]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-hppa.c
[bfd] Revise import stubs on hppa.
[thirdparty/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2019 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get PLT address
75 : ldo RR'lt_ptr+ltoff(%r1),%r22 ;
76 : ldw 0(%r22),%r21 ; get procedure entry point
77 : bv %r0(%r21)
78 : ldw 4(%r22),%r19 ; get new dlt value.
79
80 Import stub to call shared library routine from shared library
81 (single sub-space version)
82 : addil LR'ltoff,%r19 ; get PLT address
83 : ldo RR'ltoff(%r1),%r22
84 : ldw 0(%r22),%r21 ; get procedure entry point
85 : bv %r0(%r21)
86 : ldw 4(%r22),%r19 ; get new dlt value.
87
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get PLT address
91 : ldo RR'lt_ptr+ltoff(%r1),%r22 ;
92 : ldw 0(%r22),%r21 ; get procedure entry point
93 : ldsid (%r21),%r1 ; get target sid
94 : ldw 4(%r22),%r19 ; get new dlt value.
95 : mtsp %r1,%sr0
96 : be 0(%sr0,%r21) ; branch to target
97 : stw %rp,-24(%sp) ; save rp
98
99 Import stub to call shared library routine from shared library
100 (multiple sub-space support)
101 : addil LR'ltoff,%r19 ; get PLT address
102 : ldo RR'ltoff(%r1),%r22
103 : ldw 0(%r22),%r21 ; get procedure entry point
104 : ldsid (%r21),%r1 ; get target sid
105 : ldw 4(%r22),%r19 ; get new dlt value.
106 : mtsp %r1,%sr0
107 : be 0(%sr0,%r21) ; branch to target
108 : stw %rp,-24(%sp) ; save rp
109
110 Export stub to return from shared lib routine (multiple sub-space support)
111 One of these is created for each exported procedure in a shared
112 library (and stored in the shared lib). Shared lib routines are
113 called via the first instruction in the export stub so that we can
114 do an inter-space return. Not required for single sub-space.
115 : bl,n X,%rp ; trap the return
116 : nop
117 : ldw -24(%sp),%rp ; restore the original rp
118 : ldsid (%rp),%r1
119 : mtsp %r1,%sr0
120 : be,n 0(%sr0,%rp) ; inter-space return. */
121
122
123 /* Variable names follow a coding style.
124 Please follow this (Apps Hungarian) style:
125
126 Structure/Variable Prefix
127 elf_link_hash_table "etab"
128 elf_link_hash_entry "eh"
129
130 elf32_hppa_link_hash_table "htab"
131 elf32_hppa_link_hash_entry "hh"
132
133 bfd_hash_table "btab"
134 bfd_hash_entry "bh"
135
136 bfd_hash_table containing stubs "bstab"
137 elf32_hppa_stub_hash_entry "hsh"
138
139 Always remember to use GNU Coding Style. */
140
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define LONG_BRANCH_STUB_SIZE 8
144 #define LONG_BRANCH_SHARED_STUB_SIZE 12
145 #define IMPORT_STUB_SIZE 20
146 #define IMPORT_SHARED_STUB_SIZE 32
147 #define EXPORT_STUB_SIZE 24
148 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
149
150 static const bfd_byte plt_stub[] =
151 {
152 0x0e, 0x80, 0x10, 0x95, /* 1: ldw 0(%r20),%r21 */
153 0xea, 0xa0, 0xc0, 0x00, /* bv %r0(%r21) */
154 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
155 #define PLT_STUB_ENTRY (3*4)
156 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
157 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
158 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
159 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
160 };
161
162 /* Section name for stubs is the associated section name plus this
163 string. */
164 #define STUB_SUFFIX ".stub"
165
166 /* We don't need to copy certain PC- or GP-relative dynamic relocs
167 into a shared object's dynamic section. All the relocs of the
168 limited class we are interested in, are absolute. */
169 #ifndef RELATIVE_DYNRELOCS
170 #define RELATIVE_DYNRELOCS 0
171 #define IS_ABSOLUTE_RELOC(r_type) 1
172 #define pc_dynrelocs(hh) 0
173 #endif
174
175 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
176 copying dynamic variables from a shared lib into an app's dynbss
177 section, and instead use a dynamic relocation to point into the
178 shared lib. */
179 #define ELIMINATE_COPY_RELOCS 1
180
181 enum elf32_hppa_stub_type
182 {
183 hppa_stub_long_branch,
184 hppa_stub_long_branch_shared,
185 hppa_stub_import,
186 hppa_stub_import_shared,
187 hppa_stub_export,
188 hppa_stub_none
189 };
190
191 struct elf32_hppa_stub_hash_entry
192 {
193 /* Base hash table entry structure. */
194 struct bfd_hash_entry bh_root;
195
196 /* The stub section. */
197 asection *stub_sec;
198
199 /* Offset within stub_sec of the beginning of this stub. */
200 bfd_vma stub_offset;
201
202 /* Given the symbol's value and its section we can determine its final
203 value when building the stubs (so the stub knows where to jump. */
204 bfd_vma target_value;
205 asection *target_section;
206
207 enum elf32_hppa_stub_type stub_type;
208
209 /* The symbol table entry, if any, that this was derived from. */
210 struct elf32_hppa_link_hash_entry *hh;
211
212 /* Where this stub is being called from, or, in the case of combined
213 stub sections, the first input section in the group. */
214 asection *id_sec;
215 };
216
217 enum _tls_type
218 {
219 GOT_UNKNOWN = 0,
220 GOT_NORMAL = 1,
221 GOT_TLS_GD = 2,
222 GOT_TLS_LDM = 4,
223 GOT_TLS_IE = 8
224 };
225
226 struct elf32_hppa_link_hash_entry
227 {
228 struct elf_link_hash_entry eh;
229
230 /* A pointer to the most recently used stub hash entry against this
231 symbol. */
232 struct elf32_hppa_stub_hash_entry *hsh_cache;
233
234 /* Used to count relocations for delayed sizing of relocation
235 sections. */
236 struct elf_dyn_relocs *dyn_relocs;
237
238 ENUM_BITFIELD (_tls_type) tls_type : 8;
239
240 /* Set if this symbol is used by a plabel reloc. */
241 unsigned int plabel:1;
242 };
243
244 struct elf32_hppa_link_hash_table
245 {
246 /* The main hash table. */
247 struct elf_link_hash_table etab;
248
249 /* The stub hash table. */
250 struct bfd_hash_table bstab;
251
252 /* Linker stub bfd. */
253 bfd *stub_bfd;
254
255 /* Linker call-backs. */
256 asection * (*add_stub_section) (const char *, asection *);
257 void (*layout_sections_again) (void);
258
259 /* Array to keep track of which stub sections have been created, and
260 information on stub grouping. */
261 struct map_stub
262 {
263 /* This is the section to which stubs in the group will be
264 attached. */
265 asection *link_sec;
266 /* The stub section. */
267 asection *stub_sec;
268 } *stub_group;
269
270 /* Assorted information used by elf32_hppa_size_stubs. */
271 unsigned int bfd_count;
272 unsigned int top_index;
273 asection **input_list;
274 Elf_Internal_Sym **all_local_syms;
275
276 /* Used during a final link to store the base of the text and data
277 segments so that we can perform SEGREL relocations. */
278 bfd_vma text_segment_base;
279 bfd_vma data_segment_base;
280
281 /* Whether we support multiple sub-spaces for shared libs. */
282 unsigned int multi_subspace:1;
283
284 /* Flags set when various size branches are detected. Used to
285 select suitable defaults for the stub group size. */
286 unsigned int has_12bit_branch:1;
287 unsigned int has_17bit_branch:1;
288 unsigned int has_22bit_branch:1;
289
290 /* Set if we need a .plt stub to support lazy dynamic linking. */
291 unsigned int need_plt_stub:1;
292
293 /* Small local sym cache. */
294 struct sym_cache sym_cache;
295
296 /* Data for LDM relocations. */
297 union
298 {
299 bfd_signed_vma refcount;
300 bfd_vma offset;
301 } tls_ldm_got;
302 };
303
304 /* Various hash macros and functions. */
305 #define hppa_link_hash_table(p) \
306 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
307 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
308
309 #define hppa_elf_hash_entry(ent) \
310 ((struct elf32_hppa_link_hash_entry *)(ent))
311
312 #define hppa_stub_hash_entry(ent) \
313 ((struct elf32_hppa_stub_hash_entry *)(ent))
314
315 #define hppa_stub_hash_lookup(table, string, create, copy) \
316 ((struct elf32_hppa_stub_hash_entry *) \
317 bfd_hash_lookup ((table), (string), (create), (copy)))
318
319 #define hppa_elf_local_got_tls_type(abfd) \
320 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
321
322 #define hh_name(hh) \
323 (hh ? hh->eh.root.root.string : "<undef>")
324
325 #define eh_name(eh) \
326 (eh ? eh->root.root.string : "<undef>")
327
328 /* Assorted hash table functions. */
329
330 /* Initialize an entry in the stub hash table. */
331
332 static struct bfd_hash_entry *
333 stub_hash_newfunc (struct bfd_hash_entry *entry,
334 struct bfd_hash_table *table,
335 const char *string)
336 {
337 /* Allocate the structure if it has not already been allocated by a
338 subclass. */
339 if (entry == NULL)
340 {
341 entry = bfd_hash_allocate (table,
342 sizeof (struct elf32_hppa_stub_hash_entry));
343 if (entry == NULL)
344 return entry;
345 }
346
347 /* Call the allocation method of the superclass. */
348 entry = bfd_hash_newfunc (entry, table, string);
349 if (entry != NULL)
350 {
351 struct elf32_hppa_stub_hash_entry *hsh;
352
353 /* Initialize the local fields. */
354 hsh = hppa_stub_hash_entry (entry);
355 hsh->stub_sec = NULL;
356 hsh->stub_offset = 0;
357 hsh->target_value = 0;
358 hsh->target_section = NULL;
359 hsh->stub_type = hppa_stub_long_branch;
360 hsh->hh = NULL;
361 hsh->id_sec = NULL;
362 }
363
364 return entry;
365 }
366
367 /* Initialize an entry in the link hash table. */
368
369 static struct bfd_hash_entry *
370 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
371 struct bfd_hash_table *table,
372 const char *string)
373 {
374 /* Allocate the structure if it has not already been allocated by a
375 subclass. */
376 if (entry == NULL)
377 {
378 entry = bfd_hash_allocate (table,
379 sizeof (struct elf32_hppa_link_hash_entry));
380 if (entry == NULL)
381 return entry;
382 }
383
384 /* Call the allocation method of the superclass. */
385 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
386 if (entry != NULL)
387 {
388 struct elf32_hppa_link_hash_entry *hh;
389
390 /* Initialize the local fields. */
391 hh = hppa_elf_hash_entry (entry);
392 hh->hsh_cache = NULL;
393 hh->dyn_relocs = NULL;
394 hh->plabel = 0;
395 hh->tls_type = GOT_UNKNOWN;
396 }
397
398 return entry;
399 }
400
401 /* Free the derived linker hash table. */
402
403 static void
404 elf32_hppa_link_hash_table_free (bfd *obfd)
405 {
406 struct elf32_hppa_link_hash_table *htab
407 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
408
409 bfd_hash_table_free (&htab->bstab);
410 _bfd_elf_link_hash_table_free (obfd);
411 }
412
413 /* Create the derived linker hash table. The PA ELF port uses the derived
414 hash table to keep information specific to the PA ELF linker (without
415 using static variables). */
416
417 static struct bfd_link_hash_table *
418 elf32_hppa_link_hash_table_create (bfd *abfd)
419 {
420 struct elf32_hppa_link_hash_table *htab;
421 bfd_size_type amt = sizeof (*htab);
422
423 htab = bfd_zmalloc (amt);
424 if (htab == NULL)
425 return NULL;
426
427 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
428 sizeof (struct elf32_hppa_link_hash_entry),
429 HPPA32_ELF_DATA))
430 {
431 free (htab);
432 return NULL;
433 }
434
435 /* Init the stub hash table too. */
436 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
437 sizeof (struct elf32_hppa_stub_hash_entry)))
438 {
439 _bfd_elf_link_hash_table_free (abfd);
440 return NULL;
441 }
442 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
443
444 htab->text_segment_base = (bfd_vma) -1;
445 htab->data_segment_base = (bfd_vma) -1;
446 return &htab->etab.root;
447 }
448
449 /* Initialize the linker stubs BFD so that we can use it for linker
450 created dynamic sections. */
451
452 void
453 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
454 {
455 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
456
457 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
458 htab->etab.dynobj = abfd;
459 }
460
461 /* Build a name for an entry in the stub hash table. */
462
463 static char *
464 hppa_stub_name (const asection *input_section,
465 const asection *sym_sec,
466 const struct elf32_hppa_link_hash_entry *hh,
467 const Elf_Internal_Rela *rela)
468 {
469 char *stub_name;
470 bfd_size_type len;
471
472 if (hh)
473 {
474 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
475 stub_name = bfd_malloc (len);
476 if (stub_name != NULL)
477 sprintf (stub_name, "%08x_%s+%x",
478 input_section->id & 0xffffffff,
479 hh_name (hh),
480 (int) rela->r_addend & 0xffffffff);
481 }
482 else
483 {
484 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
485 stub_name = bfd_malloc (len);
486 if (stub_name != NULL)
487 sprintf (stub_name, "%08x_%x:%x+%x",
488 input_section->id & 0xffffffff,
489 sym_sec->id & 0xffffffff,
490 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
491 (int) rela->r_addend & 0xffffffff);
492 }
493 return stub_name;
494 }
495
496 /* Look up an entry in the stub hash. Stub entries are cached because
497 creating the stub name takes a bit of time. */
498
499 static struct elf32_hppa_stub_hash_entry *
500 hppa_get_stub_entry (const asection *input_section,
501 const asection *sym_sec,
502 struct elf32_hppa_link_hash_entry *hh,
503 const Elf_Internal_Rela *rela,
504 struct elf32_hppa_link_hash_table *htab)
505 {
506 struct elf32_hppa_stub_hash_entry *hsh_entry;
507 const asection *id_sec;
508
509 /* If this input section is part of a group of sections sharing one
510 stub section, then use the id of the first section in the group.
511 Stub names need to include a section id, as there may well be
512 more than one stub used to reach say, printf, and we need to
513 distinguish between them. */
514 id_sec = htab->stub_group[input_section->id].link_sec;
515 if (id_sec == NULL)
516 return NULL;
517
518 if (hh != NULL && hh->hsh_cache != NULL
519 && hh->hsh_cache->hh == hh
520 && hh->hsh_cache->id_sec == id_sec)
521 {
522 hsh_entry = hh->hsh_cache;
523 }
524 else
525 {
526 char *stub_name;
527
528 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
529 if (stub_name == NULL)
530 return NULL;
531
532 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
533 stub_name, FALSE, FALSE);
534 if (hh != NULL)
535 hh->hsh_cache = hsh_entry;
536
537 free (stub_name);
538 }
539
540 return hsh_entry;
541 }
542
543 /* Add a new stub entry to the stub hash. Not all fields of the new
544 stub entry are initialised. */
545
546 static struct elf32_hppa_stub_hash_entry *
547 hppa_add_stub (const char *stub_name,
548 asection *section,
549 struct elf32_hppa_link_hash_table *htab)
550 {
551 asection *link_sec;
552 asection *stub_sec;
553 struct elf32_hppa_stub_hash_entry *hsh;
554
555 link_sec = htab->stub_group[section->id].link_sec;
556 stub_sec = htab->stub_group[section->id].stub_sec;
557 if (stub_sec == NULL)
558 {
559 stub_sec = htab->stub_group[link_sec->id].stub_sec;
560 if (stub_sec == NULL)
561 {
562 size_t namelen;
563 bfd_size_type len;
564 char *s_name;
565
566 namelen = strlen (link_sec->name);
567 len = namelen + sizeof (STUB_SUFFIX);
568 s_name = bfd_alloc (htab->stub_bfd, len);
569 if (s_name == NULL)
570 return NULL;
571
572 memcpy (s_name, link_sec->name, namelen);
573 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
574 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
575 if (stub_sec == NULL)
576 return NULL;
577 htab->stub_group[link_sec->id].stub_sec = stub_sec;
578 }
579 htab->stub_group[section->id].stub_sec = stub_sec;
580 }
581
582 /* Enter this entry into the linker stub hash table. */
583 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
584 TRUE, FALSE);
585 if (hsh == NULL)
586 {
587 /* xgettext:c-format */
588 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
589 section->owner, stub_name);
590 return NULL;
591 }
592
593 hsh->stub_sec = stub_sec;
594 hsh->stub_offset = 0;
595 hsh->id_sec = link_sec;
596 return hsh;
597 }
598
599 /* Determine the type of stub needed, if any, for a call. */
600
601 static enum elf32_hppa_stub_type
602 hppa_type_of_stub (asection *input_sec,
603 const Elf_Internal_Rela *rela,
604 struct elf32_hppa_link_hash_entry *hh,
605 bfd_vma destination,
606 struct bfd_link_info *info)
607 {
608 bfd_vma location;
609 bfd_vma branch_offset;
610 bfd_vma max_branch_offset;
611 unsigned int r_type;
612
613 if (hh != NULL
614 && hh->eh.plt.offset != (bfd_vma) -1
615 && hh->eh.dynindx != -1
616 && !hh->plabel
617 && (bfd_link_pic (info)
618 || !hh->eh.def_regular
619 || hh->eh.root.type == bfd_link_hash_defweak))
620 {
621 /* We need an import stub. Decide between hppa_stub_import
622 and hppa_stub_import_shared later. */
623 return hppa_stub_import;
624 }
625
626 if (destination == (bfd_vma) -1)
627 return hppa_stub_none;
628
629 /* Determine where the call point is. */
630 location = (input_sec->output_offset
631 + input_sec->output_section->vma
632 + rela->r_offset);
633
634 branch_offset = destination - location - 8;
635 r_type = ELF32_R_TYPE (rela->r_info);
636
637 /* Determine if a long branch stub is needed. parisc branch offsets
638 are relative to the second instruction past the branch, ie. +8
639 bytes on from the branch instruction location. The offset is
640 signed and counts in units of 4 bytes. */
641 if (r_type == (unsigned int) R_PARISC_PCREL17F)
642 max_branch_offset = (1 << (17 - 1)) << 2;
643
644 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
645 max_branch_offset = (1 << (12 - 1)) << 2;
646
647 else /* R_PARISC_PCREL22F. */
648 max_branch_offset = (1 << (22 - 1)) << 2;
649
650 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
651 return hppa_stub_long_branch;
652
653 return hppa_stub_none;
654 }
655
656 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
657 IN_ARG contains the link info pointer. */
658
659 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
660 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
661
662 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
663 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
664 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
665
666 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
667 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
668 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
669 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
670
671 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
672 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
673
674 #define LDO_R1_R22 0x34360000 /* ldo RR'XXX(%r1),%r22 */
675 #define LDW_R22_R21 0x0ec01095 /* ldw 0(%r22),%r21 */
676 #define LDW_R22_R19 0x0ec81093 /* ldw 4(%r22),%r19 */
677
678 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
679 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
680 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
681 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
682
683 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
684 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
685 #define NOP 0x08000240 /* nop */
686 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
687 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
688 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
689
690 #ifndef R19_STUBS
691 #define R19_STUBS 1
692 #endif
693
694 #if R19_STUBS
695 #define LDW_R1_DLT LDW_R1_R19
696 #else
697 #define LDW_R1_DLT LDW_R1_DP
698 #endif
699
700 static bfd_boolean
701 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
702 {
703 struct elf32_hppa_stub_hash_entry *hsh;
704 struct bfd_link_info *info;
705 struct elf32_hppa_link_hash_table *htab;
706 asection *stub_sec;
707 bfd *stub_bfd;
708 bfd_byte *loc;
709 bfd_vma sym_value;
710 bfd_vma insn;
711 bfd_vma off;
712 int val;
713 int size;
714
715 /* Massage our args to the form they really have. */
716 hsh = hppa_stub_hash_entry (bh);
717 info = (struct bfd_link_info *)in_arg;
718
719 htab = hppa_link_hash_table (info);
720 if (htab == NULL)
721 return FALSE;
722
723 stub_sec = hsh->stub_sec;
724
725 /* Make a note of the offset within the stubs for this entry. */
726 hsh->stub_offset = stub_sec->size;
727 loc = stub_sec->contents + hsh->stub_offset;
728
729 stub_bfd = stub_sec->owner;
730
731 switch (hsh->stub_type)
732 {
733 case hppa_stub_long_branch:
734 /* Create the long branch. A long branch is formed with "ldil"
735 loading the upper bits of the target address into a register,
736 then branching with "be" which adds in the lower bits.
737 The "be" has its delay slot nullified. */
738 sym_value = (hsh->target_value
739 + hsh->target_section->output_offset
740 + hsh->target_section->output_section->vma);
741
742 val = hppa_field_adjust (sym_value, 0, e_lrsel);
743 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
744 bfd_put_32 (stub_bfd, insn, loc);
745
746 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
747 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
748 bfd_put_32 (stub_bfd, insn, loc + 4);
749
750 size = LONG_BRANCH_STUB_SIZE;
751 break;
752
753 case hppa_stub_long_branch_shared:
754 /* Branches are relative. This is where we are going to. */
755 sym_value = (hsh->target_value
756 + hsh->target_section->output_offset
757 + hsh->target_section->output_section->vma);
758
759 /* And this is where we are coming from, more or less. */
760 sym_value -= (hsh->stub_offset
761 + stub_sec->output_offset
762 + stub_sec->output_section->vma);
763
764 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
765 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
766 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
767 bfd_put_32 (stub_bfd, insn, loc + 4);
768
769 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
770 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
771 bfd_put_32 (stub_bfd, insn, loc + 8);
772 size = LONG_BRANCH_SHARED_STUB_SIZE;
773 break;
774
775 case hppa_stub_import:
776 case hppa_stub_import_shared:
777 off = hsh->hh->eh.plt.offset;
778 if (off >= (bfd_vma) -2)
779 abort ();
780
781 off &= ~ (bfd_vma) 1;
782 sym_value = (off
783 + htab->etab.splt->output_offset
784 + htab->etab.splt->output_section->vma
785 - elf_gp (htab->etab.splt->output_section->owner));
786
787 insn = ADDIL_DP;
788 #if R19_STUBS
789 if (hsh->stub_type == hppa_stub_import_shared)
790 insn = ADDIL_R19;
791 #endif
792
793 /* Load function descriptor address into register %r22. It is
794 sometimes needed for lazy binding. */
795 val = hppa_field_adjust (sym_value, 0, e_lrsel),
796 insn = hppa_rebuild_insn ((int) insn, val, 21);
797 bfd_put_32 (stub_bfd, insn, loc);
798
799 val = hppa_field_adjust (sym_value, 0, e_rrsel);
800 insn = hppa_rebuild_insn ((int) LDO_R1_R22, val, 14);
801 bfd_put_32 (stub_bfd, insn, loc + 4);
802
803 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R21, loc + 8);
804
805 if (htab->multi_subspace)
806 {
807 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
808 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16);
809 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 20);
810 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 24);
811 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 28);
812
813 size = IMPORT_SHARED_STUB_SIZE;
814 }
815 else
816 {
817 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 12);
818 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16);
819
820 size = IMPORT_STUB_SIZE;
821 }
822
823 break;
824
825 case hppa_stub_export:
826 /* Branches are relative. This is where we are going to. */
827 sym_value = (hsh->target_value
828 + hsh->target_section->output_offset
829 + hsh->target_section->output_section->vma);
830
831 /* And this is where we are coming from. */
832 sym_value -= (hsh->stub_offset
833 + stub_sec->output_offset
834 + stub_sec->output_section->vma);
835
836 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
837 && (!htab->has_22bit_branch
838 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
839 {
840 _bfd_error_handler
841 /* xgettext:c-format */
842 (_("%pB(%pA+%#" PRIx64 "): "
843 "cannot reach %s, recompile with -ffunction-sections"),
844 hsh->target_section->owner,
845 stub_sec,
846 (uint64_t) hsh->stub_offset,
847 hsh->bh_root.string);
848 bfd_set_error (bfd_error_bad_value);
849 return FALSE;
850 }
851
852 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
853 if (!htab->has_22bit_branch)
854 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
855 else
856 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
857 bfd_put_32 (stub_bfd, insn, loc);
858
859 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
860 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
861 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
862 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
863 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
864
865 /* Point the function symbol at the stub. */
866 hsh->hh->eh.root.u.def.section = stub_sec;
867 hsh->hh->eh.root.u.def.value = stub_sec->size;
868
869 size = EXPORT_STUB_SIZE;
870 break;
871
872 default:
873 BFD_FAIL ();
874 return FALSE;
875 }
876
877 stub_sec->size += size;
878 return TRUE;
879 }
880
881 #undef LDIL_R1
882 #undef BE_SR4_R1
883 #undef BL_R1
884 #undef ADDIL_R1
885 #undef DEPI_R1
886 #undef LDW_R1_R21
887 #undef LDW_R1_DLT
888 #undef LDW_R1_R19
889 #undef ADDIL_R19
890 #undef LDW_R1_DP
891 #undef LDSID_R21_R1
892 #undef MTSP_R1
893 #undef BE_SR0_R21
894 #undef STW_RP
895 #undef BV_R0_R21
896 #undef BL_RP
897 #undef NOP
898 #undef LDW_RP
899 #undef LDSID_RP_R1
900 #undef BE_SR0_RP
901
902 /* As above, but don't actually build the stub. Just bump offset so
903 we know stub section sizes. */
904
905 static bfd_boolean
906 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
907 {
908 struct elf32_hppa_stub_hash_entry *hsh;
909 struct elf32_hppa_link_hash_table *htab;
910 int size;
911
912 /* Massage our args to the form they really have. */
913 hsh = hppa_stub_hash_entry (bh);
914 htab = in_arg;
915
916 if (hsh->stub_type == hppa_stub_long_branch)
917 size = LONG_BRANCH_STUB_SIZE;
918 else if (hsh->stub_type == hppa_stub_long_branch_shared)
919 size = LONG_BRANCH_SHARED_STUB_SIZE;
920 else if (hsh->stub_type == hppa_stub_export)
921 size = EXPORT_STUB_SIZE;
922 else /* hppa_stub_import or hppa_stub_import_shared. */
923 {
924 if (htab->multi_subspace)
925 size = IMPORT_SHARED_STUB_SIZE;
926 else
927 size = IMPORT_STUB_SIZE;
928 }
929
930 hsh->stub_sec->size += size;
931 return TRUE;
932 }
933
934 /* Return nonzero if ABFD represents an HPPA ELF32 file.
935 Additionally we set the default architecture and machine. */
936
937 static bfd_boolean
938 elf32_hppa_object_p (bfd *abfd)
939 {
940 Elf_Internal_Ehdr * i_ehdrp;
941 unsigned int flags;
942
943 i_ehdrp = elf_elfheader (abfd);
944 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
945 {
946 /* GCC on hppa-linux produces binaries with OSABI=GNU,
947 but the kernel produces corefiles with OSABI=SysV. */
948 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
949 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
950 return FALSE;
951 }
952 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
953 {
954 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
955 but the kernel produces corefiles with OSABI=SysV. */
956 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
957 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
958 return FALSE;
959 }
960 else
961 {
962 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
963 return FALSE;
964 }
965
966 flags = i_ehdrp->e_flags;
967 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
968 {
969 case EFA_PARISC_1_0:
970 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
971 case EFA_PARISC_1_1:
972 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
973 case EFA_PARISC_2_0:
974 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
975 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
976 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
977 }
978 return TRUE;
979 }
980
981 /* Create the .plt and .got sections, and set up our hash table
982 short-cuts to various dynamic sections. */
983
984 static bfd_boolean
985 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
986 {
987 struct elf32_hppa_link_hash_table *htab;
988 struct elf_link_hash_entry *eh;
989
990 /* Don't try to create the .plt and .got twice. */
991 htab = hppa_link_hash_table (info);
992 if (htab == NULL)
993 return FALSE;
994 if (htab->etab.splt != NULL)
995 return TRUE;
996
997 /* Call the generic code to do most of the work. */
998 if (! _bfd_elf_create_dynamic_sections (abfd, info))
999 return FALSE;
1000
1001 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1002 application, because __canonicalize_funcptr_for_compare needs it. */
1003 eh = elf_hash_table (info)->hgot;
1004 eh->forced_local = 0;
1005 eh->other = STV_DEFAULT;
1006 return bfd_elf_link_record_dynamic_symbol (info, eh);
1007 }
1008
1009 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1010
1011 static void
1012 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1013 struct elf_link_hash_entry *eh_dir,
1014 struct elf_link_hash_entry *eh_ind)
1015 {
1016 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1017
1018 hh_dir = hppa_elf_hash_entry (eh_dir);
1019 hh_ind = hppa_elf_hash_entry (eh_ind);
1020
1021 if (hh_ind->dyn_relocs != NULL
1022 && eh_ind->root.type == bfd_link_hash_indirect)
1023 {
1024 if (hh_dir->dyn_relocs != NULL)
1025 {
1026 struct elf_dyn_relocs **hdh_pp;
1027 struct elf_dyn_relocs *hdh_p;
1028
1029 /* Add reloc counts against the indirect sym to the direct sym
1030 list. Merge any entries against the same section. */
1031 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1032 {
1033 struct elf_dyn_relocs *hdh_q;
1034
1035 for (hdh_q = hh_dir->dyn_relocs;
1036 hdh_q != NULL;
1037 hdh_q = hdh_q->next)
1038 if (hdh_q->sec == hdh_p->sec)
1039 {
1040 #if RELATIVE_DYNRELOCS
1041 hdh_q->pc_count += hdh_p->pc_count;
1042 #endif
1043 hdh_q->count += hdh_p->count;
1044 *hdh_pp = hdh_p->next;
1045 break;
1046 }
1047 if (hdh_q == NULL)
1048 hdh_pp = &hdh_p->next;
1049 }
1050 *hdh_pp = hh_dir->dyn_relocs;
1051 }
1052
1053 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1054 hh_ind->dyn_relocs = NULL;
1055 }
1056
1057 if (eh_ind->root.type == bfd_link_hash_indirect)
1058 {
1059 hh_dir->plabel |= hh_ind->plabel;
1060 hh_dir->tls_type |= hh_ind->tls_type;
1061 hh_ind->tls_type = GOT_UNKNOWN;
1062 }
1063
1064 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1065 }
1066
1067 static int
1068 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1069 int r_type, int is_local ATTRIBUTE_UNUSED)
1070 {
1071 /* For now we don't support linker optimizations. */
1072 return r_type;
1073 }
1074
1075 /* Return a pointer to the local GOT, PLT and TLS reference counts
1076 for ABFD. Returns NULL if the storage allocation fails. */
1077
1078 static bfd_signed_vma *
1079 hppa32_elf_local_refcounts (bfd *abfd)
1080 {
1081 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1082 bfd_signed_vma *local_refcounts;
1083
1084 local_refcounts = elf_local_got_refcounts (abfd);
1085 if (local_refcounts == NULL)
1086 {
1087 bfd_size_type size;
1088
1089 /* Allocate space for local GOT and PLT reference
1090 counts. Done this way to save polluting elf_obj_tdata
1091 with another target specific pointer. */
1092 size = symtab_hdr->sh_info;
1093 size *= 2 * sizeof (bfd_signed_vma);
1094 /* Add in space to store the local GOT TLS types. */
1095 size += symtab_hdr->sh_info;
1096 local_refcounts = bfd_zalloc (abfd, size);
1097 if (local_refcounts == NULL)
1098 return NULL;
1099 elf_local_got_refcounts (abfd) = local_refcounts;
1100 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1101 symtab_hdr->sh_info);
1102 }
1103 return local_refcounts;
1104 }
1105
1106
1107 /* Look through the relocs for a section during the first phase, and
1108 calculate needed space in the global offset table, procedure linkage
1109 table, and dynamic reloc sections. At this point we haven't
1110 necessarily read all the input files. */
1111
1112 static bfd_boolean
1113 elf32_hppa_check_relocs (bfd *abfd,
1114 struct bfd_link_info *info,
1115 asection *sec,
1116 const Elf_Internal_Rela *relocs)
1117 {
1118 Elf_Internal_Shdr *symtab_hdr;
1119 struct elf_link_hash_entry **eh_syms;
1120 const Elf_Internal_Rela *rela;
1121 const Elf_Internal_Rela *rela_end;
1122 struct elf32_hppa_link_hash_table *htab;
1123 asection *sreloc;
1124
1125 if (bfd_link_relocatable (info))
1126 return TRUE;
1127
1128 htab = hppa_link_hash_table (info);
1129 if (htab == NULL)
1130 return FALSE;
1131 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1132 eh_syms = elf_sym_hashes (abfd);
1133 sreloc = NULL;
1134
1135 rela_end = relocs + sec->reloc_count;
1136 for (rela = relocs; rela < rela_end; rela++)
1137 {
1138 enum {
1139 NEED_GOT = 1,
1140 NEED_PLT = 2,
1141 NEED_DYNREL = 4,
1142 PLT_PLABEL = 8
1143 };
1144
1145 unsigned int r_symndx, r_type;
1146 struct elf32_hppa_link_hash_entry *hh;
1147 int need_entry = 0;
1148
1149 r_symndx = ELF32_R_SYM (rela->r_info);
1150
1151 if (r_symndx < symtab_hdr->sh_info)
1152 hh = NULL;
1153 else
1154 {
1155 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1156 while (hh->eh.root.type == bfd_link_hash_indirect
1157 || hh->eh.root.type == bfd_link_hash_warning)
1158 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1159 }
1160
1161 r_type = ELF32_R_TYPE (rela->r_info);
1162 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1163
1164 switch (r_type)
1165 {
1166 case R_PARISC_DLTIND14F:
1167 case R_PARISC_DLTIND14R:
1168 case R_PARISC_DLTIND21L:
1169 /* This symbol requires a global offset table entry. */
1170 need_entry = NEED_GOT;
1171 break;
1172
1173 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1174 case R_PARISC_PLABEL21L:
1175 case R_PARISC_PLABEL32:
1176 /* If the addend is non-zero, we break badly. */
1177 if (rela->r_addend != 0)
1178 abort ();
1179
1180 /* If we are creating a shared library, then we need to
1181 create a PLT entry for all PLABELs, because PLABELs with
1182 local symbols may be passed via a pointer to another
1183 object. Additionally, output a dynamic relocation
1184 pointing to the PLT entry.
1185
1186 For executables, the original 32-bit ABI allowed two
1187 different styles of PLABELs (function pointers): For
1188 global functions, the PLABEL word points into the .plt
1189 two bytes past a (function address, gp) pair, and for
1190 local functions the PLABEL points directly at the
1191 function. The magic +2 for the first type allows us to
1192 differentiate between the two. As you can imagine, this
1193 is a real pain when it comes to generating code to call
1194 functions indirectly or to compare function pointers.
1195 We avoid the mess by always pointing a PLABEL into the
1196 .plt, even for local functions. */
1197 need_entry = PLT_PLABEL | NEED_PLT;
1198 if (bfd_link_pic (info))
1199 need_entry |= NEED_DYNREL;
1200 break;
1201
1202 case R_PARISC_PCREL12F:
1203 htab->has_12bit_branch = 1;
1204 goto branch_common;
1205
1206 case R_PARISC_PCREL17C:
1207 case R_PARISC_PCREL17F:
1208 htab->has_17bit_branch = 1;
1209 goto branch_common;
1210
1211 case R_PARISC_PCREL22F:
1212 htab->has_22bit_branch = 1;
1213 branch_common:
1214 /* Function calls might need to go through the .plt, and
1215 might require long branch stubs. */
1216 if (hh == NULL)
1217 {
1218 /* We know local syms won't need a .plt entry, and if
1219 they need a long branch stub we can't guarantee that
1220 we can reach the stub. So just flag an error later
1221 if we're doing a shared link and find we need a long
1222 branch stub. */
1223 continue;
1224 }
1225 else
1226 {
1227 /* Global symbols will need a .plt entry if they remain
1228 global, and in most cases won't need a long branch
1229 stub. Unfortunately, we have to cater for the case
1230 where a symbol is forced local by versioning, or due
1231 to symbolic linking, and we lose the .plt entry. */
1232 need_entry = NEED_PLT;
1233 if (hh->eh.type == STT_PARISC_MILLI)
1234 need_entry = 0;
1235 }
1236 break;
1237
1238 case R_PARISC_SEGBASE: /* Used to set segment base. */
1239 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1240 case R_PARISC_PCREL14F: /* PC relative load/store. */
1241 case R_PARISC_PCREL14R:
1242 case R_PARISC_PCREL17R: /* External branches. */
1243 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1244 case R_PARISC_PCREL32:
1245 /* We don't need to propagate the relocation if linking a
1246 shared object since these are section relative. */
1247 continue;
1248
1249 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1250 case R_PARISC_DPREL14R:
1251 case R_PARISC_DPREL21L:
1252 if (bfd_link_pic (info))
1253 {
1254 _bfd_error_handler
1255 /* xgettext:c-format */
1256 (_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1257 abfd,
1258 elf_hppa_howto_table[r_type].name);
1259 bfd_set_error (bfd_error_bad_value);
1260 return FALSE;
1261 }
1262 /* Fall through. */
1263
1264 case R_PARISC_DIR17F: /* Used for external branches. */
1265 case R_PARISC_DIR17R:
1266 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1267 case R_PARISC_DIR14R:
1268 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1269 case R_PARISC_DIR32: /* .word relocs. */
1270 /* We may want to output a dynamic relocation later. */
1271 need_entry = NEED_DYNREL;
1272 break;
1273
1274 /* This relocation describes the C++ object vtable hierarchy.
1275 Reconstruct it for later use during GC. */
1276 case R_PARISC_GNU_VTINHERIT:
1277 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1278 return FALSE;
1279 continue;
1280
1281 /* This relocation describes which C++ vtable entries are actually
1282 used. Record for later use during GC. */
1283 case R_PARISC_GNU_VTENTRY:
1284 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1285 return FALSE;
1286 continue;
1287
1288 case R_PARISC_TLS_GD21L:
1289 case R_PARISC_TLS_GD14R:
1290 case R_PARISC_TLS_LDM21L:
1291 case R_PARISC_TLS_LDM14R:
1292 need_entry = NEED_GOT;
1293 break;
1294
1295 case R_PARISC_TLS_IE21L:
1296 case R_PARISC_TLS_IE14R:
1297 if (bfd_link_dll (info))
1298 info->flags |= DF_STATIC_TLS;
1299 need_entry = NEED_GOT;
1300 break;
1301
1302 default:
1303 continue;
1304 }
1305
1306 /* Now carry out our orders. */
1307 if (need_entry & NEED_GOT)
1308 {
1309 int tls_type = GOT_NORMAL;
1310
1311 switch (r_type)
1312 {
1313 default:
1314 break;
1315 case R_PARISC_TLS_GD21L:
1316 case R_PARISC_TLS_GD14R:
1317 tls_type = GOT_TLS_GD;
1318 break;
1319 case R_PARISC_TLS_LDM21L:
1320 case R_PARISC_TLS_LDM14R:
1321 tls_type = GOT_TLS_LDM;
1322 break;
1323 case R_PARISC_TLS_IE21L:
1324 case R_PARISC_TLS_IE14R:
1325 tls_type = GOT_TLS_IE;
1326 break;
1327 }
1328
1329 /* Allocate space for a GOT entry, as well as a dynamic
1330 relocation for this entry. */
1331 if (htab->etab.sgot == NULL)
1332 {
1333 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1334 return FALSE;
1335 }
1336
1337 if (hh != NULL)
1338 {
1339 if (tls_type == GOT_TLS_LDM)
1340 htab->tls_ldm_got.refcount += 1;
1341 else
1342 hh->eh.got.refcount += 1;
1343 hh->tls_type |= tls_type;
1344 }
1345 else
1346 {
1347 bfd_signed_vma *local_got_refcounts;
1348
1349 /* This is a global offset table entry for a local symbol. */
1350 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1351 if (local_got_refcounts == NULL)
1352 return FALSE;
1353 if (tls_type == GOT_TLS_LDM)
1354 htab->tls_ldm_got.refcount += 1;
1355 else
1356 local_got_refcounts[r_symndx] += 1;
1357
1358 hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type;
1359 }
1360 }
1361
1362 if (need_entry & NEED_PLT)
1363 {
1364 /* If we are creating a shared library, and this is a reloc
1365 against a weak symbol or a global symbol in a dynamic
1366 object, then we will be creating an import stub and a
1367 .plt entry for the symbol. Similarly, on a normal link
1368 to symbols defined in a dynamic object we'll need the
1369 import stub and a .plt entry. We don't know yet whether
1370 the symbol is defined or not, so make an entry anyway and
1371 clean up later in adjust_dynamic_symbol. */
1372 if ((sec->flags & SEC_ALLOC) != 0)
1373 {
1374 if (hh != NULL)
1375 {
1376 hh->eh.needs_plt = 1;
1377 hh->eh.plt.refcount += 1;
1378
1379 /* If this .plt entry is for a plabel, mark it so
1380 that adjust_dynamic_symbol will keep the entry
1381 even if it appears to be local. */
1382 if (need_entry & PLT_PLABEL)
1383 hh->plabel = 1;
1384 }
1385 else if (need_entry & PLT_PLABEL)
1386 {
1387 bfd_signed_vma *local_got_refcounts;
1388 bfd_signed_vma *local_plt_refcounts;
1389
1390 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1391 if (local_got_refcounts == NULL)
1392 return FALSE;
1393 local_plt_refcounts = (local_got_refcounts
1394 + symtab_hdr->sh_info);
1395 local_plt_refcounts[r_symndx] += 1;
1396 }
1397 }
1398 }
1399
1400 if ((need_entry & NEED_DYNREL) != 0
1401 && (sec->flags & SEC_ALLOC) != 0)
1402 {
1403 /* Flag this symbol as having a non-got, non-plt reference
1404 so that we generate copy relocs if it turns out to be
1405 dynamic. */
1406 if (hh != NULL)
1407 hh->eh.non_got_ref = 1;
1408
1409 /* If we are creating a shared library then we need to copy
1410 the reloc into the shared library. However, if we are
1411 linking with -Bsymbolic, we need only copy absolute
1412 relocs or relocs against symbols that are not defined in
1413 an object we are including in the link. PC- or DP- or
1414 DLT-relative relocs against any local sym or global sym
1415 with DEF_REGULAR set, can be discarded. At this point we
1416 have not seen all the input files, so it is possible that
1417 DEF_REGULAR is not set now but will be set later (it is
1418 never cleared). We account for that possibility below by
1419 storing information in the dyn_relocs field of the
1420 hash table entry.
1421
1422 A similar situation to the -Bsymbolic case occurs when
1423 creating shared libraries and symbol visibility changes
1424 render the symbol local.
1425
1426 As it turns out, all the relocs we will be creating here
1427 are absolute, so we cannot remove them on -Bsymbolic
1428 links or visibility changes anyway. A STUB_REL reloc
1429 is absolute too, as in that case it is the reloc in the
1430 stub we will be creating, rather than copying the PCREL
1431 reloc in the branch.
1432
1433 If on the other hand, we are creating an executable, we
1434 may need to keep relocations for symbols satisfied by a
1435 dynamic library if we manage to avoid copy relocs for the
1436 symbol. */
1437 if ((bfd_link_pic (info)
1438 && (IS_ABSOLUTE_RELOC (r_type)
1439 || (hh != NULL
1440 && (!SYMBOLIC_BIND (info, &hh->eh)
1441 || hh->eh.root.type == bfd_link_hash_defweak
1442 || !hh->eh.def_regular))))
1443 || (ELIMINATE_COPY_RELOCS
1444 && !bfd_link_pic (info)
1445 && hh != NULL
1446 && (hh->eh.root.type == bfd_link_hash_defweak
1447 || !hh->eh.def_regular)))
1448 {
1449 struct elf_dyn_relocs *hdh_p;
1450 struct elf_dyn_relocs **hdh_head;
1451
1452 /* Create a reloc section in dynobj and make room for
1453 this reloc. */
1454 if (sreloc == NULL)
1455 {
1456 sreloc = _bfd_elf_make_dynamic_reloc_section
1457 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1458
1459 if (sreloc == NULL)
1460 {
1461 bfd_set_error (bfd_error_bad_value);
1462 return FALSE;
1463 }
1464 }
1465
1466 /* If this is a global symbol, we count the number of
1467 relocations we need for this symbol. */
1468 if (hh != NULL)
1469 {
1470 hdh_head = &hh->dyn_relocs;
1471 }
1472 else
1473 {
1474 /* Track dynamic relocs needed for local syms too.
1475 We really need local syms available to do this
1476 easily. Oh well. */
1477 asection *sr;
1478 void *vpp;
1479 Elf_Internal_Sym *isym;
1480
1481 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1482 abfd, r_symndx);
1483 if (isym == NULL)
1484 return FALSE;
1485
1486 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1487 if (sr == NULL)
1488 sr = sec;
1489
1490 vpp = &elf_section_data (sr)->local_dynrel;
1491 hdh_head = (struct elf_dyn_relocs **) vpp;
1492 }
1493
1494 hdh_p = *hdh_head;
1495 if (hdh_p == NULL || hdh_p->sec != sec)
1496 {
1497 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1498 if (hdh_p == NULL)
1499 return FALSE;
1500 hdh_p->next = *hdh_head;
1501 *hdh_head = hdh_p;
1502 hdh_p->sec = sec;
1503 hdh_p->count = 0;
1504 #if RELATIVE_DYNRELOCS
1505 hdh_p->pc_count = 0;
1506 #endif
1507 }
1508
1509 hdh_p->count += 1;
1510 #if RELATIVE_DYNRELOCS
1511 if (!IS_ABSOLUTE_RELOC (rtype))
1512 hdh_p->pc_count += 1;
1513 #endif
1514 }
1515 }
1516 }
1517
1518 return TRUE;
1519 }
1520
1521 /* Return the section that should be marked against garbage collection
1522 for a given relocation. */
1523
1524 static asection *
1525 elf32_hppa_gc_mark_hook (asection *sec,
1526 struct bfd_link_info *info,
1527 Elf_Internal_Rela *rela,
1528 struct elf_link_hash_entry *hh,
1529 Elf_Internal_Sym *sym)
1530 {
1531 if (hh != NULL)
1532 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1533 {
1534 case R_PARISC_GNU_VTINHERIT:
1535 case R_PARISC_GNU_VTENTRY:
1536 return NULL;
1537 }
1538
1539 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1540 }
1541
1542 /* Support for core dump NOTE sections. */
1543
1544 static bfd_boolean
1545 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1546 {
1547 int offset;
1548 size_t size;
1549
1550 switch (note->descsz)
1551 {
1552 default:
1553 return FALSE;
1554
1555 case 396: /* Linux/hppa */
1556 /* pr_cursig */
1557 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1558
1559 /* pr_pid */
1560 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1561
1562 /* pr_reg */
1563 offset = 72;
1564 size = 320;
1565
1566 break;
1567 }
1568
1569 /* Make a ".reg/999" section. */
1570 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1571 size, note->descpos + offset);
1572 }
1573
1574 static bfd_boolean
1575 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1576 {
1577 switch (note->descsz)
1578 {
1579 default:
1580 return FALSE;
1581
1582 case 124: /* Linux/hppa elf_prpsinfo. */
1583 elf_tdata (abfd)->core->program
1584 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1585 elf_tdata (abfd)->core->command
1586 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1587 }
1588
1589 /* Note that for some reason, a spurious space is tacked
1590 onto the end of the args in some (at least one anyway)
1591 implementations, so strip it off if it exists. */
1592 {
1593 char *command = elf_tdata (abfd)->core->command;
1594 int n = strlen (command);
1595
1596 if (0 < n && command[n - 1] == ' ')
1597 command[n - 1] = '\0';
1598 }
1599
1600 return TRUE;
1601 }
1602
1603 /* Our own version of hide_symbol, so that we can keep plt entries for
1604 plabels. */
1605
1606 static void
1607 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1608 struct elf_link_hash_entry *eh,
1609 bfd_boolean force_local)
1610 {
1611 if (force_local)
1612 {
1613 eh->forced_local = 1;
1614 if (eh->dynindx != -1)
1615 {
1616 eh->dynindx = -1;
1617 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1618 eh->dynstr_index);
1619 }
1620
1621 /* PR 16082: Remove version information from hidden symbol. */
1622 eh->verinfo.verdef = NULL;
1623 eh->verinfo.vertree = NULL;
1624 }
1625
1626 /* STT_GNU_IFUNC symbol must go through PLT. */
1627 if (! hppa_elf_hash_entry (eh)->plabel
1628 && eh->type != STT_GNU_IFUNC)
1629 {
1630 eh->needs_plt = 0;
1631 eh->plt = elf_hash_table (info)->init_plt_offset;
1632 }
1633 }
1634
1635 /* Find any dynamic relocs that apply to read-only sections. */
1636
1637 static asection *
1638 readonly_dynrelocs (struct elf_link_hash_entry *eh)
1639 {
1640 struct elf32_hppa_link_hash_entry *hh;
1641 struct elf_dyn_relocs *hdh_p;
1642
1643 hh = hppa_elf_hash_entry (eh);
1644 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
1645 {
1646 asection *sec = hdh_p->sec->output_section;
1647
1648 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1649 return hdh_p->sec;
1650 }
1651 return NULL;
1652 }
1653
1654 /* Return true if we have dynamic relocs against H or any of its weak
1655 aliases, that apply to read-only sections. Cannot be used after
1656 size_dynamic_sections. */
1657
1658 static bfd_boolean
1659 alias_readonly_dynrelocs (struct elf_link_hash_entry *eh)
1660 {
1661 struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1662 do
1663 {
1664 if (readonly_dynrelocs (&hh->eh))
1665 return TRUE;
1666 hh = hppa_elf_hash_entry (hh->eh.u.alias);
1667 } while (hh != NULL && &hh->eh != eh);
1668
1669 return FALSE;
1670 }
1671
1672 /* Adjust a symbol defined by a dynamic object and referenced by a
1673 regular object. The current definition is in some section of the
1674 dynamic object, but we're not including those sections. We have to
1675 change the definition to something the rest of the link can
1676 understand. */
1677
1678 static bfd_boolean
1679 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1680 struct elf_link_hash_entry *eh)
1681 {
1682 struct elf32_hppa_link_hash_table *htab;
1683 asection *sec, *srel;
1684
1685 /* If this is a function, put it in the procedure linkage table. We
1686 will fill in the contents of the procedure linkage table later. */
1687 if (eh->type == STT_FUNC
1688 || eh->needs_plt)
1689 {
1690 bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
1691 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
1692 /* Discard dyn_relocs when non-pic if we've decided that a
1693 function symbol is local. */
1694 if (!bfd_link_pic (info) && local)
1695 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1696
1697 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1698 The refcounts are not reliable when it has been hidden since
1699 hide_symbol can be called before the plabel flag is set. */
1700 if (hppa_elf_hash_entry (eh)->plabel)
1701 eh->plt.refcount = 1;
1702
1703 /* Note that unlike some other backends, the refcount is not
1704 incremented for a non-call (and non-plabel) function reference. */
1705 else if (eh->plt.refcount <= 0
1706 || local)
1707 {
1708 /* The .plt entry is not needed when:
1709 a) Garbage collection has removed all references to the
1710 symbol, or
1711 b) We know for certain the symbol is defined in this
1712 object, and it's not a weak definition, nor is the symbol
1713 used by a plabel relocation. Either this object is the
1714 application or we are doing a shared symbolic link. */
1715 eh->plt.offset = (bfd_vma) -1;
1716 eh->needs_plt = 0;
1717 }
1718
1719 /* Unlike other targets, elf32-hppa.c does not define a function
1720 symbol in a non-pic executable on PLT stub code, so we don't
1721 have a local definition in that case. ie. dyn_relocs can't
1722 be discarded. */
1723
1724 /* Function symbols can't have copy relocs. */
1725 return TRUE;
1726 }
1727 else
1728 eh->plt.offset = (bfd_vma) -1;
1729
1730 htab = hppa_link_hash_table (info);
1731 if (htab == NULL)
1732 return FALSE;
1733
1734 /* If this is a weak symbol, and there is a real definition, the
1735 processor independent code will have arranged for us to see the
1736 real definition first, and we can just use the same value. */
1737 if (eh->is_weakalias)
1738 {
1739 struct elf_link_hash_entry *def = weakdef (eh);
1740 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1741 eh->root.u.def.section = def->root.u.def.section;
1742 eh->root.u.def.value = def->root.u.def.value;
1743 if (def->root.u.def.section == htab->etab.sdynbss
1744 || def->root.u.def.section == htab->etab.sdynrelro)
1745 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1746 return TRUE;
1747 }
1748
1749 /* This is a reference to a symbol defined by a dynamic object which
1750 is not a function. */
1751
1752 /* If we are creating a shared library, we must presume that the
1753 only references to the symbol are via the global offset table.
1754 For such cases we need not do anything here; the relocations will
1755 be handled correctly by relocate_section. */
1756 if (bfd_link_pic (info))
1757 return TRUE;
1758
1759 /* If there are no references to this symbol that do not use the
1760 GOT, we don't need to generate a copy reloc. */
1761 if (!eh->non_got_ref)
1762 return TRUE;
1763
1764 /* If -z nocopyreloc was given, we won't generate them either. */
1765 if (info->nocopyreloc)
1766 return TRUE;
1767
1768 /* If we don't find any dynamic relocs in read-only sections, then
1769 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1770 if (ELIMINATE_COPY_RELOCS
1771 && !alias_readonly_dynrelocs (eh))
1772 return TRUE;
1773
1774 /* We must allocate the symbol in our .dynbss section, which will
1775 become part of the .bss section of the executable. There will be
1776 an entry for this symbol in the .dynsym section. The dynamic
1777 object will contain position independent code, so all references
1778 from the dynamic object to this symbol will go through the global
1779 offset table. The dynamic linker will use the .dynsym entry to
1780 determine the address it must put in the global offset table, so
1781 both the dynamic object and the regular object will refer to the
1782 same memory location for the variable. */
1783 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1784 {
1785 sec = htab->etab.sdynrelro;
1786 srel = htab->etab.sreldynrelro;
1787 }
1788 else
1789 {
1790 sec = htab->etab.sdynbss;
1791 srel = htab->etab.srelbss;
1792 }
1793 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1794 {
1795 /* We must generate a COPY reloc to tell the dynamic linker to
1796 copy the initial value out of the dynamic object and into the
1797 runtime process image. */
1798 srel->size += sizeof (Elf32_External_Rela);
1799 eh->needs_copy = 1;
1800 }
1801
1802 /* We no longer want dyn_relocs. */
1803 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1804 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1805 }
1806
1807 /* If EH is undefined, make it dynamic if that makes sense. */
1808
1809 static bfd_boolean
1810 ensure_undef_dynamic (struct bfd_link_info *info,
1811 struct elf_link_hash_entry *eh)
1812 {
1813 struct elf_link_hash_table *htab = elf_hash_table (info);
1814
1815 if (htab->dynamic_sections_created
1816 && (eh->root.type == bfd_link_hash_undefweak
1817 || eh->root.type == bfd_link_hash_undefined)
1818 && eh->dynindx == -1
1819 && !eh->forced_local
1820 && eh->type != STT_PARISC_MILLI
1821 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1822 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1823 return bfd_elf_link_record_dynamic_symbol (info, eh);
1824 return TRUE;
1825 }
1826
1827 /* Allocate space in the .plt for entries that won't have relocations.
1828 ie. plabel entries. */
1829
1830 static bfd_boolean
1831 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1832 {
1833 struct bfd_link_info *info;
1834 struct elf32_hppa_link_hash_table *htab;
1835 struct elf32_hppa_link_hash_entry *hh;
1836 asection *sec;
1837
1838 if (eh->root.type == bfd_link_hash_indirect)
1839 return TRUE;
1840
1841 info = (struct bfd_link_info *) inf;
1842 hh = hppa_elf_hash_entry (eh);
1843 htab = hppa_link_hash_table (info);
1844 if (htab == NULL)
1845 return FALSE;
1846
1847 if (htab->etab.dynamic_sections_created
1848 && eh->plt.refcount > 0)
1849 {
1850 if (!ensure_undef_dynamic (info, eh))
1851 return FALSE;
1852
1853 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1854 {
1855 /* Allocate these later. From this point on, h->plabel
1856 means that the plt entry is only used by a plabel.
1857 We'll be using a normal plt entry for this symbol, so
1858 clear the plabel indicator. */
1859
1860 hh->plabel = 0;
1861 }
1862 else if (hh->plabel)
1863 {
1864 /* Make an entry in the .plt section for plabel references
1865 that won't have a .plt entry for other reasons. */
1866 sec = htab->etab.splt;
1867 eh->plt.offset = sec->size;
1868 sec->size += PLT_ENTRY_SIZE;
1869 if (bfd_link_pic (info))
1870 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1871 }
1872 else
1873 {
1874 /* No .plt entry needed. */
1875 eh->plt.offset = (bfd_vma) -1;
1876 eh->needs_plt = 0;
1877 }
1878 }
1879 else
1880 {
1881 eh->plt.offset = (bfd_vma) -1;
1882 eh->needs_plt = 0;
1883 }
1884
1885 return TRUE;
1886 }
1887
1888 /* Calculate size of GOT entries for symbol given its TLS_TYPE. */
1889
1890 static inline unsigned int
1891 got_entries_needed (int tls_type)
1892 {
1893 unsigned int need = 0;
1894
1895 if ((tls_type & GOT_NORMAL) != 0)
1896 need += GOT_ENTRY_SIZE;
1897 if ((tls_type & GOT_TLS_GD) != 0)
1898 need += GOT_ENTRY_SIZE * 2;
1899 if ((tls_type & GOT_TLS_IE) != 0)
1900 need += GOT_ENTRY_SIZE;
1901 return need;
1902 }
1903
1904 /* Calculate size of relocs needed for symbol given its TLS_TYPE and
1905 NEEDed GOT entries. TPREL_KNOWN says a TPREL offset can be
1906 calculated at link time. DTPREL_KNOWN says the same for a DTPREL
1907 offset. */
1908
1909 static inline unsigned int
1910 got_relocs_needed (int tls_type, unsigned int need,
1911 bfd_boolean dtprel_known, bfd_boolean tprel_known)
1912 {
1913 /* All the entries we allocated need relocs.
1914 Except for GD and IE with local symbols. */
1915 if ((tls_type & GOT_TLS_GD) != 0 && dtprel_known)
1916 need -= GOT_ENTRY_SIZE;
1917 if ((tls_type & GOT_TLS_IE) != 0 && tprel_known)
1918 need -= GOT_ENTRY_SIZE;
1919 return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE;
1920 }
1921
1922 /* Allocate space in .plt, .got and associated reloc sections for
1923 global syms. */
1924
1925 static bfd_boolean
1926 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1927 {
1928 struct bfd_link_info *info;
1929 struct elf32_hppa_link_hash_table *htab;
1930 asection *sec;
1931 struct elf32_hppa_link_hash_entry *hh;
1932 struct elf_dyn_relocs *hdh_p;
1933
1934 if (eh->root.type == bfd_link_hash_indirect)
1935 return TRUE;
1936
1937 info = inf;
1938 htab = hppa_link_hash_table (info);
1939 if (htab == NULL)
1940 return FALSE;
1941
1942 hh = hppa_elf_hash_entry (eh);
1943
1944 if (htab->etab.dynamic_sections_created
1945 && eh->plt.offset != (bfd_vma) -1
1946 && !hh->plabel
1947 && eh->plt.refcount > 0)
1948 {
1949 /* Make an entry in the .plt section. */
1950 sec = htab->etab.splt;
1951 eh->plt.offset = sec->size;
1952 sec->size += PLT_ENTRY_SIZE;
1953
1954 /* We also need to make an entry in the .rela.plt section. */
1955 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1956 htab->need_plt_stub = 1;
1957 }
1958
1959 if (eh->got.refcount > 0)
1960 {
1961 unsigned int need;
1962
1963 if (!ensure_undef_dynamic (info, eh))
1964 return FALSE;
1965
1966 sec = htab->etab.sgot;
1967 eh->got.offset = sec->size;
1968 need = got_entries_needed (hh->tls_type);
1969 sec->size += need;
1970 if (htab->etab.dynamic_sections_created
1971 && (bfd_link_dll (info)
1972 || (bfd_link_pic (info) && (hh->tls_type & GOT_NORMAL) != 0)
1973 || (eh->dynindx != -1
1974 && !SYMBOL_REFERENCES_LOCAL (info, eh)))
1975 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1976 {
1977 bfd_boolean local = SYMBOL_REFERENCES_LOCAL (info, eh);
1978 htab->etab.srelgot->size
1979 += got_relocs_needed (hh->tls_type, need, local,
1980 local && bfd_link_executable (info));
1981 }
1982 }
1983 else
1984 eh->got.offset = (bfd_vma) -1;
1985
1986 /* If no dynamic sections we can't have dynamic relocs. */
1987 if (!htab->etab.dynamic_sections_created)
1988 hh->dyn_relocs = NULL;
1989
1990 /* Discard relocs on undefined syms with non-default visibility. */
1991 else if ((eh->root.type == bfd_link_hash_undefined
1992 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
1993 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1994 hh->dyn_relocs = NULL;
1995
1996 if (hh->dyn_relocs == NULL)
1997 return TRUE;
1998
1999 /* If this is a -Bsymbolic shared link, then we need to discard all
2000 space allocated for dynamic pc-relative relocs against symbols
2001 defined in a regular object. For the normal shared case, discard
2002 space for relocs that have become local due to symbol visibility
2003 changes. */
2004 if (bfd_link_pic (info))
2005 {
2006 #if RELATIVE_DYNRELOCS
2007 if (SYMBOL_CALLS_LOCAL (info, eh))
2008 {
2009 struct elf_dyn_relocs **hdh_pp;
2010
2011 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2012 {
2013 hdh_p->count -= hdh_p->pc_count;
2014 hdh_p->pc_count = 0;
2015 if (hdh_p->count == 0)
2016 *hdh_pp = hdh_p->next;
2017 else
2018 hdh_pp = &hdh_p->next;
2019 }
2020 }
2021 #endif
2022
2023 if (hh->dyn_relocs != NULL)
2024 {
2025 if (!ensure_undef_dynamic (info, eh))
2026 return FALSE;
2027 }
2028 }
2029 else if (ELIMINATE_COPY_RELOCS)
2030 {
2031 /* For the non-shared case, discard space for relocs against
2032 symbols which turn out to need copy relocs or are not
2033 dynamic. */
2034
2035 if (eh->dynamic_adjusted
2036 && !eh->def_regular
2037 && !ELF_COMMON_DEF_P (eh))
2038 {
2039 if (!ensure_undef_dynamic (info, eh))
2040 return FALSE;
2041
2042 if (eh->dynindx == -1)
2043 hh->dyn_relocs = NULL;
2044 }
2045 else
2046 hh->dyn_relocs = NULL;
2047 }
2048
2049 /* Finally, allocate space. */
2050 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
2051 {
2052 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2053 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2054 }
2055
2056 return TRUE;
2057 }
2058
2059 /* This function is called via elf_link_hash_traverse to force
2060 millicode symbols local so they do not end up as globals in the
2061 dynamic symbol table. We ought to be able to do this in
2062 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2063 for all dynamic symbols. Arguably, this is a bug in
2064 elf_adjust_dynamic_symbol. */
2065
2066 static bfd_boolean
2067 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2068 struct bfd_link_info *info)
2069 {
2070 if (eh->type == STT_PARISC_MILLI
2071 && !eh->forced_local)
2072 {
2073 elf32_hppa_hide_symbol (info, eh, TRUE);
2074 }
2075 return TRUE;
2076 }
2077
2078 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
2079 read-only sections. */
2080
2081 static bfd_boolean
2082 maybe_set_textrel (struct elf_link_hash_entry *eh, void *inf)
2083 {
2084 asection *sec;
2085
2086 if (eh->root.type == bfd_link_hash_indirect)
2087 return TRUE;
2088
2089 sec = readonly_dynrelocs (eh);
2090 if (sec != NULL)
2091 {
2092 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2093
2094 info->flags |= DF_TEXTREL;
2095 info->callbacks->minfo
2096 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
2097 sec->owner, eh->root.root.string, sec);
2098
2099 /* Not an error, just cut short the traversal. */
2100 return FALSE;
2101 }
2102 return TRUE;
2103 }
2104
2105 /* Set the sizes of the dynamic sections. */
2106
2107 static bfd_boolean
2108 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2109 struct bfd_link_info *info)
2110 {
2111 struct elf32_hppa_link_hash_table *htab;
2112 bfd *dynobj;
2113 bfd *ibfd;
2114 asection *sec;
2115 bfd_boolean relocs;
2116
2117 htab = hppa_link_hash_table (info);
2118 if (htab == NULL)
2119 return FALSE;
2120
2121 dynobj = htab->etab.dynobj;
2122 if (dynobj == NULL)
2123 abort ();
2124
2125 if (htab->etab.dynamic_sections_created)
2126 {
2127 /* Set the contents of the .interp section to the interpreter. */
2128 if (bfd_link_executable (info) && !info->nointerp)
2129 {
2130 sec = bfd_get_linker_section (dynobj, ".interp");
2131 if (sec == NULL)
2132 abort ();
2133 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2134 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2135 }
2136
2137 /* Force millicode symbols local. */
2138 elf_link_hash_traverse (&htab->etab,
2139 clobber_millicode_symbols,
2140 info);
2141 }
2142
2143 /* Set up .got and .plt offsets for local syms, and space for local
2144 dynamic relocs. */
2145 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2146 {
2147 bfd_signed_vma *local_got;
2148 bfd_signed_vma *end_local_got;
2149 bfd_signed_vma *local_plt;
2150 bfd_signed_vma *end_local_plt;
2151 bfd_size_type locsymcount;
2152 Elf_Internal_Shdr *symtab_hdr;
2153 asection *srel;
2154 char *local_tls_type;
2155
2156 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2157 continue;
2158
2159 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2160 {
2161 struct elf_dyn_relocs *hdh_p;
2162
2163 for (hdh_p = ((struct elf_dyn_relocs *)
2164 elf_section_data (sec)->local_dynrel);
2165 hdh_p != NULL;
2166 hdh_p = hdh_p->next)
2167 {
2168 if (!bfd_is_abs_section (hdh_p->sec)
2169 && bfd_is_abs_section (hdh_p->sec->output_section))
2170 {
2171 /* Input section has been discarded, either because
2172 it is a copy of a linkonce section or due to
2173 linker script /DISCARD/, so we'll be discarding
2174 the relocs too. */
2175 }
2176 else if (hdh_p->count != 0)
2177 {
2178 srel = elf_section_data (hdh_p->sec)->sreloc;
2179 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2180 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2181 info->flags |= DF_TEXTREL;
2182 }
2183 }
2184 }
2185
2186 local_got = elf_local_got_refcounts (ibfd);
2187 if (!local_got)
2188 continue;
2189
2190 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2191 locsymcount = symtab_hdr->sh_info;
2192 end_local_got = local_got + locsymcount;
2193 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2194 sec = htab->etab.sgot;
2195 srel = htab->etab.srelgot;
2196 for (; local_got < end_local_got; ++local_got)
2197 {
2198 if (*local_got > 0)
2199 {
2200 unsigned int need;
2201
2202 *local_got = sec->size;
2203 need = got_entries_needed (*local_tls_type);
2204 sec->size += need;
2205 if (bfd_link_dll (info)
2206 || (bfd_link_pic (info)
2207 && (*local_tls_type & GOT_NORMAL) != 0))
2208 htab->etab.srelgot->size
2209 += got_relocs_needed (*local_tls_type, need, TRUE,
2210 bfd_link_executable (info));
2211 }
2212 else
2213 *local_got = (bfd_vma) -1;
2214
2215 ++local_tls_type;
2216 }
2217
2218 local_plt = end_local_got;
2219 end_local_plt = local_plt + locsymcount;
2220 if (! htab->etab.dynamic_sections_created)
2221 {
2222 /* Won't be used, but be safe. */
2223 for (; local_plt < end_local_plt; ++local_plt)
2224 *local_plt = (bfd_vma) -1;
2225 }
2226 else
2227 {
2228 sec = htab->etab.splt;
2229 srel = htab->etab.srelplt;
2230 for (; local_plt < end_local_plt; ++local_plt)
2231 {
2232 if (*local_plt > 0)
2233 {
2234 *local_plt = sec->size;
2235 sec->size += PLT_ENTRY_SIZE;
2236 if (bfd_link_pic (info))
2237 srel->size += sizeof (Elf32_External_Rela);
2238 }
2239 else
2240 *local_plt = (bfd_vma) -1;
2241 }
2242 }
2243 }
2244
2245 if (htab->tls_ldm_got.refcount > 0)
2246 {
2247 /* Allocate 2 got entries and 1 dynamic reloc for
2248 R_PARISC_TLS_DTPMOD32 relocs. */
2249 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2250 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2251 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2252 }
2253 else
2254 htab->tls_ldm_got.offset = -1;
2255
2256 /* Do all the .plt entries without relocs first. The dynamic linker
2257 uses the last .plt reloc to find the end of the .plt (and hence
2258 the start of the .got) for lazy linking. */
2259 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2260
2261 /* Allocate global sym .plt and .got entries, and space for global
2262 sym dynamic relocs. */
2263 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2264
2265 /* The check_relocs and adjust_dynamic_symbol entry points have
2266 determined the sizes of the various dynamic sections. Allocate
2267 memory for them. */
2268 relocs = FALSE;
2269 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2270 {
2271 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2272 continue;
2273
2274 if (sec == htab->etab.splt)
2275 {
2276 if (htab->need_plt_stub)
2277 {
2278 /* Make space for the plt stub at the end of the .plt
2279 section. We want this stub right at the end, up
2280 against the .got section. */
2281 int gotalign = bfd_section_alignment (htab->etab.sgot);
2282 int pltalign = bfd_section_alignment (sec);
2283 bfd_size_type mask;
2284
2285 if (gotalign > pltalign)
2286 bfd_set_section_alignment (sec, gotalign);
2287 mask = ((bfd_size_type) 1 << gotalign) - 1;
2288 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2289 }
2290 }
2291 else if (sec == htab->etab.sgot
2292 || sec == htab->etab.sdynbss
2293 || sec == htab->etab.sdynrelro)
2294 ;
2295 else if (CONST_STRNEQ (bfd_section_name (sec), ".rela"))
2296 {
2297 if (sec->size != 0)
2298 {
2299 /* Remember whether there are any reloc sections other
2300 than .rela.plt. */
2301 if (sec != htab->etab.srelplt)
2302 relocs = TRUE;
2303
2304 /* We use the reloc_count field as a counter if we need
2305 to copy relocs into the output file. */
2306 sec->reloc_count = 0;
2307 }
2308 }
2309 else
2310 {
2311 /* It's not one of our sections, so don't allocate space. */
2312 continue;
2313 }
2314
2315 if (sec->size == 0)
2316 {
2317 /* If we don't need this section, strip it from the
2318 output file. This is mostly to handle .rela.bss and
2319 .rela.plt. We must create both sections in
2320 create_dynamic_sections, because they must be created
2321 before the linker maps input sections to output
2322 sections. The linker does that before
2323 adjust_dynamic_symbol is called, and it is that
2324 function which decides whether anything needs to go
2325 into these sections. */
2326 sec->flags |= SEC_EXCLUDE;
2327 continue;
2328 }
2329
2330 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2331 continue;
2332
2333 /* Allocate memory for the section contents. Zero it, because
2334 we may not fill in all the reloc sections. */
2335 sec->contents = bfd_zalloc (dynobj, sec->size);
2336 if (sec->contents == NULL)
2337 return FALSE;
2338 }
2339
2340 if (htab->etab.dynamic_sections_created)
2341 {
2342 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2343 actually has nothing to do with the PLT, it is how we
2344 communicate the LTP value of a load module to the dynamic
2345 linker. */
2346 #define add_dynamic_entry(TAG, VAL) \
2347 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2348
2349 if (!add_dynamic_entry (DT_PLTGOT, 0))
2350 return FALSE;
2351
2352 /* Add some entries to the .dynamic section. We fill in the
2353 values later, in elf32_hppa_finish_dynamic_sections, but we
2354 must add the entries now so that we get the correct size for
2355 the .dynamic section. The DT_DEBUG entry is filled in by the
2356 dynamic linker and used by the debugger. */
2357 if (bfd_link_executable (info))
2358 {
2359 if (!add_dynamic_entry (DT_DEBUG, 0))
2360 return FALSE;
2361 }
2362
2363 if (htab->etab.srelplt->size != 0)
2364 {
2365 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2366 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2367 || !add_dynamic_entry (DT_JMPREL, 0))
2368 return FALSE;
2369 }
2370
2371 if (relocs)
2372 {
2373 if (!add_dynamic_entry (DT_RELA, 0)
2374 || !add_dynamic_entry (DT_RELASZ, 0)
2375 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2376 return FALSE;
2377
2378 /* If any dynamic relocs apply to a read-only section,
2379 then we need a DT_TEXTREL entry. */
2380 if ((info->flags & DF_TEXTREL) == 0)
2381 elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info);
2382
2383 if ((info->flags & DF_TEXTREL) != 0)
2384 {
2385 if (!add_dynamic_entry (DT_TEXTREL, 0))
2386 return FALSE;
2387 }
2388 }
2389 }
2390 #undef add_dynamic_entry
2391
2392 return TRUE;
2393 }
2394
2395 /* External entry points for sizing and building linker stubs. */
2396
2397 /* Set up various things so that we can make a list of input sections
2398 for each output section included in the link. Returns -1 on error,
2399 0 when no stubs will be needed, and 1 on success. */
2400
2401 int
2402 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2403 {
2404 bfd *input_bfd;
2405 unsigned int bfd_count;
2406 unsigned int top_id, top_index;
2407 asection *section;
2408 asection **input_list, **list;
2409 bfd_size_type amt;
2410 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2411
2412 if (htab == NULL)
2413 return -1;
2414
2415 /* Count the number of input BFDs and find the top input section id. */
2416 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2417 input_bfd != NULL;
2418 input_bfd = input_bfd->link.next)
2419 {
2420 bfd_count += 1;
2421 for (section = input_bfd->sections;
2422 section != NULL;
2423 section = section->next)
2424 {
2425 if (top_id < section->id)
2426 top_id = section->id;
2427 }
2428 }
2429 htab->bfd_count = bfd_count;
2430
2431 amt = sizeof (struct map_stub) * (top_id + 1);
2432 htab->stub_group = bfd_zmalloc (amt);
2433 if (htab->stub_group == NULL)
2434 return -1;
2435
2436 /* We can't use output_bfd->section_count here to find the top output
2437 section index as some sections may have been removed, and
2438 strip_excluded_output_sections doesn't renumber the indices. */
2439 for (section = output_bfd->sections, top_index = 0;
2440 section != NULL;
2441 section = section->next)
2442 {
2443 if (top_index < section->index)
2444 top_index = section->index;
2445 }
2446
2447 htab->top_index = top_index;
2448 amt = sizeof (asection *) * (top_index + 1);
2449 input_list = bfd_malloc (amt);
2450 htab->input_list = input_list;
2451 if (input_list == NULL)
2452 return -1;
2453
2454 /* For sections we aren't interested in, mark their entries with a
2455 value we can check later. */
2456 list = input_list + top_index;
2457 do
2458 *list = bfd_abs_section_ptr;
2459 while (list-- != input_list);
2460
2461 for (section = output_bfd->sections;
2462 section != NULL;
2463 section = section->next)
2464 {
2465 if ((section->flags & SEC_CODE) != 0)
2466 input_list[section->index] = NULL;
2467 }
2468
2469 return 1;
2470 }
2471
2472 /* The linker repeatedly calls this function for each input section,
2473 in the order that input sections are linked into output sections.
2474 Build lists of input sections to determine groupings between which
2475 we may insert linker stubs. */
2476
2477 void
2478 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2479 {
2480 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2481
2482 if (htab == NULL)
2483 return;
2484
2485 if (isec->output_section->index <= htab->top_index)
2486 {
2487 asection **list = htab->input_list + isec->output_section->index;
2488 if (*list != bfd_abs_section_ptr)
2489 {
2490 /* Steal the link_sec pointer for our list. */
2491 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2492 /* This happens to make the list in reverse order,
2493 which is what we want. */
2494 PREV_SEC (isec) = *list;
2495 *list = isec;
2496 }
2497 }
2498 }
2499
2500 /* See whether we can group stub sections together. Grouping stub
2501 sections may result in fewer stubs. More importantly, we need to
2502 put all .init* and .fini* stubs at the beginning of the .init or
2503 .fini output sections respectively, because glibc splits the
2504 _init and _fini functions into multiple parts. Putting a stub in
2505 the middle of a function is not a good idea. */
2506
2507 static void
2508 group_sections (struct elf32_hppa_link_hash_table *htab,
2509 bfd_size_type stub_group_size,
2510 bfd_boolean stubs_always_before_branch)
2511 {
2512 asection **list = htab->input_list + htab->top_index;
2513 do
2514 {
2515 asection *tail = *list;
2516 if (tail == bfd_abs_section_ptr)
2517 continue;
2518 while (tail != NULL)
2519 {
2520 asection *curr;
2521 asection *prev;
2522 bfd_size_type total;
2523 bfd_boolean big_sec;
2524
2525 curr = tail;
2526 total = tail->size;
2527 big_sec = total >= stub_group_size;
2528
2529 while ((prev = PREV_SEC (curr)) != NULL
2530 && ((total += curr->output_offset - prev->output_offset)
2531 < stub_group_size))
2532 curr = prev;
2533
2534 /* OK, the size from the start of CURR to the end is less
2535 than 240000 bytes and thus can be handled by one stub
2536 section. (or the tail section is itself larger than
2537 240000 bytes, in which case we may be toast.)
2538 We should really be keeping track of the total size of
2539 stubs added here, as stubs contribute to the final output
2540 section size. That's a little tricky, and this way will
2541 only break if stubs added total more than 22144 bytes, or
2542 2768 long branch stubs. It seems unlikely for more than
2543 2768 different functions to be called, especially from
2544 code only 240000 bytes long. This limit used to be
2545 250000, but c++ code tends to generate lots of little
2546 functions, and sometimes violated the assumption. */
2547 do
2548 {
2549 prev = PREV_SEC (tail);
2550 /* Set up this stub group. */
2551 htab->stub_group[tail->id].link_sec = curr;
2552 }
2553 while (tail != curr && (tail = prev) != NULL);
2554
2555 /* But wait, there's more! Input sections up to 240000
2556 bytes before the stub section can be handled by it too.
2557 Don't do this if we have a really large section after the
2558 stubs, as adding more stubs increases the chance that
2559 branches may not reach into the stub section. */
2560 if (!stubs_always_before_branch && !big_sec)
2561 {
2562 total = 0;
2563 while (prev != NULL
2564 && ((total += tail->output_offset - prev->output_offset)
2565 < stub_group_size))
2566 {
2567 tail = prev;
2568 prev = PREV_SEC (tail);
2569 htab->stub_group[tail->id].link_sec = curr;
2570 }
2571 }
2572 tail = prev;
2573 }
2574 }
2575 while (list-- != htab->input_list);
2576 free (htab->input_list);
2577 #undef PREV_SEC
2578 }
2579
2580 /* Read in all local syms for all input bfds, and create hash entries
2581 for export stubs if we are building a multi-subspace shared lib.
2582 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2583
2584 static int
2585 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2586 {
2587 unsigned int bfd_indx;
2588 Elf_Internal_Sym *local_syms, **all_local_syms;
2589 int stub_changed = 0;
2590 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2591
2592 if (htab == NULL)
2593 return -1;
2594
2595 /* We want to read in symbol extension records only once. To do this
2596 we need to read in the local symbols in parallel and save them for
2597 later use; so hold pointers to the local symbols in an array. */
2598 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2599 all_local_syms = bfd_zmalloc (amt);
2600 htab->all_local_syms = all_local_syms;
2601 if (all_local_syms == NULL)
2602 return -1;
2603
2604 /* Walk over all the input BFDs, swapping in local symbols.
2605 If we are creating a shared library, create hash entries for the
2606 export stubs. */
2607 for (bfd_indx = 0;
2608 input_bfd != NULL;
2609 input_bfd = input_bfd->link.next, bfd_indx++)
2610 {
2611 Elf_Internal_Shdr *symtab_hdr;
2612
2613 /* We'll need the symbol table in a second. */
2614 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2615 if (symtab_hdr->sh_info == 0)
2616 continue;
2617
2618 /* We need an array of the local symbols attached to the input bfd. */
2619 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2620 if (local_syms == NULL)
2621 {
2622 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2623 symtab_hdr->sh_info, 0,
2624 NULL, NULL, NULL);
2625 /* Cache them for elf_link_input_bfd. */
2626 symtab_hdr->contents = (unsigned char *) local_syms;
2627 }
2628 if (local_syms == NULL)
2629 return -1;
2630
2631 all_local_syms[bfd_indx] = local_syms;
2632
2633 if (bfd_link_pic (info) && htab->multi_subspace)
2634 {
2635 struct elf_link_hash_entry **eh_syms;
2636 struct elf_link_hash_entry **eh_symend;
2637 unsigned int symcount;
2638
2639 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2640 - symtab_hdr->sh_info);
2641 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2642 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2643
2644 /* Look through the global syms for functions; We need to
2645 build export stubs for all globally visible functions. */
2646 for (; eh_syms < eh_symend; eh_syms++)
2647 {
2648 struct elf32_hppa_link_hash_entry *hh;
2649
2650 hh = hppa_elf_hash_entry (*eh_syms);
2651
2652 while (hh->eh.root.type == bfd_link_hash_indirect
2653 || hh->eh.root.type == bfd_link_hash_warning)
2654 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2655
2656 /* At this point in the link, undefined syms have been
2657 resolved, so we need to check that the symbol was
2658 defined in this BFD. */
2659 if ((hh->eh.root.type == bfd_link_hash_defined
2660 || hh->eh.root.type == bfd_link_hash_defweak)
2661 && hh->eh.type == STT_FUNC
2662 && hh->eh.root.u.def.section->output_section != NULL
2663 && (hh->eh.root.u.def.section->output_section->owner
2664 == output_bfd)
2665 && hh->eh.root.u.def.section->owner == input_bfd
2666 && hh->eh.def_regular
2667 && !hh->eh.forced_local
2668 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2669 {
2670 asection *sec;
2671 const char *stub_name;
2672 struct elf32_hppa_stub_hash_entry *hsh;
2673
2674 sec = hh->eh.root.u.def.section;
2675 stub_name = hh_name (hh);
2676 hsh = hppa_stub_hash_lookup (&htab->bstab,
2677 stub_name,
2678 FALSE, FALSE);
2679 if (hsh == NULL)
2680 {
2681 hsh = hppa_add_stub (stub_name, sec, htab);
2682 if (!hsh)
2683 return -1;
2684
2685 hsh->target_value = hh->eh.root.u.def.value;
2686 hsh->target_section = hh->eh.root.u.def.section;
2687 hsh->stub_type = hppa_stub_export;
2688 hsh->hh = hh;
2689 stub_changed = 1;
2690 }
2691 else
2692 {
2693 /* xgettext:c-format */
2694 _bfd_error_handler (_("%pB: duplicate export stub %s"),
2695 input_bfd, stub_name);
2696 }
2697 }
2698 }
2699 }
2700 }
2701
2702 return stub_changed;
2703 }
2704
2705 /* Determine and set the size of the stub section for a final link.
2706
2707 The basic idea here is to examine all the relocations looking for
2708 PC-relative calls to a target that is unreachable with a "bl"
2709 instruction. */
2710
2711 bfd_boolean
2712 elf32_hppa_size_stubs
2713 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2714 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2715 asection * (*add_stub_section) (const char *, asection *),
2716 void (*layout_sections_again) (void))
2717 {
2718 bfd_size_type stub_group_size;
2719 bfd_boolean stubs_always_before_branch;
2720 bfd_boolean stub_changed;
2721 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2722
2723 if (htab == NULL)
2724 return FALSE;
2725
2726 /* Stash our params away. */
2727 htab->stub_bfd = stub_bfd;
2728 htab->multi_subspace = multi_subspace;
2729 htab->add_stub_section = add_stub_section;
2730 htab->layout_sections_again = layout_sections_again;
2731 stubs_always_before_branch = group_size < 0;
2732 if (group_size < 0)
2733 stub_group_size = -group_size;
2734 else
2735 stub_group_size = group_size;
2736 if (stub_group_size == 1)
2737 {
2738 /* Default values. */
2739 if (stubs_always_before_branch)
2740 {
2741 stub_group_size = 7680000;
2742 if (htab->has_17bit_branch || htab->multi_subspace)
2743 stub_group_size = 240000;
2744 if (htab->has_12bit_branch)
2745 stub_group_size = 7500;
2746 }
2747 else
2748 {
2749 stub_group_size = 6971392;
2750 if (htab->has_17bit_branch || htab->multi_subspace)
2751 stub_group_size = 217856;
2752 if (htab->has_12bit_branch)
2753 stub_group_size = 6808;
2754 }
2755 }
2756
2757 group_sections (htab, stub_group_size, stubs_always_before_branch);
2758
2759 switch (get_local_syms (output_bfd, info->input_bfds, info))
2760 {
2761 default:
2762 if (htab->all_local_syms)
2763 goto error_ret_free_local;
2764 return FALSE;
2765
2766 case 0:
2767 stub_changed = FALSE;
2768 break;
2769
2770 case 1:
2771 stub_changed = TRUE;
2772 break;
2773 }
2774
2775 while (1)
2776 {
2777 bfd *input_bfd;
2778 unsigned int bfd_indx;
2779 asection *stub_sec;
2780
2781 for (input_bfd = info->input_bfds, bfd_indx = 0;
2782 input_bfd != NULL;
2783 input_bfd = input_bfd->link.next, bfd_indx++)
2784 {
2785 Elf_Internal_Shdr *symtab_hdr;
2786 asection *section;
2787 Elf_Internal_Sym *local_syms;
2788
2789 /* We'll need the symbol table in a second. */
2790 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2791 if (symtab_hdr->sh_info == 0)
2792 continue;
2793
2794 local_syms = htab->all_local_syms[bfd_indx];
2795
2796 /* Walk over each section attached to the input bfd. */
2797 for (section = input_bfd->sections;
2798 section != NULL;
2799 section = section->next)
2800 {
2801 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2802
2803 /* If there aren't any relocs, then there's nothing more
2804 to do. */
2805 if ((section->flags & SEC_RELOC) == 0
2806 || (section->flags & SEC_ALLOC) == 0
2807 || (section->flags & SEC_LOAD) == 0
2808 || (section->flags & SEC_CODE) == 0
2809 || section->reloc_count == 0)
2810 continue;
2811
2812 /* If this section is a link-once section that will be
2813 discarded, then don't create any stubs. */
2814 if (section->output_section == NULL
2815 || section->output_section->owner != output_bfd)
2816 continue;
2817
2818 /* Get the relocs. */
2819 internal_relocs
2820 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2821 info->keep_memory);
2822 if (internal_relocs == NULL)
2823 goto error_ret_free_local;
2824
2825 /* Now examine each relocation. */
2826 irela = internal_relocs;
2827 irelaend = irela + section->reloc_count;
2828 for (; irela < irelaend; irela++)
2829 {
2830 unsigned int r_type, r_indx;
2831 enum elf32_hppa_stub_type stub_type;
2832 struct elf32_hppa_stub_hash_entry *hsh;
2833 asection *sym_sec;
2834 bfd_vma sym_value;
2835 bfd_vma destination;
2836 struct elf32_hppa_link_hash_entry *hh;
2837 char *stub_name;
2838 const asection *id_sec;
2839
2840 r_type = ELF32_R_TYPE (irela->r_info);
2841 r_indx = ELF32_R_SYM (irela->r_info);
2842
2843 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2844 {
2845 bfd_set_error (bfd_error_bad_value);
2846 error_ret_free_internal:
2847 if (elf_section_data (section)->relocs == NULL)
2848 free (internal_relocs);
2849 goto error_ret_free_local;
2850 }
2851
2852 /* Only look for stubs on call instructions. */
2853 if (r_type != (unsigned int) R_PARISC_PCREL12F
2854 && r_type != (unsigned int) R_PARISC_PCREL17F
2855 && r_type != (unsigned int) R_PARISC_PCREL22F)
2856 continue;
2857
2858 /* Now determine the call target, its name, value,
2859 section. */
2860 sym_sec = NULL;
2861 sym_value = 0;
2862 destination = -1;
2863 hh = NULL;
2864 if (r_indx < symtab_hdr->sh_info)
2865 {
2866 /* It's a local symbol. */
2867 Elf_Internal_Sym *sym;
2868 Elf_Internal_Shdr *hdr;
2869 unsigned int shndx;
2870
2871 sym = local_syms + r_indx;
2872 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2873 sym_value = sym->st_value;
2874 shndx = sym->st_shndx;
2875 if (shndx < elf_numsections (input_bfd))
2876 {
2877 hdr = elf_elfsections (input_bfd)[shndx];
2878 sym_sec = hdr->bfd_section;
2879 destination = (sym_value + irela->r_addend
2880 + sym_sec->output_offset
2881 + sym_sec->output_section->vma);
2882 }
2883 }
2884 else
2885 {
2886 /* It's an external symbol. */
2887 int e_indx;
2888
2889 e_indx = r_indx - symtab_hdr->sh_info;
2890 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2891
2892 while (hh->eh.root.type == bfd_link_hash_indirect
2893 || hh->eh.root.type == bfd_link_hash_warning)
2894 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2895
2896 if (hh->eh.root.type == bfd_link_hash_defined
2897 || hh->eh.root.type == bfd_link_hash_defweak)
2898 {
2899 sym_sec = hh->eh.root.u.def.section;
2900 sym_value = hh->eh.root.u.def.value;
2901 if (sym_sec->output_section != NULL)
2902 destination = (sym_value + irela->r_addend
2903 + sym_sec->output_offset
2904 + sym_sec->output_section->vma);
2905 }
2906 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2907 {
2908 if (! bfd_link_pic (info))
2909 continue;
2910 }
2911 else if (hh->eh.root.type == bfd_link_hash_undefined)
2912 {
2913 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2914 && (ELF_ST_VISIBILITY (hh->eh.other)
2915 == STV_DEFAULT)
2916 && hh->eh.type != STT_PARISC_MILLI))
2917 continue;
2918 }
2919 else
2920 {
2921 bfd_set_error (bfd_error_bad_value);
2922 goto error_ret_free_internal;
2923 }
2924 }
2925
2926 /* Determine what (if any) linker stub is needed. */
2927 stub_type = hppa_type_of_stub (section, irela, hh,
2928 destination, info);
2929 if (stub_type == hppa_stub_none)
2930 continue;
2931
2932 /* Support for grouping stub sections. */
2933 id_sec = htab->stub_group[section->id].link_sec;
2934
2935 /* Get the name of this stub. */
2936 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2937 if (!stub_name)
2938 goto error_ret_free_internal;
2939
2940 hsh = hppa_stub_hash_lookup (&htab->bstab,
2941 stub_name,
2942 FALSE, FALSE);
2943 if (hsh != NULL)
2944 {
2945 /* The proper stub has already been created. */
2946 free (stub_name);
2947 continue;
2948 }
2949
2950 hsh = hppa_add_stub (stub_name, section, htab);
2951 if (hsh == NULL)
2952 {
2953 free (stub_name);
2954 goto error_ret_free_internal;
2955 }
2956
2957 hsh->target_value = sym_value;
2958 hsh->target_section = sym_sec;
2959 hsh->stub_type = stub_type;
2960 if (bfd_link_pic (info))
2961 {
2962 if (stub_type == hppa_stub_import)
2963 hsh->stub_type = hppa_stub_import_shared;
2964 else if (stub_type == hppa_stub_long_branch)
2965 hsh->stub_type = hppa_stub_long_branch_shared;
2966 }
2967 hsh->hh = hh;
2968 stub_changed = TRUE;
2969 }
2970
2971 /* We're done with the internal relocs, free them. */
2972 if (elf_section_data (section)->relocs == NULL)
2973 free (internal_relocs);
2974 }
2975 }
2976
2977 if (!stub_changed)
2978 break;
2979
2980 /* OK, we've added some stubs. Find out the new size of the
2981 stub sections. */
2982 for (stub_sec = htab->stub_bfd->sections;
2983 stub_sec != NULL;
2984 stub_sec = stub_sec->next)
2985 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
2986 stub_sec->size = 0;
2987
2988 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2989
2990 /* Ask the linker to do its stuff. */
2991 (*htab->layout_sections_again) ();
2992 stub_changed = FALSE;
2993 }
2994
2995 free (htab->all_local_syms);
2996 return TRUE;
2997
2998 error_ret_free_local:
2999 free (htab->all_local_syms);
3000 return FALSE;
3001 }
3002
3003 /* For a final link, this function is called after we have sized the
3004 stubs to provide a value for __gp. */
3005
3006 bfd_boolean
3007 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3008 {
3009 struct bfd_link_hash_entry *h;
3010 asection *sec = NULL;
3011 bfd_vma gp_val = 0;
3012
3013 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
3014
3015 if (h != NULL
3016 && (h->type == bfd_link_hash_defined
3017 || h->type == bfd_link_hash_defweak))
3018 {
3019 gp_val = h->u.def.value;
3020 sec = h->u.def.section;
3021 }
3022 else
3023 {
3024 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3025 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3026
3027 /* Choose to point our LTP at, in this order, one of .plt, .got,
3028 or .data, if these sections exist. In the case of choosing
3029 .plt try to make the LTP ideal for addressing anywhere in the
3030 .plt or .got with a 14 bit signed offset. Typically, the end
3031 of the .plt is the start of the .got, so choose .plt + 0x2000
3032 if either the .plt or .got is larger than 0x2000. If both
3033 the .plt and .got are smaller than 0x2000, choose the end of
3034 the .plt section. */
3035 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3036 ? NULL : splt;
3037 if (sec != NULL)
3038 {
3039 gp_val = sec->size;
3040 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3041 {
3042 gp_val = 0x2000;
3043 }
3044 }
3045 else
3046 {
3047 sec = sgot;
3048 if (sec != NULL)
3049 {
3050 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3051 {
3052 /* We know we don't have a .plt. If .got is large,
3053 offset our LTP. */
3054 if (sec->size > 0x2000)
3055 gp_val = 0x2000;
3056 }
3057 }
3058 else
3059 {
3060 /* No .plt or .got. Who cares what the LTP is? */
3061 sec = bfd_get_section_by_name (abfd, ".data");
3062 }
3063 }
3064
3065 if (h != NULL)
3066 {
3067 h->type = bfd_link_hash_defined;
3068 h->u.def.value = gp_val;
3069 if (sec != NULL)
3070 h->u.def.section = sec;
3071 else
3072 h->u.def.section = bfd_abs_section_ptr;
3073 }
3074 }
3075
3076 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3077 {
3078 if (sec != NULL && sec->output_section != NULL)
3079 gp_val += sec->output_section->vma + sec->output_offset;
3080
3081 elf_gp (abfd) = gp_val;
3082 }
3083 return TRUE;
3084 }
3085
3086 /* Build all the stubs associated with the current output file. The
3087 stubs are kept in a hash table attached to the main linker hash
3088 table. We also set up the .plt entries for statically linked PIC
3089 functions here. This function is called via hppaelf_finish in the
3090 linker. */
3091
3092 bfd_boolean
3093 elf32_hppa_build_stubs (struct bfd_link_info *info)
3094 {
3095 asection *stub_sec;
3096 struct bfd_hash_table *table;
3097 struct elf32_hppa_link_hash_table *htab;
3098
3099 htab = hppa_link_hash_table (info);
3100 if (htab == NULL)
3101 return FALSE;
3102
3103 for (stub_sec = htab->stub_bfd->sections;
3104 stub_sec != NULL;
3105 stub_sec = stub_sec->next)
3106 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3107 && stub_sec->size != 0)
3108 {
3109 /* Allocate memory to hold the linker stubs. */
3110 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3111 if (stub_sec->contents == NULL)
3112 return FALSE;
3113 stub_sec->size = 0;
3114 }
3115
3116 /* Build the stubs as directed by the stub hash table. */
3117 table = &htab->bstab;
3118 bfd_hash_traverse (table, hppa_build_one_stub, info);
3119
3120 return TRUE;
3121 }
3122
3123 /* Return the base vma address which should be subtracted from the real
3124 address when resolving a dtpoff relocation.
3125 This is PT_TLS segment p_vaddr. */
3126
3127 static bfd_vma
3128 dtpoff_base (struct bfd_link_info *info)
3129 {
3130 /* If tls_sec is NULL, we should have signalled an error already. */
3131 if (elf_hash_table (info)->tls_sec == NULL)
3132 return 0;
3133 return elf_hash_table (info)->tls_sec->vma;
3134 }
3135
3136 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3137
3138 static bfd_vma
3139 tpoff (struct bfd_link_info *info, bfd_vma address)
3140 {
3141 struct elf_link_hash_table *htab = elf_hash_table (info);
3142
3143 /* If tls_sec is NULL, we should have signalled an error already. */
3144 if (htab->tls_sec == NULL)
3145 return 0;
3146 /* hppa TLS ABI is variant I and static TLS block start just after
3147 tcbhead structure which has 2 pointer fields. */
3148 return (address - htab->tls_sec->vma
3149 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3150 }
3151
3152 /* Perform a final link. */
3153
3154 static bfd_boolean
3155 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3156 {
3157 struct stat buf;
3158
3159 /* Invoke the regular ELF linker to do all the work. */
3160 if (!bfd_elf_final_link (abfd, info))
3161 return FALSE;
3162
3163 /* If we're producing a final executable, sort the contents of the
3164 unwind section. */
3165 if (bfd_link_relocatable (info))
3166 return TRUE;
3167
3168 /* Do not attempt to sort non-regular files. This is here
3169 especially for configure scripts and kernel builds which run
3170 tests with "ld [...] -o /dev/null". */
3171 if (stat (abfd->filename, &buf) != 0
3172 || !S_ISREG(buf.st_mode))
3173 return TRUE;
3174
3175 return elf_hppa_sort_unwind (abfd);
3176 }
3177
3178 /* Record the lowest address for the data and text segments. */
3179
3180 static void
3181 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3182 {
3183 struct elf32_hppa_link_hash_table *htab;
3184
3185 htab = (struct elf32_hppa_link_hash_table*) data;
3186 if (htab == NULL)
3187 return;
3188
3189 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3190 {
3191 bfd_vma value;
3192 Elf_Internal_Phdr *p;
3193
3194 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3195 BFD_ASSERT (p != NULL);
3196 value = p->p_vaddr;
3197
3198 if ((section->flags & SEC_READONLY) != 0)
3199 {
3200 if (value < htab->text_segment_base)
3201 htab->text_segment_base = value;
3202 }
3203 else
3204 {
3205 if (value < htab->data_segment_base)
3206 htab->data_segment_base = value;
3207 }
3208 }
3209 }
3210
3211 /* Perform a relocation as part of a final link. */
3212
3213 static bfd_reloc_status_type
3214 final_link_relocate (asection *input_section,
3215 bfd_byte *contents,
3216 const Elf_Internal_Rela *rela,
3217 bfd_vma value,
3218 struct elf32_hppa_link_hash_table *htab,
3219 asection *sym_sec,
3220 struct elf32_hppa_link_hash_entry *hh,
3221 struct bfd_link_info *info)
3222 {
3223 int insn;
3224 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3225 unsigned int orig_r_type = r_type;
3226 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3227 int r_format = howto->bitsize;
3228 enum hppa_reloc_field_selector_type_alt r_field;
3229 bfd *input_bfd = input_section->owner;
3230 bfd_vma offset = rela->r_offset;
3231 bfd_vma max_branch_offset = 0;
3232 bfd_byte *hit_data = contents + offset;
3233 bfd_signed_vma addend = rela->r_addend;
3234 bfd_vma location;
3235 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3236 int val;
3237
3238 if (r_type == R_PARISC_NONE)
3239 return bfd_reloc_ok;
3240
3241 insn = bfd_get_32 (input_bfd, hit_data);
3242
3243 /* Find out where we are and where we're going. */
3244 location = (offset +
3245 input_section->output_offset +
3246 input_section->output_section->vma);
3247
3248 /* If we are not building a shared library, convert DLTIND relocs to
3249 DPREL relocs. */
3250 if (!bfd_link_pic (info))
3251 {
3252 switch (r_type)
3253 {
3254 case R_PARISC_DLTIND21L:
3255 case R_PARISC_TLS_GD21L:
3256 case R_PARISC_TLS_LDM21L:
3257 case R_PARISC_TLS_IE21L:
3258 r_type = R_PARISC_DPREL21L;
3259 break;
3260
3261 case R_PARISC_DLTIND14R:
3262 case R_PARISC_TLS_GD14R:
3263 case R_PARISC_TLS_LDM14R:
3264 case R_PARISC_TLS_IE14R:
3265 r_type = R_PARISC_DPREL14R;
3266 break;
3267
3268 case R_PARISC_DLTIND14F:
3269 r_type = R_PARISC_DPREL14F;
3270 break;
3271 }
3272 }
3273
3274 switch (r_type)
3275 {
3276 case R_PARISC_PCREL12F:
3277 case R_PARISC_PCREL17F:
3278 case R_PARISC_PCREL22F:
3279 /* If this call should go via the plt, find the import stub in
3280 the stub hash. */
3281 if (sym_sec == NULL
3282 || sym_sec->output_section == NULL
3283 || (hh != NULL
3284 && hh->eh.plt.offset != (bfd_vma) -1
3285 && hh->eh.dynindx != -1
3286 && !hh->plabel
3287 && (bfd_link_pic (info)
3288 || !hh->eh.def_regular
3289 || hh->eh.root.type == bfd_link_hash_defweak)))
3290 {
3291 hsh = hppa_get_stub_entry (input_section, sym_sec,
3292 hh, rela, htab);
3293 if (hsh != NULL)
3294 {
3295 value = (hsh->stub_offset
3296 + hsh->stub_sec->output_offset
3297 + hsh->stub_sec->output_section->vma);
3298 addend = 0;
3299 }
3300 else if (sym_sec == NULL && hh != NULL
3301 && hh->eh.root.type == bfd_link_hash_undefweak)
3302 {
3303 /* It's OK if undefined weak. Calls to undefined weak
3304 symbols behave as if the "called" function
3305 immediately returns. We can thus call to a weak
3306 function without first checking whether the function
3307 is defined. */
3308 value = location;
3309 addend = 8;
3310 }
3311 else
3312 return bfd_reloc_undefined;
3313 }
3314 /* Fall thru. */
3315
3316 case R_PARISC_PCREL21L:
3317 case R_PARISC_PCREL17C:
3318 case R_PARISC_PCREL17R:
3319 case R_PARISC_PCREL14R:
3320 case R_PARISC_PCREL14F:
3321 case R_PARISC_PCREL32:
3322 /* Make it a pc relative offset. */
3323 value -= location;
3324 addend -= 8;
3325 break;
3326
3327 case R_PARISC_DPREL21L:
3328 case R_PARISC_DPREL14R:
3329 case R_PARISC_DPREL14F:
3330 /* Convert instructions that use the linkage table pointer (r19) to
3331 instructions that use the global data pointer (dp). This is the
3332 most efficient way of using PIC code in an incomplete executable,
3333 but the user must follow the standard runtime conventions for
3334 accessing data for this to work. */
3335 if (orig_r_type != r_type)
3336 {
3337 if (r_type == R_PARISC_DPREL21L)
3338 {
3339 /* GCC sometimes uses a register other than r19 for the
3340 operation, so we must convert any addil instruction
3341 that uses this relocation. */
3342 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3343 insn = ADDIL_DP;
3344 else
3345 /* We must have a ldil instruction. It's too hard to find
3346 and convert the associated add instruction, so issue an
3347 error. */
3348 _bfd_error_handler
3349 /* xgettext:c-format */
3350 (_("%pB(%pA+%#" PRIx64 "): %s fixup for insn %#x "
3351 "is not supported in a non-shared link"),
3352 input_bfd,
3353 input_section,
3354 (uint64_t) offset,
3355 howto->name,
3356 insn);
3357 }
3358 else if (r_type == R_PARISC_DPREL14F)
3359 {
3360 /* This must be a format 1 load/store. Change the base
3361 register to dp. */
3362 insn = (insn & 0xfc1ffff) | (27 << 21);
3363 }
3364 }
3365
3366 /* For all the DP relative relocations, we need to examine the symbol's
3367 section. If it has no section or if it's a code section, then
3368 "data pointer relative" makes no sense. In that case we don't
3369 adjust the "value", and for 21 bit addil instructions, we change the
3370 source addend register from %dp to %r0. This situation commonly
3371 arises for undefined weak symbols and when a variable's "constness"
3372 is declared differently from the way the variable is defined. For
3373 instance: "extern int foo" with foo defined as "const int foo". */
3374 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3375 {
3376 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3377 == (((int) OP_ADDIL << 26) | (27 << 21)))
3378 {
3379 insn &= ~ (0x1f << 21);
3380 }
3381 /* Now try to make things easy for the dynamic linker. */
3382
3383 break;
3384 }
3385 /* Fall thru. */
3386
3387 case R_PARISC_DLTIND21L:
3388 case R_PARISC_DLTIND14R:
3389 case R_PARISC_DLTIND14F:
3390 case R_PARISC_TLS_GD21L:
3391 case R_PARISC_TLS_LDM21L:
3392 case R_PARISC_TLS_IE21L:
3393 case R_PARISC_TLS_GD14R:
3394 case R_PARISC_TLS_LDM14R:
3395 case R_PARISC_TLS_IE14R:
3396 value -= elf_gp (input_section->output_section->owner);
3397 break;
3398
3399 case R_PARISC_SEGREL32:
3400 if ((sym_sec->flags & SEC_CODE) != 0)
3401 value -= htab->text_segment_base;
3402 else
3403 value -= htab->data_segment_base;
3404 break;
3405
3406 default:
3407 break;
3408 }
3409
3410 switch (r_type)
3411 {
3412 case R_PARISC_DIR32:
3413 case R_PARISC_DIR14F:
3414 case R_PARISC_DIR17F:
3415 case R_PARISC_PCREL17C:
3416 case R_PARISC_PCREL14F:
3417 case R_PARISC_PCREL32:
3418 case R_PARISC_DPREL14F:
3419 case R_PARISC_PLABEL32:
3420 case R_PARISC_DLTIND14F:
3421 case R_PARISC_SEGBASE:
3422 case R_PARISC_SEGREL32:
3423 case R_PARISC_TLS_DTPMOD32:
3424 case R_PARISC_TLS_DTPOFF32:
3425 case R_PARISC_TLS_TPREL32:
3426 r_field = e_fsel;
3427 break;
3428
3429 case R_PARISC_DLTIND21L:
3430 case R_PARISC_PCREL21L:
3431 case R_PARISC_PLABEL21L:
3432 r_field = e_lsel;
3433 break;
3434
3435 case R_PARISC_DIR21L:
3436 case R_PARISC_DPREL21L:
3437 case R_PARISC_TLS_GD21L:
3438 case R_PARISC_TLS_LDM21L:
3439 case R_PARISC_TLS_LDO21L:
3440 case R_PARISC_TLS_IE21L:
3441 case R_PARISC_TLS_LE21L:
3442 r_field = e_lrsel;
3443 break;
3444
3445 case R_PARISC_PCREL17R:
3446 case R_PARISC_PCREL14R:
3447 case R_PARISC_PLABEL14R:
3448 case R_PARISC_DLTIND14R:
3449 r_field = e_rsel;
3450 break;
3451
3452 case R_PARISC_DIR17R:
3453 case R_PARISC_DIR14R:
3454 case R_PARISC_DPREL14R:
3455 case R_PARISC_TLS_GD14R:
3456 case R_PARISC_TLS_LDM14R:
3457 case R_PARISC_TLS_LDO14R:
3458 case R_PARISC_TLS_IE14R:
3459 case R_PARISC_TLS_LE14R:
3460 r_field = e_rrsel;
3461 break;
3462
3463 case R_PARISC_PCREL12F:
3464 case R_PARISC_PCREL17F:
3465 case R_PARISC_PCREL22F:
3466 r_field = e_fsel;
3467
3468 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3469 {
3470 max_branch_offset = (1 << (17-1)) << 2;
3471 }
3472 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3473 {
3474 max_branch_offset = (1 << (12-1)) << 2;
3475 }
3476 else
3477 {
3478 max_branch_offset = (1 << (22-1)) << 2;
3479 }
3480
3481 /* sym_sec is NULL on undefined weak syms or when shared on
3482 undefined syms. We've already checked for a stub for the
3483 shared undefined case. */
3484 if (sym_sec == NULL)
3485 break;
3486
3487 /* If the branch is out of reach, then redirect the
3488 call to the local stub for this function. */
3489 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3490 {
3491 hsh = hppa_get_stub_entry (input_section, sym_sec,
3492 hh, rela, htab);
3493 if (hsh == NULL)
3494 return bfd_reloc_undefined;
3495
3496 /* Munge up the value and addend so that we call the stub
3497 rather than the procedure directly. */
3498 value = (hsh->stub_offset
3499 + hsh->stub_sec->output_offset
3500 + hsh->stub_sec->output_section->vma
3501 - location);
3502 addend = -8;
3503 }
3504 break;
3505
3506 /* Something we don't know how to handle. */
3507 default:
3508 return bfd_reloc_notsupported;
3509 }
3510
3511 /* Make sure we can reach the stub. */
3512 if (max_branch_offset != 0
3513 && value + addend + max_branch_offset >= 2*max_branch_offset)
3514 {
3515 _bfd_error_handler
3516 /* xgettext:c-format */
3517 (_("%pB(%pA+%#" PRIx64 "): cannot reach %s, "
3518 "recompile with -ffunction-sections"),
3519 input_bfd,
3520 input_section,
3521 (uint64_t) offset,
3522 hsh->bh_root.string);
3523 bfd_set_error (bfd_error_bad_value);
3524 return bfd_reloc_notsupported;
3525 }
3526
3527 val = hppa_field_adjust (value, addend, r_field);
3528
3529 switch (r_type)
3530 {
3531 case R_PARISC_PCREL12F:
3532 case R_PARISC_PCREL17C:
3533 case R_PARISC_PCREL17F:
3534 case R_PARISC_PCREL17R:
3535 case R_PARISC_PCREL22F:
3536 case R_PARISC_DIR17F:
3537 case R_PARISC_DIR17R:
3538 /* This is a branch. Divide the offset by four.
3539 Note that we need to decide whether it's a branch or
3540 otherwise by inspecting the reloc. Inspecting insn won't
3541 work as insn might be from a .word directive. */
3542 val >>= 2;
3543 break;
3544
3545 default:
3546 break;
3547 }
3548
3549 insn = hppa_rebuild_insn (insn, val, r_format);
3550
3551 /* Update the instruction word. */
3552 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3553 return bfd_reloc_ok;
3554 }
3555
3556 /* Relocate an HPPA ELF section. */
3557
3558 static bfd_boolean
3559 elf32_hppa_relocate_section (bfd *output_bfd,
3560 struct bfd_link_info *info,
3561 bfd *input_bfd,
3562 asection *input_section,
3563 bfd_byte *contents,
3564 Elf_Internal_Rela *relocs,
3565 Elf_Internal_Sym *local_syms,
3566 asection **local_sections)
3567 {
3568 bfd_vma *local_got_offsets;
3569 struct elf32_hppa_link_hash_table *htab;
3570 Elf_Internal_Shdr *symtab_hdr;
3571 Elf_Internal_Rela *rela;
3572 Elf_Internal_Rela *relend;
3573
3574 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3575
3576 htab = hppa_link_hash_table (info);
3577 if (htab == NULL)
3578 return FALSE;
3579
3580 local_got_offsets = elf_local_got_offsets (input_bfd);
3581
3582 rela = relocs;
3583 relend = relocs + input_section->reloc_count;
3584 for (; rela < relend; rela++)
3585 {
3586 unsigned int r_type;
3587 reloc_howto_type *howto;
3588 unsigned int r_symndx;
3589 struct elf32_hppa_link_hash_entry *hh;
3590 Elf_Internal_Sym *sym;
3591 asection *sym_sec;
3592 bfd_vma relocation;
3593 bfd_reloc_status_type rstatus;
3594 const char *sym_name;
3595 bfd_boolean plabel;
3596 bfd_boolean warned_undef;
3597
3598 r_type = ELF32_R_TYPE (rela->r_info);
3599 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3600 {
3601 bfd_set_error (bfd_error_bad_value);
3602 return FALSE;
3603 }
3604 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3605 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3606 continue;
3607
3608 r_symndx = ELF32_R_SYM (rela->r_info);
3609 hh = NULL;
3610 sym = NULL;
3611 sym_sec = NULL;
3612 warned_undef = FALSE;
3613 if (r_symndx < symtab_hdr->sh_info)
3614 {
3615 /* This is a local symbol, h defaults to NULL. */
3616 sym = local_syms + r_symndx;
3617 sym_sec = local_sections[r_symndx];
3618 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3619 }
3620 else
3621 {
3622 struct elf_link_hash_entry *eh;
3623 bfd_boolean unresolved_reloc, ignored;
3624 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3625
3626 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3627 r_symndx, symtab_hdr, sym_hashes,
3628 eh, sym_sec, relocation,
3629 unresolved_reloc, warned_undef,
3630 ignored);
3631
3632 if (!bfd_link_relocatable (info)
3633 && relocation == 0
3634 && eh->root.type != bfd_link_hash_defined
3635 && eh->root.type != bfd_link_hash_defweak
3636 && eh->root.type != bfd_link_hash_undefweak)
3637 {
3638 if (info->unresolved_syms_in_objects == RM_IGNORE
3639 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3640 && eh->type == STT_PARISC_MILLI)
3641 {
3642 (*info->callbacks->undefined_symbol)
3643 (info, eh_name (eh), input_bfd,
3644 input_section, rela->r_offset, FALSE);
3645 warned_undef = TRUE;
3646 }
3647 }
3648 hh = hppa_elf_hash_entry (eh);
3649 }
3650
3651 if (sym_sec != NULL && discarded_section (sym_sec))
3652 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3653 rela, 1, relend,
3654 elf_hppa_howto_table + r_type, 0,
3655 contents);
3656
3657 if (bfd_link_relocatable (info))
3658 continue;
3659
3660 /* Do any required modifications to the relocation value, and
3661 determine what types of dynamic info we need to output, if
3662 any. */
3663 plabel = 0;
3664 switch (r_type)
3665 {
3666 case R_PARISC_DLTIND14F:
3667 case R_PARISC_DLTIND14R:
3668 case R_PARISC_DLTIND21L:
3669 {
3670 bfd_vma off;
3671 bfd_boolean do_got = FALSE;
3672 bfd_boolean reloc = bfd_link_pic (info);
3673
3674 /* Relocation is to the entry for this symbol in the
3675 global offset table. */
3676 if (hh != NULL)
3677 {
3678 bfd_boolean dyn;
3679
3680 off = hh->eh.got.offset;
3681 dyn = htab->etab.dynamic_sections_created;
3682 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3683 && (reloc
3684 || (hh->eh.dynindx != -1
3685 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3686 if (!reloc
3687 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3688 bfd_link_pic (info),
3689 &hh->eh))
3690 {
3691 /* If we aren't going to call finish_dynamic_symbol,
3692 then we need to handle initialisation of the .got
3693 entry and create needed relocs here. Since the
3694 offset must always be a multiple of 4, we use the
3695 least significant bit to record whether we have
3696 initialised it already. */
3697 if ((off & 1) != 0)
3698 off &= ~1;
3699 else
3700 {
3701 hh->eh.got.offset |= 1;
3702 do_got = TRUE;
3703 }
3704 }
3705 }
3706 else
3707 {
3708 /* Local symbol case. */
3709 if (local_got_offsets == NULL)
3710 abort ();
3711
3712 off = local_got_offsets[r_symndx];
3713
3714 /* The offset must always be a multiple of 4. We use
3715 the least significant bit to record whether we have
3716 already generated the necessary reloc. */
3717 if ((off & 1) != 0)
3718 off &= ~1;
3719 else
3720 {
3721 local_got_offsets[r_symndx] |= 1;
3722 do_got = TRUE;
3723 }
3724 }
3725
3726 if (do_got)
3727 {
3728 if (reloc)
3729 {
3730 /* Output a dynamic relocation for this GOT entry.
3731 In this case it is relative to the base of the
3732 object because the symbol index is zero. */
3733 Elf_Internal_Rela outrel;
3734 bfd_byte *loc;
3735 asection *sec = htab->etab.srelgot;
3736
3737 outrel.r_offset = (off
3738 + htab->etab.sgot->output_offset
3739 + htab->etab.sgot->output_section->vma);
3740 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3741 outrel.r_addend = relocation;
3742 loc = sec->contents;
3743 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3744 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3745 }
3746 else
3747 bfd_put_32 (output_bfd, relocation,
3748 htab->etab.sgot->contents + off);
3749 }
3750
3751 if (off >= (bfd_vma) -2)
3752 abort ();
3753
3754 /* Add the base of the GOT to the relocation value. */
3755 relocation = (off
3756 + htab->etab.sgot->output_offset
3757 + htab->etab.sgot->output_section->vma);
3758 }
3759 break;
3760
3761 case R_PARISC_SEGREL32:
3762 /* If this is the first SEGREL relocation, then initialize
3763 the segment base values. */
3764 if (htab->text_segment_base == (bfd_vma) -1)
3765 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3766 break;
3767
3768 case R_PARISC_PLABEL14R:
3769 case R_PARISC_PLABEL21L:
3770 case R_PARISC_PLABEL32:
3771 if (htab->etab.dynamic_sections_created)
3772 {
3773 bfd_vma off;
3774 bfd_boolean do_plt = 0;
3775 /* If we have a global symbol with a PLT slot, then
3776 redirect this relocation to it. */
3777 if (hh != NULL)
3778 {
3779 off = hh->eh.plt.offset;
3780 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3781 bfd_link_pic (info),
3782 &hh->eh))
3783 {
3784 /* In a non-shared link, adjust_dynamic_symbol
3785 isn't called for symbols forced local. We
3786 need to write out the plt entry here. */
3787 if ((off & 1) != 0)
3788 off &= ~1;
3789 else
3790 {
3791 hh->eh.plt.offset |= 1;
3792 do_plt = 1;
3793 }
3794 }
3795 }
3796 else
3797 {
3798 bfd_vma *local_plt_offsets;
3799
3800 if (local_got_offsets == NULL)
3801 abort ();
3802
3803 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3804 off = local_plt_offsets[r_symndx];
3805
3806 /* As for the local .got entry case, we use the last
3807 bit to record whether we've already initialised
3808 this local .plt entry. */
3809 if ((off & 1) != 0)
3810 off &= ~1;
3811 else
3812 {
3813 local_plt_offsets[r_symndx] |= 1;
3814 do_plt = 1;
3815 }
3816 }
3817
3818 if (do_plt)
3819 {
3820 if (bfd_link_pic (info))
3821 {
3822 /* Output a dynamic IPLT relocation for this
3823 PLT entry. */
3824 Elf_Internal_Rela outrel;
3825 bfd_byte *loc;
3826 asection *s = htab->etab.srelplt;
3827
3828 outrel.r_offset = (off
3829 + htab->etab.splt->output_offset
3830 + htab->etab.splt->output_section->vma);
3831 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3832 outrel.r_addend = relocation;
3833 loc = s->contents;
3834 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3835 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3836 }
3837 else
3838 {
3839 bfd_put_32 (output_bfd,
3840 relocation,
3841 htab->etab.splt->contents + off);
3842 bfd_put_32 (output_bfd,
3843 elf_gp (htab->etab.splt->output_section->owner),
3844 htab->etab.splt->contents + off + 4);
3845 }
3846 }
3847
3848 if (off >= (bfd_vma) -2)
3849 abort ();
3850
3851 /* PLABELs contain function pointers. Relocation is to
3852 the entry for the function in the .plt. The magic +2
3853 offset signals to $$dyncall that the function pointer
3854 is in the .plt and thus has a gp pointer too.
3855 Exception: Undefined PLABELs should have a value of
3856 zero. */
3857 if (hh == NULL
3858 || (hh->eh.root.type != bfd_link_hash_undefweak
3859 && hh->eh.root.type != bfd_link_hash_undefined))
3860 {
3861 relocation = (off
3862 + htab->etab.splt->output_offset
3863 + htab->etab.splt->output_section->vma
3864 + 2);
3865 }
3866 plabel = 1;
3867 }
3868 /* Fall through. */
3869
3870 case R_PARISC_DIR17F:
3871 case R_PARISC_DIR17R:
3872 case R_PARISC_DIR14F:
3873 case R_PARISC_DIR14R:
3874 case R_PARISC_DIR21L:
3875 case R_PARISC_DPREL14F:
3876 case R_PARISC_DPREL14R:
3877 case R_PARISC_DPREL21L:
3878 case R_PARISC_DIR32:
3879 if ((input_section->flags & SEC_ALLOC) == 0)
3880 break;
3881
3882 if (bfd_link_pic (info)
3883 ? ((hh == NULL
3884 || hh->dyn_relocs != NULL)
3885 && ((hh != NULL && pc_dynrelocs (hh))
3886 || IS_ABSOLUTE_RELOC (r_type)))
3887 : (hh != NULL
3888 && hh->dyn_relocs != NULL))
3889 {
3890 Elf_Internal_Rela outrel;
3891 bfd_boolean skip;
3892 asection *sreloc;
3893 bfd_byte *loc;
3894
3895 /* When generating a shared object, these relocations
3896 are copied into the output file to be resolved at run
3897 time. */
3898
3899 outrel.r_addend = rela->r_addend;
3900 outrel.r_offset =
3901 _bfd_elf_section_offset (output_bfd, info, input_section,
3902 rela->r_offset);
3903 skip = (outrel.r_offset == (bfd_vma) -1
3904 || outrel.r_offset == (bfd_vma) -2);
3905 outrel.r_offset += (input_section->output_offset
3906 + input_section->output_section->vma);
3907
3908 if (skip)
3909 {
3910 memset (&outrel, 0, sizeof (outrel));
3911 }
3912 else if (hh != NULL
3913 && hh->eh.dynindx != -1
3914 && (plabel
3915 || !IS_ABSOLUTE_RELOC (r_type)
3916 || !bfd_link_pic (info)
3917 || !SYMBOLIC_BIND (info, &hh->eh)
3918 || !hh->eh.def_regular))
3919 {
3920 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3921 }
3922 else /* It's a local symbol, or one marked to become local. */
3923 {
3924 int indx = 0;
3925
3926 /* Add the absolute offset of the symbol. */
3927 outrel.r_addend += relocation;
3928
3929 /* Global plabels need to be processed by the
3930 dynamic linker so that functions have at most one
3931 fptr. For this reason, we need to differentiate
3932 between global and local plabels, which we do by
3933 providing the function symbol for a global plabel
3934 reloc, and no symbol for local plabels. */
3935 if (! plabel
3936 && sym_sec != NULL
3937 && sym_sec->output_section != NULL
3938 && ! bfd_is_abs_section (sym_sec))
3939 {
3940 asection *osec;
3941
3942 osec = sym_sec->output_section;
3943 indx = elf_section_data (osec)->dynindx;
3944 if (indx == 0)
3945 {
3946 osec = htab->etab.text_index_section;
3947 indx = elf_section_data (osec)->dynindx;
3948 }
3949 BFD_ASSERT (indx != 0);
3950
3951 /* We are turning this relocation into one
3952 against a section symbol, so subtract out the
3953 output section's address but not the offset
3954 of the input section in the output section. */
3955 outrel.r_addend -= osec->vma;
3956 }
3957
3958 outrel.r_info = ELF32_R_INFO (indx, r_type);
3959 }
3960 sreloc = elf_section_data (input_section)->sreloc;
3961 if (sreloc == NULL)
3962 abort ();
3963
3964 loc = sreloc->contents;
3965 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3966 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3967 }
3968 break;
3969
3970 case R_PARISC_TLS_LDM21L:
3971 case R_PARISC_TLS_LDM14R:
3972 {
3973 bfd_vma off;
3974
3975 off = htab->tls_ldm_got.offset;
3976 if (off & 1)
3977 off &= ~1;
3978 else
3979 {
3980 Elf_Internal_Rela outrel;
3981 bfd_byte *loc;
3982
3983 outrel.r_offset = (off
3984 + htab->etab.sgot->output_section->vma
3985 + htab->etab.sgot->output_offset);
3986 outrel.r_addend = 0;
3987 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
3988 loc = htab->etab.srelgot->contents;
3989 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3990
3991 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3992 htab->tls_ldm_got.offset |= 1;
3993 }
3994
3995 /* Add the base of the GOT to the relocation value. */
3996 relocation = (off
3997 + htab->etab.sgot->output_offset
3998 + htab->etab.sgot->output_section->vma);
3999
4000 break;
4001 }
4002
4003 case R_PARISC_TLS_LDO21L:
4004 case R_PARISC_TLS_LDO14R:
4005 relocation -= dtpoff_base (info);
4006 break;
4007
4008 case R_PARISC_TLS_GD21L:
4009 case R_PARISC_TLS_GD14R:
4010 case R_PARISC_TLS_IE21L:
4011 case R_PARISC_TLS_IE14R:
4012 {
4013 bfd_vma off;
4014 int indx;
4015 char tls_type;
4016
4017 indx = 0;
4018 if (hh != NULL)
4019 {
4020 if (!htab->etab.dynamic_sections_created
4021 || hh->eh.dynindx == -1
4022 || SYMBOL_REFERENCES_LOCAL (info, &hh->eh)
4023 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))
4024 /* This is actually a static link, or it is a
4025 -Bsymbolic link and the symbol is defined
4026 locally, or the symbol was forced to be local
4027 because of a version file. */
4028 ;
4029 else
4030 indx = hh->eh.dynindx;
4031 off = hh->eh.got.offset;
4032 tls_type = hh->tls_type;
4033 }
4034 else
4035 {
4036 off = local_got_offsets[r_symndx];
4037 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4038 }
4039
4040 if (tls_type == GOT_UNKNOWN)
4041 abort ();
4042
4043 if ((off & 1) != 0)
4044 off &= ~1;
4045 else
4046 {
4047 bfd_boolean need_relocs = FALSE;
4048 Elf_Internal_Rela outrel;
4049 bfd_byte *loc = NULL;
4050 int cur_off = off;
4051
4052 /* The GOT entries have not been initialized yet. Do it
4053 now, and emit any relocations. If both an IE GOT and a
4054 GD GOT are necessary, we emit the GD first. */
4055
4056 if (indx != 0
4057 || (bfd_link_dll (info)
4058 && (hh == NULL
4059 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))))
4060 {
4061 need_relocs = TRUE;
4062 loc = htab->etab.srelgot->contents;
4063 loc += (htab->etab.srelgot->reloc_count
4064 * sizeof (Elf32_External_Rela));
4065 }
4066
4067 if (tls_type & GOT_TLS_GD)
4068 {
4069 if (need_relocs)
4070 {
4071 outrel.r_offset
4072 = (cur_off
4073 + htab->etab.sgot->output_section->vma
4074 + htab->etab.sgot->output_offset);
4075 outrel.r_info
4076 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32);
4077 outrel.r_addend = 0;
4078 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4079 htab->etab.srelgot->reloc_count++;
4080 loc += sizeof (Elf32_External_Rela);
4081 bfd_put_32 (output_bfd, 0,
4082 htab->etab.sgot->contents + cur_off);
4083 }
4084 else
4085 /* If we are not emitting relocations for a
4086 general dynamic reference, then we must be in a
4087 static link or an executable link with the
4088 symbol binding locally. Mark it as belonging
4089 to module 1, the executable. */
4090 bfd_put_32 (output_bfd, 1,
4091 htab->etab.sgot->contents + cur_off);
4092
4093 if (indx != 0)
4094 {
4095 outrel.r_info
4096 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4097 outrel.r_offset += 4;
4098 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4099 htab->etab.srelgot->reloc_count++;
4100 loc += sizeof (Elf32_External_Rela);
4101 bfd_put_32 (output_bfd, 0,
4102 htab->etab.sgot->contents + cur_off + 4);
4103 }
4104 else
4105 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4106 htab->etab.sgot->contents + cur_off + 4);
4107 cur_off += 8;
4108 }
4109
4110 if (tls_type & GOT_TLS_IE)
4111 {
4112 if (need_relocs
4113 && !(bfd_link_executable (info)
4114 && SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4115 {
4116 outrel.r_offset
4117 = (cur_off
4118 + htab->etab.sgot->output_section->vma
4119 + htab->etab.sgot->output_offset);
4120 outrel.r_info = ELF32_R_INFO (indx,
4121 R_PARISC_TLS_TPREL32);
4122 if (indx == 0)
4123 outrel.r_addend = relocation - dtpoff_base (info);
4124 else
4125 outrel.r_addend = 0;
4126 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4127 htab->etab.srelgot->reloc_count++;
4128 loc += sizeof (Elf32_External_Rela);
4129 }
4130 else
4131 bfd_put_32 (output_bfd, tpoff (info, relocation),
4132 htab->etab.sgot->contents + cur_off);
4133 cur_off += 4;
4134 }
4135
4136 if (hh != NULL)
4137 hh->eh.got.offset |= 1;
4138 else
4139 local_got_offsets[r_symndx] |= 1;
4140 }
4141
4142 if ((tls_type & GOT_NORMAL) != 0
4143 && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0)
4144 {
4145 if (hh != NULL)
4146 _bfd_error_handler (_("%s has both normal and TLS relocs"),
4147 hh_name (hh));
4148 else
4149 {
4150 Elf_Internal_Sym *isym
4151 = bfd_sym_from_r_symndx (&htab->sym_cache,
4152 input_bfd, r_symndx);
4153 if (isym == NULL)
4154 return FALSE;
4155 sym_name
4156 = bfd_elf_string_from_elf_section (input_bfd,
4157 symtab_hdr->sh_link,
4158 isym->st_name);
4159 if (sym_name == NULL)
4160 return FALSE;
4161 if (*sym_name == '\0')
4162 sym_name = bfd_section_name (sym_sec);
4163 _bfd_error_handler
4164 (_("%pB:%s has both normal and TLS relocs"),
4165 input_bfd, sym_name);
4166 }
4167 bfd_set_error (bfd_error_bad_value);
4168 return FALSE;
4169 }
4170
4171 if ((tls_type & GOT_TLS_GD)
4172 && r_type != R_PARISC_TLS_GD21L
4173 && r_type != R_PARISC_TLS_GD14R)
4174 off += 2 * GOT_ENTRY_SIZE;
4175
4176 /* Add the base of the GOT to the relocation value. */
4177 relocation = (off
4178 + htab->etab.sgot->output_offset
4179 + htab->etab.sgot->output_section->vma);
4180
4181 break;
4182 }
4183
4184 case R_PARISC_TLS_LE21L:
4185 case R_PARISC_TLS_LE14R:
4186 {
4187 relocation = tpoff (info, relocation);
4188 break;
4189 }
4190 break;
4191
4192 default:
4193 break;
4194 }
4195
4196 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4197 htab, sym_sec, hh, info);
4198
4199 if (rstatus == bfd_reloc_ok)
4200 continue;
4201
4202 if (hh != NULL)
4203 sym_name = hh_name (hh);
4204 else
4205 {
4206 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4207 symtab_hdr->sh_link,
4208 sym->st_name);
4209 if (sym_name == NULL)
4210 return FALSE;
4211 if (*sym_name == '\0')
4212 sym_name = bfd_section_name (sym_sec);
4213 }
4214
4215 howto = elf_hppa_howto_table + r_type;
4216
4217 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4218 {
4219 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4220 {
4221 _bfd_error_handler
4222 /* xgettext:c-format */
4223 (_("%pB(%pA+%#" PRIx64 "): cannot handle %s for %s"),
4224 input_bfd,
4225 input_section,
4226 (uint64_t) rela->r_offset,
4227 howto->name,
4228 sym_name);
4229 bfd_set_error (bfd_error_bad_value);
4230 return FALSE;
4231 }
4232 }
4233 else
4234 (*info->callbacks->reloc_overflow)
4235 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4236 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4237 }
4238
4239 return TRUE;
4240 }
4241
4242 /* Finish up dynamic symbol handling. We set the contents of various
4243 dynamic sections here. */
4244
4245 static bfd_boolean
4246 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4247 struct bfd_link_info *info,
4248 struct elf_link_hash_entry *eh,
4249 Elf_Internal_Sym *sym)
4250 {
4251 struct elf32_hppa_link_hash_table *htab;
4252 Elf_Internal_Rela rela;
4253 bfd_byte *loc;
4254
4255 htab = hppa_link_hash_table (info);
4256 if (htab == NULL)
4257 return FALSE;
4258
4259 if (eh->plt.offset != (bfd_vma) -1)
4260 {
4261 bfd_vma value;
4262
4263 if (eh->plt.offset & 1)
4264 abort ();
4265
4266 /* This symbol has an entry in the procedure linkage table. Set
4267 it up.
4268
4269 The format of a plt entry is
4270 <funcaddr>
4271 <__gp>
4272 */
4273 value = 0;
4274 if (eh->root.type == bfd_link_hash_defined
4275 || eh->root.type == bfd_link_hash_defweak)
4276 {
4277 value = eh->root.u.def.value;
4278 if (eh->root.u.def.section->output_section != NULL)
4279 value += (eh->root.u.def.section->output_offset
4280 + eh->root.u.def.section->output_section->vma);
4281 }
4282
4283 /* Create a dynamic IPLT relocation for this entry. */
4284 rela.r_offset = (eh->plt.offset
4285 + htab->etab.splt->output_offset
4286 + htab->etab.splt->output_section->vma);
4287 if (eh->dynindx != -1)
4288 {
4289 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4290 rela.r_addend = 0;
4291 }
4292 else
4293 {
4294 /* This symbol has been marked to become local, and is
4295 used by a plabel so must be kept in the .plt. */
4296 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4297 rela.r_addend = value;
4298 }
4299
4300 loc = htab->etab.srelplt->contents;
4301 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4302 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4303
4304 if (!eh->def_regular)
4305 {
4306 /* Mark the symbol as undefined, rather than as defined in
4307 the .plt section. Leave the value alone. */
4308 sym->st_shndx = SHN_UNDEF;
4309 }
4310 }
4311
4312 if (eh->got.offset != (bfd_vma) -1
4313 && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0
4314 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4315 {
4316 bfd_boolean is_dyn = (eh->dynindx != -1
4317 && !SYMBOL_REFERENCES_LOCAL (info, eh));
4318
4319 if (is_dyn || bfd_link_pic (info))
4320 {
4321 /* This symbol has an entry in the global offset table. Set
4322 it up. */
4323
4324 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4325 + htab->etab.sgot->output_offset
4326 + htab->etab.sgot->output_section->vma);
4327
4328 /* If this is a -Bsymbolic link and the symbol is defined
4329 locally or was forced to be local because of a version
4330 file, we just want to emit a RELATIVE reloc. The entry
4331 in the global offset table will already have been
4332 initialized in the relocate_section function. */
4333 if (!is_dyn)
4334 {
4335 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4336 rela.r_addend = (eh->root.u.def.value
4337 + eh->root.u.def.section->output_offset
4338 + eh->root.u.def.section->output_section->vma);
4339 }
4340 else
4341 {
4342 if ((eh->got.offset & 1) != 0)
4343 abort ();
4344
4345 bfd_put_32 (output_bfd, 0,
4346 htab->etab.sgot->contents + (eh->got.offset & ~1));
4347 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4348 rela.r_addend = 0;
4349 }
4350
4351 loc = htab->etab.srelgot->contents;
4352 loc += (htab->etab.srelgot->reloc_count++
4353 * sizeof (Elf32_External_Rela));
4354 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4355 }
4356 }
4357
4358 if (eh->needs_copy)
4359 {
4360 asection *sec;
4361
4362 /* This symbol needs a copy reloc. Set it up. */
4363
4364 if (! (eh->dynindx != -1
4365 && (eh->root.type == bfd_link_hash_defined
4366 || eh->root.type == bfd_link_hash_defweak)))
4367 abort ();
4368
4369 rela.r_offset = (eh->root.u.def.value
4370 + eh->root.u.def.section->output_offset
4371 + eh->root.u.def.section->output_section->vma);
4372 rela.r_addend = 0;
4373 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4374 if (eh->root.u.def.section == htab->etab.sdynrelro)
4375 sec = htab->etab.sreldynrelro;
4376 else
4377 sec = htab->etab.srelbss;
4378 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4379 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4380 }
4381
4382 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4383 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4384 {
4385 sym->st_shndx = SHN_ABS;
4386 }
4387
4388 return TRUE;
4389 }
4390
4391 /* Used to decide how to sort relocs in an optimal manner for the
4392 dynamic linker, before writing them out. */
4393
4394 static enum elf_reloc_type_class
4395 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4396 const asection *rel_sec ATTRIBUTE_UNUSED,
4397 const Elf_Internal_Rela *rela)
4398 {
4399 /* Handle TLS relocs first; we don't want them to be marked
4400 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4401 check below. */
4402 switch ((int) ELF32_R_TYPE (rela->r_info))
4403 {
4404 case R_PARISC_TLS_DTPMOD32:
4405 case R_PARISC_TLS_DTPOFF32:
4406 case R_PARISC_TLS_TPREL32:
4407 return reloc_class_normal;
4408 }
4409
4410 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4411 return reloc_class_relative;
4412
4413 switch ((int) ELF32_R_TYPE (rela->r_info))
4414 {
4415 case R_PARISC_IPLT:
4416 return reloc_class_plt;
4417 case R_PARISC_COPY:
4418 return reloc_class_copy;
4419 default:
4420 return reloc_class_normal;
4421 }
4422 }
4423
4424 /* Finish up the dynamic sections. */
4425
4426 static bfd_boolean
4427 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4428 struct bfd_link_info *info)
4429 {
4430 bfd *dynobj;
4431 struct elf32_hppa_link_hash_table *htab;
4432 asection *sdyn;
4433 asection * sgot;
4434
4435 htab = hppa_link_hash_table (info);
4436 if (htab == NULL)
4437 return FALSE;
4438
4439 dynobj = htab->etab.dynobj;
4440
4441 sgot = htab->etab.sgot;
4442 /* A broken linker script might have discarded the dynamic sections.
4443 Catch this here so that we do not seg-fault later on. */
4444 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4445 return FALSE;
4446
4447 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4448
4449 if (htab->etab.dynamic_sections_created)
4450 {
4451 Elf32_External_Dyn *dyncon, *dynconend;
4452
4453 if (sdyn == NULL)
4454 abort ();
4455
4456 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4457 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4458 for (; dyncon < dynconend; dyncon++)
4459 {
4460 Elf_Internal_Dyn dyn;
4461 asection *s;
4462
4463 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4464
4465 switch (dyn.d_tag)
4466 {
4467 default:
4468 continue;
4469
4470 case DT_PLTGOT:
4471 /* Use PLTGOT to set the GOT register. */
4472 dyn.d_un.d_ptr = elf_gp (output_bfd);
4473 break;
4474
4475 case DT_JMPREL:
4476 s = htab->etab.srelplt;
4477 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4478 break;
4479
4480 case DT_PLTRELSZ:
4481 s = htab->etab.srelplt;
4482 dyn.d_un.d_val = s->size;
4483 break;
4484 }
4485
4486 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4487 }
4488 }
4489
4490 if (sgot != NULL && sgot->size != 0)
4491 {
4492 /* Fill in the first entry in the global offset table.
4493 We use it to point to our dynamic section, if we have one. */
4494 bfd_put_32 (output_bfd,
4495 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4496 sgot->contents);
4497
4498 /* The second entry is reserved for use by the dynamic linker. */
4499 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4500
4501 /* Set .got entry size. */
4502 elf_section_data (sgot->output_section)
4503 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4504 }
4505
4506 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4507 {
4508 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4509 plt stubs and as such the section does not hold a table of fixed-size
4510 entries. */
4511 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4512
4513 if (htab->need_plt_stub)
4514 {
4515 /* Set up the .plt stub. */
4516 memcpy (htab->etab.splt->contents
4517 + htab->etab.splt->size - sizeof (plt_stub),
4518 plt_stub, sizeof (plt_stub));
4519
4520 if ((htab->etab.splt->output_offset
4521 + htab->etab.splt->output_section->vma
4522 + htab->etab.splt->size)
4523 != (sgot->output_offset
4524 + sgot->output_section->vma))
4525 {
4526 _bfd_error_handler
4527 (_(".got section not immediately after .plt section"));
4528 return FALSE;
4529 }
4530 }
4531 }
4532
4533 return TRUE;
4534 }
4535
4536 /* Called when writing out an object file to decide the type of a
4537 symbol. */
4538 static int
4539 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4540 {
4541 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4542 return STT_PARISC_MILLI;
4543 else
4544 return type;
4545 }
4546
4547 /* Misc BFD support code. */
4548 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4549 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4550 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4551 #define elf_info_to_howto elf_hppa_info_to_howto
4552 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4553
4554 /* Stuff for the BFD linker. */
4555 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4556 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4557 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4558 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4559 #define elf_backend_check_relocs elf32_hppa_check_relocs
4560 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4561 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4562 #define elf_backend_fake_sections elf_hppa_fake_sections
4563 #define elf_backend_relocate_section elf32_hppa_relocate_section
4564 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4565 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4566 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4567 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4568 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4569 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4570 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4571 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4572 #define elf_backend_object_p elf32_hppa_object_p
4573 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4574 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4575 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4576 #define elf_backend_action_discarded elf_hppa_action_discarded
4577
4578 #define elf_backend_can_gc_sections 1
4579 #define elf_backend_can_refcount 1
4580 #define elf_backend_plt_alignment 2
4581 #define elf_backend_want_got_plt 0
4582 #define elf_backend_plt_readonly 0
4583 #define elf_backend_want_plt_sym 0
4584 #define elf_backend_got_header_size 8
4585 #define elf_backend_want_dynrelro 1
4586 #define elf_backend_rela_normal 1
4587 #define elf_backend_dtrel_excludes_plt 1
4588 #define elf_backend_no_page_alias 1
4589
4590 #define TARGET_BIG_SYM hppa_elf32_vec
4591 #define TARGET_BIG_NAME "elf32-hppa"
4592 #define ELF_ARCH bfd_arch_hppa
4593 #define ELF_TARGET_ID HPPA32_ELF_DATA
4594 #define ELF_MACHINE_CODE EM_PARISC
4595 #define ELF_MAXPAGESIZE 0x1000
4596 #define ELF_OSABI ELFOSABI_HPUX
4597 #define elf32_bed elf32_hppa_hpux_bed
4598
4599 #include "elf32-target.h"
4600
4601 #undef TARGET_BIG_SYM
4602 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4603 #undef TARGET_BIG_NAME
4604 #define TARGET_BIG_NAME "elf32-hppa-linux"
4605 #undef ELF_OSABI
4606 #define ELF_OSABI ELFOSABI_GNU
4607 #undef elf32_bed
4608 #define elf32_bed elf32_hppa_linux_bed
4609
4610 #include "elf32-target.h"
4611
4612 #undef TARGET_BIG_SYM
4613 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4614 #undef TARGET_BIG_NAME
4615 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4616 #undef ELF_OSABI
4617 #define ELF_OSABI ELFOSABI_NETBSD
4618 #undef elf32_bed
4619 #define elf32_bed elf32_hppa_netbsd_bed
4620
4621 #include "elf32-target.h"