]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-i386.c
2001-02-08 H.J. Lu <hjl@gnu.org>
[thirdparty/binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 94, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name PARAMS ((bfd *, const char *));
34 static struct bfd_hash_entry *elf_i386_link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
37 PARAMS ((bfd *));
38 static boolean elf_i386_check_relocs
39 PARAMS ((bfd *, struct bfd_link_info *, asection *,
40 const Elf_Internal_Rela *));
41 static boolean elf_i386_adjust_dynamic_symbol
42 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
43 static boolean elf_i386_size_dynamic_sections
44 PARAMS ((bfd *, struct bfd_link_info *));
45 static boolean elf_i386_relocate_section
46 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
47 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
48 static boolean elf_i386_finish_dynamic_symbol
49 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
50 Elf_Internal_Sym *));
51 static boolean elf_i386_finish_dynamic_sections
52 PARAMS ((bfd *, struct bfd_link_info *));
53
54 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
55
56 #include "elf/i386.h"
57
58 static reloc_howto_type elf_howto_table[]=
59 {
60 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
61 bfd_elf_generic_reloc, "R_386_NONE",
62 true, 0x00000000, 0x00000000, false),
63 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
64 bfd_elf_generic_reloc, "R_386_32",
65 true, 0xffffffff, 0xffffffff, false),
66 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
67 bfd_elf_generic_reloc, "R_386_PC32",
68 true, 0xffffffff, 0xffffffff, true),
69 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
70 bfd_elf_generic_reloc, "R_386_GOT32",
71 true, 0xffffffff, 0xffffffff, false),
72 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
73 bfd_elf_generic_reloc, "R_386_PLT32",
74 true, 0xffffffff, 0xffffffff, true),
75 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_386_COPY",
77 true, 0xffffffff, 0xffffffff, false),
78 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
80 true, 0xffffffff, 0xffffffff, false),
81 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
83 true, 0xffffffff, 0xffffffff, false),
84 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
85 bfd_elf_generic_reloc, "R_386_RELATIVE",
86 true, 0xffffffff, 0xffffffff, false),
87 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
88 bfd_elf_generic_reloc, "R_386_GOTOFF",
89 true, 0xffffffff, 0xffffffff, false),
90 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
91 bfd_elf_generic_reloc, "R_386_GOTPC",
92 true, 0xffffffff, 0xffffffff, true),
93
94 /* We have a gap in the reloc numbers here.
95 R_386_standard counts the number up to this point, and
96 R_386_ext_offset is the value to subtract from a reloc type of
97 R_386_16 thru R_386_PC8 to form an index into this table. */
98 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
99 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
100
101 /* The remaining relocs are a GNU extension. */
102 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
103 bfd_elf_generic_reloc, "R_386_16",
104 true, 0xffff, 0xffff, false),
105 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
106 bfd_elf_generic_reloc, "R_386_PC16",
107 true, 0xffff, 0xffff, true),
108 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
109 bfd_elf_generic_reloc, "R_386_8",
110 true, 0xff, 0xff, false),
111 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
112 bfd_elf_generic_reloc, "R_386_PC8",
113 true, 0xff, 0xff, true),
114
115 /* Another gap. */
116 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
117 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
118
119 /* GNU extension to record C++ vtable hierarchy. */
120 HOWTO (R_386_GNU_VTINHERIT, /* type */
121 0, /* rightshift */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
123 0, /* bitsize */
124 false, /* pc_relative */
125 0, /* bitpos */
126 complain_overflow_dont, /* complain_on_overflow */
127 NULL, /* special_function */
128 "R_386_GNU_VTINHERIT", /* name */
129 false, /* partial_inplace */
130 0, /* src_mask */
131 0, /* dst_mask */
132 false),
133
134 /* GNU extension to record C++ vtable member usage. */
135 HOWTO (R_386_GNU_VTENTRY, /* type */
136 0, /* rightshift */
137 2, /* size (0 = byte, 1 = short, 2 = long) */
138 0, /* bitsize */
139 false, /* pc_relative */
140 0, /* bitpos */
141 complain_overflow_dont, /* complain_on_overflow */
142 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
143 "R_386_GNU_VTENTRY", /* name */
144 false, /* partial_inplace */
145 0, /* src_mask */
146 0, /* dst_mask */
147 false)
148
149 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
150
151 };
152
153 #ifdef DEBUG_GEN_RELOC
154 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
155 #else
156 #define TRACE(str)
157 #endif
158
159 static reloc_howto_type *
160 elf_i386_reloc_type_lookup (abfd, code)
161 bfd *abfd ATTRIBUTE_UNUSED;
162 bfd_reloc_code_real_type code;
163 {
164 switch (code)
165 {
166 case BFD_RELOC_NONE:
167 TRACE ("BFD_RELOC_NONE");
168 return &elf_howto_table[(unsigned int) R_386_NONE ];
169
170 case BFD_RELOC_32:
171 TRACE ("BFD_RELOC_32");
172 return &elf_howto_table[(unsigned int) R_386_32 ];
173
174 case BFD_RELOC_CTOR:
175 TRACE ("BFD_RELOC_CTOR");
176 return &elf_howto_table[(unsigned int) R_386_32 ];
177
178 case BFD_RELOC_32_PCREL:
179 TRACE ("BFD_RELOC_PC32");
180 return &elf_howto_table[(unsigned int) R_386_PC32 ];
181
182 case BFD_RELOC_386_GOT32:
183 TRACE ("BFD_RELOC_386_GOT32");
184 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
185
186 case BFD_RELOC_386_PLT32:
187 TRACE ("BFD_RELOC_386_PLT32");
188 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
189
190 case BFD_RELOC_386_COPY:
191 TRACE ("BFD_RELOC_386_COPY");
192 return &elf_howto_table[(unsigned int) R_386_COPY ];
193
194 case BFD_RELOC_386_GLOB_DAT:
195 TRACE ("BFD_RELOC_386_GLOB_DAT");
196 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
197
198 case BFD_RELOC_386_JUMP_SLOT:
199 TRACE ("BFD_RELOC_386_JUMP_SLOT");
200 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
201
202 case BFD_RELOC_386_RELATIVE:
203 TRACE ("BFD_RELOC_386_RELATIVE");
204 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
205
206 case BFD_RELOC_386_GOTOFF:
207 TRACE ("BFD_RELOC_386_GOTOFF");
208 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
209
210 case BFD_RELOC_386_GOTPC:
211 TRACE ("BFD_RELOC_386_GOTPC");
212 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
213
214 /* The remaining relocs are a GNU extension. */
215 case BFD_RELOC_16:
216 TRACE ("BFD_RELOC_16");
217 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
218
219 case BFD_RELOC_16_PCREL:
220 TRACE ("BFD_RELOC_16_PCREL");
221 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
222
223 case BFD_RELOC_8:
224 TRACE ("BFD_RELOC_8");
225 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
226
227 case BFD_RELOC_8_PCREL:
228 TRACE ("BFD_RELOC_8_PCREL");
229 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
230
231 case BFD_RELOC_VTABLE_INHERIT:
232 TRACE ("BFD_RELOC_VTABLE_INHERIT");
233 return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
234 - R_386_vt_offset];
235
236 case BFD_RELOC_VTABLE_ENTRY:
237 TRACE ("BFD_RELOC_VTABLE_ENTRY");
238 return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
239 - R_386_vt_offset];
240
241 default:
242 break;
243 }
244
245 TRACE ("Unknown");
246 return 0;
247 }
248
249 static void
250 elf_i386_info_to_howto (abfd, cache_ptr, dst)
251 bfd *abfd ATTRIBUTE_UNUSED;
252 arelent *cache_ptr ATTRIBUTE_UNUSED;
253 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
254 {
255 abort ();
256 }
257
258 static void
259 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
260 bfd *abfd ATTRIBUTE_UNUSED;
261 arelent *cache_ptr;
262 Elf32_Internal_Rel *dst;
263 {
264 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
265 unsigned int indx;
266
267 if ((indx = r_type) >= R_386_standard
268 && ((indx = r_type - R_386_ext_offset) - R_386_standard
269 >= R_386_ext - R_386_standard)
270 && ((indx = r_type - R_386_vt_offset) - R_386_ext
271 >= R_386_vt - R_386_ext))
272 {
273 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
274 bfd_get_filename (abfd), (int) r_type);
275 indx = (unsigned int) R_386_NONE;
276 }
277 cache_ptr->howto = &elf_howto_table[indx];
278 }
279
280 /* Return whether a symbol name implies a local label. The UnixWare
281 2.1 cc generates temporary symbols that start with .X, so we
282 recognize them here. FIXME: do other SVR4 compilers also use .X?.
283 If so, we should move the .X recognition into
284 _bfd_elf_is_local_label_name. */
285
286 static boolean
287 elf_i386_is_local_label_name (abfd, name)
288 bfd *abfd;
289 const char *name;
290 {
291 if (name[0] == '.' && name[1] == 'X')
292 return true;
293
294 return _bfd_elf_is_local_label_name (abfd, name);
295 }
296 \f
297 /* Functions for the i386 ELF linker. */
298
299 /* The name of the dynamic interpreter. This is put in the .interp
300 section. */
301
302 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
303
304 /* The size in bytes of an entry in the procedure linkage table. */
305
306 #define PLT_ENTRY_SIZE 16
307
308 /* The first entry in an absolute procedure linkage table looks like
309 this. See the SVR4 ABI i386 supplement to see how this works. */
310
311 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
312 {
313 0xff, 0x35, /* pushl contents of address */
314 0, 0, 0, 0, /* replaced with address of .got + 4. */
315 0xff, 0x25, /* jmp indirect */
316 0, 0, 0, 0, /* replaced with address of .got + 8. */
317 0, 0, 0, 0 /* pad out to 16 bytes. */
318 };
319
320 /* Subsequent entries in an absolute procedure linkage table look like
321 this. */
322
323 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
324 {
325 0xff, 0x25, /* jmp indirect */
326 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
327 0x68, /* pushl immediate */
328 0, 0, 0, 0, /* replaced with offset into relocation table. */
329 0xe9, /* jmp relative */
330 0, 0, 0, 0 /* replaced with offset to start of .plt. */
331 };
332
333 /* The first entry in a PIC procedure linkage table look like this. */
334
335 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
336 {
337 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
338 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
339 0, 0, 0, 0 /* pad out to 16 bytes. */
340 };
341
342 /* Subsequent entries in a PIC procedure linkage table look like this. */
343
344 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
345 {
346 0xff, 0xa3, /* jmp *offset(%ebx) */
347 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
348 0x68, /* pushl immediate */
349 0, 0, 0, 0, /* replaced with offset into relocation table. */
350 0xe9, /* jmp relative */
351 0, 0, 0, 0 /* replaced with offset to start of .plt. */
352 };
353
354 /* The i386 linker needs to keep track of the number of relocs that it
355 decides to copy in check_relocs for each symbol. This is so that
356 it can discard PC relative relocs if it doesn't need them when
357 linking with -Bsymbolic. We store the information in a field
358 extending the regular ELF linker hash table. */
359
360 /* This structure keeps track of the number of PC relative relocs we
361 have copied for a given symbol. */
362
363 struct elf_i386_pcrel_relocs_copied
364 {
365 /* Next section. */
366 struct elf_i386_pcrel_relocs_copied *next;
367 /* A section in dynobj. */
368 asection *section;
369 /* Number of relocs copied in this section. */
370 bfd_size_type count;
371 };
372
373 /* i386 ELF linker hash entry. */
374
375 struct elf_i386_link_hash_entry
376 {
377 struct elf_link_hash_entry root;
378
379 /* Number of PC relative relocs copied for this symbol. */
380 struct elf_i386_pcrel_relocs_copied *pcrel_relocs_copied;
381 };
382
383 /* i386 ELF linker hash table. */
384
385 struct elf_i386_link_hash_table
386 {
387 struct elf_link_hash_table root;
388 };
389
390 /* Declare this now that the above structures are defined. */
391
392 static boolean elf_i386_discard_copies
393 PARAMS ((struct elf_i386_link_hash_entry *, PTR));
394
395 /* Traverse an i386 ELF linker hash table. */
396
397 #define elf_i386_link_hash_traverse(table, func, info) \
398 (elf_link_hash_traverse \
399 (&(table)->root, \
400 (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \
401 (info)))
402
403 /* Get the i386 ELF linker hash table from a link_info structure. */
404
405 #define elf_i386_hash_table(p) \
406 ((struct elf_i386_link_hash_table *) ((p)->hash))
407
408 /* Create an entry in an i386 ELF linker hash table. */
409
410 static struct bfd_hash_entry *
411 elf_i386_link_hash_newfunc (entry, table, string)
412 struct bfd_hash_entry *entry;
413 struct bfd_hash_table *table;
414 const char *string;
415 {
416 struct elf_i386_link_hash_entry *ret =
417 (struct elf_i386_link_hash_entry *) entry;
418
419 /* Allocate the structure if it has not already been allocated by a
420 subclass. */
421 if (ret == (struct elf_i386_link_hash_entry *) NULL)
422 ret = ((struct elf_i386_link_hash_entry *)
423 bfd_hash_allocate (table,
424 sizeof (struct elf_i386_link_hash_entry)));
425 if (ret == (struct elf_i386_link_hash_entry *) NULL)
426 return (struct bfd_hash_entry *) ret;
427
428 /* Call the allocation method of the superclass. */
429 ret = ((struct elf_i386_link_hash_entry *)
430 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
431 table, string));
432 if (ret != (struct elf_i386_link_hash_entry *) NULL)
433 {
434 ret->pcrel_relocs_copied = NULL;
435 }
436
437 return (struct bfd_hash_entry *) ret;
438 }
439
440 /* Create an i386 ELF linker hash table. */
441
442 static struct bfd_link_hash_table *
443 elf_i386_link_hash_table_create (abfd)
444 bfd *abfd;
445 {
446 struct elf_i386_link_hash_table *ret;
447
448 ret = ((struct elf_i386_link_hash_table *)
449 bfd_alloc (abfd, sizeof (struct elf_i386_link_hash_table)));
450 if (ret == (struct elf_i386_link_hash_table *) NULL)
451 return NULL;
452
453 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
454 elf_i386_link_hash_newfunc))
455 {
456 bfd_release (abfd, ret);
457 return NULL;
458 }
459
460 return &ret->root.root;
461 }
462
463 /* Look through the relocs for a section during the first phase, and
464 allocate space in the global offset table or procedure linkage
465 table. */
466
467 static boolean
468 elf_i386_check_relocs (abfd, info, sec, relocs)
469 bfd *abfd;
470 struct bfd_link_info *info;
471 asection *sec;
472 const Elf_Internal_Rela *relocs;
473 {
474 bfd *dynobj;
475 Elf_Internal_Shdr *symtab_hdr;
476 struct elf_link_hash_entry **sym_hashes;
477 bfd_signed_vma *local_got_refcounts;
478 const Elf_Internal_Rela *rel;
479 const Elf_Internal_Rela *rel_end;
480 asection *sgot;
481 asection *srelgot;
482 asection *sreloc;
483
484 if (info->relocateable)
485 return true;
486
487 dynobj = elf_hash_table (info)->dynobj;
488 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
489 sym_hashes = elf_sym_hashes (abfd);
490 local_got_refcounts = elf_local_got_refcounts (abfd);
491
492 sgot = NULL;
493 srelgot = NULL;
494 sreloc = NULL;
495
496 rel_end = relocs + sec->reloc_count;
497 for (rel = relocs; rel < rel_end; rel++)
498 {
499 unsigned long r_symndx;
500 struct elf_link_hash_entry *h;
501
502 r_symndx = ELF32_R_SYM (rel->r_info);
503
504 if (r_symndx < symtab_hdr->sh_info)
505 h = NULL;
506 else
507 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
508
509 /* Some relocs require a global offset table. */
510 if (dynobj == NULL)
511 {
512 switch (ELF32_R_TYPE (rel->r_info))
513 {
514 case R_386_GOT32:
515 case R_386_GOTOFF:
516 case R_386_GOTPC:
517 elf_hash_table (info)->dynobj = dynobj = abfd;
518 if (! _bfd_elf_create_got_section (dynobj, info))
519 return false;
520 break;
521
522 default:
523 break;
524 }
525 }
526
527 switch (ELF32_R_TYPE (rel->r_info))
528 {
529 case R_386_GOT32:
530 /* This symbol requires a global offset table entry. */
531
532 if (sgot == NULL)
533 {
534 sgot = bfd_get_section_by_name (dynobj, ".got");
535 BFD_ASSERT (sgot != NULL);
536 }
537
538 if (srelgot == NULL
539 && (h != NULL || info->shared))
540 {
541 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
542 if (srelgot == NULL)
543 {
544 srelgot = bfd_make_section (dynobj, ".rel.got");
545 if (srelgot == NULL
546 || ! bfd_set_section_flags (dynobj, srelgot,
547 (SEC_ALLOC
548 | SEC_LOAD
549 | SEC_HAS_CONTENTS
550 | SEC_IN_MEMORY
551 | SEC_LINKER_CREATED
552 | SEC_READONLY))
553 || ! bfd_set_section_alignment (dynobj, srelgot, 2))
554 return false;
555 }
556 }
557
558 if (h != NULL)
559 {
560 if (h->got.refcount == -1)
561 {
562 h->got.refcount = 1;
563
564 /* Make sure this symbol is output as a dynamic symbol. */
565 if (h->dynindx == -1)
566 {
567 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
568 return false;
569 }
570
571 sgot->_raw_size += 4;
572 srelgot->_raw_size += sizeof (Elf32_External_Rel);
573 }
574 else
575 h->got.refcount += 1;
576 }
577 else
578 {
579 /* This is a global offset table entry for a local symbol. */
580 if (local_got_refcounts == NULL)
581 {
582 size_t size;
583
584 size = symtab_hdr->sh_info * sizeof (bfd_signed_vma);
585 local_got_refcounts = ((bfd_signed_vma *)
586 bfd_alloc (abfd, size));
587 if (local_got_refcounts == NULL)
588 return false;
589 elf_local_got_refcounts (abfd) = local_got_refcounts;
590 memset (local_got_refcounts, -1, size);
591 }
592 if (local_got_refcounts[r_symndx] == -1)
593 {
594 local_got_refcounts[r_symndx] = 1;
595
596 sgot->_raw_size += 4;
597 if (info->shared)
598 {
599 /* If we are generating a shared object, we need to
600 output a R_386_RELATIVE reloc so that the dynamic
601 linker can adjust this GOT entry. */
602 srelgot->_raw_size += sizeof (Elf32_External_Rel);
603 }
604 }
605 else
606 local_got_refcounts[r_symndx] += 1;
607 }
608 break;
609
610 case R_386_PLT32:
611 /* This symbol requires a procedure linkage table entry. We
612 actually build the entry in adjust_dynamic_symbol,
613 because this might be a case of linking PIC code which is
614 never referenced by a dynamic object, in which case we
615 don't need to generate a procedure linkage table entry
616 after all. */
617
618 /* If this is a local symbol, we resolve it directly without
619 creating a procedure linkage table entry. */
620 if (h == NULL)
621 continue;
622
623 if (h->plt.refcount == -1)
624 {
625 h->plt.refcount = 1;
626 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
627 }
628 else
629 h->plt.refcount += 1;
630 break;
631
632 case R_386_32:
633 case R_386_PC32:
634 if (h != NULL)
635 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
636
637 /* If we are creating a shared library, and this is a reloc
638 against a global symbol, or a non PC relative reloc
639 against a local symbol, then we need to copy the reloc
640 into the shared library. However, if we are linking with
641 -Bsymbolic, we do not need to copy a reloc against a
642 global symbol which is defined in an object we are
643 including in the link (i.e., DEF_REGULAR is set). At
644 this point we have not seen all the input files, so it is
645 possible that DEF_REGULAR is not set now but will be set
646 later (it is never cleared). In case of a weak definition,
647 DEF_REGULAR may be cleared later by a strong definition in
648 a shared library. We account for that possibility below by
649 storing information in the relocs_copied field of the hash
650 table entry. A similar situation occurs when creating
651 shared libraries and symbol visibility changes render the
652 symbol local. */
653 if (info->shared
654 && (sec->flags & SEC_ALLOC) != 0
655 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
656 || (h != NULL
657 && (! info->symbolic
658 || h->root.type == bfd_link_hash_defweak
659 || (h->elf_link_hash_flags
660 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
661 {
662 /* When creating a shared object, we must copy these
663 reloc types into the output file. We create a reloc
664 section in dynobj and make room for this reloc. */
665 if (sreloc == NULL)
666 {
667 const char *name;
668
669 name = (bfd_elf_string_from_elf_section
670 (abfd,
671 elf_elfheader (abfd)->e_shstrndx,
672 elf_section_data (sec)->rel_hdr.sh_name));
673 if (name == NULL)
674 return false;
675
676 if (strncmp (name, ".rel", 4) != 0
677 || strcmp (bfd_get_section_name (abfd, sec),
678 name + 4) != 0)
679 {
680 if (abfd->my_archive)
681 (*_bfd_error_handler) (_("%s(%s): bad relocation section name `%s\'"),
682 bfd_get_filename (abfd->my_archive),
683 bfd_get_filename (abfd),
684 name);
685 else
686 (*_bfd_error_handler) (_("%s: bad relocation section name `%s\'"),
687 bfd_get_filename (abfd),
688 name);
689 }
690
691 sreloc = bfd_get_section_by_name (dynobj, name);
692 if (sreloc == NULL)
693 {
694 flagword flags;
695
696 sreloc = bfd_make_section (dynobj, name);
697 flags = (SEC_HAS_CONTENTS | SEC_READONLY
698 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
699 if ((sec->flags & SEC_ALLOC) != 0)
700 flags |= SEC_ALLOC | SEC_LOAD;
701 if (sreloc == NULL
702 || ! bfd_set_section_flags (dynobj, sreloc, flags)
703 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
704 return false;
705 }
706 }
707
708 sreloc->_raw_size += sizeof (Elf32_External_Rel);
709
710 /* If this is a global symbol, we count the number of PC
711 relative relocations we have entered for this symbol,
712 so that we can discard them later as necessary. Note
713 that this function is only called if we are using an
714 elf_i386 linker hash table, which means that h is
715 really a pointer to an elf_i386_link_hash_entry. */
716 if (h != NULL
717 && ELF32_R_TYPE (rel->r_info) == R_386_PC32)
718 {
719 struct elf_i386_link_hash_entry *eh;
720 struct elf_i386_pcrel_relocs_copied *p;
721
722 eh = (struct elf_i386_link_hash_entry *) h;
723
724 for (p = eh->pcrel_relocs_copied; p != NULL; p = p->next)
725 if (p->section == sreloc)
726 break;
727
728 if (p == NULL)
729 {
730 p = ((struct elf_i386_pcrel_relocs_copied *)
731 bfd_alloc (dynobj, sizeof *p));
732 if (p == NULL)
733 return false;
734 p->next = eh->pcrel_relocs_copied;
735 eh->pcrel_relocs_copied = p;
736 p->section = sreloc;
737 p->count = 0;
738 }
739
740 ++p->count;
741 }
742 }
743
744 break;
745
746 /* This relocation describes the C++ object vtable hierarchy.
747 Reconstruct it for later use during GC. */
748 case R_386_GNU_VTINHERIT:
749 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
750 return false;
751 break;
752
753 /* This relocation describes which C++ vtable entries are actually
754 used. Record for later use during GC. */
755 case R_386_GNU_VTENTRY:
756 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
757 return false;
758 break;
759
760 default:
761 break;
762 }
763 }
764
765 return true;
766 }
767
768 /* Return the section that should be marked against GC for a given
769 relocation. */
770
771 static asection *
772 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
773 bfd *abfd;
774 struct bfd_link_info *info ATTRIBUTE_UNUSED;
775 Elf_Internal_Rela *rel;
776 struct elf_link_hash_entry *h;
777 Elf_Internal_Sym *sym;
778 {
779 if (h != NULL)
780 {
781 switch (ELF32_R_TYPE (rel->r_info))
782 {
783 case R_386_GNU_VTINHERIT:
784 case R_386_GNU_VTENTRY:
785 break;
786
787 default:
788 switch (h->root.type)
789 {
790 case bfd_link_hash_defined:
791 case bfd_link_hash_defweak:
792 return h->root.u.def.section;
793
794 case bfd_link_hash_common:
795 return h->root.u.c.p->section;
796
797 default:
798 break;
799 }
800 }
801 }
802 else
803 {
804 if (!(elf_bad_symtab (abfd)
805 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
806 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
807 && sym->st_shndx != SHN_COMMON))
808 {
809 return bfd_section_from_elf_index (abfd, sym->st_shndx);
810 }
811 }
812
813 return NULL;
814 }
815
816 /* Update the got entry reference counts for the section being removed. */
817
818 static boolean
819 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
820 bfd *abfd;
821 struct bfd_link_info *info ATTRIBUTE_UNUSED;
822 asection *sec;
823 const Elf_Internal_Rela *relocs;
824 {
825 Elf_Internal_Shdr *symtab_hdr;
826 struct elf_link_hash_entry **sym_hashes;
827 bfd_signed_vma *local_got_refcounts;
828 const Elf_Internal_Rela *rel, *relend;
829 unsigned long r_symndx;
830 struct elf_link_hash_entry *h;
831 bfd *dynobj;
832 asection *sgot;
833 asection *srelgot;
834
835 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
836 sym_hashes = elf_sym_hashes (abfd);
837 local_got_refcounts = elf_local_got_refcounts (abfd);
838
839 dynobj = elf_hash_table (info)->dynobj;
840 if (dynobj == NULL)
841 return true;
842
843 sgot = bfd_get_section_by_name (dynobj, ".got");
844 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
845
846 relend = relocs + sec->reloc_count;
847 for (rel = relocs; rel < relend; rel++)
848 switch (ELF32_R_TYPE (rel->r_info))
849 {
850 case R_386_GOT32:
851 case R_386_GOTOFF:
852 case R_386_GOTPC:
853 r_symndx = ELF32_R_SYM (rel->r_info);
854 if (r_symndx >= symtab_hdr->sh_info)
855 {
856 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
857 if (h->got.refcount > 0)
858 {
859 h->got.refcount -= 1;
860 if (h->got.refcount == 0)
861 {
862 sgot->_raw_size -= 4;
863 srelgot->_raw_size -= sizeof (Elf32_External_Rel);
864 }
865 }
866 }
867 else if (local_got_refcounts != NULL)
868 {
869 if (local_got_refcounts[r_symndx] > 0)
870 {
871 local_got_refcounts[r_symndx] -= 1;
872 if (local_got_refcounts[r_symndx] == 0)
873 {
874 sgot->_raw_size -= 4;
875 if (info->shared)
876 srelgot->_raw_size -= sizeof (Elf32_External_Rel);
877 }
878 }
879 }
880 break;
881
882 case R_386_PLT32:
883 r_symndx = ELF32_R_SYM (rel->r_info);
884 if (r_symndx >= symtab_hdr->sh_info)
885 {
886 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
887 if (h->plt.refcount > 0)
888 h->plt.refcount -= 1;
889 }
890 break;
891
892 default:
893 break;
894 }
895
896 return true;
897 }
898
899 /* Adjust a symbol defined by a dynamic object and referenced by a
900 regular object. The current definition is in some section of the
901 dynamic object, but we're not including those sections. We have to
902 change the definition to something the rest of the link can
903 understand. */
904
905 static boolean
906 elf_i386_adjust_dynamic_symbol (info, h)
907 struct bfd_link_info *info;
908 struct elf_link_hash_entry *h;
909 {
910 bfd *dynobj;
911 asection *s;
912 unsigned int power_of_two;
913
914 dynobj = elf_hash_table (info)->dynobj;
915
916 /* Make sure we know what is going on here. */
917 BFD_ASSERT (dynobj != NULL
918 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
919 || h->weakdef != NULL
920 || ((h->elf_link_hash_flags
921 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
922 && (h->elf_link_hash_flags
923 & ELF_LINK_HASH_REF_REGULAR) != 0
924 && (h->elf_link_hash_flags
925 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
926
927 /* If this is a function, put it in the procedure linkage table. We
928 will fill in the contents of the procedure linkage table later,
929 when we know the address of the .got section. */
930 if (h->type == STT_FUNC
931 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
932 {
933 if ((! info->shared
934 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
935 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
936 || (info->shared && h->plt.refcount <= 0))
937 {
938 /* This case can occur if we saw a PLT32 reloc in an input
939 file, but the symbol was never referred to by a dynamic
940 object, or if all references were garbage collected. In
941 such a case, we don't actually need to build a procedure
942 linkage table, and we can just do a PC32 reloc instead. */
943 h->plt.offset = (bfd_vma) -1;
944 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
945 return true;
946 }
947
948 /* Make sure this symbol is output as a dynamic symbol. */
949 if (h->dynindx == -1)
950 {
951 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
952 return false;
953 }
954
955 s = bfd_get_section_by_name (dynobj, ".plt");
956 BFD_ASSERT (s != NULL);
957
958 /* If this is the first .plt entry, make room for the special
959 first entry. */
960 if (s->_raw_size == 0)
961 s->_raw_size += PLT_ENTRY_SIZE;
962
963 /* If this symbol is not defined in a regular file, and we are
964 not generating a shared library, then set the symbol to this
965 location in the .plt. This is required to make function
966 pointers compare as equal between the normal executable and
967 the shared library. */
968 if (! info->shared
969 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
970 {
971 h->root.u.def.section = s;
972 h->root.u.def.value = s->_raw_size;
973 }
974
975 h->plt.offset = s->_raw_size;
976
977 /* Make room for this entry. */
978 s->_raw_size += PLT_ENTRY_SIZE;
979
980 /* We also need to make an entry in the .got.plt section, which
981 will be placed in the .got section by the linker script. */
982 s = bfd_get_section_by_name (dynobj, ".got.plt");
983 BFD_ASSERT (s != NULL);
984 s->_raw_size += 4;
985
986 /* We also need to make an entry in the .rel.plt section. */
987 s = bfd_get_section_by_name (dynobj, ".rel.plt");
988 BFD_ASSERT (s != NULL);
989 s->_raw_size += sizeof (Elf32_External_Rel);
990
991 return true;
992 }
993
994 /* If this is a weak symbol, and there is a real definition, the
995 processor independent code will have arranged for us to see the
996 real definition first, and we can just use the same value. */
997 if (h->weakdef != NULL)
998 {
999 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1000 || h->weakdef->root.type == bfd_link_hash_defweak);
1001 h->root.u.def.section = h->weakdef->root.u.def.section;
1002 h->root.u.def.value = h->weakdef->root.u.def.value;
1003 return true;
1004 }
1005
1006 /* This is a reference to a symbol defined by a dynamic object which
1007 is not a function. */
1008
1009 /* If we are creating a shared library, we must presume that the
1010 only references to the symbol are via the global offset table.
1011 For such cases we need not do anything here; the relocations will
1012 be handled correctly by relocate_section. */
1013 if (info->shared)
1014 return true;
1015
1016 /* If there are no references to this symbol that do not use the
1017 GOT, we don't need to generate a copy reloc. */
1018 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1019 return true;
1020
1021 /* We must allocate the symbol in our .dynbss section, which will
1022 become part of the .bss section of the executable. There will be
1023 an entry for this symbol in the .dynsym section. The dynamic
1024 object will contain position independent code, so all references
1025 from the dynamic object to this symbol will go through the global
1026 offset table. The dynamic linker will use the .dynsym entry to
1027 determine the address it must put in the global offset table, so
1028 both the dynamic object and the regular object will refer to the
1029 same memory location for the variable. */
1030
1031 s = bfd_get_section_by_name (dynobj, ".dynbss");
1032 BFD_ASSERT (s != NULL);
1033
1034 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1035 copy the initial value out of the dynamic object and into the
1036 runtime process image. We need to remember the offset into the
1037 .rel.bss section we are going to use. */
1038 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1039 {
1040 asection *srel;
1041
1042 srel = bfd_get_section_by_name (dynobj, ".rel.bss");
1043 BFD_ASSERT (srel != NULL);
1044 srel->_raw_size += sizeof (Elf32_External_Rel);
1045 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1046 }
1047
1048 /* We need to figure out the alignment required for this symbol. I
1049 have no idea how ELF linkers handle this. */
1050 power_of_two = bfd_log2 (h->size);
1051 if (power_of_two > 3)
1052 power_of_two = 3;
1053
1054 /* Apply the required alignment. */
1055 s->_raw_size = BFD_ALIGN (s->_raw_size,
1056 (bfd_size_type) (1 << power_of_two));
1057 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1058 {
1059 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1060 return false;
1061 }
1062
1063 /* Define the symbol as being at this point in the section. */
1064 h->root.u.def.section = s;
1065 h->root.u.def.value = s->_raw_size;
1066
1067 /* Increment the section size to make room for the symbol. */
1068 s->_raw_size += h->size;
1069
1070 return true;
1071 }
1072
1073 /* Set the sizes of the dynamic sections. */
1074
1075 static boolean
1076 elf_i386_size_dynamic_sections (output_bfd, info)
1077 bfd *output_bfd;
1078 struct bfd_link_info *info;
1079 {
1080 bfd *dynobj;
1081 asection *s;
1082 boolean plt;
1083 boolean relocs;
1084 boolean reltext;
1085
1086 dynobj = elf_hash_table (info)->dynobj;
1087 BFD_ASSERT (dynobj != NULL);
1088
1089 if (elf_hash_table (info)->dynamic_sections_created)
1090 {
1091 /* Set the contents of the .interp section to the interpreter. */
1092 if (! info->shared)
1093 {
1094 s = bfd_get_section_by_name (dynobj, ".interp");
1095 BFD_ASSERT (s != NULL);
1096 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1097 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1098 }
1099 }
1100 else
1101 {
1102 /* We may have created entries in the .rel.got section.
1103 However, if we are not creating the dynamic sections, we will
1104 not actually use these entries. Reset the size of .rel.got,
1105 which will cause it to get stripped from the output file
1106 below. */
1107 s = bfd_get_section_by_name (dynobj, ".rel.got");
1108 if (s != NULL)
1109 s->_raw_size = 0;
1110 }
1111
1112 /* If this is a -Bsymbolic shared link, then we need to discard all
1113 PC relative relocs against symbols defined in a regular object.
1114 We allocated space for them in the check_relocs routine, but we
1115 will not fill them in in the relocate_section routine. */
1116 if (info->shared)
1117 elf_i386_link_hash_traverse (elf_i386_hash_table (info),
1118 elf_i386_discard_copies,
1119 (PTR) info);
1120
1121 /* The check_relocs and adjust_dynamic_symbol entry points have
1122 determined the sizes of the various dynamic sections. Allocate
1123 memory for them. */
1124 plt = false;
1125 relocs = false;
1126 reltext = false;
1127 for (s = dynobj->sections; s != NULL; s = s->next)
1128 {
1129 const char *name;
1130 boolean strip;
1131
1132 if ((s->flags & SEC_LINKER_CREATED) == 0)
1133 continue;
1134
1135 /* It's OK to base decisions on the section name, because none
1136 of the dynobj section names depend upon the input files. */
1137 name = bfd_get_section_name (dynobj, s);
1138
1139 strip = false;
1140
1141 if (strcmp (name, ".plt") == 0)
1142 {
1143 if (s->_raw_size == 0)
1144 {
1145 /* Strip this section if we don't need it; see the
1146 comment below. */
1147 strip = true;
1148 }
1149 else
1150 {
1151 /* Remember whether there is a PLT. */
1152 plt = true;
1153 }
1154 }
1155 else if (strncmp (name, ".rel", 4) == 0)
1156 {
1157 if (s->_raw_size == 0)
1158 {
1159 /* If we don't need this section, strip it from the
1160 output file. This is mostly to handle .rel.bss and
1161 .rel.plt. We must create both sections in
1162 create_dynamic_sections, because they must be created
1163 before the linker maps input sections to output
1164 sections. The linker does that before
1165 adjust_dynamic_symbol is called, and it is that
1166 function which decides whether anything needs to go
1167 into these sections. */
1168 strip = true;
1169 }
1170 else
1171 {
1172 asection *target;
1173
1174 /* Remember whether there are any reloc sections other
1175 than .rel.plt. */
1176 if (strcmp (name, ".rel.plt") != 0)
1177 {
1178 const char *outname;
1179
1180 relocs = true;
1181
1182 /* If this relocation section applies to a read only
1183 section, then we probably need a DT_TEXTREL
1184 entry. The entries in the .rel.plt section
1185 really apply to the .got section, which we
1186 created ourselves and so know is not readonly. */
1187 outname = bfd_get_section_name (output_bfd,
1188 s->output_section);
1189 target = bfd_get_section_by_name (output_bfd, outname + 4);
1190 if (target != NULL
1191 && (target->flags & SEC_READONLY) != 0
1192 && (target->flags & SEC_ALLOC) != 0)
1193 reltext = true;
1194 }
1195
1196 /* We use the reloc_count field as a counter if we need
1197 to copy relocs into the output file. */
1198 s->reloc_count = 0;
1199 }
1200 }
1201 else if (strncmp (name, ".got", 4) != 0)
1202 {
1203 /* It's not one of our sections, so don't allocate space. */
1204 continue;
1205 }
1206
1207 if (strip)
1208 {
1209 _bfd_strip_section_from_output (info, s);
1210 continue;
1211 }
1212
1213 /* Allocate memory for the section contents. We use bfd_zalloc
1214 here in case unused entries are not reclaimed before the
1215 section's contents are written out. This should not happen,
1216 but this way if it does, we get a R_386_NONE reloc instead
1217 of garbage. */
1218 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1219 if (s->contents == NULL && s->_raw_size != 0)
1220 return false;
1221 }
1222
1223 if (elf_hash_table (info)->dynamic_sections_created)
1224 {
1225 /* Add some entries to the .dynamic section. We fill in the
1226 values later, in elf_i386_finish_dynamic_sections, but we
1227 must add the entries now so that we get the correct size for
1228 the .dynamic section. The DT_DEBUG entry is filled in by the
1229 dynamic linker and used by the debugger. */
1230 if (! info->shared)
1231 {
1232 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
1233 return false;
1234 }
1235
1236 if (plt)
1237 {
1238 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
1239 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1240 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
1241 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
1242 return false;
1243 }
1244
1245 if (relocs)
1246 {
1247 if (! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
1248 || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
1249 || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
1250 sizeof (Elf32_External_Rel)))
1251 return false;
1252 }
1253
1254 if (reltext)
1255 {
1256 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
1257 return false;
1258 info->flags |= DF_TEXTREL;
1259 }
1260 }
1261
1262 return true;
1263 }
1264
1265 /* This function is called via elf_i386_link_hash_traverse if we are
1266 creating a shared object. In the -Bsymbolic case, it discards the
1267 space allocated to copy PC relative relocs against symbols which
1268 are defined in regular objects. For the normal non-symbolic case,
1269 we also discard space for relocs that have become local due to
1270 symbol visibility changes. We allocated space for them in the
1271 check_relocs routine, but we won't fill them in in the
1272 relocate_section routine. */
1273
1274 static boolean
1275 elf_i386_discard_copies (h, inf)
1276 struct elf_i386_link_hash_entry *h;
1277 PTR inf;
1278 {
1279 struct elf_i386_pcrel_relocs_copied *s;
1280 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1281
1282 /* If a symbol has been forced local or we have found a regular
1283 definition for the symbolic link case, then we won't be needing
1284 any relocs. */
1285 if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1286 && ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1287 || info->symbolic))
1288 {
1289 for (s = h->pcrel_relocs_copied; s != NULL; s = s->next)
1290 s->section->_raw_size -= s->count * sizeof (Elf32_External_Rel);
1291 }
1292
1293 return true;
1294 }
1295
1296 /* Relocate an i386 ELF section. */
1297
1298 static boolean
1299 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1300 contents, relocs, local_syms, local_sections)
1301 bfd *output_bfd;
1302 struct bfd_link_info *info;
1303 bfd *input_bfd;
1304 asection *input_section;
1305 bfd_byte *contents;
1306 Elf_Internal_Rela *relocs;
1307 Elf_Internal_Sym *local_syms;
1308 asection **local_sections;
1309 {
1310 bfd *dynobj;
1311 Elf_Internal_Shdr *symtab_hdr;
1312 struct elf_link_hash_entry **sym_hashes;
1313 bfd_vma *local_got_offsets;
1314 asection *sgot;
1315 asection *splt;
1316 asection *sreloc;
1317 Elf_Internal_Rela *rel;
1318 Elf_Internal_Rela *relend;
1319
1320 dynobj = elf_hash_table (info)->dynobj;
1321 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1322 sym_hashes = elf_sym_hashes (input_bfd);
1323 local_got_offsets = elf_local_got_offsets (input_bfd);
1324
1325 sreloc = NULL;
1326 splt = NULL;
1327 sgot = NULL;
1328 if (dynobj != NULL)
1329 {
1330 splt = bfd_get_section_by_name (dynobj, ".plt");
1331 sgot = bfd_get_section_by_name (dynobj, ".got");
1332 }
1333
1334 rel = relocs;
1335 relend = relocs + input_section->reloc_count;
1336 for (; rel < relend; rel++)
1337 {
1338 int r_type;
1339 reloc_howto_type *howto;
1340 unsigned long r_symndx;
1341 struct elf_link_hash_entry *h;
1342 Elf_Internal_Sym *sym;
1343 asection *sec;
1344 bfd_vma relocation;
1345 bfd_reloc_status_type r;
1346 unsigned int indx;
1347
1348 r_type = ELF32_R_TYPE (rel->r_info);
1349 if (r_type == (int) R_386_GNU_VTINHERIT
1350 || r_type == (int) R_386_GNU_VTENTRY)
1351 continue;
1352
1353 if ((indx = (unsigned) r_type) >= R_386_standard
1354 && ((indx = (unsigned) r_type - R_386_ext_offset) - R_386_standard
1355 >= R_386_ext - R_386_standard))
1356 {
1357 bfd_set_error (bfd_error_bad_value);
1358 return false;
1359 }
1360 howto = elf_howto_table + indx;
1361
1362 r_symndx = ELF32_R_SYM (rel->r_info);
1363
1364 if (info->relocateable)
1365 {
1366 /* This is a relocateable link. We don't have to change
1367 anything, unless the reloc is against a section symbol,
1368 in which case we have to adjust according to where the
1369 section symbol winds up in the output section. */
1370 if (r_symndx < symtab_hdr->sh_info)
1371 {
1372 sym = local_syms + r_symndx;
1373 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1374 {
1375 bfd_vma val;
1376
1377 sec = local_sections[r_symndx];
1378 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1379 val += sec->output_offset + sym->st_value;
1380 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1381 }
1382 }
1383
1384 continue;
1385 }
1386
1387 /* This is a final link. */
1388 h = NULL;
1389 sym = NULL;
1390 sec = NULL;
1391 if (r_symndx < symtab_hdr->sh_info)
1392 {
1393 sym = local_syms + r_symndx;
1394 sec = local_sections[r_symndx];
1395 relocation = (sec->output_section->vma
1396 + sec->output_offset
1397 + sym->st_value);
1398 }
1399 else
1400 {
1401 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1402 while (h->root.type == bfd_link_hash_indirect
1403 || h->root.type == bfd_link_hash_warning)
1404 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1405 if (h->root.type == bfd_link_hash_defined
1406 || h->root.type == bfd_link_hash_defweak)
1407 {
1408 sec = h->root.u.def.section;
1409 if (r_type == R_386_GOTPC
1410 || (r_type == R_386_PLT32
1411 && splt != NULL
1412 && h->plt.offset != (bfd_vma) -1)
1413 || (r_type == R_386_GOT32
1414 && elf_hash_table (info)->dynamic_sections_created
1415 && (! info->shared
1416 || (! info->symbolic && h->dynindx != -1)
1417 || (h->elf_link_hash_flags
1418 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1419 || (info->shared
1420 && ((! info->symbolic && h->dynindx != -1)
1421 || (h->elf_link_hash_flags
1422 & ELF_LINK_HASH_DEF_REGULAR) == 0)
1423 && (r_type == R_386_32
1424 || r_type == R_386_PC32)
1425 && ((input_section->flags & SEC_ALLOC) != 0
1426 /* DWARF will emit R_386_32 relocations in its
1427 sections against symbols defined externally
1428 in shared libraries. We can't do anything
1429 with them here. */
1430 || ((input_section->flags & SEC_DEBUGGING) != 0
1431 && (h->elf_link_hash_flags
1432 & ELF_LINK_HASH_DEF_DYNAMIC) != 0))))
1433 {
1434 /* In these cases, we don't need the relocation
1435 value. We check specially because in some
1436 obscure cases sec->output_section will be NULL. */
1437 relocation = 0;
1438 }
1439 else if (sec->output_section == NULL)
1440 {
1441 (*_bfd_error_handler)
1442 (_("%s: warning: unresolvable relocation against symbol `%s' from %s section"),
1443 bfd_get_filename (input_bfd), h->root.root.string,
1444 bfd_get_section_name (input_bfd, input_section));
1445 relocation = 0;
1446 }
1447 else
1448 relocation = (h->root.u.def.value
1449 + sec->output_section->vma
1450 + sec->output_offset);
1451 }
1452 else if (h->root.type == bfd_link_hash_undefweak)
1453 relocation = 0;
1454 else if (info->shared && !info->symbolic
1455 && !info->no_undefined
1456 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1457 relocation = 0;
1458 else
1459 {
1460 if (! ((*info->callbacks->undefined_symbol)
1461 (info, h->root.root.string, input_bfd,
1462 input_section, rel->r_offset,
1463 (!info->shared || info->no_undefined
1464 || ELF_ST_VISIBILITY (h->other)))))
1465 return false;
1466 relocation = 0;
1467 }
1468 }
1469
1470 switch (r_type)
1471 {
1472 case R_386_GOT32:
1473 /* Relocation is to the entry for this symbol in the global
1474 offset table. */
1475 BFD_ASSERT (sgot != NULL);
1476
1477 if (h != NULL)
1478 {
1479 bfd_vma off;
1480
1481 off = h->got.offset;
1482 BFD_ASSERT (off != (bfd_vma) -1);
1483
1484 if (! elf_hash_table (info)->dynamic_sections_created
1485 || (info->shared
1486 && (info->symbolic || h->dynindx == -1)
1487 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1488 {
1489 /* This is actually a static link, or it is a
1490 -Bsymbolic link and the symbol is defined
1491 locally, or the symbol was forced to be local
1492 because of a version file. We must initialize
1493 this entry in the global offset table. Since the
1494 offset must always be a multiple of 4, we use the
1495 least significant bit to record whether we have
1496 initialized it already.
1497
1498 When doing a dynamic link, we create a .rel.got
1499 relocation entry to initialize the value. This
1500 is done in the finish_dynamic_symbol routine. */
1501 if ((off & 1) != 0)
1502 off &= ~1;
1503 else
1504 {
1505 bfd_put_32 (output_bfd, relocation,
1506 sgot->contents + off);
1507 h->got.offset |= 1;
1508 }
1509 }
1510
1511 relocation = sgot->output_offset + off;
1512 }
1513 else
1514 {
1515 bfd_vma off;
1516
1517 BFD_ASSERT (local_got_offsets != NULL
1518 && local_got_offsets[r_symndx] != (bfd_vma) -1);
1519
1520 off = local_got_offsets[r_symndx];
1521
1522 /* The offset must always be a multiple of 4. We use
1523 the least significant bit to record whether we have
1524 already generated the necessary reloc. */
1525 if ((off & 1) != 0)
1526 off &= ~1;
1527 else
1528 {
1529 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
1530
1531 if (info->shared)
1532 {
1533 asection *srelgot;
1534 Elf_Internal_Rel outrel;
1535
1536 srelgot = bfd_get_section_by_name (dynobj, ".rel.got");
1537 BFD_ASSERT (srelgot != NULL);
1538
1539 outrel.r_offset = (sgot->output_section->vma
1540 + sgot->output_offset
1541 + off);
1542 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1543 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1544 (((Elf32_External_Rel *)
1545 srelgot->contents)
1546 + srelgot->reloc_count));
1547 ++srelgot->reloc_count;
1548 }
1549
1550 local_got_offsets[r_symndx] |= 1;
1551 }
1552
1553 relocation = sgot->output_offset + off;
1554 }
1555
1556 break;
1557
1558 case R_386_GOTOFF:
1559 /* Relocation is relative to the start of the global offset
1560 table. */
1561
1562 if (sgot == NULL)
1563 {
1564 sgot = bfd_get_section_by_name (dynobj, ".got");
1565 BFD_ASSERT (sgot != NULL);
1566 }
1567
1568 /* Note that sgot->output_offset is not involved in this
1569 calculation. We always want the start of .got. If we
1570 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1571 permitted by the ABI, we might have to change this
1572 calculation. */
1573 relocation -= sgot->output_section->vma;
1574
1575 break;
1576
1577 case R_386_GOTPC:
1578 /* Use global offset table as symbol value. */
1579
1580 if (sgot == NULL)
1581 {
1582 sgot = bfd_get_section_by_name (dynobj, ".got");
1583 BFD_ASSERT (sgot != NULL);
1584 }
1585
1586 relocation = sgot->output_section->vma;
1587
1588 break;
1589
1590 case R_386_PLT32:
1591 /* Relocation is to the entry for this symbol in the
1592 procedure linkage table. */
1593
1594 /* Resolve a PLT32 reloc against a local symbol directly,
1595 without using the procedure linkage table. */
1596 if (h == NULL)
1597 break;
1598
1599 if (h->plt.offset == (bfd_vma) -1
1600 || splt == NULL)
1601 {
1602 /* We didn't make a PLT entry for this symbol. This
1603 happens when statically linking PIC code, or when
1604 using -Bsymbolic. */
1605 break;
1606 }
1607
1608 relocation = (splt->output_section->vma
1609 + splt->output_offset
1610 + h->plt.offset);
1611
1612 break;
1613
1614 case R_386_32:
1615 case R_386_PC32:
1616 if (info->shared
1617 && (input_section->flags & SEC_ALLOC) != 0
1618 && (r_type != R_386_PC32
1619 || (h != NULL
1620 && h->dynindx != -1
1621 && (! info->symbolic
1622 || (h->elf_link_hash_flags
1623 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1624 {
1625 Elf_Internal_Rel outrel;
1626 boolean skip, relocate;
1627
1628 /* When generating a shared object, these relocations
1629 are copied into the output file to be resolved at run
1630 time. */
1631
1632 if (sreloc == NULL)
1633 {
1634 const char *name;
1635
1636 name = (bfd_elf_string_from_elf_section
1637 (input_bfd,
1638 elf_elfheader (input_bfd)->e_shstrndx,
1639 elf_section_data (input_section)->rel_hdr.sh_name));
1640 if (name == NULL)
1641 return false;
1642
1643 if (strncmp (name, ".rel", 4) != 0
1644 || strcmp (bfd_get_section_name (input_bfd,
1645 input_section),
1646 name + 4) != 0)
1647 {
1648 if (input_bfd->my_archive)
1649 (*_bfd_error_handler) (_("%s(%s): bad relocation section name `%s\'"),
1650 bfd_get_filename (input_bfd->my_archive),
1651 bfd_get_filename (input_bfd),
1652 name);
1653 else
1654 (*_bfd_error_handler) (_("%s: bad relocation section name `%s\'"),
1655 bfd_get_filename (input_bfd),
1656 name);
1657 return false;
1658 }
1659
1660 sreloc = bfd_get_section_by_name (dynobj, name);
1661 BFD_ASSERT (sreloc != NULL);
1662 }
1663
1664 skip = false;
1665
1666 if (elf_section_data (input_section)->stab_info == NULL)
1667 outrel.r_offset = rel->r_offset;
1668 else
1669 {
1670 bfd_vma off;
1671
1672 off = (_bfd_stab_section_offset
1673 (output_bfd, &elf_hash_table (info)->stab_info,
1674 input_section,
1675 &elf_section_data (input_section)->stab_info,
1676 rel->r_offset));
1677 if (off == (bfd_vma) -1)
1678 skip = true;
1679 outrel.r_offset = off;
1680 }
1681
1682 outrel.r_offset += (input_section->output_section->vma
1683 + input_section->output_offset);
1684
1685 if (skip)
1686 {
1687 memset (&outrel, 0, sizeof outrel);
1688 relocate = false;
1689 }
1690 else if (r_type == R_386_PC32)
1691 {
1692 BFD_ASSERT (h != NULL && h->dynindx != -1);
1693 relocate = false;
1694 outrel.r_info = ELF32_R_INFO (h->dynindx, R_386_PC32);
1695 }
1696 else
1697 {
1698 /* h->dynindx may be -1 if this symbol was marked to
1699 become local. */
1700 if (h == NULL
1701 || ((info->symbolic || h->dynindx == -1)
1702 && (h->elf_link_hash_flags
1703 & ELF_LINK_HASH_DEF_REGULAR) != 0))
1704 {
1705 relocate = true;
1706 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1707 }
1708 else
1709 {
1710 BFD_ASSERT (h->dynindx != -1);
1711 relocate = false;
1712 outrel.r_info = ELF32_R_INFO (h->dynindx, R_386_32);
1713 }
1714 }
1715
1716 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1717 (((Elf32_External_Rel *)
1718 sreloc->contents)
1719 + sreloc->reloc_count));
1720 ++sreloc->reloc_count;
1721
1722 /* If this reloc is against an external symbol, we do
1723 not want to fiddle with the addend. Otherwise, we
1724 need to include the symbol value so that it becomes
1725 an addend for the dynamic reloc. */
1726 if (! relocate)
1727 continue;
1728 }
1729
1730 break;
1731
1732 default:
1733 break;
1734 }
1735
1736 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1737 contents, rel->r_offset,
1738 relocation, (bfd_vma) 0);
1739
1740 if (r != bfd_reloc_ok)
1741 {
1742 switch (r)
1743 {
1744 default:
1745 case bfd_reloc_outofrange:
1746 abort ();
1747 case bfd_reloc_overflow:
1748 {
1749 const char *name;
1750
1751 if (h != NULL)
1752 name = h->root.root.string;
1753 else
1754 {
1755 name = bfd_elf_string_from_elf_section (input_bfd,
1756 symtab_hdr->sh_link,
1757 sym->st_name);
1758 if (name == NULL)
1759 return false;
1760 if (*name == '\0')
1761 name = bfd_section_name (input_bfd, sec);
1762 }
1763 if (! ((*info->callbacks->reloc_overflow)
1764 (info, name, howto->name, (bfd_vma) 0,
1765 input_bfd, input_section, rel->r_offset)))
1766 return false;
1767 }
1768 break;
1769 }
1770 }
1771 }
1772
1773 return true;
1774 }
1775
1776 /* Finish up dynamic symbol handling. We set the contents of various
1777 dynamic sections here. */
1778
1779 static boolean
1780 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
1781 bfd *output_bfd;
1782 struct bfd_link_info *info;
1783 struct elf_link_hash_entry *h;
1784 Elf_Internal_Sym *sym;
1785 {
1786 bfd *dynobj;
1787
1788 dynobj = elf_hash_table (info)->dynobj;
1789
1790 if (h->plt.offset != (bfd_vma) -1)
1791 {
1792 asection *splt;
1793 asection *sgot;
1794 asection *srel;
1795 bfd_vma plt_index;
1796 bfd_vma got_offset;
1797 Elf_Internal_Rel rel;
1798
1799 /* This symbol has an entry in the procedure linkage table. Set
1800 it up. */
1801
1802 BFD_ASSERT (h->dynindx != -1);
1803
1804 splt = bfd_get_section_by_name (dynobj, ".plt");
1805 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1806 srel = bfd_get_section_by_name (dynobj, ".rel.plt");
1807 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
1808
1809 /* Get the index in the procedure linkage table which
1810 corresponds to this symbol. This is the index of this symbol
1811 in all the symbols for which we are making plt entries. The
1812 first entry in the procedure linkage table is reserved. */
1813 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1814
1815 /* Get the offset into the .got table of the entry that
1816 corresponds to this function. Each .got entry is 4 bytes.
1817 The first three are reserved. */
1818 got_offset = (plt_index + 3) * 4;
1819
1820 /* Fill in the entry in the procedure linkage table. */
1821 if (! info->shared)
1822 {
1823 memcpy (splt->contents + h->plt.offset, elf_i386_plt_entry,
1824 PLT_ENTRY_SIZE);
1825 bfd_put_32 (output_bfd,
1826 (sgot->output_section->vma
1827 + sgot->output_offset
1828 + got_offset),
1829 splt->contents + h->plt.offset + 2);
1830 }
1831 else
1832 {
1833 memcpy (splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
1834 PLT_ENTRY_SIZE);
1835 bfd_put_32 (output_bfd, got_offset,
1836 splt->contents + h->plt.offset + 2);
1837 }
1838
1839 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
1840 splt->contents + h->plt.offset + 7);
1841 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
1842 splt->contents + h->plt.offset + 12);
1843
1844 /* Fill in the entry in the global offset table. */
1845 bfd_put_32 (output_bfd,
1846 (splt->output_section->vma
1847 + splt->output_offset
1848 + h->plt.offset
1849 + 6),
1850 sgot->contents + got_offset);
1851
1852 /* Fill in the entry in the .rel.plt section. */
1853 rel.r_offset = (sgot->output_section->vma
1854 + sgot->output_offset
1855 + got_offset);
1856 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
1857 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1858 ((Elf32_External_Rel *) srel->contents
1859 + plt_index));
1860
1861 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1862 {
1863 /* Mark the symbol as undefined, rather than as defined in
1864 the .plt section. Leave the value alone. */
1865 sym->st_shndx = SHN_UNDEF;
1866 }
1867 }
1868
1869 if (h->got.offset != (bfd_vma) -1)
1870 {
1871 asection *sgot;
1872 asection *srel;
1873 Elf_Internal_Rel rel;
1874
1875 /* This symbol has an entry in the global offset table. Set it
1876 up. */
1877
1878 sgot = bfd_get_section_by_name (dynobj, ".got");
1879 srel = bfd_get_section_by_name (dynobj, ".rel.got");
1880 BFD_ASSERT (sgot != NULL && srel != NULL);
1881
1882 rel.r_offset = (sgot->output_section->vma
1883 + sgot->output_offset
1884 + (h->got.offset &~ 1));
1885
1886 /* If this is a static link, or it is a -Bsymbolic link and the
1887 symbol is defined locally or was forced to be local because
1888 of a version file, we just want to emit a RELATIVE reloc.
1889 The entry in the global offset table will already have been
1890 initialized in the relocate_section function. */
1891 if (! elf_hash_table (info)->dynamic_sections_created
1892 || (info->shared
1893 && (info->symbolic || h->dynindx == -1)
1894 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1895 {
1896 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1897 }
1898 else
1899 {
1900 BFD_ASSERT((h->got.offset & 1) == 0);
1901 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
1902 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
1903 }
1904
1905 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1906 ((Elf32_External_Rel *) srel->contents
1907 + srel->reloc_count));
1908 ++srel->reloc_count;
1909 }
1910
1911 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
1912 {
1913 asection *s;
1914 Elf_Internal_Rel rel;
1915
1916 /* This symbol needs a copy reloc. Set it up. */
1917
1918 BFD_ASSERT (h->dynindx != -1
1919 && (h->root.type == bfd_link_hash_defined
1920 || h->root.type == bfd_link_hash_defweak));
1921
1922 s = bfd_get_section_by_name (h->root.u.def.section->owner,
1923 ".rel.bss");
1924 BFD_ASSERT (s != NULL);
1925
1926 rel.r_offset = (h->root.u.def.value
1927 + h->root.u.def.section->output_section->vma
1928 + h->root.u.def.section->output_offset);
1929 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
1930 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1931 ((Elf32_External_Rel *) s->contents
1932 + s->reloc_count));
1933 ++s->reloc_count;
1934 }
1935
1936 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
1937 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
1938 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1939 sym->st_shndx = SHN_ABS;
1940
1941 return true;
1942 }
1943
1944 /* Finish up the dynamic sections. */
1945
1946 static boolean
1947 elf_i386_finish_dynamic_sections (output_bfd, info)
1948 bfd *output_bfd;
1949 struct bfd_link_info *info;
1950 {
1951 bfd *dynobj;
1952 asection *sgot;
1953 asection *sdyn;
1954
1955 dynobj = elf_hash_table (info)->dynobj;
1956
1957 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
1958 BFD_ASSERT (sgot != NULL);
1959 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
1960
1961 if (elf_hash_table (info)->dynamic_sections_created)
1962 {
1963 asection *splt;
1964 Elf32_External_Dyn *dyncon, *dynconend;
1965
1966 BFD_ASSERT (sdyn != NULL);
1967
1968 dyncon = (Elf32_External_Dyn *) sdyn->contents;
1969 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
1970 for (; dyncon < dynconend; dyncon++)
1971 {
1972 Elf_Internal_Dyn dyn;
1973 const char *name;
1974 asection *s;
1975
1976 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
1977
1978 switch (dyn.d_tag)
1979 {
1980 default:
1981 break;
1982
1983 case DT_PLTGOT:
1984 name = ".got";
1985 goto get_vma;
1986 case DT_JMPREL:
1987 name = ".rel.plt";
1988 get_vma:
1989 s = bfd_get_section_by_name (output_bfd, name);
1990 BFD_ASSERT (s != NULL);
1991 dyn.d_un.d_ptr = s->vma;
1992 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
1993 break;
1994
1995 case DT_PLTRELSZ:
1996 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
1997 BFD_ASSERT (s != NULL);
1998 if (s->_cooked_size != 0)
1999 dyn.d_un.d_val = s->_cooked_size;
2000 else
2001 dyn.d_un.d_val = s->_raw_size;
2002 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2003 break;
2004
2005 case DT_RELSZ:
2006 /* My reading of the SVR4 ABI indicates that the
2007 procedure linkage table relocs (DT_JMPREL) should be
2008 included in the overall relocs (DT_REL). This is
2009 what Solaris does. However, UnixWare can not handle
2010 that case. Therefore, we override the DT_RELSZ entry
2011 here to make it not include the JMPREL relocs. Since
2012 the linker script arranges for .rel.plt to follow all
2013 other relocation sections, we don't have to worry
2014 about changing the DT_REL entry. */
2015 s = bfd_get_section_by_name (output_bfd, ".rel.plt");
2016 if (s != NULL)
2017 {
2018 if (s->_cooked_size != 0)
2019 dyn.d_un.d_val -= s->_cooked_size;
2020 else
2021 dyn.d_un.d_val -= s->_raw_size;
2022 }
2023 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2024 break;
2025 }
2026 }
2027
2028 /* Fill in the first entry in the procedure linkage table. */
2029 splt = bfd_get_section_by_name (dynobj, ".plt");
2030 if (splt && splt->_raw_size > 0)
2031 {
2032 if (info->shared)
2033 memcpy (splt->contents, elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
2034 else
2035 {
2036 memcpy (splt->contents, elf_i386_plt0_entry, PLT_ENTRY_SIZE);
2037 bfd_put_32 (output_bfd,
2038 sgot->output_section->vma + sgot->output_offset + 4,
2039 splt->contents + 2);
2040 bfd_put_32 (output_bfd,
2041 sgot->output_section->vma + sgot->output_offset + 8,
2042 splt->contents + 8);
2043 }
2044
2045 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2046 really seem like the right value. */
2047 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
2048 }
2049 }
2050
2051 /* Fill in the first three entries in the global offset table. */
2052 if (sgot->_raw_size > 0)
2053 {
2054 if (sdyn == NULL)
2055 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
2056 else
2057 bfd_put_32 (output_bfd,
2058 sdyn->output_section->vma + sdyn->output_offset,
2059 sgot->contents);
2060 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
2061 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
2062 }
2063
2064 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
2065
2066 return true;
2067 }
2068
2069 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2070 #define TARGET_LITTLE_NAME "elf32-i386"
2071 #define ELF_ARCH bfd_arch_i386
2072 #define ELF_MACHINE_CODE EM_386
2073 #define ELF_MAXPAGESIZE 0x1000
2074
2075 #define elf_backend_can_gc_sections 1
2076 #define elf_backend_want_got_plt 1
2077 #define elf_backend_plt_readonly 1
2078 #define elf_backend_want_plt_sym 0
2079 #define elf_backend_got_header_size 12
2080 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2081
2082 #define elf_info_to_howto elf_i386_info_to_howto
2083 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2084
2085 #define bfd_elf32_bfd_final_link _bfd_elf32_gc_common_final_link
2086 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2087 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2088 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2089
2090 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2091 #define elf_backend_check_relocs elf_i386_check_relocs
2092 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
2093 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2094 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2095 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2096 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2097 #define elf_backend_relocate_section elf_i386_relocate_section
2098 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2099
2100 #include "elf32-target.h"