]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-arm.c
Enhance support for copying and stripping Solaris and ARM binaries.
[thirdparty/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "elf-vxworks.h"
31 #include "elf/arm.h"
32
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
59 #define elf_info_to_howto 0
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
65 /* The Adjusted Place, as defined by AAELF. */
66 #define Pa(X) ((X) & 0xfffffffc)
67
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
77 static reloc_howto_type elf32_arm_howto_table_1[] =
78 {
79 /* No relocation. */
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
82 3, /* size (0 = byte, 1 = short, 2 = long) */
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0, /* type */
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
142 32, /* bitsize */
143 TRUE, /* pc_relative */
144 0, /* bitpos */
145 complain_overflow_dont,/* complain_on_overflow */
146 bfd_elf_generic_reloc, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
226 HOWTO (R_ARM_THM_CALL, /* type */
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
229 24, /* bitsize */
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
254 HOWTO (R_ARM_BREL_ADJ, /* type */
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
258 FALSE, /* pc_relative */
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
267
268 HOWTO (R_ARM_TLS_DESC, /* type */
269 0, /* rightshift */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield,/* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
300 24, /* bitsize */
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
315 24, /* bitsize */
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE), /* pcrel_offset */
325
326 /* Dynamic TLS relocations. */
327
328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
341
342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
413
414 HOWTO (R_ARM_RELATIVE, /* type */
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
427
428 HOWTO (R_ARM_GOTOFF32, /* type */
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
441
442 HOWTO (R_ARM_GOTPC, /* type */
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
455
456 HOWTO (R_ARM_GOT32, /* type */
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 HOWTO (R_ARM_PLT32, /* type */
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_signed,/* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
525
526 HOWTO (R_ARM_BASE_ABS, /* type */
527 0, /* rightshift */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont,/* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
857 complain_overflow_dont,/* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
892
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
1274
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
1544
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1559
1560 HOWTO (R_ARM_TLS_LDM32, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 HOWTO (R_ARM_TLS_LDO32, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 HOWTO (R_ARM_TLS_IE32, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601
1602 HOWTO (R_ARM_TLS_LE32, /* type */
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 NULL, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1615
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_bitfield,/* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1629
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_bitfield,/* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
1649 0, /* bitpos */
1650 complain_overflow_bitfield,/* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1657
1658 /* 112-127 private relocations. */
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
1675
1676 /* R_ARM_ME_TOO, obsolete. */
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692 EMPTY_HOWTO (130),
1693 EMPTY_HOWTO (131),
1694 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1695 0, /* rightshift. */
1696 1, /* size (0 = byte, 1 = short, 2 = long). */
1697 16, /* bitsize. */
1698 FALSE, /* pc_relative. */
1699 0, /* bitpos. */
1700 complain_overflow_bitfield,/* complain_on_overflow. */
1701 bfd_elf_generic_reloc, /* special_function. */
1702 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1703 FALSE, /* partial_inplace. */
1704 0x00000000, /* src_mask. */
1705 0x00000000, /* dst_mask. */
1706 FALSE), /* pcrel_offset. */
1707 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1708 0, /* rightshift. */
1709 1, /* size (0 = byte, 1 = short, 2 = long). */
1710 16, /* bitsize. */
1711 FALSE, /* pc_relative. */
1712 0, /* bitpos. */
1713 complain_overflow_bitfield,/* complain_on_overflow. */
1714 bfd_elf_generic_reloc, /* special_function. */
1715 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1716 FALSE, /* partial_inplace. */
1717 0x00000000, /* src_mask. */
1718 0x00000000, /* dst_mask. */
1719 FALSE), /* pcrel_offset. */
1720 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1721 0, /* rightshift. */
1722 1, /* size (0 = byte, 1 = short, 2 = long). */
1723 16, /* bitsize. */
1724 FALSE, /* pc_relative. */
1725 0, /* bitpos. */
1726 complain_overflow_bitfield,/* complain_on_overflow. */
1727 bfd_elf_generic_reloc, /* special_function. */
1728 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1729 FALSE, /* partial_inplace. */
1730 0x00000000, /* src_mask. */
1731 0x00000000, /* dst_mask. */
1732 FALSE), /* pcrel_offset. */
1733 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1734 0, /* rightshift. */
1735 1, /* size (0 = byte, 1 = short, 2 = long). */
1736 16, /* bitsize. */
1737 FALSE, /* pc_relative. */
1738 0, /* bitpos. */
1739 complain_overflow_bitfield,/* complain_on_overflow. */
1740 bfd_elf_generic_reloc, /* special_function. */
1741 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1742 FALSE, /* partial_inplace. */
1743 0x00000000, /* src_mask. */
1744 0x00000000, /* dst_mask. */
1745 FALSE), /* pcrel_offset. */
1746 };
1747
1748 /* 160 onwards: */
1749 static reloc_howto_type elf32_arm_howto_table_2[1] =
1750 {
1751 HOWTO (R_ARM_IRELATIVE, /* type */
1752 0, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 32, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_bitfield,/* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 "R_ARM_IRELATIVE", /* name */
1760 TRUE, /* partial_inplace */
1761 0xffffffff, /* src_mask */
1762 0xffffffff, /* dst_mask */
1763 FALSE) /* pcrel_offset */
1764 };
1765
1766 /* 249-255 extended, currently unused, relocations: */
1767 static reloc_howto_type elf32_arm_howto_table_3[4] =
1768 {
1769 HOWTO (R_ARM_RREL32, /* type */
1770 0, /* rightshift */
1771 0, /* size (0 = byte, 1 = short, 2 = long) */
1772 0, /* bitsize */
1773 FALSE, /* pc_relative */
1774 0, /* bitpos */
1775 complain_overflow_dont,/* complain_on_overflow */
1776 bfd_elf_generic_reloc, /* special_function */
1777 "R_ARM_RREL32", /* name */
1778 FALSE, /* partial_inplace */
1779 0, /* src_mask */
1780 0, /* dst_mask */
1781 FALSE), /* pcrel_offset */
1782
1783 HOWTO (R_ARM_RABS32, /* type */
1784 0, /* rightshift */
1785 0, /* size (0 = byte, 1 = short, 2 = long) */
1786 0, /* bitsize */
1787 FALSE, /* pc_relative */
1788 0, /* bitpos */
1789 complain_overflow_dont,/* complain_on_overflow */
1790 bfd_elf_generic_reloc, /* special_function */
1791 "R_ARM_RABS32", /* name */
1792 FALSE, /* partial_inplace */
1793 0, /* src_mask */
1794 0, /* dst_mask */
1795 FALSE), /* pcrel_offset */
1796
1797 HOWTO (R_ARM_RPC24, /* type */
1798 0, /* rightshift */
1799 0, /* size (0 = byte, 1 = short, 2 = long) */
1800 0, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_dont,/* complain_on_overflow */
1804 bfd_elf_generic_reloc, /* special_function */
1805 "R_ARM_RPC24", /* name */
1806 FALSE, /* partial_inplace */
1807 0, /* src_mask */
1808 0, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 HOWTO (R_ARM_RBASE, /* type */
1812 0, /* rightshift */
1813 0, /* size (0 = byte, 1 = short, 2 = long) */
1814 0, /* bitsize */
1815 FALSE, /* pc_relative */
1816 0, /* bitpos */
1817 complain_overflow_dont,/* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 "R_ARM_RBASE", /* name */
1820 FALSE, /* partial_inplace */
1821 0, /* src_mask */
1822 0, /* dst_mask */
1823 FALSE) /* pcrel_offset */
1824 };
1825
1826 static reloc_howto_type *
1827 elf32_arm_howto_from_type (unsigned int r_type)
1828 {
1829 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1830 return &elf32_arm_howto_table_1[r_type];
1831
1832 if (r_type == R_ARM_IRELATIVE)
1833 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1834
1835 if (r_type >= R_ARM_RREL32
1836 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1837 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1838
1839 return NULL;
1840 }
1841
1842 static void
1843 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1844 Elf_Internal_Rela * elf_reloc)
1845 {
1846 unsigned int r_type;
1847
1848 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1849 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1850 }
1851
1852 struct elf32_arm_reloc_map
1853 {
1854 bfd_reloc_code_real_type bfd_reloc_val;
1855 unsigned char elf_reloc_val;
1856 };
1857
1858 /* All entries in this list must also be present in elf32_arm_howto_table. */
1859 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1860 {
1861 {BFD_RELOC_NONE, R_ARM_NONE},
1862 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1863 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1864 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1865 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1866 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1867 {BFD_RELOC_32, R_ARM_ABS32},
1868 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1869 {BFD_RELOC_8, R_ARM_ABS8},
1870 {BFD_RELOC_16, R_ARM_ABS16},
1871 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1872 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1873 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1874 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1875 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1876 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1877 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1878 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1879 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1880 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1881 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1882 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1883 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1884 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1885 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1886 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1887 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1888 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1889 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1890 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1891 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1892 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1893 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1894 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1895 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1896 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1897 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1898 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1899 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1900 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1901 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1902 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1903 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1904 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1905 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1906 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1907 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1908 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1909 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1910 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1911 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1912 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1913 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1914 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1915 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1916 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1917 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1918 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1919 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1920 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1921 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1922 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1923 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1924 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1925 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1926 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1927 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1928 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1929 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1930 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1931 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1932 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1933 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1934 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1935 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1936 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1937 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1938 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1939 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1940 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1941 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1942 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1943 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1944 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1945 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1946 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
1947 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
1948 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
1949 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
1950 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC}
1951 };
1952
1953 static reloc_howto_type *
1954 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1955 bfd_reloc_code_real_type code)
1956 {
1957 unsigned int i;
1958
1959 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1960 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1961 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1962
1963 return NULL;
1964 }
1965
1966 static reloc_howto_type *
1967 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1968 const char *r_name)
1969 {
1970 unsigned int i;
1971
1972 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1973 if (elf32_arm_howto_table_1[i].name != NULL
1974 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1975 return &elf32_arm_howto_table_1[i];
1976
1977 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1978 if (elf32_arm_howto_table_2[i].name != NULL
1979 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1980 return &elf32_arm_howto_table_2[i];
1981
1982 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1983 if (elf32_arm_howto_table_3[i].name != NULL
1984 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1985 return &elf32_arm_howto_table_3[i];
1986
1987 return NULL;
1988 }
1989
1990 /* Support for core dump NOTE sections. */
1991
1992 static bfd_boolean
1993 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1994 {
1995 int offset;
1996 size_t size;
1997
1998 switch (note->descsz)
1999 {
2000 default:
2001 return FALSE;
2002
2003 case 148: /* Linux/ARM 32-bit. */
2004 /* pr_cursig */
2005 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2006
2007 /* pr_pid */
2008 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2009
2010 /* pr_reg */
2011 offset = 72;
2012 size = 72;
2013
2014 break;
2015 }
2016
2017 /* Make a ".reg/999" section. */
2018 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2019 size, note->descpos + offset);
2020 }
2021
2022 static bfd_boolean
2023 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2024 {
2025 switch (note->descsz)
2026 {
2027 default:
2028 return FALSE;
2029
2030 case 124: /* Linux/ARM elf_prpsinfo. */
2031 elf_tdata (abfd)->core->pid
2032 = bfd_get_32 (abfd, note->descdata + 12);
2033 elf_tdata (abfd)->core->program
2034 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2035 elf_tdata (abfd)->core->command
2036 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2037 }
2038
2039 /* Note that for some reason, a spurious space is tacked
2040 onto the end of the args in some (at least one anyway)
2041 implementations, so strip it off if it exists. */
2042 {
2043 char *command = elf_tdata (abfd)->core->command;
2044 int n = strlen (command);
2045
2046 if (0 < n && command[n - 1] == ' ')
2047 command[n - 1] = '\0';
2048 }
2049
2050 return TRUE;
2051 }
2052
2053 static char *
2054 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2055 int note_type, ...)
2056 {
2057 switch (note_type)
2058 {
2059 default:
2060 return NULL;
2061
2062 case NT_PRPSINFO:
2063 {
2064 char data[124];
2065 va_list ap;
2066
2067 va_start (ap, note_type);
2068 memset (data, 0, sizeof (data));
2069 strncpy (data + 28, va_arg (ap, const char *), 16);
2070 strncpy (data + 44, va_arg (ap, const char *), 80);
2071 va_end (ap);
2072
2073 return elfcore_write_note (abfd, buf, bufsiz,
2074 "CORE", note_type, data, sizeof (data));
2075 }
2076
2077 case NT_PRSTATUS:
2078 {
2079 char data[148];
2080 va_list ap;
2081 long pid;
2082 int cursig;
2083 const void *greg;
2084
2085 va_start (ap, note_type);
2086 memset (data, 0, sizeof (data));
2087 pid = va_arg (ap, long);
2088 bfd_put_32 (abfd, pid, data + 24);
2089 cursig = va_arg (ap, int);
2090 bfd_put_16 (abfd, cursig, data + 12);
2091 greg = va_arg (ap, const void *);
2092 memcpy (data + 72, greg, 72);
2093 va_end (ap);
2094
2095 return elfcore_write_note (abfd, buf, bufsiz,
2096 "CORE", note_type, data, sizeof (data));
2097 }
2098 }
2099 }
2100
2101 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2102 #define TARGET_LITTLE_NAME "elf32-littlearm"
2103 #define TARGET_BIG_SYM arm_elf32_be_vec
2104 #define TARGET_BIG_NAME "elf32-bigarm"
2105
2106 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2107 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2108 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2109
2110 typedef unsigned long int insn32;
2111 typedef unsigned short int insn16;
2112
2113 /* In lieu of proper flags, assume all EABIv4 or later objects are
2114 interworkable. */
2115 #define INTERWORK_FLAG(abfd) \
2116 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2117 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2118 || ((abfd)->flags & BFD_LINKER_CREATED))
2119
2120 /* The linker script knows the section names for placement.
2121 The entry_names are used to do simple name mangling on the stubs.
2122 Given a function name, and its type, the stub can be found. The
2123 name can be changed. The only requirement is the %s be present. */
2124 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2125 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2126
2127 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2128 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2129
2130 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2131 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2132
2133 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2134 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2135
2136 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2137 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2138
2139 #define STUB_ENTRY_NAME "__%s_veneer"
2140
2141 /* The name of the dynamic interpreter. This is put in the .interp
2142 section. */
2143 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2144
2145 static const unsigned long tls_trampoline [] =
2146 {
2147 0xe08e0000, /* add r0, lr, r0 */
2148 0xe5901004, /* ldr r1, [r0,#4] */
2149 0xe12fff11, /* bx r1 */
2150 };
2151
2152 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2153 {
2154 0xe52d2004, /* push {r2} */
2155 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2156 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2157 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2158 0xe081100f, /* 2: add r1, pc */
2159 0xe12fff12, /* bx r2 */
2160 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2161 + dl_tlsdesc_lazy_resolver(GOT) */
2162 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2163 };
2164
2165 #ifdef FOUR_WORD_PLT
2166
2167 /* The first entry in a procedure linkage table looks like
2168 this. It is set up so that any shared library function that is
2169 called before the relocation has been set up calls the dynamic
2170 linker first. */
2171 static const bfd_vma elf32_arm_plt0_entry [] =
2172 {
2173 0xe52de004, /* str lr, [sp, #-4]! */
2174 0xe59fe010, /* ldr lr, [pc, #16] */
2175 0xe08fe00e, /* add lr, pc, lr */
2176 0xe5bef008, /* ldr pc, [lr, #8]! */
2177 };
2178
2179 /* Subsequent entries in a procedure linkage table look like
2180 this. */
2181 static const bfd_vma elf32_arm_plt_entry [] =
2182 {
2183 0xe28fc600, /* add ip, pc, #NN */
2184 0xe28cca00, /* add ip, ip, #NN */
2185 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2186 0x00000000, /* unused */
2187 };
2188
2189 #else /* not FOUR_WORD_PLT */
2190
2191 /* The first entry in a procedure linkage table looks like
2192 this. It is set up so that any shared library function that is
2193 called before the relocation has been set up calls the dynamic
2194 linker first. */
2195 static const bfd_vma elf32_arm_plt0_entry [] =
2196 {
2197 0xe52de004, /* str lr, [sp, #-4]! */
2198 0xe59fe004, /* ldr lr, [pc, #4] */
2199 0xe08fe00e, /* add lr, pc, lr */
2200 0xe5bef008, /* ldr pc, [lr, #8]! */
2201 0x00000000, /* &GOT[0] - . */
2202 };
2203
2204 /* By default subsequent entries in a procedure linkage table look like
2205 this. Offsets that don't fit into 28 bits will cause link error. */
2206 static const bfd_vma elf32_arm_plt_entry_short [] =
2207 {
2208 0xe28fc600, /* add ip, pc, #0xNN00000 */
2209 0xe28cca00, /* add ip, ip, #0xNN000 */
2210 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2211 };
2212
2213 /* When explicitly asked, we'll use this "long" entry format
2214 which can cope with arbitrary displacements. */
2215 static const bfd_vma elf32_arm_plt_entry_long [] =
2216 {
2217 0xe28fc200, /* add ip, pc, #0xN0000000 */
2218 0xe28cc600, /* add ip, ip, #0xNN00000 */
2219 0xe28cca00, /* add ip, ip, #0xNN000 */
2220 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2221 };
2222
2223 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2224
2225 #endif /* not FOUR_WORD_PLT */
2226
2227 /* The first entry in a procedure linkage table looks like this.
2228 It is set up so that any shared library function that is called before the
2229 relocation has been set up calls the dynamic linker first. */
2230 static const bfd_vma elf32_thumb2_plt0_entry [] =
2231 {
2232 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2233 an instruction maybe encoded to one or two array elements. */
2234 0xf8dfb500, /* push {lr} */
2235 0x44fee008, /* ldr.w lr, [pc, #8] */
2236 /* add lr, pc */
2237 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2238 0x00000000, /* &GOT[0] - . */
2239 };
2240
2241 /* Subsequent entries in a procedure linkage table for thumb only target
2242 look like this. */
2243 static const bfd_vma elf32_thumb2_plt_entry [] =
2244 {
2245 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2246 an instruction maybe encoded to one or two array elements. */
2247 0x0c00f240, /* movw ip, #0xNNNN */
2248 0x0c00f2c0, /* movt ip, #0xNNNN */
2249 0xf8dc44fc, /* add ip, pc */
2250 0xbf00f000 /* ldr.w pc, [ip] */
2251 /* nop */
2252 };
2253
2254 /* The format of the first entry in the procedure linkage table
2255 for a VxWorks executable. */
2256 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2257 {
2258 0xe52dc008, /* str ip,[sp,#-8]! */
2259 0xe59fc000, /* ldr ip,[pc] */
2260 0xe59cf008, /* ldr pc,[ip,#8] */
2261 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2262 };
2263
2264 /* The format of subsequent entries in a VxWorks executable. */
2265 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2266 {
2267 0xe59fc000, /* ldr ip,[pc] */
2268 0xe59cf000, /* ldr pc,[ip] */
2269 0x00000000, /* .long @got */
2270 0xe59fc000, /* ldr ip,[pc] */
2271 0xea000000, /* b _PLT */
2272 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2273 };
2274
2275 /* The format of entries in a VxWorks shared library. */
2276 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2277 {
2278 0xe59fc000, /* ldr ip,[pc] */
2279 0xe79cf009, /* ldr pc,[ip,r9] */
2280 0x00000000, /* .long @got */
2281 0xe59fc000, /* ldr ip,[pc] */
2282 0xe599f008, /* ldr pc,[r9,#8] */
2283 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2284 };
2285
2286 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2287 #define PLT_THUMB_STUB_SIZE 4
2288 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2289 {
2290 0x4778, /* bx pc */
2291 0x46c0 /* nop */
2292 };
2293
2294 /* The entries in a PLT when using a DLL-based target with multiple
2295 address spaces. */
2296 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2297 {
2298 0xe51ff004, /* ldr pc, [pc, #-4] */
2299 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2300 };
2301
2302 /* The first entry in a procedure linkage table looks like
2303 this. It is set up so that any shared library function that is
2304 called before the relocation has been set up calls the dynamic
2305 linker first. */
2306 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2307 {
2308 /* First bundle: */
2309 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2310 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2311 0xe08cc00f, /* add ip, ip, pc */
2312 0xe52dc008, /* str ip, [sp, #-8]! */
2313 /* Second bundle: */
2314 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2315 0xe59cc000, /* ldr ip, [ip] */
2316 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2317 0xe12fff1c, /* bx ip */
2318 /* Third bundle: */
2319 0xe320f000, /* nop */
2320 0xe320f000, /* nop */
2321 0xe320f000, /* nop */
2322 /* .Lplt_tail: */
2323 0xe50dc004, /* str ip, [sp, #-4] */
2324 /* Fourth bundle: */
2325 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2326 0xe59cc000, /* ldr ip, [ip] */
2327 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2328 0xe12fff1c, /* bx ip */
2329 };
2330 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2331
2332 /* Subsequent entries in a procedure linkage table look like this. */
2333 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2334 {
2335 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2336 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2337 0xe08cc00f, /* add ip, ip, pc */
2338 0xea000000, /* b .Lplt_tail */
2339 };
2340
2341 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2342 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2343 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2344 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2345 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2346 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2347 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2348 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2349
2350 enum stub_insn_type
2351 {
2352 THUMB16_TYPE = 1,
2353 THUMB32_TYPE,
2354 ARM_TYPE,
2355 DATA_TYPE
2356 };
2357
2358 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2359 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2360 is inserted in arm_build_one_stub(). */
2361 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2362 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2363 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2364 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2365 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2366 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2367
2368 typedef struct
2369 {
2370 bfd_vma data;
2371 enum stub_insn_type type;
2372 unsigned int r_type;
2373 int reloc_addend;
2374 } insn_sequence;
2375
2376 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2377 to reach the stub if necessary. */
2378 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2379 {
2380 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2381 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2382 };
2383
2384 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2385 available. */
2386 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2387 {
2388 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2389 ARM_INSN (0xe12fff1c), /* bx ip */
2390 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2391 };
2392
2393 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2394 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2395 {
2396 THUMB16_INSN (0xb401), /* push {r0} */
2397 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2398 THUMB16_INSN (0x4684), /* mov ip, r0 */
2399 THUMB16_INSN (0xbc01), /* pop {r0} */
2400 THUMB16_INSN (0x4760), /* bx ip */
2401 THUMB16_INSN (0xbf00), /* nop */
2402 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2403 };
2404
2405 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2406 allowed. */
2407 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2408 {
2409 THUMB16_INSN (0x4778), /* bx pc */
2410 THUMB16_INSN (0x46c0), /* nop */
2411 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2412 ARM_INSN (0xe12fff1c), /* bx ip */
2413 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2414 };
2415
2416 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2417 available. */
2418 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2419 {
2420 THUMB16_INSN (0x4778), /* bx pc */
2421 THUMB16_INSN (0x46c0), /* nop */
2422 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2423 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2424 };
2425
2426 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2427 one, when the destination is close enough. */
2428 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2429 {
2430 THUMB16_INSN (0x4778), /* bx pc */
2431 THUMB16_INSN (0x46c0), /* nop */
2432 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2433 };
2434
2435 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2436 blx to reach the stub if necessary. */
2437 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2438 {
2439 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2440 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2441 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2442 };
2443
2444 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2445 blx to reach the stub if necessary. We can not add into pc;
2446 it is not guaranteed to mode switch (different in ARMv6 and
2447 ARMv7). */
2448 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2449 {
2450 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2451 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2452 ARM_INSN (0xe12fff1c), /* bx ip */
2453 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2454 };
2455
2456 /* V4T ARM -> ARM long branch stub, PIC. */
2457 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2458 {
2459 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2460 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2461 ARM_INSN (0xe12fff1c), /* bx ip */
2462 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2463 };
2464
2465 /* V4T Thumb -> ARM long branch stub, PIC. */
2466 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2467 {
2468 THUMB16_INSN (0x4778), /* bx pc */
2469 THUMB16_INSN (0x46c0), /* nop */
2470 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2471 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2472 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2473 };
2474
2475 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2476 architectures. */
2477 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2478 {
2479 THUMB16_INSN (0xb401), /* push {r0} */
2480 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2481 THUMB16_INSN (0x46fc), /* mov ip, pc */
2482 THUMB16_INSN (0x4484), /* add ip, r0 */
2483 THUMB16_INSN (0xbc01), /* pop {r0} */
2484 THUMB16_INSN (0x4760), /* bx ip */
2485 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2486 };
2487
2488 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2489 allowed. */
2490 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2491 {
2492 THUMB16_INSN (0x4778), /* bx pc */
2493 THUMB16_INSN (0x46c0), /* nop */
2494 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2495 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2496 ARM_INSN (0xe12fff1c), /* bx ip */
2497 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2498 };
2499
2500 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2501 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2502 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2503 {
2504 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2505 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2506 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2507 };
2508
2509 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2510 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2511 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2512 {
2513 THUMB16_INSN (0x4778), /* bx pc */
2514 THUMB16_INSN (0x46c0), /* nop */
2515 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2516 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2517 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2518 };
2519
2520 /* NaCl ARM -> ARM long branch stub. */
2521 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2522 {
2523 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2524 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2525 ARM_INSN (0xe12fff1c), /* bx ip */
2526 ARM_INSN (0xe320f000), /* nop */
2527 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2528 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2529 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2530 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2531 };
2532
2533 /* NaCl ARM -> ARM long branch stub, PIC. */
2534 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2535 {
2536 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2537 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2538 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2539 ARM_INSN (0xe12fff1c), /* bx ip */
2540 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2541 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2542 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2543 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2544 };
2545
2546
2547 /* Cortex-A8 erratum-workaround stubs. */
2548
2549 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2550 can't use a conditional branch to reach this stub). */
2551
2552 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2553 {
2554 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2555 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2556 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2557 };
2558
2559 /* Stub used for b.w and bl.w instructions. */
2560
2561 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2562 {
2563 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2564 };
2565
2566 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2567 {
2568 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2569 };
2570
2571 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2572 instruction (which switches to ARM mode) to point to this stub. Jump to the
2573 real destination using an ARM-mode branch. */
2574
2575 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2576 {
2577 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2578 };
2579
2580 /* For each section group there can be a specially created linker section
2581 to hold the stubs for that group. The name of the stub section is based
2582 upon the name of another section within that group with the suffix below
2583 applied.
2584
2585 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2586 create what appeared to be a linker stub section when it actually
2587 contained user code/data. For example, consider this fragment:
2588
2589 const char * stubborn_problems[] = { "np" };
2590
2591 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2592 section called:
2593
2594 .data.rel.local.stubborn_problems
2595
2596 This then causes problems in arm32_arm_build_stubs() as it triggers:
2597
2598 // Ignore non-stub sections.
2599 if (!strstr (stub_sec->name, STUB_SUFFIX))
2600 continue;
2601
2602 And so the section would be ignored instead of being processed. Hence
2603 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2604 C identifier. */
2605 #define STUB_SUFFIX ".__stub"
2606
2607 /* One entry per long/short branch stub defined above. */
2608 #define DEF_STUBS \
2609 DEF_STUB(long_branch_any_any) \
2610 DEF_STUB(long_branch_v4t_arm_thumb) \
2611 DEF_STUB(long_branch_thumb_only) \
2612 DEF_STUB(long_branch_v4t_thumb_thumb) \
2613 DEF_STUB(long_branch_v4t_thumb_arm) \
2614 DEF_STUB(short_branch_v4t_thumb_arm) \
2615 DEF_STUB(long_branch_any_arm_pic) \
2616 DEF_STUB(long_branch_any_thumb_pic) \
2617 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2618 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2619 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2620 DEF_STUB(long_branch_thumb_only_pic) \
2621 DEF_STUB(long_branch_any_tls_pic) \
2622 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2623 DEF_STUB(long_branch_arm_nacl) \
2624 DEF_STUB(long_branch_arm_nacl_pic) \
2625 DEF_STUB(a8_veneer_b_cond) \
2626 DEF_STUB(a8_veneer_b) \
2627 DEF_STUB(a8_veneer_bl) \
2628 DEF_STUB(a8_veneer_blx)
2629
2630 #define DEF_STUB(x) arm_stub_##x,
2631 enum elf32_arm_stub_type
2632 {
2633 arm_stub_none,
2634 DEF_STUBS
2635 /* Note the first a8_veneer type. */
2636 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2637 };
2638 #undef DEF_STUB
2639
2640 typedef struct
2641 {
2642 const insn_sequence* template_sequence;
2643 int template_size;
2644 } stub_def;
2645
2646 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2647 static const stub_def stub_definitions[] =
2648 {
2649 {NULL, 0},
2650 DEF_STUBS
2651 };
2652
2653 struct elf32_arm_stub_hash_entry
2654 {
2655 /* Base hash table entry structure. */
2656 struct bfd_hash_entry root;
2657
2658 /* The stub section. */
2659 asection *stub_sec;
2660
2661 /* Offset within stub_sec of the beginning of this stub. */
2662 bfd_vma stub_offset;
2663
2664 /* Given the symbol's value and its section we can determine its final
2665 value when building the stubs (so the stub knows where to jump). */
2666 bfd_vma target_value;
2667 asection *target_section;
2668
2669 /* Offset to apply to relocation referencing target_value. */
2670 bfd_vma target_addend;
2671
2672 /* The instruction which caused this stub to be generated (only valid for
2673 Cortex-A8 erratum workaround stubs at present). */
2674 unsigned long orig_insn;
2675
2676 /* The stub type. */
2677 enum elf32_arm_stub_type stub_type;
2678 /* Its encoding size in bytes. */
2679 int stub_size;
2680 /* Its template. */
2681 const insn_sequence *stub_template;
2682 /* The size of the template (number of entries). */
2683 int stub_template_size;
2684
2685 /* The symbol table entry, if any, that this was derived from. */
2686 struct elf32_arm_link_hash_entry *h;
2687
2688 /* Type of branch. */
2689 enum arm_st_branch_type branch_type;
2690
2691 /* Where this stub is being called from, or, in the case of combined
2692 stub sections, the first input section in the group. */
2693 asection *id_sec;
2694
2695 /* The name for the local symbol at the start of this stub. The
2696 stub name in the hash table has to be unique; this does not, so
2697 it can be friendlier. */
2698 char *output_name;
2699 };
2700
2701 /* Used to build a map of a section. This is required for mixed-endian
2702 code/data. */
2703
2704 typedef struct elf32_elf_section_map
2705 {
2706 bfd_vma vma;
2707 char type;
2708 }
2709 elf32_arm_section_map;
2710
2711 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2712
2713 typedef enum
2714 {
2715 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2716 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2717 VFP11_ERRATUM_ARM_VENEER,
2718 VFP11_ERRATUM_THUMB_VENEER
2719 }
2720 elf32_vfp11_erratum_type;
2721
2722 typedef struct elf32_vfp11_erratum_list
2723 {
2724 struct elf32_vfp11_erratum_list *next;
2725 bfd_vma vma;
2726 union
2727 {
2728 struct
2729 {
2730 struct elf32_vfp11_erratum_list *veneer;
2731 unsigned int vfp_insn;
2732 } b;
2733 struct
2734 {
2735 struct elf32_vfp11_erratum_list *branch;
2736 unsigned int id;
2737 } v;
2738 } u;
2739 elf32_vfp11_erratum_type type;
2740 }
2741 elf32_vfp11_erratum_list;
2742
2743 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2744 veneer. */
2745 typedef enum
2746 {
2747 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2748 STM32L4XX_ERRATUM_VENEER
2749 }
2750 elf32_stm32l4xx_erratum_type;
2751
2752 typedef struct elf32_stm32l4xx_erratum_list
2753 {
2754 struct elf32_stm32l4xx_erratum_list *next;
2755 bfd_vma vma;
2756 union
2757 {
2758 struct
2759 {
2760 struct elf32_stm32l4xx_erratum_list *veneer;
2761 unsigned int insn;
2762 } b;
2763 struct
2764 {
2765 struct elf32_stm32l4xx_erratum_list *branch;
2766 unsigned int id;
2767 } v;
2768 } u;
2769 elf32_stm32l4xx_erratum_type type;
2770 }
2771 elf32_stm32l4xx_erratum_list;
2772
2773 typedef enum
2774 {
2775 DELETE_EXIDX_ENTRY,
2776 INSERT_EXIDX_CANTUNWIND_AT_END
2777 }
2778 arm_unwind_edit_type;
2779
2780 /* A (sorted) list of edits to apply to an unwind table. */
2781 typedef struct arm_unwind_table_edit
2782 {
2783 arm_unwind_edit_type type;
2784 /* Note: we sometimes want to insert an unwind entry corresponding to a
2785 section different from the one we're currently writing out, so record the
2786 (text) section this edit relates to here. */
2787 asection *linked_section;
2788 unsigned int index;
2789 struct arm_unwind_table_edit *next;
2790 }
2791 arm_unwind_table_edit;
2792
2793 typedef struct _arm_elf_section_data
2794 {
2795 /* Information about mapping symbols. */
2796 struct bfd_elf_section_data elf;
2797 unsigned int mapcount;
2798 unsigned int mapsize;
2799 elf32_arm_section_map *map;
2800 /* Information about CPU errata. */
2801 unsigned int erratumcount;
2802 elf32_vfp11_erratum_list *erratumlist;
2803 unsigned int stm32l4xx_erratumcount;
2804 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
2805 unsigned int additional_reloc_count;
2806 /* Information about unwind tables. */
2807 union
2808 {
2809 /* Unwind info attached to a text section. */
2810 struct
2811 {
2812 asection *arm_exidx_sec;
2813 } text;
2814
2815 /* Unwind info attached to an .ARM.exidx section. */
2816 struct
2817 {
2818 arm_unwind_table_edit *unwind_edit_list;
2819 arm_unwind_table_edit *unwind_edit_tail;
2820 } exidx;
2821 } u;
2822 }
2823 _arm_elf_section_data;
2824
2825 #define elf32_arm_section_data(sec) \
2826 ((_arm_elf_section_data *) elf_section_data (sec))
2827
2828 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2829 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2830 so may be created multiple times: we use an array of these entries whilst
2831 relaxing which we can refresh easily, then create stubs for each potentially
2832 erratum-triggering instruction once we've settled on a solution. */
2833
2834 struct a8_erratum_fix
2835 {
2836 bfd *input_bfd;
2837 asection *section;
2838 bfd_vma offset;
2839 bfd_vma addend;
2840 unsigned long orig_insn;
2841 char *stub_name;
2842 enum elf32_arm_stub_type stub_type;
2843 enum arm_st_branch_type branch_type;
2844 };
2845
2846 /* A table of relocs applied to branches which might trigger Cortex-A8
2847 erratum. */
2848
2849 struct a8_erratum_reloc
2850 {
2851 bfd_vma from;
2852 bfd_vma destination;
2853 struct elf32_arm_link_hash_entry *hash;
2854 const char *sym_name;
2855 unsigned int r_type;
2856 enum arm_st_branch_type branch_type;
2857 bfd_boolean non_a8_stub;
2858 };
2859
2860 /* The size of the thread control block. */
2861 #define TCB_SIZE 8
2862
2863 /* ARM-specific information about a PLT entry, over and above the usual
2864 gotplt_union. */
2865 struct arm_plt_info
2866 {
2867 /* We reference count Thumb references to a PLT entry separately,
2868 so that we can emit the Thumb trampoline only if needed. */
2869 bfd_signed_vma thumb_refcount;
2870
2871 /* Some references from Thumb code may be eliminated by BL->BLX
2872 conversion, so record them separately. */
2873 bfd_signed_vma maybe_thumb_refcount;
2874
2875 /* How many of the recorded PLT accesses were from non-call relocations.
2876 This information is useful when deciding whether anything takes the
2877 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2878 non-call references to the function should resolve directly to the
2879 real runtime target. */
2880 unsigned int noncall_refcount;
2881
2882 /* Since PLT entries have variable size if the Thumb prologue is
2883 used, we need to record the index into .got.plt instead of
2884 recomputing it from the PLT offset. */
2885 bfd_signed_vma got_offset;
2886 };
2887
2888 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2889 struct arm_local_iplt_info
2890 {
2891 /* The information that is usually found in the generic ELF part of
2892 the hash table entry. */
2893 union gotplt_union root;
2894
2895 /* The information that is usually found in the ARM-specific part of
2896 the hash table entry. */
2897 struct arm_plt_info arm;
2898
2899 /* A list of all potential dynamic relocations against this symbol. */
2900 struct elf_dyn_relocs *dyn_relocs;
2901 };
2902
2903 struct elf_arm_obj_tdata
2904 {
2905 struct elf_obj_tdata root;
2906
2907 /* tls_type for each local got entry. */
2908 char *local_got_tls_type;
2909
2910 /* GOTPLT entries for TLS descriptors. */
2911 bfd_vma *local_tlsdesc_gotent;
2912
2913 /* Information for local symbols that need entries in .iplt. */
2914 struct arm_local_iplt_info **local_iplt;
2915
2916 /* Zero to warn when linking objects with incompatible enum sizes. */
2917 int no_enum_size_warning;
2918
2919 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2920 int no_wchar_size_warning;
2921 };
2922
2923 #define elf_arm_tdata(bfd) \
2924 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2925
2926 #define elf32_arm_local_got_tls_type(bfd) \
2927 (elf_arm_tdata (bfd)->local_got_tls_type)
2928
2929 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2930 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2931
2932 #define elf32_arm_local_iplt(bfd) \
2933 (elf_arm_tdata (bfd)->local_iplt)
2934
2935 #define is_arm_elf(bfd) \
2936 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2937 && elf_tdata (bfd) != NULL \
2938 && elf_object_id (bfd) == ARM_ELF_DATA)
2939
2940 static bfd_boolean
2941 elf32_arm_mkobject (bfd *abfd)
2942 {
2943 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2944 ARM_ELF_DATA);
2945 }
2946
2947 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2948
2949 /* Arm ELF linker hash entry. */
2950 struct elf32_arm_link_hash_entry
2951 {
2952 struct elf_link_hash_entry root;
2953
2954 /* Track dynamic relocs copied for this symbol. */
2955 struct elf_dyn_relocs *dyn_relocs;
2956
2957 /* ARM-specific PLT information. */
2958 struct arm_plt_info plt;
2959
2960 #define GOT_UNKNOWN 0
2961 #define GOT_NORMAL 1
2962 #define GOT_TLS_GD 2
2963 #define GOT_TLS_IE 4
2964 #define GOT_TLS_GDESC 8
2965 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2966 unsigned int tls_type : 8;
2967
2968 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2969 unsigned int is_iplt : 1;
2970
2971 unsigned int unused : 23;
2972
2973 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2974 starting at the end of the jump table. */
2975 bfd_vma tlsdesc_got;
2976
2977 /* The symbol marking the real symbol location for exported thumb
2978 symbols with Arm stubs. */
2979 struct elf_link_hash_entry *export_glue;
2980
2981 /* A pointer to the most recently used stub hash entry against this
2982 symbol. */
2983 struct elf32_arm_stub_hash_entry *stub_cache;
2984 };
2985
2986 /* Traverse an arm ELF linker hash table. */
2987 #define elf32_arm_link_hash_traverse(table, func, info) \
2988 (elf_link_hash_traverse \
2989 (&(table)->root, \
2990 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2991 (info)))
2992
2993 /* Get the ARM elf linker hash table from a link_info structure. */
2994 #define elf32_arm_hash_table(info) \
2995 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2996 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2997
2998 #define arm_stub_hash_lookup(table, string, create, copy) \
2999 ((struct elf32_arm_stub_hash_entry *) \
3000 bfd_hash_lookup ((table), (string), (create), (copy)))
3001
3002 /* Array to keep track of which stub sections have been created, and
3003 information on stub grouping. */
3004 struct map_stub
3005 {
3006 /* This is the section to which stubs in the group will be
3007 attached. */
3008 asection *link_sec;
3009 /* The stub section. */
3010 asection *stub_sec;
3011 };
3012
3013 #define elf32_arm_compute_jump_table_size(htab) \
3014 ((htab)->next_tls_desc_index * 4)
3015
3016 /* ARM ELF linker hash table. */
3017 struct elf32_arm_link_hash_table
3018 {
3019 /* The main hash table. */
3020 struct elf_link_hash_table root;
3021
3022 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3023 bfd_size_type thumb_glue_size;
3024
3025 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3026 bfd_size_type arm_glue_size;
3027
3028 /* The size in bytes of section containing the ARMv4 BX veneers. */
3029 bfd_size_type bx_glue_size;
3030
3031 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3032 veneer has been populated. */
3033 bfd_vma bx_glue_offset[15];
3034
3035 /* The size in bytes of the section containing glue for VFP11 erratum
3036 veneers. */
3037 bfd_size_type vfp11_erratum_glue_size;
3038
3039 /* The size in bytes of the section containing glue for STM32L4XX erratum
3040 veneers. */
3041 bfd_size_type stm32l4xx_erratum_glue_size;
3042
3043 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3044 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3045 elf32_arm_write_section(). */
3046 struct a8_erratum_fix *a8_erratum_fixes;
3047 unsigned int num_a8_erratum_fixes;
3048
3049 /* An arbitrary input BFD chosen to hold the glue sections. */
3050 bfd * bfd_of_glue_owner;
3051
3052 /* Nonzero to output a BE8 image. */
3053 int byteswap_code;
3054
3055 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3056 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3057 int target1_is_rel;
3058
3059 /* The relocation to use for R_ARM_TARGET2 relocations. */
3060 int target2_reloc;
3061
3062 /* 0 = Ignore R_ARM_V4BX.
3063 1 = Convert BX to MOV PC.
3064 2 = Generate v4 interworing stubs. */
3065 int fix_v4bx;
3066
3067 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3068 int fix_cortex_a8;
3069
3070 /* Whether we should fix the ARM1176 BLX immediate issue. */
3071 int fix_arm1176;
3072
3073 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3074 int use_blx;
3075
3076 /* What sort of code sequences we should look for which may trigger the
3077 VFP11 denorm erratum. */
3078 bfd_arm_vfp11_fix vfp11_fix;
3079
3080 /* Global counter for the number of fixes we have emitted. */
3081 int num_vfp11_fixes;
3082
3083 /* What sort of code sequences we should look for which may trigger the
3084 STM32L4XX erratum. */
3085 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3086
3087 /* Global counter for the number of fixes we have emitted. */
3088 int num_stm32l4xx_fixes;
3089
3090 /* Nonzero to force PIC branch veneers. */
3091 int pic_veneer;
3092
3093 /* The number of bytes in the initial entry in the PLT. */
3094 bfd_size_type plt_header_size;
3095
3096 /* The number of bytes in the subsequent PLT etries. */
3097 bfd_size_type plt_entry_size;
3098
3099 /* True if the target system is VxWorks. */
3100 int vxworks_p;
3101
3102 /* True if the target system is Symbian OS. */
3103 int symbian_p;
3104
3105 /* True if the target system is Native Client. */
3106 int nacl_p;
3107
3108 /* True if the target uses REL relocations. */
3109 int use_rel;
3110
3111 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3112 bfd_vma next_tls_desc_index;
3113
3114 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3115 bfd_vma num_tls_desc;
3116
3117 /* Short-cuts to get to dynamic linker sections. */
3118 asection *sdynbss;
3119 asection *srelbss;
3120
3121 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3122 asection *srelplt2;
3123
3124 /* The offset into splt of the PLT entry for the TLS descriptor
3125 resolver. Special values are 0, if not necessary (or not found
3126 to be necessary yet), and -1 if needed but not determined
3127 yet. */
3128 bfd_vma dt_tlsdesc_plt;
3129
3130 /* The offset into sgot of the GOT entry used by the PLT entry
3131 above. */
3132 bfd_vma dt_tlsdesc_got;
3133
3134 /* Offset in .plt section of tls_arm_trampoline. */
3135 bfd_vma tls_trampoline;
3136
3137 /* Data for R_ARM_TLS_LDM32 relocations. */
3138 union
3139 {
3140 bfd_signed_vma refcount;
3141 bfd_vma offset;
3142 } tls_ldm_got;
3143
3144 /* Small local sym cache. */
3145 struct sym_cache sym_cache;
3146
3147 /* For convenience in allocate_dynrelocs. */
3148 bfd * obfd;
3149
3150 /* The amount of space used by the reserved portion of the sgotplt
3151 section, plus whatever space is used by the jump slots. */
3152 bfd_vma sgotplt_jump_table_size;
3153
3154 /* The stub hash table. */
3155 struct bfd_hash_table stub_hash_table;
3156
3157 /* Linker stub bfd. */
3158 bfd *stub_bfd;
3159
3160 /* Linker call-backs. */
3161 asection * (*add_stub_section) (const char *, asection *, unsigned int);
3162 void (*layout_sections_again) (void);
3163
3164 /* Array to keep track of which stub sections have been created, and
3165 information on stub grouping. */
3166 struct map_stub *stub_group;
3167
3168 /* Number of elements in stub_group. */
3169 unsigned int top_id;
3170
3171 /* Assorted information used by elf32_arm_size_stubs. */
3172 unsigned int bfd_count;
3173 unsigned int top_index;
3174 asection **input_list;
3175 };
3176
3177 static inline int
3178 ctz (unsigned int mask)
3179 {
3180 #if GCC_VERSION >= 3004
3181 return __builtin_ctz (mask);
3182 #else
3183 unsigned int i;
3184
3185 for (i = 0; i < 8 * sizeof (mask); i++)
3186 {
3187 if (mask & 0x1)
3188 break;
3189 mask = (mask >> 1);
3190 }
3191 return i;
3192 #endif
3193 }
3194
3195 static inline int
3196 popcount (unsigned int mask)
3197 {
3198 #if GCC_VERSION >= 3004
3199 return __builtin_popcount (mask);
3200 #else
3201 unsigned int i, sum = 0;
3202
3203 for (i = 0; i < 8 * sizeof (mask); i++)
3204 {
3205 if (mask & 0x1)
3206 sum++;
3207 mask = (mask >> 1);
3208 }
3209 return sum;
3210 #endif
3211 }
3212
3213 /* Create an entry in an ARM ELF linker hash table. */
3214
3215 static struct bfd_hash_entry *
3216 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3217 struct bfd_hash_table * table,
3218 const char * string)
3219 {
3220 struct elf32_arm_link_hash_entry * ret =
3221 (struct elf32_arm_link_hash_entry *) entry;
3222
3223 /* Allocate the structure if it has not already been allocated by a
3224 subclass. */
3225 if (ret == NULL)
3226 ret = (struct elf32_arm_link_hash_entry *)
3227 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3228 if (ret == NULL)
3229 return (struct bfd_hash_entry *) ret;
3230
3231 /* Call the allocation method of the superclass. */
3232 ret = ((struct elf32_arm_link_hash_entry *)
3233 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3234 table, string));
3235 if (ret != NULL)
3236 {
3237 ret->dyn_relocs = NULL;
3238 ret->tls_type = GOT_UNKNOWN;
3239 ret->tlsdesc_got = (bfd_vma) -1;
3240 ret->plt.thumb_refcount = 0;
3241 ret->plt.maybe_thumb_refcount = 0;
3242 ret->plt.noncall_refcount = 0;
3243 ret->plt.got_offset = -1;
3244 ret->is_iplt = FALSE;
3245 ret->export_glue = NULL;
3246
3247 ret->stub_cache = NULL;
3248 }
3249
3250 return (struct bfd_hash_entry *) ret;
3251 }
3252
3253 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3254 symbols. */
3255
3256 static bfd_boolean
3257 elf32_arm_allocate_local_sym_info (bfd *abfd)
3258 {
3259 if (elf_local_got_refcounts (abfd) == NULL)
3260 {
3261 bfd_size_type num_syms;
3262 bfd_size_type size;
3263 char *data;
3264
3265 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3266 size = num_syms * (sizeof (bfd_signed_vma)
3267 + sizeof (struct arm_local_iplt_info *)
3268 + sizeof (bfd_vma)
3269 + sizeof (char));
3270 data = bfd_zalloc (abfd, size);
3271 if (data == NULL)
3272 return FALSE;
3273
3274 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3275 data += num_syms * sizeof (bfd_signed_vma);
3276
3277 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3278 data += num_syms * sizeof (struct arm_local_iplt_info *);
3279
3280 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3281 data += num_syms * sizeof (bfd_vma);
3282
3283 elf32_arm_local_got_tls_type (abfd) = data;
3284 }
3285 return TRUE;
3286 }
3287
3288 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3289 to input bfd ABFD. Create the information if it doesn't already exist.
3290 Return null if an allocation fails. */
3291
3292 static struct arm_local_iplt_info *
3293 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3294 {
3295 struct arm_local_iplt_info **ptr;
3296
3297 if (!elf32_arm_allocate_local_sym_info (abfd))
3298 return NULL;
3299
3300 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3301 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3302 if (*ptr == NULL)
3303 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3304 return *ptr;
3305 }
3306
3307 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3308 in ABFD's symbol table. If the symbol is global, H points to its
3309 hash table entry, otherwise H is null.
3310
3311 Return true if the symbol does have PLT information. When returning
3312 true, point *ROOT_PLT at the target-independent reference count/offset
3313 union and *ARM_PLT at the ARM-specific information. */
3314
3315 static bfd_boolean
3316 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
3317 unsigned long r_symndx, union gotplt_union **root_plt,
3318 struct arm_plt_info **arm_plt)
3319 {
3320 struct arm_local_iplt_info *local_iplt;
3321
3322 if (h != NULL)
3323 {
3324 *root_plt = &h->root.plt;
3325 *arm_plt = &h->plt;
3326 return TRUE;
3327 }
3328
3329 if (elf32_arm_local_iplt (abfd) == NULL)
3330 return FALSE;
3331
3332 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3333 if (local_iplt == NULL)
3334 return FALSE;
3335
3336 *root_plt = &local_iplt->root;
3337 *arm_plt = &local_iplt->arm;
3338 return TRUE;
3339 }
3340
3341 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3342 before it. */
3343
3344 static bfd_boolean
3345 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3346 struct arm_plt_info *arm_plt)
3347 {
3348 struct elf32_arm_link_hash_table *htab;
3349
3350 htab = elf32_arm_hash_table (info);
3351 return (arm_plt->thumb_refcount != 0
3352 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3353 }
3354
3355 /* Return a pointer to the head of the dynamic reloc list that should
3356 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3357 ABFD's symbol table. Return null if an error occurs. */
3358
3359 static struct elf_dyn_relocs **
3360 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3361 Elf_Internal_Sym *isym)
3362 {
3363 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3364 {
3365 struct arm_local_iplt_info *local_iplt;
3366
3367 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3368 if (local_iplt == NULL)
3369 return NULL;
3370 return &local_iplt->dyn_relocs;
3371 }
3372 else
3373 {
3374 /* Track dynamic relocs needed for local syms too.
3375 We really need local syms available to do this
3376 easily. Oh well. */
3377 asection *s;
3378 void *vpp;
3379
3380 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3381 if (s == NULL)
3382 abort ();
3383
3384 vpp = &elf_section_data (s)->local_dynrel;
3385 return (struct elf_dyn_relocs **) vpp;
3386 }
3387 }
3388
3389 /* Initialize an entry in the stub hash table. */
3390
3391 static struct bfd_hash_entry *
3392 stub_hash_newfunc (struct bfd_hash_entry *entry,
3393 struct bfd_hash_table *table,
3394 const char *string)
3395 {
3396 /* Allocate the structure if it has not already been allocated by a
3397 subclass. */
3398 if (entry == NULL)
3399 {
3400 entry = (struct bfd_hash_entry *)
3401 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3402 if (entry == NULL)
3403 return entry;
3404 }
3405
3406 /* Call the allocation method of the superclass. */
3407 entry = bfd_hash_newfunc (entry, table, string);
3408 if (entry != NULL)
3409 {
3410 struct elf32_arm_stub_hash_entry *eh;
3411
3412 /* Initialize the local fields. */
3413 eh = (struct elf32_arm_stub_hash_entry *) entry;
3414 eh->stub_sec = NULL;
3415 eh->stub_offset = 0;
3416 eh->target_value = 0;
3417 eh->target_section = NULL;
3418 eh->target_addend = 0;
3419 eh->orig_insn = 0;
3420 eh->stub_type = arm_stub_none;
3421 eh->stub_size = 0;
3422 eh->stub_template = NULL;
3423 eh->stub_template_size = 0;
3424 eh->h = NULL;
3425 eh->id_sec = NULL;
3426 eh->output_name = NULL;
3427 }
3428
3429 return entry;
3430 }
3431
3432 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3433 shortcuts to them in our hash table. */
3434
3435 static bfd_boolean
3436 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3437 {
3438 struct elf32_arm_link_hash_table *htab;
3439
3440 htab = elf32_arm_hash_table (info);
3441 if (htab == NULL)
3442 return FALSE;
3443
3444 /* BPABI objects never have a GOT, or associated sections. */
3445 if (htab->symbian_p)
3446 return TRUE;
3447
3448 if (! _bfd_elf_create_got_section (dynobj, info))
3449 return FALSE;
3450
3451 return TRUE;
3452 }
3453
3454 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3455
3456 static bfd_boolean
3457 create_ifunc_sections (struct bfd_link_info *info)
3458 {
3459 struct elf32_arm_link_hash_table *htab;
3460 const struct elf_backend_data *bed;
3461 bfd *dynobj;
3462 asection *s;
3463 flagword flags;
3464
3465 htab = elf32_arm_hash_table (info);
3466 dynobj = htab->root.dynobj;
3467 bed = get_elf_backend_data (dynobj);
3468 flags = bed->dynamic_sec_flags;
3469
3470 if (htab->root.iplt == NULL)
3471 {
3472 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3473 flags | SEC_READONLY | SEC_CODE);
3474 if (s == NULL
3475 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3476 return FALSE;
3477 htab->root.iplt = s;
3478 }
3479
3480 if (htab->root.irelplt == NULL)
3481 {
3482 s = bfd_make_section_anyway_with_flags (dynobj,
3483 RELOC_SECTION (htab, ".iplt"),
3484 flags | SEC_READONLY);
3485 if (s == NULL
3486 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3487 return FALSE;
3488 htab->root.irelplt = s;
3489 }
3490
3491 if (htab->root.igotplt == NULL)
3492 {
3493 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3494 if (s == NULL
3495 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3496 return FALSE;
3497 htab->root.igotplt = s;
3498 }
3499 return TRUE;
3500 }
3501
3502 /* Determine if we're dealing with a Thumb only architecture. */
3503
3504 static bfd_boolean
3505 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3506 {
3507 int arch;
3508 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3509 Tag_CPU_arch_profile);
3510
3511 if (profile)
3512 return profile == 'M';
3513
3514 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3515
3516 if (arch == TAG_CPU_ARCH_V6_M
3517 || arch == TAG_CPU_ARCH_V6S_M
3518 || arch == TAG_CPU_ARCH_V7E_M
3519 || arch == TAG_CPU_ARCH_V8M_BASE
3520 || arch == TAG_CPU_ARCH_V8M_MAIN)
3521 return TRUE;
3522
3523 return FALSE;
3524 }
3525
3526 /* Determine if we're dealing with a Thumb-2 object. */
3527
3528 static bfd_boolean
3529 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3530 {
3531 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3532 Tag_CPU_arch);
3533 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3534 }
3535
3536 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3537 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3538 hash table. */
3539
3540 static bfd_boolean
3541 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3542 {
3543 struct elf32_arm_link_hash_table *htab;
3544
3545 htab = elf32_arm_hash_table (info);
3546 if (htab == NULL)
3547 return FALSE;
3548
3549 if (!htab->root.sgot && !create_got_section (dynobj, info))
3550 return FALSE;
3551
3552 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3553 return FALSE;
3554
3555 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
3556 if (!bfd_link_pic (info))
3557 htab->srelbss = bfd_get_linker_section (dynobj,
3558 RELOC_SECTION (htab, ".bss"));
3559
3560 if (htab->vxworks_p)
3561 {
3562 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3563 return FALSE;
3564
3565 if (bfd_link_pic (info))
3566 {
3567 htab->plt_header_size = 0;
3568 htab->plt_entry_size
3569 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3570 }
3571 else
3572 {
3573 htab->plt_header_size
3574 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3575 htab->plt_entry_size
3576 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3577 }
3578
3579 if (elf_elfheader (dynobj))
3580 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3581 }
3582 else
3583 {
3584 /* PR ld/16017
3585 Test for thumb only architectures. Note - we cannot just call
3586 using_thumb_only() as the attributes in the output bfd have not been
3587 initialised at this point, so instead we use the input bfd. */
3588 bfd * saved_obfd = htab->obfd;
3589
3590 htab->obfd = dynobj;
3591 if (using_thumb_only (htab))
3592 {
3593 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3594 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3595 }
3596 htab->obfd = saved_obfd;
3597 }
3598
3599 if (!htab->root.splt
3600 || !htab->root.srelplt
3601 || !htab->sdynbss
3602 || (!bfd_link_pic (info) && !htab->srelbss))
3603 abort ();
3604
3605 return TRUE;
3606 }
3607
3608 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3609
3610 static void
3611 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3612 struct elf_link_hash_entry *dir,
3613 struct elf_link_hash_entry *ind)
3614 {
3615 struct elf32_arm_link_hash_entry *edir, *eind;
3616
3617 edir = (struct elf32_arm_link_hash_entry *) dir;
3618 eind = (struct elf32_arm_link_hash_entry *) ind;
3619
3620 if (eind->dyn_relocs != NULL)
3621 {
3622 if (edir->dyn_relocs != NULL)
3623 {
3624 struct elf_dyn_relocs **pp;
3625 struct elf_dyn_relocs *p;
3626
3627 /* Add reloc counts against the indirect sym to the direct sym
3628 list. Merge any entries against the same section. */
3629 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3630 {
3631 struct elf_dyn_relocs *q;
3632
3633 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3634 if (q->sec == p->sec)
3635 {
3636 q->pc_count += p->pc_count;
3637 q->count += p->count;
3638 *pp = p->next;
3639 break;
3640 }
3641 if (q == NULL)
3642 pp = &p->next;
3643 }
3644 *pp = edir->dyn_relocs;
3645 }
3646
3647 edir->dyn_relocs = eind->dyn_relocs;
3648 eind->dyn_relocs = NULL;
3649 }
3650
3651 if (ind->root.type == bfd_link_hash_indirect)
3652 {
3653 /* Copy over PLT info. */
3654 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3655 eind->plt.thumb_refcount = 0;
3656 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3657 eind->plt.maybe_thumb_refcount = 0;
3658 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3659 eind->plt.noncall_refcount = 0;
3660
3661 /* We should only allocate a function to .iplt once the final
3662 symbol information is known. */
3663 BFD_ASSERT (!eind->is_iplt);
3664
3665 if (dir->got.refcount <= 0)
3666 {
3667 edir->tls_type = eind->tls_type;
3668 eind->tls_type = GOT_UNKNOWN;
3669 }
3670 }
3671
3672 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3673 }
3674
3675 /* Destroy an ARM elf linker hash table. */
3676
3677 static void
3678 elf32_arm_link_hash_table_free (bfd *obfd)
3679 {
3680 struct elf32_arm_link_hash_table *ret
3681 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
3682
3683 bfd_hash_table_free (&ret->stub_hash_table);
3684 _bfd_elf_link_hash_table_free (obfd);
3685 }
3686
3687 /* Create an ARM elf linker hash table. */
3688
3689 static struct bfd_link_hash_table *
3690 elf32_arm_link_hash_table_create (bfd *abfd)
3691 {
3692 struct elf32_arm_link_hash_table *ret;
3693 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3694
3695 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3696 if (ret == NULL)
3697 return NULL;
3698
3699 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3700 elf32_arm_link_hash_newfunc,
3701 sizeof (struct elf32_arm_link_hash_entry),
3702 ARM_ELF_DATA))
3703 {
3704 free (ret);
3705 return NULL;
3706 }
3707
3708 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3709 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
3710 #ifdef FOUR_WORD_PLT
3711 ret->plt_header_size = 16;
3712 ret->plt_entry_size = 16;
3713 #else
3714 ret->plt_header_size = 20;
3715 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
3716 #endif
3717 ret->use_rel = 1;
3718 ret->obfd = abfd;
3719
3720 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3721 sizeof (struct elf32_arm_stub_hash_entry)))
3722 {
3723 _bfd_elf_link_hash_table_free (abfd);
3724 return NULL;
3725 }
3726 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
3727
3728 return &ret->root.root;
3729 }
3730
3731 /* Determine what kind of NOPs are available. */
3732
3733 static bfd_boolean
3734 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3735 {
3736 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3737 Tag_CPU_arch);
3738 return arch == TAG_CPU_ARCH_V6T2
3739 || arch == TAG_CPU_ARCH_V6K
3740 || arch == TAG_CPU_ARCH_V7
3741 || arch == TAG_CPU_ARCH_V7E_M;
3742 }
3743
3744 static bfd_boolean
3745 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3746 {
3747 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3748 Tag_CPU_arch);
3749 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3750 || arch == TAG_CPU_ARCH_V7E_M);
3751 }
3752
3753 static bfd_boolean
3754 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3755 {
3756 switch (stub_type)
3757 {
3758 case arm_stub_long_branch_thumb_only:
3759 case arm_stub_long_branch_v4t_thumb_arm:
3760 case arm_stub_short_branch_v4t_thumb_arm:
3761 case arm_stub_long_branch_v4t_thumb_arm_pic:
3762 case arm_stub_long_branch_v4t_thumb_tls_pic:
3763 case arm_stub_long_branch_thumb_only_pic:
3764 return TRUE;
3765 case arm_stub_none:
3766 BFD_FAIL ();
3767 return FALSE;
3768 break;
3769 default:
3770 return FALSE;
3771 }
3772 }
3773
3774 /* Determine the type of stub needed, if any, for a call. */
3775
3776 static enum elf32_arm_stub_type
3777 arm_type_of_stub (struct bfd_link_info *info,
3778 asection *input_sec,
3779 const Elf_Internal_Rela *rel,
3780 unsigned char st_type,
3781 enum arm_st_branch_type *actual_branch_type,
3782 struct elf32_arm_link_hash_entry *hash,
3783 bfd_vma destination,
3784 asection *sym_sec,
3785 bfd *input_bfd,
3786 const char *name)
3787 {
3788 bfd_vma location;
3789 bfd_signed_vma branch_offset;
3790 unsigned int r_type;
3791 struct elf32_arm_link_hash_table * globals;
3792 int thumb2;
3793 int thumb_only;
3794 enum elf32_arm_stub_type stub_type = arm_stub_none;
3795 int use_plt = 0;
3796 enum arm_st_branch_type branch_type = *actual_branch_type;
3797 union gotplt_union *root_plt;
3798 struct arm_plt_info *arm_plt;
3799
3800 if (branch_type == ST_BRANCH_LONG)
3801 return stub_type;
3802
3803 globals = elf32_arm_hash_table (info);
3804 if (globals == NULL)
3805 return stub_type;
3806
3807 thumb_only = using_thumb_only (globals);
3808
3809 thumb2 = using_thumb2 (globals);
3810
3811 /* Determine where the call point is. */
3812 location = (input_sec->output_offset
3813 + input_sec->output_section->vma
3814 + rel->r_offset);
3815
3816 r_type = ELF32_R_TYPE (rel->r_info);
3817
3818 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3819 are considering a function call relocation. */
3820 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3821 || r_type == R_ARM_THM_JUMP19)
3822 && branch_type == ST_BRANCH_TO_ARM)
3823 branch_type = ST_BRANCH_TO_THUMB;
3824
3825 /* For TLS call relocs, it is the caller's responsibility to provide
3826 the address of the appropriate trampoline. */
3827 if (r_type != R_ARM_TLS_CALL
3828 && r_type != R_ARM_THM_TLS_CALL
3829 && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3830 &root_plt, &arm_plt)
3831 && root_plt->offset != (bfd_vma) -1)
3832 {
3833 asection *splt;
3834
3835 if (hash == NULL || hash->is_iplt)
3836 splt = globals->root.iplt;
3837 else
3838 splt = globals->root.splt;
3839 if (splt != NULL)
3840 {
3841 use_plt = 1;
3842
3843 /* Note when dealing with PLT entries: the main PLT stub is in
3844 ARM mode, so if the branch is in Thumb mode, another
3845 Thumb->ARM stub will be inserted later just before the ARM
3846 PLT stub. We don't take this extra distance into account
3847 here, because if a long branch stub is needed, we'll add a
3848 Thumb->Arm one and branch directly to the ARM PLT entry
3849 because it avoids spreading offset corrections in several
3850 places. */
3851
3852 destination = (splt->output_section->vma
3853 + splt->output_offset
3854 + root_plt->offset);
3855 st_type = STT_FUNC;
3856 branch_type = ST_BRANCH_TO_ARM;
3857 }
3858 }
3859 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3860 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3861
3862 branch_offset = (bfd_signed_vma)(destination - location);
3863
3864 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3865 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
3866 {
3867 /* Handle cases where:
3868 - this call goes too far (different Thumb/Thumb2 max
3869 distance)
3870 - it's a Thumb->Arm call and blx is not available, or it's a
3871 Thumb->Arm branch (not bl). A stub is needed in this case,
3872 but only if this call is not through a PLT entry. Indeed,
3873 PLT stubs handle mode switching already.
3874 */
3875 if ((!thumb2
3876 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3877 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3878 || (thumb2
3879 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3880 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3881 || (thumb2
3882 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
3883 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
3884 && (r_type == R_ARM_THM_JUMP19))
3885 || (branch_type == ST_BRANCH_TO_ARM
3886 && (((r_type == R_ARM_THM_CALL
3887 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3888 || (r_type == R_ARM_THM_JUMP24)
3889 || (r_type == R_ARM_THM_JUMP19))
3890 && !use_plt))
3891 {
3892 if (branch_type == ST_BRANCH_TO_THUMB)
3893 {
3894 /* Thumb to thumb. */
3895 if (!thumb_only)
3896 {
3897 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
3898 /* PIC stubs. */
3899 ? ((globals->use_blx
3900 && (r_type == R_ARM_THM_CALL))
3901 /* V5T and above. Stub starts with ARM code, so
3902 we must be able to switch mode before
3903 reaching it, which is only possible for 'bl'
3904 (ie R_ARM_THM_CALL relocation). */
3905 ? arm_stub_long_branch_any_thumb_pic
3906 /* On V4T, use Thumb code only. */
3907 : arm_stub_long_branch_v4t_thumb_thumb_pic)
3908
3909 /* non-PIC stubs. */
3910 : ((globals->use_blx
3911 && (r_type == R_ARM_THM_CALL))
3912 /* V5T and above. */
3913 ? arm_stub_long_branch_any_any
3914 /* V4T. */
3915 : arm_stub_long_branch_v4t_thumb_thumb);
3916 }
3917 else
3918 {
3919 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
3920 /* PIC stub. */
3921 ? arm_stub_long_branch_thumb_only_pic
3922 /* non-PIC stub. */
3923 : arm_stub_long_branch_thumb_only;
3924 }
3925 }
3926 else
3927 {
3928 /* Thumb to arm. */
3929 if (sym_sec != NULL
3930 && sym_sec->owner != NULL
3931 && !INTERWORK_FLAG (sym_sec->owner))
3932 {
3933 (*_bfd_error_handler)
3934 (_("%B(%s): warning: interworking not enabled.\n"
3935 " first occurrence: %B: Thumb call to ARM"),
3936 sym_sec->owner, input_bfd, name);
3937 }
3938
3939 stub_type =
3940 (bfd_link_pic (info) | globals->pic_veneer)
3941 /* PIC stubs. */
3942 ? (r_type == R_ARM_THM_TLS_CALL
3943 /* TLS PIC stubs. */
3944 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3945 : arm_stub_long_branch_v4t_thumb_tls_pic)
3946 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3947 /* V5T PIC and above. */
3948 ? arm_stub_long_branch_any_arm_pic
3949 /* V4T PIC stub. */
3950 : arm_stub_long_branch_v4t_thumb_arm_pic))
3951
3952 /* non-PIC stubs. */
3953 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3954 /* V5T and above. */
3955 ? arm_stub_long_branch_any_any
3956 /* V4T. */
3957 : arm_stub_long_branch_v4t_thumb_arm);
3958
3959 /* Handle v4t short branches. */
3960 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3961 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3962 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3963 stub_type = arm_stub_short_branch_v4t_thumb_arm;
3964 }
3965 }
3966 }
3967 else if (r_type == R_ARM_CALL
3968 || r_type == R_ARM_JUMP24
3969 || r_type == R_ARM_PLT32
3970 || r_type == R_ARM_TLS_CALL)
3971 {
3972 if (branch_type == ST_BRANCH_TO_THUMB)
3973 {
3974 /* Arm to thumb. */
3975
3976 if (sym_sec != NULL
3977 && sym_sec->owner != NULL
3978 && !INTERWORK_FLAG (sym_sec->owner))
3979 {
3980 (*_bfd_error_handler)
3981 (_("%B(%s): warning: interworking not enabled.\n"
3982 " first occurrence: %B: ARM call to Thumb"),
3983 sym_sec->owner, input_bfd, name);
3984 }
3985
3986 /* We have an extra 2-bytes reach because of
3987 the mode change (bit 24 (H) of BLX encoding). */
3988 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3989 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3990 || (r_type == R_ARM_CALL && !globals->use_blx)
3991 || (r_type == R_ARM_JUMP24)
3992 || (r_type == R_ARM_PLT32))
3993 {
3994 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
3995 /* PIC stubs. */
3996 ? ((globals->use_blx)
3997 /* V5T and above. */
3998 ? arm_stub_long_branch_any_thumb_pic
3999 /* V4T stub. */
4000 : arm_stub_long_branch_v4t_arm_thumb_pic)
4001
4002 /* non-PIC stubs. */
4003 : ((globals->use_blx)
4004 /* V5T and above. */
4005 ? arm_stub_long_branch_any_any
4006 /* V4T. */
4007 : arm_stub_long_branch_v4t_arm_thumb);
4008 }
4009 }
4010 else
4011 {
4012 /* Arm to arm. */
4013 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4014 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4015 {
4016 stub_type =
4017 (bfd_link_pic (info) | globals->pic_veneer)
4018 /* PIC stubs. */
4019 ? (r_type == R_ARM_TLS_CALL
4020 /* TLS PIC Stub. */
4021 ? arm_stub_long_branch_any_tls_pic
4022 : (globals->nacl_p
4023 ? arm_stub_long_branch_arm_nacl_pic
4024 : arm_stub_long_branch_any_arm_pic))
4025 /* non-PIC stubs. */
4026 : (globals->nacl_p
4027 ? arm_stub_long_branch_arm_nacl
4028 : arm_stub_long_branch_any_any);
4029 }
4030 }
4031 }
4032
4033 /* If a stub is needed, record the actual destination type. */
4034 if (stub_type != arm_stub_none)
4035 *actual_branch_type = branch_type;
4036
4037 return stub_type;
4038 }
4039
4040 /* Build a name for an entry in the stub hash table. */
4041
4042 static char *
4043 elf32_arm_stub_name (const asection *input_section,
4044 const asection *sym_sec,
4045 const struct elf32_arm_link_hash_entry *hash,
4046 const Elf_Internal_Rela *rel,
4047 enum elf32_arm_stub_type stub_type)
4048 {
4049 char *stub_name;
4050 bfd_size_type len;
4051
4052 if (hash)
4053 {
4054 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4055 stub_name = (char *) bfd_malloc (len);
4056 if (stub_name != NULL)
4057 sprintf (stub_name, "%08x_%s+%x_%d",
4058 input_section->id & 0xffffffff,
4059 hash->root.root.root.string,
4060 (int) rel->r_addend & 0xffffffff,
4061 (int) stub_type);
4062 }
4063 else
4064 {
4065 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4066 stub_name = (char *) bfd_malloc (len);
4067 if (stub_name != NULL)
4068 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4069 input_section->id & 0xffffffff,
4070 sym_sec->id & 0xffffffff,
4071 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4072 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4073 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4074 (int) rel->r_addend & 0xffffffff,
4075 (int) stub_type);
4076 }
4077
4078 return stub_name;
4079 }
4080
4081 /* Look up an entry in the stub hash. Stub entries are cached because
4082 creating the stub name takes a bit of time. */
4083
4084 static struct elf32_arm_stub_hash_entry *
4085 elf32_arm_get_stub_entry (const asection *input_section,
4086 const asection *sym_sec,
4087 struct elf_link_hash_entry *hash,
4088 const Elf_Internal_Rela *rel,
4089 struct elf32_arm_link_hash_table *htab,
4090 enum elf32_arm_stub_type stub_type)
4091 {
4092 struct elf32_arm_stub_hash_entry *stub_entry;
4093 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4094 const asection *id_sec;
4095
4096 if ((input_section->flags & SEC_CODE) == 0)
4097 return NULL;
4098
4099 /* If this input section is part of a group of sections sharing one
4100 stub section, then use the id of the first section in the group.
4101 Stub names need to include a section id, as there may well be
4102 more than one stub used to reach say, printf, and we need to
4103 distinguish between them. */
4104 id_sec = htab->stub_group[input_section->id].link_sec;
4105
4106 if (h != NULL && h->stub_cache != NULL
4107 && h->stub_cache->h == h
4108 && h->stub_cache->id_sec == id_sec
4109 && h->stub_cache->stub_type == stub_type)
4110 {
4111 stub_entry = h->stub_cache;
4112 }
4113 else
4114 {
4115 char *stub_name;
4116
4117 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4118 if (stub_name == NULL)
4119 return NULL;
4120
4121 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4122 stub_name, FALSE, FALSE);
4123 if (h != NULL)
4124 h->stub_cache = stub_entry;
4125
4126 free (stub_name);
4127 }
4128
4129 return stub_entry;
4130 }
4131
4132 /* Find or create a stub section. Returns a pointer to the stub section, and
4133 the section to which the stub section will be attached (in *LINK_SEC_P).
4134 LINK_SEC_P may be NULL. */
4135
4136 static asection *
4137 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4138 struct elf32_arm_link_hash_table *htab)
4139 {
4140 asection *link_sec;
4141 asection *stub_sec;
4142
4143 link_sec = htab->stub_group[section->id].link_sec;
4144 BFD_ASSERT (link_sec != NULL);
4145 stub_sec = htab->stub_group[section->id].stub_sec;
4146
4147 if (stub_sec == NULL)
4148 {
4149 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4150 if (stub_sec == NULL)
4151 {
4152 size_t namelen;
4153 bfd_size_type len;
4154 char *s_name;
4155
4156 namelen = strlen (link_sec->name);
4157 len = namelen + sizeof (STUB_SUFFIX);
4158 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4159 if (s_name == NULL)
4160 return NULL;
4161
4162 memcpy (s_name, link_sec->name, namelen);
4163 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4164 stub_sec = (*htab->add_stub_section) (s_name, link_sec,
4165 htab->nacl_p ? 4 : 3);
4166 if (stub_sec == NULL)
4167 return NULL;
4168 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4169 }
4170 htab->stub_group[section->id].stub_sec = stub_sec;
4171 }
4172
4173 if (link_sec_p)
4174 *link_sec_p = link_sec;
4175
4176 return stub_sec;
4177 }
4178
4179 /* Add a new stub entry to the stub hash. Not all fields of the new
4180 stub entry are initialised. */
4181
4182 static struct elf32_arm_stub_hash_entry *
4183 elf32_arm_add_stub (const char *stub_name,
4184 asection *section,
4185 struct elf32_arm_link_hash_table *htab)
4186 {
4187 asection *link_sec;
4188 asection *stub_sec;
4189 struct elf32_arm_stub_hash_entry *stub_entry;
4190
4191 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
4192 if (stub_sec == NULL)
4193 return NULL;
4194
4195 /* Enter this entry into the linker stub hash table. */
4196 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4197 TRUE, FALSE);
4198 if (stub_entry == NULL)
4199 {
4200 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4201 section->owner,
4202 stub_name);
4203 return NULL;
4204 }
4205
4206 stub_entry->stub_sec = stub_sec;
4207 stub_entry->stub_offset = 0;
4208 stub_entry->id_sec = link_sec;
4209
4210 return stub_entry;
4211 }
4212
4213 /* Store an Arm insn into an output section not processed by
4214 elf32_arm_write_section. */
4215
4216 static void
4217 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4218 bfd * output_bfd, bfd_vma val, void * ptr)
4219 {
4220 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4221 bfd_putl32 (val, ptr);
4222 else
4223 bfd_putb32 (val, ptr);
4224 }
4225
4226 /* Store a 16-bit Thumb insn into an output section not processed by
4227 elf32_arm_write_section. */
4228
4229 static void
4230 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4231 bfd * output_bfd, bfd_vma val, void * ptr)
4232 {
4233 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4234 bfd_putl16 (val, ptr);
4235 else
4236 bfd_putb16 (val, ptr);
4237 }
4238
4239 /* Store a Thumb2 insn into an output section not processed by
4240 elf32_arm_write_section. */
4241
4242 static void
4243 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4244 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4245 {
4246 /* T2 instructions are 16-bit streamed. */
4247 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4248 {
4249 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4250 bfd_putl16 ((val & 0xffff), ptr + 2);
4251 }
4252 else
4253 {
4254 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4255 bfd_putb16 ((val & 0xffff), ptr + 2);
4256 }
4257 }
4258
4259 /* If it's possible to change R_TYPE to a more efficient access
4260 model, return the new reloc type. */
4261
4262 static unsigned
4263 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4264 struct elf_link_hash_entry *h)
4265 {
4266 int is_local = (h == NULL);
4267
4268 if (bfd_link_pic (info)
4269 || (h && h->root.type == bfd_link_hash_undefweak))
4270 return r_type;
4271
4272 /* We do not support relaxations for Old TLS models. */
4273 switch (r_type)
4274 {
4275 case R_ARM_TLS_GOTDESC:
4276 case R_ARM_TLS_CALL:
4277 case R_ARM_THM_TLS_CALL:
4278 case R_ARM_TLS_DESCSEQ:
4279 case R_ARM_THM_TLS_DESCSEQ:
4280 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4281 }
4282
4283 return r_type;
4284 }
4285
4286 static bfd_reloc_status_type elf32_arm_final_link_relocate
4287 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4288 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4289 const char *, unsigned char, enum arm_st_branch_type,
4290 struct elf_link_hash_entry *, bfd_boolean *, char **);
4291
4292 static unsigned int
4293 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4294 {
4295 switch (stub_type)
4296 {
4297 case arm_stub_a8_veneer_b_cond:
4298 case arm_stub_a8_veneer_b:
4299 case arm_stub_a8_veneer_bl:
4300 return 2;
4301
4302 case arm_stub_long_branch_any_any:
4303 case arm_stub_long_branch_v4t_arm_thumb:
4304 case arm_stub_long_branch_thumb_only:
4305 case arm_stub_long_branch_v4t_thumb_thumb:
4306 case arm_stub_long_branch_v4t_thumb_arm:
4307 case arm_stub_short_branch_v4t_thumb_arm:
4308 case arm_stub_long_branch_any_arm_pic:
4309 case arm_stub_long_branch_any_thumb_pic:
4310 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4311 case arm_stub_long_branch_v4t_arm_thumb_pic:
4312 case arm_stub_long_branch_v4t_thumb_arm_pic:
4313 case arm_stub_long_branch_thumb_only_pic:
4314 case arm_stub_long_branch_any_tls_pic:
4315 case arm_stub_long_branch_v4t_thumb_tls_pic:
4316 case arm_stub_a8_veneer_blx:
4317 return 4;
4318
4319 case arm_stub_long_branch_arm_nacl:
4320 case arm_stub_long_branch_arm_nacl_pic:
4321 return 16;
4322
4323 default:
4324 abort (); /* Should be unreachable. */
4325 }
4326 }
4327
4328 static bfd_boolean
4329 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4330 void * in_arg)
4331 {
4332 #define MAXRELOCS 3
4333 struct elf32_arm_stub_hash_entry *stub_entry;
4334 struct elf32_arm_link_hash_table *globals;
4335 struct bfd_link_info *info;
4336 asection *stub_sec;
4337 bfd *stub_bfd;
4338 bfd_byte *loc;
4339 bfd_vma sym_value;
4340 int template_size;
4341 int size;
4342 const insn_sequence *template_sequence;
4343 int i;
4344 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4345 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4346 int nrelocs = 0;
4347
4348 /* Massage our args to the form they really have. */
4349 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4350 info = (struct bfd_link_info *) in_arg;
4351
4352 globals = elf32_arm_hash_table (info);
4353 if (globals == NULL)
4354 return FALSE;
4355
4356 stub_sec = stub_entry->stub_sec;
4357
4358 if ((globals->fix_cortex_a8 < 0)
4359 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4360 /* We have to do less-strictly-aligned fixes last. */
4361 return TRUE;
4362
4363 /* Make a note of the offset within the stubs for this entry. */
4364 stub_entry->stub_offset = stub_sec->size;
4365 loc = stub_sec->contents + stub_entry->stub_offset;
4366
4367 stub_bfd = stub_sec->owner;
4368
4369 /* This is the address of the stub destination. */
4370 sym_value = (stub_entry->target_value
4371 + stub_entry->target_section->output_offset
4372 + stub_entry->target_section->output_section->vma);
4373
4374 template_sequence = stub_entry->stub_template;
4375 template_size = stub_entry->stub_template_size;
4376
4377 size = 0;
4378 for (i = 0; i < template_size; i++)
4379 {
4380 switch (template_sequence[i].type)
4381 {
4382 case THUMB16_TYPE:
4383 {
4384 bfd_vma data = (bfd_vma) template_sequence[i].data;
4385 if (template_sequence[i].reloc_addend != 0)
4386 {
4387 /* We've borrowed the reloc_addend field to mean we should
4388 insert a condition code into this (Thumb-1 branch)
4389 instruction. See THUMB16_BCOND_INSN. */
4390 BFD_ASSERT ((data & 0xff00) == 0xd000);
4391 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4392 }
4393 bfd_put_16 (stub_bfd, data, loc + size);
4394 size += 2;
4395 }
4396 break;
4397
4398 case THUMB32_TYPE:
4399 bfd_put_16 (stub_bfd,
4400 (template_sequence[i].data >> 16) & 0xffff,
4401 loc + size);
4402 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4403 loc + size + 2);
4404 if (template_sequence[i].r_type != R_ARM_NONE)
4405 {
4406 stub_reloc_idx[nrelocs] = i;
4407 stub_reloc_offset[nrelocs++] = size;
4408 }
4409 size += 4;
4410 break;
4411
4412 case ARM_TYPE:
4413 bfd_put_32 (stub_bfd, template_sequence[i].data,
4414 loc + size);
4415 /* Handle cases where the target is encoded within the
4416 instruction. */
4417 if (template_sequence[i].r_type == R_ARM_JUMP24)
4418 {
4419 stub_reloc_idx[nrelocs] = i;
4420 stub_reloc_offset[nrelocs++] = size;
4421 }
4422 size += 4;
4423 break;
4424
4425 case DATA_TYPE:
4426 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4427 stub_reloc_idx[nrelocs] = i;
4428 stub_reloc_offset[nrelocs++] = size;
4429 size += 4;
4430 break;
4431
4432 default:
4433 BFD_FAIL ();
4434 return FALSE;
4435 }
4436 }
4437
4438 stub_sec->size += size;
4439
4440 /* Stub size has already been computed in arm_size_one_stub. Check
4441 consistency. */
4442 BFD_ASSERT (size == stub_entry->stub_size);
4443
4444 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4445 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4446 sym_value |= 1;
4447
4448 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4449 in each stub. */
4450 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
4451
4452 for (i = 0; i < nrelocs; i++)
4453 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4454 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4455 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4456 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
4457 {
4458 Elf_Internal_Rela rel;
4459 bfd_boolean unresolved_reloc;
4460 char *error_message;
4461 enum arm_st_branch_type branch_type
4462 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4463 ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
4464 bfd_vma points_to = sym_value + stub_entry->target_addend;
4465
4466 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4467 rel.r_info = ELF32_R_INFO (0,
4468 template_sequence[stub_reloc_idx[i]].r_type);
4469 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
4470
4471 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4472 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4473 template should refer back to the instruction after the original
4474 branch. */
4475 points_to = sym_value;
4476
4477 /* There may be unintended consequences if this is not true. */
4478 BFD_ASSERT (stub_entry->h == NULL);
4479
4480 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4481 properly. We should probably use this function unconditionally,
4482 rather than only for certain relocations listed in the enclosing
4483 conditional, for the sake of consistency. */
4484 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4485 (template_sequence[stub_reloc_idx[i]].r_type),
4486 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4487 points_to, info, stub_entry->target_section, "", STT_FUNC,
4488 branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4489 &unresolved_reloc, &error_message);
4490 }
4491 else
4492 {
4493 Elf_Internal_Rela rel;
4494 bfd_boolean unresolved_reloc;
4495 char *error_message;
4496 bfd_vma points_to = sym_value + stub_entry->target_addend
4497 + template_sequence[stub_reloc_idx[i]].reloc_addend;
4498
4499 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4500 rel.r_info = ELF32_R_INFO (0,
4501 template_sequence[stub_reloc_idx[i]].r_type);
4502 rel.r_addend = 0;
4503
4504 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4505 (template_sequence[stub_reloc_idx[i]].r_type),
4506 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4507 points_to, info, stub_entry->target_section, "", STT_FUNC,
4508 stub_entry->branch_type,
4509 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4510 &error_message);
4511 }
4512
4513 return TRUE;
4514 #undef MAXRELOCS
4515 }
4516
4517 /* Calculate the template, template size and instruction size for a stub.
4518 Return value is the instruction size. */
4519
4520 static unsigned int
4521 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4522 const insn_sequence **stub_template,
4523 int *stub_template_size)
4524 {
4525 const insn_sequence *template_sequence = NULL;
4526 int template_size = 0, i;
4527 unsigned int size;
4528
4529 template_sequence = stub_definitions[stub_type].template_sequence;
4530 if (stub_template)
4531 *stub_template = template_sequence;
4532
4533 template_size = stub_definitions[stub_type].template_size;
4534 if (stub_template_size)
4535 *stub_template_size = template_size;
4536
4537 size = 0;
4538 for (i = 0; i < template_size; i++)
4539 {
4540 switch (template_sequence[i].type)
4541 {
4542 case THUMB16_TYPE:
4543 size += 2;
4544 break;
4545
4546 case ARM_TYPE:
4547 case THUMB32_TYPE:
4548 case DATA_TYPE:
4549 size += 4;
4550 break;
4551
4552 default:
4553 BFD_FAIL ();
4554 return 0;
4555 }
4556 }
4557
4558 return size;
4559 }
4560
4561 /* As above, but don't actually build the stub. Just bump offset so
4562 we know stub section sizes. */
4563
4564 static bfd_boolean
4565 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4566 void *in_arg ATTRIBUTE_UNUSED)
4567 {
4568 struct elf32_arm_stub_hash_entry *stub_entry;
4569 const insn_sequence *template_sequence;
4570 int template_size, size;
4571
4572 /* Massage our args to the form they really have. */
4573 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4574
4575 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4576 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4577
4578 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4579 &template_size);
4580
4581 stub_entry->stub_size = size;
4582 stub_entry->stub_template = template_sequence;
4583 stub_entry->stub_template_size = template_size;
4584
4585 size = (size + 7) & ~7;
4586 stub_entry->stub_sec->size += size;
4587
4588 return TRUE;
4589 }
4590
4591 /* External entry points for sizing and building linker stubs. */
4592
4593 /* Set up various things so that we can make a list of input sections
4594 for each output section included in the link. Returns -1 on error,
4595 0 when no stubs will be needed, and 1 on success. */
4596
4597 int
4598 elf32_arm_setup_section_lists (bfd *output_bfd,
4599 struct bfd_link_info *info)
4600 {
4601 bfd *input_bfd;
4602 unsigned int bfd_count;
4603 unsigned int top_id, top_index;
4604 asection *section;
4605 asection **input_list, **list;
4606 bfd_size_type amt;
4607 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4608
4609 if (htab == NULL)
4610 return 0;
4611 if (! is_elf_hash_table (htab))
4612 return 0;
4613
4614 /* Count the number of input BFDs and find the top input section id. */
4615 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4616 input_bfd != NULL;
4617 input_bfd = input_bfd->link.next)
4618 {
4619 bfd_count += 1;
4620 for (section = input_bfd->sections;
4621 section != NULL;
4622 section = section->next)
4623 {
4624 if (top_id < section->id)
4625 top_id = section->id;
4626 }
4627 }
4628 htab->bfd_count = bfd_count;
4629
4630 amt = sizeof (struct map_stub) * (top_id + 1);
4631 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4632 if (htab->stub_group == NULL)
4633 return -1;
4634 htab->top_id = top_id;
4635
4636 /* We can't use output_bfd->section_count here to find the top output
4637 section index as some sections may have been removed, and
4638 _bfd_strip_section_from_output doesn't renumber the indices. */
4639 for (section = output_bfd->sections, top_index = 0;
4640 section != NULL;
4641 section = section->next)
4642 {
4643 if (top_index < section->index)
4644 top_index = section->index;
4645 }
4646
4647 htab->top_index = top_index;
4648 amt = sizeof (asection *) * (top_index + 1);
4649 input_list = (asection **) bfd_malloc (amt);
4650 htab->input_list = input_list;
4651 if (input_list == NULL)
4652 return -1;
4653
4654 /* For sections we aren't interested in, mark their entries with a
4655 value we can check later. */
4656 list = input_list + top_index;
4657 do
4658 *list = bfd_abs_section_ptr;
4659 while (list-- != input_list);
4660
4661 for (section = output_bfd->sections;
4662 section != NULL;
4663 section = section->next)
4664 {
4665 if ((section->flags & SEC_CODE) != 0)
4666 input_list[section->index] = NULL;
4667 }
4668
4669 return 1;
4670 }
4671
4672 /* The linker repeatedly calls this function for each input section,
4673 in the order that input sections are linked into output sections.
4674 Build lists of input sections to determine groupings between which
4675 we may insert linker stubs. */
4676
4677 void
4678 elf32_arm_next_input_section (struct bfd_link_info *info,
4679 asection *isec)
4680 {
4681 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4682
4683 if (htab == NULL)
4684 return;
4685
4686 if (isec->output_section->index <= htab->top_index)
4687 {
4688 asection **list = htab->input_list + isec->output_section->index;
4689
4690 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
4691 {
4692 /* Steal the link_sec pointer for our list. */
4693 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4694 /* This happens to make the list in reverse order,
4695 which we reverse later. */
4696 PREV_SEC (isec) = *list;
4697 *list = isec;
4698 }
4699 }
4700 }
4701
4702 /* See whether we can group stub sections together. Grouping stub
4703 sections may result in fewer stubs. More importantly, we need to
4704 put all .init* and .fini* stubs at the end of the .init or
4705 .fini output sections respectively, because glibc splits the
4706 _init and _fini functions into multiple parts. Putting a stub in
4707 the middle of a function is not a good idea. */
4708
4709 static void
4710 group_sections (struct elf32_arm_link_hash_table *htab,
4711 bfd_size_type stub_group_size,
4712 bfd_boolean stubs_always_after_branch)
4713 {
4714 asection **list = htab->input_list;
4715
4716 do
4717 {
4718 asection *tail = *list;
4719 asection *head;
4720
4721 if (tail == bfd_abs_section_ptr)
4722 continue;
4723
4724 /* Reverse the list: we must avoid placing stubs at the
4725 beginning of the section because the beginning of the text
4726 section may be required for an interrupt vector in bare metal
4727 code. */
4728 #define NEXT_SEC PREV_SEC
4729 head = NULL;
4730 while (tail != NULL)
4731 {
4732 /* Pop from tail. */
4733 asection *item = tail;
4734 tail = PREV_SEC (item);
4735
4736 /* Push on head. */
4737 NEXT_SEC (item) = head;
4738 head = item;
4739 }
4740
4741 while (head != NULL)
4742 {
4743 asection *curr;
4744 asection *next;
4745 bfd_vma stub_group_start = head->output_offset;
4746 bfd_vma end_of_next;
4747
4748 curr = head;
4749 while (NEXT_SEC (curr) != NULL)
4750 {
4751 next = NEXT_SEC (curr);
4752 end_of_next = next->output_offset + next->size;
4753 if (end_of_next - stub_group_start >= stub_group_size)
4754 /* End of NEXT is too far from start, so stop. */
4755 break;
4756 /* Add NEXT to the group. */
4757 curr = next;
4758 }
4759
4760 /* OK, the size from the start to the start of CURR is less
4761 than stub_group_size and thus can be handled by one stub
4762 section. (Or the head section is itself larger than
4763 stub_group_size, in which case we may be toast.)
4764 We should really be keeping track of the total size of
4765 stubs added here, as stubs contribute to the final output
4766 section size. */
4767 do
4768 {
4769 next = NEXT_SEC (head);
4770 /* Set up this stub group. */
4771 htab->stub_group[head->id].link_sec = curr;
4772 }
4773 while (head != curr && (head = next) != NULL);
4774
4775 /* But wait, there's more! Input sections up to stub_group_size
4776 bytes after the stub section can be handled by it too. */
4777 if (!stubs_always_after_branch)
4778 {
4779 stub_group_start = curr->output_offset + curr->size;
4780
4781 while (next != NULL)
4782 {
4783 end_of_next = next->output_offset + next->size;
4784 if (end_of_next - stub_group_start >= stub_group_size)
4785 /* End of NEXT is too far from stubs, so stop. */
4786 break;
4787 /* Add NEXT to the stub group. */
4788 head = next;
4789 next = NEXT_SEC (head);
4790 htab->stub_group[head->id].link_sec = curr;
4791 }
4792 }
4793 head = next;
4794 }
4795 }
4796 while (list++ != htab->input_list + htab->top_index);
4797
4798 free (htab->input_list);
4799 #undef PREV_SEC
4800 #undef NEXT_SEC
4801 }
4802
4803 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4804 erratum fix. */
4805
4806 static int
4807 a8_reloc_compare (const void *a, const void *b)
4808 {
4809 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4810 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
4811
4812 if (ra->from < rb->from)
4813 return -1;
4814 else if (ra->from > rb->from)
4815 return 1;
4816 else
4817 return 0;
4818 }
4819
4820 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4821 const char *, char **);
4822
4823 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4824 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4825 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4826 otherwise. */
4827
4828 static bfd_boolean
4829 cortex_a8_erratum_scan (bfd *input_bfd,
4830 struct bfd_link_info *info,
4831 struct a8_erratum_fix **a8_fixes_p,
4832 unsigned int *num_a8_fixes_p,
4833 unsigned int *a8_fix_table_size_p,
4834 struct a8_erratum_reloc *a8_relocs,
4835 unsigned int num_a8_relocs,
4836 unsigned prev_num_a8_fixes,
4837 bfd_boolean *stub_changed_p)
4838 {
4839 asection *section;
4840 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4841 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4842 unsigned int num_a8_fixes = *num_a8_fixes_p;
4843 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4844
4845 if (htab == NULL)
4846 return FALSE;
4847
4848 for (section = input_bfd->sections;
4849 section != NULL;
4850 section = section->next)
4851 {
4852 bfd_byte *contents = NULL;
4853 struct _arm_elf_section_data *sec_data;
4854 unsigned int span;
4855 bfd_vma base_vma;
4856
4857 if (elf_section_type (section) != SHT_PROGBITS
4858 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4859 || (section->flags & SEC_EXCLUDE) != 0
4860 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4861 || (section->output_section == bfd_abs_section_ptr))
4862 continue;
4863
4864 base_vma = section->output_section->vma + section->output_offset;
4865
4866 if (elf_section_data (section)->this_hdr.contents != NULL)
4867 contents = elf_section_data (section)->this_hdr.contents;
4868 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4869 return TRUE;
4870
4871 sec_data = elf32_arm_section_data (section);
4872
4873 for (span = 0; span < sec_data->mapcount; span++)
4874 {
4875 unsigned int span_start = sec_data->map[span].vma;
4876 unsigned int span_end = (span == sec_data->mapcount - 1)
4877 ? section->size : sec_data->map[span + 1].vma;
4878 unsigned int i;
4879 char span_type = sec_data->map[span].type;
4880 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4881
4882 if (span_type != 't')
4883 continue;
4884
4885 /* Span is entirely within a single 4KB region: skip scanning. */
4886 if (((base_vma + span_start) & ~0xfff)
4887 == ((base_vma + span_end) & ~0xfff))
4888 continue;
4889
4890 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4891
4892 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4893 * The branch target is in the same 4KB region as the
4894 first half of the branch.
4895 * The instruction before the branch is a 32-bit
4896 length non-branch instruction. */
4897 for (i = span_start; i < span_end;)
4898 {
4899 unsigned int insn = bfd_getl16 (&contents[i]);
4900 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4901 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4902
4903 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4904 insn_32bit = TRUE;
4905
4906 if (insn_32bit)
4907 {
4908 /* Load the rest of the insn (in manual-friendly order). */
4909 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4910
4911 /* Encoding T4: B<c>.W. */
4912 is_b = (insn & 0xf800d000) == 0xf0009000;
4913 /* Encoding T1: BL<c>.W. */
4914 is_bl = (insn & 0xf800d000) == 0xf000d000;
4915 /* Encoding T2: BLX<c>.W. */
4916 is_blx = (insn & 0xf800d000) == 0xf000c000;
4917 /* Encoding T3: B<c>.W (not permitted in IT block). */
4918 is_bcc = (insn & 0xf800d000) == 0xf0008000
4919 && (insn & 0x07f00000) != 0x03800000;
4920 }
4921
4922 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4923
4924 if (((base_vma + i) & 0xfff) == 0xffe
4925 && insn_32bit
4926 && is_32bit_branch
4927 && last_was_32bit
4928 && ! last_was_branch)
4929 {
4930 bfd_signed_vma offset = 0;
4931 bfd_boolean force_target_arm = FALSE;
4932 bfd_boolean force_target_thumb = FALSE;
4933 bfd_vma target;
4934 enum elf32_arm_stub_type stub_type = arm_stub_none;
4935 struct a8_erratum_reloc key, *found;
4936 bfd_boolean use_plt = FALSE;
4937
4938 key.from = base_vma + i;
4939 found = (struct a8_erratum_reloc *)
4940 bsearch (&key, a8_relocs, num_a8_relocs,
4941 sizeof (struct a8_erratum_reloc),
4942 &a8_reloc_compare);
4943
4944 if (found)
4945 {
4946 char *error_message = NULL;
4947 struct elf_link_hash_entry *entry;
4948
4949 /* We don't care about the error returned from this
4950 function, only if there is glue or not. */
4951 entry = find_thumb_glue (info, found->sym_name,
4952 &error_message);
4953
4954 if (entry)
4955 found->non_a8_stub = TRUE;
4956
4957 /* Keep a simpler condition, for the sake of clarity. */
4958 if (htab->root.splt != NULL && found->hash != NULL
4959 && found->hash->root.plt.offset != (bfd_vma) -1)
4960 use_plt = TRUE;
4961
4962 if (found->r_type == R_ARM_THM_CALL)
4963 {
4964 if (found->branch_type == ST_BRANCH_TO_ARM
4965 || use_plt)
4966 force_target_arm = TRUE;
4967 else
4968 force_target_thumb = TRUE;
4969 }
4970 }
4971
4972 /* Check if we have an offending branch instruction. */
4973
4974 if (found && found->non_a8_stub)
4975 /* We've already made a stub for this instruction, e.g.
4976 it's a long branch or a Thumb->ARM stub. Assume that
4977 stub will suffice to work around the A8 erratum (see
4978 setting of always_after_branch above). */
4979 ;
4980 else if (is_bcc)
4981 {
4982 offset = (insn & 0x7ff) << 1;
4983 offset |= (insn & 0x3f0000) >> 4;
4984 offset |= (insn & 0x2000) ? 0x40000 : 0;
4985 offset |= (insn & 0x800) ? 0x80000 : 0;
4986 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4987 if (offset & 0x100000)
4988 offset |= ~ ((bfd_signed_vma) 0xfffff);
4989 stub_type = arm_stub_a8_veneer_b_cond;
4990 }
4991 else if (is_b || is_bl || is_blx)
4992 {
4993 int s = (insn & 0x4000000) != 0;
4994 int j1 = (insn & 0x2000) != 0;
4995 int j2 = (insn & 0x800) != 0;
4996 int i1 = !(j1 ^ s);
4997 int i2 = !(j2 ^ s);
4998
4999 offset = (insn & 0x7ff) << 1;
5000 offset |= (insn & 0x3ff0000) >> 4;
5001 offset |= i2 << 22;
5002 offset |= i1 << 23;
5003 offset |= s << 24;
5004 if (offset & 0x1000000)
5005 offset |= ~ ((bfd_signed_vma) 0xffffff);
5006
5007 if (is_blx)
5008 offset &= ~ ((bfd_signed_vma) 3);
5009
5010 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5011 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5012 }
5013
5014 if (stub_type != arm_stub_none)
5015 {
5016 bfd_vma pc_for_insn = base_vma + i + 4;
5017
5018 /* The original instruction is a BL, but the target is
5019 an ARM instruction. If we were not making a stub,
5020 the BL would have been converted to a BLX. Use the
5021 BLX stub instead in that case. */
5022 if (htab->use_blx && force_target_arm
5023 && stub_type == arm_stub_a8_veneer_bl)
5024 {
5025 stub_type = arm_stub_a8_veneer_blx;
5026 is_blx = TRUE;
5027 is_bl = FALSE;
5028 }
5029 /* Conversely, if the original instruction was
5030 BLX but the target is Thumb mode, use the BL
5031 stub. */
5032 else if (force_target_thumb
5033 && stub_type == arm_stub_a8_veneer_blx)
5034 {
5035 stub_type = arm_stub_a8_veneer_bl;
5036 is_blx = FALSE;
5037 is_bl = TRUE;
5038 }
5039
5040 if (is_blx)
5041 pc_for_insn &= ~ ((bfd_vma) 3);
5042
5043 /* If we found a relocation, use the proper destination,
5044 not the offset in the (unrelocated) instruction.
5045 Note this is always done if we switched the stub type
5046 above. */
5047 if (found)
5048 offset =
5049 (bfd_signed_vma) (found->destination - pc_for_insn);
5050
5051 /* If the stub will use a Thumb-mode branch to a
5052 PLT target, redirect it to the preceding Thumb
5053 entry point. */
5054 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5055 offset -= PLT_THUMB_STUB_SIZE;
5056
5057 target = pc_for_insn + offset;
5058
5059 /* The BLX stub is ARM-mode code. Adjust the offset to
5060 take the different PC value (+8 instead of +4) into
5061 account. */
5062 if (stub_type == arm_stub_a8_veneer_blx)
5063 offset += 4;
5064
5065 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5066 {
5067 char *stub_name = NULL;
5068
5069 if (num_a8_fixes == a8_fix_table_size)
5070 {
5071 a8_fix_table_size *= 2;
5072 a8_fixes = (struct a8_erratum_fix *)
5073 bfd_realloc (a8_fixes,
5074 sizeof (struct a8_erratum_fix)
5075 * a8_fix_table_size);
5076 }
5077
5078 if (num_a8_fixes < prev_num_a8_fixes)
5079 {
5080 /* If we're doing a subsequent scan,
5081 check if we've found the same fix as
5082 before, and try and reuse the stub
5083 name. */
5084 stub_name = a8_fixes[num_a8_fixes].stub_name;
5085 if ((a8_fixes[num_a8_fixes].section != section)
5086 || (a8_fixes[num_a8_fixes].offset != i))
5087 {
5088 free (stub_name);
5089 stub_name = NULL;
5090 *stub_changed_p = TRUE;
5091 }
5092 }
5093
5094 if (!stub_name)
5095 {
5096 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5097 if (stub_name != NULL)
5098 sprintf (stub_name, "%x:%x", section->id, i);
5099 }
5100
5101 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5102 a8_fixes[num_a8_fixes].section = section;
5103 a8_fixes[num_a8_fixes].offset = i;
5104 a8_fixes[num_a8_fixes].addend = offset;
5105 a8_fixes[num_a8_fixes].orig_insn = insn;
5106 a8_fixes[num_a8_fixes].stub_name = stub_name;
5107 a8_fixes[num_a8_fixes].stub_type = stub_type;
5108 a8_fixes[num_a8_fixes].branch_type =
5109 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5110
5111 num_a8_fixes++;
5112 }
5113 }
5114 }
5115
5116 i += insn_32bit ? 4 : 2;
5117 last_was_32bit = insn_32bit;
5118 last_was_branch = is_32bit_branch;
5119 }
5120 }
5121
5122 if (elf_section_data (section)->this_hdr.contents == NULL)
5123 free (contents);
5124 }
5125
5126 *a8_fixes_p = a8_fixes;
5127 *num_a8_fixes_p = num_a8_fixes;
5128 *a8_fix_table_size_p = a8_fix_table_size;
5129
5130 return FALSE;
5131 }
5132
5133 /* Determine and set the size of the stub section for a final link.
5134
5135 The basic idea here is to examine all the relocations looking for
5136 PC-relative calls to a target that is unreachable with a "bl"
5137 instruction. */
5138
5139 bfd_boolean
5140 elf32_arm_size_stubs (bfd *output_bfd,
5141 bfd *stub_bfd,
5142 struct bfd_link_info *info,
5143 bfd_signed_vma group_size,
5144 asection * (*add_stub_section) (const char *, asection *,
5145 unsigned int),
5146 void (*layout_sections_again) (void))
5147 {
5148 bfd_size_type stub_group_size;
5149 bfd_boolean stubs_always_after_branch;
5150 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5151 struct a8_erratum_fix *a8_fixes = NULL;
5152 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
5153 struct a8_erratum_reloc *a8_relocs = NULL;
5154 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
5155
5156 if (htab == NULL)
5157 return FALSE;
5158
5159 if (htab->fix_cortex_a8)
5160 {
5161 a8_fixes = (struct a8_erratum_fix *)
5162 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
5163 a8_relocs = (struct a8_erratum_reloc *)
5164 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
5165 }
5166
5167 /* Propagate mach to stub bfd, because it may not have been
5168 finalized when we created stub_bfd. */
5169 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
5170 bfd_get_mach (output_bfd));
5171
5172 /* Stash our params away. */
5173 htab->stub_bfd = stub_bfd;
5174 htab->add_stub_section = add_stub_section;
5175 htab->layout_sections_again = layout_sections_again;
5176 stubs_always_after_branch = group_size < 0;
5177
5178 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
5179 as the first half of a 32-bit branch straddling two 4K pages. This is a
5180 crude way of enforcing that. */
5181 if (htab->fix_cortex_a8)
5182 stubs_always_after_branch = 1;
5183
5184 if (group_size < 0)
5185 stub_group_size = -group_size;
5186 else
5187 stub_group_size = group_size;
5188
5189 if (stub_group_size == 1)
5190 {
5191 /* Default values. */
5192 /* Thumb branch range is +-4MB has to be used as the default
5193 maximum size (a given section can contain both ARM and Thumb
5194 code, so the worst case has to be taken into account).
5195
5196 This value is 24K less than that, which allows for 2025
5197 12-byte stubs. If we exceed that, then we will fail to link.
5198 The user will have to relink with an explicit group size
5199 option. */
5200 stub_group_size = 4170000;
5201 }
5202
5203 group_sections (htab, stub_group_size, stubs_always_after_branch);
5204
5205 /* If we're applying the cortex A8 fix, we need to determine the
5206 program header size now, because we cannot change it later --
5207 that could alter section placements. Notice the A8 erratum fix
5208 ends up requiring the section addresses to remain unchanged
5209 modulo the page size. That's something we cannot represent
5210 inside BFD, and we don't want to force the section alignment to
5211 be the page size. */
5212 if (htab->fix_cortex_a8)
5213 (*htab->layout_sections_again) ();
5214
5215 while (1)
5216 {
5217 bfd *input_bfd;
5218 unsigned int bfd_indx;
5219 asection *stub_sec;
5220 bfd_boolean stub_changed = FALSE;
5221 unsigned prev_num_a8_fixes = num_a8_fixes;
5222
5223 num_a8_fixes = 0;
5224 for (input_bfd = info->input_bfds, bfd_indx = 0;
5225 input_bfd != NULL;
5226 input_bfd = input_bfd->link.next, bfd_indx++)
5227 {
5228 Elf_Internal_Shdr *symtab_hdr;
5229 asection *section;
5230 Elf_Internal_Sym *local_syms = NULL;
5231
5232 if (!is_arm_elf (input_bfd))
5233 continue;
5234
5235 num_a8_relocs = 0;
5236
5237 /* We'll need the symbol table in a second. */
5238 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5239 if (symtab_hdr->sh_info == 0)
5240 continue;
5241
5242 /* Walk over each section attached to the input bfd. */
5243 for (section = input_bfd->sections;
5244 section != NULL;
5245 section = section->next)
5246 {
5247 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
5248
5249 /* If there aren't any relocs, then there's nothing more
5250 to do. */
5251 if ((section->flags & SEC_RELOC) == 0
5252 || section->reloc_count == 0
5253 || (section->flags & SEC_CODE) == 0)
5254 continue;
5255
5256 /* If this section is a link-once section that will be
5257 discarded, then don't create any stubs. */
5258 if (section->output_section == NULL
5259 || section->output_section->owner != output_bfd)
5260 continue;
5261
5262 /* Get the relocs. */
5263 internal_relocs
5264 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
5265 NULL, info->keep_memory);
5266 if (internal_relocs == NULL)
5267 goto error_ret_free_local;
5268
5269 /* Now examine each relocation. */
5270 irela = internal_relocs;
5271 irelaend = irela + section->reloc_count;
5272 for (; irela < irelaend; irela++)
5273 {
5274 unsigned int r_type, r_indx;
5275 enum elf32_arm_stub_type stub_type;
5276 struct elf32_arm_stub_hash_entry *stub_entry;
5277 asection *sym_sec;
5278 bfd_vma sym_value;
5279 bfd_vma destination;
5280 struct elf32_arm_link_hash_entry *hash;
5281 const char *sym_name;
5282 char *stub_name;
5283 const asection *id_sec;
5284 unsigned char st_type;
5285 enum arm_st_branch_type branch_type;
5286 bfd_boolean created_stub = FALSE;
5287
5288 r_type = ELF32_R_TYPE (irela->r_info);
5289 r_indx = ELF32_R_SYM (irela->r_info);
5290
5291 if (r_type >= (unsigned int) R_ARM_max)
5292 {
5293 bfd_set_error (bfd_error_bad_value);
5294 error_ret_free_internal:
5295 if (elf_section_data (section)->relocs == NULL)
5296 free (internal_relocs);
5297 /* Fall through. */
5298 error_ret_free_local:
5299 if (local_syms != NULL
5300 && (symtab_hdr->contents
5301 != (unsigned char *) local_syms))
5302 free (local_syms);
5303 return FALSE;
5304 }
5305
5306 hash = NULL;
5307 if (r_indx >= symtab_hdr->sh_info)
5308 hash = elf32_arm_hash_entry
5309 (elf_sym_hashes (input_bfd)
5310 [r_indx - symtab_hdr->sh_info]);
5311
5312 /* Only look for stubs on branch instructions, or
5313 non-relaxed TLSCALL */
5314 if ((r_type != (unsigned int) R_ARM_CALL)
5315 && (r_type != (unsigned int) R_ARM_THM_CALL)
5316 && (r_type != (unsigned int) R_ARM_JUMP24)
5317 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
5318 && (r_type != (unsigned int) R_ARM_THM_XPC22)
5319 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
5320 && (r_type != (unsigned int) R_ARM_PLT32)
5321 && !((r_type == (unsigned int) R_ARM_TLS_CALL
5322 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5323 && r_type == elf32_arm_tls_transition
5324 (info, r_type, &hash->root)
5325 && ((hash ? hash->tls_type
5326 : (elf32_arm_local_got_tls_type
5327 (input_bfd)[r_indx]))
5328 & GOT_TLS_GDESC) != 0))
5329 continue;
5330
5331 /* Now determine the call target, its name, value,
5332 section. */
5333 sym_sec = NULL;
5334 sym_value = 0;
5335 destination = 0;
5336 sym_name = NULL;
5337
5338 if (r_type == (unsigned int) R_ARM_TLS_CALL
5339 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5340 {
5341 /* A non-relaxed TLS call. The target is the
5342 plt-resident trampoline and nothing to do
5343 with the symbol. */
5344 BFD_ASSERT (htab->tls_trampoline > 0);
5345 sym_sec = htab->root.splt;
5346 sym_value = htab->tls_trampoline;
5347 hash = 0;
5348 st_type = STT_FUNC;
5349 branch_type = ST_BRANCH_TO_ARM;
5350 }
5351 else if (!hash)
5352 {
5353 /* It's a local symbol. */
5354 Elf_Internal_Sym *sym;
5355
5356 if (local_syms == NULL)
5357 {
5358 local_syms
5359 = (Elf_Internal_Sym *) symtab_hdr->contents;
5360 if (local_syms == NULL)
5361 local_syms
5362 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5363 symtab_hdr->sh_info, 0,
5364 NULL, NULL, NULL);
5365 if (local_syms == NULL)
5366 goto error_ret_free_internal;
5367 }
5368
5369 sym = local_syms + r_indx;
5370 if (sym->st_shndx == SHN_UNDEF)
5371 sym_sec = bfd_und_section_ptr;
5372 else if (sym->st_shndx == SHN_ABS)
5373 sym_sec = bfd_abs_section_ptr;
5374 else if (sym->st_shndx == SHN_COMMON)
5375 sym_sec = bfd_com_section_ptr;
5376 else
5377 sym_sec =
5378 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
5379
5380 if (!sym_sec)
5381 /* This is an undefined symbol. It can never
5382 be resolved. */
5383 continue;
5384
5385 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5386 sym_value = sym->st_value;
5387 destination = (sym_value + irela->r_addend
5388 + sym_sec->output_offset
5389 + sym_sec->output_section->vma);
5390 st_type = ELF_ST_TYPE (sym->st_info);
5391 branch_type = ARM_SYM_BRANCH_TYPE (sym);
5392 sym_name
5393 = bfd_elf_string_from_elf_section (input_bfd,
5394 symtab_hdr->sh_link,
5395 sym->st_name);
5396 }
5397 else
5398 {
5399 /* It's an external symbol. */
5400 while (hash->root.root.type == bfd_link_hash_indirect
5401 || hash->root.root.type == bfd_link_hash_warning)
5402 hash = ((struct elf32_arm_link_hash_entry *)
5403 hash->root.root.u.i.link);
5404
5405 if (hash->root.root.type == bfd_link_hash_defined
5406 || hash->root.root.type == bfd_link_hash_defweak)
5407 {
5408 sym_sec = hash->root.root.u.def.section;
5409 sym_value = hash->root.root.u.def.value;
5410
5411 struct elf32_arm_link_hash_table *globals =
5412 elf32_arm_hash_table (info);
5413
5414 /* For a destination in a shared library,
5415 use the PLT stub as target address to
5416 decide whether a branch stub is
5417 needed. */
5418 if (globals != NULL
5419 && globals->root.splt != NULL
5420 && hash != NULL
5421 && hash->root.plt.offset != (bfd_vma) -1)
5422 {
5423 sym_sec = globals->root.splt;
5424 sym_value = hash->root.plt.offset;
5425 if (sym_sec->output_section != NULL)
5426 destination = (sym_value
5427 + sym_sec->output_offset
5428 + sym_sec->output_section->vma);
5429 }
5430 else if (sym_sec->output_section != NULL)
5431 destination = (sym_value + irela->r_addend
5432 + sym_sec->output_offset
5433 + sym_sec->output_section->vma);
5434 }
5435 else if ((hash->root.root.type == bfd_link_hash_undefined)
5436 || (hash->root.root.type == bfd_link_hash_undefweak))
5437 {
5438 /* For a shared library, use the PLT stub as
5439 target address to decide whether a long
5440 branch stub is needed.
5441 For absolute code, they cannot be handled. */
5442 struct elf32_arm_link_hash_table *globals =
5443 elf32_arm_hash_table (info);
5444
5445 if (globals != NULL
5446 && globals->root.splt != NULL
5447 && hash != NULL
5448 && hash->root.plt.offset != (bfd_vma) -1)
5449 {
5450 sym_sec = globals->root.splt;
5451 sym_value = hash->root.plt.offset;
5452 if (sym_sec->output_section != NULL)
5453 destination = (sym_value
5454 + sym_sec->output_offset
5455 + sym_sec->output_section->vma);
5456 }
5457 else
5458 continue;
5459 }
5460 else
5461 {
5462 bfd_set_error (bfd_error_bad_value);
5463 goto error_ret_free_internal;
5464 }
5465 st_type = hash->root.type;
5466 branch_type = hash->root.target_internal;
5467 sym_name = hash->root.root.root.string;
5468 }
5469
5470 do
5471 {
5472 /* Determine what (if any) linker stub is needed. */
5473 stub_type = arm_type_of_stub (info, section, irela,
5474 st_type, &branch_type,
5475 hash, destination, sym_sec,
5476 input_bfd, sym_name);
5477 if (stub_type == arm_stub_none)
5478 break;
5479
5480 /* Support for grouping stub sections. */
5481 id_sec = htab->stub_group[section->id].link_sec;
5482
5483 /* Get the name of this stub. */
5484 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
5485 irela, stub_type);
5486 if (!stub_name)
5487 goto error_ret_free_internal;
5488
5489 /* We've either created a stub for this reloc already,
5490 or we are about to. */
5491 created_stub = TRUE;
5492
5493 stub_entry = arm_stub_hash_lookup
5494 (&htab->stub_hash_table, stub_name,
5495 FALSE, FALSE);
5496 if (stub_entry != NULL)
5497 {
5498 /* The proper stub has already been created. */
5499 free (stub_name);
5500 stub_entry->target_value = sym_value;
5501 break;
5502 }
5503
5504 stub_entry = elf32_arm_add_stub (stub_name, section,
5505 htab);
5506 if (stub_entry == NULL)
5507 {
5508 free (stub_name);
5509 goto error_ret_free_internal;
5510 }
5511
5512 stub_entry->target_value = sym_value;
5513 stub_entry->target_section = sym_sec;
5514 stub_entry->stub_type = stub_type;
5515 stub_entry->h = hash;
5516 stub_entry->branch_type = branch_type;
5517
5518 if (sym_name == NULL)
5519 sym_name = "unnamed";
5520 stub_entry->output_name = (char *)
5521 bfd_alloc (htab->stub_bfd,
5522 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5523 + strlen (sym_name));
5524 if (stub_entry->output_name == NULL)
5525 {
5526 free (stub_name);
5527 goto error_ret_free_internal;
5528 }
5529
5530 /* For historical reasons, use the existing names for
5531 ARM-to-Thumb and Thumb-to-ARM stubs. */
5532 if ((r_type == (unsigned int) R_ARM_THM_CALL
5533 || r_type == (unsigned int) R_ARM_THM_JUMP24
5534 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5535 && branch_type == ST_BRANCH_TO_ARM)
5536 sprintf (stub_entry->output_name,
5537 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5538 else if ((r_type == (unsigned int) R_ARM_CALL
5539 || r_type == (unsigned int) R_ARM_JUMP24)
5540 && branch_type == ST_BRANCH_TO_THUMB)
5541 sprintf (stub_entry->output_name,
5542 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5543 else
5544 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5545 sym_name);
5546
5547 stub_changed = TRUE;
5548 }
5549 while (0);
5550
5551 /* Look for relocations which might trigger Cortex-A8
5552 erratum. */
5553 if (htab->fix_cortex_a8
5554 && (r_type == (unsigned int) R_ARM_THM_JUMP24
5555 || r_type == (unsigned int) R_ARM_THM_JUMP19
5556 || r_type == (unsigned int) R_ARM_THM_CALL
5557 || r_type == (unsigned int) R_ARM_THM_XPC22))
5558 {
5559 bfd_vma from = section->output_section->vma
5560 + section->output_offset
5561 + irela->r_offset;
5562
5563 if ((from & 0xfff) == 0xffe)
5564 {
5565 /* Found a candidate. Note we haven't checked the
5566 destination is within 4K here: if we do so (and
5567 don't create an entry in a8_relocs) we can't tell
5568 that a branch should have been relocated when
5569 scanning later. */
5570 if (num_a8_relocs == a8_reloc_table_size)
5571 {
5572 a8_reloc_table_size *= 2;
5573 a8_relocs = (struct a8_erratum_reloc *)
5574 bfd_realloc (a8_relocs,
5575 sizeof (struct a8_erratum_reloc)
5576 * a8_reloc_table_size);
5577 }
5578
5579 a8_relocs[num_a8_relocs].from = from;
5580 a8_relocs[num_a8_relocs].destination = destination;
5581 a8_relocs[num_a8_relocs].r_type = r_type;
5582 a8_relocs[num_a8_relocs].branch_type = branch_type;
5583 a8_relocs[num_a8_relocs].sym_name = sym_name;
5584 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5585 a8_relocs[num_a8_relocs].hash = hash;
5586
5587 num_a8_relocs++;
5588 }
5589 }
5590 }
5591
5592 /* We're done with the internal relocs, free them. */
5593 if (elf_section_data (section)->relocs == NULL)
5594 free (internal_relocs);
5595 }
5596
5597 if (htab->fix_cortex_a8)
5598 {
5599 /* Sort relocs which might apply to Cortex-A8 erratum. */
5600 qsort (a8_relocs, num_a8_relocs,
5601 sizeof (struct a8_erratum_reloc),
5602 &a8_reloc_compare);
5603
5604 /* Scan for branches which might trigger Cortex-A8 erratum. */
5605 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
5606 &num_a8_fixes, &a8_fix_table_size,
5607 a8_relocs, num_a8_relocs,
5608 prev_num_a8_fixes, &stub_changed)
5609 != 0)
5610 goto error_ret_free_local;
5611 }
5612 }
5613
5614 if (prev_num_a8_fixes != num_a8_fixes)
5615 stub_changed = TRUE;
5616
5617 if (!stub_changed)
5618 break;
5619
5620 /* OK, we've added some stubs. Find out the new size of the
5621 stub sections. */
5622 for (stub_sec = htab->stub_bfd->sections;
5623 stub_sec != NULL;
5624 stub_sec = stub_sec->next)
5625 {
5626 /* Ignore non-stub sections. */
5627 if (!strstr (stub_sec->name, STUB_SUFFIX))
5628 continue;
5629
5630 stub_sec->size = 0;
5631 }
5632
5633 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5634
5635 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5636 if (htab->fix_cortex_a8)
5637 for (i = 0; i < num_a8_fixes; i++)
5638 {
5639 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5640 a8_fixes[i].section, htab);
5641
5642 if (stub_sec == NULL)
5643 goto error_ret_free_local;
5644
5645 stub_sec->size
5646 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5647 NULL);
5648 }
5649
5650
5651 /* Ask the linker to do its stuff. */
5652 (*htab->layout_sections_again) ();
5653 }
5654
5655 /* Add stubs for Cortex-A8 erratum fixes now. */
5656 if (htab->fix_cortex_a8)
5657 {
5658 for (i = 0; i < num_a8_fixes; i++)
5659 {
5660 struct elf32_arm_stub_hash_entry *stub_entry;
5661 char *stub_name = a8_fixes[i].stub_name;
5662 asection *section = a8_fixes[i].section;
5663 unsigned int section_id = a8_fixes[i].section->id;
5664 asection *link_sec = htab->stub_group[section_id].link_sec;
5665 asection *stub_sec = htab->stub_group[section_id].stub_sec;
5666 const insn_sequence *template_sequence;
5667 int template_size, size = 0;
5668
5669 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5670 TRUE, FALSE);
5671 if (stub_entry == NULL)
5672 {
5673 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5674 section->owner,
5675 stub_name);
5676 return FALSE;
5677 }
5678
5679 stub_entry->stub_sec = stub_sec;
5680 stub_entry->stub_offset = 0;
5681 stub_entry->id_sec = link_sec;
5682 stub_entry->stub_type = a8_fixes[i].stub_type;
5683 stub_entry->target_section = a8_fixes[i].section;
5684 stub_entry->target_value = a8_fixes[i].offset;
5685 stub_entry->target_addend = a8_fixes[i].addend;
5686 stub_entry->orig_insn = a8_fixes[i].orig_insn;
5687 stub_entry->branch_type = a8_fixes[i].branch_type;
5688
5689 size = find_stub_size_and_template (a8_fixes[i].stub_type,
5690 &template_sequence,
5691 &template_size);
5692
5693 stub_entry->stub_size = size;
5694 stub_entry->stub_template = template_sequence;
5695 stub_entry->stub_template_size = template_size;
5696 }
5697
5698 /* Stash the Cortex-A8 erratum fix array for use later in
5699 elf32_arm_write_section(). */
5700 htab->a8_erratum_fixes = a8_fixes;
5701 htab->num_a8_erratum_fixes = num_a8_fixes;
5702 }
5703 else
5704 {
5705 htab->a8_erratum_fixes = NULL;
5706 htab->num_a8_erratum_fixes = 0;
5707 }
5708 return TRUE;
5709 }
5710
5711 /* Build all the stubs associated with the current output file. The
5712 stubs are kept in a hash table attached to the main linker hash
5713 table. We also set up the .plt entries for statically linked PIC
5714 functions here. This function is called via arm_elf_finish in the
5715 linker. */
5716
5717 bfd_boolean
5718 elf32_arm_build_stubs (struct bfd_link_info *info)
5719 {
5720 asection *stub_sec;
5721 struct bfd_hash_table *table;
5722 struct elf32_arm_link_hash_table *htab;
5723
5724 htab = elf32_arm_hash_table (info);
5725 if (htab == NULL)
5726 return FALSE;
5727
5728 for (stub_sec = htab->stub_bfd->sections;
5729 stub_sec != NULL;
5730 stub_sec = stub_sec->next)
5731 {
5732 bfd_size_type size;
5733
5734 /* Ignore non-stub sections. */
5735 if (!strstr (stub_sec->name, STUB_SUFFIX))
5736 continue;
5737
5738 /* Allocate memory to hold the linker stubs. */
5739 size = stub_sec->size;
5740 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
5741 if (stub_sec->contents == NULL && size != 0)
5742 return FALSE;
5743 stub_sec->size = 0;
5744 }
5745
5746 /* Build the stubs as directed by the stub hash table. */
5747 table = &htab->stub_hash_table;
5748 bfd_hash_traverse (table, arm_build_one_stub, info);
5749 if (htab->fix_cortex_a8)
5750 {
5751 /* Place the cortex a8 stubs last. */
5752 htab->fix_cortex_a8 = -1;
5753 bfd_hash_traverse (table, arm_build_one_stub, info);
5754 }
5755
5756 return TRUE;
5757 }
5758
5759 /* Locate the Thumb encoded calling stub for NAME. */
5760
5761 static struct elf_link_hash_entry *
5762 find_thumb_glue (struct bfd_link_info *link_info,
5763 const char *name,
5764 char **error_message)
5765 {
5766 char *tmp_name;
5767 struct elf_link_hash_entry *hash;
5768 struct elf32_arm_link_hash_table *hash_table;
5769
5770 /* We need a pointer to the armelf specific hash table. */
5771 hash_table = elf32_arm_hash_table (link_info);
5772 if (hash_table == NULL)
5773 return NULL;
5774
5775 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5776 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
5777
5778 BFD_ASSERT (tmp_name);
5779
5780 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5781
5782 hash = elf_link_hash_lookup
5783 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5784
5785 if (hash == NULL
5786 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5787 tmp_name, name) == -1)
5788 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5789
5790 free (tmp_name);
5791
5792 return hash;
5793 }
5794
5795 /* Locate the ARM encoded calling stub for NAME. */
5796
5797 static struct elf_link_hash_entry *
5798 find_arm_glue (struct bfd_link_info *link_info,
5799 const char *name,
5800 char **error_message)
5801 {
5802 char *tmp_name;
5803 struct elf_link_hash_entry *myh;
5804 struct elf32_arm_link_hash_table *hash_table;
5805
5806 /* We need a pointer to the elfarm specific hash table. */
5807 hash_table = elf32_arm_hash_table (link_info);
5808 if (hash_table == NULL)
5809 return NULL;
5810
5811 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5812 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5813
5814 BFD_ASSERT (tmp_name);
5815
5816 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5817
5818 myh = elf_link_hash_lookup
5819 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5820
5821 if (myh == NULL
5822 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5823 tmp_name, name) == -1)
5824 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5825
5826 free (tmp_name);
5827
5828 return myh;
5829 }
5830
5831 /* ARM->Thumb glue (static images):
5832
5833 .arm
5834 __func_from_arm:
5835 ldr r12, __func_addr
5836 bx r12
5837 __func_addr:
5838 .word func @ behave as if you saw a ARM_32 reloc.
5839
5840 (v5t static images)
5841 .arm
5842 __func_from_arm:
5843 ldr pc, __func_addr
5844 __func_addr:
5845 .word func @ behave as if you saw a ARM_32 reloc.
5846
5847 (relocatable images)
5848 .arm
5849 __func_from_arm:
5850 ldr r12, __func_offset
5851 add r12, r12, pc
5852 bx r12
5853 __func_offset:
5854 .word func - . */
5855
5856 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5857 static const insn32 a2t1_ldr_insn = 0xe59fc000;
5858 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5859 static const insn32 a2t3_func_addr_insn = 0x00000001;
5860
5861 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5862 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5863 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5864
5865 #define ARM2THUMB_PIC_GLUE_SIZE 16
5866 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5867 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5868 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5869
5870 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5871
5872 .thumb .thumb
5873 .align 2 .align 2
5874 __func_from_thumb: __func_from_thumb:
5875 bx pc push {r6, lr}
5876 nop ldr r6, __func_addr
5877 .arm mov lr, pc
5878 b func bx r6
5879 .arm
5880 ;; back_to_thumb
5881 ldmia r13! {r6, lr}
5882 bx lr
5883 __func_addr:
5884 .word func */
5885
5886 #define THUMB2ARM_GLUE_SIZE 8
5887 static const insn16 t2a1_bx_pc_insn = 0x4778;
5888 static const insn16 t2a2_noop_insn = 0x46c0;
5889 static const insn32 t2a3_b_insn = 0xea000000;
5890
5891 #define VFP11_ERRATUM_VENEER_SIZE 8
5892 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
5893 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
5894
5895 #define ARM_BX_VENEER_SIZE 12
5896 static const insn32 armbx1_tst_insn = 0xe3100001;
5897 static const insn32 armbx2_moveq_insn = 0x01a0f000;
5898 static const insn32 armbx3_bx_insn = 0xe12fff10;
5899
5900 #ifndef ELFARM_NABI_C_INCLUDED
5901 static void
5902 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5903 {
5904 asection * s;
5905 bfd_byte * contents;
5906
5907 if (size == 0)
5908 {
5909 /* Do not include empty glue sections in the output. */
5910 if (abfd != NULL)
5911 {
5912 s = bfd_get_linker_section (abfd, name);
5913 if (s != NULL)
5914 s->flags |= SEC_EXCLUDE;
5915 }
5916 return;
5917 }
5918
5919 BFD_ASSERT (abfd != NULL);
5920
5921 s = bfd_get_linker_section (abfd, name);
5922 BFD_ASSERT (s != NULL);
5923
5924 contents = (bfd_byte *) bfd_alloc (abfd, size);
5925
5926 BFD_ASSERT (s->size == size);
5927 s->contents = contents;
5928 }
5929
5930 bfd_boolean
5931 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5932 {
5933 struct elf32_arm_link_hash_table * globals;
5934
5935 globals = elf32_arm_hash_table (info);
5936 BFD_ASSERT (globals != NULL);
5937
5938 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5939 globals->arm_glue_size,
5940 ARM2THUMB_GLUE_SECTION_NAME);
5941
5942 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5943 globals->thumb_glue_size,
5944 THUMB2ARM_GLUE_SECTION_NAME);
5945
5946 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5947 globals->vfp11_erratum_glue_size,
5948 VFP11_ERRATUM_VENEER_SECTION_NAME);
5949
5950 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5951 globals->stm32l4xx_erratum_glue_size,
5952 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
5953
5954 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5955 globals->bx_glue_size,
5956 ARM_BX_GLUE_SECTION_NAME);
5957
5958 return TRUE;
5959 }
5960
5961 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5962 returns the symbol identifying the stub. */
5963
5964 static struct elf_link_hash_entry *
5965 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5966 struct elf_link_hash_entry * h)
5967 {
5968 const char * name = h->root.root.string;
5969 asection * s;
5970 char * tmp_name;
5971 struct elf_link_hash_entry * myh;
5972 struct bfd_link_hash_entry * bh;
5973 struct elf32_arm_link_hash_table * globals;
5974 bfd_vma val;
5975 bfd_size_type size;
5976
5977 globals = elf32_arm_hash_table (link_info);
5978 BFD_ASSERT (globals != NULL);
5979 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5980
5981 s = bfd_get_linker_section
5982 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5983
5984 BFD_ASSERT (s != NULL);
5985
5986 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5987 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5988
5989 BFD_ASSERT (tmp_name);
5990
5991 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5992
5993 myh = elf_link_hash_lookup
5994 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5995
5996 if (myh != NULL)
5997 {
5998 /* We've already seen this guy. */
5999 free (tmp_name);
6000 return myh;
6001 }
6002
6003 /* The only trick here is using hash_table->arm_glue_size as the value.
6004 Even though the section isn't allocated yet, this is where we will be
6005 putting it. The +1 on the value marks that the stub has not been
6006 output yet - not that it is a Thumb function. */
6007 bh = NULL;
6008 val = globals->arm_glue_size + 1;
6009 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
6010 tmp_name, BSF_GLOBAL, s, val,
6011 NULL, TRUE, FALSE, &bh);
6012
6013 myh = (struct elf_link_hash_entry *) bh;
6014 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6015 myh->forced_local = 1;
6016
6017 free (tmp_name);
6018
6019 if (bfd_link_pic (link_info)
6020 || globals->root.is_relocatable_executable
6021 || globals->pic_veneer)
6022 size = ARM2THUMB_PIC_GLUE_SIZE;
6023 else if (globals->use_blx)
6024 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
6025 else
6026 size = ARM2THUMB_STATIC_GLUE_SIZE;
6027
6028 s->size += size;
6029 globals->arm_glue_size += size;
6030
6031 return myh;
6032 }
6033
6034 /* Allocate space for ARMv4 BX veneers. */
6035
6036 static void
6037 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
6038 {
6039 asection * s;
6040 struct elf32_arm_link_hash_table *globals;
6041 char *tmp_name;
6042 struct elf_link_hash_entry *myh;
6043 struct bfd_link_hash_entry *bh;
6044 bfd_vma val;
6045
6046 /* BX PC does not need a veneer. */
6047 if (reg == 15)
6048 return;
6049
6050 globals = elf32_arm_hash_table (link_info);
6051 BFD_ASSERT (globals != NULL);
6052 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6053
6054 /* Check if this veneer has already been allocated. */
6055 if (globals->bx_glue_offset[reg])
6056 return;
6057
6058 s = bfd_get_linker_section
6059 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
6060
6061 BFD_ASSERT (s != NULL);
6062
6063 /* Add symbol for veneer. */
6064 tmp_name = (char *)
6065 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
6066
6067 BFD_ASSERT (tmp_name);
6068
6069 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
6070
6071 myh = elf_link_hash_lookup
6072 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
6073
6074 BFD_ASSERT (myh == NULL);
6075
6076 bh = NULL;
6077 val = globals->bx_glue_size;
6078 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
6079 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
6080 NULL, TRUE, FALSE, &bh);
6081
6082 myh = (struct elf_link_hash_entry *) bh;
6083 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6084 myh->forced_local = 1;
6085
6086 s->size += ARM_BX_VENEER_SIZE;
6087 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
6088 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
6089 }
6090
6091
6092 /* Add an entry to the code/data map for section SEC. */
6093
6094 static void
6095 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
6096 {
6097 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6098 unsigned int newidx;
6099
6100 if (sec_data->map == NULL)
6101 {
6102 sec_data->map = (elf32_arm_section_map *)
6103 bfd_malloc (sizeof (elf32_arm_section_map));
6104 sec_data->mapcount = 0;
6105 sec_data->mapsize = 1;
6106 }
6107
6108 newidx = sec_data->mapcount++;
6109
6110 if (sec_data->mapcount > sec_data->mapsize)
6111 {
6112 sec_data->mapsize *= 2;
6113 sec_data->map = (elf32_arm_section_map *)
6114 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
6115 * sizeof (elf32_arm_section_map));
6116 }
6117
6118 if (sec_data->map)
6119 {
6120 sec_data->map[newidx].vma = vma;
6121 sec_data->map[newidx].type = type;
6122 }
6123 }
6124
6125
6126 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
6127 veneers are handled for now. */
6128
6129 static bfd_vma
6130 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
6131 elf32_vfp11_erratum_list *branch,
6132 bfd *branch_bfd,
6133 asection *branch_sec,
6134 unsigned int offset)
6135 {
6136 asection *s;
6137 struct elf32_arm_link_hash_table *hash_table;
6138 char *tmp_name;
6139 struct elf_link_hash_entry *myh;
6140 struct bfd_link_hash_entry *bh;
6141 bfd_vma val;
6142 struct _arm_elf_section_data *sec_data;
6143 elf32_vfp11_erratum_list *newerr;
6144
6145 hash_table = elf32_arm_hash_table (link_info);
6146 BFD_ASSERT (hash_table != NULL);
6147 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
6148
6149 s = bfd_get_linker_section
6150 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
6151
6152 sec_data = elf32_arm_section_data (s);
6153
6154 BFD_ASSERT (s != NULL);
6155
6156 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6157 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6158
6159 BFD_ASSERT (tmp_name);
6160
6161 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6162 hash_table->num_vfp11_fixes);
6163
6164 myh = elf_link_hash_lookup
6165 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
6166
6167 BFD_ASSERT (myh == NULL);
6168
6169 bh = NULL;
6170 val = hash_table->vfp11_erratum_glue_size;
6171 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
6172 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
6173 NULL, TRUE, FALSE, &bh);
6174
6175 myh = (struct elf_link_hash_entry *) bh;
6176 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6177 myh->forced_local = 1;
6178
6179 /* Link veneer back to calling location. */
6180 sec_data->erratumcount += 1;
6181 newerr = (elf32_vfp11_erratum_list *)
6182 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6183
6184 newerr->type = VFP11_ERRATUM_ARM_VENEER;
6185 newerr->vma = -1;
6186 newerr->u.v.branch = branch;
6187 newerr->u.v.id = hash_table->num_vfp11_fixes;
6188 branch->u.b.veneer = newerr;
6189
6190 newerr->next = sec_data->erratumlist;
6191 sec_data->erratumlist = newerr;
6192
6193 /* A symbol for the return from the veneer. */
6194 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6195 hash_table->num_vfp11_fixes);
6196
6197 myh = elf_link_hash_lookup
6198 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
6199
6200 if (myh != NULL)
6201 abort ();
6202
6203 bh = NULL;
6204 val = offset + 4;
6205 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
6206 branch_sec, val, NULL, TRUE, FALSE, &bh);
6207
6208 myh = (struct elf_link_hash_entry *) bh;
6209 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6210 myh->forced_local = 1;
6211
6212 free (tmp_name);
6213
6214 /* Generate a mapping symbol for the veneer section, and explicitly add an
6215 entry for that symbol to the code/data map for the section. */
6216 if (hash_table->vfp11_erratum_glue_size == 0)
6217 {
6218 bh = NULL;
6219 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
6220 ever requires this erratum fix. */
6221 _bfd_generic_link_add_one_symbol (link_info,
6222 hash_table->bfd_of_glue_owner, "$a",
6223 BSF_LOCAL, s, 0, NULL,
6224 TRUE, FALSE, &bh);
6225
6226 myh = (struct elf_link_hash_entry *) bh;
6227 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
6228 myh->forced_local = 1;
6229
6230 /* The elf32_arm_init_maps function only cares about symbols from input
6231 BFDs. We must make a note of this generated mapping symbol
6232 ourselves so that code byteswapping works properly in
6233 elf32_arm_write_section. */
6234 elf32_arm_section_map_add (s, 'a', 0);
6235 }
6236
6237 s->size += VFP11_ERRATUM_VENEER_SIZE;
6238 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
6239 hash_table->num_vfp11_fixes++;
6240
6241 /* The offset of the veneer. */
6242 return val;
6243 }
6244
6245 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
6246 veneers need to be handled because used only in Cortex-M. */
6247
6248 static bfd_vma
6249 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
6250 elf32_stm32l4xx_erratum_list *branch,
6251 bfd *branch_bfd,
6252 asection *branch_sec,
6253 unsigned int offset,
6254 bfd_size_type veneer_size)
6255 {
6256 asection *s;
6257 struct elf32_arm_link_hash_table *hash_table;
6258 char *tmp_name;
6259 struct elf_link_hash_entry *myh;
6260 struct bfd_link_hash_entry *bh;
6261 bfd_vma val;
6262 struct _arm_elf_section_data *sec_data;
6263 elf32_stm32l4xx_erratum_list *newerr;
6264
6265 hash_table = elf32_arm_hash_table (link_info);
6266 BFD_ASSERT (hash_table != NULL);
6267 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
6268
6269 s = bfd_get_linker_section
6270 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
6271
6272 BFD_ASSERT (s != NULL);
6273
6274 sec_data = elf32_arm_section_data (s);
6275
6276 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6277 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
6278
6279 BFD_ASSERT (tmp_name);
6280
6281 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
6282 hash_table->num_stm32l4xx_fixes);
6283
6284 myh = elf_link_hash_lookup
6285 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
6286
6287 BFD_ASSERT (myh == NULL);
6288
6289 bh = NULL;
6290 val = hash_table->stm32l4xx_erratum_glue_size;
6291 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
6292 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
6293 NULL, TRUE, FALSE, &bh);
6294
6295 myh = (struct elf_link_hash_entry *) bh;
6296 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6297 myh->forced_local = 1;
6298
6299 /* Link veneer back to calling location. */
6300 sec_data->stm32l4xx_erratumcount += 1;
6301 newerr = (elf32_stm32l4xx_erratum_list *)
6302 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
6303
6304 newerr->type = STM32L4XX_ERRATUM_VENEER;
6305 newerr->vma = -1;
6306 newerr->u.v.branch = branch;
6307 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
6308 branch->u.b.veneer = newerr;
6309
6310 newerr->next = sec_data->stm32l4xx_erratumlist;
6311 sec_data->stm32l4xx_erratumlist = newerr;
6312
6313 /* A symbol for the return from the veneer. */
6314 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
6315 hash_table->num_stm32l4xx_fixes);
6316
6317 myh = elf_link_hash_lookup
6318 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
6319
6320 if (myh != NULL)
6321 abort ();
6322
6323 bh = NULL;
6324 val = offset + 4;
6325 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
6326 branch_sec, val, NULL, TRUE, FALSE, &bh);
6327
6328 myh = (struct elf_link_hash_entry *) bh;
6329 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6330 myh->forced_local = 1;
6331
6332 free (tmp_name);
6333
6334 /* Generate a mapping symbol for the veneer section, and explicitly add an
6335 entry for that symbol to the code/data map for the section. */
6336 if (hash_table->stm32l4xx_erratum_glue_size == 0)
6337 {
6338 bh = NULL;
6339 /* Creates a THUMB symbol since there is no other choice. */
6340 _bfd_generic_link_add_one_symbol (link_info,
6341 hash_table->bfd_of_glue_owner, "$t",
6342 BSF_LOCAL, s, 0, NULL,
6343 TRUE, FALSE, &bh);
6344
6345 myh = (struct elf_link_hash_entry *) bh;
6346 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
6347 myh->forced_local = 1;
6348
6349 /* The elf32_arm_init_maps function only cares about symbols from input
6350 BFDs. We must make a note of this generated mapping symbol
6351 ourselves so that code byteswapping works properly in
6352 elf32_arm_write_section. */
6353 elf32_arm_section_map_add (s, 't', 0);
6354 }
6355
6356 s->size += veneer_size;
6357 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
6358 hash_table->num_stm32l4xx_fixes++;
6359
6360 /* The offset of the veneer. */
6361 return val;
6362 }
6363
6364 #define ARM_GLUE_SECTION_FLAGS \
6365 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
6366 | SEC_READONLY | SEC_LINKER_CREATED)
6367
6368 /* Create a fake section for use by the ARM backend of the linker. */
6369
6370 static bfd_boolean
6371 arm_make_glue_section (bfd * abfd, const char * name)
6372 {
6373 asection * sec;
6374
6375 sec = bfd_get_linker_section (abfd, name);
6376 if (sec != NULL)
6377 /* Already made. */
6378 return TRUE;
6379
6380 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
6381
6382 if (sec == NULL
6383 || !bfd_set_section_alignment (abfd, sec, 2))
6384 return FALSE;
6385
6386 /* Set the gc mark to prevent the section from being removed by garbage
6387 collection, despite the fact that no relocs refer to this section. */
6388 sec->gc_mark = 1;
6389
6390 return TRUE;
6391 }
6392
6393 /* Set size of .plt entries. This function is called from the
6394 linker scripts in ld/emultempl/{armelf}.em. */
6395
6396 void
6397 bfd_elf32_arm_use_long_plt (void)
6398 {
6399 elf32_arm_use_long_plt_entry = TRUE;
6400 }
6401
6402 /* Add the glue sections to ABFD. This function is called from the
6403 linker scripts in ld/emultempl/{armelf}.em. */
6404
6405 bfd_boolean
6406 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
6407 struct bfd_link_info *info)
6408 {
6409 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
6410 bfd_boolean dostm32l4xx = globals
6411 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
6412 bfd_boolean addglue;
6413
6414 /* If we are only performing a partial
6415 link do not bother adding the glue. */
6416 if (bfd_link_relocatable (info))
6417 return TRUE;
6418
6419 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
6420 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
6421 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
6422 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
6423
6424 if (!dostm32l4xx)
6425 return addglue;
6426
6427 return addglue
6428 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
6429 }
6430
6431 /* Select a BFD to be used to hold the sections used by the glue code.
6432 This function is called from the linker scripts in ld/emultempl/
6433 {armelf/pe}.em. */
6434
6435 bfd_boolean
6436 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
6437 {
6438 struct elf32_arm_link_hash_table *globals;
6439
6440 /* If we are only performing a partial link
6441 do not bother getting a bfd to hold the glue. */
6442 if (bfd_link_relocatable (info))
6443 return TRUE;
6444
6445 /* Make sure we don't attach the glue sections to a dynamic object. */
6446 BFD_ASSERT (!(abfd->flags & DYNAMIC));
6447
6448 globals = elf32_arm_hash_table (info);
6449 BFD_ASSERT (globals != NULL);
6450
6451 if (globals->bfd_of_glue_owner != NULL)
6452 return TRUE;
6453
6454 /* Save the bfd for later use. */
6455 globals->bfd_of_glue_owner = abfd;
6456
6457 return TRUE;
6458 }
6459
6460 static void
6461 check_use_blx (struct elf32_arm_link_hash_table *globals)
6462 {
6463 int cpu_arch;
6464
6465 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
6466 Tag_CPU_arch);
6467
6468 if (globals->fix_arm1176)
6469 {
6470 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
6471 globals->use_blx = 1;
6472 }
6473 else
6474 {
6475 if (cpu_arch > TAG_CPU_ARCH_V4T)
6476 globals->use_blx = 1;
6477 }
6478 }
6479
6480 bfd_boolean
6481 bfd_elf32_arm_process_before_allocation (bfd *abfd,
6482 struct bfd_link_info *link_info)
6483 {
6484 Elf_Internal_Shdr *symtab_hdr;
6485 Elf_Internal_Rela *internal_relocs = NULL;
6486 Elf_Internal_Rela *irel, *irelend;
6487 bfd_byte *contents = NULL;
6488
6489 asection *sec;
6490 struct elf32_arm_link_hash_table *globals;
6491
6492 /* If we are only performing a partial link do not bother
6493 to construct any glue. */
6494 if (bfd_link_relocatable (link_info))
6495 return TRUE;
6496
6497 /* Here we have a bfd that is to be included on the link. We have a
6498 hook to do reloc rummaging, before section sizes are nailed down. */
6499 globals = elf32_arm_hash_table (link_info);
6500 BFD_ASSERT (globals != NULL);
6501
6502 check_use_blx (globals);
6503
6504 if (globals->byteswap_code && !bfd_big_endian (abfd))
6505 {
6506 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6507 abfd);
6508 return FALSE;
6509 }
6510
6511 /* PR 5398: If we have not decided to include any loadable sections in
6512 the output then we will not have a glue owner bfd. This is OK, it
6513 just means that there is nothing else for us to do here. */
6514 if (globals->bfd_of_glue_owner == NULL)
6515 return TRUE;
6516
6517 /* Rummage around all the relocs and map the glue vectors. */
6518 sec = abfd->sections;
6519
6520 if (sec == NULL)
6521 return TRUE;
6522
6523 for (; sec != NULL; sec = sec->next)
6524 {
6525 if (sec->reloc_count == 0)
6526 continue;
6527
6528 if ((sec->flags & SEC_EXCLUDE) != 0)
6529 continue;
6530
6531 symtab_hdr = & elf_symtab_hdr (abfd);
6532
6533 /* Load the relocs. */
6534 internal_relocs
6535 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
6536
6537 if (internal_relocs == NULL)
6538 goto error_return;
6539
6540 irelend = internal_relocs + sec->reloc_count;
6541 for (irel = internal_relocs; irel < irelend; irel++)
6542 {
6543 long r_type;
6544 unsigned long r_index;
6545
6546 struct elf_link_hash_entry *h;
6547
6548 r_type = ELF32_R_TYPE (irel->r_info);
6549 r_index = ELF32_R_SYM (irel->r_info);
6550
6551 /* These are the only relocation types we care about. */
6552 if ( r_type != R_ARM_PC24
6553 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
6554 continue;
6555
6556 /* Get the section contents if we haven't done so already. */
6557 if (contents == NULL)
6558 {
6559 /* Get cached copy if it exists. */
6560 if (elf_section_data (sec)->this_hdr.contents != NULL)
6561 contents = elf_section_data (sec)->this_hdr.contents;
6562 else
6563 {
6564 /* Go get them off disk. */
6565 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6566 goto error_return;
6567 }
6568 }
6569
6570 if (r_type == R_ARM_V4BX)
6571 {
6572 int reg;
6573
6574 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6575 record_arm_bx_glue (link_info, reg);
6576 continue;
6577 }
6578
6579 /* If the relocation is not against a symbol it cannot concern us. */
6580 h = NULL;
6581
6582 /* We don't care about local symbols. */
6583 if (r_index < symtab_hdr->sh_info)
6584 continue;
6585
6586 /* This is an external symbol. */
6587 r_index -= symtab_hdr->sh_info;
6588 h = (struct elf_link_hash_entry *)
6589 elf_sym_hashes (abfd)[r_index];
6590
6591 /* If the relocation is against a static symbol it must be within
6592 the current section and so cannot be a cross ARM/Thumb relocation. */
6593 if (h == NULL)
6594 continue;
6595
6596 /* If the call will go through a PLT entry then we do not need
6597 glue. */
6598 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
6599 continue;
6600
6601 switch (r_type)
6602 {
6603 case R_ARM_PC24:
6604 /* This one is a call from arm code. We need to look up
6605 the target of the call. If it is a thumb target, we
6606 insert glue. */
6607 if (h->target_internal == ST_BRANCH_TO_THUMB)
6608 record_arm_to_thumb_glue (link_info, h);
6609 break;
6610
6611 default:
6612 abort ();
6613 }
6614 }
6615
6616 if (contents != NULL
6617 && elf_section_data (sec)->this_hdr.contents != contents)
6618 free (contents);
6619 contents = NULL;
6620
6621 if (internal_relocs != NULL
6622 && elf_section_data (sec)->relocs != internal_relocs)
6623 free (internal_relocs);
6624 internal_relocs = NULL;
6625 }
6626
6627 return TRUE;
6628
6629 error_return:
6630 if (contents != NULL
6631 && elf_section_data (sec)->this_hdr.contents != contents)
6632 free (contents);
6633 if (internal_relocs != NULL
6634 && elf_section_data (sec)->relocs != internal_relocs)
6635 free (internal_relocs);
6636
6637 return FALSE;
6638 }
6639 #endif
6640
6641
6642 /* Initialise maps of ARM/Thumb/data for input BFDs. */
6643
6644 void
6645 bfd_elf32_arm_init_maps (bfd *abfd)
6646 {
6647 Elf_Internal_Sym *isymbuf;
6648 Elf_Internal_Shdr *hdr;
6649 unsigned int i, localsyms;
6650
6651 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6652 if (! is_arm_elf (abfd))
6653 return;
6654
6655 if ((abfd->flags & DYNAMIC) != 0)
6656 return;
6657
6658 hdr = & elf_symtab_hdr (abfd);
6659 localsyms = hdr->sh_info;
6660
6661 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6662 should contain the number of local symbols, which should come before any
6663 global symbols. Mapping symbols are always local. */
6664 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6665 NULL);
6666
6667 /* No internal symbols read? Skip this BFD. */
6668 if (isymbuf == NULL)
6669 return;
6670
6671 for (i = 0; i < localsyms; i++)
6672 {
6673 Elf_Internal_Sym *isym = &isymbuf[i];
6674 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6675 const char *name;
6676
6677 if (sec != NULL
6678 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6679 {
6680 name = bfd_elf_string_from_elf_section (abfd,
6681 hdr->sh_link, isym->st_name);
6682
6683 if (bfd_is_arm_special_symbol_name (name,
6684 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
6685 elf32_arm_section_map_add (sec, name[1], isym->st_value);
6686 }
6687 }
6688 }
6689
6690
6691 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6692 say what they wanted. */
6693
6694 void
6695 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6696 {
6697 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6698 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6699
6700 if (globals == NULL)
6701 return;
6702
6703 if (globals->fix_cortex_a8 == -1)
6704 {
6705 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6706 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6707 && (out_attr[Tag_CPU_arch_profile].i == 'A'
6708 || out_attr[Tag_CPU_arch_profile].i == 0))
6709 globals->fix_cortex_a8 = 1;
6710 else
6711 globals->fix_cortex_a8 = 0;
6712 }
6713 }
6714
6715
6716 void
6717 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6718 {
6719 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6720 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6721
6722 if (globals == NULL)
6723 return;
6724 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6725 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6726 {
6727 switch (globals->vfp11_fix)
6728 {
6729 case BFD_ARM_VFP11_FIX_DEFAULT:
6730 case BFD_ARM_VFP11_FIX_NONE:
6731 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6732 break;
6733
6734 default:
6735 /* Give a warning, but do as the user requests anyway. */
6736 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6737 "workaround is not necessary for target architecture"), obfd);
6738 }
6739 }
6740 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6741 /* For earlier architectures, we might need the workaround, but do not
6742 enable it by default. If users is running with broken hardware, they
6743 must enable the erratum fix explicitly. */
6744 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6745 }
6746
6747 void
6748 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
6749 {
6750 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6751 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6752
6753 if (globals == NULL)
6754 return;
6755
6756 /* We assume only Cortex-M4 may require the fix. */
6757 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
6758 || out_attr[Tag_CPU_arch_profile].i != 'M')
6759 {
6760 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
6761 /* Give a warning, but do as the user requests anyway. */
6762 (*_bfd_error_handler)
6763 (_("%B: warning: selected STM32L4XX erratum "
6764 "workaround is not necessary for target architecture"), obfd);
6765 }
6766 }
6767
6768 enum bfd_arm_vfp11_pipe
6769 {
6770 VFP11_FMAC,
6771 VFP11_LS,
6772 VFP11_DS,
6773 VFP11_BAD
6774 };
6775
6776 /* Return a VFP register number. This is encoded as RX:X for single-precision
6777 registers, or X:RX for double-precision registers, where RX is the group of
6778 four bits in the instruction encoding and X is the single extension bit.
6779 RX and X fields are specified using their lowest (starting) bit. The return
6780 value is:
6781
6782 0...31: single-precision registers s0...s31
6783 32...63: double-precision registers d0...d31.
6784
6785 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6786 encounter VFP3 instructions, so we allow the full range for DP registers. */
6787
6788 static unsigned int
6789 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
6790 unsigned int x)
6791 {
6792 if (is_double)
6793 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6794 else
6795 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6796 }
6797
6798 /* Set bits in *WMASK according to a register number REG as encoded by
6799 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6800
6801 static void
6802 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6803 {
6804 if (reg < 32)
6805 *wmask |= 1 << reg;
6806 else if (reg < 48)
6807 *wmask |= 3 << ((reg - 32) * 2);
6808 }
6809
6810 /* Return TRUE if WMASK overwrites anything in REGS. */
6811
6812 static bfd_boolean
6813 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6814 {
6815 int i;
6816
6817 for (i = 0; i < numregs; i++)
6818 {
6819 unsigned int reg = regs[i];
6820
6821 if (reg < 32 && (wmask & (1 << reg)) != 0)
6822 return TRUE;
6823
6824 reg -= 32;
6825
6826 if (reg >= 16)
6827 continue;
6828
6829 if ((wmask & (3 << (reg * 2))) != 0)
6830 return TRUE;
6831 }
6832
6833 return FALSE;
6834 }
6835
6836 /* In this function, we're interested in two things: finding input registers
6837 for VFP data-processing instructions, and finding the set of registers which
6838 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6839 hold the written set, so FLDM etc. are easy to deal with (we're only
6840 interested in 32 SP registers or 16 dp registers, due to the VFP version
6841 implemented by the chip in question). DP registers are marked by setting
6842 both SP registers in the write mask). */
6843
6844 static enum bfd_arm_vfp11_pipe
6845 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
6846 int *numregs)
6847 {
6848 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
6849 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6850
6851 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6852 {
6853 unsigned int pqrs;
6854 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6855 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6856
6857 pqrs = ((insn & 0x00800000) >> 20)
6858 | ((insn & 0x00300000) >> 19)
6859 | ((insn & 0x00000040) >> 6);
6860
6861 switch (pqrs)
6862 {
6863 case 0: /* fmac[sd]. */
6864 case 1: /* fnmac[sd]. */
6865 case 2: /* fmsc[sd]. */
6866 case 3: /* fnmsc[sd]. */
6867 vpipe = VFP11_FMAC;
6868 bfd_arm_vfp11_write_mask (destmask, fd);
6869 regs[0] = fd;
6870 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6871 regs[2] = fm;
6872 *numregs = 3;
6873 break;
6874
6875 case 4: /* fmul[sd]. */
6876 case 5: /* fnmul[sd]. */
6877 case 6: /* fadd[sd]. */
6878 case 7: /* fsub[sd]. */
6879 vpipe = VFP11_FMAC;
6880 goto vfp_binop;
6881
6882 case 8: /* fdiv[sd]. */
6883 vpipe = VFP11_DS;
6884 vfp_binop:
6885 bfd_arm_vfp11_write_mask (destmask, fd);
6886 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6887 regs[1] = fm;
6888 *numregs = 2;
6889 break;
6890
6891 case 15: /* extended opcode. */
6892 {
6893 unsigned int extn = ((insn >> 15) & 0x1e)
6894 | ((insn >> 7) & 1);
6895
6896 switch (extn)
6897 {
6898 case 0: /* fcpy[sd]. */
6899 case 1: /* fabs[sd]. */
6900 case 2: /* fneg[sd]. */
6901 case 8: /* fcmp[sd]. */
6902 case 9: /* fcmpe[sd]. */
6903 case 10: /* fcmpz[sd]. */
6904 case 11: /* fcmpez[sd]. */
6905 case 16: /* fuito[sd]. */
6906 case 17: /* fsito[sd]. */
6907 case 24: /* ftoui[sd]. */
6908 case 25: /* ftouiz[sd]. */
6909 case 26: /* ftosi[sd]. */
6910 case 27: /* ftosiz[sd]. */
6911 /* These instructions will not bounce due to underflow. */
6912 *numregs = 0;
6913 vpipe = VFP11_FMAC;
6914 break;
6915
6916 case 3: /* fsqrt[sd]. */
6917 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6918 registers to cause the erratum in previous instructions. */
6919 bfd_arm_vfp11_write_mask (destmask, fd);
6920 vpipe = VFP11_DS;
6921 break;
6922
6923 case 15: /* fcvt{ds,sd}. */
6924 {
6925 int rnum = 0;
6926
6927 bfd_arm_vfp11_write_mask (destmask, fd);
6928
6929 /* Only FCVTSD can underflow. */
6930 if ((insn & 0x100) != 0)
6931 regs[rnum++] = fm;
6932
6933 *numregs = rnum;
6934
6935 vpipe = VFP11_FMAC;
6936 }
6937 break;
6938
6939 default:
6940 return VFP11_BAD;
6941 }
6942 }
6943 break;
6944
6945 default:
6946 return VFP11_BAD;
6947 }
6948 }
6949 /* Two-register transfer. */
6950 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6951 {
6952 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6953
6954 if ((insn & 0x100000) == 0)
6955 {
6956 if (is_double)
6957 bfd_arm_vfp11_write_mask (destmask, fm);
6958 else
6959 {
6960 bfd_arm_vfp11_write_mask (destmask, fm);
6961 bfd_arm_vfp11_write_mask (destmask, fm + 1);
6962 }
6963 }
6964
6965 vpipe = VFP11_LS;
6966 }
6967 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
6968 {
6969 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6970 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
6971
6972 switch (puw)
6973 {
6974 case 0: /* Two-reg transfer. We should catch these above. */
6975 abort ();
6976
6977 case 2: /* fldm[sdx]. */
6978 case 3:
6979 case 5:
6980 {
6981 unsigned int i, offset = insn & 0xff;
6982
6983 if (is_double)
6984 offset >>= 1;
6985
6986 for (i = fd; i < fd + offset; i++)
6987 bfd_arm_vfp11_write_mask (destmask, i);
6988 }
6989 break;
6990
6991 case 4: /* fld[sd]. */
6992 case 6:
6993 bfd_arm_vfp11_write_mask (destmask, fd);
6994 break;
6995
6996 default:
6997 return VFP11_BAD;
6998 }
6999
7000 vpipe = VFP11_LS;
7001 }
7002 /* Single-register transfer. Note L==0. */
7003 else if ((insn & 0x0f100e10) == 0x0e000a10)
7004 {
7005 unsigned int opcode = (insn >> 21) & 7;
7006 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
7007
7008 switch (opcode)
7009 {
7010 case 0: /* fmsr/fmdlr. */
7011 case 1: /* fmdhr. */
7012 /* Mark fmdhr and fmdlr as writing to the whole of the DP
7013 destination register. I don't know if this is exactly right,
7014 but it is the conservative choice. */
7015 bfd_arm_vfp11_write_mask (destmask, fn);
7016 break;
7017
7018 case 7: /* fmxr. */
7019 break;
7020 }
7021
7022 vpipe = VFP11_LS;
7023 }
7024
7025 return vpipe;
7026 }
7027
7028
7029 static int elf32_arm_compare_mapping (const void * a, const void * b);
7030
7031
7032 /* Look for potentially-troublesome code sequences which might trigger the
7033 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
7034 (available from ARM) for details of the erratum. A short version is
7035 described in ld.texinfo. */
7036
7037 bfd_boolean
7038 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
7039 {
7040 asection *sec;
7041 bfd_byte *contents = NULL;
7042 int state = 0;
7043 int regs[3], numregs = 0;
7044 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7045 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
7046
7047 if (globals == NULL)
7048 return FALSE;
7049
7050 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
7051 The states transition as follows:
7052
7053 0 -> 1 (vector) or 0 -> 2 (scalar)
7054 A VFP FMAC-pipeline instruction has been seen. Fill
7055 regs[0]..regs[numregs-1] with its input operands. Remember this
7056 instruction in 'first_fmac'.
7057
7058 1 -> 2
7059 Any instruction, except for a VFP instruction which overwrites
7060 regs[*].
7061
7062 1 -> 3 [ -> 0 ] or
7063 2 -> 3 [ -> 0 ]
7064 A VFP instruction has been seen which overwrites any of regs[*].
7065 We must make a veneer! Reset state to 0 before examining next
7066 instruction.
7067
7068 2 -> 0
7069 If we fail to match anything in state 2, reset to state 0 and reset
7070 the instruction pointer to the instruction after 'first_fmac'.
7071
7072 If the VFP11 vector mode is in use, there must be at least two unrelated
7073 instructions between anti-dependent VFP11 instructions to properly avoid
7074 triggering the erratum, hence the use of the extra state 1. */
7075
7076 /* If we are only performing a partial link do not bother
7077 to construct any glue. */
7078 if (bfd_link_relocatable (link_info))
7079 return TRUE;
7080
7081 /* Skip if this bfd does not correspond to an ELF image. */
7082 if (! is_arm_elf (abfd))
7083 return TRUE;
7084
7085 /* We should have chosen a fix type by the time we get here. */
7086 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
7087
7088 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
7089 return TRUE;
7090
7091 /* Skip this BFD if it corresponds to an executable or dynamic object. */
7092 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
7093 return TRUE;
7094
7095 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7096 {
7097 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
7098 struct _arm_elf_section_data *sec_data;
7099
7100 /* If we don't have executable progbits, we're not interested in this
7101 section. Also skip if section is to be excluded. */
7102 if (elf_section_type (sec) != SHT_PROGBITS
7103 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
7104 || (sec->flags & SEC_EXCLUDE) != 0
7105 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
7106 || sec->output_section == bfd_abs_section_ptr
7107 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
7108 continue;
7109
7110 sec_data = elf32_arm_section_data (sec);
7111
7112 if (sec_data->mapcount == 0)
7113 continue;
7114
7115 if (elf_section_data (sec)->this_hdr.contents != NULL)
7116 contents = elf_section_data (sec)->this_hdr.contents;
7117 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7118 goto error_return;
7119
7120 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
7121 elf32_arm_compare_mapping);
7122
7123 for (span = 0; span < sec_data->mapcount; span++)
7124 {
7125 unsigned int span_start = sec_data->map[span].vma;
7126 unsigned int span_end = (span == sec_data->mapcount - 1)
7127 ? sec->size : sec_data->map[span + 1].vma;
7128 char span_type = sec_data->map[span].type;
7129
7130 /* FIXME: Only ARM mode is supported at present. We may need to
7131 support Thumb-2 mode also at some point. */
7132 if (span_type != 'a')
7133 continue;
7134
7135 for (i = span_start; i < span_end;)
7136 {
7137 unsigned int next_i = i + 4;
7138 unsigned int insn = bfd_big_endian (abfd)
7139 ? (contents[i] << 24)
7140 | (contents[i + 1] << 16)
7141 | (contents[i + 2] << 8)
7142 | contents[i + 3]
7143 : (contents[i + 3] << 24)
7144 | (contents[i + 2] << 16)
7145 | (contents[i + 1] << 8)
7146 | contents[i];
7147 unsigned int writemask = 0;
7148 enum bfd_arm_vfp11_pipe vpipe;
7149
7150 switch (state)
7151 {
7152 case 0:
7153 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
7154 &numregs);
7155 /* I'm assuming the VFP11 erratum can trigger with denorm
7156 operands on either the FMAC or the DS pipeline. This might
7157 lead to slightly overenthusiastic veneer insertion. */
7158 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
7159 {
7160 state = use_vector ? 1 : 2;
7161 first_fmac = i;
7162 veneer_of_insn = insn;
7163 }
7164 break;
7165
7166 case 1:
7167 {
7168 int other_regs[3], other_numregs;
7169 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
7170 other_regs,
7171 &other_numregs);
7172 if (vpipe != VFP11_BAD
7173 && bfd_arm_vfp11_antidependency (writemask, regs,
7174 numregs))
7175 state = 3;
7176 else
7177 state = 2;
7178 }
7179 break;
7180
7181 case 2:
7182 {
7183 int other_regs[3], other_numregs;
7184 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
7185 other_regs,
7186 &other_numregs);
7187 if (vpipe != VFP11_BAD
7188 && bfd_arm_vfp11_antidependency (writemask, regs,
7189 numregs))
7190 state = 3;
7191 else
7192 {
7193 state = 0;
7194 next_i = first_fmac + 4;
7195 }
7196 }
7197 break;
7198
7199 case 3:
7200 abort (); /* Should be unreachable. */
7201 }
7202
7203 if (state == 3)
7204 {
7205 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
7206 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7207
7208 elf32_arm_section_data (sec)->erratumcount += 1;
7209
7210 newerr->u.b.vfp_insn = veneer_of_insn;
7211
7212 switch (span_type)
7213 {
7214 case 'a':
7215 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
7216 break;
7217
7218 default:
7219 abort ();
7220 }
7221
7222 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
7223 first_fmac);
7224
7225 newerr->vma = -1;
7226
7227 newerr->next = sec_data->erratumlist;
7228 sec_data->erratumlist = newerr;
7229
7230 state = 0;
7231 }
7232
7233 i = next_i;
7234 }
7235 }
7236
7237 if (contents != NULL
7238 && elf_section_data (sec)->this_hdr.contents != contents)
7239 free (contents);
7240 contents = NULL;
7241 }
7242
7243 return TRUE;
7244
7245 error_return:
7246 if (contents != NULL
7247 && elf_section_data (sec)->this_hdr.contents != contents)
7248 free (contents);
7249
7250 return FALSE;
7251 }
7252
7253 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
7254 after sections have been laid out, using specially-named symbols. */
7255
7256 void
7257 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
7258 struct bfd_link_info *link_info)
7259 {
7260 asection *sec;
7261 struct elf32_arm_link_hash_table *globals;
7262 char *tmp_name;
7263
7264 if (bfd_link_relocatable (link_info))
7265 return;
7266
7267 /* Skip if this bfd does not correspond to an ELF image. */
7268 if (! is_arm_elf (abfd))
7269 return;
7270
7271 globals = elf32_arm_hash_table (link_info);
7272 if (globals == NULL)
7273 return;
7274
7275 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7276 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7277
7278 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7279 {
7280 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7281 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
7282
7283 for (; errnode != NULL; errnode = errnode->next)
7284 {
7285 struct elf_link_hash_entry *myh;
7286 bfd_vma vma;
7287
7288 switch (errnode->type)
7289 {
7290 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
7291 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
7292 /* Find veneer symbol. */
7293 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7294 errnode->u.b.veneer->u.v.id);
7295
7296 myh = elf_link_hash_lookup
7297 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7298
7299 if (myh == NULL)
7300 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
7301 "`%s'"), abfd, tmp_name);
7302
7303 vma = myh->root.u.def.section->output_section->vma
7304 + myh->root.u.def.section->output_offset
7305 + myh->root.u.def.value;
7306
7307 errnode->u.b.veneer->vma = vma;
7308 break;
7309
7310 case VFP11_ERRATUM_ARM_VENEER:
7311 case VFP11_ERRATUM_THUMB_VENEER:
7312 /* Find return location. */
7313 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7314 errnode->u.v.id);
7315
7316 myh = elf_link_hash_lookup
7317 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7318
7319 if (myh == NULL)
7320 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
7321 "`%s'"), abfd, tmp_name);
7322
7323 vma = myh->root.u.def.section->output_section->vma
7324 + myh->root.u.def.section->output_offset
7325 + myh->root.u.def.value;
7326
7327 errnode->u.v.branch->vma = vma;
7328 break;
7329
7330 default:
7331 abort ();
7332 }
7333 }
7334 }
7335
7336 free (tmp_name);
7337 }
7338
7339 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
7340 return locations after sections have been laid out, using
7341 specially-named symbols. */
7342
7343 void
7344 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
7345 struct bfd_link_info *link_info)
7346 {
7347 asection *sec;
7348 struct elf32_arm_link_hash_table *globals;
7349 char *tmp_name;
7350
7351 if (bfd_link_relocatable (link_info))
7352 return;
7353
7354 /* Skip if this bfd does not correspond to an ELF image. */
7355 if (! is_arm_elf (abfd))
7356 return;
7357
7358 globals = elf32_arm_hash_table (link_info);
7359 if (globals == NULL)
7360 return;
7361
7362 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7363 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7364
7365 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7366 {
7367 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7368 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
7369
7370 for (; errnode != NULL; errnode = errnode->next)
7371 {
7372 struct elf_link_hash_entry *myh;
7373 bfd_vma vma;
7374
7375 switch (errnode->type)
7376 {
7377 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
7378 /* Find veneer symbol. */
7379 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7380 errnode->u.b.veneer->u.v.id);
7381
7382 myh = elf_link_hash_lookup
7383 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7384
7385 if (myh == NULL)
7386 (*_bfd_error_handler) (_("%B: unable to find STM32L4XX veneer "
7387 "`%s'"), abfd, tmp_name);
7388
7389 vma = myh->root.u.def.section->output_section->vma
7390 + myh->root.u.def.section->output_offset
7391 + myh->root.u.def.value;
7392
7393 errnode->u.b.veneer->vma = vma;
7394 break;
7395
7396 case STM32L4XX_ERRATUM_VENEER:
7397 /* Find return location. */
7398 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7399 errnode->u.v.id);
7400
7401 myh = elf_link_hash_lookup
7402 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7403
7404 if (myh == NULL)
7405 (*_bfd_error_handler) (_("%B: unable to find STM32L4XX veneer "
7406 "`%s'"), abfd, tmp_name);
7407
7408 vma = myh->root.u.def.section->output_section->vma
7409 + myh->root.u.def.section->output_offset
7410 + myh->root.u.def.value;
7411
7412 errnode->u.v.branch->vma = vma;
7413 break;
7414
7415 default:
7416 abort ();
7417 }
7418 }
7419 }
7420
7421 free (tmp_name);
7422 }
7423
7424 static inline bfd_boolean
7425 is_thumb2_ldmia (const insn32 insn)
7426 {
7427 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
7428 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
7429 return (insn & 0xffd02000) == 0xe8900000;
7430 }
7431
7432 static inline bfd_boolean
7433 is_thumb2_ldmdb (const insn32 insn)
7434 {
7435 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
7436 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
7437 return (insn & 0xffd02000) == 0xe9100000;
7438 }
7439
7440 static inline bfd_boolean
7441 is_thumb2_vldm (const insn32 insn)
7442 {
7443 /* A6.5 Extension register load or store instruction
7444 A7.7.229
7445 We look only for the 32-bit registers case since the DP (64-bit
7446 registers) are not supported for STM32L4XX
7447 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
7448 <list> is consecutive 32-bit registers
7449 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
7450 if P==0 && U==1 && W==1 && Rn=1101 VPOP
7451 if PUW=010 || PUW=011 || PUW=101 VLDM. */
7452 return
7453 ((insn & 0xfe100f00) == 0xec100a00)
7454 && /* (IA without !). */
7455 (((((insn << 7) >> 28) & 0xd) == 0x4)
7456 /* (IA with !), includes VPOP (when reg number is SP). */
7457 || ((((insn << 7) >> 28) & 0xd) == 0x5)
7458 /* (DB with !). */
7459 || ((((insn << 7) >> 28) & 0xd) == 0x9));
7460 }
7461
7462 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
7463 VLDM opcode and:
7464 - computes the number and the mode of memory accesses
7465 - decides if the replacement should be done:
7466 . replaces only if > 8-word accesses
7467 . or (testing purposes only) replaces all accesses. */
7468
7469 static bfd_boolean
7470 stm32l4xx_need_create_replacing_stub (const insn32 insn,
7471 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
7472 {
7473 int nb_regs = 0;
7474
7475 /* The field encoding the register list is the same for both LDMIA
7476 and LDMDB encodings. */
7477 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
7478 nb_regs = popcount (insn & 0x0000ffff);
7479 else if (is_thumb2_vldm (insn))
7480 nb_regs = (insn & 0xff);
7481
7482 /* DEFAULT mode accounts for the real bug condition situation,
7483 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
7484 return
7485 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_regs > 8 :
7486 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
7487 }
7488
7489 /* Look for potentially-troublesome code sequences which might trigger
7490 the STM STM32L4XX erratum. */
7491
7492 bfd_boolean
7493 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
7494 struct bfd_link_info *link_info)
7495 {
7496 asection *sec;
7497 bfd_byte *contents = NULL;
7498 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7499
7500 if (globals == NULL)
7501 return FALSE;
7502
7503 /* If we are only performing a partial link do not bother
7504 to construct any glue. */
7505 if (bfd_link_relocatable (link_info))
7506 return TRUE;
7507
7508 /* Skip if this bfd does not correspond to an ELF image. */
7509 if (! is_arm_elf (abfd))
7510 return TRUE;
7511
7512 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
7513 return TRUE;
7514
7515 /* Skip this BFD if it corresponds to an executable or dynamic object. */
7516 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
7517 return TRUE;
7518
7519 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7520 {
7521 unsigned int i, span;
7522 struct _arm_elf_section_data *sec_data;
7523
7524 /* If we don't have executable progbits, we're not interested in this
7525 section. Also skip if section is to be excluded. */
7526 if (elf_section_type (sec) != SHT_PROGBITS
7527 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
7528 || (sec->flags & SEC_EXCLUDE) != 0
7529 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
7530 || sec->output_section == bfd_abs_section_ptr
7531 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
7532 continue;
7533
7534 sec_data = elf32_arm_section_data (sec);
7535
7536 if (sec_data->mapcount == 0)
7537 continue;
7538
7539 if (elf_section_data (sec)->this_hdr.contents != NULL)
7540 contents = elf_section_data (sec)->this_hdr.contents;
7541 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7542 goto error_return;
7543
7544 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
7545 elf32_arm_compare_mapping);
7546
7547 for (span = 0; span < sec_data->mapcount; span++)
7548 {
7549 unsigned int span_start = sec_data->map[span].vma;
7550 unsigned int span_end = (span == sec_data->mapcount - 1)
7551 ? sec->size : sec_data->map[span + 1].vma;
7552 char span_type = sec_data->map[span].type;
7553 int itblock_current_pos = 0;
7554
7555 /* Only Thumb2 mode need be supported with this CM4 specific
7556 code, we should not encounter any arm mode eg span_type
7557 != 'a'. */
7558 if (span_type != 't')
7559 continue;
7560
7561 for (i = span_start; i < span_end;)
7562 {
7563 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
7564 bfd_boolean insn_32bit = FALSE;
7565 bfd_boolean is_ldm = FALSE;
7566 bfd_boolean is_vldm = FALSE;
7567 bfd_boolean is_not_last_in_it_block = FALSE;
7568
7569 /* The first 16-bits of all 32-bit thumb2 instructions start
7570 with opcode[15..13]=0b111 and the encoded op1 can be anything
7571 except opcode[12..11]!=0b00.
7572 See 32-bit Thumb instruction encoding. */
7573 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
7574 insn_32bit = TRUE;
7575
7576 /* Compute the predicate that tells if the instruction
7577 is concerned by the IT block
7578 - Creates an error if there is a ldm that is not
7579 last in the IT block thus cannot be replaced
7580 - Otherwise we can create a branch at the end of the
7581 IT block, it will be controlled naturally by IT
7582 with the proper pseudo-predicate
7583 - So the only interesting predicate is the one that
7584 tells that we are not on the last item of an IT
7585 block. */
7586 if (itblock_current_pos != 0)
7587 is_not_last_in_it_block = !!--itblock_current_pos;
7588
7589 if (insn_32bit)
7590 {
7591 /* Load the rest of the insn (in manual-friendly order). */
7592 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
7593 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
7594 is_vldm = is_thumb2_vldm (insn);
7595
7596 /* Veneers are created for (v)ldm depending on
7597 option flags and memory accesses conditions; but
7598 if the instruction is not the last instruction of
7599 an IT block, we cannot create a jump there, so we
7600 bail out. */
7601 if ((is_ldm || is_vldm) &&
7602 stm32l4xx_need_create_replacing_stub
7603 (insn, globals->stm32l4xx_fix))
7604 {
7605 if (is_not_last_in_it_block)
7606 {
7607 (*_bfd_error_handler)
7608 /* Note - overlong line used here to allow for translation. */
7609 (_("\
7610 %B(%A+0x%lx): error: multiple load detected in non-last IT block instruction : STM32L4XX veneer cannot be generated.\n"
7611 "Use gcc option -mrestrict-it to generate only one instruction per IT block.\n"),
7612 abfd, sec, (long)i);
7613 }
7614 else
7615 {
7616 elf32_stm32l4xx_erratum_list *newerr =
7617 (elf32_stm32l4xx_erratum_list *)
7618 bfd_zmalloc
7619 (sizeof (elf32_stm32l4xx_erratum_list));
7620
7621 elf32_arm_section_data (sec)
7622 ->stm32l4xx_erratumcount += 1;
7623 newerr->u.b.insn = insn;
7624 /* We create only thumb branches. */
7625 newerr->type =
7626 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
7627 record_stm32l4xx_erratum_veneer
7628 (link_info, newerr, abfd, sec,
7629 i,
7630 is_ldm ?
7631 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
7632 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
7633 newerr->vma = -1;
7634 newerr->next = sec_data->stm32l4xx_erratumlist;
7635 sec_data->stm32l4xx_erratumlist = newerr;
7636 }
7637 }
7638 }
7639 else
7640 {
7641 /* A7.7.37 IT p208
7642 IT blocks are only encoded in T1
7643 Encoding T1: IT{x{y{z}}} <firstcond>
7644 1 0 1 1 - 1 1 1 1 - firstcond - mask
7645 if mask = '0000' then see 'related encodings'
7646 We don't deal with UNPREDICTABLE, just ignore these.
7647 There can be no nested IT blocks so an IT block
7648 is naturally a new one for which it is worth
7649 computing its size. */
7650 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00) &&
7651 ((insn & 0x000f) != 0x0000);
7652 /* If we have a new IT block we compute its size. */
7653 if (is_newitblock)
7654 {
7655 /* Compute the number of instructions controlled
7656 by the IT block, it will be used to decide
7657 whether we are inside an IT block or not. */
7658 unsigned int mask = insn & 0x000f;
7659 itblock_current_pos = 4 - ctz (mask);
7660 }
7661 }
7662
7663 i += insn_32bit ? 4 : 2;
7664 }
7665 }
7666
7667 if (contents != NULL
7668 && elf_section_data (sec)->this_hdr.contents != contents)
7669 free (contents);
7670 contents = NULL;
7671 }
7672
7673 return TRUE;
7674
7675 error_return:
7676 if (contents != NULL
7677 && elf_section_data (sec)->this_hdr.contents != contents)
7678 free (contents);
7679
7680 return FALSE;
7681 }
7682
7683 /* Set target relocation values needed during linking. */
7684
7685 void
7686 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
7687 struct bfd_link_info *link_info,
7688 int target1_is_rel,
7689 char * target2_type,
7690 int fix_v4bx,
7691 int use_blx,
7692 bfd_arm_vfp11_fix vfp11_fix,
7693 bfd_arm_stm32l4xx_fix stm32l4xx_fix,
7694 int no_enum_warn, int no_wchar_warn,
7695 int pic_veneer, int fix_cortex_a8,
7696 int fix_arm1176)
7697 {
7698 struct elf32_arm_link_hash_table *globals;
7699
7700 globals = elf32_arm_hash_table (link_info);
7701 if (globals == NULL)
7702 return;
7703
7704 globals->target1_is_rel = target1_is_rel;
7705 if (strcmp (target2_type, "rel") == 0)
7706 globals->target2_reloc = R_ARM_REL32;
7707 else if (strcmp (target2_type, "abs") == 0)
7708 globals->target2_reloc = R_ARM_ABS32;
7709 else if (strcmp (target2_type, "got-rel") == 0)
7710 globals->target2_reloc = R_ARM_GOT_PREL;
7711 else
7712 {
7713 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
7714 target2_type);
7715 }
7716 globals->fix_v4bx = fix_v4bx;
7717 globals->use_blx |= use_blx;
7718 globals->vfp11_fix = vfp11_fix;
7719 globals->stm32l4xx_fix = stm32l4xx_fix;
7720 globals->pic_veneer = pic_veneer;
7721 globals->fix_cortex_a8 = fix_cortex_a8;
7722 globals->fix_arm1176 = fix_arm1176;
7723
7724 BFD_ASSERT (is_arm_elf (output_bfd));
7725 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
7726 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
7727 }
7728
7729 /* Replace the target offset of a Thumb bl or b.w instruction. */
7730
7731 static void
7732 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
7733 {
7734 bfd_vma upper;
7735 bfd_vma lower;
7736 int reloc_sign;
7737
7738 BFD_ASSERT ((offset & 1) == 0);
7739
7740 upper = bfd_get_16 (abfd, insn);
7741 lower = bfd_get_16 (abfd, insn + 2);
7742 reloc_sign = (offset < 0) ? 1 : 0;
7743 upper = (upper & ~(bfd_vma) 0x7ff)
7744 | ((offset >> 12) & 0x3ff)
7745 | (reloc_sign << 10);
7746 lower = (lower & ~(bfd_vma) 0x2fff)
7747 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
7748 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
7749 | ((offset >> 1) & 0x7ff);
7750 bfd_put_16 (abfd, upper, insn);
7751 bfd_put_16 (abfd, lower, insn + 2);
7752 }
7753
7754 /* Thumb code calling an ARM function. */
7755
7756 static int
7757 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
7758 const char * name,
7759 bfd * input_bfd,
7760 bfd * output_bfd,
7761 asection * input_section,
7762 bfd_byte * hit_data,
7763 asection * sym_sec,
7764 bfd_vma offset,
7765 bfd_signed_vma addend,
7766 bfd_vma val,
7767 char **error_message)
7768 {
7769 asection * s = 0;
7770 bfd_vma my_offset;
7771 long int ret_offset;
7772 struct elf_link_hash_entry * myh;
7773 struct elf32_arm_link_hash_table * globals;
7774
7775 myh = find_thumb_glue (info, name, error_message);
7776 if (myh == NULL)
7777 return FALSE;
7778
7779 globals = elf32_arm_hash_table (info);
7780 BFD_ASSERT (globals != NULL);
7781 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7782
7783 my_offset = myh->root.u.def.value;
7784
7785 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7786 THUMB2ARM_GLUE_SECTION_NAME);
7787
7788 BFD_ASSERT (s != NULL);
7789 BFD_ASSERT (s->contents != NULL);
7790 BFD_ASSERT (s->output_section != NULL);
7791
7792 if ((my_offset & 0x01) == 0x01)
7793 {
7794 if (sym_sec != NULL
7795 && sym_sec->owner != NULL
7796 && !INTERWORK_FLAG (sym_sec->owner))
7797 {
7798 (*_bfd_error_handler)
7799 (_("%B(%s): warning: interworking not enabled.\n"
7800 " first occurrence: %B: Thumb call to ARM"),
7801 sym_sec->owner, input_bfd, name);
7802
7803 return FALSE;
7804 }
7805
7806 --my_offset;
7807 myh->root.u.def.value = my_offset;
7808
7809 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
7810 s->contents + my_offset);
7811
7812 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
7813 s->contents + my_offset + 2);
7814
7815 ret_offset =
7816 /* Address of destination of the stub. */
7817 ((bfd_signed_vma) val)
7818 - ((bfd_signed_vma)
7819 /* Offset from the start of the current section
7820 to the start of the stubs. */
7821 (s->output_offset
7822 /* Offset of the start of this stub from the start of the stubs. */
7823 + my_offset
7824 /* Address of the start of the current section. */
7825 + s->output_section->vma)
7826 /* The branch instruction is 4 bytes into the stub. */
7827 + 4
7828 /* ARM branches work from the pc of the instruction + 8. */
7829 + 8);
7830
7831 put_arm_insn (globals, output_bfd,
7832 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
7833 s->contents + my_offset + 4);
7834 }
7835
7836 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
7837
7838 /* Now go back and fix up the original BL insn to point to here. */
7839 ret_offset =
7840 /* Address of where the stub is located. */
7841 (s->output_section->vma + s->output_offset + my_offset)
7842 /* Address of where the BL is located. */
7843 - (input_section->output_section->vma + input_section->output_offset
7844 + offset)
7845 /* Addend in the relocation. */
7846 - addend
7847 /* Biassing for PC-relative addressing. */
7848 - 8;
7849
7850 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
7851
7852 return TRUE;
7853 }
7854
7855 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
7856
7857 static struct elf_link_hash_entry *
7858 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
7859 const char * name,
7860 bfd * input_bfd,
7861 bfd * output_bfd,
7862 asection * sym_sec,
7863 bfd_vma val,
7864 asection * s,
7865 char ** error_message)
7866 {
7867 bfd_vma my_offset;
7868 long int ret_offset;
7869 struct elf_link_hash_entry * myh;
7870 struct elf32_arm_link_hash_table * globals;
7871
7872 myh = find_arm_glue (info, name, error_message);
7873 if (myh == NULL)
7874 return NULL;
7875
7876 globals = elf32_arm_hash_table (info);
7877 BFD_ASSERT (globals != NULL);
7878 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7879
7880 my_offset = myh->root.u.def.value;
7881
7882 if ((my_offset & 0x01) == 0x01)
7883 {
7884 if (sym_sec != NULL
7885 && sym_sec->owner != NULL
7886 && !INTERWORK_FLAG (sym_sec->owner))
7887 {
7888 (*_bfd_error_handler)
7889 (_("%B(%s): warning: interworking not enabled.\n"
7890 " first occurrence: %B: arm call to thumb"),
7891 sym_sec->owner, input_bfd, name);
7892 }
7893
7894 --my_offset;
7895 myh->root.u.def.value = my_offset;
7896
7897 if (bfd_link_pic (info)
7898 || globals->root.is_relocatable_executable
7899 || globals->pic_veneer)
7900 {
7901 /* For relocatable objects we can't use absolute addresses,
7902 so construct the address from a relative offset. */
7903 /* TODO: If the offset is small it's probably worth
7904 constructing the address with adds. */
7905 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7906 s->contents + my_offset);
7907 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7908 s->contents + my_offset + 4);
7909 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7910 s->contents + my_offset + 8);
7911 /* Adjust the offset by 4 for the position of the add,
7912 and 8 for the pipeline offset. */
7913 ret_offset = (val - (s->output_offset
7914 + s->output_section->vma
7915 + my_offset + 12))
7916 | 1;
7917 bfd_put_32 (output_bfd, ret_offset,
7918 s->contents + my_offset + 12);
7919 }
7920 else if (globals->use_blx)
7921 {
7922 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7923 s->contents + my_offset);
7924
7925 /* It's a thumb address. Add the low order bit. */
7926 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7927 s->contents + my_offset + 4);
7928 }
7929 else
7930 {
7931 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7932 s->contents + my_offset);
7933
7934 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7935 s->contents + my_offset + 4);
7936
7937 /* It's a thumb address. Add the low order bit. */
7938 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7939 s->contents + my_offset + 8);
7940
7941 my_offset += 12;
7942 }
7943 }
7944
7945 BFD_ASSERT (my_offset <= globals->arm_glue_size);
7946
7947 return myh;
7948 }
7949
7950 /* Arm code calling a Thumb function. */
7951
7952 static int
7953 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7954 const char * name,
7955 bfd * input_bfd,
7956 bfd * output_bfd,
7957 asection * input_section,
7958 bfd_byte * hit_data,
7959 asection * sym_sec,
7960 bfd_vma offset,
7961 bfd_signed_vma addend,
7962 bfd_vma val,
7963 char **error_message)
7964 {
7965 unsigned long int tmp;
7966 bfd_vma my_offset;
7967 asection * s;
7968 long int ret_offset;
7969 struct elf_link_hash_entry * myh;
7970 struct elf32_arm_link_hash_table * globals;
7971
7972 globals = elf32_arm_hash_table (info);
7973 BFD_ASSERT (globals != NULL);
7974 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7975
7976 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7977 ARM2THUMB_GLUE_SECTION_NAME);
7978 BFD_ASSERT (s != NULL);
7979 BFD_ASSERT (s->contents != NULL);
7980 BFD_ASSERT (s->output_section != NULL);
7981
7982 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
7983 sym_sec, val, s, error_message);
7984 if (!myh)
7985 return FALSE;
7986
7987 my_offset = myh->root.u.def.value;
7988 tmp = bfd_get_32 (input_bfd, hit_data);
7989 tmp = tmp & 0xFF000000;
7990
7991 /* Somehow these are both 4 too far, so subtract 8. */
7992 ret_offset = (s->output_offset
7993 + my_offset
7994 + s->output_section->vma
7995 - (input_section->output_offset
7996 + input_section->output_section->vma
7997 + offset + addend)
7998 - 8);
7999
8000 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
8001
8002 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
8003
8004 return TRUE;
8005 }
8006
8007 /* Populate Arm stub for an exported Thumb function. */
8008
8009 static bfd_boolean
8010 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
8011 {
8012 struct bfd_link_info * info = (struct bfd_link_info *) inf;
8013 asection * s;
8014 struct elf_link_hash_entry * myh;
8015 struct elf32_arm_link_hash_entry *eh;
8016 struct elf32_arm_link_hash_table * globals;
8017 asection *sec;
8018 bfd_vma val;
8019 char *error_message;
8020
8021 eh = elf32_arm_hash_entry (h);
8022 /* Allocate stubs for exported Thumb functions on v4t. */
8023 if (eh->export_glue == NULL)
8024 return TRUE;
8025
8026 globals = elf32_arm_hash_table (info);
8027 BFD_ASSERT (globals != NULL);
8028 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8029
8030 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8031 ARM2THUMB_GLUE_SECTION_NAME);
8032 BFD_ASSERT (s != NULL);
8033 BFD_ASSERT (s->contents != NULL);
8034 BFD_ASSERT (s->output_section != NULL);
8035
8036 sec = eh->export_glue->root.u.def.section;
8037
8038 BFD_ASSERT (sec->output_section != NULL);
8039
8040 val = eh->export_glue->root.u.def.value + sec->output_offset
8041 + sec->output_section->vma;
8042
8043 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
8044 h->root.u.def.section->owner,
8045 globals->obfd, sec, val, s,
8046 &error_message);
8047 BFD_ASSERT (myh);
8048 return TRUE;
8049 }
8050
8051 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
8052
8053 static bfd_vma
8054 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
8055 {
8056 bfd_byte *p;
8057 bfd_vma glue_addr;
8058 asection *s;
8059 struct elf32_arm_link_hash_table *globals;
8060
8061 globals = elf32_arm_hash_table (info);
8062 BFD_ASSERT (globals != NULL);
8063 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8064
8065 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8066 ARM_BX_GLUE_SECTION_NAME);
8067 BFD_ASSERT (s != NULL);
8068 BFD_ASSERT (s->contents != NULL);
8069 BFD_ASSERT (s->output_section != NULL);
8070
8071 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
8072
8073 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
8074
8075 if ((globals->bx_glue_offset[reg] & 1) == 0)
8076 {
8077 p = s->contents + glue_addr;
8078 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
8079 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
8080 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
8081 globals->bx_glue_offset[reg] |= 1;
8082 }
8083
8084 return glue_addr + s->output_section->vma + s->output_offset;
8085 }
8086
8087 /* Generate Arm stubs for exported Thumb symbols. */
8088 static void
8089 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
8090 struct bfd_link_info *link_info)
8091 {
8092 struct elf32_arm_link_hash_table * globals;
8093
8094 if (link_info == NULL)
8095 /* Ignore this if we are not called by the ELF backend linker. */
8096 return;
8097
8098 globals = elf32_arm_hash_table (link_info);
8099 if (globals == NULL)
8100 return;
8101
8102 /* If blx is available then exported Thumb symbols are OK and there is
8103 nothing to do. */
8104 if (globals->use_blx)
8105 return;
8106
8107 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
8108 link_info);
8109 }
8110
8111 /* Reserve space for COUNT dynamic relocations in relocation selection
8112 SRELOC. */
8113
8114 static void
8115 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
8116 bfd_size_type count)
8117 {
8118 struct elf32_arm_link_hash_table *htab;
8119
8120 htab = elf32_arm_hash_table (info);
8121 BFD_ASSERT (htab->root.dynamic_sections_created);
8122 if (sreloc == NULL)
8123 abort ();
8124 sreloc->size += RELOC_SIZE (htab) * count;
8125 }
8126
8127 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
8128 dynamic, the relocations should go in SRELOC, otherwise they should
8129 go in the special .rel.iplt section. */
8130
8131 static void
8132 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
8133 bfd_size_type count)
8134 {
8135 struct elf32_arm_link_hash_table *htab;
8136
8137 htab = elf32_arm_hash_table (info);
8138 if (!htab->root.dynamic_sections_created)
8139 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
8140 else
8141 {
8142 BFD_ASSERT (sreloc != NULL);
8143 sreloc->size += RELOC_SIZE (htab) * count;
8144 }
8145 }
8146
8147 /* Add relocation REL to the end of relocation section SRELOC. */
8148
8149 static void
8150 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
8151 asection *sreloc, Elf_Internal_Rela *rel)
8152 {
8153 bfd_byte *loc;
8154 struct elf32_arm_link_hash_table *htab;
8155
8156 htab = elf32_arm_hash_table (info);
8157 if (!htab->root.dynamic_sections_created
8158 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
8159 sreloc = htab->root.irelplt;
8160 if (sreloc == NULL)
8161 abort ();
8162 loc = sreloc->contents;
8163 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
8164 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
8165 abort ();
8166 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
8167 }
8168
8169 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
8170 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
8171 to .plt. */
8172
8173 static void
8174 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
8175 bfd_boolean is_iplt_entry,
8176 union gotplt_union *root_plt,
8177 struct arm_plt_info *arm_plt)
8178 {
8179 struct elf32_arm_link_hash_table *htab;
8180 asection *splt;
8181 asection *sgotplt;
8182
8183 htab = elf32_arm_hash_table (info);
8184
8185 if (is_iplt_entry)
8186 {
8187 splt = htab->root.iplt;
8188 sgotplt = htab->root.igotplt;
8189
8190 /* NaCl uses a special first entry in .iplt too. */
8191 if (htab->nacl_p && splt->size == 0)
8192 splt->size += htab->plt_header_size;
8193
8194 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
8195 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
8196 }
8197 else
8198 {
8199 splt = htab->root.splt;
8200 sgotplt = htab->root.sgotplt;
8201
8202 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
8203 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
8204
8205 /* If this is the first .plt entry, make room for the special
8206 first entry. */
8207 if (splt->size == 0)
8208 splt->size += htab->plt_header_size;
8209
8210 htab->next_tls_desc_index++;
8211 }
8212
8213 /* Allocate the PLT entry itself, including any leading Thumb stub. */
8214 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
8215 splt->size += PLT_THUMB_STUB_SIZE;
8216 root_plt->offset = splt->size;
8217 splt->size += htab->plt_entry_size;
8218
8219 if (!htab->symbian_p)
8220 {
8221 /* We also need to make an entry in the .got.plt section, which
8222 will be placed in the .got section by the linker script. */
8223 if (is_iplt_entry)
8224 arm_plt->got_offset = sgotplt->size;
8225 else
8226 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
8227 sgotplt->size += 4;
8228 }
8229 }
8230
8231 static bfd_vma
8232 arm_movw_immediate (bfd_vma value)
8233 {
8234 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
8235 }
8236
8237 static bfd_vma
8238 arm_movt_immediate (bfd_vma value)
8239 {
8240 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
8241 }
8242
8243 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
8244 the entry lives in .iplt and resolves to (*SYM_VALUE)().
8245 Otherwise, DYNINDX is the index of the symbol in the dynamic
8246 symbol table and SYM_VALUE is undefined.
8247
8248 ROOT_PLT points to the offset of the PLT entry from the start of its
8249 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
8250 bookkeeping information.
8251
8252 Returns FALSE if there was a problem. */
8253
8254 static bfd_boolean
8255 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
8256 union gotplt_union *root_plt,
8257 struct arm_plt_info *arm_plt,
8258 int dynindx, bfd_vma sym_value)
8259 {
8260 struct elf32_arm_link_hash_table *htab;
8261 asection *sgot;
8262 asection *splt;
8263 asection *srel;
8264 bfd_byte *loc;
8265 bfd_vma plt_index;
8266 Elf_Internal_Rela rel;
8267 bfd_vma plt_header_size;
8268 bfd_vma got_header_size;
8269
8270 htab = elf32_arm_hash_table (info);
8271
8272 /* Pick the appropriate sections and sizes. */
8273 if (dynindx == -1)
8274 {
8275 splt = htab->root.iplt;
8276 sgot = htab->root.igotplt;
8277 srel = htab->root.irelplt;
8278
8279 /* There are no reserved entries in .igot.plt, and no special
8280 first entry in .iplt. */
8281 got_header_size = 0;
8282 plt_header_size = 0;
8283 }
8284 else
8285 {
8286 splt = htab->root.splt;
8287 sgot = htab->root.sgotplt;
8288 srel = htab->root.srelplt;
8289
8290 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
8291 plt_header_size = htab->plt_header_size;
8292 }
8293 BFD_ASSERT (splt != NULL && srel != NULL);
8294
8295 /* Fill in the entry in the procedure linkage table. */
8296 if (htab->symbian_p)
8297 {
8298 BFD_ASSERT (dynindx >= 0);
8299 put_arm_insn (htab, output_bfd,
8300 elf32_arm_symbian_plt_entry[0],
8301 splt->contents + root_plt->offset);
8302 bfd_put_32 (output_bfd,
8303 elf32_arm_symbian_plt_entry[1],
8304 splt->contents + root_plt->offset + 4);
8305
8306 /* Fill in the entry in the .rel.plt section. */
8307 rel.r_offset = (splt->output_section->vma
8308 + splt->output_offset
8309 + root_plt->offset + 4);
8310 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
8311
8312 /* Get the index in the procedure linkage table which
8313 corresponds to this symbol. This is the index of this symbol
8314 in all the symbols for which we are making plt entries. The
8315 first entry in the procedure linkage table is reserved. */
8316 plt_index = ((root_plt->offset - plt_header_size)
8317 / htab->plt_entry_size);
8318 }
8319 else
8320 {
8321 bfd_vma got_offset, got_address, plt_address;
8322 bfd_vma got_displacement, initial_got_entry;
8323 bfd_byte * ptr;
8324
8325 BFD_ASSERT (sgot != NULL);
8326
8327 /* Get the offset into the .(i)got.plt table of the entry that
8328 corresponds to this function. */
8329 got_offset = (arm_plt->got_offset & -2);
8330
8331 /* Get the index in the procedure linkage table which
8332 corresponds to this symbol. This is the index of this symbol
8333 in all the symbols for which we are making plt entries.
8334 After the reserved .got.plt entries, all symbols appear in
8335 the same order as in .plt. */
8336 plt_index = (got_offset - got_header_size) / 4;
8337
8338 /* Calculate the address of the GOT entry. */
8339 got_address = (sgot->output_section->vma
8340 + sgot->output_offset
8341 + got_offset);
8342
8343 /* ...and the address of the PLT entry. */
8344 plt_address = (splt->output_section->vma
8345 + splt->output_offset
8346 + root_plt->offset);
8347
8348 ptr = splt->contents + root_plt->offset;
8349 if (htab->vxworks_p && bfd_link_pic (info))
8350 {
8351 unsigned int i;
8352 bfd_vma val;
8353
8354 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
8355 {
8356 val = elf32_arm_vxworks_shared_plt_entry[i];
8357 if (i == 2)
8358 val |= got_address - sgot->output_section->vma;
8359 if (i == 5)
8360 val |= plt_index * RELOC_SIZE (htab);
8361 if (i == 2 || i == 5)
8362 bfd_put_32 (output_bfd, val, ptr);
8363 else
8364 put_arm_insn (htab, output_bfd, val, ptr);
8365 }
8366 }
8367 else if (htab->vxworks_p)
8368 {
8369 unsigned int i;
8370 bfd_vma val;
8371
8372 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
8373 {
8374 val = elf32_arm_vxworks_exec_plt_entry[i];
8375 if (i == 2)
8376 val |= got_address;
8377 if (i == 4)
8378 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
8379 if (i == 5)
8380 val |= plt_index * RELOC_SIZE (htab);
8381 if (i == 2 || i == 5)
8382 bfd_put_32 (output_bfd, val, ptr);
8383 else
8384 put_arm_insn (htab, output_bfd, val, ptr);
8385 }
8386
8387 loc = (htab->srelplt2->contents
8388 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
8389
8390 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
8391 referencing the GOT for this PLT entry. */
8392 rel.r_offset = plt_address + 8;
8393 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
8394 rel.r_addend = got_offset;
8395 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
8396 loc += RELOC_SIZE (htab);
8397
8398 /* Create the R_ARM_ABS32 relocation referencing the
8399 beginning of the PLT for this GOT entry. */
8400 rel.r_offset = got_address;
8401 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
8402 rel.r_addend = 0;
8403 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
8404 }
8405 else if (htab->nacl_p)
8406 {
8407 /* Calculate the displacement between the PLT slot and the
8408 common tail that's part of the special initial PLT slot. */
8409 int32_t tail_displacement
8410 = ((splt->output_section->vma + splt->output_offset
8411 + ARM_NACL_PLT_TAIL_OFFSET)
8412 - (plt_address + htab->plt_entry_size + 4));
8413 BFD_ASSERT ((tail_displacement & 3) == 0);
8414 tail_displacement >>= 2;
8415
8416 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
8417 || (-tail_displacement & 0xff000000) == 0);
8418
8419 /* Calculate the displacement between the PLT slot and the entry
8420 in the GOT. The offset accounts for the value produced by
8421 adding to pc in the penultimate instruction of the PLT stub. */
8422 got_displacement = (got_address
8423 - (plt_address + htab->plt_entry_size));
8424
8425 /* NaCl does not support interworking at all. */
8426 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
8427
8428 put_arm_insn (htab, output_bfd,
8429 elf32_arm_nacl_plt_entry[0]
8430 | arm_movw_immediate (got_displacement),
8431 ptr + 0);
8432 put_arm_insn (htab, output_bfd,
8433 elf32_arm_nacl_plt_entry[1]
8434 | arm_movt_immediate (got_displacement),
8435 ptr + 4);
8436 put_arm_insn (htab, output_bfd,
8437 elf32_arm_nacl_plt_entry[2],
8438 ptr + 8);
8439 put_arm_insn (htab, output_bfd,
8440 elf32_arm_nacl_plt_entry[3]
8441 | (tail_displacement & 0x00ffffff),
8442 ptr + 12);
8443 }
8444 else if (using_thumb_only (htab))
8445 {
8446 /* PR ld/16017: Generate thumb only PLT entries. */
8447 if (!using_thumb2 (htab))
8448 {
8449 /* FIXME: We ought to be able to generate thumb-1 PLT
8450 instructions... */
8451 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
8452 output_bfd);
8453 return FALSE;
8454 }
8455
8456 /* Calculate the displacement between the PLT slot and the entry in
8457 the GOT. The 12-byte offset accounts for the value produced by
8458 adding to pc in the 3rd instruction of the PLT stub. */
8459 got_displacement = got_address - (plt_address + 12);
8460
8461 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
8462 instead of 'put_thumb_insn'. */
8463 put_arm_insn (htab, output_bfd,
8464 elf32_thumb2_plt_entry[0]
8465 | ((got_displacement & 0x000000ff) << 16)
8466 | ((got_displacement & 0x00000700) << 20)
8467 | ((got_displacement & 0x00000800) >> 1)
8468 | ((got_displacement & 0x0000f000) >> 12),
8469 ptr + 0);
8470 put_arm_insn (htab, output_bfd,
8471 elf32_thumb2_plt_entry[1]
8472 | ((got_displacement & 0x00ff0000) )
8473 | ((got_displacement & 0x07000000) << 4)
8474 | ((got_displacement & 0x08000000) >> 17)
8475 | ((got_displacement & 0xf0000000) >> 28),
8476 ptr + 4);
8477 put_arm_insn (htab, output_bfd,
8478 elf32_thumb2_plt_entry[2],
8479 ptr + 8);
8480 put_arm_insn (htab, output_bfd,
8481 elf32_thumb2_plt_entry[3],
8482 ptr + 12);
8483 }
8484 else
8485 {
8486 /* Calculate the displacement between the PLT slot and the
8487 entry in the GOT. The eight-byte offset accounts for the
8488 value produced by adding to pc in the first instruction
8489 of the PLT stub. */
8490 got_displacement = got_address - (plt_address + 8);
8491
8492 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
8493 {
8494 put_thumb_insn (htab, output_bfd,
8495 elf32_arm_plt_thumb_stub[0], ptr - 4);
8496 put_thumb_insn (htab, output_bfd,
8497 elf32_arm_plt_thumb_stub[1], ptr - 2);
8498 }
8499
8500 if (!elf32_arm_use_long_plt_entry)
8501 {
8502 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
8503
8504 put_arm_insn (htab, output_bfd,
8505 elf32_arm_plt_entry_short[0]
8506 | ((got_displacement & 0x0ff00000) >> 20),
8507 ptr + 0);
8508 put_arm_insn (htab, output_bfd,
8509 elf32_arm_plt_entry_short[1]
8510 | ((got_displacement & 0x000ff000) >> 12),
8511 ptr+ 4);
8512 put_arm_insn (htab, output_bfd,
8513 elf32_arm_plt_entry_short[2]
8514 | (got_displacement & 0x00000fff),
8515 ptr + 8);
8516 #ifdef FOUR_WORD_PLT
8517 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
8518 #endif
8519 }
8520 else
8521 {
8522 put_arm_insn (htab, output_bfd,
8523 elf32_arm_plt_entry_long[0]
8524 | ((got_displacement & 0xf0000000) >> 28),
8525 ptr + 0);
8526 put_arm_insn (htab, output_bfd,
8527 elf32_arm_plt_entry_long[1]
8528 | ((got_displacement & 0x0ff00000) >> 20),
8529 ptr + 4);
8530 put_arm_insn (htab, output_bfd,
8531 elf32_arm_plt_entry_long[2]
8532 | ((got_displacement & 0x000ff000) >> 12),
8533 ptr+ 8);
8534 put_arm_insn (htab, output_bfd,
8535 elf32_arm_plt_entry_long[3]
8536 | (got_displacement & 0x00000fff),
8537 ptr + 12);
8538 }
8539 }
8540
8541 /* Fill in the entry in the .rel(a).(i)plt section. */
8542 rel.r_offset = got_address;
8543 rel.r_addend = 0;
8544 if (dynindx == -1)
8545 {
8546 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
8547 The dynamic linker or static executable then calls SYM_VALUE
8548 to determine the correct run-time value of the .igot.plt entry. */
8549 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
8550 initial_got_entry = sym_value;
8551 }
8552 else
8553 {
8554 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
8555 initial_got_entry = (splt->output_section->vma
8556 + splt->output_offset);
8557 }
8558
8559 /* Fill in the entry in the global offset table. */
8560 bfd_put_32 (output_bfd, initial_got_entry,
8561 sgot->contents + got_offset);
8562 }
8563
8564 if (dynindx == -1)
8565 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
8566 else
8567 {
8568 loc = srel->contents + plt_index * RELOC_SIZE (htab);
8569 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
8570 }
8571
8572 return TRUE;
8573 }
8574
8575 /* Some relocations map to different relocations depending on the
8576 target. Return the real relocation. */
8577
8578 static int
8579 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
8580 int r_type)
8581 {
8582 switch (r_type)
8583 {
8584 case R_ARM_TARGET1:
8585 if (globals->target1_is_rel)
8586 return R_ARM_REL32;
8587 else
8588 return R_ARM_ABS32;
8589
8590 case R_ARM_TARGET2:
8591 return globals->target2_reloc;
8592
8593 default:
8594 return r_type;
8595 }
8596 }
8597
8598 /* Return the base VMA address which should be subtracted from real addresses
8599 when resolving @dtpoff relocation.
8600 This is PT_TLS segment p_vaddr. */
8601
8602 static bfd_vma
8603 dtpoff_base (struct bfd_link_info *info)
8604 {
8605 /* If tls_sec is NULL, we should have signalled an error already. */
8606 if (elf_hash_table (info)->tls_sec == NULL)
8607 return 0;
8608 return elf_hash_table (info)->tls_sec->vma;
8609 }
8610
8611 /* Return the relocation value for @tpoff relocation
8612 if STT_TLS virtual address is ADDRESS. */
8613
8614 static bfd_vma
8615 tpoff (struct bfd_link_info *info, bfd_vma address)
8616 {
8617 struct elf_link_hash_table *htab = elf_hash_table (info);
8618 bfd_vma base;
8619
8620 /* If tls_sec is NULL, we should have signalled an error already. */
8621 if (htab->tls_sec == NULL)
8622 return 0;
8623 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
8624 return address - htab->tls_sec->vma + base;
8625 }
8626
8627 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
8628 VALUE is the relocation value. */
8629
8630 static bfd_reloc_status_type
8631 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
8632 {
8633 if (value > 0xfff)
8634 return bfd_reloc_overflow;
8635
8636 value |= bfd_get_32 (abfd, data) & 0xfffff000;
8637 bfd_put_32 (abfd, value, data);
8638 return bfd_reloc_ok;
8639 }
8640
8641 /* Handle TLS relaxations. Relaxing is possible for symbols that use
8642 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
8643 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
8644
8645 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
8646 is to then call final_link_relocate. Return other values in the
8647 case of error.
8648
8649 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
8650 the pre-relaxed code. It would be nice if the relocs were updated
8651 to match the optimization. */
8652
8653 static bfd_reloc_status_type
8654 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
8655 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
8656 Elf_Internal_Rela *rel, unsigned long is_local)
8657 {
8658 unsigned long insn;
8659
8660 switch (ELF32_R_TYPE (rel->r_info))
8661 {
8662 default:
8663 return bfd_reloc_notsupported;
8664
8665 case R_ARM_TLS_GOTDESC:
8666 if (is_local)
8667 insn = 0;
8668 else
8669 {
8670 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
8671 if (insn & 1)
8672 insn -= 5; /* THUMB */
8673 else
8674 insn -= 8; /* ARM */
8675 }
8676 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
8677 return bfd_reloc_continue;
8678
8679 case R_ARM_THM_TLS_DESCSEQ:
8680 /* Thumb insn. */
8681 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
8682 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
8683 {
8684 if (is_local)
8685 /* nop */
8686 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8687 }
8688 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
8689 {
8690 if (is_local)
8691 /* nop */
8692 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8693 else
8694 /* ldr rx,[ry] */
8695 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
8696 }
8697 else if ((insn & 0xff87) == 0x4780) /* blx rx */
8698 {
8699 if (is_local)
8700 /* nop */
8701 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8702 else
8703 /* mov r0, rx */
8704 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
8705 contents + rel->r_offset);
8706 }
8707 else
8708 {
8709 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
8710 /* It's a 32 bit instruction, fetch the rest of it for
8711 error generation. */
8712 insn = (insn << 16)
8713 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
8714 (*_bfd_error_handler)
8715 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
8716 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
8717 return bfd_reloc_notsupported;
8718 }
8719 break;
8720
8721 case R_ARM_TLS_DESCSEQ:
8722 /* arm insn. */
8723 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
8724 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
8725 {
8726 if (is_local)
8727 /* mov rx, ry */
8728 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
8729 contents + rel->r_offset);
8730 }
8731 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
8732 {
8733 if (is_local)
8734 /* nop */
8735 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
8736 else
8737 /* ldr rx,[ry] */
8738 bfd_put_32 (input_bfd, insn & 0xfffff000,
8739 contents + rel->r_offset);
8740 }
8741 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
8742 {
8743 if (is_local)
8744 /* nop */
8745 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
8746 else
8747 /* mov r0, rx */
8748 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
8749 contents + rel->r_offset);
8750 }
8751 else
8752 {
8753 (*_bfd_error_handler)
8754 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
8755 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
8756 return bfd_reloc_notsupported;
8757 }
8758 break;
8759
8760 case R_ARM_TLS_CALL:
8761 /* GD->IE relaxation, turn the instruction into 'nop' or
8762 'ldr r0, [pc,r0]' */
8763 insn = is_local ? 0xe1a00000 : 0xe79f0000;
8764 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
8765 break;
8766
8767 case R_ARM_THM_TLS_CALL:
8768 /* GD->IE relaxation. */
8769 if (!is_local)
8770 /* add r0,pc; ldr r0, [r0] */
8771 insn = 0x44786800;
8772 else if (arch_has_thumb2_nop (globals))
8773 /* nop.w */
8774 insn = 0xf3af8000;
8775 else
8776 /* nop; nop */
8777 insn = 0xbf00bf00;
8778
8779 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
8780 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
8781 break;
8782 }
8783 return bfd_reloc_ok;
8784 }
8785
8786 /* For a given value of n, calculate the value of G_n as required to
8787 deal with group relocations. We return it in the form of an
8788 encoded constant-and-rotation, together with the final residual. If n is
8789 specified as less than zero, then final_residual is filled with the
8790 input value and no further action is performed. */
8791
8792 static bfd_vma
8793 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
8794 {
8795 int current_n;
8796 bfd_vma g_n;
8797 bfd_vma encoded_g_n = 0;
8798 bfd_vma residual = value; /* Also known as Y_n. */
8799
8800 for (current_n = 0; current_n <= n; current_n++)
8801 {
8802 int shift;
8803
8804 /* Calculate which part of the value to mask. */
8805 if (residual == 0)
8806 shift = 0;
8807 else
8808 {
8809 int msb;
8810
8811 /* Determine the most significant bit in the residual and
8812 align the resulting value to a 2-bit boundary. */
8813 for (msb = 30; msb >= 0; msb -= 2)
8814 if (residual & (3 << msb))
8815 break;
8816
8817 /* The desired shift is now (msb - 6), or zero, whichever
8818 is the greater. */
8819 shift = msb - 6;
8820 if (shift < 0)
8821 shift = 0;
8822 }
8823
8824 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
8825 g_n = residual & (0xff << shift);
8826 encoded_g_n = (g_n >> shift)
8827 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
8828
8829 /* Calculate the residual for the next time around. */
8830 residual &= ~g_n;
8831 }
8832
8833 *final_residual = residual;
8834
8835 return encoded_g_n;
8836 }
8837
8838 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
8839 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
8840
8841 static int
8842 identify_add_or_sub (bfd_vma insn)
8843 {
8844 int opcode = insn & 0x1e00000;
8845
8846 if (opcode == 1 << 23) /* ADD */
8847 return 1;
8848
8849 if (opcode == 1 << 22) /* SUB */
8850 return -1;
8851
8852 return 0;
8853 }
8854
8855 /* Perform a relocation as part of a final link. */
8856
8857 static bfd_reloc_status_type
8858 elf32_arm_final_link_relocate (reloc_howto_type * howto,
8859 bfd * input_bfd,
8860 bfd * output_bfd,
8861 asection * input_section,
8862 bfd_byte * contents,
8863 Elf_Internal_Rela * rel,
8864 bfd_vma value,
8865 struct bfd_link_info * info,
8866 asection * sym_sec,
8867 const char * sym_name,
8868 unsigned char st_type,
8869 enum arm_st_branch_type branch_type,
8870 struct elf_link_hash_entry * h,
8871 bfd_boolean * unresolved_reloc_p,
8872 char ** error_message)
8873 {
8874 unsigned long r_type = howto->type;
8875 unsigned long r_symndx;
8876 bfd_byte * hit_data = contents + rel->r_offset;
8877 bfd_vma * local_got_offsets;
8878 bfd_vma * local_tlsdesc_gotents;
8879 asection * sgot;
8880 asection * splt;
8881 asection * sreloc = NULL;
8882 asection * srelgot;
8883 bfd_vma addend;
8884 bfd_signed_vma signed_addend;
8885 unsigned char dynreloc_st_type;
8886 bfd_vma dynreloc_value;
8887 struct elf32_arm_link_hash_table * globals;
8888 struct elf32_arm_link_hash_entry *eh;
8889 union gotplt_union *root_plt;
8890 struct arm_plt_info *arm_plt;
8891 bfd_vma plt_offset;
8892 bfd_vma gotplt_offset;
8893 bfd_boolean has_iplt_entry;
8894
8895 globals = elf32_arm_hash_table (info);
8896 if (globals == NULL)
8897 return bfd_reloc_notsupported;
8898
8899 BFD_ASSERT (is_arm_elf (input_bfd));
8900
8901 /* Some relocation types map to different relocations depending on the
8902 target. We pick the right one here. */
8903 r_type = arm_real_reloc_type (globals, r_type);
8904
8905 /* It is possible to have linker relaxations on some TLS access
8906 models. Update our information here. */
8907 r_type = elf32_arm_tls_transition (info, r_type, h);
8908
8909 if (r_type != howto->type)
8910 howto = elf32_arm_howto_from_type (r_type);
8911
8912 eh = (struct elf32_arm_link_hash_entry *) h;
8913 sgot = globals->root.sgot;
8914 local_got_offsets = elf_local_got_offsets (input_bfd);
8915 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
8916
8917 if (globals->root.dynamic_sections_created)
8918 srelgot = globals->root.srelgot;
8919 else
8920 srelgot = NULL;
8921
8922 r_symndx = ELF32_R_SYM (rel->r_info);
8923
8924 if (globals->use_rel)
8925 {
8926 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
8927
8928 if (addend & ((howto->src_mask + 1) >> 1))
8929 {
8930 signed_addend = -1;
8931 signed_addend &= ~ howto->src_mask;
8932 signed_addend |= addend;
8933 }
8934 else
8935 signed_addend = addend;
8936 }
8937 else
8938 addend = signed_addend = rel->r_addend;
8939
8940 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
8941 are resolving a function call relocation. */
8942 if (using_thumb_only (globals)
8943 && (r_type == R_ARM_THM_CALL
8944 || r_type == R_ARM_THM_JUMP24)
8945 && branch_type == ST_BRANCH_TO_ARM)
8946 branch_type = ST_BRANCH_TO_THUMB;
8947
8948 /* Record the symbol information that should be used in dynamic
8949 relocations. */
8950 dynreloc_st_type = st_type;
8951 dynreloc_value = value;
8952 if (branch_type == ST_BRANCH_TO_THUMB)
8953 dynreloc_value |= 1;
8954
8955 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
8956 VALUE appropriately for relocations that we resolve at link time. */
8957 has_iplt_entry = FALSE;
8958 if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
8959 && root_plt->offset != (bfd_vma) -1)
8960 {
8961 plt_offset = root_plt->offset;
8962 gotplt_offset = arm_plt->got_offset;
8963
8964 if (h == NULL || eh->is_iplt)
8965 {
8966 has_iplt_entry = TRUE;
8967 splt = globals->root.iplt;
8968
8969 /* Populate .iplt entries here, because not all of them will
8970 be seen by finish_dynamic_symbol. The lower bit is set if
8971 we have already populated the entry. */
8972 if (plt_offset & 1)
8973 plt_offset--;
8974 else
8975 {
8976 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
8977 -1, dynreloc_value))
8978 root_plt->offset |= 1;
8979 else
8980 return bfd_reloc_notsupported;
8981 }
8982
8983 /* Static relocations always resolve to the .iplt entry. */
8984 st_type = STT_FUNC;
8985 value = (splt->output_section->vma
8986 + splt->output_offset
8987 + plt_offset);
8988 branch_type = ST_BRANCH_TO_ARM;
8989
8990 /* If there are non-call relocations that resolve to the .iplt
8991 entry, then all dynamic ones must too. */
8992 if (arm_plt->noncall_refcount != 0)
8993 {
8994 dynreloc_st_type = st_type;
8995 dynreloc_value = value;
8996 }
8997 }
8998 else
8999 /* We populate the .plt entry in finish_dynamic_symbol. */
9000 splt = globals->root.splt;
9001 }
9002 else
9003 {
9004 splt = NULL;
9005 plt_offset = (bfd_vma) -1;
9006 gotplt_offset = (bfd_vma) -1;
9007 }
9008
9009 switch (r_type)
9010 {
9011 case R_ARM_NONE:
9012 /* We don't need to find a value for this symbol. It's just a
9013 marker. */
9014 *unresolved_reloc_p = FALSE;
9015 return bfd_reloc_ok;
9016
9017 case R_ARM_ABS12:
9018 if (!globals->vxworks_p)
9019 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
9020
9021 case R_ARM_PC24:
9022 case R_ARM_ABS32:
9023 case R_ARM_ABS32_NOI:
9024 case R_ARM_REL32:
9025 case R_ARM_REL32_NOI:
9026 case R_ARM_CALL:
9027 case R_ARM_JUMP24:
9028 case R_ARM_XPC25:
9029 case R_ARM_PREL31:
9030 case R_ARM_PLT32:
9031 /* Handle relocations which should use the PLT entry. ABS32/REL32
9032 will use the symbol's value, which may point to a PLT entry, but we
9033 don't need to handle that here. If we created a PLT entry, all
9034 branches in this object should go to it, except if the PLT is too
9035 far away, in which case a long branch stub should be inserted. */
9036 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
9037 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
9038 && r_type != R_ARM_CALL
9039 && r_type != R_ARM_JUMP24
9040 && r_type != R_ARM_PLT32)
9041 && plt_offset != (bfd_vma) -1)
9042 {
9043 /* If we've created a .plt section, and assigned a PLT entry
9044 to this function, it must either be a STT_GNU_IFUNC reference
9045 or not be known to bind locally. In other cases, we should
9046 have cleared the PLT entry by now. */
9047 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
9048
9049 value = (splt->output_section->vma
9050 + splt->output_offset
9051 + plt_offset);
9052 *unresolved_reloc_p = FALSE;
9053 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9054 contents, rel->r_offset, value,
9055 rel->r_addend);
9056 }
9057
9058 /* When generating a shared object or relocatable executable, these
9059 relocations are copied into the output file to be resolved at
9060 run time. */
9061 if ((bfd_link_pic (info)
9062 || globals->root.is_relocatable_executable)
9063 && (input_section->flags & SEC_ALLOC)
9064 && !(globals->vxworks_p
9065 && strcmp (input_section->output_section->name,
9066 ".tls_vars") == 0)
9067 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
9068 || !SYMBOL_CALLS_LOCAL (info, h))
9069 && !(input_bfd == globals->stub_bfd
9070 && strstr (input_section->name, STUB_SUFFIX))
9071 && (h == NULL
9072 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9073 || h->root.type != bfd_link_hash_undefweak)
9074 && r_type != R_ARM_PC24
9075 && r_type != R_ARM_CALL
9076 && r_type != R_ARM_JUMP24
9077 && r_type != R_ARM_PREL31
9078 && r_type != R_ARM_PLT32)
9079 {
9080 Elf_Internal_Rela outrel;
9081 bfd_boolean skip, relocate;
9082
9083 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9084 && !h->def_regular)
9085 {
9086 char *v = _("shared object");
9087
9088 if (bfd_link_executable (info))
9089 v = _("PIE executable");
9090
9091 (*_bfd_error_handler)
9092 (_("%B: relocation %s against external or undefined symbol `%s'"
9093 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
9094 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
9095 return bfd_reloc_notsupported;
9096 }
9097
9098 *unresolved_reloc_p = FALSE;
9099
9100 if (sreloc == NULL && globals->root.dynamic_sections_created)
9101 {
9102 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
9103 ! globals->use_rel);
9104
9105 if (sreloc == NULL)
9106 return bfd_reloc_notsupported;
9107 }
9108
9109 skip = FALSE;
9110 relocate = FALSE;
9111
9112 outrel.r_addend = addend;
9113 outrel.r_offset =
9114 _bfd_elf_section_offset (output_bfd, info, input_section,
9115 rel->r_offset);
9116 if (outrel.r_offset == (bfd_vma) -1)
9117 skip = TRUE;
9118 else if (outrel.r_offset == (bfd_vma) -2)
9119 skip = TRUE, relocate = TRUE;
9120 outrel.r_offset += (input_section->output_section->vma
9121 + input_section->output_offset);
9122
9123 if (skip)
9124 memset (&outrel, 0, sizeof outrel);
9125 else if (h != NULL
9126 && h->dynindx != -1
9127 && (!bfd_link_pic (info)
9128 || !SYMBOLIC_BIND (info, h)
9129 || !h->def_regular))
9130 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
9131 else
9132 {
9133 int symbol;
9134
9135 /* This symbol is local, or marked to become local. */
9136 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
9137 if (globals->symbian_p)
9138 {
9139 asection *osec;
9140
9141 /* On Symbian OS, the data segment and text segement
9142 can be relocated independently. Therefore, we
9143 must indicate the segment to which this
9144 relocation is relative. The BPABI allows us to
9145 use any symbol in the right segment; we just use
9146 the section symbol as it is convenient. (We
9147 cannot use the symbol given by "h" directly as it
9148 will not appear in the dynamic symbol table.)
9149
9150 Note that the dynamic linker ignores the section
9151 symbol value, so we don't subtract osec->vma
9152 from the emitted reloc addend. */
9153 if (sym_sec)
9154 osec = sym_sec->output_section;
9155 else
9156 osec = input_section->output_section;
9157 symbol = elf_section_data (osec)->dynindx;
9158 if (symbol == 0)
9159 {
9160 struct elf_link_hash_table *htab = elf_hash_table (info);
9161
9162 if ((osec->flags & SEC_READONLY) == 0
9163 && htab->data_index_section != NULL)
9164 osec = htab->data_index_section;
9165 else
9166 osec = htab->text_index_section;
9167 symbol = elf_section_data (osec)->dynindx;
9168 }
9169 BFD_ASSERT (symbol != 0);
9170 }
9171 else
9172 /* On SVR4-ish systems, the dynamic loader cannot
9173 relocate the text and data segments independently,
9174 so the symbol does not matter. */
9175 symbol = 0;
9176 if (dynreloc_st_type == STT_GNU_IFUNC)
9177 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
9178 to the .iplt entry. Instead, every non-call reference
9179 must use an R_ARM_IRELATIVE relocation to obtain the
9180 correct run-time address. */
9181 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
9182 else
9183 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
9184 if (globals->use_rel)
9185 relocate = TRUE;
9186 else
9187 outrel.r_addend += dynreloc_value;
9188 }
9189
9190 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
9191
9192 /* If this reloc is against an external symbol, we do not want to
9193 fiddle with the addend. Otherwise, we need to include the symbol
9194 value so that it becomes an addend for the dynamic reloc. */
9195 if (! relocate)
9196 return bfd_reloc_ok;
9197
9198 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9199 contents, rel->r_offset,
9200 dynreloc_value, (bfd_vma) 0);
9201 }
9202 else switch (r_type)
9203 {
9204 case R_ARM_ABS12:
9205 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
9206
9207 case R_ARM_XPC25: /* Arm BLX instruction. */
9208 case R_ARM_CALL:
9209 case R_ARM_JUMP24:
9210 case R_ARM_PC24: /* Arm B/BL instruction. */
9211 case R_ARM_PLT32:
9212 {
9213 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
9214
9215 if (r_type == R_ARM_XPC25)
9216 {
9217 /* Check for Arm calling Arm function. */
9218 /* FIXME: Should we translate the instruction into a BL
9219 instruction instead ? */
9220 if (branch_type != ST_BRANCH_TO_THUMB)
9221 (*_bfd_error_handler)
9222 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
9223 input_bfd,
9224 h ? h->root.root.string : "(local)");
9225 }
9226 else if (r_type == R_ARM_PC24)
9227 {
9228 /* Check for Arm calling Thumb function. */
9229 if (branch_type == ST_BRANCH_TO_THUMB)
9230 {
9231 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
9232 output_bfd, input_section,
9233 hit_data, sym_sec, rel->r_offset,
9234 signed_addend, value,
9235 error_message))
9236 return bfd_reloc_ok;
9237 else
9238 return bfd_reloc_dangerous;
9239 }
9240 }
9241
9242 /* Check if a stub has to be inserted because the
9243 destination is too far or we are changing mode. */
9244 if ( r_type == R_ARM_CALL
9245 || r_type == R_ARM_JUMP24
9246 || r_type == R_ARM_PLT32)
9247 {
9248 enum elf32_arm_stub_type stub_type = arm_stub_none;
9249 struct elf32_arm_link_hash_entry *hash;
9250
9251 hash = (struct elf32_arm_link_hash_entry *) h;
9252 stub_type = arm_type_of_stub (info, input_section, rel,
9253 st_type, &branch_type,
9254 hash, value, sym_sec,
9255 input_bfd, sym_name);
9256
9257 if (stub_type != arm_stub_none)
9258 {
9259 /* The target is out of reach, so redirect the
9260 branch to the local stub for this function. */
9261 stub_entry = elf32_arm_get_stub_entry (input_section,
9262 sym_sec, h,
9263 rel, globals,
9264 stub_type);
9265 {
9266 if (stub_entry != NULL)
9267 value = (stub_entry->stub_offset
9268 + stub_entry->stub_sec->output_offset
9269 + stub_entry->stub_sec->output_section->vma);
9270
9271 if (plt_offset != (bfd_vma) -1)
9272 *unresolved_reloc_p = FALSE;
9273 }
9274 }
9275 else
9276 {
9277 /* If the call goes through a PLT entry, make sure to
9278 check distance to the right destination address. */
9279 if (plt_offset != (bfd_vma) -1)
9280 {
9281 value = (splt->output_section->vma
9282 + splt->output_offset
9283 + plt_offset);
9284 *unresolved_reloc_p = FALSE;
9285 /* The PLT entry is in ARM mode, regardless of the
9286 target function. */
9287 branch_type = ST_BRANCH_TO_ARM;
9288 }
9289 }
9290 }
9291
9292 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
9293 where:
9294 S is the address of the symbol in the relocation.
9295 P is address of the instruction being relocated.
9296 A is the addend (extracted from the instruction) in bytes.
9297
9298 S is held in 'value'.
9299 P is the base address of the section containing the
9300 instruction plus the offset of the reloc into that
9301 section, ie:
9302 (input_section->output_section->vma +
9303 input_section->output_offset +
9304 rel->r_offset).
9305 A is the addend, converted into bytes, ie:
9306 (signed_addend * 4)
9307
9308 Note: None of these operations have knowledge of the pipeline
9309 size of the processor, thus it is up to the assembler to
9310 encode this information into the addend. */
9311 value -= (input_section->output_section->vma
9312 + input_section->output_offset);
9313 value -= rel->r_offset;
9314 if (globals->use_rel)
9315 value += (signed_addend << howto->size);
9316 else
9317 /* RELA addends do not have to be adjusted by howto->size. */
9318 value += signed_addend;
9319
9320 signed_addend = value;
9321 signed_addend >>= howto->rightshift;
9322
9323 /* A branch to an undefined weak symbol is turned into a jump to
9324 the next instruction unless a PLT entry will be created.
9325 Do the same for local undefined symbols (but not for STN_UNDEF).
9326 The jump to the next instruction is optimized as a NOP depending
9327 on the architecture. */
9328 if (h ? (h->root.type == bfd_link_hash_undefweak
9329 && plt_offset == (bfd_vma) -1)
9330 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
9331 {
9332 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
9333
9334 if (arch_has_arm_nop (globals))
9335 value |= 0x0320f000;
9336 else
9337 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
9338 }
9339 else
9340 {
9341 /* Perform a signed range check. */
9342 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
9343 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
9344 return bfd_reloc_overflow;
9345
9346 addend = (value & 2);
9347
9348 value = (signed_addend & howto->dst_mask)
9349 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
9350
9351 if (r_type == R_ARM_CALL)
9352 {
9353 /* Set the H bit in the BLX instruction. */
9354 if (branch_type == ST_BRANCH_TO_THUMB)
9355 {
9356 if (addend)
9357 value |= (1 << 24);
9358 else
9359 value &= ~(bfd_vma)(1 << 24);
9360 }
9361
9362 /* Select the correct instruction (BL or BLX). */
9363 /* Only if we are not handling a BL to a stub. In this
9364 case, mode switching is performed by the stub. */
9365 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
9366 value |= (1 << 28);
9367 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
9368 {
9369 value &= ~(bfd_vma)(1 << 28);
9370 value |= (1 << 24);
9371 }
9372 }
9373 }
9374 }
9375 break;
9376
9377 case R_ARM_ABS32:
9378 value += addend;
9379 if (branch_type == ST_BRANCH_TO_THUMB)
9380 value |= 1;
9381 break;
9382
9383 case R_ARM_ABS32_NOI:
9384 value += addend;
9385 break;
9386
9387 case R_ARM_REL32:
9388 value += addend;
9389 if (branch_type == ST_BRANCH_TO_THUMB)
9390 value |= 1;
9391 value -= (input_section->output_section->vma
9392 + input_section->output_offset + rel->r_offset);
9393 break;
9394
9395 case R_ARM_REL32_NOI:
9396 value += addend;
9397 value -= (input_section->output_section->vma
9398 + input_section->output_offset + rel->r_offset);
9399 break;
9400
9401 case R_ARM_PREL31:
9402 value -= (input_section->output_section->vma
9403 + input_section->output_offset + rel->r_offset);
9404 value += signed_addend;
9405 if (! h || h->root.type != bfd_link_hash_undefweak)
9406 {
9407 /* Check for overflow. */
9408 if ((value ^ (value >> 1)) & (1 << 30))
9409 return bfd_reloc_overflow;
9410 }
9411 value &= 0x7fffffff;
9412 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
9413 if (branch_type == ST_BRANCH_TO_THUMB)
9414 value |= 1;
9415 break;
9416 }
9417
9418 bfd_put_32 (input_bfd, value, hit_data);
9419 return bfd_reloc_ok;
9420
9421 case R_ARM_ABS8:
9422 /* PR 16202: Refectch the addend using the correct size. */
9423 if (globals->use_rel)
9424 addend = bfd_get_8 (input_bfd, hit_data);
9425 value += addend;
9426
9427 /* There is no way to tell whether the user intended to use a signed or
9428 unsigned addend. When checking for overflow we accept either,
9429 as specified by the AAELF. */
9430 if ((long) value > 0xff || (long) value < -0x80)
9431 return bfd_reloc_overflow;
9432
9433 bfd_put_8 (input_bfd, value, hit_data);
9434 return bfd_reloc_ok;
9435
9436 case R_ARM_ABS16:
9437 /* PR 16202: Refectch the addend using the correct size. */
9438 if (globals->use_rel)
9439 addend = bfd_get_16 (input_bfd, hit_data);
9440 value += addend;
9441
9442 /* See comment for R_ARM_ABS8. */
9443 if ((long) value > 0xffff || (long) value < -0x8000)
9444 return bfd_reloc_overflow;
9445
9446 bfd_put_16 (input_bfd, value, hit_data);
9447 return bfd_reloc_ok;
9448
9449 case R_ARM_THM_ABS5:
9450 /* Support ldr and str instructions for the thumb. */
9451 if (globals->use_rel)
9452 {
9453 /* Need to refetch addend. */
9454 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
9455 /* ??? Need to determine shift amount from operand size. */
9456 addend >>= howto->rightshift;
9457 }
9458 value += addend;
9459
9460 /* ??? Isn't value unsigned? */
9461 if ((long) value > 0x1f || (long) value < -0x10)
9462 return bfd_reloc_overflow;
9463
9464 /* ??? Value needs to be properly shifted into place first. */
9465 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
9466 bfd_put_16 (input_bfd, value, hit_data);
9467 return bfd_reloc_ok;
9468
9469 case R_ARM_THM_ALU_PREL_11_0:
9470 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
9471 {
9472 bfd_vma insn;
9473 bfd_signed_vma relocation;
9474
9475 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
9476 | bfd_get_16 (input_bfd, hit_data + 2);
9477
9478 if (globals->use_rel)
9479 {
9480 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
9481 | ((insn & (1 << 26)) >> 15);
9482 if (insn & 0xf00000)
9483 signed_addend = -signed_addend;
9484 }
9485
9486 relocation = value + signed_addend;
9487 relocation -= Pa (input_section->output_section->vma
9488 + input_section->output_offset
9489 + rel->r_offset);
9490
9491 value = relocation;
9492
9493 if (value >= 0x1000)
9494 return bfd_reloc_overflow;
9495
9496 insn = (insn & 0xfb0f8f00) | (value & 0xff)
9497 | ((value & 0x700) << 4)
9498 | ((value & 0x800) << 15);
9499 if (relocation < 0)
9500 insn |= 0xa00000;
9501
9502 bfd_put_16 (input_bfd, insn >> 16, hit_data);
9503 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9504
9505 return bfd_reloc_ok;
9506 }
9507
9508 case R_ARM_THM_PC8:
9509 /* PR 10073: This reloc is not generated by the GNU toolchain,
9510 but it is supported for compatibility with third party libraries
9511 generated by other compilers, specifically the ARM/IAR. */
9512 {
9513 bfd_vma insn;
9514 bfd_signed_vma relocation;
9515
9516 insn = bfd_get_16 (input_bfd, hit_data);
9517
9518 if (globals->use_rel)
9519 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
9520
9521 relocation = value + addend;
9522 relocation -= Pa (input_section->output_section->vma
9523 + input_section->output_offset
9524 + rel->r_offset);
9525
9526 value = relocation;
9527
9528 /* We do not check for overflow of this reloc. Although strictly
9529 speaking this is incorrect, it appears to be necessary in order
9530 to work with IAR generated relocs. Since GCC and GAS do not
9531 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
9532 a problem for them. */
9533 value &= 0x3fc;
9534
9535 insn = (insn & 0xff00) | (value >> 2);
9536
9537 bfd_put_16 (input_bfd, insn, hit_data);
9538
9539 return bfd_reloc_ok;
9540 }
9541
9542 case R_ARM_THM_PC12:
9543 /* Corresponds to: ldr.w reg, [pc, #offset]. */
9544 {
9545 bfd_vma insn;
9546 bfd_signed_vma relocation;
9547
9548 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
9549 | bfd_get_16 (input_bfd, hit_data + 2);
9550
9551 if (globals->use_rel)
9552 {
9553 signed_addend = insn & 0xfff;
9554 if (!(insn & (1 << 23)))
9555 signed_addend = -signed_addend;
9556 }
9557
9558 relocation = value + signed_addend;
9559 relocation -= Pa (input_section->output_section->vma
9560 + input_section->output_offset
9561 + rel->r_offset);
9562
9563 value = relocation;
9564
9565 if (value >= 0x1000)
9566 return bfd_reloc_overflow;
9567
9568 insn = (insn & 0xff7ff000) | value;
9569 if (relocation >= 0)
9570 insn |= (1 << 23);
9571
9572 bfd_put_16 (input_bfd, insn >> 16, hit_data);
9573 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9574
9575 return bfd_reloc_ok;
9576 }
9577
9578 case R_ARM_THM_XPC22:
9579 case R_ARM_THM_CALL:
9580 case R_ARM_THM_JUMP24:
9581 /* Thumb BL (branch long instruction). */
9582 {
9583 bfd_vma relocation;
9584 bfd_vma reloc_sign;
9585 bfd_boolean overflow = FALSE;
9586 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
9587 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
9588 bfd_signed_vma reloc_signed_max;
9589 bfd_signed_vma reloc_signed_min;
9590 bfd_vma check;
9591 bfd_signed_vma signed_check;
9592 int bitsize;
9593 const int thumb2 = using_thumb2 (globals);
9594
9595 /* A branch to an undefined weak symbol is turned into a jump to
9596 the next instruction unless a PLT entry will be created.
9597 The jump to the next instruction is optimized as a NOP.W for
9598 Thumb-2 enabled architectures. */
9599 if (h && h->root.type == bfd_link_hash_undefweak
9600 && plt_offset == (bfd_vma) -1)
9601 {
9602 if (arch_has_thumb2_nop (globals))
9603 {
9604 bfd_put_16 (input_bfd, 0xf3af, hit_data);
9605 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
9606 }
9607 else
9608 {
9609 bfd_put_16 (input_bfd, 0xe000, hit_data);
9610 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
9611 }
9612 return bfd_reloc_ok;
9613 }
9614
9615 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
9616 with Thumb-1) involving the J1 and J2 bits. */
9617 if (globals->use_rel)
9618 {
9619 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
9620 bfd_vma upper = upper_insn & 0x3ff;
9621 bfd_vma lower = lower_insn & 0x7ff;
9622 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
9623 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
9624 bfd_vma i1 = j1 ^ s ? 0 : 1;
9625 bfd_vma i2 = j2 ^ s ? 0 : 1;
9626
9627 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
9628 /* Sign extend. */
9629 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
9630
9631 signed_addend = addend;
9632 }
9633
9634 if (r_type == R_ARM_THM_XPC22)
9635 {
9636 /* Check for Thumb to Thumb call. */
9637 /* FIXME: Should we translate the instruction into a BL
9638 instruction instead ? */
9639 if (branch_type == ST_BRANCH_TO_THUMB)
9640 (*_bfd_error_handler)
9641 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
9642 input_bfd,
9643 h ? h->root.root.string : "(local)");
9644 }
9645 else
9646 {
9647 /* If it is not a call to Thumb, assume call to Arm.
9648 If it is a call relative to a section name, then it is not a
9649 function call at all, but rather a long jump. Calls through
9650 the PLT do not require stubs. */
9651 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
9652 {
9653 if (globals->use_blx && r_type == R_ARM_THM_CALL)
9654 {
9655 /* Convert BL to BLX. */
9656 lower_insn = (lower_insn & ~0x1000) | 0x0800;
9657 }
9658 else if (( r_type != R_ARM_THM_CALL)
9659 && (r_type != R_ARM_THM_JUMP24))
9660 {
9661 if (elf32_thumb_to_arm_stub
9662 (info, sym_name, input_bfd, output_bfd, input_section,
9663 hit_data, sym_sec, rel->r_offset, signed_addend, value,
9664 error_message))
9665 return bfd_reloc_ok;
9666 else
9667 return bfd_reloc_dangerous;
9668 }
9669 }
9670 else if (branch_type == ST_BRANCH_TO_THUMB
9671 && globals->use_blx
9672 && r_type == R_ARM_THM_CALL)
9673 {
9674 /* Make sure this is a BL. */
9675 lower_insn |= 0x1800;
9676 }
9677 }
9678
9679 enum elf32_arm_stub_type stub_type = arm_stub_none;
9680 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
9681 {
9682 /* Check if a stub has to be inserted because the destination
9683 is too far. */
9684 struct elf32_arm_stub_hash_entry *stub_entry;
9685 struct elf32_arm_link_hash_entry *hash;
9686
9687 hash = (struct elf32_arm_link_hash_entry *) h;
9688
9689 stub_type = arm_type_of_stub (info, input_section, rel,
9690 st_type, &branch_type,
9691 hash, value, sym_sec,
9692 input_bfd, sym_name);
9693
9694 if (stub_type != arm_stub_none)
9695 {
9696 /* The target is out of reach or we are changing modes, so
9697 redirect the branch to the local stub for this
9698 function. */
9699 stub_entry = elf32_arm_get_stub_entry (input_section,
9700 sym_sec, h,
9701 rel, globals,
9702 stub_type);
9703 if (stub_entry != NULL)
9704 {
9705 value = (stub_entry->stub_offset
9706 + stub_entry->stub_sec->output_offset
9707 + stub_entry->stub_sec->output_section->vma);
9708
9709 if (plt_offset != (bfd_vma) -1)
9710 *unresolved_reloc_p = FALSE;
9711 }
9712
9713 /* If this call becomes a call to Arm, force BLX. */
9714 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
9715 {
9716 if ((stub_entry
9717 && !arm_stub_is_thumb (stub_entry->stub_type))
9718 || branch_type != ST_BRANCH_TO_THUMB)
9719 lower_insn = (lower_insn & ~0x1000) | 0x0800;
9720 }
9721 }
9722 }
9723
9724 /* Handle calls via the PLT. */
9725 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
9726 {
9727 value = (splt->output_section->vma
9728 + splt->output_offset
9729 + plt_offset);
9730
9731 if (globals->use_blx
9732 && r_type == R_ARM_THM_CALL
9733 && ! using_thumb_only (globals))
9734 {
9735 /* If the Thumb BLX instruction is available, convert
9736 the BL to a BLX instruction to call the ARM-mode
9737 PLT entry. */
9738 lower_insn = (lower_insn & ~0x1000) | 0x0800;
9739 branch_type = ST_BRANCH_TO_ARM;
9740 }
9741 else
9742 {
9743 if (! using_thumb_only (globals))
9744 /* Target the Thumb stub before the ARM PLT entry. */
9745 value -= PLT_THUMB_STUB_SIZE;
9746 branch_type = ST_BRANCH_TO_THUMB;
9747 }
9748 *unresolved_reloc_p = FALSE;
9749 }
9750
9751 relocation = value + signed_addend;
9752
9753 relocation -= (input_section->output_section->vma
9754 + input_section->output_offset
9755 + rel->r_offset);
9756
9757 check = relocation >> howto->rightshift;
9758
9759 /* If this is a signed value, the rightshift just dropped
9760 leading 1 bits (assuming twos complement). */
9761 if ((bfd_signed_vma) relocation >= 0)
9762 signed_check = check;
9763 else
9764 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
9765
9766 /* Calculate the permissable maximum and minimum values for
9767 this relocation according to whether we're relocating for
9768 Thumb-2 or not. */
9769 bitsize = howto->bitsize;
9770 if (!thumb2)
9771 bitsize -= 2;
9772 reloc_signed_max = (1 << (bitsize - 1)) - 1;
9773 reloc_signed_min = ~reloc_signed_max;
9774
9775 /* Assumes two's complement. */
9776 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9777 overflow = TRUE;
9778
9779 if ((lower_insn & 0x5000) == 0x4000)
9780 /* For a BLX instruction, make sure that the relocation is rounded up
9781 to a word boundary. This follows the semantics of the instruction
9782 which specifies that bit 1 of the target address will come from bit
9783 1 of the base address. */
9784 relocation = (relocation + 2) & ~ 3;
9785
9786 /* Put RELOCATION back into the insn. Assumes two's complement.
9787 We use the Thumb-2 encoding, which is safe even if dealing with
9788 a Thumb-1 instruction by virtue of our overflow check above. */
9789 reloc_sign = (signed_check < 0) ? 1 : 0;
9790 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
9791 | ((relocation >> 12) & 0x3ff)
9792 | (reloc_sign << 10);
9793 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
9794 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
9795 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
9796 | ((relocation >> 1) & 0x7ff);
9797
9798 /* Put the relocated value back in the object file: */
9799 bfd_put_16 (input_bfd, upper_insn, hit_data);
9800 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9801
9802 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9803 }
9804 break;
9805
9806 case R_ARM_THM_JUMP19:
9807 /* Thumb32 conditional branch instruction. */
9808 {
9809 bfd_vma relocation;
9810 bfd_boolean overflow = FALSE;
9811 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
9812 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
9813 bfd_signed_vma reloc_signed_max = 0xffffe;
9814 bfd_signed_vma reloc_signed_min = -0x100000;
9815 bfd_signed_vma signed_check;
9816 enum elf32_arm_stub_type stub_type = arm_stub_none;
9817 struct elf32_arm_stub_hash_entry *stub_entry;
9818 struct elf32_arm_link_hash_entry *hash;
9819
9820 /* Need to refetch the addend, reconstruct the top three bits,
9821 and squish the two 11 bit pieces together. */
9822 if (globals->use_rel)
9823 {
9824 bfd_vma S = (upper_insn & 0x0400) >> 10;
9825 bfd_vma upper = (upper_insn & 0x003f);
9826 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
9827 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
9828 bfd_vma lower = (lower_insn & 0x07ff);
9829
9830 upper |= J1 << 6;
9831 upper |= J2 << 7;
9832 upper |= (!S) << 8;
9833 upper -= 0x0100; /* Sign extend. */
9834
9835 addend = (upper << 12) | (lower << 1);
9836 signed_addend = addend;
9837 }
9838
9839 /* Handle calls via the PLT. */
9840 if (plt_offset != (bfd_vma) -1)
9841 {
9842 value = (splt->output_section->vma
9843 + splt->output_offset
9844 + plt_offset);
9845 /* Target the Thumb stub before the ARM PLT entry. */
9846 value -= PLT_THUMB_STUB_SIZE;
9847 *unresolved_reloc_p = FALSE;
9848 }
9849
9850 hash = (struct elf32_arm_link_hash_entry *)h;
9851
9852 stub_type = arm_type_of_stub (info, input_section, rel,
9853 st_type, &branch_type,
9854 hash, value, sym_sec,
9855 input_bfd, sym_name);
9856 if (stub_type != arm_stub_none)
9857 {
9858 stub_entry = elf32_arm_get_stub_entry (input_section,
9859 sym_sec, h,
9860 rel, globals,
9861 stub_type);
9862 if (stub_entry != NULL)
9863 {
9864 value = (stub_entry->stub_offset
9865 + stub_entry->stub_sec->output_offset
9866 + stub_entry->stub_sec->output_section->vma);
9867 }
9868 }
9869
9870 relocation = value + signed_addend;
9871 relocation -= (input_section->output_section->vma
9872 + input_section->output_offset
9873 + rel->r_offset);
9874 signed_check = (bfd_signed_vma) relocation;
9875
9876 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9877 overflow = TRUE;
9878
9879 /* Put RELOCATION back into the insn. */
9880 {
9881 bfd_vma S = (relocation & 0x00100000) >> 20;
9882 bfd_vma J2 = (relocation & 0x00080000) >> 19;
9883 bfd_vma J1 = (relocation & 0x00040000) >> 18;
9884 bfd_vma hi = (relocation & 0x0003f000) >> 12;
9885 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
9886
9887 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
9888 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
9889 }
9890
9891 /* Put the relocated value back in the object file: */
9892 bfd_put_16 (input_bfd, upper_insn, hit_data);
9893 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9894
9895 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9896 }
9897
9898 case R_ARM_THM_JUMP11:
9899 case R_ARM_THM_JUMP8:
9900 case R_ARM_THM_JUMP6:
9901 /* Thumb B (branch) instruction). */
9902 {
9903 bfd_signed_vma relocation;
9904 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
9905 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
9906 bfd_signed_vma signed_check;
9907
9908 /* CZB cannot jump backward. */
9909 if (r_type == R_ARM_THM_JUMP6)
9910 reloc_signed_min = 0;
9911
9912 if (globals->use_rel)
9913 {
9914 /* Need to refetch addend. */
9915 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
9916 if (addend & ((howto->src_mask + 1) >> 1))
9917 {
9918 signed_addend = -1;
9919 signed_addend &= ~ howto->src_mask;
9920 signed_addend |= addend;
9921 }
9922 else
9923 signed_addend = addend;
9924 /* The value in the insn has been right shifted. We need to
9925 undo this, so that we can perform the address calculation
9926 in terms of bytes. */
9927 signed_addend <<= howto->rightshift;
9928 }
9929 relocation = value + signed_addend;
9930
9931 relocation -= (input_section->output_section->vma
9932 + input_section->output_offset
9933 + rel->r_offset);
9934
9935 relocation >>= howto->rightshift;
9936 signed_check = relocation;
9937
9938 if (r_type == R_ARM_THM_JUMP6)
9939 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
9940 else
9941 relocation &= howto->dst_mask;
9942 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
9943
9944 bfd_put_16 (input_bfd, relocation, hit_data);
9945
9946 /* Assumes two's complement. */
9947 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9948 return bfd_reloc_overflow;
9949
9950 return bfd_reloc_ok;
9951 }
9952
9953 case R_ARM_ALU_PCREL7_0:
9954 case R_ARM_ALU_PCREL15_8:
9955 case R_ARM_ALU_PCREL23_15:
9956 {
9957 bfd_vma insn;
9958 bfd_vma relocation;
9959
9960 insn = bfd_get_32 (input_bfd, hit_data);
9961 if (globals->use_rel)
9962 {
9963 /* Extract the addend. */
9964 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
9965 signed_addend = addend;
9966 }
9967 relocation = value + signed_addend;
9968
9969 relocation -= (input_section->output_section->vma
9970 + input_section->output_offset
9971 + rel->r_offset);
9972 insn = (insn & ~0xfff)
9973 | ((howto->bitpos << 7) & 0xf00)
9974 | ((relocation >> howto->bitpos) & 0xff);
9975 bfd_put_32 (input_bfd, value, hit_data);
9976 }
9977 return bfd_reloc_ok;
9978
9979 case R_ARM_GNU_VTINHERIT:
9980 case R_ARM_GNU_VTENTRY:
9981 return bfd_reloc_ok;
9982
9983 case R_ARM_GOTOFF32:
9984 /* Relocation is relative to the start of the
9985 global offset table. */
9986
9987 BFD_ASSERT (sgot != NULL);
9988 if (sgot == NULL)
9989 return bfd_reloc_notsupported;
9990
9991 /* If we are addressing a Thumb function, we need to adjust the
9992 address by one, so that attempts to call the function pointer will
9993 correctly interpret it as Thumb code. */
9994 if (branch_type == ST_BRANCH_TO_THUMB)
9995 value += 1;
9996
9997 /* Note that sgot->output_offset is not involved in this
9998 calculation. We always want the start of .got. If we
9999 define _GLOBAL_OFFSET_TABLE in a different way, as is
10000 permitted by the ABI, we might have to change this
10001 calculation. */
10002 value -= sgot->output_section->vma;
10003 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10004 contents, rel->r_offset, value,
10005 rel->r_addend);
10006
10007 case R_ARM_GOTPC:
10008 /* Use global offset table as symbol value. */
10009 BFD_ASSERT (sgot != NULL);
10010
10011 if (sgot == NULL)
10012 return bfd_reloc_notsupported;
10013
10014 *unresolved_reloc_p = FALSE;
10015 value = sgot->output_section->vma;
10016 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10017 contents, rel->r_offset, value,
10018 rel->r_addend);
10019
10020 case R_ARM_GOT32:
10021 case R_ARM_GOT_PREL:
10022 /* Relocation is to the entry for this symbol in the
10023 global offset table. */
10024 if (sgot == NULL)
10025 return bfd_reloc_notsupported;
10026
10027 if (dynreloc_st_type == STT_GNU_IFUNC
10028 && plt_offset != (bfd_vma) -1
10029 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
10030 {
10031 /* We have a relocation against a locally-binding STT_GNU_IFUNC
10032 symbol, and the relocation resolves directly to the runtime
10033 target rather than to the .iplt entry. This means that any
10034 .got entry would be the same value as the .igot.plt entry,
10035 so there's no point creating both. */
10036 sgot = globals->root.igotplt;
10037 value = sgot->output_offset + gotplt_offset;
10038 }
10039 else if (h != NULL)
10040 {
10041 bfd_vma off;
10042
10043 off = h->got.offset;
10044 BFD_ASSERT (off != (bfd_vma) -1);
10045 if ((off & 1) != 0)
10046 {
10047 /* We have already processsed one GOT relocation against
10048 this symbol. */
10049 off &= ~1;
10050 if (globals->root.dynamic_sections_created
10051 && !SYMBOL_REFERENCES_LOCAL (info, h))
10052 *unresolved_reloc_p = FALSE;
10053 }
10054 else
10055 {
10056 Elf_Internal_Rela outrel;
10057
10058 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
10059 {
10060 /* If the symbol doesn't resolve locally in a static
10061 object, we have an undefined reference. If the
10062 symbol doesn't resolve locally in a dynamic object,
10063 it should be resolved by the dynamic linker. */
10064 if (globals->root.dynamic_sections_created)
10065 {
10066 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10067 *unresolved_reloc_p = FALSE;
10068 }
10069 else
10070 outrel.r_info = 0;
10071 outrel.r_addend = 0;
10072 }
10073 else
10074 {
10075 if (dynreloc_st_type == STT_GNU_IFUNC)
10076 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
10077 else if (bfd_link_pic (info) &&
10078 (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10079 || h->root.type != bfd_link_hash_undefweak))
10080 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10081 else
10082 outrel.r_info = 0;
10083 outrel.r_addend = dynreloc_value;
10084 }
10085
10086 /* The GOT entry is initialized to zero by default.
10087 See if we should install a different value. */
10088 if (outrel.r_addend != 0
10089 && (outrel.r_info == 0 || globals->use_rel))
10090 {
10091 bfd_put_32 (output_bfd, outrel.r_addend,
10092 sgot->contents + off);
10093 outrel.r_addend = 0;
10094 }
10095
10096 if (outrel.r_info != 0)
10097 {
10098 outrel.r_offset = (sgot->output_section->vma
10099 + sgot->output_offset
10100 + off);
10101 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
10102 }
10103 h->got.offset |= 1;
10104 }
10105 value = sgot->output_offset + off;
10106 }
10107 else
10108 {
10109 bfd_vma off;
10110
10111 BFD_ASSERT (local_got_offsets != NULL &&
10112 local_got_offsets[r_symndx] != (bfd_vma) -1);
10113
10114 off = local_got_offsets[r_symndx];
10115
10116 /* The offset must always be a multiple of 4. We use the
10117 least significant bit to record whether we have already
10118 generated the necessary reloc. */
10119 if ((off & 1) != 0)
10120 off &= ~1;
10121 else
10122 {
10123 if (globals->use_rel)
10124 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
10125
10126 if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC)
10127 {
10128 Elf_Internal_Rela outrel;
10129
10130 outrel.r_addend = addend + dynreloc_value;
10131 outrel.r_offset = (sgot->output_section->vma
10132 + sgot->output_offset
10133 + off);
10134 if (dynreloc_st_type == STT_GNU_IFUNC)
10135 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
10136 else
10137 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10138 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
10139 }
10140
10141 local_got_offsets[r_symndx] |= 1;
10142 }
10143
10144 value = sgot->output_offset + off;
10145 }
10146 if (r_type != R_ARM_GOT32)
10147 value += sgot->output_section->vma;
10148
10149 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10150 contents, rel->r_offset, value,
10151 rel->r_addend);
10152
10153 case R_ARM_TLS_LDO32:
10154 value = value - dtpoff_base (info);
10155
10156 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10157 contents, rel->r_offset, value,
10158 rel->r_addend);
10159
10160 case R_ARM_TLS_LDM32:
10161 {
10162 bfd_vma off;
10163
10164 if (sgot == NULL)
10165 abort ();
10166
10167 off = globals->tls_ldm_got.offset;
10168
10169 if ((off & 1) != 0)
10170 off &= ~1;
10171 else
10172 {
10173 /* If we don't know the module number, create a relocation
10174 for it. */
10175 if (bfd_link_pic (info))
10176 {
10177 Elf_Internal_Rela outrel;
10178
10179 if (srelgot == NULL)
10180 abort ();
10181
10182 outrel.r_addend = 0;
10183 outrel.r_offset = (sgot->output_section->vma
10184 + sgot->output_offset + off);
10185 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
10186
10187 if (globals->use_rel)
10188 bfd_put_32 (output_bfd, outrel.r_addend,
10189 sgot->contents + off);
10190
10191 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
10192 }
10193 else
10194 bfd_put_32 (output_bfd, 1, sgot->contents + off);
10195
10196 globals->tls_ldm_got.offset |= 1;
10197 }
10198
10199 value = sgot->output_section->vma + sgot->output_offset + off
10200 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
10201
10202 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10203 contents, rel->r_offset, value,
10204 rel->r_addend);
10205 }
10206
10207 case R_ARM_TLS_CALL:
10208 case R_ARM_THM_TLS_CALL:
10209 case R_ARM_TLS_GD32:
10210 case R_ARM_TLS_IE32:
10211 case R_ARM_TLS_GOTDESC:
10212 case R_ARM_TLS_DESCSEQ:
10213 case R_ARM_THM_TLS_DESCSEQ:
10214 {
10215 bfd_vma off, offplt;
10216 int indx = 0;
10217 char tls_type;
10218
10219 BFD_ASSERT (sgot != NULL);
10220
10221 if (h != NULL)
10222 {
10223 bfd_boolean dyn;
10224 dyn = globals->root.dynamic_sections_created;
10225 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
10226 bfd_link_pic (info),
10227 h)
10228 && (!bfd_link_pic (info)
10229 || !SYMBOL_REFERENCES_LOCAL (info, h)))
10230 {
10231 *unresolved_reloc_p = FALSE;
10232 indx = h->dynindx;
10233 }
10234 off = h->got.offset;
10235 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
10236 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
10237 }
10238 else
10239 {
10240 BFD_ASSERT (local_got_offsets != NULL);
10241 off = local_got_offsets[r_symndx];
10242 offplt = local_tlsdesc_gotents[r_symndx];
10243 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
10244 }
10245
10246 /* Linker relaxations happens from one of the
10247 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
10248 if (ELF32_R_TYPE(rel->r_info) != r_type)
10249 tls_type = GOT_TLS_IE;
10250
10251 BFD_ASSERT (tls_type != GOT_UNKNOWN);
10252
10253 if ((off & 1) != 0)
10254 off &= ~1;
10255 else
10256 {
10257 bfd_boolean need_relocs = FALSE;
10258 Elf_Internal_Rela outrel;
10259 int cur_off = off;
10260
10261 /* The GOT entries have not been initialized yet. Do it
10262 now, and emit any relocations. If both an IE GOT and a
10263 GD GOT are necessary, we emit the GD first. */
10264
10265 if ((bfd_link_pic (info) || indx != 0)
10266 && (h == NULL
10267 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10268 || h->root.type != bfd_link_hash_undefweak))
10269 {
10270 need_relocs = TRUE;
10271 BFD_ASSERT (srelgot != NULL);
10272 }
10273
10274 if (tls_type & GOT_TLS_GDESC)
10275 {
10276 bfd_byte *loc;
10277
10278 /* We should have relaxed, unless this is an undefined
10279 weak symbol. */
10280 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
10281 || bfd_link_pic (info));
10282 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
10283 <= globals->root.sgotplt->size);
10284
10285 outrel.r_addend = 0;
10286 outrel.r_offset = (globals->root.sgotplt->output_section->vma
10287 + globals->root.sgotplt->output_offset
10288 + offplt
10289 + globals->sgotplt_jump_table_size);
10290
10291 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
10292 sreloc = globals->root.srelplt;
10293 loc = sreloc->contents;
10294 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
10295 BFD_ASSERT (loc + RELOC_SIZE (globals)
10296 <= sreloc->contents + sreloc->size);
10297
10298 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
10299
10300 /* For globals, the first word in the relocation gets
10301 the relocation index and the top bit set, or zero,
10302 if we're binding now. For locals, it gets the
10303 symbol's offset in the tls section. */
10304 bfd_put_32 (output_bfd,
10305 !h ? value - elf_hash_table (info)->tls_sec->vma
10306 : info->flags & DF_BIND_NOW ? 0
10307 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
10308 globals->root.sgotplt->contents + offplt
10309 + globals->sgotplt_jump_table_size);
10310
10311 /* Second word in the relocation is always zero. */
10312 bfd_put_32 (output_bfd, 0,
10313 globals->root.sgotplt->contents + offplt
10314 + globals->sgotplt_jump_table_size + 4);
10315 }
10316 if (tls_type & GOT_TLS_GD)
10317 {
10318 if (need_relocs)
10319 {
10320 outrel.r_addend = 0;
10321 outrel.r_offset = (sgot->output_section->vma
10322 + sgot->output_offset
10323 + cur_off);
10324 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
10325
10326 if (globals->use_rel)
10327 bfd_put_32 (output_bfd, outrel.r_addend,
10328 sgot->contents + cur_off);
10329
10330 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
10331
10332 if (indx == 0)
10333 bfd_put_32 (output_bfd, value - dtpoff_base (info),
10334 sgot->contents + cur_off + 4);
10335 else
10336 {
10337 outrel.r_addend = 0;
10338 outrel.r_info = ELF32_R_INFO (indx,
10339 R_ARM_TLS_DTPOFF32);
10340 outrel.r_offset += 4;
10341
10342 if (globals->use_rel)
10343 bfd_put_32 (output_bfd, outrel.r_addend,
10344 sgot->contents + cur_off + 4);
10345
10346 elf32_arm_add_dynreloc (output_bfd, info,
10347 srelgot, &outrel);
10348 }
10349 }
10350 else
10351 {
10352 /* If we are not emitting relocations for a
10353 general dynamic reference, then we must be in a
10354 static link or an executable link with the
10355 symbol binding locally. Mark it as belonging
10356 to module 1, the executable. */
10357 bfd_put_32 (output_bfd, 1,
10358 sgot->contents + cur_off);
10359 bfd_put_32 (output_bfd, value - dtpoff_base (info),
10360 sgot->contents + cur_off + 4);
10361 }
10362
10363 cur_off += 8;
10364 }
10365
10366 if (tls_type & GOT_TLS_IE)
10367 {
10368 if (need_relocs)
10369 {
10370 if (indx == 0)
10371 outrel.r_addend = value - dtpoff_base (info);
10372 else
10373 outrel.r_addend = 0;
10374 outrel.r_offset = (sgot->output_section->vma
10375 + sgot->output_offset
10376 + cur_off);
10377 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
10378
10379 if (globals->use_rel)
10380 bfd_put_32 (output_bfd, outrel.r_addend,
10381 sgot->contents + cur_off);
10382
10383 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
10384 }
10385 else
10386 bfd_put_32 (output_bfd, tpoff (info, value),
10387 sgot->contents + cur_off);
10388 cur_off += 4;
10389 }
10390
10391 if (h != NULL)
10392 h->got.offset |= 1;
10393 else
10394 local_got_offsets[r_symndx] |= 1;
10395 }
10396
10397 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
10398 off += 8;
10399 else if (tls_type & GOT_TLS_GDESC)
10400 off = offplt;
10401
10402 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
10403 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
10404 {
10405 bfd_signed_vma offset;
10406 /* TLS stubs are arm mode. The original symbol is a
10407 data object, so branch_type is bogus. */
10408 branch_type = ST_BRANCH_TO_ARM;
10409 enum elf32_arm_stub_type stub_type
10410 = arm_type_of_stub (info, input_section, rel,
10411 st_type, &branch_type,
10412 (struct elf32_arm_link_hash_entry *)h,
10413 globals->tls_trampoline, globals->root.splt,
10414 input_bfd, sym_name);
10415
10416 if (stub_type != arm_stub_none)
10417 {
10418 struct elf32_arm_stub_hash_entry *stub_entry
10419 = elf32_arm_get_stub_entry
10420 (input_section, globals->root.splt, 0, rel,
10421 globals, stub_type);
10422 offset = (stub_entry->stub_offset
10423 + stub_entry->stub_sec->output_offset
10424 + stub_entry->stub_sec->output_section->vma);
10425 }
10426 else
10427 offset = (globals->root.splt->output_section->vma
10428 + globals->root.splt->output_offset
10429 + globals->tls_trampoline);
10430
10431 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
10432 {
10433 unsigned long inst;
10434
10435 offset -= (input_section->output_section->vma
10436 + input_section->output_offset
10437 + rel->r_offset + 8);
10438
10439 inst = offset >> 2;
10440 inst &= 0x00ffffff;
10441 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
10442 }
10443 else
10444 {
10445 /* Thumb blx encodes the offset in a complicated
10446 fashion. */
10447 unsigned upper_insn, lower_insn;
10448 unsigned neg;
10449
10450 offset -= (input_section->output_section->vma
10451 + input_section->output_offset
10452 + rel->r_offset + 4);
10453
10454 if (stub_type != arm_stub_none
10455 && arm_stub_is_thumb (stub_type))
10456 {
10457 lower_insn = 0xd000;
10458 }
10459 else
10460 {
10461 lower_insn = 0xc000;
10462 /* Round up the offset to a word boundary. */
10463 offset = (offset + 2) & ~2;
10464 }
10465
10466 neg = offset < 0;
10467 upper_insn = (0xf000
10468 | ((offset >> 12) & 0x3ff)
10469 | (neg << 10));
10470 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
10471 | (((!((offset >> 22) & 1)) ^ neg) << 11)
10472 | ((offset >> 1) & 0x7ff);
10473 bfd_put_16 (input_bfd, upper_insn, hit_data);
10474 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10475 return bfd_reloc_ok;
10476 }
10477 }
10478 /* These relocations needs special care, as besides the fact
10479 they point somewhere in .gotplt, the addend must be
10480 adjusted accordingly depending on the type of instruction
10481 we refer to. */
10482 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
10483 {
10484 unsigned long data, insn;
10485 unsigned thumb;
10486
10487 data = bfd_get_32 (input_bfd, hit_data);
10488 thumb = data & 1;
10489 data &= ~1u;
10490
10491 if (thumb)
10492 {
10493 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
10494 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10495 insn = (insn << 16)
10496 | bfd_get_16 (input_bfd,
10497 contents + rel->r_offset - data + 2);
10498 if ((insn & 0xf800c000) == 0xf000c000)
10499 /* bl/blx */
10500 value = -6;
10501 else if ((insn & 0xffffff00) == 0x4400)
10502 /* add */
10503 value = -5;
10504 else
10505 {
10506 (*_bfd_error_handler)
10507 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
10508 input_bfd, input_section,
10509 (unsigned long)rel->r_offset, insn);
10510 return bfd_reloc_notsupported;
10511 }
10512 }
10513 else
10514 {
10515 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
10516
10517 switch (insn >> 24)
10518 {
10519 case 0xeb: /* bl */
10520 case 0xfa: /* blx */
10521 value = -4;
10522 break;
10523
10524 case 0xe0: /* add */
10525 value = -8;
10526 break;
10527
10528 default:
10529 (*_bfd_error_handler)
10530 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
10531 input_bfd, input_section,
10532 (unsigned long)rel->r_offset, insn);
10533 return bfd_reloc_notsupported;
10534 }
10535 }
10536
10537 value += ((globals->root.sgotplt->output_section->vma
10538 + globals->root.sgotplt->output_offset + off)
10539 - (input_section->output_section->vma
10540 + input_section->output_offset
10541 + rel->r_offset)
10542 + globals->sgotplt_jump_table_size);
10543 }
10544 else
10545 value = ((globals->root.sgot->output_section->vma
10546 + globals->root.sgot->output_offset + off)
10547 - (input_section->output_section->vma
10548 + input_section->output_offset + rel->r_offset));
10549
10550 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10551 contents, rel->r_offset, value,
10552 rel->r_addend);
10553 }
10554
10555 case R_ARM_TLS_LE32:
10556 if (bfd_link_dll (info))
10557 {
10558 (*_bfd_error_handler)
10559 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
10560 input_bfd, input_section,
10561 (long) rel->r_offset, howto->name);
10562 return bfd_reloc_notsupported;
10563 }
10564 else
10565 value = tpoff (info, value);
10566
10567 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10568 contents, rel->r_offset, value,
10569 rel->r_addend);
10570
10571 case R_ARM_V4BX:
10572 if (globals->fix_v4bx)
10573 {
10574 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10575
10576 /* Ensure that we have a BX instruction. */
10577 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
10578
10579 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
10580 {
10581 /* Branch to veneer. */
10582 bfd_vma glue_addr;
10583 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
10584 glue_addr -= input_section->output_section->vma
10585 + input_section->output_offset
10586 + rel->r_offset + 8;
10587 insn = (insn & 0xf0000000) | 0x0a000000
10588 | ((glue_addr >> 2) & 0x00ffffff);
10589 }
10590 else
10591 {
10592 /* Preserve Rm (lowest four bits) and the condition code
10593 (highest four bits). Other bits encode MOV PC,Rm. */
10594 insn = (insn & 0xf000000f) | 0x01a0f000;
10595 }
10596
10597 bfd_put_32 (input_bfd, insn, hit_data);
10598 }
10599 return bfd_reloc_ok;
10600
10601 case R_ARM_MOVW_ABS_NC:
10602 case R_ARM_MOVT_ABS:
10603 case R_ARM_MOVW_PREL_NC:
10604 case R_ARM_MOVT_PREL:
10605 /* Until we properly support segment-base-relative addressing then
10606 we assume the segment base to be zero, as for the group relocations.
10607 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
10608 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
10609 case R_ARM_MOVW_BREL_NC:
10610 case R_ARM_MOVW_BREL:
10611 case R_ARM_MOVT_BREL:
10612 {
10613 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10614
10615 if (globals->use_rel)
10616 {
10617 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
10618 signed_addend = (addend ^ 0x8000) - 0x8000;
10619 }
10620
10621 value += signed_addend;
10622
10623 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
10624 value -= (input_section->output_section->vma
10625 + input_section->output_offset + rel->r_offset);
10626
10627 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
10628 return bfd_reloc_overflow;
10629
10630 if (branch_type == ST_BRANCH_TO_THUMB)
10631 value |= 1;
10632
10633 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
10634 || r_type == R_ARM_MOVT_BREL)
10635 value >>= 16;
10636
10637 insn &= 0xfff0f000;
10638 insn |= value & 0xfff;
10639 insn |= (value & 0xf000) << 4;
10640 bfd_put_32 (input_bfd, insn, hit_data);
10641 }
10642 return bfd_reloc_ok;
10643
10644 case R_ARM_THM_MOVW_ABS_NC:
10645 case R_ARM_THM_MOVT_ABS:
10646 case R_ARM_THM_MOVW_PREL_NC:
10647 case R_ARM_THM_MOVT_PREL:
10648 /* Until we properly support segment-base-relative addressing then
10649 we assume the segment base to be zero, as for the above relocations.
10650 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
10651 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
10652 as R_ARM_THM_MOVT_ABS. */
10653 case R_ARM_THM_MOVW_BREL_NC:
10654 case R_ARM_THM_MOVW_BREL:
10655 case R_ARM_THM_MOVT_BREL:
10656 {
10657 bfd_vma insn;
10658
10659 insn = bfd_get_16 (input_bfd, hit_data) << 16;
10660 insn |= bfd_get_16 (input_bfd, hit_data + 2);
10661
10662 if (globals->use_rel)
10663 {
10664 addend = ((insn >> 4) & 0xf000)
10665 | ((insn >> 15) & 0x0800)
10666 | ((insn >> 4) & 0x0700)
10667 | (insn & 0x00ff);
10668 signed_addend = (addend ^ 0x8000) - 0x8000;
10669 }
10670
10671 value += signed_addend;
10672
10673 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
10674 value -= (input_section->output_section->vma
10675 + input_section->output_offset + rel->r_offset);
10676
10677 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
10678 return bfd_reloc_overflow;
10679
10680 if (branch_type == ST_BRANCH_TO_THUMB)
10681 value |= 1;
10682
10683 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
10684 || r_type == R_ARM_THM_MOVT_BREL)
10685 value >>= 16;
10686
10687 insn &= 0xfbf08f00;
10688 insn |= (value & 0xf000) << 4;
10689 insn |= (value & 0x0800) << 15;
10690 insn |= (value & 0x0700) << 4;
10691 insn |= (value & 0x00ff);
10692
10693 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10694 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10695 }
10696 return bfd_reloc_ok;
10697
10698 case R_ARM_ALU_PC_G0_NC:
10699 case R_ARM_ALU_PC_G1_NC:
10700 case R_ARM_ALU_PC_G0:
10701 case R_ARM_ALU_PC_G1:
10702 case R_ARM_ALU_PC_G2:
10703 case R_ARM_ALU_SB_G0_NC:
10704 case R_ARM_ALU_SB_G1_NC:
10705 case R_ARM_ALU_SB_G0:
10706 case R_ARM_ALU_SB_G1:
10707 case R_ARM_ALU_SB_G2:
10708 {
10709 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10710 bfd_vma pc = input_section->output_section->vma
10711 + input_section->output_offset + rel->r_offset;
10712 /* sb is the origin of the *segment* containing the symbol. */
10713 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10714 bfd_vma residual;
10715 bfd_vma g_n;
10716 bfd_signed_vma signed_value;
10717 int group = 0;
10718
10719 /* Determine which group of bits to select. */
10720 switch (r_type)
10721 {
10722 case R_ARM_ALU_PC_G0_NC:
10723 case R_ARM_ALU_PC_G0:
10724 case R_ARM_ALU_SB_G0_NC:
10725 case R_ARM_ALU_SB_G0:
10726 group = 0;
10727 break;
10728
10729 case R_ARM_ALU_PC_G1_NC:
10730 case R_ARM_ALU_PC_G1:
10731 case R_ARM_ALU_SB_G1_NC:
10732 case R_ARM_ALU_SB_G1:
10733 group = 1;
10734 break;
10735
10736 case R_ARM_ALU_PC_G2:
10737 case R_ARM_ALU_SB_G2:
10738 group = 2;
10739 break;
10740
10741 default:
10742 abort ();
10743 }
10744
10745 /* If REL, extract the addend from the insn. If RELA, it will
10746 have already been fetched for us. */
10747 if (globals->use_rel)
10748 {
10749 int negative;
10750 bfd_vma constant = insn & 0xff;
10751 bfd_vma rotation = (insn & 0xf00) >> 8;
10752
10753 if (rotation == 0)
10754 signed_addend = constant;
10755 else
10756 {
10757 /* Compensate for the fact that in the instruction, the
10758 rotation is stored in multiples of 2 bits. */
10759 rotation *= 2;
10760
10761 /* Rotate "constant" right by "rotation" bits. */
10762 signed_addend = (constant >> rotation) |
10763 (constant << (8 * sizeof (bfd_vma) - rotation));
10764 }
10765
10766 /* Determine if the instruction is an ADD or a SUB.
10767 (For REL, this determines the sign of the addend.) */
10768 negative = identify_add_or_sub (insn);
10769 if (negative == 0)
10770 {
10771 (*_bfd_error_handler)
10772 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
10773 input_bfd, input_section,
10774 (long) rel->r_offset, howto->name);
10775 return bfd_reloc_overflow;
10776 }
10777
10778 signed_addend *= negative;
10779 }
10780
10781 /* Compute the value (X) to go in the place. */
10782 if (r_type == R_ARM_ALU_PC_G0_NC
10783 || r_type == R_ARM_ALU_PC_G1_NC
10784 || r_type == R_ARM_ALU_PC_G0
10785 || r_type == R_ARM_ALU_PC_G1
10786 || r_type == R_ARM_ALU_PC_G2)
10787 /* PC relative. */
10788 signed_value = value - pc + signed_addend;
10789 else
10790 /* Section base relative. */
10791 signed_value = value - sb + signed_addend;
10792
10793 /* If the target symbol is a Thumb function, then set the
10794 Thumb bit in the address. */
10795 if (branch_type == ST_BRANCH_TO_THUMB)
10796 signed_value |= 1;
10797
10798 /* Calculate the value of the relevant G_n, in encoded
10799 constant-with-rotation format. */
10800 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
10801 group, &residual);
10802
10803 /* Check for overflow if required. */
10804 if ((r_type == R_ARM_ALU_PC_G0
10805 || r_type == R_ARM_ALU_PC_G1
10806 || r_type == R_ARM_ALU_PC_G2
10807 || r_type == R_ARM_ALU_SB_G0
10808 || r_type == R_ARM_ALU_SB_G1
10809 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
10810 {
10811 (*_bfd_error_handler)
10812 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10813 input_bfd, input_section,
10814 (long) rel->r_offset, signed_value < 0 ? - signed_value : signed_value,
10815 howto->name);
10816 return bfd_reloc_overflow;
10817 }
10818
10819 /* Mask out the value and the ADD/SUB part of the opcode; take care
10820 not to destroy the S bit. */
10821 insn &= 0xff1ff000;
10822
10823 /* Set the opcode according to whether the value to go in the
10824 place is negative. */
10825 if (signed_value < 0)
10826 insn |= 1 << 22;
10827 else
10828 insn |= 1 << 23;
10829
10830 /* Encode the offset. */
10831 insn |= g_n;
10832
10833 bfd_put_32 (input_bfd, insn, hit_data);
10834 }
10835 return bfd_reloc_ok;
10836
10837 case R_ARM_LDR_PC_G0:
10838 case R_ARM_LDR_PC_G1:
10839 case R_ARM_LDR_PC_G2:
10840 case R_ARM_LDR_SB_G0:
10841 case R_ARM_LDR_SB_G1:
10842 case R_ARM_LDR_SB_G2:
10843 {
10844 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10845 bfd_vma pc = input_section->output_section->vma
10846 + input_section->output_offset + rel->r_offset;
10847 /* sb is the origin of the *segment* containing the symbol. */
10848 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10849 bfd_vma residual;
10850 bfd_signed_vma signed_value;
10851 int group = 0;
10852
10853 /* Determine which groups of bits to calculate. */
10854 switch (r_type)
10855 {
10856 case R_ARM_LDR_PC_G0:
10857 case R_ARM_LDR_SB_G0:
10858 group = 0;
10859 break;
10860
10861 case R_ARM_LDR_PC_G1:
10862 case R_ARM_LDR_SB_G1:
10863 group = 1;
10864 break;
10865
10866 case R_ARM_LDR_PC_G2:
10867 case R_ARM_LDR_SB_G2:
10868 group = 2;
10869 break;
10870
10871 default:
10872 abort ();
10873 }
10874
10875 /* If REL, extract the addend from the insn. If RELA, it will
10876 have already been fetched for us. */
10877 if (globals->use_rel)
10878 {
10879 int negative = (insn & (1 << 23)) ? 1 : -1;
10880 signed_addend = negative * (insn & 0xfff);
10881 }
10882
10883 /* Compute the value (X) to go in the place. */
10884 if (r_type == R_ARM_LDR_PC_G0
10885 || r_type == R_ARM_LDR_PC_G1
10886 || r_type == R_ARM_LDR_PC_G2)
10887 /* PC relative. */
10888 signed_value = value - pc + signed_addend;
10889 else
10890 /* Section base relative. */
10891 signed_value = value - sb + signed_addend;
10892
10893 /* Calculate the value of the relevant G_{n-1} to obtain
10894 the residual at that stage. */
10895 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
10896 group - 1, &residual);
10897
10898 /* Check for overflow. */
10899 if (residual >= 0x1000)
10900 {
10901 (*_bfd_error_handler)
10902 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10903 input_bfd, input_section,
10904 (long) rel->r_offset, labs (signed_value), howto->name);
10905 return bfd_reloc_overflow;
10906 }
10907
10908 /* Mask out the value and U bit. */
10909 insn &= 0xff7ff000;
10910
10911 /* Set the U bit if the value to go in the place is non-negative. */
10912 if (signed_value >= 0)
10913 insn |= 1 << 23;
10914
10915 /* Encode the offset. */
10916 insn |= residual;
10917
10918 bfd_put_32 (input_bfd, insn, hit_data);
10919 }
10920 return bfd_reloc_ok;
10921
10922 case R_ARM_LDRS_PC_G0:
10923 case R_ARM_LDRS_PC_G1:
10924 case R_ARM_LDRS_PC_G2:
10925 case R_ARM_LDRS_SB_G0:
10926 case R_ARM_LDRS_SB_G1:
10927 case R_ARM_LDRS_SB_G2:
10928 {
10929 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10930 bfd_vma pc = input_section->output_section->vma
10931 + input_section->output_offset + rel->r_offset;
10932 /* sb is the origin of the *segment* containing the symbol. */
10933 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10934 bfd_vma residual;
10935 bfd_signed_vma signed_value;
10936 int group = 0;
10937
10938 /* Determine which groups of bits to calculate. */
10939 switch (r_type)
10940 {
10941 case R_ARM_LDRS_PC_G0:
10942 case R_ARM_LDRS_SB_G0:
10943 group = 0;
10944 break;
10945
10946 case R_ARM_LDRS_PC_G1:
10947 case R_ARM_LDRS_SB_G1:
10948 group = 1;
10949 break;
10950
10951 case R_ARM_LDRS_PC_G2:
10952 case R_ARM_LDRS_SB_G2:
10953 group = 2;
10954 break;
10955
10956 default:
10957 abort ();
10958 }
10959
10960 /* If REL, extract the addend from the insn. If RELA, it will
10961 have already been fetched for us. */
10962 if (globals->use_rel)
10963 {
10964 int negative = (insn & (1 << 23)) ? 1 : -1;
10965 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
10966 }
10967
10968 /* Compute the value (X) to go in the place. */
10969 if (r_type == R_ARM_LDRS_PC_G0
10970 || r_type == R_ARM_LDRS_PC_G1
10971 || r_type == R_ARM_LDRS_PC_G2)
10972 /* PC relative. */
10973 signed_value = value - pc + signed_addend;
10974 else
10975 /* Section base relative. */
10976 signed_value = value - sb + signed_addend;
10977
10978 /* Calculate the value of the relevant G_{n-1} to obtain
10979 the residual at that stage. */
10980 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
10981 group - 1, &residual);
10982
10983 /* Check for overflow. */
10984 if (residual >= 0x100)
10985 {
10986 (*_bfd_error_handler)
10987 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10988 input_bfd, input_section,
10989 (long) rel->r_offset, labs (signed_value), howto->name);
10990 return bfd_reloc_overflow;
10991 }
10992
10993 /* Mask out the value and U bit. */
10994 insn &= 0xff7ff0f0;
10995
10996 /* Set the U bit if the value to go in the place is non-negative. */
10997 if (signed_value >= 0)
10998 insn |= 1 << 23;
10999
11000 /* Encode the offset. */
11001 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
11002
11003 bfd_put_32 (input_bfd, insn, hit_data);
11004 }
11005 return bfd_reloc_ok;
11006
11007 case R_ARM_LDC_PC_G0:
11008 case R_ARM_LDC_PC_G1:
11009 case R_ARM_LDC_PC_G2:
11010 case R_ARM_LDC_SB_G0:
11011 case R_ARM_LDC_SB_G1:
11012 case R_ARM_LDC_SB_G2:
11013 {
11014 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11015 bfd_vma pc = input_section->output_section->vma
11016 + input_section->output_offset + rel->r_offset;
11017 /* sb is the origin of the *segment* containing the symbol. */
11018 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11019 bfd_vma residual;
11020 bfd_signed_vma signed_value;
11021 int group = 0;
11022
11023 /* Determine which groups of bits to calculate. */
11024 switch (r_type)
11025 {
11026 case R_ARM_LDC_PC_G0:
11027 case R_ARM_LDC_SB_G0:
11028 group = 0;
11029 break;
11030
11031 case R_ARM_LDC_PC_G1:
11032 case R_ARM_LDC_SB_G1:
11033 group = 1;
11034 break;
11035
11036 case R_ARM_LDC_PC_G2:
11037 case R_ARM_LDC_SB_G2:
11038 group = 2;
11039 break;
11040
11041 default:
11042 abort ();
11043 }
11044
11045 /* If REL, extract the addend from the insn. If RELA, it will
11046 have already been fetched for us. */
11047 if (globals->use_rel)
11048 {
11049 int negative = (insn & (1 << 23)) ? 1 : -1;
11050 signed_addend = negative * ((insn & 0xff) << 2);
11051 }
11052
11053 /* Compute the value (X) to go in the place. */
11054 if (r_type == R_ARM_LDC_PC_G0
11055 || r_type == R_ARM_LDC_PC_G1
11056 || r_type == R_ARM_LDC_PC_G2)
11057 /* PC relative. */
11058 signed_value = value - pc + signed_addend;
11059 else
11060 /* Section base relative. */
11061 signed_value = value - sb + signed_addend;
11062
11063 /* Calculate the value of the relevant G_{n-1} to obtain
11064 the residual at that stage. */
11065 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11066 group - 1, &residual);
11067
11068 /* Check for overflow. (The absolute value to go in the place must be
11069 divisible by four and, after having been divided by four, must
11070 fit in eight bits.) */
11071 if ((residual & 0x3) != 0 || residual >= 0x400)
11072 {
11073 (*_bfd_error_handler)
11074 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11075 input_bfd, input_section,
11076 (long) rel->r_offset, labs (signed_value), howto->name);
11077 return bfd_reloc_overflow;
11078 }
11079
11080 /* Mask out the value and U bit. */
11081 insn &= 0xff7fff00;
11082
11083 /* Set the U bit if the value to go in the place is non-negative. */
11084 if (signed_value >= 0)
11085 insn |= 1 << 23;
11086
11087 /* Encode the offset. */
11088 insn |= residual >> 2;
11089
11090 bfd_put_32 (input_bfd, insn, hit_data);
11091 }
11092 return bfd_reloc_ok;
11093
11094 case R_ARM_THM_ALU_ABS_G0_NC:
11095 case R_ARM_THM_ALU_ABS_G1_NC:
11096 case R_ARM_THM_ALU_ABS_G2_NC:
11097 case R_ARM_THM_ALU_ABS_G3_NC:
11098 {
11099 const int shift_array[4] = {0, 8, 16, 24};
11100 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
11101 bfd_vma addr = value;
11102 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
11103
11104 /* Compute address. */
11105 if (globals->use_rel)
11106 signed_addend = insn & 0xff;
11107 addr += signed_addend;
11108 if (branch_type == ST_BRANCH_TO_THUMB)
11109 addr |= 1;
11110 /* Clean imm8 insn. */
11111 insn &= 0xff00;
11112 /* And update with correct part of address. */
11113 insn |= (addr >> shift) & 0xff;
11114 /* Update insn. */
11115 bfd_put_16 (input_bfd, insn, hit_data);
11116 }
11117
11118 *unresolved_reloc_p = FALSE;
11119 return bfd_reloc_ok;
11120
11121 default:
11122 return bfd_reloc_notsupported;
11123 }
11124 }
11125
11126 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
11127 static void
11128 arm_add_to_rel (bfd * abfd,
11129 bfd_byte * address,
11130 reloc_howto_type * howto,
11131 bfd_signed_vma increment)
11132 {
11133 bfd_signed_vma addend;
11134
11135 if (howto->type == R_ARM_THM_CALL
11136 || howto->type == R_ARM_THM_JUMP24)
11137 {
11138 int upper_insn, lower_insn;
11139 int upper, lower;
11140
11141 upper_insn = bfd_get_16 (abfd, address);
11142 lower_insn = bfd_get_16 (abfd, address + 2);
11143 upper = upper_insn & 0x7ff;
11144 lower = lower_insn & 0x7ff;
11145
11146 addend = (upper << 12) | (lower << 1);
11147 addend += increment;
11148 addend >>= 1;
11149
11150 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
11151 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
11152
11153 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
11154 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
11155 }
11156 else
11157 {
11158 bfd_vma contents;
11159
11160 contents = bfd_get_32 (abfd, address);
11161
11162 /* Get the (signed) value from the instruction. */
11163 addend = contents & howto->src_mask;
11164 if (addend & ((howto->src_mask + 1) >> 1))
11165 {
11166 bfd_signed_vma mask;
11167
11168 mask = -1;
11169 mask &= ~ howto->src_mask;
11170 addend |= mask;
11171 }
11172
11173 /* Add in the increment, (which is a byte value). */
11174 switch (howto->type)
11175 {
11176 default:
11177 addend += increment;
11178 break;
11179
11180 case R_ARM_PC24:
11181 case R_ARM_PLT32:
11182 case R_ARM_CALL:
11183 case R_ARM_JUMP24:
11184 addend <<= howto->size;
11185 addend += increment;
11186
11187 /* Should we check for overflow here ? */
11188
11189 /* Drop any undesired bits. */
11190 addend >>= howto->rightshift;
11191 break;
11192 }
11193
11194 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
11195
11196 bfd_put_32 (abfd, contents, address);
11197 }
11198 }
11199
11200 #define IS_ARM_TLS_RELOC(R_TYPE) \
11201 ((R_TYPE) == R_ARM_TLS_GD32 \
11202 || (R_TYPE) == R_ARM_TLS_LDO32 \
11203 || (R_TYPE) == R_ARM_TLS_LDM32 \
11204 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
11205 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
11206 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
11207 || (R_TYPE) == R_ARM_TLS_LE32 \
11208 || (R_TYPE) == R_ARM_TLS_IE32 \
11209 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
11210
11211 /* Specific set of relocations for the gnu tls dialect. */
11212 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
11213 ((R_TYPE) == R_ARM_TLS_GOTDESC \
11214 || (R_TYPE) == R_ARM_TLS_CALL \
11215 || (R_TYPE) == R_ARM_THM_TLS_CALL \
11216 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
11217 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
11218
11219 /* Relocate an ARM ELF section. */
11220
11221 static bfd_boolean
11222 elf32_arm_relocate_section (bfd * output_bfd,
11223 struct bfd_link_info * info,
11224 bfd * input_bfd,
11225 asection * input_section,
11226 bfd_byte * contents,
11227 Elf_Internal_Rela * relocs,
11228 Elf_Internal_Sym * local_syms,
11229 asection ** local_sections)
11230 {
11231 Elf_Internal_Shdr *symtab_hdr;
11232 struct elf_link_hash_entry **sym_hashes;
11233 Elf_Internal_Rela *rel;
11234 Elf_Internal_Rela *relend;
11235 const char *name;
11236 struct elf32_arm_link_hash_table * globals;
11237
11238 globals = elf32_arm_hash_table (info);
11239 if (globals == NULL)
11240 return FALSE;
11241
11242 symtab_hdr = & elf_symtab_hdr (input_bfd);
11243 sym_hashes = elf_sym_hashes (input_bfd);
11244
11245 rel = relocs;
11246 relend = relocs + input_section->reloc_count;
11247 for (; rel < relend; rel++)
11248 {
11249 int r_type;
11250 reloc_howto_type * howto;
11251 unsigned long r_symndx;
11252 Elf_Internal_Sym * sym;
11253 asection * sec;
11254 struct elf_link_hash_entry * h;
11255 bfd_vma relocation;
11256 bfd_reloc_status_type r;
11257 arelent bfd_reloc;
11258 char sym_type;
11259 bfd_boolean unresolved_reloc = FALSE;
11260 char *error_message = NULL;
11261
11262 r_symndx = ELF32_R_SYM (rel->r_info);
11263 r_type = ELF32_R_TYPE (rel->r_info);
11264 r_type = arm_real_reloc_type (globals, r_type);
11265
11266 if ( r_type == R_ARM_GNU_VTENTRY
11267 || r_type == R_ARM_GNU_VTINHERIT)
11268 continue;
11269
11270 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
11271 howto = bfd_reloc.howto;
11272
11273 h = NULL;
11274 sym = NULL;
11275 sec = NULL;
11276
11277 if (r_symndx < symtab_hdr->sh_info)
11278 {
11279 sym = local_syms + r_symndx;
11280 sym_type = ELF32_ST_TYPE (sym->st_info);
11281 sec = local_sections[r_symndx];
11282
11283 /* An object file might have a reference to a local
11284 undefined symbol. This is a daft object file, but we
11285 should at least do something about it. V4BX & NONE
11286 relocations do not use the symbol and are explicitly
11287 allowed to use the undefined symbol, so allow those.
11288 Likewise for relocations against STN_UNDEF. */
11289 if (r_type != R_ARM_V4BX
11290 && r_type != R_ARM_NONE
11291 && r_symndx != STN_UNDEF
11292 && bfd_is_und_section (sec)
11293 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
11294 {
11295 if (!info->callbacks->undefined_symbol
11296 (info, bfd_elf_string_from_elf_section
11297 (input_bfd, symtab_hdr->sh_link, sym->st_name),
11298 input_bfd, input_section,
11299 rel->r_offset, TRUE))
11300 return FALSE;
11301 }
11302
11303 if (globals->use_rel)
11304 {
11305 relocation = (sec->output_section->vma
11306 + sec->output_offset
11307 + sym->st_value);
11308 if (!bfd_link_relocatable (info)
11309 && (sec->flags & SEC_MERGE)
11310 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
11311 {
11312 asection *msec;
11313 bfd_vma addend, value;
11314
11315 switch (r_type)
11316 {
11317 case R_ARM_MOVW_ABS_NC:
11318 case R_ARM_MOVT_ABS:
11319 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
11320 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
11321 addend = (addend ^ 0x8000) - 0x8000;
11322 break;
11323
11324 case R_ARM_THM_MOVW_ABS_NC:
11325 case R_ARM_THM_MOVT_ABS:
11326 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
11327 << 16;
11328 value |= bfd_get_16 (input_bfd,
11329 contents + rel->r_offset + 2);
11330 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
11331 | ((value & 0x04000000) >> 15);
11332 addend = (addend ^ 0x8000) - 0x8000;
11333 break;
11334
11335 default:
11336 if (howto->rightshift
11337 || (howto->src_mask & (howto->src_mask + 1)))
11338 {
11339 (*_bfd_error_handler)
11340 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
11341 input_bfd, input_section,
11342 (long) rel->r_offset, howto->name);
11343 return FALSE;
11344 }
11345
11346 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
11347
11348 /* Get the (signed) value from the instruction. */
11349 addend = value & howto->src_mask;
11350 if (addend & ((howto->src_mask + 1) >> 1))
11351 {
11352 bfd_signed_vma mask;
11353
11354 mask = -1;
11355 mask &= ~ howto->src_mask;
11356 addend |= mask;
11357 }
11358 break;
11359 }
11360
11361 msec = sec;
11362 addend =
11363 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
11364 - relocation;
11365 addend += msec->output_section->vma + msec->output_offset;
11366
11367 /* Cases here must match those in the preceding
11368 switch statement. */
11369 switch (r_type)
11370 {
11371 case R_ARM_MOVW_ABS_NC:
11372 case R_ARM_MOVT_ABS:
11373 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
11374 | (addend & 0xfff);
11375 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
11376 break;
11377
11378 case R_ARM_THM_MOVW_ABS_NC:
11379 case R_ARM_THM_MOVT_ABS:
11380 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
11381 | (addend & 0xff) | ((addend & 0x0800) << 15);
11382 bfd_put_16 (input_bfd, value >> 16,
11383 contents + rel->r_offset);
11384 bfd_put_16 (input_bfd, value,
11385 contents + rel->r_offset + 2);
11386 break;
11387
11388 default:
11389 value = (value & ~ howto->dst_mask)
11390 | (addend & howto->dst_mask);
11391 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
11392 break;
11393 }
11394 }
11395 }
11396 else
11397 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
11398 }
11399 else
11400 {
11401 bfd_boolean warned, ignored;
11402
11403 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
11404 r_symndx, symtab_hdr, sym_hashes,
11405 h, sec, relocation,
11406 unresolved_reloc, warned, ignored);
11407
11408 sym_type = h->type;
11409 }
11410
11411 if (sec != NULL && discarded_section (sec))
11412 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
11413 rel, 1, relend, howto, 0, contents);
11414
11415 if (bfd_link_relocatable (info))
11416 {
11417 /* This is a relocatable link. We don't have to change
11418 anything, unless the reloc is against a section symbol,
11419 in which case we have to adjust according to where the
11420 section symbol winds up in the output section. */
11421 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
11422 {
11423 if (globals->use_rel)
11424 arm_add_to_rel (input_bfd, contents + rel->r_offset,
11425 howto, (bfd_signed_vma) sec->output_offset);
11426 else
11427 rel->r_addend += sec->output_offset;
11428 }
11429 continue;
11430 }
11431
11432 if (h != NULL)
11433 name = h->root.root.string;
11434 else
11435 {
11436 name = (bfd_elf_string_from_elf_section
11437 (input_bfd, symtab_hdr->sh_link, sym->st_name));
11438 if (name == NULL || *name == '\0')
11439 name = bfd_section_name (input_bfd, sec);
11440 }
11441
11442 if (r_symndx != STN_UNDEF
11443 && r_type != R_ARM_NONE
11444 && (h == NULL
11445 || h->root.type == bfd_link_hash_defined
11446 || h->root.type == bfd_link_hash_defweak)
11447 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
11448 {
11449 (*_bfd_error_handler)
11450 ((sym_type == STT_TLS
11451 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
11452 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
11453 input_bfd,
11454 input_section,
11455 (long) rel->r_offset,
11456 howto->name,
11457 name);
11458 }
11459
11460 /* We call elf32_arm_final_link_relocate unless we're completely
11461 done, i.e., the relaxation produced the final output we want,
11462 and we won't let anybody mess with it. Also, we have to do
11463 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
11464 both in relaxed and non-relaxed cases. */
11465 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
11466 || (IS_ARM_TLS_GNU_RELOC (r_type)
11467 && !((h ? elf32_arm_hash_entry (h)->tls_type :
11468 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
11469 & GOT_TLS_GDESC)))
11470 {
11471 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
11472 contents, rel, h == NULL);
11473 /* This may have been marked unresolved because it came from
11474 a shared library. But we've just dealt with that. */
11475 unresolved_reloc = 0;
11476 }
11477 else
11478 r = bfd_reloc_continue;
11479
11480 if (r == bfd_reloc_continue)
11481 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
11482 input_section, contents, rel,
11483 relocation, info, sec, name, sym_type,
11484 (h ? h->target_internal
11485 : ARM_SYM_BRANCH_TYPE (sym)), h,
11486 &unresolved_reloc, &error_message);
11487
11488 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
11489 because such sections are not SEC_ALLOC and thus ld.so will
11490 not process them. */
11491 if (unresolved_reloc
11492 && !((input_section->flags & SEC_DEBUGGING) != 0
11493 && h->def_dynamic)
11494 && _bfd_elf_section_offset (output_bfd, info, input_section,
11495 rel->r_offset) != (bfd_vma) -1)
11496 {
11497 (*_bfd_error_handler)
11498 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
11499 input_bfd,
11500 input_section,
11501 (long) rel->r_offset,
11502 howto->name,
11503 h->root.root.string);
11504 return FALSE;
11505 }
11506
11507 if (r != bfd_reloc_ok)
11508 {
11509 switch (r)
11510 {
11511 case bfd_reloc_overflow:
11512 /* If the overflowing reloc was to an undefined symbol,
11513 we have already printed one error message and there
11514 is no point complaining again. */
11515 if ((! h ||
11516 h->root.type != bfd_link_hash_undefined)
11517 && (!((*info->callbacks->reloc_overflow)
11518 (info, (h ? &h->root : NULL), name, howto->name,
11519 (bfd_vma) 0, input_bfd, input_section,
11520 rel->r_offset))))
11521 return FALSE;
11522 break;
11523
11524 case bfd_reloc_undefined:
11525 if (!((*info->callbacks->undefined_symbol)
11526 (info, name, input_bfd, input_section,
11527 rel->r_offset, TRUE)))
11528 return FALSE;
11529 break;
11530
11531 case bfd_reloc_outofrange:
11532 error_message = _("out of range");
11533 goto common_error;
11534
11535 case bfd_reloc_notsupported:
11536 error_message = _("unsupported relocation");
11537 goto common_error;
11538
11539 case bfd_reloc_dangerous:
11540 /* error_message should already be set. */
11541 goto common_error;
11542
11543 default:
11544 error_message = _("unknown error");
11545 /* Fall through. */
11546
11547 common_error:
11548 BFD_ASSERT (error_message != NULL);
11549 if (!((*info->callbacks->reloc_dangerous)
11550 (info, error_message, input_bfd, input_section,
11551 rel->r_offset)))
11552 return FALSE;
11553 break;
11554 }
11555 }
11556 }
11557
11558 return TRUE;
11559 }
11560
11561 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
11562 adds the edit to the start of the list. (The list must be built in order of
11563 ascending TINDEX: the function's callers are primarily responsible for
11564 maintaining that condition). */
11565
11566 static void
11567 add_unwind_table_edit (arm_unwind_table_edit **head,
11568 arm_unwind_table_edit **tail,
11569 arm_unwind_edit_type type,
11570 asection *linked_section,
11571 unsigned int tindex)
11572 {
11573 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
11574 xmalloc (sizeof (arm_unwind_table_edit));
11575
11576 new_edit->type = type;
11577 new_edit->linked_section = linked_section;
11578 new_edit->index = tindex;
11579
11580 if (tindex > 0)
11581 {
11582 new_edit->next = NULL;
11583
11584 if (*tail)
11585 (*tail)->next = new_edit;
11586
11587 (*tail) = new_edit;
11588
11589 if (!*head)
11590 (*head) = new_edit;
11591 }
11592 else
11593 {
11594 new_edit->next = *head;
11595
11596 if (!*tail)
11597 *tail = new_edit;
11598
11599 *head = new_edit;
11600 }
11601 }
11602
11603 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
11604
11605 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
11606 static void
11607 adjust_exidx_size(asection *exidx_sec, int adjust)
11608 {
11609 asection *out_sec;
11610
11611 if (!exidx_sec->rawsize)
11612 exidx_sec->rawsize = exidx_sec->size;
11613
11614 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
11615 out_sec = exidx_sec->output_section;
11616 /* Adjust size of output section. */
11617 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
11618 }
11619
11620 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
11621 static void
11622 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
11623 {
11624 struct _arm_elf_section_data *exidx_arm_data;
11625
11626 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
11627 add_unwind_table_edit (
11628 &exidx_arm_data->u.exidx.unwind_edit_list,
11629 &exidx_arm_data->u.exidx.unwind_edit_tail,
11630 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
11631
11632 exidx_arm_data->additional_reloc_count++;
11633
11634 adjust_exidx_size(exidx_sec, 8);
11635 }
11636
11637 /* Scan .ARM.exidx tables, and create a list describing edits which should be
11638 made to those tables, such that:
11639
11640 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
11641 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
11642 codes which have been inlined into the index).
11643
11644 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
11645
11646 The edits are applied when the tables are written
11647 (in elf32_arm_write_section). */
11648
11649 bfd_boolean
11650 elf32_arm_fix_exidx_coverage (asection **text_section_order,
11651 unsigned int num_text_sections,
11652 struct bfd_link_info *info,
11653 bfd_boolean merge_exidx_entries)
11654 {
11655 bfd *inp;
11656 unsigned int last_second_word = 0, i;
11657 asection *last_exidx_sec = NULL;
11658 asection *last_text_sec = NULL;
11659 int last_unwind_type = -1;
11660
11661 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
11662 text sections. */
11663 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
11664 {
11665 asection *sec;
11666
11667 for (sec = inp->sections; sec != NULL; sec = sec->next)
11668 {
11669 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
11670 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
11671
11672 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
11673 continue;
11674
11675 if (elf_sec->linked_to)
11676 {
11677 Elf_Internal_Shdr *linked_hdr
11678 = &elf_section_data (elf_sec->linked_to)->this_hdr;
11679 struct _arm_elf_section_data *linked_sec_arm_data
11680 = get_arm_elf_section_data (linked_hdr->bfd_section);
11681
11682 if (linked_sec_arm_data == NULL)
11683 continue;
11684
11685 /* Link this .ARM.exidx section back from the text section it
11686 describes. */
11687 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
11688 }
11689 }
11690 }
11691
11692 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
11693 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
11694 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
11695
11696 for (i = 0; i < num_text_sections; i++)
11697 {
11698 asection *sec = text_section_order[i];
11699 asection *exidx_sec;
11700 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
11701 struct _arm_elf_section_data *exidx_arm_data;
11702 bfd_byte *contents = NULL;
11703 int deleted_exidx_bytes = 0;
11704 bfd_vma j;
11705 arm_unwind_table_edit *unwind_edit_head = NULL;
11706 arm_unwind_table_edit *unwind_edit_tail = NULL;
11707 Elf_Internal_Shdr *hdr;
11708 bfd *ibfd;
11709
11710 if (arm_data == NULL)
11711 continue;
11712
11713 exidx_sec = arm_data->u.text.arm_exidx_sec;
11714 if (exidx_sec == NULL)
11715 {
11716 /* Section has no unwind data. */
11717 if (last_unwind_type == 0 || !last_exidx_sec)
11718 continue;
11719
11720 /* Ignore zero sized sections. */
11721 if (sec->size == 0)
11722 continue;
11723
11724 insert_cantunwind_after(last_text_sec, last_exidx_sec);
11725 last_unwind_type = 0;
11726 continue;
11727 }
11728
11729 /* Skip /DISCARD/ sections. */
11730 if (bfd_is_abs_section (exidx_sec->output_section))
11731 continue;
11732
11733 hdr = &elf_section_data (exidx_sec)->this_hdr;
11734 if (hdr->sh_type != SHT_ARM_EXIDX)
11735 continue;
11736
11737 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
11738 if (exidx_arm_data == NULL)
11739 continue;
11740
11741 ibfd = exidx_sec->owner;
11742
11743 if (hdr->contents != NULL)
11744 contents = hdr->contents;
11745 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
11746 /* An error? */
11747 continue;
11748
11749 if (last_unwind_type > 0)
11750 {
11751 unsigned int first_word = bfd_get_32 (ibfd, contents);
11752 /* Add cantunwind if first unwind item does not match section
11753 start. */
11754 if (first_word != sec->vma)
11755 {
11756 insert_cantunwind_after (last_text_sec, last_exidx_sec);
11757 last_unwind_type = 0;
11758 }
11759 }
11760
11761 for (j = 0; j < hdr->sh_size; j += 8)
11762 {
11763 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
11764 int unwind_type;
11765 int elide = 0;
11766
11767 /* An EXIDX_CANTUNWIND entry. */
11768 if (second_word == 1)
11769 {
11770 if (last_unwind_type == 0)
11771 elide = 1;
11772 unwind_type = 0;
11773 }
11774 /* Inlined unwinding data. Merge if equal to previous. */
11775 else if ((second_word & 0x80000000) != 0)
11776 {
11777 if (merge_exidx_entries
11778 && last_second_word == second_word && last_unwind_type == 1)
11779 elide = 1;
11780 unwind_type = 1;
11781 last_second_word = second_word;
11782 }
11783 /* Normal table entry. In theory we could merge these too,
11784 but duplicate entries are likely to be much less common. */
11785 else
11786 unwind_type = 2;
11787
11788 if (elide && !bfd_link_relocatable (info))
11789 {
11790 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
11791 DELETE_EXIDX_ENTRY, NULL, j / 8);
11792
11793 deleted_exidx_bytes += 8;
11794 }
11795
11796 last_unwind_type = unwind_type;
11797 }
11798
11799 /* Free contents if we allocated it ourselves. */
11800 if (contents != hdr->contents)
11801 free (contents);
11802
11803 /* Record edits to be applied later (in elf32_arm_write_section). */
11804 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
11805 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
11806
11807 if (deleted_exidx_bytes > 0)
11808 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
11809
11810 last_exidx_sec = exidx_sec;
11811 last_text_sec = sec;
11812 }
11813
11814 /* Add terminating CANTUNWIND entry. */
11815 if (!bfd_link_relocatable (info) && last_exidx_sec
11816 && last_unwind_type != 0)
11817 insert_cantunwind_after(last_text_sec, last_exidx_sec);
11818
11819 return TRUE;
11820 }
11821
11822 static bfd_boolean
11823 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
11824 bfd *ibfd, const char *name)
11825 {
11826 asection *sec, *osec;
11827
11828 sec = bfd_get_linker_section (ibfd, name);
11829 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
11830 return TRUE;
11831
11832 osec = sec->output_section;
11833 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
11834 return TRUE;
11835
11836 if (! bfd_set_section_contents (obfd, osec, sec->contents,
11837 sec->output_offset, sec->size))
11838 return FALSE;
11839
11840 return TRUE;
11841 }
11842
11843 static bfd_boolean
11844 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
11845 {
11846 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
11847 asection *sec, *osec;
11848
11849 if (globals == NULL)
11850 return FALSE;
11851
11852 /* Invoke the regular ELF backend linker to do all the work. */
11853 if (!bfd_elf_final_link (abfd, info))
11854 return FALSE;
11855
11856 /* Process stub sections (eg BE8 encoding, ...). */
11857 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
11858 unsigned int i;
11859 for (i=0; i<htab->top_id; i++)
11860 {
11861 sec = htab->stub_group[i].stub_sec;
11862 /* Only process it once, in its link_sec slot. */
11863 if (sec && i == htab->stub_group[i].link_sec->id)
11864 {
11865 osec = sec->output_section;
11866 elf32_arm_write_section (abfd, info, sec, sec->contents);
11867 if (! bfd_set_section_contents (abfd, osec, sec->contents,
11868 sec->output_offset, sec->size))
11869 return FALSE;
11870 }
11871 }
11872
11873 /* Write out any glue sections now that we have created all the
11874 stubs. */
11875 if (globals->bfd_of_glue_owner != NULL)
11876 {
11877 if (! elf32_arm_output_glue_section (info, abfd,
11878 globals->bfd_of_glue_owner,
11879 ARM2THUMB_GLUE_SECTION_NAME))
11880 return FALSE;
11881
11882 if (! elf32_arm_output_glue_section (info, abfd,
11883 globals->bfd_of_glue_owner,
11884 THUMB2ARM_GLUE_SECTION_NAME))
11885 return FALSE;
11886
11887 if (! elf32_arm_output_glue_section (info, abfd,
11888 globals->bfd_of_glue_owner,
11889 VFP11_ERRATUM_VENEER_SECTION_NAME))
11890 return FALSE;
11891
11892 if (! elf32_arm_output_glue_section (info, abfd,
11893 globals->bfd_of_glue_owner,
11894 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
11895 return FALSE;
11896
11897 if (! elf32_arm_output_glue_section (info, abfd,
11898 globals->bfd_of_glue_owner,
11899 ARM_BX_GLUE_SECTION_NAME))
11900 return FALSE;
11901 }
11902
11903 return TRUE;
11904 }
11905
11906 /* Return a best guess for the machine number based on the attributes. */
11907
11908 static unsigned int
11909 bfd_arm_get_mach_from_attributes (bfd * abfd)
11910 {
11911 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
11912
11913 switch (arch)
11914 {
11915 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
11916 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
11917 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
11918
11919 case TAG_CPU_ARCH_V5TE:
11920 {
11921 char * name;
11922
11923 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
11924 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
11925
11926 if (name)
11927 {
11928 if (strcmp (name, "IWMMXT2") == 0)
11929 return bfd_mach_arm_iWMMXt2;
11930
11931 if (strcmp (name, "IWMMXT") == 0)
11932 return bfd_mach_arm_iWMMXt;
11933
11934 if (strcmp (name, "XSCALE") == 0)
11935 {
11936 int wmmx;
11937
11938 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
11939 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
11940 switch (wmmx)
11941 {
11942 case 1: return bfd_mach_arm_iWMMXt;
11943 case 2: return bfd_mach_arm_iWMMXt2;
11944 default: return bfd_mach_arm_XScale;
11945 }
11946 }
11947 }
11948
11949 return bfd_mach_arm_5TE;
11950 }
11951
11952 default:
11953 return bfd_mach_arm_unknown;
11954 }
11955 }
11956
11957 /* Set the right machine number. */
11958
11959 static bfd_boolean
11960 elf32_arm_object_p (bfd *abfd)
11961 {
11962 unsigned int mach;
11963
11964 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
11965
11966 if (mach == bfd_mach_arm_unknown)
11967 {
11968 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
11969 mach = bfd_mach_arm_ep9312;
11970 else
11971 mach = bfd_arm_get_mach_from_attributes (abfd);
11972 }
11973
11974 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
11975 return TRUE;
11976 }
11977
11978 /* Function to keep ARM specific flags in the ELF header. */
11979
11980 static bfd_boolean
11981 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
11982 {
11983 if (elf_flags_init (abfd)
11984 && elf_elfheader (abfd)->e_flags != flags)
11985 {
11986 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
11987 {
11988 if (flags & EF_ARM_INTERWORK)
11989 (*_bfd_error_handler)
11990 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
11991 abfd);
11992 else
11993 _bfd_error_handler
11994 (_("Warning: Clearing the interworking flag of %B due to outside request"),
11995 abfd);
11996 }
11997 }
11998 else
11999 {
12000 elf_elfheader (abfd)->e_flags = flags;
12001 elf_flags_init (abfd) = TRUE;
12002 }
12003
12004 return TRUE;
12005 }
12006
12007 /* Copy backend specific data from one object module to another. */
12008
12009 static bfd_boolean
12010 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
12011 {
12012 flagword in_flags;
12013 flagword out_flags;
12014
12015 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
12016 return TRUE;
12017
12018 in_flags = elf_elfheader (ibfd)->e_flags;
12019 out_flags = elf_elfheader (obfd)->e_flags;
12020
12021 if (elf_flags_init (obfd)
12022 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
12023 && in_flags != out_flags)
12024 {
12025 /* Cannot mix APCS26 and APCS32 code. */
12026 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
12027 return FALSE;
12028
12029 /* Cannot mix float APCS and non-float APCS code. */
12030 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
12031 return FALSE;
12032
12033 /* If the src and dest have different interworking flags
12034 then turn off the interworking bit. */
12035 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
12036 {
12037 if (out_flags & EF_ARM_INTERWORK)
12038 _bfd_error_handler
12039 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
12040 obfd, ibfd);
12041
12042 in_flags &= ~EF_ARM_INTERWORK;
12043 }
12044
12045 /* Likewise for PIC, though don't warn for this case. */
12046 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
12047 in_flags &= ~EF_ARM_PIC;
12048 }
12049
12050 elf_elfheader (obfd)->e_flags = in_flags;
12051 elf_flags_init (obfd) = TRUE;
12052
12053 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
12054 }
12055
12056 /* Values for Tag_ABI_PCS_R9_use. */
12057 enum
12058 {
12059 AEABI_R9_V6,
12060 AEABI_R9_SB,
12061 AEABI_R9_TLS,
12062 AEABI_R9_unused
12063 };
12064
12065 /* Values for Tag_ABI_PCS_RW_data. */
12066 enum
12067 {
12068 AEABI_PCS_RW_data_absolute,
12069 AEABI_PCS_RW_data_PCrel,
12070 AEABI_PCS_RW_data_SBrel,
12071 AEABI_PCS_RW_data_unused
12072 };
12073
12074 /* Values for Tag_ABI_enum_size. */
12075 enum
12076 {
12077 AEABI_enum_unused,
12078 AEABI_enum_short,
12079 AEABI_enum_wide,
12080 AEABI_enum_forced_wide
12081 };
12082
12083 /* Determine whether an object attribute tag takes an integer, a
12084 string or both. */
12085
12086 static int
12087 elf32_arm_obj_attrs_arg_type (int tag)
12088 {
12089 if (tag == Tag_compatibility)
12090 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
12091 else if (tag == Tag_nodefaults)
12092 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
12093 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
12094 return ATTR_TYPE_FLAG_STR_VAL;
12095 else if (tag < 32)
12096 return ATTR_TYPE_FLAG_INT_VAL;
12097 else
12098 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
12099 }
12100
12101 /* The ABI defines that Tag_conformance should be emitted first, and that
12102 Tag_nodefaults should be second (if either is defined). This sets those
12103 two positions, and bumps up the position of all the remaining tags to
12104 compensate. */
12105 static int
12106 elf32_arm_obj_attrs_order (int num)
12107 {
12108 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
12109 return Tag_conformance;
12110 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
12111 return Tag_nodefaults;
12112 if ((num - 2) < Tag_nodefaults)
12113 return num - 2;
12114 if ((num - 1) < Tag_conformance)
12115 return num - 1;
12116 return num;
12117 }
12118
12119 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
12120 static bfd_boolean
12121 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
12122 {
12123 if ((tag & 127) < 64)
12124 {
12125 _bfd_error_handler
12126 (_("%B: Unknown mandatory EABI object attribute %d"),
12127 abfd, tag);
12128 bfd_set_error (bfd_error_bad_value);
12129 return FALSE;
12130 }
12131 else
12132 {
12133 _bfd_error_handler
12134 (_("Warning: %B: Unknown EABI object attribute %d"),
12135 abfd, tag);
12136 return TRUE;
12137 }
12138 }
12139
12140 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
12141 Returns -1 if no architecture could be read. */
12142
12143 static int
12144 get_secondary_compatible_arch (bfd *abfd)
12145 {
12146 obj_attribute *attr =
12147 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
12148
12149 /* Note: the tag and its argument below are uleb128 values, though
12150 currently-defined values fit in one byte for each. */
12151 if (attr->s
12152 && attr->s[0] == Tag_CPU_arch
12153 && (attr->s[1] & 128) != 128
12154 && attr->s[2] == 0)
12155 return attr->s[1];
12156
12157 /* This tag is "safely ignorable", so don't complain if it looks funny. */
12158 return -1;
12159 }
12160
12161 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
12162 The tag is removed if ARCH is -1. */
12163
12164 static void
12165 set_secondary_compatible_arch (bfd *abfd, int arch)
12166 {
12167 obj_attribute *attr =
12168 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
12169
12170 if (arch == -1)
12171 {
12172 attr->s = NULL;
12173 return;
12174 }
12175
12176 /* Note: the tag and its argument below are uleb128 values, though
12177 currently-defined values fit in one byte for each. */
12178 if (!attr->s)
12179 attr->s = (char *) bfd_alloc (abfd, 3);
12180 attr->s[0] = Tag_CPU_arch;
12181 attr->s[1] = arch;
12182 attr->s[2] = '\0';
12183 }
12184
12185 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
12186 into account. */
12187
12188 static int
12189 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
12190 int newtag, int secondary_compat)
12191 {
12192 #define T(X) TAG_CPU_ARCH_##X
12193 int tagl, tagh, result;
12194 const int v6t2[] =
12195 {
12196 T(V6T2), /* PRE_V4. */
12197 T(V6T2), /* V4. */
12198 T(V6T2), /* V4T. */
12199 T(V6T2), /* V5T. */
12200 T(V6T2), /* V5TE. */
12201 T(V6T2), /* V5TEJ. */
12202 T(V6T2), /* V6. */
12203 T(V7), /* V6KZ. */
12204 T(V6T2) /* V6T2. */
12205 };
12206 const int v6k[] =
12207 {
12208 T(V6K), /* PRE_V4. */
12209 T(V6K), /* V4. */
12210 T(V6K), /* V4T. */
12211 T(V6K), /* V5T. */
12212 T(V6K), /* V5TE. */
12213 T(V6K), /* V5TEJ. */
12214 T(V6K), /* V6. */
12215 T(V6KZ), /* V6KZ. */
12216 T(V7), /* V6T2. */
12217 T(V6K) /* V6K. */
12218 };
12219 const int v7[] =
12220 {
12221 T(V7), /* PRE_V4. */
12222 T(V7), /* V4. */
12223 T(V7), /* V4T. */
12224 T(V7), /* V5T. */
12225 T(V7), /* V5TE. */
12226 T(V7), /* V5TEJ. */
12227 T(V7), /* V6. */
12228 T(V7), /* V6KZ. */
12229 T(V7), /* V6T2. */
12230 T(V7), /* V6K. */
12231 T(V7) /* V7. */
12232 };
12233 const int v6_m[] =
12234 {
12235 -1, /* PRE_V4. */
12236 -1, /* V4. */
12237 T(V6K), /* V4T. */
12238 T(V6K), /* V5T. */
12239 T(V6K), /* V5TE. */
12240 T(V6K), /* V5TEJ. */
12241 T(V6K), /* V6. */
12242 T(V6KZ), /* V6KZ. */
12243 T(V7), /* V6T2. */
12244 T(V6K), /* V6K. */
12245 T(V7), /* V7. */
12246 T(V6_M) /* V6_M. */
12247 };
12248 const int v6s_m[] =
12249 {
12250 -1, /* PRE_V4. */
12251 -1, /* V4. */
12252 T(V6K), /* V4T. */
12253 T(V6K), /* V5T. */
12254 T(V6K), /* V5TE. */
12255 T(V6K), /* V5TEJ. */
12256 T(V6K), /* V6. */
12257 T(V6KZ), /* V6KZ. */
12258 T(V7), /* V6T2. */
12259 T(V6K), /* V6K. */
12260 T(V7), /* V7. */
12261 T(V6S_M), /* V6_M. */
12262 T(V6S_M) /* V6S_M. */
12263 };
12264 const int v7e_m[] =
12265 {
12266 -1, /* PRE_V4. */
12267 -1, /* V4. */
12268 T(V7E_M), /* V4T. */
12269 T(V7E_M), /* V5T. */
12270 T(V7E_M), /* V5TE. */
12271 T(V7E_M), /* V5TEJ. */
12272 T(V7E_M), /* V6. */
12273 T(V7E_M), /* V6KZ. */
12274 T(V7E_M), /* V6T2. */
12275 T(V7E_M), /* V6K. */
12276 T(V7E_M), /* V7. */
12277 T(V7E_M), /* V6_M. */
12278 T(V7E_M), /* V6S_M. */
12279 T(V7E_M) /* V7E_M. */
12280 };
12281 const int v8[] =
12282 {
12283 T(V8), /* PRE_V4. */
12284 T(V8), /* V4. */
12285 T(V8), /* V4T. */
12286 T(V8), /* V5T. */
12287 T(V8), /* V5TE. */
12288 T(V8), /* V5TEJ. */
12289 T(V8), /* V6. */
12290 T(V8), /* V6KZ. */
12291 T(V8), /* V6T2. */
12292 T(V8), /* V6K. */
12293 T(V8), /* V7. */
12294 T(V8), /* V6_M. */
12295 T(V8), /* V6S_M. */
12296 T(V8), /* V7E_M. */
12297 T(V8) /* V8. */
12298 };
12299 const int v8m_baseline[] =
12300 {
12301 -1, /* PRE_V4. */
12302 -1, /* V4. */
12303 -1, /* V4T. */
12304 -1, /* V5T. */
12305 -1, /* V5TE. */
12306 -1, /* V5TEJ. */
12307 -1, /* V6. */
12308 -1, /* V6KZ. */
12309 -1, /* V6T2. */
12310 -1, /* V6K. */
12311 -1, /* V7. */
12312 T(V8M_BASE), /* V6_M. */
12313 T(V8M_BASE), /* V6S_M. */
12314 -1, /* V7E_M. */
12315 -1, /* V8. */
12316 -1,
12317 T(V8M_BASE) /* V8-M BASELINE. */
12318 };
12319 const int v8m_mainline[] =
12320 {
12321 -1, /* PRE_V4. */
12322 -1, /* V4. */
12323 -1, /* V4T. */
12324 -1, /* V5T. */
12325 -1, /* V5TE. */
12326 -1, /* V5TEJ. */
12327 -1, /* V6. */
12328 -1, /* V6KZ. */
12329 -1, /* V6T2. */
12330 -1, /* V6K. */
12331 T(V8M_MAIN), /* V7. */
12332 T(V8M_MAIN), /* V6_M. */
12333 T(V8M_MAIN), /* V6S_M. */
12334 T(V8M_MAIN), /* V7E_M. */
12335 -1, /* V8. */
12336 -1,
12337 T(V8M_MAIN), /* V8-M BASELINE. */
12338 T(V8M_MAIN) /* V8-M MAINLINE. */
12339 };
12340 const int v4t_plus_v6_m[] =
12341 {
12342 -1, /* PRE_V4. */
12343 -1, /* V4. */
12344 T(V4T), /* V4T. */
12345 T(V5T), /* V5T. */
12346 T(V5TE), /* V5TE. */
12347 T(V5TEJ), /* V5TEJ. */
12348 T(V6), /* V6. */
12349 T(V6KZ), /* V6KZ. */
12350 T(V6T2), /* V6T2. */
12351 T(V6K), /* V6K. */
12352 T(V7), /* V7. */
12353 T(V6_M), /* V6_M. */
12354 T(V6S_M), /* V6S_M. */
12355 T(V7E_M), /* V7E_M. */
12356 T(V8), /* V8. */
12357 -1, /* Unused. */
12358 T(V8M_BASE), /* V8-M BASELINE. */
12359 T(V8M_MAIN), /* V8-M MAINLINE. */
12360 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
12361 };
12362 const int *comb[] =
12363 {
12364 v6t2,
12365 v6k,
12366 v7,
12367 v6_m,
12368 v6s_m,
12369 v7e_m,
12370 v8,
12371 NULL,
12372 v8m_baseline,
12373 v8m_mainline,
12374 /* Pseudo-architecture. */
12375 v4t_plus_v6_m
12376 };
12377
12378 /* Check we've not got a higher architecture than we know about. */
12379
12380 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
12381 {
12382 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
12383 return -1;
12384 }
12385
12386 /* Override old tag if we have a Tag_also_compatible_with on the output. */
12387
12388 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
12389 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
12390 oldtag = T(V4T_PLUS_V6_M);
12391
12392 /* And override the new tag if we have a Tag_also_compatible_with on the
12393 input. */
12394
12395 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
12396 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
12397 newtag = T(V4T_PLUS_V6_M);
12398
12399 tagl = (oldtag < newtag) ? oldtag : newtag;
12400 result = tagh = (oldtag > newtag) ? oldtag : newtag;
12401
12402 /* Architectures before V6KZ add features monotonically. */
12403 if (tagh <= TAG_CPU_ARCH_V6KZ)
12404 return result;
12405
12406 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
12407
12408 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
12409 as the canonical version. */
12410 if (result == T(V4T_PLUS_V6_M))
12411 {
12412 result = T(V4T);
12413 *secondary_compat_out = T(V6_M);
12414 }
12415 else
12416 *secondary_compat_out = -1;
12417
12418 if (result == -1)
12419 {
12420 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
12421 ibfd, oldtag, newtag);
12422 return -1;
12423 }
12424
12425 return result;
12426 #undef T
12427 }
12428
12429 /* Query attributes object to see if integer divide instructions may be
12430 present in an object. */
12431 static bfd_boolean
12432 elf32_arm_attributes_accept_div (const obj_attribute *attr)
12433 {
12434 int arch = attr[Tag_CPU_arch].i;
12435 int profile = attr[Tag_CPU_arch_profile].i;
12436
12437 switch (attr[Tag_DIV_use].i)
12438 {
12439 case 0:
12440 /* Integer divide allowed if instruction contained in archetecture. */
12441 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
12442 return TRUE;
12443 else if (arch >= TAG_CPU_ARCH_V7E_M)
12444 return TRUE;
12445 else
12446 return FALSE;
12447
12448 case 1:
12449 /* Integer divide explicitly prohibited. */
12450 return FALSE;
12451
12452 default:
12453 /* Unrecognised case - treat as allowing divide everywhere. */
12454 case 2:
12455 /* Integer divide allowed in ARM state. */
12456 return TRUE;
12457 }
12458 }
12459
12460 /* Query attributes object to see if integer divide instructions are
12461 forbidden to be in the object. This is not the inverse of
12462 elf32_arm_attributes_accept_div. */
12463 static bfd_boolean
12464 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
12465 {
12466 return attr[Tag_DIV_use].i == 1;
12467 }
12468
12469 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
12470 are conflicting attributes. */
12471
12472 static bfd_boolean
12473 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
12474 {
12475 obj_attribute *in_attr;
12476 obj_attribute *out_attr;
12477 /* Some tags have 0 = don't care, 1 = strong requirement,
12478 2 = weak requirement. */
12479 static const int order_021[3] = {0, 2, 1};
12480 int i;
12481 bfd_boolean result = TRUE;
12482 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
12483
12484 /* Skip the linker stubs file. This preserves previous behavior
12485 of accepting unknown attributes in the first input file - but
12486 is that a bug? */
12487 if (ibfd->flags & BFD_LINKER_CREATED)
12488 return TRUE;
12489
12490 /* Skip any input that hasn't attribute section.
12491 This enables to link object files without attribute section with
12492 any others. */
12493 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
12494 return TRUE;
12495
12496 if (!elf_known_obj_attributes_proc (obfd)[0].i)
12497 {
12498 /* This is the first object. Copy the attributes. */
12499 _bfd_elf_copy_obj_attributes (ibfd, obfd);
12500
12501 out_attr = elf_known_obj_attributes_proc (obfd);
12502
12503 /* Use the Tag_null value to indicate the attributes have been
12504 initialized. */
12505 out_attr[0].i = 1;
12506
12507 /* We do not output objects with Tag_MPextension_use_legacy - we move
12508 the attribute's value to Tag_MPextension_use. */
12509 if (out_attr[Tag_MPextension_use_legacy].i != 0)
12510 {
12511 if (out_attr[Tag_MPextension_use].i != 0
12512 && out_attr[Tag_MPextension_use_legacy].i
12513 != out_attr[Tag_MPextension_use].i)
12514 {
12515 _bfd_error_handler
12516 (_("Error: %B has both the current and legacy "
12517 "Tag_MPextension_use attributes"), ibfd);
12518 result = FALSE;
12519 }
12520
12521 out_attr[Tag_MPextension_use] =
12522 out_attr[Tag_MPextension_use_legacy];
12523 out_attr[Tag_MPextension_use_legacy].type = 0;
12524 out_attr[Tag_MPextension_use_legacy].i = 0;
12525 }
12526
12527 return result;
12528 }
12529
12530 in_attr = elf_known_obj_attributes_proc (ibfd);
12531 out_attr = elf_known_obj_attributes_proc (obfd);
12532 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
12533 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
12534 {
12535 /* Ignore mismatches if the object doesn't use floating point or is
12536 floating point ABI independent. */
12537 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
12538 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
12539 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
12540 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
12541 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
12542 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
12543 {
12544 _bfd_error_handler
12545 (_("error: %B uses VFP register arguments, %B does not"),
12546 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
12547 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
12548 result = FALSE;
12549 }
12550 }
12551
12552 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
12553 {
12554 /* Merge this attribute with existing attributes. */
12555 switch (i)
12556 {
12557 case Tag_CPU_raw_name:
12558 case Tag_CPU_name:
12559 /* These are merged after Tag_CPU_arch. */
12560 break;
12561
12562 case Tag_ABI_optimization_goals:
12563 case Tag_ABI_FP_optimization_goals:
12564 /* Use the first value seen. */
12565 break;
12566
12567 case Tag_CPU_arch:
12568 {
12569 int secondary_compat = -1, secondary_compat_out = -1;
12570 unsigned int saved_out_attr = out_attr[i].i;
12571 int arch_attr;
12572 static const char *name_table[] =
12573 {
12574 /* These aren't real CPU names, but we can't guess
12575 that from the architecture version alone. */
12576 "Pre v4",
12577 "ARM v4",
12578 "ARM v4T",
12579 "ARM v5T",
12580 "ARM v5TE",
12581 "ARM v5TEJ",
12582 "ARM v6",
12583 "ARM v6KZ",
12584 "ARM v6T2",
12585 "ARM v6K",
12586 "ARM v7",
12587 "ARM v6-M",
12588 "ARM v6S-M",
12589 "ARM v8",
12590 "",
12591 "ARM v8-M.baseline",
12592 "ARM v8-M.mainline",
12593 };
12594
12595 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
12596 secondary_compat = get_secondary_compatible_arch (ibfd);
12597 secondary_compat_out = get_secondary_compatible_arch (obfd);
12598 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
12599 &secondary_compat_out,
12600 in_attr[i].i,
12601 secondary_compat);
12602
12603 /* Return with error if failed to merge. */
12604 if (arch_attr == -1)
12605 return FALSE;
12606
12607 out_attr[i].i = arch_attr;
12608
12609 set_secondary_compatible_arch (obfd, secondary_compat_out);
12610
12611 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
12612 if (out_attr[i].i == saved_out_attr)
12613 ; /* Leave the names alone. */
12614 else if (out_attr[i].i == in_attr[i].i)
12615 {
12616 /* The output architecture has been changed to match the
12617 input architecture. Use the input names. */
12618 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
12619 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
12620 : NULL;
12621 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
12622 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
12623 : NULL;
12624 }
12625 else
12626 {
12627 out_attr[Tag_CPU_name].s = NULL;
12628 out_attr[Tag_CPU_raw_name].s = NULL;
12629 }
12630
12631 /* If we still don't have a value for Tag_CPU_name,
12632 make one up now. Tag_CPU_raw_name remains blank. */
12633 if (out_attr[Tag_CPU_name].s == NULL
12634 && out_attr[i].i < ARRAY_SIZE (name_table))
12635 out_attr[Tag_CPU_name].s =
12636 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
12637 }
12638 break;
12639
12640 case Tag_ARM_ISA_use:
12641 case Tag_THUMB_ISA_use:
12642 case Tag_WMMX_arch:
12643 case Tag_Advanced_SIMD_arch:
12644 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
12645 case Tag_ABI_FP_rounding:
12646 case Tag_ABI_FP_exceptions:
12647 case Tag_ABI_FP_user_exceptions:
12648 case Tag_ABI_FP_number_model:
12649 case Tag_FP_HP_extension:
12650 case Tag_CPU_unaligned_access:
12651 case Tag_T2EE_use:
12652 case Tag_MPextension_use:
12653 /* Use the largest value specified. */
12654 if (in_attr[i].i > out_attr[i].i)
12655 out_attr[i].i = in_attr[i].i;
12656 break;
12657
12658 case Tag_ABI_align_preserved:
12659 case Tag_ABI_PCS_RO_data:
12660 /* Use the smallest value specified. */
12661 if (in_attr[i].i < out_attr[i].i)
12662 out_attr[i].i = in_attr[i].i;
12663 break;
12664
12665 case Tag_ABI_align_needed:
12666 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
12667 && (in_attr[Tag_ABI_align_preserved].i == 0
12668 || out_attr[Tag_ABI_align_preserved].i == 0))
12669 {
12670 /* This error message should be enabled once all non-conformant
12671 binaries in the toolchain have had the attributes set
12672 properly.
12673 _bfd_error_handler
12674 (_("error: %B: 8-byte data alignment conflicts with %B"),
12675 obfd, ibfd);
12676 result = FALSE; */
12677 }
12678 /* Fall through. */
12679 case Tag_ABI_FP_denormal:
12680 case Tag_ABI_PCS_GOT_use:
12681 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
12682 value if greater than 2 (for future-proofing). */
12683 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
12684 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
12685 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
12686 out_attr[i].i = in_attr[i].i;
12687 break;
12688
12689 case Tag_Virtualization_use:
12690 /* The virtualization tag effectively stores two bits of
12691 information: the intended use of TrustZone (in bit 0), and the
12692 intended use of Virtualization (in bit 1). */
12693 if (out_attr[i].i == 0)
12694 out_attr[i].i = in_attr[i].i;
12695 else if (in_attr[i].i != 0
12696 && in_attr[i].i != out_attr[i].i)
12697 {
12698 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
12699 out_attr[i].i = 3;
12700 else
12701 {
12702 _bfd_error_handler
12703 (_("error: %B: unable to merge virtualization attributes "
12704 "with %B"),
12705 obfd, ibfd);
12706 result = FALSE;
12707 }
12708 }
12709 break;
12710
12711 case Tag_CPU_arch_profile:
12712 if (out_attr[i].i != in_attr[i].i)
12713 {
12714 /* 0 will merge with anything.
12715 'A' and 'S' merge to 'A'.
12716 'R' and 'S' merge to 'R'.
12717 'M' and 'A|R|S' is an error. */
12718 if (out_attr[i].i == 0
12719 || (out_attr[i].i == 'S'
12720 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
12721 out_attr[i].i = in_attr[i].i;
12722 else if (in_attr[i].i == 0
12723 || (in_attr[i].i == 'S'
12724 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
12725 ; /* Do nothing. */
12726 else
12727 {
12728 _bfd_error_handler
12729 (_("error: %B: Conflicting architecture profiles %c/%c"),
12730 ibfd,
12731 in_attr[i].i ? in_attr[i].i : '0',
12732 out_attr[i].i ? out_attr[i].i : '0');
12733 result = FALSE;
12734 }
12735 }
12736 break;
12737 case Tag_FP_arch:
12738 {
12739 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
12740 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
12741 when it's 0. It might mean absence of FP hardware if
12742 Tag_FP_arch is zero. */
12743
12744 #define VFP_VERSION_COUNT 9
12745 static const struct
12746 {
12747 int ver;
12748 int regs;
12749 } vfp_versions[VFP_VERSION_COUNT] =
12750 {
12751 {0, 0},
12752 {1, 16},
12753 {2, 16},
12754 {3, 32},
12755 {3, 16},
12756 {4, 32},
12757 {4, 16},
12758 {8, 32},
12759 {8, 16}
12760 };
12761 int ver;
12762 int regs;
12763 int newval;
12764
12765 /* If the output has no requirement about FP hardware,
12766 follow the requirement of the input. */
12767 if (out_attr[i].i == 0)
12768 {
12769 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
12770 out_attr[i].i = in_attr[i].i;
12771 out_attr[Tag_ABI_HardFP_use].i
12772 = in_attr[Tag_ABI_HardFP_use].i;
12773 break;
12774 }
12775 /* If the input has no requirement about FP hardware, do
12776 nothing. */
12777 else if (in_attr[i].i == 0)
12778 {
12779 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
12780 break;
12781 }
12782
12783 /* Both the input and the output have nonzero Tag_FP_arch.
12784 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
12785
12786 /* If both the input and the output have zero Tag_ABI_HardFP_use,
12787 do nothing. */
12788 if (in_attr[Tag_ABI_HardFP_use].i == 0
12789 && out_attr[Tag_ABI_HardFP_use].i == 0)
12790 ;
12791 /* If the input and the output have different Tag_ABI_HardFP_use,
12792 the combination of them is 0 (implied by Tag_FP_arch). */
12793 else if (in_attr[Tag_ABI_HardFP_use].i
12794 != out_attr[Tag_ABI_HardFP_use].i)
12795 out_attr[Tag_ABI_HardFP_use].i = 0;
12796
12797 /* Now we can handle Tag_FP_arch. */
12798
12799 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
12800 pick the biggest. */
12801 if (in_attr[i].i >= VFP_VERSION_COUNT
12802 && in_attr[i].i > out_attr[i].i)
12803 {
12804 out_attr[i] = in_attr[i];
12805 break;
12806 }
12807 /* The output uses the superset of input features
12808 (ISA version) and registers. */
12809 ver = vfp_versions[in_attr[i].i].ver;
12810 if (ver < vfp_versions[out_attr[i].i].ver)
12811 ver = vfp_versions[out_attr[i].i].ver;
12812 regs = vfp_versions[in_attr[i].i].regs;
12813 if (regs < vfp_versions[out_attr[i].i].regs)
12814 regs = vfp_versions[out_attr[i].i].regs;
12815 /* This assumes all possible supersets are also a valid
12816 options. */
12817 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
12818 {
12819 if (regs == vfp_versions[newval].regs
12820 && ver == vfp_versions[newval].ver)
12821 break;
12822 }
12823 out_attr[i].i = newval;
12824 }
12825 break;
12826 case Tag_PCS_config:
12827 if (out_attr[i].i == 0)
12828 out_attr[i].i = in_attr[i].i;
12829 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
12830 {
12831 /* It's sometimes ok to mix different configs, so this is only
12832 a warning. */
12833 _bfd_error_handler
12834 (_("Warning: %B: Conflicting platform configuration"), ibfd);
12835 }
12836 break;
12837 case Tag_ABI_PCS_R9_use:
12838 if (in_attr[i].i != out_attr[i].i
12839 && out_attr[i].i != AEABI_R9_unused
12840 && in_attr[i].i != AEABI_R9_unused)
12841 {
12842 _bfd_error_handler
12843 (_("error: %B: Conflicting use of R9"), ibfd);
12844 result = FALSE;
12845 }
12846 if (out_attr[i].i == AEABI_R9_unused)
12847 out_attr[i].i = in_attr[i].i;
12848 break;
12849 case Tag_ABI_PCS_RW_data:
12850 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
12851 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
12852 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
12853 {
12854 _bfd_error_handler
12855 (_("error: %B: SB relative addressing conflicts with use of R9"),
12856 ibfd);
12857 result = FALSE;
12858 }
12859 /* Use the smallest value specified. */
12860 if (in_attr[i].i < out_attr[i].i)
12861 out_attr[i].i = in_attr[i].i;
12862 break;
12863 case Tag_ABI_PCS_wchar_t:
12864 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
12865 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
12866 {
12867 _bfd_error_handler
12868 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
12869 ibfd, in_attr[i].i, out_attr[i].i);
12870 }
12871 else if (in_attr[i].i && !out_attr[i].i)
12872 out_attr[i].i = in_attr[i].i;
12873 break;
12874 case Tag_ABI_enum_size:
12875 if (in_attr[i].i != AEABI_enum_unused)
12876 {
12877 if (out_attr[i].i == AEABI_enum_unused
12878 || out_attr[i].i == AEABI_enum_forced_wide)
12879 {
12880 /* The existing object is compatible with anything.
12881 Use whatever requirements the new object has. */
12882 out_attr[i].i = in_attr[i].i;
12883 }
12884 else if (in_attr[i].i != AEABI_enum_forced_wide
12885 && out_attr[i].i != in_attr[i].i
12886 && !elf_arm_tdata (obfd)->no_enum_size_warning)
12887 {
12888 static const char *aeabi_enum_names[] =
12889 { "", "variable-size", "32-bit", "" };
12890 const char *in_name =
12891 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
12892 ? aeabi_enum_names[in_attr[i].i]
12893 : "<unknown>";
12894 const char *out_name =
12895 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
12896 ? aeabi_enum_names[out_attr[i].i]
12897 : "<unknown>";
12898 _bfd_error_handler
12899 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
12900 ibfd, in_name, out_name);
12901 }
12902 }
12903 break;
12904 case Tag_ABI_VFP_args:
12905 /* Aready done. */
12906 break;
12907 case Tag_ABI_WMMX_args:
12908 if (in_attr[i].i != out_attr[i].i)
12909 {
12910 _bfd_error_handler
12911 (_("error: %B uses iWMMXt register arguments, %B does not"),
12912 ibfd, obfd);
12913 result = FALSE;
12914 }
12915 break;
12916 case Tag_compatibility:
12917 /* Merged in target-independent code. */
12918 break;
12919 case Tag_ABI_HardFP_use:
12920 /* This is handled along with Tag_FP_arch. */
12921 break;
12922 case Tag_ABI_FP_16bit_format:
12923 if (in_attr[i].i != 0 && out_attr[i].i != 0)
12924 {
12925 if (in_attr[i].i != out_attr[i].i)
12926 {
12927 _bfd_error_handler
12928 (_("error: fp16 format mismatch between %B and %B"),
12929 ibfd, obfd);
12930 result = FALSE;
12931 }
12932 }
12933 if (in_attr[i].i != 0)
12934 out_attr[i].i = in_attr[i].i;
12935 break;
12936
12937 case Tag_DIV_use:
12938 /* A value of zero on input means that the divide instruction may
12939 be used if available in the base architecture as specified via
12940 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
12941 the user did not want divide instructions. A value of 2
12942 explicitly means that divide instructions were allowed in ARM
12943 and Thumb state. */
12944 if (in_attr[i].i == out_attr[i].i)
12945 /* Do nothing. */ ;
12946 else if (elf32_arm_attributes_forbid_div (in_attr)
12947 && !elf32_arm_attributes_accept_div (out_attr))
12948 out_attr[i].i = 1;
12949 else if (elf32_arm_attributes_forbid_div (out_attr)
12950 && elf32_arm_attributes_accept_div (in_attr))
12951 out_attr[i].i = in_attr[i].i;
12952 else if (in_attr[i].i == 2)
12953 out_attr[i].i = in_attr[i].i;
12954 break;
12955
12956 case Tag_MPextension_use_legacy:
12957 /* We don't output objects with Tag_MPextension_use_legacy - we
12958 move the value to Tag_MPextension_use. */
12959 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
12960 {
12961 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
12962 {
12963 _bfd_error_handler
12964 (_("%B has has both the current and legacy "
12965 "Tag_MPextension_use attributes"),
12966 ibfd);
12967 result = FALSE;
12968 }
12969 }
12970
12971 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
12972 out_attr[Tag_MPextension_use] = in_attr[i];
12973
12974 break;
12975
12976 case Tag_nodefaults:
12977 /* This tag is set if it exists, but the value is unused (and is
12978 typically zero). We don't actually need to do anything here -
12979 the merge happens automatically when the type flags are merged
12980 below. */
12981 break;
12982 case Tag_also_compatible_with:
12983 /* Already done in Tag_CPU_arch. */
12984 break;
12985 case Tag_conformance:
12986 /* Keep the attribute if it matches. Throw it away otherwise.
12987 No attribute means no claim to conform. */
12988 if (!in_attr[i].s || !out_attr[i].s
12989 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
12990 out_attr[i].s = NULL;
12991 break;
12992
12993 default:
12994 result
12995 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
12996 }
12997
12998 /* If out_attr was copied from in_attr then it won't have a type yet. */
12999 if (in_attr[i].type && !out_attr[i].type)
13000 out_attr[i].type = in_attr[i].type;
13001 }
13002
13003 /* Merge Tag_compatibility attributes and any common GNU ones. */
13004 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
13005 return FALSE;
13006
13007 /* Check for any attributes not known on ARM. */
13008 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
13009
13010 return result;
13011 }
13012
13013
13014 /* Return TRUE if the two EABI versions are incompatible. */
13015
13016 static bfd_boolean
13017 elf32_arm_versions_compatible (unsigned iver, unsigned over)
13018 {
13019 /* v4 and v5 are the same spec before and after it was released,
13020 so allow mixing them. */
13021 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
13022 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
13023 return TRUE;
13024
13025 return (iver == over);
13026 }
13027
13028 /* Merge backend specific data from an object file to the output
13029 object file when linking. */
13030
13031 static bfd_boolean
13032 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
13033
13034 /* Display the flags field. */
13035
13036 static bfd_boolean
13037 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
13038 {
13039 FILE * file = (FILE *) ptr;
13040 unsigned long flags;
13041
13042 BFD_ASSERT (abfd != NULL && ptr != NULL);
13043
13044 /* Print normal ELF private data. */
13045 _bfd_elf_print_private_bfd_data (abfd, ptr);
13046
13047 flags = elf_elfheader (abfd)->e_flags;
13048 /* Ignore init flag - it may not be set, despite the flags field
13049 containing valid data. */
13050
13051 /* xgettext:c-format */
13052 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
13053
13054 switch (EF_ARM_EABI_VERSION (flags))
13055 {
13056 case EF_ARM_EABI_UNKNOWN:
13057 /* The following flag bits are GNU extensions and not part of the
13058 official ARM ELF extended ABI. Hence they are only decoded if
13059 the EABI version is not set. */
13060 if (flags & EF_ARM_INTERWORK)
13061 fprintf (file, _(" [interworking enabled]"));
13062
13063 if (flags & EF_ARM_APCS_26)
13064 fprintf (file, " [APCS-26]");
13065 else
13066 fprintf (file, " [APCS-32]");
13067
13068 if (flags & EF_ARM_VFP_FLOAT)
13069 fprintf (file, _(" [VFP float format]"));
13070 else if (flags & EF_ARM_MAVERICK_FLOAT)
13071 fprintf (file, _(" [Maverick float format]"));
13072 else
13073 fprintf (file, _(" [FPA float format]"));
13074
13075 if (flags & EF_ARM_APCS_FLOAT)
13076 fprintf (file, _(" [floats passed in float registers]"));
13077
13078 if (flags & EF_ARM_PIC)
13079 fprintf (file, _(" [position independent]"));
13080
13081 if (flags & EF_ARM_NEW_ABI)
13082 fprintf (file, _(" [new ABI]"));
13083
13084 if (flags & EF_ARM_OLD_ABI)
13085 fprintf (file, _(" [old ABI]"));
13086
13087 if (flags & EF_ARM_SOFT_FLOAT)
13088 fprintf (file, _(" [software FP]"));
13089
13090 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
13091 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
13092 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
13093 | EF_ARM_MAVERICK_FLOAT);
13094 break;
13095
13096 case EF_ARM_EABI_VER1:
13097 fprintf (file, _(" [Version1 EABI]"));
13098
13099 if (flags & EF_ARM_SYMSARESORTED)
13100 fprintf (file, _(" [sorted symbol table]"));
13101 else
13102 fprintf (file, _(" [unsorted symbol table]"));
13103
13104 flags &= ~ EF_ARM_SYMSARESORTED;
13105 break;
13106
13107 case EF_ARM_EABI_VER2:
13108 fprintf (file, _(" [Version2 EABI]"));
13109
13110 if (flags & EF_ARM_SYMSARESORTED)
13111 fprintf (file, _(" [sorted symbol table]"));
13112 else
13113 fprintf (file, _(" [unsorted symbol table]"));
13114
13115 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
13116 fprintf (file, _(" [dynamic symbols use segment index]"));
13117
13118 if (flags & EF_ARM_MAPSYMSFIRST)
13119 fprintf (file, _(" [mapping symbols precede others]"));
13120
13121 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
13122 | EF_ARM_MAPSYMSFIRST);
13123 break;
13124
13125 case EF_ARM_EABI_VER3:
13126 fprintf (file, _(" [Version3 EABI]"));
13127 break;
13128
13129 case EF_ARM_EABI_VER4:
13130 fprintf (file, _(" [Version4 EABI]"));
13131 goto eabi;
13132
13133 case EF_ARM_EABI_VER5:
13134 fprintf (file, _(" [Version5 EABI]"));
13135
13136 if (flags & EF_ARM_ABI_FLOAT_SOFT)
13137 fprintf (file, _(" [soft-float ABI]"));
13138
13139 if (flags & EF_ARM_ABI_FLOAT_HARD)
13140 fprintf (file, _(" [hard-float ABI]"));
13141
13142 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
13143
13144 eabi:
13145 if (flags & EF_ARM_BE8)
13146 fprintf (file, _(" [BE8]"));
13147
13148 if (flags & EF_ARM_LE8)
13149 fprintf (file, _(" [LE8]"));
13150
13151 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
13152 break;
13153
13154 default:
13155 fprintf (file, _(" <EABI version unrecognised>"));
13156 break;
13157 }
13158
13159 flags &= ~ EF_ARM_EABIMASK;
13160
13161 if (flags & EF_ARM_RELEXEC)
13162 fprintf (file, _(" [relocatable executable]"));
13163
13164 flags &= ~EF_ARM_RELEXEC;
13165
13166 if (flags)
13167 fprintf (file, _("<Unrecognised flag bits set>"));
13168
13169 fputc ('\n', file);
13170
13171 return TRUE;
13172 }
13173
13174 static int
13175 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
13176 {
13177 switch (ELF_ST_TYPE (elf_sym->st_info))
13178 {
13179 case STT_ARM_TFUNC:
13180 return ELF_ST_TYPE (elf_sym->st_info);
13181
13182 case STT_ARM_16BIT:
13183 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
13184 This allows us to distinguish between data used by Thumb instructions
13185 and non-data (which is probably code) inside Thumb regions of an
13186 executable. */
13187 if (type != STT_OBJECT && type != STT_TLS)
13188 return ELF_ST_TYPE (elf_sym->st_info);
13189 break;
13190
13191 default:
13192 break;
13193 }
13194
13195 return type;
13196 }
13197
13198 static asection *
13199 elf32_arm_gc_mark_hook (asection *sec,
13200 struct bfd_link_info *info,
13201 Elf_Internal_Rela *rel,
13202 struct elf_link_hash_entry *h,
13203 Elf_Internal_Sym *sym)
13204 {
13205 if (h != NULL)
13206 switch (ELF32_R_TYPE (rel->r_info))
13207 {
13208 case R_ARM_GNU_VTINHERIT:
13209 case R_ARM_GNU_VTENTRY:
13210 return NULL;
13211 }
13212
13213 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
13214 }
13215
13216 /* Update the got entry reference counts for the section being removed. */
13217
13218 static bfd_boolean
13219 elf32_arm_gc_sweep_hook (bfd * abfd,
13220 struct bfd_link_info * info,
13221 asection * sec,
13222 const Elf_Internal_Rela * relocs)
13223 {
13224 Elf_Internal_Shdr *symtab_hdr;
13225 struct elf_link_hash_entry **sym_hashes;
13226 bfd_signed_vma *local_got_refcounts;
13227 const Elf_Internal_Rela *rel, *relend;
13228 struct elf32_arm_link_hash_table * globals;
13229
13230 if (bfd_link_relocatable (info))
13231 return TRUE;
13232
13233 globals = elf32_arm_hash_table (info);
13234 if (globals == NULL)
13235 return FALSE;
13236
13237 elf_section_data (sec)->local_dynrel = NULL;
13238
13239 symtab_hdr = & elf_symtab_hdr (abfd);
13240 sym_hashes = elf_sym_hashes (abfd);
13241 local_got_refcounts = elf_local_got_refcounts (abfd);
13242
13243 check_use_blx (globals);
13244
13245 relend = relocs + sec->reloc_count;
13246 for (rel = relocs; rel < relend; rel++)
13247 {
13248 unsigned long r_symndx;
13249 struct elf_link_hash_entry *h = NULL;
13250 struct elf32_arm_link_hash_entry *eh;
13251 int r_type;
13252 bfd_boolean call_reloc_p;
13253 bfd_boolean may_become_dynamic_p;
13254 bfd_boolean may_need_local_target_p;
13255 union gotplt_union *root_plt;
13256 struct arm_plt_info *arm_plt;
13257
13258 r_symndx = ELF32_R_SYM (rel->r_info);
13259 if (r_symndx >= symtab_hdr->sh_info)
13260 {
13261 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
13262 while (h->root.type == bfd_link_hash_indirect
13263 || h->root.type == bfd_link_hash_warning)
13264 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13265 }
13266 eh = (struct elf32_arm_link_hash_entry *) h;
13267
13268 call_reloc_p = FALSE;
13269 may_become_dynamic_p = FALSE;
13270 may_need_local_target_p = FALSE;
13271
13272 r_type = ELF32_R_TYPE (rel->r_info);
13273 r_type = arm_real_reloc_type (globals, r_type);
13274 switch (r_type)
13275 {
13276 case R_ARM_GOT32:
13277 case R_ARM_GOT_PREL:
13278 case R_ARM_TLS_GD32:
13279 case R_ARM_TLS_IE32:
13280 if (h != NULL)
13281 {
13282 if (h->got.refcount > 0)
13283 h->got.refcount -= 1;
13284 }
13285 else if (local_got_refcounts != NULL)
13286 {
13287 if (local_got_refcounts[r_symndx] > 0)
13288 local_got_refcounts[r_symndx] -= 1;
13289 }
13290 break;
13291
13292 case R_ARM_TLS_LDM32:
13293 globals->tls_ldm_got.refcount -= 1;
13294 break;
13295
13296 case R_ARM_PC24:
13297 case R_ARM_PLT32:
13298 case R_ARM_CALL:
13299 case R_ARM_JUMP24:
13300 case R_ARM_PREL31:
13301 case R_ARM_THM_CALL:
13302 case R_ARM_THM_JUMP24:
13303 case R_ARM_THM_JUMP19:
13304 call_reloc_p = TRUE;
13305 may_need_local_target_p = TRUE;
13306 break;
13307
13308 case R_ARM_ABS12:
13309 if (!globals->vxworks_p)
13310 {
13311 may_need_local_target_p = TRUE;
13312 break;
13313 }
13314 /* Fall through. */
13315 case R_ARM_ABS32:
13316 case R_ARM_ABS32_NOI:
13317 case R_ARM_REL32:
13318 case R_ARM_REL32_NOI:
13319 case R_ARM_MOVW_ABS_NC:
13320 case R_ARM_MOVT_ABS:
13321 case R_ARM_MOVW_PREL_NC:
13322 case R_ARM_MOVT_PREL:
13323 case R_ARM_THM_MOVW_ABS_NC:
13324 case R_ARM_THM_MOVT_ABS:
13325 case R_ARM_THM_MOVW_PREL_NC:
13326 case R_ARM_THM_MOVT_PREL:
13327 /* Should the interworking branches be here also? */
13328 if ((bfd_link_pic (info) || globals->root.is_relocatable_executable)
13329 && (sec->flags & SEC_ALLOC) != 0)
13330 {
13331 if (h == NULL
13332 && elf32_arm_howto_from_type (r_type)->pc_relative)
13333 {
13334 call_reloc_p = TRUE;
13335 may_need_local_target_p = TRUE;
13336 }
13337 else
13338 may_become_dynamic_p = TRUE;
13339 }
13340 else
13341 may_need_local_target_p = TRUE;
13342 break;
13343
13344 default:
13345 break;
13346 }
13347
13348 if (may_need_local_target_p
13349 && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
13350 {
13351 /* If PLT refcount book-keeping is wrong and too low, we'll
13352 see a zero value (going to -1) for the root PLT reference
13353 count. */
13354 if (root_plt->refcount >= 0)
13355 {
13356 BFD_ASSERT (root_plt->refcount != 0);
13357 root_plt->refcount -= 1;
13358 }
13359 else
13360 /* A value of -1 means the symbol has become local, forced
13361 or seeing a hidden definition. Any other negative value
13362 is an error. */
13363 BFD_ASSERT (root_plt->refcount == -1);
13364
13365 if (!call_reloc_p)
13366 arm_plt->noncall_refcount--;
13367
13368 if (r_type == R_ARM_THM_CALL)
13369 arm_plt->maybe_thumb_refcount--;
13370
13371 if (r_type == R_ARM_THM_JUMP24
13372 || r_type == R_ARM_THM_JUMP19)
13373 arm_plt->thumb_refcount--;
13374 }
13375
13376 if (may_become_dynamic_p)
13377 {
13378 struct elf_dyn_relocs **pp;
13379 struct elf_dyn_relocs *p;
13380
13381 if (h != NULL)
13382 pp = &(eh->dyn_relocs);
13383 else
13384 {
13385 Elf_Internal_Sym *isym;
13386
13387 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
13388 abfd, r_symndx);
13389 if (isym == NULL)
13390 return FALSE;
13391 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
13392 if (pp == NULL)
13393 return FALSE;
13394 }
13395 for (; (p = *pp) != NULL; pp = &p->next)
13396 if (p->sec == sec)
13397 {
13398 /* Everything must go for SEC. */
13399 *pp = p->next;
13400 break;
13401 }
13402 }
13403 }
13404
13405 return TRUE;
13406 }
13407
13408 /* Look through the relocs for a section during the first phase. */
13409
13410 static bfd_boolean
13411 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
13412 asection *sec, const Elf_Internal_Rela *relocs)
13413 {
13414 Elf_Internal_Shdr *symtab_hdr;
13415 struct elf_link_hash_entry **sym_hashes;
13416 const Elf_Internal_Rela *rel;
13417 const Elf_Internal_Rela *rel_end;
13418 bfd *dynobj;
13419 asection *sreloc;
13420 struct elf32_arm_link_hash_table *htab;
13421 bfd_boolean call_reloc_p;
13422 bfd_boolean may_become_dynamic_p;
13423 bfd_boolean may_need_local_target_p;
13424 unsigned long nsyms;
13425
13426 if (bfd_link_relocatable (info))
13427 return TRUE;
13428
13429 BFD_ASSERT (is_arm_elf (abfd));
13430
13431 htab = elf32_arm_hash_table (info);
13432 if (htab == NULL)
13433 return FALSE;
13434
13435 sreloc = NULL;
13436
13437 /* Create dynamic sections for relocatable executables so that we can
13438 copy relocations. */
13439 if (htab->root.is_relocatable_executable
13440 && ! htab->root.dynamic_sections_created)
13441 {
13442 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
13443 return FALSE;
13444 }
13445
13446 if (htab->root.dynobj == NULL)
13447 htab->root.dynobj = abfd;
13448 if (!create_ifunc_sections (info))
13449 return FALSE;
13450
13451 dynobj = htab->root.dynobj;
13452
13453 symtab_hdr = & elf_symtab_hdr (abfd);
13454 sym_hashes = elf_sym_hashes (abfd);
13455 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
13456
13457 rel_end = relocs + sec->reloc_count;
13458 for (rel = relocs; rel < rel_end; rel++)
13459 {
13460 Elf_Internal_Sym *isym;
13461 struct elf_link_hash_entry *h;
13462 struct elf32_arm_link_hash_entry *eh;
13463 unsigned long r_symndx;
13464 int r_type;
13465
13466 r_symndx = ELF32_R_SYM (rel->r_info);
13467 r_type = ELF32_R_TYPE (rel->r_info);
13468 r_type = arm_real_reloc_type (htab, r_type);
13469
13470 if (r_symndx >= nsyms
13471 /* PR 9934: It is possible to have relocations that do not
13472 refer to symbols, thus it is also possible to have an
13473 object file containing relocations but no symbol table. */
13474 && (r_symndx > STN_UNDEF || nsyms > 0))
13475 {
13476 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
13477 r_symndx);
13478 return FALSE;
13479 }
13480
13481 h = NULL;
13482 isym = NULL;
13483 if (nsyms > 0)
13484 {
13485 if (r_symndx < symtab_hdr->sh_info)
13486 {
13487 /* A local symbol. */
13488 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
13489 abfd, r_symndx);
13490 if (isym == NULL)
13491 return FALSE;
13492 }
13493 else
13494 {
13495 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
13496 while (h->root.type == bfd_link_hash_indirect
13497 || h->root.type == bfd_link_hash_warning)
13498 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13499
13500 /* PR15323, ref flags aren't set for references in the
13501 same object. */
13502 h->root.non_ir_ref = 1;
13503 }
13504 }
13505
13506 eh = (struct elf32_arm_link_hash_entry *) h;
13507
13508 call_reloc_p = FALSE;
13509 may_become_dynamic_p = FALSE;
13510 may_need_local_target_p = FALSE;
13511
13512 /* Could be done earlier, if h were already available. */
13513 r_type = elf32_arm_tls_transition (info, r_type, h);
13514 switch (r_type)
13515 {
13516 case R_ARM_GOT32:
13517 case R_ARM_GOT_PREL:
13518 case R_ARM_TLS_GD32:
13519 case R_ARM_TLS_IE32:
13520 case R_ARM_TLS_GOTDESC:
13521 case R_ARM_TLS_DESCSEQ:
13522 case R_ARM_THM_TLS_DESCSEQ:
13523 case R_ARM_TLS_CALL:
13524 case R_ARM_THM_TLS_CALL:
13525 /* This symbol requires a global offset table entry. */
13526 {
13527 int tls_type, old_tls_type;
13528
13529 switch (r_type)
13530 {
13531 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
13532
13533 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
13534
13535 case R_ARM_TLS_GOTDESC:
13536 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
13537 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
13538 tls_type = GOT_TLS_GDESC; break;
13539
13540 default: tls_type = GOT_NORMAL; break;
13541 }
13542
13543 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
13544 info->flags |= DF_STATIC_TLS;
13545
13546 if (h != NULL)
13547 {
13548 h->got.refcount++;
13549 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
13550 }
13551 else
13552 {
13553 /* This is a global offset table entry for a local symbol. */
13554 if (!elf32_arm_allocate_local_sym_info (abfd))
13555 return FALSE;
13556 elf_local_got_refcounts (abfd)[r_symndx] += 1;
13557 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
13558 }
13559
13560 /* If a variable is accessed with both tls methods, two
13561 slots may be created. */
13562 if (GOT_TLS_GD_ANY_P (old_tls_type)
13563 && GOT_TLS_GD_ANY_P (tls_type))
13564 tls_type |= old_tls_type;
13565
13566 /* We will already have issued an error message if there
13567 is a TLS/non-TLS mismatch, based on the symbol
13568 type. So just combine any TLS types needed. */
13569 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
13570 && tls_type != GOT_NORMAL)
13571 tls_type |= old_tls_type;
13572
13573 /* If the symbol is accessed in both IE and GDESC
13574 method, we're able to relax. Turn off the GDESC flag,
13575 without messing up with any other kind of tls types
13576 that may be involved. */
13577 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
13578 tls_type &= ~GOT_TLS_GDESC;
13579
13580 if (old_tls_type != tls_type)
13581 {
13582 if (h != NULL)
13583 elf32_arm_hash_entry (h)->tls_type = tls_type;
13584 else
13585 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
13586 }
13587 }
13588 /* Fall through. */
13589
13590 case R_ARM_TLS_LDM32:
13591 if (r_type == R_ARM_TLS_LDM32)
13592 htab->tls_ldm_got.refcount++;
13593 /* Fall through. */
13594
13595 case R_ARM_GOTOFF32:
13596 case R_ARM_GOTPC:
13597 if (htab->root.sgot == NULL
13598 && !create_got_section (htab->root.dynobj, info))
13599 return FALSE;
13600 break;
13601
13602 case R_ARM_PC24:
13603 case R_ARM_PLT32:
13604 case R_ARM_CALL:
13605 case R_ARM_JUMP24:
13606 case R_ARM_PREL31:
13607 case R_ARM_THM_CALL:
13608 case R_ARM_THM_JUMP24:
13609 case R_ARM_THM_JUMP19:
13610 call_reloc_p = TRUE;
13611 may_need_local_target_p = TRUE;
13612 break;
13613
13614 case R_ARM_ABS12:
13615 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
13616 ldr __GOTT_INDEX__ offsets. */
13617 if (!htab->vxworks_p)
13618 {
13619 may_need_local_target_p = TRUE;
13620 break;
13621 }
13622 else goto jump_over;
13623
13624 /* Fall through. */
13625
13626 case R_ARM_MOVW_ABS_NC:
13627 case R_ARM_MOVT_ABS:
13628 case R_ARM_THM_MOVW_ABS_NC:
13629 case R_ARM_THM_MOVT_ABS:
13630 if (bfd_link_pic (info))
13631 {
13632 (*_bfd_error_handler)
13633 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
13634 abfd, elf32_arm_howto_table_1[r_type].name,
13635 (h) ? h->root.root.string : "a local symbol");
13636 bfd_set_error (bfd_error_bad_value);
13637 return FALSE;
13638 }
13639
13640 /* Fall through. */
13641 case R_ARM_ABS32:
13642 case R_ARM_ABS32_NOI:
13643 jump_over:
13644 if (h != NULL && bfd_link_executable (info))
13645 {
13646 h->pointer_equality_needed = 1;
13647 }
13648 /* Fall through. */
13649 case R_ARM_REL32:
13650 case R_ARM_REL32_NOI:
13651 case R_ARM_MOVW_PREL_NC:
13652 case R_ARM_MOVT_PREL:
13653 case R_ARM_THM_MOVW_PREL_NC:
13654 case R_ARM_THM_MOVT_PREL:
13655
13656 /* Should the interworking branches be listed here? */
13657 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable)
13658 && (sec->flags & SEC_ALLOC) != 0)
13659 {
13660 if (h == NULL
13661 && elf32_arm_howto_from_type (r_type)->pc_relative)
13662 {
13663 /* In shared libraries and relocatable executables,
13664 we treat local relative references as calls;
13665 see the related SYMBOL_CALLS_LOCAL code in
13666 allocate_dynrelocs. */
13667 call_reloc_p = TRUE;
13668 may_need_local_target_p = TRUE;
13669 }
13670 else
13671 /* We are creating a shared library or relocatable
13672 executable, and this is a reloc against a global symbol,
13673 or a non-PC-relative reloc against a local symbol.
13674 We may need to copy the reloc into the output. */
13675 may_become_dynamic_p = TRUE;
13676 }
13677 else
13678 may_need_local_target_p = TRUE;
13679 break;
13680
13681 /* This relocation describes the C++ object vtable hierarchy.
13682 Reconstruct it for later use during GC. */
13683 case R_ARM_GNU_VTINHERIT:
13684 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
13685 return FALSE;
13686 break;
13687
13688 /* This relocation describes which C++ vtable entries are actually
13689 used. Record for later use during GC. */
13690 case R_ARM_GNU_VTENTRY:
13691 BFD_ASSERT (h != NULL);
13692 if (h != NULL
13693 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
13694 return FALSE;
13695 break;
13696 }
13697
13698 if (h != NULL)
13699 {
13700 if (call_reloc_p)
13701 /* We may need a .plt entry if the function this reloc
13702 refers to is in a different object, regardless of the
13703 symbol's type. We can't tell for sure yet, because
13704 something later might force the symbol local. */
13705 h->needs_plt = 1;
13706 else if (may_need_local_target_p)
13707 /* If this reloc is in a read-only section, we might
13708 need a copy reloc. We can't check reliably at this
13709 stage whether the section is read-only, as input
13710 sections have not yet been mapped to output sections.
13711 Tentatively set the flag for now, and correct in
13712 adjust_dynamic_symbol. */
13713 h->non_got_ref = 1;
13714 }
13715
13716 if (may_need_local_target_p
13717 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
13718 {
13719 union gotplt_union *root_plt;
13720 struct arm_plt_info *arm_plt;
13721 struct arm_local_iplt_info *local_iplt;
13722
13723 if (h != NULL)
13724 {
13725 root_plt = &h->plt;
13726 arm_plt = &eh->plt;
13727 }
13728 else
13729 {
13730 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
13731 if (local_iplt == NULL)
13732 return FALSE;
13733 root_plt = &local_iplt->root;
13734 arm_plt = &local_iplt->arm;
13735 }
13736
13737 /* If the symbol is a function that doesn't bind locally,
13738 this relocation will need a PLT entry. */
13739 if (root_plt->refcount != -1)
13740 root_plt->refcount += 1;
13741
13742 if (!call_reloc_p)
13743 arm_plt->noncall_refcount++;
13744
13745 /* It's too early to use htab->use_blx here, so we have to
13746 record possible blx references separately from
13747 relocs that definitely need a thumb stub. */
13748
13749 if (r_type == R_ARM_THM_CALL)
13750 arm_plt->maybe_thumb_refcount += 1;
13751
13752 if (r_type == R_ARM_THM_JUMP24
13753 || r_type == R_ARM_THM_JUMP19)
13754 arm_plt->thumb_refcount += 1;
13755 }
13756
13757 if (may_become_dynamic_p)
13758 {
13759 struct elf_dyn_relocs *p, **head;
13760
13761 /* Create a reloc section in dynobj. */
13762 if (sreloc == NULL)
13763 {
13764 sreloc = _bfd_elf_make_dynamic_reloc_section
13765 (sec, dynobj, 2, abfd, ! htab->use_rel);
13766
13767 if (sreloc == NULL)
13768 return FALSE;
13769
13770 /* BPABI objects never have dynamic relocations mapped. */
13771 if (htab->symbian_p)
13772 {
13773 flagword flags;
13774
13775 flags = bfd_get_section_flags (dynobj, sreloc);
13776 flags &= ~(SEC_LOAD | SEC_ALLOC);
13777 bfd_set_section_flags (dynobj, sreloc, flags);
13778 }
13779 }
13780
13781 /* If this is a global symbol, count the number of
13782 relocations we need for this symbol. */
13783 if (h != NULL)
13784 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
13785 else
13786 {
13787 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
13788 if (head == NULL)
13789 return FALSE;
13790 }
13791
13792 p = *head;
13793 if (p == NULL || p->sec != sec)
13794 {
13795 bfd_size_type amt = sizeof *p;
13796
13797 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
13798 if (p == NULL)
13799 return FALSE;
13800 p->next = *head;
13801 *head = p;
13802 p->sec = sec;
13803 p->count = 0;
13804 p->pc_count = 0;
13805 }
13806
13807 if (elf32_arm_howto_from_type (r_type)->pc_relative)
13808 p->pc_count += 1;
13809 p->count += 1;
13810 }
13811 }
13812
13813 return TRUE;
13814 }
13815
13816 /* Unwinding tables are not referenced directly. This pass marks them as
13817 required if the corresponding code section is marked. */
13818
13819 static bfd_boolean
13820 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
13821 elf_gc_mark_hook_fn gc_mark_hook)
13822 {
13823 bfd *sub;
13824 Elf_Internal_Shdr **elf_shdrp;
13825 bfd_boolean again;
13826
13827 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
13828
13829 /* Marking EH data may cause additional code sections to be marked,
13830 requiring multiple passes. */
13831 again = TRUE;
13832 while (again)
13833 {
13834 again = FALSE;
13835 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13836 {
13837 asection *o;
13838
13839 if (! is_arm_elf (sub))
13840 continue;
13841
13842 elf_shdrp = elf_elfsections (sub);
13843 for (o = sub->sections; o != NULL; o = o->next)
13844 {
13845 Elf_Internal_Shdr *hdr;
13846
13847 hdr = &elf_section_data (o)->this_hdr;
13848 if (hdr->sh_type == SHT_ARM_EXIDX
13849 && hdr->sh_link
13850 && hdr->sh_link < elf_numsections (sub)
13851 && !o->gc_mark
13852 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
13853 {
13854 again = TRUE;
13855 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13856 return FALSE;
13857 }
13858 }
13859 }
13860 }
13861
13862 return TRUE;
13863 }
13864
13865 /* Treat mapping symbols as special target symbols. */
13866
13867 static bfd_boolean
13868 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
13869 {
13870 return bfd_is_arm_special_symbol_name (sym->name,
13871 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
13872 }
13873
13874 /* This is a copy of elf_find_function() from elf.c except that
13875 ARM mapping symbols are ignored when looking for function names
13876 and STT_ARM_TFUNC is considered to a function type. */
13877
13878 static bfd_boolean
13879 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
13880 asymbol ** symbols,
13881 asection * section,
13882 bfd_vma offset,
13883 const char ** filename_ptr,
13884 const char ** functionname_ptr)
13885 {
13886 const char * filename = NULL;
13887 asymbol * func = NULL;
13888 bfd_vma low_func = 0;
13889 asymbol ** p;
13890
13891 for (p = symbols; *p != NULL; p++)
13892 {
13893 elf_symbol_type *q;
13894
13895 q = (elf_symbol_type *) *p;
13896
13897 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
13898 {
13899 default:
13900 break;
13901 case STT_FILE:
13902 filename = bfd_asymbol_name (&q->symbol);
13903 break;
13904 case STT_FUNC:
13905 case STT_ARM_TFUNC:
13906 case STT_NOTYPE:
13907 /* Skip mapping symbols. */
13908 if ((q->symbol.flags & BSF_LOCAL)
13909 && bfd_is_arm_special_symbol_name (q->symbol.name,
13910 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
13911 continue;
13912 /* Fall through. */
13913 if (bfd_get_section (&q->symbol) == section
13914 && q->symbol.value >= low_func
13915 && q->symbol.value <= offset)
13916 {
13917 func = (asymbol *) q;
13918 low_func = q->symbol.value;
13919 }
13920 break;
13921 }
13922 }
13923
13924 if (func == NULL)
13925 return FALSE;
13926
13927 if (filename_ptr)
13928 *filename_ptr = filename;
13929 if (functionname_ptr)
13930 *functionname_ptr = bfd_asymbol_name (func);
13931
13932 return TRUE;
13933 }
13934
13935
13936 /* Find the nearest line to a particular section and offset, for error
13937 reporting. This code is a duplicate of the code in elf.c, except
13938 that it uses arm_elf_find_function. */
13939
13940 static bfd_boolean
13941 elf32_arm_find_nearest_line (bfd * abfd,
13942 asymbol ** symbols,
13943 asection * section,
13944 bfd_vma offset,
13945 const char ** filename_ptr,
13946 const char ** functionname_ptr,
13947 unsigned int * line_ptr,
13948 unsigned int * discriminator_ptr)
13949 {
13950 bfd_boolean found = FALSE;
13951
13952 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13953 filename_ptr, functionname_ptr,
13954 line_ptr, discriminator_ptr,
13955 dwarf_debug_sections, 0,
13956 & elf_tdata (abfd)->dwarf2_find_line_info))
13957 {
13958 if (!*functionname_ptr)
13959 arm_elf_find_function (abfd, symbols, section, offset,
13960 *filename_ptr ? NULL : filename_ptr,
13961 functionname_ptr);
13962
13963 return TRUE;
13964 }
13965
13966 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
13967 uses DWARF1. */
13968
13969 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
13970 & found, filename_ptr,
13971 functionname_ptr, line_ptr,
13972 & elf_tdata (abfd)->line_info))
13973 return FALSE;
13974
13975 if (found && (*functionname_ptr || *line_ptr))
13976 return TRUE;
13977
13978 if (symbols == NULL)
13979 return FALSE;
13980
13981 if (! arm_elf_find_function (abfd, symbols, section, offset,
13982 filename_ptr, functionname_ptr))
13983 return FALSE;
13984
13985 *line_ptr = 0;
13986 return TRUE;
13987 }
13988
13989 static bfd_boolean
13990 elf32_arm_find_inliner_info (bfd * abfd,
13991 const char ** filename_ptr,
13992 const char ** functionname_ptr,
13993 unsigned int * line_ptr)
13994 {
13995 bfd_boolean found;
13996 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13997 functionname_ptr, line_ptr,
13998 & elf_tdata (abfd)->dwarf2_find_line_info);
13999 return found;
14000 }
14001
14002 /* Adjust a symbol defined by a dynamic object and referenced by a
14003 regular object. The current definition is in some section of the
14004 dynamic object, but we're not including those sections. We have to
14005 change the definition to something the rest of the link can
14006 understand. */
14007
14008 static bfd_boolean
14009 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
14010 struct elf_link_hash_entry * h)
14011 {
14012 bfd * dynobj;
14013 asection * s;
14014 struct elf32_arm_link_hash_entry * eh;
14015 struct elf32_arm_link_hash_table *globals;
14016
14017 globals = elf32_arm_hash_table (info);
14018 if (globals == NULL)
14019 return FALSE;
14020
14021 dynobj = elf_hash_table (info)->dynobj;
14022
14023 /* Make sure we know what is going on here. */
14024 BFD_ASSERT (dynobj != NULL
14025 && (h->needs_plt
14026 || h->type == STT_GNU_IFUNC
14027 || h->u.weakdef != NULL
14028 || (h->def_dynamic
14029 && h->ref_regular
14030 && !h->def_regular)));
14031
14032 eh = (struct elf32_arm_link_hash_entry *) h;
14033
14034 /* If this is a function, put it in the procedure linkage table. We
14035 will fill in the contents of the procedure linkage table later,
14036 when we know the address of the .got section. */
14037 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
14038 {
14039 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
14040 symbol binds locally. */
14041 if (h->plt.refcount <= 0
14042 || (h->type != STT_GNU_IFUNC
14043 && (SYMBOL_CALLS_LOCAL (info, h)
14044 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
14045 && h->root.type == bfd_link_hash_undefweak))))
14046 {
14047 /* This case can occur if we saw a PLT32 reloc in an input
14048 file, but the symbol was never referred to by a dynamic
14049 object, or if all references were garbage collected. In
14050 such a case, we don't actually need to build a procedure
14051 linkage table, and we can just do a PC24 reloc instead. */
14052 h->plt.offset = (bfd_vma) -1;
14053 eh->plt.thumb_refcount = 0;
14054 eh->plt.maybe_thumb_refcount = 0;
14055 eh->plt.noncall_refcount = 0;
14056 h->needs_plt = 0;
14057 }
14058
14059 return TRUE;
14060 }
14061 else
14062 {
14063 /* It's possible that we incorrectly decided a .plt reloc was
14064 needed for an R_ARM_PC24 or similar reloc to a non-function sym
14065 in check_relocs. We can't decide accurately between function
14066 and non-function syms in check-relocs; Objects loaded later in
14067 the link may change h->type. So fix it now. */
14068 h->plt.offset = (bfd_vma) -1;
14069 eh->plt.thumb_refcount = 0;
14070 eh->plt.maybe_thumb_refcount = 0;
14071 eh->plt.noncall_refcount = 0;
14072 }
14073
14074 /* If this is a weak symbol, and there is a real definition, the
14075 processor independent code will have arranged for us to see the
14076 real definition first, and we can just use the same value. */
14077 if (h->u.weakdef != NULL)
14078 {
14079 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
14080 || h->u.weakdef->root.type == bfd_link_hash_defweak);
14081 h->root.u.def.section = h->u.weakdef->root.u.def.section;
14082 h->root.u.def.value = h->u.weakdef->root.u.def.value;
14083 return TRUE;
14084 }
14085
14086 /* If there are no non-GOT references, we do not need a copy
14087 relocation. */
14088 if (!h->non_got_ref)
14089 return TRUE;
14090
14091 /* This is a reference to a symbol defined by a dynamic object which
14092 is not a function. */
14093
14094 /* If we are creating a shared library, we must presume that the
14095 only references to the symbol are via the global offset table.
14096 For such cases we need not do anything here; the relocations will
14097 be handled correctly by relocate_section. Relocatable executables
14098 can reference data in shared objects directly, so we don't need to
14099 do anything here. */
14100 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
14101 return TRUE;
14102
14103 /* We must allocate the symbol in our .dynbss section, which will
14104 become part of the .bss section of the executable. There will be
14105 an entry for this symbol in the .dynsym section. The dynamic
14106 object will contain position independent code, so all references
14107 from the dynamic object to this symbol will go through the global
14108 offset table. The dynamic linker will use the .dynsym entry to
14109 determine the address it must put in the global offset table, so
14110 both the dynamic object and the regular object will refer to the
14111 same memory location for the variable. */
14112 s = bfd_get_linker_section (dynobj, ".dynbss");
14113 BFD_ASSERT (s != NULL);
14114
14115 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
14116 linker to copy the initial value out of the dynamic object and into
14117 the runtime process image. We need to remember the offset into the
14118 .rel(a).bss section we are going to use. */
14119 if (info->nocopyreloc == 0
14120 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
14121 /* PR 16177: A copy is only needed if the input section is readonly. */
14122 && (h->root.u.def.section->flags & SEC_READONLY) == 0
14123 && h->size != 0)
14124 {
14125 asection *srel;
14126
14127 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
14128 elf32_arm_allocate_dynrelocs (info, srel, 1);
14129 h->needs_copy = 1;
14130 }
14131
14132 return _bfd_elf_adjust_dynamic_copy (info, h, s);
14133 }
14134
14135 /* Allocate space in .plt, .got and associated reloc sections for
14136 dynamic relocs. */
14137
14138 static bfd_boolean
14139 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
14140 {
14141 struct bfd_link_info *info;
14142 struct elf32_arm_link_hash_table *htab;
14143 struct elf32_arm_link_hash_entry *eh;
14144 struct elf_dyn_relocs *p;
14145
14146 if (h->root.type == bfd_link_hash_indirect)
14147 return TRUE;
14148
14149 eh = (struct elf32_arm_link_hash_entry *) h;
14150
14151 info = (struct bfd_link_info *) inf;
14152 htab = elf32_arm_hash_table (info);
14153 if (htab == NULL)
14154 return FALSE;
14155
14156 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
14157 && h->plt.refcount > 0)
14158 {
14159 /* Make sure this symbol is output as a dynamic symbol.
14160 Undefined weak syms won't yet be marked as dynamic. */
14161 if (h->dynindx == -1
14162 && !h->forced_local)
14163 {
14164 if (! bfd_elf_link_record_dynamic_symbol (info, h))
14165 return FALSE;
14166 }
14167
14168 /* If the call in the PLT entry binds locally, the associated
14169 GOT entry should use an R_ARM_IRELATIVE relocation instead of
14170 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
14171 than the .plt section. */
14172 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
14173 {
14174 eh->is_iplt = 1;
14175 if (eh->plt.noncall_refcount == 0
14176 && SYMBOL_REFERENCES_LOCAL (info, h))
14177 /* All non-call references can be resolved directly.
14178 This means that they can (and in some cases, must)
14179 resolve directly to the run-time target, rather than
14180 to the PLT. That in turns means that any .got entry
14181 would be equal to the .igot.plt entry, so there's
14182 no point having both. */
14183 h->got.refcount = 0;
14184 }
14185
14186 if (bfd_link_pic (info)
14187 || eh->is_iplt
14188 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
14189 {
14190 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
14191
14192 /* If this symbol is not defined in a regular file, and we are
14193 not generating a shared library, then set the symbol to this
14194 location in the .plt. This is required to make function
14195 pointers compare as equal between the normal executable and
14196 the shared library. */
14197 if (! bfd_link_pic (info)
14198 && !h->def_regular)
14199 {
14200 h->root.u.def.section = htab->root.splt;
14201 h->root.u.def.value = h->plt.offset;
14202
14203 /* Make sure the function is not marked as Thumb, in case
14204 it is the target of an ABS32 relocation, which will
14205 point to the PLT entry. */
14206 h->target_internal = ST_BRANCH_TO_ARM;
14207 }
14208
14209 /* VxWorks executables have a second set of relocations for
14210 each PLT entry. They go in a separate relocation section,
14211 which is processed by the kernel loader. */
14212 if (htab->vxworks_p && !bfd_link_pic (info))
14213 {
14214 /* There is a relocation for the initial PLT entry:
14215 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
14216 if (h->plt.offset == htab->plt_header_size)
14217 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
14218
14219 /* There are two extra relocations for each subsequent
14220 PLT entry: an R_ARM_32 relocation for the GOT entry,
14221 and an R_ARM_32 relocation for the PLT entry. */
14222 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
14223 }
14224 }
14225 else
14226 {
14227 h->plt.offset = (bfd_vma) -1;
14228 h->needs_plt = 0;
14229 }
14230 }
14231 else
14232 {
14233 h->plt.offset = (bfd_vma) -1;
14234 h->needs_plt = 0;
14235 }
14236
14237 eh = (struct elf32_arm_link_hash_entry *) h;
14238 eh->tlsdesc_got = (bfd_vma) -1;
14239
14240 if (h->got.refcount > 0)
14241 {
14242 asection *s;
14243 bfd_boolean dyn;
14244 int tls_type = elf32_arm_hash_entry (h)->tls_type;
14245 int indx;
14246
14247 /* Make sure this symbol is output as a dynamic symbol.
14248 Undefined weak syms won't yet be marked as dynamic. */
14249 if (h->dynindx == -1
14250 && !h->forced_local)
14251 {
14252 if (! bfd_elf_link_record_dynamic_symbol (info, h))
14253 return FALSE;
14254 }
14255
14256 if (!htab->symbian_p)
14257 {
14258 s = htab->root.sgot;
14259 h->got.offset = s->size;
14260
14261 if (tls_type == GOT_UNKNOWN)
14262 abort ();
14263
14264 if (tls_type == GOT_NORMAL)
14265 /* Non-TLS symbols need one GOT slot. */
14266 s->size += 4;
14267 else
14268 {
14269 if (tls_type & GOT_TLS_GDESC)
14270 {
14271 /* R_ARM_TLS_DESC needs 2 GOT slots. */
14272 eh->tlsdesc_got
14273 = (htab->root.sgotplt->size
14274 - elf32_arm_compute_jump_table_size (htab));
14275 htab->root.sgotplt->size += 8;
14276 h->got.offset = (bfd_vma) -2;
14277 /* plt.got_offset needs to know there's a TLS_DESC
14278 reloc in the middle of .got.plt. */
14279 htab->num_tls_desc++;
14280 }
14281
14282 if (tls_type & GOT_TLS_GD)
14283 {
14284 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
14285 the symbol is both GD and GDESC, got.offset may
14286 have been overwritten. */
14287 h->got.offset = s->size;
14288 s->size += 8;
14289 }
14290
14291 if (tls_type & GOT_TLS_IE)
14292 /* R_ARM_TLS_IE32 needs one GOT slot. */
14293 s->size += 4;
14294 }
14295
14296 dyn = htab->root.dynamic_sections_created;
14297
14298 indx = 0;
14299 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
14300 bfd_link_pic (info),
14301 h)
14302 && (!bfd_link_pic (info)
14303 || !SYMBOL_REFERENCES_LOCAL (info, h)))
14304 indx = h->dynindx;
14305
14306 if (tls_type != GOT_NORMAL
14307 && (bfd_link_pic (info) || indx != 0)
14308 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
14309 || h->root.type != bfd_link_hash_undefweak))
14310 {
14311 if (tls_type & GOT_TLS_IE)
14312 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14313
14314 if (tls_type & GOT_TLS_GD)
14315 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14316
14317 if (tls_type & GOT_TLS_GDESC)
14318 {
14319 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
14320 /* GDESC needs a trampoline to jump to. */
14321 htab->tls_trampoline = -1;
14322 }
14323
14324 /* Only GD needs it. GDESC just emits one relocation per
14325 2 entries. */
14326 if ((tls_type & GOT_TLS_GD) && indx != 0)
14327 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14328 }
14329 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
14330 {
14331 if (htab->root.dynamic_sections_created)
14332 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
14333 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14334 }
14335 else if (h->type == STT_GNU_IFUNC
14336 && eh->plt.noncall_refcount == 0)
14337 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
14338 they all resolve dynamically instead. Reserve room for the
14339 GOT entry's R_ARM_IRELATIVE relocation. */
14340 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
14341 else if (bfd_link_pic (info)
14342 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
14343 || h->root.type != bfd_link_hash_undefweak))
14344 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
14345 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14346 }
14347 }
14348 else
14349 h->got.offset = (bfd_vma) -1;
14350
14351 /* Allocate stubs for exported Thumb functions on v4t. */
14352 if (!htab->use_blx && h->dynindx != -1
14353 && h->def_regular
14354 && h->target_internal == ST_BRANCH_TO_THUMB
14355 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14356 {
14357 struct elf_link_hash_entry * th;
14358 struct bfd_link_hash_entry * bh;
14359 struct elf_link_hash_entry * myh;
14360 char name[1024];
14361 asection *s;
14362 bh = NULL;
14363 /* Create a new symbol to regist the real location of the function. */
14364 s = h->root.u.def.section;
14365 sprintf (name, "__real_%s", h->root.root.string);
14366 _bfd_generic_link_add_one_symbol (info, s->owner,
14367 name, BSF_GLOBAL, s,
14368 h->root.u.def.value,
14369 NULL, TRUE, FALSE, &bh);
14370
14371 myh = (struct elf_link_hash_entry *) bh;
14372 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14373 myh->forced_local = 1;
14374 myh->target_internal = ST_BRANCH_TO_THUMB;
14375 eh->export_glue = myh;
14376 th = record_arm_to_thumb_glue (info, h);
14377 /* Point the symbol at the stub. */
14378 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
14379 h->target_internal = ST_BRANCH_TO_ARM;
14380 h->root.u.def.section = th->root.u.def.section;
14381 h->root.u.def.value = th->root.u.def.value & ~1;
14382 }
14383
14384 if (eh->dyn_relocs == NULL)
14385 return TRUE;
14386
14387 /* In the shared -Bsymbolic case, discard space allocated for
14388 dynamic pc-relative relocs against symbols which turn out to be
14389 defined in regular objects. For the normal shared case, discard
14390 space for pc-relative relocs that have become local due to symbol
14391 visibility changes. */
14392
14393 if (bfd_link_pic (info) || htab->root.is_relocatable_executable)
14394 {
14395 /* Relocs that use pc_count are PC-relative forms, which will appear
14396 on something like ".long foo - ." or "movw REG, foo - .". We want
14397 calls to protected symbols to resolve directly to the function
14398 rather than going via the plt. If people want function pointer
14399 comparisons to work as expected then they should avoid writing
14400 assembly like ".long foo - .". */
14401 if (SYMBOL_CALLS_LOCAL (info, h))
14402 {
14403 struct elf_dyn_relocs **pp;
14404
14405 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
14406 {
14407 p->count -= p->pc_count;
14408 p->pc_count = 0;
14409 if (p->count == 0)
14410 *pp = p->next;
14411 else
14412 pp = &p->next;
14413 }
14414 }
14415
14416 if (htab->vxworks_p)
14417 {
14418 struct elf_dyn_relocs **pp;
14419
14420 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
14421 {
14422 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
14423 *pp = p->next;
14424 else
14425 pp = &p->next;
14426 }
14427 }
14428
14429 /* Also discard relocs on undefined weak syms with non-default
14430 visibility. */
14431 if (eh->dyn_relocs != NULL
14432 && h->root.type == bfd_link_hash_undefweak)
14433 {
14434 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
14435 eh->dyn_relocs = NULL;
14436
14437 /* Make sure undefined weak symbols are output as a dynamic
14438 symbol in PIEs. */
14439 else if (h->dynindx == -1
14440 && !h->forced_local)
14441 {
14442 if (! bfd_elf_link_record_dynamic_symbol (info, h))
14443 return FALSE;
14444 }
14445 }
14446
14447 else if (htab->root.is_relocatable_executable && h->dynindx == -1
14448 && h->root.type == bfd_link_hash_new)
14449 {
14450 /* Output absolute symbols so that we can create relocations
14451 against them. For normal symbols we output a relocation
14452 against the section that contains them. */
14453 if (! bfd_elf_link_record_dynamic_symbol (info, h))
14454 return FALSE;
14455 }
14456
14457 }
14458 else
14459 {
14460 /* For the non-shared case, discard space for relocs against
14461 symbols which turn out to need copy relocs or are not
14462 dynamic. */
14463
14464 if (!h->non_got_ref
14465 && ((h->def_dynamic
14466 && !h->def_regular)
14467 || (htab->root.dynamic_sections_created
14468 && (h->root.type == bfd_link_hash_undefweak
14469 || h->root.type == bfd_link_hash_undefined))))
14470 {
14471 /* Make sure this symbol is output as a dynamic symbol.
14472 Undefined weak syms won't yet be marked as dynamic. */
14473 if (h->dynindx == -1
14474 && !h->forced_local)
14475 {
14476 if (! bfd_elf_link_record_dynamic_symbol (info, h))
14477 return FALSE;
14478 }
14479
14480 /* If that succeeded, we know we'll be keeping all the
14481 relocs. */
14482 if (h->dynindx != -1)
14483 goto keep;
14484 }
14485
14486 eh->dyn_relocs = NULL;
14487
14488 keep: ;
14489 }
14490
14491 /* Finally, allocate space. */
14492 for (p = eh->dyn_relocs; p != NULL; p = p->next)
14493 {
14494 asection *sreloc = elf_section_data (p->sec)->sreloc;
14495 if (h->type == STT_GNU_IFUNC
14496 && eh->plt.noncall_refcount == 0
14497 && SYMBOL_REFERENCES_LOCAL (info, h))
14498 elf32_arm_allocate_irelocs (info, sreloc, p->count);
14499 else
14500 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
14501 }
14502
14503 return TRUE;
14504 }
14505
14506 /* Find any dynamic relocs that apply to read-only sections. */
14507
14508 static bfd_boolean
14509 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
14510 {
14511 struct elf32_arm_link_hash_entry * eh;
14512 struct elf_dyn_relocs * p;
14513
14514 eh = (struct elf32_arm_link_hash_entry *) h;
14515 for (p = eh->dyn_relocs; p != NULL; p = p->next)
14516 {
14517 asection *s = p->sec;
14518
14519 if (s != NULL && (s->flags & SEC_READONLY) != 0)
14520 {
14521 struct bfd_link_info *info = (struct bfd_link_info *) inf;
14522
14523 info->flags |= DF_TEXTREL;
14524
14525 /* Not an error, just cut short the traversal. */
14526 return FALSE;
14527 }
14528 }
14529 return TRUE;
14530 }
14531
14532 void
14533 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
14534 int byteswap_code)
14535 {
14536 struct elf32_arm_link_hash_table *globals;
14537
14538 globals = elf32_arm_hash_table (info);
14539 if (globals == NULL)
14540 return;
14541
14542 globals->byteswap_code = byteswap_code;
14543 }
14544
14545 /* Set the sizes of the dynamic sections. */
14546
14547 static bfd_boolean
14548 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
14549 struct bfd_link_info * info)
14550 {
14551 bfd * dynobj;
14552 asection * s;
14553 bfd_boolean plt;
14554 bfd_boolean relocs;
14555 bfd *ibfd;
14556 struct elf32_arm_link_hash_table *htab;
14557
14558 htab = elf32_arm_hash_table (info);
14559 if (htab == NULL)
14560 return FALSE;
14561
14562 dynobj = elf_hash_table (info)->dynobj;
14563 BFD_ASSERT (dynobj != NULL);
14564 check_use_blx (htab);
14565
14566 if (elf_hash_table (info)->dynamic_sections_created)
14567 {
14568 /* Set the contents of the .interp section to the interpreter. */
14569 if (bfd_link_executable (info) && !info->nointerp)
14570 {
14571 s = bfd_get_linker_section (dynobj, ".interp");
14572 BFD_ASSERT (s != NULL);
14573 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
14574 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
14575 }
14576 }
14577
14578 /* Set up .got offsets for local syms, and space for local dynamic
14579 relocs. */
14580 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
14581 {
14582 bfd_signed_vma *local_got;
14583 bfd_signed_vma *end_local_got;
14584 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
14585 char *local_tls_type;
14586 bfd_vma *local_tlsdesc_gotent;
14587 bfd_size_type locsymcount;
14588 Elf_Internal_Shdr *symtab_hdr;
14589 asection *srel;
14590 bfd_boolean is_vxworks = htab->vxworks_p;
14591 unsigned int symndx;
14592
14593 if (! is_arm_elf (ibfd))
14594 continue;
14595
14596 for (s = ibfd->sections; s != NULL; s = s->next)
14597 {
14598 struct elf_dyn_relocs *p;
14599
14600 for (p = (struct elf_dyn_relocs *)
14601 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
14602 {
14603 if (!bfd_is_abs_section (p->sec)
14604 && bfd_is_abs_section (p->sec->output_section))
14605 {
14606 /* Input section has been discarded, either because
14607 it is a copy of a linkonce section or due to
14608 linker script /DISCARD/, so we'll be discarding
14609 the relocs too. */
14610 }
14611 else if (is_vxworks
14612 && strcmp (p->sec->output_section->name,
14613 ".tls_vars") == 0)
14614 {
14615 /* Relocations in vxworks .tls_vars sections are
14616 handled specially by the loader. */
14617 }
14618 else if (p->count != 0)
14619 {
14620 srel = elf_section_data (p->sec)->sreloc;
14621 elf32_arm_allocate_dynrelocs (info, srel, p->count);
14622 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
14623 info->flags |= DF_TEXTREL;
14624 }
14625 }
14626 }
14627
14628 local_got = elf_local_got_refcounts (ibfd);
14629 if (!local_got)
14630 continue;
14631
14632 symtab_hdr = & elf_symtab_hdr (ibfd);
14633 locsymcount = symtab_hdr->sh_info;
14634 end_local_got = local_got + locsymcount;
14635 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
14636 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
14637 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
14638 symndx = 0;
14639 s = htab->root.sgot;
14640 srel = htab->root.srelgot;
14641 for (; local_got < end_local_got;
14642 ++local_got, ++local_iplt_ptr, ++local_tls_type,
14643 ++local_tlsdesc_gotent, ++symndx)
14644 {
14645 *local_tlsdesc_gotent = (bfd_vma) -1;
14646 local_iplt = *local_iplt_ptr;
14647 if (local_iplt != NULL)
14648 {
14649 struct elf_dyn_relocs *p;
14650
14651 if (local_iplt->root.refcount > 0)
14652 {
14653 elf32_arm_allocate_plt_entry (info, TRUE,
14654 &local_iplt->root,
14655 &local_iplt->arm);
14656 if (local_iplt->arm.noncall_refcount == 0)
14657 /* All references to the PLT are calls, so all
14658 non-call references can resolve directly to the
14659 run-time target. This means that the .got entry
14660 would be the same as the .igot.plt entry, so there's
14661 no point creating both. */
14662 *local_got = 0;
14663 }
14664 else
14665 {
14666 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
14667 local_iplt->root.offset = (bfd_vma) -1;
14668 }
14669
14670 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
14671 {
14672 asection *psrel;
14673
14674 psrel = elf_section_data (p->sec)->sreloc;
14675 if (local_iplt->arm.noncall_refcount == 0)
14676 elf32_arm_allocate_irelocs (info, psrel, p->count);
14677 else
14678 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
14679 }
14680 }
14681 if (*local_got > 0)
14682 {
14683 Elf_Internal_Sym *isym;
14684
14685 *local_got = s->size;
14686 if (*local_tls_type & GOT_TLS_GD)
14687 /* TLS_GD relocs need an 8-byte structure in the GOT. */
14688 s->size += 8;
14689 if (*local_tls_type & GOT_TLS_GDESC)
14690 {
14691 *local_tlsdesc_gotent = htab->root.sgotplt->size
14692 - elf32_arm_compute_jump_table_size (htab);
14693 htab->root.sgotplt->size += 8;
14694 *local_got = (bfd_vma) -2;
14695 /* plt.got_offset needs to know there's a TLS_DESC
14696 reloc in the middle of .got.plt. */
14697 htab->num_tls_desc++;
14698 }
14699 if (*local_tls_type & GOT_TLS_IE)
14700 s->size += 4;
14701
14702 if (*local_tls_type & GOT_NORMAL)
14703 {
14704 /* If the symbol is both GD and GDESC, *local_got
14705 may have been overwritten. */
14706 *local_got = s->size;
14707 s->size += 4;
14708 }
14709
14710 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
14711 if (isym == NULL)
14712 return FALSE;
14713
14714 /* If all references to an STT_GNU_IFUNC PLT are calls,
14715 then all non-call references, including this GOT entry,
14716 resolve directly to the run-time target. */
14717 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
14718 && (local_iplt == NULL
14719 || local_iplt->arm.noncall_refcount == 0))
14720 elf32_arm_allocate_irelocs (info, srel, 1);
14721 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC)
14722 {
14723 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC))
14724 || *local_tls_type & GOT_TLS_GD)
14725 elf32_arm_allocate_dynrelocs (info, srel, 1);
14726
14727 if (bfd_link_pic (info) && *local_tls_type & GOT_TLS_GDESC)
14728 {
14729 elf32_arm_allocate_dynrelocs (info,
14730 htab->root.srelplt, 1);
14731 htab->tls_trampoline = -1;
14732 }
14733 }
14734 }
14735 else
14736 *local_got = (bfd_vma) -1;
14737 }
14738 }
14739
14740 if (htab->tls_ldm_got.refcount > 0)
14741 {
14742 /* Allocate two GOT entries and one dynamic relocation (if necessary)
14743 for R_ARM_TLS_LDM32 relocations. */
14744 htab->tls_ldm_got.offset = htab->root.sgot->size;
14745 htab->root.sgot->size += 8;
14746 if (bfd_link_pic (info))
14747 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
14748 }
14749 else
14750 htab->tls_ldm_got.offset = -1;
14751
14752 /* Allocate global sym .plt and .got entries, and space for global
14753 sym dynamic relocs. */
14754 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
14755
14756 /* Here we rummage through the found bfds to collect glue information. */
14757 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
14758 {
14759 if (! is_arm_elf (ibfd))
14760 continue;
14761
14762 /* Initialise mapping tables for code/data. */
14763 bfd_elf32_arm_init_maps (ibfd);
14764
14765 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
14766 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
14767 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
14768 /* xgettext:c-format */
14769 _bfd_error_handler (_("Errors encountered processing file %s"),
14770 ibfd->filename);
14771 }
14772
14773 /* Allocate space for the glue sections now that we've sized them. */
14774 bfd_elf32_arm_allocate_interworking_sections (info);
14775
14776 /* For every jump slot reserved in the sgotplt, reloc_count is
14777 incremented. However, when we reserve space for TLS descriptors,
14778 it's not incremented, so in order to compute the space reserved
14779 for them, it suffices to multiply the reloc count by the jump
14780 slot size. */
14781 if (htab->root.srelplt)
14782 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
14783
14784 if (htab->tls_trampoline)
14785 {
14786 if (htab->root.splt->size == 0)
14787 htab->root.splt->size += htab->plt_header_size;
14788
14789 htab->tls_trampoline = htab->root.splt->size;
14790 htab->root.splt->size += htab->plt_entry_size;
14791
14792 /* If we're not using lazy TLS relocations, don't generate the
14793 PLT and GOT entries they require. */
14794 if (!(info->flags & DF_BIND_NOW))
14795 {
14796 htab->dt_tlsdesc_got = htab->root.sgot->size;
14797 htab->root.sgot->size += 4;
14798
14799 htab->dt_tlsdesc_plt = htab->root.splt->size;
14800 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
14801 }
14802 }
14803
14804 /* The check_relocs and adjust_dynamic_symbol entry points have
14805 determined the sizes of the various dynamic sections. Allocate
14806 memory for them. */
14807 plt = FALSE;
14808 relocs = FALSE;
14809 for (s = dynobj->sections; s != NULL; s = s->next)
14810 {
14811 const char * name;
14812
14813 if ((s->flags & SEC_LINKER_CREATED) == 0)
14814 continue;
14815
14816 /* It's OK to base decisions on the section name, because none
14817 of the dynobj section names depend upon the input files. */
14818 name = bfd_get_section_name (dynobj, s);
14819
14820 if (s == htab->root.splt)
14821 {
14822 /* Remember whether there is a PLT. */
14823 plt = s->size != 0;
14824 }
14825 else if (CONST_STRNEQ (name, ".rel"))
14826 {
14827 if (s->size != 0)
14828 {
14829 /* Remember whether there are any reloc sections other
14830 than .rel(a).plt and .rela.plt.unloaded. */
14831 if (s != htab->root.srelplt && s != htab->srelplt2)
14832 relocs = TRUE;
14833
14834 /* We use the reloc_count field as a counter if we need
14835 to copy relocs into the output file. */
14836 s->reloc_count = 0;
14837 }
14838 }
14839 else if (s != htab->root.sgot
14840 && s != htab->root.sgotplt
14841 && s != htab->root.iplt
14842 && s != htab->root.igotplt
14843 && s != htab->sdynbss)
14844 {
14845 /* It's not one of our sections, so don't allocate space. */
14846 continue;
14847 }
14848
14849 if (s->size == 0)
14850 {
14851 /* If we don't need this section, strip it from the
14852 output file. This is mostly to handle .rel(a).bss and
14853 .rel(a).plt. We must create both sections in
14854 create_dynamic_sections, because they must be created
14855 before the linker maps input sections to output
14856 sections. The linker does that before
14857 adjust_dynamic_symbol is called, and it is that
14858 function which decides whether anything needs to go
14859 into these sections. */
14860 s->flags |= SEC_EXCLUDE;
14861 continue;
14862 }
14863
14864 if ((s->flags & SEC_HAS_CONTENTS) == 0)
14865 continue;
14866
14867 /* Allocate memory for the section contents. */
14868 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
14869 if (s->contents == NULL)
14870 return FALSE;
14871 }
14872
14873 if (elf_hash_table (info)->dynamic_sections_created)
14874 {
14875 /* Add some entries to the .dynamic section. We fill in the
14876 values later, in elf32_arm_finish_dynamic_sections, but we
14877 must add the entries now so that we get the correct size for
14878 the .dynamic section. The DT_DEBUG entry is filled in by the
14879 dynamic linker and used by the debugger. */
14880 #define add_dynamic_entry(TAG, VAL) \
14881 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
14882
14883 if (bfd_link_executable (info))
14884 {
14885 if (!add_dynamic_entry (DT_DEBUG, 0))
14886 return FALSE;
14887 }
14888
14889 if (plt)
14890 {
14891 if ( !add_dynamic_entry (DT_PLTGOT, 0)
14892 || !add_dynamic_entry (DT_PLTRELSZ, 0)
14893 || !add_dynamic_entry (DT_PLTREL,
14894 htab->use_rel ? DT_REL : DT_RELA)
14895 || !add_dynamic_entry (DT_JMPREL, 0))
14896 return FALSE;
14897
14898 if (htab->dt_tlsdesc_plt &&
14899 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
14900 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
14901 return FALSE;
14902 }
14903
14904 if (relocs)
14905 {
14906 if (htab->use_rel)
14907 {
14908 if (!add_dynamic_entry (DT_REL, 0)
14909 || !add_dynamic_entry (DT_RELSZ, 0)
14910 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
14911 return FALSE;
14912 }
14913 else
14914 {
14915 if (!add_dynamic_entry (DT_RELA, 0)
14916 || !add_dynamic_entry (DT_RELASZ, 0)
14917 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
14918 return FALSE;
14919 }
14920 }
14921
14922 /* If any dynamic relocs apply to a read-only section,
14923 then we need a DT_TEXTREL entry. */
14924 if ((info->flags & DF_TEXTREL) == 0)
14925 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
14926 info);
14927
14928 if ((info->flags & DF_TEXTREL) != 0)
14929 {
14930 if (!add_dynamic_entry (DT_TEXTREL, 0))
14931 return FALSE;
14932 }
14933 if (htab->vxworks_p
14934 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
14935 return FALSE;
14936 }
14937 #undef add_dynamic_entry
14938
14939 return TRUE;
14940 }
14941
14942 /* Size sections even though they're not dynamic. We use it to setup
14943 _TLS_MODULE_BASE_, if needed. */
14944
14945 static bfd_boolean
14946 elf32_arm_always_size_sections (bfd *output_bfd,
14947 struct bfd_link_info *info)
14948 {
14949 asection *tls_sec;
14950
14951 if (bfd_link_relocatable (info))
14952 return TRUE;
14953
14954 tls_sec = elf_hash_table (info)->tls_sec;
14955
14956 if (tls_sec)
14957 {
14958 struct elf_link_hash_entry *tlsbase;
14959
14960 tlsbase = elf_link_hash_lookup
14961 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
14962
14963 if (tlsbase)
14964 {
14965 struct bfd_link_hash_entry *bh = NULL;
14966 const struct elf_backend_data *bed
14967 = get_elf_backend_data (output_bfd);
14968
14969 if (!(_bfd_generic_link_add_one_symbol
14970 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
14971 tls_sec, 0, NULL, FALSE,
14972 bed->collect, &bh)))
14973 return FALSE;
14974
14975 tlsbase->type = STT_TLS;
14976 tlsbase = (struct elf_link_hash_entry *)bh;
14977 tlsbase->def_regular = 1;
14978 tlsbase->other = STV_HIDDEN;
14979 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
14980 }
14981 }
14982 return TRUE;
14983 }
14984
14985 /* Finish up dynamic symbol handling. We set the contents of various
14986 dynamic sections here. */
14987
14988 static bfd_boolean
14989 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
14990 struct bfd_link_info * info,
14991 struct elf_link_hash_entry * h,
14992 Elf_Internal_Sym * sym)
14993 {
14994 struct elf32_arm_link_hash_table *htab;
14995 struct elf32_arm_link_hash_entry *eh;
14996
14997 htab = elf32_arm_hash_table (info);
14998 if (htab == NULL)
14999 return FALSE;
15000
15001 eh = (struct elf32_arm_link_hash_entry *) h;
15002
15003 if (h->plt.offset != (bfd_vma) -1)
15004 {
15005 if (!eh->is_iplt)
15006 {
15007 BFD_ASSERT (h->dynindx != -1);
15008 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
15009 h->dynindx, 0))
15010 return FALSE;
15011 }
15012
15013 if (!h->def_regular)
15014 {
15015 /* Mark the symbol as undefined, rather than as defined in
15016 the .plt section. */
15017 sym->st_shndx = SHN_UNDEF;
15018 /* If the symbol is weak we need to clear the value.
15019 Otherwise, the PLT entry would provide a definition for
15020 the symbol even if the symbol wasn't defined anywhere,
15021 and so the symbol would never be NULL. Leave the value if
15022 there were any relocations where pointer equality matters
15023 (this is a clue for the dynamic linker, to make function
15024 pointer comparisons work between an application and shared
15025 library). */
15026 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
15027 sym->st_value = 0;
15028 }
15029 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
15030 {
15031 /* At least one non-call relocation references this .iplt entry,
15032 so the .iplt entry is the function's canonical address. */
15033 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
15034 sym->st_target_internal = ST_BRANCH_TO_ARM;
15035 sym->st_shndx = (_bfd_elf_section_from_bfd_section
15036 (output_bfd, htab->root.iplt->output_section));
15037 sym->st_value = (h->plt.offset
15038 + htab->root.iplt->output_section->vma
15039 + htab->root.iplt->output_offset);
15040 }
15041 }
15042
15043 if (h->needs_copy)
15044 {
15045 asection * s;
15046 Elf_Internal_Rela rel;
15047
15048 /* This symbol needs a copy reloc. Set it up. */
15049 BFD_ASSERT (h->dynindx != -1
15050 && (h->root.type == bfd_link_hash_defined
15051 || h->root.type == bfd_link_hash_defweak));
15052
15053 s = htab->srelbss;
15054 BFD_ASSERT (s != NULL);
15055
15056 rel.r_addend = 0;
15057 rel.r_offset = (h->root.u.def.value
15058 + h->root.u.def.section->output_section->vma
15059 + h->root.u.def.section->output_offset);
15060 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
15061 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
15062 }
15063
15064 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
15065 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
15066 to the ".got" section. */
15067 if (h == htab->root.hdynamic
15068 || (!htab->vxworks_p && h == htab->root.hgot))
15069 sym->st_shndx = SHN_ABS;
15070
15071 return TRUE;
15072 }
15073
15074 static void
15075 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
15076 void *contents,
15077 const unsigned long *template, unsigned count)
15078 {
15079 unsigned ix;
15080
15081 for (ix = 0; ix != count; ix++)
15082 {
15083 unsigned long insn = template[ix];
15084
15085 /* Emit mov pc,rx if bx is not permitted. */
15086 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
15087 insn = (insn & 0xf000000f) | 0x01a0f000;
15088 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
15089 }
15090 }
15091
15092 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
15093 other variants, NaCl needs this entry in a static executable's
15094 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
15095 zero. For .iplt really only the last bundle is useful, and .iplt
15096 could have a shorter first entry, with each individual PLT entry's
15097 relative branch calculated differently so it targets the last
15098 bundle instead of the instruction before it (labelled .Lplt_tail
15099 above). But it's simpler to keep the size and layout of PLT0
15100 consistent with the dynamic case, at the cost of some dead code at
15101 the start of .iplt and the one dead store to the stack at the start
15102 of .Lplt_tail. */
15103 static void
15104 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
15105 asection *plt, bfd_vma got_displacement)
15106 {
15107 unsigned int i;
15108
15109 put_arm_insn (htab, output_bfd,
15110 elf32_arm_nacl_plt0_entry[0]
15111 | arm_movw_immediate (got_displacement),
15112 plt->contents + 0);
15113 put_arm_insn (htab, output_bfd,
15114 elf32_arm_nacl_plt0_entry[1]
15115 | arm_movt_immediate (got_displacement),
15116 plt->contents + 4);
15117
15118 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
15119 put_arm_insn (htab, output_bfd,
15120 elf32_arm_nacl_plt0_entry[i],
15121 plt->contents + (i * 4));
15122 }
15123
15124 /* Finish up the dynamic sections. */
15125
15126 static bfd_boolean
15127 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
15128 {
15129 bfd * dynobj;
15130 asection * sgot;
15131 asection * sdyn;
15132 struct elf32_arm_link_hash_table *htab;
15133
15134 htab = elf32_arm_hash_table (info);
15135 if (htab == NULL)
15136 return FALSE;
15137
15138 dynobj = elf_hash_table (info)->dynobj;
15139
15140 sgot = htab->root.sgotplt;
15141 /* A broken linker script might have discarded the dynamic sections.
15142 Catch this here so that we do not seg-fault later on. */
15143 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
15144 return FALSE;
15145 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
15146
15147 if (elf_hash_table (info)->dynamic_sections_created)
15148 {
15149 asection *splt;
15150 Elf32_External_Dyn *dyncon, *dynconend;
15151
15152 splt = htab->root.splt;
15153 BFD_ASSERT (splt != NULL && sdyn != NULL);
15154 BFD_ASSERT (htab->symbian_p || sgot != NULL);
15155
15156 dyncon = (Elf32_External_Dyn *) sdyn->contents;
15157 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
15158
15159 for (; dyncon < dynconend; dyncon++)
15160 {
15161 Elf_Internal_Dyn dyn;
15162 const char * name;
15163 asection * s;
15164
15165 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
15166
15167 switch (dyn.d_tag)
15168 {
15169 unsigned int type;
15170
15171 default:
15172 if (htab->vxworks_p
15173 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
15174 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15175 break;
15176
15177 case DT_HASH:
15178 name = ".hash";
15179 goto get_vma_if_bpabi;
15180 case DT_STRTAB:
15181 name = ".dynstr";
15182 goto get_vma_if_bpabi;
15183 case DT_SYMTAB:
15184 name = ".dynsym";
15185 goto get_vma_if_bpabi;
15186 case DT_VERSYM:
15187 name = ".gnu.version";
15188 goto get_vma_if_bpabi;
15189 case DT_VERDEF:
15190 name = ".gnu.version_d";
15191 goto get_vma_if_bpabi;
15192 case DT_VERNEED:
15193 name = ".gnu.version_r";
15194 goto get_vma_if_bpabi;
15195
15196 case DT_PLTGOT:
15197 name = ".got";
15198 goto get_vma;
15199 case DT_JMPREL:
15200 name = RELOC_SECTION (htab, ".plt");
15201 get_vma:
15202 s = bfd_get_section_by_name (output_bfd, name);
15203 if (s == NULL)
15204 {
15205 /* PR ld/14397: Issue an error message if a required section is missing. */
15206 (*_bfd_error_handler)
15207 (_("error: required section '%s' not found in the linker script"), name);
15208 bfd_set_error (bfd_error_invalid_operation);
15209 return FALSE;
15210 }
15211 if (!htab->symbian_p)
15212 dyn.d_un.d_ptr = s->vma;
15213 else
15214 /* In the BPABI, tags in the PT_DYNAMIC section point
15215 at the file offset, not the memory address, for the
15216 convenience of the post linker. */
15217 dyn.d_un.d_ptr = s->filepos;
15218 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15219 break;
15220
15221 get_vma_if_bpabi:
15222 if (htab->symbian_p)
15223 goto get_vma;
15224 break;
15225
15226 case DT_PLTRELSZ:
15227 s = htab->root.srelplt;
15228 BFD_ASSERT (s != NULL);
15229 dyn.d_un.d_val = s->size;
15230 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15231 break;
15232
15233 case DT_RELSZ:
15234 case DT_RELASZ:
15235 if (!htab->symbian_p)
15236 {
15237 /* My reading of the SVR4 ABI indicates that the
15238 procedure linkage table relocs (DT_JMPREL) should be
15239 included in the overall relocs (DT_REL). This is
15240 what Solaris does. However, UnixWare can not handle
15241 that case. Therefore, we override the DT_RELSZ entry
15242 here to make it not include the JMPREL relocs. Since
15243 the linker script arranges for .rel(a).plt to follow all
15244 other relocation sections, we don't have to worry
15245 about changing the DT_REL entry. */
15246 s = htab->root.srelplt;
15247 if (s != NULL)
15248 dyn.d_un.d_val -= s->size;
15249 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15250 break;
15251 }
15252 /* Fall through. */
15253
15254 case DT_REL:
15255 case DT_RELA:
15256 /* In the BPABI, the DT_REL tag must point at the file
15257 offset, not the VMA, of the first relocation
15258 section. So, we use code similar to that in
15259 elflink.c, but do not check for SHF_ALLOC on the
15260 relcoation section, since relocations sections are
15261 never allocated under the BPABI. The comments above
15262 about Unixware notwithstanding, we include all of the
15263 relocations here. */
15264 if (htab->symbian_p)
15265 {
15266 unsigned int i;
15267 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
15268 ? SHT_REL : SHT_RELA);
15269 dyn.d_un.d_val = 0;
15270 for (i = 1; i < elf_numsections (output_bfd); i++)
15271 {
15272 Elf_Internal_Shdr *hdr
15273 = elf_elfsections (output_bfd)[i];
15274 if (hdr->sh_type == type)
15275 {
15276 if (dyn.d_tag == DT_RELSZ
15277 || dyn.d_tag == DT_RELASZ)
15278 dyn.d_un.d_val += hdr->sh_size;
15279 else if ((ufile_ptr) hdr->sh_offset
15280 <= dyn.d_un.d_val - 1)
15281 dyn.d_un.d_val = hdr->sh_offset;
15282 }
15283 }
15284 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15285 }
15286 break;
15287
15288 case DT_TLSDESC_PLT:
15289 s = htab->root.splt;
15290 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
15291 + htab->dt_tlsdesc_plt);
15292 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15293 break;
15294
15295 case DT_TLSDESC_GOT:
15296 s = htab->root.sgot;
15297 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
15298 + htab->dt_tlsdesc_got);
15299 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15300 break;
15301
15302 /* Set the bottom bit of DT_INIT/FINI if the
15303 corresponding function is Thumb. */
15304 case DT_INIT:
15305 name = info->init_function;
15306 goto get_sym;
15307 case DT_FINI:
15308 name = info->fini_function;
15309 get_sym:
15310 /* If it wasn't set by elf_bfd_final_link
15311 then there is nothing to adjust. */
15312 if (dyn.d_un.d_val != 0)
15313 {
15314 struct elf_link_hash_entry * eh;
15315
15316 eh = elf_link_hash_lookup (elf_hash_table (info), name,
15317 FALSE, FALSE, TRUE);
15318 if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
15319 {
15320 dyn.d_un.d_val |= 1;
15321 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
15322 }
15323 }
15324 break;
15325 }
15326 }
15327
15328 /* Fill in the first entry in the procedure linkage table. */
15329 if (splt->size > 0 && htab->plt_header_size)
15330 {
15331 const bfd_vma *plt0_entry;
15332 bfd_vma got_address, plt_address, got_displacement;
15333
15334 /* Calculate the addresses of the GOT and PLT. */
15335 got_address = sgot->output_section->vma + sgot->output_offset;
15336 plt_address = splt->output_section->vma + splt->output_offset;
15337
15338 if (htab->vxworks_p)
15339 {
15340 /* The VxWorks GOT is relocated by the dynamic linker.
15341 Therefore, we must emit relocations rather than simply
15342 computing the values now. */
15343 Elf_Internal_Rela rel;
15344
15345 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
15346 put_arm_insn (htab, output_bfd, plt0_entry[0],
15347 splt->contents + 0);
15348 put_arm_insn (htab, output_bfd, plt0_entry[1],
15349 splt->contents + 4);
15350 put_arm_insn (htab, output_bfd, plt0_entry[2],
15351 splt->contents + 8);
15352 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
15353
15354 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
15355 rel.r_offset = plt_address + 12;
15356 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
15357 rel.r_addend = 0;
15358 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
15359 htab->srelplt2->contents);
15360 }
15361 else if (htab->nacl_p)
15362 arm_nacl_put_plt0 (htab, output_bfd, splt,
15363 got_address + 8 - (plt_address + 16));
15364 else if (using_thumb_only (htab))
15365 {
15366 got_displacement = got_address - (plt_address + 12);
15367
15368 plt0_entry = elf32_thumb2_plt0_entry;
15369 put_arm_insn (htab, output_bfd, plt0_entry[0],
15370 splt->contents + 0);
15371 put_arm_insn (htab, output_bfd, plt0_entry[1],
15372 splt->contents + 4);
15373 put_arm_insn (htab, output_bfd, plt0_entry[2],
15374 splt->contents + 8);
15375
15376 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
15377 }
15378 else
15379 {
15380 got_displacement = got_address - (plt_address + 16);
15381
15382 plt0_entry = elf32_arm_plt0_entry;
15383 put_arm_insn (htab, output_bfd, plt0_entry[0],
15384 splt->contents + 0);
15385 put_arm_insn (htab, output_bfd, plt0_entry[1],
15386 splt->contents + 4);
15387 put_arm_insn (htab, output_bfd, plt0_entry[2],
15388 splt->contents + 8);
15389 put_arm_insn (htab, output_bfd, plt0_entry[3],
15390 splt->contents + 12);
15391
15392 #ifdef FOUR_WORD_PLT
15393 /* The displacement value goes in the otherwise-unused
15394 last word of the second entry. */
15395 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
15396 #else
15397 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
15398 #endif
15399 }
15400 }
15401
15402 /* UnixWare sets the entsize of .plt to 4, although that doesn't
15403 really seem like the right value. */
15404 if (splt->output_section->owner == output_bfd)
15405 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
15406
15407 if (htab->dt_tlsdesc_plt)
15408 {
15409 bfd_vma got_address
15410 = sgot->output_section->vma + sgot->output_offset;
15411 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
15412 + htab->root.sgot->output_offset);
15413 bfd_vma plt_address
15414 = splt->output_section->vma + splt->output_offset;
15415
15416 arm_put_trampoline (htab, output_bfd,
15417 splt->contents + htab->dt_tlsdesc_plt,
15418 dl_tlsdesc_lazy_trampoline, 6);
15419
15420 bfd_put_32 (output_bfd,
15421 gotplt_address + htab->dt_tlsdesc_got
15422 - (plt_address + htab->dt_tlsdesc_plt)
15423 - dl_tlsdesc_lazy_trampoline[6],
15424 splt->contents + htab->dt_tlsdesc_plt + 24);
15425 bfd_put_32 (output_bfd,
15426 got_address - (plt_address + htab->dt_tlsdesc_plt)
15427 - dl_tlsdesc_lazy_trampoline[7],
15428 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
15429 }
15430
15431 if (htab->tls_trampoline)
15432 {
15433 arm_put_trampoline (htab, output_bfd,
15434 splt->contents + htab->tls_trampoline,
15435 tls_trampoline, 3);
15436 #ifdef FOUR_WORD_PLT
15437 bfd_put_32 (output_bfd, 0x00000000,
15438 splt->contents + htab->tls_trampoline + 12);
15439 #endif
15440 }
15441
15442 if (htab->vxworks_p
15443 && !bfd_link_pic (info)
15444 && htab->root.splt->size > 0)
15445 {
15446 /* Correct the .rel(a).plt.unloaded relocations. They will have
15447 incorrect symbol indexes. */
15448 int num_plts;
15449 unsigned char *p;
15450
15451 num_plts = ((htab->root.splt->size - htab->plt_header_size)
15452 / htab->plt_entry_size);
15453 p = htab->srelplt2->contents + RELOC_SIZE (htab);
15454
15455 for (; num_plts; num_plts--)
15456 {
15457 Elf_Internal_Rela rel;
15458
15459 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
15460 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
15461 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
15462 p += RELOC_SIZE (htab);
15463
15464 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
15465 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
15466 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
15467 p += RELOC_SIZE (htab);
15468 }
15469 }
15470 }
15471
15472 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
15473 /* NaCl uses a special first entry in .iplt too. */
15474 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
15475
15476 /* Fill in the first three entries in the global offset table. */
15477 if (sgot)
15478 {
15479 if (sgot->size > 0)
15480 {
15481 if (sdyn == NULL)
15482 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
15483 else
15484 bfd_put_32 (output_bfd,
15485 sdyn->output_section->vma + sdyn->output_offset,
15486 sgot->contents);
15487 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
15488 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
15489 }
15490
15491 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
15492 }
15493
15494 return TRUE;
15495 }
15496
15497 static void
15498 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
15499 {
15500 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
15501 struct elf32_arm_link_hash_table *globals;
15502 struct elf_segment_map *m;
15503
15504 i_ehdrp = elf_elfheader (abfd);
15505
15506 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
15507 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
15508 else
15509 _bfd_elf_post_process_headers (abfd, link_info);
15510 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
15511
15512 if (link_info)
15513 {
15514 globals = elf32_arm_hash_table (link_info);
15515 if (globals != NULL && globals->byteswap_code)
15516 i_ehdrp->e_flags |= EF_ARM_BE8;
15517 }
15518
15519 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
15520 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
15521 {
15522 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
15523 if (abi == AEABI_VFP_args_vfp)
15524 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
15525 else
15526 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
15527 }
15528
15529 /* Scan segment to set p_flags attribute if it contains only sections with
15530 SHF_ARM_NOREAD flag. */
15531 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
15532 {
15533 unsigned int j;
15534
15535 if (m->count == 0)
15536 continue;
15537 for (j = 0; j < m->count; j++)
15538 {
15539 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_NOREAD))
15540 break;
15541 }
15542 if (j == m->count)
15543 {
15544 m->p_flags = PF_X;
15545 m->p_flags_valid = 1;
15546 }
15547 }
15548 }
15549
15550 static enum elf_reloc_type_class
15551 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
15552 const asection *rel_sec ATTRIBUTE_UNUSED,
15553 const Elf_Internal_Rela *rela)
15554 {
15555 switch ((int) ELF32_R_TYPE (rela->r_info))
15556 {
15557 case R_ARM_RELATIVE:
15558 return reloc_class_relative;
15559 case R_ARM_JUMP_SLOT:
15560 return reloc_class_plt;
15561 case R_ARM_COPY:
15562 return reloc_class_copy;
15563 case R_ARM_IRELATIVE:
15564 return reloc_class_ifunc;
15565 default:
15566 return reloc_class_normal;
15567 }
15568 }
15569
15570 static void
15571 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
15572 {
15573 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
15574 }
15575
15576 /* Return TRUE if this is an unwinding table entry. */
15577
15578 static bfd_boolean
15579 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
15580 {
15581 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
15582 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
15583 }
15584
15585
15586 /* Set the type and flags for an ARM section. We do this by
15587 the section name, which is a hack, but ought to work. */
15588
15589 static bfd_boolean
15590 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
15591 {
15592 const char * name;
15593
15594 name = bfd_get_section_name (abfd, sec);
15595
15596 if (is_arm_elf_unwind_section_name (abfd, name))
15597 {
15598 hdr->sh_type = SHT_ARM_EXIDX;
15599 hdr->sh_flags |= SHF_LINK_ORDER;
15600 }
15601
15602 if (sec->flags & SEC_ELF_NOREAD)
15603 hdr->sh_flags |= SHF_ARM_NOREAD;
15604
15605 return TRUE;
15606 }
15607
15608 /* Handle an ARM specific section when reading an object file. This is
15609 called when bfd_section_from_shdr finds a section with an unknown
15610 type. */
15611
15612 static bfd_boolean
15613 elf32_arm_section_from_shdr (bfd *abfd,
15614 Elf_Internal_Shdr * hdr,
15615 const char *name,
15616 int shindex)
15617 {
15618 /* There ought to be a place to keep ELF backend specific flags, but
15619 at the moment there isn't one. We just keep track of the
15620 sections by their name, instead. Fortunately, the ABI gives
15621 names for all the ARM specific sections, so we will probably get
15622 away with this. */
15623 switch (hdr->sh_type)
15624 {
15625 case SHT_ARM_EXIDX:
15626 case SHT_ARM_PREEMPTMAP:
15627 case SHT_ARM_ATTRIBUTES:
15628 break;
15629
15630 default:
15631 return FALSE;
15632 }
15633
15634 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
15635 return FALSE;
15636
15637 return TRUE;
15638 }
15639
15640 static _arm_elf_section_data *
15641 get_arm_elf_section_data (asection * sec)
15642 {
15643 if (sec && sec->owner && is_arm_elf (sec->owner))
15644 return elf32_arm_section_data (sec);
15645 else
15646 return NULL;
15647 }
15648
15649 typedef struct
15650 {
15651 void *flaginfo;
15652 struct bfd_link_info *info;
15653 asection *sec;
15654 int sec_shndx;
15655 int (*func) (void *, const char *, Elf_Internal_Sym *,
15656 asection *, struct elf_link_hash_entry *);
15657 } output_arch_syminfo;
15658
15659 enum map_symbol_type
15660 {
15661 ARM_MAP_ARM,
15662 ARM_MAP_THUMB,
15663 ARM_MAP_DATA
15664 };
15665
15666
15667 /* Output a single mapping symbol. */
15668
15669 static bfd_boolean
15670 elf32_arm_output_map_sym (output_arch_syminfo *osi,
15671 enum map_symbol_type type,
15672 bfd_vma offset)
15673 {
15674 static const char *names[3] = {"$a", "$t", "$d"};
15675 Elf_Internal_Sym sym;
15676
15677 sym.st_value = osi->sec->output_section->vma
15678 + osi->sec->output_offset
15679 + offset;
15680 sym.st_size = 0;
15681 sym.st_other = 0;
15682 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
15683 sym.st_shndx = osi->sec_shndx;
15684 sym.st_target_internal = 0;
15685 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
15686 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
15687 }
15688
15689 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
15690 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
15691
15692 static bfd_boolean
15693 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
15694 bfd_boolean is_iplt_entry_p,
15695 union gotplt_union *root_plt,
15696 struct arm_plt_info *arm_plt)
15697 {
15698 struct elf32_arm_link_hash_table *htab;
15699 bfd_vma addr, plt_header_size;
15700
15701 if (root_plt->offset == (bfd_vma) -1)
15702 return TRUE;
15703
15704 htab = elf32_arm_hash_table (osi->info);
15705 if (htab == NULL)
15706 return FALSE;
15707
15708 if (is_iplt_entry_p)
15709 {
15710 osi->sec = htab->root.iplt;
15711 plt_header_size = 0;
15712 }
15713 else
15714 {
15715 osi->sec = htab->root.splt;
15716 plt_header_size = htab->plt_header_size;
15717 }
15718 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
15719 (osi->info->output_bfd, osi->sec->output_section));
15720
15721 addr = root_plt->offset & -2;
15722 if (htab->symbian_p)
15723 {
15724 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
15725 return FALSE;
15726 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
15727 return FALSE;
15728 }
15729 else if (htab->vxworks_p)
15730 {
15731 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
15732 return FALSE;
15733 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
15734 return FALSE;
15735 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
15736 return FALSE;
15737 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
15738 return FALSE;
15739 }
15740 else if (htab->nacl_p)
15741 {
15742 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
15743 return FALSE;
15744 }
15745 else if (using_thumb_only (htab))
15746 {
15747 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
15748 return FALSE;
15749 }
15750 else
15751 {
15752 bfd_boolean thumb_stub_p;
15753
15754 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
15755 if (thumb_stub_p)
15756 {
15757 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
15758 return FALSE;
15759 }
15760 #ifdef FOUR_WORD_PLT
15761 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
15762 return FALSE;
15763 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
15764 return FALSE;
15765 #else
15766 /* A three-word PLT with no Thumb thunk contains only Arm code,
15767 so only need to output a mapping symbol for the first PLT entry and
15768 entries with thumb thunks. */
15769 if (thumb_stub_p || addr == plt_header_size)
15770 {
15771 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
15772 return FALSE;
15773 }
15774 #endif
15775 }
15776
15777 return TRUE;
15778 }
15779
15780 /* Output mapping symbols for PLT entries associated with H. */
15781
15782 static bfd_boolean
15783 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
15784 {
15785 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
15786 struct elf32_arm_link_hash_entry *eh;
15787
15788 if (h->root.type == bfd_link_hash_indirect)
15789 return TRUE;
15790
15791 if (h->root.type == bfd_link_hash_warning)
15792 /* When warning symbols are created, they **replace** the "real"
15793 entry in the hash table, thus we never get to see the real
15794 symbol in a hash traversal. So look at it now. */
15795 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15796
15797 eh = (struct elf32_arm_link_hash_entry *) h;
15798 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
15799 &h->plt, &eh->plt);
15800 }
15801
15802 /* Output a single local symbol for a generated stub. */
15803
15804 static bfd_boolean
15805 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
15806 bfd_vma offset, bfd_vma size)
15807 {
15808 Elf_Internal_Sym sym;
15809
15810 sym.st_value = osi->sec->output_section->vma
15811 + osi->sec->output_offset
15812 + offset;
15813 sym.st_size = size;
15814 sym.st_other = 0;
15815 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
15816 sym.st_shndx = osi->sec_shndx;
15817 sym.st_target_internal = 0;
15818 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
15819 }
15820
15821 static bfd_boolean
15822 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
15823 void * in_arg)
15824 {
15825 struct elf32_arm_stub_hash_entry *stub_entry;
15826 asection *stub_sec;
15827 bfd_vma addr;
15828 char *stub_name;
15829 output_arch_syminfo *osi;
15830 const insn_sequence *template_sequence;
15831 enum stub_insn_type prev_type;
15832 int size;
15833 int i;
15834 enum map_symbol_type sym_type;
15835
15836 /* Massage our args to the form they really have. */
15837 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
15838 osi = (output_arch_syminfo *) in_arg;
15839
15840 stub_sec = stub_entry->stub_sec;
15841
15842 /* Ensure this stub is attached to the current section being
15843 processed. */
15844 if (stub_sec != osi->sec)
15845 return TRUE;
15846
15847 addr = (bfd_vma) stub_entry->stub_offset;
15848 stub_name = stub_entry->output_name;
15849
15850 template_sequence = stub_entry->stub_template;
15851 switch (template_sequence[0].type)
15852 {
15853 case ARM_TYPE:
15854 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
15855 return FALSE;
15856 break;
15857 case THUMB16_TYPE:
15858 case THUMB32_TYPE:
15859 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
15860 stub_entry->stub_size))
15861 return FALSE;
15862 break;
15863 default:
15864 BFD_FAIL ();
15865 return 0;
15866 }
15867
15868 prev_type = DATA_TYPE;
15869 size = 0;
15870 for (i = 0; i < stub_entry->stub_template_size; i++)
15871 {
15872 switch (template_sequence[i].type)
15873 {
15874 case ARM_TYPE:
15875 sym_type = ARM_MAP_ARM;
15876 break;
15877
15878 case THUMB16_TYPE:
15879 case THUMB32_TYPE:
15880 sym_type = ARM_MAP_THUMB;
15881 break;
15882
15883 case DATA_TYPE:
15884 sym_type = ARM_MAP_DATA;
15885 break;
15886
15887 default:
15888 BFD_FAIL ();
15889 return FALSE;
15890 }
15891
15892 if (template_sequence[i].type != prev_type)
15893 {
15894 prev_type = template_sequence[i].type;
15895 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
15896 return FALSE;
15897 }
15898
15899 switch (template_sequence[i].type)
15900 {
15901 case ARM_TYPE:
15902 case THUMB32_TYPE:
15903 size += 4;
15904 break;
15905
15906 case THUMB16_TYPE:
15907 size += 2;
15908 break;
15909
15910 case DATA_TYPE:
15911 size += 4;
15912 break;
15913
15914 default:
15915 BFD_FAIL ();
15916 return FALSE;
15917 }
15918 }
15919
15920 return TRUE;
15921 }
15922
15923 /* Output mapping symbols for linker generated sections,
15924 and for those data-only sections that do not have a
15925 $d. */
15926
15927 static bfd_boolean
15928 elf32_arm_output_arch_local_syms (bfd *output_bfd,
15929 struct bfd_link_info *info,
15930 void *flaginfo,
15931 int (*func) (void *, const char *,
15932 Elf_Internal_Sym *,
15933 asection *,
15934 struct elf_link_hash_entry *))
15935 {
15936 output_arch_syminfo osi;
15937 struct elf32_arm_link_hash_table *htab;
15938 bfd_vma offset;
15939 bfd_size_type size;
15940 bfd *input_bfd;
15941
15942 htab = elf32_arm_hash_table (info);
15943 if (htab == NULL)
15944 return FALSE;
15945
15946 check_use_blx (htab);
15947
15948 osi.flaginfo = flaginfo;
15949 osi.info = info;
15950 osi.func = func;
15951
15952 /* Add a $d mapping symbol to data-only sections that
15953 don't have any mapping symbol. This may result in (harmless) redundant
15954 mapping symbols. */
15955 for (input_bfd = info->input_bfds;
15956 input_bfd != NULL;
15957 input_bfd = input_bfd->link.next)
15958 {
15959 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
15960 for (osi.sec = input_bfd->sections;
15961 osi.sec != NULL;
15962 osi.sec = osi.sec->next)
15963 {
15964 if (osi.sec->output_section != NULL
15965 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
15966 != 0)
15967 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
15968 == SEC_HAS_CONTENTS
15969 && get_arm_elf_section_data (osi.sec) != NULL
15970 && get_arm_elf_section_data (osi.sec)->mapcount == 0
15971 && osi.sec->size > 0
15972 && (osi.sec->flags & SEC_EXCLUDE) == 0)
15973 {
15974 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15975 (output_bfd, osi.sec->output_section);
15976 if (osi.sec_shndx != (int)SHN_BAD)
15977 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
15978 }
15979 }
15980 }
15981
15982 /* ARM->Thumb glue. */
15983 if (htab->arm_glue_size > 0)
15984 {
15985 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
15986 ARM2THUMB_GLUE_SECTION_NAME);
15987
15988 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15989 (output_bfd, osi.sec->output_section);
15990 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
15991 || htab->pic_veneer)
15992 size = ARM2THUMB_PIC_GLUE_SIZE;
15993 else if (htab->use_blx)
15994 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
15995 else
15996 size = ARM2THUMB_STATIC_GLUE_SIZE;
15997
15998 for (offset = 0; offset < htab->arm_glue_size; offset += size)
15999 {
16000 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
16001 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
16002 }
16003 }
16004
16005 /* Thumb->ARM glue. */
16006 if (htab->thumb_glue_size > 0)
16007 {
16008 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
16009 THUMB2ARM_GLUE_SECTION_NAME);
16010
16011 osi.sec_shndx = _bfd_elf_section_from_bfd_section
16012 (output_bfd, osi.sec->output_section);
16013 size = THUMB2ARM_GLUE_SIZE;
16014
16015 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
16016 {
16017 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
16018 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
16019 }
16020 }
16021
16022 /* ARMv4 BX veneers. */
16023 if (htab->bx_glue_size > 0)
16024 {
16025 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
16026 ARM_BX_GLUE_SECTION_NAME);
16027
16028 osi.sec_shndx = _bfd_elf_section_from_bfd_section
16029 (output_bfd, osi.sec->output_section);
16030
16031 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
16032 }
16033
16034 /* Long calls stubs. */
16035 if (htab->stub_bfd && htab->stub_bfd->sections)
16036 {
16037 asection* stub_sec;
16038
16039 for (stub_sec = htab->stub_bfd->sections;
16040 stub_sec != NULL;
16041 stub_sec = stub_sec->next)
16042 {
16043 /* Ignore non-stub sections. */
16044 if (!strstr (stub_sec->name, STUB_SUFFIX))
16045 continue;
16046
16047 osi.sec = stub_sec;
16048
16049 osi.sec_shndx = _bfd_elf_section_from_bfd_section
16050 (output_bfd, osi.sec->output_section);
16051
16052 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
16053 }
16054 }
16055
16056 /* Finally, output mapping symbols for the PLT. */
16057 if (htab->root.splt && htab->root.splt->size > 0)
16058 {
16059 osi.sec = htab->root.splt;
16060 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
16061 (output_bfd, osi.sec->output_section));
16062
16063 /* Output mapping symbols for the plt header. SymbianOS does not have a
16064 plt header. */
16065 if (htab->vxworks_p)
16066 {
16067 /* VxWorks shared libraries have no PLT header. */
16068 if (!bfd_link_pic (info))
16069 {
16070 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
16071 return FALSE;
16072 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
16073 return FALSE;
16074 }
16075 }
16076 else if (htab->nacl_p)
16077 {
16078 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
16079 return FALSE;
16080 }
16081 else if (using_thumb_only (htab))
16082 {
16083 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
16084 return FALSE;
16085 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
16086 return FALSE;
16087 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
16088 return FALSE;
16089 }
16090 else if (!htab->symbian_p)
16091 {
16092 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
16093 return FALSE;
16094 #ifndef FOUR_WORD_PLT
16095 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
16096 return FALSE;
16097 #endif
16098 }
16099 }
16100 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
16101 {
16102 /* NaCl uses a special first entry in .iplt too. */
16103 osi.sec = htab->root.iplt;
16104 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
16105 (output_bfd, osi.sec->output_section));
16106 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
16107 return FALSE;
16108 }
16109 if ((htab->root.splt && htab->root.splt->size > 0)
16110 || (htab->root.iplt && htab->root.iplt->size > 0))
16111 {
16112 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
16113 for (input_bfd = info->input_bfds;
16114 input_bfd != NULL;
16115 input_bfd = input_bfd->link.next)
16116 {
16117 struct arm_local_iplt_info **local_iplt;
16118 unsigned int i, num_syms;
16119
16120 local_iplt = elf32_arm_local_iplt (input_bfd);
16121 if (local_iplt != NULL)
16122 {
16123 num_syms = elf_symtab_hdr (input_bfd).sh_info;
16124 for (i = 0; i < num_syms; i++)
16125 if (local_iplt[i] != NULL
16126 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
16127 &local_iplt[i]->root,
16128 &local_iplt[i]->arm))
16129 return FALSE;
16130 }
16131 }
16132 }
16133 if (htab->dt_tlsdesc_plt != 0)
16134 {
16135 /* Mapping symbols for the lazy tls trampoline. */
16136 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
16137 return FALSE;
16138
16139 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
16140 htab->dt_tlsdesc_plt + 24))
16141 return FALSE;
16142 }
16143 if (htab->tls_trampoline != 0)
16144 {
16145 /* Mapping symbols for the tls trampoline. */
16146 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
16147 return FALSE;
16148 #ifdef FOUR_WORD_PLT
16149 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
16150 htab->tls_trampoline + 12))
16151 return FALSE;
16152 #endif
16153 }
16154
16155 return TRUE;
16156 }
16157
16158 /* Allocate target specific section data. */
16159
16160 static bfd_boolean
16161 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
16162 {
16163 if (!sec->used_by_bfd)
16164 {
16165 _arm_elf_section_data *sdata;
16166 bfd_size_type amt = sizeof (*sdata);
16167
16168 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
16169 if (sdata == NULL)
16170 return FALSE;
16171 sec->used_by_bfd = sdata;
16172 }
16173
16174 return _bfd_elf_new_section_hook (abfd, sec);
16175 }
16176
16177
16178 /* Used to order a list of mapping symbols by address. */
16179
16180 static int
16181 elf32_arm_compare_mapping (const void * a, const void * b)
16182 {
16183 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
16184 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
16185
16186 if (amap->vma > bmap->vma)
16187 return 1;
16188 else if (amap->vma < bmap->vma)
16189 return -1;
16190 else if (amap->type > bmap->type)
16191 /* Ensure results do not depend on the host qsort for objects with
16192 multiple mapping symbols at the same address by sorting on type
16193 after vma. */
16194 return 1;
16195 else if (amap->type < bmap->type)
16196 return -1;
16197 else
16198 return 0;
16199 }
16200
16201 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
16202
16203 static unsigned long
16204 offset_prel31 (unsigned long addr, bfd_vma offset)
16205 {
16206 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
16207 }
16208
16209 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
16210 relocations. */
16211
16212 static void
16213 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
16214 {
16215 unsigned long first_word = bfd_get_32 (output_bfd, from);
16216 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
16217
16218 /* High bit of first word is supposed to be zero. */
16219 if ((first_word & 0x80000000ul) == 0)
16220 first_word = offset_prel31 (first_word, offset);
16221
16222 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
16223 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
16224 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
16225 second_word = offset_prel31 (second_word, offset);
16226
16227 bfd_put_32 (output_bfd, first_word, to);
16228 bfd_put_32 (output_bfd, second_word, to + 4);
16229 }
16230
16231 /* Data for make_branch_to_a8_stub(). */
16232
16233 struct a8_branch_to_stub_data
16234 {
16235 asection *writing_section;
16236 bfd_byte *contents;
16237 };
16238
16239
16240 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
16241 places for a particular section. */
16242
16243 static bfd_boolean
16244 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
16245 void *in_arg)
16246 {
16247 struct elf32_arm_stub_hash_entry *stub_entry;
16248 struct a8_branch_to_stub_data *data;
16249 bfd_byte *contents;
16250 unsigned long branch_insn;
16251 bfd_vma veneered_insn_loc, veneer_entry_loc;
16252 bfd_signed_vma branch_offset;
16253 bfd *abfd;
16254 unsigned int target;
16255
16256 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
16257 data = (struct a8_branch_to_stub_data *) in_arg;
16258
16259 if (stub_entry->target_section != data->writing_section
16260 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
16261 return TRUE;
16262
16263 contents = data->contents;
16264
16265 veneered_insn_loc = stub_entry->target_section->output_section->vma
16266 + stub_entry->target_section->output_offset
16267 + stub_entry->target_value;
16268
16269 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
16270 + stub_entry->stub_sec->output_offset
16271 + stub_entry->stub_offset;
16272
16273 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
16274 veneered_insn_loc &= ~3u;
16275
16276 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
16277
16278 abfd = stub_entry->target_section->owner;
16279 target = stub_entry->target_value;
16280
16281 /* We attempt to avoid this condition by setting stubs_always_after_branch
16282 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
16283 This check is just to be on the safe side... */
16284 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
16285 {
16286 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
16287 "allocated in unsafe location"), abfd);
16288 return FALSE;
16289 }
16290
16291 switch (stub_entry->stub_type)
16292 {
16293 case arm_stub_a8_veneer_b:
16294 case arm_stub_a8_veneer_b_cond:
16295 branch_insn = 0xf0009000;
16296 goto jump24;
16297
16298 case arm_stub_a8_veneer_blx:
16299 branch_insn = 0xf000e800;
16300 goto jump24;
16301
16302 case arm_stub_a8_veneer_bl:
16303 {
16304 unsigned int i1, j1, i2, j2, s;
16305
16306 branch_insn = 0xf000d000;
16307
16308 jump24:
16309 if (branch_offset < -16777216 || branch_offset > 16777214)
16310 {
16311 /* There's not much we can do apart from complain if this
16312 happens. */
16313 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
16314 "of range (input file too large)"), abfd);
16315 return FALSE;
16316 }
16317
16318 /* i1 = not(j1 eor s), so:
16319 not i1 = j1 eor s
16320 j1 = (not i1) eor s. */
16321
16322 branch_insn |= (branch_offset >> 1) & 0x7ff;
16323 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
16324 i2 = (branch_offset >> 22) & 1;
16325 i1 = (branch_offset >> 23) & 1;
16326 s = (branch_offset >> 24) & 1;
16327 j1 = (!i1) ^ s;
16328 j2 = (!i2) ^ s;
16329 branch_insn |= j2 << 11;
16330 branch_insn |= j1 << 13;
16331 branch_insn |= s << 26;
16332 }
16333 break;
16334
16335 default:
16336 BFD_FAIL ();
16337 return FALSE;
16338 }
16339
16340 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
16341 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
16342
16343 return TRUE;
16344 }
16345
16346 /* Beginning of stm32l4xx work-around. */
16347
16348 /* Functions encoding instructions necessary for the emission of the
16349 fix-stm32l4xx-629360.
16350 Encoding is extracted from the
16351 ARM (C) Architecture Reference Manual
16352 ARMv7-A and ARMv7-R edition
16353 ARM DDI 0406C.b (ID072512). */
16354
16355 static inline bfd_vma
16356 create_instruction_branch_absolute (int branch_offset)
16357 {
16358 /* A8.8.18 B (A8-334)
16359 B target_address (Encoding T4). */
16360 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
16361 /* jump offset is: S:I1:I2:imm10:imm11:0. */
16362 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
16363
16364 int s = ((branch_offset & 0x1000000) >> 24);
16365 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
16366 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
16367
16368 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
16369 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
16370
16371 bfd_vma patched_inst = 0xf0009000
16372 | s << 26 /* S. */
16373 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
16374 | j1 << 13 /* J1. */
16375 | j2 << 11 /* J2. */
16376 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
16377
16378 return patched_inst;
16379 }
16380
16381 static inline bfd_vma
16382 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
16383 {
16384 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
16385 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
16386 bfd_vma patched_inst = 0xe8900000
16387 | (/*W=*/wback << 21)
16388 | (base_reg << 16)
16389 | (reg_mask & 0x0000ffff);
16390
16391 return patched_inst;
16392 }
16393
16394 static inline bfd_vma
16395 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
16396 {
16397 /* A8.8.60 LDMDB/LDMEA (A8-402)
16398 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
16399 bfd_vma patched_inst = 0xe9100000
16400 | (/*W=*/wback << 21)
16401 | (base_reg << 16)
16402 | (reg_mask & 0x0000ffff);
16403
16404 return patched_inst;
16405 }
16406
16407 static inline bfd_vma
16408 create_instruction_mov (int target_reg, int source_reg)
16409 {
16410 /* A8.8.103 MOV (register) (A8-486)
16411 MOV Rd, Rm (Encoding T1). */
16412 bfd_vma patched_inst = 0x4600
16413 | (target_reg & 0x7)
16414 | ((target_reg & 0x8) >> 3) << 7
16415 | (source_reg << 3);
16416
16417 return patched_inst;
16418 }
16419
16420 static inline bfd_vma
16421 create_instruction_sub (int target_reg, int source_reg, int value)
16422 {
16423 /* A8.8.221 SUB (immediate) (A8-708)
16424 SUB Rd, Rn, #value (Encoding T3). */
16425 bfd_vma patched_inst = 0xf1a00000
16426 | (target_reg << 8)
16427 | (source_reg << 16)
16428 | (/*S=*/0 << 20)
16429 | ((value & 0x800) >> 11) << 26
16430 | ((value & 0x700) >> 8) << 12
16431 | (value & 0x0ff);
16432
16433 return patched_inst;
16434 }
16435
16436 static inline bfd_vma
16437 create_instruction_vldmia (int base_reg, int wback, int num_regs,
16438 int first_reg)
16439 {
16440 /* A8.8.332 VLDM (A8-922)
16441 VLMD{MODE} Rn{!}, {list} (Encoding T2). */
16442 bfd_vma patched_inst = 0xec900a00
16443 | (/*W=*/wback << 21)
16444 | (base_reg << 16)
16445 | (num_regs & 0x000000ff)
16446 | (((unsigned)first_reg>>1) & 0x0000000f) << 12
16447 | (first_reg & 0x00000001) << 22;
16448
16449 return patched_inst;
16450 }
16451
16452 static inline bfd_vma
16453 create_instruction_vldmdb (int base_reg, int num_regs, int first_reg)
16454 {
16455 /* A8.8.332 VLDM (A8-922)
16456 VLMD{MODE} Rn!, {} (Encoding T2). */
16457 bfd_vma patched_inst = 0xed300a00
16458 | (base_reg << 16)
16459 | (num_regs & 0x000000ff)
16460 | (((unsigned)first_reg>>1) & 0x0000000f) << 12
16461 | (first_reg & 0x00000001) << 22;
16462
16463 return patched_inst;
16464 }
16465
16466 static inline bfd_vma
16467 create_instruction_udf_w (int value)
16468 {
16469 /* A8.8.247 UDF (A8-758)
16470 Undefined (Encoding T2). */
16471 bfd_vma patched_inst = 0xf7f0a000
16472 | (value & 0x00000fff)
16473 | (value & 0x000f0000) << 16;
16474
16475 return patched_inst;
16476 }
16477
16478 static inline bfd_vma
16479 create_instruction_udf (int value)
16480 {
16481 /* A8.8.247 UDF (A8-758)
16482 Undefined (Encoding T1). */
16483 bfd_vma patched_inst = 0xde00
16484 | (value & 0xff);
16485
16486 return patched_inst;
16487 }
16488
16489 /* Functions writing an instruction in memory, returning the next
16490 memory position to write to. */
16491
16492 static inline bfd_byte *
16493 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
16494 bfd * output_bfd, bfd_byte *pt, insn32 insn)
16495 {
16496 put_thumb2_insn (htab, output_bfd, insn, pt);
16497 return pt + 4;
16498 }
16499
16500 static inline bfd_byte *
16501 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
16502 bfd * output_bfd, bfd_byte *pt, insn32 insn)
16503 {
16504 put_thumb_insn (htab, output_bfd, insn, pt);
16505 return pt + 2;
16506 }
16507
16508 /* Function filling up a region in memory with T1 and T2 UDFs taking
16509 care of alignment. */
16510
16511 static bfd_byte *
16512 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
16513 bfd * output_bfd,
16514 const bfd_byte * const base_stub_contents,
16515 bfd_byte * const from_stub_contents,
16516 const bfd_byte * const end_stub_contents)
16517 {
16518 bfd_byte *current_stub_contents = from_stub_contents;
16519
16520 /* Fill the remaining of the stub with deterministic contents : UDF
16521 instructions.
16522 Check if realignment is needed on modulo 4 frontier using T1, to
16523 further use T2. */
16524 if ((current_stub_contents < end_stub_contents)
16525 && !((current_stub_contents - base_stub_contents) % 2)
16526 && ((current_stub_contents - base_stub_contents) % 4))
16527 current_stub_contents =
16528 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
16529 create_instruction_udf (0));
16530
16531 for (; current_stub_contents < end_stub_contents;)
16532 current_stub_contents =
16533 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16534 create_instruction_udf_w (0));
16535
16536 return current_stub_contents;
16537 }
16538
16539 /* Functions writing the stream of instructions equivalent to the
16540 derived sequence for ldmia, ldmdb, vldm respectively. */
16541
16542 static void
16543 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
16544 bfd * output_bfd,
16545 const insn32 initial_insn,
16546 const bfd_byte *const initial_insn_addr,
16547 bfd_byte *const base_stub_contents)
16548 {
16549 int wback = (initial_insn & 0x00200000) >> 21;
16550 int ri, rn = (initial_insn & 0x000F0000) >> 16;
16551 int insn_all_registers = initial_insn & 0x0000ffff;
16552 int insn_low_registers, insn_high_registers;
16553 int usable_register_mask;
16554 int nb_registers = popcount (insn_all_registers);
16555 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
16556 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
16557 bfd_byte *current_stub_contents = base_stub_contents;
16558
16559 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
16560
16561 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
16562 smaller than 8 registers load sequences that do not cause the
16563 hardware issue. */
16564 if (nb_registers <= 8)
16565 {
16566 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
16567 current_stub_contents =
16568 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16569 initial_insn);
16570
16571 /* B initial_insn_addr+4. */
16572 if (!restore_pc)
16573 current_stub_contents =
16574 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16575 create_instruction_branch_absolute
16576 (initial_insn_addr - current_stub_contents));
16577
16578
16579 /* Fill the remaining of the stub with deterministic contents. */
16580 current_stub_contents =
16581 stm32l4xx_fill_stub_udf (htab, output_bfd,
16582 base_stub_contents, current_stub_contents,
16583 base_stub_contents +
16584 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
16585
16586 return;
16587 }
16588
16589 /* - reg_list[13] == 0. */
16590 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
16591
16592 /* - reg_list[14] & reg_list[15] != 1. */
16593 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
16594
16595 /* - if (wback==1) reg_list[rn] == 0. */
16596 BFD_ASSERT (!wback || !restore_rn);
16597
16598 /* - nb_registers > 8. */
16599 BFD_ASSERT (popcount (insn_all_registers) > 8);
16600
16601 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
16602
16603 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
16604 - One with the 7 lowest registers (register mask 0x007F)
16605 This LDM will finally contain between 2 and 7 registers
16606 - One with the 7 highest registers (register mask 0xDF80)
16607 This ldm will finally contain between 2 and 7 registers. */
16608 insn_low_registers = insn_all_registers & 0x007F;
16609 insn_high_registers = insn_all_registers & 0xDF80;
16610
16611 /* A spare register may be needed during this veneer to temporarily
16612 handle the base register. This register will be restored with the
16613 last LDM operation.
16614 The usable register may be any general purpose register (that
16615 excludes PC, SP, LR : register mask is 0x1FFF). */
16616 usable_register_mask = 0x1FFF;
16617
16618 /* Generate the stub function. */
16619 if (wback)
16620 {
16621 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
16622 current_stub_contents =
16623 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16624 create_instruction_ldmia
16625 (rn, /*wback=*/1, insn_low_registers));
16626
16627 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
16628 current_stub_contents =
16629 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16630 create_instruction_ldmia
16631 (rn, /*wback=*/1, insn_high_registers));
16632 if (!restore_pc)
16633 {
16634 /* B initial_insn_addr+4. */
16635 current_stub_contents =
16636 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16637 create_instruction_branch_absolute
16638 (initial_insn_addr - current_stub_contents));
16639 }
16640 }
16641 else /* if (!wback). */
16642 {
16643 ri = rn;
16644
16645 /* If Rn is not part of the high-register-list, move it there. */
16646 if (!(insn_high_registers & (1 << rn)))
16647 {
16648 /* Choose a Ri in the high-register-list that will be restored. */
16649 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
16650
16651 /* MOV Ri, Rn. */
16652 current_stub_contents =
16653 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
16654 create_instruction_mov (ri, rn));
16655 }
16656
16657 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
16658 current_stub_contents =
16659 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16660 create_instruction_ldmia
16661 (ri, /*wback=*/1, insn_low_registers));
16662
16663 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
16664 current_stub_contents =
16665 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16666 create_instruction_ldmia
16667 (ri, /*wback=*/0, insn_high_registers));
16668
16669 if (!restore_pc)
16670 {
16671 /* B initial_insn_addr+4. */
16672 current_stub_contents =
16673 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16674 create_instruction_branch_absolute
16675 (initial_insn_addr - current_stub_contents));
16676 }
16677 }
16678
16679 /* Fill the remaining of the stub with deterministic contents. */
16680 current_stub_contents =
16681 stm32l4xx_fill_stub_udf (htab, output_bfd,
16682 base_stub_contents, current_stub_contents,
16683 base_stub_contents +
16684 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
16685 }
16686
16687 static void
16688 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
16689 bfd * output_bfd,
16690 const insn32 initial_insn,
16691 const bfd_byte *const initial_insn_addr,
16692 bfd_byte *const base_stub_contents)
16693 {
16694 int wback = (initial_insn & 0x00200000) >> 21;
16695 int ri, rn = (initial_insn & 0x000f0000) >> 16;
16696 int insn_all_registers = initial_insn & 0x0000ffff;
16697 int insn_low_registers, insn_high_registers;
16698 int usable_register_mask;
16699 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
16700 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
16701 int nb_registers = popcount (insn_all_registers);
16702 bfd_byte *current_stub_contents = base_stub_contents;
16703
16704 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
16705
16706 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
16707 smaller than 8 registers load sequences that do not cause the
16708 hardware issue. */
16709 if (nb_registers <= 8)
16710 {
16711 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
16712 current_stub_contents =
16713 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16714 initial_insn);
16715
16716 /* B initial_insn_addr+4. */
16717 current_stub_contents =
16718 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16719 create_instruction_branch_absolute
16720 (initial_insn_addr - current_stub_contents));
16721
16722 /* Fill the remaining of the stub with deterministic contents. */
16723 current_stub_contents =
16724 stm32l4xx_fill_stub_udf (htab, output_bfd,
16725 base_stub_contents, current_stub_contents,
16726 base_stub_contents +
16727 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
16728
16729 return;
16730 }
16731
16732 /* - reg_list[13] == 0. */
16733 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
16734
16735 /* - reg_list[14] & reg_list[15] != 1. */
16736 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
16737
16738 /* - if (wback==1) reg_list[rn] == 0. */
16739 BFD_ASSERT (!wback || !restore_rn);
16740
16741 /* - nb_registers > 8. */
16742 BFD_ASSERT (popcount (insn_all_registers) > 8);
16743
16744 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
16745
16746 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
16747 - One with the 7 lowest registers (register mask 0x007F)
16748 This LDM will finally contain between 2 and 7 registers
16749 - One with the 7 highest registers (register mask 0xDF80)
16750 This ldm will finally contain between 2 and 7 registers. */
16751 insn_low_registers = insn_all_registers & 0x007F;
16752 insn_high_registers = insn_all_registers & 0xDF80;
16753
16754 /* A spare register may be needed during this veneer to temporarily
16755 handle the base register. This register will be restored with
16756 the last LDM operation.
16757 The usable register may be any general purpose register (that excludes
16758 PC, SP, LR : register mask is 0x1FFF). */
16759 usable_register_mask = 0x1FFF;
16760
16761 /* Generate the stub function. */
16762 if (!wback && !restore_pc && !restore_rn)
16763 {
16764 /* Choose a Ri in the low-register-list that will be restored. */
16765 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
16766
16767 /* MOV Ri, Rn. */
16768 current_stub_contents =
16769 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
16770 create_instruction_mov (ri, rn));
16771
16772 /* LDMDB Ri!, {R-high-register-list}. */
16773 current_stub_contents =
16774 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16775 create_instruction_ldmdb
16776 (ri, /*wback=*/1, insn_high_registers));
16777
16778 /* LDMDB Ri, {R-low-register-list}. */
16779 current_stub_contents =
16780 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16781 create_instruction_ldmdb
16782 (ri, /*wback=*/0, insn_low_registers));
16783
16784 /* B initial_insn_addr+4. */
16785 current_stub_contents =
16786 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16787 create_instruction_branch_absolute
16788 (initial_insn_addr - current_stub_contents));
16789 }
16790 else if (wback && !restore_pc && !restore_rn)
16791 {
16792 /* LDMDB Rn!, {R-high-register-list}. */
16793 current_stub_contents =
16794 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16795 create_instruction_ldmdb
16796 (rn, /*wback=*/1, insn_high_registers));
16797
16798 /* LDMDB Rn!, {R-low-register-list}. */
16799 current_stub_contents =
16800 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16801 create_instruction_ldmdb
16802 (rn, /*wback=*/1, insn_low_registers));
16803
16804 /* B initial_insn_addr+4. */
16805 current_stub_contents =
16806 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16807 create_instruction_branch_absolute
16808 (initial_insn_addr - current_stub_contents));
16809 }
16810 else if (!wback && restore_pc && !restore_rn)
16811 {
16812 /* Choose a Ri in the high-register-list that will be restored. */
16813 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
16814
16815 /* SUB Ri, Rn, #(4*nb_registers). */
16816 current_stub_contents =
16817 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16818 create_instruction_sub (ri, rn, (4 * nb_registers)));
16819
16820 /* LDMIA Ri!, {R-low-register-list}. */
16821 current_stub_contents =
16822 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16823 create_instruction_ldmia
16824 (ri, /*wback=*/1, insn_low_registers));
16825
16826 /* LDMIA Ri, {R-high-register-list}. */
16827 current_stub_contents =
16828 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16829 create_instruction_ldmia
16830 (ri, /*wback=*/0, insn_high_registers));
16831 }
16832 else if (wback && restore_pc && !restore_rn)
16833 {
16834 /* Choose a Ri in the high-register-list that will be restored. */
16835 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
16836
16837 /* SUB Rn, Rn, #(4*nb_registers) */
16838 current_stub_contents =
16839 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16840 create_instruction_sub (rn, rn, (4 * nb_registers)));
16841
16842 /* MOV Ri, Rn. */
16843 current_stub_contents =
16844 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
16845 create_instruction_mov (ri, rn));
16846
16847 /* LDMIA Ri!, {R-low-register-list}. */
16848 current_stub_contents =
16849 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16850 create_instruction_ldmia
16851 (ri, /*wback=*/1, insn_low_registers));
16852
16853 /* LDMIA Ri, {R-high-register-list}. */
16854 current_stub_contents =
16855 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16856 create_instruction_ldmia
16857 (ri, /*wback=*/0, insn_high_registers));
16858 }
16859 else if (!wback && !restore_pc && restore_rn)
16860 {
16861 ri = rn;
16862 if (!(insn_low_registers & (1 << rn)))
16863 {
16864 /* Choose a Ri in the low-register-list that will be restored. */
16865 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
16866
16867 /* MOV Ri, Rn. */
16868 current_stub_contents =
16869 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
16870 create_instruction_mov (ri, rn));
16871 }
16872
16873 /* LDMDB Ri!, {R-high-register-list}. */
16874 current_stub_contents =
16875 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16876 create_instruction_ldmdb
16877 (ri, /*wback=*/1, insn_high_registers));
16878
16879 /* LDMDB Ri, {R-low-register-list}. */
16880 current_stub_contents =
16881 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16882 create_instruction_ldmdb
16883 (ri, /*wback=*/0, insn_low_registers));
16884
16885 /* B initial_insn_addr+4. */
16886 current_stub_contents =
16887 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16888 create_instruction_branch_absolute
16889 (initial_insn_addr - current_stub_contents));
16890 }
16891 else if (!wback && restore_pc && restore_rn)
16892 {
16893 ri = rn;
16894 if (!(insn_high_registers & (1 << rn)))
16895 {
16896 /* Choose a Ri in the high-register-list that will be restored. */
16897 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
16898 }
16899
16900 /* SUB Ri, Rn, #(4*nb_registers). */
16901 current_stub_contents =
16902 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16903 create_instruction_sub (ri, rn, (4 * nb_registers)));
16904
16905 /* LDMIA Ri!, {R-low-register-list}. */
16906 current_stub_contents =
16907 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16908 create_instruction_ldmia
16909 (ri, /*wback=*/1, insn_low_registers));
16910
16911 /* LDMIA Ri, {R-high-register-list}. */
16912 current_stub_contents =
16913 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16914 create_instruction_ldmia
16915 (ri, /*wback=*/0, insn_high_registers));
16916 }
16917 else if (wback && restore_rn)
16918 {
16919 /* The assembler should not have accepted to encode this. */
16920 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
16921 "undefined behavior.\n");
16922 }
16923
16924 /* Fill the remaining of the stub with deterministic contents. */
16925 current_stub_contents =
16926 stm32l4xx_fill_stub_udf (htab, output_bfd,
16927 base_stub_contents, current_stub_contents,
16928 base_stub_contents +
16929 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
16930
16931 }
16932
16933 static void
16934 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
16935 bfd * output_bfd,
16936 const insn32 initial_insn,
16937 const bfd_byte *const initial_insn_addr,
16938 bfd_byte *const base_stub_contents)
16939 {
16940 int num_regs = ((unsigned int)initial_insn << 24) >> 24;
16941 bfd_byte *current_stub_contents = base_stub_contents;
16942
16943 BFD_ASSERT (is_thumb2_vldm (initial_insn));
16944
16945 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
16946 smaller than 8 registers load sequences that do not cause the
16947 hardware issue. */
16948 if (num_regs <= 8)
16949 {
16950 /* Untouched instruction. */
16951 current_stub_contents =
16952 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16953 initial_insn);
16954
16955 /* B initial_insn_addr+4. */
16956 current_stub_contents =
16957 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
16958 create_instruction_branch_absolute
16959 (initial_insn_addr - current_stub_contents));
16960 }
16961 else
16962 {
16963 bfd_boolean is_ia_nobang = /* (IA without !). */
16964 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
16965 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
16966 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
16967 bfd_boolean is_db_bang = /* (DB with !). */
16968 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
16969 int base_reg = ((unsigned int)initial_insn << 12) >> 28;
16970 /* d = UInt (Vd:D);. */
16971 int first_reg = ((((unsigned int)initial_insn << 16) >> 28) << 1)
16972 | (((unsigned int)initial_insn << 9) >> 31);
16973
16974 /* Compute the number of 8-register chunks needed to split. */
16975 int chunks = (num_regs%8) ? (num_regs/8 + 1) : (num_regs/8);
16976 int chunk;
16977
16978 /* The test coverage has been done assuming the following
16979 hypothesis that exactly one of the previous is_ predicates is
16980 true. */
16981 BFD_ASSERT ((is_ia_nobang ^ is_ia_bang ^ is_db_bang) &&
16982 !(is_ia_nobang & is_ia_bang & is_db_bang));
16983
16984 /* We treat the cutting of the register in one pass for all
16985 cases, then we emit the adjustments:
16986
16987 vldm rx, {...}
16988 -> vldm rx!, {8_words_or_less} for each needed 8_word
16989 -> sub rx, rx, #size (list)
16990
16991 vldm rx!, {...}
16992 -> vldm rx!, {8_words_or_less} for each needed 8_word
16993 This also handles vpop instruction (when rx is sp)
16994
16995 vldmd rx!, {...}
16996 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
16997 for (chunk = 0; chunk<chunks; ++chunk)
16998 {
16999 if (is_ia_nobang || is_ia_bang)
17000 {
17001 current_stub_contents =
17002 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17003 create_instruction_vldmia
17004 (base_reg,
17005 /*wback= . */1,
17006 chunks - (chunk + 1) ?
17007 8 : num_regs - chunk * 8,
17008 first_reg + chunk * 8));
17009 }
17010 else if (is_db_bang)
17011 {
17012 current_stub_contents =
17013 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17014 create_instruction_vldmdb
17015 (base_reg,
17016 chunks - (chunk + 1) ?
17017 8 : num_regs - chunk * 8,
17018 first_reg + chunk * 8));
17019 }
17020 }
17021
17022 /* Only this case requires the base register compensation
17023 subtract. */
17024 if (is_ia_nobang)
17025 {
17026 current_stub_contents =
17027 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17028 create_instruction_sub
17029 (base_reg, base_reg, 4*num_regs));
17030 }
17031
17032 /* B initial_insn_addr+4. */
17033 current_stub_contents =
17034 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17035 create_instruction_branch_absolute
17036 (initial_insn_addr - current_stub_contents));
17037 }
17038
17039 /* Fill the remaining of the stub with deterministic contents. */
17040 current_stub_contents =
17041 stm32l4xx_fill_stub_udf (htab, output_bfd,
17042 base_stub_contents, current_stub_contents,
17043 base_stub_contents +
17044 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
17045 }
17046
17047 static void
17048 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
17049 bfd * output_bfd,
17050 const insn32 wrong_insn,
17051 const bfd_byte *const wrong_insn_addr,
17052 bfd_byte *const stub_contents)
17053 {
17054 if (is_thumb2_ldmia (wrong_insn))
17055 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
17056 wrong_insn, wrong_insn_addr,
17057 stub_contents);
17058 else if (is_thumb2_ldmdb (wrong_insn))
17059 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
17060 wrong_insn, wrong_insn_addr,
17061 stub_contents);
17062 else if (is_thumb2_vldm (wrong_insn))
17063 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
17064 wrong_insn, wrong_insn_addr,
17065 stub_contents);
17066 }
17067
17068 /* End of stm32l4xx work-around. */
17069
17070
17071 static void
17072 elf32_arm_add_relocation (bfd *output_bfd, struct bfd_link_info *info,
17073 asection *output_sec, Elf_Internal_Rela *rel)
17074 {
17075 BFD_ASSERT (output_sec && rel);
17076 struct bfd_elf_section_reloc_data *output_reldata;
17077 struct elf32_arm_link_hash_table *htab;
17078 struct bfd_elf_section_data *oesd = elf_section_data (output_sec);
17079 Elf_Internal_Shdr *rel_hdr;
17080
17081
17082 if (oesd->rel.hdr)
17083 {
17084 rel_hdr = oesd->rel.hdr;
17085 output_reldata = &(oesd->rel);
17086 }
17087 else if (oesd->rela.hdr)
17088 {
17089 rel_hdr = oesd->rela.hdr;
17090 output_reldata = &(oesd->rela);
17091 }
17092 else
17093 {
17094 abort ();
17095 }
17096
17097 bfd_byte *erel = rel_hdr->contents;
17098 erel += output_reldata->count * rel_hdr->sh_entsize;
17099 htab = elf32_arm_hash_table (info);
17100 SWAP_RELOC_OUT (htab) (output_bfd, rel, erel);
17101 output_reldata->count++;
17102 }
17103
17104 /* Do code byteswapping. Return FALSE afterwards so that the section is
17105 written out as normal. */
17106
17107 static bfd_boolean
17108 elf32_arm_write_section (bfd *output_bfd,
17109 struct bfd_link_info *link_info,
17110 asection *sec,
17111 bfd_byte *contents)
17112 {
17113 unsigned int mapcount, errcount;
17114 _arm_elf_section_data *arm_data;
17115 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
17116 elf32_arm_section_map *map;
17117 elf32_vfp11_erratum_list *errnode;
17118 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
17119 bfd_vma ptr;
17120 bfd_vma end;
17121 bfd_vma offset = sec->output_section->vma + sec->output_offset;
17122 bfd_byte tmp;
17123 unsigned int i;
17124
17125 if (globals == NULL)
17126 return FALSE;
17127
17128 /* If this section has not been allocated an _arm_elf_section_data
17129 structure then we cannot record anything. */
17130 arm_data = get_arm_elf_section_data (sec);
17131 if (arm_data == NULL)
17132 return FALSE;
17133
17134 mapcount = arm_data->mapcount;
17135 map = arm_data->map;
17136 errcount = arm_data->erratumcount;
17137
17138 if (errcount != 0)
17139 {
17140 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
17141
17142 for (errnode = arm_data->erratumlist; errnode != 0;
17143 errnode = errnode->next)
17144 {
17145 bfd_vma target = errnode->vma - offset;
17146
17147 switch (errnode->type)
17148 {
17149 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
17150 {
17151 bfd_vma branch_to_veneer;
17152 /* Original condition code of instruction, plus bit mask for
17153 ARM B instruction. */
17154 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
17155 | 0x0a000000;
17156
17157 /* The instruction is before the label. */
17158 target -= 4;
17159
17160 /* Above offset included in -4 below. */
17161 branch_to_veneer = errnode->u.b.veneer->vma
17162 - errnode->vma - 4;
17163
17164 if ((signed) branch_to_veneer < -(1 << 25)
17165 || (signed) branch_to_veneer >= (1 << 25))
17166 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
17167 "range"), output_bfd);
17168
17169 insn |= (branch_to_veneer >> 2) & 0xffffff;
17170 contents[endianflip ^ target] = insn & 0xff;
17171 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
17172 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
17173 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
17174 }
17175 break;
17176
17177 case VFP11_ERRATUM_ARM_VENEER:
17178 {
17179 bfd_vma branch_from_veneer;
17180 unsigned int insn;
17181
17182 /* Take size of veneer into account. */
17183 branch_from_veneer = errnode->u.v.branch->vma
17184 - errnode->vma - 12;
17185
17186 if ((signed) branch_from_veneer < -(1 << 25)
17187 || (signed) branch_from_veneer >= (1 << 25))
17188 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
17189 "range"), output_bfd);
17190
17191 /* Original instruction. */
17192 insn = errnode->u.v.branch->u.b.vfp_insn;
17193 contents[endianflip ^ target] = insn & 0xff;
17194 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
17195 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
17196 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
17197
17198 /* Branch back to insn after original insn. */
17199 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
17200 contents[endianflip ^ (target + 4)] = insn & 0xff;
17201 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
17202 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
17203 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
17204 }
17205 break;
17206
17207 default:
17208 abort ();
17209 }
17210 }
17211 }
17212
17213 if (arm_data->stm32l4xx_erratumcount != 0)
17214 {
17215 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
17216 stm32l4xx_errnode != 0;
17217 stm32l4xx_errnode = stm32l4xx_errnode->next)
17218 {
17219 bfd_vma target = stm32l4xx_errnode->vma - offset;
17220
17221 switch (stm32l4xx_errnode->type)
17222 {
17223 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
17224 {
17225 unsigned int insn;
17226 bfd_vma branch_to_veneer =
17227 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
17228
17229 if ((signed) branch_to_veneer < -(1 << 24)
17230 || (signed) branch_to_veneer >= (1 << 24))
17231 {
17232 bfd_vma out_of_range =
17233 ((signed) branch_to_veneer < -(1 << 24)) ?
17234 - branch_to_veneer - (1 << 24) :
17235 ((signed) branch_to_veneer >= (1 << 24)) ?
17236 branch_to_veneer - (1 << 24) : 0;
17237
17238 (*_bfd_error_handler)
17239 (_("%B(%#x): error: Cannot create STM32L4XX veneer. "
17240 "Jump out of range by %ld bytes. "
17241 "Cannot encode branch instruction. "),
17242 output_bfd,
17243 (long) (stm32l4xx_errnode->vma - 4),
17244 out_of_range);
17245 continue;
17246 }
17247
17248 insn = create_instruction_branch_absolute
17249 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
17250
17251 /* The instruction is before the label. */
17252 target -= 4;
17253
17254 put_thumb2_insn (globals, output_bfd,
17255 (bfd_vma) insn, contents + target);
17256 }
17257 break;
17258
17259 case STM32L4XX_ERRATUM_VENEER:
17260 {
17261 bfd_byte * veneer;
17262 bfd_byte * veneer_r;
17263 unsigned int insn;
17264
17265 veneer = contents + target;
17266 veneer_r = veneer
17267 + stm32l4xx_errnode->u.b.veneer->vma
17268 - stm32l4xx_errnode->vma - 4;
17269
17270 if ((signed) (veneer_r - veneer -
17271 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
17272 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
17273 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
17274 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
17275 || (signed) (veneer_r - veneer) >= (1 << 24))
17276 {
17277 (*_bfd_error_handler) (_("%B: error: Cannot create STM32L4XX "
17278 "veneer."), output_bfd);
17279 continue;
17280 }
17281
17282 /* Original instruction. */
17283 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
17284
17285 stm32l4xx_create_replacing_stub
17286 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
17287 }
17288 break;
17289
17290 default:
17291 abort ();
17292 }
17293 }
17294 }
17295
17296 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
17297 {
17298 arm_unwind_table_edit *edit_node
17299 = arm_data->u.exidx.unwind_edit_list;
17300 /* Now, sec->size is the size of the section we will write. The original
17301 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
17302 markers) was sec->rawsize. (This isn't the case if we perform no
17303 edits, then rawsize will be zero and we should use size). */
17304 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
17305 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
17306 unsigned int in_index, out_index;
17307 bfd_vma add_to_offsets = 0;
17308
17309 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
17310 {
17311 if (edit_node)
17312 {
17313 unsigned int edit_index = edit_node->index;
17314
17315 if (in_index < edit_index && in_index * 8 < input_size)
17316 {
17317 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
17318 contents + in_index * 8, add_to_offsets);
17319 out_index++;
17320 in_index++;
17321 }
17322 else if (in_index == edit_index
17323 || (in_index * 8 >= input_size
17324 && edit_index == UINT_MAX))
17325 {
17326 switch (edit_node->type)
17327 {
17328 case DELETE_EXIDX_ENTRY:
17329 in_index++;
17330 add_to_offsets += 8;
17331 break;
17332
17333 case INSERT_EXIDX_CANTUNWIND_AT_END:
17334 {
17335 asection *text_sec = edit_node->linked_section;
17336 bfd_vma text_offset = text_sec->output_section->vma
17337 + text_sec->output_offset
17338 + text_sec->size;
17339 bfd_vma exidx_offset = offset + out_index * 8;
17340 unsigned long prel31_offset;
17341
17342 /* Note: this is meant to be equivalent to an
17343 R_ARM_PREL31 relocation. These synthetic
17344 EXIDX_CANTUNWIND markers are not relocated by the
17345 usual BFD method. */
17346 prel31_offset = (text_offset - exidx_offset)
17347 & 0x7ffffffful;
17348 if (bfd_link_relocatable (link_info))
17349 {
17350 /* Here relocation for new EXIDX_CANTUNWIND is
17351 created, so there is no need to
17352 adjust offset by hand. */
17353 prel31_offset = text_sec->output_offset
17354 + text_sec->size;
17355
17356 /* New relocation entity. */
17357 asection *text_out = text_sec->output_section;
17358 Elf_Internal_Rela rel;
17359 rel.r_addend = 0;
17360 rel.r_offset = exidx_offset;
17361 rel.r_info = ELF32_R_INFO (text_out->target_index,
17362 R_ARM_PREL31);
17363
17364 elf32_arm_add_relocation (output_bfd, link_info,
17365 sec->output_section,
17366 &rel);
17367 }
17368
17369 /* First address we can't unwind. */
17370 bfd_put_32 (output_bfd, prel31_offset,
17371 &edited_contents[out_index * 8]);
17372
17373 /* Code for EXIDX_CANTUNWIND. */
17374 bfd_put_32 (output_bfd, 0x1,
17375 &edited_contents[out_index * 8 + 4]);
17376
17377 out_index++;
17378 add_to_offsets -= 8;
17379 }
17380 break;
17381 }
17382
17383 edit_node = edit_node->next;
17384 }
17385 }
17386 else
17387 {
17388 /* No more edits, copy remaining entries verbatim. */
17389 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
17390 contents + in_index * 8, add_to_offsets);
17391 out_index++;
17392 in_index++;
17393 }
17394 }
17395
17396 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
17397 bfd_set_section_contents (output_bfd, sec->output_section,
17398 edited_contents,
17399 (file_ptr) sec->output_offset, sec->size);
17400
17401 return TRUE;
17402 }
17403
17404 /* Fix code to point to Cortex-A8 erratum stubs. */
17405 if (globals->fix_cortex_a8)
17406 {
17407 struct a8_branch_to_stub_data data;
17408
17409 data.writing_section = sec;
17410 data.contents = contents;
17411
17412 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
17413 & data);
17414 }
17415
17416 if (mapcount == 0)
17417 return FALSE;
17418
17419 if (globals->byteswap_code)
17420 {
17421 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
17422
17423 ptr = map[0].vma;
17424 for (i = 0; i < mapcount; i++)
17425 {
17426 if (i == mapcount - 1)
17427 end = sec->size;
17428 else
17429 end = map[i + 1].vma;
17430
17431 switch (map[i].type)
17432 {
17433 case 'a':
17434 /* Byte swap code words. */
17435 while (ptr + 3 < end)
17436 {
17437 tmp = contents[ptr];
17438 contents[ptr] = contents[ptr + 3];
17439 contents[ptr + 3] = tmp;
17440 tmp = contents[ptr + 1];
17441 contents[ptr + 1] = contents[ptr + 2];
17442 contents[ptr + 2] = tmp;
17443 ptr += 4;
17444 }
17445 break;
17446
17447 case 't':
17448 /* Byte swap code halfwords. */
17449 while (ptr + 1 < end)
17450 {
17451 tmp = contents[ptr];
17452 contents[ptr] = contents[ptr + 1];
17453 contents[ptr + 1] = tmp;
17454 ptr += 2;
17455 }
17456 break;
17457
17458 case 'd':
17459 /* Leave data alone. */
17460 break;
17461 }
17462 ptr = end;
17463 }
17464 }
17465
17466 free (map);
17467 arm_data->mapcount = -1;
17468 arm_data->mapsize = 0;
17469 arm_data->map = NULL;
17470
17471 return FALSE;
17472 }
17473
17474 /* Mangle thumb function symbols as we read them in. */
17475
17476 static bfd_boolean
17477 elf32_arm_swap_symbol_in (bfd * abfd,
17478 const void *psrc,
17479 const void *pshn,
17480 Elf_Internal_Sym *dst)
17481 {
17482 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
17483 return FALSE;
17484
17485 /* New EABI objects mark thumb function symbols by setting the low bit of
17486 the address. */
17487 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
17488 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
17489 {
17490 if (dst->st_value & 1)
17491 {
17492 dst->st_value &= ~(bfd_vma) 1;
17493 dst->st_target_internal = ST_BRANCH_TO_THUMB;
17494 }
17495 else
17496 dst->st_target_internal = ST_BRANCH_TO_ARM;
17497 }
17498 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
17499 {
17500 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
17501 dst->st_target_internal = ST_BRANCH_TO_THUMB;
17502 }
17503 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
17504 dst->st_target_internal = ST_BRANCH_LONG;
17505 else
17506 dst->st_target_internal = ST_BRANCH_UNKNOWN;
17507
17508 return TRUE;
17509 }
17510
17511
17512 /* Mangle thumb function symbols as we write them out. */
17513
17514 static void
17515 elf32_arm_swap_symbol_out (bfd *abfd,
17516 const Elf_Internal_Sym *src,
17517 void *cdst,
17518 void *shndx)
17519 {
17520 Elf_Internal_Sym newsym;
17521
17522 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
17523 of the address set, as per the new EABI. We do this unconditionally
17524 because objcopy does not set the elf header flags until after
17525 it writes out the symbol table. */
17526 if (src->st_target_internal == ST_BRANCH_TO_THUMB)
17527 {
17528 newsym = *src;
17529 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
17530 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
17531 if (newsym.st_shndx != SHN_UNDEF)
17532 {
17533 /* Do this only for defined symbols. At link type, the static
17534 linker will simulate the work of dynamic linker of resolving
17535 symbols and will carry over the thumbness of found symbols to
17536 the output symbol table. It's not clear how it happens, but
17537 the thumbness of undefined symbols can well be different at
17538 runtime, and writing '1' for them will be confusing for users
17539 and possibly for dynamic linker itself.
17540 */
17541 newsym.st_value |= 1;
17542 }
17543
17544 src = &newsym;
17545 }
17546 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
17547 }
17548
17549 /* Add the PT_ARM_EXIDX program header. */
17550
17551 static bfd_boolean
17552 elf32_arm_modify_segment_map (bfd *abfd,
17553 struct bfd_link_info *info ATTRIBUTE_UNUSED)
17554 {
17555 struct elf_segment_map *m;
17556 asection *sec;
17557
17558 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
17559 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
17560 {
17561 /* If there is already a PT_ARM_EXIDX header, then we do not
17562 want to add another one. This situation arises when running
17563 "strip"; the input binary already has the header. */
17564 m = elf_seg_map (abfd);
17565 while (m && m->p_type != PT_ARM_EXIDX)
17566 m = m->next;
17567 if (!m)
17568 {
17569 m = (struct elf_segment_map *)
17570 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
17571 if (m == NULL)
17572 return FALSE;
17573 m->p_type = PT_ARM_EXIDX;
17574 m->count = 1;
17575 m->sections[0] = sec;
17576
17577 m->next = elf_seg_map (abfd);
17578 elf_seg_map (abfd) = m;
17579 }
17580 }
17581
17582 return TRUE;
17583 }
17584
17585 /* We may add a PT_ARM_EXIDX program header. */
17586
17587 static int
17588 elf32_arm_additional_program_headers (bfd *abfd,
17589 struct bfd_link_info *info ATTRIBUTE_UNUSED)
17590 {
17591 asection *sec;
17592
17593 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
17594 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
17595 return 1;
17596 else
17597 return 0;
17598 }
17599
17600 /* Hook called by the linker routine which adds symbols from an object
17601 file. */
17602
17603 static bfd_boolean
17604 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
17605 Elf_Internal_Sym *sym, const char **namep,
17606 flagword *flagsp, asection **secp, bfd_vma *valp)
17607 {
17608 if ((ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
17609 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE)
17610 && (abfd->flags & DYNAMIC) == 0
17611 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
17612 elf_tdata (info->output_bfd)->has_gnu_symbols = elf_gnu_symbol_any;
17613
17614 if (elf32_arm_hash_table (info) == NULL)
17615 return FALSE;
17616
17617 if (elf32_arm_hash_table (info)->vxworks_p
17618 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
17619 flagsp, secp, valp))
17620 return FALSE;
17621
17622 return TRUE;
17623 }
17624
17625 /* We use this to override swap_symbol_in and swap_symbol_out. */
17626 const struct elf_size_info elf32_arm_size_info =
17627 {
17628 sizeof (Elf32_External_Ehdr),
17629 sizeof (Elf32_External_Phdr),
17630 sizeof (Elf32_External_Shdr),
17631 sizeof (Elf32_External_Rel),
17632 sizeof (Elf32_External_Rela),
17633 sizeof (Elf32_External_Sym),
17634 sizeof (Elf32_External_Dyn),
17635 sizeof (Elf_External_Note),
17636 4,
17637 1,
17638 32, 2,
17639 ELFCLASS32, EV_CURRENT,
17640 bfd_elf32_write_out_phdrs,
17641 bfd_elf32_write_shdrs_and_ehdr,
17642 bfd_elf32_checksum_contents,
17643 bfd_elf32_write_relocs,
17644 elf32_arm_swap_symbol_in,
17645 elf32_arm_swap_symbol_out,
17646 bfd_elf32_slurp_reloc_table,
17647 bfd_elf32_slurp_symbol_table,
17648 bfd_elf32_swap_dyn_in,
17649 bfd_elf32_swap_dyn_out,
17650 bfd_elf32_swap_reloc_in,
17651 bfd_elf32_swap_reloc_out,
17652 bfd_elf32_swap_reloca_in,
17653 bfd_elf32_swap_reloca_out
17654 };
17655
17656 static bfd_vma
17657 read_code32 (const bfd *abfd, const bfd_byte *addr)
17658 {
17659 /* V7 BE8 code is always little endian. */
17660 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
17661 return bfd_getl32 (addr);
17662
17663 return bfd_get_32 (abfd, addr);
17664 }
17665
17666 static bfd_vma
17667 read_code16 (const bfd *abfd, const bfd_byte *addr)
17668 {
17669 /* V7 BE8 code is always little endian. */
17670 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
17671 return bfd_getl16 (addr);
17672
17673 return bfd_get_16 (abfd, addr);
17674 }
17675
17676 /* Return size of plt0 entry starting at ADDR
17677 or (bfd_vma) -1 if size can not be determined. */
17678
17679 static bfd_vma
17680 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
17681 {
17682 bfd_vma first_word;
17683 bfd_vma plt0_size;
17684
17685 first_word = read_code32 (abfd, addr);
17686
17687 if (first_word == elf32_arm_plt0_entry[0])
17688 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
17689 else if (first_word == elf32_thumb2_plt0_entry[0])
17690 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
17691 else
17692 /* We don't yet handle this PLT format. */
17693 return (bfd_vma) -1;
17694
17695 return plt0_size;
17696 }
17697
17698 /* Return size of plt entry starting at offset OFFSET
17699 of plt section located at address START
17700 or (bfd_vma) -1 if size can not be determined. */
17701
17702 static bfd_vma
17703 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
17704 {
17705 bfd_vma first_insn;
17706 bfd_vma plt_size = 0;
17707 const bfd_byte *addr = start + offset;
17708
17709 /* PLT entry size if fixed on Thumb-only platforms. */
17710 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
17711 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
17712
17713 /* Respect Thumb stub if necessary. */
17714 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
17715 {
17716 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
17717 }
17718
17719 /* Strip immediate from first add. */
17720 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
17721
17722 #ifdef FOUR_WORD_PLT
17723 if (first_insn == elf32_arm_plt_entry[0])
17724 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
17725 #else
17726 if (first_insn == elf32_arm_plt_entry_long[0])
17727 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
17728 else if (first_insn == elf32_arm_plt_entry_short[0])
17729 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
17730 #endif
17731 else
17732 /* We don't yet handle this PLT format. */
17733 return (bfd_vma) -1;
17734
17735 return plt_size;
17736 }
17737
17738 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
17739
17740 static long
17741 elf32_arm_get_synthetic_symtab (bfd *abfd,
17742 long symcount ATTRIBUTE_UNUSED,
17743 asymbol **syms ATTRIBUTE_UNUSED,
17744 long dynsymcount,
17745 asymbol **dynsyms,
17746 asymbol **ret)
17747 {
17748 asection *relplt;
17749 asymbol *s;
17750 arelent *p;
17751 long count, i, n;
17752 size_t size;
17753 Elf_Internal_Shdr *hdr;
17754 char *names;
17755 asection *plt;
17756 bfd_vma offset;
17757 bfd_byte *data;
17758
17759 *ret = NULL;
17760
17761 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
17762 return 0;
17763
17764 if (dynsymcount <= 0)
17765 return 0;
17766
17767 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
17768 if (relplt == NULL)
17769 return 0;
17770
17771 hdr = &elf_section_data (relplt)->this_hdr;
17772 if (hdr->sh_link != elf_dynsymtab (abfd)
17773 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
17774 return 0;
17775
17776 plt = bfd_get_section_by_name (abfd, ".plt");
17777 if (plt == NULL)
17778 return 0;
17779
17780 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
17781 return -1;
17782
17783 data = plt->contents;
17784 if (data == NULL)
17785 {
17786 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
17787 return -1;
17788 bfd_cache_section_contents((asection *) plt, data);
17789 }
17790
17791 count = relplt->size / hdr->sh_entsize;
17792 size = count * sizeof (asymbol);
17793 p = relplt->relocation;
17794 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
17795 {
17796 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
17797 if (p->addend != 0)
17798 size += sizeof ("+0x") - 1 + 8;
17799 }
17800
17801 s = *ret = (asymbol *) bfd_malloc (size);
17802 if (s == NULL)
17803 return -1;
17804
17805 offset = elf32_arm_plt0_size (abfd, data);
17806 if (offset == (bfd_vma) -1)
17807 return -1;
17808
17809 names = (char *) (s + count);
17810 p = relplt->relocation;
17811 n = 0;
17812 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
17813 {
17814 size_t len;
17815
17816 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
17817 if (plt_size == (bfd_vma) -1)
17818 break;
17819
17820 *s = **p->sym_ptr_ptr;
17821 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
17822 we are defining a symbol, ensure one of them is set. */
17823 if ((s->flags & BSF_LOCAL) == 0)
17824 s->flags |= BSF_GLOBAL;
17825 s->flags |= BSF_SYNTHETIC;
17826 s->section = plt;
17827 s->value = offset;
17828 s->name = names;
17829 s->udata.p = NULL;
17830 len = strlen ((*p->sym_ptr_ptr)->name);
17831 memcpy (names, (*p->sym_ptr_ptr)->name, len);
17832 names += len;
17833 if (p->addend != 0)
17834 {
17835 char buf[30], *a;
17836
17837 memcpy (names, "+0x", sizeof ("+0x") - 1);
17838 names += sizeof ("+0x") - 1;
17839 bfd_sprintf_vma (abfd, buf, p->addend);
17840 for (a = buf; *a == '0'; ++a)
17841 ;
17842 len = strlen (a);
17843 memcpy (names, a, len);
17844 names += len;
17845 }
17846 memcpy (names, "@plt", sizeof ("@plt"));
17847 names += sizeof ("@plt");
17848 ++s, ++n;
17849 offset += plt_size;
17850 }
17851
17852 return n;
17853 }
17854
17855 static bfd_boolean
17856 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
17857 {
17858 if (hdr->sh_flags & SHF_ARM_NOREAD)
17859 *flags |= SEC_ELF_NOREAD;
17860 return TRUE;
17861 }
17862
17863 static flagword
17864 elf32_arm_lookup_section_flags (char *flag_name)
17865 {
17866 if (!strcmp (flag_name, "SHF_ARM_NOREAD"))
17867 return SHF_ARM_NOREAD;
17868
17869 return SEC_NO_FLAGS;
17870 }
17871
17872 static unsigned int
17873 elf32_arm_count_additional_relocs (asection *sec)
17874 {
17875 struct _arm_elf_section_data *arm_data;
17876 arm_data = get_arm_elf_section_data (sec);
17877 return arm_data->additional_reloc_count;
17878 }
17879
17880 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
17881 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
17882 FALSE otherwise. ISECTION is the best guess matching section from the
17883 input bfd IBFD, but it might be NULL. */
17884
17885 static bfd_boolean
17886 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
17887 bfd *obfd ATTRIBUTE_UNUSED,
17888 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
17889 Elf_Internal_Shdr *osection)
17890 {
17891 switch (osection->sh_type)
17892 {
17893 case SHT_ARM_EXIDX:
17894 {
17895 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
17896 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
17897 unsigned i = 0;
17898
17899 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
17900 osection->sh_info = 0;
17901
17902 /* The sh_link field must be set to the text section associated with
17903 this index section. Unfortunately the ARM EHABI does not specify
17904 exactly how to determine this association. Our caller does try
17905 to match up OSECTION with its corresponding input section however
17906 so that is a good first guess. */
17907 if (isection != NULL
17908 && osection->bfd_section != NULL
17909 && isection->bfd_section != NULL
17910 && isection->bfd_section->output_section != NULL
17911 && isection->bfd_section->output_section == osection->bfd_section
17912 && iheaders != NULL
17913 && isection->sh_link > 0
17914 && isection->sh_link < elf_numsections (ibfd)
17915 && iheaders[isection->sh_link]->bfd_section != NULL
17916 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
17917 )
17918 {
17919 for (i = elf_numsections (obfd); i-- > 0;)
17920 if (oheaders[i]->bfd_section
17921 == iheaders[isection->sh_link]->bfd_section->output_section)
17922 break;
17923 }
17924
17925 if (i == 0)
17926 {
17927 /* Failing that we have to find a matching section ourselves. If
17928 we had the output section name available we could compare that
17929 with input section names. Unfortunately we don't. So instead
17930 we use a simple heuristic and look for the nearest executable
17931 section before this one. */
17932 for (i = elf_numsections (obfd); i-- > 0;)
17933 if (oheaders[i] == osection)
17934 break;
17935 if (i == 0)
17936 break;
17937
17938 while (i-- > 0)
17939 if (oheaders[i]->sh_type == SHT_PROGBITS
17940 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
17941 == (SHF_ALLOC | SHF_EXECINSTR))
17942 break;
17943 }
17944
17945 if (i)
17946 {
17947 osection->sh_link = i;
17948 /* If the text section was part of a group
17949 then the index section should be too. */
17950 if (oheaders[i]->sh_flags & SHF_GROUP)
17951 osection->sh_flags |= SHF_GROUP;
17952 return TRUE;
17953 }
17954 }
17955 break;
17956
17957 case SHT_ARM_PREEMPTMAP:
17958 osection->sh_flags = SHF_ALLOC;
17959 break;
17960
17961 case SHT_ARM_ATTRIBUTES:
17962 case SHT_ARM_DEBUGOVERLAY:
17963 case SHT_ARM_OVERLAYSECTION:
17964 default:
17965 break;
17966 }
17967
17968 return FALSE;
17969 }
17970
17971 #undef elf_backend_copy_special_section_fields
17972 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
17973
17974 #define ELF_ARCH bfd_arch_arm
17975 #define ELF_TARGET_ID ARM_ELF_DATA
17976 #define ELF_MACHINE_CODE EM_ARM
17977 #ifdef __QNXTARGET__
17978 #define ELF_MAXPAGESIZE 0x1000
17979 #else
17980 #define ELF_MAXPAGESIZE 0x10000
17981 #endif
17982 #define ELF_MINPAGESIZE 0x1000
17983 #define ELF_COMMONPAGESIZE 0x1000
17984
17985 #define bfd_elf32_mkobject elf32_arm_mkobject
17986
17987 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
17988 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
17989 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
17990 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
17991 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
17992 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
17993 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
17994 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
17995 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
17996 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
17997 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
17998 #define bfd_elf32_bfd_final_link elf32_arm_final_link
17999 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
18000
18001 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
18002 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
18003 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
18004 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
18005 #define elf_backend_check_relocs elf32_arm_check_relocs
18006 #define elf_backend_relocate_section elf32_arm_relocate_section
18007 #define elf_backend_write_section elf32_arm_write_section
18008 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
18009 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
18010 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
18011 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
18012 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
18013 #define elf_backend_always_size_sections elf32_arm_always_size_sections
18014 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
18015 #define elf_backend_post_process_headers elf32_arm_post_process_headers
18016 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
18017 #define elf_backend_object_p elf32_arm_object_p
18018 #define elf_backend_fake_sections elf32_arm_fake_sections
18019 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
18020 #define elf_backend_final_write_processing elf32_arm_final_write_processing
18021 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
18022 #define elf_backend_size_info elf32_arm_size_info
18023 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
18024 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
18025 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
18026 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
18027 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
18028 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
18029
18030 #define elf_backend_can_refcount 1
18031 #define elf_backend_can_gc_sections 1
18032 #define elf_backend_plt_readonly 1
18033 #define elf_backend_want_got_plt 1
18034 #define elf_backend_want_plt_sym 0
18035 #define elf_backend_may_use_rel_p 1
18036 #define elf_backend_may_use_rela_p 0
18037 #define elf_backend_default_use_rela_p 0
18038
18039 #define elf_backend_got_header_size 12
18040 #define elf_backend_extern_protected_data 1
18041
18042 #undef elf_backend_obj_attrs_vendor
18043 #define elf_backend_obj_attrs_vendor "aeabi"
18044 #undef elf_backend_obj_attrs_section
18045 #define elf_backend_obj_attrs_section ".ARM.attributes"
18046 #undef elf_backend_obj_attrs_arg_type
18047 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
18048 #undef elf_backend_obj_attrs_section_type
18049 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
18050 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
18051 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
18052
18053 #undef elf_backend_section_flags
18054 #define elf_backend_section_flags elf32_arm_section_flags
18055 #undef elf_backend_lookup_section_flags_hook
18056 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
18057
18058 #include "elf32-target.h"
18059
18060 /* Native Client targets. */
18061
18062 #undef TARGET_LITTLE_SYM
18063 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
18064 #undef TARGET_LITTLE_NAME
18065 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
18066 #undef TARGET_BIG_SYM
18067 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
18068 #undef TARGET_BIG_NAME
18069 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
18070
18071 /* Like elf32_arm_link_hash_table_create -- but overrides
18072 appropriately for NaCl. */
18073
18074 static struct bfd_link_hash_table *
18075 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
18076 {
18077 struct bfd_link_hash_table *ret;
18078
18079 ret = elf32_arm_link_hash_table_create (abfd);
18080 if (ret)
18081 {
18082 struct elf32_arm_link_hash_table *htab
18083 = (struct elf32_arm_link_hash_table *) ret;
18084
18085 htab->nacl_p = 1;
18086
18087 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
18088 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
18089 }
18090 return ret;
18091 }
18092
18093 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
18094 really need to use elf32_arm_modify_segment_map. But we do it
18095 anyway just to reduce gratuitous differences with the stock ARM backend. */
18096
18097 static bfd_boolean
18098 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
18099 {
18100 return (elf32_arm_modify_segment_map (abfd, info)
18101 && nacl_modify_segment_map (abfd, info));
18102 }
18103
18104 static void
18105 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
18106 {
18107 elf32_arm_final_write_processing (abfd, linker);
18108 nacl_final_write_processing (abfd, linker);
18109 }
18110
18111 static bfd_vma
18112 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
18113 const arelent *rel ATTRIBUTE_UNUSED)
18114 {
18115 return plt->vma
18116 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
18117 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
18118 }
18119
18120 #undef elf32_bed
18121 #define elf32_bed elf32_arm_nacl_bed
18122 #undef bfd_elf32_bfd_link_hash_table_create
18123 #define bfd_elf32_bfd_link_hash_table_create \
18124 elf32_arm_nacl_link_hash_table_create
18125 #undef elf_backend_plt_alignment
18126 #define elf_backend_plt_alignment 4
18127 #undef elf_backend_modify_segment_map
18128 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
18129 #undef elf_backend_modify_program_headers
18130 #define elf_backend_modify_program_headers nacl_modify_program_headers
18131 #undef elf_backend_final_write_processing
18132 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
18133 #undef bfd_elf32_get_synthetic_symtab
18134 #undef elf_backend_plt_sym_val
18135 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
18136 #undef elf_backend_copy_special_section_fields
18137
18138 #undef ELF_MINPAGESIZE
18139 #undef ELF_COMMONPAGESIZE
18140
18141
18142 #include "elf32-target.h"
18143
18144 /* Reset to defaults. */
18145 #undef elf_backend_plt_alignment
18146 #undef elf_backend_modify_segment_map
18147 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
18148 #undef elf_backend_modify_program_headers
18149 #undef elf_backend_final_write_processing
18150 #define elf_backend_final_write_processing elf32_arm_final_write_processing
18151 #undef ELF_MINPAGESIZE
18152 #define ELF_MINPAGESIZE 0x1000
18153 #undef ELF_COMMONPAGESIZE
18154 #define ELF_COMMONPAGESIZE 0x1000
18155
18156
18157 /* VxWorks Targets. */
18158
18159 #undef TARGET_LITTLE_SYM
18160 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
18161 #undef TARGET_LITTLE_NAME
18162 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
18163 #undef TARGET_BIG_SYM
18164 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
18165 #undef TARGET_BIG_NAME
18166 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
18167
18168 /* Like elf32_arm_link_hash_table_create -- but overrides
18169 appropriately for VxWorks. */
18170
18171 static struct bfd_link_hash_table *
18172 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
18173 {
18174 struct bfd_link_hash_table *ret;
18175
18176 ret = elf32_arm_link_hash_table_create (abfd);
18177 if (ret)
18178 {
18179 struct elf32_arm_link_hash_table *htab
18180 = (struct elf32_arm_link_hash_table *) ret;
18181 htab->use_rel = 0;
18182 htab->vxworks_p = 1;
18183 }
18184 return ret;
18185 }
18186
18187 static void
18188 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
18189 {
18190 elf32_arm_final_write_processing (abfd, linker);
18191 elf_vxworks_final_write_processing (abfd, linker);
18192 }
18193
18194 #undef elf32_bed
18195 #define elf32_bed elf32_arm_vxworks_bed
18196
18197 #undef bfd_elf32_bfd_link_hash_table_create
18198 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
18199 #undef elf_backend_final_write_processing
18200 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
18201 #undef elf_backend_emit_relocs
18202 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
18203
18204 #undef elf_backend_may_use_rel_p
18205 #define elf_backend_may_use_rel_p 0
18206 #undef elf_backend_may_use_rela_p
18207 #define elf_backend_may_use_rela_p 1
18208 #undef elf_backend_default_use_rela_p
18209 #define elf_backend_default_use_rela_p 1
18210 #undef elf_backend_want_plt_sym
18211 #define elf_backend_want_plt_sym 1
18212 #undef ELF_MAXPAGESIZE
18213 #define ELF_MAXPAGESIZE 0x1000
18214
18215 #include "elf32-target.h"
18216
18217
18218 /* Merge backend specific data from an object file to the output
18219 object file when linking. */
18220
18221 static bfd_boolean
18222 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
18223 {
18224 flagword out_flags;
18225 flagword in_flags;
18226 bfd_boolean flags_compatible = TRUE;
18227 asection *sec;
18228
18229 /* Check if we have the same endianness. */
18230 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
18231 return FALSE;
18232
18233 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
18234 return TRUE;
18235
18236 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
18237 return FALSE;
18238
18239 /* The input BFD must have had its flags initialised. */
18240 /* The following seems bogus to me -- The flags are initialized in
18241 the assembler but I don't think an elf_flags_init field is
18242 written into the object. */
18243 /* BFD_ASSERT (elf_flags_init (ibfd)); */
18244
18245 in_flags = elf_elfheader (ibfd)->e_flags;
18246 out_flags = elf_elfheader (obfd)->e_flags;
18247
18248 /* In theory there is no reason why we couldn't handle this. However
18249 in practice it isn't even close to working and there is no real
18250 reason to want it. */
18251 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
18252 && !(ibfd->flags & DYNAMIC)
18253 && (in_flags & EF_ARM_BE8))
18254 {
18255 _bfd_error_handler (_("error: %B is already in final BE8 format"),
18256 ibfd);
18257 return FALSE;
18258 }
18259
18260 if (!elf_flags_init (obfd))
18261 {
18262 /* If the input is the default architecture and had the default
18263 flags then do not bother setting the flags for the output
18264 architecture, instead allow future merges to do this. If no
18265 future merges ever set these flags then they will retain their
18266 uninitialised values, which surprise surprise, correspond
18267 to the default values. */
18268 if (bfd_get_arch_info (ibfd)->the_default
18269 && elf_elfheader (ibfd)->e_flags == 0)
18270 return TRUE;
18271
18272 elf_flags_init (obfd) = TRUE;
18273 elf_elfheader (obfd)->e_flags = in_flags;
18274
18275 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
18276 && bfd_get_arch_info (obfd)->the_default)
18277 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
18278
18279 return TRUE;
18280 }
18281
18282 /* Determine what should happen if the input ARM architecture
18283 does not match the output ARM architecture. */
18284 if (! bfd_arm_merge_machines (ibfd, obfd))
18285 return FALSE;
18286
18287 /* Identical flags must be compatible. */
18288 if (in_flags == out_flags)
18289 return TRUE;
18290
18291 /* Check to see if the input BFD actually contains any sections. If
18292 not, its flags may not have been initialised either, but it
18293 cannot actually cause any incompatiblity. Do not short-circuit
18294 dynamic objects; their section list may be emptied by
18295 elf_link_add_object_symbols.
18296
18297 Also check to see if there are no code sections in the input.
18298 In this case there is no need to check for code specific flags.
18299 XXX - do we need to worry about floating-point format compatability
18300 in data sections ? */
18301 if (!(ibfd->flags & DYNAMIC))
18302 {
18303 bfd_boolean null_input_bfd = TRUE;
18304 bfd_boolean only_data_sections = TRUE;
18305
18306 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
18307 {
18308 /* Ignore synthetic glue sections. */
18309 if (strcmp (sec->name, ".glue_7")
18310 && strcmp (sec->name, ".glue_7t"))
18311 {
18312 if ((bfd_get_section_flags (ibfd, sec)
18313 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
18314 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
18315 only_data_sections = FALSE;
18316
18317 null_input_bfd = FALSE;
18318 break;
18319 }
18320 }
18321
18322 if (null_input_bfd || only_data_sections)
18323 return TRUE;
18324 }
18325
18326 /* Complain about various flag mismatches. */
18327 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
18328 EF_ARM_EABI_VERSION (out_flags)))
18329 {
18330 _bfd_error_handler
18331 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
18332 ibfd, obfd,
18333 (in_flags & EF_ARM_EABIMASK) >> 24,
18334 (out_flags & EF_ARM_EABIMASK) >> 24);
18335 return FALSE;
18336 }
18337
18338 /* Not sure what needs to be checked for EABI versions >= 1. */
18339 /* VxWorks libraries do not use these flags. */
18340 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
18341 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
18342 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
18343 {
18344 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
18345 {
18346 _bfd_error_handler
18347 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
18348 ibfd, obfd,
18349 in_flags & EF_ARM_APCS_26 ? 26 : 32,
18350 out_flags & EF_ARM_APCS_26 ? 26 : 32);
18351 flags_compatible = FALSE;
18352 }
18353
18354 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
18355 {
18356 if (in_flags & EF_ARM_APCS_FLOAT)
18357 _bfd_error_handler
18358 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
18359 ibfd, obfd);
18360 else
18361 _bfd_error_handler
18362 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
18363 ibfd, obfd);
18364
18365 flags_compatible = FALSE;
18366 }
18367
18368 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
18369 {
18370 if (in_flags & EF_ARM_VFP_FLOAT)
18371 _bfd_error_handler
18372 (_("error: %B uses VFP instructions, whereas %B does not"),
18373 ibfd, obfd);
18374 else
18375 _bfd_error_handler
18376 (_("error: %B uses FPA instructions, whereas %B does not"),
18377 ibfd, obfd);
18378
18379 flags_compatible = FALSE;
18380 }
18381
18382 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
18383 {
18384 if (in_flags & EF_ARM_MAVERICK_FLOAT)
18385 _bfd_error_handler
18386 (_("error: %B uses Maverick instructions, whereas %B does not"),
18387 ibfd, obfd);
18388 else
18389 _bfd_error_handler
18390 (_("error: %B does not use Maverick instructions, whereas %B does"),
18391 ibfd, obfd);
18392
18393 flags_compatible = FALSE;
18394 }
18395
18396 #ifdef EF_ARM_SOFT_FLOAT
18397 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
18398 {
18399 /* We can allow interworking between code that is VFP format
18400 layout, and uses either soft float or integer regs for
18401 passing floating point arguments and results. We already
18402 know that the APCS_FLOAT flags match; similarly for VFP
18403 flags. */
18404 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
18405 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
18406 {
18407 if (in_flags & EF_ARM_SOFT_FLOAT)
18408 _bfd_error_handler
18409 (_("error: %B uses software FP, whereas %B uses hardware FP"),
18410 ibfd, obfd);
18411 else
18412 _bfd_error_handler
18413 (_("error: %B uses hardware FP, whereas %B uses software FP"),
18414 ibfd, obfd);
18415
18416 flags_compatible = FALSE;
18417 }
18418 }
18419 #endif
18420
18421 /* Interworking mismatch is only a warning. */
18422 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
18423 {
18424 if (in_flags & EF_ARM_INTERWORK)
18425 {
18426 _bfd_error_handler
18427 (_("Warning: %B supports interworking, whereas %B does not"),
18428 ibfd, obfd);
18429 }
18430 else
18431 {
18432 _bfd_error_handler
18433 (_("Warning: %B does not support interworking, whereas %B does"),
18434 ibfd, obfd);
18435 }
18436 }
18437 }
18438
18439 return flags_compatible;
18440 }
18441
18442
18443 /* Symbian OS Targets. */
18444
18445 #undef TARGET_LITTLE_SYM
18446 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
18447 #undef TARGET_LITTLE_NAME
18448 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
18449 #undef TARGET_BIG_SYM
18450 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
18451 #undef TARGET_BIG_NAME
18452 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
18453
18454 /* Like elf32_arm_link_hash_table_create -- but overrides
18455 appropriately for Symbian OS. */
18456
18457 static struct bfd_link_hash_table *
18458 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
18459 {
18460 struct bfd_link_hash_table *ret;
18461
18462 ret = elf32_arm_link_hash_table_create (abfd);
18463 if (ret)
18464 {
18465 struct elf32_arm_link_hash_table *htab
18466 = (struct elf32_arm_link_hash_table *)ret;
18467 /* There is no PLT header for Symbian OS. */
18468 htab->plt_header_size = 0;
18469 /* The PLT entries are each one instruction and one word. */
18470 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
18471 htab->symbian_p = 1;
18472 /* Symbian uses armv5t or above, so use_blx is always true. */
18473 htab->use_blx = 1;
18474 htab->root.is_relocatable_executable = 1;
18475 }
18476 return ret;
18477 }
18478
18479 static const struct bfd_elf_special_section
18480 elf32_arm_symbian_special_sections[] =
18481 {
18482 /* In a BPABI executable, the dynamic linking sections do not go in
18483 the loadable read-only segment. The post-linker may wish to
18484 refer to these sections, but they are not part of the final
18485 program image. */
18486 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
18487 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
18488 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
18489 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
18490 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
18491 /* These sections do not need to be writable as the SymbianOS
18492 postlinker will arrange things so that no dynamic relocation is
18493 required. */
18494 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
18495 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
18496 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
18497 { NULL, 0, 0, 0, 0 }
18498 };
18499
18500 static void
18501 elf32_arm_symbian_begin_write_processing (bfd *abfd,
18502 struct bfd_link_info *link_info)
18503 {
18504 /* BPABI objects are never loaded directly by an OS kernel; they are
18505 processed by a postlinker first, into an OS-specific format. If
18506 the D_PAGED bit is set on the file, BFD will align segments on
18507 page boundaries, so that an OS can directly map the file. With
18508 BPABI objects, that just results in wasted space. In addition,
18509 because we clear the D_PAGED bit, map_sections_to_segments will
18510 recognize that the program headers should not be mapped into any
18511 loadable segment. */
18512 abfd->flags &= ~D_PAGED;
18513 elf32_arm_begin_write_processing (abfd, link_info);
18514 }
18515
18516 static bfd_boolean
18517 elf32_arm_symbian_modify_segment_map (bfd *abfd,
18518 struct bfd_link_info *info)
18519 {
18520 struct elf_segment_map *m;
18521 asection *dynsec;
18522
18523 /* BPABI shared libraries and executables should have a PT_DYNAMIC
18524 segment. However, because the .dynamic section is not marked
18525 with SEC_LOAD, the generic ELF code will not create such a
18526 segment. */
18527 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
18528 if (dynsec)
18529 {
18530 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
18531 if (m->p_type == PT_DYNAMIC)
18532 break;
18533
18534 if (m == NULL)
18535 {
18536 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
18537 m->next = elf_seg_map (abfd);
18538 elf_seg_map (abfd) = m;
18539 }
18540 }
18541
18542 /* Also call the generic arm routine. */
18543 return elf32_arm_modify_segment_map (abfd, info);
18544 }
18545
18546 /* Return address for Ith PLT stub in section PLT, for relocation REL
18547 or (bfd_vma) -1 if it should not be included. */
18548
18549 static bfd_vma
18550 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
18551 const arelent *rel ATTRIBUTE_UNUSED)
18552 {
18553 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
18554 }
18555
18556 #undef elf32_bed
18557 #define elf32_bed elf32_arm_symbian_bed
18558
18559 /* The dynamic sections are not allocated on SymbianOS; the postlinker
18560 will process them and then discard them. */
18561 #undef ELF_DYNAMIC_SEC_FLAGS
18562 #define ELF_DYNAMIC_SEC_FLAGS \
18563 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
18564
18565 #undef elf_backend_emit_relocs
18566
18567 #undef bfd_elf32_bfd_link_hash_table_create
18568 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
18569 #undef elf_backend_special_sections
18570 #define elf_backend_special_sections elf32_arm_symbian_special_sections
18571 #undef elf_backend_begin_write_processing
18572 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
18573 #undef elf_backend_final_write_processing
18574 #define elf_backend_final_write_processing elf32_arm_final_write_processing
18575
18576 #undef elf_backend_modify_segment_map
18577 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
18578
18579 /* There is no .got section for BPABI objects, and hence no header. */
18580 #undef elf_backend_got_header_size
18581 #define elf_backend_got_header_size 0
18582
18583 /* Similarly, there is no .got.plt section. */
18584 #undef elf_backend_want_got_plt
18585 #define elf_backend_want_got_plt 0
18586
18587 #undef elf_backend_plt_sym_val
18588 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
18589
18590 #undef elf_backend_may_use_rel_p
18591 #define elf_backend_may_use_rel_p 1
18592 #undef elf_backend_may_use_rela_p
18593 #define elf_backend_may_use_rela_p 0
18594 #undef elf_backend_default_use_rela_p
18595 #define elf_backend_default_use_rela_p 0
18596 #undef elf_backend_want_plt_sym
18597 #define elf_backend_want_plt_sym 0
18598 #undef ELF_MAXPAGESIZE
18599 #define ELF_MAXPAGESIZE 0x8000
18600
18601 #include "elf32-target.h"