]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-hppa.c
* targets.c (bfd_target): Rearranged fields in target vector.
[thirdparty/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990, 91, 92, 93, 94 Free Software Foundation, Inc.
3
4 Written by
5
6 Center for Software Science
7 Department of Computer Science
8 University of Utah
9
10 This file is part of BFD, the Binary File Descriptor library.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
25
26 #include "bfd.h"
27 #include "sysdep.h"
28 #include "libbfd.h"
29 #include "obstack.h"
30 #include "bfdlink.h"
31 #include "libelf.h"
32
33 /* Note there isn't much error handling code in here yet. Unexpected
34 conditions are handled by just calling abort. FIXME damnit! */
35
36 /* ELF32/HPPA relocation support
37
38 This file contains ELF32/HPPA relocation support as specified
39 in the Stratus FTX/Golf Object File Format (SED-1762) dated
40 November 19, 1992. */
41
42 #include "elf32-hppa.h"
43 #include "aout/aout64.h"
44 #include "hppa_stubs.h"
45
46 /* The basic stub types supported. If/when shared libraries are
47 implemented some form of IMPORT and EXPORT stubs will be needed. */
48 typedef enum
49 {
50 HPPA_STUB_ILLEGAL,
51 HPPA_STUB_ARG_RELOC,
52 HPPA_STUB_LONG_CALL,
53 } hppa_stub_type;
54
55 /* This is a list of all the stubs for a particular BFD. */
56
57 typedef struct elf32_hppa_stub_name_list_struct
58 {
59 /* The symbol associated with this stub. */
60 asymbol *sym;
61 /* Pointer to chain of all stub chains. */
62 struct elf32_hppa_stub_description_struct *stub_desc;
63 /* Pointer to the stub contents (eg instructions). */
64 int *stub_secp;
65 /* Size of this stub? (in what units? FIXME). */
66 unsigned size;
67 /* Pointer to the next stub entry in the chain. */
68 struct elf32_hppa_stub_name_list_struct *next;
69 } elf32_hppa_stub_name_list;
70
71 /* This is a linked list in which each entry describes all the
72 linker stubs for a particular bfd. */
73
74 typedef struct elf32_hppa_stub_description_struct
75 {
76 /* The next group of stubs. */
77 struct elf32_hppa_stub_description_struct *next;
78 /* Used to identify this group of stubs as belonging
79 to a particular bfd. */
80 bfd *this_bfd;
81 /* FIXME: The stub section for this group of stubs? Is
82 this redundant with stub_listP->sym->section? */
83 asection *stub_sec;
84 /* FIXME: what the hell is this? */
85 unsigned relocs_allocated_cnt;
86 /* The current real size of the stubs (in bytes?). */
87 unsigned real_size;
88 /* How much space we have allocated for stubs (in bytes?). */
89 unsigned allocated_size;
90 /* Pointer to the first available space for new stubs. */
91 int *stub_secp;
92 /* Pointer to the beginning of the stubs. FIXME: Why an int *
93 above and a char * here? */
94 char *stub_contents;
95 /* The list of stubs for this bfd. */
96 elf32_hppa_stub_name_list *stub_listP;
97 /* I guess we just carry this around for fun. */
98 struct bfd_link_info *link_info;
99 } elf32_hppa_stub_description;
100
101 /* FIXME. */
102 #define ARGUMENTS 0
103 #define RETURN_VALUE 1
104
105 /* The various argument relocations that may be performed.
106 Note GRX,GRY really means ARGX,ARGY. */
107 typedef enum
108 {
109 /* No relocation. */
110 NO_ARG_RELOC,
111 /* Relocate 32 bits from general to FP register. */
112 R_TO_FR,
113 /* Relocate 64 bits from arg0,arg1 to FParg1. */
114 R01_TO_FR,
115 /* Relocate 64 bits from arg2,arg3 to FParg3. */
116 R23_TO_FR,
117 /* Relocate 32 bits from FP to general register. */
118 FR_TO_R,
119 /* Relocate 64 bits from FParg1 to arg0,arg1. */
120 FR_TO_R01,
121 /* Relocate 64 bits from FParg3 to arg2,arg3. */
122 FR_TO_R23,
123 /* Death. */
124 ARG_RELOC_ERR,
125 } arg_reloc_type;
126
127 /* Where (what register type) is an argument comming from? */
128 typedef enum
129 {
130 /* Not in a register. */
131 AR_NO,
132 /* In a general argument register. */
133 AR_GR,
134 /* In right half of a FP argument register. */
135 AR_FR,
136 /* In upper (left) half of a FP argument register. */
137 AR_FU,
138 /* In general argument register pair 0 (arg0, arg1). */
139 AR_DBL01,
140 /* In general argument register pair 1 (arg2, arg3). */
141 AR_DBL23,
142 } arg_location;
143
144 /* What is being relocated (eg which argument or the return value). */
145 typedef enum
146 {
147 ARG0, ARG1, ARG2, ARG3, RETVAL,
148 } arg_reloc_location;
149
150 /* Horizontal represents callee's argument location information, vertical
151 represents caller's argument location information. Value at a particular
152 X, Y location represents what (if any) argument relocation needs to
153 be performed to make caller and callee agree. */
154 static CONST arg_reloc_type mismatches[6][6] =
155 {
156 {NO_ARG_RELOC, NO_ARG_RELOC, NO_ARG_RELOC, NO_ARG_RELOC,
157 NO_ARG_RELOC, NO_ARG_RELOC},
158 {NO_ARG_RELOC, NO_ARG_RELOC, R_TO_FR, ARG_RELOC_ERR,
159 R01_TO_FR, ARG_RELOC_ERR},
160 {NO_ARG_RELOC, FR_TO_R, NO_ARG_RELOC, ARG_RELOC_ERR,
161 ARG_RELOC_ERR, ARG_RELOC_ERR},
162 {ARG_RELOC_ERR, ARG_RELOC_ERR, ARG_RELOC_ERR, ARG_RELOC_ERR,
163 ARG_RELOC_ERR, ARG_RELOC_ERR},
164 {NO_ARG_RELOC, FR_TO_R01, NO_ARG_RELOC, ARG_RELOC_ERR,
165 NO_ARG_RELOC, ARG_RELOC_ERR},
166 {NO_ARG_RELOC, FR_TO_R23, NO_ARG_RELOC, ARG_RELOC_ERR,
167 ARG_RELOC_ERR, NO_ARG_RELOC},
168 };
169
170 /* Likewise for the return value. */
171 static CONST arg_reloc_type retval_mismatches[6][6] =
172 {
173 {NO_ARG_RELOC, NO_ARG_RELOC, NO_ARG_RELOC, NO_ARG_RELOC,
174 NO_ARG_RELOC, NO_ARG_RELOC},
175 {NO_ARG_RELOC, NO_ARG_RELOC, FR_TO_R, ARG_RELOC_ERR,
176 FR_TO_R01, ARG_RELOC_ERR},
177 {NO_ARG_RELOC, R_TO_FR, NO_ARG_RELOC, ARG_RELOC_ERR,
178 ARG_RELOC_ERR, ARG_RELOC_ERR},
179 {ARG_RELOC_ERR, ARG_RELOC_ERR, ARG_RELOC_ERR, ARG_RELOC_ERR,
180 ARG_RELOC_ERR, ARG_RELOC_ERR},
181 {NO_ARG_RELOC, R01_TO_FR, NO_ARG_RELOC, ARG_RELOC_ERR,
182 NO_ARG_RELOC, ARG_RELOC_ERR},
183 {NO_ARG_RELOC, R23_TO_FR, NO_ARG_RELOC, ARG_RELOC_ERR,
184 ARG_RELOC_ERR, NO_ARG_RELOC},
185 };
186
187 /* Used for index mapping in symbol-extension sections. */
188 struct elf32_hppa_symextn_map_struct
189 {
190 int old_index;
191 bfd *bfd;
192 asymbol *sym;
193 int new_index;
194 };
195
196 static bfd_reloc_status_type hppa_elf_reloc
197 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
198
199 static unsigned long hppa_elf_relocate_insn
200 PARAMS ((bfd *, asection *, unsigned long, unsigned long, long,
201 long, unsigned long, unsigned long, unsigned long));
202
203 static void hppa_elf_relocate_unwind_table
204 PARAMS ((bfd *, PTR, unsigned long, long, long,
205 unsigned long, unsigned long));
206
207 static long get_symbol_value PARAMS ((asymbol *));
208
209 static bfd_reloc_status_type hppa_elf_reloc
210 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd*, char **));
211
212 static CONST reloc_howto_type * elf_hppa_reloc_type_lookup
213 PARAMS ((bfd *, bfd_reloc_code_real_type));
214
215 static symext_entryS elf32_hppa_get_sym_extn PARAMS ((bfd *, asymbol *, int));
216
217 static elf32_hppa_stub_description * find_stubs PARAMS ((bfd *, asection *));
218
219 static elf32_hppa_stub_description * new_stub
220 PARAMS ((bfd *, asection *, struct bfd_link_info *));
221
222 static arg_reloc_type type_of_mismatch PARAMS ((int, int, int));
223
224 static elf32_hppa_stub_name_list * find_stub_by_name
225 PARAMS ((bfd *, asection *, char *));
226
227 static elf32_hppa_stub_name_list * add_stub_by_name
228 PARAMS ((bfd *, asection *, asymbol *, struct bfd_link_info *));
229
230 static void hppa_elf_stub_finish PARAMS ((bfd *));
231
232 static void hppa_elf_stub_reloc
233 PARAMS ((elf32_hppa_stub_description *, bfd *, asymbol **, int,
234 elf32_hppa_reloc_type));
235
236 static int hppa_elf_arg_reloc_needed_p
237 PARAMS ((bfd *, arelent *, arg_reloc_type [5], symext_entryS));
238
239 static asymbol * hppa_elf_build_linker_stub
240 PARAMS ((bfd *, bfd *, struct bfd_link_info *, arelent *,
241 arg_reloc_type [5], int, unsigned *, hppa_stub_type));
242
243 static void hppa_elf_create_stub_sec
244 PARAMS ((bfd *, bfd *, asection **, struct bfd_link_info *));
245
246 static int hppa_elf_long_branch_needed_p
247 PARAMS ((bfd *, asection *, arelent *, asymbol *, unsigned));
248
249 static boolean hppa_elf_set_section_contents
250 PARAMS ((bfd *, sec_ptr, PTR, file_ptr, bfd_size_type));
251
252 static void elf_info_to_howto
253 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
254
255 static void elf32_hppa_backend_symbol_processing PARAMS ((bfd *, asymbol *));
256
257 static boolean elf32_hppa_backend_section_processing
258 PARAMS ((bfd *, Elf32_Internal_Shdr *));
259
260 static boolean elf32_hppa_backend_symbol_table_processing
261 PARAMS ((bfd *, elf_symbol_type *, int));
262
263 static boolean elf32_hppa_backend_section_from_shdr
264 PARAMS ((bfd *, Elf32_Internal_Shdr *, char *));
265
266 static boolean elf32_hppa_backend_fake_sections
267 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
268
269 static boolean elf32_hppa_backend_section_from_bfd_section
270 PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *, int *));
271
272 static boolean hppa_elf_is_local_label PARAMS ((bfd *, asymbol *));
273
274 /* ELF/PA relocation howto entries. */
275
276 static reloc_howto_type elf_hppa_howto_table[ELF_HOWTO_TABLE_SIZE] =
277 {
278 {R_HPPA_NONE, 0, 3, 19, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_NONE"},
279 {R_HPPA_32, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_32"},
280 {R_HPPA_11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_11"},
281 {R_HPPA_14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_14"},
282 {R_HPPA_17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_17"},
283 {R_HPPA_L21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_L21"},
284 {R_HPPA_R11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_R11"},
285 {R_HPPA_R14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_R14"},
286 {R_HPPA_R17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_R17"},
287 {R_HPPA_LS21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_LS21"},
288 {R_HPPA_RS11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_RS11"},
289 {R_HPPA_RS14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_RS14"},
290 {R_HPPA_RS17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_RS17"},
291 {R_HPPA_LD21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_LD21"},
292 {R_HPPA_RD11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_RD11"},
293 {R_HPPA_RD14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_RD14"},
294 {R_HPPA_RD17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_RD17"},
295 {R_HPPA_LR21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_LR21"},
296 {R_HPPA_RR14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_RR14"},
297 {R_HPPA_RR17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_RR17"},
298 {R_HPPA_GOTOFF_11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_11"},
299 {R_HPPA_GOTOFF_14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_14"},
300 {R_HPPA_GOTOFF_L21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_L21"},
301 {R_HPPA_GOTOFF_R11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_R11"},
302 {R_HPPA_GOTOFF_R14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_R14"},
303 {R_HPPA_GOTOFF_LS21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_LS21"},
304 {R_HPPA_GOTOFF_RS11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_RS11"},
305 {R_HPPA_GOTOFF_RS14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_RS14"},
306 {R_HPPA_GOTOFF_LD21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_LD21"},
307 {R_HPPA_GOTOFF_RD11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_RD11"},
308 {R_HPPA_GOTOFF_RD14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_RD14"},
309 {R_HPPA_GOTOFF_LR21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_LR21"},
310 {R_HPPA_GOTOFF_RR14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_GOTOFF_RR14"},
311 {R_HPPA_ABS_CALL_11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_11"},
312 {R_HPPA_ABS_CALL_14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_14"},
313 {R_HPPA_ABS_CALL_17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_17"},
314 {R_HPPA_ABS_CALL_L21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_L21"},
315 {R_HPPA_ABS_CALL_R11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_R11"},
316 {R_HPPA_ABS_CALL_R14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_R14"},
317 {R_HPPA_ABS_CALL_R17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_R17"},
318 {R_HPPA_ABS_CALL_LS21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_LS21"},
319 {R_HPPA_ABS_CALL_RS11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_RS11"},
320 {R_HPPA_ABS_CALL_RS14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_RS14"},
321 {R_HPPA_ABS_CALL_RS17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_RS17"},
322 {R_HPPA_ABS_CALL_LD21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_LD21"},
323 {R_HPPA_ABS_CALL_RD11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_RD11"},
324 {R_HPPA_ABS_CALL_RD14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_RD14"},
325 {R_HPPA_ABS_CALL_RD17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_RD17"},
326 {R_HPPA_ABS_CALL_LR21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_LR21"},
327 {R_HPPA_ABS_CALL_RR14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_RR14"},
328 {R_HPPA_ABS_CALL_RR17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ABS_CALL_RR17"},
329 {R_HPPA_PCREL_CALL_11, 0, 3, 11, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_11"},
330 {R_HPPA_PCREL_CALL_14, 0, 3, 14, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_14"},
331 {R_HPPA_PCREL_CALL_17, 0, 3, 17, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_17"},
332 {R_HPPA_PCREL_CALL_12, 0, 3, 12, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_12"},
333 {R_HPPA_PCREL_CALL_L21, 0, 3, 21, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_L21"},
334 {R_HPPA_PCREL_CALL_R11, 0, 3, 11, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_R11"},
335 {R_HPPA_PCREL_CALL_R14, 0, 3, 14, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_R14"},
336 {R_HPPA_PCREL_CALL_R17, 0, 3, 17, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_R17"},
337 {R_HPPA_PCREL_CALL_LS21, 0, 3, 21, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_LS21"},
338 {R_HPPA_PCREL_CALL_RS11, 0, 3, 11, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_RS11"},
339 {R_HPPA_PCREL_CALL_RS14, 0, 3, 14, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_RS14"},
340 {R_HPPA_PCREL_CALL_RS17, 0, 3, 17, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_RS17"},
341 {R_HPPA_PCREL_CALL_LD21, 0, 3, 21, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_LD21"},
342 {R_HPPA_PCREL_CALL_RD11, 0, 3, 11, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_RD11"},
343 {R_HPPA_PCREL_CALL_RD14, 0, 3, 14, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_RD14"},
344 {R_HPPA_PCREL_CALL_RD17, 0, 3, 17, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_RD17"},
345 {R_HPPA_PCREL_CALL_LR21, 0, 3, 21, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_LR21"},
346 {R_HPPA_PCREL_CALL_RR14, 0, 3, 14, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_RR14"},
347 {R_HPPA_PCREL_CALL_RR17, 0, 3, 17, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PCREL_CALL_RR17"},
348 {R_HPPA_PLABEL_32, 0, 3, 32, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PLABEL_32"},
349 {R_HPPA_PLABEL_11, 0, 3, 11, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PLABEL_11"},
350 {R_HPPA_PLABEL_14, 0, 3, 14, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PLABEL_14"},
351 {R_HPPA_PLABEL_L21, 0, 3, 21, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PLABEL_L21"},
352 {R_HPPA_PLABEL_R11, 0, 3, 11, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PLABEL_R11"},
353 {R_HPPA_PLABEL_R14, 0, 3, 14, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_PLABEL_R14"},
354 {R_HPPA_DLT_32, 0, 3, 32, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_DLT_32"},
355 {R_HPPA_DLT_11, 0, 3, 11, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_DLT_11"},
356 {R_HPPA_DLT_14, 0, 3, 14, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_DLT_14"},
357 {R_HPPA_DLT_L21, 0, 3, 21, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_DLT_L21"},
358 {R_HPPA_DLT_R11, 0, 3, 11, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_DLT_R11"},
359 {R_HPPA_DLT_R14, 0, 3, 14, false, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_DLT_R14"},
360 {R_HPPA_UNWIND_ENTRY, 0, 3, 32, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_UNWIND_ENTRY"},
361 {R_HPPA_UNWIND_ENTRIES, 0, 3, 32, true, 0, complain_overflow_signed, hppa_elf_reloc, "R_HPPA_UNWIND_ENTRIES"},
362 {R_HPPA_PUSH_CONST, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_PUSH_CONST"},
363 {R_HPPA_PUSH_PC, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_PUSH_PC"},
364 {R_HPPA_PUSH_SYM, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_PUSH_SYM"},
365 {R_HPPA_PUSH_GOTOFF, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_PUSH_GOTOFF"},
366 {R_HPPA_PUSH_ABS_CALL, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_PUSH_ABS_CALL"},
367 {R_HPPA_PUSH_PCREL_CALL, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_PUSH_PCREL_CALL"},
368 {R_HPPA_PUSH_PLABEL, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_PUSH_PLABEL"},
369 {R_HPPA_MAX, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_MAX"},
370 {R_HPPA_MIN, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_MIN"},
371 {R_HPPA_ADD, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ADD"},
372 {R_HPPA_SUB, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_SUB"},
373 {R_HPPA_MULT, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_MULT"},
374 {R_HPPA_DIV, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_DIV"},
375 {R_HPPA_MOD, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_MOD"},
376 {R_HPPA_AND, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_AND"},
377 {R_HPPA_OR, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_OR"},
378 {R_HPPA_XOR, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_XOR"},
379 {R_HPPA_NOT, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_NOT"},
380 {R_HPPA_LSHIFT, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_LSHIFT"},
381 {R_HPPA_ARITH_RSHIFT, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_ARITH_RSHIFT"},
382 {R_HPPA_LOGIC_RSHIFT, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_LOGIC_RSHIFT"},
383 {R_HPPA_EXPR_F, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_L"},
384 {R_HPPA_EXPR_L, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_L"},
385 {R_HPPA_EXPR_R, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_R"},
386 {R_HPPA_EXPR_LS, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_LS"},
387 {R_HPPA_EXPR_RS, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_RS"},
388 {R_HPPA_EXPR_LD, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_LD"},
389 {R_HPPA_EXPR_RD, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_RD"},
390 {R_HPPA_EXPR_LR, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_LR"},
391 {R_HPPA_EXPR_RR, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_RR"},
392 {R_HPPA_EXPR_32, 0, 3, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_32"},
393 {R_HPPA_EXPR_21, 0, 3, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_21"},
394 {R_HPPA_EXPR_11, 0, 3, 11, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_11"},
395 {R_HPPA_EXPR_14, 0, 3, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_14"},
396 {R_HPPA_EXPR_17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_17"},
397 {R_HPPA_EXPR_12, 0, 3, 12, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_EXPR_12"},
398 {R_HPPA_STUB_CALL_17, 0, 3, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_HPPA_STUB_CALL_17"},
399 {R_HPPA_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_dont, NULL, "R_HPPA_UNIMPLEMENTED"},
400 };
401
402 static symext_chainS *symext_rootP;
403 static symext_chainS *symext_lastP;
404 static boolean symext_chain_built;
405 static long global_value;
406 static long GOT_value;
407 static asymbol *global_symbol;
408 static int global_sym_defined;
409 static symext_entryS *symextn_contents;
410 static unsigned int symextn_contents_real_size;
411 static elf32_hppa_stub_description *elf_hppa_stub_rootP;
412 static boolean stubs_finished = false;
413 static struct elf32_hppa_symextn_map_struct *elf32_hppa_symextn_map;
414 static int elf32_hppa_symextn_map_size;
415
416 static char *linker_stubs = NULL;
417 static int linker_stubs_size = 0;
418 static int linker_stubs_max_size = 0;
419 #define STUB_ALLOC_INCR 100
420 #define STUB_SYM_BUFFER_INC 5
421
422 /* Relocate the given INSN given the various input parameters.
423
424 FIXME: endianness and sizeof (long) issues abound here. */
425
426 static unsigned long
427 hppa_elf_relocate_insn (abfd, input_sect, insn, address, sym_value,
428 r_addend, r_format, r_field, pcrel)
429 bfd *abfd;
430 asection *input_sect;
431 unsigned long insn;
432 unsigned long address;
433 long sym_value;
434 long r_addend;
435 unsigned long r_format;
436 unsigned long r_field;
437 unsigned long pcrel;
438 {
439 unsigned char opcode = get_opcode (insn);
440 long constant_value;
441 unsigned arg_reloc;
442
443 switch (opcode)
444 {
445 case LDO:
446 case LDB:
447 case LDH:
448 case LDW:
449 case LDWM:
450 case STB:
451 case STH:
452 case STW:
453 case STWM:
454 case COMICLR:
455 case SUBI:
456 case ADDIT:
457 case ADDI:
458 case LDIL:
459 case ADDIL:
460 constant_value = HPPA_R_CONSTANT (r_addend);
461
462 if (pcrel)
463 sym_value -= address;
464
465 sym_value = hppa_field_adjust (sym_value, constant_value, r_field);
466 return hppa_rebuild_insn (abfd, insn, sym_value, r_format);
467
468 case BL:
469 case BE:
470 case BLE:
471 arg_reloc = HPPA_R_ARG_RELOC (r_addend);
472
473 /* XXX computing constant_value is not needed??? */
474 constant_value = assemble_17 ((insn & 0x001f0000) >> 16,
475 (insn & 0x00001ffc) >> 2,
476 insn & 1);
477
478 constant_value = (constant_value << 15) >> 15;
479 if (pcrel)
480 {
481 sym_value -=
482 address + input_sect->output_offset
483 + input_sect->output_section->vma;
484 sym_value = hppa_field_adjust (sym_value, -8, r_field);
485 }
486 else
487 sym_value = hppa_field_adjust (sym_value, constant_value, r_field);
488
489 return hppa_rebuild_insn (abfd, insn, sym_value >> 2, r_format);
490
491 default:
492 if (opcode == 0)
493 {
494 constant_value = HPPA_R_CONSTANT (r_addend);
495
496 if (pcrel)
497 sym_value -= address;
498
499 return hppa_field_adjust (sym_value, constant_value, r_field);
500 }
501 else
502 abort ();
503 }
504 }
505
506 /* Relocate a single unwind entry, or an entire table of them. */
507
508 static void
509 hppa_elf_relocate_unwind_table (abfd, data, address, sym_value,
510 r_addend, r_type, r_field)
511 bfd *abfd;
512 PTR data;
513 unsigned long address;
514 long sym_value;
515 long r_addend;
516 unsigned long r_type;
517 unsigned long r_field;
518 {
519 bfd_byte *hit_data = address + (bfd_byte *) data;
520 long start_offset;
521 long end_offset;
522 long relocated_value;
523 int i;
524
525 switch (r_type)
526 {
527 case R_HPPA_UNWIND_ENTRY:
528 /* Need to relocate the first two 32bit fields in the unwind. They
529 correspond to a function's start and end address. */
530 start_offset = bfd_get_32 (abfd, hit_data);
531 relocated_value = hppa_field_adjust (sym_value, start_offset, r_field);
532 bfd_put_32 (abfd, relocated_value, hit_data);
533
534 hit_data += sizeof (unsigned long);
535 end_offset = bfd_get_32 (abfd, hit_data);
536 relocated_value = hppa_field_adjust (sym_value, end_offset, r_field);
537 bfd_put_32 (abfd, relocated_value, hit_data);
538 break;
539
540 case R_HPPA_UNWIND_ENTRIES:
541 /* Relocate a mass of unwind entires. The count is passed in r_addend
542 (who's braindamaged idea was this anyway? */
543 for (i = 0; i < r_addend; i++, hit_data += 3 * sizeof (unsigned long))
544 {
545 unsigned int adjustment;
546 /* Adjust the first 32bit field in the unwind entry. It's
547 the starting offset of a function. */
548 start_offset = bfd_get_32 (abfd, hit_data);
549 bfd_put_32 (abfd, sym_value, hit_data);
550 adjustment = sym_value - start_offset;
551
552 /* Now adjust the second 32bit field, it's the ending offset
553 of a function. */
554 hit_data += sizeof (unsigned long);
555 end_offset = adjustment + bfd_get_32 (abfd, hit_data);
556 bfd_put_32 (abfd, end_offset, hit_data);
557
558 /* Prepare for the next iteration. */
559 start_offset = bfd_get_32 (abfd,
560 hit_data + 3 * sizeof (unsigned long));
561 sym_value = start_offset + adjustment;
562 }
563 break;
564
565 default:
566 abort ();
567 }
568 }
569
570 /* Return the relocated value of the given symbol. */
571
572 static long
573 get_symbol_value (symbol)
574 asymbol *symbol;
575 {
576 if (symbol == NULL
577 || symbol->section == &bfd_com_section)
578 return 0;
579 else
580 return symbol->value + symbol->section->output_section->vma
581 + symbol->section->output_offset;
582 }
583
584 /* Return one (or more) BFD relocations which implement the base
585 relocation with modifications based on format and field. */
586
587 elf32_hppa_reloc_type **
588 hppa_elf_gen_reloc_type (abfd, base_type, format, field)
589 bfd *abfd;
590 elf32_hppa_reloc_type base_type;
591 int format;
592 int field;
593 {
594 elf32_hppa_reloc_type *finaltype;
595 elf32_hppa_reloc_type **final_types;
596
597 /* Allocate slots for the BFD relocation. */
598 final_types = (elf32_hppa_reloc_type **)
599 bfd_alloc_by_size_t (abfd, sizeof (elf32_hppa_reloc_type *) * 2);
600 BFD_ASSERT (final_types != 0); /* FIXME */
601
602 /* Allocate space for the relocation itself. */
603 finaltype = (elf32_hppa_reloc_type *)
604 bfd_alloc_by_size_t (abfd, sizeof (elf32_hppa_reloc_type));
605 BFD_ASSERT (finaltype != 0); /* FIXME */
606
607 /* Some reasonable defaults. */
608 final_types[0] = finaltype;
609 final_types[1] = NULL;
610
611 #define final_type finaltype[0]
612
613 final_type = base_type;
614
615 /* Just a tangle of nested switch statements to deal with the braindamage
616 that a different field selector means a completely different relocation
617 for PA ELF. */
618 switch (base_type)
619 {
620 case R_HPPA:
621 switch (format)
622 {
623 case 11:
624 switch (field)
625 {
626 case e_fsel:
627 final_type = R_HPPA_11;
628 break;
629 case e_rsel:
630 final_type = R_HPPA_R11;
631 break;
632 case e_rssel:
633 final_type = R_HPPA_RS11;
634 break;
635 case e_rdsel:
636 final_type = R_HPPA_RD11;
637 break;
638 case e_psel:
639 final_type = R_HPPA_PLABEL_11;
640 break;
641 case e_rpsel:
642 final_type = R_HPPA_PLABEL_R11;
643 break;
644 case e_tsel:
645 final_type = R_HPPA_DLT_11;
646 break;
647 case e_rtsel:
648 final_type = R_HPPA_DLT_R11;
649 break;
650 default:
651 abort ();
652 break;
653 }
654 break;
655
656 case 14:
657 switch (field)
658 {
659 case e_rsel:
660 final_type = R_HPPA_R14;
661 break;
662 case e_rssel:
663 final_type = R_HPPA_RS14;
664 break;
665 case e_rdsel:
666 final_type = R_HPPA_RD14;
667 break;
668 case e_rrsel:
669 final_type = R_HPPA_RR14;
670 break;
671 case e_psel:
672 final_type = R_HPPA_PLABEL_14;
673 break;
674 case e_rpsel:
675 final_type = R_HPPA_PLABEL_R14;
676 break;
677 case e_tsel:
678 final_type = R_HPPA_DLT_14;
679 break;
680 case e_rtsel:
681 final_type = R_HPPA_DLT_R14;
682 break;
683 default:
684 abort ();
685 break;
686 }
687 break;
688
689 case 17:
690 switch (field)
691 {
692 case e_fsel:
693 final_type = R_HPPA_17;
694 break;
695 case e_rsel:
696 final_type = R_HPPA_R17;
697 break;
698 case e_rssel:
699 final_type = R_HPPA_RS17;
700 break;
701 case e_rdsel:
702 final_type = R_HPPA_RD17;
703 break;
704 case e_rrsel:
705 final_type = R_HPPA_RR17;
706 break;
707 default:
708 abort ();
709 break;
710 }
711 break;
712
713 case 21:
714 switch (field)
715 {
716 case e_lsel:
717 final_type = R_HPPA_L21;
718 break;
719 case e_lssel:
720 final_type = R_HPPA_LS21;
721 break;
722 case e_ldsel:
723 final_type = R_HPPA_LD21;
724 break;
725 case e_lrsel:
726 final_type = R_HPPA_LR21;
727 break;
728 case e_lpsel:
729 final_type = R_HPPA_PLABEL_L21;
730 break;
731 case e_ltsel:
732 final_type = R_HPPA_PLABEL_L21;
733 break;
734 default:
735 abort ();
736 break;
737 }
738 break;
739
740 case 32:
741 switch (field)
742 {
743 case e_fsel:
744 final_type = R_HPPA_32;
745 break;
746 case e_psel:
747 final_type = R_HPPA_PLABEL_32;
748 break;
749 case e_tsel:
750 final_type = R_HPPA_DLT_32;
751 break;
752 default:
753 abort ();
754 break;
755 }
756 break;
757
758 default:
759 abort ();
760 break;
761 }
762 break;
763
764
765 case R_HPPA_GOTOFF:
766 switch (format)
767 {
768 case 11:
769 switch (field)
770 {
771 case e_rsel:
772 final_type = R_HPPA_GOTOFF_R11;
773 break;
774 case e_rssel:
775 final_type = R_HPPA_GOTOFF_RS11;
776 break;
777 case e_rdsel:
778 final_type = R_HPPA_GOTOFF_RD11;
779 break;
780 case e_fsel:
781 final_type = R_HPPA_GOTOFF_11;
782 break;
783 default:
784 abort ();
785 break;
786 }
787 break;
788
789 case 14:
790 switch (field)
791 {
792 case e_rsel:
793 final_type = R_HPPA_GOTOFF_R14;
794 break;
795 case e_rssel:
796 final_type = R_HPPA_GOTOFF_RS14;
797 break;
798 case e_rdsel:
799 final_type = R_HPPA_GOTOFF_RD14;
800 break;
801 case e_rrsel:
802 final_type = R_HPPA_GOTOFF_RR14;
803 break;
804 case e_fsel:
805 final_type = R_HPPA_GOTOFF_14;
806 break;
807 default:
808 abort ();
809 break;
810 }
811 break;
812
813 case 21:
814 switch (field)
815 {
816 case e_lsel:
817 final_type = R_HPPA_GOTOFF_L21;
818 break;
819 case e_lssel:
820 final_type = R_HPPA_GOTOFF_LS21;
821 break;
822 case e_ldsel:
823 final_type = R_HPPA_GOTOFF_LD21;
824 break;
825 case e_lrsel:
826 final_type = R_HPPA_GOTOFF_LR21;
827 break;
828 default:
829 abort ();
830 break;
831 }
832 break;
833
834 default:
835 abort ();
836 break;
837 }
838 break;
839
840
841 case R_HPPA_PCREL_CALL:
842 switch (format)
843 {
844 case 11:
845 switch (field)
846 {
847 case e_rsel:
848 final_type = R_HPPA_PCREL_CALL_R11;
849 break;
850 case e_rssel:
851 final_type = R_HPPA_PCREL_CALL_RS11;
852 break;
853 case e_rdsel:
854 final_type = R_HPPA_PCREL_CALL_RD11;
855 break;
856 case e_fsel:
857 final_type = R_HPPA_PCREL_CALL_11;
858 break;
859 default:
860 abort ();
861 break;
862 }
863 break;
864
865 case 14:
866 switch (field)
867 {
868 case e_rsel:
869 final_type = R_HPPA_PCREL_CALL_R14;
870 break;
871 case e_rssel:
872 final_type = R_HPPA_PCREL_CALL_RS14;
873 break;
874 case e_rdsel:
875 final_type = R_HPPA_PCREL_CALL_RD14;
876 break;
877 case e_rrsel:
878 final_type = R_HPPA_PCREL_CALL_RR14;
879 break;
880 case e_fsel:
881 final_type = R_HPPA_PCREL_CALL_14;
882 break;
883 default:
884 abort ();
885 break;
886 }
887 break;
888
889 case 17:
890 switch (field)
891 {
892 case e_rsel:
893 final_type = R_HPPA_PCREL_CALL_R17;
894 break;
895 case e_rssel:
896 final_type = R_HPPA_PCREL_CALL_RS17;
897 break;
898 case e_rdsel:
899 final_type = R_HPPA_PCREL_CALL_RD17;
900 break;
901 case e_rrsel:
902 final_type = R_HPPA_PCREL_CALL_RR17;
903 break;
904 case e_fsel:
905 final_type = R_HPPA_PCREL_CALL_17;
906 break;
907 default:
908 abort ();
909 break;
910 }
911 break;
912
913 case 21:
914 switch (field)
915 {
916 case e_lsel:
917 final_type = R_HPPA_PCREL_CALL_L21;
918 break;
919 case e_lssel:
920 final_type = R_HPPA_PCREL_CALL_LS21;
921 break;
922 case e_ldsel:
923 final_type = R_HPPA_PCREL_CALL_LD21;
924 break;
925 case e_lrsel:
926 final_type = R_HPPA_PCREL_CALL_LR21;
927 break;
928 default:
929 abort ();
930 break;
931 }
932 break;
933
934 default:
935 abort ();
936 break;
937 }
938 break;
939
940
941 case R_HPPA_PLABEL:
942 switch (format)
943 {
944 case 11:
945 switch (field)
946 {
947 case e_fsel:
948 final_type = R_HPPA_PLABEL_11;
949 break;
950 case e_rsel:
951 final_type = R_HPPA_PLABEL_R11;
952 break;
953 default:
954 abort ();
955 break;
956 }
957 break;
958
959 case 14:
960 switch (field)
961 {
962 case e_fsel:
963 final_type = R_HPPA_PLABEL_14;
964 break;
965 case e_rsel:
966 final_type = R_HPPA_PLABEL_R14;
967 break;
968 default:
969 abort ();
970 break;
971 }
972 break;
973
974 case 21:
975 switch (field)
976 {
977 case e_lsel:
978 final_type = R_HPPA_PLABEL_L21;
979 break;
980 default:
981 abort ();
982 break;
983 }
984 break;
985
986 case 32:
987 switch (field)
988 {
989 case e_fsel:
990 final_type = R_HPPA_PLABEL_32;
991 break;
992 default:
993 abort ();
994 break;
995 }
996 break;
997
998 default:
999 abort ();
1000 break;
1001 }
1002
1003
1004 case R_HPPA_ABS_CALL:
1005 switch (format)
1006 {
1007 case 11:
1008 switch (field)
1009 {
1010 case e_rsel:
1011 final_type = R_HPPA_ABS_CALL_R11;
1012 break;
1013 case e_rssel:
1014 final_type = R_HPPA_ABS_CALL_RS11;
1015 break;
1016 case e_rdsel:
1017 final_type = R_HPPA_ABS_CALL_RD11;
1018 break;
1019 case e_fsel:
1020 final_type = R_HPPA_ABS_CALL_11;
1021 break;
1022 default:
1023 abort ();
1024 break;
1025 }
1026 break;
1027
1028 case 14:
1029 switch (field)
1030 {
1031 case e_rsel:
1032 final_type = R_HPPA_ABS_CALL_R14;
1033 break;
1034 case e_rssel:
1035 final_type = R_HPPA_ABS_CALL_RS14;
1036 break;
1037 case e_rdsel:
1038 final_type = R_HPPA_ABS_CALL_RD14;
1039 break;
1040 case e_rrsel:
1041 final_type = R_HPPA_ABS_CALL_RR14;
1042 break;
1043 case e_fsel:
1044 final_type = R_HPPA_ABS_CALL_14;
1045 break;
1046 default:
1047 abort ();
1048 break;
1049 }
1050 break;
1051
1052 case 17:
1053 switch (field)
1054 {
1055 case e_rsel:
1056 final_type = R_HPPA_ABS_CALL_R17;
1057 break;
1058 case e_rssel:
1059 final_type = R_HPPA_ABS_CALL_RS17;
1060 break;
1061 case e_rdsel:
1062 final_type = R_HPPA_ABS_CALL_RD17;
1063 break;
1064 case e_rrsel:
1065 final_type = R_HPPA_ABS_CALL_RR17;
1066 break;
1067 case e_fsel:
1068 final_type = R_HPPA_ABS_CALL_17;
1069 break;
1070 default:
1071 abort ();
1072 break;
1073 }
1074 break;
1075
1076 case 21:
1077 switch (field)
1078 {
1079 case e_lsel:
1080 final_type = R_HPPA_ABS_CALL_L21;
1081 break;
1082 case e_lssel:
1083 final_type = R_HPPA_ABS_CALL_LS21;
1084 break;
1085 case e_ldsel:
1086 final_type = R_HPPA_ABS_CALL_LD21;
1087 break;
1088 case e_lrsel:
1089 final_type = R_HPPA_ABS_CALL_LR21;
1090 break;
1091 default:
1092 abort ();
1093 break;
1094 }
1095 break;
1096
1097 default:
1098 abort ();
1099 break;
1100 }
1101 break;
1102
1103
1104 case R_HPPA_UNWIND:
1105 final_type = R_HPPA_UNWIND_ENTRY;
1106 break;
1107
1108
1109 case R_HPPA_COMPLEX:
1110 case R_HPPA_COMPLEX_PCREL_CALL:
1111 case R_HPPA_COMPLEX_ABS_CALL:
1112 /* The code originally here was horribly broken, and apparently
1113 never used. Zap it. When we need complex relocations rewrite
1114 it correctly! */
1115 abort ();
1116 break;
1117
1118 default:
1119 final_type = base_type;
1120 break;
1121 }
1122
1123 return final_types;
1124 }
1125
1126 #undef final_type
1127
1128
1129 /* Actually perform a relocation. */
1130
1131 static bfd_reloc_status_type
1132 hppa_elf_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd,
1133 error_message)
1134 bfd *abfd;
1135 arelent *reloc_entry;
1136 asymbol *symbol_in;
1137 PTR data;
1138 asection *input_section;
1139 bfd *output_bfd;
1140 char **error_message;
1141 {
1142 unsigned long insn;
1143 long sym_value = 0;
1144 unsigned long addr = reloc_entry->address;
1145 bfd_byte *hit_data = addr + (bfd_byte *) data;
1146 unsigned long r_type = reloc_entry->howto->type;
1147 unsigned long r_field = e_fsel;
1148 boolean r_pcrel = reloc_entry->howto->pc_relative;
1149 unsigned r_format = reloc_entry->howto->bitsize;
1150 long r_addend = reloc_entry->addend;
1151
1152 /* If only performing a partial link, get out early. */
1153 if (output_bfd)
1154 {
1155 reloc_entry->address += input_section->output_offset;
1156 return bfd_reloc_ok;
1157 }
1158
1159 /* If performing final link and the symbol we're relocating against
1160 is undefined, then return an error. */
1161 if (symbol_in && symbol_in->section == &bfd_und_section)
1162 return bfd_reloc_undefined;
1163
1164 /* Get the final relocated value. */
1165 sym_value = get_symbol_value (symbol_in);
1166
1167 /* Compute the value of $global$.
1168 FIXME: None of this should be necessary. $global$ is just a
1169 marker and shouldn't really figure into these computations.
1170
1171 Once that's fixed we'll need to teach this backend to change
1172 DP-relative relocations involving symbols in the text section
1173 to be simple absolute relocations. */
1174 if (!global_sym_defined)
1175 {
1176 if (global_symbol)
1177 {
1178 global_value = (global_symbol->value
1179 + global_symbol->section->output_section->vma
1180 + global_symbol->section->output_offset);
1181 GOT_value = global_value;
1182 global_sym_defined++;
1183 }
1184 }
1185
1186 /* Get the instruction word. */
1187 insn = bfd_get_32 (abfd, hit_data);
1188
1189 /* Relocate the value based on one of the basic relocation types
1190
1191 basic_type_1: relocation is relative to $global$
1192 basic_type_2: relocation is relative to the current GOT
1193 basic_type_3: relocation is an absolute call
1194 basic_type_4: relocation is an PC-relative call
1195 basic_type_5: relocation is plabel reference
1196 basic_type_6: relocation is an unwind table relocation
1197 extended_type: unimplemented */
1198
1199 switch (r_type)
1200 {
1201 case R_HPPA_NONE:
1202 break;
1203
1204 /* Handle all the basic type 1 relocations. */
1205 case R_HPPA_32:
1206 case R_HPPA_11:
1207 case R_HPPA_14:
1208 case R_HPPA_17:
1209 r_field = e_fsel;
1210 goto do_basic_type_1;
1211 case R_HPPA_L21:
1212 r_field = e_lsel;
1213 goto do_basic_type_1;
1214 case R_HPPA_R11:
1215 case R_HPPA_R14:
1216 case R_HPPA_R17:
1217 r_field = e_rsel;
1218 goto do_basic_type_1;
1219 case R_HPPA_LS21:
1220 r_field = e_lssel;
1221 goto do_basic_type_1;
1222 case R_HPPA_RS11:
1223 case R_HPPA_RS14:
1224 case R_HPPA_RS17:
1225 r_field = e_ldsel;
1226 goto do_basic_type_1;
1227 case R_HPPA_LD21:
1228 r_field = e_ldsel;
1229 goto do_basic_type_1;
1230 case R_HPPA_RD11:
1231 case R_HPPA_RD14:
1232 case R_HPPA_RD17:
1233 r_field = e_rdsel;
1234 goto do_basic_type_1;
1235 case R_HPPA_LR21:
1236 r_field = e_lrsel;
1237 goto do_basic_type_1;
1238 case R_HPPA_RR14:
1239 case R_HPPA_RR17:
1240 r_field = e_rrsel;
1241
1242 do_basic_type_1:
1243 insn = hppa_elf_relocate_insn (abfd, input_section, insn, addr,
1244 sym_value, r_addend, r_format,
1245 r_field, r_pcrel);
1246 break;
1247
1248 /* Handle all the basic type 2 relocations. */
1249 case R_HPPA_GOTOFF_11:
1250 case R_HPPA_GOTOFF_14:
1251 r_field = e_fsel;
1252 goto do_basic_type_2;
1253 case R_HPPA_GOTOFF_L21:
1254 r_field = e_lsel;
1255 goto do_basic_type_2;
1256 case R_HPPA_GOTOFF_R11:
1257 case R_HPPA_GOTOFF_R14:
1258 r_field = e_rsel;
1259 goto do_basic_type_2;
1260 case R_HPPA_GOTOFF_LS21:
1261 r_field = e_lssel;
1262 goto do_basic_type_2;
1263 case R_HPPA_GOTOFF_RS11:
1264 case R_HPPA_GOTOFF_RS14:
1265 r_field = e_rssel;
1266 goto do_basic_type_2;
1267 case R_HPPA_GOTOFF_LD21:
1268 r_field = e_ldsel;
1269 goto do_basic_type_2;
1270 case R_HPPA_GOTOFF_RD11:
1271 case R_HPPA_GOTOFF_RD14:
1272 r_field = e_rdsel;
1273 goto do_basic_type_2;
1274 case R_HPPA_GOTOFF_LR21:
1275 r_field = e_lrsel;
1276 goto do_basic_type_2;
1277 case R_HPPA_GOTOFF_RR14:
1278 r_field = e_rrsel;
1279
1280 do_basic_type_2:
1281 sym_value -= GOT_value;
1282 insn = hppa_elf_relocate_insn (abfd, input_section, insn, addr,
1283 sym_value, r_addend, r_format,
1284 r_field, r_pcrel);
1285 break;
1286
1287 /* Handle all the basic type 3 relocations. */
1288 case R_HPPA_ABS_CALL_11:
1289 case R_HPPA_ABS_CALL_14:
1290 case R_HPPA_ABS_CALL_17:
1291 r_field = e_fsel;
1292 goto do_basic_type_3;
1293 case R_HPPA_ABS_CALL_L21:
1294 r_field = e_lsel;
1295 goto do_basic_type_3;
1296 case R_HPPA_ABS_CALL_R11:
1297 case R_HPPA_ABS_CALL_R14:
1298 case R_HPPA_ABS_CALL_R17:
1299 r_field = e_rsel;
1300 goto do_basic_type_3;
1301 case R_HPPA_ABS_CALL_LS21:
1302 r_field = e_lssel;
1303 goto do_basic_type_3;
1304 case R_HPPA_ABS_CALL_RS11:
1305 case R_HPPA_ABS_CALL_RS14:
1306 case R_HPPA_ABS_CALL_RS17:
1307 r_field = e_rssel;
1308 goto do_basic_type_3;
1309 case R_HPPA_ABS_CALL_LD21:
1310 r_field = e_ldsel;
1311 goto do_basic_type_3;
1312 case R_HPPA_ABS_CALL_RD11:
1313 case R_HPPA_ABS_CALL_RD14:
1314 case R_HPPA_ABS_CALL_RD17:
1315 r_field = e_rdsel;
1316 goto do_basic_type_3;
1317 case R_HPPA_ABS_CALL_LR21:
1318 r_field = e_lrsel;
1319 goto do_basic_type_3;
1320 case R_HPPA_ABS_CALL_RR14:
1321 case R_HPPA_ABS_CALL_RR17:
1322 r_field = e_rrsel;
1323
1324 do_basic_type_3:
1325 insn = hppa_elf_relocate_insn (abfd, input_section, insn, addr,
1326 sym_value, r_addend, r_format,
1327 r_field, r_pcrel);
1328 break;
1329
1330 /* Handle all the basic type 4 relocations. */
1331 case R_HPPA_PCREL_CALL_11:
1332 case R_HPPA_PCREL_CALL_14:
1333 case R_HPPA_PCREL_CALL_17:
1334 r_field = e_fsel;
1335 goto do_basic_type_4;
1336 case R_HPPA_PCREL_CALL_L21:
1337 r_field = e_lsel;
1338 goto do_basic_type_4;
1339 case R_HPPA_PCREL_CALL_R11:
1340 case R_HPPA_PCREL_CALL_R14:
1341 case R_HPPA_PCREL_CALL_R17:
1342 r_field = e_rsel;
1343 goto do_basic_type_4;
1344 case R_HPPA_PCREL_CALL_LS21:
1345 r_field = e_lssel;
1346 goto do_basic_type_4;
1347 case R_HPPA_PCREL_CALL_RS11:
1348 case R_HPPA_PCREL_CALL_RS14:
1349 case R_HPPA_PCREL_CALL_RS17:
1350 r_field = e_rssel;
1351 goto do_basic_type_4;
1352 case R_HPPA_PCREL_CALL_LD21:
1353 r_field = e_ldsel;
1354 goto do_basic_type_4;
1355 case R_HPPA_PCREL_CALL_RD11:
1356 case R_HPPA_PCREL_CALL_RD14:
1357 case R_HPPA_PCREL_CALL_RD17:
1358 r_field = e_rdsel;
1359 goto do_basic_type_4;
1360 case R_HPPA_PCREL_CALL_LR21:
1361 r_field = e_lrsel;
1362 goto do_basic_type_4;
1363 case R_HPPA_PCREL_CALL_RR14:
1364 case R_HPPA_PCREL_CALL_RR17:
1365 r_field = e_rrsel;
1366
1367 do_basic_type_4:
1368 insn = hppa_elf_relocate_insn (abfd, input_section, insn, addr,
1369 sym_value, r_addend, r_format,
1370 r_field, r_pcrel);
1371 break;
1372
1373 /* Handle all the basic type 5 relocations. */
1374 case R_HPPA_PLABEL_32:
1375 case R_HPPA_PLABEL_11:
1376 case R_HPPA_PLABEL_14:
1377 r_field = e_fsel;
1378 goto do_basic_type_5;
1379 case R_HPPA_PLABEL_L21:
1380 r_field = e_lsel;
1381 goto do_basic_type_5;
1382 case R_HPPA_PLABEL_R11:
1383 case R_HPPA_PLABEL_R14:
1384 r_field = e_rsel;
1385 do_basic_type_5:
1386 insn = hppa_elf_relocate_insn (abfd, input_section, insn, addr,
1387 sym_value, r_addend, r_format,
1388 r_field, r_pcrel);
1389 break;
1390
1391 /* Handle all basic type 6 relocations. */
1392 case R_HPPA_UNWIND_ENTRY:
1393 case R_HPPA_UNWIND_ENTRIES:
1394 hppa_elf_relocate_unwind_table (abfd, data, addr,
1395 sym_value, r_addend,
1396 r_type, r_field);
1397 return bfd_reloc_ok;
1398
1399 /* This is a linker internal relocation. */
1400 case R_HPPA_STUB_CALL_17:
1401 /* This relocation is for a branch to a long branch stub.
1402 Change instruction to a BLE,N. It may also be necessary
1403 to interchange the branch and its delay slot.
1404 The original instruction stream is
1405
1406 bl <foo>,r ; call foo using register r as
1407 ; the return pointer
1408 XXX ; delay slot instruction
1409
1410 The new instruction stream will be:
1411
1412 XXX ; delay slot instruction
1413 ble <foo_stub> ; call the long call stub for foo
1414 ; using r31 as the return pointer
1415
1416 This braindamage is necessary because the compiler may put
1417 an instruction which uses %r31 in the delay slot of the original
1418 call. By changing the call instruction from a "bl" to a "ble"
1419 %r31 gets clobbered before the delay slot executes. This
1420 also means the stub has to play funny games to make sure
1421 we return to the instruction just after the BLE rather than
1422 two instructions after the BLE.
1423
1424 We do not interchange the branch and delay slot if the delay
1425 slot was already nullified, or if the instruction in the delay
1426 slot modifies the return pointer to avoid an unconditional
1427 jump after the call returns (GCC optimization).
1428
1429 None of this horseshit would be necessary if we put the
1430 stubs between functions and just redirected the "bl" to
1431 the stub. Live and learn. */
1432
1433 /* Is this instruction nullified? (does this ever happen?) */
1434 if (insn & 2)
1435 {
1436 insn = BLE_N_XXX_0_0;
1437 bfd_put_32 (abfd, insn, hit_data);
1438 r_type = R_HPPA_ABS_CALL_17;
1439 r_pcrel = 0;
1440 insn = hppa_elf_relocate_insn (abfd, input_section, insn,
1441 addr, sym_value, r_addend,
1442 r_format, r_field, r_pcrel);
1443 }
1444 else
1445 {
1446 /* So much for the trivial case... */
1447 unsigned long old_delay_slot_insn = bfd_get_32 (abfd, hit_data + 4);
1448 unsigned rtn_reg = (insn & 0x03e00000) >> 21;
1449
1450 if (get_opcode (old_delay_slot_insn) == LDO)
1451 {
1452 unsigned ldo_src_reg = (old_delay_slot_insn & 0x03e00000) >> 21;
1453 unsigned ldo_target_reg = (old_delay_slot_insn & 0x001f0000) >> 16;
1454
1455 /* If the target of the LDO is the same as the return
1456 register then there is no reordering. We can leave the
1457 instuction as a non-nullified BLE in this case.
1458
1459 FIXME: This test looks wrong. If we had a ble using
1460 ldo_target_reg as the *source* we'd fuck this up. */
1461 if (ldo_target_reg == rtn_reg)
1462 {
1463 unsigned long new_delay_slot_insn = old_delay_slot_insn;
1464
1465 BFD_ASSERT (ldo_src_reg == ldo_target_reg);
1466 new_delay_slot_insn &= 0xfc00ffff;
1467 new_delay_slot_insn |= ((31 << 21) | (31 << 16));
1468 bfd_put_32 (abfd, new_delay_slot_insn, hit_data + 4);
1469 insn = BLE_XXX_0_0;
1470 r_type = R_HPPA_ABS_CALL_17;
1471 r_pcrel = 0;
1472 insn = hppa_elf_relocate_insn (abfd, input_section, insn,
1473 addr, sym_value, r_addend,
1474 r_format, r_field, r_pcrel);
1475 bfd_put_32 (abfd, insn, hit_data);
1476 return bfd_reloc_ok;
1477 }
1478 else if (rtn_reg == 31)
1479 {
1480 /* The return register is r31, so this is a millicode
1481 call. Do not perform any instruction reordering. */
1482 insn = BLE_XXX_0_0;
1483 r_type = R_HPPA_ABS_CALL_17;
1484 r_pcrel = 0;
1485 insn = hppa_elf_relocate_insn (abfd, input_section, insn,
1486 addr, sym_value,
1487 r_addend, r_format,
1488 r_field, r_pcrel);
1489 bfd_put_32 (abfd, insn, hit_data);
1490 return bfd_reloc_ok;
1491 }
1492 else
1493 {
1494 /* Check to see if the delay slot instruction has a
1495 relocation. If so, we need to change the address
1496 field of it because the instruction it relocates
1497 is going to be moved. Oh what a mess. */
1498 arelent * next_reloc_entry = reloc_entry+1;
1499
1500 if (next_reloc_entry->address == reloc_entry->address + 4)
1501 next_reloc_entry->address -= 4;
1502
1503 insn = old_delay_slot_insn;
1504 bfd_put_32 (abfd, insn, hit_data);
1505 insn = BLE_N_XXX_0_0;
1506 bfd_put_32 (abfd, insn, hit_data + 4);
1507 r_type = R_HPPA_ABS_CALL_17;
1508 r_pcrel = 0;
1509 insn = hppa_elf_relocate_insn (abfd, input_section, insn,
1510 addr + 4,
1511 sym_value, r_addend,
1512 r_format, r_field, r_pcrel);
1513 bfd_put_32 (abfd, insn, hit_data + 4);
1514 return bfd_reloc_ok;
1515 }
1516 }
1517 /* Same comments as above regarding incorrect test. */
1518 else if (rtn_reg == 31)
1519 {
1520 /* The return register is r31, so this is a millicode call.
1521 Perform no instruction reordering in this case. */
1522 insn = BLE_XXX_0_0;
1523 r_type = R_HPPA_ABS_CALL_17;
1524 r_pcrel = 0;
1525 insn = hppa_elf_relocate_insn (abfd, input_section, insn,
1526 addr, sym_value,
1527 r_addend, r_format,
1528 r_field, r_pcrel);
1529 bfd_put_32 (abfd, insn, hit_data);
1530 return bfd_reloc_ok;
1531 }
1532 else
1533 {
1534 /* Check to see if the delay slot instruction has a
1535 relocation. If so, we need to change its address
1536 field because the instruction it relocates is going
1537 to be moved. */
1538 arelent * next_reloc_entry = reloc_entry+1;
1539
1540 if (next_reloc_entry->address == reloc_entry->address + 4)
1541 next_reloc_entry->address -= 4;
1542
1543 insn = old_delay_slot_insn;
1544 bfd_put_32 (abfd, insn, hit_data);
1545 insn = BLE_N_XXX_0_0;
1546 bfd_put_32 (abfd, insn, hit_data + 4);
1547 r_type = R_HPPA_ABS_CALL_17;
1548 r_pcrel = 0;
1549 insn = hppa_elf_relocate_insn (abfd, input_section, insn,
1550 addr + 4, sym_value,
1551 r_addend, r_format,
1552 r_field, r_pcrel);
1553 bfd_put_32 (abfd, insn, hit_data + 4);
1554 return bfd_reloc_ok;
1555 }
1556 }
1557 break;
1558
1559 /* Something we don't know how to handle. */
1560 default:
1561 *error_message = (char *) "Unrecognized reloc";
1562 return bfd_reloc_notsupported;
1563 }
1564
1565 /* Update the instruction word. */
1566 bfd_put_32 (abfd, insn, hit_data);
1567 return (bfd_reloc_ok);
1568 }
1569
1570 /* Return the address of the howto table entry to perform the CODE
1571 relocation for an ARCH machine. */
1572
1573 static CONST reloc_howto_type *
1574 elf_hppa_reloc_type_lookup (abfd, code)
1575 bfd *abfd;
1576 bfd_reloc_code_real_type code;
1577 {
1578 if ((int) code < (int) R_HPPA_UNIMPLEMENTED)
1579 {
1580 BFD_ASSERT ((int) elf_hppa_howto_table[(int) code].type == (int) code);
1581 return &elf_hppa_howto_table[(int) code];
1582 }
1583 return NULL;
1584 }
1585
1586 /* Return true if SYM represents a local label symbol. */
1587
1588 static boolean
1589 hppa_elf_is_local_label (abfd, sym)
1590 bfd *abfd;
1591 asymbol *sym;
1592 {
1593 return (sym->name[0] == 'L' && sym->name[1] == '$');
1594 }
1595
1596 /* Update the symbol extention chain to include the symbol pointed to
1597 by SYMBOLP if SYMBOLP is a function symbol. Used internally and by GAS. */
1598
1599 void
1600 elf_hppa_tc_symbol (abfd, symbolP, sym_idx, symext_root, symext_last)
1601 bfd *abfd;
1602 elf_symbol_type *symbolP;
1603 int sym_idx;
1604 symext_chainS **symext_root;
1605 symext_chainS **symext_last;
1606 {
1607 symext_chainS *symextP;
1608 unsigned int arg_reloc;
1609
1610 /* Only functions can have argument relocations. */
1611 if (!(symbolP->symbol.flags & BSF_FUNCTION))
1612 return;
1613
1614 arg_reloc = symbolP->tc_data.hppa_arg_reloc;
1615
1616 /* If there are no argument relocation bits, then no relocation is
1617 necessary. Do not add this to the symextn section. */
1618 if (arg_reloc == 0)
1619 return;
1620
1621 /* Allocate memory and initialize this entry. */
1622 symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
1623 if (!symextP)
1624 {
1625 bfd_set_error (bfd_error_no_memory);
1626 abort(); /* FIXME */
1627 }
1628
1629 symextP[0].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX, sym_idx);
1630 symextP[0].next = &symextP[1];
1631
1632 symextP[1].entry = ELF32_HPPA_SX_WORD (HPPA_SXT_ARG_RELOC, arg_reloc);
1633 symextP[1].next = NULL;
1634
1635 /* Now update the chain itself so it can be walked later to build
1636 the symbol extension section. */
1637 if (*symext_root == NULL)
1638 {
1639 *symext_root = &symextP[0];
1640 *symext_last = &symextP[1];
1641 }
1642 else
1643 {
1644 (*symext_last)->next = &symextP[0];
1645 *symext_last = &symextP[1];
1646 }
1647 }
1648
1649 /* Build the symbol extension section. Used internally and by GAS. */
1650
1651 void
1652 elf_hppa_tc_make_sections (abfd, symext_root)
1653 bfd *abfd;
1654 symext_chainS *symext_root;
1655 {
1656 symext_chainS *symextP;
1657 int size, n, i;
1658 asection *symextn_sec;
1659
1660 /* FIXME: Huh? I don't see what this is supposed to do for us. */
1661 hppa_elf_stub_finish (abfd);
1662
1663 /* If there are no entries in the symbol extension chain, then
1664 there is no symbol extension section. */
1665 if (symext_root == NULL)
1666 return;
1667
1668 /* Count the number of entries on the chain. */
1669 for (n = 0, symextP = symext_root; symextP; symextP = symextP->next, ++n)
1670 ;
1671
1672 /* Create the symbol extension section and set some appropriate
1673 attributes. */
1674 size = sizeof (symext_entryS) * n;
1675 symextn_sec = bfd_get_section_by_name (abfd, SYMEXTN_SECTION_NAME);
1676 if (symextn_sec == (asection *) 0)
1677 {
1678 symextn_sec = bfd_make_section (abfd, SYMEXTN_SECTION_NAME);
1679 bfd_set_section_flags (abfd,
1680 symextn_sec,
1681 SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
1682 symextn_sec->output_section = symextn_sec;
1683 symextn_sec->output_offset = 0;
1684 bfd_set_section_alignment (abfd, symextn_sec, 2);
1685 }
1686 bfd_set_section_size (abfd, symextn_sec, symextn_contents_real_size);
1687 symextn_contents_real_size = size;
1688
1689 /* Grab some memory for the contents of the symbol extension section
1690 itself. */
1691 symextn_contents = (symext_entryS *) bfd_alloc (abfd, size);
1692 if (!symextn_contents)
1693 {
1694 bfd_set_error (bfd_error_no_memory);
1695 abort(); /* FIXME */
1696 }
1697
1698 /* Fill in the contents of the symbol extension section. */
1699 for (i = 0, symextP = symext_root; symextP; symextP = symextP->next, ++i)
1700 symextn_contents[i] = symextP->entry;
1701
1702 return;
1703 }
1704
1705 /* Return the symbol extension record of type TYPE for the symbol SYM. */
1706
1707 static symext_entryS
1708 elf32_hppa_get_sym_extn (abfd, sym, type)
1709 bfd *abfd;
1710 asymbol *sym;
1711 int type;
1712 {
1713 switch (type)
1714 {
1715 case HPPA_SXT_SYMNDX:
1716 case HPPA_SXT_NULL:
1717 return (symext_entryS) 0;
1718 case HPPA_SXT_ARG_RELOC:
1719 {
1720 elf_symbol_type *esymP = (elf_symbol_type *) sym;
1721
1722 return (symext_entryS) esymP->tc_data.hppa_arg_reloc;
1723 }
1724 /* This should never happen. */
1725 default:
1726 abort();
1727 }
1728 }
1729
1730 /* Search the chain of stub descriptions and locate the stub
1731 description for this the given section within the given bfd.
1732
1733 FIXME: I see yet another wonderful linear linked list search
1734 here. This is probably bad. */
1735
1736 static elf32_hppa_stub_description *
1737 find_stubs (abfd, stub_sec)
1738 bfd *abfd;
1739 asection *stub_sec;
1740 {
1741 elf32_hppa_stub_description *stubP;
1742
1743 for (stubP = elf_hppa_stub_rootP; stubP; stubP = stubP->next)
1744 {
1745 /* Is this the right one? */
1746 if (stubP->this_bfd == abfd && stubP->stub_sec == stub_sec)
1747 return stubP;
1748 }
1749 return NULL;
1750 }
1751
1752 static elf32_hppa_stub_description *
1753 new_stub (abfd, stub_sec, link_info)
1754 bfd *abfd;
1755 asection *stub_sec;
1756 struct bfd_link_info *link_info;
1757 {
1758 elf32_hppa_stub_description *stub = find_stubs (abfd, stub_sec);
1759
1760 /* If we found a list for this bfd, then use it. */
1761 if (stub)
1762 return stub;
1763
1764 /* Nope, allocate and initialize a new entry in the stub list chain. */
1765 stub = (elf32_hppa_stub_description *)
1766 bfd_zalloc (abfd, sizeof (elf32_hppa_stub_description));
1767 if (stub)
1768 {
1769 stub->this_bfd = abfd;
1770 stub->stub_sec = stub_sec;
1771 stub->real_size = 0;
1772 stub->allocated_size = 0;
1773 stub->stub_contents = NULL;
1774 stub->stub_secp = NULL;
1775 stub->link_info = link_info;
1776
1777 stub->next = elf_hppa_stub_rootP;
1778 elf_hppa_stub_rootP = stub;
1779 }
1780 else
1781 {
1782 bfd_set_error (bfd_error_no_memory);
1783 abort(); /* FIXME */
1784 }
1785
1786 return stub;
1787 }
1788
1789 /* Try and locate a stub with the name NAME within the stubs
1790 associated with ABFD. More linked list searches. */
1791
1792 static elf32_hppa_stub_name_list *
1793 find_stub_by_name (abfd, stub_sec, name)
1794 bfd *abfd;
1795 asection *stub_sec;
1796 char *name;
1797 {
1798 /* Find the stubs associated with this bfd. */
1799 elf32_hppa_stub_description *stub = find_stubs (abfd, stub_sec);
1800
1801 /* If found, then we have to walk down them looking for a match. */
1802 if (stub)
1803 {
1804 elf32_hppa_stub_name_list *name_listP;
1805
1806 for (name_listP = stub->stub_listP;
1807 name_listP;
1808 name_listP = name_listP->next)
1809 {
1810 if (!strcmp (name_listP->sym->name, name))
1811 return name_listP;
1812 }
1813 }
1814
1815 /* Not found. */
1816 return 0;
1817 }
1818
1819 /* Add a new stub (SYM) to the list of stubs associated with the given BFD. */
1820 static elf32_hppa_stub_name_list *
1821 add_stub_by_name(abfd, stub_sec, sym, link_info)
1822 bfd *abfd;
1823 asection *stub_sec;
1824 asymbol *sym;
1825 struct bfd_link_info *link_info;
1826 {
1827 elf32_hppa_stub_description *stub = find_stubs (abfd, stub_sec);
1828 elf32_hppa_stub_name_list *stub_entry;
1829
1830 /* If no stubs are associated with this bfd, then we have to make
1831 a chain-of-stubs associated with this bfd. */
1832 if (!stub)
1833 stub = new_stub (abfd, stub_sec, link_info);
1834
1835 if (stub)
1836 {
1837 /* Allocate and initialize an entry in the stub chain. */
1838 stub_entry = (elf32_hppa_stub_name_list *)
1839 bfd_zalloc (abfd, sizeof (elf32_hppa_stub_name_list));
1840
1841 if (stub_entry)
1842 {
1843 stub_entry->size = 0;
1844 stub_entry->sym = sym;
1845 stub_entry->stub_desc = stub;
1846 /* First byte of this stub is the pointer to
1847 the next available location in the stub buffer. */
1848 stub_entry->stub_secp = stub->stub_secp;
1849 /* Add it to the chain. */
1850 if (stub->stub_listP)
1851 stub_entry->next = stub->stub_listP;
1852 else
1853 stub_entry->next = NULL;
1854 stub->stub_listP = stub_entry;
1855 return stub_entry;
1856 }
1857 else
1858 {
1859 bfd_set_error (bfd_error_no_memory);
1860 abort(); /* FIXME */
1861 }
1862 }
1863 /* Death by mis-adventure. */
1864 abort ();
1865 return (elf32_hppa_stub_name_list *)NULL;
1866 }
1867
1868 /* For the given caller/callee argument location information and the
1869 type of relocation (arguments or return value), return the type
1870 of argument relocation needed to make caller and callee happy. */
1871
1872 static arg_reloc_type
1873 type_of_mismatch (caller_bits, callee_bits, type)
1874 int caller_bits;
1875 int callee_bits;
1876 int type;
1877 {
1878 switch (type)
1879 {
1880 case ARGUMENTS:
1881 return mismatches[caller_bits][callee_bits];
1882 case RETURN_VALUE:
1883 return retval_mismatches[caller_bits][callee_bits];
1884 }
1885 return ARG_RELOC_ERR;
1886 }
1887
1888 /* Extract specific argument location bits for WHICH from the
1889 the full argument location information in AR. */
1890 #define EXTRACT_ARBITS(ar, which) ((ar) >> (8 - ((which) * 2))) & 3
1891
1892 /* Add the new instruction INSN into the stub area denoted by ENTRY.
1893 FIXME: Looks like more cases where we assume sizeof (int) ==
1894 sizeof (insn) which may not be true if building cross tools. */
1895 #define NEW_INSTRUCTION(entry, insn) \
1896 { \
1897 *((entry)->stub_desc->stub_secp)++ = (insn); \
1898 (entry)->stub_desc->real_size += sizeof (int); \
1899 (entry)->size += sizeof(int); \
1900 bfd_set_section_size((entry)->stub_desc->this_bfd, \
1901 (entry)->stub_desc->stub_sec, \
1902 (entry)->stub_desc->real_size); \
1903 }
1904
1905 /* Find the offset of the current stub? Looks more like it
1906 finds the offset of the last instruction to me. */
1907 #define CURRENT_STUB_OFFSET(entry) \
1908 ((char *)(entry)->stub_desc->stub_secp \
1909 - (char *)(entry)->stub_desc->stub_contents - 4)
1910
1911 /* All the stubs have already been built, finish up stub stuff
1912 by applying relocations to the stubs. */
1913
1914 static void
1915 hppa_elf_stub_finish (output_bfd)
1916 bfd *output_bfd;
1917 {
1918 elf32_hppa_stub_description *stub_list = elf_hppa_stub_rootP;
1919
1920 /* If the stubs have been finished, then we're already done. */
1921 if (stubs_finished)
1922 return;
1923
1924 /* Walk down the list of stub lists. */
1925 for (; stub_list; stub_list = stub_list->next)
1926 {
1927 /* If this list has stubs, then do something. */
1928 if (stub_list->real_size)
1929 {
1930 bfd *stub_bfd = stub_list->this_bfd;
1931 asection *stub_sec = bfd_get_section_by_name (stub_bfd,
1932 ".hppa_linker_stubs");
1933 long reloc_size;
1934 arelent **reloc_vector;
1935 long reloc_count;
1936
1937 /* Some sanity checking. */
1938 BFD_ASSERT (stub_sec == stub_list->stub_sec);
1939 BFD_ASSERT (stub_sec);
1940
1941 /* For stub sections raw_size == cooked_size. Also update
1942 reloc_done as we're handling the relocs now. */
1943 stub_sec->_cooked_size = stub_sec->_raw_size;
1944 stub_sec->reloc_done = true;
1945
1946 /* Make space to hold the relocations for the stub section. */
1947 reloc_size = bfd_get_reloc_upper_bound (stub_bfd, stub_sec);
1948 if (reloc_size < 0)
1949 {
1950 /* FIXME: Should return an error. */
1951 abort ();
1952 }
1953 reloc_vector = (arelent **) malloc (reloc_size);
1954 if (reloc_vector == NULL && reloc_size != 0)
1955 {
1956 /* FIXME: should be returning an error so the caller can
1957 clean up */
1958 abort ();
1959 }
1960
1961 /* If we have relocations, do them. */
1962 reloc_count = bfd_canonicalize_reloc (stub_bfd, stub_sec,
1963 reloc_vector,
1964 output_bfd->outsymbols);
1965 if (reloc_count < 0)
1966 {
1967 /* FIXME: Should return an error. */
1968 abort ();
1969 }
1970 if (reloc_count > 0)
1971 {
1972 arelent **parent;
1973 for (parent = reloc_vector; *parent != NULL; parent++)
1974 {
1975 char *err = NULL;
1976 bfd_reloc_status_type r =
1977 bfd_perform_relocation (stub_bfd, *parent,
1978 stub_list->stub_contents,
1979 stub_sec, (bfd *) NULL, &err);
1980
1981 /* If there was an error, tell someone about it. */
1982 if (r != bfd_reloc_ok)
1983 {
1984 struct bfd_link_info *link_info = stub_list->link_info;
1985
1986 switch (r)
1987 {
1988 case bfd_reloc_undefined:
1989 if (! ((*link_info->callbacks->undefined_symbol)
1990 (link_info,
1991 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
1992 stub_bfd, stub_sec, (*parent)->address)))
1993 abort ();
1994 break;
1995 case bfd_reloc_dangerous:
1996 if (! ((*link_info->callbacks->reloc_dangerous)
1997 (link_info, err, stub_bfd, stub_sec,
1998 (*parent)->address)))
1999 abort ();
2000 break;
2001 case bfd_reloc_overflow:
2002 {
2003 if (! ((*link_info->callbacks->reloc_overflow)
2004 (link_info,
2005 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
2006 (*parent)->howto->name,
2007 (*parent)->addend,
2008 stub_bfd, stub_sec,
2009 (*parent)->address)))
2010 abort ();
2011 }
2012 break;
2013 case bfd_reloc_outofrange:
2014 default:
2015 abort ();
2016 break;
2017 }
2018 }
2019 }
2020 }
2021 free (reloc_vector);
2022
2023 /* All done with the relocations. Set the final contents
2024 of the stub section. FIXME: no check of return value! */
2025 bfd_set_section_contents (output_bfd, stub_sec,
2026 stub_list->stub_contents,
2027 0, stub_list->real_size);
2028 }
2029 }
2030 /* All done. */
2031 stubs_finished = true;
2032 }
2033
2034 /* Allocate a new relocation entry to be used in a linker stub. */
2035
2036 static void
2037 hppa_elf_stub_reloc (stub_desc, output_bfd, target_sym, offset, type)
2038 elf32_hppa_stub_description *stub_desc;
2039 bfd *output_bfd;
2040 asymbol **target_sym;
2041 int offset;
2042 elf32_hppa_reloc_type type;
2043 {
2044 arelent relent;
2045 int size;
2046 Elf_Internal_Shdr *rela_hdr;
2047
2048 /* I really don't like the realloc nonsense in here. FIXME. */
2049 if (stub_desc->relocs_allocated_cnt == stub_desc->stub_sec->reloc_count)
2050 {
2051 /* Allocate the first few relocation entries. */
2052 if (stub_desc->stub_sec->relocation == NULL)
2053 {
2054 stub_desc->relocs_allocated_cnt = STUB_RELOC_INCR;
2055 size = sizeof (arelent) * stub_desc->relocs_allocated_cnt;
2056 stub_desc->stub_sec->relocation = (arelent *) bfd_zmalloc (size);
2057 }
2058 else
2059 {
2060 /* We've used all the entries we've already allocated. So get
2061 some more. */
2062 stub_desc->relocs_allocated_cnt += STUB_RELOC_INCR;
2063 size = sizeof (arelent) * stub_desc->relocs_allocated_cnt;
2064 stub_desc->stub_sec->relocation = (arelent *)
2065 realloc (stub_desc->stub_sec->relocation, size);
2066 }
2067 if (!stub_desc->stub_sec->relocation)
2068 {
2069 bfd_set_error (bfd_error_no_memory);
2070 abort (); /* FIXME */
2071 }
2072 }
2073
2074 rela_hdr = &elf_section_data(stub_desc->stub_sec)->rel_hdr;
2075 rela_hdr->sh_size += sizeof(Elf32_External_Rela);
2076
2077 /* Fill in the details. */
2078 relent.address = offset;
2079 relent.addend = 0;
2080 relent.sym_ptr_ptr = target_sym;
2081 relent.howto = bfd_reloc_type_lookup (stub_desc->this_bfd, type);
2082
2083 /* Save it in the array of relocations for the stub section. */
2084 memcpy (&stub_desc->stub_sec->relocation[stub_desc->stub_sec->reloc_count++],
2085 &relent, sizeof (arelent));
2086 }
2087
2088 /* Build an argument relocation stub. RTN_ADJUST is a hint that an
2089 adjust to the return pointer from within the stub itself may be
2090 needed. */
2091
2092 static asymbol *
2093 hppa_elf_build_linker_stub (abfd, output_bfd, link_info, reloc_entry,
2094 stub_types, rtn_adjust, data, linker_stub_type)
2095 bfd *abfd;
2096 bfd *output_bfd;
2097 struct bfd_link_info *link_info;
2098 arelent *reloc_entry;
2099 arg_reloc_type stub_types[5];
2100 int rtn_adjust;
2101 unsigned *data;
2102 hppa_stub_type linker_stub_type;
2103 {
2104 int i;
2105 boolean milli, dyncall;
2106 char stub_sym_name[128];
2107 elf32_hppa_stub_name_list *stub_entry;
2108 /* Some initialization. */
2109 unsigned insn = data[0];
2110 asymbol *stub_sym = NULL;
2111 asymbol **orig_sym = reloc_entry->sym_ptr_ptr;
2112 asection *stub_sec = bfd_get_section_by_name (abfd, ".hppa_linker_stubs");
2113 elf32_hppa_stub_description *stub_desc = find_stubs (abfd, stub_sec);
2114
2115 /* Perform some additional checks on whether we should really do the
2116 return adjustment. For example, if the instruction is nullified
2117 or if the delay slot contains an instruction that modifies the return
2118 pointer, then the branch instructions should not be rearranged
2119 (rtn_adjust is false). */
2120 if (insn & 2 || insn == 0)
2121 rtn_adjust = false;
2122 else
2123 {
2124 unsigned delay_insn = data[1];
2125
2126 if (get_opcode (delay_insn) == LDO
2127 && (((insn & 0x03e00000) >> 21) == ((delay_insn & 0x001f0000) >> 16)))
2128 rtn_adjust = false;
2129 }
2130
2131 /* Some special code for long-call stubs. */
2132 if (linker_stub_type == HPPA_STUB_LONG_CALL)
2133 {
2134
2135 /* Is this a millicode call? If so, the return address
2136 comes in on r31 rather than r2 (rp) so a slightly
2137 different code sequence is needed. */
2138 unsigned rtn_reg = (insn & 0x03e00000) >> 21;
2139 if (rtn_reg == 31)
2140 milli = true;
2141
2142 /* Dyncall is special because the user code has already
2143 put the return pointer in %r2 (aka RP). Other millicode
2144 calls have the return pointer in %r31. */
2145 if (strcmp ((*orig_sym)->name, "$$dyncall") == 0)
2146 dyncall = true;
2147
2148 /* If we are creating a call from a stub to another stub, then
2149 never do the instruction reordering. We can tell if we are
2150 going to be calling one stub from another by the fact that
2151 the symbol name has '_stub_' (arg. reloc. stub) or '_lb_stub_'
2152 prepended to the name. Alternatively, the section of the
2153 symbol will be '.hppa_linker_stubs'. This is only an issue
2154 for long-calls; they are the only stubs allowed to call another
2155 stub. */
2156 if ((strncmp ((*orig_sym)->name, "_stub_", 6) == 0)
2157 || (strncmp ((*orig_sym)->name, "_lb_stub_", 9) == 0))
2158 {
2159 BFD_ASSERT (strcmp ((*orig_sym)->section->name, ".hppa_linker_stubs")
2160 == 0);
2161 rtn_adjust = false;
2162 }
2163 }
2164
2165 /* Create the stub section if necessary. */
2166 if (!stub_sec)
2167 {
2168 BFD_ASSERT (stub_desc == NULL);
2169 hppa_elf_create_stub_sec (abfd, output_bfd, &stub_sec, link_info);
2170 stub_desc = new_stub (abfd, stub_sec, link_info);
2171 }
2172
2173 /* Make the stub if we did not find one already. */
2174 if (!stub_desc)
2175 stub_desc = new_stub (abfd, stub_sec, link_info);
2176
2177 /* Allocate space to write the stub.
2178 FIXME: Why using realloc?!? */
2179 if (!stub_desc->stub_contents)
2180 {
2181 stub_desc->allocated_size = STUB_BUFFER_INCR;
2182 stub_desc->stub_contents = (char *) malloc (STUB_BUFFER_INCR);
2183 }
2184 else if ((stub_desc->allocated_size - stub_desc->real_size) < STUB_MAX_SIZE)
2185 {
2186 stub_desc->allocated_size = stub_desc->allocated_size + STUB_BUFFER_INCR;
2187 stub_desc->stub_contents = (char *) realloc (stub_desc->stub_contents,
2188 stub_desc->allocated_size);
2189 }
2190
2191 /* If no memory die. (I seriously doubt the other routines
2192 are prepared to get a NULL return value). */
2193 if (!stub_desc->stub_contents)
2194 {
2195 bfd_set_error (bfd_error_no_memory);
2196 abort ();
2197 }
2198
2199 /* Generate an appropriate name for this stub. */
2200 if (linker_stub_type == HPPA_STUB_ARG_RELOC)
2201 sprintf (stub_sym_name,
2202 "_stub_%s_%02d_%02d_%02d_%02d_%02d_%s",
2203 reloc_entry->sym_ptr_ptr[0]->name,
2204 stub_types[0], stub_types[1], stub_types[2],
2205 stub_types[3], stub_types[4],
2206 rtn_adjust ? "RA" : "");
2207 else
2208 sprintf (stub_sym_name,
2209 "_lb_stub_%s_%s", reloc_entry->sym_ptr_ptr[0]->name,
2210 rtn_adjust ? "RA" : "");
2211
2212
2213 stub_desc->stub_secp
2214 = (int *) (stub_desc->stub_contents + stub_desc->real_size);
2215 stub_entry = find_stub_by_name (abfd, stub_sec, stub_sym_name);
2216
2217 /* See if we already have one by this name. */
2218 if (stub_entry)
2219 {
2220 /* Yes, re-use it. Redirect the original relocation from the
2221 old symbol (a function symbol) to the stub (the stub will call
2222 the original function). */
2223 stub_sym = stub_entry->sym;
2224 reloc_entry->sym_ptr_ptr = (asymbol **) bfd_zalloc (abfd,
2225 sizeof (asymbol **));
2226 if (reloc_entry->sym_ptr_ptr == NULL)
2227 {
2228 bfd_set_error (bfd_error_no_memory);
2229 abort ();
2230 }
2231 reloc_entry->sym_ptr_ptr[0] = stub_sym;
2232 if (linker_stub_type == HPPA_STUB_LONG_CALL
2233 || (reloc_entry->howto->type != R_HPPA_PLABEL_32
2234 && (get_opcode(insn) == BLE
2235 || get_opcode (insn) == BE
2236 || get_opcode (insn) == BL)))
2237 reloc_entry->howto = bfd_reloc_type_lookup (abfd, R_HPPA_STUB_CALL_17);
2238 }
2239 else
2240 {
2241 /* Create a new symbol to point to this stub. */
2242 stub_sym = bfd_make_empty_symbol (abfd);
2243 if (!stub_sym)
2244 {
2245 bfd_set_error (bfd_error_no_memory);
2246 abort ();
2247 }
2248 stub_sym->name = bfd_zalloc (abfd, strlen (stub_sym_name) + 1);
2249 if (!stub_sym->name)
2250 {
2251 bfd_set_error (bfd_error_no_memory);
2252 abort ();
2253 }
2254 strcpy ((char *) stub_sym->name, stub_sym_name);
2255 stub_sym->value
2256 = (char *) stub_desc->stub_secp - (char *) stub_desc->stub_contents;
2257 stub_sym->section = stub_sec;
2258 stub_sym->flags = BSF_LOCAL | BSF_FUNCTION;
2259 stub_entry = add_stub_by_name (abfd, stub_sec, stub_sym, link_info);
2260
2261 /* Redirect the original relocation from the old symbol (a function)
2262 to the stub (the stub calls the function). */
2263 reloc_entry->sym_ptr_ptr = (asymbol **) bfd_zalloc (abfd,
2264 sizeof (asymbol **));
2265 if (reloc_entry->sym_ptr_ptr == NULL)
2266 {
2267 bfd_set_error (bfd_error_no_memory);
2268 abort ();
2269 }
2270 reloc_entry->sym_ptr_ptr[0] = stub_sym;
2271 if (linker_stub_type == HPPA_STUB_LONG_CALL
2272 || (reloc_entry->howto->type != R_HPPA_PLABEL_32
2273 && (get_opcode (insn) == BLE
2274 || get_opcode (insn) == BE
2275 || get_opcode (insn) == BL)))
2276 reloc_entry->howto = bfd_reloc_type_lookup (abfd, R_HPPA_STUB_CALL_17);
2277
2278 /* Now generate the code for the stub. Starting with two
2279 common instructions.
2280
2281 FIXME: Do we still need the SP adjustment?
2282 Do we still need to muck with space registers? */
2283 NEW_INSTRUCTION (stub_entry, LDSID_31_1)
2284 NEW_INSTRUCTION (stub_entry, MTSP_1_SR0)
2285
2286 if (linker_stub_type == HPPA_STUB_ARG_RELOC)
2287 {
2288 NEW_INSTRUCTION (stub_entry, ADDI_8_SP)
2289
2290 /* Examine each argument, generating code to relocate it
2291 into a different register if necessary. */
2292 for (i = ARG0; i < ARG3; i++)
2293 {
2294 switch (stub_types[i])
2295 {
2296
2297 case NO_ARG_RELOC:
2298 continue;
2299
2300 case R_TO_FR:
2301 switch (i)
2302 {
2303 case ARG0:
2304 NEW_INSTRUCTION (stub_entry, STWS_ARG0_M8SP)
2305 NEW_INSTRUCTION (stub_entry, FLDWS_M8SP_FARG0)
2306 break;
2307 case ARG1:
2308 NEW_INSTRUCTION (stub_entry, STWS_ARG1_M8SP)
2309 NEW_INSTRUCTION (stub_entry, FLDWS_M8SP_FARG1)
2310 break;
2311 case ARG2:
2312 NEW_INSTRUCTION (stub_entry, STWS_ARG2_M8SP)
2313 NEW_INSTRUCTION (stub_entry, FLDWS_M8SP_FARG2)
2314 break;
2315 case ARG3:
2316 NEW_INSTRUCTION (stub_entry, STWS_ARG3_M8SP)
2317 NEW_INSTRUCTION (stub_entry, FLDWS_M8SP_FARG3)
2318 break;
2319 }
2320 continue;
2321
2322 case R01_TO_FR:
2323 switch (i)
2324 {
2325 case ARG0:
2326 NEW_INSTRUCTION (stub_entry, STWS_ARG0_M4SP)
2327 NEW_INSTRUCTION (stub_entry, STWS_ARG1_M8SP)
2328 NEW_INSTRUCTION (stub_entry, FLDDS_M8SP_FARG1)
2329 break;
2330 default:
2331 abort ();
2332 break;
2333 }
2334 continue;
2335
2336 case R23_TO_FR:
2337 switch (i)
2338 {
2339 case ARG2:
2340 NEW_INSTRUCTION (stub_entry, STWS_ARG2_M4SP)
2341 NEW_INSTRUCTION (stub_entry, STWS_ARG3_M8SP)
2342 NEW_INSTRUCTION (stub_entry, FLDDS_M8SP_FARG3)
2343 break;
2344 default:
2345 abort ();
2346 break;
2347 }
2348 continue;
2349
2350 case FR_TO_R:
2351 switch (i)
2352 {
2353 case ARG0:
2354 NEW_INSTRUCTION (stub_entry, FSTWS_FARG0_M8SP)
2355 NEW_INSTRUCTION (stub_entry, LDWS_M4SP_ARG0)
2356 break;
2357 case ARG1:
2358 NEW_INSTRUCTION (stub_entry, FSTWS_FARG1_M8SP)
2359 NEW_INSTRUCTION (stub_entry, LDWS_M4SP_ARG1)
2360 break;
2361 case ARG2:
2362 NEW_INSTRUCTION (stub_entry, FSTWS_FARG2_M8SP)
2363 NEW_INSTRUCTION (stub_entry, LDWS_M4SP_ARG2)
2364 break;
2365 case ARG3:
2366 NEW_INSTRUCTION (stub_entry, FSTWS_FARG3_M8SP)
2367 NEW_INSTRUCTION (stub_entry, LDWS_M4SP_ARG3)
2368 break;
2369 }
2370 continue;
2371
2372 case FR_TO_R01:
2373 switch (i)
2374 {
2375 case ARG0:
2376 NEW_INSTRUCTION (stub_entry, FSTDS_FARG1_M8SP)
2377 NEW_INSTRUCTION (stub_entry, LDWS_M4SP_ARG0)
2378 NEW_INSTRUCTION (stub_entry, LDWS_M8SP_ARG1)
2379 break;
2380 default:
2381 abort ();
2382 break;
2383 }
2384 continue;
2385
2386 case FR_TO_R23:
2387 switch (i)
2388 {
2389 case ARG2:
2390 NEW_INSTRUCTION (stub_entry, FSTDS_FARG3_M8SP)
2391 NEW_INSTRUCTION (stub_entry, LDWS_M4SP_ARG2)
2392 NEW_INSTRUCTION (stub_entry, LDWS_M8SP_ARG3)
2393 break;
2394 default:
2395 abort ();
2396 break;
2397 }
2398 continue;
2399
2400 default:
2401 abort ();
2402 break;
2403 }
2404 }
2405
2406 /* Put the stack pointer back. FIXME: Is this still necessary? */
2407 NEW_INSTRUCTION (stub_entry, ADDI_M8_SP_SP)
2408 }
2409
2410 /* Common code again. Return pointer adjustment and the like. */
2411 if (!dyncall)
2412 {
2413 /* This isn't dyncall. */
2414 if (!milli)
2415 {
2416 /* It's not a millicode call, so get the correct return
2417 value into %r2 (aka RP). */
2418 if (rtn_adjust)
2419 NEW_INSTRUCTION (stub_entry, ADDI_M4_31_RP)
2420 else
2421 NEW_INSTRUCTION (stub_entry, COPY_31_2)
2422 }
2423 else
2424 {
2425 /* It is a millicode call, so get the correct return
2426 value into %r1?!?. FIXME: Shouldn't this be
2427 %r31? Yes, and a little re-arrangement of the
2428 code below would make that possible. */
2429 if (rtn_adjust)
2430 NEW_INSTRUCTION (stub_entry, ADDI_M4_31_1)
2431 else
2432 NEW_INSTRUCTION (stub_entry, COPY_31_1)
2433 }
2434 }
2435 else
2436 {
2437 /* This is dyncall, so the code is a little different as the
2438 return pointer is already in %r2 (aka RP). */
2439 if (rtn_adjust)
2440 NEW_INSTRUCTION (stub_entry, ADDI_M4_31_RP)
2441 }
2442
2443 /* Save the return address. */
2444 if (linker_stub_type == HPPA_STUB_ARG_RELOC)
2445 NEW_INSTRUCTION (stub_entry, STW_RP_M8SP)
2446
2447 /* Long branch to the target function. */
2448 NEW_INSTRUCTION (stub_entry, LDIL_XXX_31)
2449 hppa_elf_stub_reloc (stub_entry->stub_desc,
2450 abfd, orig_sym,
2451 CURRENT_STUB_OFFSET (stub_entry),
2452 R_HPPA_L21);
2453 NEW_INSTRUCTION (stub_entry, BLE_XXX_0_31)
2454 hppa_elf_stub_reloc (stub_entry->stub_desc,
2455 abfd, orig_sym,
2456 CURRENT_STUB_OFFSET (stub_entry),
2457 R_HPPA_ABS_CALL_R17);
2458
2459 if (linker_stub_type == HPPA_STUB_ARG_RELOC)
2460 {
2461 /* In delay slot of long-call, copy %r31 into %r2 so that
2462 the callee can return in the normal fashion. */
2463 NEW_INSTRUCTION (stub_entry, COPY_31_2)
2464
2465 /* Restore the return address. */
2466 NEW_INSTRUCTION (stub_entry, LDW_M8SP_RP)
2467
2468 /* Generate the code to move the return value around. */
2469 switch (stub_types[RETVAL])
2470 {
2471 case NO_ARG_RELOC:
2472 break;
2473
2474 case R_TO_FR:
2475 NEW_INSTRUCTION (stub_entry, STWS_RET0_M8SP)
2476 NEW_INSTRUCTION (stub_entry, FLDWS_M8SP_FRET0)
2477 break;
2478
2479 case FR_TO_R:
2480 NEW_INSTRUCTION (stub_entry, FSTWS_FRET0_M8SP)
2481 NEW_INSTRUCTION (stub_entry, LDWS_M4SP_RET0)
2482 break;
2483
2484 default:
2485 abort ();
2486 break;
2487 }
2488
2489 /* Return back to the main code stream. */
2490 NEW_INSTRUCTION (stub_entry, BV_N_0_RP)
2491 }
2492 else
2493 {
2494 if (!dyncall)
2495 {
2496 /* Get return address into %r31. Both variants may be necessary
2497 (I think) as we could be cascading into another stub. */
2498 if (!milli)
2499 NEW_INSTRUCTION (stub_entry, COPY_2_31)
2500 else
2501 NEW_INSTRUCTION (stub_entry, COPY_1_31)
2502 }
2503 else
2504 {
2505 /* Get the return address into %r31 too. Might be necessary
2506 (I think) as we could be cascading into another stub. */
2507 NEW_INSTRUCTION (stub_entry, COPY_2_31)
2508 }
2509
2510 /* No need for a return to the main stream. */
2511 }
2512 }
2513 return stub_sym;
2514 }
2515
2516 /* Return nonzero if an argument relocation will be needed to call
2517 the function (symbol in RELOC_ENTRY) assuming the caller has
2518 argument relocation bugs CALLER_AR. */
2519
2520 static int
2521 hppa_elf_arg_reloc_needed_p (abfd, reloc_entry, stub_types, caller_ar)
2522 bfd *abfd;
2523 arelent *reloc_entry;
2524 arg_reloc_type stub_types[5];
2525 symext_entryS caller_ar;
2526 {
2527 /* If the symbol is still undefined, then it's impossible to know
2528 if an argument relocation is needed. */
2529 if (reloc_entry->sym_ptr_ptr[0]
2530 && reloc_entry->sym_ptr_ptr[0]->section != &bfd_und_section)
2531 {
2532 symext_entryS callee_ar = elf32_hppa_get_sym_extn (abfd,
2533 reloc_entry->sym_ptr_ptr[0],
2534 HPPA_SXT_ARG_RELOC);
2535
2536 /* Now examine all the argument and return value location
2537 information to determine if a relocation stub will be needed. */
2538 if (caller_ar && callee_ar)
2539 {
2540 arg_location caller_loc[5];
2541 arg_location callee_loc[5];
2542
2543 /* Extract the location information for the return value
2544 and argument registers separately. */
2545 callee_loc[RETVAL] = EXTRACT_ARBITS (callee_ar, RETVAL);
2546 caller_loc[RETVAL] = EXTRACT_ARBITS (caller_ar, RETVAL);
2547 callee_loc[ARG0] = EXTRACT_ARBITS (callee_ar, ARG0);
2548 caller_loc[ARG0] = EXTRACT_ARBITS (caller_ar, ARG0);
2549 callee_loc[ARG1] = EXTRACT_ARBITS (callee_ar, ARG1);
2550 caller_loc[ARG1] = EXTRACT_ARBITS (caller_ar, ARG1);
2551 callee_loc[ARG2] = EXTRACT_ARBITS (callee_ar, ARG2);
2552 caller_loc[ARG2] = EXTRACT_ARBITS (caller_ar, ARG2);
2553 callee_loc[ARG3] = EXTRACT_ARBITS (callee_ar, ARG3);
2554 caller_loc[ARG3] = EXTRACT_ARBITS (caller_ar, ARG3);
2555
2556 /* Check some special combinations. For example, if FU
2557 appears in ARG1 or ARG3, we can move it to ARG0 or ARG2,
2558 respectively. (I guess this braindamage is correct? It'd
2559 take an hour or two of reading PA calling conventions to
2560 really know). */
2561
2562 if (caller_loc[ARG0] == AR_FU || caller_loc[ARG1] == AR_FU)
2563 {
2564 caller_loc[ARG0] = AR_DBL01;
2565 caller_loc[ARG1] = AR_NO;
2566 }
2567 if (caller_loc[ARG2] == AR_FU || caller_loc[ARG3] == AR_FU)
2568 {
2569 caller_loc[ARG2] = AR_DBL23;
2570 caller_loc[ARG3] = AR_NO;
2571 }
2572 if (callee_loc[ARG0] == AR_FU || callee_loc[ARG1] == AR_FU)
2573 {
2574 callee_loc[ARG0] = AR_DBL01;
2575 callee_loc[ARG1] = AR_NO;
2576 }
2577 if (callee_loc[ARG2] == AR_FU || callee_loc[ARG3] == AR_FU)
2578 {
2579 callee_loc[ARG2] = AR_DBL23;
2580 callee_loc[ARG3] = AR_NO;
2581 }
2582
2583 /* Now look up potential mismatches. */
2584 stub_types[ARG0] = type_of_mismatch (caller_loc[ARG0],
2585 callee_loc[ARG0],
2586 ARGUMENTS);
2587 stub_types[ARG1] = type_of_mismatch (caller_loc[ARG1],
2588 callee_loc[ARG1],
2589 ARGUMENTS);
2590 stub_types[ARG2] = type_of_mismatch (caller_loc[ARG2],
2591 callee_loc[ARG2],
2592 ARGUMENTS);
2593 stub_types[ARG3] = type_of_mismatch (caller_loc[ARG3],
2594 callee_loc[ARG3],
2595 ARGUMENTS);
2596 stub_types[RETVAL] = type_of_mismatch (caller_loc[RETVAL],
2597 callee_loc[RETVAL],
2598 RETURN_VALUE);
2599
2600 /* If any of the arguments or return value need an argument
2601 relocation, then we will need an argument relocation stub. */
2602 if (stub_types[ARG0] != NO_ARG_RELOC
2603 || stub_types[ARG1] != NO_ARG_RELOC
2604 || stub_types[ARG2] != NO_ARG_RELOC
2605 || stub_types[ARG3] != NO_ARG_RELOC
2606 || stub_types[RETVAL] != NO_ARG_RELOC)
2607 return 1;
2608 }
2609 }
2610 return 0;
2611 }
2612
2613 /* Create the linker stub section. */
2614
2615 static void
2616 hppa_elf_create_stub_sec (abfd, output_bfd, secptr, link_info)
2617 bfd *abfd;
2618 bfd *output_bfd;
2619 asection **secptr;
2620 struct bfd_link_info *link_info;
2621 {
2622 asection *output_text_section;
2623
2624 output_text_section = bfd_get_section_by_name (output_bfd, ".text");
2625 *secptr = bfd_make_section (abfd, ".hppa_linker_stubs");
2626 bfd_set_section_flags (abfd, *secptr,
2627 SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
2628 | SEC_RELOC | SEC_CODE | SEC_READONLY);
2629 (*secptr)->output_section = output_text_section->output_section;
2630 (*secptr)->output_offset = 0;
2631
2632 /* Set up the ELF section header for this new section. This
2633 is basically the same processing as elf_make_sections().
2634 elf_make_sections is static and therefore not accessable
2635 here. */
2636 {
2637 Elf_Internal_Shdr *this_hdr;
2638 this_hdr = &elf_section_data ((*secptr))->this_hdr;
2639
2640 /* Set the sizes of this section. The contents have already
2641 been set up ?!? */
2642 this_hdr->sh_addr = (*secptr)->vma;
2643 this_hdr->sh_size = (*secptr)->_raw_size;
2644
2645 /* Set appropriate flags for sections with relocations. */
2646 if ((*secptr)->flags & SEC_RELOC)
2647 {
2648 Elf_Internal_Shdr *rela_hdr;
2649 int use_rela_p = get_elf_backend_data (abfd)->use_rela_p;
2650
2651 rela_hdr = &elf_section_data ((*secptr))->rel_hdr;
2652
2653 if (use_rela_p)
2654 {
2655 rela_hdr->sh_type = SHT_RELA;
2656 rela_hdr->sh_entsize = sizeof (Elf32_External_Rela);
2657 }
2658 else
2659 {
2660 rela_hdr->sh_type = SHT_REL;
2661 rela_hdr->sh_entsize = sizeof (Elf32_External_Rel);
2662 }
2663 rela_hdr->sh_flags = 0;
2664 rela_hdr->sh_addr = 0;
2665 rela_hdr->sh_offset = 0;
2666 rela_hdr->sh_addralign = 0;
2667 rela_hdr->size = 0;
2668 }
2669
2670 if ((*secptr)->flags & SEC_ALLOC)
2671 this_hdr->sh_flags |= SHF_ALLOC;
2672
2673 if (!((*secptr)->flags & SEC_READONLY))
2674 this_hdr->sh_flags |= SHF_WRITE;
2675
2676 if ((*secptr)->flags & SEC_CODE)
2677 this_hdr->sh_flags |= SHF_EXECINSTR;
2678 }
2679
2680 bfd_set_section_alignment (abfd, *secptr, 2);
2681 }
2682
2683 /* Return nonzero if a long-call stub will be needed to call the
2684 function (symbol in RELOC_ENTRY). */
2685
2686 static int
2687 hppa_elf_long_branch_needed_p (abfd, asec, reloc_entry, symbol, insn)
2688 bfd *abfd;
2689 asection *asec;
2690 arelent *reloc_entry;
2691 asymbol *symbol;
2692 unsigned insn;
2693 {
2694 long sym_value = get_symbol_value (symbol);
2695 int fmt = reloc_entry->howto->bitsize;
2696 unsigned char op = get_opcode (insn);
2697 unsigned raddr;
2698
2699 #define too_far(val,num_bits) \
2700 ((int)(val) > (1 << (num_bits)) - 1) || ((int)(val) < (-1 << (num_bits)))
2701
2702 switch (op)
2703 {
2704 case BL:
2705 raddr =
2706 reloc_entry->address + asec->output_offset + asec->output_section->vma;
2707 /* If the symbol and raddr (relocated addr?) are too far away from
2708 each other, then a long-call stub will be needed. */
2709 if (too_far (sym_value - raddr, fmt + 1))
2710 return 1;
2711 break;
2712 }
2713 return 0;
2714 }
2715
2716 /* Search the given section and determine if linker stubs will be
2717 needed for any calls within that section.
2718
2719 Return any new stub symbols created.
2720
2721 Used out of hppaelf.em in the linker. */
2722
2723 asymbol *
2724 hppa_look_for_stubs_in_section (stub_bfd, abfd, output_bfd, asec,
2725 new_sym_cnt, link_info)
2726 bfd *stub_bfd;
2727 bfd *abfd;
2728 bfd *output_bfd;
2729 asection *asec;
2730 int *new_sym_cnt;
2731 struct bfd_link_info *link_info;
2732 {
2733 int i;
2734 arg_reloc_type stub_types[5];
2735 asymbol *new_syms = NULL;
2736 int new_cnt = 0;
2737 int new_max = 0;
2738 arelent **reloc_vector = NULL;
2739
2740 /* Relocations are in different places depending on whether this is
2741 an output section or an input section. Also, the relocations are
2742 in different forms. Sigh. Luckily, we have bfd_canonicalize_reloc()
2743 to straighten this out for us . */
2744 if (asec->reloc_count > 0)
2745 {
2746 reloc_vector
2747 = (arelent **) malloc (asec->reloc_count * (sizeof (arelent *) + 1));
2748 if (reloc_vector == NULL)
2749 {
2750 bfd_set_error (bfd_error_no_memory);
2751 goto error_return;
2752 }
2753
2754 /* Make sure the canonical symbols are hanging around in a convient
2755 location. */
2756 if (bfd_get_outsymbols (abfd) == NULL)
2757 {
2758 long symsize;
2759 long symcount;
2760
2761 symsize = bfd_get_symtab_upper_bound (abfd);
2762 if (symsize < 0)
2763 goto error_return;
2764 abfd->outsymbols = (asymbol **) bfd_alloc (abfd, symsize);
2765 if (!abfd->outsymbols && symsize != 0)
2766 {
2767 bfd_set_error (bfd_error_no_memory);
2768 goto error_return;
2769 }
2770 symcount = bfd_canonicalize_symtab (abfd, abfd->outsymbols);
2771 if (symcount < 0)
2772 goto error_return;
2773 abfd->symcount = symcount;
2774 }
2775
2776 /* Now get the relocations. */
2777 if (bfd_canonicalize_reloc (abfd, asec, reloc_vector,
2778 bfd_get_outsymbols (abfd)) < 0)
2779 goto error_return;
2780
2781 /* Examine each relocation entry in this section. */
2782 for (i = 0; i < asec->reloc_count; i++)
2783 {
2784 arelent *rle = reloc_vector[i];
2785
2786 switch (rle->howto->type)
2787 {
2788 /* Any call could need argument relocation stubs, and
2789 some may need long-call stubs. */
2790 case R_HPPA_ABS_CALL_11:
2791 case R_HPPA_ABS_CALL_14:
2792 case R_HPPA_ABS_CALL_17:
2793 case R_HPPA_ABS_CALL_L21:
2794 case R_HPPA_ABS_CALL_R11:
2795 case R_HPPA_ABS_CALL_R14:
2796 case R_HPPA_ABS_CALL_R17:
2797 case R_HPPA_ABS_CALL_LS21:
2798 case R_HPPA_ABS_CALL_RS11:
2799 case R_HPPA_ABS_CALL_RS14:
2800 case R_HPPA_ABS_CALL_RS17:
2801 case R_HPPA_ABS_CALL_LD21:
2802 case R_HPPA_ABS_CALL_RD11:
2803 case R_HPPA_ABS_CALL_RD14:
2804 case R_HPPA_ABS_CALL_RD17:
2805 case R_HPPA_ABS_CALL_LR21:
2806 case R_HPPA_ABS_CALL_RR14:
2807 case R_HPPA_ABS_CALL_RR17:
2808 case R_HPPA_PCREL_CALL_11:
2809 case R_HPPA_PCREL_CALL_14:
2810 case R_HPPA_PCREL_CALL_17:
2811 case R_HPPA_PCREL_CALL_12:
2812 case R_HPPA_PCREL_CALL_L21:
2813 case R_HPPA_PCREL_CALL_R11:
2814 case R_HPPA_PCREL_CALL_R14:
2815 case R_HPPA_PCREL_CALL_R17:
2816 case R_HPPA_PCREL_CALL_LS21:
2817 case R_HPPA_PCREL_CALL_RS11:
2818 case R_HPPA_PCREL_CALL_RS14:
2819 case R_HPPA_PCREL_CALL_RS17:
2820 case R_HPPA_PCREL_CALL_LD21:
2821 case R_HPPA_PCREL_CALL_RD11:
2822 case R_HPPA_PCREL_CALL_RD14:
2823 case R_HPPA_PCREL_CALL_RD17:
2824 case R_HPPA_PCREL_CALL_LR21:
2825 case R_HPPA_PCREL_CALL_RR14:
2826 case R_HPPA_PCREL_CALL_RR17:
2827 {
2828 symext_entryS caller_ar
2829 = (symext_entryS) HPPA_R_ARG_RELOC (rle->addend);
2830 unsigned insn[2];
2831
2832 /* We'll need this for the long-call checks. */
2833 bfd_get_section_contents (abfd, asec, insn, rle->address,
2834 sizeof(insn));
2835
2836 /* See if this call needs an argument relocation stub. */
2837 if (hppa_elf_arg_reloc_needed_p (abfd, rle, stub_types,
2838 caller_ar))
2839 {
2840 /* Generate a stub and keep track of the new symbol. */
2841 asymbol *r;
2842
2843 if (new_cnt == new_max)
2844 {
2845 new_max += STUB_SYM_BUFFER_INC;
2846 new_syms = (asymbol *)
2847 realloc (new_syms, new_max * sizeof (asymbol));
2848 if (new_syms == NULL)
2849 {
2850 bfd_set_error (bfd_error_no_memory);
2851 goto error_return;
2852 }
2853 }
2854
2855 /* Build the argument relocation stub. */
2856 r = hppa_elf_build_linker_stub (stub_bfd, output_bfd,
2857 link_info, rle,
2858 stub_types, true, insn,
2859 HPPA_STUB_ARG_RELOC);
2860 new_syms[new_cnt++] = *r;
2861 }
2862
2863 /* See if this call needs a long-call stub. */
2864 if (hppa_elf_long_branch_needed_p (abfd, asec, rle,
2865 rle->sym_ptr_ptr[0],
2866 insn[0]))
2867 {
2868 /* Generate a stub and keep track of the new symbol. */
2869 asymbol *r;
2870
2871 if (new_cnt == new_max)
2872 {
2873 new_max += STUB_SYM_BUFFER_INC;
2874 new_syms = (asymbol *)
2875 realloc (new_syms, (new_max * sizeof (asymbol)));
2876 if (! new_syms)
2877 {
2878 bfd_set_error (bfd_error_no_memory);
2879 goto error_return;
2880 }
2881 }
2882
2883 /* Build the long-call stub. */
2884 r = hppa_elf_build_linker_stub (stub_bfd, output_bfd,
2885 link_info, rle,
2886 NULL, true, insn,
2887 HPPA_STUB_LONG_CALL);
2888 new_syms[new_cnt++] = *r;
2889 }
2890 }
2891 break;
2892
2893 /* PLABELs may need argument relocation stubs. */
2894 case R_HPPA_PLABEL_32:
2895 case R_HPPA_PLABEL_11:
2896 case R_HPPA_PLABEL_14:
2897 case R_HPPA_PLABEL_L21:
2898 case R_HPPA_PLABEL_R11:
2899 case R_HPPA_PLABEL_R14:
2900 {
2901 /* On a plabel relocation, assume the arguments of the
2902 caller are set up in general registers (indirect
2903 calls only use general registers.
2904 NOTE: 0x155 = ARGW0=GR,ARGW1=GR,ARGW2=GR,RETVAL=GR. */
2905 symext_entryS caller_ar = (symext_entryS) 0x155;
2906 unsigned insn[2];
2907
2908 /* Do we really need this? */
2909 bfd_get_section_contents (abfd, asec, insn, rle->address,
2910 sizeof(insn));
2911
2912 /* See if this call needs an argument relocation stub. */
2913 if (hppa_elf_arg_reloc_needed_p (abfd, rle, stub_types,
2914 caller_ar))
2915 {
2916 /* Generate a plabel stub and keep track of the
2917 new symbol. */
2918 asymbol *r;
2919 int rtn_adjust;
2920
2921 if (new_cnt == new_max)
2922 {
2923 new_max += STUB_SYM_BUFFER_INC;
2924 new_syms = (asymbol *) realloc (new_syms, new_max
2925 * sizeof (asymbol));
2926 }
2927
2928 /* Determine whether a return adjustment
2929 (see the relocation code for relocation type
2930 R_HPPA_STUB_CALL_17) is possible. Basically,
2931 determine whether we are looking at a branch or not. */
2932 if (rle->howto->type == R_HPPA_PLABEL_32)
2933 rtn_adjust = false;
2934 else
2935 {
2936 switch (get_opcode(insn[0]))
2937 {
2938 case BLE:
2939 case BE:
2940 rtn_adjust = true;
2941 break;
2942 default:
2943 rtn_adjust = false;
2944 }
2945 }
2946
2947 /* Build the argument relocation stub. */
2948 r = hppa_elf_build_linker_stub (stub_bfd, output_bfd,
2949 link_info, rle, stub_types,
2950 rtn_adjust, insn,
2951 HPPA_STUB_ARG_RELOC);
2952 new_syms[new_cnt++] = *r;
2953 }
2954 }
2955 break;
2956
2957 default:
2958 break;
2959 }
2960 }
2961 }
2962
2963 if (reloc_vector != NULL)
2964 free (reloc_vector);
2965 /* Return the new symbols and update the counters. */
2966 *new_sym_cnt = new_cnt;
2967 return new_syms;
2968
2969 error_return:
2970 if (reloc_vector != NULL)
2971 free (reloc_vector);
2972 /* FIXME: This is bogus. We should be returning NULL. But do the callers
2973 check for that? */
2974 abort ();
2975 }
2976
2977 /* Set the contents of a particular section at a particular location. */
2978
2979 static boolean
2980 hppa_elf_set_section_contents (abfd, section, location, offset, count)
2981 bfd *abfd;
2982 sec_ptr section;
2983 PTR location;
2984 file_ptr offset;
2985 bfd_size_type count;
2986 {
2987 /* Linker stubs are handled a little differently. */
2988 if (! strcmp (section->name, ".hppa_linker_stubs"))
2989 {
2990 if (linker_stubs_max_size < offset + count)
2991 {
2992 linker_stubs_max_size = offset + count + STUB_ALLOC_INCR;
2993 linker_stubs = (char *)realloc (linker_stubs, linker_stubs_max_size);
2994 if (! linker_stubs)
2995 abort ();
2996 }
2997
2998 if (offset + count > linker_stubs_size)
2999 linker_stubs_size = offset + count;
3000
3001 /* Set the contents. */
3002 memcpy(linker_stubs + offset, location, count);
3003 return (true);
3004 }
3005 else
3006 /* For everything but the linker stub section, use the generic
3007 code. */
3008 return bfd_elf32_set_section_contents (abfd, section, location,
3009 offset, count);
3010 }
3011
3012 /* Get the contents of the given section.
3013
3014 This is special for PA ELF because some sections (such as linker stubs)
3015 may reside in memory rather than on disk, or in the case of the symbol
3016 extension section, the contents may need to be generated from other
3017 information contained in the BFD. */
3018
3019 boolean
3020 hppa_elf_get_section_contents (abfd, section, location, offset, count)
3021 bfd *abfd;
3022 sec_ptr section;
3023 PTR location;
3024 file_ptr offset;
3025 bfd_size_type count;
3026 {
3027 /* If this is the linker stub section, then its contents are contained
3028 in memory rather than on disk. FIXME. Is that always right? What
3029 about the case where a final executable is read in and a user tries
3030 to get the contents of this section? In that case the contents would
3031 be on disk like everything else. */
3032 if (strcmp (section->name, ".hppa_linker_stubs") == 0)
3033 {
3034 elf32_hppa_stub_description *stub_desc = find_stubs (abfd, section);
3035
3036 if (count == 0)
3037 return true;
3038
3039 /* Sanity check our arguments. */
3040 if ((bfd_size_type) (offset + count) > section->_raw_size
3041 || (bfd_size_type) (offset + count) > stub_desc->real_size)
3042 return (false);
3043
3044 memcpy (location, stub_desc->stub_contents + offset, count);
3045 return (true);
3046 }
3047
3048 /* The symbol extension section also needs special handling. Its
3049 contents might be on the disk, in memory, or still need to
3050 be generated. */
3051 else if (strcmp (section->name, ".hppa_symextn") == 0)
3052 {
3053 /* If there are no output sections, then read the contents of the
3054 symbol extension section from disk. */
3055 if (section->output_section == NULL
3056 && abfd->direction == read_direction)
3057 {
3058 return _bfd_generic_get_section_contents (abfd, section, location,
3059 offset, count);
3060 }
3061
3062 /* If this is the first time through, and there are output sections,
3063 then build the symbol extension section based on other information
3064 contained in the BFD. */
3065 else if (! symext_chain_built)
3066 {
3067 int i;
3068 int *symtab_map =
3069 (int *) elf_sym_extra (section->output_section->owner);
3070
3071 for (i = 0; i < section->output_section->owner->symcount; i++)
3072 {
3073 elf_hppa_tc_symbol (section->output_section->owner,
3074 ((elf_symbol_type *)
3075 section->output_section->owner->outsymbols[i]),
3076 symtab_map[i], &symext_rootP, &symext_lastP);
3077 }
3078 symext_chain_built++;
3079 elf_hppa_tc_make_sections (section->output_section->owner,
3080 symext_rootP);
3081 }
3082
3083 /* At this point we know that the symbol extension section has been
3084 built. We just need to copy it into the user's buffer. */
3085 if (count == 0)
3086 return true;
3087
3088 /* Sanity check our arguments. */
3089 if ((bfd_size_type) (offset + count) > section->_raw_size
3090 || (bfd_size_type) (offset + count) > symextn_contents_real_size)
3091 return (false);
3092
3093 memcpy (location,
3094 (char *)symextn_contents + section->output_offset + offset,
3095 count);
3096 return (true);
3097 }
3098 else
3099 /* It's not the symbol extension or linker stub sections, use
3100 the generic routines. */
3101 return _bfd_generic_get_section_contents (abfd, section, location,
3102 offset, count);
3103 }
3104
3105 /* Translate from an elf into field into a howto relocation pointer. */
3106
3107 static void
3108 elf_info_to_howto (abfd, cache_ptr, dst)
3109 bfd *abfd;
3110 arelent *cache_ptr;
3111 Elf32_Internal_Rela *dst;
3112 {
3113 BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_HPPA_UNIMPLEMENTED);
3114 cache_ptr->howto = &elf_hppa_howto_table[ELF32_R_TYPE (dst->r_info)];
3115 }
3116
3117 /* Do PA ELF specific processing for symbols. Needed to find the
3118 value of $global$. */
3119
3120 static void
3121 elf32_hppa_backend_symbol_processing (abfd, sym)
3122 bfd *abfd;
3123 asymbol *sym;
3124 {
3125 /* Is this a definition of $global$? If so, keep it because it will be
3126 needed if any relocations are performed. */
3127 if (!strcmp (sym->name, "$global$")
3128 && sym->section != &bfd_und_section)
3129 {
3130 global_symbol = sym;
3131 }
3132 }
3133
3134 /* Do some PA ELF specific work after reading in the symbol table.
3135 In particular attach the argument relocation from the
3136 symbol extension section to the appropriate symbols. */
3137 static boolean
3138 elf32_hppa_backend_symbol_table_processing (abfd, esyms,symcnt)
3139 bfd *abfd;
3140 elf_symbol_type *esyms;
3141 int symcnt;
3142 {
3143 Elf32_Internal_Shdr *symextn_hdr =
3144 bfd_elf_find_section (abfd, SYMEXTN_SECTION_NAME);
3145 int i, current_sym_idx = 0;
3146
3147 /* If no symbol extension existed, then all symbol extension information
3148 is assumed to be zero. */
3149 if (symextn_hdr == NULL)
3150 {
3151 for (i = 0; i < symcnt; i++)
3152 esyms[i].tc_data.hppa_arg_reloc = 0;
3153 return (true);
3154 }
3155
3156 /* Allocate a buffer of the appropriate size for the symextn section. */
3157 symextn_hdr->contents = bfd_zalloc(abfd,symextn_hdr->sh_size);
3158 if (!symextn_hdr->contents)
3159 {
3160 bfd_set_error (bfd_error_no_memory);
3161 return false;
3162 }
3163 symextn_hdr->size = symextn_hdr->sh_size;
3164
3165 /* Read in the symextn section. */
3166 if (bfd_seek (abfd, symextn_hdr->sh_offset, SEEK_SET) == -1)
3167 return false;
3168 if (bfd_read ((PTR) symextn_hdr->contents, 1, symextn_hdr->size, abfd)
3169 != symextn_hdr->size)
3170 return false;
3171
3172 /* Parse entries in the symbol extension section, updating the symtab
3173 entries as we go */
3174 for (i = 0; i < symextn_hdr->size / sizeof(symext_entryS); i++)
3175 {
3176 symext_entryS *seP = ((symext_entryS *)symextn_hdr->contents) + i;
3177 int se_value = ELF32_HPPA_SX_VAL (*seP);
3178 int se_type = ELF32_HPPA_SX_TYPE (*seP);
3179
3180 switch (se_type)
3181 {
3182 case HPPA_SXT_NULL:
3183 break;
3184
3185 case HPPA_SXT_SYMNDX:
3186 if (se_value >= symcnt)
3187 {
3188 bfd_set_error (bfd_error_bad_value);
3189 return (false);
3190 }
3191 current_sym_idx = se_value - 1;
3192 break;
3193
3194 case HPPA_SXT_ARG_RELOC:
3195 esyms[current_sym_idx].tc_data.hppa_arg_reloc = se_value;
3196 break;
3197
3198 default:
3199 bfd_set_error (bfd_error_bad_value);
3200 return (false);
3201 }
3202 }
3203 return (true);
3204 }
3205
3206 /* Perform on PA ELF specific processing once a section has been
3207 read in. In particular keep the symbol indexes correct for
3208 the symbol extension information. */
3209
3210 static boolean
3211 elf32_hppa_backend_section_processing (abfd, secthdr)
3212 bfd *abfd;
3213 Elf32_Internal_Shdr *secthdr;
3214 {
3215 int i, j, k;
3216
3217 if (secthdr->sh_type == SHT_HPPA_SYMEXTN)
3218 {
3219 for (i = 0; i < secthdr->size / sizeof (symext_entryS); i++)
3220 {
3221 symext_entryS *seP = ((symext_entryS *)secthdr->contents) + i;
3222 int se_value = ELF32_HPPA_SX_VAL (*seP);
3223 int se_type = ELF32_HPPA_SX_TYPE (*seP);
3224
3225 switch (se_type)
3226 {
3227 case HPPA_SXT_NULL:
3228 break;
3229
3230 case HPPA_SXT_SYMNDX:
3231 for (j = 0; j < abfd->symcount; j++)
3232 {
3233 /* Locate the map entry for this symbol and modify the
3234 symbol extension section symbol index entry to reflect
3235 the new symbol table index. */
3236 for (k = 0; k < elf32_hppa_symextn_map_size; k++)
3237 {
3238 if (elf32_hppa_symextn_map[k].old_index == se_value
3239 && elf32_hppa_symextn_map[k].bfd
3240 == abfd->outsymbols[j]->the_bfd
3241 && elf32_hppa_symextn_map[k].sym
3242 == abfd->outsymbols[j])
3243 {
3244 bfd_put_32(abfd,
3245 ELF32_HPPA_SX_WORD (HPPA_SXT_SYMNDX, j),
3246 (char *)seP);
3247 }
3248 }
3249 }
3250 break;
3251
3252 case HPPA_SXT_ARG_RELOC:
3253 break;
3254
3255 default:
3256 bfd_set_error (bfd_error_bad_value);
3257 return (false);
3258 }
3259 }
3260 }
3261 return true;
3262 }
3263
3264 /* What does this really do? Just determine if there is an appropriate
3265 mapping from ELF section headers to backend sections? More symbol
3266 extension braindamage. */
3267
3268 static boolean
3269 elf32_hppa_backend_section_from_shdr (abfd, hdr, name)
3270 bfd *abfd;
3271 Elf32_Internal_Shdr *hdr;
3272 char *name;
3273 {
3274 asection *newsect;
3275
3276 if (hdr->sh_type == SHT_HPPA_SYMEXTN)
3277 {
3278 BFD_ASSERT (strcmp (name, ".hppa_symextn") == 0);
3279
3280 /* Bits that get saved. This one is real. */
3281 if (!hdr->rawdata)
3282 {
3283 newsect = bfd_make_section (abfd, name);
3284 if (newsect != NULL)
3285 {
3286 newsect->vma = hdr->sh_addr;
3287 newsect->_raw_size = hdr->sh_size;
3288 newsect->filepos = hdr->sh_offset;
3289 newsect->flags |= SEC_HAS_CONTENTS;
3290 newsect->alignment_power = hdr->sh_addralign;
3291
3292 if (hdr->sh_flags & SHF_ALLOC)
3293 {
3294 newsect->flags |= SEC_ALLOC;
3295 newsect->flags |= SEC_LOAD;
3296 }
3297
3298 if (!(hdr->sh_flags & SHF_WRITE))
3299 newsect->flags |= SEC_READONLY;
3300
3301 if (hdr->sh_flags & SHF_EXECINSTR)
3302 newsect->flags |= SEC_CODE;
3303 else
3304 newsect->flags |= SEC_DATA;
3305
3306 hdr->rawdata = (void *) newsect;
3307 }
3308 }
3309 return true;
3310 }
3311 return false;
3312 }
3313
3314 /* Return true if the given section is a fake section. */
3315
3316 static boolean
3317 elf32_hppa_backend_fake_sections (abfd, secthdr, asect)
3318 bfd *abfd;
3319 Elf_Internal_Shdr *secthdr;
3320 asection *asect;
3321 {
3322
3323 if (strcmp(asect->name, ".hppa_symextn") == 0)
3324 {
3325 secthdr->sh_type = SHT_HPPA_SYMEXTN;
3326 secthdr->sh_flags = 0;
3327 secthdr->sh_info = elf_section_data(asect)->rel_hdr.sh_link;
3328 secthdr->sh_link = elf_onesymtab(abfd);
3329 return true;
3330 }
3331
3332 if (!strcmp (asect->name, ".hppa_unwind"))
3333 {
3334 secthdr->sh_type = SHT_PROGBITS;
3335 /* Unwind descriptors are not part of the program memory image. */
3336 secthdr->sh_flags = 0;
3337 secthdr->sh_info = 0;
3338 secthdr->sh_link = 0;
3339 secthdr->sh_entsize = 16;
3340 return true;
3341 }
3342
3343 /* @@ Should this be CPU specific?? KR */
3344 if (!strcmp (asect->name, ".stabstr"))
3345 {
3346 secthdr->sh_type = SHT_STRTAB;
3347 secthdr->sh_flags = 0;
3348 secthdr->sh_info = 0;
3349 secthdr->sh_link = 0;
3350 secthdr->sh_entsize = 0;
3351 return true;
3352 }
3353
3354 return false;
3355 }
3356
3357 /* Return true if there is a mapping from bfd section into a
3358 backend section. */
3359
3360 static boolean
3361 elf32_hppa_backend_section_from_bfd_section (abfd, hdr, asect, ignored)
3362 bfd *abfd;
3363 Elf32_Internal_Shdr *hdr;
3364 asection *asect;
3365 int *ignored;
3366 {
3367 if (hdr->sh_type == SHT_HPPA_SYMEXTN)
3368 {
3369 if (hdr->rawdata)
3370 {
3371 if (((struct sec *) (hdr->rawdata)) == asect)
3372 {
3373 BFD_ASSERT (strcmp (asect->name, ".hppa_symextn") == 0);
3374 return true;
3375 }
3376 }
3377 }
3378 else if (hdr->sh_type == SHT_STRTAB)
3379 {
3380 if (hdr->rawdata)
3381 {
3382 if (((struct sec *) (hdr->rawdata)) == asect)
3383 {
3384 BFD_ASSERT (strcmp (asect->name, ".stabstr") == 0);
3385 return true;
3386 }
3387 }
3388 }
3389
3390 return false;
3391 }
3392
3393 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
3394 #define elf_backend_section_from_bfd_section elf32_hppa_backend_section_from_bfd_section
3395
3396 #define elf_backend_symbol_processing elf32_hppa_backend_symbol_processing
3397 #define elf_backend_symbol_table_processing elf32_hppa_backend_symbol_table_processing
3398
3399 #define bfd_elf32_get_section_contents hppa_elf_get_section_contents
3400 #define bfd_elf32_set_section_contents hppa_elf_set_section_contents
3401 #define bfd_elf32_bfd_is_local_label hppa_elf_is_local_label
3402
3403 #define elf_backend_section_processing elf32_hppa_backend_section_processing
3404
3405 #define elf_backend_section_from_shdr elf32_hppa_backend_section_from_shdr
3406 #define elf_backend_fake_sections elf32_hppa_backend_fake_sections
3407
3408 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
3409 #define TARGET_BIG_NAME "elf32-hppa"
3410 #define ELF_ARCH bfd_arch_hppa
3411 #define ELF_MACHINE_CODE EM_HPPA
3412 #define ELF_MAXPAGESIZE 0x1000
3413
3414 #include "elf32-target.h"