]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-m68k.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / bfd / elf32-m68k.c
1 /* Motorola 68k series support for 32-bit ELF
2 Copyright (C) 1993-2020 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/m68k.h"
27 #include "opcode/m68k.h"
28 #include "cpu-m68k.h"
29 #include "elf32-m68k.h"
30
31 static bfd_boolean
32 elf_m68k_discard_copies (struct elf_link_hash_entry *, void *);
33
34 static reloc_howto_type howto_table[] =
35 {
36 HOWTO(R_68K_NONE, 0, 3, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE),
37 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE),
38 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE),
39 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE),
40 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE),
41 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE),
42 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE),
43 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE),
44 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE),
45 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE),
46 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE),
47 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE),
48 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE),
49 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE),
50 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE),
51 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE),
52 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE),
53 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE),
54 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE),
55 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE),
56 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE),
57 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE),
58 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE),
59 /* GNU extension to record C++ vtable hierarchy. */
60 HOWTO (R_68K_GNU_VTINHERIT, /* type */
61 0, /* rightshift */
62 2, /* size (0 = byte, 1 = short, 2 = long) */
63 0, /* bitsize */
64 FALSE, /* pc_relative */
65 0, /* bitpos */
66 complain_overflow_dont, /* complain_on_overflow */
67 NULL, /* special_function */
68 "R_68K_GNU_VTINHERIT", /* name */
69 FALSE, /* partial_inplace */
70 0, /* src_mask */
71 0, /* dst_mask */
72 FALSE),
73 /* GNU extension to record C++ vtable member usage. */
74 HOWTO (R_68K_GNU_VTENTRY, /* type */
75 0, /* rightshift */
76 2, /* size (0 = byte, 1 = short, 2 = long) */
77 0, /* bitsize */
78 FALSE, /* pc_relative */
79 0, /* bitpos */
80 complain_overflow_dont, /* complain_on_overflow */
81 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
82 "R_68K_GNU_VTENTRY", /* name */
83 FALSE, /* partial_inplace */
84 0, /* src_mask */
85 0, /* dst_mask */
86 FALSE),
87
88 /* TLS general dynamic variable reference. */
89 HOWTO (R_68K_TLS_GD32, /* type */
90 0, /* rightshift */
91 2, /* size (0 = byte, 1 = short, 2 = long) */
92 32, /* bitsize */
93 FALSE, /* pc_relative */
94 0, /* bitpos */
95 complain_overflow_bitfield, /* complain_on_overflow */
96 bfd_elf_generic_reloc, /* special_function */
97 "R_68K_TLS_GD32", /* name */
98 FALSE, /* partial_inplace */
99 0, /* src_mask */
100 0xffffffff, /* dst_mask */
101 FALSE), /* pcrel_offset */
102
103 HOWTO (R_68K_TLS_GD16, /* type */
104 0, /* rightshift */
105 1, /* size (0 = byte, 1 = short, 2 = long) */
106 16, /* bitsize */
107 FALSE, /* pc_relative */
108 0, /* bitpos */
109 complain_overflow_signed, /* complain_on_overflow */
110 bfd_elf_generic_reloc, /* special_function */
111 "R_68K_TLS_GD16", /* name */
112 FALSE, /* partial_inplace */
113 0, /* src_mask */
114 0x0000ffff, /* dst_mask */
115 FALSE), /* pcrel_offset */
116
117 HOWTO (R_68K_TLS_GD8, /* type */
118 0, /* rightshift */
119 0, /* size (0 = byte, 1 = short, 2 = long) */
120 8, /* bitsize */
121 FALSE, /* pc_relative */
122 0, /* bitpos */
123 complain_overflow_signed, /* complain_on_overflow */
124 bfd_elf_generic_reloc, /* special_function */
125 "R_68K_TLS_GD8", /* name */
126 FALSE, /* partial_inplace */
127 0, /* src_mask */
128 0x000000ff, /* dst_mask */
129 FALSE), /* pcrel_offset */
130
131 /* TLS local dynamic variable reference. */
132 HOWTO (R_68K_TLS_LDM32, /* type */
133 0, /* rightshift */
134 2, /* size (0 = byte, 1 = short, 2 = long) */
135 32, /* bitsize */
136 FALSE, /* pc_relative */
137 0, /* bitpos */
138 complain_overflow_bitfield, /* complain_on_overflow */
139 bfd_elf_generic_reloc, /* special_function */
140 "R_68K_TLS_LDM32", /* name */
141 FALSE, /* partial_inplace */
142 0, /* src_mask */
143 0xffffffff, /* dst_mask */
144 FALSE), /* pcrel_offset */
145
146 HOWTO (R_68K_TLS_LDM16, /* type */
147 0, /* rightshift */
148 1, /* size (0 = byte, 1 = short, 2 = long) */
149 16, /* bitsize */
150 FALSE, /* pc_relative */
151 0, /* bitpos */
152 complain_overflow_signed, /* complain_on_overflow */
153 bfd_elf_generic_reloc, /* special_function */
154 "R_68K_TLS_LDM16", /* name */
155 FALSE, /* partial_inplace */
156 0, /* src_mask */
157 0x0000ffff, /* dst_mask */
158 FALSE), /* pcrel_offset */
159
160 HOWTO (R_68K_TLS_LDM8, /* type */
161 0, /* rightshift */
162 0, /* size (0 = byte, 1 = short, 2 = long) */
163 8, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_signed, /* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_68K_TLS_LDM8", /* name */
169 FALSE, /* partial_inplace */
170 0, /* src_mask */
171 0x000000ff, /* dst_mask */
172 FALSE), /* pcrel_offset */
173
174 HOWTO (R_68K_TLS_LDO32, /* type */
175 0, /* rightshift */
176 2, /* size (0 = byte, 1 = short, 2 = long) */
177 32, /* bitsize */
178 FALSE, /* pc_relative */
179 0, /* bitpos */
180 complain_overflow_bitfield, /* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_68K_TLS_LDO32", /* name */
183 FALSE, /* partial_inplace */
184 0, /* src_mask */
185 0xffffffff, /* dst_mask */
186 FALSE), /* pcrel_offset */
187
188 HOWTO (R_68K_TLS_LDO16, /* type */
189 0, /* rightshift */
190 1, /* size (0 = byte, 1 = short, 2 = long) */
191 16, /* bitsize */
192 FALSE, /* pc_relative */
193 0, /* bitpos */
194 complain_overflow_signed, /* complain_on_overflow */
195 bfd_elf_generic_reloc, /* special_function */
196 "R_68K_TLS_LDO16", /* name */
197 FALSE, /* partial_inplace */
198 0, /* src_mask */
199 0x0000ffff, /* dst_mask */
200 FALSE), /* pcrel_offset */
201
202 HOWTO (R_68K_TLS_LDO8, /* type */
203 0, /* rightshift */
204 0, /* size (0 = byte, 1 = short, 2 = long) */
205 8, /* bitsize */
206 FALSE, /* pc_relative */
207 0, /* bitpos */
208 complain_overflow_signed, /* complain_on_overflow */
209 bfd_elf_generic_reloc, /* special_function */
210 "R_68K_TLS_LDO8", /* name */
211 FALSE, /* partial_inplace */
212 0, /* src_mask */
213 0x000000ff, /* dst_mask */
214 FALSE), /* pcrel_offset */
215
216 /* TLS initial execution variable reference. */
217 HOWTO (R_68K_TLS_IE32, /* type */
218 0, /* rightshift */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
220 32, /* bitsize */
221 FALSE, /* pc_relative */
222 0, /* bitpos */
223 complain_overflow_bitfield, /* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
225 "R_68K_TLS_IE32", /* name */
226 FALSE, /* partial_inplace */
227 0, /* src_mask */
228 0xffffffff, /* dst_mask */
229 FALSE), /* pcrel_offset */
230
231 HOWTO (R_68K_TLS_IE16, /* type */
232 0, /* rightshift */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
234 16, /* bitsize */
235 FALSE, /* pc_relative */
236 0, /* bitpos */
237 complain_overflow_signed, /* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_68K_TLS_IE16", /* name */
240 FALSE, /* partial_inplace */
241 0, /* src_mask */
242 0x0000ffff, /* dst_mask */
243 FALSE), /* pcrel_offset */
244
245 HOWTO (R_68K_TLS_IE8, /* type */
246 0, /* rightshift */
247 0, /* size (0 = byte, 1 = short, 2 = long) */
248 8, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_signed, /* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_68K_TLS_IE8", /* name */
254 FALSE, /* partial_inplace */
255 0, /* src_mask */
256 0x000000ff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 /* TLS local execution variable reference. */
260 HOWTO (R_68K_TLS_LE32, /* type */
261 0, /* rightshift */
262 2, /* size (0 = byte, 1 = short, 2 = long) */
263 32, /* bitsize */
264 FALSE, /* pc_relative */
265 0, /* bitpos */
266 complain_overflow_bitfield, /* complain_on_overflow */
267 bfd_elf_generic_reloc, /* special_function */
268 "R_68K_TLS_LE32", /* name */
269 FALSE, /* partial_inplace */
270 0, /* src_mask */
271 0xffffffff, /* dst_mask */
272 FALSE), /* pcrel_offset */
273
274 HOWTO (R_68K_TLS_LE16, /* type */
275 0, /* rightshift */
276 1, /* size (0 = byte, 1 = short, 2 = long) */
277 16, /* bitsize */
278 FALSE, /* pc_relative */
279 0, /* bitpos */
280 complain_overflow_signed, /* complain_on_overflow */
281 bfd_elf_generic_reloc, /* special_function */
282 "R_68K_TLS_LE16", /* name */
283 FALSE, /* partial_inplace */
284 0, /* src_mask */
285 0x0000ffff, /* dst_mask */
286 FALSE), /* pcrel_offset */
287
288 HOWTO (R_68K_TLS_LE8, /* type */
289 0, /* rightshift */
290 0, /* size (0 = byte, 1 = short, 2 = long) */
291 8, /* bitsize */
292 FALSE, /* pc_relative */
293 0, /* bitpos */
294 complain_overflow_signed, /* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_68K_TLS_LE8", /* name */
297 FALSE, /* partial_inplace */
298 0, /* src_mask */
299 0x000000ff, /* dst_mask */
300 FALSE), /* pcrel_offset */
301
302 /* TLS GD/LD dynamic relocations. */
303 HOWTO (R_68K_TLS_DTPMOD32, /* type */
304 0, /* rightshift */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
306 32, /* bitsize */
307 FALSE, /* pc_relative */
308 0, /* bitpos */
309 complain_overflow_dont, /* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_68K_TLS_DTPMOD32", /* name */
312 FALSE, /* partial_inplace */
313 0, /* src_mask */
314 0xffffffff, /* dst_mask */
315 FALSE), /* pcrel_offset */
316
317 HOWTO (R_68K_TLS_DTPREL32, /* type */
318 0, /* rightshift */
319 2, /* size (0 = byte, 1 = short, 2 = long) */
320 32, /* bitsize */
321 FALSE, /* pc_relative */
322 0, /* bitpos */
323 complain_overflow_dont, /* complain_on_overflow */
324 bfd_elf_generic_reloc, /* special_function */
325 "R_68K_TLS_DTPREL32", /* name */
326 FALSE, /* partial_inplace */
327 0, /* src_mask */
328 0xffffffff, /* dst_mask */
329 FALSE), /* pcrel_offset */
330
331 HOWTO (R_68K_TLS_TPREL32, /* type */
332 0, /* rightshift */
333 2, /* size (0 = byte, 1 = short, 2 = long) */
334 32, /* bitsize */
335 FALSE, /* pc_relative */
336 0, /* bitpos */
337 complain_overflow_dont, /* complain_on_overflow */
338 bfd_elf_generic_reloc, /* special_function */
339 "R_68K_TLS_TPREL32", /* name */
340 FALSE, /* partial_inplace */
341 0, /* src_mask */
342 0xffffffff, /* dst_mask */
343 FALSE), /* pcrel_offset */
344 };
345
346 static bfd_boolean
347 rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
348 {
349 unsigned int indx = ELF32_R_TYPE (dst->r_info);
350
351 if (indx >= (unsigned int) R_68K_max)
352 {
353 /* xgettext:c-format */
354 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
355 abfd, indx);
356 bfd_set_error (bfd_error_bad_value);
357 return FALSE;
358 }
359 cache_ptr->howto = &howto_table[indx];
360 return TRUE;
361 }
362
363 #define elf_info_to_howto rtype_to_howto
364
365 static const struct
366 {
367 bfd_reloc_code_real_type bfd_val;
368 int elf_val;
369 }
370 reloc_map[] =
371 {
372 { BFD_RELOC_NONE, R_68K_NONE },
373 { BFD_RELOC_32, R_68K_32 },
374 { BFD_RELOC_16, R_68K_16 },
375 { BFD_RELOC_8, R_68K_8 },
376 { BFD_RELOC_32_PCREL, R_68K_PC32 },
377 { BFD_RELOC_16_PCREL, R_68K_PC16 },
378 { BFD_RELOC_8_PCREL, R_68K_PC8 },
379 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
380 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
381 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
382 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
383 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
384 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
385 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
386 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
387 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
388 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
389 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
390 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
391 { BFD_RELOC_NONE, R_68K_COPY },
392 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
393 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
394 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
395 { BFD_RELOC_CTOR, R_68K_32 },
396 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
397 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
398 { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
399 { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
400 { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
401 { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
402 { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
403 { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
404 { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
405 { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
406 { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
407 { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
408 { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
409 { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
410 { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
411 { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
412 { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
413 };
414
415 static reloc_howto_type *
416 reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
417 bfd_reloc_code_real_type code)
418 {
419 unsigned int i;
420 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
421 {
422 if (reloc_map[i].bfd_val == code)
423 return &howto_table[reloc_map[i].elf_val];
424 }
425 return 0;
426 }
427
428 static reloc_howto_type *
429 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
430 {
431 unsigned int i;
432
433 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
434 if (howto_table[i].name != NULL
435 && strcasecmp (howto_table[i].name, r_name) == 0)
436 return &howto_table[i];
437
438 return NULL;
439 }
440
441 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
442 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
443 #define ELF_ARCH bfd_arch_m68k
444 #define ELF_TARGET_ID M68K_ELF_DATA
445 \f
446 /* Functions for the m68k ELF linker. */
447
448 /* The name of the dynamic interpreter. This is put in the .interp
449 section. */
450
451 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
452
453 /* Describes one of the various PLT styles. */
454
455 struct elf_m68k_plt_info
456 {
457 /* The size of each PLT entry. */
458 bfd_vma size;
459
460 /* The template for the first PLT entry. */
461 const bfd_byte *plt0_entry;
462
463 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
464 The comments by each member indicate the value that the relocation
465 is against. */
466 struct {
467 unsigned int got4; /* .got + 4 */
468 unsigned int got8; /* .got + 8 */
469 } plt0_relocs;
470
471 /* The template for a symbol's PLT entry. */
472 const bfd_byte *symbol_entry;
473
474 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
475 The comments by each member indicate the value that the relocation
476 is against. */
477 struct {
478 unsigned int got; /* the symbol's .got.plt entry */
479 unsigned int plt; /* .plt */
480 } symbol_relocs;
481
482 /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
483 The stub starts with "move.l #relocoffset,%d0". */
484 bfd_vma symbol_resolve_entry;
485 };
486
487 /* The size in bytes of an entry in the procedure linkage table. */
488
489 #define PLT_ENTRY_SIZE 20
490
491 /* The first entry in a procedure linkage table looks like this. See
492 the SVR4 ABI m68k supplement to see how this works. */
493
494 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
495 {
496 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
497 0, 0, 0, 2, /* + (.got + 4) - . */
498 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
499 0, 0, 0, 2, /* + (.got + 8) - . */
500 0, 0, 0, 0 /* pad out to 20 bytes. */
501 };
502
503 /* Subsequent entries in a procedure linkage table look like this. */
504
505 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
506 {
507 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
508 0, 0, 0, 2, /* + (.got.plt entry) - . */
509 0x2f, 0x3c, /* move.l #offset,-(%sp) */
510 0, 0, 0, 0, /* + reloc index */
511 0x60, 0xff, /* bra.l .plt */
512 0, 0, 0, 0 /* + .plt - . */
513 };
514
515 static const struct elf_m68k_plt_info elf_m68k_plt_info =
516 {
517 PLT_ENTRY_SIZE,
518 elf_m68k_plt0_entry, { 4, 12 },
519 elf_m68k_plt_entry, { 4, 16 }, 8
520 };
521
522 #define ISAB_PLT_ENTRY_SIZE 24
523
524 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
525 {
526 0x20, 0x3c, /* move.l #offset,%d0 */
527 0, 0, 0, 0, /* + (.got + 4) - . */
528 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
529 0x20, 0x3c, /* move.l #offset,%d0 */
530 0, 0, 0, 0, /* + (.got + 8) - . */
531 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
532 0x4e, 0xd0, /* jmp (%a0) */
533 0x4e, 0x71 /* nop */
534 };
535
536 /* Subsequent entries in a procedure linkage table look like this. */
537
538 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
539 {
540 0x20, 0x3c, /* move.l #offset,%d0 */
541 0, 0, 0, 0, /* + (.got.plt entry) - . */
542 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
543 0x4e, 0xd0, /* jmp (%a0) */
544 0x2f, 0x3c, /* move.l #offset,-(%sp) */
545 0, 0, 0, 0, /* + reloc index */
546 0x60, 0xff, /* bra.l .plt */
547 0, 0, 0, 0 /* + .plt - . */
548 };
549
550 static const struct elf_m68k_plt_info elf_isab_plt_info =
551 {
552 ISAB_PLT_ENTRY_SIZE,
553 elf_isab_plt0_entry, { 2, 12 },
554 elf_isab_plt_entry, { 2, 20 }, 12
555 };
556
557 #define ISAC_PLT_ENTRY_SIZE 24
558
559 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
560 {
561 0x20, 0x3c, /* move.l #offset,%d0 */
562 0, 0, 0, 0, /* replaced with .got + 4 - . */
563 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
564 0x20, 0x3c, /* move.l #offset,%d0 */
565 0, 0, 0, 0, /* replaced with .got + 8 - . */
566 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
567 0x4e, 0xd0, /* jmp (%a0) */
568 0x4e, 0x71 /* nop */
569 };
570
571 /* Subsequent entries in a procedure linkage table look like this. */
572
573 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
574 {
575 0x20, 0x3c, /* move.l #offset,%d0 */
576 0, 0, 0, 0, /* replaced with (.got entry) - . */
577 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
578 0x4e, 0xd0, /* jmp (%a0) */
579 0x2f, 0x3c, /* move.l #offset,-(%sp) */
580 0, 0, 0, 0, /* replaced with offset into relocation table */
581 0x61, 0xff, /* bsr.l .plt */
582 0, 0, 0, 0 /* replaced with .plt - . */
583 };
584
585 static const struct elf_m68k_plt_info elf_isac_plt_info =
586 {
587 ISAC_PLT_ENTRY_SIZE,
588 elf_isac_plt0_entry, { 2, 12},
589 elf_isac_plt_entry, { 2, 20 }, 12
590 };
591
592 #define CPU32_PLT_ENTRY_SIZE 24
593 /* Procedure linkage table entries for the cpu32 */
594 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
595 {
596 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
597 0, 0, 0, 2, /* + (.got + 4) - . */
598 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
599 0, 0, 0, 2, /* + (.got + 8) - . */
600 0x4e, 0xd1, /* jmp %a1@ */
601 0, 0, 0, 0, /* pad out to 24 bytes. */
602 0, 0
603 };
604
605 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
606 {
607 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
608 0, 0, 0, 2, /* + (.got.plt entry) - . */
609 0x4e, 0xd1, /* jmp %a1@ */
610 0x2f, 0x3c, /* move.l #offset,-(%sp) */
611 0, 0, 0, 0, /* + reloc index */
612 0x60, 0xff, /* bra.l .plt */
613 0, 0, 0, 0, /* + .plt - . */
614 0, 0
615 };
616
617 static const struct elf_m68k_plt_info elf_cpu32_plt_info =
618 {
619 CPU32_PLT_ENTRY_SIZE,
620 elf_cpu32_plt0_entry, { 4, 12 },
621 elf_cpu32_plt_entry, { 4, 18 }, 10
622 };
623
624 /* The m68k linker needs to keep track of the number of relocs that it
625 decides to copy in check_relocs for each symbol. This is so that it
626 can discard PC relative relocs if it doesn't need them when linking
627 with -Bsymbolic. We store the information in a field extending the
628 regular ELF linker hash table. */
629
630 /* This structure keeps track of the number of PC relative relocs we have
631 copied for a given symbol. */
632
633 struct elf_m68k_pcrel_relocs_copied
634 {
635 /* Next section. */
636 struct elf_m68k_pcrel_relocs_copied *next;
637 /* A section in dynobj. */
638 asection *section;
639 /* Number of relocs copied in this section. */
640 bfd_size_type count;
641 };
642
643 /* Forward declaration. */
644 struct elf_m68k_got_entry;
645
646 /* m68k ELF linker hash entry. */
647
648 struct elf_m68k_link_hash_entry
649 {
650 struct elf_link_hash_entry root;
651
652 /* Number of PC relative relocs copied for this symbol. */
653 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
654
655 /* Key to got_entries. */
656 unsigned long got_entry_key;
657
658 /* List of GOT entries for this symbol. This list is build during
659 offset finalization and is used within elf_m68k_finish_dynamic_symbol
660 to traverse all GOT entries for a particular symbol.
661
662 ??? We could've used root.got.glist field instead, but having
663 a separate field is cleaner. */
664 struct elf_m68k_got_entry *glist;
665 };
666
667 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
668
669 /* Key part of GOT entry in hashtable. */
670 struct elf_m68k_got_entry_key
671 {
672 /* BFD in which this symbol was defined. NULL for global symbols. */
673 const bfd *bfd;
674
675 /* Symbol index. Either local symbol index or h->got_entry_key. */
676 unsigned long symndx;
677
678 /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
679 R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
680
681 From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
682 matters. That is, we distinguish between, say, R_68K_GOT16O
683 and R_68K_GOT32O when allocating offsets, but they are considered to be
684 the same when searching got->entries. */
685 enum elf_m68k_reloc_type type;
686 };
687
688 /* Size of the GOT offset suitable for relocation. */
689 enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
690
691 /* Entry of the GOT. */
692 struct elf_m68k_got_entry
693 {
694 /* GOT entries are put into a got->entries hashtable. This is the key. */
695 struct elf_m68k_got_entry_key key_;
696
697 /* GOT entry data. We need s1 before offset finalization and s2 after. */
698 union
699 {
700 struct
701 {
702 /* Number of times this entry is referenced. */
703 bfd_vma refcount;
704 } s1;
705
706 struct
707 {
708 /* Offset from the start of .got section. To calculate offset relative
709 to GOT pointer one should subtract got->offset from this value. */
710 bfd_vma offset;
711
712 /* Pointer to the next GOT entry for this global symbol.
713 Symbols have at most one entry in one GOT, but might
714 have entries in more than one GOT.
715 Root of this list is h->glist.
716 NULL for local symbols. */
717 struct elf_m68k_got_entry *next;
718 } s2;
719 } u;
720 };
721
722 /* Return representative type for relocation R_TYPE.
723 This is used to avoid enumerating many relocations in comparisons,
724 switches etc. */
725
726 static enum elf_m68k_reloc_type
727 elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
728 {
729 switch (r_type)
730 {
731 /* In most cases R_68K_GOTx relocations require the very same
732 handling as R_68K_GOT32O relocation. In cases when we need
733 to distinguish between the two, we use explicitly compare against
734 r_type. */
735 case R_68K_GOT32:
736 case R_68K_GOT16:
737 case R_68K_GOT8:
738 case R_68K_GOT32O:
739 case R_68K_GOT16O:
740 case R_68K_GOT8O:
741 return R_68K_GOT32O;
742
743 case R_68K_TLS_GD32:
744 case R_68K_TLS_GD16:
745 case R_68K_TLS_GD8:
746 return R_68K_TLS_GD32;
747
748 case R_68K_TLS_LDM32:
749 case R_68K_TLS_LDM16:
750 case R_68K_TLS_LDM8:
751 return R_68K_TLS_LDM32;
752
753 case R_68K_TLS_IE32:
754 case R_68K_TLS_IE16:
755 case R_68K_TLS_IE8:
756 return R_68K_TLS_IE32;
757
758 default:
759 BFD_ASSERT (FALSE);
760 return 0;
761 }
762 }
763
764 /* Return size of the GOT entry offset for relocation R_TYPE. */
765
766 static enum elf_m68k_got_offset_size
767 elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
768 {
769 switch (r_type)
770 {
771 case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
772 case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
773 case R_68K_TLS_IE32:
774 return R_32;
775
776 case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
777 case R_68K_TLS_IE16:
778 return R_16;
779
780 case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
781 case R_68K_TLS_IE8:
782 return R_8;
783
784 default:
785 BFD_ASSERT (FALSE);
786 return 0;
787 }
788 }
789
790 /* Return number of GOT entries we need to allocate in GOT for
791 relocation R_TYPE. */
792
793 static bfd_vma
794 elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
795 {
796 switch (elf_m68k_reloc_got_type (r_type))
797 {
798 case R_68K_GOT32O:
799 case R_68K_TLS_IE32:
800 return 1;
801
802 case R_68K_TLS_GD32:
803 case R_68K_TLS_LDM32:
804 return 2;
805
806 default:
807 BFD_ASSERT (FALSE);
808 return 0;
809 }
810 }
811
812 /* Return TRUE if relocation R_TYPE is a TLS one. */
813
814 static bfd_boolean
815 elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
816 {
817 switch (r_type)
818 {
819 case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
820 case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
821 case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
822 case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
823 case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
824 case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
825 return TRUE;
826
827 default:
828 return FALSE;
829 }
830 }
831
832 /* Data structure representing a single GOT. */
833 struct elf_m68k_got
834 {
835 /* Hashtable of 'struct elf_m68k_got_entry's.
836 Starting size of this table is the maximum number of
837 R_68K_GOT8O entries. */
838 htab_t entries;
839
840 /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require
841 several GOT slots.
842
843 n_slots[R_8] is the count of R_8 slots in this GOT.
844 n_slots[R_16] is the cumulative count of R_8 and R_16 slots
845 in this GOT.
846 n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
847 in this GOT. This is the total number of slots. */
848 bfd_vma n_slots[R_LAST];
849
850 /* Number of local (entry->key_.h == NULL) slots in this GOT.
851 This is only used to properly calculate size of .rela.got section;
852 see elf_m68k_partition_multi_got. */
853 bfd_vma local_n_slots;
854
855 /* Offset of this GOT relative to beginning of .got section. */
856 bfd_vma offset;
857 };
858
859 /* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */
860 struct elf_m68k_bfd2got_entry
861 {
862 /* BFD. */
863 const bfd *bfd;
864
865 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own
866 GOT structure. After partitioning several BFD's might [and often do]
867 share a single GOT. */
868 struct elf_m68k_got *got;
869 };
870
871 /* The main data structure holding all the pieces. */
872 struct elf_m68k_multi_got
873 {
874 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry
875 here, then it doesn't need a GOT (this includes the case of a BFD
876 having an empty GOT).
877
878 ??? This hashtable can be replaced by an array indexed by bfd->id. */
879 htab_t bfd2got;
880
881 /* Next symndx to assign a global symbol.
882 h->got_entry_key is initialized from this counter. */
883 unsigned long global_symndx;
884 };
885
886 /* m68k ELF linker hash table. */
887
888 struct elf_m68k_link_hash_table
889 {
890 struct elf_link_hash_table root;
891
892 /* The PLT format used by this link, or NULL if the format has not
893 yet been chosen. */
894 const struct elf_m68k_plt_info *plt_info;
895
896 /* True, if GP is loaded within each function which uses it.
897 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */
898 bfd_boolean local_gp_p;
899
900 /* Switch controlling use of negative offsets to double the size of GOTs. */
901 bfd_boolean use_neg_got_offsets_p;
902
903 /* Switch controlling generation of multiple GOTs. */
904 bfd_boolean allow_multigot_p;
905
906 /* Multi-GOT data structure. */
907 struct elf_m68k_multi_got multi_got_;
908 };
909
910 /* Get the m68k ELF linker hash table from a link_info structure. */
911
912 #define elf_m68k_hash_table(p) \
913 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
914 == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL)
915
916 /* Shortcut to multi-GOT data. */
917 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
918
919 /* Create an entry in an m68k ELF linker hash table. */
920
921 static struct bfd_hash_entry *
922 elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
923 struct bfd_hash_table *table,
924 const char *string)
925 {
926 struct bfd_hash_entry *ret = entry;
927
928 /* Allocate the structure if it has not already been allocated by a
929 subclass. */
930 if (ret == NULL)
931 ret = bfd_hash_allocate (table,
932 sizeof (struct elf_m68k_link_hash_entry));
933 if (ret == NULL)
934 return ret;
935
936 /* Call the allocation method of the superclass. */
937 ret = _bfd_elf_link_hash_newfunc (ret, table, string);
938 if (ret != NULL)
939 {
940 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
941 elf_m68k_hash_entry (ret)->got_entry_key = 0;
942 elf_m68k_hash_entry (ret)->glist = NULL;
943 }
944
945 return ret;
946 }
947
948 /* Destroy an m68k ELF linker hash table. */
949
950 static void
951 elf_m68k_link_hash_table_free (bfd *obfd)
952 {
953 struct elf_m68k_link_hash_table *htab;
954
955 htab = (struct elf_m68k_link_hash_table *) obfd->link.hash;
956
957 if (htab->multi_got_.bfd2got != NULL)
958 {
959 htab_delete (htab->multi_got_.bfd2got);
960 htab->multi_got_.bfd2got = NULL;
961 }
962 _bfd_elf_link_hash_table_free (obfd);
963 }
964
965 /* Create an m68k ELF linker hash table. */
966
967 static struct bfd_link_hash_table *
968 elf_m68k_link_hash_table_create (bfd *abfd)
969 {
970 struct elf_m68k_link_hash_table *ret;
971 size_t amt = sizeof (struct elf_m68k_link_hash_table);
972
973 ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt);
974 if (ret == (struct elf_m68k_link_hash_table *) NULL)
975 return NULL;
976
977 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
978 elf_m68k_link_hash_newfunc,
979 sizeof (struct elf_m68k_link_hash_entry),
980 M68K_ELF_DATA))
981 {
982 free (ret);
983 return NULL;
984 }
985 ret->root.root.hash_table_free = elf_m68k_link_hash_table_free;
986
987 ret->multi_got_.global_symndx = 1;
988
989 return &ret->root.root;
990 }
991
992 /* Set the right machine number. */
993
994 static bfd_boolean
995 elf32_m68k_object_p (bfd *abfd)
996 {
997 unsigned int mach = 0;
998 unsigned features = 0;
999 flagword eflags = elf_elfheader (abfd)->e_flags;
1000
1001 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1002 features |= m68000;
1003 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1004 features |= cpu32;
1005 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1006 features |= fido_a;
1007 else
1008 {
1009 switch (eflags & EF_M68K_CF_ISA_MASK)
1010 {
1011 case EF_M68K_CF_ISA_A_NODIV:
1012 features |= mcfisa_a;
1013 break;
1014 case EF_M68K_CF_ISA_A:
1015 features |= mcfisa_a|mcfhwdiv;
1016 break;
1017 case EF_M68K_CF_ISA_A_PLUS:
1018 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1019 break;
1020 case EF_M68K_CF_ISA_B_NOUSP:
1021 features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1022 break;
1023 case EF_M68K_CF_ISA_B:
1024 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1025 break;
1026 case EF_M68K_CF_ISA_C:
1027 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1028 break;
1029 case EF_M68K_CF_ISA_C_NODIV:
1030 features |= mcfisa_a|mcfisa_c|mcfusp;
1031 break;
1032 }
1033 switch (eflags & EF_M68K_CF_MAC_MASK)
1034 {
1035 case EF_M68K_CF_MAC:
1036 features |= mcfmac;
1037 break;
1038 case EF_M68K_CF_EMAC:
1039 features |= mcfemac;
1040 break;
1041 }
1042 if (eflags & EF_M68K_CF_FLOAT)
1043 features |= cfloat;
1044 }
1045
1046 mach = bfd_m68k_features_to_mach (features);
1047 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1048
1049 return TRUE;
1050 }
1051
1052 /* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1053 field based on the machine number. */
1054
1055 static bfd_boolean
1056 elf_m68k_final_write_processing (bfd *abfd)
1057 {
1058 int mach = bfd_get_mach (abfd);
1059 unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1060
1061 if (!e_flags)
1062 {
1063 unsigned int arch_mask;
1064
1065 arch_mask = bfd_m68k_mach_to_features (mach);
1066
1067 if (arch_mask & m68000)
1068 e_flags = EF_M68K_M68000;
1069 else if (arch_mask & cpu32)
1070 e_flags = EF_M68K_CPU32;
1071 else if (arch_mask & fido_a)
1072 e_flags = EF_M68K_FIDO;
1073 else
1074 {
1075 switch (arch_mask
1076 & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1077 {
1078 case mcfisa_a:
1079 e_flags |= EF_M68K_CF_ISA_A_NODIV;
1080 break;
1081 case mcfisa_a | mcfhwdiv:
1082 e_flags |= EF_M68K_CF_ISA_A;
1083 break;
1084 case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1085 e_flags |= EF_M68K_CF_ISA_A_PLUS;
1086 break;
1087 case mcfisa_a | mcfisa_b | mcfhwdiv:
1088 e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1089 break;
1090 case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1091 e_flags |= EF_M68K_CF_ISA_B;
1092 break;
1093 case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1094 e_flags |= EF_M68K_CF_ISA_C;
1095 break;
1096 case mcfisa_a | mcfisa_c | mcfusp:
1097 e_flags |= EF_M68K_CF_ISA_C_NODIV;
1098 break;
1099 }
1100 if (arch_mask & mcfmac)
1101 e_flags |= EF_M68K_CF_MAC;
1102 else if (arch_mask & mcfemac)
1103 e_flags |= EF_M68K_CF_EMAC;
1104 if (arch_mask & cfloat)
1105 e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1106 }
1107 elf_elfheader (abfd)->e_flags = e_flags;
1108 }
1109 return _bfd_elf_final_write_processing (abfd);
1110 }
1111
1112 /* Keep m68k-specific flags in the ELF header. */
1113
1114 static bfd_boolean
1115 elf32_m68k_set_private_flags (bfd *abfd, flagword flags)
1116 {
1117 elf_elfheader (abfd)->e_flags = flags;
1118 elf_flags_init (abfd) = TRUE;
1119 return TRUE;
1120 }
1121
1122 /* Merge object attributes from IBFD into OBFD. Warn if
1123 there are conflicting attributes. */
1124 static bfd_boolean
1125 m68k_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
1126 {
1127 bfd *obfd = info->output_bfd;
1128 obj_attribute *in_attr, *in_attrs;
1129 obj_attribute *out_attr, *out_attrs;
1130 bfd_boolean ret = TRUE;
1131
1132 in_attrs = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
1133 out_attrs = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
1134
1135 in_attr = &in_attrs[Tag_GNU_M68K_ABI_FP];
1136 out_attr = &out_attrs[Tag_GNU_M68K_ABI_FP];
1137
1138 if (in_attr->i != out_attr->i)
1139 {
1140 int in_fp = in_attr->i & 3;
1141 int out_fp = out_attr->i & 3;
1142 static bfd *last_fp;
1143
1144 if (in_fp == 0)
1145 ;
1146 else if (out_fp == 0)
1147 {
1148 out_attr->type = ATTR_TYPE_FLAG_INT_VAL;
1149 out_attr->i ^= in_fp;
1150 last_fp = ibfd;
1151 }
1152 else if (out_fp == 1 && in_fp == 2)
1153 {
1154 _bfd_error_handler
1155 /* xgettext:c-format */
1156 (_("%pB uses hard float, %pB uses soft float"),
1157 last_fp, ibfd);
1158 ret = FALSE;
1159 }
1160 else if (out_fp == 2 && in_fp == 1)
1161 {
1162 _bfd_error_handler
1163 /* xgettext:c-format */
1164 (_("%pB uses hard float, %pB uses soft float"),
1165 ibfd, last_fp);
1166 ret = FALSE;
1167 }
1168 }
1169
1170 if (!ret)
1171 {
1172 out_attr->type = ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_ERROR;
1173 bfd_set_error (bfd_error_bad_value);
1174 return FALSE;
1175 }
1176
1177 /* Merge Tag_compatibility attributes and any common GNU ones. */
1178 return _bfd_elf_merge_object_attributes (ibfd, info);
1179 }
1180
1181 /* Merge backend specific data from an object file to the output
1182 object file when linking. */
1183 static bfd_boolean
1184 elf32_m68k_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
1185 {
1186 bfd *obfd = info->output_bfd;
1187 flagword out_flags;
1188 flagword in_flags;
1189 flagword out_isa;
1190 flagword in_isa;
1191 const bfd_arch_info_type *arch_info;
1192
1193 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1194 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1195 /* PR 24523: For non-ELF files do not try to merge any private
1196 data, but also do not prevent the link from succeeding. */
1197 return TRUE;
1198
1199 /* Get the merged machine. This checks for incompatibility between
1200 Coldfire & non-Coldfire flags, incompability between different
1201 Coldfire ISAs, and incompability between different MAC types. */
1202 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
1203 if (!arch_info)
1204 return FALSE;
1205
1206 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1207
1208 if (!m68k_elf_merge_obj_attributes (ibfd, info))
1209 return FALSE;
1210
1211 in_flags = elf_elfheader (ibfd)->e_flags;
1212 if (!elf_flags_init (obfd))
1213 {
1214 elf_flags_init (obfd) = TRUE;
1215 out_flags = in_flags;
1216 }
1217 else
1218 {
1219 out_flags = elf_elfheader (obfd)->e_flags;
1220 unsigned int variant_mask;
1221
1222 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1223 variant_mask = 0;
1224 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1225 variant_mask = 0;
1226 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1227 variant_mask = 0;
1228 else
1229 variant_mask = EF_M68K_CF_ISA_MASK;
1230
1231 in_isa = (in_flags & variant_mask);
1232 out_isa = (out_flags & variant_mask);
1233 if (in_isa > out_isa)
1234 out_flags ^= in_isa ^ out_isa;
1235 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1236 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1237 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1238 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1239 out_flags = EF_M68K_FIDO;
1240 else
1241 out_flags |= in_flags ^ in_isa;
1242 }
1243 elf_elfheader (obfd)->e_flags = out_flags;
1244
1245 return TRUE;
1246 }
1247
1248 /* Display the flags field. */
1249
1250 static bfd_boolean
1251 elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1252 {
1253 FILE *file = (FILE *) ptr;
1254 flagword eflags = elf_elfheader (abfd)->e_flags;
1255
1256 BFD_ASSERT (abfd != NULL && ptr != NULL);
1257
1258 /* Print normal ELF private data. */
1259 _bfd_elf_print_private_bfd_data (abfd, ptr);
1260
1261 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */
1262
1263 /* xgettext:c-format */
1264 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1265
1266 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1267 fprintf (file, " [m68000]");
1268 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1269 fprintf (file, " [cpu32]");
1270 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1271 fprintf (file, " [fido]");
1272 else
1273 {
1274 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1275 fprintf (file, " [cfv4e]");
1276
1277 if (eflags & EF_M68K_CF_ISA_MASK)
1278 {
1279 char const *isa = _("unknown");
1280 char const *mac = _("unknown");
1281 char const *additional = "";
1282
1283 switch (eflags & EF_M68K_CF_ISA_MASK)
1284 {
1285 case EF_M68K_CF_ISA_A_NODIV:
1286 isa = "A";
1287 additional = " [nodiv]";
1288 break;
1289 case EF_M68K_CF_ISA_A:
1290 isa = "A";
1291 break;
1292 case EF_M68K_CF_ISA_A_PLUS:
1293 isa = "A+";
1294 break;
1295 case EF_M68K_CF_ISA_B_NOUSP:
1296 isa = "B";
1297 additional = " [nousp]";
1298 break;
1299 case EF_M68K_CF_ISA_B:
1300 isa = "B";
1301 break;
1302 case EF_M68K_CF_ISA_C:
1303 isa = "C";
1304 break;
1305 case EF_M68K_CF_ISA_C_NODIV:
1306 isa = "C";
1307 additional = " [nodiv]";
1308 break;
1309 }
1310 fprintf (file, " [isa %s]%s", isa, additional);
1311
1312 if (eflags & EF_M68K_CF_FLOAT)
1313 fprintf (file, " [float]");
1314
1315 switch (eflags & EF_M68K_CF_MAC_MASK)
1316 {
1317 case 0:
1318 mac = NULL;
1319 break;
1320 case EF_M68K_CF_MAC:
1321 mac = "mac";
1322 break;
1323 case EF_M68K_CF_EMAC:
1324 mac = "emac";
1325 break;
1326 case EF_M68K_CF_EMAC_B:
1327 mac = "emac_b";
1328 break;
1329 }
1330 if (mac)
1331 fprintf (file, " [%s]", mac);
1332 }
1333 }
1334
1335 fputc ('\n', file);
1336
1337 return TRUE;
1338 }
1339
1340 /* Multi-GOT support implementation design:
1341
1342 Multi-GOT starts in check_relocs hook. There we scan all
1343 relocations of a BFD and build a local GOT (struct elf_m68k_got)
1344 for it. If a single BFD appears to require too many GOT slots with
1345 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1346 to user.
1347 After check_relocs has been invoked for each input BFD, we have
1348 constructed a GOT for each input BFD.
1349
1350 To minimize total number of GOTs required for a particular output BFD
1351 (as some environments support only 1 GOT per output object) we try
1352 to merge some of the GOTs to share an offset space. Ideally [and in most
1353 cases] we end up with a single GOT. In cases when there are too many
1354 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1355 several GOTs, assuming the environment can handle them.
1356
1357 Partitioning is done in elf_m68k_partition_multi_got. We start with
1358 an empty GOT and traverse bfd2got hashtable putting got_entries from
1359 local GOTs to the new 'big' one. We do that by constructing an
1360 intermediate GOT holding all the entries the local GOT has and the big
1361 GOT lacks. Then we check if there is room in the big GOT to accomodate
1362 all the entries from diff. On success we add those entries to the big
1363 GOT; on failure we start the new 'big' GOT and retry the adding of
1364 entries from the local GOT. Note that this retry will always succeed as
1365 each local GOT doesn't overflow the limits. After partitioning we
1366 end up with each bfd assigned one of the big GOTs. GOT entries in the
1367 big GOTs are initialized with GOT offsets. Note that big GOTs are
1368 positioned consequently in program space and represent a single huge GOT
1369 to the outside world.
1370
1371 After that we get to elf_m68k_relocate_section. There we
1372 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1373 relocations to refer to appropriate [assigned to current input_bfd]
1374 big GOT.
1375
1376 Notes:
1377
1378 GOT entry type: We have several types of GOT entries.
1379 * R_8 type is used in entries for symbols that have at least one
1380 R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40
1381 such entries in one GOT.
1382 * R_16 type is used in entries for symbols that have at least one
1383 R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1384 We can have at most 0x4000 such entries in one GOT.
1385 * R_32 type is used in all other cases. We can have as many
1386 such entries in one GOT as we'd like.
1387 When counting relocations we have to include the count of the smaller
1388 ranged relocations in the counts of the larger ranged ones in order
1389 to correctly detect overflow.
1390
1391 Sorting the GOT: In each GOT starting offsets are assigned to
1392 R_8 entries, which are followed by R_16 entries, and
1393 R_32 entries go at the end. See finalize_got_offsets for details.
1394
1395 Negative GOT offsets: To double usable offset range of GOTs we use
1396 negative offsets. As we assign entries with GOT offsets relative to
1397 start of .got section, the offset values are positive. They become
1398 negative only in relocate_section where got->offset value is
1399 subtracted from them.
1400
1401 3 special GOT entries: There are 3 special GOT entries used internally
1402 by loader. These entries happen to be placed to .got.plt section,
1403 so we don't do anything about them in multi-GOT support.
1404
1405 Memory management: All data except for hashtables
1406 multi_got->bfd2got and got->entries are allocated on
1407 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1408 to most functions), so we don't need to care to free them. At the
1409 moment of allocation hashtables are being linked into main data
1410 structure (multi_got), all pieces of which are reachable from
1411 elf_m68k_multi_got (info). We deallocate them in
1412 elf_m68k_link_hash_table_free. */
1413
1414 /* Initialize GOT. */
1415
1416 static void
1417 elf_m68k_init_got (struct elf_m68k_got *got)
1418 {
1419 got->entries = NULL;
1420 got->n_slots[R_8] = 0;
1421 got->n_slots[R_16] = 0;
1422 got->n_slots[R_32] = 0;
1423 got->local_n_slots = 0;
1424 got->offset = (bfd_vma) -1;
1425 }
1426
1427 /* Destruct GOT. */
1428
1429 static void
1430 elf_m68k_clear_got (struct elf_m68k_got *got)
1431 {
1432 if (got->entries != NULL)
1433 {
1434 htab_delete (got->entries);
1435 got->entries = NULL;
1436 }
1437 }
1438
1439 /* Create and empty GOT structure. INFO is the context where memory
1440 should be allocated. */
1441
1442 static struct elf_m68k_got *
1443 elf_m68k_create_empty_got (struct bfd_link_info *info)
1444 {
1445 struct elf_m68k_got *got;
1446
1447 got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1448 if (got == NULL)
1449 return NULL;
1450
1451 elf_m68k_init_got (got);
1452
1453 return got;
1454 }
1455
1456 /* Initialize KEY. */
1457
1458 static void
1459 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1460 struct elf_link_hash_entry *h,
1461 const bfd *abfd, unsigned long symndx,
1462 enum elf_m68k_reloc_type reloc_type)
1463 {
1464 if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1465 /* All TLS_LDM relocations share a single GOT entry. */
1466 {
1467 key->bfd = NULL;
1468 key->symndx = 0;
1469 }
1470 else if (h != NULL)
1471 /* Global symbols are identified with their got_entry_key. */
1472 {
1473 key->bfd = NULL;
1474 key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1475 BFD_ASSERT (key->symndx != 0);
1476 }
1477 else
1478 /* Local symbols are identified by BFD they appear in and symndx. */
1479 {
1480 key->bfd = abfd;
1481 key->symndx = symndx;
1482 }
1483
1484 key->type = reloc_type;
1485 }
1486
1487 /* Calculate hash of got_entry.
1488 ??? Is it good? */
1489
1490 static hashval_t
1491 elf_m68k_got_entry_hash (const void *_entry)
1492 {
1493 const struct elf_m68k_got_entry_key *key;
1494
1495 key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1496
1497 return (key->symndx
1498 + (key->bfd != NULL ? (int) key->bfd->id : -1)
1499 + elf_m68k_reloc_got_type (key->type));
1500 }
1501
1502 /* Check if two got entries are equal. */
1503
1504 static int
1505 elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1506 {
1507 const struct elf_m68k_got_entry_key *key1;
1508 const struct elf_m68k_got_entry_key *key2;
1509
1510 key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1511 key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1512
1513 return (key1->bfd == key2->bfd
1514 && key1->symndx == key2->symndx
1515 && (elf_m68k_reloc_got_type (key1->type)
1516 == elf_m68k_reloc_got_type (key2->type)));
1517 }
1518
1519 /* When using negative offsets, we allocate one extra R_8, one extra R_16
1520 and one extra R_32 slots to simplify handling of 2-slot entries during
1521 offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */
1522
1523 /* Maximal number of R_8 slots in a single GOT. */
1524 #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \
1525 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1526 ? (0x40 - 1) \
1527 : 0x20)
1528
1529 /* Maximal number of R_8 and R_16 slots in a single GOT. */
1530 #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \
1531 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \
1532 ? (0x4000 - 2) \
1533 : 0x2000)
1534
1535 /* SEARCH - simply search the hashtable, don't insert new entries or fail when
1536 the entry cannot be found.
1537 FIND_OR_CREATE - search for an existing entry, but create new if there's
1538 no such.
1539 MUST_FIND - search for an existing entry and assert that it exist.
1540 MUST_CREATE - assert that there's no such entry and create new one. */
1541 enum elf_m68k_get_entry_howto
1542 {
1543 SEARCH,
1544 FIND_OR_CREATE,
1545 MUST_FIND,
1546 MUST_CREATE
1547 };
1548
1549 /* Get or create (depending on HOWTO) entry with KEY in GOT.
1550 INFO is context in which memory should be allocated (can be NULL if
1551 HOWTO is SEARCH or MUST_FIND). */
1552
1553 static struct elf_m68k_got_entry *
1554 elf_m68k_get_got_entry (struct elf_m68k_got *got,
1555 const struct elf_m68k_got_entry_key *key,
1556 enum elf_m68k_get_entry_howto howto,
1557 struct bfd_link_info *info)
1558 {
1559 struct elf_m68k_got_entry entry_;
1560 struct elf_m68k_got_entry *entry;
1561 void **ptr;
1562
1563 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1564
1565 if (got->entries == NULL)
1566 /* This is the first entry in ABFD. Initialize hashtable. */
1567 {
1568 if (howto == SEARCH)
1569 return NULL;
1570
1571 got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1572 (info),
1573 elf_m68k_got_entry_hash,
1574 elf_m68k_got_entry_eq, NULL);
1575 if (got->entries == NULL)
1576 {
1577 bfd_set_error (bfd_error_no_memory);
1578 return NULL;
1579 }
1580 }
1581
1582 entry_.key_ = *key;
1583 ptr = htab_find_slot (got->entries, &entry_,
1584 (howto == SEARCH || howto == MUST_FIND ? NO_INSERT
1585 : INSERT));
1586 if (ptr == NULL)
1587 {
1588 if (howto == SEARCH)
1589 /* Entry not found. */
1590 return NULL;
1591
1592 if (howto == MUST_FIND)
1593 abort ();
1594
1595 /* We're out of memory. */
1596 bfd_set_error (bfd_error_no_memory);
1597 return NULL;
1598 }
1599
1600 if (*ptr == NULL)
1601 /* We didn't find the entry and we're asked to create a new one. */
1602 {
1603 if (howto == MUST_FIND)
1604 abort ();
1605
1606 BFD_ASSERT (howto != SEARCH);
1607
1608 entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1609 if (entry == NULL)
1610 return NULL;
1611
1612 /* Initialize new entry. */
1613 entry->key_ = *key;
1614
1615 entry->u.s1.refcount = 0;
1616
1617 /* Mark the entry as not initialized. */
1618 entry->key_.type = R_68K_max;
1619
1620 *ptr = entry;
1621 }
1622 else
1623 /* We found the entry. */
1624 {
1625 BFD_ASSERT (howto != MUST_CREATE);
1626
1627 entry = *ptr;
1628 }
1629
1630 return entry;
1631 }
1632
1633 /* Update GOT counters when merging entry of WAS type with entry of NEW type.
1634 Return the value to which ENTRY's type should be set. */
1635
1636 static enum elf_m68k_reloc_type
1637 elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1638 enum elf_m68k_reloc_type was,
1639 enum elf_m68k_reloc_type new_reloc)
1640 {
1641 enum elf_m68k_got_offset_size was_size;
1642 enum elf_m68k_got_offset_size new_size;
1643 bfd_vma n_slots;
1644
1645 if (was == R_68K_max)
1646 /* The type of the entry is not initialized yet. */
1647 {
1648 /* Update all got->n_slots counters, including n_slots[R_32]. */
1649 was_size = R_LAST;
1650
1651 was = new_reloc;
1652 }
1653 else
1654 {
1655 /* !!! We, probably, should emit an error rather then fail on assert
1656 in such a case. */
1657 BFD_ASSERT (elf_m68k_reloc_got_type (was)
1658 == elf_m68k_reloc_got_type (new_reloc));
1659
1660 was_size = elf_m68k_reloc_got_offset_size (was);
1661 }
1662
1663 new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1664 n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
1665
1666 while (was_size > new_size)
1667 {
1668 --was_size;
1669 got->n_slots[was_size] += n_slots;
1670 }
1671
1672 if (new_reloc > was)
1673 /* Relocations are ordered from bigger got offset size to lesser,
1674 so choose the relocation type with lesser offset size. */
1675 was = new_reloc;
1676
1677 return was;
1678 }
1679
1680 /* Add new or update existing entry to GOT.
1681 H, ABFD, TYPE and SYMNDX is data for the entry.
1682 INFO is a context where memory should be allocated. */
1683
1684 static struct elf_m68k_got_entry *
1685 elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1686 struct elf_link_hash_entry *h,
1687 const bfd *abfd,
1688 enum elf_m68k_reloc_type reloc_type,
1689 unsigned long symndx,
1690 struct bfd_link_info *info)
1691 {
1692 struct elf_m68k_got_entry_key key_;
1693 struct elf_m68k_got_entry *entry;
1694
1695 if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1696 elf_m68k_hash_entry (h)->got_entry_key
1697 = elf_m68k_multi_got (info)->global_symndx++;
1698
1699 elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
1700
1701 entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1702 if (entry == NULL)
1703 return NULL;
1704
1705 /* Determine entry's type and update got->n_slots counters. */
1706 entry->key_.type = elf_m68k_update_got_entry_type (got,
1707 entry->key_.type,
1708 reloc_type);
1709
1710 /* Update refcount. */
1711 ++entry->u.s1.refcount;
1712
1713 if (entry->u.s1.refcount == 1)
1714 /* We see this entry for the first time. */
1715 {
1716 if (entry->key_.bfd != NULL)
1717 got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
1718 }
1719
1720 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
1721
1722 if ((got->n_slots[R_8]
1723 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1724 || (got->n_slots[R_16]
1725 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1726 /* This BFD has too many relocation. */
1727 {
1728 if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1729 /* xgettext:c-format */
1730 _bfd_error_handler (_("%pB: GOT overflow: "
1731 "number of relocations with 8-bit "
1732 "offset > %d"),
1733 abfd,
1734 ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
1735 else
1736 /* xgettext:c-format */
1737 _bfd_error_handler (_("%pB: GOT overflow: "
1738 "number of relocations with 8- or 16-bit "
1739 "offset > %d"),
1740 abfd,
1741 ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
1742
1743 return NULL;
1744 }
1745
1746 return entry;
1747 }
1748
1749 /* Compute the hash value of the bfd in a bfd2got hash entry. */
1750
1751 static hashval_t
1752 elf_m68k_bfd2got_entry_hash (const void *entry)
1753 {
1754 const struct elf_m68k_bfd2got_entry *e;
1755
1756 e = (const struct elf_m68k_bfd2got_entry *) entry;
1757
1758 return e->bfd->id;
1759 }
1760
1761 /* Check whether two hash entries have the same bfd. */
1762
1763 static int
1764 elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1765 {
1766 const struct elf_m68k_bfd2got_entry *e1;
1767 const struct elf_m68k_bfd2got_entry *e2;
1768
1769 e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1770 e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1771
1772 return e1->bfd == e2->bfd;
1773 }
1774
1775 /* Destruct a bfd2got entry. */
1776
1777 static void
1778 elf_m68k_bfd2got_entry_del (void *_entry)
1779 {
1780 struct elf_m68k_bfd2got_entry *entry;
1781
1782 entry = (struct elf_m68k_bfd2got_entry *) _entry;
1783
1784 BFD_ASSERT (entry->got != NULL);
1785 elf_m68k_clear_got (entry->got);
1786 }
1787
1788 /* Find existing or create new (depending on HOWTO) bfd2got entry in
1789 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where
1790 memory should be allocated. */
1791
1792 static struct elf_m68k_bfd2got_entry *
1793 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1794 const bfd *abfd,
1795 enum elf_m68k_get_entry_howto howto,
1796 struct bfd_link_info *info)
1797 {
1798 struct elf_m68k_bfd2got_entry entry_;
1799 void **ptr;
1800 struct elf_m68k_bfd2got_entry *entry;
1801
1802 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1803
1804 if (multi_got->bfd2got == NULL)
1805 /* This is the first GOT. Initialize bfd2got. */
1806 {
1807 if (howto == SEARCH)
1808 return NULL;
1809
1810 multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1811 elf_m68k_bfd2got_entry_eq,
1812 elf_m68k_bfd2got_entry_del);
1813 if (multi_got->bfd2got == NULL)
1814 {
1815 bfd_set_error (bfd_error_no_memory);
1816 return NULL;
1817 }
1818 }
1819
1820 entry_.bfd = abfd;
1821 ptr = htab_find_slot (multi_got->bfd2got, &entry_,
1822 (howto == SEARCH || howto == MUST_FIND ? NO_INSERT
1823 : INSERT));
1824 if (ptr == NULL)
1825 {
1826 if (howto == SEARCH)
1827 /* Entry not found. */
1828 return NULL;
1829
1830 if (howto == MUST_FIND)
1831 abort ();
1832
1833 /* We're out of memory. */
1834 bfd_set_error (bfd_error_no_memory);
1835 return NULL;
1836 }
1837
1838 if (*ptr == NULL)
1839 /* Entry was not found. Create new one. */
1840 {
1841 if (howto == MUST_FIND)
1842 abort ();
1843
1844 BFD_ASSERT (howto != SEARCH);
1845
1846 entry = ((struct elf_m68k_bfd2got_entry *)
1847 bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1848 if (entry == NULL)
1849 return NULL;
1850
1851 entry->bfd = abfd;
1852
1853 entry->got = elf_m68k_create_empty_got (info);
1854 if (entry->got == NULL)
1855 return NULL;
1856
1857 *ptr = entry;
1858 }
1859 else
1860 {
1861 BFD_ASSERT (howto != MUST_CREATE);
1862
1863 /* Return existing entry. */
1864 entry = *ptr;
1865 }
1866
1867 return entry;
1868 }
1869
1870 struct elf_m68k_can_merge_gots_arg
1871 {
1872 /* A current_got that we constructing a DIFF against. */
1873 struct elf_m68k_got *big;
1874
1875 /* GOT holding entries not present or that should be changed in
1876 BIG. */
1877 struct elf_m68k_got *diff;
1878
1879 /* Context where to allocate memory. */
1880 struct bfd_link_info *info;
1881
1882 /* Error flag. */
1883 bfd_boolean error_p;
1884 };
1885
1886 /* Process a single entry from the small GOT to see if it should be added
1887 or updated in the big GOT. */
1888
1889 static int
1890 elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1891 {
1892 const struct elf_m68k_got_entry *entry1;
1893 struct elf_m68k_can_merge_gots_arg *arg;
1894 const struct elf_m68k_got_entry *entry2;
1895 enum elf_m68k_reloc_type type;
1896
1897 entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1898 arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1899
1900 entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1901
1902 if (entry2 != NULL)
1903 /* We found an existing entry. Check if we should update it. */
1904 {
1905 type = elf_m68k_update_got_entry_type (arg->diff,
1906 entry2->key_.type,
1907 entry1->key_.type);
1908
1909 if (type == entry2->key_.type)
1910 /* ENTRY1 doesn't update data in ENTRY2. Skip it.
1911 To skip creation of difference entry we use the type,
1912 which we won't see in GOT entries for sure. */
1913 type = R_68K_max;
1914 }
1915 else
1916 /* We didn't find the entry. Add entry1 to DIFF. */
1917 {
1918 BFD_ASSERT (entry1->key_.type != R_68K_max);
1919
1920 type = elf_m68k_update_got_entry_type (arg->diff,
1921 R_68K_max, entry1->key_.type);
1922
1923 if (entry1->key_.bfd != NULL)
1924 arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
1925 }
1926
1927 if (type != R_68K_max)
1928 /* Create an entry in DIFF. */
1929 {
1930 struct elf_m68k_got_entry *entry;
1931
1932 entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1933 arg->info);
1934 if (entry == NULL)
1935 {
1936 arg->error_p = TRUE;
1937 return 0;
1938 }
1939
1940 entry->key_.type = type;
1941 }
1942
1943 return 1;
1944 }
1945
1946 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1947 Construct DIFF GOT holding the entries which should be added or updated
1948 in BIG GOT to accumulate information from SMALL.
1949 INFO is the context where memory should be allocated. */
1950
1951 static bfd_boolean
1952 elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1953 const struct elf_m68k_got *small,
1954 struct bfd_link_info *info,
1955 struct elf_m68k_got *diff)
1956 {
1957 struct elf_m68k_can_merge_gots_arg arg_;
1958
1959 BFD_ASSERT (small->offset == (bfd_vma) -1);
1960
1961 arg_.big = big;
1962 arg_.diff = diff;
1963 arg_.info = info;
1964 arg_.error_p = FALSE;
1965 htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1966 if (arg_.error_p)
1967 {
1968 diff->offset = 0;
1969 return FALSE;
1970 }
1971
1972 /* Check for overflow. */
1973 if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1974 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1975 || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1976 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1977 return FALSE;
1978
1979 return TRUE;
1980 }
1981
1982 struct elf_m68k_merge_gots_arg
1983 {
1984 /* The BIG got. */
1985 struct elf_m68k_got *big;
1986
1987 /* Context where memory should be allocated. */
1988 struct bfd_link_info *info;
1989
1990 /* Error flag. */
1991 bfd_boolean error_p;
1992 };
1993
1994 /* Process a single entry from DIFF got. Add or update corresponding
1995 entry in the BIG got. */
1996
1997 static int
1998 elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
1999 {
2000 const struct elf_m68k_got_entry *from;
2001 struct elf_m68k_merge_gots_arg *arg;
2002 struct elf_m68k_got_entry *to;
2003
2004 from = (const struct elf_m68k_got_entry *) *entry_ptr;
2005 arg = (struct elf_m68k_merge_gots_arg *) _arg;
2006
2007 to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
2008 arg->info);
2009 if (to == NULL)
2010 {
2011 arg->error_p = TRUE;
2012 return 0;
2013 }
2014
2015 BFD_ASSERT (to->u.s1.refcount == 0);
2016 /* All we need to merge is TYPE. */
2017 to->key_.type = from->key_.type;
2018
2019 return 1;
2020 }
2021
2022 /* Merge data from DIFF to BIG. INFO is context where memory should be
2023 allocated. */
2024
2025 static bfd_boolean
2026 elf_m68k_merge_gots (struct elf_m68k_got *big,
2027 struct elf_m68k_got *diff,
2028 struct bfd_link_info *info)
2029 {
2030 if (diff->entries != NULL)
2031 /* DIFF is not empty. Merge it into BIG GOT. */
2032 {
2033 struct elf_m68k_merge_gots_arg arg_;
2034
2035 /* Merge entries. */
2036 arg_.big = big;
2037 arg_.info = info;
2038 arg_.error_p = FALSE;
2039 htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
2040 if (arg_.error_p)
2041 return FALSE;
2042
2043 /* Merge counters. */
2044 big->n_slots[R_8] += diff->n_slots[R_8];
2045 big->n_slots[R_16] += diff->n_slots[R_16];
2046 big->n_slots[R_32] += diff->n_slots[R_32];
2047 big->local_n_slots += diff->local_n_slots;
2048 }
2049 else
2050 /* DIFF is empty. */
2051 {
2052 BFD_ASSERT (diff->n_slots[R_8] == 0);
2053 BFD_ASSERT (diff->n_slots[R_16] == 0);
2054 BFD_ASSERT (diff->n_slots[R_32] == 0);
2055 BFD_ASSERT (diff->local_n_slots == 0);
2056 }
2057
2058 BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
2059 || ((big->n_slots[R_8]
2060 <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
2061 && (big->n_slots[R_16]
2062 <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
2063
2064 return TRUE;
2065 }
2066
2067 struct elf_m68k_finalize_got_offsets_arg
2068 {
2069 /* Ranges of the offsets for GOT entries.
2070 R_x entries receive offsets between offset1[R_x] and offset2[R_x].
2071 R_x is R_8, R_16 and R_32. */
2072 bfd_vma *offset1;
2073 bfd_vma *offset2;
2074
2075 /* Mapping from global symndx to global symbols.
2076 This is used to build lists of got entries for global symbols. */
2077 struct elf_m68k_link_hash_entry **symndx2h;
2078
2079 bfd_vma n_ldm_entries;
2080 };
2081
2082 /* Assign ENTRY an offset. Build list of GOT entries for global symbols
2083 along the way. */
2084
2085 static int
2086 elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2087 {
2088 struct elf_m68k_got_entry *entry;
2089 struct elf_m68k_finalize_got_offsets_arg *arg;
2090
2091 enum elf_m68k_got_offset_size got_offset_size;
2092 bfd_vma entry_size;
2093
2094 entry = (struct elf_m68k_got_entry *) *entry_ptr;
2095 arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2096
2097 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */
2098 BFD_ASSERT (entry->u.s1.refcount == 0);
2099
2100 /* Get GOT offset size for the entry . */
2101 got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
2102
2103 /* Calculate entry size in bytes. */
2104 entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
2105
2106 /* Check if we should switch to negative range of the offsets. */
2107 if (arg->offset1[got_offset_size] + entry_size
2108 > arg->offset2[got_offset_size])
2109 {
2110 /* Verify that this is the only switch to negative range for
2111 got_offset_size. If this assertion fails, then we've miscalculated
2112 range for got_offset_size entries in
2113 elf_m68k_finalize_got_offsets. */
2114 BFD_ASSERT (arg->offset2[got_offset_size]
2115 != arg->offset2[-(int) got_offset_size - 1]);
2116
2117 /* Switch. */
2118 arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2119 arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2120
2121 /* Verify that now we have enough room for the entry. */
2122 BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2123 <= arg->offset2[got_offset_size]);
2124 }
2125
2126 /* Assign offset to entry. */
2127 entry->u.s2.offset = arg->offset1[got_offset_size];
2128 arg->offset1[got_offset_size] += entry_size;
2129
2130 if (entry->key_.bfd == NULL)
2131 /* Hook up this entry into the list of got_entries of H. */
2132 {
2133 struct elf_m68k_link_hash_entry *h;
2134
2135 h = arg->symndx2h[entry->key_.symndx];
2136 if (h != NULL)
2137 {
2138 entry->u.s2.next = h->glist;
2139 h->glist = entry;
2140 }
2141 else
2142 /* This should be the entry for TLS_LDM relocation then. */
2143 {
2144 BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2145 == R_68K_TLS_LDM32)
2146 && entry->key_.symndx == 0);
2147
2148 ++arg->n_ldm_entries;
2149 }
2150 }
2151 else
2152 /* This entry is for local symbol. */
2153 entry->u.s2.next = NULL;
2154
2155 return 1;
2156 }
2157
2158 /* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we
2159 should use negative offsets.
2160 Build list of GOT entries for global symbols along the way.
2161 SYMNDX2H is mapping from global symbol indices to actual
2162 global symbols.
2163 Return offset at which next GOT should start. */
2164
2165 static void
2166 elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2167 bfd_boolean use_neg_got_offsets_p,
2168 struct elf_m68k_link_hash_entry **symndx2h,
2169 bfd_vma *final_offset, bfd_vma *n_ldm_entries)
2170 {
2171 struct elf_m68k_finalize_got_offsets_arg arg_;
2172 bfd_vma offset1_[2 * R_LAST];
2173 bfd_vma offset2_[2 * R_LAST];
2174 int i;
2175 bfd_vma start_offset;
2176
2177 BFD_ASSERT (got->offset != (bfd_vma) -1);
2178
2179 /* We set entry offsets relative to the .got section (and not the
2180 start of a particular GOT), so that we can use them in
2181 finish_dynamic_symbol without needing to know the GOT which they come
2182 from. */
2183
2184 /* Put offset1 in the middle of offset1_, same for offset2. */
2185 arg_.offset1 = offset1_ + R_LAST;
2186 arg_.offset2 = offset2_ + R_LAST;
2187
2188 start_offset = got->offset;
2189
2190 if (use_neg_got_offsets_p)
2191 /* Setup both negative and positive ranges for R_8, R_16 and R_32. */
2192 i = -(int) R_32 - 1;
2193 else
2194 /* Setup positives ranges for R_8, R_16 and R_32. */
2195 i = (int) R_8;
2196
2197 for (; i <= (int) R_32; ++i)
2198 {
2199 int j;
2200 size_t n;
2201
2202 /* Set beginning of the range of offsets I. */
2203 arg_.offset1[i] = start_offset;
2204
2205 /* Calculate number of slots that require I offsets. */
2206 j = (i >= 0) ? i : -i - 1;
2207 n = (j >= 1) ? got->n_slots[j - 1] : 0;
2208 n = got->n_slots[j] - n;
2209
2210 if (use_neg_got_offsets_p && n != 0)
2211 {
2212 if (i < 0)
2213 /* We first fill the positive side of the range, so we might
2214 end up with one empty slot at that side when we can't fit
2215 whole 2-slot entry. Account for that at negative side of
2216 the interval with one additional entry. */
2217 n = n / 2 + 1;
2218 else
2219 /* When the number of slots is odd, make positive side of the
2220 range one entry bigger. */
2221 n = (n + 1) / 2;
2222 }
2223
2224 /* N is the number of slots that require I offsets.
2225 Calculate length of the range for I offsets. */
2226 n = 4 * n;
2227
2228 /* Set end of the range. */
2229 arg_.offset2[i] = start_offset + n;
2230
2231 start_offset = arg_.offset2[i];
2232 }
2233
2234 if (!use_neg_got_offsets_p)
2235 /* Make sure that if we try to switch to negative offsets in
2236 elf_m68k_finalize_got_offsets_1, the assert therein will catch
2237 the bug. */
2238 for (i = R_8; i <= R_32; ++i)
2239 arg_.offset2[-i - 1] = arg_.offset2[i];
2240
2241 /* Setup got->offset. offset1[R_8] is either in the middle or at the
2242 beginning of GOT depending on use_neg_got_offsets_p. */
2243 got->offset = arg_.offset1[R_8];
2244
2245 arg_.symndx2h = symndx2h;
2246 arg_.n_ldm_entries = 0;
2247
2248 /* Assign offsets. */
2249 htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
2250
2251 /* Check offset ranges we have actually assigned. */
2252 for (i = (int) R_8; i <= (int) R_32; ++i)
2253 BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
2254
2255 *final_offset = start_offset;
2256 *n_ldm_entries = arg_.n_ldm_entries;
2257 }
2258
2259 struct elf_m68k_partition_multi_got_arg
2260 {
2261 /* The GOT we are adding entries to. Aka big got. */
2262 struct elf_m68k_got *current_got;
2263
2264 /* Offset to assign the next CURRENT_GOT. */
2265 bfd_vma offset;
2266
2267 /* Context where memory should be allocated. */
2268 struct bfd_link_info *info;
2269
2270 /* Total number of slots in the .got section.
2271 This is used to calculate size of the .got and .rela.got sections. */
2272 bfd_vma n_slots;
2273
2274 /* Difference in numbers of allocated slots in the .got section
2275 and necessary relocations in the .rela.got section.
2276 This is used to calculate size of the .rela.got section. */
2277 bfd_vma slots_relas_diff;
2278
2279 /* Error flag. */
2280 bfd_boolean error_p;
2281
2282 /* Mapping from global symndx to global symbols.
2283 This is used to build lists of got entries for global symbols. */
2284 struct elf_m68k_link_hash_entry **symndx2h;
2285 };
2286
2287 static void
2288 elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2289 {
2290 bfd_vma n_ldm_entries;
2291
2292 elf_m68k_finalize_got_offsets (arg->current_got,
2293 (elf_m68k_hash_table (arg->info)
2294 ->use_neg_got_offsets_p),
2295 arg->symndx2h,
2296 &arg->offset, &n_ldm_entries);
2297
2298 arg->n_slots += arg->current_got->n_slots[R_32];
2299
2300 if (!bfd_link_pic (arg->info))
2301 /* If we are generating a shared object, we need to
2302 output a R_68K_RELATIVE reloc so that the dynamic
2303 linker can adjust this GOT entry. Overwise we
2304 don't need space in .rela.got for local symbols. */
2305 arg->slots_relas_diff += arg->current_got->local_n_slots;
2306
2307 /* @LDM relocations require a 2-slot GOT entry, but only
2308 one relocation. Account for that. */
2309 arg->slots_relas_diff += n_ldm_entries;
2310
2311 BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2312 }
2313
2314
2315 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2316 or start a new CURRENT_GOT. */
2317
2318 static int
2319 elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2320 {
2321 struct elf_m68k_bfd2got_entry *entry;
2322 struct elf_m68k_partition_multi_got_arg *arg;
2323 struct elf_m68k_got *got;
2324 struct elf_m68k_got diff_;
2325 struct elf_m68k_got *diff;
2326
2327 entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2328 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2329
2330 got = entry->got;
2331 BFD_ASSERT (got != NULL);
2332 BFD_ASSERT (got->offset == (bfd_vma) -1);
2333
2334 diff = NULL;
2335
2336 if (arg->current_got != NULL)
2337 /* Construct diff. */
2338 {
2339 diff = &diff_;
2340 elf_m68k_init_got (diff);
2341
2342 if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2343 {
2344 if (diff->offset == 0)
2345 /* Offset set to 0 in the diff_ indicates an error. */
2346 {
2347 arg->error_p = TRUE;
2348 goto final_return;
2349 }
2350
2351 if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2352 {
2353 elf_m68k_clear_got (diff);
2354 /* Schedule to finish up current_got and start new one. */
2355 diff = NULL;
2356 }
2357 /* else
2358 Merge GOTs no matter what. If big GOT overflows,
2359 we'll fail in relocate_section due to truncated relocations.
2360
2361 ??? May be fail earlier? E.g., in can_merge_gots. */
2362 }
2363 }
2364 else
2365 /* Diff of got against empty current_got is got itself. */
2366 {
2367 /* Create empty current_got to put subsequent GOTs to. */
2368 arg->current_got = elf_m68k_create_empty_got (arg->info);
2369 if (arg->current_got == NULL)
2370 {
2371 arg->error_p = TRUE;
2372 goto final_return;
2373 }
2374
2375 arg->current_got->offset = arg->offset;
2376
2377 diff = got;
2378 }
2379
2380 if (diff != NULL)
2381 {
2382 if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
2383 {
2384 arg->error_p = TRUE;
2385 goto final_return;
2386 }
2387
2388 /* Now we can free GOT. */
2389 elf_m68k_clear_got (got);
2390
2391 entry->got = arg->current_got;
2392 }
2393 else
2394 {
2395 /* Finish up current_got. */
2396 elf_m68k_partition_multi_got_2 (arg);
2397
2398 /* Schedule to start a new current_got. */
2399 arg->current_got = NULL;
2400
2401 /* Retry. */
2402 if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2403 {
2404 BFD_ASSERT (arg->error_p);
2405 goto final_return;
2406 }
2407 }
2408
2409 final_return:
2410 if (diff != NULL)
2411 elf_m68k_clear_got (diff);
2412
2413 return !arg->error_p;
2414 }
2415
2416 /* Helper function to build symndx2h mapping. */
2417
2418 static bfd_boolean
2419 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2420 void *_arg)
2421 {
2422 struct elf_m68k_link_hash_entry *h;
2423
2424 h = elf_m68k_hash_entry (_h);
2425
2426 if (h->got_entry_key != 0)
2427 /* H has at least one entry in the GOT. */
2428 {
2429 struct elf_m68k_partition_multi_got_arg *arg;
2430
2431 arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2432
2433 BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2434 arg->symndx2h[h->got_entry_key] = h;
2435 }
2436
2437 return TRUE;
2438 }
2439
2440 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2441 lists of GOT entries for global symbols.
2442 Calculate sizes of .got and .rela.got sections. */
2443
2444 static bfd_boolean
2445 elf_m68k_partition_multi_got (struct bfd_link_info *info)
2446 {
2447 struct elf_m68k_multi_got *multi_got;
2448 struct elf_m68k_partition_multi_got_arg arg_;
2449
2450 multi_got = elf_m68k_multi_got (info);
2451
2452 arg_.current_got = NULL;
2453 arg_.offset = 0;
2454 arg_.info = info;
2455 arg_.n_slots = 0;
2456 arg_.slots_relas_diff = 0;
2457 arg_.error_p = FALSE;
2458
2459 if (multi_got->bfd2got != NULL)
2460 {
2461 /* Initialize symndx2h mapping. */
2462 {
2463 arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2464 * sizeof (*arg_.symndx2h));
2465 if (arg_.symndx2h == NULL)
2466 return FALSE;
2467
2468 elf_link_hash_traverse (elf_hash_table (info),
2469 elf_m68k_init_symndx2h_1, &arg_);
2470 }
2471
2472 /* Partition. */
2473 htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2474 &arg_);
2475 if (arg_.error_p)
2476 {
2477 free (arg_.symndx2h);
2478 arg_.symndx2h = NULL;
2479
2480 return FALSE;
2481 }
2482
2483 /* Finish up last current_got. */
2484 elf_m68k_partition_multi_got_2 (&arg_);
2485
2486 free (arg_.symndx2h);
2487 }
2488
2489 if (elf_hash_table (info)->dynobj != NULL)
2490 /* Set sizes of .got and .rela.got sections. */
2491 {
2492 asection *s;
2493
2494 s = elf_hash_table (info)->sgot;
2495 if (s != NULL)
2496 s->size = arg_.offset;
2497 else
2498 BFD_ASSERT (arg_.offset == 0);
2499
2500 BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2501 arg_.n_slots -= arg_.slots_relas_diff;
2502
2503 s = elf_hash_table (info)->srelgot;
2504 if (s != NULL)
2505 s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
2506 else
2507 BFD_ASSERT (arg_.n_slots == 0);
2508 }
2509 else
2510 BFD_ASSERT (multi_got->bfd2got == NULL);
2511
2512 return TRUE;
2513 }
2514
2515 /* Copy any information related to dynamic linking from a pre-existing
2516 symbol to a newly created symbol. Also called to copy flags and
2517 other back-end info to a weakdef, in which case the symbol is not
2518 newly created and plt/got refcounts and dynamic indices should not
2519 be copied. */
2520
2521 static void
2522 elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2523 struct elf_link_hash_entry *_dir,
2524 struct elf_link_hash_entry *_ind)
2525 {
2526 struct elf_m68k_link_hash_entry *dir;
2527 struct elf_m68k_link_hash_entry *ind;
2528
2529 _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2530
2531 if (_ind->root.type != bfd_link_hash_indirect)
2532 return;
2533
2534 dir = elf_m68k_hash_entry (_dir);
2535 ind = elf_m68k_hash_entry (_ind);
2536
2537 /* Any absolute non-dynamic relocations against an indirect or weak
2538 definition will be against the target symbol. */
2539 _dir->non_got_ref |= _ind->non_got_ref;
2540
2541 /* We might have a direct symbol already having entries in the GOTs.
2542 Update its key only in case indirect symbol has GOT entries and
2543 assert that both indirect and direct symbols don't have GOT entries
2544 at the same time. */
2545 if (ind->got_entry_key != 0)
2546 {
2547 BFD_ASSERT (dir->got_entry_key == 0);
2548 /* Assert that GOTs aren't partioned yet. */
2549 BFD_ASSERT (ind->glist == NULL);
2550
2551 dir->got_entry_key = ind->got_entry_key;
2552 ind->got_entry_key = 0;
2553 }
2554 }
2555
2556 /* Look through the relocs for a section during the first phase, and
2557 allocate space in the global offset table or procedure linkage
2558 table. */
2559
2560 static bfd_boolean
2561 elf_m68k_check_relocs (bfd *abfd,
2562 struct bfd_link_info *info,
2563 asection *sec,
2564 const Elf_Internal_Rela *relocs)
2565 {
2566 bfd *dynobj;
2567 Elf_Internal_Shdr *symtab_hdr;
2568 struct elf_link_hash_entry **sym_hashes;
2569 const Elf_Internal_Rela *rel;
2570 const Elf_Internal_Rela *rel_end;
2571 asection *sreloc;
2572 struct elf_m68k_got *got;
2573
2574 if (bfd_link_relocatable (info))
2575 return TRUE;
2576
2577 dynobj = elf_hash_table (info)->dynobj;
2578 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2579 sym_hashes = elf_sym_hashes (abfd);
2580
2581 sreloc = NULL;
2582
2583 got = NULL;
2584
2585 rel_end = relocs + sec->reloc_count;
2586 for (rel = relocs; rel < rel_end; rel++)
2587 {
2588 unsigned long r_symndx;
2589 struct elf_link_hash_entry *h;
2590
2591 r_symndx = ELF32_R_SYM (rel->r_info);
2592
2593 if (r_symndx < symtab_hdr->sh_info)
2594 h = NULL;
2595 else
2596 {
2597 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2598 while (h->root.type == bfd_link_hash_indirect
2599 || h->root.type == bfd_link_hash_warning)
2600 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2601 }
2602
2603 switch (ELF32_R_TYPE (rel->r_info))
2604 {
2605 case R_68K_GOT8:
2606 case R_68K_GOT16:
2607 case R_68K_GOT32:
2608 if (h != NULL
2609 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2610 break;
2611 /* Fall through. */
2612
2613 /* Relative GOT relocations. */
2614 case R_68K_GOT8O:
2615 case R_68K_GOT16O:
2616 case R_68K_GOT32O:
2617 /* Fall through. */
2618
2619 /* TLS relocations. */
2620 case R_68K_TLS_GD8:
2621 case R_68K_TLS_GD16:
2622 case R_68K_TLS_GD32:
2623 case R_68K_TLS_LDM8:
2624 case R_68K_TLS_LDM16:
2625 case R_68K_TLS_LDM32:
2626 case R_68K_TLS_IE8:
2627 case R_68K_TLS_IE16:
2628 case R_68K_TLS_IE32:
2629
2630 case R_68K_TLS_TPREL32:
2631 case R_68K_TLS_DTPREL32:
2632
2633 if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
2634 && bfd_link_pic (info))
2635 /* Do the special chorus for libraries with static TLS. */
2636 info->flags |= DF_STATIC_TLS;
2637
2638 /* This symbol requires a global offset table entry. */
2639
2640 if (dynobj == NULL)
2641 {
2642 /* Create the .got section. */
2643 elf_hash_table (info)->dynobj = dynobj = abfd;
2644 if (!_bfd_elf_create_got_section (dynobj, info))
2645 return FALSE;
2646 }
2647
2648 if (got == NULL)
2649 {
2650 struct elf_m68k_bfd2got_entry *bfd2got_entry;
2651
2652 bfd2got_entry
2653 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2654 abfd, FIND_OR_CREATE, info);
2655 if (bfd2got_entry == NULL)
2656 return FALSE;
2657
2658 got = bfd2got_entry->got;
2659 BFD_ASSERT (got != NULL);
2660 }
2661
2662 {
2663 struct elf_m68k_got_entry *got_entry;
2664
2665 /* Add entry to got. */
2666 got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2667 ELF32_R_TYPE (rel->r_info),
2668 r_symndx, info);
2669 if (got_entry == NULL)
2670 return FALSE;
2671
2672 if (got_entry->u.s1.refcount == 1)
2673 {
2674 /* Make sure this symbol is output as a dynamic symbol. */
2675 if (h != NULL
2676 && h->dynindx == -1
2677 && !h->forced_local)
2678 {
2679 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2680 return FALSE;
2681 }
2682 }
2683 }
2684
2685 break;
2686
2687 case R_68K_PLT8:
2688 case R_68K_PLT16:
2689 case R_68K_PLT32:
2690 /* This symbol requires a procedure linkage table entry. We
2691 actually build the entry in adjust_dynamic_symbol,
2692 because this might be a case of linking PIC code which is
2693 never referenced by a dynamic object, in which case we
2694 don't need to generate a procedure linkage table entry
2695 after all. */
2696
2697 /* If this is a local symbol, we resolve it directly without
2698 creating a procedure linkage table entry. */
2699 if (h == NULL)
2700 continue;
2701
2702 h->needs_plt = 1;
2703 h->plt.refcount++;
2704 break;
2705
2706 case R_68K_PLT8O:
2707 case R_68K_PLT16O:
2708 case R_68K_PLT32O:
2709 /* This symbol requires a procedure linkage table entry. */
2710
2711 if (h == NULL)
2712 {
2713 /* It does not make sense to have this relocation for a
2714 local symbol. FIXME: does it? How to handle it if
2715 it does make sense? */
2716 bfd_set_error (bfd_error_bad_value);
2717 return FALSE;
2718 }
2719
2720 /* Make sure this symbol is output as a dynamic symbol. */
2721 if (h->dynindx == -1
2722 && !h->forced_local)
2723 {
2724 if (!bfd_elf_link_record_dynamic_symbol (info, h))
2725 return FALSE;
2726 }
2727
2728 h->needs_plt = 1;
2729 h->plt.refcount++;
2730 break;
2731
2732 case R_68K_PC8:
2733 case R_68K_PC16:
2734 case R_68K_PC32:
2735 /* If we are creating a shared library and this is not a local
2736 symbol, we need to copy the reloc into the shared library.
2737 However when linking with -Bsymbolic and this is a global
2738 symbol which is defined in an object we are including in the
2739 link (i.e., DEF_REGULAR is set), then we can resolve the
2740 reloc directly. At this point we have not seen all the input
2741 files, so it is possible that DEF_REGULAR is not set now but
2742 will be set later (it is never cleared). We account for that
2743 possibility below by storing information in the
2744 pcrel_relocs_copied field of the hash table entry. */
2745 if (!(bfd_link_pic (info)
2746 && (sec->flags & SEC_ALLOC) != 0
2747 && h != NULL
2748 && (!SYMBOLIC_BIND (info, h)
2749 || h->root.type == bfd_link_hash_defweak
2750 || !h->def_regular)))
2751 {
2752 if (h != NULL)
2753 {
2754 /* Make sure a plt entry is created for this symbol if
2755 it turns out to be a function defined by a dynamic
2756 object. */
2757 h->plt.refcount++;
2758 }
2759 break;
2760 }
2761 /* Fall through. */
2762 case R_68K_8:
2763 case R_68K_16:
2764 case R_68K_32:
2765 /* We don't need to handle relocs into sections not going into
2766 the "real" output. */
2767 if ((sec->flags & SEC_ALLOC) == 0)
2768 break;
2769
2770 if (h != NULL)
2771 {
2772 /* Make sure a plt entry is created for this symbol if it
2773 turns out to be a function defined by a dynamic object. */
2774 h->plt.refcount++;
2775
2776 if (bfd_link_executable (info))
2777 /* This symbol needs a non-GOT reference. */
2778 h->non_got_ref = 1;
2779 }
2780
2781 /* If we are creating a shared library, we need to copy the
2782 reloc into the shared library. */
2783 if (bfd_link_pic (info)
2784 && (h == NULL
2785 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)))
2786 {
2787 /* When creating a shared object, we must copy these
2788 reloc types into the output file. We create a reloc
2789 section in dynobj and make room for this reloc. */
2790 if (sreloc == NULL)
2791 {
2792 sreloc = _bfd_elf_make_dynamic_reloc_section
2793 (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
2794
2795 if (sreloc == NULL)
2796 return FALSE;
2797 }
2798
2799 if (sec->flags & SEC_READONLY
2800 /* Don't set DF_TEXTREL yet for PC relative
2801 relocations, they might be discarded later. */
2802 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2803 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2804 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2805 info->flags |= DF_TEXTREL;
2806
2807 sreloc->size += sizeof (Elf32_External_Rela);
2808
2809 /* We count the number of PC relative relocations we have
2810 entered for this symbol, so that we can discard them
2811 again if, in the -Bsymbolic case, the symbol is later
2812 defined by a regular object, or, in the normal shared
2813 case, the symbol is forced to be local. Note that this
2814 function is only called if we are using an m68kelf linker
2815 hash table, which means that h is really a pointer to an
2816 elf_m68k_link_hash_entry. */
2817 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2818 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2819 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2820 {
2821 struct elf_m68k_pcrel_relocs_copied *p;
2822 struct elf_m68k_pcrel_relocs_copied **head;
2823
2824 if (h != NULL)
2825 {
2826 struct elf_m68k_link_hash_entry *eh
2827 = elf_m68k_hash_entry (h);
2828 head = &eh->pcrel_relocs_copied;
2829 }
2830 else
2831 {
2832 asection *s;
2833 void *vpp;
2834 Elf_Internal_Sym *isym;
2835
2836 isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->root.sym_cache,
2837 abfd, r_symndx);
2838 if (isym == NULL)
2839 return FALSE;
2840
2841 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2842 if (s == NULL)
2843 s = sec;
2844
2845 vpp = &elf_section_data (s)->local_dynrel;
2846 head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2847 }
2848
2849 for (p = *head; p != NULL; p = p->next)
2850 if (p->section == sreloc)
2851 break;
2852
2853 if (p == NULL)
2854 {
2855 p = ((struct elf_m68k_pcrel_relocs_copied *)
2856 bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2857 if (p == NULL)
2858 return FALSE;
2859 p->next = *head;
2860 *head = p;
2861 p->section = sreloc;
2862 p->count = 0;
2863 }
2864
2865 ++p->count;
2866 }
2867 }
2868
2869 break;
2870
2871 /* This relocation describes the C++ object vtable hierarchy.
2872 Reconstruct it for later use during GC. */
2873 case R_68K_GNU_VTINHERIT:
2874 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2875 return FALSE;
2876 break;
2877
2878 /* This relocation describes which C++ vtable entries are actually
2879 used. Record for later use during GC. */
2880 case R_68K_GNU_VTENTRY:
2881 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2882 return FALSE;
2883 break;
2884
2885 default:
2886 break;
2887 }
2888 }
2889
2890 return TRUE;
2891 }
2892
2893 /* Return the section that should be marked against GC for a given
2894 relocation. */
2895
2896 static asection *
2897 elf_m68k_gc_mark_hook (asection *sec,
2898 struct bfd_link_info *info,
2899 Elf_Internal_Rela *rel,
2900 struct elf_link_hash_entry *h,
2901 Elf_Internal_Sym *sym)
2902 {
2903 if (h != NULL)
2904 switch (ELF32_R_TYPE (rel->r_info))
2905 {
2906 case R_68K_GNU_VTINHERIT:
2907 case R_68K_GNU_VTENTRY:
2908 return NULL;
2909 }
2910
2911 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2912 }
2913 \f
2914 /* Return the type of PLT associated with OUTPUT_BFD. */
2915
2916 static const struct elf_m68k_plt_info *
2917 elf_m68k_get_plt_info (bfd *output_bfd)
2918 {
2919 unsigned int features;
2920
2921 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
2922 if (features & cpu32)
2923 return &elf_cpu32_plt_info;
2924 if (features & mcfisa_b)
2925 return &elf_isab_plt_info;
2926 if (features & mcfisa_c)
2927 return &elf_isac_plt_info;
2928 return &elf_m68k_plt_info;
2929 }
2930
2931 /* This function is called after all the input files have been read,
2932 and the input sections have been assigned to output sections.
2933 It's a convenient place to determine the PLT style. */
2934
2935 static bfd_boolean
2936 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
2937 {
2938 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
2939 sections. */
2940 if (!elf_m68k_partition_multi_got (info))
2941 return FALSE;
2942
2943 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
2944 return TRUE;
2945 }
2946
2947 /* Adjust a symbol defined by a dynamic object and referenced by a
2948 regular object. The current definition is in some section of the
2949 dynamic object, but we're not including those sections. We have to
2950 change the definition to something the rest of the link can
2951 understand. */
2952
2953 static bfd_boolean
2954 elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info,
2955 struct elf_link_hash_entry *h)
2956 {
2957 struct elf_m68k_link_hash_table *htab;
2958 bfd *dynobj;
2959 asection *s;
2960
2961 htab = elf_m68k_hash_table (info);
2962 dynobj = htab->root.dynobj;
2963
2964 /* Make sure we know what is going on here. */
2965 BFD_ASSERT (dynobj != NULL
2966 && (h->needs_plt
2967 || h->is_weakalias
2968 || (h->def_dynamic
2969 && h->ref_regular
2970 && !h->def_regular)));
2971
2972 /* If this is a function, put it in the procedure linkage table. We
2973 will fill in the contents of the procedure linkage table later,
2974 when we know the address of the .got section. */
2975 if (h->type == STT_FUNC
2976 || h->needs_plt)
2977 {
2978 if ((h->plt.refcount <= 0
2979 || SYMBOL_CALLS_LOCAL (info, h)
2980 || ((ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2981 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
2982 && h->root.type == bfd_link_hash_undefweak))
2983 /* We must always create the plt entry if it was referenced
2984 by a PLTxxO relocation. In this case we already recorded
2985 it as a dynamic symbol. */
2986 && h->dynindx == -1)
2987 {
2988 /* This case can occur if we saw a PLTxx reloc in an input
2989 file, but the symbol was never referred to by a dynamic
2990 object, or if all references were garbage collected. In
2991 such a case, we don't actually need to build a procedure
2992 linkage table, and we can just do a PCxx reloc instead. */
2993 h->plt.offset = (bfd_vma) -1;
2994 h->needs_plt = 0;
2995 return TRUE;
2996 }
2997
2998 /* Make sure this symbol is output as a dynamic symbol. */
2999 if (h->dynindx == -1
3000 && !h->forced_local)
3001 {
3002 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3003 return FALSE;
3004 }
3005
3006 s = htab->root.splt;
3007 BFD_ASSERT (s != NULL);
3008
3009 /* If this is the first .plt entry, make room for the special
3010 first entry. */
3011 if (s->size == 0)
3012 s->size = htab->plt_info->size;
3013
3014 /* If this symbol is not defined in a regular file, and we are
3015 not generating a shared library, then set the symbol to this
3016 location in the .plt. This is required to make function
3017 pointers compare as equal between the normal executable and
3018 the shared library. */
3019 if (!bfd_link_pic (info)
3020 && !h->def_regular)
3021 {
3022 h->root.u.def.section = s;
3023 h->root.u.def.value = s->size;
3024 }
3025
3026 h->plt.offset = s->size;
3027
3028 /* Make room for this entry. */
3029 s->size += htab->plt_info->size;
3030
3031 /* We also need to make an entry in the .got.plt section, which
3032 will be placed in the .got section by the linker script. */
3033 s = htab->root.sgotplt;
3034 BFD_ASSERT (s != NULL);
3035 s->size += 4;
3036
3037 /* We also need to make an entry in the .rela.plt section. */
3038 s = htab->root.srelplt;
3039 BFD_ASSERT (s != NULL);
3040 s->size += sizeof (Elf32_External_Rela);
3041
3042 return TRUE;
3043 }
3044
3045 /* Reinitialize the plt offset now that it is not used as a reference
3046 count any more. */
3047 h->plt.offset = (bfd_vma) -1;
3048
3049 /* If this is a weak symbol, and there is a real definition, the
3050 processor independent code will have arranged for us to see the
3051 real definition first, and we can just use the same value. */
3052 if (h->is_weakalias)
3053 {
3054 struct elf_link_hash_entry *def = weakdef (h);
3055 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
3056 h->root.u.def.section = def->root.u.def.section;
3057 h->root.u.def.value = def->root.u.def.value;
3058 return TRUE;
3059 }
3060
3061 /* This is a reference to a symbol defined by a dynamic object which
3062 is not a function. */
3063
3064 /* If we are creating a shared library, we must presume that the
3065 only references to the symbol are via the global offset table.
3066 For such cases we need not do anything here; the relocations will
3067 be handled correctly by relocate_section. */
3068 if (bfd_link_pic (info))
3069 return TRUE;
3070
3071 /* If there are no references to this symbol that do not use the
3072 GOT, we don't need to generate a copy reloc. */
3073 if (!h->non_got_ref)
3074 return TRUE;
3075
3076 /* We must allocate the symbol in our .dynbss section, which will
3077 become part of the .bss section of the executable. There will be
3078 an entry for this symbol in the .dynsym section. The dynamic
3079 object will contain position independent code, so all references
3080 from the dynamic object to this symbol will go through the global
3081 offset table. The dynamic linker will use the .dynsym entry to
3082 determine the address it must put in the global offset table, so
3083 both the dynamic object and the regular object will refer to the
3084 same memory location for the variable. */
3085
3086 s = bfd_get_linker_section (dynobj, ".dynbss");
3087 BFD_ASSERT (s != NULL);
3088
3089 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3090 copy the initial value out of the dynamic object and into the
3091 runtime process image. We need to remember the offset into the
3092 .rela.bss section we are going to use. */
3093 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
3094 {
3095 asection *srel;
3096
3097 srel = bfd_get_linker_section (dynobj, ".rela.bss");
3098 BFD_ASSERT (srel != NULL);
3099 srel->size += sizeof (Elf32_External_Rela);
3100 h->needs_copy = 1;
3101 }
3102
3103 return _bfd_elf_adjust_dynamic_copy (info, h, s);
3104 }
3105
3106 /* Set the sizes of the dynamic sections. */
3107
3108 static bfd_boolean
3109 elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3110 struct bfd_link_info *info)
3111 {
3112 bfd *dynobj;
3113 asection *s;
3114 bfd_boolean relocs;
3115
3116 dynobj = elf_hash_table (info)->dynobj;
3117 BFD_ASSERT (dynobj != NULL);
3118
3119 if (elf_hash_table (info)->dynamic_sections_created)
3120 {
3121 /* Set the contents of the .interp section to the interpreter. */
3122 if (bfd_link_executable (info) && !info->nointerp)
3123 {
3124 s = bfd_get_linker_section (dynobj, ".interp");
3125 BFD_ASSERT (s != NULL);
3126 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3127 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3128 }
3129 }
3130 else
3131 {
3132 /* We may have created entries in the .rela.got section.
3133 However, if we are not creating the dynamic sections, we will
3134 not actually use these entries. Reset the size of .rela.got,
3135 which will cause it to get stripped from the output file
3136 below. */
3137 s = elf_hash_table (info)->srelgot;
3138 if (s != NULL)
3139 s->size = 0;
3140 }
3141
3142 /* If this is a -Bsymbolic shared link, then we need to discard all
3143 PC relative relocs against symbols defined in a regular object.
3144 For the normal shared case we discard the PC relative relocs
3145 against symbols that have become local due to visibility changes.
3146 We allocated space for them in the check_relocs routine, but we
3147 will not fill them in in the relocate_section routine. */
3148 if (bfd_link_pic (info))
3149 elf_link_hash_traverse (elf_hash_table (info),
3150 elf_m68k_discard_copies,
3151 info);
3152
3153 /* The check_relocs and adjust_dynamic_symbol entry points have
3154 determined the sizes of the various dynamic sections. Allocate
3155 memory for them. */
3156 relocs = FALSE;
3157 for (s = dynobj->sections; s != NULL; s = s->next)
3158 {
3159 const char *name;
3160
3161 if ((s->flags & SEC_LINKER_CREATED) == 0)
3162 continue;
3163
3164 /* It's OK to base decisions on the section name, because none
3165 of the dynobj section names depend upon the input files. */
3166 name = bfd_section_name (s);
3167
3168 if (strcmp (name, ".plt") == 0)
3169 {
3170 /* Remember whether there is a PLT. */
3171 ;
3172 }
3173 else if (CONST_STRNEQ (name, ".rela"))
3174 {
3175 if (s->size != 0)
3176 {
3177 relocs = TRUE;
3178
3179 /* We use the reloc_count field as a counter if we need
3180 to copy relocs into the output file. */
3181 s->reloc_count = 0;
3182 }
3183 }
3184 else if (! CONST_STRNEQ (name, ".got")
3185 && strcmp (name, ".dynbss") != 0)
3186 {
3187 /* It's not one of our sections, so don't allocate space. */
3188 continue;
3189 }
3190
3191 if (s->size == 0)
3192 {
3193 /* If we don't need this section, strip it from the
3194 output file. This is mostly to handle .rela.bss and
3195 .rela.plt. We must create both sections in
3196 create_dynamic_sections, because they must be created
3197 before the linker maps input sections to output
3198 sections. The linker does that before
3199 adjust_dynamic_symbol is called, and it is that
3200 function which decides whether anything needs to go
3201 into these sections. */
3202 s->flags |= SEC_EXCLUDE;
3203 continue;
3204 }
3205
3206 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3207 continue;
3208
3209 /* Allocate memory for the section contents. */
3210 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3211 Unused entries should be reclaimed before the section's contents
3212 are written out, but at the moment this does not happen. Thus in
3213 order to prevent writing out garbage, we initialise the section's
3214 contents to zero. */
3215 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3216 if (s->contents == NULL)
3217 return FALSE;
3218 }
3219
3220 return _bfd_elf_add_dynamic_tags (output_bfd, info, relocs);
3221 }
3222
3223 /* This function is called via elf_link_hash_traverse if we are
3224 creating a shared object. In the -Bsymbolic case it discards the
3225 space allocated to copy PC relative relocs against symbols which
3226 are defined in regular objects. For the normal shared case, it
3227 discards space for pc-relative relocs that have become local due to
3228 symbol visibility changes. We allocated space for them in the
3229 check_relocs routine, but we won't fill them in in the
3230 relocate_section routine.
3231
3232 We also check whether any of the remaining relocations apply
3233 against a readonly section, and set the DF_TEXTREL flag in this
3234 case. */
3235
3236 static bfd_boolean
3237 elf_m68k_discard_copies (struct elf_link_hash_entry *h,
3238 void * inf)
3239 {
3240 struct bfd_link_info *info = (struct bfd_link_info *) inf;
3241 struct elf_m68k_pcrel_relocs_copied *s;
3242
3243 if (!SYMBOL_CALLS_LOCAL (info, h))
3244 {
3245 if ((info->flags & DF_TEXTREL) == 0)
3246 {
3247 /* Look for relocations against read-only sections. */
3248 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3249 s != NULL;
3250 s = s->next)
3251 if ((s->section->flags & SEC_READONLY) != 0)
3252 {
3253 info->flags |= DF_TEXTREL;
3254 break;
3255 }
3256 }
3257
3258 /* Make sure undefined weak symbols are output as a dynamic symbol
3259 in PIEs. */
3260 if (h->non_got_ref
3261 && h->root.type == bfd_link_hash_undefweak
3262 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3263 && h->dynindx == -1
3264 && !h->forced_local)
3265 {
3266 if (! bfd_elf_link_record_dynamic_symbol (info, h))
3267 return FALSE;
3268 }
3269
3270 return TRUE;
3271 }
3272
3273 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3274 s != NULL;
3275 s = s->next)
3276 s->section->size -= s->count * sizeof (Elf32_External_Rela);
3277
3278 return TRUE;
3279 }
3280
3281
3282 /* Install relocation RELA. */
3283
3284 static void
3285 elf_m68k_install_rela (bfd *output_bfd,
3286 asection *srela,
3287 Elf_Internal_Rela *rela)
3288 {
3289 bfd_byte *loc;
3290
3291 loc = srela->contents;
3292 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3293 bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3294 }
3295
3296 /* Find the base offsets for thread-local storage in this object,
3297 for GD/LD and IE/LE respectively. */
3298
3299 #define DTP_OFFSET 0x8000
3300 #define TP_OFFSET 0x7000
3301
3302 static bfd_vma
3303 dtpoff_base (struct bfd_link_info *info)
3304 {
3305 /* If tls_sec is NULL, we should have signalled an error already. */
3306 if (elf_hash_table (info)->tls_sec == NULL)
3307 return 0;
3308 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
3309 }
3310
3311 static bfd_vma
3312 tpoff_base (struct bfd_link_info *info)
3313 {
3314 /* If tls_sec is NULL, we should have signalled an error already. */
3315 if (elf_hash_table (info)->tls_sec == NULL)
3316 return 0;
3317 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3318 }
3319
3320 /* Output necessary relocation to handle a symbol during static link.
3321 This function is called from elf_m68k_relocate_section. */
3322
3323 static void
3324 elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3325 bfd *output_bfd,
3326 enum elf_m68k_reloc_type r_type,
3327 asection *sgot,
3328 bfd_vma got_entry_offset,
3329 bfd_vma relocation)
3330 {
3331 switch (elf_m68k_reloc_got_type (r_type))
3332 {
3333 case R_68K_GOT32O:
3334 bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3335 break;
3336
3337 case R_68K_TLS_GD32:
3338 /* We know the offset within the module,
3339 put it into the second GOT slot. */
3340 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3341 sgot->contents + got_entry_offset + 4);
3342 /* FALLTHRU */
3343
3344 case R_68K_TLS_LDM32:
3345 /* Mark it as belonging to module 1, the executable. */
3346 bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3347 break;
3348
3349 case R_68K_TLS_IE32:
3350 bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3351 sgot->contents + got_entry_offset);
3352 break;
3353
3354 default:
3355 BFD_ASSERT (FALSE);
3356 }
3357 }
3358
3359 /* Output necessary relocation to handle a local symbol
3360 during dynamic link.
3361 This function is called either from elf_m68k_relocate_section
3362 or from elf_m68k_finish_dynamic_symbol. */
3363
3364 static void
3365 elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3366 bfd *output_bfd,
3367 enum elf_m68k_reloc_type r_type,
3368 asection *sgot,
3369 bfd_vma got_entry_offset,
3370 bfd_vma relocation,
3371 asection *srela)
3372 {
3373 Elf_Internal_Rela outrel;
3374
3375 switch (elf_m68k_reloc_got_type (r_type))
3376 {
3377 case R_68K_GOT32O:
3378 /* Emit RELATIVE relocation to initialize GOT slot
3379 at run-time. */
3380 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3381 outrel.r_addend = relocation;
3382 break;
3383
3384 case R_68K_TLS_GD32:
3385 /* We know the offset within the module,
3386 put it into the second GOT slot. */
3387 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3388 sgot->contents + got_entry_offset + 4);
3389 /* FALLTHRU */
3390
3391 case R_68K_TLS_LDM32:
3392 /* We don't know the module number,
3393 create a relocation for it. */
3394 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3395 outrel.r_addend = 0;
3396 break;
3397
3398 case R_68K_TLS_IE32:
3399 /* Emit TPREL relocation to initialize GOT slot
3400 at run-time. */
3401 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3402 outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3403 break;
3404
3405 default:
3406 BFD_ASSERT (FALSE);
3407 }
3408
3409 /* Offset of the GOT entry. */
3410 outrel.r_offset = (sgot->output_section->vma
3411 + sgot->output_offset
3412 + got_entry_offset);
3413
3414 /* Install one of the above relocations. */
3415 elf_m68k_install_rela (output_bfd, srela, &outrel);
3416
3417 bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
3418 }
3419
3420 /* Relocate an M68K ELF section. */
3421
3422 static bfd_boolean
3423 elf_m68k_relocate_section (bfd *output_bfd,
3424 struct bfd_link_info *info,
3425 bfd *input_bfd,
3426 asection *input_section,
3427 bfd_byte *contents,
3428 Elf_Internal_Rela *relocs,
3429 Elf_Internal_Sym *local_syms,
3430 asection **local_sections)
3431 {
3432 Elf_Internal_Shdr *symtab_hdr;
3433 struct elf_link_hash_entry **sym_hashes;
3434 asection *sgot;
3435 asection *splt;
3436 asection *sreloc;
3437 asection *srela;
3438 struct elf_m68k_got *got;
3439 Elf_Internal_Rela *rel;
3440 Elf_Internal_Rela *relend;
3441
3442 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3443 sym_hashes = elf_sym_hashes (input_bfd);
3444
3445 sgot = NULL;
3446 splt = NULL;
3447 sreloc = NULL;
3448 srela = NULL;
3449
3450 got = NULL;
3451
3452 rel = relocs;
3453 relend = relocs + input_section->reloc_count;
3454 for (; rel < relend; rel++)
3455 {
3456 int r_type;
3457 reloc_howto_type *howto;
3458 unsigned long r_symndx;
3459 struct elf_link_hash_entry *h;
3460 Elf_Internal_Sym *sym;
3461 asection *sec;
3462 bfd_vma relocation;
3463 bfd_boolean unresolved_reloc;
3464 bfd_reloc_status_type r;
3465 bfd_boolean resolved_to_zero;
3466
3467 r_type = ELF32_R_TYPE (rel->r_info);
3468 if (r_type < 0 || r_type >= (int) R_68K_max)
3469 {
3470 bfd_set_error (bfd_error_bad_value);
3471 return FALSE;
3472 }
3473 howto = howto_table + r_type;
3474
3475 r_symndx = ELF32_R_SYM (rel->r_info);
3476
3477 h = NULL;
3478 sym = NULL;
3479 sec = NULL;
3480 unresolved_reloc = FALSE;
3481
3482 if (r_symndx < symtab_hdr->sh_info)
3483 {
3484 sym = local_syms + r_symndx;
3485 sec = local_sections[r_symndx];
3486 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3487 }
3488 else
3489 {
3490 bfd_boolean warned, ignored;
3491
3492 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3493 r_symndx, symtab_hdr, sym_hashes,
3494 h, sec, relocation,
3495 unresolved_reloc, warned, ignored);
3496 }
3497
3498 if (sec != NULL && discarded_section (sec))
3499 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3500 rel, 1, relend, howto, 0, contents);
3501
3502 if (bfd_link_relocatable (info))
3503 continue;
3504
3505 resolved_to_zero = (h != NULL
3506 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
3507
3508 switch (r_type)
3509 {
3510 case R_68K_GOT8:
3511 case R_68K_GOT16:
3512 case R_68K_GOT32:
3513 /* Relocation is to the address of the entry for this symbol
3514 in the global offset table. */
3515 if (h != NULL
3516 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3517 {
3518 if (elf_m68k_hash_table (info)->local_gp_p)
3519 {
3520 bfd_vma sgot_output_offset;
3521 bfd_vma got_offset;
3522
3523 sgot = elf_hash_table (info)->sgot;
3524
3525 if (sgot != NULL)
3526 sgot_output_offset = sgot->output_offset;
3527 else
3528 /* In this case we have a reference to
3529 _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3530 empty.
3531 ??? Issue a warning? */
3532 sgot_output_offset = 0;
3533
3534 if (got == NULL)
3535 {
3536 struct elf_m68k_bfd2got_entry *bfd2got_entry;
3537
3538 bfd2got_entry
3539 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3540 input_bfd, SEARCH, NULL);
3541
3542 if (bfd2got_entry != NULL)
3543 {
3544 got = bfd2got_entry->got;
3545 BFD_ASSERT (got != NULL);
3546
3547 got_offset = got->offset;
3548 }
3549 else
3550 /* In this case we have a reference to
3551 _GLOBAL_OFFSET_TABLE_, but no other references
3552 accessing any GOT entries.
3553 ??? Issue a warning? */
3554 got_offset = 0;
3555 }
3556 else
3557 got_offset = got->offset;
3558
3559 /* Adjust GOT pointer to point to the GOT
3560 assigned to input_bfd. */
3561 rel->r_addend += sgot_output_offset + got_offset;
3562 }
3563 else
3564 BFD_ASSERT (got == NULL || got->offset == 0);
3565
3566 break;
3567 }
3568 /* Fall through. */
3569 case R_68K_GOT8O:
3570 case R_68K_GOT16O:
3571 case R_68K_GOT32O:
3572
3573 case R_68K_TLS_LDM32:
3574 case R_68K_TLS_LDM16:
3575 case R_68K_TLS_LDM8:
3576
3577 case R_68K_TLS_GD8:
3578 case R_68K_TLS_GD16:
3579 case R_68K_TLS_GD32:
3580
3581 case R_68K_TLS_IE8:
3582 case R_68K_TLS_IE16:
3583 case R_68K_TLS_IE32:
3584
3585 /* Relocation is the offset of the entry for this symbol in
3586 the global offset table. */
3587
3588 {
3589 struct elf_m68k_got_entry_key key_;
3590 bfd_vma *off_ptr;
3591 bfd_vma off;
3592
3593 sgot = elf_hash_table (info)->sgot;
3594 BFD_ASSERT (sgot != NULL);
3595
3596 if (got == NULL)
3597 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3598 input_bfd, MUST_FIND,
3599 NULL)->got;
3600
3601 /* Get GOT offset for this symbol. */
3602 elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3603 r_type);
3604 off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3605 NULL)->u.s2.offset;
3606 off = *off_ptr;
3607
3608 /* The offset must always be a multiple of 4. We use
3609 the least significant bit to record whether we have
3610 already generated the necessary reloc. */
3611 if ((off & 1) != 0)
3612 off &= ~1;
3613 else
3614 {
3615 if (h != NULL
3616 /* @TLSLDM relocations are bounded to the module, in
3617 which the symbol is defined -- not to the symbol
3618 itself. */
3619 && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
3620 {
3621 bfd_boolean dyn;
3622
3623 dyn = elf_hash_table (info)->dynamic_sections_created;
3624 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3625 bfd_link_pic (info),
3626 h)
3627 || (bfd_link_pic (info)
3628 && SYMBOL_REFERENCES_LOCAL (info, h))
3629 || ((ELF_ST_VISIBILITY (h->other)
3630 || resolved_to_zero)
3631 && h->root.type == bfd_link_hash_undefweak))
3632 {
3633 /* This is actually a static link, or it is a
3634 -Bsymbolic link and the symbol is defined
3635 locally, or the symbol was forced to be local
3636 because of a version file. We must initialize
3637 this entry in the global offset table. Since
3638 the offset must always be a multiple of 4, we
3639 use the least significant bit to record whether
3640 we have initialized it already.
3641
3642 When doing a dynamic link, we create a .rela.got
3643 relocation entry to initialize the value. This
3644 is done in the finish_dynamic_symbol routine. */
3645
3646 elf_m68k_init_got_entry_static (info,
3647 output_bfd,
3648 r_type,
3649 sgot,
3650 off,
3651 relocation);
3652
3653 *off_ptr |= 1;
3654 }
3655 else
3656 unresolved_reloc = FALSE;
3657 }
3658 else if (bfd_link_pic (info)) /* && h == NULL */
3659 /* Process local symbol during dynamic link. */
3660 {
3661 srela = elf_hash_table (info)->srelgot;
3662 BFD_ASSERT (srela != NULL);
3663
3664 elf_m68k_init_got_entry_local_shared (info,
3665 output_bfd,
3666 r_type,
3667 sgot,
3668 off,
3669 relocation,
3670 srela);
3671
3672 *off_ptr |= 1;
3673 }
3674 else /* h == NULL && !bfd_link_pic (info) */
3675 {
3676 elf_m68k_init_got_entry_static (info,
3677 output_bfd,
3678 r_type,
3679 sgot,
3680 off,
3681 relocation);
3682
3683 *off_ptr |= 1;
3684 }
3685 }
3686
3687 /* We don't use elf_m68k_reloc_got_type in the condition below
3688 because this is the only place where difference between
3689 R_68K_GOTx and R_68K_GOTxO relocations matters. */
3690 if (r_type == R_68K_GOT32O
3691 || r_type == R_68K_GOT16O
3692 || r_type == R_68K_GOT8O
3693 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3694 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3695 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
3696 {
3697 /* GOT pointer is adjusted to point to the start/middle
3698 of local GOT. Adjust the offset accordingly. */
3699 BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3700 || off >= got->offset);
3701
3702 if (elf_m68k_hash_table (info)->local_gp_p)
3703 relocation = off - got->offset;
3704 else
3705 {
3706 BFD_ASSERT (got->offset == 0);
3707 relocation = sgot->output_offset + off;
3708 }
3709
3710 /* This relocation does not use the addend. */
3711 rel->r_addend = 0;
3712 }
3713 else
3714 relocation = (sgot->output_section->vma + sgot->output_offset
3715 + off);
3716 }
3717 break;
3718
3719 case R_68K_TLS_LDO32:
3720 case R_68K_TLS_LDO16:
3721 case R_68K_TLS_LDO8:
3722 relocation -= dtpoff_base (info);
3723 break;
3724
3725 case R_68K_TLS_LE32:
3726 case R_68K_TLS_LE16:
3727 case R_68K_TLS_LE8:
3728 if (bfd_link_dll (info))
3729 {
3730 _bfd_error_handler
3731 /* xgettext:c-format */
3732 (_("%pB(%pA+%#" PRIx64 "): "
3733 "%s relocation not permitted in shared object"),
3734 input_bfd, input_section, (uint64_t) rel->r_offset,
3735 howto->name);
3736
3737 return FALSE;
3738 }
3739 else
3740 relocation -= tpoff_base (info);
3741
3742 break;
3743
3744 case R_68K_PLT8:
3745 case R_68K_PLT16:
3746 case R_68K_PLT32:
3747 /* Relocation is to the entry for this symbol in the
3748 procedure linkage table. */
3749
3750 /* Resolve a PLTxx reloc against a local symbol directly,
3751 without using the procedure linkage table. */
3752 if (h == NULL)
3753 break;
3754
3755 if (h->plt.offset == (bfd_vma) -1
3756 || !elf_hash_table (info)->dynamic_sections_created)
3757 {
3758 /* We didn't make a PLT entry for this symbol. This
3759 happens when statically linking PIC code, or when
3760 using -Bsymbolic. */
3761 break;
3762 }
3763
3764 splt = elf_hash_table (info)->splt;
3765 BFD_ASSERT (splt != NULL);
3766
3767 relocation = (splt->output_section->vma
3768 + splt->output_offset
3769 + h->plt.offset);
3770 unresolved_reloc = FALSE;
3771 break;
3772
3773 case R_68K_PLT8O:
3774 case R_68K_PLT16O:
3775 case R_68K_PLT32O:
3776 /* Relocation is the offset of the entry for this symbol in
3777 the procedure linkage table. */
3778 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
3779
3780 splt = elf_hash_table (info)->splt;
3781 BFD_ASSERT (splt != NULL);
3782
3783 relocation = h->plt.offset;
3784 unresolved_reloc = FALSE;
3785
3786 /* This relocation does not use the addend. */
3787 rel->r_addend = 0;
3788
3789 break;
3790
3791 case R_68K_8:
3792 case R_68K_16:
3793 case R_68K_32:
3794 case R_68K_PC8:
3795 case R_68K_PC16:
3796 case R_68K_PC32:
3797 if (bfd_link_pic (info)
3798 && r_symndx != STN_UNDEF
3799 && (input_section->flags & SEC_ALLOC) != 0
3800 && (h == NULL
3801 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3802 && !resolved_to_zero)
3803 || h->root.type != bfd_link_hash_undefweak)
3804 && ((r_type != R_68K_PC8
3805 && r_type != R_68K_PC16
3806 && r_type != R_68K_PC32)
3807 || !SYMBOL_CALLS_LOCAL (info, h)))
3808 {
3809 Elf_Internal_Rela outrel;
3810 bfd_byte *loc;
3811 bfd_boolean skip, relocate;
3812
3813 /* When generating a shared object, these relocations
3814 are copied into the output file to be resolved at run
3815 time. */
3816
3817 skip = FALSE;
3818 relocate = FALSE;
3819
3820 outrel.r_offset =
3821 _bfd_elf_section_offset (output_bfd, info, input_section,
3822 rel->r_offset);
3823 if (outrel.r_offset == (bfd_vma) -1)
3824 skip = TRUE;
3825 else if (outrel.r_offset == (bfd_vma) -2)
3826 skip = TRUE, relocate = TRUE;
3827 outrel.r_offset += (input_section->output_section->vma
3828 + input_section->output_offset);
3829
3830 if (skip)
3831 memset (&outrel, 0, sizeof outrel);
3832 else if (h != NULL
3833 && h->dynindx != -1
3834 && (r_type == R_68K_PC8
3835 || r_type == R_68K_PC16
3836 || r_type == R_68K_PC32
3837 || !bfd_link_pic (info)
3838 || !SYMBOLIC_BIND (info, h)
3839 || !h->def_regular))
3840 {
3841 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
3842 outrel.r_addend = rel->r_addend;
3843 }
3844 else
3845 {
3846 /* This symbol is local, or marked to become local. */
3847 outrel.r_addend = relocation + rel->r_addend;
3848
3849 if (r_type == R_68K_32)
3850 {
3851 relocate = TRUE;
3852 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3853 }
3854 else
3855 {
3856 long indx;
3857
3858 if (bfd_is_abs_section (sec))
3859 indx = 0;
3860 else if (sec == NULL || sec->owner == NULL)
3861 {
3862 bfd_set_error (bfd_error_bad_value);
3863 return FALSE;
3864 }
3865 else
3866 {
3867 asection *osec;
3868
3869 /* We are turning this relocation into one
3870 against a section symbol. It would be
3871 proper to subtract the symbol's value,
3872 osec->vma, from the emitted reloc addend,
3873 but ld.so expects buggy relocs. */
3874 osec = sec->output_section;
3875 indx = elf_section_data (osec)->dynindx;
3876 if (indx == 0)
3877 {
3878 struct elf_link_hash_table *htab;
3879 htab = elf_hash_table (info);
3880 osec = htab->text_index_section;
3881 indx = elf_section_data (osec)->dynindx;
3882 }
3883 BFD_ASSERT (indx != 0);
3884 }
3885
3886 outrel.r_info = ELF32_R_INFO (indx, r_type);
3887 }
3888 }
3889
3890 sreloc = elf_section_data (input_section)->sreloc;
3891 if (sreloc == NULL)
3892 abort ();
3893
3894 loc = sreloc->contents;
3895 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3896 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3897
3898 /* This reloc will be computed at runtime, so there's no
3899 need to do anything now, except for R_68K_32
3900 relocations that have been turned into
3901 R_68K_RELATIVE. */
3902 if (!relocate)
3903 continue;
3904 }
3905
3906 break;
3907
3908 case R_68K_GNU_VTINHERIT:
3909 case R_68K_GNU_VTENTRY:
3910 /* These are no-ops in the end. */
3911 continue;
3912
3913 default:
3914 break;
3915 }
3916
3917 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3918 because such sections are not SEC_ALLOC and thus ld.so will
3919 not process them. */
3920 if (unresolved_reloc
3921 && !((input_section->flags & SEC_DEBUGGING) != 0
3922 && h->def_dynamic)
3923 && _bfd_elf_section_offset (output_bfd, info, input_section,
3924 rel->r_offset) != (bfd_vma) -1)
3925 {
3926 _bfd_error_handler
3927 /* xgettext:c-format */
3928 (_("%pB(%pA+%#" PRIx64 "): "
3929 "unresolvable %s relocation against symbol `%s'"),
3930 input_bfd,
3931 input_section,
3932 (uint64_t) rel->r_offset,
3933 howto->name,
3934 h->root.root.string);
3935 return FALSE;
3936 }
3937
3938 if (r_symndx != STN_UNDEF
3939 && r_type != R_68K_NONE
3940 && (h == NULL
3941 || h->root.type == bfd_link_hash_defined
3942 || h->root.type == bfd_link_hash_defweak))
3943 {
3944 char sym_type;
3945
3946 sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
3947
3948 if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
3949 {
3950 const char *name;
3951
3952 if (h != NULL)
3953 name = h->root.root.string;
3954 else
3955 {
3956 name = (bfd_elf_string_from_elf_section
3957 (input_bfd, symtab_hdr->sh_link, sym->st_name));
3958 if (name == NULL || *name == '\0')
3959 name = bfd_section_name (sec);
3960 }
3961
3962 _bfd_error_handler
3963 ((sym_type == STT_TLS
3964 /* xgettext:c-format */
3965 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
3966 /* xgettext:c-format */
3967 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
3968 input_bfd,
3969 input_section,
3970 (uint64_t) rel->r_offset,
3971 howto->name,
3972 name);
3973 }
3974 }
3975
3976 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3977 contents, rel->r_offset,
3978 relocation, rel->r_addend);
3979
3980 if (r != bfd_reloc_ok)
3981 {
3982 const char *name;
3983
3984 if (h != NULL)
3985 name = h->root.root.string;
3986 else
3987 {
3988 name = bfd_elf_string_from_elf_section (input_bfd,
3989 symtab_hdr->sh_link,
3990 sym->st_name);
3991 if (name == NULL)
3992 return FALSE;
3993 if (*name == '\0')
3994 name = bfd_section_name (sec);
3995 }
3996
3997 if (r == bfd_reloc_overflow)
3998 (*info->callbacks->reloc_overflow)
3999 (info, (h ? &h->root : NULL), name, howto->name,
4000 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
4001 else
4002 {
4003 _bfd_error_handler
4004 /* xgettext:c-format */
4005 (_("%pB(%pA+%#" PRIx64 "): reloc against `%s': error %d"),
4006 input_bfd, input_section,
4007 (uint64_t) rel->r_offset, name, (int) r);
4008 return FALSE;
4009 }
4010 }
4011 }
4012
4013 return TRUE;
4014 }
4015
4016 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
4017 into section SEC. */
4018
4019 static void
4020 elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
4021 {
4022 /* Make VALUE PC-relative. */
4023 value -= sec->output_section->vma + offset;
4024
4025 /* Apply any in-place addend. */
4026 value += bfd_get_32 (sec->owner, sec->contents + offset);
4027
4028 bfd_put_32 (sec->owner, value, sec->contents + offset);
4029 }
4030
4031 /* Finish up dynamic symbol handling. We set the contents of various
4032 dynamic sections here. */
4033
4034 static bfd_boolean
4035 elf_m68k_finish_dynamic_symbol (bfd *output_bfd,
4036 struct bfd_link_info *info,
4037 struct elf_link_hash_entry *h,
4038 Elf_Internal_Sym *sym)
4039 {
4040 bfd *dynobj;
4041
4042 dynobj = elf_hash_table (info)->dynobj;
4043
4044 if (h->plt.offset != (bfd_vma) -1)
4045 {
4046 const struct elf_m68k_plt_info *plt_info;
4047 asection *splt;
4048 asection *sgot;
4049 asection *srela;
4050 bfd_vma plt_index;
4051 bfd_vma got_offset;
4052 Elf_Internal_Rela rela;
4053 bfd_byte *loc;
4054
4055 /* This symbol has an entry in the procedure linkage table. Set
4056 it up. */
4057
4058 BFD_ASSERT (h->dynindx != -1);
4059
4060 plt_info = elf_m68k_hash_table (info)->plt_info;
4061 splt = elf_hash_table (info)->splt;
4062 sgot = elf_hash_table (info)->sgotplt;
4063 srela = elf_hash_table (info)->srelplt;
4064 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4065
4066 /* Get the index in the procedure linkage table which
4067 corresponds to this symbol. This is the index of this symbol
4068 in all the symbols for which we are making plt entries. The
4069 first entry in the procedure linkage table is reserved. */
4070 plt_index = (h->plt.offset / plt_info->size) - 1;
4071
4072 /* Get the offset into the .got table of the entry that
4073 corresponds to this function. Each .got entry is 4 bytes.
4074 The first three are reserved. */
4075 got_offset = (plt_index + 3) * 4;
4076
4077 memcpy (splt->contents + h->plt.offset,
4078 plt_info->symbol_entry,
4079 plt_info->size);
4080
4081 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4082 (sgot->output_section->vma
4083 + sgot->output_offset
4084 + got_offset));
4085
4086 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
4087 splt->contents
4088 + h->plt.offset
4089 + plt_info->symbol_resolve_entry + 2);
4090
4091 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4092 splt->output_section->vma);
4093
4094 /* Fill in the entry in the global offset table. */
4095 bfd_put_32 (output_bfd,
4096 (splt->output_section->vma
4097 + splt->output_offset
4098 + h->plt.offset
4099 + plt_info->symbol_resolve_entry),
4100 sgot->contents + got_offset);
4101
4102 /* Fill in the entry in the .rela.plt section. */
4103 rela.r_offset = (sgot->output_section->vma
4104 + sgot->output_offset
4105 + got_offset);
4106 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4107 rela.r_addend = 0;
4108 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4109 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4110
4111 if (!h->def_regular)
4112 {
4113 /* Mark the symbol as undefined, rather than as defined in
4114 the .plt section. Leave the value alone. */
4115 sym->st_shndx = SHN_UNDEF;
4116 }
4117 }
4118
4119 if (elf_m68k_hash_entry (h)->glist != NULL)
4120 {
4121 asection *sgot;
4122 asection *srela;
4123 struct elf_m68k_got_entry *got_entry;
4124
4125 /* This symbol has an entry in the global offset table. Set it
4126 up. */
4127
4128 sgot = elf_hash_table (info)->sgot;
4129 srela = elf_hash_table (info)->srelgot;
4130 BFD_ASSERT (sgot != NULL && srela != NULL);
4131
4132 got_entry = elf_m68k_hash_entry (h)->glist;
4133
4134 while (got_entry != NULL)
4135 {
4136 enum elf_m68k_reloc_type r_type;
4137 bfd_vma got_entry_offset;
4138
4139 r_type = got_entry->key_.type;
4140 got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
4141
4142 /* If this is a -Bsymbolic link, and the symbol is defined
4143 locally, we just want to emit a RELATIVE reloc. Likewise if
4144 the symbol was forced to be local because of a version file.
4145 The entry in the global offset table already have been
4146 initialized in the relocate_section function. */
4147 if (bfd_link_pic (info)
4148 && SYMBOL_REFERENCES_LOCAL (info, h))
4149 {
4150 bfd_vma relocation;
4151
4152 relocation = bfd_get_signed_32 (output_bfd,
4153 (sgot->contents
4154 + got_entry_offset));
4155
4156 /* Undo TP bias. */
4157 switch (elf_m68k_reloc_got_type (r_type))
4158 {
4159 case R_68K_GOT32O:
4160 case R_68K_TLS_LDM32:
4161 break;
4162
4163 case R_68K_TLS_GD32:
4164 /* The value for this relocation is actually put in
4165 the second GOT slot. */
4166 relocation = bfd_get_signed_32 (output_bfd,
4167 (sgot->contents
4168 + got_entry_offset + 4));
4169 relocation += dtpoff_base (info);
4170 break;
4171
4172 case R_68K_TLS_IE32:
4173 relocation += tpoff_base (info);
4174 break;
4175
4176 default:
4177 BFD_ASSERT (FALSE);
4178 }
4179
4180 elf_m68k_init_got_entry_local_shared (info,
4181 output_bfd,
4182 r_type,
4183 sgot,
4184 got_entry_offset,
4185 relocation,
4186 srela);
4187 }
4188 else
4189 {
4190 Elf_Internal_Rela rela;
4191
4192 /* Put zeros to GOT slots that will be initialized
4193 at run-time. */
4194 {
4195 bfd_vma n_slots;
4196
4197 n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4198 while (n_slots--)
4199 bfd_put_32 (output_bfd, (bfd_vma) 0,
4200 (sgot->contents + got_entry_offset
4201 + 4 * n_slots));
4202 }
4203
4204 rela.r_addend = 0;
4205 rela.r_offset = (sgot->output_section->vma
4206 + sgot->output_offset
4207 + got_entry_offset);
4208
4209 switch (elf_m68k_reloc_got_type (r_type))
4210 {
4211 case R_68K_GOT32O:
4212 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4213 elf_m68k_install_rela (output_bfd, srela, &rela);
4214 break;
4215
4216 case R_68K_TLS_GD32:
4217 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4218 elf_m68k_install_rela (output_bfd, srela, &rela);
4219
4220 rela.r_offset += 4;
4221 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4222 elf_m68k_install_rela (output_bfd, srela, &rela);
4223 break;
4224
4225 case R_68K_TLS_IE32:
4226 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4227 elf_m68k_install_rela (output_bfd, srela, &rela);
4228 break;
4229
4230 default:
4231 BFD_ASSERT (FALSE);
4232 break;
4233 }
4234 }
4235
4236 got_entry = got_entry->u.s2.next;
4237 }
4238 }
4239
4240 if (h->needs_copy)
4241 {
4242 asection *s;
4243 Elf_Internal_Rela rela;
4244 bfd_byte *loc;
4245
4246 /* This symbol needs a copy reloc. Set it up. */
4247
4248 BFD_ASSERT (h->dynindx != -1
4249 && (h->root.type == bfd_link_hash_defined
4250 || h->root.type == bfd_link_hash_defweak));
4251
4252 s = bfd_get_linker_section (dynobj, ".rela.bss");
4253 BFD_ASSERT (s != NULL);
4254
4255 rela.r_offset = (h->root.u.def.value
4256 + h->root.u.def.section->output_section->vma
4257 + h->root.u.def.section->output_offset);
4258 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4259 rela.r_addend = 0;
4260 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4261 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4262 }
4263
4264 return TRUE;
4265 }
4266
4267 /* Finish up the dynamic sections. */
4268
4269 static bfd_boolean
4270 elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
4271 {
4272 bfd *dynobj;
4273 asection *sgot;
4274 asection *sdyn;
4275
4276 dynobj = elf_hash_table (info)->dynobj;
4277
4278 sgot = elf_hash_table (info)->sgotplt;
4279 BFD_ASSERT (sgot != NULL);
4280 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4281
4282 if (elf_hash_table (info)->dynamic_sections_created)
4283 {
4284 asection *splt;
4285 Elf32_External_Dyn *dyncon, *dynconend;
4286
4287 splt = elf_hash_table (info)->splt;
4288 BFD_ASSERT (splt != NULL && sdyn != NULL);
4289
4290 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4291 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4292 for (; dyncon < dynconend; dyncon++)
4293 {
4294 Elf_Internal_Dyn dyn;
4295 asection *s;
4296
4297 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4298
4299 switch (dyn.d_tag)
4300 {
4301 default:
4302 break;
4303
4304 case DT_PLTGOT:
4305 s = elf_hash_table (info)->sgotplt;
4306 goto get_vma;
4307 case DT_JMPREL:
4308 s = elf_hash_table (info)->srelplt;
4309 get_vma:
4310 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4311 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4312 break;
4313
4314 case DT_PLTRELSZ:
4315 s = elf_hash_table (info)->srelplt;
4316 dyn.d_un.d_val = s->size;
4317 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4318 break;
4319 }
4320 }
4321
4322 /* Fill in the first entry in the procedure linkage table. */
4323 if (splt->size > 0)
4324 {
4325 const struct elf_m68k_plt_info *plt_info;
4326
4327 plt_info = elf_m68k_hash_table (info)->plt_info;
4328 memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4329
4330 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4331 (sgot->output_section->vma
4332 + sgot->output_offset
4333 + 4));
4334
4335 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4336 (sgot->output_section->vma
4337 + sgot->output_offset
4338 + 8));
4339
4340 elf_section_data (splt->output_section)->this_hdr.sh_entsize
4341 = plt_info->size;
4342 }
4343 }
4344
4345 /* Fill in the first three entries in the global offset table. */
4346 if (sgot->size > 0)
4347 {
4348 if (sdyn == NULL)
4349 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4350 else
4351 bfd_put_32 (output_bfd,
4352 sdyn->output_section->vma + sdyn->output_offset,
4353 sgot->contents);
4354 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4355 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4356 }
4357
4358 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4359
4360 return TRUE;
4361 }
4362
4363 /* Given a .data section and a .emreloc in-memory section, store
4364 relocation information into the .emreloc section which can be
4365 used at runtime to relocate the section. This is called by the
4366 linker when the --embedded-relocs switch is used. This is called
4367 after the add_symbols entry point has been called for all the
4368 objects, and before the final_link entry point is called. */
4369
4370 bfd_boolean
4371 bfd_m68k_elf32_create_embedded_relocs (bfd *abfd, struct bfd_link_info *info,
4372 asection *datasec, asection *relsec,
4373 char **errmsg)
4374 {
4375 Elf_Internal_Shdr *symtab_hdr;
4376 Elf_Internal_Sym *isymbuf = NULL;
4377 Elf_Internal_Rela *internal_relocs = NULL;
4378 Elf_Internal_Rela *irel, *irelend;
4379 bfd_byte *p;
4380 bfd_size_type amt;
4381
4382 BFD_ASSERT (! bfd_link_relocatable (info));
4383
4384 *errmsg = NULL;
4385
4386 if (datasec->reloc_count == 0)
4387 return TRUE;
4388
4389 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4390
4391 /* Get a copy of the native relocations. */
4392 internal_relocs = (_bfd_elf_link_read_relocs
4393 (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL,
4394 info->keep_memory));
4395 if (internal_relocs == NULL)
4396 goto error_return;
4397
4398 amt = (bfd_size_type) datasec->reloc_count * 12;
4399 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
4400 if (relsec->contents == NULL)
4401 goto error_return;
4402
4403 p = relsec->contents;
4404
4405 irelend = internal_relocs + datasec->reloc_count;
4406 for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4407 {
4408 asection *targetsec;
4409
4410 /* We are going to write a four byte longword into the runtime
4411 reloc section. The longword will be the address in the data
4412 section which must be relocated. It is followed by the name
4413 of the target section NUL-padded or truncated to 8
4414 characters. */
4415
4416 /* We can only relocate absolute longword relocs at run time. */
4417 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4418 {
4419 *errmsg = _("unsupported relocation type");
4420 bfd_set_error (bfd_error_bad_value);
4421 goto error_return;
4422 }
4423
4424 /* Get the target section referred to by the reloc. */
4425 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4426 {
4427 /* A local symbol. */
4428 Elf_Internal_Sym *isym;
4429
4430 /* Read this BFD's local symbols if we haven't done so already. */
4431 if (isymbuf == NULL)
4432 {
4433 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4434 if (isymbuf == NULL)
4435 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4436 symtab_hdr->sh_info, 0,
4437 NULL, NULL, NULL);
4438 if (isymbuf == NULL)
4439 goto error_return;
4440 }
4441
4442 isym = isymbuf + ELF32_R_SYM (irel->r_info);
4443 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4444 }
4445 else
4446 {
4447 unsigned long indx;
4448 struct elf_link_hash_entry *h;
4449
4450 /* An external symbol. */
4451 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4452 h = elf_sym_hashes (abfd)[indx];
4453 BFD_ASSERT (h != NULL);
4454 if (h->root.type == bfd_link_hash_defined
4455 || h->root.type == bfd_link_hash_defweak)
4456 targetsec = h->root.u.def.section;
4457 else
4458 targetsec = NULL;
4459 }
4460
4461 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4462 memset (p + 4, 0, 8);
4463 if (targetsec != NULL)
4464 strncpy ((char *) p + 4, targetsec->output_section->name, 8);
4465 }
4466
4467 if (symtab_hdr->contents != (unsigned char *) isymbuf)
4468 free (isymbuf);
4469 if (elf_section_data (datasec)->relocs != internal_relocs)
4470 free (internal_relocs);
4471 return TRUE;
4472
4473 error_return:
4474 if (symtab_hdr->contents != (unsigned char *) isymbuf)
4475 free (isymbuf);
4476 if (elf_section_data (datasec)->relocs != internal_relocs)
4477 free (internal_relocs);
4478 return FALSE;
4479 }
4480
4481 /* Set target options. */
4482
4483 void
4484 bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4485 {
4486 struct elf_m68k_link_hash_table *htab;
4487 bfd_boolean use_neg_got_offsets_p;
4488 bfd_boolean allow_multigot_p;
4489 bfd_boolean local_gp_p;
4490
4491 switch (got_handling)
4492 {
4493 case 0:
4494 /* --got=single. */
4495 local_gp_p = FALSE;
4496 use_neg_got_offsets_p = FALSE;
4497 allow_multigot_p = FALSE;
4498 break;
4499
4500 case 1:
4501 /* --got=negative. */
4502 local_gp_p = TRUE;
4503 use_neg_got_offsets_p = TRUE;
4504 allow_multigot_p = FALSE;
4505 break;
4506
4507 case 2:
4508 /* --got=multigot. */
4509 local_gp_p = TRUE;
4510 use_neg_got_offsets_p = TRUE;
4511 allow_multigot_p = TRUE;
4512 break;
4513
4514 default:
4515 BFD_ASSERT (FALSE);
4516 return;
4517 }
4518
4519 htab = elf_m68k_hash_table (info);
4520 if (htab != NULL)
4521 {
4522 htab->local_gp_p = local_gp_p;
4523 htab->use_neg_got_offsets_p = use_neg_got_offsets_p;
4524 htab->allow_multigot_p = allow_multigot_p;
4525 }
4526 }
4527
4528 static enum elf_reloc_type_class
4529 elf32_m68k_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4530 const asection *rel_sec ATTRIBUTE_UNUSED,
4531 const Elf_Internal_Rela *rela)
4532 {
4533 switch ((int) ELF32_R_TYPE (rela->r_info))
4534 {
4535 case R_68K_RELATIVE:
4536 return reloc_class_relative;
4537 case R_68K_JMP_SLOT:
4538 return reloc_class_plt;
4539 case R_68K_COPY:
4540 return reloc_class_copy;
4541 default:
4542 return reloc_class_normal;
4543 }
4544 }
4545
4546 /* Return address for Ith PLT stub in section PLT, for relocation REL
4547 or (bfd_vma) -1 if it should not be included. */
4548
4549 static bfd_vma
4550 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4551 const arelent *rel ATTRIBUTE_UNUSED)
4552 {
4553 return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
4554 }
4555
4556 /* Support for core dump NOTE sections. */
4557
4558 static bfd_boolean
4559 elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4560 {
4561 int offset;
4562 size_t size;
4563
4564 switch (note->descsz)
4565 {
4566 default:
4567 return FALSE;
4568
4569 case 154: /* Linux/m68k */
4570 /* pr_cursig */
4571 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
4572
4573 /* pr_pid */
4574 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22);
4575
4576 /* pr_reg */
4577 offset = 70;
4578 size = 80;
4579
4580 break;
4581 }
4582
4583 /* Make a ".reg/999" section. */
4584 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
4585 size, note->descpos + offset);
4586 }
4587
4588 static bfd_boolean
4589 elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4590 {
4591 switch (note->descsz)
4592 {
4593 default:
4594 return FALSE;
4595
4596 case 124: /* Linux/m68k elf_prpsinfo. */
4597 elf_tdata (abfd)->core->pid
4598 = bfd_get_32 (abfd, note->descdata + 12);
4599 elf_tdata (abfd)->core->program
4600 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
4601 elf_tdata (abfd)->core->command
4602 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
4603 }
4604
4605 /* Note that for some reason, a spurious space is tacked
4606 onto the end of the args in some (at least one anyway)
4607 implementations, so strip it off if it exists. */
4608 {
4609 char *command = elf_tdata (abfd)->core->command;
4610 int n = strlen (command);
4611
4612 if (n > 0 && command[n - 1] == ' ')
4613 command[n - 1] = '\0';
4614 }
4615
4616 return TRUE;
4617 }
4618
4619 #define TARGET_BIG_SYM m68k_elf32_vec
4620 #define TARGET_BIG_NAME "elf32-m68k"
4621 #define ELF_MACHINE_CODE EM_68K
4622 #define ELF_MAXPAGESIZE 0x2000
4623 #define elf_backend_create_dynamic_sections \
4624 _bfd_elf_create_dynamic_sections
4625 #define bfd_elf32_bfd_link_hash_table_create \
4626 elf_m68k_link_hash_table_create
4627 #define bfd_elf32_bfd_final_link bfd_elf_final_link
4628
4629 #define elf_backend_check_relocs elf_m68k_check_relocs
4630 #define elf_backend_always_size_sections \
4631 elf_m68k_always_size_sections
4632 #define elf_backend_adjust_dynamic_symbol \
4633 elf_m68k_adjust_dynamic_symbol
4634 #define elf_backend_size_dynamic_sections \
4635 elf_m68k_size_dynamic_sections
4636 #define elf_backend_final_write_processing elf_m68k_final_write_processing
4637 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4638 #define elf_backend_relocate_section elf_m68k_relocate_section
4639 #define elf_backend_finish_dynamic_symbol \
4640 elf_m68k_finish_dynamic_symbol
4641 #define elf_backend_finish_dynamic_sections \
4642 elf_m68k_finish_dynamic_sections
4643 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook
4644 #define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4645 #define bfd_elf32_bfd_merge_private_bfd_data \
4646 elf32_m68k_merge_private_bfd_data
4647 #define bfd_elf32_bfd_set_private_flags \
4648 elf32_m68k_set_private_flags
4649 #define bfd_elf32_bfd_print_private_bfd_data \
4650 elf32_m68k_print_private_bfd_data
4651 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class
4652 #define elf_backend_plt_sym_val elf_m68k_plt_sym_val
4653 #define elf_backend_object_p elf32_m68k_object_p
4654 #define elf_backend_grok_prstatus elf_m68k_grok_prstatus
4655 #define elf_backend_grok_psinfo elf_m68k_grok_psinfo
4656
4657 #define elf_backend_can_gc_sections 1
4658 #define elf_backend_can_refcount 1
4659 #define elf_backend_want_got_plt 1
4660 #define elf_backend_plt_readonly 1
4661 #define elf_backend_want_plt_sym 0
4662 #define elf_backend_got_header_size 12
4663 #define elf_backend_rela_normal 1
4664 #define elf_backend_dtrel_excludes_plt 1
4665
4666 #define elf_backend_linux_prpsinfo32_ugid16 TRUE
4667
4668 #include "elf32-target.h"