]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-i386.c
* elf32-i386.c: Add missing prototypes.
[thirdparty/binutils-gdb.git] / bfd / elf32-i386.c
1 /* Intel 80386/80486-specific support for 32-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 static reloc_howto_type *elf_i386_reloc_type_lookup
28 PARAMS ((bfd *, bfd_reloc_code_real_type));
29 static void elf_i386_info_to_howto
30 PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));
31 static void elf_i386_info_to_howto_rel
32 PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
33 static boolean elf_i386_is_local_label_name PARAMS ((bfd *, const char *));
34 static struct bfd_hash_entry *elf_i386_link_hash_newfunc
35 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
36 static struct bfd_link_hash_table *elf_i386_link_hash_table_create
37 PARAMS ((bfd *));
38 static boolean create_got_section PARAMS((bfd *, struct bfd_link_info *));
39 static boolean elf_i386_create_dynamic_sections
40 PARAMS((bfd *, struct bfd_link_info *));
41 static boolean elf_i386_check_relocs
42 PARAMS ((bfd *, struct bfd_link_info *, asection *,
43 const Elf_Internal_Rela *));
44 static asection *elf_i386_gc_mark_hook
45 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
46 struct elf_link_hash_entry *, Elf_Internal_Sym *));
47 static boolean elf_i386_gc_sweep_hook
48 PARAMS ((bfd *, struct bfd_link_info *, asection *,
49 const Elf_Internal_Rela *));
50 static boolean elf_i386_adjust_dynamic_symbol
51 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
52 static boolean allocate_plt_and_got_and_discard_relocs
53 PARAMS ((struct elf_link_hash_entry *, PTR));
54 static boolean elf_i386_size_dynamic_sections
55 PARAMS ((bfd *, struct bfd_link_info *));
56 static boolean elf_i386_relocate_section
57 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
58 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
59 static boolean elf_i386_finish_dynamic_symbol
60 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
61 Elf_Internal_Sym *));
62 static boolean elf_i386_finish_dynamic_sections
63 PARAMS ((bfd *, struct bfd_link_info *));
64 static boolean elf_i386_fake_sections
65 PARAMS ((bfd *, Elf32_Internal_Shdr *, asection *));
66 static enum elf_reloc_type_class elf_i386_reloc_type_class PARAMS ((int));
67 static boolean elf_i386_grok_prstatus
68 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
69 static boolean elf_i386_grok_psinfo
70 PARAMS ((bfd *abfd, Elf_Internal_Note *note));
71
72 #define USE_REL 1 /* 386 uses REL relocations instead of RELA */
73
74 #include "elf/i386.h"
75
76 static reloc_howto_type elf_howto_table[]=
77 {
78 HOWTO(R_386_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield,
79 bfd_elf_generic_reloc, "R_386_NONE",
80 true, 0x00000000, 0x00000000, false),
81 HOWTO(R_386_32, 0, 2, 32, false, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_386_32",
83 true, 0xffffffff, 0xffffffff, false),
84 HOWTO(R_386_PC32, 0, 2, 32, true, 0, complain_overflow_bitfield,
85 bfd_elf_generic_reloc, "R_386_PC32",
86 true, 0xffffffff, 0xffffffff, true),
87 HOWTO(R_386_GOT32, 0, 2, 32, false, 0, complain_overflow_bitfield,
88 bfd_elf_generic_reloc, "R_386_GOT32",
89 true, 0xffffffff, 0xffffffff, false),
90 HOWTO(R_386_PLT32, 0, 2, 32, true, 0, complain_overflow_bitfield,
91 bfd_elf_generic_reloc, "R_386_PLT32",
92 true, 0xffffffff, 0xffffffff, true),
93 HOWTO(R_386_COPY, 0, 2, 32, false, 0, complain_overflow_bitfield,
94 bfd_elf_generic_reloc, "R_386_COPY",
95 true, 0xffffffff, 0xffffffff, false),
96 HOWTO(R_386_GLOB_DAT, 0, 2, 32, false, 0, complain_overflow_bitfield,
97 bfd_elf_generic_reloc, "R_386_GLOB_DAT",
98 true, 0xffffffff, 0xffffffff, false),
99 HOWTO(R_386_JUMP_SLOT, 0, 2, 32, false, 0, complain_overflow_bitfield,
100 bfd_elf_generic_reloc, "R_386_JUMP_SLOT",
101 true, 0xffffffff, 0xffffffff, false),
102 HOWTO(R_386_RELATIVE, 0, 2, 32, false, 0, complain_overflow_bitfield,
103 bfd_elf_generic_reloc, "R_386_RELATIVE",
104 true, 0xffffffff, 0xffffffff, false),
105 HOWTO(R_386_GOTOFF, 0, 2, 32, false, 0, complain_overflow_bitfield,
106 bfd_elf_generic_reloc, "R_386_GOTOFF",
107 true, 0xffffffff, 0xffffffff, false),
108 HOWTO(R_386_GOTPC, 0, 2, 32, true, 0, complain_overflow_bitfield,
109 bfd_elf_generic_reloc, "R_386_GOTPC",
110 true, 0xffffffff, 0xffffffff, true),
111
112 /* We have a gap in the reloc numbers here.
113 R_386_standard counts the number up to this point, and
114 R_386_ext_offset is the value to subtract from a reloc type of
115 R_386_16 thru R_386_PC8 to form an index into this table. */
116 #define R_386_standard ((unsigned int) R_386_GOTPC + 1)
117 #define R_386_ext_offset ((unsigned int) R_386_16 - R_386_standard)
118
119 /* The remaining relocs are a GNU extension. */
120 HOWTO(R_386_16, 0, 1, 16, false, 0, complain_overflow_bitfield,
121 bfd_elf_generic_reloc, "R_386_16",
122 true, 0xffff, 0xffff, false),
123 HOWTO(R_386_PC16, 0, 1, 16, true, 0, complain_overflow_bitfield,
124 bfd_elf_generic_reloc, "R_386_PC16",
125 true, 0xffff, 0xffff, true),
126 HOWTO(R_386_8, 0, 0, 8, false, 0, complain_overflow_bitfield,
127 bfd_elf_generic_reloc, "R_386_8",
128 true, 0xff, 0xff, false),
129 HOWTO(R_386_PC8, 0, 0, 8, true, 0, complain_overflow_signed,
130 bfd_elf_generic_reloc, "R_386_PC8",
131 true, 0xff, 0xff, true),
132
133 /* Another gap. */
134 #define R_386_ext ((unsigned int) R_386_PC8 + 1 - R_386_ext_offset)
135 #define R_386_vt_offset ((unsigned int) R_386_GNU_VTINHERIT - R_386_ext)
136
137 /* GNU extension to record C++ vtable hierarchy. */
138 HOWTO (R_386_GNU_VTINHERIT, /* type */
139 0, /* rightshift */
140 2, /* size (0 = byte, 1 = short, 2 = long) */
141 0, /* bitsize */
142 false, /* pc_relative */
143 0, /* bitpos */
144 complain_overflow_dont, /* complain_on_overflow */
145 NULL, /* special_function */
146 "R_386_GNU_VTINHERIT", /* name */
147 false, /* partial_inplace */
148 0, /* src_mask */
149 0, /* dst_mask */
150 false),
151
152 /* GNU extension to record C++ vtable member usage. */
153 HOWTO (R_386_GNU_VTENTRY, /* type */
154 0, /* rightshift */
155 2, /* size (0 = byte, 1 = short, 2 = long) */
156 0, /* bitsize */
157 false, /* pc_relative */
158 0, /* bitpos */
159 complain_overflow_dont, /* complain_on_overflow */
160 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
161 "R_386_GNU_VTENTRY", /* name */
162 false, /* partial_inplace */
163 0, /* src_mask */
164 0, /* dst_mask */
165 false)
166
167 #define R_386_vt ((unsigned int) R_386_GNU_VTENTRY + 1 - R_386_vt_offset)
168
169 };
170
171 #ifdef DEBUG_GEN_RELOC
172 #define TRACE(str) fprintf (stderr, "i386 bfd reloc lookup %d (%s)\n", code, str)
173 #else
174 #define TRACE(str)
175 #endif
176
177 static reloc_howto_type *
178 elf_i386_reloc_type_lookup (abfd, code)
179 bfd *abfd ATTRIBUTE_UNUSED;
180 bfd_reloc_code_real_type code;
181 {
182 switch (code)
183 {
184 case BFD_RELOC_NONE:
185 TRACE ("BFD_RELOC_NONE");
186 return &elf_howto_table[(unsigned int) R_386_NONE ];
187
188 case BFD_RELOC_32:
189 TRACE ("BFD_RELOC_32");
190 return &elf_howto_table[(unsigned int) R_386_32 ];
191
192 case BFD_RELOC_CTOR:
193 TRACE ("BFD_RELOC_CTOR");
194 return &elf_howto_table[(unsigned int) R_386_32 ];
195
196 case BFD_RELOC_32_PCREL:
197 TRACE ("BFD_RELOC_PC32");
198 return &elf_howto_table[(unsigned int) R_386_PC32 ];
199
200 case BFD_RELOC_386_GOT32:
201 TRACE ("BFD_RELOC_386_GOT32");
202 return &elf_howto_table[(unsigned int) R_386_GOT32 ];
203
204 case BFD_RELOC_386_PLT32:
205 TRACE ("BFD_RELOC_386_PLT32");
206 return &elf_howto_table[(unsigned int) R_386_PLT32 ];
207
208 case BFD_RELOC_386_COPY:
209 TRACE ("BFD_RELOC_386_COPY");
210 return &elf_howto_table[(unsigned int) R_386_COPY ];
211
212 case BFD_RELOC_386_GLOB_DAT:
213 TRACE ("BFD_RELOC_386_GLOB_DAT");
214 return &elf_howto_table[(unsigned int) R_386_GLOB_DAT ];
215
216 case BFD_RELOC_386_JUMP_SLOT:
217 TRACE ("BFD_RELOC_386_JUMP_SLOT");
218 return &elf_howto_table[(unsigned int) R_386_JUMP_SLOT ];
219
220 case BFD_RELOC_386_RELATIVE:
221 TRACE ("BFD_RELOC_386_RELATIVE");
222 return &elf_howto_table[(unsigned int) R_386_RELATIVE ];
223
224 case BFD_RELOC_386_GOTOFF:
225 TRACE ("BFD_RELOC_386_GOTOFF");
226 return &elf_howto_table[(unsigned int) R_386_GOTOFF ];
227
228 case BFD_RELOC_386_GOTPC:
229 TRACE ("BFD_RELOC_386_GOTPC");
230 return &elf_howto_table[(unsigned int) R_386_GOTPC ];
231
232 /* The remaining relocs are a GNU extension. */
233 case BFD_RELOC_16:
234 TRACE ("BFD_RELOC_16");
235 return &elf_howto_table[(unsigned int) R_386_16 - R_386_ext_offset];
236
237 case BFD_RELOC_16_PCREL:
238 TRACE ("BFD_RELOC_16_PCREL");
239 return &elf_howto_table[(unsigned int) R_386_PC16 - R_386_ext_offset];
240
241 case BFD_RELOC_8:
242 TRACE ("BFD_RELOC_8");
243 return &elf_howto_table[(unsigned int) R_386_8 - R_386_ext_offset];
244
245 case BFD_RELOC_8_PCREL:
246 TRACE ("BFD_RELOC_8_PCREL");
247 return &elf_howto_table[(unsigned int) R_386_PC8 - R_386_ext_offset];
248
249 case BFD_RELOC_VTABLE_INHERIT:
250 TRACE ("BFD_RELOC_VTABLE_INHERIT");
251 return &elf_howto_table[(unsigned int) R_386_GNU_VTINHERIT
252 - R_386_vt_offset];
253
254 case BFD_RELOC_VTABLE_ENTRY:
255 TRACE ("BFD_RELOC_VTABLE_ENTRY");
256 return &elf_howto_table[(unsigned int) R_386_GNU_VTENTRY
257 - R_386_vt_offset];
258
259 default:
260 break;
261 }
262
263 TRACE ("Unknown");
264 return 0;
265 }
266
267 static void
268 elf_i386_info_to_howto (abfd, cache_ptr, dst)
269 bfd *abfd ATTRIBUTE_UNUSED;
270 arelent *cache_ptr ATTRIBUTE_UNUSED;
271 Elf32_Internal_Rela *dst ATTRIBUTE_UNUSED;
272 {
273 abort ();
274 }
275
276 static void
277 elf_i386_info_to_howto_rel (abfd, cache_ptr, dst)
278 bfd *abfd ATTRIBUTE_UNUSED;
279 arelent *cache_ptr;
280 Elf32_Internal_Rel *dst;
281 {
282 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
283 unsigned int indx;
284
285 if ((indx = r_type) >= R_386_standard
286 && ((indx = r_type - R_386_ext_offset) - R_386_standard
287 >= R_386_ext - R_386_standard)
288 && ((indx = r_type - R_386_vt_offset) - R_386_ext
289 >= R_386_vt - R_386_ext))
290 {
291 (*_bfd_error_handler) (_("%s: invalid relocation type %d"),
292 bfd_get_filename (abfd), (int) r_type);
293 indx = (unsigned int) R_386_NONE;
294 }
295 cache_ptr->howto = &elf_howto_table[indx];
296 }
297
298 /* Return whether a symbol name implies a local label. The UnixWare
299 2.1 cc generates temporary symbols that start with .X, so we
300 recognize them here. FIXME: do other SVR4 compilers also use .X?.
301 If so, we should move the .X recognition into
302 _bfd_elf_is_local_label_name. */
303
304 static boolean
305 elf_i386_is_local_label_name (abfd, name)
306 bfd *abfd;
307 const char *name;
308 {
309 if (name[0] == '.' && name[1] == 'X')
310 return true;
311
312 return _bfd_elf_is_local_label_name (abfd, name);
313 }
314 \f
315 /* Functions for the i386 ELF linker. */
316
317 /* The name of the dynamic interpreter. This is put in the .interp
318 section. */
319
320 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
321
322 /* The size in bytes of an entry in the procedure linkage table. */
323
324 #define PLT_ENTRY_SIZE 16
325
326 /* The first entry in an absolute procedure linkage table looks like
327 this. See the SVR4 ABI i386 supplement to see how this works. */
328
329 static const bfd_byte elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
330 {
331 0xff, 0x35, /* pushl contents of address */
332 0, 0, 0, 0, /* replaced with address of .got + 4. */
333 0xff, 0x25, /* jmp indirect */
334 0, 0, 0, 0, /* replaced with address of .got + 8. */
335 0, 0, 0, 0 /* pad out to 16 bytes. */
336 };
337
338 /* Subsequent entries in an absolute procedure linkage table look like
339 this. */
340
341 static const bfd_byte elf_i386_plt_entry[PLT_ENTRY_SIZE] =
342 {
343 0xff, 0x25, /* jmp indirect */
344 0, 0, 0, 0, /* replaced with address of this symbol in .got. */
345 0x68, /* pushl immediate */
346 0, 0, 0, 0, /* replaced with offset into relocation table. */
347 0xe9, /* jmp relative */
348 0, 0, 0, 0 /* replaced with offset to start of .plt. */
349 };
350
351 /* The first entry in a PIC procedure linkage table look like this. */
352
353 static const bfd_byte elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
354 {
355 0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
356 0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
357 0, 0, 0, 0 /* pad out to 16 bytes. */
358 };
359
360 /* Subsequent entries in a PIC procedure linkage table look like this. */
361
362 static const bfd_byte elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
363 {
364 0xff, 0xa3, /* jmp *offset(%ebx) */
365 0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
366 0x68, /* pushl immediate */
367 0, 0, 0, 0, /* replaced with offset into relocation table. */
368 0xe9, /* jmp relative */
369 0, 0, 0, 0 /* replaced with offset to start of .plt. */
370 };
371
372 /* The i386 linker needs to keep track of the number of relocs that it
373 decides to copy as dynamic relocs in check_relocs for each symbol.
374 This is so that it can later discard them if they are found to be
375 unnecessary. We store the information in a field extending the
376 regular ELF linker hash table. */
377
378 struct elf_i386_dyn_relocs
379 {
380 /* Next section. */
381 struct elf_i386_dyn_relocs *next;
382 /* A section in dynobj. */
383 asection *section;
384 /* Number of relocs copied in this section. */
385 bfd_size_type count;
386 };
387
388 /* i386 ELF linker hash entry. */
389
390 struct elf_i386_link_hash_entry
391 {
392 struct elf_link_hash_entry root;
393
394 /* Number of PC relative relocs copied for this symbol. */
395 struct elf_i386_dyn_relocs *dyn_relocs;
396 };
397
398 /* i386 ELF linker hash table. */
399
400 struct elf_i386_link_hash_table
401 {
402 struct elf_link_hash_table root;
403
404 /* Short-cuts to get to dynamic linker sections. */
405 asection *sgot;
406 asection *sgotplt;
407 asection *srelgot;
408 asection *splt;
409 asection *srelplt;
410 asection *sdynbss;
411 asection *srelbss;
412 };
413
414 /* Get the i386 ELF linker hash table from a link_info structure. */
415
416 #define elf_i386_hash_table(p) \
417 ((struct elf_i386_link_hash_table *) ((p)->hash))
418
419 /* Create an entry in an i386 ELF linker hash table. */
420
421 static struct bfd_hash_entry *
422 elf_i386_link_hash_newfunc (entry, table, string)
423 struct bfd_hash_entry *entry;
424 struct bfd_hash_table *table;
425 const char *string;
426 {
427 struct elf_i386_link_hash_entry *ret =
428 (struct elf_i386_link_hash_entry *) entry;
429
430 /* Allocate the structure if it has not already been allocated by a
431 subclass. */
432 if (ret == (struct elf_i386_link_hash_entry *) NULL)
433 ret = ((struct elf_i386_link_hash_entry *)
434 bfd_hash_allocate (table,
435 sizeof (struct elf_i386_link_hash_entry)));
436 if (ret == (struct elf_i386_link_hash_entry *) NULL)
437 return (struct bfd_hash_entry *) ret;
438
439 /* Call the allocation method of the superclass. */
440 ret = ((struct elf_i386_link_hash_entry *)
441 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
442 table, string));
443 if (ret != (struct elf_i386_link_hash_entry *) NULL)
444 {
445 ret->dyn_relocs = NULL;
446 }
447
448 return (struct bfd_hash_entry *) ret;
449 }
450
451 /* Create an i386 ELF linker hash table. */
452
453 static struct bfd_link_hash_table *
454 elf_i386_link_hash_table_create (abfd)
455 bfd *abfd;
456 {
457 struct elf_i386_link_hash_table *ret;
458
459 ret = ((struct elf_i386_link_hash_table *)
460 bfd_alloc (abfd, sizeof (struct elf_i386_link_hash_table)));
461 if (ret == (struct elf_i386_link_hash_table *) NULL)
462 return NULL;
463
464 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
465 elf_i386_link_hash_newfunc))
466 {
467 bfd_release (abfd, ret);
468 return NULL;
469 }
470
471 ret->sgot = NULL;
472 ret->sgotplt = NULL;
473 ret->srelgot = NULL;
474 ret->splt = NULL;
475 ret->srelplt = NULL;
476 ret->sdynbss = NULL;
477 ret->srelbss = NULL;
478
479 return &ret->root.root;
480 }
481
482 /* Create .got, .gotplt, and .rel.got sections in DYNOBJ, and set up
483 shortcuts to them in our hash table. */
484
485 static boolean
486 create_got_section (dynobj, info)
487 bfd *dynobj;
488 struct bfd_link_info *info;
489 {
490 struct elf_i386_link_hash_table *htab;
491
492 if (! _bfd_elf_create_got_section (dynobj, info))
493 return false;
494
495 htab = elf_i386_hash_table (info);
496 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
497 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
498 if (!htab->sgot || !htab->sgotplt)
499 abort ();
500
501 htab->srelgot = bfd_make_section (dynobj, ".rel.got");
502 if (htab->srelgot == NULL
503 || ! bfd_set_section_flags (dynobj, htab->srelgot,
504 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
505 | SEC_IN_MEMORY | SEC_LINKER_CREATED
506 | SEC_READONLY))
507 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
508 return false;
509 return true;
510 }
511
512 /* Create .plt, .rel.plt, .got, .got.plt, .rel.got, .dynbss, and
513 .rel.bss sections in DYNOBJ, and set up shortcuts to them in our
514 hash table. */
515
516 static boolean
517 elf_i386_create_dynamic_sections (dynobj, info)
518 bfd *dynobj;
519 struct bfd_link_info *info;
520 {
521 struct elf_i386_link_hash_table *htab;
522
523 htab = elf_i386_hash_table (info);
524 if (!htab->sgot && !create_got_section (dynobj, info))
525 return false;
526
527 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
528 return false;
529
530 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
531 htab->srelplt = bfd_get_section_by_name (dynobj, ".rel.plt");
532 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
533 if (!info->shared)
534 htab->srelbss = bfd_get_section_by_name (dynobj, ".rel.bss");
535
536 if (!htab->splt || !htab->srelplt || !htab->sdynbss
537 || (!info->shared && !htab->srelbss))
538 abort ();
539
540 return true;
541 }
542
543 /* Look through the relocs for a section during the first phase, and
544 allocate space in the global offset table or procedure linkage
545 table. */
546
547 static boolean
548 elf_i386_check_relocs (abfd, info, sec, relocs)
549 bfd *abfd;
550 struct bfd_link_info *info;
551 asection *sec;
552 const Elf_Internal_Rela *relocs;
553 {
554 struct elf_i386_link_hash_table *htab;
555 bfd *dynobj;
556 Elf_Internal_Shdr *symtab_hdr;
557 struct elf_link_hash_entry **sym_hashes;
558 bfd_signed_vma *local_got_refcounts;
559 const Elf_Internal_Rela *rel;
560 const Elf_Internal_Rela *rel_end;
561 asection *sreloc;
562
563 if (info->relocateable)
564 return true;
565
566 htab = elf_i386_hash_table (info);
567 dynobj = htab->root.dynobj;
568 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
569 sym_hashes = elf_sym_hashes (abfd);
570 local_got_refcounts = elf_local_got_refcounts (abfd);
571
572 sreloc = NULL;
573
574 rel_end = relocs + sec->reloc_count;
575 for (rel = relocs; rel < rel_end; rel++)
576 {
577 unsigned long r_symndx;
578 struct elf_link_hash_entry *h;
579
580 r_symndx = ELF32_R_SYM (rel->r_info);
581
582 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
583 {
584 if (abfd->my_archive)
585 (*_bfd_error_handler) (_("%s(%s): bad symbol index: %d"),
586 bfd_get_filename (abfd->my_archive),
587 bfd_get_filename (abfd),
588 r_symndx);
589 else
590 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
591 bfd_get_filename (abfd),
592 r_symndx);
593 return false;
594 }
595
596 if (r_symndx < symtab_hdr->sh_info)
597 h = NULL;
598 else
599 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
600
601 /* Some relocs require a global offset table. */
602 if (htab->sgot == NULL)
603 {
604 switch (ELF32_R_TYPE (rel->r_info))
605 {
606 case R_386_GOT32:
607 case R_386_GOTOFF:
608 case R_386_GOTPC:
609 if (dynobj == NULL)
610 htab->root.dynobj = dynobj = abfd;
611 if (!create_got_section (dynobj, info))
612 return false;
613 break;
614
615 default:
616 break;
617 }
618 }
619
620 switch (ELF32_R_TYPE (rel->r_info))
621 {
622 case R_386_GOT32:
623 /* This symbol requires a global offset table entry. */
624 if (h != NULL)
625 {
626 if (h->got.refcount == -1)
627 h->got.refcount = 1;
628 else
629 h->got.refcount += 1;
630 }
631 else
632 {
633 /* This is a global offset table entry for a local symbol. */
634 if (local_got_refcounts == NULL)
635 {
636 size_t size;
637
638 size = symtab_hdr->sh_info * sizeof (bfd_signed_vma);
639 local_got_refcounts = ((bfd_signed_vma *)
640 bfd_alloc (abfd, size));
641 if (local_got_refcounts == NULL)
642 return false;
643 elf_local_got_refcounts (abfd) = local_got_refcounts;
644 memset (local_got_refcounts, -1, size);
645 }
646 if (local_got_refcounts[r_symndx] == -1)
647 local_got_refcounts[r_symndx] = 1;
648 else
649 local_got_refcounts[r_symndx] += 1;
650 }
651 break;
652
653 case R_386_PLT32:
654 /* This symbol requires a procedure linkage table entry. We
655 actually build the entry in adjust_dynamic_symbol,
656 because this might be a case of linking PIC code which is
657 never referenced by a dynamic object, in which case we
658 don't need to generate a procedure linkage table entry
659 after all. */
660
661 /* If this is a local symbol, we resolve it directly without
662 creating a procedure linkage table entry. */
663 if (h == NULL)
664 continue;
665
666 if (h->plt.refcount == -1)
667 {
668 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
669 h->plt.refcount = 1;
670 }
671 else
672 h->plt.refcount += 1;
673 break;
674
675 case R_386_32:
676 case R_386_PC32:
677 if (h != NULL && !info->shared)
678 {
679 /* If this reloc is in a read-only section, we might
680 need a copy reloc. */
681 if ((sec->flags & SEC_READONLY) != 0)
682 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
683
684 /* We may need a .plt entry if the function this reloc
685 refers to is in a shared lib. */
686 if (h->plt.refcount == -1)
687 h->plt.refcount = 1;
688 else
689 h->plt.refcount += 1;
690 }
691
692 /* If we are creating a shared library, and this is a reloc
693 against a global symbol, or a non PC relative reloc
694 against a local symbol, then we need to copy the reloc
695 into the shared library. However, if we are linking with
696 -Bsymbolic, we do not need to copy a reloc against a
697 global symbol which is defined in an object we are
698 including in the link (i.e., DEF_REGULAR is set). At
699 this point we have not seen all the input files, so it is
700 possible that DEF_REGULAR is not set now but will be set
701 later (it is never cleared). In case of a weak definition,
702 DEF_REGULAR may be cleared later by a strong definition in
703 a shared library. We account for that possibility below by
704 storing information in the relocs_copied field of the hash
705 table entry. A similar situation occurs when creating
706 shared libraries and symbol visibility changes render the
707 symbol local.
708 If on the other hand, we are creating an executable, we
709 may need to keep relocations for symbols satisfied by a
710 dynamic library if we manage to avoid copy relocs for the
711 symbol. */
712 if ((info->shared
713 && (sec->flags & SEC_ALLOC) != 0
714 && (ELF32_R_TYPE (rel->r_info) != R_386_PC32
715 || (h != NULL
716 && (! info->symbolic
717 || h->root.type == bfd_link_hash_defweak
718 || (h->elf_link_hash_flags
719 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
720 || (!info->shared
721 && (sec->flags & SEC_ALLOC) != 0
722 && h != NULL
723 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
724 && (h->root.type == bfd_link_hash_defweak
725 || (h->elf_link_hash_flags
726 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
727 {
728 /* We must copy these reloc types into the output file.
729 Create a reloc section in dynobj and make room for
730 this reloc. */
731 if (dynobj == NULL)
732 htab->root.dynobj = dynobj = abfd;
733
734 if (sreloc == NULL)
735 {
736 const char *name;
737
738 name = (bfd_elf_string_from_elf_section
739 (abfd,
740 elf_elfheader (abfd)->e_shstrndx,
741 elf_section_data (sec)->rel_hdr.sh_name));
742 if (name == NULL)
743 return false;
744
745 if (strncmp (name, ".rel", 4) != 0
746 || strcmp (bfd_get_section_name (abfd, sec),
747 name + 4) != 0)
748 {
749 if (abfd->my_archive)
750 (*_bfd_error_handler) (_("%s(%s): bad relocation section name `%s\'"),
751 bfd_get_filename (abfd->my_archive),
752 bfd_get_filename (abfd),
753 name);
754 else
755 (*_bfd_error_handler) (_("%s: bad relocation section name `%s\'"),
756 bfd_get_filename (abfd),
757 name);
758 }
759
760 sreloc = bfd_get_section_by_name (dynobj, name);
761 if (sreloc == NULL)
762 {
763 flagword flags;
764
765 sreloc = bfd_make_section (dynobj, name);
766 flags = (SEC_HAS_CONTENTS | SEC_READONLY
767 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
768 if ((sec->flags & SEC_ALLOC) != 0)
769 flags |= SEC_ALLOC | SEC_LOAD;
770 if (sreloc == NULL
771 || ! bfd_set_section_flags (dynobj, sreloc, flags)
772 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
773 return false;
774 }
775 if (sec->flags & SEC_READONLY)
776 info->flags |= DF_TEXTREL;
777 }
778
779 sreloc->_raw_size += sizeof (Elf32_External_Rel);
780
781 /* If this is a global symbol, we count the number of PC
782 relative relocations we have entered for this symbol,
783 so that we can discard them later as necessary. Note
784 that this function is only called if we are using an
785 elf_i386 linker hash table, which means that h is
786 really a pointer to an elf_i386_link_hash_entry. */
787 if (!info->shared
788 || (h != NULL
789 && ELF32_R_TYPE (rel->r_info) == R_386_PC32))
790 {
791 struct elf_i386_link_hash_entry *eh;
792 struct elf_i386_dyn_relocs *p;
793
794 eh = (struct elf_i386_link_hash_entry *) h;
795
796 for (p = eh->dyn_relocs; p != NULL; p = p->next)
797 if (p->section == sreloc)
798 break;
799
800 if (p == NULL)
801 {
802 p = ((struct elf_i386_dyn_relocs *)
803 bfd_alloc (dynobj, sizeof *p));
804 if (p == NULL)
805 return false;
806 p->next = eh->dyn_relocs;
807 eh->dyn_relocs = p;
808 p->section = sreloc;
809 p->count = 0;
810 }
811
812 ++p->count;
813 }
814 }
815
816 break;
817
818 /* This relocation describes the C++ object vtable hierarchy.
819 Reconstruct it for later use during GC. */
820 case R_386_GNU_VTINHERIT:
821 if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
822 return false;
823 break;
824
825 /* This relocation describes which C++ vtable entries are actually
826 used. Record for later use during GC. */
827 case R_386_GNU_VTENTRY:
828 if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset))
829 return false;
830 break;
831
832 default:
833 break;
834 }
835 }
836
837 return true;
838 }
839
840 /* Return the section that should be marked against GC for a given
841 relocation. */
842
843 static asection *
844 elf_i386_gc_mark_hook (abfd, info, rel, h, sym)
845 bfd *abfd;
846 struct bfd_link_info *info ATTRIBUTE_UNUSED;
847 Elf_Internal_Rela *rel;
848 struct elf_link_hash_entry *h;
849 Elf_Internal_Sym *sym;
850 {
851 if (h != NULL)
852 {
853 switch (ELF32_R_TYPE (rel->r_info))
854 {
855 case R_386_GNU_VTINHERIT:
856 case R_386_GNU_VTENTRY:
857 break;
858
859 default:
860 switch (h->root.type)
861 {
862 case bfd_link_hash_defined:
863 case bfd_link_hash_defweak:
864 return h->root.u.def.section;
865
866 case bfd_link_hash_common:
867 return h->root.u.c.p->section;
868
869 default:
870 break;
871 }
872 }
873 }
874 else
875 {
876 if (!(elf_bad_symtab (abfd)
877 && ELF_ST_BIND (sym->st_info) != STB_LOCAL)
878 && ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
879 && sym->st_shndx != SHN_COMMON))
880 {
881 return bfd_section_from_elf_index (abfd, sym->st_shndx);
882 }
883 }
884
885 return NULL;
886 }
887
888 /* Update the got entry reference counts for the section being removed. */
889
890 static boolean
891 elf_i386_gc_sweep_hook (abfd, info, sec, relocs)
892 bfd *abfd;
893 struct bfd_link_info *info;
894 asection *sec;
895 const Elf_Internal_Rela *relocs;
896 {
897 Elf_Internal_Shdr *symtab_hdr;
898 struct elf_link_hash_entry **sym_hashes;
899 bfd_signed_vma *local_got_refcounts;
900 const Elf_Internal_Rela *rel, *relend;
901 unsigned long r_symndx;
902 struct elf_link_hash_entry *h;
903 bfd *dynobj;
904
905 dynobj = elf_hash_table (info)->dynobj;
906 if (dynobj == NULL)
907 return true;
908
909 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
910 sym_hashes = elf_sym_hashes (abfd);
911 local_got_refcounts = elf_local_got_refcounts (abfd);
912
913 relend = relocs + sec->reloc_count;
914 for (rel = relocs; rel < relend; rel++)
915 switch (ELF32_R_TYPE (rel->r_info))
916 {
917 case R_386_GOT32:
918 case R_386_GOTOFF:
919 case R_386_GOTPC:
920 r_symndx = ELF32_R_SYM (rel->r_info);
921 if (r_symndx >= symtab_hdr->sh_info)
922 {
923 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
924 if (h->got.refcount > 0)
925 h->got.refcount -= 1;
926 }
927 else if (local_got_refcounts != NULL)
928 {
929 if (local_got_refcounts[r_symndx] > 0)
930 local_got_refcounts[r_symndx] -= 1;
931 }
932 break;
933
934 case R_386_32:
935 case R_386_PC32:
936 if (info->shared)
937 break;
938 /* Fall through. */
939
940 case R_386_PLT32:
941 r_symndx = ELF32_R_SYM (rel->r_info);
942 if (r_symndx >= symtab_hdr->sh_info)
943 {
944 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
945 if (h->plt.refcount > 0)
946 h->plt.refcount -= 1;
947 }
948 break;
949
950 default:
951 break;
952 }
953
954 return true;
955 }
956
957 /* Adjust a symbol defined by a dynamic object and referenced by a
958 regular object. The current definition is in some section of the
959 dynamic object, but we're not including those sections. We have to
960 change the definition to something the rest of the link can
961 understand. */
962
963 static boolean
964 elf_i386_adjust_dynamic_symbol (info, h)
965 struct bfd_link_info *info;
966 struct elf_link_hash_entry *h;
967 {
968 struct elf_i386_link_hash_table *htab;
969 bfd *dynobj;
970 asection *s;
971 unsigned int power_of_two;
972
973 htab = elf_i386_hash_table (info);
974 dynobj = htab->root.dynobj;
975
976 /* If this is a function, put it in the procedure linkage table. We
977 will fill in the contents of the procedure linkage table later,
978 when we know the address of the .got section. */
979 if (h->type == STT_FUNC
980 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
981 {
982 if (h->plt.refcount <= 0
983 || (! info->shared
984 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
985 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0))
986 {
987 /* This case can occur if we saw a PLT32 reloc in an input
988 file, but the symbol was never referred to by a dynamic
989 object, or if all references were garbage collected. In
990 such a case, we don't actually need to build a procedure
991 linkage table, and we can just do a PC32 reloc instead. */
992 h->plt.refcount = (bfd_vma) -1;
993 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
994 }
995
996 return true;
997 }
998 else
999 /* It's possible that we incorrectly decided a .plt reloc was
1000 needed for an R_386_PC32 reloc to a non-function sym in
1001 check_relocs. We can't decide accurately between function and
1002 non-function syms in check-relocs; Objects loaded later in
1003 the link may change h->type. So fix it now. */
1004 h->plt.refcount = (bfd_vma) -1;
1005
1006 /* If this is a weak symbol, and there is a real definition, the
1007 processor independent code will have arranged for us to see the
1008 real definition first, and we can just use the same value. */
1009 if (h->weakdef != NULL)
1010 {
1011 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1012 || h->weakdef->root.type == bfd_link_hash_defweak);
1013 h->root.u.def.section = h->weakdef->root.u.def.section;
1014 h->root.u.def.value = h->weakdef->root.u.def.value;
1015 return true;
1016 }
1017
1018 /* This is a reference to a symbol defined by a dynamic object which
1019 is not a function. */
1020
1021 /* If we are creating a shared library, we must presume that the
1022 only references to the symbol are via the global offset table.
1023 For such cases we need not do anything here; the relocations will
1024 be handled correctly by relocate_section. */
1025 if (info->shared)
1026 return true;
1027
1028 /* If there are no references to this symbol that do not use the
1029 GOT, we don't need to generate a copy reloc. */
1030 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1031 return true;
1032
1033 /* We must allocate the symbol in our .dynbss section, which will
1034 become part of the .bss section of the executable. There will be
1035 an entry for this symbol in the .dynsym section. The dynamic
1036 object will contain position independent code, so all references
1037 from the dynamic object to this symbol will go through the global
1038 offset table. The dynamic linker will use the .dynsym entry to
1039 determine the address it must put in the global offset table, so
1040 both the dynamic object and the regular object will refer to the
1041 same memory location for the variable. */
1042
1043 s = htab->sdynbss;
1044 if (s == NULL)
1045 abort ();
1046
1047 /* We must generate a R_386_COPY reloc to tell the dynamic linker to
1048 copy the initial value out of the dynamic object and into the
1049 runtime process image. We need to remember the offset into the
1050 .rel.bss section we are going to use. */
1051 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1052 {
1053 asection *srel;
1054
1055 srel = htab->srelbss;
1056 if (srel == NULL)
1057 abort ();
1058 srel->_raw_size += sizeof (Elf32_External_Rel);
1059 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1060 }
1061
1062 /* We need to figure out the alignment required for this symbol. I
1063 have no idea how ELF linkers handle this. */
1064 power_of_two = bfd_log2 (h->size);
1065 if (power_of_two > 3)
1066 power_of_two = 3;
1067
1068 /* Apply the required alignment. */
1069 s->_raw_size = BFD_ALIGN (s->_raw_size,
1070 (bfd_size_type) (1 << power_of_two));
1071 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1072 {
1073 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1074 return false;
1075 }
1076
1077 /* Define the symbol as being at this point in the section. */
1078 h->root.u.def.section = s;
1079 h->root.u.def.value = s->_raw_size;
1080
1081 /* Increment the section size to make room for the symbol. */
1082 s->_raw_size += h->size;
1083
1084 return true;
1085 }
1086
1087 /* This is the condition under which elf_i386_finish_dynamic_symbol
1088 will be called from elflink.h. If elflink.h doesn't call our
1089 finish_dynamic_symbol routine, we'll need to do something about
1090 initializing any .plt and .got entries in elf_i386_relocate_section. */
1091 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1092 ((DYN) \
1093 && ((INFO)->shared \
1094 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1095 && ((H)->dynindx != -1 \
1096 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1097
1098 /* Allocate space in .plt, .got and associated reloc sections for
1099 global syms. Also discards space allocated for relocs in the
1100 check_relocs function that we subsequently have found to be
1101 unneeded. */
1102
1103 static boolean
1104 allocate_plt_and_got_and_discard_relocs (h, inf)
1105 struct elf_link_hash_entry *h;
1106 PTR inf;
1107 {
1108 struct bfd_link_info *info;
1109 struct elf_i386_link_hash_table *htab;
1110 asection *s;
1111 struct elf_i386_link_hash_entry *eh;
1112
1113 if (h->root.type == bfd_link_hash_indirect
1114 || h->root.type == bfd_link_hash_warning)
1115 return true;
1116
1117 info = (struct bfd_link_info *) inf;
1118 htab = elf_i386_hash_table (info);
1119
1120 if (htab->root.dynamic_sections_created
1121 && h->plt.refcount > 0)
1122 {
1123 /* Make sure this symbol is output as a dynamic symbol.
1124 Undefined weak syms won't yet be marked as dynamic. */
1125 if (h->dynindx == -1
1126 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1127 {
1128 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1129 return false;
1130 }
1131
1132 s = htab->splt;
1133 if (s == NULL)
1134 abort ();
1135
1136 /* If this is the first .plt entry, make room for the special
1137 first entry. */
1138 if (s->_raw_size == 0)
1139 s->_raw_size += PLT_ENTRY_SIZE;
1140
1141 h->plt.offset = s->_raw_size;
1142
1143 /* If this symbol is not defined in a regular file, and we are
1144 not generating a shared library, then set the symbol to this
1145 location in the .plt. This is required to make function
1146 pointers compare as equal between the normal executable and
1147 the shared library. */
1148 if (! info->shared
1149 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1150 {
1151 h->root.u.def.section = s;
1152 h->root.u.def.value = h->plt.offset;
1153 }
1154
1155 /* Make room for this entry. */
1156 s->_raw_size += PLT_ENTRY_SIZE;
1157
1158 /* We also need to make an entry in the .got.plt section, which
1159 will be placed in the .got section by the linker script. */
1160 s = htab->sgotplt;
1161 if (s == NULL)
1162 abort ();
1163 s->_raw_size += 4;
1164
1165 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1166 {
1167 /* We also need to make an entry in the .rel.plt section. */
1168 s = htab->srelplt;
1169 if (s == NULL)
1170 abort ();
1171 s->_raw_size += sizeof (Elf32_External_Rel);
1172 }
1173 }
1174 else
1175 {
1176 h->plt.offset = (bfd_vma) -1;
1177 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1178 }
1179
1180 if (h->got.refcount > 0)
1181 {
1182 boolean dyn;
1183
1184 /* Make sure this symbol is output as a dynamic symbol.
1185 Undefined weak syms won't yet be marked as dynamic. */
1186 if (h->dynindx == -1
1187 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1188 {
1189 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1190 return false;
1191 }
1192
1193 s = htab->sgot;
1194 h->got.offset = s->_raw_size;
1195 s->_raw_size += 4;
1196 dyn = htab->root.dynamic_sections_created;
1197 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1198 htab->srelgot->_raw_size += sizeof (Elf32_External_Rel);
1199 }
1200 else
1201 h->got.offset = (bfd_vma) -1;
1202
1203 /* In the shared -Bsymbolic case, discard space allocated for
1204 dynamic relocs against symbols which turn out to be defined
1205 in regular objects. For the normal shared case, discard space
1206 for relocs that have become local due to symbol visibility
1207 changes. For the non-shared case, discard space for symbols
1208 which turn out to need copy relocs or are not dynamic. */
1209
1210 eh = (struct elf_i386_link_hash_entry *) h;
1211 if (eh->dyn_relocs == NULL)
1212 return true;
1213
1214 if (!info->shared
1215 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1216 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1217 || (htab->root.dynamic_sections_created
1218 && (h->root.type == bfd_link_hash_undefweak
1219 || h->root.type == bfd_link_hash_undefined))))
1220 {
1221 /* Make sure this symbol is output as a dynamic symbol.
1222 Undefined weak syms won't yet be marked as dynamic. */
1223 if (h->dynindx == -1
1224 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1225 {
1226 if (! bfd_elf32_link_record_dynamic_symbol (info, h))
1227 return false;
1228 }
1229
1230 /* If that succeeded, we know we'll be keeping all the relocs. */
1231 if (h->dynindx != -1)
1232 return true;
1233 }
1234
1235 if (!info->shared
1236 || ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1237 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1238 || info->symbolic)))
1239 {
1240 struct elf_i386_dyn_relocs *c;
1241
1242 for (c = eh->dyn_relocs; c != NULL; c = c->next)
1243 c->section->_raw_size -= c->count * sizeof (Elf32_External_Rel);
1244 }
1245
1246 return true;
1247 }
1248
1249 /* Set the sizes of the dynamic sections. */
1250
1251 static boolean
1252 elf_i386_size_dynamic_sections (output_bfd, info)
1253 bfd *output_bfd ATTRIBUTE_UNUSED;
1254 struct bfd_link_info *info;
1255 {
1256 struct elf_i386_link_hash_table *htab;
1257 bfd *dynobj;
1258 asection *s;
1259 boolean relocs;
1260 bfd *i;
1261
1262 htab = elf_i386_hash_table (info);
1263 dynobj = htab->root.dynobj;
1264 if (dynobj == NULL)
1265 abort ();
1266
1267 if (htab->root.dynamic_sections_created)
1268 {
1269 /* Set the contents of the .interp section to the interpreter. */
1270 if (! info->shared)
1271 {
1272 s = bfd_get_section_by_name (dynobj, ".interp");
1273 if (s == NULL)
1274 abort ();
1275 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1276 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1277 }
1278 }
1279
1280 /* Set up .got offsets for local syms. */
1281 for (i = info->input_bfds; i; i = i->link_next)
1282 {
1283 bfd_signed_vma *local_got;
1284 bfd_signed_vma *end_local_got;
1285 bfd_size_type locsymcount;
1286 Elf_Internal_Shdr *symtab_hdr;
1287 asection *srel;
1288
1289 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
1290 continue;
1291
1292 local_got = elf_local_got_refcounts (i);
1293 if (!local_got)
1294 continue;
1295
1296 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1297 locsymcount = symtab_hdr->sh_info;
1298 end_local_got = local_got + locsymcount;
1299 s = htab->sgot;
1300 srel = htab->srelgot;
1301 for (; local_got < end_local_got; ++local_got)
1302 {
1303 if (*local_got > 0)
1304 {
1305 *local_got = s->_raw_size;
1306 s->_raw_size += 4;
1307 if (info->shared)
1308 srel->_raw_size += sizeof (Elf32_External_Rel);
1309 }
1310 else
1311 *local_got = (bfd_vma) -1;
1312 }
1313 }
1314
1315 /* Allocate global sym .plt and .got entries. Also discard all
1316 unneeded relocs. */
1317 elf_link_hash_traverse (&htab->root,
1318 allocate_plt_and_got_and_discard_relocs,
1319 (PTR) info);
1320
1321 /* We now have determined the sizes of the various dynamic sections.
1322 Allocate memory for them. */
1323 relocs = false;
1324 for (s = dynobj->sections; s != NULL; s = s->next)
1325 {
1326 if ((s->flags & SEC_LINKER_CREATED) == 0)
1327 continue;
1328
1329 if (s == htab->splt
1330 || s == htab->sgot
1331 || s == htab->sgotplt)
1332 {
1333 /* Strip this section if we don't need it; see the
1334 comment below. */
1335 }
1336 else if (strncmp (bfd_get_section_name (dynobj, s), ".rel", 4) == 0)
1337 {
1338 if (s->_raw_size == 0)
1339 {
1340 /* If we don't need this section, strip it from the
1341 output file. This is mostly to handle .rel.bss and
1342 .rel.plt. We must create both sections in
1343 create_dynamic_sections, because they must be created
1344 before the linker maps input sections to output
1345 sections. The linker does that before
1346 adjust_dynamic_symbol is called, and it is that
1347 function which decides whether anything needs to go
1348 into these sections. */
1349 }
1350 else
1351 {
1352 if (s != htab->srelplt)
1353 relocs = true;
1354
1355 /* We use the reloc_count field as a counter if we need
1356 to copy relocs into the output file. */
1357 s->reloc_count = 0;
1358 }
1359 }
1360 else
1361 {
1362 /* It's not one of our sections, so don't allocate space. */
1363 continue;
1364 }
1365
1366 if (s->_raw_size == 0)
1367 {
1368 _bfd_strip_section_from_output (info, s);
1369 continue;
1370 }
1371
1372 /* Allocate memory for the section contents. We use bfd_zalloc
1373 here in case unused entries are not reclaimed before the
1374 section's contents are written out. This should not happen,
1375 but this way if it does, we get a R_386_NONE reloc instead
1376 of garbage. */
1377 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1378 if (s->contents == NULL)
1379 return false;
1380 }
1381
1382 if (htab->root.dynamic_sections_created)
1383 {
1384 /* Add some entries to the .dynamic section. We fill in the
1385 values later, in elf_i386_finish_dynamic_sections, but we
1386 must add the entries now so that we get the correct size for
1387 the .dynamic section. The DT_DEBUG entry is filled in by the
1388 dynamic linker and used by the debugger. */
1389 if (! info->shared)
1390 {
1391 if (! bfd_elf32_add_dynamic_entry (info, DT_DEBUG, 0))
1392 return false;
1393 }
1394
1395 if (htab->splt->_raw_size != 0)
1396 {
1397 if (! bfd_elf32_add_dynamic_entry (info, DT_PLTGOT, 0)
1398 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTRELSZ, 0)
1399 || ! bfd_elf32_add_dynamic_entry (info, DT_PLTREL, DT_REL)
1400 || ! bfd_elf32_add_dynamic_entry (info, DT_JMPREL, 0))
1401 return false;
1402 }
1403
1404 if (relocs)
1405 {
1406 if (! bfd_elf32_add_dynamic_entry (info, DT_REL, 0)
1407 || ! bfd_elf32_add_dynamic_entry (info, DT_RELSZ, 0)
1408 || ! bfd_elf32_add_dynamic_entry (info, DT_RELENT,
1409 sizeof (Elf32_External_Rel)))
1410 return false;
1411 }
1412
1413 if ((info->flags & DF_TEXTREL) != 0)
1414 {
1415 if (! bfd_elf32_add_dynamic_entry (info, DT_TEXTREL, 0))
1416 return false;
1417 }
1418 }
1419
1420 return true;
1421 }
1422
1423 /* Relocate an i386 ELF section. */
1424
1425 static boolean
1426 elf_i386_relocate_section (output_bfd, info, input_bfd, input_section,
1427 contents, relocs, local_syms, local_sections)
1428 bfd *output_bfd;
1429 struct bfd_link_info *info;
1430 bfd *input_bfd;
1431 asection *input_section;
1432 bfd_byte *contents;
1433 Elf_Internal_Rela *relocs;
1434 Elf_Internal_Sym *local_syms;
1435 asection **local_sections;
1436 {
1437 struct elf_i386_link_hash_table *htab;
1438 bfd *dynobj;
1439 Elf_Internal_Shdr *symtab_hdr;
1440 struct elf_link_hash_entry **sym_hashes;
1441 bfd_vma *local_got_offsets;
1442 asection *sreloc;
1443 Elf_Internal_Rela *rel;
1444 Elf_Internal_Rela *relend;
1445
1446 htab = elf_i386_hash_table (info);
1447 dynobj = htab->root.dynobj;
1448 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1449 sym_hashes = elf_sym_hashes (input_bfd);
1450 local_got_offsets = elf_local_got_offsets (input_bfd);
1451
1452 sreloc = NULL;
1453 rel = relocs;
1454 relend = relocs + input_section->reloc_count;
1455 for (; rel < relend; rel++)
1456 {
1457 int r_type;
1458 reloc_howto_type *howto;
1459 unsigned long r_symndx;
1460 struct elf_link_hash_entry *h;
1461 Elf_Internal_Sym *sym;
1462 asection *sec;
1463 bfd_vma off;
1464 bfd_vma relocation;
1465 boolean unresolved_reloc;
1466 bfd_reloc_status_type r;
1467 unsigned int indx;
1468
1469 r_type = ELF32_R_TYPE (rel->r_info);
1470 if (r_type == (int) R_386_GNU_VTINHERIT
1471 || r_type == (int) R_386_GNU_VTENTRY)
1472 continue;
1473
1474 if ((indx = (unsigned) r_type) >= R_386_standard
1475 && ((indx = (unsigned) r_type - R_386_ext_offset) - R_386_standard
1476 >= R_386_ext - R_386_standard))
1477 {
1478 bfd_set_error (bfd_error_bad_value);
1479 return false;
1480 }
1481 howto = elf_howto_table + indx;
1482
1483 r_symndx = ELF32_R_SYM (rel->r_info);
1484
1485 if (info->relocateable)
1486 {
1487 /* This is a relocateable link. We don't have to change
1488 anything, unless the reloc is against a section symbol,
1489 in which case we have to adjust according to where the
1490 section symbol winds up in the output section. */
1491 if (r_symndx < symtab_hdr->sh_info)
1492 {
1493 sym = local_syms + r_symndx;
1494 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1495 {
1496 bfd_vma val;
1497
1498 sec = local_sections[r_symndx];
1499 val = bfd_get_32 (input_bfd, contents + rel->r_offset);
1500 val += sec->output_offset + sym->st_value;
1501 bfd_put_32 (input_bfd, val, contents + rel->r_offset);
1502 }
1503 }
1504
1505 continue;
1506 }
1507
1508 /* This is a final link. */
1509 h = NULL;
1510 sym = NULL;
1511 sec = NULL;
1512 unresolved_reloc = false;
1513 if (r_symndx < symtab_hdr->sh_info)
1514 {
1515 sym = local_syms + r_symndx;
1516 sec = local_sections[r_symndx];
1517 relocation = (sec->output_section->vma
1518 + sec->output_offset
1519 + sym->st_value);
1520 }
1521 else
1522 {
1523 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1524 while (h->root.type == bfd_link_hash_indirect
1525 || h->root.type == bfd_link_hash_warning)
1526 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1527
1528 relocation = 0;
1529 if (h->root.type == bfd_link_hash_defined
1530 || h->root.type == bfd_link_hash_defweak)
1531 {
1532 sec = h->root.u.def.section;
1533 if (sec->output_section == NULL)
1534 /* Set a flag that will be cleared later if we find a
1535 relocation value for this symbol. output_section
1536 is typically NULL for symbols satisfied by a shared
1537 library. */
1538 unresolved_reloc = true;
1539 else
1540 relocation = (h->root.u.def.value
1541 + sec->output_section->vma
1542 + sec->output_offset);
1543 }
1544 else if (h->root.type == bfd_link_hash_undefweak)
1545 ;
1546 else if (info->shared && !info->symbolic
1547 && !info->no_undefined
1548 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1549 ;
1550 else
1551 {
1552 if (! ((*info->callbacks->undefined_symbol)
1553 (info, h->root.root.string, input_bfd,
1554 input_section, rel->r_offset,
1555 (!info->shared || info->no_undefined
1556 || ELF_ST_VISIBILITY (h->other)))))
1557 return false;
1558 }
1559 }
1560
1561 switch (r_type)
1562 {
1563 case R_386_GOT32:
1564 /* Relocation is to the entry for this symbol in the global
1565 offset table. */
1566 if (htab->sgot == NULL)
1567 abort ();
1568
1569 if (h != NULL)
1570 {
1571 boolean dyn;
1572
1573 off = h->got.offset;
1574 dyn = htab->root.dynamic_sections_created;
1575 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1576 || (info->shared
1577 && (info->symbolic
1578 || h->dynindx == -1
1579 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1580 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
1581 {
1582 /* This is actually a static link, or it is a
1583 -Bsymbolic link and the symbol is defined
1584 locally, or the symbol was forced to be local
1585 because of a version file. We must initialize
1586 this entry in the global offset table. Since the
1587 offset must always be a multiple of 4, we use the
1588 least significant bit to record whether we have
1589 initialized it already.
1590
1591 When doing a dynamic link, we create a .rel.got
1592 relocation entry to initialize the value. This
1593 is done in the finish_dynamic_symbol routine. */
1594 if ((off & 1) != 0)
1595 off &= ~1;
1596 else
1597 {
1598 bfd_put_32 (output_bfd, relocation,
1599 htab->sgot->contents + off);
1600 h->got.offset |= 1;
1601 }
1602 }
1603 else
1604 unresolved_reloc = false;
1605 }
1606 else
1607 {
1608 if (local_got_offsets == NULL)
1609 abort ();
1610
1611 off = local_got_offsets[r_symndx];
1612
1613 /* The offset must always be a multiple of 4. We use
1614 the least significant bit to record whether we have
1615 already generated the necessary reloc. */
1616 if ((off & 1) != 0)
1617 off &= ~1;
1618 else
1619 {
1620 bfd_put_32 (output_bfd, relocation,
1621 htab->sgot->contents + off);
1622
1623 if (info->shared)
1624 {
1625 asection *srelgot;
1626 Elf_Internal_Rel outrel;
1627
1628 srelgot = htab->srelgot;
1629 if (srelgot == NULL)
1630 abort ();
1631
1632 outrel.r_offset = (htab->sgot->output_section->vma
1633 + htab->sgot->output_offset
1634 + off);
1635 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1636 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1637 (((Elf32_External_Rel *)
1638 srelgot->contents)
1639 + srelgot->reloc_count));
1640 ++srelgot->reloc_count;
1641 }
1642
1643 local_got_offsets[r_symndx] |= 1;
1644 }
1645 }
1646
1647 if (off >= (bfd_vma) -2)
1648 abort ();
1649
1650 relocation = htab->sgot->output_offset + off;
1651 break;
1652
1653 case R_386_GOTOFF:
1654 /* Relocation is relative to the start of the global offset
1655 table. */
1656
1657 /* Note that sgot->output_offset is not involved in this
1658 calculation. We always want the start of .got. If we
1659 defined _GLOBAL_OFFSET_TABLE in a different way, as is
1660 permitted by the ABI, we might have to change this
1661 calculation. */
1662 relocation -= htab->sgot->output_section->vma;
1663 break;
1664
1665 case R_386_GOTPC:
1666 /* Use global offset table as symbol value. */
1667 relocation = htab->sgot->output_section->vma;
1668 unresolved_reloc = false;
1669 break;
1670
1671 case R_386_PLT32:
1672 /* Relocation is to the entry for this symbol in the
1673 procedure linkage table. */
1674
1675 /* Resolve a PLT32 reloc against a local symbol directly,
1676 without using the procedure linkage table. */
1677 if (h == NULL)
1678 break;
1679
1680 if (h->plt.offset == (bfd_vma) -1
1681 || htab->splt == NULL)
1682 {
1683 /* We didn't make a PLT entry for this symbol. This
1684 happens when statically linking PIC code, or when
1685 using -Bsymbolic. */
1686 break;
1687 }
1688
1689 relocation = (htab->splt->output_section->vma
1690 + htab->splt->output_offset
1691 + h->plt.offset);
1692 unresolved_reloc = false;
1693 break;
1694
1695 case R_386_32:
1696 case R_386_PC32:
1697 if ((info->shared
1698 && (input_section->flags & SEC_ALLOC) != 0
1699 && (r_type != R_386_PC32
1700 || (h != NULL
1701 && h->dynindx != -1
1702 && (! info->symbolic
1703 || (h->elf_link_hash_flags
1704 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
1705 || (!info->shared
1706 && (input_section->flags & SEC_ALLOC) != 0
1707 && h != NULL
1708 && h->dynindx != -1
1709 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1710 && ((h->elf_link_hash_flags
1711 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1712 || h->root.type == bfd_link_hash_undefweak
1713 || h->root.type == bfd_link_hash_undefined)))
1714 {
1715 Elf_Internal_Rel outrel;
1716 boolean skip, relocate;
1717
1718 /* When generating a shared object, these relocations
1719 are copied into the output file to be resolved at run
1720 time. */
1721
1722 if (sreloc == NULL)
1723 {
1724 const char *name;
1725
1726 name = (bfd_elf_string_from_elf_section
1727 (input_bfd,
1728 elf_elfheader (input_bfd)->e_shstrndx,
1729 elf_section_data (input_section)->rel_hdr.sh_name));
1730 if (name == NULL)
1731 return false;
1732
1733 if (strncmp (name, ".rel", 4) != 0
1734 || strcmp (bfd_get_section_name (input_bfd,
1735 input_section),
1736 name + 4) != 0)
1737 {
1738 if (input_bfd->my_archive)
1739 (*_bfd_error_handler)\
1740 (_("%s(%s): bad relocation section name `%s\'"),
1741 bfd_get_filename (input_bfd->my_archive),
1742 bfd_get_filename (input_bfd),
1743 name);
1744 else
1745 (*_bfd_error_handler)
1746 (_("%s: bad relocation section name `%s\'"),
1747 bfd_get_filename (input_bfd),
1748 name);
1749 return false;
1750 }
1751
1752 sreloc = bfd_get_section_by_name (dynobj, name);
1753 if (sreloc == NULL)
1754 abort ();
1755 }
1756
1757 skip = false;
1758
1759 if (elf_section_data (input_section)->stab_info == NULL)
1760 outrel.r_offset = rel->r_offset;
1761 else
1762 {
1763 bfd_vma off;
1764
1765 off = (_bfd_stab_section_offset
1766 (output_bfd, htab->root.stab_info, input_section,
1767 &elf_section_data (input_section)->stab_info,
1768 rel->r_offset));
1769 if (off == (bfd_vma) -1)
1770 skip = true;
1771 outrel.r_offset = off;
1772 }
1773
1774 outrel.r_offset += (input_section->output_section->vma
1775 + input_section->output_offset);
1776
1777 if (skip)
1778 {
1779 memset (&outrel, 0, sizeof outrel);
1780 relocate = false;
1781 }
1782 else if (h != NULL
1783 && h->dynindx != -1
1784 && (r_type == R_386_PC32
1785 || !info->shared
1786 || !info->symbolic
1787 || (h->elf_link_hash_flags
1788 & ELF_LINK_HASH_DEF_REGULAR) == 0))
1789
1790 {
1791 relocate = false;
1792 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
1793 }
1794 else
1795 {
1796 /* This symbol is local, or marked to become local. */
1797 relocate = true;
1798 outrel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1799 }
1800
1801 bfd_elf32_swap_reloc_out (output_bfd, &outrel,
1802 (((Elf32_External_Rel *)
1803 sreloc->contents)
1804 + sreloc->reloc_count));
1805 ++sreloc->reloc_count;
1806
1807 /* If this reloc is against an external symbol, we do
1808 not want to fiddle with the addend. Otherwise, we
1809 need to include the symbol value so that it becomes
1810 an addend for the dynamic reloc. */
1811 if (! relocate)
1812 continue;
1813 }
1814
1815 break;
1816
1817 default:
1818 break;
1819 }
1820
1821 /* FIXME: Why do we allow debugging sections to escape this error?
1822 More importantly, why do we not emit dynamic relocs for
1823 R_386_32 above in debugging sections (which are ! SEC_ALLOC)?
1824 If we had emitted the dynamic reloc, we could remove the
1825 fudge here. */
1826 if (unresolved_reloc
1827 && !(info->shared
1828 && (input_section->flags & SEC_DEBUGGING) != 0
1829 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
1830 (*_bfd_error_handler)
1831 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
1832 bfd_get_filename (input_bfd),
1833 bfd_get_section_name (input_bfd, input_section),
1834 (long) rel->r_offset,
1835 h->root.root.string);
1836
1837 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1838 contents, rel->r_offset,
1839 relocation, (bfd_vma) 0);
1840
1841 switch (r)
1842 {
1843 case bfd_reloc_ok:
1844 break;
1845
1846 case bfd_reloc_overflow:
1847 {
1848 const char *name;
1849
1850 if (h != NULL)
1851 name = h->root.root.string;
1852 else
1853 {
1854 name = bfd_elf_string_from_elf_section (input_bfd,
1855 symtab_hdr->sh_link,
1856 sym->st_name);
1857 if (name == NULL)
1858 return false;
1859 if (*name == '\0')
1860 name = bfd_section_name (input_bfd, sec);
1861 }
1862 if (! ((*info->callbacks->reloc_overflow)
1863 (info, name, howto->name, (bfd_vma) 0,
1864 input_bfd, input_section, rel->r_offset)))
1865 return false;
1866 }
1867 break;
1868
1869 default:
1870 case bfd_reloc_outofrange:
1871 abort ();
1872 break;
1873 }
1874 }
1875
1876 return true;
1877 }
1878
1879 /* Finish up dynamic symbol handling. We set the contents of various
1880 dynamic sections here. */
1881
1882 static boolean
1883 elf_i386_finish_dynamic_symbol (output_bfd, info, h, sym)
1884 bfd *output_bfd;
1885 struct bfd_link_info *info;
1886 struct elf_link_hash_entry *h;
1887 Elf_Internal_Sym *sym;
1888 {
1889 struct elf_i386_link_hash_table *htab;
1890 bfd *dynobj;
1891
1892 htab = elf_i386_hash_table (info);
1893 dynobj = htab->root.dynobj;
1894
1895 if (h->plt.offset != (bfd_vma) -1)
1896 {
1897 bfd_vma plt_index;
1898 bfd_vma got_offset;
1899 Elf_Internal_Rel rel;
1900
1901 /* This symbol has an entry in the procedure linkage table. Set
1902 it up. */
1903
1904 if (h->dynindx == -1
1905 || htab->splt == NULL
1906 || htab->sgotplt == NULL
1907 || htab->srelplt == NULL)
1908 abort ();
1909
1910 /* Get the index in the procedure linkage table which
1911 corresponds to this symbol. This is the index of this symbol
1912 in all the symbols for which we are making plt entries. The
1913 first entry in the procedure linkage table is reserved. */
1914 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
1915
1916 /* Get the offset into the .got table of the entry that
1917 corresponds to this function. Each .got entry is 4 bytes.
1918 The first three are reserved. */
1919 got_offset = (plt_index + 3) * 4;
1920
1921 /* Fill in the entry in the procedure linkage table. */
1922 if (! info->shared)
1923 {
1924 memcpy (htab->splt->contents + h->plt.offset, elf_i386_plt_entry,
1925 PLT_ENTRY_SIZE);
1926 bfd_put_32 (output_bfd,
1927 (htab->sgotplt->output_section->vma
1928 + htab->sgotplt->output_offset
1929 + got_offset),
1930 htab->splt->contents + h->plt.offset + 2);
1931 }
1932 else
1933 {
1934 memcpy (htab->splt->contents + h->plt.offset, elf_i386_pic_plt_entry,
1935 PLT_ENTRY_SIZE);
1936 bfd_put_32 (output_bfd, got_offset,
1937 htab->splt->contents + h->plt.offset + 2);
1938 }
1939
1940 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rel),
1941 htab->splt->contents + h->plt.offset + 7);
1942 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
1943 htab->splt->contents + h->plt.offset + 12);
1944
1945 /* Fill in the entry in the global offset table. */
1946 bfd_put_32 (output_bfd,
1947 (htab->splt->output_section->vma
1948 + htab->splt->output_offset
1949 + h->plt.offset
1950 + 6),
1951 htab->sgotplt->contents + got_offset);
1952
1953 /* Fill in the entry in the .rel.plt section. */
1954 rel.r_offset = (htab->sgotplt->output_section->vma
1955 + htab->sgotplt->output_offset
1956 + got_offset);
1957 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_JUMP_SLOT);
1958 bfd_elf32_swap_reloc_out (output_bfd, &rel,
1959 ((Elf32_External_Rel *) htab->srelplt->contents
1960 + plt_index));
1961
1962 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1963 {
1964 /* Mark the symbol as undefined, rather than as defined in
1965 the .plt section. Leave the value alone. */
1966 sym->st_shndx = SHN_UNDEF;
1967 }
1968 }
1969
1970 if (h->got.offset != (bfd_vma) -1)
1971 {
1972 Elf_Internal_Rel rel;
1973
1974 /* This symbol has an entry in the global offset table. Set it
1975 up. */
1976
1977 if (htab->sgot == NULL || htab->srelgot == NULL)
1978 abort ();
1979
1980 rel.r_offset = (htab->sgot->output_section->vma
1981 + htab->sgot->output_offset
1982 + (h->got.offset &~ 1));
1983
1984 /* If this is a static link, or it is a -Bsymbolic link and the
1985 symbol is defined locally or was forced to be local because
1986 of a version file, we just want to emit a RELATIVE reloc.
1987 The entry in the global offset table will already have been
1988 initialized in the relocate_section function. */
1989 if (info->shared
1990 && (info->symbolic
1991 || h->dynindx == -1
1992 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1993 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1994 {
1995 BFD_ASSERT((h->got.offset & 1) != 0);
1996 rel.r_info = ELF32_R_INFO (0, R_386_RELATIVE);
1997 }
1998 else
1999 {
2000 BFD_ASSERT((h->got.offset & 1) == 0);
2001 bfd_put_32 (output_bfd, (bfd_vma) 0,
2002 htab->sgot->contents + h->got.offset);
2003 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_GLOB_DAT);
2004 }
2005
2006 bfd_elf32_swap_reloc_out (output_bfd, &rel,
2007 ((Elf32_External_Rel *) htab->srelgot->contents
2008 + htab->srelgot->reloc_count));
2009 ++htab->srelgot->reloc_count;
2010 }
2011
2012 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2013 {
2014 Elf_Internal_Rel rel;
2015
2016 /* This symbol needs a copy reloc. Set it up. */
2017
2018 if (h->dynindx == -1
2019 || (h->root.type != bfd_link_hash_defined
2020 && h->root.type != bfd_link_hash_defweak)
2021 || htab->srelbss == NULL)
2022 abort ();
2023
2024 rel.r_offset = (h->root.u.def.value
2025 + h->root.u.def.section->output_section->vma
2026 + h->root.u.def.section->output_offset);
2027 rel.r_info = ELF32_R_INFO (h->dynindx, R_386_COPY);
2028 bfd_elf32_swap_reloc_out (output_bfd, &rel,
2029 ((Elf32_External_Rel *) htab->srelbss->contents
2030 + htab->srelbss->reloc_count));
2031 ++htab->srelbss->reloc_count;
2032 }
2033
2034 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2035 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2036 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2037 sym->st_shndx = SHN_ABS;
2038
2039 return true;
2040 }
2041
2042 /* Finish up the dynamic sections. */
2043
2044 static boolean
2045 elf_i386_finish_dynamic_sections (output_bfd, info)
2046 bfd *output_bfd;
2047 struct bfd_link_info *info;
2048 {
2049 struct elf_i386_link_hash_table *htab;
2050 bfd *dynobj;
2051 asection *sdyn;
2052
2053 htab = elf_i386_hash_table (info);
2054 dynobj = htab->root.dynobj;
2055 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2056
2057 if (htab->root.dynamic_sections_created)
2058 {
2059 Elf32_External_Dyn *dyncon, *dynconend;
2060
2061 if (sdyn == NULL || htab->sgot == NULL)
2062 abort ();
2063
2064 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2065 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2066 for (; dyncon < dynconend; dyncon++)
2067 {
2068 Elf_Internal_Dyn dyn;
2069
2070 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2071
2072 switch (dyn.d_tag)
2073 {
2074 default:
2075 break;
2076
2077 case DT_PLTGOT:
2078 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2079 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2080 break;
2081
2082 case DT_JMPREL:
2083 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2084 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2085 break;
2086
2087 case DT_PLTRELSZ:
2088 if (htab->srelplt->output_section->_cooked_size != 0)
2089 dyn.d_un.d_val = htab->srelplt->output_section->_cooked_size;
2090 else
2091 dyn.d_un.d_val = htab->srelplt->output_section->_raw_size;
2092 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2093 break;
2094
2095 case DT_RELSZ:
2096 /* My reading of the SVR4 ABI indicates that the
2097 procedure linkage table relocs (DT_JMPREL) should be
2098 included in the overall relocs (DT_REL). This is
2099 what Solaris does. However, UnixWare can not handle
2100 that case. Therefore, we override the DT_RELSZ entry
2101 here to make it not include the JMPREL relocs. Since
2102 the linker script arranges for .rel.plt to follow all
2103 other relocation sections, we don't have to worry
2104 about changing the DT_REL entry. */
2105 if (htab->srelplt != NULL)
2106 {
2107 if (htab->srelplt->output_section->_cooked_size != 0)
2108 dyn.d_un.d_val -= htab->srelplt->output_section->_cooked_size;
2109 else
2110 dyn.d_un.d_val -= htab->srelplt->output_section->_raw_size;
2111 }
2112 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2113 break;
2114 }
2115 }
2116
2117 /* Fill in the first entry in the procedure linkage table. */
2118 if (htab->splt && htab->splt->_raw_size > 0)
2119 {
2120 if (info->shared)
2121 memcpy (htab->splt->contents,
2122 elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
2123 else
2124 {
2125 memcpy (htab->splt->contents,
2126 elf_i386_plt0_entry, PLT_ENTRY_SIZE);
2127 bfd_put_32 (output_bfd,
2128 (htab->sgotplt->output_section->vma
2129 + htab->sgotplt->output_offset
2130 + 4),
2131 htab->splt->contents + 2);
2132 bfd_put_32 (output_bfd,
2133 (htab->sgotplt->output_section->vma
2134 + htab->sgotplt->output_offset
2135 + 8),
2136 htab->splt->contents + 8);
2137 }
2138
2139 /* UnixWare sets the entsize of .plt to 4, although that doesn't
2140 really seem like the right value. */
2141 elf_section_data (htab->splt->output_section)
2142 ->this_hdr.sh_entsize = 4;
2143 }
2144 }
2145
2146 if (htab->sgotplt)
2147 {
2148 /* Fill in the first three entries in the global offset table. */
2149 if (htab->sgotplt->_raw_size > 0)
2150 {
2151 bfd_put_32 (output_bfd,
2152 (sdyn == NULL ? (bfd_vma) 0
2153 : sdyn->output_section->vma + sdyn->output_offset),
2154 htab->sgotplt->contents);
2155 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 4);
2156 bfd_put_32 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + 8);
2157 }
2158
2159 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize = 4;
2160 }
2161 return true;
2162 }
2163
2164 /* Set the correct type for an x86 ELF section. We do this by the
2165 section name, which is a hack, but ought to work. */
2166
2167 static boolean
2168 elf_i386_fake_sections (abfd, hdr, sec)
2169 bfd *abfd ATTRIBUTE_UNUSED;
2170 Elf32_Internal_Shdr *hdr;
2171 asection *sec;
2172 {
2173 register const char *name;
2174
2175 name = bfd_get_section_name (abfd, sec);
2176
2177 if (strcmp (name, ".reloc") == 0)
2178 /*
2179 * This is an ugly, but unfortunately necessary hack that is
2180 * needed when producing EFI binaries on x86. It tells
2181 * elf.c:elf_fake_sections() not to consider ".reloc" as a section
2182 * containing ELF relocation info. We need this hack in order to
2183 * be able to generate ELF binaries that can be translated into
2184 * EFI applications (which are essentially COFF objects). Those
2185 * files contain a COFF ".reloc" section inside an ELFNN object,
2186 * which would normally cause BFD to segfault because it would
2187 * attempt to interpret this section as containing relocation
2188 * entries for section "oc". With this hack enabled, ".reloc"
2189 * will be treated as a normal data section, which will avoid the
2190 * segfault. However, you won't be able to create an ELFNN binary
2191 * with a section named "oc" that needs relocations, but that's
2192 * the kind of ugly side-effects you get when detecting section
2193 * types based on their names... In practice, this limitation is
2194 * unlikely to bite.
2195 */
2196 hdr->sh_type = SHT_PROGBITS;
2197
2198 return true;
2199 }
2200
2201 static enum elf_reloc_type_class
2202 elf_i386_reloc_type_class (type)
2203 int type;
2204 {
2205 switch (type)
2206 {
2207 case R_386_RELATIVE:
2208 return reloc_class_relative;
2209 case R_386_JUMP_SLOT:
2210 return reloc_class_plt;
2211 case R_386_COPY:
2212 return reloc_class_copy;
2213 default:
2214 return reloc_class_normal;
2215 }
2216 }
2217
2218 /* Support for core dump NOTE sections */
2219 static boolean
2220 elf_i386_grok_prstatus (abfd, note)
2221 bfd *abfd;
2222 Elf_Internal_Note *note;
2223 {
2224 int offset;
2225 int raw_size;
2226
2227 switch (note->descsz)
2228 {
2229 default:
2230 return false;
2231
2232 case 144: /* Linux/i386 */
2233 /* pr_cursig */
2234 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2235
2236 /* pr_pid */
2237 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
2238
2239 /* pr_reg */
2240 offset = 72;
2241 raw_size = 68;
2242
2243 break;
2244 }
2245
2246 /* Make a ".reg/999" section. */
2247 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2248 raw_size, note->descpos + offset);
2249 }
2250
2251 static boolean
2252 elf_i386_grok_psinfo (abfd, note)
2253 bfd *abfd;
2254 Elf_Internal_Note *note;
2255 {
2256 switch (note->descsz)
2257 {
2258 default:
2259 return false;
2260
2261 case 128: /* Linux/MIPS elf_prpsinfo */
2262 elf_tdata (abfd)->core_program
2263 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2264 elf_tdata (abfd)->core_command
2265 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2266 }
2267
2268 /* Note that for some reason, a spurious space is tacked
2269 onto the end of the args in some (at least one anyway)
2270 implementations, so strip it off if it exists. */
2271
2272 {
2273 char *command = elf_tdata (abfd)->core_command;
2274 int n = strlen (command);
2275
2276 if (0 < n && command[n - 1] == ' ')
2277 command[n - 1] = '\0';
2278 }
2279
2280 return true;
2281 }
2282
2283 #define TARGET_LITTLE_SYM bfd_elf32_i386_vec
2284 #define TARGET_LITTLE_NAME "elf32-i386"
2285 #define ELF_ARCH bfd_arch_i386
2286 #define ELF_MACHINE_CODE EM_386
2287 #define ELF_MAXPAGESIZE 0x1000
2288
2289 #define elf_backend_can_gc_sections 1
2290 #define elf_backend_want_got_plt 1
2291 #define elf_backend_plt_readonly 1
2292 #define elf_backend_want_plt_sym 0
2293 #define elf_backend_got_header_size 12
2294 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2295
2296 #define elf_info_to_howto elf_i386_info_to_howto
2297 #define elf_info_to_howto_rel elf_i386_info_to_howto_rel
2298
2299 #define bfd_elf32_bfd_is_local_label_name elf_i386_is_local_label_name
2300 #define bfd_elf32_bfd_link_hash_table_create elf_i386_link_hash_table_create
2301 #define bfd_elf32_bfd_reloc_type_lookup elf_i386_reloc_type_lookup
2302
2303 #define elf_backend_adjust_dynamic_symbol elf_i386_adjust_dynamic_symbol
2304 #define elf_backend_check_relocs elf_i386_check_relocs
2305 #define elf_backend_create_dynamic_sections elf_i386_create_dynamic_sections
2306 #define elf_backend_finish_dynamic_sections elf_i386_finish_dynamic_sections
2307 #define elf_backend_finish_dynamic_symbol elf_i386_finish_dynamic_symbol
2308 #define elf_backend_gc_mark_hook elf_i386_gc_mark_hook
2309 #define elf_backend_gc_sweep_hook elf_i386_gc_sweep_hook
2310 #define elf_backend_relocate_section elf_i386_relocate_section
2311 #define elf_backend_size_dynamic_sections elf_i386_size_dynamic_sections
2312 #define elf_backend_fake_sections elf_i386_fake_sections
2313 #define elf_backend_grok_prstatus elf_i386_grok_prstatus
2314 #define elf_backend_grok_psinfo elf_i386_grok_psinfo
2315 #define elf_backend_reloc_type_class elf_i386_reloc_type_class
2316
2317 #include "elf32-target.h"