]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-i386.c
* elf-eh-frame.c (_bfd_elf_discard_section_eh_frame): Enable
[thirdparty/binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name
34 PARAMS ((bfd *, const char *));
35 static boolean elf_i386_grok_prstatus
36 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
37 static boolean elf_i386_grok_psinfo
38 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
39 static struct bfd_hash_entry *link_hash_newfunc
40 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
41 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
42 PARAMS ((bfd *));
43 static boolean create_got_section
44 PARAMS((bfd *, struct bfd_link_info *));
45 static boolean elf_i386_create_dynamic_sections
46 PARAMS((bfd *, struct bfd_link_info *));
47 static void elf_i386_copy_indirect_symbol
48 PARAMS ((struct elf_link_hash_entry *, struct elf_link_hash_entry *));
49 static boolean elf_i386_check_relocs
50 PARAMS ((bfd *, struct bfd_link_info *, asection *,
51 const Elf_Internal_Rela *));
52 static asection *elf_i386_gc_mark_hook
53 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
54 struct elf_link_hash_entry *, Elf_Internal_Sym *));
55 static boolean elf_i386_gc_sweep_hook
56 PARAMS ((bfd *, struct bfd_link_info *, asection *,
57 const Elf_Internal_Rela *));
58 static boolean elf_i386_adjust_dynamic_symbol
59 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
60 static boolean allocate_dynrelocs
61 PARAMS ((struct elf_link_hash_entry *, PTR));
62 static boolean readonly_dynrelocs
63 PARAMS ((struct elf_link_hash_entry *, PTR));
64 static boolean elf_i386_fake_sections
65 PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
66 static boolean elf_i386_size_dynamic_sections
67 PARAMS ((bfd *, struct bfd_link_info *));
68 static boolean elf_i386_relocate_section
69 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
70 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
71 static boolean elf_i386_finish_dynamic_symbol
72 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
73 Elf_Internal_Sym *));
74 static enum elf_reloc_type_class elf_i386_reloc_type_class
75 PARAMS ((const Elf_Internal_Rela *));
76 static boolean elf_i386_finish_dynamic_sections
77 PARAMS ((bfd *, struct bfd_link_info *));
78
79 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
80
81 #include "elf/i386.h"
82
83 static reloc_howto_type elf_howto_table[]=
84 {
85 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
86 bfd_elf_generic_reloc, "R_386_NONE",
87 true, 0x00000000, 0x00000000, false),
88 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
89 bfd_elf_generic_reloc, "R_386_32",
90 true, 0xffffffff, 0xffffffff, false),
91 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
92 bfd_elf_generic_reloc, "R_386_PC32",
93 true, 0xffffffff, 0xffffffff, true),
94 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
95 bfd_elf_generic_reloc, "R_386_GOT32",
96 true, 0xffffffff, 0xffffffff, false),
97 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
98 bfd_elf_generic_reloc, "R_386_PLT32",
99 true, 0xffffffff, 0xffffffff, true),
100 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
101 bfd_elf_generic_reloc, "R_386_COPY",
102 true, 0xffffffff, 0xffffffff, false),
103 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
104 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
105 true, 0xffffffff, 0xffffffff, false),
106 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
107 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
108 true, 0xffffffff, 0xffffffff, false),
109 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
110 bfd_elf_generic_reloc, "R_386_RELATIVE",
111 true, 0xffffffff, 0xffffffff, false),
112 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
113 bfd_elf_generic_reloc, "R_386_GOTOFF",
114 true, 0xffffffff, 0xffffffff, false),
115 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
116 bfd_elf_generic_reloc, "R_386_GOTPC",
117 true, 0xffffffff, 0xffffffff, true),
118
119 /* We have a gap in the reloc numbers here.
120 R_386_standard counts the number up to this point, and
121 R_386_ext_offset is the value to subtract from a reloc type of
122 R_386_16 thru R_386_PC8 to form an index into this table. */
123 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
124 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
125
126 /* The remaining relocs are a GNU extension. */
127 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
128 bfd_elf_generic_reloc, "R_386_16",
129 true, 0xffff, 0xffff, false),
130 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
131 bfd_elf_generic_reloc, "R_386_PC16",
132 true, 0xffff, 0xffff, true),
133 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
134 bfd_elf_generic_reloc, "R_386_8",
135 true, 0xff, 0xff, false),
136 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
137 bfd_elf_generic_reloc, "R_386_PC8",
138 true, 0xff, 0xff, true),
139
140 /* Another gap. */
141 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
142 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
143
144 /* GNU extension to record C++ vtable hierarchy. */
145 HOWTO (R_386_GNU_VTINHERIT, /* type */
146 0, /* rightshift */
147 2, /* size (0 = byte, 1 = short, 2 = long) */
148 0, /* bitsize */
149 false, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_dont, /* complain_on_overflow */
152 NULL, /* special_function */
153 "R_386_GNU_VTINHERIT", /* name */
154 false, /* partial_inplace */
155 0, /* src_mask */
156 0, /* dst_mask */
157 false),
158
159 /* GNU extension to record C++ vtable member usage. */
160 HOWTO (R_386_GNU_VTENTRY, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 0, /* bitsize */
164 false, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_dont, /* complain_on_overflow */
167 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
168 "R_386_GNU_VTENTRY", /* name */
169 false, /* partial_inplace */
170 0, /* src_mask */
171 0, /* dst_mask */
172 false)
173
174 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
175
176 };
177
178 #ifdef DEBUG_GEN_RELOC
179 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
180 #else
181 #define TRACE(str)
182 #endif
183
184 static reloc_howto_type *
185 elf_i386_reloc_type_lookup (abfd, code)
186 bfd *abfd ATTRIBUTE_UNUSED;
187 bfd_reloc_code_real_type code;
188 {
189 switch (code)
190 {
191 case BFD_RELOC_NONE:
192 TRACE ("BFD_RELOC_NONE");
193 return &elf_howto_table[(unsigned int) R_386_NONE ];
194
195 case BFD_RELOC_32:
196 TRACE ("BFD_RELOC_32");
197 return &elf_howto_table[(unsigned int) R_386_32 ];
198
199 case BFD_RELOC_CTOR:
200 TRACE ("BFD_RELOC_CTOR");
201 return &elf_howto_table[(unsigned int) R_386_32 ];
202
203 case BFD_RELOC_32_PCREL:
204 TRACE ("BFD_RELOC_PC32");
205 return &elf_howto_table[(unsigned int) R_386_PC32 ];
206
207 case BFD_RELOC_386_GOT32:
208 TRACE ("BFD_RELOC_386_GOT32");
209 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
210
211 case BFD_RELOC_386_PLT32:
212 TRACE ("BFD_RELOC_386_PLT32");
213 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
214
215 case BFD_RELOC_386_COPY:
216 TRACE ("BFD_RELOC_386_COPY");
217 return &elf_howto_table[(unsigned int) R_386_COPY ];
218
219 case BFD_RELOC_386_GLOB_DAT:
220 TRACE ("BFD_RELOC_386_GLOB_DAT");
221 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
222
223 case BFD_RELOC_386_JUMP_SLOT:
224 TRACE ("BFD_RELOC_386_JUMP_SLOT");
225 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
226
227 case BFD_RELOC_386_RELATIVE:
228 TRACE ("BFD_RELOC_386_RELATIVE");
229 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
230
231 case BFD_RELOC_386_GOTOFF:
232 TRACE ("BFD_RELOC_386_GOTOFF");
233 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
234
235 case BFD_RELOC_386_GOTPC:
236 TRACE ("BFD_RELOC_386_GOTPC");
237 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
238
239 /* The remaining relocs are a GNU extension. */
240 case BFD_RELOC_16:
241 TRACE ("BFD_RELOC_16");
242 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
243
244 case BFD_RELOC_16_PCREL:
245 TRACE ("BFD_RELOC_16_PCREL");
246 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
247
248 case BFD_RELOC_8:
249 TRACE ("BFD_RELOC_8");
250 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
251
252 case BFD_RELOC_8_PCREL:
253 TRACE ("BFD_RELOC_8_PCREL");
254 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
255
256 case BFD_RELOC_VTABLE_INHERIT:
257 TRACE ("BFD_RELOC_VTABLE_INHERIT");
258 return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
259 - R_386_vt_offset];
260
261 case BFD_RELOC_VTABLE_ENTRY:
262 TRACE ("BFD_RELOC_VTABLE_ENTRY");
263 return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
264 - R_386_vt_offset];
265
266 default:
267 break;
268 }
269
270 TRACE ("Unknown");
271 return 0;
272 }
273
274 static void
275 elf_i386_info_to_howto (abfd, cache_ptr, dst)
276 bfd *abfd ATTRIBUTE_UNUSED;
277 arelent *cache_ptr ATTRIBUTE_UNUSED;
278 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
279 {
280 abort ();
281 }
282
283 static void
284 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
285 bfd *abfd ATTRIBUTE_UNUSED;
286 arelent *cache_ptr;
287 Elf32_Internal_Rel *dst;
288 {
289 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
290 unsigned int indx;
291
292 if ((indx = r_type) >= R_386_standard
293 && ((indx = r_type - R_386_ext_offset) - R_386_standard
294 >= R_386_ext - R_386_standard)
295 && ((indx = r_type - R_386_vt_offset) - R_386_ext
296 >= R_386_vt - R_386_ext))
297 {
298 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
299 bfd_archive_filename (abfd), (int) r_type);
300 indx = (unsigned int) R_386_NONE;
301 }
302 cache_ptr->howto = &elf_howto_table[indx];
303 }
304
305 /* Return whether a symbol name implies a local label. The UnixWare
306 2.1 cc generates temporary symbols that start with .X, so we
307 recognize them here. FIXME: do other SVR4 compilers also use .X?.
308 If so, we should move the .X recognition into
309 _bfd_elf_is_local_label_name. */
310
311 static boolean
312 elf_i386_is_local_label_name (abfd, name)
313 bfd *abfd;
314 const char *name;
315 {
316 if (name[0] == '.' && name[1] == 'X')
317 return true;
318
319 return _bfd_elf_is_local_label_name (abfd, name);
320 }
321 \f
322 /* Support for core dump NOTE sections. */
323 static boolean
324 elf_i386_grok_prstatus (abfd, note)
325 bfd *abfd;
326 Elf_Internal_Note *note;
327 {
328 int offset;
329 size_t raw_size;
330
331 switch (note->descsz)
332 {
333 default:
334 return false;
335
336 case 144: /* Linux/i386 */
337 /* pr_cursig */
338 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
339
340 /* pr_pid */
341 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
342
343 /* pr_reg */
344 offset = 72;
345 raw_size = 68;
346
347 break;
348 }
349
350 /* Make a ".reg/999" section. */
351 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
352 raw_size, note->descpos + offset);
353 }
354
355 static boolean
356 elf_i386_grok_psinfo (abfd, note)
357 bfd *abfd;
358 Elf_Internal_Note *note;
359 {
360 switch (note->descsz)
361 {
362 default:
363 return false;
364
365 case 124: /* Linux/i386 elf_prpsinfo */
366 elf_tdata (abfd)->core_program
367 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
368 elf_tdata (abfd)->core_command
369 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
370 }
371
372 /* Note that for some reason, a spurious space is tacked
373 onto the end of the args in some (at least one anyway)
374 implementations, so strip it off if it exists. */
375
376 {
377 char *command = elf_tdata (abfd)->core_command;
378 int n = strlen (command);
379
380 if (0 < n && command[n - 1] == ' ')
381 command[n - 1] = '\0';
382 }
383
384 return true;
385 }
386 \f
387 /* Functions for the i386 ELF linker.
388
389 In order to gain some understanding of code in this file without
390 knowing all the intricate details of the linker, note the
391 following:
392
393 Functions named elf_i386_* are called by external routines, other
394 functions are only called locally. elf_i386_* functions appear
395 in this file more or less in the order in which they are called
396 from external routines. eg. elf_i386_check_relocs is called
397 early in the link process, elf_i386_finish_dynamic_sections is
398 one of the last functions. */
399
400
401 /* The name of the dynamic interpreter. This is put in the .interp
402 section. */
403
404 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
405
406 /* The size in bytes of an entry in the procedure linkage table. */
407
408 #define PLT_ENTRY_SIZE 16
409
410 /* The first entry in an absolute procedure linkage table looks like
411 this. See the SVR4 ABI i386 supplement to see how this works. */
412
413 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
414 {
415 0xff, 0x35, /* pushl contents of address */
416 0, 0, 0, 0, /* replaced with address of .got + 4. */
417 0xff, 0x25, /* jmp indirect */
418 0, 0, 0, 0, /* replaced with address of .got + 8. */
419 0, 0, 0, 0 /* pad out to 16 bytes. */
420 };
421
422 /* Subsequent entries in an absolute procedure linkage table look like
423 this. */
424
425 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
426 {
427 0xff, 0x25, /* jmp indirect */
428 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
429 0x68, /* pushl immediate */
430 0, 0, 0, 0, /* replaced with offset into relocation table. */
431 0xe9, /* jmp relative */
432 0, 0, 0, 0 /* replaced with offset to start of .plt. */
433 };
434
435 /* The first entry in a PIC procedure linkage table look like this. */
436
437 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
438 {
439 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
440 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
441 0, 0, 0, 0 /* pad out to 16 bytes. */
442 };
443
444 /* Subsequent entries in a PIC procedure linkage table look like this. */
445
446 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
447 {
448 0xff, 0xa3, /* jmp *offset(%ebx) */
449 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
450 0x68, /* pushl immediate */
451 0, 0, 0, 0, /* replaced with offset into relocation table. */
452 0xe9, /* jmp relative */
453 0, 0, 0, 0 /* replaced with offset to start of .plt. */
454 };
455
456 /* The i386 linker needs to keep track of the number of relocs that it
457 decides to copy as dynamic relocs in check_relocs for each symbol.
458 This is so that it can later discard them if they are found to be
459 unnecessary. We store the information in a field extending the
460 regular ELF linker hash table. */
461
462 struct elf_i386_dyn_relocs
463 {
464 struct elf_i386_dyn_relocs *next;
465
466 /* The input section of the reloc. */
467 asection *sec;
468
469 /* Total number of relocs copied for the input section. */
470 bfd_size_type count;
471
472 /* Number of pc-relative relocs copied for the input section. */
473 bfd_size_type pc_count;
474 };
475
476 /* i386 ELF linker hash entry. */
477
478 struct elf_i386_link_hash_entry
479 {
480 struct elf_link_hash_entry elf;
481
482 /* Track dynamic relocs copied for this symbol. */
483 struct elf_i386_dyn_relocs *dyn_relocs;
484 };
485
486 /* i386 ELF linker hash table. */
487
488 struct elf_i386_link_hash_table
489 {
490 struct elf_link_hash_table elf;
491
492 /* Short-cuts to get to dynamic linker sections. */
493 asection *sgot;
494 asection *sgotplt;
495 asection *srelgot;
496 asection *splt;
497 asection *srelplt;
498 asection *sdynbss;
499 asection *srelbss;
500
501 /* Small local sym to section mapping cache. */
502 struct sym_sec_cache sym_sec;
503 };
504
505 /* Get the i386 ELF linker hash table from a link_info structure. */
506
507 #define elf_i386_hash_table(p) \
508 ((struct elf_i386_link_hash_table *) ((p)->hash))
509
510 /* Create an entry in an i386 ELF linker hash table. */
511
512 static struct bfd_hash_entry *
513 link_hash_newfunc (entry, table, string)
514 struct bfd_hash_entry *entry;
515 struct bfd_hash_table *table;
516 const char *string;
517 {
518 /* Allocate the structure if it has not already been allocated by a
519 subclass. */
520 if (entry == NULL)
521 {
522 entry = bfd_hash_allocate (table,
523 sizeof (struct elf_i386_link_hash_entry));
524 if (entry == NULL)
525 return entry;
526 }
527
528 /* Call the allocation method of the superclass. */
529 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
530 if (entry != NULL)
531 {
532 struct elf_i386_link_hash_entry *eh;
533
534 eh = (struct elf_i386_link_hash_entry *) entry;
535 eh->dyn_relocs = NULL;
536 }
537
538 return entry;
539 }
540
541 /* Create an i386 ELF linker hash table. */
542
543 static struct bfd_link_hash_table *
544 elf_i386_link_hash_table_create (abfd)
545 bfd *abfd;
546 {
547 struct elf_i386_link_hash_table *ret;
548 bfd_size_type amt = sizeof (struct elf_i386_link_hash_table);
549
550 ret = (struct elf_i386_link_hash_table *) bfd_alloc (abfd, amt);
551 if (ret == NULL)
552 return NULL;
553
554 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
555 {
556 bfd_release (abfd, ret);
557 return NULL;
558 }
559
560 ret->sgot = NULL;
561 ret->sgotplt = NULL;
562 ret->srelgot = NULL;
563 ret->splt = NULL;
564 ret->srelplt = NULL;
565 ret->sdynbss = NULL;
566 ret->srelbss = NULL;
567 ret->sym_sec.abfd = NULL;
568
569 return &ret->elf.root;
570 }
571
572 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
573 shortcuts to them in our hash table. */
574
575 static boolean
576 create_got_section (dynobj, info)
577 bfd *dynobj;
578 struct bfd_link_info *info;
579 {
580 struct elf_i386_link_hash_table *htab;
581
582 if (! _bfd_elf_create_got_section (dynobj, info))
583 return false;
584
585 htab = elf_i386_hash_table (info);
586 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
587 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
588 if (!htab->sgot || !htab->sgotplt)
589 abort ();
590
591 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
592 if (htab->srelgot == NULL
593 || ! bfd_set_section_flags (dynobj, htab->srelgot,
594 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
595 | SEC_IN_MEMORY | SEC_LINKER_CREATED
596 | SEC_READONLY))
597 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
598 return false;
599 return true;
600 }
601
602 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
603 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
604 hash table. */
605
606 static boolean
607 elf_i386_create_dynamic_sections (dynobj, info)
608 bfd *dynobj;
609 struct bfd_link_info *info;
610 {
611 struct elf_i386_link_hash_table *htab;
612
613 htab = elf_i386_hash_table (info);
614 if (!htab->sgot && !create_got_section (dynobj, info))
615 return false;
616
617 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
618 return false;
619
620 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
621 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
622 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
623 if (!info->shared)
624 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
625
626 if (!htab->splt || !htab->srelplt || !htab->sdynbss
627 || (!info->shared && !htab->srelbss))
628 abort ();
629
630 return true;
631 }
632
633 /* Copy the extra info we tack onto an elf_link_hash_entry. */
634
635 static void
636 elf_i386_copy_indirect_symbol (dir, ind)
637 struct elf_link_hash_entry *dir, *ind;
638 {
639 struct elf_i386_link_hash_entry *edir, *eind;
640
641 edir = (struct elf_i386_link_hash_entry *) dir;
642 eind = (struct elf_i386_link_hash_entry *) ind;
643
644 if (eind->dyn_relocs != NULL)
645 {
646 if (edir->dyn_relocs != NULL)
647 {
648 struct elf_i386_dyn_relocs **pp;
649 struct elf_i386_dyn_relocs *p;
650
651 if (ind->root.type == bfd_link_hash_indirect)
652 abort ();
653
654 /* Add reloc counts against the weak sym to the strong sym
655 list. Merge any entries against the same section. */
656 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
657 {
658 struct elf_i386_dyn_relocs *q;
659
660 for (q = edir->dyn_relocs; q != NULL; q = q->next)
661 if (q->sec == p->sec)
662 {
663 q->pc_count += p->pc_count;
664 q->count += p->count;
665 *pp = p->next;
666 break;
667 }
668 if (q == NULL)
669 pp = &p->next;
670 }
671 *pp = edir->dyn_relocs;
672 }
673
674 edir->dyn_relocs = eind->dyn_relocs;
675 eind->dyn_relocs = NULL;
676 }
677
678 _bfd_elf_link_hash_copy_indirect (dir, ind);
679 }
680
681 /* Look through the relocs for a section during the first phase, and
682 calculate needed space in the global offset table, procedure linkage
683 table, and dynamic reloc sections. */
684
685 static boolean
686 elf_i386_check_relocs (abfd, info, sec, relocs)
687 bfd *abfd;
688 struct bfd_link_info *info;
689 asection *sec;
690 const Elf_Internal_Rela *relocs;
691 {
692 struct elf_i386_link_hash_table *htab;
693 Elf_Internal_Shdr *symtab_hdr;
694 struct elf_link_hash_entry **sym_hashes;
695 const Elf_Internal_Rela *rel;
696 const Elf_Internal_Rela *rel_end;
697 asection *sreloc;
698
699 if (info->relocateable)
700 return true;
701
702 htab = elf_i386_hash_table (info);
703 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
704 sym_hashes = elf_sym_hashes (abfd);
705
706 sreloc = NULL;
707
708 rel_end = relocs + sec->reloc_count;
709 for (rel = relocs; rel < rel_end; rel++)
710 {
711 unsigned long r_symndx;
712 struct elf_link_hash_entry *h;
713
714 r_symndx = ELF32_R_SYM (rel->r_info);
715
716 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
717 {
718 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
719 bfd_archive_filename (abfd),
720 r_symndx);
721 return false;
722 }
723
724 if (r_symndx < symtab_hdr->sh_info)
725 h = NULL;
726 else
727 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
728
729 switch (ELF32_R_TYPE (rel->r_info))
730 {
731 case R_386_GOT32:
732 /* This symbol requires a global offset table entry. */
733 if (h != NULL)
734 {
735 h->got.refcount += 1;
736 }
737 else
738 {
739 bfd_signed_vma *local_got_refcounts;
740
741 /* This is a global offset table entry for a local symbol. */
742 local_got_refcounts = elf_local_got_refcounts (abfd);
743 if (local_got_refcounts == NULL)
744 {
745 bfd_size_type size;
746
747 size = symtab_hdr->sh_info;
748 size *= sizeof (bfd_signed_vma);
749 local_got_refcounts = ((bfd_signed_vma *)
750 bfd_zalloc (abfd, size));
751 if (local_got_refcounts == NULL)
752 return false;
753 elf_local_got_refcounts (abfd) = local_got_refcounts;
754 }
755 local_got_refcounts[r_symndx] += 1;
756 }
757 /* Fall through */
758
759 case R_386_GOTOFF:
760 case R_386_GOTPC:
761 if (htab->sgot == NULL)
762 {
763 if (htab->elf.dynobj == NULL)
764 htab->elf.dynobj = abfd;
765 if (!create_got_section (htab->elf.dynobj, info))
766 return false;
767 }
768 break;
769
770 case R_386_PLT32:
771 /* This symbol requires a procedure linkage table entry. We
772 actually build the entry in adjust_dynamic_symbol,
773 because this might be a case of linking PIC code which is
774 never referenced by a dynamic object, in which case we
775 don't need to generate a procedure linkage table entry
776 after all. */
777
778 /* If this is a local symbol, we resolve it directly without
779 creating a procedure linkage table entry. */
780 if (h == NULL)
781 continue;
782
783 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
784 h->plt.refcount += 1;
785 break;
786
787 case R_386_32:
788 case R_386_PC32:
789 if (h != NULL && !info->shared)
790 {
791 /* If this reloc is in a read-only section, we might
792 need a copy reloc. We can't check reliably at this
793 stage whether the section is read-only, as input
794 sections have not yet been mapped to output sections.
795 Tentatively set the flag for now, and correct in
796 adjust_dynamic_symbol. */
797 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
798
799 /* We may need a .plt entry if the function this reloc
800 refers to is in a shared lib. */
801 h->plt.refcount += 1;
802 }
803
804 /* If we are creating a shared library, and this is a reloc
805 against a global symbol, or a non PC relative reloc
806 against a local symbol, then we need to copy the reloc
807 into the shared library. However, if we are linking with
808 -Bsymbolic, we do not need to copy a reloc against a
809 global symbol which is defined in an object we are
810 including in the link (i.e., DEF_REGULAR is set). At
811 this point we have not seen all the input files, so it is
812 possible that DEF_REGULAR is not set now but will be set
813 later (it is never cleared). In case of a weak definition,
814 DEF_REGULAR may be cleared later by a strong definition in
815 a shared library. We account for that possibility below by
816 storing information in the relocs_copied field of the hash
817 table entry. A similar situation occurs when creating
818 shared libraries and symbol visibility changes render the
819 symbol local.
820
821 If on the other hand, we are creating an executable, we
822 may need to keep relocations for symbols satisfied by a
823 dynamic library if we manage to avoid copy relocs for the
824 symbol. */
825 if ((info->shared
826 && (sec->flags & SEC_ALLOC) != 0
827 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
828 || (h != NULL
829 && (! info->symbolic
830 || h->root.type == bfd_link_hash_defweak
831 || (h->elf_link_hash_flags
832 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
833 || (!info->shared
834 && (sec->flags & SEC_ALLOC) != 0
835 && h != NULL
836 && (h->root.type == bfd_link_hash_defweak
837 || (h->elf_link_hash_flags
838 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
839 {
840 struct elf_i386_dyn_relocs *p;
841 struct elf_i386_dyn_relocs **head;
842
843 /* We must copy these reloc types into the output file.
844 Create a reloc section in dynobj and make room for
845 this reloc. */
846 if (sreloc == NULL)
847 {
848 const char *name;
849 bfd *dynobj;
850
851 name = (bfd_elf_string_from_elf_section
852 (abfd,
853 elf_elfheader (abfd)->e_shstrndx,
854 elf_section_data (sec)->rel_hdr.sh_name));
855 if (name == NULL)
856 return false;
857
858 if (strncmp (name, ".rel", 4) != 0
859 || strcmp (bfd_get_section_name (abfd, sec),
860 name + 4) != 0)
861 {
862 (*_bfd_error_handler)
863 (_("%s: bad relocation section name `%s\'"),
864 bfd_archive_filename (abfd), name);
865 }
866
867 if (htab->elf.dynobj == NULL)
868 htab->elf.dynobj = abfd;
869
870 dynobj = htab->elf.dynobj;
871 sreloc = bfd_get_section_by_name (dynobj, name);
872 if (sreloc == NULL)
873 {
874 flagword flags;
875
876 sreloc = bfd_make_section (dynobj, name);
877 flags = (SEC_HAS_CONTENTS | SEC_READONLY
878 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
879 if ((sec->flags & SEC_ALLOC) != 0)
880 flags |= SEC_ALLOC | SEC_LOAD;
881 if (sreloc == NULL
882 || ! bfd_set_section_flags (dynobj, sreloc, flags)
883 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
884 return false;
885 }
886 elf_section_data (sec)->sreloc = sreloc;
887 }
888
889 /* If this is a global symbol, we count the number of
890 relocations we need for this symbol. */
891 if (h != NULL)
892 {
893 head = &((struct elf_i386_link_hash_entry *) h)->dyn_relocs;
894 }
895 else
896 {
897 /* Track dynamic relocs needed for local syms too.
898 We really need local syms available to do this
899 easily. Oh well. */
900
901 asection *s;
902 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
903 sec, r_symndx);
904 if (s == NULL)
905 return false;
906
907 head = ((struct elf_i386_dyn_relocs **)
908 &elf_section_data (s)->local_dynrel);
909 }
910
911 p = *head;
912 if (p == NULL || p->sec != sec)
913 {
914 bfd_size_type amt = sizeof *p;
915 p = ((struct elf_i386_dyn_relocs *)
916 bfd_alloc (htab->elf.dynobj, amt));
917 if (p == NULL)
918 return false;
919 p->next = *head;
920 *head = p;
921 p->sec = sec;
922 p->count = 0;
923 p->pc_count = 0;
924 }
925
926 p->count += 1;
927 if (ELF32_R_TYPE (rel->r_info) == R_386_PC32)
928 p->pc_count += 1;
929 }
930 break;
931
932 /* This relocation describes the C++ object vtable hierarchy.
933 Reconstruct it for later use during GC. */
934 case R_386_GNU_VTINHERIT:
935 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
936 return false;
937 break;
938
939 /* This relocation describes which C++ vtable entries are actually
940 used. Record for later use during GC. */
941 case R_386_GNU_VTENTRY:
942 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
943 return false;
944 break;
945
946 default:
947 break;
948 }
949 }
950
951 return true;
952 }
953
954 /* Return the section that should be marked against GC for a given
955 relocation. */
956
957 static asection *
958 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
959 bfd *abfd;
960 struct bfd_link_info *info ATTRIBUTE_UNUSED;
961 Elf_Internal_Rela *rel;
962 struct elf_link_hash_entry *h;
963 Elf_Internal_Sym *sym;
964 {
965 if (h != NULL)
966 {
967 switch (ELF32_R_TYPE (rel->r_info))
968 {
969 case R_386_GNU_VTINHERIT:
970 case R_386_GNU_VTENTRY:
971 break;
972
973 default:
974 switch (h->root.type)
975 {
976 case bfd_link_hash_defined:
977 case bfd_link_hash_defweak:
978 return h->root.u.def.section;
979
980 case bfd_link_hash_common:
981 return h->root.u.c.p->section;
982
983 default:
984 break;
985 }
986 }
987 }
988 else
989 {
990 return bfd_section_from_elf_index (abfd, sym->st_shndx);
991 }
992
993 return NULL;
994 }
995
996 /* Update the got entry reference counts for the section being removed. */
997
998 static boolean
999 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
1000 bfd *abfd;
1001 struct bfd_link_info *info;
1002 asection *sec;
1003 const Elf_Internal_Rela *relocs;
1004 {
1005 Elf_Internal_Shdr *symtab_hdr;
1006 struct elf_link_hash_entry **sym_hashes;
1007 bfd_signed_vma *local_got_refcounts;
1008 const Elf_Internal_Rela *rel, *relend;
1009 unsigned long r_symndx;
1010 struct elf_link_hash_entry *h;
1011
1012 elf_section_data (sec)->local_dynrel = NULL;
1013
1014 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1015 sym_hashes = elf_sym_hashes (abfd);
1016 local_got_refcounts = elf_local_got_refcounts (abfd);
1017
1018 relend = relocs + sec->reloc_count;
1019 for (rel = relocs; rel < relend; rel++)
1020 switch (ELF32_R_TYPE (rel->r_info))
1021 {
1022 case R_386_GOT32:
1023 case R_386_GOTOFF:
1024 case R_386_GOTPC:
1025 r_symndx = ELF32_R_SYM (rel->r_info);
1026 if (r_symndx >= symtab_hdr->sh_info)
1027 {
1028 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1029 if (h->got.refcount > 0)
1030 h->got.refcount -= 1;
1031 }
1032 else if (local_got_refcounts != NULL)
1033 {
1034 if (local_got_refcounts[r_symndx] > 0)
1035 local_got_refcounts[r_symndx] -= 1;
1036 }
1037 break;
1038
1039 case R_386_32:
1040 case R_386_PC32:
1041 r_symndx = ELF32_R_SYM (rel->r_info);
1042 if (r_symndx >= symtab_hdr->sh_info)
1043 {
1044 struct elf_i386_link_hash_entry *eh;
1045 struct elf_i386_dyn_relocs **pp;
1046 struct elf_i386_dyn_relocs *p;
1047
1048 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1049
1050 if (!info->shared && h->plt.refcount > 0)
1051 h->plt.refcount -= 1;
1052
1053 eh = (struct elf_i386_link_hash_entry *) h;
1054
1055 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1056 if (p->sec == sec)
1057 {
1058 if (ELF32_R_TYPE (rel->r_info) == R_386_PC32)
1059 p->pc_count -= 1;
1060 p->count -= 1;
1061 if (p->count == 0)
1062 *pp = p->next;
1063 break;
1064 }
1065 }
1066 break;
1067
1068 case R_386_PLT32:
1069 r_symndx = ELF32_R_SYM (rel->r_info);
1070 if (r_symndx >= symtab_hdr->sh_info)
1071 {
1072 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1073 if (h->plt.refcount > 0)
1074 h->plt.refcount -= 1;
1075 }
1076 break;
1077
1078 default:
1079 break;
1080 }
1081
1082 return true;
1083 }
1084
1085 /* Adjust a symbol defined by a dynamic object and referenced by a
1086 regular object. The current definition is in some section of the
1087 dynamic object, but we're not including those sections. We have to
1088 change the definition to something the rest of the link can
1089 understand. */
1090
1091 static boolean
1092 elf_i386_adjust_dynamic_symbol (info, h)
1093 struct bfd_link_info *info;
1094 struct elf_link_hash_entry *h;
1095 {
1096 struct elf_i386_link_hash_table *htab;
1097 struct elf_i386_link_hash_entry * eh;
1098 struct elf_i386_dyn_relocs *p;
1099 asection *s;
1100 unsigned int power_of_two;
1101
1102 /* If this is a function, put it in the procedure linkage table. We
1103 will fill in the contents of the procedure linkage table later,
1104 when we know the address of the .got section. */
1105 if (h->type == STT_FUNC
1106 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1107 {
1108 if (h->plt.refcount <= 0
1109 || (! info->shared
1110 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1111 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0
1112 && h->root.type != bfd_link_hash_undefweak
1113 && h->root.type != bfd_link_hash_undefined))
1114 {
1115 /* This case can occur if we saw a PLT32 reloc in an input
1116 file, but the symbol was never referred to by a dynamic
1117 object, or if all references were garbage collected. In
1118 such a case, we don't actually need to build a procedure
1119 linkage table, and we can just do a PC32 reloc instead. */
1120 h->plt.offset = (bfd_vma) -1;
1121 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1122 }
1123
1124 return true;
1125 }
1126 else
1127 /* It's possible that we incorrectly decided a .plt reloc was
1128 needed for an R_386_PC32 reloc to a non-function sym in
1129 check_relocs. We can't decide accurately between function and
1130 non-function syms in check-relocs; Objects loaded later in
1131 the link may change h->type. So fix it now. */
1132 h->plt.offset = (bfd_vma) -1;
1133
1134 /* If this is a weak symbol, and there is a real definition, the
1135 processor independent code will have arranged for us to see the
1136 real definition first, and we can just use the same value. */
1137 if (h->weakdef != NULL)
1138 {
1139 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1140 || h->weakdef->root.type == bfd_link_hash_defweak);
1141 h->root.u.def.section = h->weakdef->root.u.def.section;
1142 h->root.u.def.value = h->weakdef->root.u.def.value;
1143 return true;
1144 }
1145
1146 /* This is a reference to a symbol defined by a dynamic object which
1147 is not a function. */
1148
1149 /* If we are creating a shared library, we must presume that the
1150 only references to the symbol are via the global offset table.
1151 For such cases we need not do anything here; the relocations will
1152 be handled correctly by relocate_section. */
1153 if (info->shared)
1154 return true;
1155
1156 /* If there are no references to this symbol that do not use the
1157 GOT, we don't need to generate a copy reloc. */
1158 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1159 return true;
1160
1161 /* If -z nocopyreloc was given, we won't generate them either. */
1162 if (info->nocopyreloc)
1163 {
1164 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1165 return true;
1166 }
1167
1168 eh = (struct elf_i386_link_hash_entry *) h;
1169 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1170 {
1171 s = p->sec->output_section;
1172 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1173 break;
1174 }
1175
1176 /* If we didn't find any dynamic relocs in read-only sections, then
1177 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1178 if (p == NULL)
1179 {
1180 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1181 return true;
1182 }
1183
1184 /* We must allocate the symbol in our .dynbss section, which will
1185 become part of the .bss section of the executable. There will be
1186 an entry for this symbol in the .dynsym section. The dynamic
1187 object will contain position independent code, so all references
1188 from the dynamic object to this symbol will go through the global
1189 offset table. The dynamic linker will use the .dynsym entry to
1190 determine the address it must put in the global offset table, so
1191 both the dynamic object and the regular object will refer to the
1192 same memory location for the variable. */
1193
1194 htab = elf_i386_hash_table (info);
1195
1196 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1197 copy the initial value out of the dynamic object and into the
1198 runtime process image. */
1199 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1200 {
1201 htab->srelbss->_raw_size += sizeof (Elf32_External_Rel);
1202 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1203 }
1204
1205 /* We need to figure out the alignment required for this symbol. I
1206 have no idea how ELF linkers handle this. */
1207 power_of_two = bfd_log2 (h->size);
1208 if (power_of_two > 3)
1209 power_of_two = 3;
1210
1211 /* Apply the required alignment. */
1212 s = htab->sdynbss;
1213 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
1214 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1215 {
1216 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1217 return false;
1218 }
1219
1220 /* Define the symbol as being at this point in the section. */
1221 h->root.u.def.section = s;
1222 h->root.u.def.value = s->_raw_size;
1223
1224 /* Increment the section size to make room for the symbol. */
1225 s->_raw_size += h->size;
1226
1227 return true;
1228 }
1229
1230 /* This is the condition under which elf_i386_finish_dynamic_symbol
1231 will be called from elflink.h. If elflink.h doesn't call our
1232 finish_dynamic_symbol routine, we'll need to do something about
1233 initializing any .plt and .got entries in elf_i386_relocate_section. */
1234 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1235 ((DYN) \
1236 && ((INFO)->shared \
1237 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1238 && ((H)->dynindx != -1 \
1239 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1240
1241 /* Allocate space in .plt, .got and associated reloc sections for
1242 dynamic relocs. */
1243
1244 static boolean
1245 allocate_dynrelocs (h, inf)
1246 struct elf_link_hash_entry *h;
1247 PTR inf;
1248 {
1249 struct bfd_link_info *info;
1250 struct elf_i386_link_hash_table *htab;
1251 struct elf_i386_link_hash_entry *eh;
1252 struct elf_i386_dyn_relocs *p;
1253
1254 if (h->root.type == bfd_link_hash_indirect
1255 || h->root.type == bfd_link_hash_warning)
1256 return true;
1257
1258 info = (struct bfd_link_info *) inf;
1259 htab = elf_i386_hash_table (info);
1260
1261 if (htab->elf.dynamic_sections_created
1262 && h->plt.refcount > 0)
1263 {
1264 /* Make sure this symbol is output as a dynamic symbol.
1265 Undefined weak syms won't yet be marked as dynamic. */
1266 if (h->dynindx == -1
1267 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1268 {
1269 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1270 return false;
1271 }
1272
1273 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1274 {
1275 asection *s = htab->splt;
1276
1277 /* If this is the first .plt entry, make room for the special
1278 first entry. */
1279 if (s->_raw_size == 0)
1280 s->_raw_size += PLT_ENTRY_SIZE;
1281
1282 h->plt.offset = s->_raw_size;
1283
1284 /* If this symbol is not defined in a regular file, and we are
1285 not generating a shared library, then set the symbol to this
1286 location in the .plt. This is required to make function
1287 pointers compare as equal between the normal executable and
1288 the shared library. */
1289 if (! info->shared
1290 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1291 {
1292 h->root.u.def.section = s;
1293 h->root.u.def.value = h->plt.offset;
1294 }
1295
1296 /* Make room for this entry. */
1297 s->_raw_size += PLT_ENTRY_SIZE;
1298
1299 /* We also need to make an entry in the .got.plt section, which
1300 will be placed in the .got section by the linker script. */
1301 htab->sgotplt->_raw_size += 4;
1302
1303 /* We also need to make an entry in the .rel.plt section. */
1304 htab->srelplt->_raw_size += sizeof (Elf32_External_Rel);
1305 }
1306 else
1307 {
1308 h->plt.offset = (bfd_vma) -1;
1309 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1310 }
1311 }
1312 else
1313 {
1314 h->plt.offset = (bfd_vma) -1;
1315 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1316 }
1317
1318 if (h->got.refcount > 0)
1319 {
1320 asection *s;
1321 boolean dyn;
1322
1323 /* Make sure this symbol is output as a dynamic symbol.
1324 Undefined weak syms won't yet be marked as dynamic. */
1325 if (h->dynindx == -1
1326 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1327 {
1328 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1329 return false;
1330 }
1331
1332 s = htab->sgot;
1333 h->got.offset = s->_raw_size;
1334 s->_raw_size += 4;
1335 dyn = htab->elf.dynamic_sections_created;
1336 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1337 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1338 }
1339 else
1340 h->got.offset = (bfd_vma) -1;
1341
1342 eh = (struct elf_i386_link_hash_entry *) h;
1343 if (eh->dyn_relocs == NULL)
1344 return true;
1345
1346 /* In the shared -Bsymbolic case, discard space allocated for
1347 dynamic pc-relative relocs against symbols which turn out to be
1348 defined in regular objects. For the normal shared case, discard
1349 space for pc-relative relocs that have become local due to symbol
1350 visibility changes. */
1351
1352 if (info->shared)
1353 {
1354 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1355 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1356 || info->symbolic))
1357 {
1358 struct elf_i386_dyn_relocs **pp;
1359
1360 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1361 {
1362 p->count -= p->pc_count;
1363 p->pc_count = 0;
1364 if (p->count == 0)
1365 *pp = p->next;
1366 else
1367 pp = &p->next;
1368 }
1369 }
1370 }
1371 else
1372 {
1373 /* For the non-shared case, discard space for relocs against
1374 symbols which turn out to need copy relocs or are not
1375 dynamic. */
1376
1377 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1378 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1379 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1380 || (htab->elf.dynamic_sections_created
1381 && (h->root.type == bfd_link_hash_undefweak
1382 || h->root.type == bfd_link_hash_undefined))))
1383 {
1384 /* Make sure this symbol is output as a dynamic symbol.
1385 Undefined weak syms won't yet be marked as dynamic. */
1386 if (h->dynindx == -1
1387 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1388 {
1389 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1390 return false;
1391 }
1392
1393 /* If that succeeded, we know we'll be keeping all the
1394 relocs. */
1395 if (h->dynindx != -1)
1396 goto keep;
1397 }
1398
1399 eh->dyn_relocs = NULL;
1400
1401 keep: ;
1402 }
1403
1404 /* Finally, allocate space. */
1405 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1406 {
1407 asection *sreloc = elf_section_data (p->sec)->sreloc;
1408 sreloc->_raw_size += p->count * sizeof (Elf32_External_Rel);
1409 }
1410
1411 return true;
1412 }
1413
1414 /* Find any dynamic relocs that apply to read-only sections. */
1415
1416 static boolean
1417 readonly_dynrelocs (h, inf)
1418 struct elf_link_hash_entry *h;
1419 PTR inf;
1420 {
1421 struct elf_i386_link_hash_entry *eh;
1422 struct elf_i386_dyn_relocs *p;
1423
1424 eh = (struct elf_i386_link_hash_entry *) h;
1425 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1426 {
1427 asection *s = p->sec->output_section;
1428
1429 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1430 {
1431 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1432
1433 info->flags |= DF_TEXTREL;
1434
1435 /* Not an error, just cut short the traversal. */
1436 return false;
1437 }
1438 }
1439 return true;
1440 }
1441
1442 /* Set the sizes of the dynamic sections. */
1443
1444 static boolean
1445 elf_i386_size_dynamic_sections (output_bfd, info)
1446 bfd *output_bfd ATTRIBUTE_UNUSED;
1447 struct bfd_link_info *info;
1448 {
1449 struct elf_i386_link_hash_table *htab;
1450 bfd *dynobj;
1451 asection *s;
1452 boolean relocs;
1453 bfd *ibfd;
1454
1455 htab = elf_i386_hash_table (info);
1456 dynobj = htab->elf.dynobj;
1457 if (dynobj == NULL)
1458 abort ();
1459
1460 if (htab->elf.dynamic_sections_created)
1461 {
1462 /* Set the contents of the .interp section to the interpreter. */
1463 if (! info->shared)
1464 {
1465 s = bfd_get_section_by_name (dynobj, ".interp");
1466 if (s == NULL)
1467 abort ();
1468 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1469 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1470 }
1471 }
1472
1473 /* Set up .got offsets for local syms, and space for local dynamic
1474 relocs. */
1475 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1476 {
1477 bfd_signed_vma *local_got;
1478 bfd_signed_vma *end_local_got;
1479 bfd_size_type locsymcount;
1480 Elf_Internal_Shdr *symtab_hdr;
1481 asection *srel;
1482
1483 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1484 continue;
1485
1486 for (s = ibfd->sections; s != NULL; s = s->next)
1487 {
1488 struct elf_i386_dyn_relocs *p;
1489
1490 for (p = *((struct elf_i386_dyn_relocs **)
1491 &elf_section_data (s)->local_dynrel);
1492 p != NULL;
1493 p = p->next)
1494 {
1495 if (!bfd_is_abs_section (p->sec)
1496 && bfd_is_abs_section (p->sec->output_section))
1497 {
1498 /* Input section has been discarded, either because
1499 it is a copy of a linkonce section or due to
1500 linker script /DISCARD/, so we'll be discarding
1501 the relocs too. */
1502 }
1503 else if (p->count != 0)
1504 {
1505 srel = elf_section_data (p->sec)->sreloc;
1506 srel->_raw_size += p->count * sizeof (Elf32_External_Rel);
1507 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1508 info->flags |= DF_TEXTREL;
1509 }
1510 }
1511 }
1512
1513 local_got = elf_local_got_refcounts (ibfd);
1514 if (!local_got)
1515 continue;
1516
1517 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1518 locsymcount = symtab_hdr->sh_info;
1519 end_local_got = local_got + locsymcount;
1520 s = htab->sgot;
1521 srel = htab->srelgot;
1522 for (; local_got < end_local_got; ++local_got)
1523 {
1524 if (*local_got > 0)
1525 {
1526 *local_got = s->_raw_size;
1527 s->_raw_size += 4;
1528 if (info->shared)
1529 srel->_raw_size += sizeof (Elf32_External_Rel);
1530 }
1531 else
1532 *local_got = (bfd_vma) -1;
1533 }
1534 }
1535
1536 /* Allocate global sym .plt and .got entries, and space for global
1537 sym dynamic relocs. */
1538 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1539
1540 /* We now have determined the sizes of the various dynamic sections.
1541 Allocate memory for them. */
1542 relocs = false;
1543 for (s = dynobj->sections; s != NULL; s = s->next)
1544 {
1545 if ((s->flags & SEC_LINKER_CREATED) == 0)
1546 continue;
1547
1548 if (s == htab->splt
1549 || s == htab->sgot
1550 || s == htab->sgotplt)
1551 {
1552 /* Strip this section if we don't need it; see the
1553 comment below. */
1554 }
1555 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
1556 {
1557 if (s->_raw_size != 0 && s != htab->srelplt)
1558 relocs = true;
1559
1560 /* We use the reloc_count field as a counter if we need
1561 to copy relocs into the output file. */
1562 s->reloc_count = 0;
1563 }
1564 else
1565 {
1566 /* It's not one of our sections, so don't allocate space. */
1567 continue;
1568 }
1569
1570 if (s->_raw_size == 0)
1571 {
1572 /* If we don't need this section, strip it from the
1573 output file. This is mostly to handle .rel.bss and
1574 .rel.plt. We must create both sections in
1575 create_dynamic_sections, because they must be created
1576 before the linker maps input sections to output
1577 sections. The linker does that before
1578 adjust_dynamic_symbol is called, and it is that
1579 function which decides whether anything needs to go
1580 into these sections. */
1581
1582 _bfd_strip_section_from_output (info, s);
1583 continue;
1584 }
1585
1586 /* Allocate memory for the section contents. We use bfd_zalloc
1587 here in case unused entries are not reclaimed before the
1588 section's contents are written out. This should not happen,
1589 but this way if it does, we get a R_386_NONE reloc instead
1590 of garbage. */
1591 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1592 if (s->contents == NULL)
1593 return false;
1594 }
1595
1596 if (htab->elf.dynamic_sections_created)
1597 {
1598 /* Add some entries to the .dynamic section. We fill in the
1599 values later, in elf_i386_finish_dynamic_sections, but we
1600 must add the entries now so that we get the correct size for
1601 the .dynamic section. The DT_DEBUG entry is filled in by the
1602 dynamic linker and used by the debugger. */
1603 #define add_dynamic_entry(TAG, VAL) \
1604 bfd_elf32_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1605
1606 if (! info->shared)
1607 {
1608 if (!add_dynamic_entry (DT_DEBUG, 0))
1609 return false;
1610 }
1611
1612 if (htab->splt->_raw_size != 0)
1613 {
1614 if (!add_dynamic_entry (DT_PLTGOT, 0)
1615 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1616 || !add_dynamic_entry (DT_PLTREL, DT_REL)
1617 || !add_dynamic_entry (DT_JMPREL, 0))
1618 return false;
1619 }
1620
1621 if (relocs)
1622 {
1623 if (!add_dynamic_entry (DT_REL, 0)
1624 || !add_dynamic_entry (DT_RELSZ, 0)
1625 || !add_dynamic_entry (DT_RELENT, sizeof (Elf32_External_Rel)))
1626 return false;
1627
1628 /* If any dynamic relocs apply to a read-only section,
1629 then we need a DT_TEXTREL entry. */
1630 if ((info->flags & DF_TEXTREL) == 0)
1631 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1632 (PTR) info);
1633
1634 if ((info->flags & DF_TEXTREL) != 0)
1635 {
1636 if (!add_dynamic_entry (DT_TEXTREL, 0))
1637 return false;
1638 }
1639 }
1640 }
1641 #undef add_dynamic_entry
1642
1643 return true;
1644 }
1645
1646 /* Set the correct type for an x86 ELF section. We do this by the
1647 section name, which is a hack, but ought to work. */
1648
1649 static boolean
1650 elf_i386_fake_sections (abfd, hdr, sec)
1651 bfd *abfd ATTRIBUTE_UNUSED;
1652 Elf32_Internal_Shdr *hdr;
1653 asection *sec;
1654 {
1655 register const char *name;
1656
1657 name = bfd_get_section_name (abfd, sec);
1658
1659 /* This is an ugly, but unfortunately necessary hack that is
1660 needed when producing EFI binaries on x86. It tells
1661 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1662 containing ELF relocation info. We need this hack in order to
1663 be able to generate ELF binaries that can be translated into
1664 EFI applications (which are essentially COFF objects). Those
1665 files contain a COFF ".reloc" section inside an ELFNN object,
1666 which would normally cause BFD to segfault because it would
1667 attempt to interpret this section as containing relocation
1668 entries for section "oc". With this hack enabled, ".reloc"
1669 will be treated as a normal data section, which will avoid the
1670 segfault. However, you won't be able to create an ELFNN binary
1671 with a section named "oc" that needs relocations, but that's
1672 the kind of ugly side-effects you get when detecting section
1673 types based on their names... In practice, this limitation is
1674 unlikely to bite. */
1675 if (strcmp (name, ".reloc") == 0)
1676 hdr->sh_type = SHT_PROGBITS;
1677
1678 return true;
1679 }
1680
1681 /* Relocate an i386 ELF section. */
1682
1683 static boolean
1684 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1685 contents, relocs, local_syms, local_sections)
1686 bfd *output_bfd;
1687 struct bfd_link_info *info;
1688 bfd *input_bfd;
1689 asection *input_section;
1690 bfd_byte *contents;
1691 Elf_Internal_Rela *relocs;
1692 Elf_Internal_Sym *local_syms;
1693 asection **local_sections;
1694 {
1695 struct elf_i386_link_hash_table *htab;
1696 Elf_Internal_Shdr *symtab_hdr;
1697 struct elf_link_hash_entry **sym_hashes;
1698 bfd_vma *local_got_offsets;
1699 Elf_Internal_Rela *rel;
1700 Elf_Internal_Rela *relend;
1701
1702 htab = elf_i386_hash_table (info);
1703 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1704 sym_hashes = elf_sym_hashes (input_bfd);
1705 local_got_offsets = elf_local_got_offsets (input_bfd);
1706
1707 rel = relocs;
1708 relend = relocs + input_section->reloc_count;
1709 for (; rel < relend; rel++)
1710 {
1711 int r_type;
1712 reloc_howto_type *howto;
1713 unsigned long r_symndx;
1714 struct elf_link_hash_entry *h;
1715 Elf_Internal_Sym *sym;
1716 asection *sec;
1717 bfd_vma off;
1718 bfd_vma relocation;
1719 boolean unresolved_reloc;
1720 bfd_reloc_status_type r;
1721 unsigned int indx;
1722
1723 r_type = ELF32_R_TYPE (rel->r_info);
1724 if (r_type == (int) R_386_GNU_VTINHERIT
1725 || r_type == (int) R_386_GNU_VTENTRY)
1726 continue;
1727
1728 if ((indx = (unsigned) r_type) >= R_386_standard
1729 && ((indx = (unsigned) r_type - R_386_ext_offset) - R_386_standard
1730 >= R_386_ext - R_386_standard))
1731 {
1732 bfd_set_error (bfd_error_bad_value);
1733 return false;
1734 }
1735 howto = elf_howto_table + indx;
1736
1737 r_symndx = ELF32_R_SYM (rel->r_info);
1738
1739 if (info->relocateable)
1740 {
1741 /* This is a relocatable link. We don't have to change
1742 anything, unless the reloc is against a section symbol,
1743 in which case we have to adjust according to where the
1744 section symbol winds up in the output section. */
1745 if (r_symndx < symtab_hdr->sh_info)
1746 {
1747 sym = local_syms + r_symndx;
1748 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1749 {
1750 bfd_vma val;
1751
1752 sec = local_sections[r_symndx];
1753 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1754 val += sec->output_offset + sym->st_value;
1755 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1756 }
1757 }
1758 continue;
1759 }
1760
1761 /* This is a final link. */
1762 h = NULL;
1763 sym = NULL;
1764 sec = NULL;
1765 unresolved_reloc = false;
1766 if (r_symndx < symtab_hdr->sh_info)
1767 {
1768 sym = local_syms + r_symndx;
1769 sec = local_sections[r_symndx];
1770 relocation = (sec->output_section->vma
1771 + sec->output_offset
1772 + sym->st_value);
1773 if ((sec->flags & SEC_MERGE)
1774 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1775 {
1776 asection *msec;
1777 bfd_vma addend;
1778
1779 if (howto->src_mask != 0xffffffff)
1780 {
1781 (*_bfd_error_handler)
1782 (_("%s(%s+0x%lx): %s relocation against SEC_MERGE section"),
1783 bfd_archive_filename (input_bfd),
1784 bfd_get_section_name (input_bfd, input_section),
1785 (long) rel->r_offset, howto->name);
1786 return false;
1787 }
1788
1789 addend = bfd_get_32 (input_bfd, contents + rel->r_offset);
1790 msec = sec;
1791 addend =
1792 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
1793 - relocation;
1794 addend += msec->output_section->vma + msec->output_offset;
1795 bfd_put_32 (input_bfd, addend, contents + rel->r_offset);
1796 }
1797 }
1798 else
1799 {
1800 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1801 while (h->root.type == bfd_link_hash_indirect
1802 || h->root.type == bfd_link_hash_warning)
1803 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1804
1805 relocation = 0;
1806 if (h->root.type == bfd_link_hash_defined
1807 || h->root.type == bfd_link_hash_defweak)
1808 {
1809 sec = h->root.u.def.section;
1810 if (sec->output_section == NULL)
1811 /* Set a flag that will be cleared later if we find a
1812 relocation value for this symbol. output_section
1813 is typically NULL for symbols satisfied by a shared
1814 library. */
1815 unresolved_reloc = true;
1816 else
1817 relocation = (h->root.u.def.value
1818 + sec->output_section->vma
1819 + sec->output_offset);
1820 }
1821 else if (h->root.type == bfd_link_hash_undefweak)
1822 ;
1823 else if (info->shared
1824 && (!info->symbolic || info->allow_shlib_undefined)
1825 && !info->no_undefined
1826 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1827 ;
1828 else
1829 {
1830 if (! ((*info->callbacks->undefined_symbol)
1831 (info, h->root.root.string, input_bfd,
1832 input_section, rel->r_offset,
1833 (!info->shared || info->no_undefined
1834 || ELF_ST_VISIBILITY (h->other)))))
1835 return false;
1836 }
1837 }
1838
1839 switch (r_type)
1840 {
1841 case R_386_GOT32:
1842 /* Relocation is to the entry for this symbol in the global
1843 offset table. */
1844 if (htab->sgot == NULL)
1845 abort ();
1846
1847 if (h != NULL)
1848 {
1849 boolean dyn;
1850
1851 off = h->got.offset;
1852 dyn = htab->elf.dynamic_sections_created;
1853 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1854 || (info->shared
1855 && (info->symbolic
1856 || h->dynindx == -1
1857 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1858 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1859 {
1860 /* This is actually a static link, or it is a
1861 -Bsymbolic link and the symbol is defined
1862 locally, or the symbol was forced to be local
1863 because of a version file. We must initialize
1864 this entry in the global offset table. Since the
1865 offset must always be a multiple of 4, we use the
1866 least significant bit to record whether we have
1867 initialized it already.
1868
1869 When doing a dynamic link, we create a .rel.got
1870 relocation entry to initialize the value. This
1871 is done in the finish_dynamic_symbol routine. */
1872 if ((off & 1) != 0)
1873 off &= ~1;
1874 else
1875 {
1876 bfd_put_32 (output_bfd, relocation,
1877 htab->sgot->contents + off);
1878 h->got.offset |= 1;
1879 }
1880 }
1881 else
1882 unresolved_reloc = false;
1883 }
1884 else
1885 {
1886 if (local_got_offsets == NULL)
1887 abort ();
1888
1889 off = local_got_offsets[r_symndx];
1890
1891 /* The offset must always be a multiple of 4. We use
1892 the least significant bit to record whether we have
1893 already generated the necessary reloc. */
1894 if ((off & 1) != 0)
1895 off &= ~1;
1896 else
1897 {
1898 bfd_put_32 (output_bfd, relocation,
1899 htab->sgot->contents + off);
1900
1901 if (info->shared)
1902 {
1903 asection *srelgot;
1904 Elf_Internal_Rel outrel;
1905 Elf32_External_Rel *loc;
1906
1907 srelgot = htab->srelgot;
1908 if (srelgot == NULL)
1909 abort ();
1910
1911 outrel.r_offset = (htab->sgot->output_section->vma
1912 + htab->sgot->output_offset
1913 + off);
1914 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1915 loc = (Elf32_External_Rel *) srelgot->contents;
1916 loc += srelgot->reloc_count++;
1917 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
1918 }
1919
1920 local_got_offsets[r_symndx] |= 1;
1921 }
1922 }
1923
1924 if (off >= (bfd_vma) -2)
1925 abort ();
1926
1927 relocation = htab->sgot->output_offset + off;
1928 break;
1929
1930 case R_386_GOTOFF:
1931 /* Relocation is relative to the start of the global offset
1932 table. */
1933
1934 /* Note that sgot->output_offset is not involved in this
1935 calculation. We always want the start of .got. If we
1936 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1937 permitted by the ABI, we might have to change this
1938 calculation. */
1939 relocation -= htab->sgot->output_section->vma;
1940 break;
1941
1942 case R_386_GOTPC:
1943 /* Use global offset table as symbol value. */
1944 relocation = htab->sgot->output_section->vma;
1945 unresolved_reloc = false;
1946 break;
1947
1948 case R_386_PLT32:
1949 /* Relocation is to the entry for this symbol in the
1950 procedure linkage table. */
1951
1952 /* Resolve a PLT32 reloc against a local symbol directly,
1953 without using the procedure linkage table. */
1954 if (h == NULL)
1955 break;
1956
1957 if (h->plt.offset == (bfd_vma) -1
1958 || htab->splt == NULL)
1959 {
1960 /* We didn't make a PLT entry for this symbol. This
1961 happens when statically linking PIC code, or when
1962 using -Bsymbolic. */
1963 break;
1964 }
1965
1966 relocation = (htab->splt->output_section->vma
1967 + htab->splt->output_offset
1968 + h->plt.offset);
1969 unresolved_reloc = false;
1970 break;
1971
1972 case R_386_32:
1973 case R_386_PC32:
1974 /* r_symndx will be zero only for relocs against symbols
1975 from removed linkonce sections, or sections discarded by
1976 a linker script. */
1977 if (r_symndx == 0
1978 || (input_section->flags & SEC_ALLOC) == 0)
1979 break;
1980
1981 if ((info->shared
1982 && (r_type != R_386_PC32
1983 || (h != NULL
1984 && h->dynindx != -1
1985 && (! info->symbolic
1986 || (h->elf_link_hash_flags
1987 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1988 || (!info->shared
1989 && h != NULL
1990 && h->dynindx != -1
1991 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1992 && (((h->elf_link_hash_flags
1993 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1994 && (h->elf_link_hash_flags
1995 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1996 || h->root.type == bfd_link_hash_undefweak
1997 || h->root.type == bfd_link_hash_undefined)))
1998 {
1999 Elf_Internal_Rel outrel;
2000 boolean skip, relocate;
2001 asection *sreloc;
2002 Elf32_External_Rel *loc;
2003
2004 /* When generating a shared object, these relocations
2005 are copied into the output file to be resolved at run
2006 time. */
2007
2008 skip = false;
2009 relocate = false;
2010
2011 outrel.r_offset =
2012 _bfd_elf_section_offset (output_bfd, info, input_section,
2013 rel->r_offset);
2014 if (outrel.r_offset == (bfd_vma) -1)
2015 skip = true;
2016 else if (outrel.r_offset == (bfd_vma) -2)
2017 skip = true, relocate = true;
2018 outrel.r_offset += (input_section->output_section->vma
2019 + input_section->output_offset);
2020
2021 if (skip)
2022 memset (&outrel, 0, sizeof outrel);
2023 else if (h != NULL
2024 && h->dynindx != -1
2025 && (r_type == R_386_PC32
2026 || !info->shared
2027 || !info->symbolic
2028 || (h->elf_link_hash_flags
2029 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2030 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
2031 else
2032 {
2033 /* This symbol is local, or marked to become local. */
2034 relocate = true;
2035 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2036 }
2037
2038 sreloc = elf_section_data (input_section)->sreloc;
2039 if (sreloc == NULL)
2040 abort ();
2041
2042 loc = (Elf32_External_Rel *) sreloc->contents;
2043 loc += sreloc->reloc_count++;
2044 bfd_elf32_swap_reloc_out (output_bfd, &outrel, loc);
2045
2046 /* If this reloc is against an external symbol, we do
2047 not want to fiddle with the addend. Otherwise, we
2048 need to include the symbol value so that it becomes
2049 an addend for the dynamic reloc. */
2050 if (! relocate)
2051 continue;
2052 }
2053 break;
2054
2055 default:
2056 break;
2057 }
2058
2059 /* FIXME: Why do we allow debugging sections to escape this error?
2060 More importantly, why do we not emit dynamic relocs for
2061 R_386_32 above in debugging sections (which are ! SEC_ALLOC)?
2062 If we had emitted the dynamic reloc, we could remove the
2063 fudge here. */
2064 if (unresolved_reloc
2065 && !(info->shared
2066 && (input_section->flags & SEC_DEBUGGING) != 0
2067 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2068 (*_bfd_error_handler)
2069 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2070 bfd_archive_filename (input_bfd),
2071 bfd_get_section_name (input_bfd, input_section),
2072 (long) rel->r_offset,
2073 h->root.root.string);
2074
2075 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2076 contents, rel->r_offset,
2077 relocation, (bfd_vma) 0);
2078
2079 if (r != bfd_reloc_ok)
2080 {
2081 const char *name;
2082
2083 if (h != NULL)
2084 name = h->root.root.string;
2085 else
2086 {
2087 name = bfd_elf_string_from_elf_section (input_bfd,
2088 symtab_hdr->sh_link,
2089 sym->st_name);
2090 if (name == NULL)
2091 return false;
2092 if (*name == '\0')
2093 name = bfd_section_name (input_bfd, sec);
2094 }
2095
2096 if (r == bfd_reloc_overflow)
2097 {
2098
2099 if (! ((*info->callbacks->reloc_overflow)
2100 (info, name, howto->name, (bfd_vma) 0,
2101 input_bfd, input_section, rel->r_offset)))
2102 return false;
2103 }
2104 else
2105 {
2106 (*_bfd_error_handler)
2107 (_("%s(%s+0x%lx): reloc against `%s': error %d"),
2108 bfd_archive_filename (input_bfd),
2109 bfd_get_section_name (input_bfd, input_section),
2110 (long) rel->r_offset, name, (int) r);
2111 return false;
2112 }
2113 }
2114 }
2115
2116 return true;
2117 }
2118
2119 /* Finish up dynamic symbol handling. We set the contents of various
2120 dynamic sections here. */
2121
2122 static boolean
2123 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
2124 bfd *output_bfd;
2125 struct bfd_link_info *info;
2126 struct elf_link_hash_entry *h;
2127 Elf_Internal_Sym *sym;
2128 {
2129 struct elf_i386_link_hash_table *htab;
2130
2131 htab = elf_i386_hash_table (info);
2132
2133 if (h->plt.offset != (bfd_vma) -1)
2134 {
2135 bfd_vma plt_index;
2136 bfd_vma got_offset;
2137 Elf_Internal_Rel rel;
2138 Elf32_External_Rel *loc;
2139
2140 /* This symbol has an entry in the procedure linkage table. Set
2141 it up. */
2142
2143 if (h->dynindx == -1
2144 || htab->splt == NULL
2145 || htab->sgotplt == NULL
2146 || htab->srelplt == NULL)
2147 abort ();
2148
2149 /* Get the index in the procedure linkage table which
2150 corresponds to this symbol. This is the index of this symbol
2151 in all the symbols for which we are making plt entries. The
2152 first entry in the procedure linkage table is reserved. */
2153 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2154
2155 /* Get the offset into the .got table of the entry that
2156 corresponds to this function. Each .got entry is 4 bytes.
2157 The first three are reserved. */
2158 got_offset = (plt_index + 3) * 4;
2159
2160 /* Fill in the entry in the procedure linkage table. */
2161 if (! info->shared)
2162 {
2163 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
2164 PLT_ENTRY_SIZE);
2165 bfd_put_32 (output_bfd,
2166 (htab->sgotplt->output_section->vma
2167 + htab->sgotplt->output_offset
2168 + got_offset),
2169 htab->splt->contents + h->plt.offset + 2);
2170 }
2171 else
2172 {
2173 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
2174 PLT_ENTRY_SIZE);
2175 bfd_put_32 (output_bfd, got_offset,
2176 htab->splt->contents + h->plt.offset + 2);
2177 }
2178
2179 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
2180 htab->splt->contents + h->plt.offset + 7);
2181 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
2182 htab->splt->contents + h->plt.offset + 12);
2183
2184 /* Fill in the entry in the global offset table. */
2185 bfd_put_32 (output_bfd,
2186 (htab->splt->output_section->vma
2187 + htab->splt->output_offset
2188 + h->plt.offset
2189 + 6),
2190 htab->sgotplt->contents + got_offset);
2191
2192 /* Fill in the entry in the .rel.plt section. */
2193 rel.r_offset = (htab->sgotplt->output_section->vma
2194 + htab->sgotplt->output_offset
2195 + got_offset);
2196 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
2197 loc = (Elf32_External_Rel *) htab->srelplt->contents + plt_index;
2198 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2199
2200 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2201 {
2202 /* Mark the symbol as undefined, rather than as defined in
2203 the .plt section. Leave the value alone. This is a clue
2204 for the dynamic linker, to make function pointer
2205 comparisons work between an application and shared
2206 library. */
2207 sym->st_shndx = SHN_UNDEF;
2208 }
2209 }
2210
2211 if (h->got.offset != (bfd_vma) -1)
2212 {
2213 Elf_Internal_Rel rel;
2214 Elf32_External_Rel *loc;
2215
2216 /* This symbol has an entry in the global offset table. Set it
2217 up. */
2218
2219 if (htab->sgot == NULL || htab->srelgot == NULL)
2220 abort ();
2221
2222 rel.r_offset = (htab->sgot->output_section->vma
2223 + htab->sgot->output_offset
2224 + (h->got.offset & ~(bfd_vma) 1));
2225
2226 /* If this is a static link, or it is a -Bsymbolic link and the
2227 symbol is defined locally or was forced to be local because
2228 of a version file, we just want to emit a RELATIVE reloc.
2229 The entry in the global offset table will already have been
2230 initialized in the relocate_section function. */
2231 if (info->shared
2232 && (info->symbolic
2233 || h->dynindx == -1
2234 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2235 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2236 {
2237 BFD_ASSERT((h->got.offset & 1) != 0);
2238 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
2239 }
2240 else
2241 {
2242 BFD_ASSERT((h->got.offset & 1) == 0);
2243 bfd_put_32 (output_bfd, (bfd_vma) 0,
2244 htab->sgot->contents + h->got.offset);
2245 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
2246 }
2247
2248 loc = (Elf32_External_Rel *) htab->srelgot->contents;
2249 loc += htab->srelgot->reloc_count++;
2250 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2251 }
2252
2253 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2254 {
2255 Elf_Internal_Rel rel;
2256 Elf32_External_Rel *loc;
2257
2258 /* This symbol needs a copy reloc. Set it up. */
2259
2260 if (h->dynindx == -1
2261 || (h->root.type != bfd_link_hash_defined
2262 && h->root.type != bfd_link_hash_defweak)
2263 || htab->srelbss == NULL)
2264 abort ();
2265
2266 rel.r_offset = (h->root.u.def.value
2267 + h->root.u.def.section->output_section->vma
2268 + h->root.u.def.section->output_offset);
2269 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
2270 loc = (Elf32_External_Rel *) htab->srelbss->contents;
2271 loc += htab->srelbss->reloc_count++;
2272 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
2273 }
2274
2275 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2276 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2277 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2278 sym->st_shndx = SHN_ABS;
2279
2280 return true;
2281 }
2282
2283 /* Used to decide how to sort relocs in an optimal manner for the
2284 dynamic linker, before writing them out. */
2285
2286 static enum elf_reloc_type_class
2287 elf_i386_reloc_type_class (rela)
2288 const Elf_Internal_Rela *rela;
2289 {
2290 switch ((int) ELF32_R_TYPE (rela->r_info))
2291 {
2292 case R_386_RELATIVE:
2293 return reloc_class_relative;
2294 case R_386_JUMP_SLOT:
2295 return reloc_class_plt;
2296 case R_386_COPY:
2297 return reloc_class_copy;
2298 default:
2299 return reloc_class_normal;
2300 }
2301 }
2302
2303 /* Finish up the dynamic sections. */
2304
2305 static boolean
2306 elf_i386_finish_dynamic_sections (output_bfd, info)
2307 bfd *output_bfd;
2308 struct bfd_link_info *info;
2309 {
2310 struct elf_i386_link_hash_table *htab;
2311 bfd *dynobj;
2312 asection *sdyn;
2313
2314 htab = elf_i386_hash_table (info);
2315 dynobj = htab->elf.dynobj;
2316 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2317
2318 if (htab->elf.dynamic_sections_created)
2319 {
2320 Elf32_External_Dyn *dyncon, *dynconend;
2321
2322 if (sdyn == NULL || htab->sgot == NULL)
2323 abort ();
2324
2325 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2326 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2327 for (; dyncon < dynconend; dyncon++)
2328 {
2329 Elf_Internal_Dyn dyn;
2330 asection *s;
2331
2332 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2333
2334 switch (dyn.d_tag)
2335 {
2336 default:
2337 continue;
2338
2339 case DT_PLTGOT:
2340 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2341 break;
2342
2343 case DT_JMPREL:
2344 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2345 break;
2346
2347 case DT_PLTRELSZ:
2348 s = htab->srelplt->output_section;
2349 if (s->_cooked_size != 0)
2350 dyn.d_un.d_val = s->_cooked_size;
2351 else
2352 dyn.d_un.d_val = s->_raw_size;
2353 break;
2354
2355 case DT_RELSZ:
2356 /* My reading of the SVR4 ABI indicates that the
2357 procedure linkage table relocs (DT_JMPREL) should be
2358 included in the overall relocs (DT_REL). This is
2359 what Solaris does. However, UnixWare can not handle
2360 that case. Therefore, we override the DT_RELSZ entry
2361 here to make it not include the JMPREL relocs. Since
2362 the linker script arranges for .rel.plt to follow all
2363 other relocation sections, we don't have to worry
2364 about changing the DT_REL entry. */
2365 if (htab->srelplt != NULL)
2366 {
2367 s = htab->srelplt->output_section;
2368 if (s->_cooked_size != 0)
2369 dyn.d_un.d_val -= s->_cooked_size;
2370 else
2371 dyn.d_un.d_val -= s->_raw_size;
2372 }
2373 break;
2374 }
2375
2376 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2377 }
2378
2379 /* Fill in the first entry in the procedure linkage table. */
2380 if (htab->splt && htab->splt->_raw_size > 0)
2381 {
2382 if (info->shared)
2383 memcpy (htab->splt->contents,
2384 elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
2385 else
2386 {
2387 memcpy (htab->splt->contents,
2388 elf_i386_plt0_entry, PLT_ENTRY_SIZE);
2389 bfd_put_32 (output_bfd,
2390 (htab->sgotplt->output_section->vma
2391 + htab->sgotplt->output_offset
2392 + 4),
2393 htab->splt->contents + 2);
2394 bfd_put_32 (output_bfd,
2395 (htab->sgotplt->output_section->vma
2396 + htab->sgotplt->output_offset
2397 + 8),
2398 htab->splt->contents + 8);
2399 }
2400
2401 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2402 really seem like the right value. */
2403 elf_section_data (htab->splt->output_section)
2404 ->this_hdr.sh_entsize = 4;
2405 }
2406 }
2407
2408 if (htab->sgotplt)
2409 {
2410 /* Fill in the first three entries in the global offset table. */
2411 if (htab->sgotplt->_raw_size > 0)
2412 {
2413 bfd_put_32 (output_bfd,
2414 (sdyn == NULL ? (bfd_vma) 0
2415 : sdyn->output_section->vma + sdyn->output_offset),
2416 htab->sgotplt->contents);
2417 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
2418 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2419 }
2420
2421 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
2422 }
2423 return true;
2424 }
2425
2426 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2427 #define TARGET_LITTLE_NAME "elf32-i386"
2428 #define ELF_ARCH bfd_arch_i386
2429 #define ELF_MACHINE_CODE EM_386
2430 #define ELF_MAXPAGESIZE 0x1000
2431
2432 #define elf_backend_can_gc_sections 1
2433 #define elf_backend_can_refcount 1
2434 #define elf_backend_want_got_plt 1
2435 #define elf_backend_plt_readonly 1
2436 #define elf_backend_want_plt_sym 0
2437 #define elf_backend_got_header_size 12
2438 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2439
2440 #define elf_info_to_howto elf_i386_info_to_howto
2441 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2442
2443 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2444 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2445 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2446
2447 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2448 #define elf_backend_check_relocs elf_i386_check_relocs
2449 #define elf_backend_copy_indirect_symbol elf_i386_copy_indirect_symbol
2450 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
2451 #define elf_backend_fake_sections elf_i386_fake_sections
2452 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2453 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2454 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2455 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2456 #define elf_backend_grok_prstatus elf_i386_grok_prstatus
2457 #define elf_backend_grok_psinfo elf_i386_grok_psinfo
2458 #define elf_backend_reloc_type_class elf_i386_reloc_type_class
2459 #define elf_backend_relocate_section elf_i386_relocate_section
2460 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2461
2462 #include "elf32-target.h"