULL)
2734 {
2735 if ((asect->flags & SEC_GROUP) != 0)
2736 this_hdr->sh_type = SHT_GROUP;
2737 else if ((asect->flags & SEC_ALLOC) != 0
2738 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2739 || (asect->flags & SEC_NEVER_LOAD) != 0))
2740 this_hdr->sh_type = SHT_NOBITS;
2741 else
2742 this_hdr->sh_type = SHT_PROGBITS;
2743 }
2744
2745 switch (this_hdr->sh_type)
2746 {
2747 default:
2748 break;
2749
2750 case SHT_STRTAB:
2751 case SHT_INIT_ARRAY:
2752 case SHT_FINI_ARRAY:
2753 case SHT_PREINIT_ARRAY:
2754 case SHT_NOTE:
2755 case SHT_NOBITS:
2756 case SHT_PROGBITS:
2757 break;
2758
2759 case SHT_HASH:
2760 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2761 break;
2762
2763 case SHT_DYNSYM:
2764 this_hdr->sh_entsize = bed->s->sizeof_sym;
2765 break;
2766
2767 case SHT_DYNAMIC:
2768 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2769 break;
2770
2771 case SHT_RELA:
2772 if (get_elf_backend_data (abfd)->may_use_rela_p)
2773 this_hdr->sh_entsize = bed->s->sizeof_rela;
2774 break;
2775
2776 case SHT_REL:
2777 if (get_elf_backend_data (abfd)->may_use_rel_p)
2778 this_hdr->sh_entsize = bed->s->sizeof_rel;
2779 break;
2780
2781 case SHT_GNU_versym:
2782 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2783 break;
2784
2785 case SHT_GNU_verdef:
2786 this_hdr->sh_entsize = 0;
2787 /* objcopy or strip will copy over sh_info, but may not set
2788 cverdefs. The linker will set cverdefs, but sh_info will be
2789 zero. */
2790 if (this_hdr->sh_info == 0)
2791 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2792 else
2793 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2794 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2795 break;
2796
2797 case SHT_GNU_verneed:
2798 this_hdr->sh_entsize = 0;
2799 /* objcopy or strip will copy over sh_info, but may not set
2800 cverrefs. The linker will set cverrefs, but sh_info will be
2801 zero. */
2802 if (this_hdr->sh_info == 0)
2803 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2804 else
2805 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2806 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2807 break;
2808
2809 case SHT_GROUP:
2810 this_hdr->sh_entsize = 4;
2811 break;
2812 }
2813
2814 if ((asect->flags & SEC_ALLOC) != 0)
2815 this_hdr->sh_flags |= SHF_ALLOC;
2816 if ((asect->flags & SEC_READONLY) == 0)
2817 this_hdr->sh_flags |= SHF_WRITE;
2818 if ((asect->flags & SEC_CODE) != 0)
2819 this_hdr->sh_flags |= SHF_EXECINSTR;
2820 if ((asect->flags & SEC_MERGE) != 0)
2821 {
2822 this_hdr->sh_flags |= SHF_MERGE;
2823 this_hdr->sh_entsize = asect->entsize;
2824 if ((asect->flags & SEC_STRINGS) != 0)
2825 this_hdr->sh_flags |= SHF_STRINGS;
2826 }
2827 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2828 this_hdr->sh_flags |= SHF_GROUP;
2829 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2830 {
2831 this_hdr->sh_flags |= SHF_TLS;
2832 if (asect->size == 0
2833 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2834 {
2835 struct bfd_link_order *o = asect->map_tail.link_order;
2836
2837 this_hdr->sh_size = 0;
2838 if (o != NULL)
2839 {
2840 this_hdr->sh_size = o->offset + o->size;
2841 if (this_hdr->sh_size != 0)
2842 this_hdr->sh_type = SHT_NOBITS;
2843 }
2844 }
2845 }
2846
2847 /* Check for processor-specific section types. */
2848 if (bed->elf_backend_fake_sections
2849 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2850 *failedptr = TRUE;
2851
2852 /* If the section has relocs, set up a section header for the
2853 SHT_REL[A] section. If two relocation sections are required for
2854 this section, it is up to the processor-specific back-end to
2855 create the other. */
2856 if ((asect->flags & SEC_RELOC) != 0
2857 && !_bfd_elf_init_reloc_shdr (abfd,
2858 &elf_section_data (asect)->rel_hdr,
2859 asect,
2860 asect->use_rela_p))
2861 *failedptr = TRUE;
2862 }
2863
2864 /* Fill in the contents of a SHT_GROUP section. */
2865
2866 void
2867 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2868 {
2869 bfd_boolean *failedptr = failedptrarg;
2870 unsigned long symindx;
2871 asection *elt, *first;
2872 unsigned char *loc;
2873 bfd_boolean gas;
2874
2875 /* Ignore linker created group section. See elfNN_ia64_object_p in
2876 elfxx-ia64.c. */
2877 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2878 || *failedptr)
2879 return;
2880
2881 symindx = 0;
2882 if (elf_group_id (sec) != NULL)
2883 symindx = elf_group_id (sec)->udata.i;
2884
2885 if (symindx == 0)
2886 {
2887 /* If called from the assembler, swap_out_syms will have set up
2888 elf_section_syms; If called for "ld -r", use target_index. */
2889 if (elf_section_syms (abfd) != NULL)
2890 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2891 else
2892 symindx = sec->target_index;
2893 }
2894 elf_section_data (sec)->this_hdr.sh_info = symindx;
2895
2896 /* The contents won't be allocated for "ld -r" or objcopy. */
2897 gas = TRUE;
2898 if (sec->contents == NULL)
2899 {
2900 gas = FALSE;
2901 sec->contents = bfd_alloc (abfd, sec->size);
2902
2903 /* Arrange for the section to be written out. */
2904 elf_section_data (sec)->this_hdr.contents = sec->contents;
2905 if (sec->contents == NULL)
2906 {
2907 *failedptr = TRUE;
2908 return;
2909 }
2910 }
2911
2912 loc = sec->contents + sec->size;
2913
2914 /* Get the pointer to the first section in the group that gas
2915 squirreled away here. objcopy arranges for this to be set to the
2916 start of the input section group. */
2917 first = elt = elf_next_in_group (sec);
2918
2919 /* First element is a flag word. Rest of section is elf section
2920 indices for all the sections of the group. Write them backwards
2921 just to keep the group in the same order as given in .section
2922 directives, not that it matters. */
2923 while (elt != NULL)
2924 {
2925 asection *s;
2926 unsigned int idx;
2927
2928 loc -= 4;
2929 s = elt;
2930 if (!gas)
2931 s = s->output_section;
2932 idx = 0;
2933 if (s != NULL)
2934 idx = elf_section_data (s)->this_idx;
2935 H_PUT_32 (abfd, idx, loc);
2936 elt = elf_next_in_group (elt);
2937 if (elt == first)
2938 break;
2939 }
2940
2941 if ((loc -= 4) != sec->contents)
2942 abort ();
2943
2944 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2945 }
2946
2947 /* Assign all ELF section numbers. The dummy first section is handled here
2948 too. The link/info pointers for the standard section types are filled
2949 in here too, while we're at it. */
2950
2951 static bfd_boolean
2952 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2953 {
2954 struct elf_obj_tdata *t = elf_tdata (abfd);
2955 asection *sec;
2956 unsigned int section_number, secn;
2957 Elf_Internal_Shdr **i_shdrp;
2958 struct bfd_elf_section_data *d;
2959
2960 section_number = 1;
2961
2962 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2963
2964 /* SHT_GROUP sections are in relocatable files only. */
2965 if (link_info == NULL || link_info->relocatable)
2966 {
2967 /* Put SHT_GROUP sections first. */
2968 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2969 {
2970 d = elf_section_data (sec);
2971
2972 if (d->this_hdr.sh_type == SHT_GROUP)
2973 {
2974 if (sec->flags & SEC_LINKER_CREATED)
2975 {
2976 /* Remove the linker created SHT_GROUP sections. */
2977 bfd_section_list_remove (abfd, sec);
2978 abfd->section_count--;
2979 }
2980 else
2981 {
2982 if (section_number == SHN_LORESERVE)
2983 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2984 d->this_idx = section_number++;
2985 }
2986 }
2987 }
2988 }
2989
2990 for (sec = abfd->sections; sec; sec = sec->next)
2991 {
2992 d = elf_section_data (sec);
2993
2994 if (d->this_hdr.sh_type != SHT_GROUP)
2995 {
2996 if (section_number == SHN_LORESERVE)
2997 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2998 d->this_idx = section_number++;
2999 }
3000 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3001 if ((sec->flags & SEC_RELOC) == 0)
3002 d->rel_idx = 0;
3003 else
3004 {
3005 if (section_number == SHN_LORESERVE)
3006 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3007 d->rel_idx = section_number++;
3008 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
3009 }
3010
3011 if (d->rel_hdr2)
3012 {
3013 if (section_number == SHN_LORESERVE)
3014 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3015 d->rel_idx2 = section_number++;
3016 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
3017 }
3018 else
3019 d->rel_idx2 = 0;
3020 }
3021
3022 if (section_number == SHN_LORESERVE)
3023 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3024 t->shstrtab_section = section_number++;
3025 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3026 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
3027
3028 if (bfd_get_symcount (abfd) > 0)
3029 {
3030 if (section_number == SHN_LORESERVE)
3031 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3032 t->symtab_section = section_number++;
3033 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3034 if (section_number > SHN_LORESERVE - 2)
3035 {
3036 if (section_number == SHN_LORESERVE)
3037 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3038 t->symtab_shndx_section = section_number++;
3039 t->symtab_shndx_hdr.sh_name
3040 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3041 ".symtab_shndx", FALSE);
3042 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3043 return FALSE;
3044 }
3045 if (section_number == SHN_LORESERVE)
3046 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
3047 t->strtab_section = section_number++;
3048 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3049 }
3050
3051 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3052 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3053
3054 elf_numsections (abfd) = section_number;
3055 elf_elfheader (abfd)->e_shnum = section_number;
3056 if (section_number > SHN_LORESERVE)
3057 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
3058
3059 /* Set up the list of section header pointers, in agreement with the
3060 indices. */
3061 i_shdrp = bfd_zalloc2 (abfd, section_number, sizeof (Elf_Internal_Shdr *));
3062 if (i_shdrp == NULL)
3063 return FALSE;
3064
3065 i_shdrp[0] = bfd_zalloc (abfd, sizeof (Elf_Internal_Shdr));
3066 if (i_shdrp[0] == NULL)
3067 {
3068 bfd_release (abfd, i_shdrp);
3069 return FALSE;
3070 }
3071
3072 elf_elfsections (abfd) = i_shdrp;
3073
3074 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3075 if (bfd_get_symcount (abfd) > 0)
3076 {
3077 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3078 if (elf_numsections (abfd) > SHN_LORESERVE)
3079 {
3080 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3081 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3082 }
3083 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3084 t->symtab_hdr.sh_link = t->strtab_section;
3085 }
3086
3087 for (sec = abfd->sections; sec; sec = sec->next)
3088 {
3089 struct bfd_elf_section_data *d = elf_section_data (sec);
3090 asection *s;
3091 const char *name;
3092
3093 i_shdrp[d->this_idx] = &d->this_hdr;
3094 if (d->rel_idx != 0)
3095 i_shdrp[d->rel_idx] = &d->rel_hdr;
3096 if (d->rel_idx2 != 0)
3097 i_shdrp[d->rel_idx2] = d->rel_hdr2;
3098
3099 /* Fill in the sh_link and sh_info fields while we're at it. */
3100
3101 /* sh_link of a reloc section is the section index of the symbol
3102 table. sh_info is the section index of the section to which
3103 the relocation entries apply. */
3104 if (d->rel_idx != 0)
3105 {
3106 d->rel_hdr.sh_link = t->symtab_section;
3107 d->rel_hdr.sh_info = d->this_idx;
3108 }
3109 if (d->rel_idx2 != 0)
3110 {
3111 d->rel_hdr2->sh_link = t->symtab_section;
3112 d->rel_hdr2->sh_info = d->this_idx;
3113 }
3114
3115 /* We need to set up sh_link for SHF_LINK_ORDER. */
3116 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3117 {
3118 s = elf_linked_to_section (sec);
3119 if (s)
3120 {
3121 /* elf_linked_to_section points to the input section. */
3122 if (link_info != NULL)
3123 {
3124 /* Check discarded linkonce section. */
3125 if (elf_discarded_section (s))
3126 {
3127 asection *kept;
3128 (*_bfd_error_handler)
3129 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3130 abfd, d->this_hdr.bfd_section,
3131 s, s->owner);
3132 /* Point to the kept section if it has the same
3133 size as the discarded one. */
3134 kept = _bfd_elf_check_kept_section (s);
3135 if (kept == NULL)
3136 {
3137 bfd_set_error (bfd_error_bad_value);
3138 return FALSE;
3139 }
3140 s = kept;
3141 }
3142
3143 s = s->output_section;
3144 BFD_ASSERT (s != NULL);
3145 }
3146 else
3147 {
3148 /* Handle objcopy. */
3149 if (s->output_section == NULL)
3150 {
3151 (*_bfd_error_handler)
3152 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3153 abfd, d->this_hdr.bfd_section, s, s->owner);
3154 bfd_set_error (bfd_error_bad_value);
3155 return FALSE;
3156 }
3157 s = s->output_section;
3158 }
3159 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3160 }
3161 else
3162 {
3163 /* PR 290:
3164 The Intel C compiler generates SHT_IA_64_UNWIND with
3165 SHF_LINK_ORDER. But it doesn't set the sh_link or
3166 sh_info fields. Hence we could get the situation
3167 where s is NULL. */
3168 const struct elf_backend_data *bed
3169 = get_elf_backend_data (abfd);
3170 if (bed->link_order_error_handler)
3171 bed->link_order_error_handler
3172 (_("%B: warning: sh_link not set for section `%A'"),
3173 abfd, sec);
3174 }
3175 }
3176
3177 switch (d->this_hdr.sh_type)
3178 {
3179 case SHT_REL:
3180 case SHT_RELA:
3181 /* A reloc section which we are treating as a normal BFD
3182 section. sh_link is the section index of the symbol
3183 table. sh_info is the section index of the section to
3184 which the relocation entries apply. We assume that an
3185 allocated reloc section uses the dynamic symbol table.
3186 FIXME: How can we be sure? */
3187 s = bfd_get_section_by_name (abfd, ".dynsym");
3188 if (s != NULL)
3189 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3190
3191 /* We look up the section the relocs apply to by name. */
3192 name = sec->name;
3193 if (d->this_hdr.sh_type == SHT_REL)
3194 name += 4;
3195 else
3196 name += 5;
3197 s = bfd_get_section_by_name (abfd, name);
3198 if (s != NULL)
3199 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3200 break;
3201
3202 case SHT_STRTAB:
3203 /* We assume that a section named .stab*str is a stabs
3204 string section. We look for a section with the same name
3205 but without the trailing ``str'', and set its sh_link
3206 field to point to this section. */
3207 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
3208 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3209 {
3210 size_t len;
3211 char *alc;
3212
3213 len = strlen (sec->name);
3214 alc = bfd_malloc (len - 2);
3215 if (alc == NULL)
3216 return FALSE;
3217 memcpy (alc, sec->name, len - 3);
3218 alc[len - 3] = '\0';
3219 s = bfd_get_section_by_name (abfd, alc);
3220 free (alc);
3221 if (s != NULL)
3222 {
3223 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3224
3225 /* This is a .stab section. */
3226 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3227 elf_section_data (s)->this_hdr.sh_entsize
3228 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3229 }
3230 }
3231 break;
3232
3233 case SHT_DYNAMIC:
3234 case SHT_DYNSYM:
3235 case SHT_GNU_verneed:
3236 case SHT_GNU_verdef:
3237 /* sh_link is the section header index of the string table
3238 used for the dynamic entries, or the symbol table, or the
3239 version strings. */
3240 s = bfd_get_section_by_name (abfd, ".dynstr");
3241 if (s != NULL)
3242 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3243 break;
3244
3245 case SHT_GNU_LIBLIST:
3246 /* sh_link is the section header index of the prelink library
3247 list
3248 used for the dynamic entries, or the symbol table, or the
3249 version strings. */
3250 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3251 ? ".dynstr" : ".gnu.libstr");
3252 if (s != NULL)
3253 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3254 break;
3255
3256 case SHT_HASH:
3257 case SHT_GNU_versym:
3258 /* sh_link is the section header index of the symbol table
3259 this hash table or version table is for. */
3260 s = bfd_get_section_by_name (abfd, ".dynsym");
3261 if (s != NULL)
3262 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3263 break;
3264
3265 case SHT_GROUP:
3266 d->this_hdr.sh_link = t->symtab_section;
3267 }
3268 }
3269
3270 for (secn = 1; secn < section_number; ++secn)
3271 if (i_shdrp[secn] == NULL)
3272 i_shdrp[secn] = i_shdrp[0];
3273 else
3274 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3275 i_shdrp[secn]->sh_name);
3276 return TRUE;
3277 }
3278
3279 /* Map symbol from it's internal number to the external number, moving
3280 all local symbols to be at the head of the list. */
3281
3282 static int
3283 sym_is_global (bfd *abfd, asymbol *sym)
3284 {
3285 /* If the backend has a special mapping, use it. */
3286 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3287 if (bed->elf_backend_sym_is_global)
3288 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3289
3290 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3291 || bfd_is_und_section (bfd_get_section (sym))
3292 || bfd_is_com_section (bfd_get_section (sym)));
3293 }
3294
3295 static bfd_boolean
3296 elf_map_symbols (bfd *abfd)
3297 {
3298 unsigned int symcount = bfd_get_symcount (abfd);
3299 asymbol **syms = bfd_get_outsymbols (abfd);
3300 asymbol **sect_syms;
3301 unsigned int num_locals = 0;
3302 unsigned int num_globals = 0;
3303 unsigned int num_locals2 = 0;
3304 unsigned int num_globals2 = 0;
3305 int max_index = 0;
3306 unsigned int idx;
3307 asection *asect;
3308 asymbol **new_syms;
3309
3310 #ifdef DEBUG
3311 fprintf (stderr, "elf_map_symbols\n");
3312 fflush (stderr);
3313 #endif
3314
3315 for (asect = abfd->sections; asect; asect = asect->next)
3316 {
3317 if (max_index < asect->index)
3318 max_index = asect->index;
3319 }
3320
3321 max_index++;
3322 sect_syms = bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3323 if (sect_syms == NULL)
3324 return FALSE;
3325 elf_section_syms (abfd) = sect_syms;
3326 elf_num_section_syms (abfd) = max_index;
3327
3328 /* Init sect_syms entries for any section symbols we have already
3329 decided to output. */
3330 for (idx = 0; idx < symcount; idx++)
3331 {
3332 asymbol *sym = syms[idx];
3333
3334 if ((sym->flags & BSF_SECTION_SYM) != 0
3335 && sym->value == 0)
3336 {
3337 asection *sec;
3338
3339 sec = sym->section;
3340
3341 if (sec->owner != NULL)
3342 {
3343 if (sec->owner != abfd)
3344 {
3345 if (sec->output_offset != 0)
3346 continue;
3347
3348 sec = sec->output_section;
3349
3350 /* Empty sections in the input files may have had a
3351 section symbol created for them. (See the comment
3352 near the end of _bfd_generic_link_output_symbols in
3353 linker.c). If the linker script discards such
3354 sections then we will reach this point. Since we know
3355 that we cannot avoid this case, we detect it and skip
3356 the abort and the assignment to the sect_syms array.
3357 To reproduce this particular case try running the
3358 linker testsuite test ld-scripts/weak.exp for an ELF
3359 port that uses the generic linker. */
3360 if (sec->owner == NULL)
3361 continue;
3362
3363 BFD_ASSERT (sec->owner == abfd);
3364 }
3365 sect_syms[sec->index] = syms[idx];
3366 }
3367 }
3368 }
3369
3370 /* Classify all of the symbols. */
3371 for (idx = 0; idx < symcount; idx++)
3372 {
3373 if (!sym_is_global (abfd, syms[idx]))
3374 num_locals++;
3375 else
3376 num_globals++;
3377 }
3378
3379 /* We will be adding a section symbol for each BFD section. Most normal
3380 sections will already have a section symbol in outsymbols, but
3381 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3382 at least in that case. */
3383 for (asect = abfd->sections; asect; asect = asect->next)
3384 {
3385 if (sect_syms[asect->index] == NULL)
3386 {
3387 if (!sym_is_global (abfd, asect->symbol))
3388 num_locals++;
3389 else
3390 num_globals++;
3391 }
3392 }
3393
3394 /* Now sort the symbols so the local symbols are first. */
3395 new_syms = bfd_alloc2 (abfd, num_locals + num_globals, sizeof (asymbol *));
3396
3397 if (new_syms == NULL)
3398 return FALSE;
3399
3400 for (idx = 0; idx < symcount; idx++)
3401 {
3402 asymbol *sym = syms[idx];
3403 unsigned int i;
3404
3405 if (!sym_is_global (abfd, sym))
3406 i = num_locals2++;
3407 else
3408 i = num_locals + num_globals2++;
3409 new_syms[i] = sym;
3410 sym->udata.i = i + 1;
3411 }
3412 for (asect = abfd->sections; asect; asect = asect->next)
3413 {
3414 if (sect_syms[asect->index] == NULL)
3415 {
3416 asymbol *sym = asect->symbol;
3417 unsigned int i;
3418
3419 sect_syms[asect->index] = sym;
3420 if (!sym_is_global (abfd, sym))
3421 i = num_locals2++;
3422 else
3423 i = num_locals + num_globals2++;
3424 new_syms[i] = sym;
3425 sym->udata.i = i + 1;
3426 }
3427 }
3428
3429 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3430
3431 elf_num_locals (abfd) = num_locals;
3432 elf_num_globals (abfd) = num_globals;
3433 return TRUE;
3434 }
3435
3436 /* Align to the maximum file alignment that could be required for any
3437 ELF data structure. */
3438
3439 static inline file_ptr
3440 align_file_position (file_ptr off, int align)
3441 {
3442 return (off + align - 1) & ~(align - 1);
3443 }
3444
3445 /* Assign a file position to a section, optionally aligning to the
3446 required section alignment. */
3447
3448 file_ptr
3449 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3450 file_ptr offset,
3451 bfd_boolean align)
3452 {
3453 if (align)
3454 {
3455 unsigned int al;
3456
3457 al = i_shdrp->sh_addralign;
3458 if (al > 1)
3459 offset = BFD_ALIGN (offset, al);
3460 }
3461 i_shdrp->sh_offset = offset;
3462 if (i_shdrp->bfd_section != NULL)
3463 i_shdrp->bfd_section->filepos = offset;
3464 if (i_shdrp->sh_type != SHT_NOBITS)
3465 offset += i_shdrp->sh_size;
3466 return offset;
3467 }
3468
3469 /* Compute the file positions we are going to put the sections at, and
3470 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3471 is not NULL, this is being called by the ELF backend linker. */
3472
3473 bfd_boolean
3474 _bfd_elf_compute_section_file_positions (bfd *abfd,
3475 struct bfd_link_info *link_info)
3476 {
3477 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3478 bfd_boolean failed;
3479 struct bfd_strtab_hash *strtab = NULL;
3480 Elf_Internal_Shdr *shstrtab_hdr;
3481
3482 if (abfd->output_has_begun)
3483 return TRUE;
3484
3485 /* Do any elf backend specific processing first. */
3486 if (bed->elf_backend_begin_write_processing)
3487 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3488
3489 if (! prep_headers (abfd))
3490 return FALSE;
3491
3492 /* Post process the headers if necessary. */
3493 if (bed->elf_backend_post_process_headers)
3494 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3495
3496 failed = FALSE;
3497 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3498 if (failed)
3499 return FALSE;
3500
3501 if (!assign_section_numbers (abfd, link_info))
3502 return FALSE;
3503
3504 /* The backend linker builds symbol table information itself. */
3505 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3506 {
3507 /* Non-zero if doing a relocatable link. */
3508 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3509
3510 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3511 return FALSE;
3512 }
3513
3514 if (link_info == NULL)
3515 {
3516 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3517 if (failed)
3518 return FALSE;
3519 }
3520
3521 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3522 /* sh_name was set in prep_headers. */
3523 shstrtab_hdr->sh_type = SHT_STRTAB;
3524 shstrtab_hdr->sh_flags = 0;
3525 shstrtab_hdr->sh_addr = 0;
3526 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3527 shstrtab_hdr->sh_entsize = 0;
3528 shstrtab_hdr->sh_link = 0;
3529 shstrtab_hdr->sh_info = 0;
3530 /* sh_offset is set in assign_file_positions_except_relocs. */
3531 shstrtab_hdr->sh_addralign = 1;
3532
3533 if (!assign_file_positions_except_relocs (abfd, link_info))
3534 return FALSE;
3535
3536 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3537 {
3538 file_ptr off;
3539 Elf_Internal_Shdr *hdr;
3540
3541 off = elf_tdata (abfd)->next_file_pos;
3542
3543 hdr = &elf_tdata (abfd)->symtab_hdr;
3544 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3545
3546 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3547 if (hdr->sh_size != 0)
3548 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3549
3550 hdr = &elf_tdata (abfd)->strtab_hdr;
3551 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3552
3553 elf_tdata (abfd)->next_file_pos = off;
3554
3555 /* Now that we know where the .strtab section goes, write it
3556 out. */
3557 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3558 || ! _bfd_stringtab_emit (abfd, strtab))
3559 return FALSE;
3560 _bfd_stringtab_free (strtab);
3561 }
3562
3563 abfd->output_has_begun = TRUE;
3564
3565 return TRUE;
3566 }
3567
3568 /* Create a mapping from a set of sections to a program segment. */
3569
3570 static struct elf_segment_map *
3571 make_mapping (bfd *abfd,
3572 asection **sections,
3573 unsigned int from,
3574 unsigned int to,
3575 bfd_boolean phdr)
3576 {
3577 struct elf_segment_map *m;
3578 unsigned int i;
3579 asection **hdrpp;
3580 bfd_size_type amt;
3581
3582 amt = sizeof (struct elf_segment_map);
3583 amt += (to - from - 1) * sizeof (asection *);
3584 m = bfd_zalloc (abfd, amt);
3585 if (m == NULL)
3586 return NULL;
3587 m->next = NULL;
3588 m->p_type = PT_LOAD;
3589 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3590 m->sections[i - from] = *hdrpp;
3591 m->count = to - from;
3592
3593 if (from == 0 && phdr)
3594 {
3595 /* Include the headers in the first PT_LOAD segment. */
3596 m->includes_filehdr = 1;
3597 m->includes_phdrs = 1;
3598 }
3599
3600 return m;
3601 }
3602
3603 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3604 on failure. */
3605
3606 struct elf_segment_map *
3607 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3608 {
3609 struct elf_segment_map *m;
3610
3611 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3612 if (m == NULL)
3613 return NULL;
3614 m->next = NULL;
3615 m->p_type = PT_DYNAMIC;
3616 m->count = 1;
3617 m->sections[0] = dynsec;
3618
3619 return m;
3620 }
3621
3622 /* Set up a mapping from BFD sections to program segments. */
3623
3624 static bfd_boolean
3625 map_sections_to_segments (bfd *abfd)
3626 {
3627 asection **sections = NULL;
3628 asection *s;
3629 unsigned int i;
3630 unsigned int count;
3631 struct elf_segment_map *mfirst;
3632 struct elf_segment_map **pm;
3633 struct elf_segment_map *m;
3634 asection *last_hdr;
3635 bfd_vma last_size;
3636 unsigned int phdr_index;
3637 bfd_vma maxpagesize;
3638 asection **hdrpp;
3639 bfd_boolean phdr_in_segment = TRUE;
3640 bfd_boolean writable;
3641 int tls_count = 0;
3642 asection *first_tls = NULL;
3643 asection *dynsec, *eh_frame_hdr;
3644 bfd_size_type amt;
3645
3646 if (elf_tdata (abfd)->segment_map != NULL)
3647 return TRUE;
3648
3649 if (bfd_count_sections (abfd) == 0)
3650 return TRUE;
3651
3652 /* Select the allocated sections, and sort them. */
3653
3654 sections = bfd_malloc2 (bfd_count_sections (abfd), sizeof (asection *));
3655 if (sections == NULL)
3656 goto error_return;
3657
3658 i = 0;
3659 for (s = abfd->sections; s != NULL; s = s->next)
3660 {
3661 if ((s->flags & SEC_ALLOC) != 0)
3662 {
3663 sections[i] = s;
3664 ++i;
3665 }
3666 }
3667 BFD_ASSERT (i <= bfd_count_sections (abfd));
3668 count = i;
3669
3670 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3671
3672 /* Build the mapping. */
3673
3674 mfirst = NULL;
3675 pm = &mfirst;
3676
3677 /* If we have a .interp section, then create a PT_PHDR segment for
3678 the program headers and a PT_INTERP segment for the .interp
3679 section. */
3680 s = bfd_get_section_by_name (abfd, ".interp");
3681 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3682 {
3683 amt = sizeof (struct elf_segment_map);
3684 m = bfd_zalloc (abfd, amt);
3685 if (m == NULL)
3686 goto error_return;
3687 m->next = NULL;
3688 m->p_type = PT_PHDR;
3689 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3690 m->p_flags = PF_R | PF_X;
3691 m->p_flags_valid = 1;
3692 m->includes_phdrs = 1;
3693
3694 *pm = m;
3695 pm = &m->next;
3696
3697 amt = sizeof (struct elf_segment_map);
3698 m = bfd_zalloc (abfd, amt);
3699 if (m == NULL)
3700 goto error_return;
3701 m->next = NULL;
3702 m->p_type = PT_INTERP;
3703 m->count = 1;
3704 m->sections[0] = s;
3705
3706 *pm = m;
3707 pm = &m->next;
3708 }
3709
3710 /* Look through the sections. We put sections in the same program
3711 segment when the start of the second section can be placed within
3712 a few bytes of the end of the first section. */
3713 last_hdr = NULL;
3714 last_size = 0;
3715 phdr_index = 0;
3716 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3717 writable = FALSE;
3718 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3719 if (dynsec != NULL
3720 && (dynsec->flags & SEC_LOAD) == 0)
3721 dynsec = NULL;
3722
3723 /* Deal with -Ttext or something similar such that the first section
3724 is not adjacent to the program headers. This is an
3725 approximation, since at this point we don't know exactly how many
3726 program headers we will need. */
3727 if (count > 0)
3728 {
3729 bfd_size_type phdr_size;
3730
3731 phdr_size = elf_tdata (abfd)->program_header_size;
3732 if (phdr_size == 0)
3733 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3734 if ((abfd->flags & D_PAGED) == 0
3735 || sections[0]->lma < phdr_size
3736 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3737 phdr_in_segment = FALSE;
3738 }
3739
3740 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3741 {
3742 asection *hdr;
3743 bfd_boolean new_segment;
3744
3745 hdr = *hdrpp;
3746
3747 /* See if this section and the last one will fit in the same
3748 segment. */
3749
3750 if (last_hdr == NULL)
3751 {
3752 /* If we don't have a segment yet, then we don't need a new
3753 one (we build the last one after this loop). */
3754 new_segment = FALSE;
3755 }
3756 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3757 {
3758 /* If this section has a different relation between the
3759 virtual address and the load address, then we need a new
3760 segment. */
3761 new_segment = TRUE;
3762 }
3763 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3764 < BFD_ALIGN (hdr->lma, maxpagesize))
3765 {
3766 /* If putting this section in this segment would force us to
3767 skip a page in the segment, then we need a new segment. */
3768 new_segment = TRUE;
3769 }
3770 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3771 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3772 {
3773 /* We don't want to put a loadable section after a
3774 nonloadable section in the same segment.
3775 Consider .tbss sections as loadable for this purpose. */
3776 new_segment = TRUE;
3777 }
3778 else if ((abfd->flags & D_PAGED) == 0)
3779 {
3780 /* If the file is not demand paged, which means that we
3781 don't require the sections to be correctly aligned in the
3782 file, then there is no other reason for a new segment. */
3783 new_segment = FALSE;
3784 }
3785 else if (! writable
3786 && (hdr->flags & SEC_READONLY) == 0
3787 && (((last_hdr->lma + last_size - 1)
3788 & ~(maxpagesize - 1))
3789 != (hdr->lma & ~(maxpagesize - 1))))
3790 {
3791 /* We don't want to put a writable section in a read only
3792 segment, unless they are on the same page in memory
3793 anyhow. We already know that the last section does not
3794 bring us past the current section on the page, so the
3795 only case in which the new section is not on the same
3796 page as the previous section is when the previous section
3797 ends precisely on a page boundary. */
3798 new_segment = TRUE;
3799 }
3800 else
3801 {
3802 /* Otherwise, we can use the same segment. */
3803 new_segment = FALSE;
3804 }
3805
3806 if (! new_segment)
3807 {
3808 if ((hdr->flags & SEC_READONLY) == 0)
3809 writable = TRUE;
3810 last_hdr = hdr;
3811 /* .tbss sections effectively have zero size. */
3812 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3813 last_size = hdr->size;
3814 else
3815 last_size = 0;
3816 continue;
3817 }
3818
3819 /* We need a new program segment. We must create a new program
3820 header holding all the sections from phdr_index until hdr. */
3821
3822 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3823 if (m == NULL)
3824 goto error_return;
3825
3826 *pm = m;
3827 pm = &m->next;
3828
3829 if ((hdr->flags & SEC_READONLY) == 0)
3830 writable = TRUE;
3831 else
3832 writable = FALSE;
3833
3834 last_hdr = hdr;
3835 /* .tbss sections effectively have zero size. */
3836 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3837 last_size = hdr->size;
3838 else
3839 last_size = 0;
3840 phdr_index = i;
3841 phdr_in_segment = FALSE;
3842 }
3843
3844 /* Create a final PT_LOAD program segment. */
3845 if (last_hdr != NULL)
3846 {
3847 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3848 if (m == NULL)
3849 goto error_return;
3850
3851 *pm = m;
3852 pm = &m->next;
3853 }
3854
3855 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3856 if (dynsec != NULL)
3857 {
3858 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3859 if (m == NULL)
3860 goto error_return;
3861 *pm = m;
3862 pm = &m->next;
3863 }
3864
3865 /* For each loadable .note section, add a PT_NOTE segment. We don't
3866 use bfd_get_section_by_name, because if we link together
3867 nonloadable .note sections and loadable .note sections, we will
3868 generate two .note sections in the output file. FIXME: Using
3869 names for section types is bogus anyhow. */
3870 for (s = abfd->sections; s != NULL; s = s->next)
3871 {
3872 if ((s->flags & SEC_LOAD) != 0
3873 && strncmp (s->name, ".note", 5) == 0)
3874 {
3875 amt = sizeof (struct elf_segment_map);
3876 m = bfd_zalloc (abfd, amt);
3877 if (m == NULL)
3878 goto error_return;
3879 m->next = NULL;
3880 m->p_type = PT_NOTE;
3881 m->count = 1;
3882 m->sections[0] = s;
3883
3884 *pm = m;
3885 pm = &m->next;
3886 }
3887 if (s->flags & SEC_THREAD_LOCAL)
3888 {
3889 if (! tls_count)
3890 first_tls = s;
3891 tls_count++;
3892 }
3893 }
3894
3895 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3896 if (tls_count > 0)
3897 {
3898 int i;
3899
3900 amt = sizeof (struct elf_segment_map);
3901 amt += (tls_count - 1) * sizeof (asection *);
3902 m = bfd_zalloc (abfd, amt);
3903 if (m == NULL)
3904 goto error_return;
3905 m->next = NULL;
3906 m->p_type = PT_TLS;
3907 m->count = tls_count;
3908 /* Mandated PF_R. */
3909 m->p_flags = PF_R;
3910 m->p_flags_valid = 1;
3911 for (i = 0; i < tls_count; ++i)
3912 {
3913 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3914 m->sections[i] = first_tls;
3915 first_tls = first_tls->next;
3916 }
3917
3918 *pm = m;
3919 pm = &m->next;
3920 }
3921
3922 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3923 segment. */
3924 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3925 if (eh_frame_hdr != NULL
3926 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3927 {
3928 amt = sizeof (struct elf_segment_map);
3929 m = bfd_zalloc (abfd, amt);
3930 if (m == NULL)
3931 goto error_return;
3932 m->next = NULL;
3933 m->p_type = PT_GNU_EH_FRAME;
3934 m->count = 1;
3935 m->sections[0] = eh_frame_hdr->output_section;
3936
3937 *pm = m;
3938 pm = &m->next;
3939 }
3940
3941 if (elf_tdata (abfd)->stack_flags)
3942 {
3943 amt = sizeof (struct elf_segment_map);
3944 m = bfd_zalloc (abfd, amt);
3945 if (m == NULL)
3946 goto error_return;
3947 m->next = NULL;
3948 m->p_type = PT_GNU_STACK;
3949 m->p_flags = elf_tdata (abfd)->stack_flags;
3950 m->p_flags_valid = 1;
3951
3952 *pm = m;
3953 pm = &m->next;
3954 }
3955
3956 if (elf_tdata (abfd)->relro)
3957 {
3958 amt = sizeof (struct elf_segment_map);
3959 m = bfd_zalloc (abfd, amt);
3960 if (m == NULL)
3961 goto error_return;
3962 m->next = NULL;
3963 m->p_type = PT_GNU_RELRO;
3964 m->p_flags = PF_R;
3965 m->p_flags_valid = 1;
3966
3967 *pm = m;
3968 pm = &m->next;
3969 }
3970
3971 free (sections);
3972 sections = NULL;
3973
3974 elf_tdata (abfd)->segment_map = mfirst;
3975 return TRUE;
3976
3977 error_return:
3978 if (sections != NULL)
3979 free (sections);
3980 return FALSE;
3981 }
3982
3983 /* Sort sections by address. */
3984
3985 static int
3986 elf_sort_sections (const void *arg1, const void *arg2)
3987 {
3988 const asection *sec1 = *(const asection **) arg1;
3989 const asection *sec2 = *(const asection **) arg2;
3990 bfd_size_type size1, size2;
3991
3992 /* Sort by LMA first, since this is the address used to
3993 place the section into a segment. */
3994 if (sec1->lma < sec2->lma)
3995 return -1;
3996 else if (sec1->lma > sec2->lma)
3997 return 1;
3998
3999 /* Then sort by VMA. Normally the LMA and the VMA will be
4000 the same, and this will do nothing. */
4001 if (sec1->vma < sec2->vma)
4002 return -1;
4003 else if (sec1->vma > sec2->vma)
4004 return 1;
4005
4006 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4007
4008 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4009
4010 if (TOEND (sec1))
4011 {
4012 if (TOEND (sec2))
4013 {
4014 /* If the indicies are the same, do not return 0
4015 here, but continue to try the next comparison. */
4016 if (sec1->target_index - sec2->target_index != 0)
4017 return sec1->target_index - sec2->target_index;
4018 }
4019 else
4020 return 1;
4021 }
4022 else if (TOEND (sec2))
4023 return -1;
4024
4025 #undef TOEND
4026
4027 /* Sort by size, to put zero sized sections
4028 before others at the same address. */
4029
4030 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4031 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4032
4033 if (size1 < size2)
4034 return -1;
4035 if (size1 > size2)
4036 return 1;
4037
4038 return sec1->target_index - sec2->target_index;
4039 }
4040
4041 /* Ian Lance Taylor writes:
4042
4043 We shouldn't be using % with a negative signed number. That's just
4044 not good. We have to make sure either that the number is not
4045 negative, or that the number has an unsigned type. When the types
4046 are all the same size they wind up as unsigned. When file_ptr is a
4047 larger signed type, the arithmetic winds up as signed long long,
4048 which is wrong.
4049
4050 What we're trying to say here is something like ``increase OFF by
4051 the least amount that will cause it to be equal to the VMA modulo
4052 the page size.'' */
4053 /* In other words, something like:
4054
4055 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4056 off_offset = off % bed->maxpagesize;
4057 if (vma_offset < off_offset)
4058 adjustment = vma_offset + bed->maxpagesize - off_offset;
4059 else
4060 adjustment = vma_offset - off_offset;
4061
4062 which can can be collapsed into the expression below. */
4063
4064 static file_ptr
4065 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4066 {
4067 return ((vma - off) % maxpagesize);
4068 }
4069
4070 static void
4071 print_segment_map (bfd *abfd)
4072 {
4073 struct elf_segment_map *m;
4074 unsigned int i, j;
4075
4076 fprintf (stderr, _(" Section to Segment mapping:\n"));
4077 fprintf (stderr, _(" Segment Sections...\n"));
4078
4079 for (i= 0, m = elf_tdata (abfd)->segment_map;
4080 m != NULL;
4081 i++, m = m->next)
4082 {
4083 const char *pt = get_segment_type (m->p_type);
4084 char buf[32];
4085
4086 if (pt == NULL)
4087 {
4088 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4089 sprintf (buf, "LOPROC+%7.7x",
4090 (unsigned int) (m->p_type - PT_LOPROC));
4091 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4092 sprintf (buf, "LOOS+%7.7x",
4093 (unsigned int) (m->p_type - PT_LOOS));
4094 else
4095 snprintf (buf, sizeof (buf), "%8.8x",
4096 (unsigned int) m->p_type);
4097 pt = buf;
4098 }
4099 fprintf (stderr, " %2.2d: %14.14s: ", i, pt);
4100 for (j = 0; j < m->count; j++)
4101 fprintf (stderr, "%s ", m->sections [j]->name);
4102 putc ('\n',stderr);
4103 }
4104 }
4105
4106 /* Assign file positions to the sections based on the mapping from
4107 sections to segments. This function also sets up some fields in
4108 the file header, and writes out the program headers. */
4109
4110 static bfd_boolean
4111 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
4112 {
4113 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4114 unsigned int count;
4115 struct elf_segment_map *m;
4116 unsigned int alloc;
4117 Elf_Internal_Phdr *phdrs;
4118 file_ptr off, voff;
4119 bfd_vma filehdr_vaddr, filehdr_paddr;
4120 bfd_vma phdrs_vaddr, phdrs_paddr;
4121 Elf_Internal_Phdr *p;
4122 Elf_Internal_Shdr **i_shdrpp;
4123 Elf_Internal_Shdr **hdrpp;
4124 unsigned int i;
4125 unsigned int num_sec;
4126
4127 if (elf_tdata (abfd)->segment_map == NULL)
4128 {
4129 if (! map_sections_to_segments (abfd))
4130 return FALSE;
4131 }
4132 else
4133 {
4134 /* The placement algorithm assumes that non allocated sections are
4135 not in PT_LOAD segments. We ensure this here by removing such
4136 sections from the segment map. We also remove excluded
4137 sections. */
4138 for (m = elf_tdata (abfd)->segment_map;
4139 m != NULL;
4140 m = m->next)
4141 {
4142 unsigned int new_count;
4143
4144 new_count = 0;
4145 for (i = 0; i < m->count; i ++)
4146 {
4147 if ((m->sections[i]->flags & SEC_EXCLUDE) == 0
4148 && ((m->sections[i]->flags & SEC_ALLOC) != 0
4149 || m->p_type != PT_LOAD))
4150 {
4151 if (i != new_count)
4152 m->sections[new_count] = m->sections[i];
4153
4154 new_count ++;
4155 }
4156 }
4157
4158 if (new_count != m->count)
4159 m->count = new_count;
4160 }
4161 }
4162
4163 if (bed->elf_backend_modify_segment_map)
4164 {
4165 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
4166 return FALSE;
4167 }
4168
4169 count = 0;
4170 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4171 ++count;
4172
4173 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4174 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4175 elf_elfheader (abfd)->e_phnum = count;
4176
4177 if (count == 0)
4178 {
4179 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4180 return TRUE;
4181 }
4182
4183 /* If we already counted the number of program segments, make sure
4184 that we allocated enough space. This happens when SIZEOF_HEADERS
4185 is used in a linker script. */
4186 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
4187 if (alloc != 0 && count > alloc)
4188 {
4189 ((*_bfd_error_handler)
4190 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
4191 abfd, alloc, count));
4192 print_segment_map (abfd);
4193 bfd_set_error (bfd_error_bad_value);
4194 return FALSE;
4195 }
4196
4197 if (alloc == 0)
4198 alloc = count;
4199
4200 phdrs = bfd_alloc2 (abfd, alloc, sizeof (Elf_Internal_Phdr));
4201 if (phdrs == NULL)
4202 return FALSE;
4203
4204 off = bed->s->sizeof_ehdr;
4205 off += alloc * bed->s->sizeof_phdr;
4206
4207 filehdr_vaddr = 0;
4208 filehdr_paddr = 0;
4209 phdrs_vaddr = 0;
4210 phdrs_paddr = 0;
4211
4212 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4213 m != NULL;
4214 m = m->next, p++)
4215 {
4216 asection **secpp;
4217
4218 /* If elf_segment_map is not from map_sections_to_segments, the
4219 sections may not be correctly ordered. NOTE: sorting should
4220 not be done to the PT_NOTE section of a corefile, which may
4221 contain several pseudo-sections artificially created by bfd.
4222 Sorting these pseudo-sections breaks things badly. */
4223 if (m->count > 1
4224 && !(elf_elfheader (abfd)->e_type == ET_CORE
4225 && m->p_type == PT_NOTE))
4226 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4227 elf_sort_sections);
4228
4229 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4230 number of sections with contents contributing to both p_filesz
4231 and p_memsz, followed by a number of sections with no contents
4232 that just contribute to p_memsz. In this loop, OFF tracks next
4233 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
4234 an adjustment we use for segments that have no file contents
4235 but need zero filled memory allocation. */
4236 voff = 0;
4237 p->p_type = m->p_type;
4238 p->p_flags = m->p_flags;
4239
4240 if (p->p_type == PT_LOAD
4241 && m->count > 0)
4242 {
4243 bfd_size_type align;
4244 bfd_vma adjust;
4245 unsigned int align_power = 0;
4246
4247 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4248 {
4249 unsigned int secalign;
4250
4251 secalign = bfd_get_section_alignment (abfd, *secpp);
4252 if (secalign > align_power)
4253 align_power = secalign;
4254 }
4255 align = (bfd_size_type) 1 << align_power;
4256
4257 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > align)
4258 align = bed->maxpagesize;
4259
4260 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
4261 off += adjust;
4262 if (adjust != 0
4263 && !m->includes_filehdr
4264 && !m->includes_phdrs
4265 && (ufile_ptr) off >= align)
4266 {
4267 /* If the first section isn't loadable, the same holds for
4268 any other sections. Since the segment won't need file
4269 space, we can make p_offset overlap some prior segment.
4270 However, .tbss is special. If a segment starts with
4271 .tbss, we need to look at the next section to decide
4272 whether the segment has any loadable sections. */
4273 i = 0;
4274 while ((m->sections[i]->flags & SEC_LOAD) == 0)
4275 {
4276 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
4277 || ++i >= m->count)
4278 {
4279 off -= adjust;
4280 voff = adjust - align;
4281 break;
4282 }
4283 }
4284 }
4285 }
4286 /* Make sure the .dynamic section is the first section in the
4287 PT_DYNAMIC segment. */
4288 else if (p->p_type == PT_DYNAMIC
4289 && m->count > 1
4290 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4291 {
4292 _bfd_error_handler
4293 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4294 abfd);
4295 bfd_set_error (bfd_error_bad_value);
4296 return FALSE;
4297 }
4298
4299 if (m->count == 0)
4300 p->p_vaddr = 0;
4301 else
4302 p->p_vaddr = m->sections[0]->vma;
4303
4304 if (m->p_paddr_valid)
4305 p->p_paddr = m->p_paddr;
4306 else if (m->count == 0)
4307 p->p_paddr = 0;
4308 else
4309 p->p_paddr = m->sections[0]->lma;
4310
4311 if (p->p_type == PT_LOAD
4312 && (abfd->flags & D_PAGED) != 0)
4313 p->p_align = bed->maxpagesize;
4314 else if (m->count == 0)
4315 p->p_align = 1 << bed->s->log_file_align;
4316 else
4317 p->p_align = 0;
4318
4319 p->p_offset = 0;
4320 p->p_filesz = 0;
4321 p->p_memsz = 0;
4322
4323 if (m->includes_filehdr)
4324 {
4325 if (! m->p_flags_valid)
4326 p->p_flags |= PF_R;
4327 p->p_offset = 0;
4328 p->p_filesz = bed->s->sizeof_ehdr;
4329 p->p_memsz = bed->s->sizeof_ehdr;
4330 if (m->count > 0)
4331 {
4332 BFD_ASSERT (p->p_type == PT_LOAD);
4333
4334 if (p->p_vaddr < (bfd_vma) off)
4335 {
4336 (*_bfd_error_handler)
4337 (_("%B: Not enough room for program headers, try linking with -N"),
4338 abfd);
4339 bfd_set_error (bfd_error_bad_value);
4340 return FALSE;
4341 }
4342
4343 p->p_vaddr -= off;
4344 if (! m->p_paddr_valid)
4345 p->p_paddr -= off;
4346 }
4347 if (p->p_type == PT_LOAD)
4348 {
4349 filehdr_vaddr = p->p_vaddr;
4350 filehdr_paddr = p->p_paddr;
4351 }
4352 }
4353
4354 if (m->includes_phdrs)
4355 {
4356 if (! m->p_flags_valid)
4357 p->p_flags |= PF_R;
4358
4359 if (m->includes_filehdr)
4360 {
4361 if (p->p_type == PT_LOAD)
4362 {
4363 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4364 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4365 }
4366 }
4367 else
4368 {
4369 p->p_offset = bed->s->sizeof_ehdr;
4370
4371 if (m->count > 0)
4372 {
4373 BFD_ASSERT (p->p_type == PT_LOAD);
4374 p->p_vaddr -= off - p->p_offset;
4375 if (! m->p_paddr_valid)
4376 p->p_paddr -= off - p->p_offset;
4377 }
4378
4379 if (p->p_type == PT_LOAD)
4380 {
4381 phdrs_vaddr = p->p_vaddr;
4382 phdrs_paddr = p->p_paddr;
4383 }
4384 else
4385 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4386 }
4387
4388 p->p_filesz += alloc * bed->s->sizeof_phdr;
4389 p->p_memsz += alloc * bed->s->sizeof_phdr;
4390 }
4391
4392 if (p->p_type == PT_LOAD
4393 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4394 {
4395 if (! m->includes_filehdr && ! m->includes_phdrs)
4396 p->p_offset = off + voff;
4397 else
4398 {
4399 file_ptr adjust;
4400
4401 adjust = off - (p->p_offset + p->p_filesz);
4402 p->p_filesz += adjust;
4403 p->p_memsz += adjust;
4404 }
4405 }
4406
4407 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4408 {
4409 asection *sec;
4410 flagword flags;
4411 bfd_size_type align;
4412
4413 sec = *secpp;
4414 flags = sec->flags;
4415 align = 1 << bfd_get_section_alignment (abfd, sec);
4416
4417 if (p->p_type == PT_LOAD
4418 || p->p_type == PT_TLS)
4419 {
4420 bfd_signed_vma adjust;
4421
4422 if ((flags & SEC_LOAD) != 0)
4423 {
4424 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4425 if (adjust < 0)
4426 {
4427 (*_bfd_error_handler)
4428 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4429 abfd, sec, (unsigned long) sec->lma);
4430 adjust = 0;
4431 }
4432 off += adjust;
4433 p->p_filesz += adjust;
4434 p->p_memsz += adjust;
4435 }
4436 /* .tbss is special. It doesn't contribute to p_memsz of
4437 normal segments. */
4438 else if ((flags & SEC_THREAD_LOCAL) == 0
4439 || p->p_type == PT_TLS)
4440 {
4441 /* The section VMA must equal the file position
4442 modulo the page size. */
4443 bfd_size_type page = align;
4444 if ((abfd->flags & D_PAGED) != 0 && bed->maxpagesize > page)
4445 page = bed->maxpagesize;
4446 adjust = vma_page_aligned_bias (sec->vma,
4447 p->p_vaddr + p->p_memsz,
4448 page);
4449 p->p_memsz += adjust;
4450 }
4451 }
4452
4453 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4454 {
4455 /* The section at i == 0 is the one that actually contains
4456 everything. */
4457 if (i == 0)
4458 {
4459 sec->filepos = off;
4460 off += sec->size;
4461 p->p_filesz = sec->size;
4462 p->p_memsz = 0;
4463 p->p_align = 1;
4464 }
4465 else
4466 {
4467 /* The rest are fake sections that shouldn't be written. */
4468 sec->filepos = 0;
4469 sec->size = 0;
4470 sec->flags = 0;
4471 continue;
4472 }
4473 }
4474 else
4475 {
4476 if (p->p_type == PT_LOAD)
4477 {
4478 sec->filepos = off;
4479 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4480 1997, and the exact reason for it isn't clear. One
4481 plausible explanation is that it is to work around
4482 a problem we have with linker scripts using data
4483 statements in NOLOAD sections. I don't think it
4484 makes a great deal of sense to have such a section
4485 assigned to a PT_LOAD segment, but apparently
4486 people do this. The data statement results in a
4487 bfd_data_link_order being built, and these need
4488 section contents to write into. Eventually, we get
4489 to _bfd_elf_write_object_contents which writes any
4490 section with contents to the output. Make room
4491 here for the write, so that following segments are
4492 not trashed. */
4493 if ((flags & SEC_LOAD) != 0
4494 || (flags & SEC_HAS_CONTENTS) != 0)
4495 off += sec->size;
4496 }
4497
4498 if ((flags & SEC_LOAD) != 0)
4499 {
4500 p->p_filesz += sec->size;
4501 p->p_memsz += sec->size;
4502 }
4503 /* PR ld/594: Sections in note segments which are not loaded
4504 contribute to the file size but not the in-memory size. */
4505 else if (p->p_type == PT_NOTE
4506 && (flags & SEC_HAS_CONTENTS) != 0)
4507 p->p_filesz += sec->size;
4508
4509 /* .tbss is special. It doesn't contribute to p_memsz of
4510 normal segments. */
4511 else if ((flags & SEC_THREAD_LOCAL) == 0
4512 || p->p_type == PT_TLS)
4513 p->p_memsz += sec->size;
4514
4515 if (p->p_type == PT_TLS
4516 && sec->size == 0
4517 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4518 {
4519 struct bfd_link_order *o = sec->map_tail.link_order;
4520 if (o != NULL)
4521 p->p_memsz += o->offset + o->size;
4522 }
4523
4524 if (align > p->p_align
4525 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4526 p->p_align = align;
4527 }
4528
4529 if (! m->p_flags_valid)
4530 {
4531 p->p_flags |= PF_R;
4532 if ((flags & SEC_CODE) != 0)
4533 p->p_flags |= PF_X;
4534 if ((flags & SEC_READONLY) == 0)
4535 p->p_flags |= PF_W;
4536 }
4537 }
4538 }
4539
4540 /* Assign file positions for the other sections. */
4541 i_shdrpp = elf_elfsections (abfd);
4542 num_sec = elf_numsections (abfd);
4543 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4544 {
4545 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4546 Elf_Internal_Shdr *hdr;
4547
4548 hdr = *hdrpp;
4549 if (hdr->bfd_section != NULL
4550 && hdr->bfd_section->filepos != 0)
4551 hdr->sh_offset = hdr->bfd_section->filepos;
4552 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4553 {
4554 ((*_bfd_error_handler)
4555 (_("%B: warning: allocated section `%s' not in segment"),
4556 abfd,
4557 (hdr->bfd_section == NULL
4558 ? "*unknown*"
4559 : hdr->bfd_section->name)));
4560 if ((abfd->flags & D_PAGED) != 0)
4561 off += vma_page_aligned_bias (hdr->sh_addr, off,
4562 bed->maxpagesize);
4563 else
4564 off += vma_page_aligned_bias (hdr->sh_addr, off,
4565 hdr->sh_addralign);
4566 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4567 FALSE);
4568 }
4569 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4570 && hdr->bfd_section == NULL)
4571 || hdr == i_shdrpp[tdata->symtab_section]
4572 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4573 || hdr == i_shdrpp[tdata->strtab_section])
4574 hdr->sh_offset = -1;
4575 else
4576 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4577
4578 if (i == SHN_LORESERVE - 1)
4579 {
4580 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4581 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4582 }
4583 }
4584
4585 /* Now that we have set the section file positions, we can set up
4586 the file positions for the non PT_LOAD segments. */
4587 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4588 m != NULL;
4589 m = m->next, p++)
4590 {
4591 if (p->p_type != PT_LOAD && m->count > 0)
4592 {
4593 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4594 /* If the section has not yet been assigned a file position,
4595 do so now. The ARM BPABI requires that .dynamic section
4596 not be marked SEC_ALLOC because it is not part of any
4597 PT_LOAD segment, so it will not be processed above. */
4598 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4599 {
4600 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4601
4602 i = 1;
4603 while (i_shdrpp[i]->bfd_section != m->sections[0])
4604 ++i;
4605 off = (_bfd_elf_assign_file_position_for_section
4606 (i_shdrpp[i], off, TRUE));
4607 p->p_filesz = m->sections[0]->size;
4608 }
4609 p->p_offset = m->sections[0]->filepos;
4610 }
4611 if (m->count == 0)
4612 {
4613 if (m->includes_filehdr)
4614 {
4615 p->p_vaddr = filehdr_vaddr;
4616 if (! m->p_paddr_valid)
4617 p->p_paddr = filehdr_paddr;
4618 }
4619 else if (m->includes_phdrs)
4620 {
4621 p->p_vaddr = phdrs_vaddr;
4622 if (! m->p_paddr_valid)
4623 p->p_paddr = phdrs_paddr;
4624 }
4625 else if (p->p_type == PT_GNU_RELRO)
4626 {
4627 Elf_Internal_Phdr *lp;
4628
4629 for (lp = phdrs; lp < phdrs + count; ++lp)
4630 {
4631 if (lp->p_type == PT_LOAD
4632 && lp->p_vaddr <= link_info->relro_end
4633 && lp->p_vaddr >= link_info->relro_start
4634 && lp->p_vaddr + lp->p_filesz
4635 >= link_info->relro_end)
4636 break;
4637 }
4638
4639 if (lp < phdrs + count
4640 && link_info->relro_end > lp->p_vaddr)
4641 {
4642 p->p_vaddr = lp->p_vaddr;
4643 p->p_paddr = lp->p_paddr;
4644 p->p_offset = lp->p_offset;
4645 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4646 p->p_memsz = p->p_filesz;
4647 p->p_align = 1;
4648 p->p_flags = (lp->p_flags & ~PF_W);
4649 }
4650 else
4651 {
4652 memset (p, 0, sizeof *p);
4653 p->p_type = PT_NULL;
4654 }
4655 }
4656 }
4657 }
4658
4659 /* Clear out any program headers we allocated but did not use. */
4660 for (; count < alloc; count++, p++)
4661 {
4662 memset (p, 0, sizeof *p);
4663 p->p_type = PT_NULL;
4664 }
4665
4666 elf_tdata (abfd)->phdr = phdrs;
4667
4668 elf_tdata (abfd)->next_file_pos = off;
4669
4670 /* Write out the program headers. */
4671 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4672 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4673 return FALSE;
4674
4675 return TRUE;
4676 }
4677
4678 /* Get the size of the program header.
4679
4680 If this is called by the linker before any of the section VMA's are set, it
4681 can't calculate the correct value for a strange memory layout. This only
4682 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4683 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4684 data segment (exclusive of .interp and .dynamic).
4685
4686 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4687 will be two segments. */
4688
4689 static bfd_size_type
4690 get_program_header_size (bfd *abfd)
4691 {
4692 size_t segs;
4693 asection *s;
4694 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4695
4696 /* We can't return a different result each time we're called. */
4697 if (elf_tdata (abfd)->program_header_size != 0)
4698 return elf_tdata (abfd)->program_header_size;
4699
4700 if (elf_tdata (abfd)->segment_map != NULL)
4701 {
4702 struct elf_segment_map *m;
4703
4704 segs = 0;
4705 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4706 ++segs;
4707 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4708 return elf_tdata (abfd)->program_header_size;
4709 }
4710
4711 /* Assume we will need exactly two PT_LOAD segments: one for text
4712 and one for data. */
4713 segs = 2;
4714
4715 s = bfd_get_section_by_name (abfd, ".interp");
4716 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4717 {
4718 /* If we have a loadable interpreter section, we need a
4719 PT_INTERP segment. In this case, assume we also need a
4720 PT_PHDR segment, although that may not be true for all
4721 targets. */
4722 segs += 2;
4723 }
4724
4725 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4726 {
4727 /* We need a PT_DYNAMIC segment. */
4728 ++segs;
4729 }
4730
4731 if (elf_tdata (abfd)->eh_frame_hdr)
4732 {
4733 /* We need a PT_GNU_EH_FRAME segment. */
4734 ++segs;
4735 }
4736
4737 if (elf_tdata (abfd)->stack_flags)
4738 {
4739 /* We need a PT_GNU_STACK segment. */
4740 ++segs;
4741 }
4742
4743 if (elf_tdata (abfd)->relro)
4744 {
4745 /* We need a PT_GNU_RELRO segment. */
4746 ++segs;
4747 }
4748
4749 for (s = abfd->sections; s != NULL; s = s->next)
4750 {
4751 if ((s->flags & SEC_LOAD) != 0
4752 && strncmp (s->name, ".note", 5) == 0)
4753 {
4754 /* We need a PT_NOTE segment. */
4755 ++segs;
4756 }
4757 }
4758
4759 for (s = abfd->sections; s != NULL; s = s->next)
4760 {
4761 if (s->flags & SEC_THREAD_LOCAL)
4762 {
4763 /* We need a PT_TLS segment. */
4764 ++segs;
4765 break;
4766 }
4767 }
4768
4769 /* Let the backend count up any program headers it might need. */
4770 if (bed->elf_backend_additional_program_headers)
4771 {
4772 int a;
4773
4774 a = (*bed->elf_backend_additional_program_headers) (abfd);
4775 if (a == -1)
4776 abort ();
4777 segs += a;
4778 }
4779
4780 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4781 return elf_tdata (abfd)->program_header_size;
4782 }
4783
4784 /* Work out the file positions of all the sections. This is called by
4785 _bfd_elf_compute_section_file_positions. All the section sizes and
4786 VMAs must be known before this is called.
4787
4788 Reloc sections come in two flavours: Those processed specially as
4789 "side-channel" data attached to a section to which they apply, and
4790 those that bfd doesn't process as relocations. The latter sort are
4791 stored in a normal bfd section by bfd_section_from_shdr. We don't
4792 consider the former sort here, unless they form part of the loadable
4793 image. Reloc sections not assigned here will be handled later by
4794 assign_file_positions_for_relocs.
4795
4796 We also don't set the positions of the .symtab and .strtab here. */
4797
4798 static bfd_boolean
4799 assign_file_positions_except_relocs (bfd *abfd,
4800 struct bfd_link_info *link_info)
4801 {
4802 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4803 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
4804 file_ptr off;
4805 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4806
4807 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4808 && bfd_get_format (abfd) != bfd_core)
4809 {
4810 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4811 unsigned int num_sec = elf_numsections (abfd);
4812 Elf_Internal_Shdr **hdrpp;
4813 unsigned int i;
4814
4815 /* Start after the ELF header. */
4816 off = i_ehdrp->e_ehsize;
4817
4818 /* We are not creating an executable, which means that we are
4819 not creating a program header, and that the actual order of
4820 the sections in the file is unimportant. */
4821 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4822 {
4823 Elf_Internal_Shdr *hdr;
4824
4825 hdr = *hdrpp;
4826 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4827 && hdr->bfd_section == NULL)
4828 || i == tdata->symtab_section
4829 || i == tdata->symtab_shndx_section
4830 || i == tdata->strtab_section)
4831 {
4832 hdr->sh_offset = -1;
4833 }
4834 else
4835 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4836
4837 if (i == SHN_LORESERVE - 1)
4838 {
4839 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4840 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4841 }
4842 }
4843 }
4844 else
4845 {
4846 /* Assign file positions for the loaded sections based on the
4847 assignment of sections to segments. */
4848 if (! assign_file_positions_for_segments (abfd, link_info))
4849 return FALSE;
4850
4851 off = tdata->next_file_pos;
4852 }
4853
4854 /* Place the section headers. */
4855 off = align_file_position (off, 1 << bed->s->log_file_align);
4856 i_ehdrp->e_shoff = off;
4857 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4858
4859 tdata->next_file_pos = off;
4860
4861 return TRUE;
4862 }
4863
4864 static bfd_boolean
4865 prep_headers (bfd *abfd)
4866 {
4867 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4868 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4869 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4870 struct elf_strtab_hash *shstrtab;
4871 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4872
4873 i_ehdrp = elf_elfheader (abfd);
4874 i_shdrp = elf_elfsections (abfd);
4875
4876 shstrtab = _bfd_elf_strtab_init ();
4877 if (shstrtab == NULL)
4878 return FALSE;
4879
4880 elf_shstrtab (abfd) = shstrtab;
4881
4882 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4883 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4884 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4885 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4886
4887 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4888 i_ehdrp->e_ident[EI_DATA] =
4889 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4890 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4891
4892 if ((abfd->flags & DYNAMIC) != 0)
4893 i_ehdrp->e_type = ET_DYN;
4894 else if ((abfd->flags & EXEC_P) != 0)
4895 i_ehdrp->e_type = ET_EXEC;
4896 else if (bfd_get_format (abfd) == bfd_core)
4897 i_ehdrp->e_type = ET_CORE;
4898 else
4899 i_ehdrp->e_type = ET_REL;
4900
4901 switch (bfd_get_arch (abfd))
4902 {
4903 case bfd_arch_unknown:
4904 i_ehdrp->e_machine = EM_NONE;
4905 break;
4906
4907 /* There used to be a long list of cases here, each one setting
4908 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4909 in the corresponding bfd definition. To avoid duplication,
4910 the switch was removed. Machines that need special handling
4911 can generally do it in elf_backend_final_write_processing(),
4912 unless they need the information earlier than the final write.
4913 Such need can generally be supplied by replacing the tests for
4914 e_machine with the conditions used to determine it. */
4915 default:
4916 i_ehdrp->e_machine = bed->elf_machine_code;
4917 }
4918
4919 i_ehdrp->e_version = bed->s->ev_current;
4920 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4921
4922 /* No program header, for now. */
4923 i_ehdrp->e_phoff = 0;
4924 i_ehdrp->e_phentsize = 0;
4925 i_ehdrp->e_phnum = 0;
4926
4927 /* Each bfd section is section header entry. */
4928 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4929 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4930
4931 /* If we're building an executable, we'll need a program header table. */
4932 if (abfd->flags & EXEC_P)
4933 /* It all happens later. */
4934 ;
4935 else
4936 {
4937 i_ehdrp->e_phentsize = 0;
4938 i_phdrp = 0;
4939 i_ehdrp->e_phoff = 0;
4940 }
4941
4942 elf_tdata (abfd)->symtab_hdr.sh_name =
4943 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4944 elf_tdata (abfd)->strtab_hdr.sh_name =
4945 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4946 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4947 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4948 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4949 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4950 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4951 return FALSE;
4952
4953 return TRUE;
4954 }
4955
4956 /* Assign file positions for all the reloc sections which are not part
4957 of the loadable file image. */
4958
4959 void
4960 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4961 {
4962 file_ptr off;
4963 unsigned int i, num_sec;
4964 Elf_Internal_Shdr **shdrpp;
4965
4966 off = elf_tdata (abfd)->next_file_pos;
4967
4968 num_sec = elf_numsections (abfd);
4969 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4970 {
4971 Elf_Internal_Shdr *shdrp;
4972
4973 shdrp = *shdrpp;
4974 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4975 && shdrp->sh_offset == -1)
4976 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4977 }
4978
4979 elf_tdata (abfd)->next_file_pos = off;
4980 }
4981
4982 bfd_boolean
4983 _bfd_elf_write_object_contents (bfd *abfd)
4984 {
4985 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4986 Elf_Internal_Ehdr *i_ehdrp;
4987 Elf_Internal_Shdr **i_shdrp;
4988 bfd_boolean failed;
4989 unsigned int count, num_sec;
4990
4991 if (! abfd->output_has_begun
4992 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4993 return FALSE;
4994
4995 i_shdrp = elf_elfsections (abfd);
4996 i_ehdrp = elf_elfheader (abfd);
4997
4998 failed = FALSE;
4999 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5000 if (failed)
5001 return FALSE;
5002
5003 _bfd_elf_assign_file_positions_for_relocs (abfd);
5004
5005 /* After writing the headers, we need to write the sections too... */
5006 num_sec = elf_numsections (abfd);
5007 for (count = 1; count < num_sec; count++)
5008 {
5009 if (bed->elf_backend_section_processing)
5010 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5011 if (i_shdrp[count]->contents)
5012 {
5013 bfd_size_type amt = i_shdrp[count]->sh_size;
5014
5015 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5016 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5017 return FALSE;
5018 }
5019 if (count == SHN_LORESERVE - 1)
5020 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
5021 }
5022
5023 /* Write out the section header names. */
5024 if (elf_shstrtab (abfd) != NULL
5025 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5026 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5027 return FALSE;
5028
5029 if (bed->elf_backend_final_write_processing)
5030 (*bed->elf_backend_final_write_processing) (abfd,
5031 elf_tdata (abfd)->linker);
5032
5033 return bed->s->write_shdrs_and_ehdr (abfd);
5034 }
5035
5036 bfd_boolean
5037 _bfd_elf_write_corefile_contents (bfd *abfd)
5038 {
5039 /* Hopefully this can be done just like an object file. */
5040 return _bfd_elf_write_object_contents (abfd);
5041 }
5042
5043 /* Given a section, search the header to find them. */
5044
5045 int
5046 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5047 {
5048 const struct elf_backend_data *bed;
5049 int index;
5050
5051 if (elf_section_data (asect) != NULL
5052 && elf_section_data (asect)->this_idx != 0)
5053 return elf_section_data (asect)->this_idx;
5054
5055 if (bfd_is_abs_section (asect))
5056 index = SHN_ABS;
5057 else if (bfd_is_com_section (asect))
5058 index = SHN_COMMON;
5059 else if (bfd_is_und_section (asect))
5060 index = SHN_UNDEF;
5061 else
5062 index = -1;
5063
5064 bed = get_elf_backend_data (abfd);
5065 if (bed->elf_backend_section_from_bfd_section)
5066 {
5067 int retval = index;
5068
5069 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5070 return retval;
5071 }
5072
5073 if (index == -1)
5074 bfd_set_error (bfd_error_nonrepresentable_section);
5075
5076 return index;
5077 }
5078
5079 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
5080 on error. */
5081
5082 int
5083 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5084 {
5085 asymbol *asym_ptr = *asym_ptr_ptr;
5086 int idx;
5087 flagword flags = asym_ptr->flags;
5088
5089 /* When gas creates relocations against local labels, it creates its
5090 own symbol for the section, but does put the symbol into the
5091 symbol chain, so udata is 0. When the linker is generating
5092 relocatable output, this section symbol may be for one of the
5093 input sections rather than the output section. */
5094 if (asym_ptr->udata.i == 0
5095 && (flags & BSF_SECTION_SYM)
5096 && asym_ptr->section)
5097 {
5098 int indx;
5099
5100 if (asym_ptr->section->output_section != NULL)
5101 indx = asym_ptr->section->output_section->index;
5102 else
5103 indx = asym_ptr->section->index;
5104 if (indx < elf_num_section_syms (abfd)
5105 && elf_section_syms (abfd)[indx] != NULL)
5106 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5107 }
5108
5109 idx = asym_ptr->udata.i;
5110
5111 if (idx == 0)
5112 {
5113 /* This case can occur when using --strip-symbol on a symbol
5114 which is used in a relocation entry. */
5115 (*_bfd_error_handler)
5116 (_("%B: symbol `%s' required but not present"),
5117 abfd, bfd_asymbol_name (asym_ptr));
5118 bfd_set_error (bfd_error_no_symbols);
5119 return -1;
5120 }
5121
5122 #if DEBUG & 4
5123 {
5124 fprintf (stderr,
5125 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
5126 (long) asym_ptr, asym_ptr->name, idx, flags,
5127 elf_symbol_flags (flags));
5128 fflush (stderr);
5129 }
5130 #endif
5131
5132 return idx;
5133 }
5134
5135 /* Rewrite program header information. */
5136
5137 static bfd_boolean
5138 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5139 {
5140 Elf_Internal_Ehdr *iehdr;
5141 struct elf_segment_map *map;
5142 struct elf_segment_map *map_first;
5143 struct elf_segment_map **pointer_to_map;
5144 Elf_Internal_Phdr *segment;
5145 asection *section;
5146 unsigned int i;
5147 unsigned int num_segments;
5148 bfd_boolean phdr_included = FALSE;
5149 bfd_vma maxpagesize;
5150 struct elf_segment_map *phdr_adjust_seg = NULL;
5151 unsigned int phdr_adjust_num = 0;
5152 const struct elf_backend_data *bed;
5153
5154 bed = get_elf_backend_data (ibfd);
5155 iehdr = elf_elfheader (ibfd);
5156
5157 map_first = NULL;
5158 pointer_to_map = &map_first;
5159
5160 num_segments = elf_elfheader (ibfd)->e_phnum;
5161 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5162
5163 /* Returns the end address of the segment + 1. */
5164 #define SEGMENT_END(segment, start) \
5165 (start + (segment->p_memsz > segment->p_filesz \
5166 ? segment->p_memsz : segment->p_filesz))
5167
5168 #define SECTION_SIZE(section, segment) \
5169 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5170 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5171 ? section->size : 0)
5172
5173 /* Returns TRUE if the given section is contained within
5174 the given segment. VMA addresses are compared. */
5175 #define IS_CONTAINED_BY_VMA(section, segment) \
5176 (section->vma >= segment->p_vaddr \
5177 && (section->vma + SECTION_SIZE (section, segment) \
5178 <= (SEGMENT_END (segment, segment->p_vaddr))))
5179
5180 /* Returns TRUE if the given section is contained within
5181 the given segment. LMA addresses are compared. */
5182 #define IS_CONTAINED_BY_LMA(section, segment, base) \
5183 (section->lma >= base \
5184 && (section->lma + SECTION_SIZE (section, segment) \
5185 <= SEGMENT_END (segment, base)))
5186
5187 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
5188 #define IS_COREFILE_NOTE(p, s) \
5189 (p->p_type == PT_NOTE \
5190 && bfd_get_format (ibfd) == bfd_core \
5191 && s->vma == 0 && s->lma == 0 \
5192 && (bfd_vma) s->filepos >= p->p_offset \
5193 && ((bfd_vma) s->filepos + s->size \
5194 <= p->p_offset + p->p_filesz))
5195
5196 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5197 linker, which generates a PT_INTERP section with p_vaddr and
5198 p_memsz set to 0. */
5199 #define IS_SOLARIS_PT_INTERP(p, s) \
5200 (p->p_vaddr == 0 \
5201 && p->p_paddr == 0 \
5202 && p->p_memsz == 0 \
5203 && p->p_filesz > 0 \
5204 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5205 && s->size > 0 \
5206 && (bfd_vma) s->filepos >= p->p_offset \
5207 && ((bfd_vma) s->filepos + s->size \
5208 <= p->p_offset + p->p_filesz))
5209
5210 /* Decide if the given section should be included in the given segment.
5211 A section will be included if:
5212 1. It is within the address space of the segment -- we use the LMA
5213 if that is set for the segment and the VMA otherwise,
5214 2. It is an allocated segment,
5215 3. There is an output section associated with it,
5216 4. The section has not already been allocated to a previous segment.
5217 5. PT_GNU_STACK segments do not include any sections.
5218 6. PT_TLS segment includes only SHF_TLS sections.
5219 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5220 8. PT_DYNAMIC should not contain empty sections at the beginning
5221 (with the possible exception of .dynamic). */
5222 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5223 ((((segment->p_paddr \
5224 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5225 : IS_CONTAINED_BY_VMA (section, segment)) \
5226 && (section->flags & SEC_ALLOC) != 0) \
5227 || IS_COREFILE_NOTE (segment, section)) \
5228 && section->output_section != NULL \
5229 && segment->p_type != PT_GNU_STACK \
5230 && (segment->p_type != PT_TLS \
5231 || (section->flags & SEC_THREAD_LOCAL)) \
5232 && (segment->p_type == PT_LOAD \
5233 || segment->p_type == PT_TLS \
5234 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5235 && (segment->p_type != PT_DYNAMIC \
5236 || SECTION_SIZE (section, segment) > 0 \
5237 || (segment->p_paddr \
5238 ? segment->p_paddr != section->lma \
5239 : segment->p_vaddr != section->vma) \
5240 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5241 == 0)) \
5242 && ! section->segment_mark)
5243
5244 /* Returns TRUE iff seg1 starts after the end of seg2. */
5245 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5246 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5247
5248 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5249 their VMA address ranges and their LMA address ranges overlap.
5250 It is possible to have overlapping VMA ranges without overlapping LMA
5251 ranges. RedBoot images for example can have both .data and .bss mapped
5252 to the same VMA range, but with the .data section mapped to a different
5253 LMA. */
5254 #define SEGMENT_OVERLAPS(seg1, seg2) \
5255 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5256 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5257 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5258 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5259
5260 /* Initialise the segment mark field. */
5261 for (section = ibfd->sections; section != NULL; section = section->next)
5262 section->segment_mark = FALSE;
5263
5264 /* Scan through the segments specified in the program header
5265 of the input BFD. For this first scan we look for overlaps
5266 in the loadable segments. These can be created by weird
5267 parameters to objcopy. Also, fix some solaris weirdness. */
5268 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5269 i < num_segments;
5270 i++, segment++)
5271 {
5272 unsigned int j;
5273 Elf_Internal_Phdr *segment2;
5274
5275 if (segment->p_type == PT_INTERP)
5276 for (section = ibfd->sections; section; section = section->next)
5277 if (IS_SOLARIS_PT_INTERP (segment, section))
5278 {
5279 /* Mininal change so that the normal section to segment
5280 assignment code will work. */
5281 segment->p_vaddr = section->vma;
5282 break;
5283 }
5284
5285 if (segment->p_type != PT_LOAD)
5286 continue;
5287
5288 /* Determine if this segment overlaps any previous segments. */
5289 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5290 {
5291 bfd_signed_vma extra_length;
5292
5293 if (segment2->p_type != PT_LOAD
5294 || ! SEGMENT_OVERLAPS (segment, segment2))
5295 continue;
5296
5297 /* Merge the two segments together. */
5298 if (segment2->p_vaddr < segment->p_vaddr)
5299 {
5300 /* Extend SEGMENT2 to include SEGMENT and then delete
5301 SEGMENT. */
5302 extra_length =
5303 SEGMENT_END (segment, segment->p_vaddr)
5304 - SEGMENT_END (segment2, segment2->p_vaddr);
5305
5306 if (extra_length > 0)
5307 {
5308 segment2->p_memsz += extra_length;
5309 segment2->p_filesz += extra_length;
5310 }
5311
5312 segment->p_type = PT_NULL;
5313
5314 /* Since we have deleted P we must restart the outer loop. */
5315 i = 0;
5316 segment = elf_tdata (ibfd)->phdr;
5317 break;
5318 }
5319 else
5320 {
5321 /* Extend SEGMENT to include SEGMENT2 and then delete
5322 SEGMENT2. */
5323 extra_length =
5324 SEGMENT_END (segment2, segment2->p_vaddr)
5325 - SEGMENT_END (segment, segment->p_vaddr);
5326
5327 if (extra_length > 0)
5328 {
5329 segment->p_memsz += extra_length;
5330 segment->p_filesz += extra_length;
5331 }
5332
5333 segment2->p_type = PT_NULL;
5334 }
5335 }
5336 }
5337
5338 /* The second scan attempts to assign sections to segments. */
5339 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5340 i < num_segments;
5341 i ++, segment ++)
5342 {
5343 unsigned int section_count;
5344 asection ** sections;
5345 asection * output_section;
5346 unsigned int isec;
5347 bfd_vma matching_lma;
5348 bfd_vma suggested_lma;
5349 unsigned int j;
5350 bfd_size_type amt;
5351
5352 if (segment->p_type == PT_NULL)
5353 continue;
5354
5355 /* Compute how many sections might be placed into this segment. */
5356 for (section = ibfd->sections, section_count = 0;
5357 section != NULL;
5358 section = section->next)
5359 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5360 ++section_count;
5361
5362 /* Allocate a segment map big enough to contain
5363 all of the sections we have selected. */
5364 amt = sizeof (struct elf_segment_map);
5365 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5366 map = bfd_alloc (obfd, amt);
5367 if (map == NULL)
5368 return FALSE;
5369
5370 /* Initialise the fields of the segment map. Default to
5371 using the physical address of the segment in the input BFD. */
5372 map->next = NULL;
5373 map->p_type = segment->p_type;
5374 map->p_flags = segment->p_flags;
5375 map->p_flags_valid = 1;
5376 map->p_paddr = segment->p_paddr;
5377 map->p_paddr_valid = 1;
5378
5379 /* Determine if this segment contains the ELF file header
5380 and if it contains the program headers themselves. */
5381 map->includes_filehdr = (segment->p_offset == 0
5382 && segment->p_filesz >= iehdr->e_ehsize);
5383
5384 map->includes_phdrs = 0;
5385
5386 if (! phdr_included || segment->p_type != PT_LOAD)
5387 {
5388 map->includes_phdrs =
5389 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5390 && (segment->p_offset + segment->p_filesz
5391 >= ((bfd_vma) iehdr->e_phoff
5392 + iehdr->e_phnum * iehdr->e_phentsize)));
5393
5394 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5395 phdr_included = TRUE;
5396 }
5397
5398 if (section_count == 0)
5399 {
5400 /* Special segments, such as the PT_PHDR segment, may contain
5401 no sections, but ordinary, loadable segments should contain
5402 something. They are allowed by the ELF spec however, so only
5403 a warning is produced. */
5404 if (segment->p_type == PT_LOAD)
5405 (*_bfd_error_handler)
5406 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5407 ibfd);
5408
5409 map->count = 0;
5410 *pointer_to_map = map;
5411 pointer_to_map = &map->next;
5412
5413 continue;
5414 }
5415
5416 /* Now scan the sections in the input BFD again and attempt
5417 to add their corresponding output sections to the segment map.
5418 The problem here is how to handle an output section which has
5419 been moved (ie had its LMA changed). There are four possibilities:
5420
5421 1. None of the sections have been moved.
5422 In this case we can continue to use the segment LMA from the
5423 input BFD.
5424
5425 2. All of the sections have been moved by the same amount.
5426 In this case we can change the segment's LMA to match the LMA
5427 of the first section.
5428
5429 3. Some of the sections have been moved, others have not.
5430 In this case those sections which have not been moved can be
5431 placed in the current segment which will have to have its size,
5432 and possibly its LMA changed, and a new segment or segments will
5433 have to be created to contain the other sections.
5434
5435 4. The sections have been moved, but not by the same amount.
5436 In this case we can change the segment's LMA to match the LMA
5437 of the first section and we will have to create a new segment
5438 or segments to contain the other sections.
5439
5440 In order to save time, we allocate an array to hold the section
5441 pointers that we are interested in. As these sections get assigned
5442 to a segment, they are removed from this array. */
5443
5444 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5445 to work around this long long bug. */
5446 sections = bfd_malloc2 (section_count, sizeof (asection *));
5447 if (sections == NULL)
5448 return FALSE;
5449
5450 /* Step One: Scan for segment vs section LMA conflicts.
5451 Also add the sections to the section array allocated above.
5452 Also add the sections to the current segment. In the common
5453 case, where the sections have not been moved, this means that
5454 we have completely filled the segment, and there is nothing
5455 more to do. */
5456 isec = 0;
5457 matching_lma = 0;
5458 suggested_lma = 0;
5459
5460 for (j = 0, section = ibfd->sections;
5461 section != NULL;
5462 section = section->next)
5463 {
5464 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5465 {
5466 output_section = section->output_section;
5467
5468 sections[j ++] = section;
5469
5470 /* The Solaris native linker always sets p_paddr to 0.
5471 We try to catch that case here, and set it to the
5472 correct value. Note - some backends require that
5473 p_paddr be left as zero. */
5474 if (segment->p_paddr == 0
5475 && segment->p_vaddr != 0
5476 && (! bed->want_p_paddr_set_to_zero)
5477 && isec == 0
5478 && output_section->lma != 0
5479 && (output_section->vma == (segment->p_vaddr
5480 + (map->includes_filehdr
5481 ? iehdr->e_ehsize
5482 : 0)
5483 + (map->includes_phdrs
5484 ? (iehdr->e_phnum
5485 * iehdr->e_phentsize)
5486 : 0))))
5487 map->p_paddr = segment->p_vaddr;
5488
5489 /* Match up the physical address of the segment with the
5490 LMA address of the output section. */
5491 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5492 || IS_COREFILE_NOTE (segment, section)
5493 || (bed->want_p_paddr_set_to_zero &&
5494 IS_CONTAINED_BY_VMA (output_section, segment))
5495 )
5496 {
5497 if (matching_lma == 0)
5498 matching_lma = output_section->lma;
5499
5500 /* We assume that if the section fits within the segment
5501 then it does not overlap any other section within that
5502 segment. */
5503 map->sections[isec ++] = output_section;
5504 }
5505 else if (suggested_lma == 0)
5506 suggested_lma = output_section->lma;
5507 }
5508 }
5509
5510 BFD_ASSERT (j == section_count);
5511
5512 /* Step Two: Adjust the physical address of the current segment,
5513 if necessary. */
5514 if (isec == section_count)
5515 {
5516 /* All of the sections fitted within the segment as currently
5517 specified. This is the default case. Add the segment to
5518 the list of built segments and carry on to process the next
5519 program header in the input BFD. */
5520 map->count = section_count;
5521 *pointer_to_map = map;
5522 pointer_to_map = &map->next;
5523
5524 free (sections);
5525 continue;
5526 }
5527 else
5528 {
5529 if (matching_lma != 0)
5530 {
5531 /* At least one section fits inside the current segment.
5532 Keep it, but modify its physical address to match the
5533 LMA of the first section that fitted. */
5534 map->p_paddr = matching_lma;
5535 }
5536 else
5537 {
5538 /* None of the sections fitted inside the current segment.
5539 Change the current segment's physical address to match
5540 the LMA of the first section. */
5541 map->p_paddr = suggested_lma;
5542 }
5543
5544 /* Offset the segment physical address from the lma
5545 to allow for space taken up by elf headers. */
5546 if (map->includes_filehdr)
5547 map->p_paddr -= iehdr->e_ehsize;
5548
5549 if (map->includes_phdrs)
5550 {
5551 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5552
5553 /* iehdr->e_phnum is just an estimate of the number
5554 of program headers that we will need. Make a note
5555 here of the number we used and the segment we chose
5556 to hold these headers, so that we can adjust the
5557 offset when we know the correct value. */
5558 phdr_adjust_num = iehdr->e_phnum;
5559 phdr_adjust_seg = map;
5560 }
5561 }
5562
5563 /* Step Three: Loop over the sections again, this time assigning
5564 those that fit to the current segment and removing them from the
5565 sections array; but making sure not to leave large gaps. Once all
5566 possible sections have been assigned to the current segment it is
5567 added to the list of built segments and if sections still remain
5568 to be assigned, a new segment is constructed before repeating
5569 the loop. */
5570 isec = 0;
5571 do
5572 {
5573 map->count = 0;
5574 suggested_lma = 0;
5575
5576 /* Fill the current segment with sections that fit. */
5577 for (j = 0; j < section_count; j++)
5578 {
5579 section = sections[j];
5580
5581 if (section == NULL)
5582 continue;
5583
5584 output_section = section->output_section;
5585
5586 BFD_ASSERT (output_section != NULL);
5587
5588 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5589 || IS_COREFILE_NOTE (segment, section))
5590 {
5591 if (map->count == 0)
5592 {
5593 /* If the first section in a segment does not start at
5594 the beginning of the segment, then something is
5595 wrong. */
5596 if (output_section->lma !=
5597 (map->p_paddr
5598 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5599 + (map->includes_phdrs
5600 ? iehdr->e_phnum * iehdr->e_phentsize
5601 : 0)))
5602 abort ();
5603 }
5604 else
5605 {
5606 asection * prev_sec;
5607
5608 prev_sec = map->sections[map->count - 1];
5609
5610 /* If the gap between the end of the previous section
5611 and the start of this section is more than
5612 maxpagesize then we need to start a new segment. */
5613 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5614 maxpagesize)
5615 < BFD_ALIGN (output_section->lma, maxpagesize))
5616 || ((prev_sec->lma + prev_sec->size)
5617 > output_section->lma))
5618 {
5619 if (suggested_lma == 0)
5620 suggested_lma = output_section->lma;
5621
5622 continue;
5623 }
5624 }
5625
5626 map->sections[map->count++] = output_section;
5627 ++isec;
5628 sections[j] = NULL;
5629 section->segment_mark = TRUE;
5630 }
5631 else if (suggested_lma == 0)
5632 suggested_lma = output_section->lma;
5633 }
5634
5635 BFD_ASSERT (map->count > 0);
5636
5637 /* Add the current segment to the list of built segments. */
5638 *pointer_to_map = map;
5639 pointer_to_map = &map->next;
5640
5641 if (isec < section_count)
5642 {
5643 /* We still have not allocated all of the sections to
5644 segments. Create a new segment here, initialise it
5645 and carry on looping. */
5646 amt = sizeof (struct elf_segment_map);
5647 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5648 map = bfd_alloc (obfd, amt);
5649 if (map == NULL)
5650 {
5651 free (sections);
5652 return FALSE;
5653 }
5654
5655 /* Initialise the fields of the segment map. Set the physical
5656 physical address to the LMA of the first section that has
5657 not yet been assigned. */
5658 map->next = NULL;
5659 map->p_type = segment->p_type;
5660 map->p_flags = segment->p_flags;
5661 map->p_flags_valid = 1;
5662 map->p_paddr = suggested_lma;
5663 map->p_paddr_valid = 1;
5664 map->includes_filehdr = 0;
5665 map->includes_phdrs = 0;
5666 }
5667 }
5668 while (isec < section_count);
5669
5670 free (sections);
5671 }
5672
5673 /* The Solaris linker creates program headers in which all the
5674 p_paddr fields are zero. When we try to objcopy or strip such a
5675 file, we get confused. Check for this case, and if we find it
5676 reset the p_paddr_valid fields. */
5677 for (map = map_first; map != NULL; map = map->next)
5678 if (map->p_paddr != 0)
5679 break;
5680 if (map == NULL)
5681 for (map = map_first; map != NULL; map = map->next)
5682 map->p_paddr_valid = 0;
5683
5684 elf_tdata (obfd)->segment_map = map_first;
5685
5686 /* If we had to estimate the number of program headers that were
5687 going to be needed, then check our estimate now and adjust
5688 the offset if necessary. */
5689 if (phdr_adjust_seg != NULL)
5690 {
5691 unsigned int count;
5692
5693 for (count = 0, map = map_first; map != NULL; map = map->next)
5694 count++;
5695
5696 if (count > phdr_adjust_num)
5697 phdr_adjust_seg->p_paddr
5698 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5699 }
5700
5701 #undef SEGMENT_END
5702 #undef SECTION_SIZE
5703 #undef IS_CONTAINED_BY_VMA
5704 #undef IS_CONTAINED_BY_LMA
5705 #undef IS_COREFILE_NOTE
5706 #undef IS_SOLARIS_PT_INTERP
5707 #undef INCLUDE_SECTION_IN_SEGMENT
5708 #undef SEGMENT_AFTER_SEGMENT
5709 #undef SEGMENT_OVERLAPS
5710 return TRUE;
5711 }
5712
5713 /* Copy ELF program header information. */
5714
5715 static bfd_boolean
5716 copy_elf_program_header (bfd *ibfd, bfd *obfd)
5717 {
5718 Elf_Internal_Ehdr *iehdr;
5719 struct elf_segment_map *map;
5720 struct elf_segment_map *map_first;
5721 struct elf_segment_map **pointer_to_map;
5722 Elf_Internal_Phdr *segment;
5723 unsigned int i;
5724 unsigned int num_segments;
5725 bfd_boolean phdr_included = FALSE;
5726
5727 iehdr = elf_elfheader (ibfd);
5728
5729 map_first = NULL;
5730 pointer_to_map = &map_first;
5731
5732 num_segments = elf_elfheader (ibfd)->e_phnum;
5733 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5734 i < num_segments;
5735 i++, segment++)
5736 {
5737 asection *section;
5738 unsigned int section_count;
5739 bfd_size_type amt;
5740 Elf_Internal_Shdr *this_hdr;
5741
5742 /* FIXME: Do we need to copy PT_NULL segment? */
5743 if (segment->p_type == PT_NULL)
5744 continue;
5745
5746 /* Compute how many sections are in this segment. */
5747 for (section = ibfd->sections, section_count = 0;
5748 section != NULL;
5749 section = section->next)
5750 {
5751 this_hdr = &(elf_section_data(section)->this_hdr);
5752 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5753 section_count++;
5754 }
5755
5756 /* Allocate a segment map big enough to contain
5757 all of the sections we have selected. */
5758 amt = sizeof (struct elf_segment_map);
5759 if (section_count != 0)
5760 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5761 map = bfd_alloc (obfd, amt);
5762 if (map == NULL)
5763 return FALSE;
5764
5765 /* Initialize the fields of the output segment map with the
5766 input segment. */
5767 map->next = NULL;
5768 map->p_type = segment->p_type;
5769 map->p_flags = segment->p_flags;
5770 map->p_flags_valid = 1;
5771 map->p_paddr = segment->p_paddr;
5772 map->p_paddr_valid = 1;
5773
5774 /* Determine if this segment contains the ELF file header
5775 and if it contains the program headers themselves. */
5776 map->includes_filehdr = (segment->p_offset == 0
5777 && segment->p_filesz >= iehdr->e_ehsize);
5778
5779 map->includes_phdrs = 0;
5780 if (! phdr_included || segment->p_type != PT_LOAD)
5781 {
5782 map->includes_phdrs =
5783 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5784 && (segment->p_offset + segment->p_filesz
5785 >= ((bfd_vma) iehdr->e_phoff
5786 + iehdr->e_phnum * iehdr->e_phentsize)));
5787
5788 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5789 phdr_included = TRUE;
5790 }
5791
5792 if (section_count != 0)
5793 {
5794 unsigned int isec = 0;
5795
5796 for (section = ibfd->sections;
5797 section != NULL;
5798 section = section->next)
5799 {
5800 this_hdr = &(elf_section_data(section)->this_hdr);
5801 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5802 map->sections[isec++] = section->output_section;
5803 }
5804 }
5805
5806 map->count = section_count;
5807 *pointer_to_map = map;
5808 pointer_to_map = &map->next;
5809 }
5810
5811 elf_tdata (obfd)->segment_map = map_first;
5812 return TRUE;
5813 }
5814
5815 /* Copy private BFD data. This copies or rewrites ELF program header
5816 information. */
5817
5818 static bfd_boolean
5819 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5820 {
5821 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5822 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5823 return TRUE;
5824
5825 if (elf_tdata (ibfd)->phdr == NULL)
5826 return TRUE;
5827
5828 if (ibfd->xvec == obfd->xvec)
5829 {
5830 /* Check if any sections in the input BFD covered by ELF program
5831 header are changed. */
5832 Elf_Internal_Phdr *segment;
5833 asection *section, *osec;
5834 unsigned int i, num_segments;
5835 Elf_Internal_Shdr *this_hdr;
5836
5837 /* Initialize the segment mark field. */
5838 for (section = obfd->sections; section != NULL;
5839 section = section->next)
5840 section->segment_mark = FALSE;
5841
5842 num_segments = elf_elfheader (ibfd)->e_phnum;
5843 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5844 i < num_segments;
5845 i++, segment++)
5846 {
5847 for (section = ibfd->sections;
5848 section != NULL; section = section->next)
5849 {
5850 /* We mark the output section so that we know it comes
5851 from the input BFD. */
5852 osec = section->output_section;
5853 if (osec)
5854 osec->segment_mark = TRUE;
5855
5856 /* Check if this section is covered by the segment. */
5857 this_hdr = &(elf_section_data(section)->this_hdr);
5858 if (ELF_IS_SECTION_IN_SEGMENT_FILE (this_hdr, segment))
5859 {
5860 /* FIXME: Check if its output section is changed or
5861 removed. What else do we need to check? */
5862 if (osec == NULL
5863 || section->flags != osec->flags
5864 || section->lma != osec->lma
5865 || section->vma != osec->vma
5866 || section->size != osec->size
5867 || section->rawsize != osec->rawsize
5868 || section->alignment_power != osec->alignment_power)
5869 goto rewrite;
5870 }
5871 }
5872 }
5873
5874 /* Check to see if any output section doesn't come from the
5875 input BFD. */
5876 for (section = obfd->sections; section != NULL;
5877 section = section->next)
5878 {
5879 if (section->segment_mark == FALSE)
5880 goto rewrite;
5881 else
5882 section->segment_mark = FALSE;
5883 }
5884
5885 return copy_elf_program_header (ibfd, obfd);
5886 }
5887
5888 rewrite:
5889 return rewrite_elf_program_header (ibfd, obfd);
5890 }
5891
5892 /* Initialize private output section information from input section. */
5893
5894 bfd_boolean
5895 _bfd_elf_init_private_section_data (bfd *ibfd,
5896 asection *isec,
5897 bfd *obfd,
5898 asection *osec,
5899 struct bfd_link_info *link_info)
5900
5901 {
5902 Elf_Internal_Shdr *ihdr, *ohdr;
5903 bfd_boolean need_group = link_info == NULL || link_info->relocatable;
5904
5905 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5906 || obfd->xvec->flavour != bfd_target_elf_flavour)
5907 return TRUE;
5908
5909 /* FIXME: What if the output ELF section type has been set to
5910 something different? */
5911 if (elf_section_type (osec) == SHT_NULL)
5912 elf_section_type (osec) = elf_section_type (isec);
5913
5914 /* Set things up for objcopy and relocatable link. The output
5915 SHT_GROUP section will have its elf_next_in_group pointing back
5916 to the input group members. Ignore linker created group section.
5917 See elfNN_ia64_object_p in elfxx-ia64.c. */
5918
5919 if (need_group)
5920 {
5921 if (elf_sec_group (isec) == NULL
5922 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
5923 {
5924 if (elf_section_flags (isec) & SHF_GROUP)
5925 elf_section_flags (osec) |= SHF_GROUP;
5926 elf_next_in_group (osec) = elf_next_in_group (isec);
5927 elf_group_name (osec) = elf_group_name (isec);
5928 }
5929 }
5930
5931 ihdr = &elf_section_data (isec)->this_hdr;
5932
5933 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
5934 don't use the output section of the linked-to section since it
5935 may be NULL at this point. */
5936 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
5937 {
5938 ohdr = &elf_section_data (osec)->this_hdr;
5939 ohdr->sh_flags |= SHF_LINK_ORDER;
5940 elf_linked_to_section (osec) = elf_linked_to_section (isec);
5941 }
5942
5943 osec->use_rela_p = isec->use_rela_p;
5944
5945 return TRUE;
5946 }
5947
5948 /* Copy private section information. This copies over the entsize
5949 field, and sometimes the info field. */
5950
5951 bfd_boolean
5952 _bfd_elf_copy_private_section_data (bfd *ibfd,
5953 asection *isec,
5954 bfd *obfd,
5955 asection *osec)
5956 {
5957 Elf_Internal_Shdr *ihdr, *ohdr;
5958
5959 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5960 || obfd->xvec->flavour != bfd_target_elf_flavour)
5961 return TRUE;
5962
5963 ihdr = &elf_section_data (isec)->this_hdr;
5964 ohdr = &elf_section_data (osec)->this_hdr;
5965
5966 ohdr->sh_entsize = ihdr->sh_entsize;
5967
5968 if (ihdr->sh_type == SHT_SYMTAB
5969 || ihdr->sh_type == SHT_DYNSYM
5970 || ihdr->sh_type == SHT_GNU_verneed
5971 || ihdr->sh_type == SHT_GNU_verdef)
5972 ohdr->sh_info = ihdr->sh_info;
5973
5974 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
5975 NULL);
5976 }
5977
5978 /* Copy private header information. */
5979
5980 bfd_boolean
5981 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5982 {
5983 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5984 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5985 return TRUE;
5986
5987 /* Copy over private BFD data if it has not already been copied.
5988 This must be done here, rather than in the copy_private_bfd_data
5989 entry point, because the latter is called after the section
5990 contents have been set, which means that the program headers have
5991 already been worked out. */
5992 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5993 {
5994 if (! copy_private_bfd_data (ibfd, obfd))
5995 return FALSE;
5996 }
5997
5998 return TRUE;
5999 }
6000
6001 /* Copy private symbol information. If this symbol is in a section
6002 which we did not map into a BFD section, try to map the section
6003 index correctly. We use special macro definitions for the mapped
6004 section indices; these definitions are interpreted by the
6005 swap_out_syms function. */
6006
6007 #define MAP_ONESYMTAB (SHN_HIOS + 1)
6008 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
6009 #define MAP_STRTAB (SHN_HIOS + 3)
6010 #define MAP_SHSTRTAB (SHN_HIOS + 4)
6011 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
6012
6013 bfd_boolean
6014 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
6015 asymbol *isymarg,
6016 bfd *obfd,
6017 asymbol *osymarg)
6018 {
6019 elf_symbol_type *isym, *osym;
6020
6021 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6022 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6023 return TRUE;
6024
6025 isym = elf_symbol_from (ibfd, isymarg);
6026 osym = elf_symbol_from (obfd, osymarg);
6027
6028 if (isym != NULL
6029 && osym != NULL
6030 && bfd_is_abs_section (isym->symbol.section))
6031 {
6032 unsigned int shndx;
6033
6034 shndx = isym->internal_elf_sym.st_shndx;
6035 if (shndx == elf_onesymtab (ibfd))
6036 shndx = MAP_ONESYMTAB;
6037 else if (shndx == elf_dynsymtab (ibfd))
6038 shndx = MAP_DYNSYMTAB;
6039 else if (shndx == elf_tdata (ibfd)->strtab_section)
6040 shndx = MAP_STRTAB;
6041 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6042 shndx = MAP_SHSTRTAB;
6043 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6044 shndx = MAP_SYM_SHNDX;
6045 osym->internal_elf_sym.st_shndx = shndx;
6046 }
6047
6048 return TRUE;
6049 }
6050
6051 /* Swap out the symbols. */
6052
6053 static bfd_boolean
6054 swap_out_syms (bfd *abfd,
6055 struct bfd_strtab_hash **sttp,
6056 int relocatable_p)
6057 {
6058 const struct elf_backend_data *bed;
6059 int symcount;
6060 asymbol **syms;
6061 struct bfd_strtab_hash *stt;
6062 Elf_Internal_Shdr *symtab_hdr;
6063 Elf_Internal_Shdr *symtab_shndx_hdr;
6064 Elf_Internal_Shdr *symstrtab_hdr;
6065 bfd_byte *outbound_syms;
6066 bfd_byte *outbound_shndx;
6067 int idx;
6068 bfd_size_type amt;
6069 bfd_boolean name_local_sections;
6070
6071 if (!elf_map_symbols (abfd))
6072 return FALSE;
6073
6074 /* Dump out the symtabs. */
6075 stt = _bfd_elf_stringtab_init ();
6076 if (stt == NULL)
6077 return FALSE;
6078
6079 bed = get_elf_backend_data (abfd);
6080 symcount = bfd_get_symcount (abfd);
6081 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6082 symtab_hdr->sh_type = SHT_SYMTAB;
6083 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6084 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6085 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6086 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
6087
6088 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6089 symstrtab_hdr->sh_type = SHT_STRTAB;
6090
6091 outbound_syms = bfd_alloc2 (abfd, 1 + symcount, bed->s->sizeof_sym);
6092 if (outbound_syms == NULL)
6093 {
6094 _bfd_stringtab_free (stt);
6095 return FALSE;
6096 }
6097 symtab_hdr->contents = outbound_syms;
6098
6099 outbound_shndx = NULL;
6100 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6101 if (symtab_shndx_hdr->sh_name != 0)
6102 {
6103 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6104 outbound_shndx = bfd_zalloc2 (abfd, 1 + symcount,
6105 sizeof (Elf_External_Sym_Shndx));
6106 if (outbound_shndx == NULL)
6107 {
6108 _bfd_stringtab_free (stt);
6109 return FALSE;
6110 }
6111
6112 symtab_shndx_hdr->contents = outbound_shndx;
6113 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6114 symtab_shndx_hdr->sh_size = amt;
6115 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6116 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6117 }
6118
6119 /* Now generate the data (for "contents"). */
6120 {
6121 /* Fill in zeroth symbol and swap it out. */
6122 Elf_Internal_Sym sym;
6123 sym.st_name = 0;
6124 sym.st_value = 0;
6125 sym.st_size = 0;
6126 sym.st_info = 0;
6127 sym.st_other = 0;
6128 sym.st_shndx = SHN_UNDEF;
6129 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6130 outbound_syms += bed->s->sizeof_sym;
6131 if (outbound_shndx != NULL)
6132 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6133 }
6134
6135 name_local_sections
6136 = (bed->elf_backend_name_local_section_symbols
6137 && bed->elf_backend_name_local_section_symbols (abfd));
6138
6139 syms = bfd_get_outsymbols (abfd);
6140 for (idx = 0; idx < symcount; idx++)
6141 {
6142 Elf_Internal_Sym sym;
6143 bfd_vma value = syms[idx]->value;
6144 elf_symbol_type *type_ptr;
6145 flagword flags = syms[idx]->flags;
6146 int type;
6147
6148 if (!name_local_sections
6149 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6150 {
6151 /* Local section symbols have no name. */
6152 sym.st_name = 0;
6153 }
6154 else
6155 {
6156 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6157 syms[idx]->name,
6158 TRUE, FALSE);
6159 if (sym.st_name == (unsigned long) -1)
6160 {
6161 _bfd_stringtab_free (stt);
6162 return FALSE;
6163 }
6164 }
6165
6166 type_ptr = elf_symbol_from (abfd, syms[idx]);
6167
6168 if ((flags & BSF_SECTION_SYM) == 0
6169 && bfd_is_com_section (syms[idx]->section))
6170 {
6171 /* ELF common symbols put the alignment into the `value' field,
6172 and the size into the `size' field. This is backwards from
6173 how BFD handles it, so reverse it here. */
6174 sym.st_size = value;
6175 if (type_ptr == NULL
6176 || type_ptr->internal_elf_sym.st_value == 0)
6177 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6178 else
6179 sym.st_value = type_ptr->internal_elf_sym.st_value;
6180 sym.st_shndx = _bfd_elf_section_from_bfd_section
6181 (abfd, syms[idx]->section);
6182 }
6183 else
6184 {
6185 asection *sec = syms[idx]->section;
6186 int shndx;
6187
6188 if (sec->output_section)
6189 {
6190 value += sec->output_offset;
6191 sec = sec->output_section;
6192 }
6193
6194 /* Don't add in the section vma for relocatable output. */
6195 if (! relocatable_p)
6196 value += sec->vma;
6197 sym.st_value = value;
6198 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6199
6200 if (bfd_is_abs_section (sec)
6201 && type_ptr != NULL
6202 && type_ptr->internal_elf_sym.st_shndx != 0)
6203 {
6204 /* This symbol is in a real ELF section which we did
6205 not create as a BFD section. Undo the mapping done
6206 by copy_private_symbol_data. */
6207 shndx = type_ptr->internal_elf_sym.st_shndx;
6208 switch (shndx)
6209 {
6210 case MAP_ONESYMTAB:
6211 shndx = elf_onesymtab (abfd);
6212 break;
6213 case MAP_DYNSYMTAB:
6214 shndx = elf_dynsymtab (abfd);
6215 break;
6216 case MAP_STRTAB:
6217 shndx = elf_tdata (abfd)->strtab_section;
6218 break;
6219 case MAP_SHSTRTAB:
6220 shndx = elf_tdata (abfd)->shstrtab_section;
6221 break;
6222 case MAP_SYM_SHNDX:
6223 shndx = elf_tdata (abfd)->symtab_shndx_section;
6224 break;
6225 default:
6226 break;
6227 }
6228 }
6229 else
6230 {
6231 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6232
6233 if (shndx == -1)
6234 {
6235 asection *sec2;
6236
6237 /* Writing this would be a hell of a lot easier if
6238 we had some decent documentation on bfd, and
6239 knew what to expect of the library, and what to
6240 demand of applications. For example, it
6241 appears that `objcopy' might not set the
6242 section of a symbol to be a section that is
6243 actually in the output file. */
6244 sec2 = bfd_get_section_by_name (abfd, sec->name);
6245 if (sec2 == NULL)
6246 {
6247 _bfd_error_handler (_("\
6248 Unable to find equivalent output section for symbol '%s' from section '%s'"),
6249 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6250 sec->name);
6251 bfd_set_error (bfd_error_invalid_operation);
6252 _bfd_stringtab_free (stt);
6253 return FALSE;
6254 }
6255
6256 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6257 BFD_ASSERT (shndx != -1);
6258 }
6259 }
6260
6261 sym.st_shndx = shndx;
6262 }
6263
6264 if ((flags & BSF_THREAD_LOCAL) != 0)
6265 type = STT_TLS;
6266 else if ((flags & BSF_FUNCTION) != 0)
6267 type = STT_FUNC;
6268 else if ((flags & BSF_OBJECT) != 0)
6269 type = STT_OBJECT;
6270 else
6271 type = STT_NOTYPE;
6272
6273 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6274 type = STT_TLS;
6275
6276 /* Processor-specific types. */
6277 if (type_ptr != NULL
6278 && bed->elf_backend_get_symbol_type)
6279 type = ((*bed->elf_backend_get_symbol_type)
6280 (&type_ptr->internal_elf_sym, type));
6281
6282 if (flags & BSF_SECTION_SYM)
6283 {
6284 if (flags & BSF_GLOBAL)
6285 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6286 else
6287 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6288 }
6289 else if (bfd_is_com_section (syms[idx]->section))
6290 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6291 else if (bfd_is_und_section (syms[idx]->section))
6292 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6293 ? STB_WEAK
6294 : STB_GLOBAL),
6295 type);
6296 else if (flags & BSF_FILE)
6297 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6298 else
6299 {
6300 int bind = STB_LOCAL;
6301
6302 if (flags & BSF_LOCAL)
6303 bind = STB_LOCAL;
6304 else if (flags & BSF_WEAK)
6305 bind = STB_WEAK;
6306 else if (flags & BSF_GLOBAL)
6307 bind = STB_GLOBAL;
6308
6309 sym.st_info = ELF_ST_INFO (bind, type);
6310 }
6311
6312 if (type_ptr != NULL)
6313 sym.st_other = type_ptr->internal_elf_sym.st_other;
6314 else
6315 sym.st_other = 0;
6316
6317 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6318 outbound_syms += bed->s->sizeof_sym;
6319 if (outbound_shndx != NULL)
6320 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6321 }
6322
6323 *sttp = stt;
6324 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6325 symstrtab_hdr->sh_type = SHT_STRTAB;
6326
6327 symstrtab_hdr->sh_flags = 0;
6328 symstrtab_hdr->sh_addr = 0;
6329 symstrtab_hdr->sh_entsize = 0;
6330 symstrtab_hdr->sh_link = 0;
6331 symstrtab_hdr->sh_info = 0;
6332 symstrtab_hdr->sh_addralign = 1;
6333
6334 return TRUE;
6335 }
6336
6337 /* Return the number of bytes required to hold the symtab vector.
6338
6339 Note that we base it on the count plus 1, since we will null terminate
6340 the vector allocated based on this size. However, the ELF symbol table
6341 always has a dummy entry as symbol #0, so it ends up even. */
6342
6343 long
6344 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
6345 {
6346 long symcount;
6347 long symtab_size;
6348 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6349
6350 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6351 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6352 if (symcount > 0)
6353 symtab_size -= sizeof (asymbol *);
6354
6355 return symtab_size;
6356 }
6357
6358 long
6359 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6360 {
6361 long symcount;
6362 long symtab_size;
6363 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6364
6365 if (elf_dynsymtab (abfd) == 0)
6366 {
6367 bfd_set_error (bfd_error_invalid_operation);
6368 return -1;
6369 }
6370
6371 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6372 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6373 if (symcount > 0)
6374 symtab_size -= sizeof (asymbol *);
6375
6376 return symtab_size;
6377 }
6378
6379 long
6380 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6381 sec_ptr asect)
6382 {
6383 return (asect->reloc_count + 1) * sizeof (arelent *);
6384 }
6385
6386 /* Canonicalize the relocs. */
6387
6388 long
6389 _bfd_elf_canonicalize_reloc (bfd *abfd,
6390 sec_ptr section,
6391 arelent **relptr,
6392 asymbol **symbols)
6393 {
6394 arelent *tblptr;
6395 unsigned int i;
6396 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6397
6398 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6399 return -1;
6400
6401 tblptr = section->relocation;
6402 for (i = 0; i < section->reloc_count; i++)
6403 *relptr++ = tblptr++;
6404
6405 *relptr = NULL;
6406
6407 return section->reloc_count;
6408 }
6409
6410 long
6411 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6412 {
6413 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6414 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6415
6416 if (symcount >= 0)
6417 bfd_get_symcount (abfd) = symcount;
6418 return symcount;
6419 }
6420
6421 long
6422 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6423 asymbol **allocation)
6424 {
6425 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6426 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6427
6428 if (symcount >= 0)
6429 bfd_get_dynamic_symcount (abfd) = symcount;
6430 return symcount;
6431 }
6432
6433 /* Return the size required for the dynamic reloc entries. Any loadable
6434 section that was actually installed in the BFD, and has type SHT_REL
6435 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6436 dynamic reloc section. */
6437
6438 long
6439 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6440 {
6441 long ret;
6442 asection *s;
6443
6444 if (elf_dynsymtab (abfd) == 0)
6445 {
6446 bfd_set_error (bfd_error_invalid_operation);
6447 return -1;
6448 }
6449
6450 ret = sizeof (arelent *);
6451 for (s = abfd->sections; s != NULL; s = s->next)
6452 if ((s->flags & SEC_LOAD) != 0
6453 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6454 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6455 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6456 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6457 * sizeof (arelent *));
6458
6459 return ret;
6460 }
6461
6462 /* Canonicalize the dynamic relocation entries. Note that we return the
6463 dynamic relocations as a single block, although they are actually
6464 associated with particular sections; the interface, which was
6465 designed for SunOS style shared libraries, expects that there is only
6466 one set of dynamic relocs. Any loadable section that was actually
6467 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6468 dynamic symbol table, is considered to be a dynamic reloc section. */
6469
6470 long
6471 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6472 arelent **storage,
6473 asymbol **syms)
6474 {
6475 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6476 asection *s;
6477 long ret;
6478
6479 if (elf_dynsymtab (abfd) == 0)
6480 {
6481 bfd_set_error (bfd_error_invalid_operation);
6482 return -1;
6483 }
6484
6485 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6486 ret = 0;
6487 for (s = abfd->sections; s != NULL; s = s->next)
6488 {
6489 if ((s->flags & SEC_LOAD) != 0
6490 && elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6491 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6492 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6493 {
6494 arelent *p;
6495 long count, i;
6496
6497 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6498 return -1;
6499 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6500 p = s->relocation;
6501 for (i = 0; i < count; i++)
6502 *storage++ = p++;
6503 ret += count;
6504 }
6505 }
6506
6507 *storage = NULL;
6508
6509 return ret;
6510 }
6511 \f
6512 /* Read in the version information. */
6513
6514 bfd_boolean
6515 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6516 {
6517 bfd_byte *contents = NULL;
6518 unsigned int freeidx = 0;
6519
6520 if (elf_dynverref (abfd) != 0)
6521 {
6522 Elf_Internal_Shdr *hdr;
6523 Elf_External_Verneed *everneed;
6524 Elf_Internal_Verneed *iverneed;
6525 unsigned int i;
6526 bfd_byte *contents_end;
6527
6528 hdr = &elf_tdata (abfd)->dynverref_hdr;
6529
6530 elf_tdata (abfd)->verref = bfd_zalloc2 (abfd, hdr->sh_info,
6531 sizeof (Elf_Internal_Verneed));
6532 if (elf_tdata (abfd)->verref == NULL)
6533 goto error_return;
6534
6535 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6536
6537 contents = bfd_malloc (hdr->sh_size);
6538 if (contents == NULL)
6539 {
6540 error_return_verref:
6541 elf_tdata (abfd)->verref = NULL;
6542 elf_tdata (abfd)->cverrefs = 0;
6543 goto error_return;
6544 }
6545 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6546 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6547 goto error_return_verref;
6548
6549 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
6550 goto error_return_verref;
6551
6552 BFD_ASSERT (sizeof (Elf_External_Verneed)
6553 == sizeof (Elf_External_Vernaux));
6554 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
6555 everneed = (Elf_External_Verneed *) contents;
6556 iverneed = elf_tdata (abfd)->verref;
6557 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6558 {
6559 Elf_External_Vernaux *evernaux;
6560 Elf_Internal_Vernaux *ivernaux;
6561 unsigned int j;
6562
6563 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6564
6565 iverneed->vn_bfd = abfd;
6566
6567 iverneed->vn_filename =
6568 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6569 iverneed->vn_file);
6570 if (iverneed->vn_filename == NULL)
6571 goto error_return_verref;
6572
6573 if (iverneed->vn_cnt == 0)
6574 iverneed->vn_auxptr = NULL;
6575 else
6576 {
6577 iverneed->vn_auxptr = bfd_alloc2 (abfd, iverneed->vn_cnt,
6578 sizeof (Elf_Internal_Vernaux));
6579 if (iverneed->vn_auxptr == NULL)
6580 goto error_return_verref;
6581 }
6582
6583 if (iverneed->vn_aux
6584 > (size_t) (contents_end - (bfd_byte *) everneed))
6585 goto error_return_verref;
6586
6587 evernaux = ((Elf_External_Vernaux *)
6588 ((bfd_byte *) everneed + iverneed->vn_aux));
6589 ivernaux = iverneed->vn_auxptr;
6590 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6591 {
6592 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6593
6594 ivernaux->vna_nodename =
6595 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6596 ivernaux->vna_name);
6597 if (ivernaux->vna_nodename == NULL)
6598 goto error_return_verref;
6599
6600 if (j + 1 < iverneed->vn_cnt)
6601 ivernaux->vna_nextptr = ivernaux + 1;
6602 else
6603 ivernaux->vna_nextptr = NULL;
6604
6605 if (ivernaux->vna_next
6606 > (size_t) (contents_end - (bfd_byte *) evernaux))
6607 goto error_return_verref;
6608
6609 evernaux = ((Elf_External_Vernaux *)
6610 ((bfd_byte *) evernaux + ivernaux->vna_next));
6611
6612 if (ivernaux->vna_other > freeidx)
6613 freeidx = ivernaux->vna_other;
6614 }
6615
6616 if (i + 1 < hdr->sh_info)
6617 iverneed->vn_nextref = iverneed + 1;
6618 else
6619 iverneed->vn_nextref = NULL;
6620
6621 if (iverneed->vn_next
6622 > (size_t) (contents_end - (bfd_byte *) everneed))
6623 goto error_return_verref;
6624
6625 everneed = ((Elf_External_Verneed *)
6626 ((bfd_byte *) everneed + iverneed->vn_next));
6627 }
6628
6629 free (contents);
6630 contents = NULL;
6631 }
6632
6633 if (elf_dynverdef (abfd) != 0)
6634 {
6635 Elf_Internal_Shdr *hdr;
6636 Elf_External_Verdef *everdef;
6637 Elf_Internal_Verdef *iverdef;
6638 Elf_Internal_Verdef *iverdefarr;
6639 Elf_Internal_Verdef iverdefmem;
6640 unsigned int i;
6641 unsigned int maxidx;
6642 bfd_byte *contents_end_def, *contents_end_aux;
6643
6644 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6645
6646 contents = bfd_malloc (hdr->sh_size);
6647 if (contents == NULL)
6648 goto error_return;
6649 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6650 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6651 goto error_return;
6652
6653 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
6654 goto error_return;
6655
6656 BFD_ASSERT (sizeof (Elf_External_Verdef)
6657 >= sizeof (Elf_External_Verdaux));
6658 contents_end_def = contents + hdr->sh_size
6659 - sizeof (Elf_External_Verdef);
6660 contents_end_aux = contents + hdr->sh_size
6661 - sizeof (Elf_External_Verdaux);
6662
6663 /* We know the number of entries in the section but not the maximum
6664 index. Therefore we have to run through all entries and find
6665 the maximum. */
6666 everdef = (Elf_External_Verdef *) contents;
6667 maxidx = 0;
6668 for (i = 0; i < hdr->sh_info; ++i)
6669 {
6670 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6671
6672 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6673 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6674
6675 if (iverdefmem.vd_next
6676 > (size_t) (contents_end_def - (bfd_byte *) everdef))
6677 goto error_return;
6678
6679 everdef = ((Elf_External_Verdef *)
6680 ((bfd_byte *) everdef + iverdefmem.vd_next));
6681 }
6682
6683 if (default_imported_symver)
6684 {
6685 if (freeidx > maxidx)
6686 maxidx = ++freeidx;
6687 else
6688 freeidx = ++maxidx;
6689 }
6690 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, maxidx,
6691 sizeof (Elf_Internal_Verdef));
6692 if (elf_tdata (abfd)->verdef == NULL)
6693 goto error_return;
6694
6695 elf_tdata (abfd)->cverdefs = maxidx;
6696
6697 everdef = (Elf_External_Verdef *) contents;
6698 iverdefarr = elf_tdata (abfd)->verdef;
6699 for (i = 0; i < hdr->sh_info; i++)
6700 {
6701 Elf_External_Verdaux *everdaux;
6702 Elf_Internal_Verdaux *iverdaux;
6703 unsigned int j;
6704
6705 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6706
6707 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
6708 {
6709 error_return_verdef:
6710 elf_tdata (abfd)->verdef = NULL;
6711 elf_tdata (abfd)->cverdefs = 0;
6712 goto error_return;
6713 }
6714
6715 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6716 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6717
6718 iverdef->vd_bfd = abfd;
6719
6720 if (iverdef->vd_cnt == 0)
6721 iverdef->vd_auxptr = NULL;
6722 else
6723 {
6724 iverdef->vd_auxptr = bfd_alloc2 (abfd, iverdef->vd_cnt,
6725 sizeof (Elf_Internal_Verdaux));
6726 if (iverdef->vd_auxptr == NULL)
6727 goto error_return_verdef;
6728 }
6729
6730 if (iverdef->vd_aux
6731 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
6732 goto error_return_verdef;
6733
6734 everdaux = ((Elf_External_Verdaux *)
6735 ((bfd_byte *) everdef + iverdef->vd_aux));
6736 iverdaux = iverdef->vd_auxptr;
6737 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6738 {
6739 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6740
6741 iverdaux->vda_nodename =
6742 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6743 iverdaux->vda_name);
6744 if (iverdaux->vda_nodename == NULL)
6745 goto error_return_verdef;
6746
6747 if (j + 1 < iverdef->vd_cnt)
6748 iverdaux->vda_nextptr = iverdaux + 1;
6749 else
6750 iverdaux->vda_nextptr = NULL;
6751
6752 if (iverdaux->vda_next
6753 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
6754 goto error_return_verdef;
6755
6756 everdaux = ((Elf_External_Verdaux *)
6757 ((bfd_byte *) everdaux + iverdaux->vda_next));
6758 }
6759
6760 if (iverdef->vd_cnt)
6761 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6762
6763 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
6764 iverdef->vd_nextdef = iverdef + 1;
6765 else
6766 iverdef->vd_nextdef = NULL;
6767
6768 everdef = ((Elf_External_Verdef *)
6769 ((bfd_byte *) everdef + iverdef->vd_next));
6770 }
6771
6772 free (contents);
6773 contents = NULL;
6774 }
6775 else if (default_imported_symver)
6776 {
6777 if (freeidx < 3)
6778 freeidx = 3;
6779 else
6780 freeidx++;
6781
6782 elf_tdata (abfd)->verdef = bfd_zalloc2 (abfd, freeidx,
6783 sizeof (Elf_Internal_Verdef));
6784 if (elf_tdata (abfd)->verdef == NULL)
6785 goto error_return;
6786
6787 elf_tdata (abfd)->cverdefs = freeidx;
6788 }
6789
6790 /* Create a default version based on the soname. */
6791 if (default_imported_symver)
6792 {
6793 Elf_Internal_Verdef *iverdef;
6794 Elf_Internal_Verdaux *iverdaux;
6795
6796 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6797
6798 iverdef->vd_version = VER_DEF_CURRENT;
6799 iverdef->vd_flags = 0;
6800 iverdef->vd_ndx = freeidx;
6801 iverdef->vd_cnt = 1;
6802
6803 iverdef->vd_bfd = abfd;
6804
6805 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6806 if (iverdef->vd_nodename == NULL)
6807 goto error_return_verdef;
6808 iverdef->vd_nextdef = NULL;
6809 iverdef->vd_auxptr = bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
6810 if (iverdef->vd_auxptr == NULL)
6811 goto error_return_verdef;
6812
6813 iverdaux = iverdef->vd_auxptr;
6814 iverdaux->vda_nodename = iverdef->vd_nodename;
6815 iverdaux->vda_nextptr = NULL;
6816 }
6817
6818 return TRUE;
6819
6820 error_return:
6821 if (contents != NULL)
6822 free (contents);
6823 return FALSE;
6824 }
6825 \f
6826 asymbol *
6827 _bfd_elf_make_empty_symbol (bfd *abfd)
6828 {
6829 elf_symbol_type *newsym;
6830 bfd_size_type amt = sizeof (elf_symbol_type);
6831
6832 newsym = bfd_zalloc (abfd, amt);
6833 if (!newsym)
6834 return NULL;
6835 else
6836 {
6837 newsym->symbol.the_bfd = abfd;
6838 return &newsym->symbol;
6839 }
6840 }
6841
6842 void
6843 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6844 asymbol *symbol,
6845 symbol_info *ret)
6846 {
6847 bfd_symbol_info (symbol, ret);
6848 }
6849
6850 /* Return whether a symbol name implies a local symbol. Most targets
6851 use this function for the is_local_label_name entry point, but some
6852 override it. */
6853
6854 bfd_boolean
6855 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6856 const char *name)
6857 {
6858 /* Normal local symbols start with ``.L''. */
6859 if (name[0] == '.' && name[1] == 'L')
6860 return TRUE;
6861
6862 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6863 DWARF debugging symbols starting with ``..''. */
6864 if (name[0] == '.' && name[1] == '.')
6865 return TRUE;
6866
6867 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6868 emitting DWARF debugging output. I suspect this is actually a
6869 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6870 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6871 underscore to be emitted on some ELF targets). For ease of use,
6872 we treat such symbols as local. */
6873 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6874 return TRUE;
6875
6876 return FALSE;
6877 }
6878
6879 alent *
6880 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6881 asymbol *symbol ATTRIBUTE_UNUSED)
6882 {
6883 abort ();
6884 return NULL;
6885 }
6886
6887 bfd_boolean
6888 _bfd_elf_set_arch_mach (bfd *abfd,
6889 enum bfd_architecture arch,
6890 unsigned long machine)
6891 {
6892 /* If this isn't the right architecture for this backend, and this
6893 isn't the generic backend, fail. */
6894 if (arch != get_elf_backend_data (abfd)->arch
6895 && arch != bfd_arch_unknown
6896 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6897 return FALSE;
6898
6899 return bfd_default_set_arch_mach (abfd, arch, machine);
6900 }
6901
6902 /* Find the function to a particular section and offset,
6903 for error reporting. */
6904
6905 static bfd_boolean
6906 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6907 asection *section,
6908 asymbol **symbols,
6909 bfd_vma offset,
6910 const char **filename_ptr,
6911 const char **functionname_ptr)
6912 {
6913 const char *filename;
6914 asymbol *func, *file;
6915 bfd_vma low_func;
6916 asymbol **p;
6917 /* ??? Given multiple file symbols, it is impossible to reliably
6918 choose the right file name for global symbols. File symbols are
6919 local symbols, and thus all file symbols must sort before any
6920 global symbols. The ELF spec may be interpreted to say that a
6921 file symbol must sort before other local symbols, but currently
6922 ld -r doesn't do this. So, for ld -r output, it is possible to
6923 make a better choice of file name for local symbols by ignoring
6924 file symbols appearing after a given local symbol. */
6925 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
6926
6927 filename = NULL;
6928 func = NULL;
6929 file = NULL;
6930 low_func = 0;
6931 state = nothing_seen;
6932
6933 for (p = symbols; *p != NULL; p++)
6934 {
6935 elf_symbol_type *q;
6936
6937 q = (elf_symbol_type *) *p;
6938
6939 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6940 {
6941 default:
6942 break;
6943 case STT_FILE:
6944 file = &q->symbol;
6945 if (state == symbol_seen)
6946 state = file_after_symbol_seen;
6947 continue;
6948 case STT_NOTYPE:
6949 case STT_FUNC:
6950 if (bfd_get_section (&q->symbol) == section
6951 && q->symbol.value >= low_func
6952 && q->symbol.value <= offset)
6953 {
6954 func = (asymbol *) q;
6955 low_func = q->symbol.value;
6956 filename = NULL;
6957 if (file != NULL
6958 && (ELF_ST_BIND (q->internal_elf_sym.st_info) == STB_LOCAL
6959 || state != file_after_symbol_seen))
6960 filename = bfd_asymbol_name (file);
6961 }
6962 break;
6963 }
6964 if (state == nothing_seen)
6965 state = symbol_seen;
6966 }
6967
6968 if (func == NULL)
6969 return FALSE;
6970
6971 if (filename_ptr)
6972 *filename_ptr = filename;
6973 if (functionname_ptr)
6974 *functionname_ptr = bfd_asymbol_name (func);
6975
6976 return TRUE;
6977 }
6978
6979 /* Find the nearest line to a particular section and offset,
6980 for error reporting. */
6981
6982 bfd_boolean
6983 _bfd_elf_find_nearest_line (bfd *abfd,
6984 asection *section,
6985 asymbol **symbols,
6986 bfd_vma offset,
6987 const char **filename_ptr,
6988 const char **functionname_ptr,
6989 unsigned int *line_ptr)
6990 {
6991 bfd_boolean found;
6992
6993 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6994 filename_ptr, functionname_ptr,
6995 line_ptr))
6996 {
6997 if (!*functionname_ptr)
6998 elf_find_function (abfd, section, symbols, offset,
6999 *filename_ptr ? NULL : filename_ptr,
7000 functionname_ptr);
7001
7002 return TRUE;
7003 }
7004
7005 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7006 filename_ptr, functionname_ptr,
7007 line_ptr, 0,
7008 &elf_tdata (abfd)->dwarf2_find_line_info))
7009 {
7010 if (!*functionname_ptr)
7011 elf_find_function (abfd, section, symbols, offset,
7012 *filename_ptr ? NULL : filename_ptr,
7013 functionname_ptr);
7014
7015 return TRUE;
7016 }
7017
7018 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7019 &found, filename_ptr,
7020 functionname_ptr, line_ptr,
7021 &elf_tdata (abfd)->line_info))
7022 return FALSE;
7023 if (found && (*functionname_ptr || *line_ptr))
7024 return TRUE;
7025
7026 if (symbols == NULL)
7027 return FALSE;
7028
7029 if (! elf_find_function (abfd, section, symbols, offset,
7030 filename_ptr, functionname_ptr))
7031 return FALSE;
7032
7033 *line_ptr = 0;
7034 return TRUE;
7035 }
7036
7037 /* Find the line for a symbol. */
7038
7039 bfd_boolean
7040 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7041 const char **filename_ptr, unsigned int *line_ptr)
7042 {
7043 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7044 filename_ptr, line_ptr, 0,
7045 &elf_tdata (abfd)->dwarf2_find_line_info);
7046 }
7047
7048 /* After a call to bfd_find_nearest_line, successive calls to
7049 bfd_find_inliner_info can be used to get source information about
7050 each level of function inlining that terminated at the address
7051 passed to bfd_find_nearest_line. Currently this is only supported
7052 for DWARF2 with appropriate DWARF3 extensions. */
7053
7054 bfd_boolean
7055 _bfd_elf_find_inliner_info (bfd *abfd,
7056 const char **filename_ptr,
7057 const char **functionname_ptr,
7058 unsigned int *line_ptr)
7059 {
7060 bfd_boolean found;
7061 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7062 functionname_ptr, line_ptr,
7063 & elf_tdata (abfd)->dwarf2_find_line_info);
7064 return found;
7065 }
7066
7067 int
7068 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
7069 {
7070 int ret;
7071
7072 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
7073 if (! reloc)
7074 ret += get_program_header_size (abfd);
7075 return ret;
7076 }
7077
7078 bfd_boolean
7079 _bfd_elf_set_section_contents (bfd *abfd,
7080 sec_ptr section,
7081 const void *location,
7082 file_ptr offset,
7083 bfd_size_type count)
7084 {
7085 Elf_Internal_Shdr *hdr;
7086 bfd_signed_vma pos;
7087
7088 if (! abfd->output_has_begun
7089 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7090 return FALSE;
7091
7092 hdr = &elf_section_data (section)->this_hdr;
7093 pos = hdr->sh_offset + offset;
7094 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7095 || bfd_bwrite (location, count, abfd) != count)
7096 return FALSE;
7097
7098 return TRUE;
7099 }
7100
7101 void
7102 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7103 arelent *cache_ptr ATTRIBUTE_UNUSED,
7104 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7105 {
7106 abort ();
7107 }
7108
7109 /* Try to convert a non-ELF reloc into an ELF one. */
7110
7111 bfd_boolean
7112 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7113 {
7114 /* Check whether we really have an ELF howto. */
7115
7116 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7117 {
7118 bfd_reloc_code_real_type code;
7119 reloc_howto_type *howto;
7120
7121 /* Alien reloc: Try to determine its type to replace it with an
7122 equivalent ELF reloc. */
7123
7124 if (areloc->howto->pc_relative)
7125 {
7126 switch (areloc->howto->bitsize)
7127 {
7128 case 8:
7129 code = BFD_RELOC_8_PCREL;
7130 break;
7131 case 12:
7132 code = BFD_RELOC_12_PCREL;
7133 break;
7134 case 16:
7135 code = BFD_RELOC_16_PCREL;
7136 break;
7137 case 24:
7138 code = BFD_RELOC_24_PCREL;
7139 break;
7140 case 32:
7141 code = BFD_RELOC_32_PCREL;
7142 break;
7143 case 64:
7144 code = BFD_RELOC_64_PCREL;
7145 break;
7146 default:
7147 goto fail;
7148 }
7149
7150 howto = bfd_reloc_type_lookup (abfd, code);
7151
7152 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7153 {
7154 if (howto->pcrel_offset)
7155 areloc->addend += areloc->address;
7156 else
7157 areloc->addend -= areloc->address; /* addend is unsigned!! */
7158 }
7159 }
7160 else
7161 {
7162 switch (areloc->howto->bitsize)
7163 {
7164 case 8:
7165 code = BFD_RELOC_8;
7166 break;
7167 case 14:
7168 code = BFD_RELOC_14;
7169 break;
7170 case 16:
7171 code = BFD_RELOC_16;
7172 break;
7173 case 26:
7174 code = BFD_RELOC_26;
7175 break;
7176 case 32:
7177 code = BFD_RELOC_32;
7178 break;
7179 case 64:
7180 code = BFD_RELOC_64;
7181 break;
7182 default:
7183 goto fail;
7184 }
7185
7186 howto = bfd_reloc_type_lookup (abfd, code);
7187 }
7188
7189 if (howto)
7190 areloc->howto = howto;
7191 else
7192 goto fail;
7193 }
7194
7195 return TRUE;
7196
7197 fail:
7198 (*_bfd_error_handler)
7199 (_("%B: unsupported relocation type %s"),
7200 abfd, areloc->howto->name);
7201 bfd_set_error (bfd_error_bad_value);
7202 return FALSE;
7203 }
7204
7205 bfd_boolean
7206 _bfd_elf_close_and_cleanup (bfd *abfd)
7207 {
7208 if (bfd_get_format (abfd) == bfd_object)
7209 {
7210 if (elf_tdata (abfd) != NULL && elf_shstrtab (abfd) != NULL)
7211 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7212 _bfd_dwarf2_cleanup_debug_info (abfd);
7213 }
7214
7215 return _bfd_generic_close_and_cleanup (abfd);
7216 }
7217
7218 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7219 in the relocation's offset. Thus we cannot allow any sort of sanity
7220 range-checking to interfere. There is nothing else to do in processing
7221 this reloc. */
7222
7223 bfd_reloc_status_type
7224 _bfd_elf_rel_vtable_reloc_fn
7225 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7226 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7227 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7228 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7229 {
7230 return bfd_reloc_ok;
7231 }
7232 \f
7233 /* Elf core file support. Much of this only works on native
7234 toolchains, since we rely on knowing the
7235 machine-dependent procfs structure in order to pick
7236 out details about the corefile. */
7237
7238 #ifdef HAVE_SYS_PROCFS_H
7239 # include <sys/procfs.h>
7240 #endif
7241
7242 /* FIXME: this is kinda wrong, but it's what gdb wants. */
7243
7244 static int
7245 elfcore_make_pid (bfd *abfd)
7246 {
7247 return ((elf_tdata (abfd)->core_lwpid << 16)
7248 + (elf_tdata (abfd)->core_pid));
7249 }
7250
7251 /* If there isn't a section called NAME, make one, using
7252 data from SECT. Note, this function will generate a
7253 reference to NAME, so you shouldn't deallocate or
7254 overwrite it. */
7255
7256 static bfd_boolean
7257 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7258 {
7259 asection *sect2;
7260
7261 if (bfd_get_section_by_name (abfd, name) != NULL)
7262 return TRUE;
7263
7264 sect2 = bfd_make_section (abfd, name);
7265 if (sect2 == NULL)
7266 return FALSE;
7267
7268 sect2->size = sect->size;
7269 sect2->filepos = sect->filepos;
7270 sect2->flags = sect->flags;
7271 sect2->alignment_power = sect->alignment_power;
7272 return TRUE;
7273 }
7274
7275 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
7276 actually creates up to two pseudosections:
7277 - For the single-threaded case, a section named NAME, unless
7278 such a section already exists.
7279 - For the multi-threaded case, a section named "NAME/PID", where
7280 PID is elfcore_make_pid (abfd).
7281 Both pseudosections have identical contents. */
7282 bfd_boolean
7283 _bfd_elfcore_make_pseudosection (bfd *abfd,
7284 char *name,
7285 size_t size,
7286 ufile_ptr filepos)
7287 {
7288 char buf[100];
7289 char *threaded_name;
7290 size_t len;
7291 asection *sect;
7292
7293 /* Build the section name. */
7294
7295 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7296 len = strlen (buf) + 1;
7297 threaded_name = bfd_alloc (abfd, len);
7298 if (threaded_name == NULL)
7299 return FALSE;
7300 memcpy (threaded_name, buf, len);
7301
7302 sect = bfd_make_section_anyway (abfd, threaded_name);
7303 if (sect == NULL)
7304 return FALSE;
7305 sect->size = size;
7306 sect->filepos = filepos;
7307 sect->flags = SEC_HAS_CONTENTS;
7308 sect->alignment_power = 2;
7309
7310 return elfcore_maybe_make_sect (abfd, name, sect);
7311 }
7312
7313 /* prstatus_t exists on:
7314 solaris 2.5+
7315 linux 2.[01] + glibc
7316 unixware 4.2
7317 */
7318
7319 #if defined (HAVE_PRSTATUS_T)
7320
7321 static bfd_boolean
7322 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7323 {
7324 size_t size;
7325 int offset;
7326
7327 if (note->descsz == sizeof (prstatus_t))
7328 {
7329 prstatus_t prstat;
7330
7331 size = sizeof (prstat.pr_reg);
7332 offset = offsetof (prstatus_t, pr_reg);
7333 memcpy (&prstat, note->descdata, sizeof (prstat));
7334
7335 /* Do not overwrite the core signal if it
7336 has already been set by another thread. */
7337 if (elf_tdata (abfd)->core_signal == 0)
7338 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7339 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7340
7341 /* pr_who exists on:
7342 solaris 2.5+
7343 unixware 4.2
7344 pr_who doesn't exist on:
7345 linux 2.[01]
7346 */
7347 #if defined (HAVE_PRSTATUS_T_PR_WHO)
7348 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7349 #endif
7350 }
7351 #if defined (HAVE_PRSTATUS32_T)
7352 else if (note->descsz == sizeof (prstatus32_t))
7353 {
7354 /* 64-bit host, 32-bit corefile */
7355 prstatus32_t prstat;
7356
7357 size = sizeof (prstat.pr_reg);
7358 offset = offsetof (prstatus32_t, pr_reg);
7359 memcpy (&prstat, note->descdata, sizeof (prstat));
7360
7361 /* Do not overwrite the core signal if it
7362 has already been set by another thread. */
7363 if (elf_tdata (abfd)->core_signal == 0)
7364 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7365 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7366
7367 /* pr_who exists on:
7368 solaris 2.5+
7369 unixware 4.2
7370 pr_who doesn't exist on:
7371 linux 2.[01]
7372 */
7373 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
7374 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7375 #endif
7376 }
7377 #endif /* HAVE_PRSTATUS32_T */
7378 else
7379 {
7380 /* Fail - we don't know how to handle any other
7381 note size (ie. data object type). */
7382 return TRUE;
7383 }
7384
7385 /* Make a ".reg/999" section and a ".reg" section. */
7386 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7387 size, note->descpos + offset);
7388 }
7389 #endif /* defined (HAVE_PRSTATUS_T) */
7390
7391 /* Create a pseudosection containing the exact contents of NOTE. */
7392 static bfd_boolean
7393 elfcore_make_note_pseudosection (bfd *abfd,
7394 char *name,
7395 Elf_Internal_Note *note)
7396 {
7397 return _bfd_elfcore_make_pseudosection (abfd, name,
7398 note->descsz, note->descpos);
7399 }
7400
7401 /* There isn't a consistent prfpregset_t across platforms,
7402 but it doesn't matter, because we don't have to pick this
7403 data structure apart. */
7404
7405 static bfd_boolean
7406 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7407 {
7408 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7409 }
7410
7411 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7412 type of 5 (NT_PRXFPREG). Just include the whole note's contents
7413 literally. */
7414
7415 static bfd_boolean
7416 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7417 {
7418 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7419 }
7420
7421 #if defined (HAVE_PRPSINFO_T)
7422 typedef prpsinfo_t elfcore_psinfo_t;
7423 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
7424 typedef prpsinfo32_t elfcore_psinfo32_t;
7425 #endif
7426 #endif
7427
7428 #if defined (HAVE_PSINFO_T)
7429 typedef psinfo_t elfcore_psinfo_t;
7430 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
7431 typedef psinfo32_t elfcore_psinfo32_t;
7432 #endif
7433 #endif
7434
7435 /* return a malloc'ed copy of a string at START which is at
7436 most MAX bytes long, possibly without a terminating '\0'.
7437 the copy will always have a terminating '\0'. */
7438
7439 char *
7440 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
7441 {
7442 char *dups;
7443 char *end = memchr (start, '\0', max);
7444 size_t len;
7445
7446 if (end == NULL)
7447 len = max;
7448 else
7449 len = end - start;
7450
7451 dups = bfd_alloc (abfd, len + 1);
7452 if (dups == NULL)
7453 return NULL;
7454
7455 memcpy (dups, start, len);
7456 dups[len] = '\0';
7457
7458 return dups;
7459 }
7460
7461 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7462 static bfd_boolean
7463 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
7464 {
7465 if (note->descsz == sizeof (elfcore_psinfo_t))
7466 {
7467 elfcore_psinfo_t psinfo;
7468
7469 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7470
7471 elf_tdata (abfd)->core_program
7472 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7473 sizeof (psinfo.pr_fname));
7474
7475 elf_tdata (abfd)->core_command
7476 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7477 sizeof (psinfo.pr_psargs));
7478 }
7479 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
7480 else if (note->descsz == sizeof (elfcore_psinfo32_t))
7481 {
7482 /* 64-bit host, 32-bit corefile */
7483 elfcore_psinfo32_t psinfo;
7484
7485 memcpy (&psinfo, note->descdata, sizeof (psinfo));
7486
7487 elf_tdata (abfd)->core_program
7488 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
7489 sizeof (psinfo.pr_fname));
7490
7491 elf_tdata (abfd)->core_command
7492 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
7493 sizeof (psinfo.pr_psargs));
7494 }
7495 #endif
7496
7497 else
7498 {
7499 /* Fail - we don't know how to handle any other
7500 note size (ie. data object type). */
7501 return TRUE;
7502 }
7503
7504 /* Note that for some reason, a spurious space is tacked
7505 onto the end of the args in some (at least one anyway)
7506 implementations, so strip it off if it exists. */
7507
7508 {
7509 char *command = elf_tdata (abfd)->core_command;
7510 int n = strlen (command);
7511
7512 if (0 < n && command[n - 1] == ' ')
7513 command[n - 1] = '\0';
7514 }
7515
7516 return TRUE;
7517 }
7518 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
7519
7520 #if defined (HAVE_PSTATUS_T)
7521 static bfd_boolean
7522 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
7523 {
7524 if (note->descsz == sizeof (pstatus_t)
7525 #if defined (HAVE_PXSTATUS_T)
7526 || note->descsz == sizeof (pxstatus_t)
7527 #endif
7528 )
7529 {
7530 pstatus_t pstat;
7531
7532 memcpy (&pstat, note->descdata, sizeof (pstat));
7533
7534 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7535 }
7536 #if defined (HAVE_PSTATUS32_T)
7537 else if (note->descsz == sizeof (pstatus32_t))
7538 {
7539 /* 64-bit host, 32-bit corefile */
7540 pstatus32_t pstat;
7541
7542 memcpy (&pstat, note->descdata, sizeof (pstat));
7543
7544 elf_tdata (abfd)->core_pid = pstat.pr_pid;
7545 }
7546 #endif
7547 /* Could grab some more details from the "representative"
7548 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
7549 NT_LWPSTATUS note, presumably. */
7550
7551 return TRUE;
7552 }
7553 #endif /* defined (HAVE_PSTATUS_T) */
7554
7555 #if defined (HAVE_LWPSTATUS_T)
7556 static bfd_boolean
7557 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
7558 {
7559 lwpstatus_t lwpstat;
7560 char buf[100];
7561 char *name;
7562 size_t len;
7563 asection *sect;
7564
7565 if (note->descsz != sizeof (lwpstat)
7566 #if defined (HAVE_LWPXSTATUS_T)
7567 && note->descsz != sizeof (lwpxstatus_t)
7568 #endif
7569 )
7570 return TRUE;
7571
7572 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
7573
7574 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
7575 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
7576
7577 /* Make a ".reg/999" section. */
7578
7579 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
7580 len = strlen (buf) + 1;
7581 name = bfd_alloc (abfd, len);
7582 if (name == NULL)
7583 return FALSE;
7584 memcpy (name, buf, len);
7585
7586 sect = bfd_make_section_anyway (abfd, name);
7587 if (sect == NULL)
7588 return FALSE;
7589
7590 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7591 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
7592 sect->filepos = note->descpos
7593 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
7594 #endif
7595
7596 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7597 sect->size = sizeof (lwpstat.pr_reg);
7598 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
7599 #endif
7600
7601 sect->flags = SEC_HAS_CONTENTS;
7602 sect->alignment_power = 2;
7603
7604 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7605 return FALSE;
7606
7607 /* Make a ".reg2/999" section */
7608
7609 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7610 len = strlen (buf) + 1;
7611 name = bfd_alloc (abfd, len);
7612 if (name == NULL)
7613 return FALSE;
7614 memcpy (name, buf, len);
7615
7616 sect = bfd_make_section_anyway (abfd, name);
7617 if (sect == NULL)
7618 return FALSE;
7619
7620 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7621 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7622 sect->filepos = note->descpos
7623 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7624 #endif
7625
7626 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7627 sect->size = sizeof (lwpstat.pr_fpreg);
7628 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7629 #endif
7630
7631 sect->flags = SEC_HAS_CONTENTS;
7632 sect->alignment_power = 2;
7633
7634 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7635 }
7636 #endif /* defined (HAVE_LWPSTATUS_T) */
7637
7638 #if defined (HAVE_WIN32_PSTATUS_T)
7639 static bfd_boolean
7640 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7641 {
7642 char buf[30];
7643 char *name;
7644 size_t len;
7645 asection *sect;
7646 win32_pstatus_t pstatus;
7647
7648 if (note->descsz < sizeof (pstatus))
7649 return TRUE;
7650
7651 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7652
7653 switch (pstatus.data_type)
7654 {
7655 case NOTE_INFO_PROCESS:
7656 /* FIXME: need to add ->core_command. */
7657 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7658 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7659 break;
7660
7661 case NOTE_INFO_THREAD:
7662 /* Make a ".reg/999" section. */
7663 sprintf (buf, ".reg/%ld", (long) pstatus.data.thread_info.tid);
7664
7665 len = strlen (buf) + 1;
7666 name = bfd_alloc (abfd, len);
7667 if (name == NULL)
7668 return FALSE;
7669
7670 memcpy (name, buf, len);
7671
7672 sect = bfd_make_section_anyway (abfd, name);
7673 if (sect == NULL)
7674 return FALSE;
7675
7676 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7677 sect->filepos = (note->descpos
7678 + offsetof (struct win32_pstatus,
7679 data.thread_info.thread_context));
7680 sect->flags = SEC_HAS_CONTENTS;
7681 sect->alignment_power = 2;
7682
7683 if (pstatus.data.thread_info.is_active_thread)
7684 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7685 return FALSE;
7686 break;
7687
7688 case NOTE_INFO_MODULE:
7689 /* Make a ".module/xxxxxxxx" section. */
7690 sprintf (buf, ".module/%08lx",
7691 (long) pstatus.data.module_info.base_address);
7692
7693 len = strlen (buf) + 1;
7694 name = bfd_alloc (abfd, len);
7695 if (name == NULL)
7696 return FALSE;
7697
7698 memcpy (name, buf, len);
7699
7700 sect = bfd_make_section_anyway (abfd, name);
7701
7702 if (sect == NULL)
7703 return FALSE;
7704
7705 sect->size = note->descsz;
7706 sect->filepos = note->descpos;
7707 sect->flags = SEC_HAS_CONTENTS;
7708 sect->alignment_power = 2;
7709 break;
7710
7711 default:
7712 return TRUE;
7713 }
7714
7715 return TRUE;
7716 }
7717 #endif /* HAVE_WIN32_PSTATUS_T */
7718
7719 static bfd_boolean
7720 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7721 {
7722 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7723
7724 switch (note->type)
7725 {
7726 default:
7727 return TRUE;
7728
7729 case NT_PRSTATUS:
7730 if (bed->elf_backend_grok_prstatus)
7731 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7732 return TRUE;
7733 #if defined (HAVE_PRSTATUS_T)
7734 return elfcore_grok_prstatus (abfd, note);
7735 #else
7736 return TRUE;
7737 #endif
7738
7739 #if defined (HAVE_PSTATUS_T)
7740 case NT_PSTATUS:
7741 return elfcore_grok_pstatus (abfd, note);
7742 #endif
7743
7744 #if defined (HAVE_LWPSTATUS_T)
7745 case NT_LWPSTATUS:
7746 return elfcore_grok_lwpstatus (abfd, note);
7747 #endif
7748
7749 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7750 return elfcore_grok_prfpreg (abfd, note);
7751
7752 #if defined (HAVE_WIN32_PSTATUS_T)
7753 case NT_WIN32PSTATUS:
7754 return elfcore_grok_win32pstatus (abfd, note);
7755 #endif
7756
7757 case NT_PRXFPREG: /* Linux SSE extension */
7758 if (note->namesz == 6
7759 && strcmp (note->namedata, "LINUX") == 0)
7760 return elfcore_grok_prxfpreg (abfd, note);
7761 else
7762 return TRUE;
7763
7764 case NT_PRPSINFO:
7765 case NT_PSINFO:
7766 if (bed->elf_backend_grok_psinfo)
7767 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7768 return TRUE;
7769 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7770 return elfcore_grok_psinfo (abfd, note);
7771 #else
7772 return TRUE;
7773 #endif
7774
7775 case NT_AUXV:
7776 {
7777 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7778
7779 if (sect == NULL)
7780 return FALSE;
7781 sect->size = note->descsz;
7782 sect->filepos = note->descpos;
7783 sect->flags = SEC_HAS_CONTENTS;
7784 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7785
7786 return TRUE;
7787 }
7788 }
7789 }
7790
7791 static bfd_boolean
7792 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7793 {
7794 char *cp;
7795
7796 cp = strchr (note->namedata, '@');
7797 if (cp != NULL)
7798 {
7799 *lwpidp = atoi(cp + 1);
7800 return TRUE;
7801 }
7802 return FALSE;
7803 }
7804
7805 static bfd_boolean
7806 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7807 {
7808
7809 /* Signal number at offset 0x08. */
7810 elf_tdata (abfd)->core_signal
7811 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7812
7813 /* Process ID at offset 0x50. */
7814 elf_tdata (abfd)->core_pid
7815 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7816
7817 /* Command name at 0x7c (max 32 bytes, including nul). */
7818 elf_tdata (abfd)->core_command
7819 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7820
7821 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7822 note);
7823 }
7824
7825 static bfd_boolean
7826 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7827 {
7828 int lwp;
7829
7830 if (elfcore_netbsd_get_lwpid (note, &lwp))
7831 elf_tdata (abfd)->core_lwpid = lwp;
7832
7833 if (note->type == NT_NETBSDCORE_PROCINFO)
7834 {
7835 /* NetBSD-specific core "procinfo". Note that we expect to
7836 find this note before any of the others, which is fine,
7837 since the kernel writes this note out first when it
7838 creates a core file. */
7839
7840 return elfcore_grok_netbsd_procinfo (abfd, note);
7841 }
7842
7843 /* As of Jan 2002 there are no other machine-independent notes
7844 defined for NetBSD core files. If the note type is less
7845 than the start of the machine-dependent note types, we don't
7846 understand it. */
7847
7848 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7849 return TRUE;
7850
7851
7852 switch (bfd_get_arch (abfd))
7853 {
7854 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7855 PT_GETFPREGS == mach+2. */
7856
7857 case bfd_arch_alpha:
7858 case bfd_arch_sparc:
7859 switch (note->type)
7860 {
7861 case NT_NETBSDCORE_FIRSTMACH+0:
7862 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7863
7864 case NT_NETBSDCORE_FIRSTMACH+2:
7865 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7866
7867 default:
7868 return TRUE;
7869 }
7870
7871 /* On all other arch's, PT_GETREGS == mach+1 and
7872 PT_GETFPREGS == mach+3. */
7873
7874 default:
7875 switch (note->type)
7876 {
7877 case NT_NETBSDCORE_FIRSTMACH+1:
7878 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7879
7880 case NT_NETBSDCORE_FIRSTMACH+3:
7881 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7882
7883 default:
7884 return TRUE;
7885 }
7886 }
7887 /* NOTREACHED */
7888 }
7889
7890 static bfd_boolean
7891 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7892 {
7893 void *ddata = note->descdata;
7894 char buf[100];
7895 char *name;
7896 asection *sect;
7897 short sig;
7898 unsigned flags;
7899
7900 /* nto_procfs_status 'pid' field is at offset 0. */
7901 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7902
7903 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7904 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7905
7906 /* nto_procfs_status 'flags' field is at offset 8. */
7907 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7908
7909 /* nto_procfs_status 'what' field is at offset 14. */
7910 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7911 {
7912 elf_tdata (abfd)->core_signal = sig;
7913 elf_tdata (abfd)->core_lwpid = *tid;
7914 }
7915
7916 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7917 do not come from signals so we make sure we set the current
7918 thread just in case. */
7919 if (flags & 0x00000080)
7920 elf_tdata (abfd)->core_lwpid = *tid;
7921
7922 /* Make a ".qnx_core_status/%d" section. */
7923 sprintf (buf, ".qnx_core_status/%ld", (long) *tid);
7924
7925 name = bfd_alloc (abfd, strlen (buf) + 1);
7926 if (name == NULL)
7927 return FALSE;
7928 strcpy (name, buf);
7929
7930 sect = bfd_make_section_anyway (abfd, name);
7931 if (sect == NULL)
7932 return FALSE;
7933
7934 sect->size = note->descsz;
7935 sect->filepos = note->descpos;
7936 sect->flags = SEC_HAS_CONTENTS;
7937 sect->alignment_power = 2;
7938
7939 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7940 }
7941
7942 static bfd_boolean
7943 elfcore_grok_nto_regs (bfd *abfd,
7944 Elf_Internal_Note *note,
7945 pid_t tid,
7946 char *base)
7947 {
7948 char buf[100];
7949 char *name;
7950 asection *sect;
7951
7952 /* Make a "(base)/%d" section. */
7953 sprintf (buf, "%s/%ld", base, (long) tid);
7954
7955 name = bfd_alloc (abfd, strlen (buf) + 1);
7956 if (name == NULL)
7957 return FALSE;
7958 strcpy (name, buf);
7959
7960 sect = bfd_make_section_anyway (abfd, name);
7961 if (sect == NULL)
7962 return FALSE;
7963
7964 sect->size = note->descsz;
7965 sect->filepos = note->descpos;
7966 sect->flags = SEC_HAS_CONTENTS;
7967 sect->alignment_power = 2;
7968
7969 /* This is the current thread. */
7970 if (elf_tdata (abfd)->core_lwpid == tid)
7971 return elfcore_maybe_make_sect (abfd, base, sect);
7972
7973 return TRUE;
7974 }
7975
7976 #define BFD_QNT_CORE_INFO 7
7977 #define BFD_QNT_CORE_STATUS 8
7978 #define BFD_QNT_CORE_GREG 9
7979 #define BFD_QNT_CORE_FPREG 10
7980
7981 static bfd_boolean
7982 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7983 {
7984 /* Every GREG section has a STATUS section before it. Store the
7985 tid from the previous call to pass down to the next gregs
7986 function. */
7987 static pid_t tid = 1;
7988
7989 switch (note->type)
7990 {
7991 case BFD_QNT_CORE_INFO:
7992 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7993 case BFD_QNT_CORE_STATUS:
7994 return elfcore_grok_nto_status (abfd, note, &tid);
7995 case BFD_QNT_CORE_GREG:
7996 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
7997 case BFD_QNT_CORE_FPREG:
7998 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
7999 default:
8000 return TRUE;
8001 }
8002 }
8003
8004 /* Function: elfcore_write_note
8005
8006 Inputs:
8007 buffer to hold note
8008 name of note
8009 type of note
8010 data for note
8011 size of data for note
8012
8013 Return:
8014 End of buffer containing note. */
8015
8016 char *
8017 elfcore_write_note (bfd *abfd,
8018 char *buf,
8019 int *bufsiz,
8020 const char *name,
8021 int type,
8022 const void *input,
8023 int size)
8024 {
8025 Elf_External_Note *xnp;
8026 size_t namesz;
8027 size_t pad;
8028 size_t newspace;
8029 char *p, *dest;
8030
8031 namesz = 0;
8032 pad = 0;
8033 if (name != NULL)
8034 {
8035 const struct elf_backend_data *bed;
8036
8037 namesz = strlen (name) + 1;
8038 bed = get_elf_backend_data (abfd);
8039 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
8040 }
8041
8042 newspace = 12 + namesz + pad + size;
8043
8044 p = realloc (buf, *bufsiz + newspace);
8045 dest = p + *bufsiz;
8046 *bufsiz += newspace;
8047 xnp = (Elf_External_Note *) dest;
8048 H_PUT_32 (abfd, namesz, xnp->namesz);
8049 H_PUT_32 (abfd, size, xnp->descsz);
8050 H_PUT_32 (abfd, type, xnp->type);
8051 dest = xnp->name;
8052 if (name != NULL)
8053 {
8054 memcpy (dest, name, namesz);
8055 dest += namesz;
8056 while (pad != 0)
8057 {
8058 *dest++ = '\0';
8059 --pad;
8060 }
8061 }
8062 memcpy (dest, input, size);
8063 return p;
8064 }
8065
8066 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8067 char *
8068 elfcore_write_prpsinfo (bfd *abfd,
8069 char *buf,
8070 int *bufsiz,
8071 const char *fname,
8072 const char *psargs)
8073 {
8074 int note_type;
8075 char *note_name = "CORE";
8076
8077 #if defined (HAVE_PSINFO_T)
8078 psinfo_t data;
8079 note_type = NT_PSINFO;
8080 #else
8081 prpsinfo_t data;
8082 note_type = NT_PRPSINFO;
8083 #endif
8084
8085 memset (&data, 0, sizeof (data));
8086 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8087 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8088 return elfcore_write_note (abfd, buf, bufsiz,
8089 note_name, note_type, &data, sizeof (data));
8090 }
8091 #endif /* PSINFO_T or PRPSINFO_T */
8092
8093 #if defined (HAVE_PRSTATUS_T)
8094 char *
8095 elfcore_write_prstatus (bfd *abfd,
8096 char *buf,
8097 int *bufsiz,
8098 long pid,
8099 int cursig,
8100 const void *gregs)
8101 {
8102 prstatus_t prstat;
8103 char *note_name = "CORE";
8104
8105 memset (&prstat, 0, sizeof (prstat));
8106 prstat.pr_pid = pid;
8107 prstat.pr_cursig = cursig;
8108 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8109 return elfcore_write_note (abfd, buf, bufsiz,
8110 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
8111 }
8112 #endif /* HAVE_PRSTATUS_T */
8113
8114 #if defined (HAVE_LWPSTATUS_T)
8115 char *
8116 elfcore_write_lwpstatus (bfd *abfd,
8117 char *buf,
8118 int *bufsiz,
8119 long pid,
8120 int cursig,
8121 const void *gregs)
8122 {
8123 lwpstatus_t lwpstat;
8124 char *note_name = "CORE";
8125
8126 memset (&lwpstat, 0, sizeof (lwpstat));
8127 lwpstat.pr_lwpid = pid >> 16;
8128 lwpstat.pr_cursig = cursig;
8129 #if defined (HAVE_LWPSTATUS_T_PR_REG)
8130 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
8131 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8132 #if !defined(gregs)
8133 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
8134 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
8135 #else
8136 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
8137 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
8138 #endif
8139 #endif
8140 return elfcore_write_note (abfd, buf, bufsiz, note_name,
8141 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
8142 }
8143 #endif /* HAVE_LWPSTATUS_T */
8144
8145 #if defined (HAVE_PSTATUS_T)
8146 char *
8147 elfcore_write_pstatus (bfd *abfd,
8148 char *buf,
8149 int *bufsiz,
8150 long pid,
8151 int cursig ATTRIBUTE_UNUSED,
8152 const void *gregs ATTRIBUTE_UNUSED)
8153 {
8154 pstatus_t pstat;
8155 char *note_name = "CORE";
8156
8157 memset (&pstat, 0, sizeof (pstat));
8158 pstat.pr_pid = pid & 0xffff;
8159 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
8160 NT_PSTATUS, &pstat, sizeof (pstat));
8161 return buf;
8162 }
8163 #endif /* HAVE_PSTATUS_T */
8164
8165 char *
8166 elfcore_write_prfpreg (bfd *abfd,
8167 char *buf,
8168 int *bufsiz,
8169 const void *fpregs,
8170 int size)
8171 {
8172 char *note_name = "CORE";
8173 return elfcore_write_note (abfd, buf, bufsiz,
8174 note_name, NT_FPREGSET, fpregs, size);
8175 }
8176
8177 char *
8178 elfcore_write_prxfpreg (bfd *abfd,
8179 char *buf,
8180 int *bufsiz,
8181 const void *xfpregs,
8182 int size)
8183 {
8184 char *note_name = "LINUX";
8185 return elfcore_write_note (abfd, buf, bufsiz,
8186 note_name, NT_PRXFPREG, xfpregs, size);
8187 }
8188
8189 static bfd_boolean
8190 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
8191 {
8192 char *buf;
8193 char *p;
8194
8195 if (size <= 0)
8196 return TRUE;
8197
8198 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
8199 return FALSE;
8200
8201 buf = bfd_malloc (size);
8202 if (buf == NULL)
8203 return FALSE;
8204
8205 if (bfd_bread (buf, size, abfd) != size)
8206 {
8207 error:
8208 free (buf);
8209 return FALSE;
8210 }
8211
8212 p = buf;
8213 while (p < buf + size)
8214 {
8215 /* FIXME: bad alignment assumption. */
8216 Elf_External_Note *xnp = (Elf_External_Note *) p;
8217 Elf_Internal_Note in;
8218
8219 in.type = H_GET_32 (abfd, xnp->type);
8220
8221 in.namesz = H_GET_32 (abfd, xnp->namesz);
8222 in.namedata = xnp->name;
8223
8224 in.descsz = H_GET_32 (abfd, xnp->descsz);
8225 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
8226 in.descpos = offset + (in.descdata - buf);
8227
8228 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
8229 {
8230 if (! elfcore_grok_netbsd_note (abfd, &in))
8231 goto error;
8232 }
8233 else if (strncmp (in.namedata, "QNX", 3) == 0)
8234 {
8235 if (! elfcore_grok_nto_note (abfd, &in))
8236 goto error;
8237 }
8238 else
8239 {
8240 if (! elfcore_grok_note (abfd, &in))
8241 goto error;
8242 }
8243
8244 p = in.descdata + BFD_ALIGN (in.descsz, 4);
8245 }
8246
8247 free (buf);
8248 return TRUE;
8249 }
8250 \f
8251 /* Providing external access to the ELF program header table. */
8252
8253 /* Return an upper bound on the number of bytes required to store a
8254 copy of ABFD's program header table entries. Return -1 if an error
8255 occurs; bfd_get_error will return an appropriate code. */
8256
8257 long
8258 bfd_get_elf_phdr_upper_bound (bfd *abfd)
8259 {
8260 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8261 {
8262 bfd_set_error (bfd_error_wrong_format);
8263 return -1;
8264 }
8265
8266 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
8267 }
8268
8269 /* Copy ABFD's program header table entries to *PHDRS. The entries
8270 will be stored as an array of Elf_Internal_Phdr structures, as
8271 defined in include/elf/internal.h. To find out how large the
8272 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
8273
8274 Return the number of program header table entries read, or -1 if an
8275 error occurs; bfd_get_error will return an appropriate code. */
8276
8277 int
8278 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
8279 {
8280 int num_phdrs;
8281
8282 if (abfd->xvec->flavour != bfd_target_elf_flavour)
8283 {
8284 bfd_set_error (bfd_error_wrong_format);
8285 return -1;
8286 }
8287
8288 num_phdrs = elf_elfheader (abfd)->e_phnum;
8289 memcpy (phdrs, elf_tdata (abfd)->phdr,
8290 num_phdrs * sizeof (Elf_Internal_Phdr));
8291
8292 return num_phdrs;
8293 }
8294
8295 void
8296 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
8297 {
8298 #ifdef BFD64
8299 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8300
8301 i_ehdrp = elf_elfheader (abfd);
8302 if (i_ehdrp == NULL)
8303 sprintf_vma (buf, value);
8304 else
8305 {
8306 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8307 {
8308 #if BFD_HOST_64BIT_LONG
8309 sprintf (buf, "%016lx", value);
8310 #else
8311 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
8312 _bfd_int64_low (value));
8313 #endif
8314 }
8315 else
8316 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
8317 }
8318 #else
8319 sprintf_vma (buf, value);
8320 #endif
8321 }
8322
8323 void
8324 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
8325 {
8326 #ifdef BFD64
8327 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
8328
8329 i_ehdrp = elf_elfheader (abfd);
8330 if (i_ehdrp == NULL)
8331 fprintf_vma ((FILE *) stream, value);
8332 else
8333 {
8334 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
8335 {
8336 #if BFD_HOST_64BIT_LONG
8337 fprintf ((FILE *) stream, "%016lx", value);
8338 #else
8339 fprintf ((FILE *) stream, "%08lx%08lx",
8340 _bfd_int64_high (value), _bfd_int64_low (value));
8341 #endif
8342 }
8343 else
8344 fprintf ((FILE *) stream, "%08lx",
8345 (unsigned long) (value & 0xffffffff));
8346 }
8347 #else
8348 fprintf_vma ((FILE *) stream, value);
8349 #endif
8350 }
8351
8352 enum elf_reloc_type_class
8353 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
8354 {
8355 return reloc_class_normal;
8356 }
8357
8358 /* For RELA architectures, return the relocation value for a
8359 relocation against a local symbol. */
8360
8361 bfd_vma
8362 _bfd_elf_rela_local_sym (bfd *abfd,
8363 Elf_Internal_Sym *sym,
8364 asection **psec,
8365 Elf_Internal_Rela *rel)
8366 {
8367 asection *sec = *psec;
8368 bfd_vma relocation;
8369
8370 relocation = (sec->output_section->vma
8371 + sec->output_offset
8372 + sym->st_value);
8373 if ((sec->flags & SEC_MERGE)
8374 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
8375 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
8376 {
8377 rel->r_addend =
8378 _bfd_merged_section_offset (abfd, psec,
8379 elf_section_data (sec)->sec_info,
8380 sym->st_value + rel->r_addend);
8381 if (sec != *psec)
8382 {
8383 /* If we have changed the section, and our original section is
8384 marked with SEC_EXCLUDE, it means that the original
8385 SEC_MERGE section has been completely subsumed in some
8386 other SEC_MERGE section. In this case, we need to leave
8387 some info around for --emit-relocs. */
8388 if ((sec->flags & SEC_EXCLUDE) != 0)
8389 sec->kept_section = *psec;
8390 sec = *psec;
8391 }
8392 rel->r_addend -= relocation;
8393 rel->r_addend += sec->output_section->vma + sec->output_offset;
8394 }
8395 return relocation;
8396 }
8397
8398 bfd_vma
8399 _bfd_elf_rel_local_sym (bfd *abfd,
8400 Elf_Internal_Sym *sym,
8401 asection **psec,
8402 bfd_vma addend)
8403 {
8404 asection *sec = *psec;
8405
8406 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
8407 return sym->st_value + addend;
8408
8409 return _bfd_merged_section_offset (abfd, psec,
8410 elf_section_data (sec)->sec_info,
8411 sym->st_value + addend);
8412 }
8413
8414 bfd_vma
8415 _bfd_elf_section_offset (bfd *abfd,
8416 struct bfd_link_info *info,
8417 asection *sec,
8418 bfd_vma offset)
8419 {
8420 switch (sec->sec_info_type)
8421 {
8422 case ELF_INFO_TYPE_STABS:
8423 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
8424 offset);
8425 case ELF_INFO_TYPE_EH_FRAME:
8426 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
8427 default:
8428 return offset;
8429 }
8430 }
8431 \f
8432 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
8433 reconstruct an ELF file by reading the segments out of remote memory
8434 based on the ELF file header at EHDR_VMA and the ELF program headers it
8435 points to. If not null, *LOADBASEP is filled in with the difference
8436 between the VMAs from which the segments were read, and the VMAs the
8437 file headers (and hence BFD's idea of each section's VMA) put them at.
8438
8439 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
8440 remote memory at target address VMA into the local buffer at MYADDR; it
8441 should return zero on success or an `errno' code on failure. TEMPL must
8442 be a BFD for an ELF target with the word size and byte order found in
8443 the remote memory. */
8444
8445 bfd *
8446 bfd_elf_bfd_from_remote_memory
8447 (bfd *templ,
8448 bfd_vma ehdr_vma,
8449 bfd_vma *loadbasep,
8450 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
8451 {
8452 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
8453 (templ, ehdr_vma, loadbasep, target_read_memory);
8454 }
8455 \f
8456 long
8457 _bfd_elf_get_synthetic_symtab (bfd *abfd,
8458 long symcount ATTRIBUTE_UNUSED,
8459 asymbol **syms ATTRIBUTE_UNUSED,
8460 long dynsymcount,
8461 asymbol **dynsyms,
8462 asymbol **ret)
8463 {
8464 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8465 asection *relplt;
8466 asymbol *s;
8467 const char *relplt_name;
8468 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8469 arelent *p;
8470 long count, i, n;
8471 size_t size;
8472 Elf_Internal_Shdr *hdr;
8473 char *names;
8474 asection *plt;
8475
8476 *ret = NULL;
8477
8478 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
8479 return 0;
8480
8481 if (dynsymcount <= 0)
8482 return 0;
8483
8484 if (!bed->plt_sym_val)
8485 return 0;
8486
8487 relplt_name = bed->relplt_name;
8488 if (relplt_name == NULL)
8489 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
8490 relplt = bfd_get_section_by_name (abfd, relplt_name);
8491 if (relplt == NULL)
8492 return 0;
8493
8494 hdr = &elf_section_data (relplt)->this_hdr;
8495 if (hdr->sh_link != elf_dynsymtab (abfd)
8496 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
8497 return 0;
8498
8499 plt = bfd_get_section_by_name (abfd, ".plt");
8500 if (plt == NULL)
8501 return 0;
8502
8503 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8504 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
8505 return -1;
8506
8507 count = relplt->size / hdr->sh_entsize;
8508 size = count * sizeof (asymbol);
8509 p = relplt->relocation;
8510 for (i = 0; i < count; i++, s++, p++)
8511 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
8512
8513 s = *ret = bfd_malloc (size);
8514 if (s == NULL)
8515 return -1;
8516
8517 names = (char *) (s + count);
8518 p = relplt->relocation;
8519 n = 0;
8520 for (i = 0; i < count; i++, s++, p++)
8521 {
8522 size_t len;
8523 bfd_vma addr;
8524
8525 addr = bed->plt_sym_val (i, plt, p);
8526 if (addr == (bfd_vma) -1)
8527 continue;
8528
8529 *s = **p->sym_ptr_ptr;
8530 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
8531 we are defining a symbol, ensure one of them is set. */
8532 if ((s->flags & BSF_LOCAL) == 0)
8533 s->flags |= BSF_GLOBAL;
8534 s->section = plt;
8535 s->value = addr - plt->vma;
8536 s->name = names;
8537 len = strlen ((*p->sym_ptr_ptr)->name);
8538 memcpy (names, (*p->sym_ptr_ptr)->name, len);
8539 names += len;
8540 memcpy (names, "@plt", sizeof ("@plt"));
8541 names += sizeof ("@plt");
8542 ++n;
8543 }
8544
8545 return n;
8546 }
8547
8548 /* Sort symbol by binding and section. We want to put definitions
8549 sorted by section at the beginning. */
8550
8551 static int
8552 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8553 {
8554 const Elf_Internal_Sym *s1;
8555 const Elf_Internal_Sym *s2;
8556 int shndx;
8557
8558 /* Make sure that undefined symbols are at the end. */
8559 s1 = (const Elf_Internal_Sym *) arg1;
8560 if (s1->st_shndx == SHN_UNDEF)
8561 return 1;
8562 s2 = (const Elf_Internal_Sym *) arg2;
8563 if (s2->st_shndx == SHN_UNDEF)
8564 return -1;
8565
8566 /* Sorted by section index. */
8567 shndx = s1->st_shndx - s2->st_shndx;
8568 if (shndx != 0)
8569 return shndx;
8570
8571 /* Sorted by binding. */
8572 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
8573 }
8574
8575 struct elf_symbol
8576 {
8577 Elf_Internal_Sym *sym;
8578 const char *name;
8579 };
8580
8581 static int
8582 elf_sym_name_compare (const void *arg1, const void *arg2)
8583 {
8584 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8585 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8586 return strcmp (s1->name, s2->name);
8587 }
8588
8589 /* Check if 2 sections define the same set of local and global
8590 symbols. */
8591
8592 bfd_boolean
8593 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
8594 {
8595 bfd *bfd1, *bfd2;
8596 const struct elf_backend_data *bed1, *bed2;
8597 Elf_Internal_Shdr *hdr1, *hdr2;
8598 bfd_size_type symcount1, symcount2;
8599 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8600 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
8601 Elf_Internal_Sym *isymend;
8602 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
8603 bfd_size_type count1, count2, i;
8604 int shndx1, shndx2;
8605 bfd_boolean result;
8606
8607 bfd1 = sec1->owner;
8608 bfd2 = sec2->owner;
8609
8610 /* If both are .gnu.linkonce sections, they have to have the same
8611 section name. */
8612 if (strncmp (sec1->name, ".gnu.linkonce",
8613 sizeof ".gnu.linkonce" - 1) == 0
8614 && strncmp (sec2->name, ".gnu.linkonce",
8615 sizeof ".gnu.linkonce" - 1) == 0)
8616 return strcmp (sec1->name + sizeof ".gnu.linkonce",
8617 sec2->name + sizeof ".gnu.linkonce") == 0;
8618
8619 /* Both sections have to be in ELF. */
8620 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8621 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8622 return FALSE;
8623
8624 if (elf_section_type (sec1) != elf_section_type (sec2))
8625 return FALSE;
8626
8627 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8628 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8629 {
8630 /* If both are members of section groups, they have to have the
8631 same group name. */
8632 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8633 return FALSE;
8634 }
8635
8636 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8637 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8638 if (shndx1 == -1 || shndx2 == -1)
8639 return FALSE;
8640
8641 bed1 = get_elf_backend_data (bfd1);
8642 bed2 = get_elf_backend_data (bfd2);
8643 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8644 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8645 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8646 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8647
8648 if (symcount1 == 0 || symcount2 == 0)
8649 return FALSE;
8650
8651 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8652 NULL, NULL, NULL);
8653 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8654 NULL, NULL, NULL);
8655
8656 result = FALSE;
8657 if (isymbuf1 == NULL || isymbuf2 == NULL)
8658 goto done;
8659
8660 /* Sort symbols by binding and section. Global definitions are at
8661 the beginning. */
8662 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8663 elf_sort_elf_symbol);
8664 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8665 elf_sort_elf_symbol);
8666
8667 /* Count definitions in the section. */
8668 count1 = 0;
8669 for (isym = isymbuf1, isymend = isym + symcount1;
8670 isym < isymend; isym++)
8671 {
8672 if (isym->st_shndx == (unsigned int) shndx1)
8673 {
8674 if (count1 == 0)
8675 isymstart1 = isym;
8676 count1++;
8677 }
8678
8679 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8680 break;
8681 }
8682
8683 count2 = 0;
8684 for (isym = isymbuf2, isymend = isym + symcount2;
8685 isym < isymend; isym++)
8686 {
8687 if (isym->st_shndx == (unsigned int) shndx2)
8688 {
8689 if (count2 == 0)
8690 isymstart2 = isym;
8691 count2++;
8692 }
8693
8694 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8695 break;
8696 }
8697
8698 if (count1 == 0 || count2 == 0 || count1 != count2)
8699 goto done;
8700
8701 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8702 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8703
8704 if (symtable1 == NULL || symtable2 == NULL)
8705 goto done;
8706
8707 symp = symtable1;
8708 for (isym = isymstart1, isymend = isym + count1;
8709 isym < isymend; isym++)
8710 {
8711 symp->sym = isym;
8712 symp->name = bfd_elf_string_from_elf_section (bfd1,
8713 hdr1->sh_link,
8714 isym->st_name);
8715 symp++;
8716 }
8717
8718 symp = symtable2;
8719 for (isym = isymstart2, isymend = isym + count1;
8720 isym < isymend; isym++)
8721 {
8722 symp->sym = isym;
8723 symp->name = bfd_elf_string_from_elf_section (bfd2,
8724 hdr2->sh_link,
8725 isym->st_name);
8726 symp++;
8727 }
8728
8729 /* Sort symbol by name. */
8730 qsort (symtable1, count1, sizeof (struct elf_symbol),
8731 elf_sym_name_compare);
8732 qsort (symtable2, count1, sizeof (struct elf_symbol),
8733 elf_sym_name_compare);
8734
8735 for (i = 0; i < count1; i++)
8736 /* Two symbols must have the same binding, type and name. */
8737 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8738 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8739 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8740 goto done;
8741
8742 result = TRUE;
8743
8744 done:
8745 if (symtable1)
8746 free (symtable1);
8747 if (symtable2)
8748 free (symtable2);
8749 if (isymbuf1)
8750 free (isymbuf1);
8751 if (isymbuf2)
8752 free (isymbuf2);
8753
8754 return result;
8755 }
8756
8757 /* It is only used by x86-64 so far. */
8758 asection _bfd_elf_large_com_section
8759 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
8760 SEC_IS_COMMON, NULL, NULL, "LARGE_COMMON",
8761 0);
8762
8763 /* Return TRUE if 2 section types are compatible. */
8764
8765 bfd_boolean
8766 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8767 bfd *bbfd, const asection *bsec)
8768 {
8769 if (asec == NULL
8770 || bsec == NULL
8771 || abfd->xvec->flavour != bfd_target_elf_flavour
8772 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8773 return TRUE;
8774
8775 return elf_section_type (asec) == elf_section_type (bsec);
8776 }