]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf.c
*** empty log message ***
[thirdparty/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* SECTION
22
23 ELF backends
24
25 BFD support for ELF formats is being worked on.
26 Currently, the best supported back ends are for sparc and i386
27 (running svr4 or Solaris 2).
28
29 Documentation of the internals of the support code still needs
30 to be written. The code is changing quickly enough that we
31 haven't bothered yet. */
32
33 /* For sparc64-cross-sparc32. */
34 #define _SYSCALL32
35 #include "bfd.h"
36 #include "sysdep.h"
37 #include "bfdlink.h"
38 #include "libbfd.h"
39 #define ARCH_SIZE 0
40 #include "elf-bfd.h"
41 #include "libiberty.h"
42
43 static INLINE struct elf_segment_map *make_mapping
44 PARAMS ((bfd *, asection **, unsigned int, unsigned int, boolean));
45 static boolean map_sections_to_segments PARAMS ((bfd *));
46 static int elf_sort_sections PARAMS ((const PTR, const PTR));
47 static boolean assign_file_positions_for_segments PARAMS ((bfd *));
48 static boolean assign_file_positions_except_relocs PARAMS ((bfd *));
49 static boolean prep_headers PARAMS ((bfd *));
50 static boolean swap_out_syms PARAMS ((bfd *, struct bfd_strtab_hash **, int));
51 static boolean copy_private_bfd_data PARAMS ((bfd *, bfd *));
52 static char *elf_read PARAMS ((bfd *, file_ptr, bfd_size_type));
53 static const char *group_signature PARAMS ((bfd *, Elf_Internal_Shdr *));
54 static boolean setup_group PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
55 static void merge_sections_remove_hook PARAMS ((bfd *, asection *));
56 static void elf_fake_sections PARAMS ((bfd *, asection *, PTR));
57 static boolean assign_section_numbers PARAMS ((bfd *));
58 static INLINE int sym_is_global PARAMS ((bfd *, asymbol *));
59 static boolean elf_map_symbols PARAMS ((bfd *));
60 static bfd_size_type get_program_header_size PARAMS ((bfd *));
61 static boolean elfcore_read_notes PARAMS ((bfd *, file_ptr, bfd_size_type));
62 static boolean elf_find_function PARAMS ((bfd *, asection *, asymbol **,
63 bfd_vma, const char **,
64 const char **));
65 static int elfcore_make_pid PARAMS ((bfd *));
66 static boolean elfcore_maybe_make_sect PARAMS ((bfd *, char *, asection *));
67 static boolean elfcore_make_note_pseudosection PARAMS ((bfd *, char *,
68 Elf_Internal_Note *));
69 static boolean elfcore_grok_prfpreg PARAMS ((bfd *, Elf_Internal_Note *));
70 static boolean elfcore_grok_prxfpreg PARAMS ((bfd *, Elf_Internal_Note *));
71 static boolean elfcore_grok_note PARAMS ((bfd *, Elf_Internal_Note *));
72
73 static boolean elfcore_netbsd_get_lwpid PARAMS ((Elf_Internal_Note *, int *));
74 static boolean elfcore_grok_netbsd_procinfo PARAMS ((bfd *,
75 Elf_Internal_Note *));
76 static boolean elfcore_grok_netbsd_note PARAMS ((bfd *, Elf_Internal_Note *));
77
78 /* Swap version information in and out. The version information is
79 currently size independent. If that ever changes, this code will
80 need to move into elfcode.h. */
81
82 /* Swap in a Verdef structure. */
83
84 void
85 _bfd_elf_swap_verdef_in (abfd, src, dst)
86 bfd *abfd;
87 const Elf_External_Verdef *src;
88 Elf_Internal_Verdef *dst;
89 {
90 dst->vd_version = H_GET_16 (abfd, src->vd_version);
91 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
92 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
93 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
94 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
95 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
96 dst->vd_next = H_GET_32 (abfd, src->vd_next);
97 }
98
99 /* Swap out a Verdef structure. */
100
101 void
102 _bfd_elf_swap_verdef_out (abfd, src, dst)
103 bfd *abfd;
104 const Elf_Internal_Verdef *src;
105 Elf_External_Verdef *dst;
106 {
107 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
108 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
109 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
110 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
111 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
112 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
113 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
114 }
115
116 /* Swap in a Verdaux structure. */
117
118 void
119 _bfd_elf_swap_verdaux_in (abfd, src, dst)
120 bfd *abfd;
121 const Elf_External_Verdaux *src;
122 Elf_Internal_Verdaux *dst;
123 {
124 dst->vda_name = H_GET_32 (abfd, src->vda_name);
125 dst->vda_next = H_GET_32 (abfd, src->vda_next);
126 }
127
128 /* Swap out a Verdaux structure. */
129
130 void
131 _bfd_elf_swap_verdaux_out (abfd, src, dst)
132 bfd *abfd;
133 const Elf_Internal_Verdaux *src;
134 Elf_External_Verdaux *dst;
135 {
136 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
137 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
138 }
139
140 /* Swap in a Verneed structure. */
141
142 void
143 _bfd_elf_swap_verneed_in (abfd, src, dst)
144 bfd *abfd;
145 const Elf_External_Verneed *src;
146 Elf_Internal_Verneed *dst;
147 {
148 dst->vn_version = H_GET_16 (abfd, src->vn_version);
149 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
150 dst->vn_file = H_GET_32 (abfd, src->vn_file);
151 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
152 dst->vn_next = H_GET_32 (abfd, src->vn_next);
153 }
154
155 /* Swap out a Verneed structure. */
156
157 void
158 _bfd_elf_swap_verneed_out (abfd, src, dst)
159 bfd *abfd;
160 const Elf_Internal_Verneed *src;
161 Elf_External_Verneed *dst;
162 {
163 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
164 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
165 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
166 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
167 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
168 }
169
170 /* Swap in a Vernaux structure. */
171
172 void
173 _bfd_elf_swap_vernaux_in (abfd, src, dst)
174 bfd *abfd;
175 const Elf_External_Vernaux *src;
176 Elf_Internal_Vernaux *dst;
177 {
178 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
179 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
180 dst->vna_other = H_GET_16 (abfd, src->vna_other);
181 dst->vna_name = H_GET_32 (abfd, src->vna_name);
182 dst->vna_next = H_GET_32 (abfd, src->vna_next);
183 }
184
185 /* Swap out a Vernaux structure. */
186
187 void
188 _bfd_elf_swap_vernaux_out (abfd, src, dst)
189 bfd *abfd;
190 const Elf_Internal_Vernaux *src;
191 Elf_External_Vernaux *dst;
192 {
193 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
194 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
195 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
196 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
197 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
198 }
199
200 /* Swap in a Versym structure. */
201
202 void
203 _bfd_elf_swap_versym_in (abfd, src, dst)
204 bfd *abfd;
205 const Elf_External_Versym *src;
206 Elf_Internal_Versym *dst;
207 {
208 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
209 }
210
211 /* Swap out a Versym structure. */
212
213 void
214 _bfd_elf_swap_versym_out (abfd, src, dst)
215 bfd *abfd;
216 const Elf_Internal_Versym *src;
217 Elf_External_Versym *dst;
218 {
219 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
220 }
221
222 /* Standard ELF hash function. Do not change this function; you will
223 cause invalid hash tables to be generated. */
224
225 unsigned long
226 bfd_elf_hash (namearg)
227 const char *namearg;
228 {
229 const unsigned char *name = (const unsigned char *) namearg;
230 unsigned long h = 0;
231 unsigned long g;
232 int ch;
233
234 while ((ch = *name++) != '\0')
235 {
236 h = (h << 4) + ch;
237 if ((g = (h & 0xf0000000)) != 0)
238 {
239 h ^= g >> 24;
240 /* The ELF ABI says `h &= ~g', but this is equivalent in
241 this case and on some machines one insn instead of two. */
242 h ^= g;
243 }
244 }
245 return h;
246 }
247
248 /* Read a specified number of bytes at a specified offset in an ELF
249 file, into a newly allocated buffer, and return a pointer to the
250 buffer. */
251
252 static char *
253 elf_read (abfd, offset, size)
254 bfd *abfd;
255 file_ptr offset;
256 bfd_size_type size;
257 {
258 char *buf;
259
260 if ((buf = bfd_alloc (abfd, size)) == NULL)
261 return NULL;
262 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
263 return NULL;
264 if (bfd_bread ((PTR) buf, size, abfd) != size)
265 {
266 if (bfd_get_error () != bfd_error_system_call)
267 bfd_set_error (bfd_error_file_truncated);
268 return NULL;
269 }
270 return buf;
271 }
272
273 boolean
274 bfd_elf_mkobject (abfd)
275 bfd *abfd;
276 {
277 /* This just does initialization. */
278 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
279 bfd_size_type amt = sizeof (struct elf_obj_tdata);
280 elf_tdata (abfd) = (struct elf_obj_tdata *) bfd_zalloc (abfd, amt);
281 if (elf_tdata (abfd) == 0)
282 return false;
283 /* Since everything is done at close time, do we need any
284 initialization? */
285
286 return true;
287 }
288
289 boolean
290 bfd_elf_mkcorefile (abfd)
291 bfd *abfd;
292 {
293 /* I think this can be done just like an object file. */
294 return bfd_elf_mkobject (abfd);
295 }
296
297 char *
298 bfd_elf_get_str_section (abfd, shindex)
299 bfd *abfd;
300 unsigned int shindex;
301 {
302 Elf_Internal_Shdr **i_shdrp;
303 char *shstrtab = NULL;
304 file_ptr offset;
305 bfd_size_type shstrtabsize;
306
307 i_shdrp = elf_elfsections (abfd);
308 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
309 return 0;
310
311 shstrtab = (char *) i_shdrp[shindex]->contents;
312 if (shstrtab == NULL)
313 {
314 /* No cached one, attempt to read, and cache what we read. */
315 offset = i_shdrp[shindex]->sh_offset;
316 shstrtabsize = i_shdrp[shindex]->sh_size;
317 shstrtab = elf_read (abfd, offset, shstrtabsize);
318 i_shdrp[shindex]->contents = (PTR) shstrtab;
319 }
320 return shstrtab;
321 }
322
323 char *
324 bfd_elf_string_from_elf_section (abfd, shindex, strindex)
325 bfd *abfd;
326 unsigned int shindex;
327 unsigned int strindex;
328 {
329 Elf_Internal_Shdr *hdr;
330
331 if (strindex == 0)
332 return "";
333
334 hdr = elf_elfsections (abfd)[shindex];
335
336 if (hdr->contents == NULL
337 && bfd_elf_get_str_section (abfd, shindex) == NULL)
338 return NULL;
339
340 if (strindex >= hdr->sh_size)
341 {
342 (*_bfd_error_handler)
343 (_("%s: invalid string offset %u >= %lu for section `%s'"),
344 bfd_archive_filename (abfd), strindex, (unsigned long) hdr->sh_size,
345 ((shindex == elf_elfheader(abfd)->e_shstrndx
346 && strindex == hdr->sh_name)
347 ? ".shstrtab"
348 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
349 return "";
350 }
351
352 return ((char *) hdr->contents) + strindex;
353 }
354
355 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
356 sections. The first element is the flags, the rest are section
357 pointers. */
358
359 typedef union elf_internal_group {
360 Elf_Internal_Shdr *shdr;
361 unsigned int flags;
362 } Elf_Internal_Group;
363
364 /* Return the name of the group signature symbol. Why isn't the
365 signature just a string? */
366
367 static const char *
368 group_signature (abfd, ghdr)
369 bfd *abfd;
370 Elf_Internal_Shdr *ghdr;
371 {
372 struct elf_backend_data *bed;
373 file_ptr pos;
374 bfd_size_type amt;
375 Elf_Internal_Shdr *hdr;
376 Elf_Internal_Shdr *shndx_hdr;
377 unsigned char esym[sizeof (Elf64_External_Sym)];
378 Elf_External_Sym_Shndx eshndx;
379 Elf_Internal_Sym isym;
380 unsigned int iname;
381 unsigned int shindex;
382
383 /* First we need to ensure the symbol table is available. */
384 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
385 return NULL;
386
387 /* Go read the symbol. */
388 hdr = &elf_tdata (abfd)->symtab_hdr;
389 bed = get_elf_backend_data (abfd);
390 amt = bed->s->sizeof_sym;
391 pos = hdr->sh_offset + ghdr->sh_info * amt;
392 if (bfd_seek (abfd, pos, SEEK_SET) != 0
393 || bfd_bread (esym, amt, abfd) != amt)
394 return NULL;
395
396 /* And possibly the symbol section index extension. */
397 shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
398 if (elf_elfsections (abfd) != NULL
399 && elf_elfsections (abfd)[shndx_hdr->sh_link] == hdr)
400 {
401 amt = sizeof (Elf_External_Sym_Shndx);
402 pos = shndx_hdr->sh_offset + ghdr->sh_info * amt;
403 if (bfd_seek (abfd, pos, SEEK_SET) != 0
404 || bfd_bread ((PTR) &eshndx, amt, abfd) != amt)
405 return NULL;
406 }
407
408 /* Convert to internal format. */
409 (*bed->s->swap_symbol_in) (abfd, (const PTR *) &esym, (const PTR *) &eshndx,
410 &isym);
411
412 /* Look up the symbol name. */
413 iname = isym.st_name;
414 shindex = hdr->sh_link;
415 if (iname == 0 && ELF_ST_TYPE (isym.st_info) == STT_SECTION)
416 {
417 iname = elf_elfsections (abfd)[isym.st_shndx]->sh_name;
418 shindex = elf_elfheader (abfd)->e_shstrndx;
419 }
420
421 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
422 }
423
424 /* Set next_in_group list pointer, and group name for NEWSECT. */
425
426 static boolean
427 setup_group (abfd, hdr, newsect)
428 bfd *abfd;
429 Elf_Internal_Shdr *hdr;
430 asection *newsect;
431 {
432 unsigned int num_group = elf_tdata (abfd)->num_group;
433
434 /* If num_group is zero, read in all SHT_GROUP sections. The count
435 is set to -1 if there are no SHT_GROUP sections. */
436 if (num_group == 0)
437 {
438 unsigned int i, shnum;
439
440 /* First count the number of groups. If we have a SHT_GROUP
441 section with just a flag word (ie. sh_size is 4), ignore it. */
442 shnum = elf_numsections (abfd);
443 num_group = 0;
444 for (i = 0; i < shnum; i++)
445 {
446 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
447 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
448 num_group += 1;
449 }
450
451 if (num_group == 0)
452 num_group = (unsigned) -1;
453 elf_tdata (abfd)->num_group = num_group;
454
455 if (num_group > 0)
456 {
457 /* We keep a list of elf section headers for group sections,
458 so we can find them quickly. */
459 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
460 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
461 if (elf_tdata (abfd)->group_sect_ptr == NULL)
462 return false;
463
464 num_group = 0;
465 for (i = 0; i < shnum; i++)
466 {
467 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
468 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
469 {
470 unsigned char *src;
471 Elf_Internal_Group *dest;
472
473 /* Add to list of sections. */
474 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
475 num_group += 1;
476
477 /* Read the raw contents. */
478 BFD_ASSERT (sizeof (*dest) >= 4);
479 amt = shdr->sh_size * sizeof (*dest) / 4;
480 shdr->contents = bfd_alloc (abfd, amt);
481 if (shdr->contents == NULL
482 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
483 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
484 != shdr->sh_size))
485 return false;
486
487 /* Translate raw contents, a flag word followed by an
488 array of elf section indices all in target byte order,
489 to the flag word followed by an array of elf section
490 pointers. */
491 src = shdr->contents + shdr->sh_size;
492 dest = (Elf_Internal_Group *) (shdr->contents + amt);
493 while (1)
494 {
495 unsigned int idx;
496
497 src -= 4;
498 --dest;
499 idx = H_GET_32 (abfd, src);
500 if (src == shdr->contents)
501 {
502 dest->flags = idx;
503 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
504 shdr->bfd_section->flags
505 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
506 break;
507 }
508 if (idx >= shnum)
509 {
510 ((*_bfd_error_handler)
511 (_("%s: invalid SHT_GROUP entry"),
512 bfd_archive_filename (abfd)));
513 idx = 0;
514 }
515 dest->shdr = elf_elfsections (abfd)[idx];
516 }
517 }
518 }
519 }
520 }
521
522 if (num_group != (unsigned) -1)
523 {
524 unsigned int i;
525
526 for (i = 0; i < num_group; i++)
527 {
528 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
529 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
530 unsigned int n_elt = shdr->sh_size / 4;
531
532 /* Look through this group's sections to see if current
533 section is a member. */
534 while (--n_elt != 0)
535 if ((++idx)->shdr == hdr)
536 {
537 asection *s = NULL;
538
539 /* We are a member of this group. Go looking through
540 other members to see if any others are linked via
541 next_in_group. */
542 idx = (Elf_Internal_Group *) shdr->contents;
543 n_elt = shdr->sh_size / 4;
544 while (--n_elt != 0)
545 if ((s = (++idx)->shdr->bfd_section) != NULL
546 && elf_next_in_group (s) != NULL)
547 break;
548 if (n_elt != 0)
549 {
550 /* Snarf the group name from other member, and
551 insert current section in circular list. */
552 elf_group_name (newsect) = elf_group_name (s);
553 elf_next_in_group (newsect) = elf_next_in_group (s);
554 elf_next_in_group (s) = newsect;
555 }
556 else
557 {
558 const char *gname;
559
560 gname = group_signature (abfd, shdr);
561 if (gname == NULL)
562 return false;
563 elf_group_name (newsect) = gname;
564
565 /* Start a circular list with one element. */
566 elf_next_in_group (newsect) = newsect;
567 }
568
569 /* If the group section has been created, point to the
570 new member. */
571 if (shdr->bfd_section != NULL)
572 elf_next_in_group (shdr->bfd_section) = newsect;
573
574 i = num_group - 1;
575 break;
576 }
577 }
578 }
579
580 if (elf_group_name (newsect) == NULL)
581 {
582 (*_bfd_error_handler) (_("%s: no group info for section %s"),
583 bfd_archive_filename (abfd), newsect->name);
584 }
585 return true;
586 }
587
588 boolean
589 bfd_elf_discard_group (abfd, group)
590 bfd *abfd ATTRIBUTE_UNUSED;
591 asection *group;
592 {
593 asection *first = elf_next_in_group (group);
594 asection *s = first;
595
596 while (s != NULL)
597 {
598 s->output_section = bfd_abs_section_ptr;
599 s = elf_next_in_group (s);
600 /* These lists are circular. */
601 if (s == first)
602 break;
603 }
604 return true;
605 }
606
607 /* Make a BFD section from an ELF section. We store a pointer to the
608 BFD section in the bfd_section field of the header. */
609
610 boolean
611 _bfd_elf_make_section_from_shdr (abfd, hdr, name)
612 bfd *abfd;
613 Elf_Internal_Shdr *hdr;
614 const char *name;
615 {
616 asection *newsect;
617 flagword flags;
618 struct elf_backend_data *bed;
619
620 if (hdr->bfd_section != NULL)
621 {
622 BFD_ASSERT (strcmp (name,
623 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
624 return true;
625 }
626
627 newsect = bfd_make_section_anyway (abfd, name);
628 if (newsect == NULL)
629 return false;
630
631 newsect->filepos = hdr->sh_offset;
632
633 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
634 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
635 || ! bfd_set_section_alignment (abfd, newsect,
636 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
637 return false;
638
639 flags = SEC_NO_FLAGS;
640 if (hdr->sh_type != SHT_NOBITS)
641 flags |= SEC_HAS_CONTENTS;
642 if (hdr->sh_type == SHT_GROUP)
643 flags |= SEC_GROUP | SEC_EXCLUDE;
644 if ((hdr->sh_flags & SHF_ALLOC) != 0)
645 {
646 flags |= SEC_ALLOC;
647 if (hdr->sh_type != SHT_NOBITS)
648 flags |= SEC_LOAD;
649 }
650 if ((hdr->sh_flags & SHF_WRITE) == 0)
651 flags |= SEC_READONLY;
652 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
653 flags |= SEC_CODE;
654 else if ((flags & SEC_LOAD) != 0)
655 flags |= SEC_DATA;
656 if ((hdr->sh_flags & SHF_MERGE) != 0)
657 {
658 flags |= SEC_MERGE;
659 newsect->entsize = hdr->sh_entsize;
660 if ((hdr->sh_flags & SHF_STRINGS) != 0)
661 flags |= SEC_STRINGS;
662 }
663 if (hdr->sh_flags & SHF_GROUP)
664 if (!setup_group (abfd, hdr, newsect))
665 return false;
666 if ((hdr->sh_flags & SHF_TLS) != 0)
667 flags |= SEC_THREAD_LOCAL;
668
669 /* The debugging sections appear to be recognized only by name, not
670 any sort of flag. */
671 {
672 static const char *debug_sec_names [] =
673 {
674 ".debug",
675 ".gnu.linkonce.wi.",
676 ".line",
677 ".stab"
678 };
679 int i;
680
681 for (i = ARRAY_SIZE (debug_sec_names); i--;)
682 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
683 break;
684
685 if (i >= 0)
686 flags |= SEC_DEBUGGING;
687 }
688
689 /* As a GNU extension, if the name begins with .gnu.linkonce, we
690 only link a single copy of the section. This is used to support
691 g++. g++ will emit each template expansion in its own section.
692 The symbols will be defined as weak, so that multiple definitions
693 are permitted. The GNU linker extension is to actually discard
694 all but one of the sections. */
695 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
696 && elf_next_in_group (newsect) == NULL)
697 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
698
699 bed = get_elf_backend_data (abfd);
700 if (bed->elf_backend_section_flags)
701 if (! bed->elf_backend_section_flags (&flags, hdr))
702 return false;
703
704 if (! bfd_set_section_flags (abfd, newsect, flags))
705 return false;
706
707 if ((flags & SEC_ALLOC) != 0)
708 {
709 Elf_Internal_Phdr *phdr;
710 unsigned int i;
711
712 /* Look through the phdrs to see if we need to adjust the lma.
713 If all the p_paddr fields are zero, we ignore them, since
714 some ELF linkers produce such output. */
715 phdr = elf_tdata (abfd)->phdr;
716 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
717 {
718 if (phdr->p_paddr != 0)
719 break;
720 }
721 if (i < elf_elfheader (abfd)->e_phnum)
722 {
723 phdr = elf_tdata (abfd)->phdr;
724 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
725 {
726 /* This section is part of this segment if its file
727 offset plus size lies within the segment's memory
728 span and, if the section is loaded, the extent of the
729 loaded data lies within the extent of the segment.
730
731 Note - we used to check the p_paddr field as well, and
732 refuse to set the LMA if it was 0. This is wrong
733 though, as a perfectly valid initialised segment can
734 have a p_paddr of zero. Some architectures, eg ARM,
735 place special significance on the address 0 and
736 executables need to be able to have a segment which
737 covers this address. */
738 if (phdr->p_type == PT_LOAD
739 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
740 && (hdr->sh_offset + hdr->sh_size
741 <= phdr->p_offset + phdr->p_memsz)
742 && ((flags & SEC_LOAD) == 0
743 || (hdr->sh_offset + hdr->sh_size
744 <= phdr->p_offset + phdr->p_filesz)))
745 {
746 if ((flags & SEC_LOAD) == 0)
747 newsect->lma = (phdr->p_paddr
748 + hdr->sh_addr - phdr->p_vaddr);
749 else
750 /* We used to use the same adjustment for SEC_LOAD
751 sections, but that doesn't work if the segment
752 is packed with code from multiple VMAs.
753 Instead we calculate the section LMA based on
754 the segment LMA. It is assumed that the
755 segment will contain sections with contiguous
756 LMAs, even if the VMAs are not. */
757 newsect->lma = (phdr->p_paddr
758 + hdr->sh_offset - phdr->p_offset);
759
760 /* With contiguous segments, we can't tell from file
761 offsets whether a section with zero size should
762 be placed at the end of one segment or the
763 beginning of the next. Decide based on vaddr. */
764 if (hdr->sh_addr >= phdr->p_vaddr
765 && (hdr->sh_addr + hdr->sh_size
766 <= phdr->p_vaddr + phdr->p_memsz))
767 break;
768 }
769 }
770 }
771 }
772
773 hdr->bfd_section = newsect;
774 elf_section_data (newsect)->this_hdr = *hdr;
775
776 return true;
777 }
778
779 /*
780 INTERNAL_FUNCTION
781 bfd_elf_find_section
782
783 SYNOPSIS
784 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
785
786 DESCRIPTION
787 Helper functions for GDB to locate the string tables.
788 Since BFD hides string tables from callers, GDB needs to use an
789 internal hook to find them. Sun's .stabstr, in particular,
790 isn't even pointed to by the .stab section, so ordinary
791 mechanisms wouldn't work to find it, even if we had some.
792 */
793
794 struct elf_internal_shdr *
795 bfd_elf_find_section (abfd, name)
796 bfd *abfd;
797 char *name;
798 {
799 Elf_Internal_Shdr **i_shdrp;
800 char *shstrtab;
801 unsigned int max;
802 unsigned int i;
803
804 i_shdrp = elf_elfsections (abfd);
805 if (i_shdrp != NULL)
806 {
807 shstrtab = bfd_elf_get_str_section (abfd,
808 elf_elfheader (abfd)->e_shstrndx);
809 if (shstrtab != NULL)
810 {
811 max = elf_numsections (abfd);
812 for (i = 1; i < max; i++)
813 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
814 return i_shdrp[i];
815 }
816 }
817 return 0;
818 }
819
820 const char *const bfd_elf_section_type_names[] = {
821 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
822 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
823 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
824 };
825
826 /* ELF relocs are against symbols. If we are producing relocateable
827 output, and the reloc is against an external symbol, and nothing
828 has given us any additional addend, the resulting reloc will also
829 be against the same symbol. In such a case, we don't want to
830 change anything about the way the reloc is handled, since it will
831 all be done at final link time. Rather than put special case code
832 into bfd_perform_relocation, all the reloc types use this howto
833 function. It just short circuits the reloc if producing
834 relocateable output against an external symbol. */
835
836 bfd_reloc_status_type
837 bfd_elf_generic_reloc (abfd,
838 reloc_entry,
839 symbol,
840 data,
841 input_section,
842 output_bfd,
843 error_message)
844 bfd *abfd ATTRIBUTE_UNUSED;
845 arelent *reloc_entry;
846 asymbol *symbol;
847 PTR data ATTRIBUTE_UNUSED;
848 asection *input_section;
849 bfd *output_bfd;
850 char **error_message ATTRIBUTE_UNUSED;
851 {
852 if (output_bfd != (bfd *) NULL
853 && (symbol->flags & BSF_SECTION_SYM) == 0
854 && (! reloc_entry->howto->partial_inplace
855 || reloc_entry->addend == 0))
856 {
857 reloc_entry->address += input_section->output_offset;
858 return bfd_reloc_ok;
859 }
860
861 return bfd_reloc_continue;
862 }
863 \f
864 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
865
866 static void
867 merge_sections_remove_hook (abfd, sec)
868 bfd *abfd ATTRIBUTE_UNUSED;
869 asection *sec;
870 {
871 struct bfd_elf_section_data *sec_data;
872
873 sec_data = elf_section_data (sec);
874 BFD_ASSERT (sec_data->sec_info_type == ELF_INFO_TYPE_MERGE);
875 sec_data->sec_info_type = ELF_INFO_TYPE_NONE;
876 }
877
878 /* Finish SHF_MERGE section merging. */
879
880 boolean
881 _bfd_elf_merge_sections (abfd, info)
882 bfd *abfd;
883 struct bfd_link_info *info;
884 {
885 if (!is_elf_hash_table (info))
886 return false;
887 if (elf_hash_table (info)->merge_info)
888 _bfd_merge_sections (abfd, elf_hash_table (info)->merge_info,
889 merge_sections_remove_hook);
890 return true;
891 }
892
893 void
894 _bfd_elf_link_just_syms (sec, info)
895 asection *sec;
896 struct bfd_link_info *info;
897 {
898 sec->output_section = bfd_abs_section_ptr;
899 sec->output_offset = sec->vma;
900 if (!is_elf_hash_table (info))
901 return;
902
903 elf_section_data (sec)->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
904 }
905 \f
906 /* Copy the program header and other data from one object module to
907 another. */
908
909 boolean
910 _bfd_elf_copy_private_bfd_data (ibfd, obfd)
911 bfd *ibfd;
912 bfd *obfd;
913 {
914 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
915 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
916 return true;
917
918 BFD_ASSERT (!elf_flags_init (obfd)
919 || (elf_elfheader (obfd)->e_flags
920 == elf_elfheader (ibfd)->e_flags));
921
922 elf_gp (obfd) = elf_gp (ibfd);
923 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
924 elf_flags_init (obfd) = true;
925 return true;
926 }
927
928 /* Print out the program headers. */
929
930 boolean
931 _bfd_elf_print_private_bfd_data (abfd, farg)
932 bfd *abfd;
933 PTR farg;
934 {
935 FILE *f = (FILE *) farg;
936 Elf_Internal_Phdr *p;
937 asection *s;
938 bfd_byte *dynbuf = NULL;
939
940 p = elf_tdata (abfd)->phdr;
941 if (p != NULL)
942 {
943 unsigned int i, c;
944
945 fprintf (f, _("\nProgram Header:\n"));
946 c = elf_elfheader (abfd)->e_phnum;
947 for (i = 0; i < c; i++, p++)
948 {
949 const char *pt;
950 char buf[20];
951
952 switch (p->p_type)
953 {
954 case PT_NULL: pt = "NULL"; break;
955 case PT_LOAD: pt = "LOAD"; break;
956 case PT_DYNAMIC: pt = "DYNAMIC"; break;
957 case PT_INTERP: pt = "INTERP"; break;
958 case PT_NOTE: pt = "NOTE"; break;
959 case PT_SHLIB: pt = "SHLIB"; break;
960 case PT_PHDR: pt = "PHDR"; break;
961 case PT_TLS: pt = "TLS"; break;
962 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
963 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
964 }
965 fprintf (f, "%8s off 0x", pt);
966 bfd_fprintf_vma (abfd, f, p->p_offset);
967 fprintf (f, " vaddr 0x");
968 bfd_fprintf_vma (abfd, f, p->p_vaddr);
969 fprintf (f, " paddr 0x");
970 bfd_fprintf_vma (abfd, f, p->p_paddr);
971 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
972 fprintf (f, " filesz 0x");
973 bfd_fprintf_vma (abfd, f, p->p_filesz);
974 fprintf (f, " memsz 0x");
975 bfd_fprintf_vma (abfd, f, p->p_memsz);
976 fprintf (f, " flags %c%c%c",
977 (p->p_flags & PF_R) != 0 ? 'r' : '-',
978 (p->p_flags & PF_W) != 0 ? 'w' : '-',
979 (p->p_flags & PF_X) != 0 ? 'x' : '-');
980 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
981 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
982 fprintf (f, "\n");
983 }
984 }
985
986 s = bfd_get_section_by_name (abfd, ".dynamic");
987 if (s != NULL)
988 {
989 int elfsec;
990 unsigned long shlink;
991 bfd_byte *extdyn, *extdynend;
992 size_t extdynsize;
993 void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *));
994
995 fprintf (f, _("\nDynamic Section:\n"));
996
997 dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size);
998 if (dynbuf == NULL)
999 goto error_return;
1000 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0,
1001 s->_raw_size))
1002 goto error_return;
1003
1004 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1005 if (elfsec == -1)
1006 goto error_return;
1007 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1008
1009 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1010 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1011
1012 extdyn = dynbuf;
1013 extdynend = extdyn + s->_raw_size;
1014 for (; extdyn < extdynend; extdyn += extdynsize)
1015 {
1016 Elf_Internal_Dyn dyn;
1017 const char *name;
1018 char ab[20];
1019 boolean stringp;
1020
1021 (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn);
1022
1023 if (dyn.d_tag == DT_NULL)
1024 break;
1025
1026 stringp = false;
1027 switch (dyn.d_tag)
1028 {
1029 default:
1030 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1031 name = ab;
1032 break;
1033
1034 case DT_NEEDED: name = "NEEDED"; stringp = true; break;
1035 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1036 case DT_PLTGOT: name = "PLTGOT"; break;
1037 case DT_HASH: name = "HASH"; break;
1038 case DT_STRTAB: name = "STRTAB"; break;
1039 case DT_SYMTAB: name = "SYMTAB"; break;
1040 case DT_RELA: name = "RELA"; break;
1041 case DT_RELASZ: name = "RELASZ"; break;
1042 case DT_RELAENT: name = "RELAENT"; break;
1043 case DT_STRSZ: name = "STRSZ"; break;
1044 case DT_SYMENT: name = "SYMENT"; break;
1045 case DT_INIT: name = "INIT"; break;
1046 case DT_FINI: name = "FINI"; break;
1047 case DT_SONAME: name = "SONAME"; stringp = true; break;
1048 case DT_RPATH: name = "RPATH"; stringp = true; break;
1049 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1050 case DT_REL: name = "REL"; break;
1051 case DT_RELSZ: name = "RELSZ"; break;
1052 case DT_RELENT: name = "RELENT"; break;
1053 case DT_PLTREL: name = "PLTREL"; break;
1054 case DT_DEBUG: name = "DEBUG"; break;
1055 case DT_TEXTREL: name = "TEXTREL"; break;
1056 case DT_JMPREL: name = "JMPREL"; break;
1057 case DT_BIND_NOW: name = "BIND_NOW"; break;
1058 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1059 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1060 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1061 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1062 case DT_RUNPATH: name = "RUNPATH"; stringp = true; break;
1063 case DT_FLAGS: name = "FLAGS"; break;
1064 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1065 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1066 case DT_CHECKSUM: name = "CHECKSUM"; break;
1067 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1068 case DT_MOVEENT: name = "MOVEENT"; break;
1069 case DT_MOVESZ: name = "MOVESZ"; break;
1070 case DT_FEATURE: name = "FEATURE"; break;
1071 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1072 case DT_SYMINSZ: name = "SYMINSZ"; break;
1073 case DT_SYMINENT: name = "SYMINENT"; break;
1074 case DT_CONFIG: name = "CONFIG"; stringp = true; break;
1075 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = true; break;
1076 case DT_AUDIT: name = "AUDIT"; stringp = true; break;
1077 case DT_PLTPAD: name = "PLTPAD"; break;
1078 case DT_MOVETAB: name = "MOVETAB"; break;
1079 case DT_SYMINFO: name = "SYMINFO"; break;
1080 case DT_RELACOUNT: name = "RELACOUNT"; break;
1081 case DT_RELCOUNT: name = "RELCOUNT"; break;
1082 case DT_FLAGS_1: name = "FLAGS_1"; break;
1083 case DT_VERSYM: name = "VERSYM"; break;
1084 case DT_VERDEF: name = "VERDEF"; break;
1085 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1086 case DT_VERNEED: name = "VERNEED"; break;
1087 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1088 case DT_AUXILIARY: name = "AUXILIARY"; stringp = true; break;
1089 case DT_USED: name = "USED"; break;
1090 case DT_FILTER: name = "FILTER"; stringp = true; break;
1091 }
1092
1093 fprintf (f, " %-11s ", name);
1094 if (! stringp)
1095 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1096 else
1097 {
1098 const char *string;
1099 unsigned int tagv = dyn.d_un.d_val;
1100
1101 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1102 if (string == NULL)
1103 goto error_return;
1104 fprintf (f, "%s", string);
1105 }
1106 fprintf (f, "\n");
1107 }
1108
1109 free (dynbuf);
1110 dynbuf = NULL;
1111 }
1112
1113 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1114 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1115 {
1116 if (! _bfd_elf_slurp_version_tables (abfd))
1117 return false;
1118 }
1119
1120 if (elf_dynverdef (abfd) != 0)
1121 {
1122 Elf_Internal_Verdef *t;
1123
1124 fprintf (f, _("\nVersion definitions:\n"));
1125 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1126 {
1127 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1128 t->vd_flags, t->vd_hash, t->vd_nodename);
1129 if (t->vd_auxptr->vda_nextptr != NULL)
1130 {
1131 Elf_Internal_Verdaux *a;
1132
1133 fprintf (f, "\t");
1134 for (a = t->vd_auxptr->vda_nextptr;
1135 a != NULL;
1136 a = a->vda_nextptr)
1137 fprintf (f, "%s ", a->vda_nodename);
1138 fprintf (f, "\n");
1139 }
1140 }
1141 }
1142
1143 if (elf_dynverref (abfd) != 0)
1144 {
1145 Elf_Internal_Verneed *t;
1146
1147 fprintf (f, _("\nVersion References:\n"));
1148 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1149 {
1150 Elf_Internal_Vernaux *a;
1151
1152 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1153 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1154 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1155 a->vna_flags, a->vna_other, a->vna_nodename);
1156 }
1157 }
1158
1159 return true;
1160
1161 error_return:
1162 if (dynbuf != NULL)
1163 free (dynbuf);
1164 return false;
1165 }
1166
1167 /* Display ELF-specific fields of a symbol. */
1168
1169 void
1170 bfd_elf_print_symbol (abfd, filep, symbol, how)
1171 bfd *abfd;
1172 PTR filep;
1173 asymbol *symbol;
1174 bfd_print_symbol_type how;
1175 {
1176 FILE *file = (FILE *) filep;
1177 switch (how)
1178 {
1179 case bfd_print_symbol_name:
1180 fprintf (file, "%s", symbol->name);
1181 break;
1182 case bfd_print_symbol_more:
1183 fprintf (file, "elf ");
1184 bfd_fprintf_vma (abfd, file, symbol->value);
1185 fprintf (file, " %lx", (long) symbol->flags);
1186 break;
1187 case bfd_print_symbol_all:
1188 {
1189 const char *section_name;
1190 const char *name = NULL;
1191 struct elf_backend_data *bed;
1192 unsigned char st_other;
1193 bfd_vma val;
1194
1195 section_name = symbol->section ? symbol->section->name : "(*none*)";
1196
1197 bed = get_elf_backend_data (abfd);
1198 if (bed->elf_backend_print_symbol_all)
1199 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1200
1201 if (name == NULL)
1202 {
1203 name = symbol->name;
1204 bfd_print_symbol_vandf (abfd, (PTR) file, symbol);
1205 }
1206
1207 fprintf (file, " %s\t", section_name);
1208 /* Print the "other" value for a symbol. For common symbols,
1209 we've already printed the size; now print the alignment.
1210 For other symbols, we have no specified alignment, and
1211 we've printed the address; now print the size. */
1212 if (bfd_is_com_section (symbol->section))
1213 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1214 else
1215 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1216 bfd_fprintf_vma (abfd, file, val);
1217
1218 /* If we have version information, print it. */
1219 if (elf_tdata (abfd)->dynversym_section != 0
1220 && (elf_tdata (abfd)->dynverdef_section != 0
1221 || elf_tdata (abfd)->dynverref_section != 0))
1222 {
1223 unsigned int vernum;
1224 const char *version_string;
1225
1226 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1227
1228 if (vernum == 0)
1229 version_string = "";
1230 else if (vernum == 1)
1231 version_string = "Base";
1232 else if (vernum <= elf_tdata (abfd)->cverdefs)
1233 version_string =
1234 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1235 else
1236 {
1237 Elf_Internal_Verneed *t;
1238
1239 version_string = "";
1240 for (t = elf_tdata (abfd)->verref;
1241 t != NULL;
1242 t = t->vn_nextref)
1243 {
1244 Elf_Internal_Vernaux *a;
1245
1246 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1247 {
1248 if (a->vna_other == vernum)
1249 {
1250 version_string = a->vna_nodename;
1251 break;
1252 }
1253 }
1254 }
1255 }
1256
1257 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1258 fprintf (file, " %-11s", version_string);
1259 else
1260 {
1261 int i;
1262
1263 fprintf (file, " (%s)", version_string);
1264 for (i = 10 - strlen (version_string); i > 0; --i)
1265 putc (' ', file);
1266 }
1267 }
1268
1269 /* If the st_other field is not zero, print it. */
1270 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1271
1272 switch (st_other)
1273 {
1274 case 0: break;
1275 case STV_INTERNAL: fprintf (file, " .internal"); break;
1276 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1277 case STV_PROTECTED: fprintf (file, " .protected"); break;
1278 default:
1279 /* Some other non-defined flags are also present, so print
1280 everything hex. */
1281 fprintf (file, " 0x%02x", (unsigned int) st_other);
1282 }
1283
1284 fprintf (file, " %s", name);
1285 }
1286 break;
1287 }
1288 }
1289 \f
1290 /* Create an entry in an ELF linker hash table. */
1291
1292 struct bfd_hash_entry *
1293 _bfd_elf_link_hash_newfunc (entry, table, string)
1294 struct bfd_hash_entry *entry;
1295 struct bfd_hash_table *table;
1296 const char *string;
1297 {
1298 /* Allocate the structure if it has not already been allocated by a
1299 subclass. */
1300 if (entry == NULL)
1301 {
1302 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1303 if (entry == NULL)
1304 return entry;
1305 }
1306
1307 /* Call the allocation method of the superclass. */
1308 entry = _bfd_link_hash_newfunc (entry, table, string);
1309 if (entry != NULL)
1310 {
1311 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1312 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1313
1314 /* Set local fields. */
1315 ret->indx = -1;
1316 ret->size = 0;
1317 ret->dynindx = -1;
1318 ret->dynstr_index = 0;
1319 ret->weakdef = NULL;
1320 ret->got.refcount = htab->init_refcount;
1321 ret->plt.refcount = htab->init_refcount;
1322 ret->linker_section_pointer = NULL;
1323 ret->verinfo.verdef = NULL;
1324 ret->vtable_entries_used = NULL;
1325 ret->vtable_entries_size = 0;
1326 ret->vtable_parent = NULL;
1327 ret->type = STT_NOTYPE;
1328 ret->other = 0;
1329 /* Assume that we have been called by a non-ELF symbol reader.
1330 This flag is then reset by the code which reads an ELF input
1331 file. This ensures that a symbol created by a non-ELF symbol
1332 reader will have the flag set correctly. */
1333 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
1334 }
1335
1336 return entry;
1337 }
1338
1339 /* Copy data from an indirect symbol to its direct symbol, hiding the
1340 old indirect symbol. Also used for copying flags to a weakdef. */
1341
1342 void
1343 _bfd_elf_link_hash_copy_indirect (dir, ind)
1344 struct elf_link_hash_entry *dir, *ind;
1345 {
1346 bfd_signed_vma tmp;
1347
1348 /* Copy down any references that we may have already seen to the
1349 symbol which just became indirect. */
1350
1351 dir->elf_link_hash_flags |=
1352 (ind->elf_link_hash_flags
1353 & (ELF_LINK_HASH_REF_DYNAMIC
1354 | ELF_LINK_HASH_REF_REGULAR
1355 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1356 | ELF_LINK_NON_GOT_REF));
1357
1358 if (ind->root.type != bfd_link_hash_indirect)
1359 return;
1360
1361 /* Copy over the global and procedure linkage table refcount entries.
1362 These may have been already set up by a check_relocs routine. */
1363 tmp = dir->got.refcount;
1364 if (tmp <= 0)
1365 {
1366 dir->got.refcount = ind->got.refcount;
1367 ind->got.refcount = tmp;
1368 }
1369 else
1370 BFD_ASSERT (ind->got.refcount <= 0);
1371
1372 tmp = dir->plt.refcount;
1373 if (tmp <= 0)
1374 {
1375 dir->plt.refcount = ind->plt.refcount;
1376 ind->plt.refcount = tmp;
1377 }
1378 else
1379 BFD_ASSERT (ind->plt.refcount <= 0);
1380
1381 if (dir->dynindx == -1)
1382 {
1383 dir->dynindx = ind->dynindx;
1384 dir->dynstr_index = ind->dynstr_index;
1385 ind->dynindx = -1;
1386 ind->dynstr_index = 0;
1387 }
1388 else
1389 BFD_ASSERT (ind->dynindx == -1);
1390 }
1391
1392 void
1393 _bfd_elf_link_hash_hide_symbol (info, h, force_local)
1394 struct bfd_link_info *info;
1395 struct elf_link_hash_entry *h;
1396 boolean force_local;
1397 {
1398 h->plt.offset = (bfd_vma) -1;
1399 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1400 if (force_local)
1401 {
1402 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1403 if (h->dynindx != -1)
1404 {
1405 h->dynindx = -1;
1406 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1407 h->dynstr_index);
1408 }
1409 }
1410 }
1411
1412 /* Initialize an ELF linker hash table. */
1413
1414 boolean
1415 _bfd_elf_link_hash_table_init (table, abfd, newfunc)
1416 struct elf_link_hash_table *table;
1417 bfd *abfd;
1418 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
1419 struct bfd_hash_table *,
1420 const char *));
1421 {
1422 boolean ret;
1423
1424 table->dynamic_sections_created = false;
1425 table->dynobj = NULL;
1426 table->init_refcount = get_elf_backend_data (abfd)->can_refcount - 1;
1427 /* The first dynamic symbol is a dummy. */
1428 table->dynsymcount = 1;
1429 table->dynstr = NULL;
1430 table->bucketcount = 0;
1431 table->needed = NULL;
1432 table->runpath = NULL;
1433 table->loaded = NULL;
1434 table->hgot = NULL;
1435 table->stab_info = NULL;
1436 table->merge_info = NULL;
1437 table->dynlocal = NULL;
1438 ret = _bfd_link_hash_table_init (& table->root, abfd, newfunc);
1439 table->root.type = bfd_link_elf_hash_table;
1440
1441 return ret;
1442 }
1443
1444 /* Create an ELF linker hash table. */
1445
1446 struct bfd_link_hash_table *
1447 _bfd_elf_link_hash_table_create (abfd)
1448 bfd *abfd;
1449 {
1450 struct elf_link_hash_table *ret;
1451 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1452
1453 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
1454 if (ret == (struct elf_link_hash_table *) NULL)
1455 return NULL;
1456
1457 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1458 {
1459 free (ret);
1460 return NULL;
1461 }
1462
1463 return &ret->root;
1464 }
1465
1466 /* This is a hook for the ELF emulation code in the generic linker to
1467 tell the backend linker what file name to use for the DT_NEEDED
1468 entry for a dynamic object. The generic linker passes name as an
1469 empty string to indicate that no DT_NEEDED entry should be made. */
1470
1471 void
1472 bfd_elf_set_dt_needed_name (abfd, name)
1473 bfd *abfd;
1474 const char *name;
1475 {
1476 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1477 && bfd_get_format (abfd) == bfd_object)
1478 elf_dt_name (abfd) = name;
1479 }
1480
1481 void
1482 bfd_elf_set_dt_needed_soname (abfd, name)
1483 bfd *abfd;
1484 const char *name;
1485 {
1486 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1487 && bfd_get_format (abfd) == bfd_object)
1488 elf_dt_soname (abfd) = name;
1489 }
1490
1491 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1492 the linker ELF emulation code. */
1493
1494 struct bfd_link_needed_list *
1495 bfd_elf_get_needed_list (abfd, info)
1496 bfd *abfd ATTRIBUTE_UNUSED;
1497 struct bfd_link_info *info;
1498 {
1499 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1500 return NULL;
1501 return elf_hash_table (info)->needed;
1502 }
1503
1504 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1505 hook for the linker ELF emulation code. */
1506
1507 struct bfd_link_needed_list *
1508 bfd_elf_get_runpath_list (abfd, info)
1509 bfd *abfd ATTRIBUTE_UNUSED;
1510 struct bfd_link_info *info;
1511 {
1512 if (info->hash->creator->flavour != bfd_target_elf_flavour)
1513 return NULL;
1514 return elf_hash_table (info)->runpath;
1515 }
1516
1517 /* Get the name actually used for a dynamic object for a link. This
1518 is the SONAME entry if there is one. Otherwise, it is the string
1519 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1520
1521 const char *
1522 bfd_elf_get_dt_soname (abfd)
1523 bfd *abfd;
1524 {
1525 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1526 && bfd_get_format (abfd) == bfd_object)
1527 return elf_dt_name (abfd);
1528 return NULL;
1529 }
1530
1531 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1532 the ELF linker emulation code. */
1533
1534 boolean
1535 bfd_elf_get_bfd_needed_list (abfd, pneeded)
1536 bfd *abfd;
1537 struct bfd_link_needed_list **pneeded;
1538 {
1539 asection *s;
1540 bfd_byte *dynbuf = NULL;
1541 int elfsec;
1542 unsigned long shlink;
1543 bfd_byte *extdyn, *extdynend;
1544 size_t extdynsize;
1545 void (*swap_dyn_in) PARAMS ((bfd *, const PTR, Elf_Internal_Dyn *));
1546
1547 *pneeded = NULL;
1548
1549 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1550 || bfd_get_format (abfd) != bfd_object)
1551 return true;
1552
1553 s = bfd_get_section_by_name (abfd, ".dynamic");
1554 if (s == NULL || s->_raw_size == 0)
1555 return true;
1556
1557 dynbuf = (bfd_byte *) bfd_malloc (s->_raw_size);
1558 if (dynbuf == NULL)
1559 goto error_return;
1560
1561 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf, (file_ptr) 0,
1562 s->_raw_size))
1563 goto error_return;
1564
1565 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1566 if (elfsec == -1)
1567 goto error_return;
1568
1569 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1570
1571 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1572 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1573
1574 extdyn = dynbuf;
1575 extdynend = extdyn + s->_raw_size;
1576 for (; extdyn < extdynend; extdyn += extdynsize)
1577 {
1578 Elf_Internal_Dyn dyn;
1579
1580 (*swap_dyn_in) (abfd, (PTR) extdyn, &dyn);
1581
1582 if (dyn.d_tag == DT_NULL)
1583 break;
1584
1585 if (dyn.d_tag == DT_NEEDED)
1586 {
1587 const char *string;
1588 struct bfd_link_needed_list *l;
1589 unsigned int tagv = dyn.d_un.d_val;
1590 bfd_size_type amt;
1591
1592 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1593 if (string == NULL)
1594 goto error_return;
1595
1596 amt = sizeof *l;
1597 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
1598 if (l == NULL)
1599 goto error_return;
1600
1601 l->by = abfd;
1602 l->name = string;
1603 l->next = *pneeded;
1604 *pneeded = l;
1605 }
1606 }
1607
1608 free (dynbuf);
1609
1610 return true;
1611
1612 error_return:
1613 if (dynbuf != NULL)
1614 free (dynbuf);
1615 return false;
1616 }
1617 \f
1618 /* Allocate an ELF string table--force the first byte to be zero. */
1619
1620 struct bfd_strtab_hash *
1621 _bfd_elf_stringtab_init ()
1622 {
1623 struct bfd_strtab_hash *ret;
1624
1625 ret = _bfd_stringtab_init ();
1626 if (ret != NULL)
1627 {
1628 bfd_size_type loc;
1629
1630 loc = _bfd_stringtab_add (ret, "", true, false);
1631 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1632 if (loc == (bfd_size_type) -1)
1633 {
1634 _bfd_stringtab_free (ret);
1635 ret = NULL;
1636 }
1637 }
1638 return ret;
1639 }
1640 \f
1641 /* ELF .o/exec file reading */
1642
1643 /* Create a new bfd section from an ELF section header. */
1644
1645 boolean
1646 bfd_section_from_shdr (abfd, shindex)
1647 bfd *abfd;
1648 unsigned int shindex;
1649 {
1650 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1651 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1652 struct elf_backend_data *bed = get_elf_backend_data (abfd);
1653 const char *name;
1654
1655 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1656
1657 switch (hdr->sh_type)
1658 {
1659 case SHT_NULL:
1660 /* Inactive section. Throw it away. */
1661 return true;
1662
1663 case SHT_PROGBITS: /* Normal section with contents. */
1664 case SHT_NOBITS: /* .bss section. */
1665 case SHT_HASH: /* .hash section. */
1666 case SHT_NOTE: /* .note section. */
1667 case SHT_INIT_ARRAY: /* .init_array section. */
1668 case SHT_FINI_ARRAY: /* .fini_array section. */
1669 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1670 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1671
1672 case SHT_DYNAMIC: /* Dynamic linking information. */
1673 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1674 return false;
1675 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1676 {
1677 Elf_Internal_Shdr *dynsymhdr;
1678
1679 /* The shared libraries distributed with hpux11 have a bogus
1680 sh_link field for the ".dynamic" section. Find the
1681 string table for the ".dynsym" section instead. */
1682 if (elf_dynsymtab (abfd) != 0)
1683 {
1684 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1685 hdr->sh_link = dynsymhdr->sh_link;
1686 }
1687 else
1688 {
1689 unsigned int i, num_sec;
1690
1691 num_sec = elf_numsections (abfd);
1692 for (i = 1; i < num_sec; i++)
1693 {
1694 dynsymhdr = elf_elfsections (abfd)[i];
1695 if (dynsymhdr->sh_type == SHT_DYNSYM)
1696 {
1697 hdr->sh_link = dynsymhdr->sh_link;
1698 break;
1699 }
1700 }
1701 }
1702 }
1703 break;
1704
1705 case SHT_SYMTAB: /* A symbol table */
1706 if (elf_onesymtab (abfd) == shindex)
1707 return true;
1708
1709 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1710 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1711 elf_onesymtab (abfd) = shindex;
1712 elf_tdata (abfd)->symtab_hdr = *hdr;
1713 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1714 abfd->flags |= HAS_SYMS;
1715
1716 /* Sometimes a shared object will map in the symbol table. If
1717 SHF_ALLOC is set, and this is a shared object, then we also
1718 treat this section as a BFD section. We can not base the
1719 decision purely on SHF_ALLOC, because that flag is sometimes
1720 set in a relocateable object file, which would confuse the
1721 linker. */
1722 if ((hdr->sh_flags & SHF_ALLOC) != 0
1723 && (abfd->flags & DYNAMIC) != 0
1724 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1725 return false;
1726
1727 return true;
1728
1729 case SHT_DYNSYM: /* A dynamic symbol table */
1730 if (elf_dynsymtab (abfd) == shindex)
1731 return true;
1732
1733 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1734 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1735 elf_dynsymtab (abfd) = shindex;
1736 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1737 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1738 abfd->flags |= HAS_SYMS;
1739
1740 /* Besides being a symbol table, we also treat this as a regular
1741 section, so that objcopy can handle it. */
1742 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1743
1744 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1745 if (elf_symtab_shndx (abfd) == shindex)
1746 return true;
1747
1748 /* Get the associated symbol table. */
1749 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1750 || hdr->sh_link != elf_onesymtab (abfd))
1751 return false;
1752
1753 elf_symtab_shndx (abfd) = shindex;
1754 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1755 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1756 return true;
1757
1758 case SHT_STRTAB: /* A string table */
1759 if (hdr->bfd_section != NULL)
1760 return true;
1761 if (ehdr->e_shstrndx == shindex)
1762 {
1763 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1764 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1765 return true;
1766 }
1767 {
1768 unsigned int i, num_sec;
1769
1770 num_sec = elf_numsections (abfd);
1771 for (i = 1; i < num_sec; i++)
1772 {
1773 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1774 if (hdr2->sh_link == shindex)
1775 {
1776 if (! bfd_section_from_shdr (abfd, i))
1777 return false;
1778 if (elf_onesymtab (abfd) == i)
1779 {
1780 elf_tdata (abfd)->strtab_hdr = *hdr;
1781 elf_elfsections (abfd)[shindex] =
1782 &elf_tdata (abfd)->strtab_hdr;
1783 return true;
1784 }
1785 if (elf_dynsymtab (abfd) == i)
1786 {
1787 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1788 elf_elfsections (abfd)[shindex] = hdr =
1789 &elf_tdata (abfd)->dynstrtab_hdr;
1790 /* We also treat this as a regular section, so
1791 that objcopy can handle it. */
1792 break;
1793 }
1794 #if 0 /* Not handling other string tables specially right now. */
1795 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1796 /* We have a strtab for some random other section. */
1797 newsect = (asection *) hdr2->bfd_section;
1798 if (!newsect)
1799 break;
1800 hdr->bfd_section = newsect;
1801 hdr2 = &elf_section_data (newsect)->str_hdr;
1802 *hdr2 = *hdr;
1803 elf_elfsections (abfd)[shindex] = hdr2;
1804 #endif
1805 }
1806 }
1807 }
1808
1809 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1810
1811 case SHT_REL:
1812 case SHT_RELA:
1813 /* *These* do a lot of work -- but build no sections! */
1814 {
1815 asection *target_sect;
1816 Elf_Internal_Shdr *hdr2;
1817 unsigned int num_sec = elf_numsections (abfd);
1818
1819 /* Check for a bogus link to avoid crashing. */
1820 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1821 || hdr->sh_link >= num_sec)
1822 {
1823 ((*_bfd_error_handler)
1824 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1825 bfd_archive_filename (abfd), hdr->sh_link, name, shindex));
1826 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1827 }
1828
1829 /* For some incomprehensible reason Oracle distributes
1830 libraries for Solaris in which some of the objects have
1831 bogus sh_link fields. It would be nice if we could just
1832 reject them, but, unfortunately, some people need to use
1833 them. We scan through the section headers; if we find only
1834 one suitable symbol table, we clobber the sh_link to point
1835 to it. I hope this doesn't break anything. */
1836 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1837 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1838 {
1839 unsigned int scan;
1840 int found;
1841
1842 found = 0;
1843 for (scan = 1; scan < num_sec; scan++)
1844 {
1845 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1846 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1847 {
1848 if (found != 0)
1849 {
1850 found = 0;
1851 break;
1852 }
1853 found = scan;
1854 }
1855 }
1856 if (found != 0)
1857 hdr->sh_link = found;
1858 }
1859
1860 /* Get the symbol table. */
1861 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1862 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1863 return false;
1864
1865 /* If this reloc section does not use the main symbol table we
1866 don't treat it as a reloc section. BFD can't adequately
1867 represent such a section, so at least for now, we don't
1868 try. We just present it as a normal section. We also
1869 can't use it as a reloc section if it points to the null
1870 section. */
1871 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1872 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1873
1874 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1875 return false;
1876 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1877 if (target_sect == NULL)
1878 return false;
1879
1880 if ((target_sect->flags & SEC_RELOC) == 0
1881 || target_sect->reloc_count == 0)
1882 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1883 else
1884 {
1885 bfd_size_type amt;
1886 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1887 amt = sizeof (*hdr2);
1888 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1889 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1890 }
1891 *hdr2 = *hdr;
1892 elf_elfsections (abfd)[shindex] = hdr2;
1893 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1894 target_sect->flags |= SEC_RELOC;
1895 target_sect->relocation = NULL;
1896 target_sect->rel_filepos = hdr->sh_offset;
1897 /* In the section to which the relocations apply, mark whether
1898 its relocations are of the REL or RELA variety. */
1899 if (hdr->sh_size != 0)
1900 elf_section_data (target_sect)->use_rela_p
1901 = (hdr->sh_type == SHT_RELA);
1902 abfd->flags |= HAS_RELOC;
1903 return true;
1904 }
1905 break;
1906
1907 case SHT_GNU_verdef:
1908 elf_dynverdef (abfd) = shindex;
1909 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1910 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1911 break;
1912
1913 case SHT_GNU_versym:
1914 elf_dynversym (abfd) = shindex;
1915 elf_tdata (abfd)->dynversym_hdr = *hdr;
1916 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1917 break;
1918
1919 case SHT_GNU_verneed:
1920 elf_dynverref (abfd) = shindex;
1921 elf_tdata (abfd)->dynverref_hdr = *hdr;
1922 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1923 break;
1924
1925 case SHT_SHLIB:
1926 return true;
1927
1928 case SHT_GROUP:
1929 /* We need a BFD section for objcopy and relocatable linking,
1930 and it's handy to have the signature available as the section
1931 name. */
1932 name = group_signature (abfd, hdr);
1933 if (name == NULL)
1934 return false;
1935 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
1936 return false;
1937 if (hdr->contents != NULL)
1938 {
1939 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1940 unsigned int n_elt = hdr->sh_size / 4;
1941 asection *s;
1942
1943 if (idx->flags & GRP_COMDAT)
1944 hdr->bfd_section->flags
1945 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1946
1947 while (--n_elt != 0)
1948 if ((s = (++idx)->shdr->bfd_section) != NULL
1949 && elf_next_in_group (s) != NULL)
1950 {
1951 elf_next_in_group (hdr->bfd_section) = s;
1952 break;
1953 }
1954 }
1955 break;
1956
1957 default:
1958 /* Check for any processor-specific section types. */
1959 {
1960 if (bed->elf_backend_section_from_shdr)
1961 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
1962 }
1963 break;
1964 }
1965
1966 return true;
1967 }
1968
1969 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1970 Return SEC for sections that have no elf section, and NULL on error. */
1971
1972 asection *
1973 bfd_section_from_r_symndx (abfd, cache, sec, r_symndx)
1974 bfd *abfd;
1975 struct sym_sec_cache *cache;
1976 asection *sec;
1977 unsigned long r_symndx;
1978 {
1979 unsigned char esym_shndx[4];
1980 unsigned int isym_shndx;
1981 Elf_Internal_Shdr *symtab_hdr;
1982 file_ptr pos;
1983 bfd_size_type amt;
1984 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1985
1986 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
1987 return cache->sec[ent];
1988
1989 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1990 pos = symtab_hdr->sh_offset;
1991 if (get_elf_backend_data (abfd)->s->sizeof_sym
1992 == sizeof (Elf64_External_Sym))
1993 {
1994 pos += r_symndx * sizeof (Elf64_External_Sym);
1995 pos += offsetof (Elf64_External_Sym, st_shndx);
1996 amt = sizeof (((Elf64_External_Sym *) 0)->st_shndx);
1997 }
1998 else
1999 {
2000 pos += r_symndx * sizeof (Elf32_External_Sym);
2001 pos += offsetof (Elf32_External_Sym, st_shndx);
2002 amt = sizeof (((Elf32_External_Sym *) 0)->st_shndx);
2003 }
2004 if (bfd_seek (abfd, pos, SEEK_SET) != 0
2005 || bfd_bread ((PTR) esym_shndx, amt, abfd) != amt)
2006 return NULL;
2007 isym_shndx = H_GET_16 (abfd, esym_shndx);
2008
2009 if (isym_shndx == SHN_XINDEX)
2010 {
2011 Elf_Internal_Shdr *shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
2012 if (shndx_hdr->sh_size != 0)
2013 {
2014 pos = shndx_hdr->sh_offset;
2015 pos += r_symndx * sizeof (Elf_External_Sym_Shndx);
2016 amt = sizeof (Elf_External_Sym_Shndx);
2017 if (bfd_seek (abfd, pos, SEEK_SET) != 0
2018 || bfd_bread ((PTR) esym_shndx, amt, abfd) != amt)
2019 return NULL;
2020 isym_shndx = H_GET_32 (abfd, esym_shndx);
2021 }
2022 }
2023
2024 if (cache->abfd != abfd)
2025 {
2026 memset (cache->indx, -1, sizeof (cache->indx));
2027 cache->abfd = abfd;
2028 }
2029 cache->indx[ent] = r_symndx;
2030 cache->sec[ent] = sec;
2031 if (isym_shndx < SHN_LORESERVE || isym_shndx > SHN_HIRESERVE)
2032 {
2033 asection *s;
2034 s = bfd_section_from_elf_index (abfd, isym_shndx);
2035 if (s != NULL)
2036 cache->sec[ent] = s;
2037 }
2038 return cache->sec[ent];
2039 }
2040
2041 /* Given an ELF section number, retrieve the corresponding BFD
2042 section. */
2043
2044 asection *
2045 bfd_section_from_elf_index (abfd, index)
2046 bfd *abfd;
2047 unsigned int index;
2048 {
2049 if (index >= elf_numsections (abfd))
2050 return NULL;
2051 return elf_elfsections (abfd)[index]->bfd_section;
2052 }
2053
2054 boolean
2055 _bfd_elf_new_section_hook (abfd, sec)
2056 bfd *abfd;
2057 asection *sec;
2058 {
2059 struct bfd_elf_section_data *sdata;
2060 bfd_size_type amt = sizeof (*sdata);
2061
2062 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd, amt);
2063 if (!sdata)
2064 return false;
2065 sec->used_by_bfd = (PTR) sdata;
2066
2067 /* Indicate whether or not this section should use RELA relocations. */
2068 sdata->use_rela_p
2069 = get_elf_backend_data (abfd)->default_use_rela_p;
2070
2071 return true;
2072 }
2073
2074 /* Create a new bfd section from an ELF program header.
2075
2076 Since program segments have no names, we generate a synthetic name
2077 of the form segment<NUM>, where NUM is generally the index in the
2078 program header table. For segments that are split (see below) we
2079 generate the names segment<NUM>a and segment<NUM>b.
2080
2081 Note that some program segments may have a file size that is different than
2082 (less than) the memory size. All this means is that at execution the
2083 system must allocate the amount of memory specified by the memory size,
2084 but only initialize it with the first "file size" bytes read from the
2085 file. This would occur for example, with program segments consisting
2086 of combined data+bss.
2087
2088 To handle the above situation, this routine generates TWO bfd sections
2089 for the single program segment. The first has the length specified by
2090 the file size of the segment, and the second has the length specified
2091 by the difference between the two sizes. In effect, the segment is split
2092 into it's initialized and uninitialized parts.
2093
2094 */
2095
2096 boolean
2097 _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename)
2098 bfd *abfd;
2099 Elf_Internal_Phdr *hdr;
2100 int index;
2101 const char *typename;
2102 {
2103 asection *newsect;
2104 char *name;
2105 char namebuf[64];
2106 size_t len;
2107 int split;
2108
2109 split = ((hdr->p_memsz > 0)
2110 && (hdr->p_filesz > 0)
2111 && (hdr->p_memsz > hdr->p_filesz));
2112 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2113 len = strlen (namebuf) + 1;
2114 name = bfd_alloc (abfd, (bfd_size_type) len);
2115 if (!name)
2116 return false;
2117 memcpy (name, namebuf, len);
2118 newsect = bfd_make_section (abfd, name);
2119 if (newsect == NULL)
2120 return false;
2121 newsect->vma = hdr->p_vaddr;
2122 newsect->lma = hdr->p_paddr;
2123 newsect->_raw_size = hdr->p_filesz;
2124 newsect->filepos = hdr->p_offset;
2125 newsect->flags |= SEC_HAS_CONTENTS;
2126 if (hdr->p_type == PT_LOAD)
2127 {
2128 newsect->flags |= SEC_ALLOC;
2129 newsect->flags |= SEC_LOAD;
2130 if (hdr->p_flags & PF_X)
2131 {
2132 /* FIXME: all we known is that it has execute PERMISSION,
2133 may be data. */
2134 newsect->flags |= SEC_CODE;
2135 }
2136 }
2137 if (!(hdr->p_flags & PF_W))
2138 {
2139 newsect->flags |= SEC_READONLY;
2140 }
2141
2142 if (split)
2143 {
2144 sprintf (namebuf, "%s%db", typename, index);
2145 len = strlen (namebuf) + 1;
2146 name = bfd_alloc (abfd, (bfd_size_type) len);
2147 if (!name)
2148 return false;
2149 memcpy (name, namebuf, len);
2150 newsect = bfd_make_section (abfd, name);
2151 if (newsect == NULL)
2152 return false;
2153 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2154 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2155 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
2156 if (hdr->p_type == PT_LOAD)
2157 {
2158 newsect->flags |= SEC_ALLOC;
2159 if (hdr->p_flags & PF_X)
2160 newsect->flags |= SEC_CODE;
2161 }
2162 if (!(hdr->p_flags & PF_W))
2163 newsect->flags |= SEC_READONLY;
2164 }
2165
2166 return true;
2167 }
2168
2169 boolean
2170 bfd_section_from_phdr (abfd, hdr, index)
2171 bfd *abfd;
2172 Elf_Internal_Phdr *hdr;
2173 int index;
2174 {
2175 struct elf_backend_data *bed;
2176
2177 switch (hdr->p_type)
2178 {
2179 case PT_NULL:
2180 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2181
2182 case PT_LOAD:
2183 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2184
2185 case PT_DYNAMIC:
2186 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2187
2188 case PT_INTERP:
2189 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2190
2191 case PT_NOTE:
2192 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2193 return false;
2194 if (! elfcore_read_notes (abfd, (file_ptr) hdr->p_offset, hdr->p_filesz))
2195 return false;
2196 return true;
2197
2198 case PT_SHLIB:
2199 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2200
2201 case PT_PHDR:
2202 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2203
2204 default:
2205 /* Check for any processor-specific program segment types.
2206 If no handler for them, default to making "segment" sections. */
2207 bed = get_elf_backend_data (abfd);
2208 if (bed->elf_backend_section_from_phdr)
2209 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2210 else
2211 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2212 }
2213 }
2214
2215 /* Initialize REL_HDR, the section-header for new section, containing
2216 relocations against ASECT. If USE_RELA_P is true, we use RELA
2217 relocations; otherwise, we use REL relocations. */
2218
2219 boolean
2220 _bfd_elf_init_reloc_shdr (abfd, rel_hdr, asect, use_rela_p)
2221 bfd *abfd;
2222 Elf_Internal_Shdr *rel_hdr;
2223 asection *asect;
2224 boolean use_rela_p;
2225 {
2226 char *name;
2227 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2228 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2229
2230 name = bfd_alloc (abfd, amt);
2231 if (name == NULL)
2232 return false;
2233 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2234 rel_hdr->sh_name =
2235 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2236 false);
2237 if (rel_hdr->sh_name == (unsigned int) -1)
2238 return false;
2239 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2240 rel_hdr->sh_entsize = (use_rela_p
2241 ? bed->s->sizeof_rela
2242 : bed->s->sizeof_rel);
2243 rel_hdr->sh_addralign = bed->s->file_align;
2244 rel_hdr->sh_flags = 0;
2245 rel_hdr->sh_addr = 0;
2246 rel_hdr->sh_size = 0;
2247 rel_hdr->sh_offset = 0;
2248
2249 return true;
2250 }
2251
2252 /* Set up an ELF internal section header for a section. */
2253
2254 static void
2255 elf_fake_sections (abfd, asect, failedptrarg)
2256 bfd *abfd;
2257 asection *asect;
2258 PTR failedptrarg;
2259 {
2260 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2261 boolean *failedptr = (boolean *) failedptrarg;
2262 Elf_Internal_Shdr *this_hdr;
2263
2264 if (*failedptr)
2265 {
2266 /* We already failed; just get out of the bfd_map_over_sections
2267 loop. */
2268 return;
2269 }
2270
2271 this_hdr = &elf_section_data (asect)->this_hdr;
2272
2273 this_hdr->sh_name = (unsigned long) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2274 asect->name, false);
2275 if (this_hdr->sh_name == (unsigned long) -1)
2276 {
2277 *failedptr = true;
2278 return;
2279 }
2280
2281 this_hdr->sh_flags = 0;
2282
2283 if ((asect->flags & SEC_ALLOC) != 0
2284 || asect->user_set_vma)
2285 this_hdr->sh_addr = asect->vma;
2286 else
2287 this_hdr->sh_addr = 0;
2288
2289 this_hdr->sh_offset = 0;
2290 this_hdr->sh_size = asect->_raw_size;
2291 this_hdr->sh_link = 0;
2292 this_hdr->sh_addralign = 1 << asect->alignment_power;
2293 /* The sh_entsize and sh_info fields may have been set already by
2294 copy_private_section_data. */
2295
2296 this_hdr->bfd_section = asect;
2297 this_hdr->contents = NULL;
2298
2299 /* FIXME: This should not be based on section names. */
2300 if (strcmp (asect->name, ".dynstr") == 0)
2301 this_hdr->sh_type = SHT_STRTAB;
2302 else if (strcmp (asect->name, ".hash") == 0)
2303 {
2304 this_hdr->sh_type = SHT_HASH;
2305 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2306 }
2307 else if (strcmp (asect->name, ".dynsym") == 0)
2308 {
2309 this_hdr->sh_type = SHT_DYNSYM;
2310 this_hdr->sh_entsize = bed->s->sizeof_sym;
2311 }
2312 else if (strcmp (asect->name, ".dynamic") == 0)
2313 {
2314 this_hdr->sh_type = SHT_DYNAMIC;
2315 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2316 }
2317 else if (strncmp (asect->name, ".rela", 5) == 0
2318 && get_elf_backend_data (abfd)->may_use_rela_p)
2319 {
2320 this_hdr->sh_type = SHT_RELA;
2321 this_hdr->sh_entsize = bed->s->sizeof_rela;
2322 }
2323 else if (strncmp (asect->name, ".rel", 4) == 0
2324 && get_elf_backend_data (abfd)->may_use_rel_p)
2325 {
2326 this_hdr->sh_type = SHT_REL;
2327 this_hdr->sh_entsize = bed->s->sizeof_rel;
2328 }
2329 else if (strcmp (asect->name, ".init_array") == 0)
2330 this_hdr->sh_type = SHT_INIT_ARRAY;
2331 else if (strcmp (asect->name, ".fini_array") == 0)
2332 this_hdr->sh_type = SHT_FINI_ARRAY;
2333 else if (strcmp (asect->name, ".preinit_array") == 0)
2334 this_hdr->sh_type = SHT_PREINIT_ARRAY;
2335 else if (strncmp (asect->name, ".note", 5) == 0)
2336 this_hdr->sh_type = SHT_NOTE;
2337 else if (strncmp (asect->name, ".stab", 5) == 0
2338 && strcmp (asect->name + strlen (asect->name) - 3, "str") == 0)
2339 this_hdr->sh_type = SHT_STRTAB;
2340 else if (strcmp (asect->name, ".gnu.version") == 0)
2341 {
2342 this_hdr->sh_type = SHT_GNU_versym;
2343 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2344 }
2345 else if (strcmp (asect->name, ".gnu.version_d") == 0)
2346 {
2347 this_hdr->sh_type = SHT_GNU_verdef;
2348 this_hdr->sh_entsize = 0;
2349 /* objcopy or strip will copy over sh_info, but may not set
2350 cverdefs. The linker will set cverdefs, but sh_info will be
2351 zero. */
2352 if (this_hdr->sh_info == 0)
2353 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2354 else
2355 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2356 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2357 }
2358 else if (strcmp (asect->name, ".gnu.version_r") == 0)
2359 {
2360 this_hdr->sh_type = SHT_GNU_verneed;
2361 this_hdr->sh_entsize = 0;
2362 /* objcopy or strip will copy over sh_info, but may not set
2363 cverrefs. The linker will set cverrefs, but sh_info will be
2364 zero. */
2365 if (this_hdr->sh_info == 0)
2366 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2367 else
2368 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2369 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2370 }
2371 else if ((asect->flags & SEC_GROUP) != 0)
2372 {
2373 this_hdr->sh_type = SHT_GROUP;
2374 this_hdr->sh_entsize = 4;
2375 }
2376 else if ((asect->flags & SEC_ALLOC) != 0
2377 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2378 || (asect->flags & SEC_NEVER_LOAD) != 0))
2379 this_hdr->sh_type = SHT_NOBITS;
2380 else
2381 this_hdr->sh_type = SHT_PROGBITS;
2382
2383 if ((asect->flags & SEC_ALLOC) != 0)
2384 this_hdr->sh_flags |= SHF_ALLOC;
2385 if ((asect->flags & SEC_READONLY) == 0)
2386 this_hdr->sh_flags |= SHF_WRITE;
2387 if ((asect->flags & SEC_CODE) != 0)
2388 this_hdr->sh_flags |= SHF_EXECINSTR;
2389 if ((asect->flags & SEC_MERGE) != 0)
2390 {
2391 this_hdr->sh_flags |= SHF_MERGE;
2392 this_hdr->sh_entsize = asect->entsize;
2393 if ((asect->flags & SEC_STRINGS) != 0)
2394 this_hdr->sh_flags |= SHF_STRINGS;
2395 }
2396 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2397 this_hdr->sh_flags |= SHF_GROUP;
2398 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2399 this_hdr->sh_flags |= SHF_TLS;
2400
2401 /* Check for processor-specific section types. */
2402 if (bed->elf_backend_fake_sections
2403 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2404 *failedptr = true;
2405
2406 /* If the section has relocs, set up a section header for the
2407 SHT_REL[A] section. If two relocation sections are required for
2408 this section, it is up to the processor-specific back-end to
2409 create the other. */
2410 if ((asect->flags & SEC_RELOC) != 0
2411 && !_bfd_elf_init_reloc_shdr (abfd,
2412 &elf_section_data (asect)->rel_hdr,
2413 asect,
2414 elf_section_data (asect)->use_rela_p))
2415 *failedptr = true;
2416 }
2417
2418 /* Fill in the contents of a SHT_GROUP section. */
2419
2420 void
2421 bfd_elf_set_group_contents (abfd, sec, failedptrarg)
2422 bfd *abfd;
2423 asection *sec;
2424 PTR failedptrarg;
2425 {
2426 boolean *failedptr = (boolean *) failedptrarg;
2427 unsigned long symindx;
2428 asection *elt, *first;
2429 unsigned char *loc;
2430 struct bfd_link_order *l;
2431 boolean gas;
2432
2433 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2434 || *failedptr)
2435 return;
2436
2437 symindx = 0;
2438 if (elf_group_id (sec) != NULL)
2439 symindx = elf_group_id (sec)->udata.i;
2440
2441 if (symindx == 0)
2442 {
2443 /* If called from the assembler, swap_out_syms will have set up
2444 elf_section_syms; If called for "ld -r", use target_index. */
2445 if (elf_section_syms (abfd) != NULL)
2446 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2447 else
2448 symindx = sec->target_index;
2449 }
2450 elf_section_data (sec)->this_hdr.sh_info = symindx;
2451
2452 /* The contents won't be allocated for "ld -r" or objcopy. */
2453 gas = true;
2454 if (sec->contents == NULL)
2455 {
2456 gas = false;
2457 sec->contents = bfd_alloc (abfd, sec->_raw_size);
2458
2459 /* Arrange for the section to be written out. */
2460 elf_section_data (sec)->this_hdr.contents = sec->contents;
2461 if (sec->contents == NULL)
2462 {
2463 *failedptr = true;
2464 return;
2465 }
2466 }
2467
2468 loc = sec->contents + sec->_raw_size;
2469
2470 /* Get the pointer to the first section in the group that gas
2471 squirreled away here. objcopy arranges for this to be set to the
2472 start of the input section group. */
2473 first = elt = elf_next_in_group (sec);
2474
2475 /* First element is a flag word. Rest of section is elf section
2476 indices for all the sections of the group. Write them backwards
2477 just to keep the group in the same order as given in .section
2478 directives, not that it matters. */
2479 while (elt != NULL)
2480 {
2481 asection *s;
2482 unsigned int idx;
2483
2484 loc -= 4;
2485 s = elt;
2486 if (!gas)
2487 s = s->output_section;
2488 idx = 0;
2489 if (s != NULL)
2490 idx = elf_section_data (s)->this_idx;
2491 H_PUT_32 (abfd, idx, loc);
2492 elt = elf_next_in_group (elt);
2493 if (elt == first)
2494 break;
2495 }
2496
2497 /* If this is a relocatable link, then the above did nothing because
2498 SEC is the output section. Look through the input sections
2499 instead. */
2500 for (l = sec->link_order_head; l != NULL; l = l->next)
2501 if (l->type == bfd_indirect_link_order
2502 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2503 do
2504 {
2505 loc -= 4;
2506 H_PUT_32 (abfd,
2507 elf_section_data (elt->output_section)->this_idx, loc);
2508 elt = elf_next_in_group (elt);
2509 /* During a relocatable link, the lists are circular. */
2510 }
2511 while (elt != elf_next_in_group (l->u.indirect.section));
2512
2513 /* With ld -r, merging SHT_GROUP sections results in wasted space
2514 due to allowing for the flag word on each input. We may well
2515 duplicate entries too. */
2516 while ((loc -= 4) > sec->contents)
2517 H_PUT_32 (abfd, 0, loc);
2518
2519 if (loc != sec->contents)
2520 abort ();
2521
2522 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2523 }
2524
2525 /* Assign all ELF section numbers. The dummy first section is handled here
2526 too. The link/info pointers for the standard section types are filled
2527 in here too, while we're at it. */
2528
2529 static boolean
2530 assign_section_numbers (abfd)
2531 bfd *abfd;
2532 {
2533 struct elf_obj_tdata *t = elf_tdata (abfd);
2534 asection *sec;
2535 unsigned int section_number, secn;
2536 Elf_Internal_Shdr **i_shdrp;
2537 bfd_size_type amt;
2538
2539 section_number = 1;
2540
2541 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2542
2543 for (sec = abfd->sections; sec; sec = sec->next)
2544 {
2545 struct bfd_elf_section_data *d = elf_section_data (sec);
2546
2547 if (section_number == SHN_LORESERVE)
2548 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2549 d->this_idx = section_number++;
2550 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2551 if ((sec->flags & SEC_RELOC) == 0)
2552 d->rel_idx = 0;
2553 else
2554 {
2555 if (section_number == SHN_LORESERVE)
2556 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2557 d->rel_idx = section_number++;
2558 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2559 }
2560
2561 if (d->rel_hdr2)
2562 {
2563 if (section_number == SHN_LORESERVE)
2564 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2565 d->rel_idx2 = section_number++;
2566 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2567 }
2568 else
2569 d->rel_idx2 = 0;
2570 }
2571
2572 if (section_number == SHN_LORESERVE)
2573 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2574 t->shstrtab_section = section_number++;
2575 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2576 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2577
2578 if (bfd_get_symcount (abfd) > 0)
2579 {
2580 if (section_number == SHN_LORESERVE)
2581 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2582 t->symtab_section = section_number++;
2583 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2584 if (section_number > SHN_LORESERVE - 2)
2585 {
2586 if (section_number == SHN_LORESERVE)
2587 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2588 t->symtab_shndx_section = section_number++;
2589 t->symtab_shndx_hdr.sh_name
2590 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2591 ".symtab_shndx", false);
2592 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2593 return false;
2594 }
2595 if (section_number == SHN_LORESERVE)
2596 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2597 t->strtab_section = section_number++;
2598 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2599 }
2600
2601 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2602 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2603
2604 elf_numsections (abfd) = section_number;
2605 elf_elfheader (abfd)->e_shnum = section_number;
2606 if (section_number > SHN_LORESERVE)
2607 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2608
2609 /* Set up the list of section header pointers, in agreement with the
2610 indices. */
2611 amt = section_number * sizeof (Elf_Internal_Shdr *);
2612 i_shdrp = (Elf_Internal_Shdr **) bfd_alloc (abfd, amt);
2613 if (i_shdrp == NULL)
2614 return false;
2615
2616 amt = sizeof (Elf_Internal_Shdr);
2617 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
2618 if (i_shdrp[0] == NULL)
2619 {
2620 bfd_release (abfd, i_shdrp);
2621 return false;
2622 }
2623 memset (i_shdrp[0], 0, sizeof (Elf_Internal_Shdr));
2624
2625 elf_elfsections (abfd) = i_shdrp;
2626
2627 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2628 if (bfd_get_symcount (abfd) > 0)
2629 {
2630 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2631 if (elf_numsections (abfd) > SHN_LORESERVE)
2632 {
2633 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2634 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2635 }
2636 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2637 t->symtab_hdr.sh_link = t->strtab_section;
2638 }
2639 for (sec = abfd->sections; sec; sec = sec->next)
2640 {
2641 struct bfd_elf_section_data *d = elf_section_data (sec);
2642 asection *s;
2643 const char *name;
2644
2645 i_shdrp[d->this_idx] = &d->this_hdr;
2646 if (d->rel_idx != 0)
2647 i_shdrp[d->rel_idx] = &d->rel_hdr;
2648 if (d->rel_idx2 != 0)
2649 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2650
2651 /* Fill in the sh_link and sh_info fields while we're at it. */
2652
2653 /* sh_link of a reloc section is the section index of the symbol
2654 table. sh_info is the section index of the section to which
2655 the relocation entries apply. */
2656 if (d->rel_idx != 0)
2657 {
2658 d->rel_hdr.sh_link = t->symtab_section;
2659 d->rel_hdr.sh_info = d->this_idx;
2660 }
2661 if (d->rel_idx2 != 0)
2662 {
2663 d->rel_hdr2->sh_link = t->symtab_section;
2664 d->rel_hdr2->sh_info = d->this_idx;
2665 }
2666
2667 switch (d->this_hdr.sh_type)
2668 {
2669 case SHT_REL:
2670 case SHT_RELA:
2671 /* A reloc section which we are treating as a normal BFD
2672 section. sh_link is the section index of the symbol
2673 table. sh_info is the section index of the section to
2674 which the relocation entries apply. We assume that an
2675 allocated reloc section uses the dynamic symbol table.
2676 FIXME: How can we be sure? */
2677 s = bfd_get_section_by_name (abfd, ".dynsym");
2678 if (s != NULL)
2679 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2680
2681 /* We look up the section the relocs apply to by name. */
2682 name = sec->name;
2683 if (d->this_hdr.sh_type == SHT_REL)
2684 name += 4;
2685 else
2686 name += 5;
2687 s = bfd_get_section_by_name (abfd, name);
2688 if (s != NULL)
2689 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2690 break;
2691
2692 case SHT_STRTAB:
2693 /* We assume that a section named .stab*str is a stabs
2694 string section. We look for a section with the same name
2695 but without the trailing ``str'', and set its sh_link
2696 field to point to this section. */
2697 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2698 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2699 {
2700 size_t len;
2701 char *alc;
2702
2703 len = strlen (sec->name);
2704 alc = (char *) bfd_malloc ((bfd_size_type) (len - 2));
2705 if (alc == NULL)
2706 return false;
2707 memcpy (alc, sec->name, len - 3);
2708 alc[len - 3] = '\0';
2709 s = bfd_get_section_by_name (abfd, alc);
2710 free (alc);
2711 if (s != NULL)
2712 {
2713 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2714
2715 /* This is a .stab section. */
2716 elf_section_data (s)->this_hdr.sh_entsize =
2717 4 + 2 * bfd_get_arch_size (abfd) / 8;
2718 }
2719 }
2720 break;
2721
2722 case SHT_DYNAMIC:
2723 case SHT_DYNSYM:
2724 case SHT_GNU_verneed:
2725 case SHT_GNU_verdef:
2726 /* sh_link is the section header index of the string table
2727 used for the dynamic entries, or the symbol table, or the
2728 version strings. */
2729 s = bfd_get_section_by_name (abfd, ".dynstr");
2730 if (s != NULL)
2731 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2732 break;
2733
2734 case SHT_HASH:
2735 case SHT_GNU_versym:
2736 /* sh_link is the section header index of the symbol table
2737 this hash table or version table is for. */
2738 s = bfd_get_section_by_name (abfd, ".dynsym");
2739 if (s != NULL)
2740 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2741 break;
2742
2743 case SHT_GROUP:
2744 d->this_hdr.sh_link = t->symtab_section;
2745 }
2746 }
2747
2748 for (secn = 1; secn < section_number; ++secn)
2749 if (i_shdrp[secn] == NULL)
2750 i_shdrp[secn] = i_shdrp[0];
2751 else
2752 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
2753 i_shdrp[secn]->sh_name);
2754 return true;
2755 }
2756
2757 /* Map symbol from it's internal number to the external number, moving
2758 all local symbols to be at the head of the list. */
2759
2760 static INLINE int
2761 sym_is_global (abfd, sym)
2762 bfd *abfd;
2763 asymbol *sym;
2764 {
2765 /* If the backend has a special mapping, use it. */
2766 if (get_elf_backend_data (abfd)->elf_backend_sym_is_global)
2767 return ((*get_elf_backend_data (abfd)->elf_backend_sym_is_global)
2768 (abfd, sym));
2769
2770 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2771 || bfd_is_und_section (bfd_get_section (sym))
2772 || bfd_is_com_section (bfd_get_section (sym)));
2773 }
2774
2775 static boolean
2776 elf_map_symbols (abfd)
2777 bfd *abfd;
2778 {
2779 unsigned int symcount = bfd_get_symcount (abfd);
2780 asymbol **syms = bfd_get_outsymbols (abfd);
2781 asymbol **sect_syms;
2782 unsigned int num_locals = 0;
2783 unsigned int num_globals = 0;
2784 unsigned int num_locals2 = 0;
2785 unsigned int num_globals2 = 0;
2786 int max_index = 0;
2787 unsigned int idx;
2788 asection *asect;
2789 asymbol **new_syms;
2790 bfd_size_type amt;
2791
2792 #ifdef DEBUG
2793 fprintf (stderr, "elf_map_symbols\n");
2794 fflush (stderr);
2795 #endif
2796
2797 for (asect = abfd->sections; asect; asect = asect->next)
2798 {
2799 if (max_index < asect->index)
2800 max_index = asect->index;
2801 }
2802
2803 max_index++;
2804 amt = max_index * sizeof (asymbol *);
2805 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
2806 if (sect_syms == NULL)
2807 return false;
2808 elf_section_syms (abfd) = sect_syms;
2809 elf_num_section_syms (abfd) = max_index;
2810
2811 /* Init sect_syms entries for any section symbols we have already
2812 decided to output. */
2813 for (idx = 0; idx < symcount; idx++)
2814 {
2815 asymbol *sym = syms[idx];
2816
2817 if ((sym->flags & BSF_SECTION_SYM) != 0
2818 && sym->value == 0)
2819 {
2820 asection *sec;
2821
2822 sec = sym->section;
2823
2824 if (sec->owner != NULL)
2825 {
2826 if (sec->owner != abfd)
2827 {
2828 if (sec->output_offset != 0)
2829 continue;
2830
2831 sec = sec->output_section;
2832
2833 /* Empty sections in the input files may have had a
2834 section symbol created for them. (See the comment
2835 near the end of _bfd_generic_link_output_symbols in
2836 linker.c). If the linker script discards such
2837 sections then we will reach this point. Since we know
2838 that we cannot avoid this case, we detect it and skip
2839 the abort and the assignment to the sect_syms array.
2840 To reproduce this particular case try running the
2841 linker testsuite test ld-scripts/weak.exp for an ELF
2842 port that uses the generic linker. */
2843 if (sec->owner == NULL)
2844 continue;
2845
2846 BFD_ASSERT (sec->owner == abfd);
2847 }
2848 sect_syms[sec->index] = syms[idx];
2849 }
2850 }
2851 }
2852
2853 /* Classify all of the symbols. */
2854 for (idx = 0; idx < symcount; idx++)
2855 {
2856 if (!sym_is_global (abfd, syms[idx]))
2857 num_locals++;
2858 else
2859 num_globals++;
2860 }
2861
2862 /* We will be adding a section symbol for each BFD section. Most normal
2863 sections will already have a section symbol in outsymbols, but
2864 eg. SHT_GROUP sections will not, and we need the section symbol mapped
2865 at least in that case. */
2866 for (asect = abfd->sections; asect; asect = asect->next)
2867 {
2868 if (sect_syms[asect->index] == NULL)
2869 {
2870 if (!sym_is_global (abfd, asect->symbol))
2871 num_locals++;
2872 else
2873 num_globals++;
2874 }
2875 }
2876
2877 /* Now sort the symbols so the local symbols are first. */
2878 amt = (num_locals + num_globals) * sizeof (asymbol *);
2879 new_syms = (asymbol **) bfd_alloc (abfd, amt);
2880
2881 if (new_syms == NULL)
2882 return false;
2883
2884 for (idx = 0; idx < symcount; idx++)
2885 {
2886 asymbol *sym = syms[idx];
2887 unsigned int i;
2888
2889 if (!sym_is_global (abfd, sym))
2890 i = num_locals2++;
2891 else
2892 i = num_locals + num_globals2++;
2893 new_syms[i] = sym;
2894 sym->udata.i = i + 1;
2895 }
2896 for (asect = abfd->sections; asect; asect = asect->next)
2897 {
2898 if (sect_syms[asect->index] == NULL)
2899 {
2900 asymbol *sym = asect->symbol;
2901 unsigned int i;
2902
2903 sect_syms[asect->index] = sym;
2904 if (!sym_is_global (abfd, sym))
2905 i = num_locals2++;
2906 else
2907 i = num_locals + num_globals2++;
2908 new_syms[i] = sym;
2909 sym->udata.i = i + 1;
2910 }
2911 }
2912
2913 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
2914
2915 elf_num_locals (abfd) = num_locals;
2916 elf_num_globals (abfd) = num_globals;
2917 return true;
2918 }
2919
2920 /* Align to the maximum file alignment that could be required for any
2921 ELF data structure. */
2922
2923 static INLINE file_ptr align_file_position PARAMS ((file_ptr, int));
2924 static INLINE file_ptr
2925 align_file_position (off, align)
2926 file_ptr off;
2927 int align;
2928 {
2929 return (off + align - 1) & ~(align - 1);
2930 }
2931
2932 /* Assign a file position to a section, optionally aligning to the
2933 required section alignment. */
2934
2935 INLINE file_ptr
2936 _bfd_elf_assign_file_position_for_section (i_shdrp, offset, align)
2937 Elf_Internal_Shdr *i_shdrp;
2938 file_ptr offset;
2939 boolean align;
2940 {
2941 if (align)
2942 {
2943 unsigned int al;
2944
2945 al = i_shdrp->sh_addralign;
2946 if (al > 1)
2947 offset = BFD_ALIGN (offset, al);
2948 }
2949 i_shdrp->sh_offset = offset;
2950 if (i_shdrp->bfd_section != NULL)
2951 i_shdrp->bfd_section->filepos = offset;
2952 if (i_shdrp->sh_type != SHT_NOBITS)
2953 offset += i_shdrp->sh_size;
2954 return offset;
2955 }
2956
2957 /* Compute the file positions we are going to put the sections at, and
2958 otherwise prepare to begin writing out the ELF file. If LINK_INFO
2959 is not NULL, this is being called by the ELF backend linker. */
2960
2961 boolean
2962 _bfd_elf_compute_section_file_positions (abfd, link_info)
2963 bfd *abfd;
2964 struct bfd_link_info *link_info;
2965 {
2966 struct elf_backend_data *bed = get_elf_backend_data (abfd);
2967 boolean failed;
2968 struct bfd_strtab_hash *strtab;
2969 Elf_Internal_Shdr *shstrtab_hdr;
2970
2971 if (abfd->output_has_begun)
2972 return true;
2973
2974 /* Do any elf backend specific processing first. */
2975 if (bed->elf_backend_begin_write_processing)
2976 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
2977
2978 if (! prep_headers (abfd))
2979 return false;
2980
2981 /* Post process the headers if necessary. */
2982 if (bed->elf_backend_post_process_headers)
2983 (*bed->elf_backend_post_process_headers) (abfd, link_info);
2984
2985 failed = false;
2986 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
2987 if (failed)
2988 return false;
2989
2990 if (!assign_section_numbers (abfd))
2991 return false;
2992
2993 /* The backend linker builds symbol table information itself. */
2994 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
2995 {
2996 /* Non-zero if doing a relocatable link. */
2997 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
2998
2999 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3000 return false;
3001 }
3002
3003 if (link_info == NULL)
3004 {
3005 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3006 if (failed)
3007 return false;
3008 }
3009
3010 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3011 /* sh_name was set in prep_headers. */
3012 shstrtab_hdr->sh_type = SHT_STRTAB;
3013 shstrtab_hdr->sh_flags = 0;
3014 shstrtab_hdr->sh_addr = 0;
3015 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3016 shstrtab_hdr->sh_entsize = 0;
3017 shstrtab_hdr->sh_link = 0;
3018 shstrtab_hdr->sh_info = 0;
3019 /* sh_offset is set in assign_file_positions_except_relocs. */
3020 shstrtab_hdr->sh_addralign = 1;
3021
3022 if (!assign_file_positions_except_relocs (abfd))
3023 return false;
3024
3025 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3026 {
3027 file_ptr off;
3028 Elf_Internal_Shdr *hdr;
3029
3030 off = elf_tdata (abfd)->next_file_pos;
3031
3032 hdr = &elf_tdata (abfd)->symtab_hdr;
3033 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
3034
3035 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3036 if (hdr->sh_size != 0)
3037 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
3038
3039 hdr = &elf_tdata (abfd)->strtab_hdr;
3040 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
3041
3042 elf_tdata (abfd)->next_file_pos = off;
3043
3044 /* Now that we know where the .strtab section goes, write it
3045 out. */
3046 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3047 || ! _bfd_stringtab_emit (abfd, strtab))
3048 return false;
3049 _bfd_stringtab_free (strtab);
3050 }
3051
3052 abfd->output_has_begun = true;
3053
3054 return true;
3055 }
3056
3057 /* Create a mapping from a set of sections to a program segment. */
3058
3059 static INLINE struct elf_segment_map *
3060 make_mapping (abfd, sections, from, to, phdr)
3061 bfd *abfd;
3062 asection **sections;
3063 unsigned int from;
3064 unsigned int to;
3065 boolean phdr;
3066 {
3067 struct elf_segment_map *m;
3068 unsigned int i;
3069 asection **hdrpp;
3070 bfd_size_type amt;
3071
3072 amt = sizeof (struct elf_segment_map);
3073 amt += (to - from - 1) * sizeof (asection *);
3074 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3075 if (m == NULL)
3076 return NULL;
3077 m->next = NULL;
3078 m->p_type = PT_LOAD;
3079 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3080 m->sections[i - from] = *hdrpp;
3081 m->count = to - from;
3082
3083 if (from == 0 && phdr)
3084 {
3085 /* Include the headers in the first PT_LOAD segment. */
3086 m->includes_filehdr = 1;
3087 m->includes_phdrs = 1;
3088 }
3089
3090 return m;
3091 }
3092
3093 /* Set up a mapping from BFD sections to program segments. */
3094
3095 static boolean
3096 map_sections_to_segments (abfd)
3097 bfd *abfd;
3098 {
3099 asection **sections = NULL;
3100 asection *s;
3101 unsigned int i;
3102 unsigned int count;
3103 struct elf_segment_map *mfirst;
3104 struct elf_segment_map **pm;
3105 struct elf_segment_map *m;
3106 asection *last_hdr;
3107 unsigned int phdr_index;
3108 bfd_vma maxpagesize;
3109 asection **hdrpp;
3110 boolean phdr_in_segment = true;
3111 boolean writable;
3112 int tls_count = 0;
3113 asection *first_tls = NULL;
3114 asection *dynsec, *eh_frame_hdr;
3115 bfd_size_type amt;
3116
3117 if (elf_tdata (abfd)->segment_map != NULL)
3118 return true;
3119
3120 if (bfd_count_sections (abfd) == 0)
3121 return true;
3122
3123 /* Select the allocated sections, and sort them. */
3124
3125 amt = bfd_count_sections (abfd) * sizeof (asection *);
3126 sections = (asection **) bfd_malloc (amt);
3127 if (sections == NULL)
3128 goto error_return;
3129
3130 i = 0;
3131 for (s = abfd->sections; s != NULL; s = s->next)
3132 {
3133 if ((s->flags & SEC_ALLOC) != 0)
3134 {
3135 sections[i] = s;
3136 ++i;
3137 }
3138 }
3139 BFD_ASSERT (i <= bfd_count_sections (abfd));
3140 count = i;
3141
3142 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3143
3144 /* Build the mapping. */
3145
3146 mfirst = NULL;
3147 pm = &mfirst;
3148
3149 /* If we have a .interp section, then create a PT_PHDR segment for
3150 the program headers and a PT_INTERP segment for the .interp
3151 section. */
3152 s = bfd_get_section_by_name (abfd, ".interp");
3153 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3154 {
3155 amt = sizeof (struct elf_segment_map);
3156 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3157 if (m == NULL)
3158 goto error_return;
3159 m->next = NULL;
3160 m->p_type = PT_PHDR;
3161 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3162 m->p_flags = PF_R | PF_X;
3163 m->p_flags_valid = 1;
3164 m->includes_phdrs = 1;
3165
3166 *pm = m;
3167 pm = &m->next;
3168
3169 amt = sizeof (struct elf_segment_map);
3170 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3171 if (m == NULL)
3172 goto error_return;
3173 m->next = NULL;
3174 m->p_type = PT_INTERP;
3175 m->count = 1;
3176 m->sections[0] = s;
3177
3178 *pm = m;
3179 pm = &m->next;
3180 }
3181
3182 /* Look through the sections. We put sections in the same program
3183 segment when the start of the second section can be placed within
3184 a few bytes of the end of the first section. */
3185 last_hdr = NULL;
3186 phdr_index = 0;
3187 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3188 writable = false;
3189 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3190 if (dynsec != NULL
3191 && (dynsec->flags & SEC_LOAD) == 0)
3192 dynsec = NULL;
3193
3194 /* Deal with -Ttext or something similar such that the first section
3195 is not adjacent to the program headers. This is an
3196 approximation, since at this point we don't know exactly how many
3197 program headers we will need. */
3198 if (count > 0)
3199 {
3200 bfd_size_type phdr_size;
3201
3202 phdr_size = elf_tdata (abfd)->program_header_size;
3203 if (phdr_size == 0)
3204 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3205 if ((abfd->flags & D_PAGED) == 0
3206 || sections[0]->lma < phdr_size
3207 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3208 phdr_in_segment = false;
3209 }
3210
3211 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3212 {
3213 asection *hdr;
3214 boolean new_segment;
3215
3216 hdr = *hdrpp;
3217
3218 /* See if this section and the last one will fit in the same
3219 segment. */
3220
3221 if (last_hdr == NULL)
3222 {
3223 /* If we don't have a segment yet, then we don't need a new
3224 one (we build the last one after this loop). */
3225 new_segment = false;
3226 }
3227 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3228 {
3229 /* If this section has a different relation between the
3230 virtual address and the load address, then we need a new
3231 segment. */
3232 new_segment = true;
3233 }
3234 else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
3235 < BFD_ALIGN (hdr->lma, maxpagesize))
3236 {
3237 /* If putting this section in this segment would force us to
3238 skip a page in the segment, then we need a new segment. */
3239 new_segment = true;
3240 }
3241 else if ((last_hdr->flags & SEC_LOAD) == 0
3242 && (hdr->flags & SEC_LOAD) != 0)
3243 {
3244 /* We don't want to put a loadable section after a
3245 nonloadable section in the same segment. */
3246 new_segment = true;
3247 }
3248 else if ((abfd->flags & D_PAGED) == 0)
3249 {
3250 /* If the file is not demand paged, which means that we
3251 don't require the sections to be correctly aligned in the
3252 file, then there is no other reason for a new segment. */
3253 new_segment = false;
3254 }
3255 else if (! writable
3256 && (hdr->flags & SEC_READONLY) == 0
3257 && (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
3258 == hdr->lma))
3259 {
3260 /* We don't want to put a writable section in a read only
3261 segment, unless they are on the same page in memory
3262 anyhow. We already know that the last section does not
3263 bring us past the current section on the page, so the
3264 only case in which the new section is not on the same
3265 page as the previous section is when the previous section
3266 ends precisely on a page boundary. */
3267 new_segment = true;
3268 }
3269 else
3270 {
3271 /* Otherwise, we can use the same segment. */
3272 new_segment = false;
3273 }
3274
3275 if (! new_segment)
3276 {
3277 if ((hdr->flags & SEC_READONLY) == 0)
3278 writable = true;
3279 last_hdr = hdr;
3280 continue;
3281 }
3282
3283 /* We need a new program segment. We must create a new program
3284 header holding all the sections from phdr_index until hdr. */
3285
3286 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3287 if (m == NULL)
3288 goto error_return;
3289
3290 *pm = m;
3291 pm = &m->next;
3292
3293 if ((hdr->flags & SEC_READONLY) == 0)
3294 writable = true;
3295 else
3296 writable = false;
3297
3298 last_hdr = hdr;
3299 phdr_index = i;
3300 phdr_in_segment = false;
3301 }
3302
3303 /* Create a final PT_LOAD program segment. */
3304 if (last_hdr != NULL)
3305 {
3306 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3307 if (m == NULL)
3308 goto error_return;
3309
3310 *pm = m;
3311 pm = &m->next;
3312 }
3313
3314 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3315 if (dynsec != NULL)
3316 {
3317 amt = sizeof (struct elf_segment_map);
3318 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3319 if (m == NULL)
3320 goto error_return;
3321 m->next = NULL;
3322 m->p_type = PT_DYNAMIC;
3323 m->count = 1;
3324 m->sections[0] = dynsec;
3325
3326 *pm = m;
3327 pm = &m->next;
3328 }
3329
3330 /* For each loadable .note section, add a PT_NOTE segment. We don't
3331 use bfd_get_section_by_name, because if we link together
3332 nonloadable .note sections and loadable .note sections, we will
3333 generate two .note sections in the output file. FIXME: Using
3334 names for section types is bogus anyhow. */
3335 for (s = abfd->sections; s != NULL; s = s->next)
3336 {
3337 if ((s->flags & SEC_LOAD) != 0
3338 && strncmp (s->name, ".note", 5) == 0)
3339 {
3340 amt = sizeof (struct elf_segment_map);
3341 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3342 if (m == NULL)
3343 goto error_return;
3344 m->next = NULL;
3345 m->p_type = PT_NOTE;
3346 m->count = 1;
3347 m->sections[0] = s;
3348
3349 *pm = m;
3350 pm = &m->next;
3351 }
3352 if (s->flags & SEC_THREAD_LOCAL)
3353 {
3354 if (! tls_count)
3355 first_tls = s;
3356 tls_count++;
3357 }
3358 }
3359
3360 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3361 if (tls_count > 0)
3362 {
3363 int i;
3364
3365 amt = sizeof (struct elf_segment_map);
3366 amt += (tls_count - 1) * sizeof (asection *);
3367 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3368 if (m == NULL)
3369 goto error_return;
3370 m->next = NULL;
3371 m->p_type = PT_TLS;
3372 m->count = tls_count;
3373 /* Mandated PF_R. */
3374 m->p_flags = PF_R;
3375 m->p_flags_valid = 1;
3376 for (i = 0; i < tls_count; ++i)
3377 {
3378 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3379 m->sections[i] = first_tls;
3380 first_tls = first_tls->next;
3381 }
3382
3383 *pm = m;
3384 pm = &m->next;
3385 }
3386
3387 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3388 segment. */
3389 eh_frame_hdr = NULL;
3390 if (elf_tdata (abfd)->eh_frame_hdr)
3391 eh_frame_hdr = bfd_get_section_by_name (abfd, ".eh_frame_hdr");
3392 if (eh_frame_hdr != NULL && (eh_frame_hdr->flags & SEC_LOAD))
3393 {
3394 amt = sizeof (struct elf_segment_map);
3395 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3396 if (m == NULL)
3397 goto error_return;
3398 m->next = NULL;
3399 m->p_type = PT_GNU_EH_FRAME;
3400 m->count = 1;
3401 m->sections[0] = eh_frame_hdr;
3402
3403 *pm = m;
3404 pm = &m->next;
3405 }
3406
3407 free (sections);
3408 sections = NULL;
3409
3410 elf_tdata (abfd)->segment_map = mfirst;
3411 return true;
3412
3413 error_return:
3414 if (sections != NULL)
3415 free (sections);
3416 return false;
3417 }
3418
3419 /* Sort sections by address. */
3420
3421 static int
3422 elf_sort_sections (arg1, arg2)
3423 const PTR arg1;
3424 const PTR arg2;
3425 {
3426 const asection *sec1 = *(const asection **) arg1;
3427 const asection *sec2 = *(const asection **) arg2;
3428
3429 /* Sort by LMA first, since this is the address used to
3430 place the section into a segment. */
3431 if (sec1->lma < sec2->lma)
3432 return -1;
3433 else if (sec1->lma > sec2->lma)
3434 return 1;
3435
3436 /* Then sort by VMA. Normally the LMA and the VMA will be
3437 the same, and this will do nothing. */
3438 if (sec1->vma < sec2->vma)
3439 return -1;
3440 else if (sec1->vma > sec2->vma)
3441 return 1;
3442
3443 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3444
3445 #define TOEND(x) (((x)->flags & SEC_LOAD) == 0)
3446
3447 if (TOEND (sec1))
3448 {
3449 if (TOEND (sec2))
3450 {
3451 /* If the indicies are the same, do not return 0
3452 here, but continue to try the next comparison. */
3453 if (sec1->target_index - sec2->target_index != 0)
3454 return sec1->target_index - sec2->target_index;
3455 }
3456 else
3457 return 1;
3458 }
3459 else if (TOEND (sec2))
3460 return -1;
3461
3462 #undef TOEND
3463
3464 /* Sort by size, to put zero sized sections
3465 before others at the same address. */
3466
3467 if (sec1->_raw_size < sec2->_raw_size)
3468 return -1;
3469 if (sec1->_raw_size > sec2->_raw_size)
3470 return 1;
3471
3472 return sec1->target_index - sec2->target_index;
3473 }
3474
3475 /* Assign file positions to the sections based on the mapping from
3476 sections to segments. This function also sets up some fields in
3477 the file header, and writes out the program headers. */
3478
3479 static boolean
3480 assign_file_positions_for_segments (abfd)
3481 bfd *abfd;
3482 {
3483 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3484 unsigned int count;
3485 struct elf_segment_map *m;
3486 unsigned int alloc;
3487 Elf_Internal_Phdr *phdrs;
3488 file_ptr off, voff;
3489 bfd_vma filehdr_vaddr, filehdr_paddr;
3490 bfd_vma phdrs_vaddr, phdrs_paddr;
3491 Elf_Internal_Phdr *p;
3492 bfd_size_type amt;
3493
3494 if (elf_tdata (abfd)->segment_map == NULL)
3495 {
3496 if (! map_sections_to_segments (abfd))
3497 return false;
3498 }
3499 else
3500 {
3501 /* The placement algorithm assumes that non allocated sections are
3502 not in PT_LOAD segments. We ensure this here by removing such
3503 sections from the segment map. */
3504 for (m = elf_tdata (abfd)->segment_map;
3505 m != NULL;
3506 m = m->next)
3507 {
3508 unsigned int new_count;
3509 unsigned int i;
3510
3511 if (m->p_type != PT_LOAD)
3512 continue;
3513
3514 new_count = 0;
3515 for (i = 0; i < m->count; i ++)
3516 {
3517 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3518 {
3519 if (i != new_count)
3520 m->sections[new_count] = m->sections[i];
3521
3522 new_count ++;
3523 }
3524 }
3525
3526 if (new_count != m->count)
3527 m->count = new_count;
3528 }
3529 }
3530
3531 if (bed->elf_backend_modify_segment_map)
3532 {
3533 if (! (*bed->elf_backend_modify_segment_map) (abfd))
3534 return false;
3535 }
3536
3537 count = 0;
3538 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3539 ++count;
3540
3541 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3542 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3543 elf_elfheader (abfd)->e_phnum = count;
3544
3545 if (count == 0)
3546 return true;
3547
3548 /* If we already counted the number of program segments, make sure
3549 that we allocated enough space. This happens when SIZEOF_HEADERS
3550 is used in a linker script. */
3551 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3552 if (alloc != 0 && count > alloc)
3553 {
3554 ((*_bfd_error_handler)
3555 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3556 bfd_get_filename (abfd), alloc, count));
3557 bfd_set_error (bfd_error_bad_value);
3558 return false;
3559 }
3560
3561 if (alloc == 0)
3562 alloc = count;
3563
3564 amt = alloc * sizeof (Elf_Internal_Phdr);
3565 phdrs = (Elf_Internal_Phdr *) bfd_alloc (abfd, amt);
3566 if (phdrs == NULL)
3567 return false;
3568
3569 off = bed->s->sizeof_ehdr;
3570 off += alloc * bed->s->sizeof_phdr;
3571
3572 filehdr_vaddr = 0;
3573 filehdr_paddr = 0;
3574 phdrs_vaddr = 0;
3575 phdrs_paddr = 0;
3576
3577 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3578 m != NULL;
3579 m = m->next, p++)
3580 {
3581 unsigned int i;
3582 asection **secpp;
3583
3584 /* If elf_segment_map is not from map_sections_to_segments, the
3585 sections may not be correctly ordered. NOTE: sorting should
3586 not be done to the PT_NOTE section of a corefile, which may
3587 contain several pseudo-sections artificially created by bfd.
3588 Sorting these pseudo-sections breaks things badly. */
3589 if (m->count > 1
3590 && !(elf_elfheader (abfd)->e_type == ET_CORE
3591 && m->p_type == PT_NOTE))
3592 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3593 elf_sort_sections);
3594
3595 p->p_type = m->p_type;
3596 p->p_flags = m->p_flags;
3597
3598 if (p->p_type == PT_LOAD
3599 && m->count > 0
3600 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3601 {
3602 if ((abfd->flags & D_PAGED) != 0)
3603 off += (m->sections[0]->vma - off) % bed->maxpagesize;
3604 else
3605 {
3606 bfd_size_type align;
3607
3608 align = 0;
3609 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3610 {
3611 bfd_size_type secalign;
3612
3613 secalign = bfd_get_section_alignment (abfd, *secpp);
3614 if (secalign > align)
3615 align = secalign;
3616 }
3617
3618 off += (m->sections[0]->vma - off) % (1 << align);
3619 }
3620 }
3621
3622 if (m->count == 0)
3623 p->p_vaddr = 0;
3624 else
3625 p->p_vaddr = m->sections[0]->vma;
3626
3627 if (m->p_paddr_valid)
3628 p->p_paddr = m->p_paddr;
3629 else if (m->count == 0)
3630 p->p_paddr = 0;
3631 else
3632 p->p_paddr = m->sections[0]->lma;
3633
3634 if (p->p_type == PT_LOAD
3635 && (abfd->flags & D_PAGED) != 0)
3636 p->p_align = bed->maxpagesize;
3637 else if (m->count == 0)
3638 p->p_align = bed->s->file_align;
3639 else
3640 p->p_align = 0;
3641
3642 p->p_offset = 0;
3643 p->p_filesz = 0;
3644 p->p_memsz = 0;
3645
3646 if (m->includes_filehdr)
3647 {
3648 if (! m->p_flags_valid)
3649 p->p_flags |= PF_R;
3650 p->p_offset = 0;
3651 p->p_filesz = bed->s->sizeof_ehdr;
3652 p->p_memsz = bed->s->sizeof_ehdr;
3653 if (m->count > 0)
3654 {
3655 BFD_ASSERT (p->p_type == PT_LOAD);
3656
3657 if (p->p_vaddr < (bfd_vma) off)
3658 {
3659 (*_bfd_error_handler)
3660 (_("%s: Not enough room for program headers, try linking with -N"),
3661 bfd_get_filename (abfd));
3662 bfd_set_error (bfd_error_bad_value);
3663 return false;
3664 }
3665
3666 p->p_vaddr -= off;
3667 if (! m->p_paddr_valid)
3668 p->p_paddr -= off;
3669 }
3670 if (p->p_type == PT_LOAD)
3671 {
3672 filehdr_vaddr = p->p_vaddr;
3673 filehdr_paddr = p->p_paddr;
3674 }
3675 }
3676
3677 if (m->includes_phdrs)
3678 {
3679 if (! m->p_flags_valid)
3680 p->p_flags |= PF_R;
3681
3682 if (m->includes_filehdr)
3683 {
3684 if (p->p_type == PT_LOAD)
3685 {
3686 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
3687 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
3688 }
3689 }
3690 else
3691 {
3692 p->p_offset = bed->s->sizeof_ehdr;
3693
3694 if (m->count > 0)
3695 {
3696 BFD_ASSERT (p->p_type == PT_LOAD);
3697 p->p_vaddr -= off - p->p_offset;
3698 if (! m->p_paddr_valid)
3699 p->p_paddr -= off - p->p_offset;
3700 }
3701
3702 if (p->p_type == PT_LOAD)
3703 {
3704 phdrs_vaddr = p->p_vaddr;
3705 phdrs_paddr = p->p_paddr;
3706 }
3707 else
3708 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
3709 }
3710
3711 p->p_filesz += alloc * bed->s->sizeof_phdr;
3712 p->p_memsz += alloc * bed->s->sizeof_phdr;
3713 }
3714
3715 if (p->p_type == PT_LOAD
3716 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
3717 {
3718 if (! m->includes_filehdr && ! m->includes_phdrs)
3719 p->p_offset = off;
3720 else
3721 {
3722 file_ptr adjust;
3723
3724 adjust = off - (p->p_offset + p->p_filesz);
3725 p->p_filesz += adjust;
3726 p->p_memsz += adjust;
3727 }
3728 }
3729
3730 voff = off;
3731
3732 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3733 {
3734 asection *sec;
3735 flagword flags;
3736 bfd_size_type align;
3737
3738 sec = *secpp;
3739 flags = sec->flags;
3740 align = 1 << bfd_get_section_alignment (abfd, sec);
3741
3742 /* The section may have artificial alignment forced by a
3743 link script. Notice this case by the gap between the
3744 cumulative phdr lma and the section's lma. */
3745 if (p->p_paddr + p->p_memsz < sec->lma)
3746 {
3747 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
3748
3749 p->p_memsz += adjust;
3750 off += adjust;
3751 voff += adjust;
3752 if ((flags & SEC_LOAD) != 0)
3753 p->p_filesz += adjust;
3754 }
3755
3756 if (p->p_type == PT_LOAD)
3757 {
3758 bfd_signed_vma adjust;
3759
3760 if ((flags & SEC_LOAD) != 0)
3761 {
3762 adjust = sec->lma - (p->p_paddr + p->p_memsz);
3763 if (adjust < 0)
3764 adjust = 0;
3765 }
3766 else if ((flags & SEC_ALLOC) != 0)
3767 {
3768 /* The section VMA must equal the file position
3769 modulo the page size. FIXME: I'm not sure if
3770 this adjustment is really necessary. We used to
3771 not have the SEC_LOAD case just above, and then
3772 this was necessary, but now I'm not sure. */
3773 if ((abfd->flags & D_PAGED) != 0)
3774 adjust = (sec->vma - voff) % bed->maxpagesize;
3775 else
3776 adjust = (sec->vma - voff) % align;
3777 }
3778 else
3779 adjust = 0;
3780
3781 if (adjust != 0)
3782 {
3783 if (i == 0)
3784 {
3785 (* _bfd_error_handler) (_("\
3786 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
3787 bfd_section_name (abfd, sec),
3788 sec->lma,
3789 p->p_paddr);
3790 return false;
3791 }
3792 p->p_memsz += adjust;
3793 off += adjust;
3794 voff += adjust;
3795 if ((flags & SEC_LOAD) != 0)
3796 p->p_filesz += adjust;
3797 }
3798
3799 sec->filepos = off;
3800
3801 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
3802 used in a linker script we may have a section with
3803 SEC_LOAD clear but which is supposed to have
3804 contents. */
3805 if ((flags & SEC_LOAD) != 0
3806 || (flags & SEC_HAS_CONTENTS) != 0)
3807 off += sec->_raw_size;
3808
3809 if ((flags & SEC_ALLOC) != 0)
3810 voff += sec->_raw_size;
3811 }
3812
3813 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
3814 {
3815 /* The actual "note" segment has i == 0.
3816 This is the one that actually contains everything. */
3817 if (i == 0)
3818 {
3819 sec->filepos = off;
3820 p->p_filesz = sec->_raw_size;
3821 off += sec->_raw_size;
3822 voff = off;
3823 }
3824 else
3825 {
3826 /* Fake sections -- don't need to be written. */
3827 sec->filepos = 0;
3828 sec->_raw_size = 0;
3829 flags = sec->flags = 0;
3830 }
3831 p->p_memsz = 0;
3832 p->p_align = 1;
3833 }
3834 else
3835 {
3836 p->p_memsz += sec->_raw_size;
3837
3838 if ((flags & SEC_LOAD) != 0)
3839 p->p_filesz += sec->_raw_size;
3840
3841 if (p->p_type == PT_TLS
3842 && sec->_raw_size == 0
3843 && (sec->flags & SEC_HAS_CONTENTS) == 0)
3844 {
3845 struct bfd_link_order *o;
3846 bfd_vma tbss_size = 0;
3847
3848 for (o = sec->link_order_head; o != NULL; o = o->next)
3849 if (tbss_size < o->offset + o->size)
3850 tbss_size = o->offset + o->size;
3851
3852 p->p_memsz += tbss_size;
3853 }
3854
3855 if (align > p->p_align
3856 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
3857 p->p_align = align;
3858 }
3859
3860 if (! m->p_flags_valid)
3861 {
3862 p->p_flags |= PF_R;
3863 if ((flags & SEC_CODE) != 0)
3864 p->p_flags |= PF_X;
3865 if ((flags & SEC_READONLY) == 0)
3866 p->p_flags |= PF_W;
3867 }
3868 }
3869 }
3870
3871 /* Now that we have set the section file positions, we can set up
3872 the file positions for the non PT_LOAD segments. */
3873 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3874 m != NULL;
3875 m = m->next, p++)
3876 {
3877 if (p->p_type != PT_LOAD && m->count > 0)
3878 {
3879 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
3880 p->p_offset = m->sections[0]->filepos;
3881 }
3882 if (m->count == 0)
3883 {
3884 if (m->includes_filehdr)
3885 {
3886 p->p_vaddr = filehdr_vaddr;
3887 if (! m->p_paddr_valid)
3888 p->p_paddr = filehdr_paddr;
3889 }
3890 else if (m->includes_phdrs)
3891 {
3892 p->p_vaddr = phdrs_vaddr;
3893 if (! m->p_paddr_valid)
3894 p->p_paddr = phdrs_paddr;
3895 }
3896 }
3897 }
3898
3899 /* If additional nonloadable filepos adjustments are required,
3900 do them now. */
3901 if (bed->set_nonloadable_filepos)
3902 (*bed->set_nonloadable_filepos) (abfd, phdrs);
3903
3904 /* Clear out any program headers we allocated but did not use. */
3905 for (; count < alloc; count++, p++)
3906 {
3907 memset (p, 0, sizeof *p);
3908 p->p_type = PT_NULL;
3909 }
3910
3911 elf_tdata (abfd)->phdr = phdrs;
3912
3913 elf_tdata (abfd)->next_file_pos = off;
3914
3915 /* Write out the program headers. */
3916 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
3917 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
3918 return false;
3919
3920 return true;
3921 }
3922
3923 /* Get the size of the program header.
3924
3925 If this is called by the linker before any of the section VMA's are set, it
3926 can't calculate the correct value for a strange memory layout. This only
3927 happens when SIZEOF_HEADERS is used in a linker script. In this case,
3928 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
3929 data segment (exclusive of .interp and .dynamic).
3930
3931 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
3932 will be two segments. */
3933
3934 static bfd_size_type
3935 get_program_header_size (abfd)
3936 bfd *abfd;
3937 {
3938 size_t segs;
3939 asection *s;
3940 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3941
3942 /* We can't return a different result each time we're called. */
3943 if (elf_tdata (abfd)->program_header_size != 0)
3944 return elf_tdata (abfd)->program_header_size;
3945
3946 if (elf_tdata (abfd)->segment_map != NULL)
3947 {
3948 struct elf_segment_map *m;
3949
3950 segs = 0;
3951 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3952 ++segs;
3953 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
3954 return elf_tdata (abfd)->program_header_size;
3955 }
3956
3957 /* Assume we will need exactly two PT_LOAD segments: one for text
3958 and one for data. */
3959 segs = 2;
3960
3961 s = bfd_get_section_by_name (abfd, ".interp");
3962 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3963 {
3964 /* If we have a loadable interpreter section, we need a
3965 PT_INTERP segment. In this case, assume we also need a
3966 PT_PHDR segment, although that may not be true for all
3967 targets. */
3968 segs += 2;
3969 }
3970
3971 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3972 {
3973 /* We need a PT_DYNAMIC segment. */
3974 ++segs;
3975 }
3976
3977 if (elf_tdata (abfd)->eh_frame_hdr
3978 && bfd_get_section_by_name (abfd, ".eh_frame_hdr") != NULL)
3979 {
3980 /* We need a PT_GNU_EH_FRAME segment. */
3981 ++segs;
3982 }
3983
3984 for (s = abfd->sections; s != NULL; s = s->next)
3985 {
3986 if ((s->flags & SEC_LOAD) != 0
3987 && strncmp (s->name, ".note", 5) == 0)
3988 {
3989 /* We need a PT_NOTE segment. */
3990 ++segs;
3991 }
3992 }
3993
3994 for (s = abfd->sections; s != NULL; s = s->next)
3995 {
3996 if (s->flags & SEC_THREAD_LOCAL)
3997 {
3998 /* We need a PT_TLS segment. */
3999 ++segs;
4000 break;
4001 }
4002 }
4003
4004 /* Let the backend count up any program headers it might need. */
4005 if (bed->elf_backend_additional_program_headers)
4006 {
4007 int a;
4008
4009 a = (*bed->elf_backend_additional_program_headers) (abfd);
4010 if (a == -1)
4011 abort ();
4012 segs += a;
4013 }
4014
4015 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4016 return elf_tdata (abfd)->program_header_size;
4017 }
4018
4019 /* Work out the file positions of all the sections. This is called by
4020 _bfd_elf_compute_section_file_positions. All the section sizes and
4021 VMAs must be known before this is called.
4022
4023 We do not consider reloc sections at this point, unless they form
4024 part of the loadable image. Reloc sections are assigned file
4025 positions in assign_file_positions_for_relocs, which is called by
4026 write_object_contents and final_link.
4027
4028 We also don't set the positions of the .symtab and .strtab here. */
4029
4030 static boolean
4031 assign_file_positions_except_relocs (abfd)
4032 bfd *abfd;
4033 {
4034 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4035 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4036 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4037 unsigned int num_sec = elf_numsections (abfd);
4038 file_ptr off;
4039 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4040
4041 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4042 && bfd_get_format (abfd) != bfd_core)
4043 {
4044 Elf_Internal_Shdr **hdrpp;
4045 unsigned int i;
4046
4047 /* Start after the ELF header. */
4048 off = i_ehdrp->e_ehsize;
4049
4050 /* We are not creating an executable, which means that we are
4051 not creating a program header, and that the actual order of
4052 the sections in the file is unimportant. */
4053 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4054 {
4055 Elf_Internal_Shdr *hdr;
4056
4057 hdr = *hdrpp;
4058 if (hdr->sh_type == SHT_REL
4059 || hdr->sh_type == SHT_RELA
4060 || i == tdata->symtab_section
4061 || i == tdata->symtab_shndx_section
4062 || i == tdata->strtab_section)
4063 {
4064 hdr->sh_offset = -1;
4065 }
4066 else
4067 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4068
4069 if (i == SHN_LORESERVE - 1)
4070 {
4071 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4072 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4073 }
4074 }
4075 }
4076 else
4077 {
4078 unsigned int i;
4079 Elf_Internal_Shdr **hdrpp;
4080
4081 /* Assign file positions for the loaded sections based on the
4082 assignment of sections to segments. */
4083 if (! assign_file_positions_for_segments (abfd))
4084 return false;
4085
4086 /* Assign file positions for the other sections. */
4087
4088 off = elf_tdata (abfd)->next_file_pos;
4089 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4090 {
4091 Elf_Internal_Shdr *hdr;
4092
4093 hdr = *hdrpp;
4094 if (hdr->bfd_section != NULL
4095 && hdr->bfd_section->filepos != 0)
4096 hdr->sh_offset = hdr->bfd_section->filepos;
4097 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4098 {
4099 ((*_bfd_error_handler)
4100 (_("%s: warning: allocated section `%s' not in segment"),
4101 bfd_get_filename (abfd),
4102 (hdr->bfd_section == NULL
4103 ? "*unknown*"
4104 : hdr->bfd_section->name)));
4105 if ((abfd->flags & D_PAGED) != 0)
4106 off += (hdr->sh_addr - off) % bed->maxpagesize;
4107 else
4108 off += (hdr->sh_addr - off) % hdr->sh_addralign;
4109 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4110 false);
4111 }
4112 else if (hdr->sh_type == SHT_REL
4113 || hdr->sh_type == SHT_RELA
4114 || hdr == i_shdrpp[tdata->symtab_section]
4115 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4116 || hdr == i_shdrpp[tdata->strtab_section])
4117 hdr->sh_offset = -1;
4118 else
4119 off = _bfd_elf_assign_file_position_for_section (hdr, off, true);
4120
4121 if (i == SHN_LORESERVE - 1)
4122 {
4123 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4124 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4125 }
4126 }
4127 }
4128
4129 /* Place the section headers. */
4130 off = align_file_position (off, bed->s->file_align);
4131 i_ehdrp->e_shoff = off;
4132 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4133
4134 elf_tdata (abfd)->next_file_pos = off;
4135
4136 return true;
4137 }
4138
4139 static boolean
4140 prep_headers (abfd)
4141 bfd *abfd;
4142 {
4143 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4144 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4145 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4146 struct elf_strtab_hash *shstrtab;
4147 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4148
4149 i_ehdrp = elf_elfheader (abfd);
4150 i_shdrp = elf_elfsections (abfd);
4151
4152 shstrtab = _bfd_elf_strtab_init ();
4153 if (shstrtab == NULL)
4154 return false;
4155
4156 elf_shstrtab (abfd) = shstrtab;
4157
4158 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4159 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4160 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4161 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4162
4163 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4164 i_ehdrp->e_ident[EI_DATA] =
4165 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4166 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4167
4168 if ((abfd->flags & DYNAMIC) != 0)
4169 i_ehdrp->e_type = ET_DYN;
4170 else if ((abfd->flags & EXEC_P) != 0)
4171 i_ehdrp->e_type = ET_EXEC;
4172 else if (bfd_get_format (abfd) == bfd_core)
4173 i_ehdrp->e_type = ET_CORE;
4174 else
4175 i_ehdrp->e_type = ET_REL;
4176
4177 switch (bfd_get_arch (abfd))
4178 {
4179 case bfd_arch_unknown:
4180 i_ehdrp->e_machine = EM_NONE;
4181 break;
4182
4183 /* There used to be a long list of cases here, each one setting
4184 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4185 in the corresponding bfd definition. To avoid duplication,
4186 the switch was removed. Machines that need special handling
4187 can generally do it in elf_backend_final_write_processing(),
4188 unless they need the information earlier than the final write.
4189 Such need can generally be supplied by replacing the tests for
4190 e_machine with the conditions used to determine it. */
4191 default:
4192 if (get_elf_backend_data (abfd) != NULL)
4193 i_ehdrp->e_machine = get_elf_backend_data (abfd)->elf_machine_code;
4194 else
4195 i_ehdrp->e_machine = EM_NONE;
4196 }
4197
4198 i_ehdrp->e_version = bed->s->ev_current;
4199 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4200
4201 /* No program header, for now. */
4202 i_ehdrp->e_phoff = 0;
4203 i_ehdrp->e_phentsize = 0;
4204 i_ehdrp->e_phnum = 0;
4205
4206 /* Each bfd section is section header entry. */
4207 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4208 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4209
4210 /* If we're building an executable, we'll need a program header table. */
4211 if (abfd->flags & EXEC_P)
4212 {
4213 /* It all happens later. */
4214 #if 0
4215 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4216
4217 /* elf_build_phdrs() returns a (NULL-terminated) array of
4218 Elf_Internal_Phdrs. */
4219 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4220 i_ehdrp->e_phoff = outbase;
4221 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4222 #endif
4223 }
4224 else
4225 {
4226 i_ehdrp->e_phentsize = 0;
4227 i_phdrp = 0;
4228 i_ehdrp->e_phoff = 0;
4229 }
4230
4231 elf_tdata (abfd)->symtab_hdr.sh_name =
4232 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", false);
4233 elf_tdata (abfd)->strtab_hdr.sh_name =
4234 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", false);
4235 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4236 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", false);
4237 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4238 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4239 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4240 return false;
4241
4242 return true;
4243 }
4244
4245 /* Assign file positions for all the reloc sections which are not part
4246 of the loadable file image. */
4247
4248 void
4249 _bfd_elf_assign_file_positions_for_relocs (abfd)
4250 bfd *abfd;
4251 {
4252 file_ptr off;
4253 unsigned int i, num_sec;
4254 Elf_Internal_Shdr **shdrpp;
4255
4256 off = elf_tdata (abfd)->next_file_pos;
4257
4258 num_sec = elf_numsections (abfd);
4259 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4260 {
4261 Elf_Internal_Shdr *shdrp;
4262
4263 shdrp = *shdrpp;
4264 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4265 && shdrp->sh_offset == -1)
4266 off = _bfd_elf_assign_file_position_for_section (shdrp, off, true);
4267 }
4268
4269 elf_tdata (abfd)->next_file_pos = off;
4270 }
4271
4272 boolean
4273 _bfd_elf_write_object_contents (abfd)
4274 bfd *abfd;
4275 {
4276 struct elf_backend_data *bed = get_elf_backend_data (abfd);
4277 Elf_Internal_Ehdr *i_ehdrp;
4278 Elf_Internal_Shdr **i_shdrp;
4279 boolean failed;
4280 unsigned int count, num_sec;
4281
4282 if (! abfd->output_has_begun
4283 && ! _bfd_elf_compute_section_file_positions
4284 (abfd, (struct bfd_link_info *) NULL))
4285 return false;
4286
4287 i_shdrp = elf_elfsections (abfd);
4288 i_ehdrp = elf_elfheader (abfd);
4289
4290 failed = false;
4291 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4292 if (failed)
4293 return false;
4294
4295 _bfd_elf_assign_file_positions_for_relocs (abfd);
4296
4297 /* After writing the headers, we need to write the sections too... */
4298 num_sec = elf_numsections (abfd);
4299 for (count = 1; count < num_sec; count++)
4300 {
4301 if (bed->elf_backend_section_processing)
4302 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4303 if (i_shdrp[count]->contents)
4304 {
4305 bfd_size_type amt = i_shdrp[count]->sh_size;
4306
4307 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4308 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4309 return false;
4310 }
4311 if (count == SHN_LORESERVE - 1)
4312 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4313 }
4314
4315 /* Write out the section header names. */
4316 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4317 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4318 return false;
4319
4320 if (bed->elf_backend_final_write_processing)
4321 (*bed->elf_backend_final_write_processing) (abfd,
4322 elf_tdata (abfd)->linker);
4323
4324 return bed->s->write_shdrs_and_ehdr (abfd);
4325 }
4326
4327 boolean
4328 _bfd_elf_write_corefile_contents (abfd)
4329 bfd *abfd;
4330 {
4331 /* Hopefully this can be done just like an object file. */
4332 return _bfd_elf_write_object_contents (abfd);
4333 }
4334
4335 /* Given a section, search the header to find them. */
4336
4337 int
4338 _bfd_elf_section_from_bfd_section (abfd, asect)
4339 bfd *abfd;
4340 struct sec *asect;
4341 {
4342 struct elf_backend_data *bed;
4343 int index;
4344
4345 if (elf_section_data (asect) != NULL
4346 && elf_section_data (asect)->this_idx != 0)
4347 return elf_section_data (asect)->this_idx;
4348
4349 if (bfd_is_abs_section (asect))
4350 index = SHN_ABS;
4351 else if (bfd_is_com_section (asect))
4352 index = SHN_COMMON;
4353 else if (bfd_is_und_section (asect))
4354 index = SHN_UNDEF;
4355 else
4356 {
4357 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4358 int maxindex = elf_numsections (abfd);
4359
4360 for (index = 1; index < maxindex; index++)
4361 {
4362 Elf_Internal_Shdr *hdr = i_shdrp[index];
4363
4364 if (hdr != NULL && hdr->bfd_section == asect)
4365 return index;
4366 }
4367 index = -1;
4368 }
4369
4370 bed = get_elf_backend_data (abfd);
4371 if (bed->elf_backend_section_from_bfd_section)
4372 {
4373 int retval = index;
4374
4375 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4376 return retval;
4377 }
4378
4379 if (index == -1)
4380 bfd_set_error (bfd_error_nonrepresentable_section);
4381
4382 return index;
4383 }
4384
4385 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4386 on error. */
4387
4388 int
4389 _bfd_elf_symbol_from_bfd_symbol (abfd, asym_ptr_ptr)
4390 bfd *abfd;
4391 asymbol **asym_ptr_ptr;
4392 {
4393 asymbol *asym_ptr = *asym_ptr_ptr;
4394 int idx;
4395 flagword flags = asym_ptr->flags;
4396
4397 /* When gas creates relocations against local labels, it creates its
4398 own symbol for the section, but does put the symbol into the
4399 symbol chain, so udata is 0. When the linker is generating
4400 relocatable output, this section symbol may be for one of the
4401 input sections rather than the output section. */
4402 if (asym_ptr->udata.i == 0
4403 && (flags & BSF_SECTION_SYM)
4404 && asym_ptr->section)
4405 {
4406 int indx;
4407
4408 if (asym_ptr->section->output_section != NULL)
4409 indx = asym_ptr->section->output_section->index;
4410 else
4411 indx = asym_ptr->section->index;
4412 if (indx < elf_num_section_syms (abfd)
4413 && elf_section_syms (abfd)[indx] != NULL)
4414 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4415 }
4416
4417 idx = asym_ptr->udata.i;
4418
4419 if (idx == 0)
4420 {
4421 /* This case can occur when using --strip-symbol on a symbol
4422 which is used in a relocation entry. */
4423 (*_bfd_error_handler)
4424 (_("%s: symbol `%s' required but not present"),
4425 bfd_archive_filename (abfd), bfd_asymbol_name (asym_ptr));
4426 bfd_set_error (bfd_error_no_symbols);
4427 return -1;
4428 }
4429
4430 #if DEBUG & 4
4431 {
4432 fprintf (stderr,
4433 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4434 (long) asym_ptr, asym_ptr->name, idx, flags,
4435 elf_symbol_flags (flags));
4436 fflush (stderr);
4437 }
4438 #endif
4439
4440 return idx;
4441 }
4442
4443 /* Copy private BFD data. This copies any program header information. */
4444
4445 static boolean
4446 copy_private_bfd_data (ibfd, obfd)
4447 bfd *ibfd;
4448 bfd *obfd;
4449 {
4450 Elf_Internal_Ehdr * iehdr;
4451 struct elf_segment_map * map;
4452 struct elf_segment_map * map_first;
4453 struct elf_segment_map ** pointer_to_map;
4454 Elf_Internal_Phdr * segment;
4455 asection * section;
4456 unsigned int i;
4457 unsigned int num_segments;
4458 boolean phdr_included = false;
4459 bfd_vma maxpagesize;
4460 struct elf_segment_map * phdr_adjust_seg = NULL;
4461 unsigned int phdr_adjust_num = 0;
4462 struct elf_backend_data * bed;
4463
4464 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4465 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4466 return true;
4467
4468 if (elf_tdata (ibfd)->phdr == NULL)
4469 return true;
4470
4471 bed = get_elf_backend_data (ibfd);
4472 iehdr = elf_elfheader (ibfd);
4473
4474 map_first = NULL;
4475 pointer_to_map = &map_first;
4476
4477 num_segments = elf_elfheader (ibfd)->e_phnum;
4478 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4479
4480 /* Returns the end address of the segment + 1. */
4481 #define SEGMENT_END(segment, start) \
4482 (start + (segment->p_memsz > segment->p_filesz \
4483 ? segment->p_memsz : segment->p_filesz))
4484
4485 /* Returns true if the given section is contained within
4486 the given segment. VMA addresses are compared. */
4487 #define IS_CONTAINED_BY_VMA(section, segment) \
4488 (section->vma >= segment->p_vaddr \
4489 && (section->vma + section->_raw_size) \
4490 <= (SEGMENT_END (segment, segment->p_vaddr)))
4491
4492 /* Returns true if the given section is contained within
4493 the given segment. LMA addresses are compared. */
4494 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4495 (section->lma >= base \
4496 && (section->lma + section->_raw_size) \
4497 <= SEGMENT_END (segment, base))
4498
4499 /* Returns true if the given section is contained within the
4500 given segment. Filepos addresses are compared in an elf
4501 backend function. */
4502 #define IS_CONTAINED_BY_FILEPOS(sec, seg, bed) \
4503 (bed->is_contained_by_filepos \
4504 && (*bed->is_contained_by_filepos) (sec, seg))
4505
4506 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4507 #define IS_COREFILE_NOTE(p, s) \
4508 (p->p_type == PT_NOTE \
4509 && bfd_get_format (ibfd) == bfd_core \
4510 && s->vma == 0 && s->lma == 0 \
4511 && (bfd_vma) s->filepos >= p->p_offset \
4512 && (bfd_vma) s->filepos + s->_raw_size \
4513 <= p->p_offset + p->p_filesz)
4514
4515 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4516 linker, which generates a PT_INTERP section with p_vaddr and
4517 p_memsz set to 0. */
4518 #define IS_SOLARIS_PT_INTERP(p, s) \
4519 ( p->p_vaddr == 0 \
4520 && p->p_filesz > 0 \
4521 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4522 && s->_raw_size > 0 \
4523 && (bfd_vma) s->filepos >= p->p_offset \
4524 && ((bfd_vma) s->filepos + s->_raw_size \
4525 <= p->p_offset + p->p_filesz))
4526
4527 /* Decide if the given section should be included in the given segment.
4528 A section will be included if:
4529 1. It is within the address space of the segment -- we use the LMA
4530 if that is set for the segment and the VMA otherwise,
4531 2. It is an allocated segment,
4532 3. There is an output section associated with it,
4533 4. The section has not already been allocated to a previous segment. */
4534 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4535 (((((segment->p_paddr \
4536 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4537 : IS_CONTAINED_BY_VMA (section, segment)) \
4538 || IS_SOLARIS_PT_INTERP (segment, section)) \
4539 && (section->flags & SEC_ALLOC) != 0) \
4540 || IS_COREFILE_NOTE (segment, section) \
4541 || (IS_CONTAINED_BY_FILEPOS (section, segment, bed) \
4542 && (section->flags & SEC_ALLOC) == 0)) \
4543 && section->output_section != NULL \
4544 && ! section->segment_mark)
4545
4546 /* Returns true iff seg1 starts after the end of seg2. */
4547 #define SEGMENT_AFTER_SEGMENT(seg1, seg2) \
4548 (seg1->p_vaddr >= SEGMENT_END (seg2, seg2->p_vaddr))
4549
4550 /* Returns true iff seg1 and seg2 overlap. */
4551 #define SEGMENT_OVERLAPS(seg1, seg2) \
4552 (!(SEGMENT_AFTER_SEGMENT (seg1, seg2) || SEGMENT_AFTER_SEGMENT (seg2, seg1)))
4553
4554 /* Initialise the segment mark field. */
4555 for (section = ibfd->sections; section != NULL; section = section->next)
4556 section->segment_mark = false;
4557
4558 /* Scan through the segments specified in the program header
4559 of the input BFD. For this first scan we look for overlaps
4560 in the loadable segments. These can be created by weird
4561 parameters to objcopy. */
4562 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4563 i < num_segments;
4564 i++, segment++)
4565 {
4566 unsigned int j;
4567 Elf_Internal_Phdr *segment2;
4568
4569 if (segment->p_type != PT_LOAD)
4570 continue;
4571
4572 /* Determine if this segment overlaps any previous segments. */
4573 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4574 {
4575 bfd_signed_vma extra_length;
4576
4577 if (segment2->p_type != PT_LOAD
4578 || ! SEGMENT_OVERLAPS (segment, segment2))
4579 continue;
4580
4581 /* Merge the two segments together. */
4582 if (segment2->p_vaddr < segment->p_vaddr)
4583 {
4584 /* Extend SEGMENT2 to include SEGMENT and then delete
4585 SEGMENT. */
4586 extra_length =
4587 SEGMENT_END (segment, segment->p_vaddr)
4588 - SEGMENT_END (segment2, segment2->p_vaddr);
4589
4590 if (extra_length > 0)
4591 {
4592 segment2->p_memsz += extra_length;
4593 segment2->p_filesz += extra_length;
4594 }
4595
4596 segment->p_type = PT_NULL;
4597
4598 /* Since we have deleted P we must restart the outer loop. */
4599 i = 0;
4600 segment = elf_tdata (ibfd)->phdr;
4601 break;
4602 }
4603 else
4604 {
4605 /* Extend SEGMENT to include SEGMENT2 and then delete
4606 SEGMENT2. */
4607 extra_length =
4608 SEGMENT_END (segment2, segment2->p_vaddr)
4609 - SEGMENT_END (segment, segment->p_vaddr);
4610
4611 if (extra_length > 0)
4612 {
4613 segment->p_memsz += extra_length;
4614 segment->p_filesz += extra_length;
4615 }
4616
4617 segment2->p_type = PT_NULL;
4618 }
4619 }
4620 }
4621
4622 /* The second scan attempts to assign sections to segments. */
4623 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4624 i < num_segments;
4625 i ++, segment ++)
4626 {
4627 unsigned int section_count;
4628 asection ** sections;
4629 asection * output_section;
4630 unsigned int isec;
4631 bfd_vma matching_lma;
4632 bfd_vma suggested_lma;
4633 unsigned int j;
4634 bfd_size_type amt;
4635
4636 if (segment->p_type == PT_NULL)
4637 continue;
4638
4639 /* Compute how many sections might be placed into this segment. */
4640 section_count = 0;
4641 for (section = ibfd->sections; section != NULL; section = section->next)
4642 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4643 ++section_count;
4644
4645 /* Allocate a segment map big enough to contain all of the
4646 sections we have selected. */
4647 amt = sizeof (struct elf_segment_map);
4648 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4649 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
4650 if (map == NULL)
4651 return false;
4652
4653 /* Initialise the fields of the segment map. Default to
4654 using the physical address of the segment in the input BFD. */
4655 map->next = NULL;
4656 map->p_type = segment->p_type;
4657 map->p_flags = segment->p_flags;
4658 map->p_flags_valid = 1;
4659 map->p_paddr = segment->p_paddr;
4660 map->p_paddr_valid = 1;
4661
4662 /* Determine if this segment contains the ELF file header
4663 and if it contains the program headers themselves. */
4664 map->includes_filehdr = (segment->p_offset == 0
4665 && segment->p_filesz >= iehdr->e_ehsize);
4666
4667 map->includes_phdrs = 0;
4668
4669 if (! phdr_included || segment->p_type != PT_LOAD)
4670 {
4671 map->includes_phdrs =
4672 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
4673 && (segment->p_offset + segment->p_filesz
4674 >= ((bfd_vma) iehdr->e_phoff
4675 + iehdr->e_phnum * iehdr->e_phentsize)));
4676
4677 if (segment->p_type == PT_LOAD && map->includes_phdrs)
4678 phdr_included = true;
4679 }
4680
4681 if (section_count == 0)
4682 {
4683 /* Special segments, such as the PT_PHDR segment, may contain
4684 no sections, but ordinary, loadable segments should contain
4685 something. They are allowed by the ELF spec however, so only
4686 a warning is produced. */
4687 if (segment->p_type == PT_LOAD)
4688 (*_bfd_error_handler)
4689 (_("%s: warning: Empty loadable segment detected, is this intentional ?\n"),
4690 bfd_archive_filename (ibfd));
4691
4692 map->count = 0;
4693 *pointer_to_map = map;
4694 pointer_to_map = &map->next;
4695
4696 continue;
4697 }
4698
4699 /* Now scan the sections in the input BFD again and attempt
4700 to add their corresponding output sections to the segment map.
4701 The problem here is how to handle an output section which has
4702 been moved (ie had its LMA changed). There are four possibilities:
4703
4704 1. None of the sections have been moved.
4705 In this case we can continue to use the segment LMA from the
4706 input BFD.
4707
4708 2. All of the sections have been moved by the same amount.
4709 In this case we can change the segment's LMA to match the LMA
4710 of the first section.
4711
4712 3. Some of the sections have been moved, others have not.
4713 In this case those sections which have not been moved can be
4714 placed in the current segment which will have to have its size,
4715 and possibly its LMA changed, and a new segment or segments will
4716 have to be created to contain the other sections.
4717
4718 4. The sections have been moved, but not be the same amount.
4719 In this case we can change the segment's LMA to match the LMA
4720 of the first section and we will have to create a new segment
4721 or segments to contain the other sections.
4722
4723 In order to save time, we allocate an array to hold the section
4724 pointers that we are interested in. As these sections get assigned
4725 to a segment, they are removed from this array. */
4726
4727 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
4728 to work around this long long bug. */
4729 amt = section_count * sizeof (asection *);
4730 sections = (asection **) bfd_malloc (amt);
4731 if (sections == NULL)
4732 return false;
4733
4734 /* Step One: Scan for segment vs section LMA conflicts.
4735 Also add the sections to the section array allocated above.
4736 Also add the sections to the current segment. In the common
4737 case, where the sections have not been moved, this means that
4738 we have completely filled the segment, and there is nothing
4739 more to do. */
4740 isec = 0;
4741 matching_lma = 0;
4742 suggested_lma = 0;
4743
4744 for (j = 0, section = ibfd->sections;
4745 section != NULL;
4746 section = section->next)
4747 {
4748 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4749 {
4750 output_section = section->output_section;
4751
4752 sections[j ++] = section;
4753
4754 /* The Solaris native linker always sets p_paddr to 0.
4755 We try to catch that case here, and set it to the
4756 correct value. */
4757 if (segment->p_paddr == 0
4758 && segment->p_vaddr != 0
4759 && isec == 0
4760 && output_section->lma != 0
4761 && (output_section->vma == (segment->p_vaddr
4762 + (map->includes_filehdr
4763 ? iehdr->e_ehsize
4764 : 0)
4765 + (map->includes_phdrs
4766 ? (iehdr->e_phnum
4767 * iehdr->e_phentsize)
4768 : 0))))
4769 map->p_paddr = segment->p_vaddr;
4770
4771 /* Match up the physical address of the segment with the
4772 LMA address of the output section. */
4773 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4774 || IS_CONTAINED_BY_FILEPOS (section, segment, bed)
4775 || IS_COREFILE_NOTE (segment, section))
4776 {
4777 if (matching_lma == 0)
4778 matching_lma = output_section->lma;
4779
4780 /* We assume that if the section fits within the segment
4781 then it does not overlap any other section within that
4782 segment. */
4783 map->sections[isec ++] = output_section;
4784 }
4785 else if (suggested_lma == 0)
4786 suggested_lma = output_section->lma;
4787 }
4788 }
4789
4790 BFD_ASSERT (j == section_count);
4791
4792 /* Step Two: Adjust the physical address of the current segment,
4793 if necessary. */
4794 if (isec == section_count)
4795 {
4796 /* All of the sections fitted within the segment as currently
4797 specified. This is the default case. Add the segment to
4798 the list of built segments and carry on to process the next
4799 program header in the input BFD. */
4800 map->count = section_count;
4801 *pointer_to_map = map;
4802 pointer_to_map = &map->next;
4803
4804 free (sections);
4805 continue;
4806 }
4807 else
4808 {
4809 if (matching_lma != 0)
4810 {
4811 /* At least one section fits inside the current segment.
4812 Keep it, but modify its physical address to match the
4813 LMA of the first section that fitted. */
4814 map->p_paddr = matching_lma;
4815 }
4816 else
4817 {
4818 /* None of the sections fitted inside the current segment.
4819 Change the current segment's physical address to match
4820 the LMA of the first section. */
4821 map->p_paddr = suggested_lma;
4822 }
4823
4824 /* Offset the segment physical address from the lma
4825 to allow for space taken up by elf headers. */
4826 if (map->includes_filehdr)
4827 map->p_paddr -= iehdr->e_ehsize;
4828
4829 if (map->includes_phdrs)
4830 {
4831 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
4832
4833 /* iehdr->e_phnum is just an estimate of the number
4834 of program headers that we will need. Make a note
4835 here of the number we used and the segment we chose
4836 to hold these headers, so that we can adjust the
4837 offset when we know the correct value. */
4838 phdr_adjust_num = iehdr->e_phnum;
4839 phdr_adjust_seg = map;
4840 }
4841 }
4842
4843 /* Step Three: Loop over the sections again, this time assigning
4844 those that fit to the current segment and removing them from the
4845 sections array; but making sure not to leave large gaps. Once all
4846 possible sections have been assigned to the current segment it is
4847 added to the list of built segments and if sections still remain
4848 to be assigned, a new segment is constructed before repeating
4849 the loop. */
4850 isec = 0;
4851 do
4852 {
4853 map->count = 0;
4854 suggested_lma = 0;
4855
4856 /* Fill the current segment with sections that fit. */
4857 for (j = 0; j < section_count; j++)
4858 {
4859 section = sections[j];
4860
4861 if (section == NULL)
4862 continue;
4863
4864 output_section = section->output_section;
4865
4866 BFD_ASSERT (output_section != NULL);
4867
4868 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4869 || IS_COREFILE_NOTE (segment, section))
4870 {
4871 if (map->count == 0)
4872 {
4873 /* If the first section in a segment does not start at
4874 the beginning of the segment, then something is
4875 wrong. */
4876 if (output_section->lma !=
4877 (map->p_paddr
4878 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
4879 + (map->includes_phdrs
4880 ? iehdr->e_phnum * iehdr->e_phentsize
4881 : 0)))
4882 abort ();
4883 }
4884 else
4885 {
4886 asection * prev_sec;
4887
4888 prev_sec = map->sections[map->count - 1];
4889
4890 /* If the gap between the end of the previous section
4891 and the start of this section is more than
4892 maxpagesize then we need to start a new segment. */
4893 if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size,
4894 maxpagesize)
4895 < BFD_ALIGN (output_section->lma, maxpagesize))
4896 || ((prev_sec->lma + prev_sec->_raw_size)
4897 > output_section->lma))
4898 {
4899 if (suggested_lma == 0)
4900 suggested_lma = output_section->lma;
4901
4902 continue;
4903 }
4904 }
4905
4906 map->sections[map->count++] = output_section;
4907 ++isec;
4908 sections[j] = NULL;
4909 section->segment_mark = true;
4910 }
4911 else if (suggested_lma == 0)
4912 suggested_lma = output_section->lma;
4913 }
4914
4915 BFD_ASSERT (map->count > 0);
4916
4917 /* Add the current segment to the list of built segments. */
4918 *pointer_to_map = map;
4919 pointer_to_map = &map->next;
4920
4921 if (isec < section_count)
4922 {
4923 /* We still have not allocated all of the sections to
4924 segments. Create a new segment here, initialise it
4925 and carry on looping. */
4926 amt = sizeof (struct elf_segment_map);
4927 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4928 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
4929 if (map == NULL)
4930 return false;
4931
4932 /* Initialise the fields of the segment map. Set the physical
4933 physical address to the LMA of the first section that has
4934 not yet been assigned. */
4935 map->next = NULL;
4936 map->p_type = segment->p_type;
4937 map->p_flags = segment->p_flags;
4938 map->p_flags_valid = 1;
4939 map->p_paddr = suggested_lma;
4940 map->p_paddr_valid = 1;
4941 map->includes_filehdr = 0;
4942 map->includes_phdrs = 0;
4943 }
4944 }
4945 while (isec < section_count);
4946
4947 free (sections);
4948 }
4949
4950 /* The Solaris linker creates program headers in which all the
4951 p_paddr fields are zero. When we try to objcopy or strip such a
4952 file, we get confused. Check for this case, and if we find it
4953 reset the p_paddr_valid fields. */
4954 for (map = map_first; map != NULL; map = map->next)
4955 if (map->p_paddr != 0)
4956 break;
4957 if (map == NULL)
4958 {
4959 for (map = map_first; map != NULL; map = map->next)
4960 map->p_paddr_valid = 0;
4961 }
4962
4963 elf_tdata (obfd)->segment_map = map_first;
4964
4965 /* If we had to estimate the number of program headers that were
4966 going to be needed, then check our estimate now and adjust
4967 the offset if necessary. */
4968 if (phdr_adjust_seg != NULL)
4969 {
4970 unsigned int count;
4971
4972 for (count = 0, map = map_first; map != NULL; map = map->next)
4973 count++;
4974
4975 if (count > phdr_adjust_num)
4976 phdr_adjust_seg->p_paddr
4977 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
4978 }
4979
4980 #if 0
4981 /* Final Step: Sort the segments into ascending order of physical
4982 address. */
4983 if (map_first != NULL)
4984 {
4985 struct elf_segment_map *prev;
4986
4987 prev = map_first;
4988 for (map = map_first->next; map != NULL; prev = map, map = map->next)
4989 {
4990 /* Yes I know - its a bubble sort.... */
4991 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
4992 {
4993 /* Swap map and map->next. */
4994 prev->next = map->next;
4995 map->next = map->next->next;
4996 prev->next->next = map;
4997
4998 /* Restart loop. */
4999 map = map_first;
5000 }
5001 }
5002 }
5003 #endif
5004
5005 #undef SEGMENT_END
5006 #undef IS_CONTAINED_BY_VMA
5007 #undef IS_CONTAINED_BY_LMA
5008 #undef IS_CONTAINED_BY_FILEPOS
5009 #undef IS_COREFILE_NOTE
5010 #undef IS_SOLARIS_PT_INTERP
5011 #undef INCLUDE_SECTION_IN_SEGMENT
5012 #undef SEGMENT_AFTER_SEGMENT
5013 #undef SEGMENT_OVERLAPS
5014 return true;
5015 }
5016
5017 /* Copy private section information. This copies over the entsize
5018 field, and sometimes the info field. */
5019
5020 boolean
5021 _bfd_elf_copy_private_section_data (ibfd, isec, obfd, osec)
5022 bfd *ibfd;
5023 asection *isec;
5024 bfd *obfd;
5025 asection *osec;
5026 {
5027 Elf_Internal_Shdr *ihdr, *ohdr;
5028 const struct elf_backend_data *bed = get_elf_backend_data (ibfd);
5029
5030 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5031 || obfd->xvec->flavour != bfd_target_elf_flavour)
5032 return true;
5033
5034 /* Copy over private BFD data if it has not already been copied.
5035 This must be done here, rather than in the copy_private_bfd_data
5036 entry point, because the latter is called after the section
5037 contents have been set, which means that the program headers have
5038 already been worked out. The backend function provides a way to
5039 override the test conditions and code path for the call to
5040 copy_private_bfd_data. */
5041 if (bed->copy_private_bfd_data_p)
5042 {
5043 if ((*bed->copy_private_bfd_data_p) (ibfd, isec, obfd, osec))
5044 if (! copy_private_bfd_data (ibfd, obfd))
5045 return false;
5046 }
5047 else if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5048 {
5049 asection *s;
5050
5051 /* Only set up the segments if there are no more SEC_ALLOC
5052 sections. FIXME: This won't do the right thing if objcopy is
5053 used to remove the last SEC_ALLOC section, since objcopy
5054 won't call this routine in that case. */
5055 for (s = isec->next; s != NULL; s = s->next)
5056 if ((s->flags & SEC_ALLOC) != 0)
5057 break;
5058 if (s == NULL)
5059 {
5060 if (! copy_private_bfd_data (ibfd, obfd))
5061 return false;
5062 }
5063 }
5064
5065 ihdr = &elf_section_data (isec)->this_hdr;
5066 ohdr = &elf_section_data (osec)->this_hdr;
5067
5068 ohdr->sh_entsize = ihdr->sh_entsize;
5069
5070 if (ihdr->sh_type == SHT_SYMTAB
5071 || ihdr->sh_type == SHT_DYNSYM
5072 || ihdr->sh_type == SHT_GNU_verneed
5073 || ihdr->sh_type == SHT_GNU_verdef)
5074 ohdr->sh_info = ihdr->sh_info;
5075
5076 /* Set things up for objcopy. The output SHT_GROUP section will
5077 have its elf_next_in_group pointing back to the input group
5078 members. */
5079 elf_next_in_group (osec) = elf_next_in_group (isec);
5080 elf_group_name (osec) = elf_group_name (isec);
5081
5082 elf_section_data (osec)->use_rela_p
5083 = elf_section_data (isec)->use_rela_p;
5084
5085 return true;
5086 }
5087
5088 /* Copy private symbol information. If this symbol is in a section
5089 which we did not map into a BFD section, try to map the section
5090 index correctly. We use special macro definitions for the mapped
5091 section indices; these definitions are interpreted by the
5092 swap_out_syms function. */
5093
5094 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5095 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5096 #define MAP_STRTAB (SHN_HIOS + 3)
5097 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5098 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5099
5100 boolean
5101 _bfd_elf_copy_private_symbol_data (ibfd, isymarg, obfd, osymarg)
5102 bfd *ibfd;
5103 asymbol *isymarg;
5104 bfd *obfd;
5105 asymbol *osymarg;
5106 {
5107 elf_symbol_type *isym, *osym;
5108
5109 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5110 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5111 return true;
5112
5113 isym = elf_symbol_from (ibfd, isymarg);
5114 osym = elf_symbol_from (obfd, osymarg);
5115
5116 if (isym != NULL
5117 && osym != NULL
5118 && bfd_is_abs_section (isym->symbol.section))
5119 {
5120 unsigned int shndx;
5121
5122 shndx = isym->internal_elf_sym.st_shndx;
5123 if (shndx == elf_onesymtab (ibfd))
5124 shndx = MAP_ONESYMTAB;
5125 else if (shndx == elf_dynsymtab (ibfd))
5126 shndx = MAP_DYNSYMTAB;
5127 else if (shndx == elf_tdata (ibfd)->strtab_section)
5128 shndx = MAP_STRTAB;
5129 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5130 shndx = MAP_SHSTRTAB;
5131 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5132 shndx = MAP_SYM_SHNDX;
5133 osym->internal_elf_sym.st_shndx = shndx;
5134 }
5135
5136 return true;
5137 }
5138
5139 /* Swap out the symbols. */
5140
5141 static boolean
5142 swap_out_syms (abfd, sttp, relocatable_p)
5143 bfd *abfd;
5144 struct bfd_strtab_hash **sttp;
5145 int relocatable_p;
5146 {
5147 struct elf_backend_data *bed;
5148 int symcount;
5149 asymbol **syms;
5150 struct bfd_strtab_hash *stt;
5151 Elf_Internal_Shdr *symtab_hdr;
5152 Elf_Internal_Shdr *symtab_shndx_hdr;
5153 Elf_Internal_Shdr *symstrtab_hdr;
5154 char *outbound_syms;
5155 char *outbound_shndx;
5156 int idx;
5157 bfd_size_type amt;
5158
5159 if (!elf_map_symbols (abfd))
5160 return false;
5161
5162 /* Dump out the symtabs. */
5163 stt = _bfd_elf_stringtab_init ();
5164 if (stt == NULL)
5165 return false;
5166
5167 bed = get_elf_backend_data (abfd);
5168 symcount = bfd_get_symcount (abfd);
5169 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5170 symtab_hdr->sh_type = SHT_SYMTAB;
5171 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5172 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5173 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5174 symtab_hdr->sh_addralign = bed->s->file_align;
5175
5176 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5177 symstrtab_hdr->sh_type = SHT_STRTAB;
5178
5179 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5180 outbound_syms = bfd_alloc (abfd, amt);
5181 if (outbound_syms == NULL)
5182 return false;
5183 symtab_hdr->contents = (PTR) outbound_syms;
5184
5185 outbound_shndx = NULL;
5186 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5187 if (symtab_shndx_hdr->sh_name != 0)
5188 {
5189 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5190 outbound_shndx = bfd_zalloc (abfd, amt);
5191 if (outbound_shndx == NULL)
5192 return false;
5193 symtab_shndx_hdr->contents = outbound_shndx;
5194 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5195 symtab_shndx_hdr->sh_size = amt;
5196 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5197 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5198 }
5199
5200 /* now generate the data (for "contents") */
5201 {
5202 /* Fill in zeroth symbol and swap it out. */
5203 Elf_Internal_Sym sym;
5204 sym.st_name = 0;
5205 sym.st_value = 0;
5206 sym.st_size = 0;
5207 sym.st_info = 0;
5208 sym.st_other = 0;
5209 sym.st_shndx = SHN_UNDEF;
5210 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5211 outbound_syms += bed->s->sizeof_sym;
5212 if (outbound_shndx != NULL)
5213 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5214 }
5215
5216 syms = bfd_get_outsymbols (abfd);
5217 for (idx = 0; idx < symcount; idx++)
5218 {
5219 Elf_Internal_Sym sym;
5220 bfd_vma value = syms[idx]->value;
5221 elf_symbol_type *type_ptr;
5222 flagword flags = syms[idx]->flags;
5223 int type;
5224
5225 if ((flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5226 {
5227 /* Local section symbols have no name. */
5228 sym.st_name = 0;
5229 }
5230 else
5231 {
5232 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5233 syms[idx]->name,
5234 true, false);
5235 if (sym.st_name == (unsigned long) -1)
5236 return false;
5237 }
5238
5239 type_ptr = elf_symbol_from (abfd, syms[idx]);
5240
5241 if ((flags & BSF_SECTION_SYM) == 0
5242 && bfd_is_com_section (syms[idx]->section))
5243 {
5244 /* ELF common symbols put the alignment into the `value' field,
5245 and the size into the `size' field. This is backwards from
5246 how BFD handles it, so reverse it here. */
5247 sym.st_size = value;
5248 if (type_ptr == NULL
5249 || type_ptr->internal_elf_sym.st_value == 0)
5250 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5251 else
5252 sym.st_value = type_ptr->internal_elf_sym.st_value;
5253 sym.st_shndx = _bfd_elf_section_from_bfd_section
5254 (abfd, syms[idx]->section);
5255 }
5256 else
5257 {
5258 asection *sec = syms[idx]->section;
5259 int shndx;
5260
5261 if (sec->output_section)
5262 {
5263 value += sec->output_offset;
5264 sec = sec->output_section;
5265 }
5266 /* Don't add in the section vma for relocatable output. */
5267 if (! relocatable_p)
5268 value += sec->vma;
5269 sym.st_value = value;
5270 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5271
5272 if (bfd_is_abs_section (sec)
5273 && type_ptr != NULL
5274 && type_ptr->internal_elf_sym.st_shndx != 0)
5275 {
5276 /* This symbol is in a real ELF section which we did
5277 not create as a BFD section. Undo the mapping done
5278 by copy_private_symbol_data. */
5279 shndx = type_ptr->internal_elf_sym.st_shndx;
5280 switch (shndx)
5281 {
5282 case MAP_ONESYMTAB:
5283 shndx = elf_onesymtab (abfd);
5284 break;
5285 case MAP_DYNSYMTAB:
5286 shndx = elf_dynsymtab (abfd);
5287 break;
5288 case MAP_STRTAB:
5289 shndx = elf_tdata (abfd)->strtab_section;
5290 break;
5291 case MAP_SHSTRTAB:
5292 shndx = elf_tdata (abfd)->shstrtab_section;
5293 break;
5294 case MAP_SYM_SHNDX:
5295 shndx = elf_tdata (abfd)->symtab_shndx_section;
5296 break;
5297 default:
5298 break;
5299 }
5300 }
5301 else
5302 {
5303 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5304
5305 if (shndx == -1)
5306 {
5307 asection *sec2;
5308
5309 /* Writing this would be a hell of a lot easier if
5310 we had some decent documentation on bfd, and
5311 knew what to expect of the library, and what to
5312 demand of applications. For example, it
5313 appears that `objcopy' might not set the
5314 section of a symbol to be a section that is
5315 actually in the output file. */
5316 sec2 = bfd_get_section_by_name (abfd, sec->name);
5317 BFD_ASSERT (sec2 != 0);
5318 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5319 BFD_ASSERT (shndx != -1);
5320 }
5321 }
5322
5323 sym.st_shndx = shndx;
5324 }
5325
5326 if ((flags & BSF_THREAD_LOCAL) != 0)
5327 type = STT_TLS;
5328 else if ((flags & BSF_FUNCTION) != 0)
5329 type = STT_FUNC;
5330 else if ((flags & BSF_OBJECT) != 0)
5331 type = STT_OBJECT;
5332 else
5333 type = STT_NOTYPE;
5334
5335 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5336 type = STT_TLS;
5337
5338 /* Processor-specific types */
5339 if (type_ptr != NULL
5340 && bed->elf_backend_get_symbol_type)
5341 type = ((*bed->elf_backend_get_symbol_type)
5342 (&type_ptr->internal_elf_sym, type));
5343
5344 if (flags & BSF_SECTION_SYM)
5345 {
5346 if (flags & BSF_GLOBAL)
5347 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5348 else
5349 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5350 }
5351 else if (bfd_is_com_section (syms[idx]->section))
5352 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5353 else if (bfd_is_und_section (syms[idx]->section))
5354 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5355 ? STB_WEAK
5356 : STB_GLOBAL),
5357 type);
5358 else if (flags & BSF_FILE)
5359 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5360 else
5361 {
5362 int bind = STB_LOCAL;
5363
5364 if (flags & BSF_LOCAL)
5365 bind = STB_LOCAL;
5366 else if (flags & BSF_WEAK)
5367 bind = STB_WEAK;
5368 else if (flags & BSF_GLOBAL)
5369 bind = STB_GLOBAL;
5370
5371 sym.st_info = ELF_ST_INFO (bind, type);
5372 }
5373
5374 if (type_ptr != NULL)
5375 sym.st_other = type_ptr->internal_elf_sym.st_other;
5376 else
5377 sym.st_other = 0;
5378
5379 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5380 outbound_syms += bed->s->sizeof_sym;
5381 if (outbound_shndx != NULL)
5382 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5383 }
5384
5385 *sttp = stt;
5386 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5387 symstrtab_hdr->sh_type = SHT_STRTAB;
5388
5389 symstrtab_hdr->sh_flags = 0;
5390 symstrtab_hdr->sh_addr = 0;
5391 symstrtab_hdr->sh_entsize = 0;
5392 symstrtab_hdr->sh_link = 0;
5393 symstrtab_hdr->sh_info = 0;
5394 symstrtab_hdr->sh_addralign = 1;
5395
5396 return true;
5397 }
5398
5399 /* Return the number of bytes required to hold the symtab vector.
5400
5401 Note that we base it on the count plus 1, since we will null terminate
5402 the vector allocated based on this size. However, the ELF symbol table
5403 always has a dummy entry as symbol #0, so it ends up even. */
5404
5405 long
5406 _bfd_elf_get_symtab_upper_bound (abfd)
5407 bfd *abfd;
5408 {
5409 long symcount;
5410 long symtab_size;
5411 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5412
5413 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5414 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5415 if (symcount > 0)
5416 symtab_size -= sizeof (asymbol *);
5417
5418 return symtab_size;
5419 }
5420
5421 long
5422 _bfd_elf_get_dynamic_symtab_upper_bound (abfd)
5423 bfd *abfd;
5424 {
5425 long symcount;
5426 long symtab_size;
5427 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5428
5429 if (elf_dynsymtab (abfd) == 0)
5430 {
5431 bfd_set_error (bfd_error_invalid_operation);
5432 return -1;
5433 }
5434
5435 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5436 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5437 if (symcount > 0)
5438 symtab_size -= sizeof (asymbol *);
5439
5440 return symtab_size;
5441 }
5442
5443 long
5444 _bfd_elf_get_reloc_upper_bound (abfd, asect)
5445 bfd *abfd ATTRIBUTE_UNUSED;
5446 sec_ptr asect;
5447 {
5448 return (asect->reloc_count + 1) * sizeof (arelent *);
5449 }
5450
5451 /* Canonicalize the relocs. */
5452
5453 long
5454 _bfd_elf_canonicalize_reloc (abfd, section, relptr, symbols)
5455 bfd *abfd;
5456 sec_ptr section;
5457 arelent **relptr;
5458 asymbol **symbols;
5459 {
5460 arelent *tblptr;
5461 unsigned int i;
5462 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5463
5464 if (! bed->s->slurp_reloc_table (abfd, section, symbols, false))
5465 return -1;
5466
5467 tblptr = section->relocation;
5468 for (i = 0; i < section->reloc_count; i++)
5469 *relptr++ = tblptr++;
5470
5471 *relptr = NULL;
5472
5473 return section->reloc_count;
5474 }
5475
5476 long
5477 _bfd_elf_get_symtab (abfd, alocation)
5478 bfd *abfd;
5479 asymbol **alocation;
5480 {
5481 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5482 long symcount = bed->s->slurp_symbol_table (abfd, alocation, false);
5483
5484 if (symcount >= 0)
5485 bfd_get_symcount (abfd) = symcount;
5486 return symcount;
5487 }
5488
5489 long
5490 _bfd_elf_canonicalize_dynamic_symtab (abfd, alocation)
5491 bfd *abfd;
5492 asymbol **alocation;
5493 {
5494 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5495 return bed->s->slurp_symbol_table (abfd, alocation, true);
5496 }
5497
5498 /* Return the size required for the dynamic reloc entries. Any
5499 section that was actually installed in the BFD, and has type
5500 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5501 considered to be a dynamic reloc section. */
5502
5503 long
5504 _bfd_elf_get_dynamic_reloc_upper_bound (abfd)
5505 bfd *abfd;
5506 {
5507 long ret;
5508 asection *s;
5509
5510 if (elf_dynsymtab (abfd) == 0)
5511 {
5512 bfd_set_error (bfd_error_invalid_operation);
5513 return -1;
5514 }
5515
5516 ret = sizeof (arelent *);
5517 for (s = abfd->sections; s != NULL; s = s->next)
5518 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5519 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5520 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5521 ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
5522 * sizeof (arelent *));
5523
5524 return ret;
5525 }
5526
5527 /* Canonicalize the dynamic relocation entries. Note that we return
5528 the dynamic relocations as a single block, although they are
5529 actually associated with particular sections; the interface, which
5530 was designed for SunOS style shared libraries, expects that there
5531 is only one set of dynamic relocs. Any section that was actually
5532 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5533 the dynamic symbol table, is considered to be a dynamic reloc
5534 section. */
5535
5536 long
5537 _bfd_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
5538 bfd *abfd;
5539 arelent **storage;
5540 asymbol **syms;
5541 {
5542 boolean (*slurp_relocs) PARAMS ((bfd *, asection *, asymbol **, boolean));
5543 asection *s;
5544 long ret;
5545
5546 if (elf_dynsymtab (abfd) == 0)
5547 {
5548 bfd_set_error (bfd_error_invalid_operation);
5549 return -1;
5550 }
5551
5552 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5553 ret = 0;
5554 for (s = abfd->sections; s != NULL; s = s->next)
5555 {
5556 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5557 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5558 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5559 {
5560 arelent *p;
5561 long count, i;
5562
5563 if (! (*slurp_relocs) (abfd, s, syms, true))
5564 return -1;
5565 count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
5566 p = s->relocation;
5567 for (i = 0; i < count; i++)
5568 *storage++ = p++;
5569 ret += count;
5570 }
5571 }
5572
5573 *storage = NULL;
5574
5575 return ret;
5576 }
5577 \f
5578 /* Read in the version information. */
5579
5580 boolean
5581 _bfd_elf_slurp_version_tables (abfd)
5582 bfd *abfd;
5583 {
5584 bfd_byte *contents = NULL;
5585 bfd_size_type amt;
5586
5587 if (elf_dynverdef (abfd) != 0)
5588 {
5589 Elf_Internal_Shdr *hdr;
5590 Elf_External_Verdef *everdef;
5591 Elf_Internal_Verdef *iverdef;
5592 Elf_Internal_Verdef *iverdefarr;
5593 Elf_Internal_Verdef iverdefmem;
5594 unsigned int i;
5595 unsigned int maxidx;
5596
5597 hdr = &elf_tdata (abfd)->dynverdef_hdr;
5598
5599 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
5600 if (contents == NULL)
5601 goto error_return;
5602 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5603 || bfd_bread ((PTR) contents, hdr->sh_size, abfd) != hdr->sh_size)
5604 goto error_return;
5605
5606 /* We know the number of entries in the section but not the maximum
5607 index. Therefore we have to run through all entries and find
5608 the maximum. */
5609 everdef = (Elf_External_Verdef *) contents;
5610 maxidx = 0;
5611 for (i = 0; i < hdr->sh_info; ++i)
5612 {
5613 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5614
5615 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
5616 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
5617
5618 everdef = ((Elf_External_Verdef *)
5619 ((bfd_byte *) everdef + iverdefmem.vd_next));
5620 }
5621
5622 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
5623 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
5624 if (elf_tdata (abfd)->verdef == NULL)
5625 goto error_return;
5626
5627 elf_tdata (abfd)->cverdefs = maxidx;
5628
5629 everdef = (Elf_External_Verdef *) contents;
5630 iverdefarr = elf_tdata (abfd)->verdef;
5631 for (i = 0; i < hdr->sh_info; i++)
5632 {
5633 Elf_External_Verdaux *everdaux;
5634 Elf_Internal_Verdaux *iverdaux;
5635 unsigned int j;
5636
5637 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5638
5639 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
5640 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
5641
5642 iverdef->vd_bfd = abfd;
5643
5644 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
5645 iverdef->vd_auxptr = (Elf_Internal_Verdaux *) bfd_alloc (abfd, amt);
5646 if (iverdef->vd_auxptr == NULL)
5647 goto error_return;
5648
5649 everdaux = ((Elf_External_Verdaux *)
5650 ((bfd_byte *) everdef + iverdef->vd_aux));
5651 iverdaux = iverdef->vd_auxptr;
5652 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
5653 {
5654 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
5655
5656 iverdaux->vda_nodename =
5657 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5658 iverdaux->vda_name);
5659 if (iverdaux->vda_nodename == NULL)
5660 goto error_return;
5661
5662 if (j + 1 < iverdef->vd_cnt)
5663 iverdaux->vda_nextptr = iverdaux + 1;
5664 else
5665 iverdaux->vda_nextptr = NULL;
5666
5667 everdaux = ((Elf_External_Verdaux *)
5668 ((bfd_byte *) everdaux + iverdaux->vda_next));
5669 }
5670
5671 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
5672
5673 if (i + 1 < hdr->sh_info)
5674 iverdef->vd_nextdef = iverdef + 1;
5675 else
5676 iverdef->vd_nextdef = NULL;
5677
5678 everdef = ((Elf_External_Verdef *)
5679 ((bfd_byte *) everdef + iverdef->vd_next));
5680 }
5681
5682 free (contents);
5683 contents = NULL;
5684 }
5685
5686 if (elf_dynverref (abfd) != 0)
5687 {
5688 Elf_Internal_Shdr *hdr;
5689 Elf_External_Verneed *everneed;
5690 Elf_Internal_Verneed *iverneed;
5691 unsigned int i;
5692
5693 hdr = &elf_tdata (abfd)->dynverref_hdr;
5694
5695 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
5696 elf_tdata (abfd)->verref =
5697 (Elf_Internal_Verneed *) bfd_zalloc (abfd, amt);
5698 if (elf_tdata (abfd)->verref == NULL)
5699 goto error_return;
5700
5701 elf_tdata (abfd)->cverrefs = hdr->sh_info;
5702
5703 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
5704 if (contents == NULL)
5705 goto error_return;
5706 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5707 || bfd_bread ((PTR) contents, hdr->sh_size, abfd) != hdr->sh_size)
5708 goto error_return;
5709
5710 everneed = (Elf_External_Verneed *) contents;
5711 iverneed = elf_tdata (abfd)->verref;
5712 for (i = 0; i < hdr->sh_info; i++, iverneed++)
5713 {
5714 Elf_External_Vernaux *evernaux;
5715 Elf_Internal_Vernaux *ivernaux;
5716 unsigned int j;
5717
5718 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
5719
5720 iverneed->vn_bfd = abfd;
5721
5722 iverneed->vn_filename =
5723 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5724 iverneed->vn_file);
5725 if (iverneed->vn_filename == NULL)
5726 goto error_return;
5727
5728 amt = iverneed->vn_cnt;
5729 amt *= sizeof (Elf_Internal_Vernaux);
5730 iverneed->vn_auxptr = (Elf_Internal_Vernaux *) bfd_alloc (abfd, amt);
5731
5732 evernaux = ((Elf_External_Vernaux *)
5733 ((bfd_byte *) everneed + iverneed->vn_aux));
5734 ivernaux = iverneed->vn_auxptr;
5735 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
5736 {
5737 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
5738
5739 ivernaux->vna_nodename =
5740 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5741 ivernaux->vna_name);
5742 if (ivernaux->vna_nodename == NULL)
5743 goto error_return;
5744
5745 if (j + 1 < iverneed->vn_cnt)
5746 ivernaux->vna_nextptr = ivernaux + 1;
5747 else
5748 ivernaux->vna_nextptr = NULL;
5749
5750 evernaux = ((Elf_External_Vernaux *)
5751 ((bfd_byte *) evernaux + ivernaux->vna_next));
5752 }
5753
5754 if (i + 1 < hdr->sh_info)
5755 iverneed->vn_nextref = iverneed + 1;
5756 else
5757 iverneed->vn_nextref = NULL;
5758
5759 everneed = ((Elf_External_Verneed *)
5760 ((bfd_byte *) everneed + iverneed->vn_next));
5761 }
5762
5763 free (contents);
5764 contents = NULL;
5765 }
5766
5767 return true;
5768
5769 error_return:
5770 if (contents == NULL)
5771 free (contents);
5772 return false;
5773 }
5774 \f
5775 asymbol *
5776 _bfd_elf_make_empty_symbol (abfd)
5777 bfd *abfd;
5778 {
5779 elf_symbol_type *newsym;
5780 bfd_size_type amt = sizeof (elf_symbol_type);
5781
5782 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
5783 if (!newsym)
5784 return NULL;
5785 else
5786 {
5787 newsym->symbol.the_bfd = abfd;
5788 return &newsym->symbol;
5789 }
5790 }
5791
5792 void
5793 _bfd_elf_get_symbol_info (ignore_abfd, symbol, ret)
5794 bfd *ignore_abfd ATTRIBUTE_UNUSED;
5795 asymbol *symbol;
5796 symbol_info *ret;
5797 {
5798 bfd_symbol_info (symbol, ret);
5799 }
5800
5801 /* Return whether a symbol name implies a local symbol. Most targets
5802 use this function for the is_local_label_name entry point, but some
5803 override it. */
5804
5805 boolean
5806 _bfd_elf_is_local_label_name (abfd, name)
5807 bfd *abfd ATTRIBUTE_UNUSED;
5808 const char *name;
5809 {
5810 /* Normal local symbols start with ``.L''. */
5811 if (name[0] == '.' && name[1] == 'L')
5812 return true;
5813
5814 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
5815 DWARF debugging symbols starting with ``..''. */
5816 if (name[0] == '.' && name[1] == '.')
5817 return true;
5818
5819 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
5820 emitting DWARF debugging output. I suspect this is actually a
5821 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
5822 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
5823 underscore to be emitted on some ELF targets). For ease of use,
5824 we treat such symbols as local. */
5825 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
5826 return true;
5827
5828 return false;
5829 }
5830
5831 alent *
5832 _bfd_elf_get_lineno (ignore_abfd, symbol)
5833 bfd *ignore_abfd ATTRIBUTE_UNUSED;
5834 asymbol *symbol ATTRIBUTE_UNUSED;
5835 {
5836 abort ();
5837 return NULL;
5838 }
5839
5840 boolean
5841 _bfd_elf_set_arch_mach (abfd, arch, machine)
5842 bfd *abfd;
5843 enum bfd_architecture arch;
5844 unsigned long machine;
5845 {
5846 /* If this isn't the right architecture for this backend, and this
5847 isn't the generic backend, fail. */
5848 if (arch != get_elf_backend_data (abfd)->arch
5849 && arch != bfd_arch_unknown
5850 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
5851 return false;
5852
5853 return bfd_default_set_arch_mach (abfd, arch, machine);
5854 }
5855
5856 /* Find the function to a particular section and offset,
5857 for error reporting. */
5858
5859 static boolean
5860 elf_find_function (abfd, section, symbols, offset,
5861 filename_ptr, functionname_ptr)
5862 bfd *abfd ATTRIBUTE_UNUSED;
5863 asection *section;
5864 asymbol **symbols;
5865 bfd_vma offset;
5866 const char **filename_ptr;
5867 const char **functionname_ptr;
5868 {
5869 const char *filename;
5870 asymbol *func;
5871 bfd_vma low_func;
5872 asymbol **p;
5873
5874 filename = NULL;
5875 func = NULL;
5876 low_func = 0;
5877
5878 for (p = symbols; *p != NULL; p++)
5879 {
5880 elf_symbol_type *q;
5881
5882 q = (elf_symbol_type *) *p;
5883
5884 if (bfd_get_section (&q->symbol) != section)
5885 continue;
5886
5887 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
5888 {
5889 default:
5890 break;
5891 case STT_FILE:
5892 filename = bfd_asymbol_name (&q->symbol);
5893 break;
5894 case STT_NOTYPE:
5895 case STT_FUNC:
5896 if (q->symbol.section == section
5897 && q->symbol.value >= low_func
5898 && q->symbol.value <= offset)
5899 {
5900 func = (asymbol *) q;
5901 low_func = q->symbol.value;
5902 }
5903 break;
5904 }
5905 }
5906
5907 if (func == NULL)
5908 return false;
5909
5910 if (filename_ptr)
5911 *filename_ptr = filename;
5912 if (functionname_ptr)
5913 *functionname_ptr = bfd_asymbol_name (func);
5914
5915 return true;
5916 }
5917
5918 /* Find the nearest line to a particular section and offset,
5919 for error reporting. */
5920
5921 boolean
5922 _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
5923 filename_ptr, functionname_ptr, line_ptr)
5924 bfd *abfd;
5925 asection *section;
5926 asymbol **symbols;
5927 bfd_vma offset;
5928 const char **filename_ptr;
5929 const char **functionname_ptr;
5930 unsigned int *line_ptr;
5931 {
5932 boolean found;
5933
5934 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
5935 filename_ptr, functionname_ptr,
5936 line_ptr))
5937 {
5938 if (!*functionname_ptr)
5939 elf_find_function (abfd, section, symbols, offset,
5940 *filename_ptr ? NULL : filename_ptr,
5941 functionname_ptr);
5942
5943 return true;
5944 }
5945
5946 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
5947 filename_ptr, functionname_ptr,
5948 line_ptr, 0,
5949 &elf_tdata (abfd)->dwarf2_find_line_info))
5950 {
5951 if (!*functionname_ptr)
5952 elf_find_function (abfd, section, symbols, offset,
5953 *filename_ptr ? NULL : filename_ptr,
5954 functionname_ptr);
5955
5956 return true;
5957 }
5958
5959 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
5960 &found, filename_ptr,
5961 functionname_ptr, line_ptr,
5962 &elf_tdata (abfd)->line_info))
5963 return false;
5964 if (found)
5965 return true;
5966
5967 if (symbols == NULL)
5968 return false;
5969
5970 if (! elf_find_function (abfd, section, symbols, offset,
5971 filename_ptr, functionname_ptr))
5972 return false;
5973
5974 *line_ptr = 0;
5975 return true;
5976 }
5977
5978 int
5979 _bfd_elf_sizeof_headers (abfd, reloc)
5980 bfd *abfd;
5981 boolean reloc;
5982 {
5983 int ret;
5984
5985 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
5986 if (! reloc)
5987 ret += get_program_header_size (abfd);
5988 return ret;
5989 }
5990
5991 boolean
5992 _bfd_elf_set_section_contents (abfd, section, location, offset, count)
5993 bfd *abfd;
5994 sec_ptr section;
5995 PTR location;
5996 file_ptr offset;
5997 bfd_size_type count;
5998 {
5999 Elf_Internal_Shdr *hdr;
6000 bfd_signed_vma pos;
6001
6002 if (! abfd->output_has_begun
6003 && ! (_bfd_elf_compute_section_file_positions
6004 (abfd, (struct bfd_link_info *) NULL)))
6005 return false;
6006
6007 hdr = &elf_section_data (section)->this_hdr;
6008 pos = hdr->sh_offset + offset;
6009 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6010 || bfd_bwrite (location, count, abfd) != count)
6011 return false;
6012
6013 return true;
6014 }
6015
6016 void
6017 _bfd_elf_no_info_to_howto (abfd, cache_ptr, dst)
6018 bfd *abfd ATTRIBUTE_UNUSED;
6019 arelent *cache_ptr ATTRIBUTE_UNUSED;
6020 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED;
6021 {
6022 abort ();
6023 }
6024
6025 #if 0
6026 void
6027 _bfd_elf_no_info_to_howto_rel (abfd, cache_ptr, dst)
6028 bfd *abfd;
6029 arelent *cache_ptr;
6030 Elf_Internal_Rel *dst;
6031 {
6032 abort ();
6033 }
6034 #endif
6035
6036 /* Try to convert a non-ELF reloc into an ELF one. */
6037
6038 boolean
6039 _bfd_elf_validate_reloc (abfd, areloc)
6040 bfd *abfd;
6041 arelent *areloc;
6042 {
6043 /* Check whether we really have an ELF howto. */
6044
6045 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6046 {
6047 bfd_reloc_code_real_type code;
6048 reloc_howto_type *howto;
6049
6050 /* Alien reloc: Try to determine its type to replace it with an
6051 equivalent ELF reloc. */
6052
6053 if (areloc->howto->pc_relative)
6054 {
6055 switch (areloc->howto->bitsize)
6056 {
6057 case 8:
6058 code = BFD_RELOC_8_PCREL;
6059 break;
6060 case 12:
6061 code = BFD_RELOC_12_PCREL;
6062 break;
6063 case 16:
6064 code = BFD_RELOC_16_PCREL;
6065 break;
6066 case 24:
6067 code = BFD_RELOC_24_PCREL;
6068 break;
6069 case 32:
6070 code = BFD_RELOC_32_PCREL;
6071 break;
6072 case 64:
6073 code = BFD_RELOC_64_PCREL;
6074 break;
6075 default:
6076 goto fail;
6077 }
6078
6079 howto = bfd_reloc_type_lookup (abfd, code);
6080
6081 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6082 {
6083 if (howto->pcrel_offset)
6084 areloc->addend += areloc->address;
6085 else
6086 areloc->addend -= areloc->address; /* addend is unsigned!! */
6087 }
6088 }
6089 else
6090 {
6091 switch (areloc->howto->bitsize)
6092 {
6093 case 8:
6094 code = BFD_RELOC_8;
6095 break;
6096 case 14:
6097 code = BFD_RELOC_14;
6098 break;
6099 case 16:
6100 code = BFD_RELOC_16;
6101 break;
6102 case 26:
6103 code = BFD_RELOC_26;
6104 break;
6105 case 32:
6106 code = BFD_RELOC_32;
6107 break;
6108 case 64:
6109 code = BFD_RELOC_64;
6110 break;
6111 default:
6112 goto fail;
6113 }
6114
6115 howto = bfd_reloc_type_lookup (abfd, code);
6116 }
6117
6118 if (howto)
6119 areloc->howto = howto;
6120 else
6121 goto fail;
6122 }
6123
6124 return true;
6125
6126 fail:
6127 (*_bfd_error_handler)
6128 (_("%s: unsupported relocation type %s"),
6129 bfd_archive_filename (abfd), areloc->howto->name);
6130 bfd_set_error (bfd_error_bad_value);
6131 return false;
6132 }
6133
6134 boolean
6135 _bfd_elf_close_and_cleanup (abfd)
6136 bfd *abfd;
6137 {
6138 if (bfd_get_format (abfd) == bfd_object)
6139 {
6140 if (elf_shstrtab (abfd) != NULL)
6141 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6142 }
6143
6144 return _bfd_generic_close_and_cleanup (abfd);
6145 }
6146
6147 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6148 in the relocation's offset. Thus we cannot allow any sort of sanity
6149 range-checking to interfere. There is nothing else to do in processing
6150 this reloc. */
6151
6152 bfd_reloc_status_type
6153 _bfd_elf_rel_vtable_reloc_fn (abfd, re, symbol, data, is, obfd, errmsg)
6154 bfd *abfd ATTRIBUTE_UNUSED;
6155 arelent *re ATTRIBUTE_UNUSED;
6156 struct symbol_cache_entry *symbol ATTRIBUTE_UNUSED;
6157 PTR data ATTRIBUTE_UNUSED;
6158 asection *is ATTRIBUTE_UNUSED;
6159 bfd *obfd ATTRIBUTE_UNUSED;
6160 char **errmsg ATTRIBUTE_UNUSED;
6161 {
6162 return bfd_reloc_ok;
6163 }
6164 \f
6165 /* Elf core file support. Much of this only works on native
6166 toolchains, since we rely on knowing the
6167 machine-dependent procfs structure in order to pick
6168 out details about the corefile. */
6169
6170 #ifdef HAVE_SYS_PROCFS_H
6171 # include <sys/procfs.h>
6172 #endif
6173
6174 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6175
6176 static int
6177 elfcore_make_pid (abfd)
6178 bfd *abfd;
6179 {
6180 return ((elf_tdata (abfd)->core_lwpid << 16)
6181 + (elf_tdata (abfd)->core_pid));
6182 }
6183
6184 /* If there isn't a section called NAME, make one, using
6185 data from SECT. Note, this function will generate a
6186 reference to NAME, so you shouldn't deallocate or
6187 overwrite it. */
6188
6189 static boolean
6190 elfcore_maybe_make_sect (abfd, name, sect)
6191 bfd *abfd;
6192 char *name;
6193 asection *sect;
6194 {
6195 asection *sect2;
6196
6197 if (bfd_get_section_by_name (abfd, name) != NULL)
6198 return true;
6199
6200 sect2 = bfd_make_section (abfd, name);
6201 if (sect2 == NULL)
6202 return false;
6203
6204 sect2->_raw_size = sect->_raw_size;
6205 sect2->filepos = sect->filepos;
6206 sect2->flags = sect->flags;
6207 sect2->alignment_power = sect->alignment_power;
6208 return true;
6209 }
6210
6211 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6212 actually creates up to two pseudosections:
6213 - For the single-threaded case, a section named NAME, unless
6214 such a section already exists.
6215 - For the multi-threaded case, a section named "NAME/PID", where
6216 PID is elfcore_make_pid (abfd).
6217 Both pseudosections have identical contents. */
6218 boolean
6219 _bfd_elfcore_make_pseudosection (abfd, name, size, filepos)
6220 bfd *abfd;
6221 char *name;
6222 size_t size;
6223 ufile_ptr filepos;
6224 {
6225 char buf[100];
6226 char *threaded_name;
6227 size_t len;
6228 asection *sect;
6229
6230 /* Build the section name. */
6231
6232 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6233 len = strlen (buf) + 1;
6234 threaded_name = bfd_alloc (abfd, (bfd_size_type) len);
6235 if (threaded_name == NULL)
6236 return false;
6237 memcpy (threaded_name, buf, len);
6238
6239 sect = bfd_make_section (abfd, threaded_name);
6240 if (sect == NULL)
6241 return false;
6242 sect->_raw_size = size;
6243 sect->filepos = filepos;
6244 sect->flags = SEC_HAS_CONTENTS;
6245 sect->alignment_power = 2;
6246
6247 return elfcore_maybe_make_sect (abfd, name, sect);
6248 }
6249
6250 /* prstatus_t exists on:
6251 solaris 2.5+
6252 linux 2.[01] + glibc
6253 unixware 4.2
6254 */
6255
6256 #if defined (HAVE_PRSTATUS_T)
6257 static boolean elfcore_grok_prstatus PARAMS ((bfd *, Elf_Internal_Note *));
6258
6259 static boolean
6260 elfcore_grok_prstatus (abfd, note)
6261 bfd *abfd;
6262 Elf_Internal_Note *note;
6263 {
6264 size_t raw_size;
6265 int offset;
6266
6267 if (note->descsz == sizeof (prstatus_t))
6268 {
6269 prstatus_t prstat;
6270
6271 raw_size = sizeof (prstat.pr_reg);
6272 offset = offsetof (prstatus_t, pr_reg);
6273 memcpy (&prstat, note->descdata, sizeof (prstat));
6274
6275 /* Do not overwrite the core signal if it
6276 has already been set by another thread. */
6277 if (elf_tdata (abfd)->core_signal == 0)
6278 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6279 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6280
6281 /* pr_who exists on:
6282 solaris 2.5+
6283 unixware 4.2
6284 pr_who doesn't exist on:
6285 linux 2.[01]
6286 */
6287 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6288 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6289 #endif
6290 }
6291 #if defined (HAVE_PRSTATUS32_T)
6292 else if (note->descsz == sizeof (prstatus32_t))
6293 {
6294 /* 64-bit host, 32-bit corefile */
6295 prstatus32_t prstat;
6296
6297 raw_size = sizeof (prstat.pr_reg);
6298 offset = offsetof (prstatus32_t, pr_reg);
6299 memcpy (&prstat, note->descdata, sizeof (prstat));
6300
6301 /* Do not overwrite the core signal if it
6302 has already been set by another thread. */
6303 if (elf_tdata (abfd)->core_signal == 0)
6304 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6305 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6306
6307 /* pr_who exists on:
6308 solaris 2.5+
6309 unixware 4.2
6310 pr_who doesn't exist on:
6311 linux 2.[01]
6312 */
6313 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6314 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6315 #endif
6316 }
6317 #endif /* HAVE_PRSTATUS32_T */
6318 else
6319 {
6320 /* Fail - we don't know how to handle any other
6321 note size (ie. data object type). */
6322 return true;
6323 }
6324
6325 /* Make a ".reg/999" section and a ".reg" section. */
6326 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6327 raw_size, note->descpos + offset);
6328 }
6329 #endif /* defined (HAVE_PRSTATUS_T) */
6330
6331 /* Create a pseudosection containing the exact contents of NOTE. */
6332 static boolean
6333 elfcore_make_note_pseudosection (abfd, name, note)
6334 bfd *abfd;
6335 char *name;
6336 Elf_Internal_Note *note;
6337 {
6338 return _bfd_elfcore_make_pseudosection (abfd, name,
6339 note->descsz, note->descpos);
6340 }
6341
6342 /* There isn't a consistent prfpregset_t across platforms,
6343 but it doesn't matter, because we don't have to pick this
6344 data structure apart. */
6345
6346 static boolean
6347 elfcore_grok_prfpreg (abfd, note)
6348 bfd *abfd;
6349 Elf_Internal_Note *note;
6350 {
6351 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6352 }
6353
6354 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6355 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6356 literally. */
6357
6358 static boolean
6359 elfcore_grok_prxfpreg (abfd, note)
6360 bfd *abfd;
6361 Elf_Internal_Note *note;
6362 {
6363 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6364 }
6365
6366 #if defined (HAVE_PRPSINFO_T)
6367 typedef prpsinfo_t elfcore_psinfo_t;
6368 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6369 typedef prpsinfo32_t elfcore_psinfo32_t;
6370 #endif
6371 #endif
6372
6373 #if defined (HAVE_PSINFO_T)
6374 typedef psinfo_t elfcore_psinfo_t;
6375 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6376 typedef psinfo32_t elfcore_psinfo32_t;
6377 #endif
6378 #endif
6379
6380 /* return a malloc'ed copy of a string at START which is at
6381 most MAX bytes long, possibly without a terminating '\0'.
6382 the copy will always have a terminating '\0'. */
6383
6384 char *
6385 _bfd_elfcore_strndup (abfd, start, max)
6386 bfd *abfd;
6387 char *start;
6388 size_t max;
6389 {
6390 char *dups;
6391 char *end = memchr (start, '\0', max);
6392 size_t len;
6393
6394 if (end == NULL)
6395 len = max;
6396 else
6397 len = end - start;
6398
6399 dups = bfd_alloc (abfd, (bfd_size_type) len + 1);
6400 if (dups == NULL)
6401 return NULL;
6402
6403 memcpy (dups, start, len);
6404 dups[len] = '\0';
6405
6406 return dups;
6407 }
6408
6409 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6410 static boolean elfcore_grok_psinfo PARAMS ((bfd *, Elf_Internal_Note *));
6411
6412 static boolean
6413 elfcore_grok_psinfo (abfd, note)
6414 bfd *abfd;
6415 Elf_Internal_Note *note;
6416 {
6417 if (note->descsz == sizeof (elfcore_psinfo_t))
6418 {
6419 elfcore_psinfo_t psinfo;
6420
6421 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6422
6423 elf_tdata (abfd)->core_program
6424 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6425 sizeof (psinfo.pr_fname));
6426
6427 elf_tdata (abfd)->core_command
6428 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6429 sizeof (psinfo.pr_psargs));
6430 }
6431 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6432 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6433 {
6434 /* 64-bit host, 32-bit corefile */
6435 elfcore_psinfo32_t psinfo;
6436
6437 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6438
6439 elf_tdata (abfd)->core_program
6440 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6441 sizeof (psinfo.pr_fname));
6442
6443 elf_tdata (abfd)->core_command
6444 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6445 sizeof (psinfo.pr_psargs));
6446 }
6447 #endif
6448
6449 else
6450 {
6451 /* Fail - we don't know how to handle any other
6452 note size (ie. data object type). */
6453 return true;
6454 }
6455
6456 /* Note that for some reason, a spurious space is tacked
6457 onto the end of the args in some (at least one anyway)
6458 implementations, so strip it off if it exists. */
6459
6460 {
6461 char *command = elf_tdata (abfd)->core_command;
6462 int n = strlen (command);
6463
6464 if (0 < n && command[n - 1] == ' ')
6465 command[n - 1] = '\0';
6466 }
6467
6468 return true;
6469 }
6470 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6471
6472 #if defined (HAVE_PSTATUS_T)
6473 static boolean elfcore_grok_pstatus PARAMS ((bfd *, Elf_Internal_Note *));
6474
6475 static boolean
6476 elfcore_grok_pstatus (abfd, note)
6477 bfd *abfd;
6478 Elf_Internal_Note *note;
6479 {
6480 if (note->descsz == sizeof (pstatus_t)
6481 #if defined (HAVE_PXSTATUS_T)
6482 || note->descsz == sizeof (pxstatus_t)
6483 #endif
6484 )
6485 {
6486 pstatus_t pstat;
6487
6488 memcpy (&pstat, note->descdata, sizeof (pstat));
6489
6490 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6491 }
6492 #if defined (HAVE_PSTATUS32_T)
6493 else if (note->descsz == sizeof (pstatus32_t))
6494 {
6495 /* 64-bit host, 32-bit corefile */
6496 pstatus32_t pstat;
6497
6498 memcpy (&pstat, note->descdata, sizeof (pstat));
6499
6500 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6501 }
6502 #endif
6503 /* Could grab some more details from the "representative"
6504 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6505 NT_LWPSTATUS note, presumably. */
6506
6507 return true;
6508 }
6509 #endif /* defined (HAVE_PSTATUS_T) */
6510
6511 #if defined (HAVE_LWPSTATUS_T)
6512 static boolean elfcore_grok_lwpstatus PARAMS ((bfd *, Elf_Internal_Note *));
6513
6514 static boolean
6515 elfcore_grok_lwpstatus (abfd, note)
6516 bfd *abfd;
6517 Elf_Internal_Note *note;
6518 {
6519 lwpstatus_t lwpstat;
6520 char buf[100];
6521 char *name;
6522 size_t len;
6523 asection *sect;
6524
6525 if (note->descsz != sizeof (lwpstat)
6526 #if defined (HAVE_LWPXSTATUS_T)
6527 && note->descsz != sizeof (lwpxstatus_t)
6528 #endif
6529 )
6530 return true;
6531
6532 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6533
6534 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6535 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6536
6537 /* Make a ".reg/999" section. */
6538
6539 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6540 len = strlen (buf) + 1;
6541 name = bfd_alloc (abfd, (bfd_size_type) len);
6542 if (name == NULL)
6543 return false;
6544 memcpy (name, buf, len);
6545
6546 sect = bfd_make_section (abfd, name);
6547 if (sect == NULL)
6548 return false;
6549
6550 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6551 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6552 sect->filepos = note->descpos
6553 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6554 #endif
6555
6556 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6557 sect->_raw_size = sizeof (lwpstat.pr_reg);
6558 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6559 #endif
6560
6561 sect->flags = SEC_HAS_CONTENTS;
6562 sect->alignment_power = 2;
6563
6564 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6565 return false;
6566
6567 /* Make a ".reg2/999" section */
6568
6569 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6570 len = strlen (buf) + 1;
6571 name = bfd_alloc (abfd, (bfd_size_type) len);
6572 if (name == NULL)
6573 return false;
6574 memcpy (name, buf, len);
6575
6576 sect = bfd_make_section (abfd, name);
6577 if (sect == NULL)
6578 return false;
6579
6580 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6581 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6582 sect->filepos = note->descpos
6583 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6584 #endif
6585
6586 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6587 sect->_raw_size = sizeof (lwpstat.pr_fpreg);
6588 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6589 #endif
6590
6591 sect->flags = SEC_HAS_CONTENTS;
6592 sect->alignment_power = 2;
6593
6594 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6595 }
6596 #endif /* defined (HAVE_LWPSTATUS_T) */
6597
6598 #if defined (HAVE_WIN32_PSTATUS_T)
6599 static boolean
6600 elfcore_grok_win32pstatus (abfd, note)
6601 bfd *abfd;
6602 Elf_Internal_Note *note;
6603 {
6604 char buf[30];
6605 char *name;
6606 size_t len;
6607 asection *sect;
6608 win32_pstatus_t pstatus;
6609
6610 if (note->descsz < sizeof (pstatus))
6611 return true;
6612
6613 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6614
6615 switch (pstatus.data_type)
6616 {
6617 case NOTE_INFO_PROCESS:
6618 /* FIXME: need to add ->core_command. */
6619 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6620 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6621 break;
6622
6623 case NOTE_INFO_THREAD:
6624 /* Make a ".reg/999" section. */
6625 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6626
6627 len = strlen (buf) + 1;
6628 name = bfd_alloc (abfd, (bfd_size_type) len);
6629 if (name == NULL)
6630 return false;
6631
6632 memcpy (name, buf, len);
6633
6634 sect = bfd_make_section (abfd, name);
6635 if (sect == NULL)
6636 return false;
6637
6638 sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context);
6639 sect->filepos = (note->descpos
6640 + offsetof (struct win32_pstatus,
6641 data.thread_info.thread_context));
6642 sect->flags = SEC_HAS_CONTENTS;
6643 sect->alignment_power = 2;
6644
6645 if (pstatus.data.thread_info.is_active_thread)
6646 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
6647 return false;
6648 break;
6649
6650 case NOTE_INFO_MODULE:
6651 /* Make a ".module/xxxxxxxx" section. */
6652 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
6653
6654 len = strlen (buf) + 1;
6655 name = bfd_alloc (abfd, (bfd_size_type) len);
6656 if (name == NULL)
6657 return false;
6658
6659 memcpy (name, buf, len);
6660
6661 sect = bfd_make_section (abfd, name);
6662
6663 if (sect == NULL)
6664 return false;
6665
6666 sect->_raw_size = note->descsz;
6667 sect->filepos = note->descpos;
6668 sect->flags = SEC_HAS_CONTENTS;
6669 sect->alignment_power = 2;
6670 break;
6671
6672 default:
6673 return true;
6674 }
6675
6676 return true;
6677 }
6678 #endif /* HAVE_WIN32_PSTATUS_T */
6679
6680 static boolean
6681 elfcore_grok_note (abfd, note)
6682 bfd *abfd;
6683 Elf_Internal_Note *note;
6684 {
6685 struct elf_backend_data *bed = get_elf_backend_data (abfd);
6686
6687 switch (note->type)
6688 {
6689 default:
6690 return true;
6691
6692 case NT_PRSTATUS:
6693 if (bed->elf_backend_grok_prstatus)
6694 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
6695 return true;
6696 #if defined (HAVE_PRSTATUS_T)
6697 return elfcore_grok_prstatus (abfd, note);
6698 #else
6699 return true;
6700 #endif
6701
6702 #if defined (HAVE_PSTATUS_T)
6703 case NT_PSTATUS:
6704 return elfcore_grok_pstatus (abfd, note);
6705 #endif
6706
6707 #if defined (HAVE_LWPSTATUS_T)
6708 case NT_LWPSTATUS:
6709 return elfcore_grok_lwpstatus (abfd, note);
6710 #endif
6711
6712 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
6713 return elfcore_grok_prfpreg (abfd, note);
6714
6715 #if defined (HAVE_WIN32_PSTATUS_T)
6716 case NT_WIN32PSTATUS:
6717 return elfcore_grok_win32pstatus (abfd, note);
6718 #endif
6719
6720 case NT_PRXFPREG: /* Linux SSE extension */
6721 if (note->namesz == 5
6722 && ! strcmp (note->namedata, "LINUX"))
6723 return elfcore_grok_prxfpreg (abfd, note);
6724 else
6725 return true;
6726
6727 case NT_PRPSINFO:
6728 case NT_PSINFO:
6729 if (bed->elf_backend_grok_psinfo)
6730 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
6731 return true;
6732 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6733 return elfcore_grok_psinfo (abfd, note);
6734 #else
6735 return true;
6736 #endif
6737 }
6738 }
6739
6740 static boolean
6741 elfcore_netbsd_get_lwpid (note, lwpidp)
6742 Elf_Internal_Note *note;
6743 int *lwpidp;
6744 {
6745 char *cp;
6746
6747 cp = strchr (note->namedata, '@');
6748 if (cp != NULL)
6749 {
6750 *lwpidp = atoi(cp + 1);
6751 return true;
6752 }
6753 return false;
6754 }
6755
6756 static boolean
6757 elfcore_grok_netbsd_procinfo (abfd, note)
6758 bfd *abfd;
6759 Elf_Internal_Note *note;
6760 {
6761
6762 /* Signal number at offset 0x08. */
6763 elf_tdata (abfd)->core_signal
6764 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
6765
6766 /* Process ID at offset 0x50. */
6767 elf_tdata (abfd)->core_pid
6768 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
6769
6770 /* Command name at 0x7c (max 32 bytes, including nul). */
6771 elf_tdata (abfd)->core_command
6772 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
6773
6774 return true;
6775 }
6776
6777 static boolean
6778 elfcore_grok_netbsd_note (abfd, note)
6779 bfd *abfd;
6780 Elf_Internal_Note *note;
6781 {
6782 int lwp;
6783
6784 if (elfcore_netbsd_get_lwpid (note, &lwp))
6785 elf_tdata (abfd)->core_lwpid = lwp;
6786
6787 if (note->type == NT_NETBSDCORE_PROCINFO)
6788 {
6789 /* NetBSD-specific core "procinfo". Note that we expect to
6790 find this note before any of the others, which is fine,
6791 since the kernel writes this note out first when it
6792 creates a core file. */
6793
6794 return elfcore_grok_netbsd_procinfo (abfd, note);
6795 }
6796
6797 /* As of Jan 2002 there are no other machine-independent notes
6798 defined for NetBSD core files. If the note type is less
6799 than the start of the machine-dependent note types, we don't
6800 understand it. */
6801
6802 if (note->type < NT_NETBSDCORE_FIRSTMACH)
6803 return true;
6804
6805
6806 switch (bfd_get_arch (abfd))
6807 {
6808 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
6809 PT_GETFPREGS == mach+2. */
6810
6811 case bfd_arch_alpha:
6812 case bfd_arch_sparc:
6813 switch (note->type)
6814 {
6815 case NT_NETBSDCORE_FIRSTMACH+0:
6816 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6817
6818 case NT_NETBSDCORE_FIRSTMACH+2:
6819 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6820
6821 default:
6822 return true;
6823 }
6824
6825 /* On all other arch's, PT_GETREGS == mach+1 and
6826 PT_GETFPREGS == mach+3. */
6827
6828 default:
6829 switch (note->type)
6830 {
6831 case NT_NETBSDCORE_FIRSTMACH+1:
6832 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6833
6834 case NT_NETBSDCORE_FIRSTMACH+3:
6835 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6836
6837 default:
6838 return true;
6839 }
6840 }
6841 /* NOTREACHED */
6842 }
6843
6844 /* Function: elfcore_write_note
6845
6846 Inputs:
6847 buffer to hold note
6848 name of note
6849 type of note
6850 data for note
6851 size of data for note
6852
6853 Return:
6854 End of buffer containing note. */
6855
6856 char *
6857 elfcore_write_note (abfd, buf, bufsiz, name, type, input, size)
6858 bfd *abfd;
6859 char *buf;
6860 int *bufsiz;
6861 const char *name;
6862 int type;
6863 const PTR input;
6864 int size;
6865 {
6866 Elf_External_Note *xnp;
6867 size_t namesz;
6868 size_t pad;
6869 size_t newspace;
6870 char *p, *dest;
6871
6872 namesz = 0;
6873 pad = 0;
6874 if (name != NULL)
6875 {
6876 struct elf_backend_data *bed;
6877
6878 namesz = strlen (name) + 1;
6879 bed = get_elf_backend_data (abfd);
6880 pad = -namesz & (bed->s->file_align - 1);
6881 }
6882
6883 newspace = sizeof (Elf_External_Note) - 1 + namesz + pad + size;
6884
6885 p = realloc (buf, *bufsiz + newspace);
6886 dest = p + *bufsiz;
6887 *bufsiz += newspace;
6888 xnp = (Elf_External_Note *) dest;
6889 H_PUT_32 (abfd, namesz, xnp->namesz);
6890 H_PUT_32 (abfd, size, xnp->descsz);
6891 H_PUT_32 (abfd, type, xnp->type);
6892 dest = xnp->name;
6893 if (name != NULL)
6894 {
6895 memcpy (dest, name, namesz);
6896 dest += namesz;
6897 while (pad != 0)
6898 {
6899 *dest++ = '\0';
6900 --pad;
6901 }
6902 }
6903 memcpy (dest, input, size);
6904 return p;
6905 }
6906
6907 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6908 char *
6909 elfcore_write_prpsinfo (abfd, buf, bufsiz, fname, psargs)
6910 bfd *abfd;
6911 char *buf;
6912 int *bufsiz;
6913 const char *fname;
6914 const char *psargs;
6915 {
6916 int note_type;
6917 char *note_name = "CORE";
6918
6919 #if defined (HAVE_PSINFO_T)
6920 psinfo_t data;
6921 note_type = NT_PSINFO;
6922 #else
6923 prpsinfo_t data;
6924 note_type = NT_PRPSINFO;
6925 #endif
6926
6927 memset (&data, 0, sizeof (data));
6928 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
6929 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
6930 return elfcore_write_note (abfd, buf, bufsiz,
6931 note_name, note_type, &data, sizeof (data));
6932 }
6933 #endif /* PSINFO_T or PRPSINFO_T */
6934
6935 #if defined (HAVE_PRSTATUS_T)
6936 char *
6937 elfcore_write_prstatus (abfd, buf, bufsiz, pid, cursig, gregs)
6938 bfd *abfd;
6939 char *buf;
6940 int *bufsiz;
6941 long pid;
6942 int cursig;
6943 const PTR gregs;
6944 {
6945 prstatus_t prstat;
6946 char *note_name = "CORE";
6947
6948 memset (&prstat, 0, sizeof (prstat));
6949 prstat.pr_pid = pid;
6950 prstat.pr_cursig = cursig;
6951 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
6952 return elfcore_write_note (abfd, buf, bufsiz,
6953 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
6954 }
6955 #endif /* HAVE_PRSTATUS_T */
6956
6957 #if defined (HAVE_LWPSTATUS_T)
6958 char *
6959 elfcore_write_lwpstatus (abfd, buf, bufsiz, pid, cursig, gregs)
6960 bfd *abfd;
6961 char *buf;
6962 int *bufsiz;
6963 long pid;
6964 int cursig;
6965 const PTR gregs;
6966 {
6967 lwpstatus_t lwpstat;
6968 char *note_name = "CORE";
6969
6970 memset (&lwpstat, 0, sizeof (lwpstat));
6971 lwpstat.pr_lwpid = pid >> 16;
6972 lwpstat.pr_cursig = cursig;
6973 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6974 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
6975 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6976 #if !defined(gregs)
6977 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
6978 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
6979 #else
6980 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
6981 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
6982 #endif
6983 #endif
6984 return elfcore_write_note (abfd, buf, bufsiz, note_name,
6985 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
6986 }
6987 #endif /* HAVE_LWPSTATUS_T */
6988
6989 #if defined (HAVE_PSTATUS_T)
6990 char *
6991 elfcore_write_pstatus (abfd, buf, bufsiz, pid, cursig, gregs)
6992 bfd *abfd;
6993 char *buf;
6994 int *bufsiz;
6995 long pid;
6996 int cursig;
6997 const PTR gregs;
6998 {
6999 pstatus_t pstat;
7000 char *note_name = "CORE";
7001
7002 memset (&pstat, 0, sizeof (pstat));
7003 pstat.pr_pid = pid & 0xffff;
7004 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7005 NT_PSTATUS, &pstat, sizeof (pstat));
7006 return buf;
7007 }
7008 #endif /* HAVE_PSTATUS_T */
7009
7010 char *
7011 elfcore_write_prfpreg (abfd, buf, bufsiz, fpregs, size)
7012 bfd *abfd;
7013 char *buf;
7014 int *bufsiz;
7015 const PTR fpregs;
7016 int size;
7017 {
7018 char *note_name = "CORE";
7019 return elfcore_write_note (abfd, buf, bufsiz,
7020 note_name, NT_FPREGSET, fpregs, size);
7021 }
7022
7023 char *
7024 elfcore_write_prxfpreg (abfd, buf, bufsiz, xfpregs, size)
7025 bfd *abfd;
7026 char *buf;
7027 int *bufsiz;
7028 const PTR xfpregs;
7029 int size;
7030 {
7031 char *note_name = "LINUX";
7032 return elfcore_write_note (abfd, buf, bufsiz,
7033 note_name, NT_PRXFPREG, xfpregs, size);
7034 }
7035
7036 static boolean
7037 elfcore_read_notes (abfd, offset, size)
7038 bfd *abfd;
7039 file_ptr offset;
7040 bfd_size_type size;
7041 {
7042 char *buf;
7043 char *p;
7044
7045 if (size <= 0)
7046 return true;
7047
7048 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7049 return false;
7050
7051 buf = bfd_malloc (size);
7052 if (buf == NULL)
7053 return false;
7054
7055 if (bfd_bread (buf, size, abfd) != size)
7056 {
7057 error:
7058 free (buf);
7059 return false;
7060 }
7061
7062 p = buf;
7063 while (p < buf + size)
7064 {
7065 /* FIXME: bad alignment assumption. */
7066 Elf_External_Note *xnp = (Elf_External_Note *) p;
7067 Elf_Internal_Note in;
7068
7069 in.type = H_GET_32 (abfd, xnp->type);
7070
7071 in.namesz = H_GET_32 (abfd, xnp->namesz);
7072 in.namedata = xnp->name;
7073
7074 in.descsz = H_GET_32 (abfd, xnp->descsz);
7075 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7076 in.descpos = offset + (in.descdata - buf);
7077
7078 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7079 {
7080 if (! elfcore_grok_netbsd_note (abfd, &in))
7081 goto error;
7082 }
7083 else
7084 {
7085 if (! elfcore_grok_note (abfd, &in))
7086 goto error;
7087 }
7088
7089 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7090 }
7091
7092 free (buf);
7093 return true;
7094 }
7095 \f
7096 /* Providing external access to the ELF program header table. */
7097
7098 /* Return an upper bound on the number of bytes required to store a
7099 copy of ABFD's program header table entries. Return -1 if an error
7100 occurs; bfd_get_error will return an appropriate code. */
7101
7102 long
7103 bfd_get_elf_phdr_upper_bound (abfd)
7104 bfd *abfd;
7105 {
7106 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7107 {
7108 bfd_set_error (bfd_error_wrong_format);
7109 return -1;
7110 }
7111
7112 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7113 }
7114
7115 /* Copy ABFD's program header table entries to *PHDRS. The entries
7116 will be stored as an array of Elf_Internal_Phdr structures, as
7117 defined in include/elf/internal.h. To find out how large the
7118 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7119
7120 Return the number of program header table entries read, or -1 if an
7121 error occurs; bfd_get_error will return an appropriate code. */
7122
7123 int
7124 bfd_get_elf_phdrs (abfd, phdrs)
7125 bfd *abfd;
7126 void *phdrs;
7127 {
7128 int num_phdrs;
7129
7130 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7131 {
7132 bfd_set_error (bfd_error_wrong_format);
7133 return -1;
7134 }
7135
7136 num_phdrs = elf_elfheader (abfd)->e_phnum;
7137 memcpy (phdrs, elf_tdata (abfd)->phdr,
7138 num_phdrs * sizeof (Elf_Internal_Phdr));
7139
7140 return num_phdrs;
7141 }
7142
7143 void
7144 _bfd_elf_sprintf_vma (abfd, buf, value)
7145 bfd *abfd ATTRIBUTE_UNUSED;
7146 char *buf;
7147 bfd_vma value;
7148 {
7149 #ifdef BFD64
7150 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7151
7152 i_ehdrp = elf_elfheader (abfd);
7153 if (i_ehdrp == NULL)
7154 sprintf_vma (buf, value);
7155 else
7156 {
7157 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7158 {
7159 #if BFD_HOST_64BIT_LONG
7160 sprintf (buf, "%016lx", value);
7161 #else
7162 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7163 _bfd_int64_low (value));
7164 #endif
7165 }
7166 else
7167 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7168 }
7169 #else
7170 sprintf_vma (buf, value);
7171 #endif
7172 }
7173
7174 void
7175 _bfd_elf_fprintf_vma (abfd, stream, value)
7176 bfd *abfd ATTRIBUTE_UNUSED;
7177 PTR stream;
7178 bfd_vma value;
7179 {
7180 #ifdef BFD64
7181 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7182
7183 i_ehdrp = elf_elfheader (abfd);
7184 if (i_ehdrp == NULL)
7185 fprintf_vma ((FILE *) stream, value);
7186 else
7187 {
7188 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7189 {
7190 #if BFD_HOST_64BIT_LONG
7191 fprintf ((FILE *) stream, "%016lx", value);
7192 #else
7193 fprintf ((FILE *) stream, "%08lx%08lx",
7194 _bfd_int64_high (value), _bfd_int64_low (value));
7195 #endif
7196 }
7197 else
7198 fprintf ((FILE *) stream, "%08lx",
7199 (unsigned long) (value & 0xffffffff));
7200 }
7201 #else
7202 fprintf_vma ((FILE *) stream, value);
7203 #endif
7204 }
7205
7206 enum elf_reloc_type_class
7207 _bfd_elf_reloc_type_class (rela)
7208 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED;
7209 {
7210 return reloc_class_normal;
7211 }
7212
7213 /* For RELA architectures, return the relocation value for a
7214 relocation against a local symbol. */
7215
7216 bfd_vma
7217 _bfd_elf_rela_local_sym (abfd, sym, sec, rel)
7218 bfd *abfd;
7219 Elf_Internal_Sym *sym;
7220 asection *sec;
7221 Elf_Internal_Rela *rel;
7222 {
7223 bfd_vma relocation;
7224
7225 relocation = (sec->output_section->vma
7226 + sec->output_offset
7227 + sym->st_value);
7228 if ((sec->flags & SEC_MERGE)
7229 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7230 && elf_section_data (sec)->sec_info_type == ELF_INFO_TYPE_MERGE)
7231 {
7232 asection *msec;
7233
7234 msec = sec;
7235 rel->r_addend =
7236 _bfd_merged_section_offset (abfd, &msec,
7237 elf_section_data (sec)->sec_info,
7238 sym->st_value + rel->r_addend,
7239 (bfd_vma) 0)
7240 - relocation;
7241 rel->r_addend += msec->output_section->vma + msec->output_offset;
7242 }
7243 return relocation;
7244 }
7245
7246 bfd_vma
7247 _bfd_elf_rel_local_sym (abfd, sym, psec, addend)
7248 bfd *abfd;
7249 Elf_Internal_Sym *sym;
7250 asection **psec;
7251 bfd_vma addend;
7252 {
7253 asection *sec = *psec;
7254
7255 if (elf_section_data (sec)->sec_info_type != ELF_INFO_TYPE_MERGE)
7256 return sym->st_value + addend;
7257
7258 return _bfd_merged_section_offset (abfd, psec,
7259 elf_section_data (sec)->sec_info,
7260 sym->st_value + addend, (bfd_vma) 0);
7261 }
7262
7263 bfd_vma
7264 _bfd_elf_section_offset (abfd, info, sec, offset)
7265 bfd *abfd;
7266 struct bfd_link_info *info;
7267 asection *sec;
7268 bfd_vma offset;
7269 {
7270 struct bfd_elf_section_data *sec_data;
7271
7272 sec_data = elf_section_data (sec);
7273 switch (sec_data->sec_info_type)
7274 {
7275 case ELF_INFO_TYPE_STABS:
7276 return _bfd_stab_section_offset
7277 (abfd, &elf_hash_table (info)->merge_info, sec, &sec_data->sec_info,
7278 offset);
7279 case ELF_INFO_TYPE_EH_FRAME:
7280 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7281 default:
7282 return offset;
7283 }
7284 }