]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-hppa.c
elf: Add sym_cache to elf_link_hash_table
[thirdparty/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2020 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get PLT address
75 : ldo RR'lt_ptr+ltoff(%r1),%r22 ;
76 : ldw 0(%r22),%r21 ; get procedure entry point
77 : bv %r0(%r21)
78 : ldw 4(%r22),%r19 ; get new dlt value.
79
80 Import stub to call shared library routine from shared library
81 (single sub-space version)
82 : addil LR'ltoff,%r19 ; get PLT address
83 : ldo RR'ltoff(%r1),%r22
84 : ldw 0(%r22),%r21 ; get procedure entry point
85 : bv %r0(%r21)
86 : ldw 4(%r22),%r19 ; get new dlt value.
87
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get PLT address
91 : ldo RR'lt_ptr+ltoff(%r1),%r22 ;
92 : ldw 0(%r22),%r21 ; get procedure entry point
93 : ldsid (%r21),%r1 ; get target sid
94 : ldw 4(%r22),%r19 ; get new dlt value.
95 : mtsp %r1,%sr0
96 : be 0(%sr0,%r21) ; branch to target
97 : stw %rp,-24(%sp) ; save rp
98
99 Import stub to call shared library routine from shared library
100 (multiple sub-space support)
101 : addil LR'ltoff,%r19 ; get PLT address
102 : ldo RR'ltoff(%r1),%r22
103 : ldw 0(%r22),%r21 ; get procedure entry point
104 : ldsid (%r21),%r1 ; get target sid
105 : ldw 4(%r22),%r19 ; get new dlt value.
106 : mtsp %r1,%sr0
107 : be 0(%sr0,%r21) ; branch to target
108 : stw %rp,-24(%sp) ; save rp
109
110 Export stub to return from shared lib routine (multiple sub-space support)
111 One of these is created for each exported procedure in a shared
112 library (and stored in the shared lib). Shared lib routines are
113 called via the first instruction in the export stub so that we can
114 do an inter-space return. Not required for single sub-space.
115 : bl,n X,%rp ; trap the return
116 : nop
117 : ldw -24(%sp),%rp ; restore the original rp
118 : ldsid (%rp),%r1
119 : mtsp %r1,%sr0
120 : be,n 0(%sr0,%rp) ; inter-space return. */
121
122
123 /* Variable names follow a coding style.
124 Please follow this (Apps Hungarian) style:
125
126 Structure/Variable Prefix
127 elf_link_hash_table "etab"
128 elf_link_hash_entry "eh"
129
130 elf32_hppa_link_hash_table "htab"
131 elf32_hppa_link_hash_entry "hh"
132
133 bfd_hash_table "btab"
134 bfd_hash_entry "bh"
135
136 bfd_hash_table containing stubs "bstab"
137 elf32_hppa_stub_hash_entry "hsh"
138
139 Always remember to use GNU Coding Style. */
140
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define LONG_BRANCH_STUB_SIZE 8
144 #define LONG_BRANCH_SHARED_STUB_SIZE 12
145 #define IMPORT_STUB_SIZE 20
146 #define IMPORT_SHARED_STUB_SIZE 32
147 #define EXPORT_STUB_SIZE 24
148 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
149
150 static const bfd_byte plt_stub[] =
151 {
152 0x0e, 0x80, 0x10, 0x95, /* 1: ldw 0(%r20),%r21 */
153 0xea, 0xa0, 0xc0, 0x00, /* bv %r0(%r21) */
154 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
155 #define PLT_STUB_ENTRY (3*4)
156 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
157 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
158 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
159 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
160 };
161
162 /* Section name for stubs is the associated section name plus this
163 string. */
164 #define STUB_SUFFIX ".stub"
165
166 /* We don't need to copy certain PC- or GP-relative dynamic relocs
167 into a shared object's dynamic section. All the relocs of the
168 limited class we are interested in, are absolute. */
169 #ifndef RELATIVE_DYNRELOCS
170 #define RELATIVE_DYNRELOCS 0
171 #define IS_ABSOLUTE_RELOC(r_type) 1
172 #define pc_dynrelocs(hh) 0
173 #endif
174
175 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
176 copying dynamic variables from a shared lib into an app's dynbss
177 section, and instead use a dynamic relocation to point into the
178 shared lib. */
179 #define ELIMINATE_COPY_RELOCS 1
180
181 enum elf32_hppa_stub_type
182 {
183 hppa_stub_long_branch,
184 hppa_stub_long_branch_shared,
185 hppa_stub_import,
186 hppa_stub_import_shared,
187 hppa_stub_export,
188 hppa_stub_none
189 };
190
191 struct elf32_hppa_stub_hash_entry
192 {
193 /* Base hash table entry structure. */
194 struct bfd_hash_entry bh_root;
195
196 /* The stub section. */
197 asection *stub_sec;
198
199 /* Offset within stub_sec of the beginning of this stub. */
200 bfd_vma stub_offset;
201
202 /* Given the symbol's value and its section we can determine its final
203 value when building the stubs (so the stub knows where to jump. */
204 bfd_vma target_value;
205 asection *target_section;
206
207 enum elf32_hppa_stub_type stub_type;
208
209 /* The symbol table entry, if any, that this was derived from. */
210 struct elf32_hppa_link_hash_entry *hh;
211
212 /* Where this stub is being called from, or, in the case of combined
213 stub sections, the first input section in the group. */
214 asection *id_sec;
215 };
216
217 enum _tls_type
218 {
219 GOT_UNKNOWN = 0,
220 GOT_NORMAL = 1,
221 GOT_TLS_GD = 2,
222 GOT_TLS_LDM = 4,
223 GOT_TLS_IE = 8
224 };
225
226 struct elf32_hppa_link_hash_entry
227 {
228 struct elf_link_hash_entry eh;
229
230 /* A pointer to the most recently used stub hash entry against this
231 symbol. */
232 struct elf32_hppa_stub_hash_entry *hsh_cache;
233
234 ENUM_BITFIELD (_tls_type) tls_type : 8;
235
236 /* Set if this symbol is used by a plabel reloc. */
237 unsigned int plabel:1;
238 };
239
240 struct elf32_hppa_link_hash_table
241 {
242 /* The main hash table. */
243 struct elf_link_hash_table etab;
244
245 /* The stub hash table. */
246 struct bfd_hash_table bstab;
247
248 /* Linker stub bfd. */
249 bfd *stub_bfd;
250
251 /* Linker call-backs. */
252 asection * (*add_stub_section) (const char *, asection *);
253 void (*layout_sections_again) (void);
254
255 /* Array to keep track of which stub sections have been created, and
256 information on stub grouping. */
257 struct map_stub
258 {
259 /* This is the section to which stubs in the group will be
260 attached. */
261 asection *link_sec;
262 /* The stub section. */
263 asection *stub_sec;
264 } *stub_group;
265
266 /* Assorted information used by elf32_hppa_size_stubs. */
267 unsigned int bfd_count;
268 unsigned int top_index;
269 asection **input_list;
270 Elf_Internal_Sym **all_local_syms;
271
272 /* Used during a final link to store the base of the text and data
273 segments so that we can perform SEGREL relocations. */
274 bfd_vma text_segment_base;
275 bfd_vma data_segment_base;
276
277 /* Whether we support multiple sub-spaces for shared libs. */
278 unsigned int multi_subspace:1;
279
280 /* Flags set when various size branches are detected. Used to
281 select suitable defaults for the stub group size. */
282 unsigned int has_12bit_branch:1;
283 unsigned int has_17bit_branch:1;
284 unsigned int has_22bit_branch:1;
285
286 /* Set if we need a .plt stub to support lazy dynamic linking. */
287 unsigned int need_plt_stub:1;
288
289 /* Data for LDM relocations. */
290 union
291 {
292 bfd_signed_vma refcount;
293 bfd_vma offset;
294 } tls_ldm_got;
295 };
296
297 /* Various hash macros and functions. */
298 #define hppa_link_hash_table(p) \
299 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
300 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
301
302 #define hppa_elf_hash_entry(ent) \
303 ((struct elf32_hppa_link_hash_entry *)(ent))
304
305 #define hppa_stub_hash_entry(ent) \
306 ((struct elf32_hppa_stub_hash_entry *)(ent))
307
308 #define hppa_stub_hash_lookup(table, string, create, copy) \
309 ((struct elf32_hppa_stub_hash_entry *) \
310 bfd_hash_lookup ((table), (string), (create), (copy)))
311
312 #define hppa_elf_local_got_tls_type(abfd) \
313 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
314
315 #define hh_name(hh) \
316 (hh ? hh->eh.root.root.string : "<undef>")
317
318 #define eh_name(eh) \
319 (eh ? eh->root.root.string : "<undef>")
320
321 /* Assorted hash table functions. */
322
323 /* Initialize an entry in the stub hash table. */
324
325 static struct bfd_hash_entry *
326 stub_hash_newfunc (struct bfd_hash_entry *entry,
327 struct bfd_hash_table *table,
328 const char *string)
329 {
330 /* Allocate the structure if it has not already been allocated by a
331 subclass. */
332 if (entry == NULL)
333 {
334 entry = bfd_hash_allocate (table,
335 sizeof (struct elf32_hppa_stub_hash_entry));
336 if (entry == NULL)
337 return entry;
338 }
339
340 /* Call the allocation method of the superclass. */
341 entry = bfd_hash_newfunc (entry, table, string);
342 if (entry != NULL)
343 {
344 struct elf32_hppa_stub_hash_entry *hsh;
345
346 /* Initialize the local fields. */
347 hsh = hppa_stub_hash_entry (entry);
348 hsh->stub_sec = NULL;
349 hsh->stub_offset = 0;
350 hsh->target_value = 0;
351 hsh->target_section = NULL;
352 hsh->stub_type = hppa_stub_long_branch;
353 hsh->hh = NULL;
354 hsh->id_sec = NULL;
355 }
356
357 return entry;
358 }
359
360 /* Initialize an entry in the link hash table. */
361
362 static struct bfd_hash_entry *
363 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
364 struct bfd_hash_table *table,
365 const char *string)
366 {
367 /* Allocate the structure if it has not already been allocated by a
368 subclass. */
369 if (entry == NULL)
370 {
371 entry = bfd_hash_allocate (table,
372 sizeof (struct elf32_hppa_link_hash_entry));
373 if (entry == NULL)
374 return entry;
375 }
376
377 /* Call the allocation method of the superclass. */
378 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
379 if (entry != NULL)
380 {
381 struct elf32_hppa_link_hash_entry *hh;
382
383 /* Initialize the local fields. */
384 hh = hppa_elf_hash_entry (entry);
385 hh->hsh_cache = NULL;
386 hh->plabel = 0;
387 hh->tls_type = GOT_UNKNOWN;
388 }
389
390 return entry;
391 }
392
393 /* Free the derived linker hash table. */
394
395 static void
396 elf32_hppa_link_hash_table_free (bfd *obfd)
397 {
398 struct elf32_hppa_link_hash_table *htab
399 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
400
401 bfd_hash_table_free (&htab->bstab);
402 _bfd_elf_link_hash_table_free (obfd);
403 }
404
405 /* Create the derived linker hash table. The PA ELF port uses the derived
406 hash table to keep information specific to the PA ELF linker (without
407 using static variables). */
408
409 static struct bfd_link_hash_table *
410 elf32_hppa_link_hash_table_create (bfd *abfd)
411 {
412 struct elf32_hppa_link_hash_table *htab;
413 size_t amt = sizeof (*htab);
414
415 htab = bfd_zmalloc (amt);
416 if (htab == NULL)
417 return NULL;
418
419 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
420 sizeof (struct elf32_hppa_link_hash_entry),
421 HPPA32_ELF_DATA))
422 {
423 free (htab);
424 return NULL;
425 }
426
427 /* Init the stub hash table too. */
428 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
429 sizeof (struct elf32_hppa_stub_hash_entry)))
430 {
431 _bfd_elf_link_hash_table_free (abfd);
432 return NULL;
433 }
434 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
435 htab->etab.dt_pltgot_required = TRUE;
436
437 htab->text_segment_base = (bfd_vma) -1;
438 htab->data_segment_base = (bfd_vma) -1;
439 return &htab->etab.root;
440 }
441
442 /* Initialize the linker stubs BFD so that we can use it for linker
443 created dynamic sections. */
444
445 void
446 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
447 {
448 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
449
450 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
451 htab->etab.dynobj = abfd;
452 }
453
454 /* Build a name for an entry in the stub hash table. */
455
456 static char *
457 hppa_stub_name (const asection *input_section,
458 const asection *sym_sec,
459 const struct elf32_hppa_link_hash_entry *hh,
460 const Elf_Internal_Rela *rela)
461 {
462 char *stub_name;
463 bfd_size_type len;
464
465 if (hh)
466 {
467 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
468 stub_name = bfd_malloc (len);
469 if (stub_name != NULL)
470 sprintf (stub_name, "%08x_%s+%x",
471 input_section->id & 0xffffffff,
472 hh_name (hh),
473 (int) rela->r_addend & 0xffffffff);
474 }
475 else
476 {
477 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
478 stub_name = bfd_malloc (len);
479 if (stub_name != NULL)
480 sprintf (stub_name, "%08x_%x:%x+%x",
481 input_section->id & 0xffffffff,
482 sym_sec->id & 0xffffffff,
483 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
484 (int) rela->r_addend & 0xffffffff);
485 }
486 return stub_name;
487 }
488
489 /* Look up an entry in the stub hash. Stub entries are cached because
490 creating the stub name takes a bit of time. */
491
492 static struct elf32_hppa_stub_hash_entry *
493 hppa_get_stub_entry (const asection *input_section,
494 const asection *sym_sec,
495 struct elf32_hppa_link_hash_entry *hh,
496 const Elf_Internal_Rela *rela,
497 struct elf32_hppa_link_hash_table *htab)
498 {
499 struct elf32_hppa_stub_hash_entry *hsh_entry;
500 const asection *id_sec;
501
502 /* If this input section is part of a group of sections sharing one
503 stub section, then use the id of the first section in the group.
504 Stub names need to include a section id, as there may well be
505 more than one stub used to reach say, printf, and we need to
506 distinguish between them. */
507 id_sec = htab->stub_group[input_section->id].link_sec;
508 if (id_sec == NULL)
509 return NULL;
510
511 if (hh != NULL && hh->hsh_cache != NULL
512 && hh->hsh_cache->hh == hh
513 && hh->hsh_cache->id_sec == id_sec)
514 {
515 hsh_entry = hh->hsh_cache;
516 }
517 else
518 {
519 char *stub_name;
520
521 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
522 if (stub_name == NULL)
523 return NULL;
524
525 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
526 stub_name, FALSE, FALSE);
527 if (hh != NULL)
528 hh->hsh_cache = hsh_entry;
529
530 free (stub_name);
531 }
532
533 return hsh_entry;
534 }
535
536 /* Add a new stub entry to the stub hash. Not all fields of the new
537 stub entry are initialised. */
538
539 static struct elf32_hppa_stub_hash_entry *
540 hppa_add_stub (const char *stub_name,
541 asection *section,
542 struct elf32_hppa_link_hash_table *htab)
543 {
544 asection *link_sec;
545 asection *stub_sec;
546 struct elf32_hppa_stub_hash_entry *hsh;
547
548 link_sec = htab->stub_group[section->id].link_sec;
549 stub_sec = htab->stub_group[section->id].stub_sec;
550 if (stub_sec == NULL)
551 {
552 stub_sec = htab->stub_group[link_sec->id].stub_sec;
553 if (stub_sec == NULL)
554 {
555 size_t namelen;
556 bfd_size_type len;
557 char *s_name;
558
559 namelen = strlen (link_sec->name);
560 len = namelen + sizeof (STUB_SUFFIX);
561 s_name = bfd_alloc (htab->stub_bfd, len);
562 if (s_name == NULL)
563 return NULL;
564
565 memcpy (s_name, link_sec->name, namelen);
566 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
567 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
568 if (stub_sec == NULL)
569 return NULL;
570 htab->stub_group[link_sec->id].stub_sec = stub_sec;
571 }
572 htab->stub_group[section->id].stub_sec = stub_sec;
573 }
574
575 /* Enter this entry into the linker stub hash table. */
576 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
577 TRUE, FALSE);
578 if (hsh == NULL)
579 {
580 /* xgettext:c-format */
581 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
582 section->owner, stub_name);
583 return NULL;
584 }
585
586 hsh->stub_sec = stub_sec;
587 hsh->stub_offset = 0;
588 hsh->id_sec = link_sec;
589 return hsh;
590 }
591
592 /* Determine the type of stub needed, if any, for a call. */
593
594 static enum elf32_hppa_stub_type
595 hppa_type_of_stub (asection *input_sec,
596 const Elf_Internal_Rela *rela,
597 struct elf32_hppa_link_hash_entry *hh,
598 bfd_vma destination,
599 struct bfd_link_info *info)
600 {
601 bfd_vma location;
602 bfd_vma branch_offset;
603 bfd_vma max_branch_offset;
604 unsigned int r_type;
605
606 if (hh != NULL
607 && hh->eh.plt.offset != (bfd_vma) -1
608 && hh->eh.dynindx != -1
609 && !hh->plabel
610 && (bfd_link_pic (info)
611 || !hh->eh.def_regular
612 || hh->eh.root.type == bfd_link_hash_defweak))
613 {
614 /* We need an import stub. Decide between hppa_stub_import
615 and hppa_stub_import_shared later. */
616 return hppa_stub_import;
617 }
618
619 if (destination == (bfd_vma) -1)
620 return hppa_stub_none;
621
622 /* Determine where the call point is. */
623 location = (input_sec->output_offset
624 + input_sec->output_section->vma
625 + rela->r_offset);
626
627 branch_offset = destination - location - 8;
628 r_type = ELF32_R_TYPE (rela->r_info);
629
630 /* Determine if a long branch stub is needed. parisc branch offsets
631 are relative to the second instruction past the branch, ie. +8
632 bytes on from the branch instruction location. The offset is
633 signed and counts in units of 4 bytes. */
634 if (r_type == (unsigned int) R_PARISC_PCREL17F)
635 max_branch_offset = (1 << (17 - 1)) << 2;
636
637 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
638 max_branch_offset = (1 << (12 - 1)) << 2;
639
640 else /* R_PARISC_PCREL22F. */
641 max_branch_offset = (1 << (22 - 1)) << 2;
642
643 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
644 return hppa_stub_long_branch;
645
646 return hppa_stub_none;
647 }
648
649 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
650 IN_ARG contains the link info pointer. */
651
652 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
653 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
654
655 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
656 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
657 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
658
659 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
660 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
661 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
662 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
663
664 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
665 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
666
667 #define LDO_R1_R22 0x34360000 /* ldo RR'XXX(%r1),%r22 */
668 #define LDW_R22_R21 0x0ec01095 /* ldw 0(%r22),%r21 */
669 #define LDW_R22_R19 0x0ec81093 /* ldw 4(%r22),%r19 */
670
671 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
672 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
673 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
674 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
675
676 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
677 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
678 #define NOP 0x08000240 /* nop */
679 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
680 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
681 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
682
683 #ifndef R19_STUBS
684 #define R19_STUBS 1
685 #endif
686
687 #if R19_STUBS
688 #define LDW_R1_DLT LDW_R1_R19
689 #else
690 #define LDW_R1_DLT LDW_R1_DP
691 #endif
692
693 static bfd_boolean
694 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
695 {
696 struct elf32_hppa_stub_hash_entry *hsh;
697 struct bfd_link_info *info;
698 struct elf32_hppa_link_hash_table *htab;
699 asection *stub_sec;
700 bfd *stub_bfd;
701 bfd_byte *loc;
702 bfd_vma sym_value;
703 bfd_vma insn;
704 bfd_vma off;
705 int val;
706 int size;
707
708 /* Massage our args to the form they really have. */
709 hsh = hppa_stub_hash_entry (bh);
710 info = (struct bfd_link_info *)in_arg;
711
712 htab = hppa_link_hash_table (info);
713 if (htab == NULL)
714 return FALSE;
715
716 stub_sec = hsh->stub_sec;
717
718 /* Make a note of the offset within the stubs for this entry. */
719 hsh->stub_offset = stub_sec->size;
720 loc = stub_sec->contents + hsh->stub_offset;
721
722 stub_bfd = stub_sec->owner;
723
724 switch (hsh->stub_type)
725 {
726 case hppa_stub_long_branch:
727 /* Fail if the target section could not be assigned to an output
728 section. The user should fix his linker script. */
729 if (hsh->target_section->output_section == NULL
730 && info->non_contiguous_regions)
731 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output "
732 "section. Retry without "
733 "--enable-non-contiguous-regions.\n"),
734 hsh->target_section);
735
736 /* Create the long branch. A long branch is formed with "ldil"
737 loading the upper bits of the target address into a register,
738 then branching with "be" which adds in the lower bits.
739 The "be" has its delay slot nullified. */
740 sym_value = (hsh->target_value
741 + hsh->target_section->output_offset
742 + hsh->target_section->output_section->vma);
743
744 val = hppa_field_adjust (sym_value, 0, e_lrsel);
745 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
746 bfd_put_32 (stub_bfd, insn, loc);
747
748 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
749 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
750 bfd_put_32 (stub_bfd, insn, loc + 4);
751
752 size = LONG_BRANCH_STUB_SIZE;
753 break;
754
755 case hppa_stub_long_branch_shared:
756 /* Fail if the target section could not be assigned to an output
757 section. The user should fix his linker script. */
758 if (hsh->target_section->output_section == NULL
759 && info->non_contiguous_regions)
760 info->callbacks->einfo (_("%F%P: Could not assign %pA to an output "
761 "section. Retry without "
762 "--enable-non-contiguous-regions.\n"),
763 hsh->target_section);
764
765 /* Branches are relative. This is where we are going to. */
766 sym_value = (hsh->target_value
767 + hsh->target_section->output_offset
768 + hsh->target_section->output_section->vma);
769
770 /* And this is where we are coming from, more or less. */
771 sym_value -= (hsh->stub_offset
772 + stub_sec->output_offset
773 + stub_sec->output_section->vma);
774
775 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
776 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
777 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
778 bfd_put_32 (stub_bfd, insn, loc + 4);
779
780 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
781 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
782 bfd_put_32 (stub_bfd, insn, loc + 8);
783 size = LONG_BRANCH_SHARED_STUB_SIZE;
784 break;
785
786 case hppa_stub_import:
787 case hppa_stub_import_shared:
788 off = hsh->hh->eh.plt.offset;
789 if (off >= (bfd_vma) -2)
790 abort ();
791
792 off &= ~ (bfd_vma) 1;
793 sym_value = (off
794 + htab->etab.splt->output_offset
795 + htab->etab.splt->output_section->vma
796 - elf_gp (htab->etab.splt->output_section->owner));
797
798 insn = ADDIL_DP;
799 #if R19_STUBS
800 if (hsh->stub_type == hppa_stub_import_shared)
801 insn = ADDIL_R19;
802 #endif
803
804 /* Load function descriptor address into register %r22. It is
805 sometimes needed for lazy binding. */
806 val = hppa_field_adjust (sym_value, 0, e_lrsel),
807 insn = hppa_rebuild_insn ((int) insn, val, 21);
808 bfd_put_32 (stub_bfd, insn, loc);
809
810 val = hppa_field_adjust (sym_value, 0, e_rrsel);
811 insn = hppa_rebuild_insn ((int) LDO_R1_R22, val, 14);
812 bfd_put_32 (stub_bfd, insn, loc + 4);
813
814 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R21, loc + 8);
815
816 if (htab->multi_subspace)
817 {
818 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
819 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16);
820 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 20);
821 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 24);
822 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 28);
823
824 size = IMPORT_SHARED_STUB_SIZE;
825 }
826 else
827 {
828 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 12);
829 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16);
830
831 size = IMPORT_STUB_SIZE;
832 }
833
834 break;
835
836 case hppa_stub_export:
837 /* Fail if the target section could not be assigned to an output
838 section. The user should fix his linker script. */
839 if (hsh->target_section->output_section == NULL
840 && info->non_contiguous_regions)
841 info->callbacks->einfo (_("%F%P: Could not assign %pA to an output "
842 "section. Retry without "
843 "--enable-non-contiguous-regions.\n"),
844 hsh->target_section);
845
846 /* Branches are relative. This is where we are going to. */
847 sym_value = (hsh->target_value
848 + hsh->target_section->output_offset
849 + hsh->target_section->output_section->vma);
850
851 /* And this is where we are coming from. */
852 sym_value -= (hsh->stub_offset
853 + stub_sec->output_offset
854 + stub_sec->output_section->vma);
855
856 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
857 && (!htab->has_22bit_branch
858 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
859 {
860 _bfd_error_handler
861 /* xgettext:c-format */
862 (_("%pB(%pA+%#" PRIx64 "): "
863 "cannot reach %s, recompile with -ffunction-sections"),
864 hsh->target_section->owner,
865 stub_sec,
866 (uint64_t) hsh->stub_offset,
867 hsh->bh_root.string);
868 bfd_set_error (bfd_error_bad_value);
869 return FALSE;
870 }
871
872 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
873 if (!htab->has_22bit_branch)
874 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
875 else
876 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
877 bfd_put_32 (stub_bfd, insn, loc);
878
879 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
880 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
881 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
882 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
883 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
884
885 /* Point the function symbol at the stub. */
886 hsh->hh->eh.root.u.def.section = stub_sec;
887 hsh->hh->eh.root.u.def.value = stub_sec->size;
888
889 size = EXPORT_STUB_SIZE;
890 break;
891
892 default:
893 BFD_FAIL ();
894 return FALSE;
895 }
896
897 stub_sec->size += size;
898 return TRUE;
899 }
900
901 #undef LDIL_R1
902 #undef BE_SR4_R1
903 #undef BL_R1
904 #undef ADDIL_R1
905 #undef DEPI_R1
906 #undef LDW_R1_R21
907 #undef LDW_R1_DLT
908 #undef LDW_R1_R19
909 #undef ADDIL_R19
910 #undef LDW_R1_DP
911 #undef LDSID_R21_R1
912 #undef MTSP_R1
913 #undef BE_SR0_R21
914 #undef STW_RP
915 #undef BV_R0_R21
916 #undef BL_RP
917 #undef NOP
918 #undef LDW_RP
919 #undef LDSID_RP_R1
920 #undef BE_SR0_RP
921
922 /* As above, but don't actually build the stub. Just bump offset so
923 we know stub section sizes. */
924
925 static bfd_boolean
926 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
927 {
928 struct elf32_hppa_stub_hash_entry *hsh;
929 struct elf32_hppa_link_hash_table *htab;
930 int size;
931
932 /* Massage our args to the form they really have. */
933 hsh = hppa_stub_hash_entry (bh);
934 htab = in_arg;
935
936 if (hsh->stub_type == hppa_stub_long_branch)
937 size = LONG_BRANCH_STUB_SIZE;
938 else if (hsh->stub_type == hppa_stub_long_branch_shared)
939 size = LONG_BRANCH_SHARED_STUB_SIZE;
940 else if (hsh->stub_type == hppa_stub_export)
941 size = EXPORT_STUB_SIZE;
942 else /* hppa_stub_import or hppa_stub_import_shared. */
943 {
944 if (htab->multi_subspace)
945 size = IMPORT_SHARED_STUB_SIZE;
946 else
947 size = IMPORT_STUB_SIZE;
948 }
949
950 hsh->stub_sec->size += size;
951 return TRUE;
952 }
953
954 /* Return nonzero if ABFD represents an HPPA ELF32 file.
955 Additionally we set the default architecture and machine. */
956
957 static bfd_boolean
958 elf32_hppa_object_p (bfd *abfd)
959 {
960 Elf_Internal_Ehdr * i_ehdrp;
961 unsigned int flags;
962
963 i_ehdrp = elf_elfheader (abfd);
964 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
965 {
966 /* GCC on hppa-linux produces binaries with OSABI=GNU,
967 but the kernel produces corefiles with OSABI=SysV. */
968 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
969 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
970 return FALSE;
971 }
972 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
973 {
974 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
975 but the kernel produces corefiles with OSABI=SysV. */
976 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
977 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
978 return FALSE;
979 }
980 else
981 {
982 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
983 return FALSE;
984 }
985
986 flags = i_ehdrp->e_flags;
987 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
988 {
989 case EFA_PARISC_1_0:
990 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
991 case EFA_PARISC_1_1:
992 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
993 case EFA_PARISC_2_0:
994 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
995 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
996 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
997 }
998 return TRUE;
999 }
1000
1001 /* Create the .plt and .got sections, and set up our hash table
1002 short-cuts to various dynamic sections. */
1003
1004 static bfd_boolean
1005 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
1006 {
1007 struct elf32_hppa_link_hash_table *htab;
1008 struct elf_link_hash_entry *eh;
1009
1010 /* Don't try to create the .plt and .got twice. */
1011 htab = hppa_link_hash_table (info);
1012 if (htab == NULL)
1013 return FALSE;
1014 if (htab->etab.splt != NULL)
1015 return TRUE;
1016
1017 /* Call the generic code to do most of the work. */
1018 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1019 return FALSE;
1020
1021 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1022 application, because __canonicalize_funcptr_for_compare needs it. */
1023 eh = elf_hash_table (info)->hgot;
1024 eh->forced_local = 0;
1025 eh->other = STV_DEFAULT;
1026 return bfd_elf_link_record_dynamic_symbol (info, eh);
1027 }
1028
1029 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1030
1031 static void
1032 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1033 struct elf_link_hash_entry *eh_dir,
1034 struct elf_link_hash_entry *eh_ind)
1035 {
1036 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1037
1038 hh_dir = hppa_elf_hash_entry (eh_dir);
1039 hh_ind = hppa_elf_hash_entry (eh_ind);
1040
1041 if (eh_ind->root.type == bfd_link_hash_indirect)
1042 {
1043 hh_dir->plabel |= hh_ind->plabel;
1044 hh_dir->tls_type |= hh_ind->tls_type;
1045 hh_ind->tls_type = GOT_UNKNOWN;
1046 }
1047
1048 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1049 }
1050
1051 static int
1052 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1053 int r_type, int is_local ATTRIBUTE_UNUSED)
1054 {
1055 /* For now we don't support linker optimizations. */
1056 return r_type;
1057 }
1058
1059 /* Return a pointer to the local GOT, PLT and TLS reference counts
1060 for ABFD. Returns NULL if the storage allocation fails. */
1061
1062 static bfd_signed_vma *
1063 hppa32_elf_local_refcounts (bfd *abfd)
1064 {
1065 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1066 bfd_signed_vma *local_refcounts;
1067
1068 local_refcounts = elf_local_got_refcounts (abfd);
1069 if (local_refcounts == NULL)
1070 {
1071 bfd_size_type size;
1072
1073 /* Allocate space for local GOT and PLT reference
1074 counts. Done this way to save polluting elf_obj_tdata
1075 with another target specific pointer. */
1076 size = symtab_hdr->sh_info;
1077 size *= 2 * sizeof (bfd_signed_vma);
1078 /* Add in space to store the local GOT TLS types. */
1079 size += symtab_hdr->sh_info;
1080 local_refcounts = bfd_zalloc (abfd, size);
1081 if (local_refcounts == NULL)
1082 return NULL;
1083 elf_local_got_refcounts (abfd) = local_refcounts;
1084 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1085 symtab_hdr->sh_info);
1086 }
1087 return local_refcounts;
1088 }
1089
1090
1091 /* Look through the relocs for a section during the first phase, and
1092 calculate needed space in the global offset table, procedure linkage
1093 table, and dynamic reloc sections. At this point we haven't
1094 necessarily read all the input files. */
1095
1096 static bfd_boolean
1097 elf32_hppa_check_relocs (bfd *abfd,
1098 struct bfd_link_info *info,
1099 asection *sec,
1100 const Elf_Internal_Rela *relocs)
1101 {
1102 Elf_Internal_Shdr *symtab_hdr;
1103 struct elf_link_hash_entry **eh_syms;
1104 const Elf_Internal_Rela *rela;
1105 const Elf_Internal_Rela *rela_end;
1106 struct elf32_hppa_link_hash_table *htab;
1107 asection *sreloc;
1108
1109 if (bfd_link_relocatable (info))
1110 return TRUE;
1111
1112 htab = hppa_link_hash_table (info);
1113 if (htab == NULL)
1114 return FALSE;
1115 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1116 eh_syms = elf_sym_hashes (abfd);
1117 sreloc = NULL;
1118
1119 rela_end = relocs + sec->reloc_count;
1120 for (rela = relocs; rela < rela_end; rela++)
1121 {
1122 enum {
1123 NEED_GOT = 1,
1124 NEED_PLT = 2,
1125 NEED_DYNREL = 4,
1126 PLT_PLABEL = 8
1127 };
1128
1129 unsigned int r_symndx, r_type;
1130 struct elf32_hppa_link_hash_entry *hh;
1131 int need_entry = 0;
1132
1133 r_symndx = ELF32_R_SYM (rela->r_info);
1134
1135 if (r_symndx < symtab_hdr->sh_info)
1136 hh = NULL;
1137 else
1138 {
1139 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1140 while (hh->eh.root.type == bfd_link_hash_indirect
1141 || hh->eh.root.type == bfd_link_hash_warning)
1142 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1143 }
1144
1145 r_type = ELF32_R_TYPE (rela->r_info);
1146 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1147
1148 switch (r_type)
1149 {
1150 case R_PARISC_DLTIND14F:
1151 case R_PARISC_DLTIND14R:
1152 case R_PARISC_DLTIND21L:
1153 /* This symbol requires a global offset table entry. */
1154 need_entry = NEED_GOT;
1155 break;
1156
1157 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1158 case R_PARISC_PLABEL21L:
1159 case R_PARISC_PLABEL32:
1160 /* If the addend is non-zero, we break badly. */
1161 if (rela->r_addend != 0)
1162 abort ();
1163
1164 /* If we are creating a shared library, then we need to
1165 create a PLT entry for all PLABELs, because PLABELs with
1166 local symbols may be passed via a pointer to another
1167 object. Additionally, output a dynamic relocation
1168 pointing to the PLT entry.
1169
1170 For executables, the original 32-bit ABI allowed two
1171 different styles of PLABELs (function pointers): For
1172 global functions, the PLABEL word points into the .plt
1173 two bytes past a (function address, gp) pair, and for
1174 local functions the PLABEL points directly at the
1175 function. The magic +2 for the first type allows us to
1176 differentiate between the two. As you can imagine, this
1177 is a real pain when it comes to generating code to call
1178 functions indirectly or to compare function pointers.
1179 We avoid the mess by always pointing a PLABEL into the
1180 .plt, even for local functions. */
1181 need_entry = PLT_PLABEL | NEED_PLT;
1182 if (bfd_link_pic (info))
1183 need_entry |= NEED_DYNREL;
1184 break;
1185
1186 case R_PARISC_PCREL12F:
1187 htab->has_12bit_branch = 1;
1188 goto branch_common;
1189
1190 case R_PARISC_PCREL17C:
1191 case R_PARISC_PCREL17F:
1192 htab->has_17bit_branch = 1;
1193 goto branch_common;
1194
1195 case R_PARISC_PCREL22F:
1196 htab->has_22bit_branch = 1;
1197 branch_common:
1198 /* Function calls might need to go through the .plt, and
1199 might require long branch stubs. */
1200 if (hh == NULL)
1201 {
1202 /* We know local syms won't need a .plt entry, and if
1203 they need a long branch stub we can't guarantee that
1204 we can reach the stub. So just flag an error later
1205 if we're doing a shared link and find we need a long
1206 branch stub. */
1207 continue;
1208 }
1209 else
1210 {
1211 /* Global symbols will need a .plt entry if they remain
1212 global, and in most cases won't need a long branch
1213 stub. Unfortunately, we have to cater for the case
1214 where a symbol is forced local by versioning, or due
1215 to symbolic linking, and we lose the .plt entry. */
1216 need_entry = NEED_PLT;
1217 if (hh->eh.type == STT_PARISC_MILLI)
1218 need_entry = 0;
1219 }
1220 break;
1221
1222 case R_PARISC_SEGBASE: /* Used to set segment base. */
1223 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1224 case R_PARISC_PCREL14F: /* PC relative load/store. */
1225 case R_PARISC_PCREL14R:
1226 case R_PARISC_PCREL17R: /* External branches. */
1227 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1228 case R_PARISC_PCREL32:
1229 /* We don't need to propagate the relocation if linking a
1230 shared object since these are section relative. */
1231 continue;
1232
1233 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1234 case R_PARISC_DPREL14R:
1235 case R_PARISC_DPREL21L:
1236 if (bfd_link_pic (info))
1237 {
1238 _bfd_error_handler
1239 /* xgettext:c-format */
1240 (_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1241 abfd,
1242 elf_hppa_howto_table[r_type].name);
1243 bfd_set_error (bfd_error_bad_value);
1244 return FALSE;
1245 }
1246 /* Fall through. */
1247
1248 case R_PARISC_DIR17F: /* Used for external branches. */
1249 case R_PARISC_DIR17R:
1250 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1251 case R_PARISC_DIR14R:
1252 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1253 case R_PARISC_DIR32: /* .word relocs. */
1254 /* We may want to output a dynamic relocation later. */
1255 need_entry = NEED_DYNREL;
1256 break;
1257
1258 /* This relocation describes the C++ object vtable hierarchy.
1259 Reconstruct it for later use during GC. */
1260 case R_PARISC_GNU_VTINHERIT:
1261 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1262 return FALSE;
1263 continue;
1264
1265 /* This relocation describes which C++ vtable entries are actually
1266 used. Record for later use during GC. */
1267 case R_PARISC_GNU_VTENTRY:
1268 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1269 return FALSE;
1270 continue;
1271
1272 case R_PARISC_TLS_GD21L:
1273 case R_PARISC_TLS_GD14R:
1274 case R_PARISC_TLS_LDM21L:
1275 case R_PARISC_TLS_LDM14R:
1276 need_entry = NEED_GOT;
1277 break;
1278
1279 case R_PARISC_TLS_IE21L:
1280 case R_PARISC_TLS_IE14R:
1281 if (bfd_link_dll (info))
1282 info->flags |= DF_STATIC_TLS;
1283 need_entry = NEED_GOT;
1284 break;
1285
1286 default:
1287 continue;
1288 }
1289
1290 /* Now carry out our orders. */
1291 if (need_entry & NEED_GOT)
1292 {
1293 int tls_type = GOT_NORMAL;
1294
1295 switch (r_type)
1296 {
1297 default:
1298 break;
1299 case R_PARISC_TLS_GD21L:
1300 case R_PARISC_TLS_GD14R:
1301 tls_type = GOT_TLS_GD;
1302 break;
1303 case R_PARISC_TLS_LDM21L:
1304 case R_PARISC_TLS_LDM14R:
1305 tls_type = GOT_TLS_LDM;
1306 break;
1307 case R_PARISC_TLS_IE21L:
1308 case R_PARISC_TLS_IE14R:
1309 tls_type = GOT_TLS_IE;
1310 break;
1311 }
1312
1313 /* Allocate space for a GOT entry, as well as a dynamic
1314 relocation for this entry. */
1315 if (htab->etab.sgot == NULL)
1316 {
1317 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1318 return FALSE;
1319 }
1320
1321 if (hh != NULL)
1322 {
1323 if (tls_type == GOT_TLS_LDM)
1324 htab->tls_ldm_got.refcount += 1;
1325 else
1326 hh->eh.got.refcount += 1;
1327 hh->tls_type |= tls_type;
1328 }
1329 else
1330 {
1331 bfd_signed_vma *local_got_refcounts;
1332
1333 /* This is a global offset table entry for a local symbol. */
1334 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1335 if (local_got_refcounts == NULL)
1336 return FALSE;
1337 if (tls_type == GOT_TLS_LDM)
1338 htab->tls_ldm_got.refcount += 1;
1339 else
1340 local_got_refcounts[r_symndx] += 1;
1341
1342 hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type;
1343 }
1344 }
1345
1346 if (need_entry & NEED_PLT)
1347 {
1348 /* If we are creating a shared library, and this is a reloc
1349 against a weak symbol or a global symbol in a dynamic
1350 object, then we will be creating an import stub and a
1351 .plt entry for the symbol. Similarly, on a normal link
1352 to symbols defined in a dynamic object we'll need the
1353 import stub and a .plt entry. We don't know yet whether
1354 the symbol is defined or not, so make an entry anyway and
1355 clean up later in adjust_dynamic_symbol. */
1356 if ((sec->flags & SEC_ALLOC) != 0)
1357 {
1358 if (hh != NULL)
1359 {
1360 hh->eh.needs_plt = 1;
1361 hh->eh.plt.refcount += 1;
1362
1363 /* If this .plt entry is for a plabel, mark it so
1364 that adjust_dynamic_symbol will keep the entry
1365 even if it appears to be local. */
1366 if (need_entry & PLT_PLABEL)
1367 hh->plabel = 1;
1368 }
1369 else if (need_entry & PLT_PLABEL)
1370 {
1371 bfd_signed_vma *local_got_refcounts;
1372 bfd_signed_vma *local_plt_refcounts;
1373
1374 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1375 if (local_got_refcounts == NULL)
1376 return FALSE;
1377 local_plt_refcounts = (local_got_refcounts
1378 + symtab_hdr->sh_info);
1379 local_plt_refcounts[r_symndx] += 1;
1380 }
1381 }
1382 }
1383
1384 if ((need_entry & NEED_DYNREL) != 0
1385 && (sec->flags & SEC_ALLOC) != 0)
1386 {
1387 /* Flag this symbol as having a non-got, non-plt reference
1388 so that we generate copy relocs if it turns out to be
1389 dynamic. */
1390 if (hh != NULL)
1391 hh->eh.non_got_ref = 1;
1392
1393 /* If we are creating a shared library then we need to copy
1394 the reloc into the shared library. However, if we are
1395 linking with -Bsymbolic, we need only copy absolute
1396 relocs or relocs against symbols that are not defined in
1397 an object we are including in the link. PC- or DP- or
1398 DLT-relative relocs against any local sym or global sym
1399 with DEF_REGULAR set, can be discarded. At this point we
1400 have not seen all the input files, so it is possible that
1401 DEF_REGULAR is not set now but will be set later (it is
1402 never cleared). We account for that possibility below by
1403 storing information in the dyn_relocs field of the
1404 hash table entry.
1405
1406 A similar situation to the -Bsymbolic case occurs when
1407 creating shared libraries and symbol visibility changes
1408 render the symbol local.
1409
1410 As it turns out, all the relocs we will be creating here
1411 are absolute, so we cannot remove them on -Bsymbolic
1412 links or visibility changes anyway. A STUB_REL reloc
1413 is absolute too, as in that case it is the reloc in the
1414 stub we will be creating, rather than copying the PCREL
1415 reloc in the branch.
1416
1417 If on the other hand, we are creating an executable, we
1418 may need to keep relocations for symbols satisfied by a
1419 dynamic library if we manage to avoid copy relocs for the
1420 symbol. */
1421 if ((bfd_link_pic (info)
1422 && (IS_ABSOLUTE_RELOC (r_type)
1423 || (hh != NULL
1424 && (!SYMBOLIC_BIND (info, &hh->eh)
1425 || hh->eh.root.type == bfd_link_hash_defweak
1426 || !hh->eh.def_regular))))
1427 || (ELIMINATE_COPY_RELOCS
1428 && !bfd_link_pic (info)
1429 && hh != NULL
1430 && (hh->eh.root.type == bfd_link_hash_defweak
1431 || !hh->eh.def_regular)))
1432 {
1433 struct elf_dyn_relocs *hdh_p;
1434 struct elf_dyn_relocs **hdh_head;
1435
1436 /* Create a reloc section in dynobj and make room for
1437 this reloc. */
1438 if (sreloc == NULL)
1439 {
1440 sreloc = _bfd_elf_make_dynamic_reloc_section
1441 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1442
1443 if (sreloc == NULL)
1444 {
1445 bfd_set_error (bfd_error_bad_value);
1446 return FALSE;
1447 }
1448 }
1449
1450 /* If this is a global symbol, we count the number of
1451 relocations we need for this symbol. */
1452 if (hh != NULL)
1453 {
1454 hdh_head = &hh->eh.dyn_relocs;
1455 }
1456 else
1457 {
1458 /* Track dynamic relocs needed for local syms too.
1459 We really need local syms available to do this
1460 easily. Oh well. */
1461 asection *sr;
1462 void *vpp;
1463 Elf_Internal_Sym *isym;
1464
1465 isym = bfd_sym_from_r_symndx (&htab->etab.sym_cache,
1466 abfd, r_symndx);
1467 if (isym == NULL)
1468 return FALSE;
1469
1470 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1471 if (sr == NULL)
1472 sr = sec;
1473
1474 vpp = &elf_section_data (sr)->local_dynrel;
1475 hdh_head = (struct elf_dyn_relocs **) vpp;
1476 }
1477
1478 hdh_p = *hdh_head;
1479 if (hdh_p == NULL || hdh_p->sec != sec)
1480 {
1481 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1482 if (hdh_p == NULL)
1483 return FALSE;
1484 hdh_p->next = *hdh_head;
1485 *hdh_head = hdh_p;
1486 hdh_p->sec = sec;
1487 hdh_p->count = 0;
1488 #if RELATIVE_DYNRELOCS
1489 hdh_p->pc_count = 0;
1490 #endif
1491 }
1492
1493 hdh_p->count += 1;
1494 #if RELATIVE_DYNRELOCS
1495 if (!IS_ABSOLUTE_RELOC (rtype))
1496 hdh_p->pc_count += 1;
1497 #endif
1498 }
1499 }
1500 }
1501
1502 return TRUE;
1503 }
1504
1505 /* Return the section that should be marked against garbage collection
1506 for a given relocation. */
1507
1508 static asection *
1509 elf32_hppa_gc_mark_hook (asection *sec,
1510 struct bfd_link_info *info,
1511 Elf_Internal_Rela *rela,
1512 struct elf_link_hash_entry *hh,
1513 Elf_Internal_Sym *sym)
1514 {
1515 if (hh != NULL)
1516 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1517 {
1518 case R_PARISC_GNU_VTINHERIT:
1519 case R_PARISC_GNU_VTENTRY:
1520 return NULL;
1521 }
1522
1523 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1524 }
1525
1526 /* Support for core dump NOTE sections. */
1527
1528 static bfd_boolean
1529 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1530 {
1531 int offset;
1532 size_t size;
1533
1534 switch (note->descsz)
1535 {
1536 default:
1537 return FALSE;
1538
1539 case 396: /* Linux/hppa */
1540 /* pr_cursig */
1541 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1542
1543 /* pr_pid */
1544 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1545
1546 /* pr_reg */
1547 offset = 72;
1548 size = 320;
1549
1550 break;
1551 }
1552
1553 /* Make a ".reg/999" section. */
1554 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1555 size, note->descpos + offset);
1556 }
1557
1558 static bfd_boolean
1559 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1560 {
1561 switch (note->descsz)
1562 {
1563 default:
1564 return FALSE;
1565
1566 case 124: /* Linux/hppa elf_prpsinfo. */
1567 elf_tdata (abfd)->core->program
1568 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1569 elf_tdata (abfd)->core->command
1570 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1571 }
1572
1573 /* Note that for some reason, a spurious space is tacked
1574 onto the end of the args in some (at least one anyway)
1575 implementations, so strip it off if it exists. */
1576 {
1577 char *command = elf_tdata (abfd)->core->command;
1578 int n = strlen (command);
1579
1580 if (0 < n && command[n - 1] == ' ')
1581 command[n - 1] = '\0';
1582 }
1583
1584 return TRUE;
1585 }
1586
1587 /* Our own version of hide_symbol, so that we can keep plt entries for
1588 plabels. */
1589
1590 static void
1591 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1592 struct elf_link_hash_entry *eh,
1593 bfd_boolean force_local)
1594 {
1595 if (force_local)
1596 {
1597 eh->forced_local = 1;
1598 if (eh->dynindx != -1)
1599 {
1600 eh->dynindx = -1;
1601 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1602 eh->dynstr_index);
1603 }
1604
1605 /* PR 16082: Remove version information from hidden symbol. */
1606 eh->verinfo.verdef = NULL;
1607 eh->verinfo.vertree = NULL;
1608 }
1609
1610 /* STT_GNU_IFUNC symbol must go through PLT. */
1611 if (! hppa_elf_hash_entry (eh)->plabel
1612 && eh->type != STT_GNU_IFUNC)
1613 {
1614 eh->needs_plt = 0;
1615 eh->plt = elf_hash_table (info)->init_plt_offset;
1616 }
1617 }
1618
1619 /* Return true if we have dynamic relocs against H or any of its weak
1620 aliases, that apply to read-only sections. Cannot be used after
1621 size_dynamic_sections. */
1622
1623 static bfd_boolean
1624 alias_readonly_dynrelocs (struct elf_link_hash_entry *eh)
1625 {
1626 struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1627 do
1628 {
1629 if (_bfd_elf_readonly_dynrelocs (&hh->eh))
1630 return TRUE;
1631 hh = hppa_elf_hash_entry (hh->eh.u.alias);
1632 } while (hh != NULL && &hh->eh != eh);
1633
1634 return FALSE;
1635 }
1636
1637 /* Adjust a symbol defined by a dynamic object and referenced by a
1638 regular object. The current definition is in some section of the
1639 dynamic object, but we're not including those sections. We have to
1640 change the definition to something the rest of the link can
1641 understand. */
1642
1643 static bfd_boolean
1644 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1645 struct elf_link_hash_entry *eh)
1646 {
1647 struct elf32_hppa_link_hash_table *htab;
1648 asection *sec, *srel;
1649
1650 /* If this is a function, put it in the procedure linkage table. We
1651 will fill in the contents of the procedure linkage table later. */
1652 if (eh->type == STT_FUNC
1653 || eh->needs_plt)
1654 {
1655 bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
1656 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
1657 /* Discard dyn_relocs when non-pic if we've decided that a
1658 function symbol is local. */
1659 if (!bfd_link_pic (info) && local)
1660 eh->dyn_relocs = NULL;
1661
1662 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1663 The refcounts are not reliable when it has been hidden since
1664 hide_symbol can be called before the plabel flag is set. */
1665 if (hppa_elf_hash_entry (eh)->plabel)
1666 eh->plt.refcount = 1;
1667
1668 /* Note that unlike some other backends, the refcount is not
1669 incremented for a non-call (and non-plabel) function reference. */
1670 else if (eh->plt.refcount <= 0
1671 || local)
1672 {
1673 /* The .plt entry is not needed when:
1674 a) Garbage collection has removed all references to the
1675 symbol, or
1676 b) We know for certain the symbol is defined in this
1677 object, and it's not a weak definition, nor is the symbol
1678 used by a plabel relocation. Either this object is the
1679 application or we are doing a shared symbolic link. */
1680 eh->plt.offset = (bfd_vma) -1;
1681 eh->needs_plt = 0;
1682 }
1683
1684 /* Unlike other targets, elf32-hppa.c does not define a function
1685 symbol in a non-pic executable on PLT stub code, so we don't
1686 have a local definition in that case. ie. dyn_relocs can't
1687 be discarded. */
1688
1689 /* Function symbols can't have copy relocs. */
1690 return TRUE;
1691 }
1692 else
1693 eh->plt.offset = (bfd_vma) -1;
1694
1695 htab = hppa_link_hash_table (info);
1696 if (htab == NULL)
1697 return FALSE;
1698
1699 /* If this is a weak symbol, and there is a real definition, the
1700 processor independent code will have arranged for us to see the
1701 real definition first, and we can just use the same value. */
1702 if (eh->is_weakalias)
1703 {
1704 struct elf_link_hash_entry *def = weakdef (eh);
1705 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1706 eh->root.u.def.section = def->root.u.def.section;
1707 eh->root.u.def.value = def->root.u.def.value;
1708 if (def->root.u.def.section == htab->etab.sdynbss
1709 || def->root.u.def.section == htab->etab.sdynrelro)
1710 eh->dyn_relocs = NULL;
1711 return TRUE;
1712 }
1713
1714 /* This is a reference to a symbol defined by a dynamic object which
1715 is not a function. */
1716
1717 /* If we are creating a shared library, we must presume that the
1718 only references to the symbol are via the global offset table.
1719 For such cases we need not do anything here; the relocations will
1720 be handled correctly by relocate_section. */
1721 if (bfd_link_pic (info))
1722 return TRUE;
1723
1724 /* If there are no references to this symbol that do not use the
1725 GOT, we don't need to generate a copy reloc. */
1726 if (!eh->non_got_ref)
1727 return TRUE;
1728
1729 /* If -z nocopyreloc was given, we won't generate them either. */
1730 if (info->nocopyreloc)
1731 return TRUE;
1732
1733 /* If we don't find any dynamic relocs in read-only sections, then
1734 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1735 if (ELIMINATE_COPY_RELOCS
1736 && !alias_readonly_dynrelocs (eh))
1737 return TRUE;
1738
1739 /* We must allocate the symbol in our .dynbss section, which will
1740 become part of the .bss section of the executable. There will be
1741 an entry for this symbol in the .dynsym section. The dynamic
1742 object will contain position independent code, so all references
1743 from the dynamic object to this symbol will go through the global
1744 offset table. The dynamic linker will use the .dynsym entry to
1745 determine the address it must put in the global offset table, so
1746 both the dynamic object and the regular object will refer to the
1747 same memory location for the variable. */
1748 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1749 {
1750 sec = htab->etab.sdynrelro;
1751 srel = htab->etab.sreldynrelro;
1752 }
1753 else
1754 {
1755 sec = htab->etab.sdynbss;
1756 srel = htab->etab.srelbss;
1757 }
1758 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1759 {
1760 /* We must generate a COPY reloc to tell the dynamic linker to
1761 copy the initial value out of the dynamic object and into the
1762 runtime process image. */
1763 srel->size += sizeof (Elf32_External_Rela);
1764 eh->needs_copy = 1;
1765 }
1766
1767 /* We no longer want dyn_relocs. */
1768 eh->dyn_relocs = NULL;
1769 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1770 }
1771
1772 /* If EH is undefined, make it dynamic if that makes sense. */
1773
1774 static bfd_boolean
1775 ensure_undef_dynamic (struct bfd_link_info *info,
1776 struct elf_link_hash_entry *eh)
1777 {
1778 struct elf_link_hash_table *htab = elf_hash_table (info);
1779
1780 if (htab->dynamic_sections_created
1781 && (eh->root.type == bfd_link_hash_undefweak
1782 || eh->root.type == bfd_link_hash_undefined)
1783 && eh->dynindx == -1
1784 && !eh->forced_local
1785 && eh->type != STT_PARISC_MILLI
1786 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1787 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1788 return bfd_elf_link_record_dynamic_symbol (info, eh);
1789 return TRUE;
1790 }
1791
1792 /* Allocate space in the .plt for entries that won't have relocations.
1793 ie. plabel entries. */
1794
1795 static bfd_boolean
1796 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1797 {
1798 struct bfd_link_info *info;
1799 struct elf32_hppa_link_hash_table *htab;
1800 struct elf32_hppa_link_hash_entry *hh;
1801 asection *sec;
1802
1803 if (eh->root.type == bfd_link_hash_indirect)
1804 return TRUE;
1805
1806 info = (struct bfd_link_info *) inf;
1807 hh = hppa_elf_hash_entry (eh);
1808 htab = hppa_link_hash_table (info);
1809 if (htab == NULL)
1810 return FALSE;
1811
1812 if (htab->etab.dynamic_sections_created
1813 && eh->plt.refcount > 0)
1814 {
1815 if (!ensure_undef_dynamic (info, eh))
1816 return FALSE;
1817
1818 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1819 {
1820 /* Allocate these later. From this point on, h->plabel
1821 means that the plt entry is only used by a plabel.
1822 We'll be using a normal plt entry for this symbol, so
1823 clear the plabel indicator. */
1824
1825 hh->plabel = 0;
1826 }
1827 else if (hh->plabel)
1828 {
1829 /* Make an entry in the .plt section for plabel references
1830 that won't have a .plt entry for other reasons. */
1831 sec = htab->etab.splt;
1832 eh->plt.offset = sec->size;
1833 sec->size += PLT_ENTRY_SIZE;
1834 if (bfd_link_pic (info))
1835 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1836 }
1837 else
1838 {
1839 /* No .plt entry needed. */
1840 eh->plt.offset = (bfd_vma) -1;
1841 eh->needs_plt = 0;
1842 }
1843 }
1844 else
1845 {
1846 eh->plt.offset = (bfd_vma) -1;
1847 eh->needs_plt = 0;
1848 }
1849
1850 return TRUE;
1851 }
1852
1853 /* Calculate size of GOT entries for symbol given its TLS_TYPE. */
1854
1855 static inline unsigned int
1856 got_entries_needed (int tls_type)
1857 {
1858 unsigned int need = 0;
1859
1860 if ((tls_type & GOT_NORMAL) != 0)
1861 need += GOT_ENTRY_SIZE;
1862 if ((tls_type & GOT_TLS_GD) != 0)
1863 need += GOT_ENTRY_SIZE * 2;
1864 if ((tls_type & GOT_TLS_IE) != 0)
1865 need += GOT_ENTRY_SIZE;
1866 return need;
1867 }
1868
1869 /* Calculate size of relocs needed for symbol given its TLS_TYPE and
1870 NEEDed GOT entries. TPREL_KNOWN says a TPREL offset can be
1871 calculated at link time. DTPREL_KNOWN says the same for a DTPREL
1872 offset. */
1873
1874 static inline unsigned int
1875 got_relocs_needed (int tls_type, unsigned int need,
1876 bfd_boolean dtprel_known, bfd_boolean tprel_known)
1877 {
1878 /* All the entries we allocated need relocs.
1879 Except for GD and IE with local symbols. */
1880 if ((tls_type & GOT_TLS_GD) != 0 && dtprel_known)
1881 need -= GOT_ENTRY_SIZE;
1882 if ((tls_type & GOT_TLS_IE) != 0 && tprel_known)
1883 need -= GOT_ENTRY_SIZE;
1884 return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE;
1885 }
1886
1887 /* Allocate space in .plt, .got and associated reloc sections for
1888 global syms. */
1889
1890 static bfd_boolean
1891 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1892 {
1893 struct bfd_link_info *info;
1894 struct elf32_hppa_link_hash_table *htab;
1895 asection *sec;
1896 struct elf32_hppa_link_hash_entry *hh;
1897 struct elf_dyn_relocs *hdh_p;
1898
1899 if (eh->root.type == bfd_link_hash_indirect)
1900 return TRUE;
1901
1902 info = inf;
1903 htab = hppa_link_hash_table (info);
1904 if (htab == NULL)
1905 return FALSE;
1906
1907 hh = hppa_elf_hash_entry (eh);
1908
1909 if (htab->etab.dynamic_sections_created
1910 && eh->plt.offset != (bfd_vma) -1
1911 && !hh->plabel
1912 && eh->plt.refcount > 0)
1913 {
1914 /* Make an entry in the .plt section. */
1915 sec = htab->etab.splt;
1916 eh->plt.offset = sec->size;
1917 sec->size += PLT_ENTRY_SIZE;
1918
1919 /* We also need to make an entry in the .rela.plt section. */
1920 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1921 htab->need_plt_stub = 1;
1922 }
1923
1924 if (eh->got.refcount > 0)
1925 {
1926 unsigned int need;
1927
1928 if (!ensure_undef_dynamic (info, eh))
1929 return FALSE;
1930
1931 sec = htab->etab.sgot;
1932 eh->got.offset = sec->size;
1933 need = got_entries_needed (hh->tls_type);
1934 sec->size += need;
1935 if (htab->etab.dynamic_sections_created
1936 && (bfd_link_dll (info)
1937 || (bfd_link_pic (info) && (hh->tls_type & GOT_NORMAL) != 0)
1938 || (eh->dynindx != -1
1939 && !SYMBOL_REFERENCES_LOCAL (info, eh)))
1940 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1941 {
1942 bfd_boolean local = SYMBOL_REFERENCES_LOCAL (info, eh);
1943 htab->etab.srelgot->size
1944 += got_relocs_needed (hh->tls_type, need, local,
1945 local && bfd_link_executable (info));
1946 }
1947 }
1948 else
1949 eh->got.offset = (bfd_vma) -1;
1950
1951 /* If no dynamic sections we can't have dynamic relocs. */
1952 if (!htab->etab.dynamic_sections_created)
1953 eh->dyn_relocs = NULL;
1954
1955 /* Discard relocs on undefined syms with non-default visibility. */
1956 else if ((eh->root.type == bfd_link_hash_undefined
1957 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
1958 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1959 eh->dyn_relocs = NULL;
1960
1961 if (eh->dyn_relocs == NULL)
1962 return TRUE;
1963
1964 /* If this is a -Bsymbolic shared link, then we need to discard all
1965 space allocated for dynamic pc-relative relocs against symbols
1966 defined in a regular object. For the normal shared case, discard
1967 space for relocs that have become local due to symbol visibility
1968 changes. */
1969 if (bfd_link_pic (info))
1970 {
1971 #if RELATIVE_DYNRELOCS
1972 if (SYMBOL_CALLS_LOCAL (info, eh))
1973 {
1974 struct elf_dyn_relocs **hdh_pp;
1975
1976 for (hdh_pp = &eh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1977 {
1978 hdh_p->count -= hdh_p->pc_count;
1979 hdh_p->pc_count = 0;
1980 if (hdh_p->count == 0)
1981 *hdh_pp = hdh_p->next;
1982 else
1983 hdh_pp = &hdh_p->next;
1984 }
1985 }
1986 #endif
1987
1988 if (eh->dyn_relocs != NULL)
1989 {
1990 if (!ensure_undef_dynamic (info, eh))
1991 return FALSE;
1992 }
1993 }
1994 else if (ELIMINATE_COPY_RELOCS)
1995 {
1996 /* For the non-shared case, discard space for relocs against
1997 symbols which turn out to need copy relocs or are not
1998 dynamic. */
1999
2000 if (eh->dynamic_adjusted
2001 && !eh->def_regular
2002 && !ELF_COMMON_DEF_P (eh))
2003 {
2004 if (!ensure_undef_dynamic (info, eh))
2005 return FALSE;
2006
2007 if (eh->dynindx == -1)
2008 eh->dyn_relocs = NULL;
2009 }
2010 else
2011 eh->dyn_relocs = NULL;
2012 }
2013
2014 /* Finally, allocate space. */
2015 for (hdh_p = eh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
2016 {
2017 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2018 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2019 }
2020
2021 return TRUE;
2022 }
2023
2024 /* This function is called via elf_link_hash_traverse to force
2025 millicode symbols local so they do not end up as globals in the
2026 dynamic symbol table. We ought to be able to do this in
2027 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2028 for all dynamic symbols. Arguably, this is a bug in
2029 elf_adjust_dynamic_symbol. */
2030
2031 static bfd_boolean
2032 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2033 struct bfd_link_info *info)
2034 {
2035 if (eh->type == STT_PARISC_MILLI
2036 && !eh->forced_local)
2037 {
2038 elf32_hppa_hide_symbol (info, eh, TRUE);
2039 }
2040 return TRUE;
2041 }
2042
2043 /* Set the sizes of the dynamic sections. */
2044
2045 static bfd_boolean
2046 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2047 struct bfd_link_info *info)
2048 {
2049 struct elf32_hppa_link_hash_table *htab;
2050 bfd *dynobj;
2051 bfd *ibfd;
2052 asection *sec;
2053 bfd_boolean relocs;
2054
2055 htab = hppa_link_hash_table (info);
2056 if (htab == NULL)
2057 return FALSE;
2058
2059 dynobj = htab->etab.dynobj;
2060 if (dynobj == NULL)
2061 abort ();
2062
2063 if (htab->etab.dynamic_sections_created)
2064 {
2065 /* Set the contents of the .interp section to the interpreter. */
2066 if (bfd_link_executable (info) && !info->nointerp)
2067 {
2068 sec = bfd_get_linker_section (dynobj, ".interp");
2069 if (sec == NULL)
2070 abort ();
2071 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2072 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2073 }
2074
2075 /* Force millicode symbols local. */
2076 elf_link_hash_traverse (&htab->etab,
2077 clobber_millicode_symbols,
2078 info);
2079 }
2080
2081 /* Set up .got and .plt offsets for local syms, and space for local
2082 dynamic relocs. */
2083 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2084 {
2085 bfd_signed_vma *local_got;
2086 bfd_signed_vma *end_local_got;
2087 bfd_signed_vma *local_plt;
2088 bfd_signed_vma *end_local_plt;
2089 bfd_size_type locsymcount;
2090 Elf_Internal_Shdr *symtab_hdr;
2091 asection *srel;
2092 char *local_tls_type;
2093
2094 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2095 continue;
2096
2097 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2098 {
2099 struct elf_dyn_relocs *hdh_p;
2100
2101 for (hdh_p = ((struct elf_dyn_relocs *)
2102 elf_section_data (sec)->local_dynrel);
2103 hdh_p != NULL;
2104 hdh_p = hdh_p->next)
2105 {
2106 if (!bfd_is_abs_section (hdh_p->sec)
2107 && bfd_is_abs_section (hdh_p->sec->output_section))
2108 {
2109 /* Input section has been discarded, either because
2110 it is a copy of a linkonce section or due to
2111 linker script /DISCARD/, so we'll be discarding
2112 the relocs too. */
2113 }
2114 else if (hdh_p->count != 0)
2115 {
2116 srel = elf_section_data (hdh_p->sec)->sreloc;
2117 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2118 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2119 info->flags |= DF_TEXTREL;
2120 }
2121 }
2122 }
2123
2124 local_got = elf_local_got_refcounts (ibfd);
2125 if (!local_got)
2126 continue;
2127
2128 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2129 locsymcount = symtab_hdr->sh_info;
2130 end_local_got = local_got + locsymcount;
2131 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2132 sec = htab->etab.sgot;
2133 srel = htab->etab.srelgot;
2134 for (; local_got < end_local_got; ++local_got)
2135 {
2136 if (*local_got > 0)
2137 {
2138 unsigned int need;
2139
2140 *local_got = sec->size;
2141 need = got_entries_needed (*local_tls_type);
2142 sec->size += need;
2143 if (bfd_link_dll (info)
2144 || (bfd_link_pic (info)
2145 && (*local_tls_type & GOT_NORMAL) != 0))
2146 htab->etab.srelgot->size
2147 += got_relocs_needed (*local_tls_type, need, TRUE,
2148 bfd_link_executable (info));
2149 }
2150 else
2151 *local_got = (bfd_vma) -1;
2152
2153 ++local_tls_type;
2154 }
2155
2156 local_plt = end_local_got;
2157 end_local_plt = local_plt + locsymcount;
2158 if (! htab->etab.dynamic_sections_created)
2159 {
2160 /* Won't be used, but be safe. */
2161 for (; local_plt < end_local_plt; ++local_plt)
2162 *local_plt = (bfd_vma) -1;
2163 }
2164 else
2165 {
2166 sec = htab->etab.splt;
2167 srel = htab->etab.srelplt;
2168 for (; local_plt < end_local_plt; ++local_plt)
2169 {
2170 if (*local_plt > 0)
2171 {
2172 *local_plt = sec->size;
2173 sec->size += PLT_ENTRY_SIZE;
2174 if (bfd_link_pic (info))
2175 srel->size += sizeof (Elf32_External_Rela);
2176 }
2177 else
2178 *local_plt = (bfd_vma) -1;
2179 }
2180 }
2181 }
2182
2183 if (htab->tls_ldm_got.refcount > 0)
2184 {
2185 /* Allocate 2 got entries and 1 dynamic reloc for
2186 R_PARISC_TLS_DTPMOD32 relocs. */
2187 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2188 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2189 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2190 }
2191 else
2192 htab->tls_ldm_got.offset = -1;
2193
2194 /* Do all the .plt entries without relocs first. The dynamic linker
2195 uses the last .plt reloc to find the end of the .plt (and hence
2196 the start of the .got) for lazy linking. */
2197 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2198
2199 /* Allocate global sym .plt and .got entries, and space for global
2200 sym dynamic relocs. */
2201 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2202
2203 /* The check_relocs and adjust_dynamic_symbol entry points have
2204 determined the sizes of the various dynamic sections. Allocate
2205 memory for them. */
2206 relocs = FALSE;
2207 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2208 {
2209 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2210 continue;
2211
2212 if (sec == htab->etab.splt)
2213 {
2214 if (htab->need_plt_stub)
2215 {
2216 /* Make space for the plt stub at the end of the .plt
2217 section. We want this stub right at the end, up
2218 against the .got section. */
2219 int gotalign = bfd_section_alignment (htab->etab.sgot);
2220 int pltalign = bfd_section_alignment (sec);
2221 int align = gotalign > 3 ? gotalign : 3;
2222 bfd_size_type mask;
2223
2224 if (align > pltalign)
2225 bfd_set_section_alignment (sec, align);
2226 mask = ((bfd_size_type) 1 << gotalign) - 1;
2227 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2228 }
2229 }
2230 else if (sec == htab->etab.sgot
2231 || sec == htab->etab.sdynbss
2232 || sec == htab->etab.sdynrelro)
2233 ;
2234 else if (CONST_STRNEQ (bfd_section_name (sec), ".rela"))
2235 {
2236 if (sec->size != 0)
2237 {
2238 /* Remember whether there are any reloc sections other
2239 than .rela.plt. */
2240 if (sec != htab->etab.srelplt)
2241 relocs = TRUE;
2242
2243 /* We use the reloc_count field as a counter if we need
2244 to copy relocs into the output file. */
2245 sec->reloc_count = 0;
2246 }
2247 }
2248 else
2249 {
2250 /* It's not one of our sections, so don't allocate space. */
2251 continue;
2252 }
2253
2254 if (sec->size == 0)
2255 {
2256 /* If we don't need this section, strip it from the
2257 output file. This is mostly to handle .rela.bss and
2258 .rela.plt. We must create both sections in
2259 create_dynamic_sections, because they must be created
2260 before the linker maps input sections to output
2261 sections. The linker does that before
2262 adjust_dynamic_symbol is called, and it is that
2263 function which decides whether anything needs to go
2264 into these sections. */
2265 sec->flags |= SEC_EXCLUDE;
2266 continue;
2267 }
2268
2269 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2270 continue;
2271
2272 /* Allocate memory for the section contents. Zero it, because
2273 we may not fill in all the reloc sections. */
2274 sec->contents = bfd_zalloc (dynobj, sec->size);
2275 if (sec->contents == NULL)
2276 return FALSE;
2277 }
2278
2279 return _bfd_elf_add_dynamic_tags (output_bfd, info, relocs);
2280 }
2281
2282 /* External entry points for sizing and building linker stubs. */
2283
2284 /* Set up various things so that we can make a list of input sections
2285 for each output section included in the link. Returns -1 on error,
2286 0 when no stubs will be needed, and 1 on success. */
2287
2288 int
2289 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2290 {
2291 bfd *input_bfd;
2292 unsigned int bfd_count;
2293 unsigned int top_id, top_index;
2294 asection *section;
2295 asection **input_list, **list;
2296 size_t amt;
2297 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2298
2299 if (htab == NULL)
2300 return -1;
2301
2302 /* Count the number of input BFDs and find the top input section id. */
2303 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2304 input_bfd != NULL;
2305 input_bfd = input_bfd->link.next)
2306 {
2307 bfd_count += 1;
2308 for (section = input_bfd->sections;
2309 section != NULL;
2310 section = section->next)
2311 {
2312 if (top_id < section->id)
2313 top_id = section->id;
2314 }
2315 }
2316 htab->bfd_count = bfd_count;
2317
2318 amt = sizeof (struct map_stub) * (top_id + 1);
2319 htab->stub_group = bfd_zmalloc (amt);
2320 if (htab->stub_group == NULL)
2321 return -1;
2322
2323 /* We can't use output_bfd->section_count here to find the top output
2324 section index as some sections may have been removed, and
2325 strip_excluded_output_sections doesn't renumber the indices. */
2326 for (section = output_bfd->sections, top_index = 0;
2327 section != NULL;
2328 section = section->next)
2329 {
2330 if (top_index < section->index)
2331 top_index = section->index;
2332 }
2333
2334 htab->top_index = top_index;
2335 amt = sizeof (asection *) * (top_index + 1);
2336 input_list = bfd_malloc (amt);
2337 htab->input_list = input_list;
2338 if (input_list == NULL)
2339 return -1;
2340
2341 /* For sections we aren't interested in, mark their entries with a
2342 value we can check later. */
2343 list = input_list + top_index;
2344 do
2345 *list = bfd_abs_section_ptr;
2346 while (list-- != input_list);
2347
2348 for (section = output_bfd->sections;
2349 section != NULL;
2350 section = section->next)
2351 {
2352 if ((section->flags & SEC_CODE) != 0)
2353 input_list[section->index] = NULL;
2354 }
2355
2356 return 1;
2357 }
2358
2359 /* The linker repeatedly calls this function for each input section,
2360 in the order that input sections are linked into output sections.
2361 Build lists of input sections to determine groupings between which
2362 we may insert linker stubs. */
2363
2364 void
2365 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2366 {
2367 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2368
2369 if (htab == NULL)
2370 return;
2371
2372 if (isec->output_section->index <= htab->top_index)
2373 {
2374 asection **list = htab->input_list + isec->output_section->index;
2375 if (*list != bfd_abs_section_ptr)
2376 {
2377 /* Steal the link_sec pointer for our list. */
2378 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2379 /* This happens to make the list in reverse order,
2380 which is what we want. */
2381 PREV_SEC (isec) = *list;
2382 *list = isec;
2383 }
2384 }
2385 }
2386
2387 /* See whether we can group stub sections together. Grouping stub
2388 sections may result in fewer stubs. More importantly, we need to
2389 put all .init* and .fini* stubs at the beginning of the .init or
2390 .fini output sections respectively, because glibc splits the
2391 _init and _fini functions into multiple parts. Putting a stub in
2392 the middle of a function is not a good idea. */
2393
2394 static void
2395 group_sections (struct elf32_hppa_link_hash_table *htab,
2396 bfd_size_type stub_group_size,
2397 bfd_boolean stubs_always_before_branch)
2398 {
2399 asection **list = htab->input_list + htab->top_index;
2400 do
2401 {
2402 asection *tail = *list;
2403 if (tail == bfd_abs_section_ptr)
2404 continue;
2405 while (tail != NULL)
2406 {
2407 asection *curr;
2408 asection *prev;
2409 bfd_size_type total;
2410 bfd_boolean big_sec;
2411
2412 curr = tail;
2413 total = tail->size;
2414 big_sec = total >= stub_group_size;
2415
2416 while ((prev = PREV_SEC (curr)) != NULL
2417 && ((total += curr->output_offset - prev->output_offset)
2418 < stub_group_size))
2419 curr = prev;
2420
2421 /* OK, the size from the start of CURR to the end is less
2422 than 240000 bytes and thus can be handled by one stub
2423 section. (or the tail section is itself larger than
2424 240000 bytes, in which case we may be toast.)
2425 We should really be keeping track of the total size of
2426 stubs added here, as stubs contribute to the final output
2427 section size. That's a little tricky, and this way will
2428 only break if stubs added total more than 22144 bytes, or
2429 2768 long branch stubs. It seems unlikely for more than
2430 2768 different functions to be called, especially from
2431 code only 240000 bytes long. This limit used to be
2432 250000, but c++ code tends to generate lots of little
2433 functions, and sometimes violated the assumption. */
2434 do
2435 {
2436 prev = PREV_SEC (tail);
2437 /* Set up this stub group. */
2438 htab->stub_group[tail->id].link_sec = curr;
2439 }
2440 while (tail != curr && (tail = prev) != NULL);
2441
2442 /* But wait, there's more! Input sections up to 240000
2443 bytes before the stub section can be handled by it too.
2444 Don't do this if we have a really large section after the
2445 stubs, as adding more stubs increases the chance that
2446 branches may not reach into the stub section. */
2447 if (!stubs_always_before_branch && !big_sec)
2448 {
2449 total = 0;
2450 while (prev != NULL
2451 && ((total += tail->output_offset - prev->output_offset)
2452 < stub_group_size))
2453 {
2454 tail = prev;
2455 prev = PREV_SEC (tail);
2456 htab->stub_group[tail->id].link_sec = curr;
2457 }
2458 }
2459 tail = prev;
2460 }
2461 }
2462 while (list-- != htab->input_list);
2463 free (htab->input_list);
2464 #undef PREV_SEC
2465 }
2466
2467 /* Read in all local syms for all input bfds, and create hash entries
2468 for export stubs if we are building a multi-subspace shared lib.
2469 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2470
2471 static int
2472 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2473 {
2474 unsigned int bfd_indx;
2475 Elf_Internal_Sym *local_syms, **all_local_syms;
2476 int stub_changed = 0;
2477 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2478
2479 if (htab == NULL)
2480 return -1;
2481
2482 /* We want to read in symbol extension records only once. To do this
2483 we need to read in the local symbols in parallel and save them for
2484 later use; so hold pointers to the local symbols in an array. */
2485 size_t amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2486 all_local_syms = bfd_zmalloc (amt);
2487 htab->all_local_syms = all_local_syms;
2488 if (all_local_syms == NULL)
2489 return -1;
2490
2491 /* Walk over all the input BFDs, swapping in local symbols.
2492 If we are creating a shared library, create hash entries for the
2493 export stubs. */
2494 for (bfd_indx = 0;
2495 input_bfd != NULL;
2496 input_bfd = input_bfd->link.next, bfd_indx++)
2497 {
2498 Elf_Internal_Shdr *symtab_hdr;
2499
2500 /* We'll need the symbol table in a second. */
2501 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2502 if (symtab_hdr->sh_info == 0)
2503 continue;
2504
2505 /* We need an array of the local symbols attached to the input bfd. */
2506 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2507 if (local_syms == NULL)
2508 {
2509 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2510 symtab_hdr->sh_info, 0,
2511 NULL, NULL, NULL);
2512 /* Cache them for elf_link_input_bfd. */
2513 symtab_hdr->contents = (unsigned char *) local_syms;
2514 }
2515 if (local_syms == NULL)
2516 return -1;
2517
2518 all_local_syms[bfd_indx] = local_syms;
2519
2520 if (bfd_link_pic (info) && htab->multi_subspace)
2521 {
2522 struct elf_link_hash_entry **eh_syms;
2523 struct elf_link_hash_entry **eh_symend;
2524 unsigned int symcount;
2525
2526 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2527 - symtab_hdr->sh_info);
2528 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2529 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2530
2531 /* Look through the global syms for functions; We need to
2532 build export stubs for all globally visible functions. */
2533 for (; eh_syms < eh_symend; eh_syms++)
2534 {
2535 struct elf32_hppa_link_hash_entry *hh;
2536
2537 hh = hppa_elf_hash_entry (*eh_syms);
2538
2539 while (hh->eh.root.type == bfd_link_hash_indirect
2540 || hh->eh.root.type == bfd_link_hash_warning)
2541 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2542
2543 /* At this point in the link, undefined syms have been
2544 resolved, so we need to check that the symbol was
2545 defined in this BFD. */
2546 if ((hh->eh.root.type == bfd_link_hash_defined
2547 || hh->eh.root.type == bfd_link_hash_defweak)
2548 && hh->eh.type == STT_FUNC
2549 && hh->eh.root.u.def.section->output_section != NULL
2550 && (hh->eh.root.u.def.section->output_section->owner
2551 == output_bfd)
2552 && hh->eh.root.u.def.section->owner == input_bfd
2553 && hh->eh.def_regular
2554 && !hh->eh.forced_local
2555 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2556 {
2557 asection *sec;
2558 const char *stub_name;
2559 struct elf32_hppa_stub_hash_entry *hsh;
2560
2561 sec = hh->eh.root.u.def.section;
2562 stub_name = hh_name (hh);
2563 hsh = hppa_stub_hash_lookup (&htab->bstab,
2564 stub_name,
2565 FALSE, FALSE);
2566 if (hsh == NULL)
2567 {
2568 hsh = hppa_add_stub (stub_name, sec, htab);
2569 if (!hsh)
2570 return -1;
2571
2572 hsh->target_value = hh->eh.root.u.def.value;
2573 hsh->target_section = hh->eh.root.u.def.section;
2574 hsh->stub_type = hppa_stub_export;
2575 hsh->hh = hh;
2576 stub_changed = 1;
2577 }
2578 else
2579 {
2580 /* xgettext:c-format */
2581 _bfd_error_handler (_("%pB: duplicate export stub %s"),
2582 input_bfd, stub_name);
2583 }
2584 }
2585 }
2586 }
2587 }
2588
2589 return stub_changed;
2590 }
2591
2592 /* Determine and set the size of the stub section for a final link.
2593
2594 The basic idea here is to examine all the relocations looking for
2595 PC-relative calls to a target that is unreachable with a "bl"
2596 instruction. */
2597
2598 bfd_boolean
2599 elf32_hppa_size_stubs
2600 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2601 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2602 asection * (*add_stub_section) (const char *, asection *),
2603 void (*layout_sections_again) (void))
2604 {
2605 bfd_size_type stub_group_size;
2606 bfd_boolean stubs_always_before_branch;
2607 bfd_boolean stub_changed;
2608 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2609
2610 if (htab == NULL)
2611 return FALSE;
2612
2613 /* Stash our params away. */
2614 htab->stub_bfd = stub_bfd;
2615 htab->multi_subspace = multi_subspace;
2616 htab->add_stub_section = add_stub_section;
2617 htab->layout_sections_again = layout_sections_again;
2618 stubs_always_before_branch = group_size < 0;
2619 if (group_size < 0)
2620 stub_group_size = -group_size;
2621 else
2622 stub_group_size = group_size;
2623 if (stub_group_size == 1)
2624 {
2625 /* Default values. */
2626 if (stubs_always_before_branch)
2627 {
2628 stub_group_size = 7680000;
2629 if (htab->has_17bit_branch || htab->multi_subspace)
2630 stub_group_size = 240000;
2631 if (htab->has_12bit_branch)
2632 stub_group_size = 7500;
2633 }
2634 else
2635 {
2636 stub_group_size = 6971392;
2637 if (htab->has_17bit_branch || htab->multi_subspace)
2638 stub_group_size = 217856;
2639 if (htab->has_12bit_branch)
2640 stub_group_size = 6808;
2641 }
2642 }
2643
2644 group_sections (htab, stub_group_size, stubs_always_before_branch);
2645
2646 switch (get_local_syms (output_bfd, info->input_bfds, info))
2647 {
2648 default:
2649 if (htab->all_local_syms)
2650 goto error_ret_free_local;
2651 return FALSE;
2652
2653 case 0:
2654 stub_changed = FALSE;
2655 break;
2656
2657 case 1:
2658 stub_changed = TRUE;
2659 break;
2660 }
2661
2662 while (1)
2663 {
2664 bfd *input_bfd;
2665 unsigned int bfd_indx;
2666 asection *stub_sec;
2667
2668 for (input_bfd = info->input_bfds, bfd_indx = 0;
2669 input_bfd != NULL;
2670 input_bfd = input_bfd->link.next, bfd_indx++)
2671 {
2672 Elf_Internal_Shdr *symtab_hdr;
2673 asection *section;
2674 Elf_Internal_Sym *local_syms;
2675
2676 /* We'll need the symbol table in a second. */
2677 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2678 if (symtab_hdr->sh_info == 0)
2679 continue;
2680
2681 local_syms = htab->all_local_syms[bfd_indx];
2682
2683 /* Walk over each section attached to the input bfd. */
2684 for (section = input_bfd->sections;
2685 section != NULL;
2686 section = section->next)
2687 {
2688 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2689
2690 /* If there aren't any relocs, then there's nothing more
2691 to do. */
2692 if ((section->flags & SEC_RELOC) == 0
2693 || (section->flags & SEC_ALLOC) == 0
2694 || (section->flags & SEC_LOAD) == 0
2695 || (section->flags & SEC_CODE) == 0
2696 || section->reloc_count == 0)
2697 continue;
2698
2699 /* If this section is a link-once section that will be
2700 discarded, then don't create any stubs. */
2701 if (section->output_section == NULL
2702 || section->output_section->owner != output_bfd)
2703 continue;
2704
2705 /* Get the relocs. */
2706 internal_relocs
2707 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2708 info->keep_memory);
2709 if (internal_relocs == NULL)
2710 goto error_ret_free_local;
2711
2712 /* Now examine each relocation. */
2713 irela = internal_relocs;
2714 irelaend = irela + section->reloc_count;
2715 for (; irela < irelaend; irela++)
2716 {
2717 unsigned int r_type, r_indx;
2718 enum elf32_hppa_stub_type stub_type;
2719 struct elf32_hppa_stub_hash_entry *hsh;
2720 asection *sym_sec;
2721 bfd_vma sym_value;
2722 bfd_vma destination;
2723 struct elf32_hppa_link_hash_entry *hh;
2724 char *stub_name;
2725 const asection *id_sec;
2726
2727 r_type = ELF32_R_TYPE (irela->r_info);
2728 r_indx = ELF32_R_SYM (irela->r_info);
2729
2730 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2731 {
2732 bfd_set_error (bfd_error_bad_value);
2733 error_ret_free_internal:
2734 if (elf_section_data (section)->relocs == NULL)
2735 free (internal_relocs);
2736 goto error_ret_free_local;
2737 }
2738
2739 /* Only look for stubs on call instructions. */
2740 if (r_type != (unsigned int) R_PARISC_PCREL12F
2741 && r_type != (unsigned int) R_PARISC_PCREL17F
2742 && r_type != (unsigned int) R_PARISC_PCREL22F)
2743 continue;
2744
2745 /* Now determine the call target, its name, value,
2746 section. */
2747 sym_sec = NULL;
2748 sym_value = 0;
2749 destination = -1;
2750 hh = NULL;
2751 if (r_indx < symtab_hdr->sh_info)
2752 {
2753 /* It's a local symbol. */
2754 Elf_Internal_Sym *sym;
2755 Elf_Internal_Shdr *hdr;
2756 unsigned int shndx;
2757
2758 sym = local_syms + r_indx;
2759 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2760 sym_value = sym->st_value;
2761 shndx = sym->st_shndx;
2762 if (shndx < elf_numsections (input_bfd))
2763 {
2764 hdr = elf_elfsections (input_bfd)[shndx];
2765 sym_sec = hdr->bfd_section;
2766 destination = (sym_value + irela->r_addend
2767 + sym_sec->output_offset
2768 + sym_sec->output_section->vma);
2769 }
2770 }
2771 else
2772 {
2773 /* It's an external symbol. */
2774 int e_indx;
2775
2776 e_indx = r_indx - symtab_hdr->sh_info;
2777 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2778
2779 while (hh->eh.root.type == bfd_link_hash_indirect
2780 || hh->eh.root.type == bfd_link_hash_warning)
2781 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2782
2783 if (hh->eh.root.type == bfd_link_hash_defined
2784 || hh->eh.root.type == bfd_link_hash_defweak)
2785 {
2786 sym_sec = hh->eh.root.u.def.section;
2787 sym_value = hh->eh.root.u.def.value;
2788 if (sym_sec->output_section != NULL)
2789 destination = (sym_value + irela->r_addend
2790 + sym_sec->output_offset
2791 + sym_sec->output_section->vma);
2792 }
2793 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2794 {
2795 if (! bfd_link_pic (info))
2796 continue;
2797 }
2798 else if (hh->eh.root.type == bfd_link_hash_undefined)
2799 {
2800 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2801 && (ELF_ST_VISIBILITY (hh->eh.other)
2802 == STV_DEFAULT)
2803 && hh->eh.type != STT_PARISC_MILLI))
2804 continue;
2805 }
2806 else
2807 {
2808 bfd_set_error (bfd_error_bad_value);
2809 goto error_ret_free_internal;
2810 }
2811 }
2812
2813 /* Determine what (if any) linker stub is needed. */
2814 stub_type = hppa_type_of_stub (section, irela, hh,
2815 destination, info);
2816 if (stub_type == hppa_stub_none)
2817 continue;
2818
2819 /* Support for grouping stub sections. */
2820 id_sec = htab->stub_group[section->id].link_sec;
2821
2822 /* Get the name of this stub. */
2823 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2824 if (!stub_name)
2825 goto error_ret_free_internal;
2826
2827 hsh = hppa_stub_hash_lookup (&htab->bstab,
2828 stub_name,
2829 FALSE, FALSE);
2830 if (hsh != NULL)
2831 {
2832 /* The proper stub has already been created. */
2833 free (stub_name);
2834 continue;
2835 }
2836
2837 hsh = hppa_add_stub (stub_name, section, htab);
2838 if (hsh == NULL)
2839 {
2840 free (stub_name);
2841 goto error_ret_free_internal;
2842 }
2843
2844 hsh->target_value = sym_value;
2845 hsh->target_section = sym_sec;
2846 hsh->stub_type = stub_type;
2847 if (bfd_link_pic (info))
2848 {
2849 if (stub_type == hppa_stub_import)
2850 hsh->stub_type = hppa_stub_import_shared;
2851 else if (stub_type == hppa_stub_long_branch)
2852 hsh->stub_type = hppa_stub_long_branch_shared;
2853 }
2854 hsh->hh = hh;
2855 stub_changed = TRUE;
2856 }
2857
2858 /* We're done with the internal relocs, free them. */
2859 if (elf_section_data (section)->relocs == NULL)
2860 free (internal_relocs);
2861 }
2862 }
2863
2864 if (!stub_changed)
2865 break;
2866
2867 /* OK, we've added some stubs. Find out the new size of the
2868 stub sections. */
2869 for (stub_sec = htab->stub_bfd->sections;
2870 stub_sec != NULL;
2871 stub_sec = stub_sec->next)
2872 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
2873 stub_sec->size = 0;
2874
2875 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2876
2877 /* Ask the linker to do its stuff. */
2878 (*htab->layout_sections_again) ();
2879 stub_changed = FALSE;
2880 }
2881
2882 free (htab->all_local_syms);
2883 return TRUE;
2884
2885 error_ret_free_local:
2886 free (htab->all_local_syms);
2887 return FALSE;
2888 }
2889
2890 /* For a final link, this function is called after we have sized the
2891 stubs to provide a value for __gp. */
2892
2893 bfd_boolean
2894 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
2895 {
2896 struct bfd_link_hash_entry *h;
2897 asection *sec = NULL;
2898 bfd_vma gp_val = 0;
2899
2900 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
2901
2902 if (h != NULL
2903 && (h->type == bfd_link_hash_defined
2904 || h->type == bfd_link_hash_defweak))
2905 {
2906 gp_val = h->u.def.value;
2907 sec = h->u.def.section;
2908 }
2909 else
2910 {
2911 asection *splt = bfd_get_section_by_name (abfd, ".plt");
2912 asection *sgot = bfd_get_section_by_name (abfd, ".got");
2913
2914 /* Choose to point our LTP at, in this order, one of .plt, .got,
2915 or .data, if these sections exist. In the case of choosing
2916 .plt try to make the LTP ideal for addressing anywhere in the
2917 .plt or .got with a 14 bit signed offset. Typically, the end
2918 of the .plt is the start of the .got, so choose .plt + 0x2000
2919 if either the .plt or .got is larger than 0x2000. If both
2920 the .plt and .got are smaller than 0x2000, choose the end of
2921 the .plt section. */
2922 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
2923 ? NULL : splt;
2924 if (sec != NULL)
2925 {
2926 gp_val = sec->size;
2927 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
2928 {
2929 gp_val = 0x2000;
2930 }
2931 }
2932 else
2933 {
2934 sec = sgot;
2935 if (sec != NULL)
2936 {
2937 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
2938 {
2939 /* We know we don't have a .plt. If .got is large,
2940 offset our LTP. */
2941 if (sec->size > 0x2000)
2942 gp_val = 0x2000;
2943 }
2944 }
2945 else
2946 {
2947 /* No .plt or .got. Who cares what the LTP is? */
2948 sec = bfd_get_section_by_name (abfd, ".data");
2949 }
2950 }
2951
2952 if (h != NULL)
2953 {
2954 h->type = bfd_link_hash_defined;
2955 h->u.def.value = gp_val;
2956 if (sec != NULL)
2957 h->u.def.section = sec;
2958 else
2959 h->u.def.section = bfd_abs_section_ptr;
2960 }
2961 }
2962
2963 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
2964 {
2965 if (sec != NULL && sec->output_section != NULL)
2966 gp_val += sec->output_section->vma + sec->output_offset;
2967
2968 elf_gp (abfd) = gp_val;
2969 }
2970 return TRUE;
2971 }
2972
2973 /* Build all the stubs associated with the current output file. The
2974 stubs are kept in a hash table attached to the main linker hash
2975 table. We also set up the .plt entries for statically linked PIC
2976 functions here. This function is called via hppaelf_finish in the
2977 linker. */
2978
2979 bfd_boolean
2980 elf32_hppa_build_stubs (struct bfd_link_info *info)
2981 {
2982 asection *stub_sec;
2983 struct bfd_hash_table *table;
2984 struct elf32_hppa_link_hash_table *htab;
2985
2986 htab = hppa_link_hash_table (info);
2987 if (htab == NULL)
2988 return FALSE;
2989
2990 for (stub_sec = htab->stub_bfd->sections;
2991 stub_sec != NULL;
2992 stub_sec = stub_sec->next)
2993 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
2994 && stub_sec->size != 0)
2995 {
2996 /* Allocate memory to hold the linker stubs. */
2997 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
2998 if (stub_sec->contents == NULL)
2999 return FALSE;
3000 stub_sec->size = 0;
3001 }
3002
3003 /* Build the stubs as directed by the stub hash table. */
3004 table = &htab->bstab;
3005 bfd_hash_traverse (table, hppa_build_one_stub, info);
3006
3007 return TRUE;
3008 }
3009
3010 /* Return the base vma address which should be subtracted from the real
3011 address when resolving a dtpoff relocation.
3012 This is PT_TLS segment p_vaddr. */
3013
3014 static bfd_vma
3015 dtpoff_base (struct bfd_link_info *info)
3016 {
3017 /* If tls_sec is NULL, we should have signalled an error already. */
3018 if (elf_hash_table (info)->tls_sec == NULL)
3019 return 0;
3020 return elf_hash_table (info)->tls_sec->vma;
3021 }
3022
3023 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3024
3025 static bfd_vma
3026 tpoff (struct bfd_link_info *info, bfd_vma address)
3027 {
3028 struct elf_link_hash_table *htab = elf_hash_table (info);
3029
3030 /* If tls_sec is NULL, we should have signalled an error already. */
3031 if (htab->tls_sec == NULL)
3032 return 0;
3033 /* hppa TLS ABI is variant I and static TLS block start just after
3034 tcbhead structure which has 2 pointer fields. */
3035 return (address - htab->tls_sec->vma
3036 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3037 }
3038
3039 /* Perform a final link. */
3040
3041 static bfd_boolean
3042 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3043 {
3044 struct stat buf;
3045
3046 /* Invoke the regular ELF linker to do all the work. */
3047 if (!bfd_elf_final_link (abfd, info))
3048 return FALSE;
3049
3050 /* If we're producing a final executable, sort the contents of the
3051 unwind section. */
3052 if (bfd_link_relocatable (info))
3053 return TRUE;
3054
3055 /* Do not attempt to sort non-regular files. This is here
3056 especially for configure scripts and kernel builds which run
3057 tests with "ld [...] -o /dev/null". */
3058 if (stat (bfd_get_filename (abfd), &buf) != 0
3059 || !S_ISREG(buf.st_mode))
3060 return TRUE;
3061
3062 return elf_hppa_sort_unwind (abfd);
3063 }
3064
3065 /* Record the lowest address for the data and text segments. */
3066
3067 static void
3068 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3069 {
3070 struct elf32_hppa_link_hash_table *htab;
3071
3072 htab = (struct elf32_hppa_link_hash_table*) data;
3073 if (htab == NULL)
3074 return;
3075
3076 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3077 {
3078 bfd_vma value;
3079 Elf_Internal_Phdr *p;
3080
3081 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3082 BFD_ASSERT (p != NULL);
3083 value = p->p_vaddr;
3084
3085 if ((section->flags & SEC_READONLY) != 0)
3086 {
3087 if (value < htab->text_segment_base)
3088 htab->text_segment_base = value;
3089 }
3090 else
3091 {
3092 if (value < htab->data_segment_base)
3093 htab->data_segment_base = value;
3094 }
3095 }
3096 }
3097
3098 /* Perform a relocation as part of a final link. */
3099
3100 static bfd_reloc_status_type
3101 final_link_relocate (asection *input_section,
3102 bfd_byte *contents,
3103 const Elf_Internal_Rela *rela,
3104 bfd_vma value,
3105 struct elf32_hppa_link_hash_table *htab,
3106 asection *sym_sec,
3107 struct elf32_hppa_link_hash_entry *hh,
3108 struct bfd_link_info *info)
3109 {
3110 unsigned int insn;
3111 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3112 unsigned int orig_r_type = r_type;
3113 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3114 int r_format = howto->bitsize;
3115 enum hppa_reloc_field_selector_type_alt r_field;
3116 bfd *input_bfd = input_section->owner;
3117 bfd_vma offset = rela->r_offset;
3118 bfd_vma max_branch_offset = 0;
3119 bfd_byte *hit_data = contents + offset;
3120 bfd_signed_vma addend = rela->r_addend;
3121 bfd_vma location;
3122 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3123 int val;
3124
3125 if (r_type == R_PARISC_NONE)
3126 return bfd_reloc_ok;
3127
3128 insn = bfd_get_32 (input_bfd, hit_data);
3129
3130 /* Find out where we are and where we're going. */
3131 location = (offset +
3132 input_section->output_offset +
3133 input_section->output_section->vma);
3134
3135 /* If we are not building a shared library, convert DLTIND relocs to
3136 DPREL relocs. */
3137 if (!bfd_link_pic (info))
3138 {
3139 switch (r_type)
3140 {
3141 case R_PARISC_DLTIND21L:
3142 case R_PARISC_TLS_GD21L:
3143 case R_PARISC_TLS_LDM21L:
3144 case R_PARISC_TLS_IE21L:
3145 r_type = R_PARISC_DPREL21L;
3146 break;
3147
3148 case R_PARISC_DLTIND14R:
3149 case R_PARISC_TLS_GD14R:
3150 case R_PARISC_TLS_LDM14R:
3151 case R_PARISC_TLS_IE14R:
3152 r_type = R_PARISC_DPREL14R;
3153 break;
3154
3155 case R_PARISC_DLTIND14F:
3156 r_type = R_PARISC_DPREL14F;
3157 break;
3158 }
3159 }
3160
3161 switch (r_type)
3162 {
3163 case R_PARISC_PCREL12F:
3164 case R_PARISC_PCREL17F:
3165 case R_PARISC_PCREL22F:
3166 /* If this call should go via the plt, find the import stub in
3167 the stub hash. */
3168 if (sym_sec == NULL
3169 || sym_sec->output_section == NULL
3170 || (hh != NULL
3171 && hh->eh.plt.offset != (bfd_vma) -1
3172 && hh->eh.dynindx != -1
3173 && !hh->plabel
3174 && (bfd_link_pic (info)
3175 || !hh->eh.def_regular
3176 || hh->eh.root.type == bfd_link_hash_defweak)))
3177 {
3178 hsh = hppa_get_stub_entry (input_section, sym_sec,
3179 hh, rela, htab);
3180 if (hsh != NULL)
3181 {
3182 value = (hsh->stub_offset
3183 + hsh->stub_sec->output_offset
3184 + hsh->stub_sec->output_section->vma);
3185 addend = 0;
3186 }
3187 else if (sym_sec == NULL && hh != NULL
3188 && hh->eh.root.type == bfd_link_hash_undefweak)
3189 {
3190 /* It's OK if undefined weak. Calls to undefined weak
3191 symbols behave as if the "called" function
3192 immediately returns. We can thus call to a weak
3193 function without first checking whether the function
3194 is defined. */
3195 value = location;
3196 addend = 8;
3197 }
3198 else
3199 return bfd_reloc_undefined;
3200 }
3201 /* Fall thru. */
3202
3203 case R_PARISC_PCREL21L:
3204 case R_PARISC_PCREL17C:
3205 case R_PARISC_PCREL17R:
3206 case R_PARISC_PCREL14R:
3207 case R_PARISC_PCREL14F:
3208 case R_PARISC_PCREL32:
3209 /* Make it a pc relative offset. */
3210 value -= location;
3211 addend -= 8;
3212 break;
3213
3214 case R_PARISC_DPREL21L:
3215 case R_PARISC_DPREL14R:
3216 case R_PARISC_DPREL14F:
3217 /* Convert instructions that use the linkage table pointer (r19) to
3218 instructions that use the global data pointer (dp). This is the
3219 most efficient way of using PIC code in an incomplete executable,
3220 but the user must follow the standard runtime conventions for
3221 accessing data for this to work. */
3222 if (orig_r_type != r_type)
3223 {
3224 if (r_type == R_PARISC_DPREL21L)
3225 {
3226 /* GCC sometimes uses a register other than r19 for the
3227 operation, so we must convert any addil instruction
3228 that uses this relocation. */
3229 if ((insn & 0xfc000000) == OP_ADDIL << 26)
3230 insn = ADDIL_DP;
3231 else
3232 /* We must have a ldil instruction. It's too hard to find
3233 and convert the associated add instruction, so issue an
3234 error. */
3235 _bfd_error_handler
3236 /* xgettext:c-format */
3237 (_("%pB(%pA+%#" PRIx64 "): %s fixup for insn %#x "
3238 "is not supported in a non-shared link"),
3239 input_bfd,
3240 input_section,
3241 (uint64_t) offset,
3242 howto->name,
3243 insn);
3244 }
3245 else if (r_type == R_PARISC_DPREL14F)
3246 {
3247 /* This must be a format 1 load/store. Change the base
3248 register to dp. */
3249 insn = (insn & 0xfc1ffff) | (27 << 21);
3250 }
3251 }
3252
3253 /* For all the DP relative relocations, we need to examine the symbol's
3254 section. If it has no section or if it's a code section, then
3255 "data pointer relative" makes no sense. In that case we don't
3256 adjust the "value", and for 21 bit addil instructions, we change the
3257 source addend register from %dp to %r0. This situation commonly
3258 arises for undefined weak symbols and when a variable's "constness"
3259 is declared differently from the way the variable is defined. For
3260 instance: "extern int foo" with foo defined as "const int foo". */
3261 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3262 {
3263 if ((insn & ((0x3fu << 26) | (0x1f << 21)))
3264 == ((OP_ADDIL << 26) | (27 << 21)))
3265 {
3266 insn &= ~ (0x1f << 21);
3267 }
3268 /* Now try to make things easy for the dynamic linker. */
3269
3270 break;
3271 }
3272 /* Fall thru. */
3273
3274 case R_PARISC_DLTIND21L:
3275 case R_PARISC_DLTIND14R:
3276 case R_PARISC_DLTIND14F:
3277 case R_PARISC_TLS_GD21L:
3278 case R_PARISC_TLS_LDM21L:
3279 case R_PARISC_TLS_IE21L:
3280 case R_PARISC_TLS_GD14R:
3281 case R_PARISC_TLS_LDM14R:
3282 case R_PARISC_TLS_IE14R:
3283 value -= elf_gp (input_section->output_section->owner);
3284 break;
3285
3286 case R_PARISC_SEGREL32:
3287 if ((sym_sec->flags & SEC_CODE) != 0)
3288 value -= htab->text_segment_base;
3289 else
3290 value -= htab->data_segment_base;
3291 break;
3292
3293 default:
3294 break;
3295 }
3296
3297 switch (r_type)
3298 {
3299 case R_PARISC_DIR32:
3300 case R_PARISC_DIR14F:
3301 case R_PARISC_DIR17F:
3302 case R_PARISC_PCREL17C:
3303 case R_PARISC_PCREL14F:
3304 case R_PARISC_PCREL32:
3305 case R_PARISC_DPREL14F:
3306 case R_PARISC_PLABEL32:
3307 case R_PARISC_DLTIND14F:
3308 case R_PARISC_SEGBASE:
3309 case R_PARISC_SEGREL32:
3310 case R_PARISC_TLS_DTPMOD32:
3311 case R_PARISC_TLS_DTPOFF32:
3312 case R_PARISC_TLS_TPREL32:
3313 r_field = e_fsel;
3314 break;
3315
3316 case R_PARISC_DLTIND21L:
3317 case R_PARISC_PCREL21L:
3318 case R_PARISC_PLABEL21L:
3319 r_field = e_lsel;
3320 break;
3321
3322 case R_PARISC_DIR21L:
3323 case R_PARISC_DPREL21L:
3324 case R_PARISC_TLS_GD21L:
3325 case R_PARISC_TLS_LDM21L:
3326 case R_PARISC_TLS_LDO21L:
3327 case R_PARISC_TLS_IE21L:
3328 case R_PARISC_TLS_LE21L:
3329 r_field = e_lrsel;
3330 break;
3331
3332 case R_PARISC_PCREL17R:
3333 case R_PARISC_PCREL14R:
3334 case R_PARISC_PLABEL14R:
3335 case R_PARISC_DLTIND14R:
3336 r_field = e_rsel;
3337 break;
3338
3339 case R_PARISC_DIR17R:
3340 case R_PARISC_DIR14R:
3341 case R_PARISC_DPREL14R:
3342 case R_PARISC_TLS_GD14R:
3343 case R_PARISC_TLS_LDM14R:
3344 case R_PARISC_TLS_LDO14R:
3345 case R_PARISC_TLS_IE14R:
3346 case R_PARISC_TLS_LE14R:
3347 r_field = e_rrsel;
3348 break;
3349
3350 case R_PARISC_PCREL12F:
3351 case R_PARISC_PCREL17F:
3352 case R_PARISC_PCREL22F:
3353 r_field = e_fsel;
3354
3355 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3356 {
3357 max_branch_offset = (1 << (17-1)) << 2;
3358 }
3359 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3360 {
3361 max_branch_offset = (1 << (12-1)) << 2;
3362 }
3363 else
3364 {
3365 max_branch_offset = (1 << (22-1)) << 2;
3366 }
3367
3368 /* sym_sec is NULL on undefined weak syms or when shared on
3369 undefined syms. We've already checked for a stub for the
3370 shared undefined case. */
3371 if (sym_sec == NULL)
3372 break;
3373
3374 /* If the branch is out of reach, then redirect the
3375 call to the local stub for this function. */
3376 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3377 {
3378 hsh = hppa_get_stub_entry (input_section, sym_sec,
3379 hh, rela, htab);
3380 if (hsh == NULL)
3381 return bfd_reloc_undefined;
3382
3383 /* Munge up the value and addend so that we call the stub
3384 rather than the procedure directly. */
3385 value = (hsh->stub_offset
3386 + hsh->stub_sec->output_offset
3387 + hsh->stub_sec->output_section->vma
3388 - location);
3389 addend = -8;
3390 }
3391 break;
3392
3393 /* Something we don't know how to handle. */
3394 default:
3395 return bfd_reloc_notsupported;
3396 }
3397
3398 /* Make sure we can reach the stub. */
3399 if (max_branch_offset != 0
3400 && value + addend + max_branch_offset >= 2*max_branch_offset)
3401 {
3402 _bfd_error_handler
3403 /* xgettext:c-format */
3404 (_("%pB(%pA+%#" PRIx64 "): cannot reach %s, "
3405 "recompile with -ffunction-sections"),
3406 input_bfd,
3407 input_section,
3408 (uint64_t) offset,
3409 hsh->bh_root.string);
3410 bfd_set_error (bfd_error_bad_value);
3411 return bfd_reloc_notsupported;
3412 }
3413
3414 val = hppa_field_adjust (value, addend, r_field);
3415
3416 switch (r_type)
3417 {
3418 case R_PARISC_PCREL12F:
3419 case R_PARISC_PCREL17C:
3420 case R_PARISC_PCREL17F:
3421 case R_PARISC_PCREL17R:
3422 case R_PARISC_PCREL22F:
3423 case R_PARISC_DIR17F:
3424 case R_PARISC_DIR17R:
3425 /* This is a branch. Divide the offset by four.
3426 Note that we need to decide whether it's a branch or
3427 otherwise by inspecting the reloc. Inspecting insn won't
3428 work as insn might be from a .word directive. */
3429 val >>= 2;
3430 break;
3431
3432 default:
3433 break;
3434 }
3435
3436 insn = hppa_rebuild_insn (insn, val, r_format);
3437
3438 /* Update the instruction word. */
3439 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3440 return bfd_reloc_ok;
3441 }
3442
3443 /* Relocate an HPPA ELF section. */
3444
3445 static bfd_boolean
3446 elf32_hppa_relocate_section (bfd *output_bfd,
3447 struct bfd_link_info *info,
3448 bfd *input_bfd,
3449 asection *input_section,
3450 bfd_byte *contents,
3451 Elf_Internal_Rela *relocs,
3452 Elf_Internal_Sym *local_syms,
3453 asection **local_sections)
3454 {
3455 bfd_vma *local_got_offsets;
3456 struct elf32_hppa_link_hash_table *htab;
3457 Elf_Internal_Shdr *symtab_hdr;
3458 Elf_Internal_Rela *rela;
3459 Elf_Internal_Rela *relend;
3460
3461 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3462
3463 htab = hppa_link_hash_table (info);
3464 if (htab == NULL)
3465 return FALSE;
3466
3467 local_got_offsets = elf_local_got_offsets (input_bfd);
3468
3469 rela = relocs;
3470 relend = relocs + input_section->reloc_count;
3471 for (; rela < relend; rela++)
3472 {
3473 unsigned int r_type;
3474 reloc_howto_type *howto;
3475 unsigned int r_symndx;
3476 struct elf32_hppa_link_hash_entry *hh;
3477 Elf_Internal_Sym *sym;
3478 asection *sym_sec;
3479 bfd_vma relocation;
3480 bfd_reloc_status_type rstatus;
3481 const char *sym_name;
3482 bfd_boolean plabel;
3483 bfd_boolean warned_undef;
3484
3485 r_type = ELF32_R_TYPE (rela->r_info);
3486 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3487 {
3488 bfd_set_error (bfd_error_bad_value);
3489 return FALSE;
3490 }
3491 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3492 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3493 continue;
3494
3495 r_symndx = ELF32_R_SYM (rela->r_info);
3496 hh = NULL;
3497 sym = NULL;
3498 sym_sec = NULL;
3499 warned_undef = FALSE;
3500 if (r_symndx < symtab_hdr->sh_info)
3501 {
3502 /* This is a local symbol, h defaults to NULL. */
3503 sym = local_syms + r_symndx;
3504 sym_sec = local_sections[r_symndx];
3505 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3506 }
3507 else
3508 {
3509 struct elf_link_hash_entry *eh;
3510 bfd_boolean unresolved_reloc, ignored;
3511 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3512
3513 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3514 r_symndx, symtab_hdr, sym_hashes,
3515 eh, sym_sec, relocation,
3516 unresolved_reloc, warned_undef,
3517 ignored);
3518
3519 if (!bfd_link_relocatable (info)
3520 && relocation == 0
3521 && eh->root.type != bfd_link_hash_defined
3522 && eh->root.type != bfd_link_hash_defweak
3523 && eh->root.type != bfd_link_hash_undefweak)
3524 {
3525 if (info->unresolved_syms_in_objects == RM_IGNORE
3526 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3527 && eh->type == STT_PARISC_MILLI)
3528 {
3529 (*info->callbacks->undefined_symbol)
3530 (info, eh_name (eh), input_bfd,
3531 input_section, rela->r_offset, FALSE);
3532 warned_undef = TRUE;
3533 }
3534 }
3535 hh = hppa_elf_hash_entry (eh);
3536 }
3537
3538 if (sym_sec != NULL && discarded_section (sym_sec))
3539 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3540 rela, 1, relend,
3541 elf_hppa_howto_table + r_type, 0,
3542 contents);
3543
3544 if (bfd_link_relocatable (info))
3545 continue;
3546
3547 /* Do any required modifications to the relocation value, and
3548 determine what types of dynamic info we need to output, if
3549 any. */
3550 plabel = 0;
3551 switch (r_type)
3552 {
3553 case R_PARISC_DLTIND14F:
3554 case R_PARISC_DLTIND14R:
3555 case R_PARISC_DLTIND21L:
3556 {
3557 bfd_vma off;
3558 bfd_boolean do_got = FALSE;
3559 bfd_boolean reloc = bfd_link_pic (info);
3560
3561 /* Relocation is to the entry for this symbol in the
3562 global offset table. */
3563 if (hh != NULL)
3564 {
3565 bfd_boolean dyn;
3566
3567 off = hh->eh.got.offset;
3568 dyn = htab->etab.dynamic_sections_created;
3569 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3570 && (reloc
3571 || (hh->eh.dynindx != -1
3572 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3573 if (!reloc
3574 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3575 bfd_link_pic (info),
3576 &hh->eh))
3577 {
3578 /* If we aren't going to call finish_dynamic_symbol,
3579 then we need to handle initialisation of the .got
3580 entry and create needed relocs here. Since the
3581 offset must always be a multiple of 4, we use the
3582 least significant bit to record whether we have
3583 initialised it already. */
3584 if ((off & 1) != 0)
3585 off &= ~1;
3586 else
3587 {
3588 hh->eh.got.offset |= 1;
3589 do_got = TRUE;
3590 }
3591 }
3592 }
3593 else
3594 {
3595 /* Local symbol case. */
3596 if (local_got_offsets == NULL)
3597 abort ();
3598
3599 off = local_got_offsets[r_symndx];
3600
3601 /* The offset must always be a multiple of 4. We use
3602 the least significant bit to record whether we have
3603 already generated the necessary reloc. */
3604 if ((off & 1) != 0)
3605 off &= ~1;
3606 else
3607 {
3608 local_got_offsets[r_symndx] |= 1;
3609 do_got = TRUE;
3610 }
3611 }
3612
3613 if (do_got)
3614 {
3615 if (reloc)
3616 {
3617 /* Output a dynamic relocation for this GOT entry.
3618 In this case it is relative to the base of the
3619 object because the symbol index is zero. */
3620 Elf_Internal_Rela outrel;
3621 bfd_byte *loc;
3622 asection *sec = htab->etab.srelgot;
3623
3624 outrel.r_offset = (off
3625 + htab->etab.sgot->output_offset
3626 + htab->etab.sgot->output_section->vma);
3627 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3628 outrel.r_addend = relocation;
3629 loc = sec->contents;
3630 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3631 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3632 }
3633 else
3634 bfd_put_32 (output_bfd, relocation,
3635 htab->etab.sgot->contents + off);
3636 }
3637
3638 if (off >= (bfd_vma) -2)
3639 abort ();
3640
3641 /* Add the base of the GOT to the relocation value. */
3642 relocation = (off
3643 + htab->etab.sgot->output_offset
3644 + htab->etab.sgot->output_section->vma);
3645 }
3646 break;
3647
3648 case R_PARISC_SEGREL32:
3649 /* If this is the first SEGREL relocation, then initialize
3650 the segment base values. */
3651 if (htab->text_segment_base == (bfd_vma) -1)
3652 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3653 break;
3654
3655 case R_PARISC_PLABEL14R:
3656 case R_PARISC_PLABEL21L:
3657 case R_PARISC_PLABEL32:
3658 if (htab->etab.dynamic_sections_created)
3659 {
3660 bfd_vma off;
3661 bfd_boolean do_plt = 0;
3662 /* If we have a global symbol with a PLT slot, then
3663 redirect this relocation to it. */
3664 if (hh != NULL)
3665 {
3666 off = hh->eh.plt.offset;
3667 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3668 bfd_link_pic (info),
3669 &hh->eh))
3670 {
3671 /* In a non-shared link, adjust_dynamic_symbol
3672 isn't called for symbols forced local. We
3673 need to write out the plt entry here. */
3674 if ((off & 1) != 0)
3675 off &= ~1;
3676 else
3677 {
3678 hh->eh.plt.offset |= 1;
3679 do_plt = 1;
3680 }
3681 }
3682 }
3683 else
3684 {
3685 bfd_vma *local_plt_offsets;
3686
3687 if (local_got_offsets == NULL)
3688 abort ();
3689
3690 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3691 off = local_plt_offsets[r_symndx];
3692
3693 /* As for the local .got entry case, we use the last
3694 bit to record whether we've already initialised
3695 this local .plt entry. */
3696 if ((off & 1) != 0)
3697 off &= ~1;
3698 else
3699 {
3700 local_plt_offsets[r_symndx] |= 1;
3701 do_plt = 1;
3702 }
3703 }
3704
3705 if (do_plt)
3706 {
3707 if (bfd_link_pic (info))
3708 {
3709 /* Output a dynamic IPLT relocation for this
3710 PLT entry. */
3711 Elf_Internal_Rela outrel;
3712 bfd_byte *loc;
3713 asection *s = htab->etab.srelplt;
3714
3715 outrel.r_offset = (off
3716 + htab->etab.splt->output_offset
3717 + htab->etab.splt->output_section->vma);
3718 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3719 outrel.r_addend = relocation;
3720 loc = s->contents;
3721 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3722 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3723 }
3724 else
3725 {
3726 bfd_put_32 (output_bfd,
3727 relocation,
3728 htab->etab.splt->contents + off);
3729 bfd_put_32 (output_bfd,
3730 elf_gp (htab->etab.splt->output_section->owner),
3731 htab->etab.splt->contents + off + 4);
3732 }
3733 }
3734
3735 if (off >= (bfd_vma) -2)
3736 abort ();
3737
3738 /* PLABELs contain function pointers. Relocation is to
3739 the entry for the function in the .plt. The magic +2
3740 offset signals to $$dyncall that the function pointer
3741 is in the .plt and thus has a gp pointer too.
3742 Exception: Undefined PLABELs should have a value of
3743 zero. */
3744 if (hh == NULL
3745 || (hh->eh.root.type != bfd_link_hash_undefweak
3746 && hh->eh.root.type != bfd_link_hash_undefined))
3747 {
3748 relocation = (off
3749 + htab->etab.splt->output_offset
3750 + htab->etab.splt->output_section->vma
3751 + 2);
3752 }
3753 plabel = 1;
3754 }
3755 /* Fall through. */
3756
3757 case R_PARISC_DIR17F:
3758 case R_PARISC_DIR17R:
3759 case R_PARISC_DIR14F:
3760 case R_PARISC_DIR14R:
3761 case R_PARISC_DIR21L:
3762 case R_PARISC_DPREL14F:
3763 case R_PARISC_DPREL14R:
3764 case R_PARISC_DPREL21L:
3765 case R_PARISC_DIR32:
3766 if ((input_section->flags & SEC_ALLOC) == 0)
3767 break;
3768
3769 if (bfd_link_pic (info)
3770 ? ((hh == NULL
3771 || hh->eh.dyn_relocs != NULL)
3772 && ((hh != NULL && pc_dynrelocs (hh))
3773 || IS_ABSOLUTE_RELOC (r_type)))
3774 : (hh != NULL
3775 && hh->eh.dyn_relocs != NULL))
3776 {
3777 Elf_Internal_Rela outrel;
3778 bfd_boolean skip;
3779 asection *sreloc;
3780 bfd_byte *loc;
3781
3782 /* When generating a shared object, these relocations
3783 are copied into the output file to be resolved at run
3784 time. */
3785
3786 outrel.r_addend = rela->r_addend;
3787 outrel.r_offset =
3788 _bfd_elf_section_offset (output_bfd, info, input_section,
3789 rela->r_offset);
3790 skip = (outrel.r_offset == (bfd_vma) -1
3791 || outrel.r_offset == (bfd_vma) -2);
3792 outrel.r_offset += (input_section->output_offset
3793 + input_section->output_section->vma);
3794
3795 if (skip)
3796 {
3797 memset (&outrel, 0, sizeof (outrel));
3798 }
3799 else if (hh != NULL
3800 && hh->eh.dynindx != -1
3801 && (plabel
3802 || !IS_ABSOLUTE_RELOC (r_type)
3803 || !bfd_link_pic (info)
3804 || !SYMBOLIC_BIND (info, &hh->eh)
3805 || !hh->eh.def_regular))
3806 {
3807 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3808 }
3809 else /* It's a local symbol, or one marked to become local. */
3810 {
3811 int indx = 0;
3812
3813 /* Add the absolute offset of the symbol. */
3814 outrel.r_addend += relocation;
3815
3816 /* Global plabels need to be processed by the
3817 dynamic linker so that functions have at most one
3818 fptr. For this reason, we need to differentiate
3819 between global and local plabels, which we do by
3820 providing the function symbol for a global plabel
3821 reloc, and no symbol for local plabels. */
3822 if (! plabel
3823 && sym_sec != NULL
3824 && sym_sec->output_section != NULL
3825 && ! bfd_is_abs_section (sym_sec))
3826 {
3827 asection *osec;
3828
3829 osec = sym_sec->output_section;
3830 indx = elf_section_data (osec)->dynindx;
3831 if (indx == 0)
3832 {
3833 osec = htab->etab.text_index_section;
3834 indx = elf_section_data (osec)->dynindx;
3835 }
3836 BFD_ASSERT (indx != 0);
3837
3838 /* We are turning this relocation into one
3839 against a section symbol, so subtract out the
3840 output section's address but not the offset
3841 of the input section in the output section. */
3842 outrel.r_addend -= osec->vma;
3843 }
3844
3845 outrel.r_info = ELF32_R_INFO (indx, r_type);
3846 }
3847 sreloc = elf_section_data (input_section)->sreloc;
3848 if (sreloc == NULL)
3849 abort ();
3850
3851 loc = sreloc->contents;
3852 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3853 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3854 }
3855 break;
3856
3857 case R_PARISC_TLS_LDM21L:
3858 case R_PARISC_TLS_LDM14R:
3859 {
3860 bfd_vma off;
3861
3862 off = htab->tls_ldm_got.offset;
3863 if (off & 1)
3864 off &= ~1;
3865 else
3866 {
3867 Elf_Internal_Rela outrel;
3868 bfd_byte *loc;
3869
3870 outrel.r_offset = (off
3871 + htab->etab.sgot->output_section->vma
3872 + htab->etab.sgot->output_offset);
3873 outrel.r_addend = 0;
3874 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
3875 loc = htab->etab.srelgot->contents;
3876 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3877
3878 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3879 htab->tls_ldm_got.offset |= 1;
3880 }
3881
3882 /* Add the base of the GOT to the relocation value. */
3883 relocation = (off
3884 + htab->etab.sgot->output_offset
3885 + htab->etab.sgot->output_section->vma);
3886
3887 break;
3888 }
3889
3890 case R_PARISC_TLS_LDO21L:
3891 case R_PARISC_TLS_LDO14R:
3892 relocation -= dtpoff_base (info);
3893 break;
3894
3895 case R_PARISC_TLS_GD21L:
3896 case R_PARISC_TLS_GD14R:
3897 case R_PARISC_TLS_IE21L:
3898 case R_PARISC_TLS_IE14R:
3899 {
3900 bfd_vma off;
3901 int indx;
3902 char tls_type;
3903
3904 indx = 0;
3905 if (hh != NULL)
3906 {
3907 if (!htab->etab.dynamic_sections_created
3908 || hh->eh.dynindx == -1
3909 || SYMBOL_REFERENCES_LOCAL (info, &hh->eh)
3910 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))
3911 /* This is actually a static link, or it is a
3912 -Bsymbolic link and the symbol is defined
3913 locally, or the symbol was forced to be local
3914 because of a version file. */
3915 ;
3916 else
3917 indx = hh->eh.dynindx;
3918 off = hh->eh.got.offset;
3919 tls_type = hh->tls_type;
3920 }
3921 else
3922 {
3923 off = local_got_offsets[r_symndx];
3924 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
3925 }
3926
3927 if (tls_type == GOT_UNKNOWN)
3928 abort ();
3929
3930 if ((off & 1) != 0)
3931 off &= ~1;
3932 else
3933 {
3934 bfd_boolean need_relocs = FALSE;
3935 Elf_Internal_Rela outrel;
3936 bfd_byte *loc = NULL;
3937 int cur_off = off;
3938
3939 /* The GOT entries have not been initialized yet. Do it
3940 now, and emit any relocations. If both an IE GOT and a
3941 GD GOT are necessary, we emit the GD first. */
3942
3943 if (indx != 0
3944 || (bfd_link_dll (info)
3945 && (hh == NULL
3946 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))))
3947 {
3948 need_relocs = TRUE;
3949 loc = htab->etab.srelgot->contents;
3950 loc += (htab->etab.srelgot->reloc_count
3951 * sizeof (Elf32_External_Rela));
3952 }
3953
3954 if (tls_type & GOT_TLS_GD)
3955 {
3956 if (need_relocs)
3957 {
3958 outrel.r_offset
3959 = (cur_off
3960 + htab->etab.sgot->output_section->vma
3961 + htab->etab.sgot->output_offset);
3962 outrel.r_info
3963 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32);
3964 outrel.r_addend = 0;
3965 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3966 htab->etab.srelgot->reloc_count++;
3967 loc += sizeof (Elf32_External_Rela);
3968 bfd_put_32 (output_bfd, 0,
3969 htab->etab.sgot->contents + cur_off);
3970 }
3971 else
3972 /* If we are not emitting relocations for a
3973 general dynamic reference, then we must be in a
3974 static link or an executable link with the
3975 symbol binding locally. Mark it as belonging
3976 to module 1, the executable. */
3977 bfd_put_32 (output_bfd, 1,
3978 htab->etab.sgot->contents + cur_off);
3979
3980 if (indx != 0)
3981 {
3982 outrel.r_info
3983 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
3984 outrel.r_offset += 4;
3985 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3986 htab->etab.srelgot->reloc_count++;
3987 loc += sizeof (Elf32_External_Rela);
3988 bfd_put_32 (output_bfd, 0,
3989 htab->etab.sgot->contents + cur_off + 4);
3990 }
3991 else
3992 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3993 htab->etab.sgot->contents + cur_off + 4);
3994 cur_off += 8;
3995 }
3996
3997 if (tls_type & GOT_TLS_IE)
3998 {
3999 if (need_relocs
4000 && !(bfd_link_executable (info)
4001 && SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4002 {
4003 outrel.r_offset
4004 = (cur_off
4005 + htab->etab.sgot->output_section->vma
4006 + htab->etab.sgot->output_offset);
4007 outrel.r_info = ELF32_R_INFO (indx,
4008 R_PARISC_TLS_TPREL32);
4009 if (indx == 0)
4010 outrel.r_addend = relocation - dtpoff_base (info);
4011 else
4012 outrel.r_addend = 0;
4013 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4014 htab->etab.srelgot->reloc_count++;
4015 loc += sizeof (Elf32_External_Rela);
4016 }
4017 else
4018 bfd_put_32 (output_bfd, tpoff (info, relocation),
4019 htab->etab.sgot->contents + cur_off);
4020 cur_off += 4;
4021 }
4022
4023 if (hh != NULL)
4024 hh->eh.got.offset |= 1;
4025 else
4026 local_got_offsets[r_symndx] |= 1;
4027 }
4028
4029 if ((tls_type & GOT_NORMAL) != 0
4030 && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0)
4031 {
4032 if (hh != NULL)
4033 _bfd_error_handler (_("%s has both normal and TLS relocs"),
4034 hh_name (hh));
4035 else
4036 {
4037 Elf_Internal_Sym *isym
4038 = bfd_sym_from_r_symndx (&htab->etab.sym_cache,
4039 input_bfd, r_symndx);
4040 if (isym == NULL)
4041 return FALSE;
4042 sym_name
4043 = bfd_elf_string_from_elf_section (input_bfd,
4044 symtab_hdr->sh_link,
4045 isym->st_name);
4046 if (sym_name == NULL)
4047 return FALSE;
4048 if (*sym_name == '\0')
4049 sym_name = bfd_section_name (sym_sec);
4050 _bfd_error_handler
4051 (_("%pB:%s has both normal and TLS relocs"),
4052 input_bfd, sym_name);
4053 }
4054 bfd_set_error (bfd_error_bad_value);
4055 return FALSE;
4056 }
4057
4058 if ((tls_type & GOT_TLS_GD)
4059 && r_type != R_PARISC_TLS_GD21L
4060 && r_type != R_PARISC_TLS_GD14R)
4061 off += 2 * GOT_ENTRY_SIZE;
4062
4063 /* Add the base of the GOT to the relocation value. */
4064 relocation = (off
4065 + htab->etab.sgot->output_offset
4066 + htab->etab.sgot->output_section->vma);
4067
4068 break;
4069 }
4070
4071 case R_PARISC_TLS_LE21L:
4072 case R_PARISC_TLS_LE14R:
4073 {
4074 relocation = tpoff (info, relocation);
4075 break;
4076 }
4077 break;
4078
4079 default:
4080 break;
4081 }
4082
4083 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4084 htab, sym_sec, hh, info);
4085
4086 if (rstatus == bfd_reloc_ok)
4087 continue;
4088
4089 if (hh != NULL)
4090 sym_name = hh_name (hh);
4091 else
4092 {
4093 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4094 symtab_hdr->sh_link,
4095 sym->st_name);
4096 if (sym_name == NULL)
4097 return FALSE;
4098 if (*sym_name == '\0')
4099 sym_name = bfd_section_name (sym_sec);
4100 }
4101
4102 howto = elf_hppa_howto_table + r_type;
4103
4104 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4105 {
4106 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4107 {
4108 _bfd_error_handler
4109 /* xgettext:c-format */
4110 (_("%pB(%pA+%#" PRIx64 "): cannot handle %s for %s"),
4111 input_bfd,
4112 input_section,
4113 (uint64_t) rela->r_offset,
4114 howto->name,
4115 sym_name);
4116 bfd_set_error (bfd_error_bad_value);
4117 return FALSE;
4118 }
4119 }
4120 else
4121 (*info->callbacks->reloc_overflow)
4122 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4123 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4124 }
4125
4126 return TRUE;
4127 }
4128
4129 /* Finish up dynamic symbol handling. We set the contents of various
4130 dynamic sections here. */
4131
4132 static bfd_boolean
4133 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4134 struct bfd_link_info *info,
4135 struct elf_link_hash_entry *eh,
4136 Elf_Internal_Sym *sym)
4137 {
4138 struct elf32_hppa_link_hash_table *htab;
4139 Elf_Internal_Rela rela;
4140 bfd_byte *loc;
4141
4142 htab = hppa_link_hash_table (info);
4143 if (htab == NULL)
4144 return FALSE;
4145
4146 if (eh->plt.offset != (bfd_vma) -1)
4147 {
4148 bfd_vma value;
4149
4150 if (eh->plt.offset & 1)
4151 abort ();
4152
4153 /* This symbol has an entry in the procedure linkage table. Set
4154 it up.
4155
4156 The format of a plt entry is
4157 <funcaddr>
4158 <__gp>
4159 */
4160 value = 0;
4161 if (eh->root.type == bfd_link_hash_defined
4162 || eh->root.type == bfd_link_hash_defweak)
4163 {
4164 value = eh->root.u.def.value;
4165 if (eh->root.u.def.section->output_section != NULL)
4166 value += (eh->root.u.def.section->output_offset
4167 + eh->root.u.def.section->output_section->vma);
4168 }
4169
4170 /* Create a dynamic IPLT relocation for this entry. */
4171 rela.r_offset = (eh->plt.offset
4172 + htab->etab.splt->output_offset
4173 + htab->etab.splt->output_section->vma);
4174 if (eh->dynindx != -1)
4175 {
4176 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4177 rela.r_addend = 0;
4178 }
4179 else
4180 {
4181 /* This symbol has been marked to become local, and is
4182 used by a plabel so must be kept in the .plt. */
4183 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4184 rela.r_addend = value;
4185 }
4186
4187 loc = htab->etab.srelplt->contents;
4188 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4189 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4190
4191 if (!eh->def_regular)
4192 {
4193 /* Mark the symbol as undefined, rather than as defined in
4194 the .plt section. Leave the value alone. */
4195 sym->st_shndx = SHN_UNDEF;
4196 }
4197 }
4198
4199 if (eh->got.offset != (bfd_vma) -1
4200 && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0
4201 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4202 {
4203 bfd_boolean is_dyn = (eh->dynindx != -1
4204 && !SYMBOL_REFERENCES_LOCAL (info, eh));
4205
4206 if (is_dyn || bfd_link_pic (info))
4207 {
4208 /* This symbol has an entry in the global offset table. Set
4209 it up. */
4210
4211 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4212 + htab->etab.sgot->output_offset
4213 + htab->etab.sgot->output_section->vma);
4214
4215 /* If this is a -Bsymbolic link and the symbol is defined
4216 locally or was forced to be local because of a version
4217 file, we just want to emit a RELATIVE reloc. The entry
4218 in the global offset table will already have been
4219 initialized in the relocate_section function. */
4220 if (!is_dyn)
4221 {
4222 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4223 rela.r_addend = (eh->root.u.def.value
4224 + eh->root.u.def.section->output_offset
4225 + eh->root.u.def.section->output_section->vma);
4226 }
4227 else
4228 {
4229 if ((eh->got.offset & 1) != 0)
4230 abort ();
4231
4232 bfd_put_32 (output_bfd, 0,
4233 htab->etab.sgot->contents + (eh->got.offset & ~1));
4234 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4235 rela.r_addend = 0;
4236 }
4237
4238 loc = htab->etab.srelgot->contents;
4239 loc += (htab->etab.srelgot->reloc_count++
4240 * sizeof (Elf32_External_Rela));
4241 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4242 }
4243 }
4244
4245 if (eh->needs_copy)
4246 {
4247 asection *sec;
4248
4249 /* This symbol needs a copy reloc. Set it up. */
4250
4251 if (! (eh->dynindx != -1
4252 && (eh->root.type == bfd_link_hash_defined
4253 || eh->root.type == bfd_link_hash_defweak)))
4254 abort ();
4255
4256 rela.r_offset = (eh->root.u.def.value
4257 + eh->root.u.def.section->output_offset
4258 + eh->root.u.def.section->output_section->vma);
4259 rela.r_addend = 0;
4260 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4261 if (eh->root.u.def.section == htab->etab.sdynrelro)
4262 sec = htab->etab.sreldynrelro;
4263 else
4264 sec = htab->etab.srelbss;
4265 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4266 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4267 }
4268
4269 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4270 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4271 {
4272 sym->st_shndx = SHN_ABS;
4273 }
4274
4275 return TRUE;
4276 }
4277
4278 /* Used to decide how to sort relocs in an optimal manner for the
4279 dynamic linker, before writing them out. */
4280
4281 static enum elf_reloc_type_class
4282 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4283 const asection *rel_sec ATTRIBUTE_UNUSED,
4284 const Elf_Internal_Rela *rela)
4285 {
4286 /* Handle TLS relocs first; we don't want them to be marked
4287 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4288 check below. */
4289 switch ((int) ELF32_R_TYPE (rela->r_info))
4290 {
4291 case R_PARISC_TLS_DTPMOD32:
4292 case R_PARISC_TLS_DTPOFF32:
4293 case R_PARISC_TLS_TPREL32:
4294 return reloc_class_normal;
4295 }
4296
4297 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4298 return reloc_class_relative;
4299
4300 switch ((int) ELF32_R_TYPE (rela->r_info))
4301 {
4302 case R_PARISC_IPLT:
4303 return reloc_class_plt;
4304 case R_PARISC_COPY:
4305 return reloc_class_copy;
4306 default:
4307 return reloc_class_normal;
4308 }
4309 }
4310
4311 /* Finish up the dynamic sections. */
4312
4313 static bfd_boolean
4314 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4315 struct bfd_link_info *info)
4316 {
4317 bfd *dynobj;
4318 struct elf32_hppa_link_hash_table *htab;
4319 asection *sdyn;
4320 asection * sgot;
4321
4322 htab = hppa_link_hash_table (info);
4323 if (htab == NULL)
4324 return FALSE;
4325
4326 dynobj = htab->etab.dynobj;
4327
4328 sgot = htab->etab.sgot;
4329 /* A broken linker script might have discarded the dynamic sections.
4330 Catch this here so that we do not seg-fault later on. */
4331 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4332 return FALSE;
4333
4334 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4335
4336 if (htab->etab.dynamic_sections_created)
4337 {
4338 Elf32_External_Dyn *dyncon, *dynconend;
4339
4340 if (sdyn == NULL)
4341 abort ();
4342
4343 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4344 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4345 for (; dyncon < dynconend; dyncon++)
4346 {
4347 Elf_Internal_Dyn dyn;
4348 asection *s;
4349
4350 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4351
4352 switch (dyn.d_tag)
4353 {
4354 default:
4355 continue;
4356
4357 case DT_PLTGOT:
4358 /* Use PLTGOT to set the GOT register. */
4359 dyn.d_un.d_ptr = elf_gp (output_bfd);
4360 break;
4361
4362 case DT_JMPREL:
4363 s = htab->etab.srelplt;
4364 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4365 break;
4366
4367 case DT_PLTRELSZ:
4368 s = htab->etab.srelplt;
4369 dyn.d_un.d_val = s->size;
4370 break;
4371 }
4372
4373 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4374 }
4375 }
4376
4377 if (sgot != NULL && sgot->size != 0)
4378 {
4379 /* Fill in the first entry in the global offset table.
4380 We use it to point to our dynamic section, if we have one. */
4381 bfd_put_32 (output_bfd,
4382 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4383 sgot->contents);
4384
4385 /* The second entry is reserved for use by the dynamic linker. */
4386 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4387
4388 /* Set .got entry size. */
4389 elf_section_data (sgot->output_section)
4390 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4391 }
4392
4393 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4394 {
4395 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4396 plt stubs and as such the section does not hold a table of fixed-size
4397 entries. */
4398 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4399
4400 if (htab->need_plt_stub)
4401 {
4402 /* Set up the .plt stub. */
4403 memcpy (htab->etab.splt->contents
4404 + htab->etab.splt->size - sizeof (plt_stub),
4405 plt_stub, sizeof (plt_stub));
4406
4407 if ((htab->etab.splt->output_offset
4408 + htab->etab.splt->output_section->vma
4409 + htab->etab.splt->size)
4410 != (sgot->output_offset
4411 + sgot->output_section->vma))
4412 {
4413 _bfd_error_handler
4414 (_(".got section not immediately after .plt section"));
4415 return FALSE;
4416 }
4417 }
4418 }
4419
4420 return TRUE;
4421 }
4422
4423 /* Called when writing out an object file to decide the type of a
4424 symbol. */
4425 static int
4426 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4427 {
4428 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4429 return STT_PARISC_MILLI;
4430 else
4431 return type;
4432 }
4433
4434 /* Misc BFD support code. */
4435 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4436 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4437 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4438 #define elf_info_to_howto elf_hppa_info_to_howto
4439 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4440
4441 /* Stuff for the BFD linker. */
4442 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4443 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4444 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4445 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4446 #define elf_backend_check_relocs elf32_hppa_check_relocs
4447 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4448 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4449 #define elf_backend_fake_sections elf_hppa_fake_sections
4450 #define elf_backend_relocate_section elf32_hppa_relocate_section
4451 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4452 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4453 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4454 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4455 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4456 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4457 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4458 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4459 #define elf_backend_object_p elf32_hppa_object_p
4460 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4461 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4462 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4463 #define elf_backend_action_discarded elf_hppa_action_discarded
4464
4465 #define elf_backend_can_gc_sections 1
4466 #define elf_backend_can_refcount 1
4467 #define elf_backend_plt_alignment 2
4468 #define elf_backend_want_got_plt 0
4469 #define elf_backend_plt_readonly 0
4470 #define elf_backend_want_plt_sym 0
4471 #define elf_backend_got_header_size 8
4472 #define elf_backend_want_dynrelro 1
4473 #define elf_backend_rela_normal 1
4474 #define elf_backend_dtrel_excludes_plt 1
4475 #define elf_backend_no_page_alias 1
4476
4477 #define TARGET_BIG_SYM hppa_elf32_vec
4478 #define TARGET_BIG_NAME "elf32-hppa"
4479 #define ELF_ARCH bfd_arch_hppa
4480 #define ELF_TARGET_ID HPPA32_ELF_DATA
4481 #define ELF_MACHINE_CODE EM_PARISC
4482 #define ELF_MAXPAGESIZE 0x1000
4483 #define ELF_OSABI ELFOSABI_HPUX
4484 #define elf32_bed elf32_hppa_hpux_bed
4485
4486 #include "elf32-target.h"
4487
4488 #undef TARGET_BIG_SYM
4489 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4490 #undef TARGET_BIG_NAME
4491 #define TARGET_BIG_NAME "elf32-hppa-linux"
4492 #undef ELF_OSABI
4493 #define ELF_OSABI ELFOSABI_GNU
4494 #undef elf32_bed
4495 #define elf32_bed elf32_hppa_linux_bed
4496
4497 #include "elf32-target.h"
4498
4499 #undef TARGET_BIG_SYM
4500 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4501 #undef TARGET_BIG_NAME
4502 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4503 #undef ELF_OSABI
4504 #define ELF_OSABI ELFOSABI_NETBSD
4505 #undef elf32_bed
4506 #define elf32_bed elf32_hppa_netbsd_bed
4507
4508 #include "elf32-target.h"