]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-sh.c
bfd/
[thirdparty/binutils-gdb.git] / bfd / elf32-sh.c
1 /* Renesas / SuperH SH specific support for 32-bit ELF
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006, 2007 Free Software Foundation, Inc.
4 Contributed by Ian Lance Taylor, Cygnus Support.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "elf-vxworks.h"
29 #include "elf/sh.h"
30 #include "libiberty.h"
31 #include "../opcodes/sh-opc.h"
32
33 static bfd_reloc_status_type sh_elf_reloc
34 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
35 static bfd_reloc_status_type sh_elf_ignore_reloc
36 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
37 static bfd_boolean sh_elf_relax_delete_bytes
38 (bfd *, asection *, bfd_vma, int);
39 static bfd_boolean sh_elf_align_loads
40 (bfd *, asection *, Elf_Internal_Rela *, bfd_byte *, bfd_boolean *);
41 #ifndef SH64_ELF
42 static bfd_boolean sh_elf_swap_insns
43 (bfd *, asection *, void *, bfd_byte *, bfd_vma);
44 #endif
45 static int sh_elf_optimized_tls_reloc
46 (struct bfd_link_info *, int, int);
47 static bfd_vma dtpoff_base
48 (struct bfd_link_info *);
49 static bfd_vma tpoff
50 (struct bfd_link_info *, bfd_vma);
51
52 /* The name of the dynamic interpreter. This is put in the .interp
53 section. */
54
55 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
56
57 #define MINUS_ONE ((bfd_vma) 0 - 1)
58 \f
59 #define SH_PARTIAL32 TRUE
60 #define SH_SRC_MASK32 0xffffffff
61 #define SH_ELF_RELOC sh_elf_reloc
62 static reloc_howto_type sh_elf_howto_table[] =
63 {
64 #include "elf32-sh-relocs.h"
65 };
66
67 #define SH_PARTIAL32 FALSE
68 #define SH_SRC_MASK32 0
69 #define SH_ELF_RELOC bfd_elf_generic_reloc
70 static reloc_howto_type sh_vxworks_howto_table[] =
71 {
72 #include "elf32-sh-relocs.h"
73 };
74 \f
75 /* Return true if OUTPUT_BFD is a VxWorks object. */
76
77 static bfd_boolean
78 vxworks_object_p (bfd *abfd ATTRIBUTE_UNUSED)
79 {
80 #if !defined INCLUDE_SHMEDIA && !defined SH_TARGET_ALREADY_DEFINED
81 extern const bfd_target bfd_elf32_shlvxworks_vec;
82 extern const bfd_target bfd_elf32_shvxworks_vec;
83
84 return (abfd->xvec == &bfd_elf32_shlvxworks_vec
85 || abfd->xvec == &bfd_elf32_shvxworks_vec);
86 #else
87 return FALSE;
88 #endif
89 }
90
91 /* Return the howto table for ABFD. */
92
93 static reloc_howto_type *
94 get_howto_table (bfd *abfd)
95 {
96 if (vxworks_object_p (abfd))
97 return sh_vxworks_howto_table;
98 return sh_elf_howto_table;
99 }
100
101 static bfd_reloc_status_type
102 sh_elf_reloc_loop (int r_type ATTRIBUTE_UNUSED, bfd *input_bfd,
103 asection *input_section, bfd_byte *contents,
104 bfd_vma addr, asection *symbol_section,
105 bfd_vma start, bfd_vma end)
106 {
107 static bfd_vma last_addr;
108 static asection *last_symbol_section;
109 bfd_byte *start_ptr, *ptr, *last_ptr;
110 int diff, cum_diff;
111 bfd_signed_vma x;
112 int insn;
113
114 /* Sanity check the address. */
115 if (addr > bfd_get_section_limit (input_bfd, input_section))
116 return bfd_reloc_outofrange;
117
118 /* We require the start and end relocations to be processed consecutively -
119 although we allow then to be processed forwards or backwards. */
120 if (! last_addr)
121 {
122 last_addr = addr;
123 last_symbol_section = symbol_section;
124 return bfd_reloc_ok;
125 }
126 if (last_addr != addr)
127 abort ();
128 last_addr = 0;
129
130 if (! symbol_section || last_symbol_section != symbol_section || end < start)
131 return bfd_reloc_outofrange;
132
133 /* Get the symbol_section contents. */
134 if (symbol_section != input_section)
135 {
136 if (elf_section_data (symbol_section)->this_hdr.contents != NULL)
137 contents = elf_section_data (symbol_section)->this_hdr.contents;
138 else
139 {
140 if (!bfd_malloc_and_get_section (input_bfd, symbol_section,
141 &contents))
142 {
143 if (contents != NULL)
144 free (contents);
145 return bfd_reloc_outofrange;
146 }
147 }
148 }
149 #define IS_PPI(PTR) ((bfd_get_16 (input_bfd, (PTR)) & 0xfc00) == 0xf800)
150 start_ptr = contents + start;
151 for (cum_diff = -6, ptr = contents + end; cum_diff < 0 && ptr > start_ptr;)
152 {
153 for (last_ptr = ptr, ptr -= 4; ptr >= start_ptr && IS_PPI (ptr);)
154 ptr -= 2;
155 ptr += 2;
156 diff = (last_ptr - ptr) >> 1;
157 cum_diff += diff & 1;
158 cum_diff += diff;
159 }
160 /* Calculate the start / end values to load into rs / re minus four -
161 so that will cancel out the four we would otherwise have to add to
162 addr to get the value to subtract in order to get relative addressing. */
163 if (cum_diff >= 0)
164 {
165 start -= 4;
166 end = (ptr + cum_diff * 2) - contents;
167 }
168 else
169 {
170 bfd_vma start0 = start - 4;
171
172 while (start0 && IS_PPI (contents + start0))
173 start0 -= 2;
174 start0 = start - 2 - ((start - start0) & 2);
175 start = start0 - cum_diff - 2;
176 end = start0;
177 }
178
179 if (contents != NULL
180 && elf_section_data (symbol_section)->this_hdr.contents != contents)
181 free (contents);
182
183 insn = bfd_get_16 (input_bfd, contents + addr);
184
185 x = (insn & 0x200 ? end : start) - addr;
186 if (input_section != symbol_section)
187 x += ((symbol_section->output_section->vma + symbol_section->output_offset)
188 - (input_section->output_section->vma
189 + input_section->output_offset));
190 x >>= 1;
191 if (x < -128 || x > 127)
192 return bfd_reloc_overflow;
193
194 x = (insn & ~0xff) | (x & 0xff);
195 bfd_put_16 (input_bfd, (bfd_vma) x, contents + addr);
196
197 return bfd_reloc_ok;
198 }
199
200 /* This function is used for normal relocs. This used to be like the COFF
201 function, and is almost certainly incorrect for other ELF targets. */
202
203 static bfd_reloc_status_type
204 sh_elf_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol_in,
205 void *data, asection *input_section, bfd *output_bfd,
206 char **error_message ATTRIBUTE_UNUSED)
207 {
208 unsigned long insn;
209 bfd_vma sym_value;
210 enum elf_sh_reloc_type r_type;
211 bfd_vma addr = reloc_entry->address;
212 bfd_byte *hit_data = addr + (bfd_byte *) data;
213
214 r_type = (enum elf_sh_reloc_type) reloc_entry->howto->type;
215
216 if (output_bfd != NULL)
217 {
218 /* Partial linking--do nothing. */
219 reloc_entry->address += input_section->output_offset;
220 return bfd_reloc_ok;
221 }
222
223 /* Almost all relocs have to do with relaxing. If any work must be
224 done for them, it has been done in sh_relax_section. */
225 if (r_type == R_SH_IND12W && (symbol_in->flags & BSF_LOCAL) != 0)
226 return bfd_reloc_ok;
227
228 if (symbol_in != NULL
229 && bfd_is_und_section (symbol_in->section))
230 return bfd_reloc_undefined;
231
232 if (bfd_is_com_section (symbol_in->section))
233 sym_value = 0;
234 else
235 sym_value = (symbol_in->value +
236 symbol_in->section->output_section->vma +
237 symbol_in->section->output_offset);
238
239 switch (r_type)
240 {
241 case R_SH_DIR32:
242 insn = bfd_get_32 (abfd, hit_data);
243 insn += sym_value + reloc_entry->addend;
244 bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
245 break;
246 case R_SH_IND12W:
247 insn = bfd_get_16 (abfd, hit_data);
248 sym_value += reloc_entry->addend;
249 sym_value -= (input_section->output_section->vma
250 + input_section->output_offset
251 + addr
252 + 4);
253 sym_value += (insn & 0xfff) << 1;
254 if (insn & 0x800)
255 sym_value -= 0x1000;
256 insn = (insn & 0xf000) | (sym_value & 0xfff);
257 bfd_put_16 (abfd, (bfd_vma) insn, hit_data);
258 if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
259 return bfd_reloc_overflow;
260 break;
261 default:
262 abort ();
263 break;
264 }
265
266 return bfd_reloc_ok;
267 }
268
269 /* This function is used for relocs which are only used for relaxing,
270 which the linker should otherwise ignore. */
271
272 static bfd_reloc_status_type
273 sh_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
274 asymbol *symbol ATTRIBUTE_UNUSED,
275 void *data ATTRIBUTE_UNUSED, asection *input_section,
276 bfd *output_bfd,
277 char **error_message ATTRIBUTE_UNUSED)
278 {
279 if (output_bfd != NULL)
280 reloc_entry->address += input_section->output_offset;
281 return bfd_reloc_ok;
282 }
283
284 /* This structure is used to map BFD reloc codes to SH ELF relocs. */
285
286 struct elf_reloc_map
287 {
288 bfd_reloc_code_real_type bfd_reloc_val;
289 unsigned char elf_reloc_val;
290 };
291
292 /* An array mapping BFD reloc codes to SH ELF relocs. */
293
294 static const struct elf_reloc_map sh_reloc_map[] =
295 {
296 { BFD_RELOC_NONE, R_SH_NONE },
297 { BFD_RELOC_32, R_SH_DIR32 },
298 { BFD_RELOC_16, R_SH_DIR16 },
299 { BFD_RELOC_8, R_SH_DIR8 },
300 { BFD_RELOC_CTOR, R_SH_DIR32 },
301 { BFD_RELOC_32_PCREL, R_SH_REL32 },
302 { BFD_RELOC_SH_PCDISP8BY2, R_SH_DIR8WPN },
303 { BFD_RELOC_SH_PCDISP12BY2, R_SH_IND12W },
304 { BFD_RELOC_SH_PCRELIMM8BY2, R_SH_DIR8WPZ },
305 { BFD_RELOC_SH_PCRELIMM8BY4, R_SH_DIR8WPL },
306 { BFD_RELOC_8_PCREL, R_SH_SWITCH8 },
307 { BFD_RELOC_SH_SWITCH16, R_SH_SWITCH16 },
308 { BFD_RELOC_SH_SWITCH32, R_SH_SWITCH32 },
309 { BFD_RELOC_SH_USES, R_SH_USES },
310 { BFD_RELOC_SH_COUNT, R_SH_COUNT },
311 { BFD_RELOC_SH_ALIGN, R_SH_ALIGN },
312 { BFD_RELOC_SH_CODE, R_SH_CODE },
313 { BFD_RELOC_SH_DATA, R_SH_DATA },
314 { BFD_RELOC_SH_LABEL, R_SH_LABEL },
315 { BFD_RELOC_VTABLE_INHERIT, R_SH_GNU_VTINHERIT },
316 { BFD_RELOC_VTABLE_ENTRY, R_SH_GNU_VTENTRY },
317 { BFD_RELOC_SH_LOOP_START, R_SH_LOOP_START },
318 { BFD_RELOC_SH_LOOP_END, R_SH_LOOP_END },
319 { BFD_RELOC_SH_TLS_GD_32, R_SH_TLS_GD_32 },
320 { BFD_RELOC_SH_TLS_LD_32, R_SH_TLS_LD_32 },
321 { BFD_RELOC_SH_TLS_LDO_32, R_SH_TLS_LDO_32 },
322 { BFD_RELOC_SH_TLS_IE_32, R_SH_TLS_IE_32 },
323 { BFD_RELOC_SH_TLS_LE_32, R_SH_TLS_LE_32 },
324 { BFD_RELOC_SH_TLS_DTPMOD32, R_SH_TLS_DTPMOD32 },
325 { BFD_RELOC_SH_TLS_DTPOFF32, R_SH_TLS_DTPOFF32 },
326 { BFD_RELOC_SH_TLS_TPOFF32, R_SH_TLS_TPOFF32 },
327 { BFD_RELOC_32_GOT_PCREL, R_SH_GOT32 },
328 { BFD_RELOC_32_PLT_PCREL, R_SH_PLT32 },
329 { BFD_RELOC_SH_COPY, R_SH_COPY },
330 { BFD_RELOC_SH_GLOB_DAT, R_SH_GLOB_DAT },
331 { BFD_RELOC_SH_JMP_SLOT, R_SH_JMP_SLOT },
332 { BFD_RELOC_SH_RELATIVE, R_SH_RELATIVE },
333 { BFD_RELOC_32_GOTOFF, R_SH_GOTOFF },
334 { BFD_RELOC_SH_GOTPC, R_SH_GOTPC },
335 { BFD_RELOC_SH_GOTPLT32, R_SH_GOTPLT32 },
336 #ifdef INCLUDE_SHMEDIA
337 { BFD_RELOC_SH_GOT_LOW16, R_SH_GOT_LOW16 },
338 { BFD_RELOC_SH_GOT_MEDLOW16, R_SH_GOT_MEDLOW16 },
339 { BFD_RELOC_SH_GOT_MEDHI16, R_SH_GOT_MEDHI16 },
340 { BFD_RELOC_SH_GOT_HI16, R_SH_GOT_HI16 },
341 { BFD_RELOC_SH_GOTPLT_LOW16, R_SH_GOTPLT_LOW16 },
342 { BFD_RELOC_SH_GOTPLT_MEDLOW16, R_SH_GOTPLT_MEDLOW16 },
343 { BFD_RELOC_SH_GOTPLT_MEDHI16, R_SH_GOTPLT_MEDHI16 },
344 { BFD_RELOC_SH_GOTPLT_HI16, R_SH_GOTPLT_HI16 },
345 { BFD_RELOC_SH_PLT_LOW16, R_SH_PLT_LOW16 },
346 { BFD_RELOC_SH_PLT_MEDLOW16, R_SH_PLT_MEDLOW16 },
347 { BFD_RELOC_SH_PLT_MEDHI16, R_SH_PLT_MEDHI16 },
348 { BFD_RELOC_SH_PLT_HI16, R_SH_PLT_HI16 },
349 { BFD_RELOC_SH_GOTOFF_LOW16, R_SH_GOTOFF_LOW16 },
350 { BFD_RELOC_SH_GOTOFF_MEDLOW16, R_SH_GOTOFF_MEDLOW16 },
351 { BFD_RELOC_SH_GOTOFF_MEDHI16, R_SH_GOTOFF_MEDHI16 },
352 { BFD_RELOC_SH_GOTOFF_HI16, R_SH_GOTOFF_HI16 },
353 { BFD_RELOC_SH_GOTPC_LOW16, R_SH_GOTPC_LOW16 },
354 { BFD_RELOC_SH_GOTPC_MEDLOW16, R_SH_GOTPC_MEDLOW16 },
355 { BFD_RELOC_SH_GOTPC_MEDHI16, R_SH_GOTPC_MEDHI16 },
356 { BFD_RELOC_SH_GOTPC_HI16, R_SH_GOTPC_HI16 },
357 { BFD_RELOC_SH_COPY64, R_SH_COPY64 },
358 { BFD_RELOC_SH_GLOB_DAT64, R_SH_GLOB_DAT64 },
359 { BFD_RELOC_SH_JMP_SLOT64, R_SH_JMP_SLOT64 },
360 { BFD_RELOC_SH_RELATIVE64, R_SH_RELATIVE64 },
361 { BFD_RELOC_SH_GOT10BY4, R_SH_GOT10BY4 },
362 { BFD_RELOC_SH_GOT10BY8, R_SH_GOT10BY8 },
363 { BFD_RELOC_SH_GOTPLT10BY4, R_SH_GOTPLT10BY4 },
364 { BFD_RELOC_SH_GOTPLT10BY8, R_SH_GOTPLT10BY8 },
365 { BFD_RELOC_SH_PT_16, R_SH_PT_16 },
366 { BFD_RELOC_SH_SHMEDIA_CODE, R_SH_SHMEDIA_CODE },
367 { BFD_RELOC_SH_IMMU5, R_SH_DIR5U },
368 { BFD_RELOC_SH_IMMS6, R_SH_DIR6S },
369 { BFD_RELOC_SH_IMMU6, R_SH_DIR6U },
370 { BFD_RELOC_SH_IMMS10, R_SH_DIR10S },
371 { BFD_RELOC_SH_IMMS10BY2, R_SH_DIR10SW },
372 { BFD_RELOC_SH_IMMS10BY4, R_SH_DIR10SL },
373 { BFD_RELOC_SH_IMMS10BY8, R_SH_DIR10SQ },
374 { BFD_RELOC_SH_IMMS16, R_SH_IMMS16 },
375 { BFD_RELOC_SH_IMMU16, R_SH_IMMU16 },
376 { BFD_RELOC_SH_IMM_LOW16, R_SH_IMM_LOW16 },
377 { BFD_RELOC_SH_IMM_LOW16_PCREL, R_SH_IMM_LOW16_PCREL },
378 { BFD_RELOC_SH_IMM_MEDLOW16, R_SH_IMM_MEDLOW16 },
379 { BFD_RELOC_SH_IMM_MEDLOW16_PCREL, R_SH_IMM_MEDLOW16_PCREL },
380 { BFD_RELOC_SH_IMM_MEDHI16, R_SH_IMM_MEDHI16 },
381 { BFD_RELOC_SH_IMM_MEDHI16_PCREL, R_SH_IMM_MEDHI16_PCREL },
382 { BFD_RELOC_SH_IMM_HI16, R_SH_IMM_HI16 },
383 { BFD_RELOC_SH_IMM_HI16_PCREL, R_SH_IMM_HI16_PCREL },
384 { BFD_RELOC_64, R_SH_64 },
385 { BFD_RELOC_64_PCREL, R_SH_64_PCREL },
386 #endif /* not INCLUDE_SHMEDIA */
387 };
388
389 /* Given a BFD reloc code, return the howto structure for the
390 corresponding SH ELF reloc. */
391
392 static reloc_howto_type *
393 sh_elf_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code)
394 {
395 unsigned int i;
396
397 for (i = 0; i < sizeof (sh_reloc_map) / sizeof (struct elf_reloc_map); i++)
398 {
399 if (sh_reloc_map[i].bfd_reloc_val == code)
400 return get_howto_table (abfd) + (int) sh_reloc_map[i].elf_reloc_val;
401 }
402
403 return NULL;
404 }
405
406 static reloc_howto_type *
407 sh_elf_reloc_name_lookup (bfd *abfd, const char *r_name)
408 {
409 unsigned int i;
410
411 if (vxworks_object_p (abfd))
412 {
413 for (i = 0;
414 i < (sizeof (sh_vxworks_howto_table)
415 / sizeof (sh_vxworks_howto_table[0]));
416 i++)
417 if (sh_vxworks_howto_table[i].name != NULL
418 && strcasecmp (sh_vxworks_howto_table[i].name, r_name) == 0)
419 return &sh_vxworks_howto_table[i];
420 }
421 else
422 {
423 for (i = 0;
424 i < (sizeof (sh_elf_howto_table)
425 / sizeof (sh_elf_howto_table[0]));
426 i++)
427 if (sh_elf_howto_table[i].name != NULL
428 && strcasecmp (sh_elf_howto_table[i].name, r_name) == 0)
429 return &sh_elf_howto_table[i];
430 }
431
432 return NULL;
433 }
434
435 /* Given an ELF reloc, fill in the howto field of a relent. */
436
437 static void
438 sh_elf_info_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
439 {
440 unsigned int r;
441
442 r = ELF32_R_TYPE (dst->r_info);
443
444 BFD_ASSERT (r < (unsigned int) R_SH_max);
445 BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC || r > R_SH_LAST_INVALID_RELOC);
446 BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_2 || r > R_SH_LAST_INVALID_RELOC_2);
447 BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_3 || r > R_SH_LAST_INVALID_RELOC_3);
448 BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_4 || r > R_SH_LAST_INVALID_RELOC_4);
449 BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC_5 || r > R_SH_LAST_INVALID_RELOC_5);
450
451 cache_ptr->howto = get_howto_table (abfd) + r;
452 }
453 \f
454 /* This function handles relaxing for SH ELF. See the corresponding
455 function in coff-sh.c for a description of what this does. FIXME:
456 There is a lot of duplication here between this code and the COFF
457 specific code. The format of relocs and symbols is wound deeply
458 into this code, but it would still be better if the duplication
459 could be eliminated somehow. Note in particular that although both
460 functions use symbols like R_SH_CODE, those symbols have different
461 values; in coff-sh.c they come from include/coff/sh.h, whereas here
462 they come from enum elf_sh_reloc_type in include/elf/sh.h. */
463
464 static bfd_boolean
465 sh_elf_relax_section (bfd *abfd, asection *sec,
466 struct bfd_link_info *link_info, bfd_boolean *again)
467 {
468 Elf_Internal_Shdr *symtab_hdr;
469 Elf_Internal_Rela *internal_relocs;
470 bfd_boolean have_code;
471 Elf_Internal_Rela *irel, *irelend;
472 bfd_byte *contents = NULL;
473 Elf_Internal_Sym *isymbuf = NULL;
474
475 *again = FALSE;
476
477 if (link_info->relocatable
478 || (sec->flags & SEC_RELOC) == 0
479 || sec->reloc_count == 0)
480 return TRUE;
481
482 #ifdef INCLUDE_SHMEDIA
483 if (elf_section_data (sec)->this_hdr.sh_flags
484 & (SHF_SH5_ISA32 | SHF_SH5_ISA32_MIXED))
485 {
486 return TRUE;
487 }
488 #endif
489
490 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
491
492 internal_relocs = (_bfd_elf_link_read_relocs
493 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
494 link_info->keep_memory));
495 if (internal_relocs == NULL)
496 goto error_return;
497
498 have_code = FALSE;
499
500 irelend = internal_relocs + sec->reloc_count;
501 for (irel = internal_relocs; irel < irelend; irel++)
502 {
503 bfd_vma laddr, paddr, symval;
504 unsigned short insn;
505 Elf_Internal_Rela *irelfn, *irelscan, *irelcount;
506 bfd_signed_vma foff;
507
508 if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_CODE)
509 have_code = TRUE;
510
511 if (ELF32_R_TYPE (irel->r_info) != (int) R_SH_USES)
512 continue;
513
514 /* Get the section contents. */
515 if (contents == NULL)
516 {
517 if (elf_section_data (sec)->this_hdr.contents != NULL)
518 contents = elf_section_data (sec)->this_hdr.contents;
519 else
520 {
521 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
522 goto error_return;
523 }
524 }
525
526 /* The r_addend field of the R_SH_USES reloc will point us to
527 the register load. The 4 is because the r_addend field is
528 computed as though it were a jump offset, which are based
529 from 4 bytes after the jump instruction. */
530 laddr = irel->r_offset + 4 + irel->r_addend;
531 if (laddr >= sec->size)
532 {
533 (*_bfd_error_handler) (_("%B: 0x%lx: warning: bad R_SH_USES offset"),
534 abfd,
535 (unsigned long) irel->r_offset);
536 continue;
537 }
538 insn = bfd_get_16 (abfd, contents + laddr);
539
540 /* If the instruction is not mov.l NN,rN, we don't know what to
541 do. */
542 if ((insn & 0xf000) != 0xd000)
543 {
544 ((*_bfd_error_handler)
545 (_("%B: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x"),
546 abfd, (unsigned long) irel->r_offset, insn));
547 continue;
548 }
549
550 /* Get the address from which the register is being loaded. The
551 displacement in the mov.l instruction is quadrupled. It is a
552 displacement from four bytes after the movl instruction, but,
553 before adding in the PC address, two least significant bits
554 of the PC are cleared. We assume that the section is aligned
555 on a four byte boundary. */
556 paddr = insn & 0xff;
557 paddr *= 4;
558 paddr += (laddr + 4) &~ (bfd_vma) 3;
559 if (paddr >= sec->size)
560 {
561 ((*_bfd_error_handler)
562 (_("%B: 0x%lx: warning: bad R_SH_USES load offset"),
563 abfd, (unsigned long) irel->r_offset));
564 continue;
565 }
566
567 /* Get the reloc for the address from which the register is
568 being loaded. This reloc will tell us which function is
569 actually being called. */
570 for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
571 if (irelfn->r_offset == paddr
572 && ELF32_R_TYPE (irelfn->r_info) == (int) R_SH_DIR32)
573 break;
574 if (irelfn >= irelend)
575 {
576 ((*_bfd_error_handler)
577 (_("%B: 0x%lx: warning: could not find expected reloc"),
578 abfd, (unsigned long) paddr));
579 continue;
580 }
581
582 /* Read this BFD's symbols if we haven't done so already. */
583 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
584 {
585 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
586 if (isymbuf == NULL)
587 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
588 symtab_hdr->sh_info, 0,
589 NULL, NULL, NULL);
590 if (isymbuf == NULL)
591 goto error_return;
592 }
593
594 /* Get the value of the symbol referred to by the reloc. */
595 if (ELF32_R_SYM (irelfn->r_info) < symtab_hdr->sh_info)
596 {
597 /* A local symbol. */
598 Elf_Internal_Sym *isym;
599
600 isym = isymbuf + ELF32_R_SYM (irelfn->r_info);
601 if (isym->st_shndx
602 != (unsigned int) _bfd_elf_section_from_bfd_section (abfd, sec))
603 {
604 ((*_bfd_error_handler)
605 (_("%B: 0x%lx: warning: symbol in unexpected section"),
606 abfd, (unsigned long) paddr));
607 continue;
608 }
609
610 symval = (isym->st_value
611 + sec->output_section->vma
612 + sec->output_offset);
613 }
614 else
615 {
616 unsigned long indx;
617 struct elf_link_hash_entry *h;
618
619 indx = ELF32_R_SYM (irelfn->r_info) - symtab_hdr->sh_info;
620 h = elf_sym_hashes (abfd)[indx];
621 BFD_ASSERT (h != NULL);
622 if (h->root.type != bfd_link_hash_defined
623 && h->root.type != bfd_link_hash_defweak)
624 {
625 /* This appears to be a reference to an undefined
626 symbol. Just ignore it--it will be caught by the
627 regular reloc processing. */
628 continue;
629 }
630
631 symval = (h->root.u.def.value
632 + h->root.u.def.section->output_section->vma
633 + h->root.u.def.section->output_offset);
634 }
635
636 if (get_howto_table (abfd)[R_SH_DIR32].partial_inplace)
637 symval += bfd_get_32 (abfd, contents + paddr);
638 else
639 symval += irelfn->r_addend;
640
641 /* See if this function call can be shortened. */
642 foff = (symval
643 - (irel->r_offset
644 + sec->output_section->vma
645 + sec->output_offset
646 + 4));
647 /* A branch to an address beyond ours might be increased by an
648 .align that doesn't move when bytes behind us are deleted.
649 So, we add some slop in this calculation to allow for
650 that. */
651 if (foff < -0x1000 || foff >= 0x1000 - 8)
652 {
653 /* After all that work, we can't shorten this function call. */
654 continue;
655 }
656
657 /* Shorten the function call. */
658
659 /* For simplicity of coding, we are going to modify the section
660 contents, the section relocs, and the BFD symbol table. We
661 must tell the rest of the code not to free up this
662 information. It would be possible to instead create a table
663 of changes which have to be made, as is done in coff-mips.c;
664 that would be more work, but would require less memory when
665 the linker is run. */
666
667 elf_section_data (sec)->relocs = internal_relocs;
668 elf_section_data (sec)->this_hdr.contents = contents;
669 symtab_hdr->contents = (unsigned char *) isymbuf;
670
671 /* Replace the jsr with a bsr. */
672
673 /* Change the R_SH_USES reloc into an R_SH_IND12W reloc, and
674 replace the jsr with a bsr. */
675 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irelfn->r_info), R_SH_IND12W);
676 /* We used to test (ELF32_R_SYM (irelfn->r_info) < symtab_hdr->sh_info)
677 here, but that only checks if the symbol is an external symbol,
678 not if the symbol is in a different section. Besides, we need
679 a consistent meaning for the relocation, so we just assume here that
680 the value of the symbol is not available. */
681
682 /* We can't fully resolve this yet, because the external
683 symbol value may be changed by future relaxing. We let
684 the final link phase handle it. */
685 bfd_put_16 (abfd, (bfd_vma) 0xb000, contents + irel->r_offset);
686
687 irel->r_addend = -4;
688
689 /* When we calculated the symbol "value" we had an offset in the
690 DIR32's word in memory (we read and add it above). However,
691 the jsr we create does NOT have this offset encoded, so we
692 have to add it to the addend to preserve it. */
693 irel->r_addend += bfd_get_32 (abfd, contents + paddr);
694
695 /* See if there is another R_SH_USES reloc referring to the same
696 register load. */
697 for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
698 if (ELF32_R_TYPE (irelscan->r_info) == (int) R_SH_USES
699 && laddr == irelscan->r_offset + 4 + irelscan->r_addend)
700 break;
701 if (irelscan < irelend)
702 {
703 /* Some other function call depends upon this register load,
704 and we have not yet converted that function call.
705 Indeed, we may never be able to convert it. There is
706 nothing else we can do at this point. */
707 continue;
708 }
709
710 /* Look for a R_SH_COUNT reloc on the location where the
711 function address is stored. Do this before deleting any
712 bytes, to avoid confusion about the address. */
713 for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
714 if (irelcount->r_offset == paddr
715 && ELF32_R_TYPE (irelcount->r_info) == (int) R_SH_COUNT)
716 break;
717
718 /* Delete the register load. */
719 if (! sh_elf_relax_delete_bytes (abfd, sec, laddr, 2))
720 goto error_return;
721
722 /* That will change things, so, just in case it permits some
723 other function call to come within range, we should relax
724 again. Note that this is not required, and it may be slow. */
725 *again = TRUE;
726
727 /* Now check whether we got a COUNT reloc. */
728 if (irelcount >= irelend)
729 {
730 ((*_bfd_error_handler)
731 (_("%B: 0x%lx: warning: could not find expected COUNT reloc"),
732 abfd, (unsigned long) paddr));
733 continue;
734 }
735
736 /* The number of uses is stored in the r_addend field. We've
737 just deleted one. */
738 if (irelcount->r_addend == 0)
739 {
740 ((*_bfd_error_handler) (_("%B: 0x%lx: warning: bad count"),
741 abfd,
742 (unsigned long) paddr));
743 continue;
744 }
745
746 --irelcount->r_addend;
747
748 /* If there are no more uses, we can delete the address. Reload
749 the address from irelfn, in case it was changed by the
750 previous call to sh_elf_relax_delete_bytes. */
751 if (irelcount->r_addend == 0)
752 {
753 if (! sh_elf_relax_delete_bytes (abfd, sec, irelfn->r_offset, 4))
754 goto error_return;
755 }
756
757 /* We've done all we can with that function call. */
758 }
759
760 /* Look for load and store instructions that we can align on four
761 byte boundaries. */
762 if ((elf_elfheader (abfd)->e_flags & EF_SH_MACH_MASK) != EF_SH4
763 && have_code)
764 {
765 bfd_boolean swapped;
766
767 /* Get the section contents. */
768 if (contents == NULL)
769 {
770 if (elf_section_data (sec)->this_hdr.contents != NULL)
771 contents = elf_section_data (sec)->this_hdr.contents;
772 else
773 {
774 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
775 goto error_return;
776 }
777 }
778
779 if (! sh_elf_align_loads (abfd, sec, internal_relocs, contents,
780 &swapped))
781 goto error_return;
782
783 if (swapped)
784 {
785 elf_section_data (sec)->relocs = internal_relocs;
786 elf_section_data (sec)->this_hdr.contents = contents;
787 symtab_hdr->contents = (unsigned char *) isymbuf;
788 }
789 }
790
791 if (isymbuf != NULL
792 && symtab_hdr->contents != (unsigned char *) isymbuf)
793 {
794 if (! link_info->keep_memory)
795 free (isymbuf);
796 else
797 {
798 /* Cache the symbols for elf_link_input_bfd. */
799 symtab_hdr->contents = (unsigned char *) isymbuf;
800 }
801 }
802
803 if (contents != NULL
804 && elf_section_data (sec)->this_hdr.contents != contents)
805 {
806 if (! link_info->keep_memory)
807 free (contents);
808 else
809 {
810 /* Cache the section contents for elf_link_input_bfd. */
811 elf_section_data (sec)->this_hdr.contents = contents;
812 }
813 }
814
815 if (internal_relocs != NULL
816 && elf_section_data (sec)->relocs != internal_relocs)
817 free (internal_relocs);
818
819 return TRUE;
820
821 error_return:
822 if (isymbuf != NULL
823 && symtab_hdr->contents != (unsigned char *) isymbuf)
824 free (isymbuf);
825 if (contents != NULL
826 && elf_section_data (sec)->this_hdr.contents != contents)
827 free (contents);
828 if (internal_relocs != NULL
829 && elf_section_data (sec)->relocs != internal_relocs)
830 free (internal_relocs);
831
832 return FALSE;
833 }
834
835 /* Delete some bytes from a section while relaxing. FIXME: There is a
836 lot of duplication between this function and sh_relax_delete_bytes
837 in coff-sh.c. */
838
839 static bfd_boolean
840 sh_elf_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr,
841 int count)
842 {
843 Elf_Internal_Shdr *symtab_hdr;
844 unsigned int sec_shndx;
845 bfd_byte *contents;
846 Elf_Internal_Rela *irel, *irelend;
847 Elf_Internal_Rela *irelalign;
848 bfd_vma toaddr;
849 Elf_Internal_Sym *isymbuf, *isym, *isymend;
850 struct elf_link_hash_entry **sym_hashes;
851 struct elf_link_hash_entry **end_hashes;
852 unsigned int symcount;
853 asection *o;
854
855 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
856 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
857
858 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
859
860 contents = elf_section_data (sec)->this_hdr.contents;
861
862 /* The deletion must stop at the next ALIGN reloc for an aligment
863 power larger than the number of bytes we are deleting. */
864
865 irelalign = NULL;
866 toaddr = sec->size;
867
868 irel = elf_section_data (sec)->relocs;
869 irelend = irel + sec->reloc_count;
870 for (; irel < irelend; irel++)
871 {
872 if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_ALIGN
873 && irel->r_offset > addr
874 && count < (1 << irel->r_addend))
875 {
876 irelalign = irel;
877 toaddr = irel->r_offset;
878 break;
879 }
880 }
881
882 /* Actually delete the bytes. */
883 memmove (contents + addr, contents + addr + count,
884 (size_t) (toaddr - addr - count));
885 if (irelalign == NULL)
886 sec->size -= count;
887 else
888 {
889 int i;
890
891 #define NOP_OPCODE (0x0009)
892
893 BFD_ASSERT ((count & 1) == 0);
894 for (i = 0; i < count; i += 2)
895 bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
896 }
897
898 /* Adjust all the relocs. */
899 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
900 {
901 bfd_vma nraddr, stop;
902 bfd_vma start = 0;
903 int insn = 0;
904 int off, adjust, oinsn;
905 bfd_signed_vma voff = 0;
906 bfd_boolean overflow;
907
908 /* Get the new reloc address. */
909 nraddr = irel->r_offset;
910 if ((irel->r_offset > addr
911 && irel->r_offset < toaddr)
912 || (ELF32_R_TYPE (irel->r_info) == (int) R_SH_ALIGN
913 && irel->r_offset == toaddr))
914 nraddr -= count;
915
916 /* See if this reloc was for the bytes we have deleted, in which
917 case we no longer care about it. Don't delete relocs which
918 represent addresses, though. */
919 if (irel->r_offset >= addr
920 && irel->r_offset < addr + count
921 && ELF32_R_TYPE (irel->r_info) != (int) R_SH_ALIGN
922 && ELF32_R_TYPE (irel->r_info) != (int) R_SH_CODE
923 && ELF32_R_TYPE (irel->r_info) != (int) R_SH_DATA
924 && ELF32_R_TYPE (irel->r_info) != (int) R_SH_LABEL)
925 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
926 (int) R_SH_NONE);
927
928 /* If this is a PC relative reloc, see if the range it covers
929 includes the bytes we have deleted. */
930 switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info))
931 {
932 default:
933 break;
934
935 case R_SH_DIR8WPN:
936 case R_SH_IND12W:
937 case R_SH_DIR8WPZ:
938 case R_SH_DIR8WPL:
939 start = irel->r_offset;
940 insn = bfd_get_16 (abfd, contents + nraddr);
941 break;
942 }
943
944 switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info))
945 {
946 default:
947 start = stop = addr;
948 break;
949
950 case R_SH_DIR32:
951 /* If this reloc is against a symbol defined in this
952 section, and the symbol will not be adjusted below, we
953 must check the addend to see it will put the value in
954 range to be adjusted, and hence must be changed. */
955 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
956 {
957 isym = isymbuf + ELF32_R_SYM (irel->r_info);
958 if (isym->st_shndx == sec_shndx
959 && (isym->st_value <= addr
960 || isym->st_value >= toaddr))
961 {
962 bfd_vma val;
963
964 if (get_howto_table (abfd)[R_SH_DIR32].partial_inplace)
965 {
966 val = bfd_get_32 (abfd, contents + nraddr);
967 val += isym->st_value;
968 if (val > addr && val < toaddr)
969 bfd_put_32 (abfd, val - count, contents + nraddr);
970 }
971 else
972 {
973 val = isym->st_value + irel->r_addend;
974 if (val > addr && val < toaddr)
975 irel->r_addend -= count;
976 }
977 }
978 }
979 start = stop = addr;
980 break;
981
982 case R_SH_DIR8WPN:
983 off = insn & 0xff;
984 if (off & 0x80)
985 off -= 0x100;
986 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
987 break;
988
989 case R_SH_IND12W:
990 off = insn & 0xfff;
991 if (! off)
992 {
993 /* This has been made by previous relaxation. Since the
994 relocation will be against an external symbol, the
995 final relocation will just do the right thing. */
996 start = stop = addr;
997 }
998 else
999 {
1000 if (off & 0x800)
1001 off -= 0x1000;
1002 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1003
1004 /* The addend will be against the section symbol, thus
1005 for adjusting the addend, the relevant start is the
1006 start of the section.
1007 N.B. If we want to abandon in-place changes here and
1008 test directly using symbol + addend, we have to take into
1009 account that the addend has already been adjusted by -4. */
1010 if (stop > addr && stop < toaddr)
1011 irel->r_addend -= count;
1012 }
1013 break;
1014
1015 case R_SH_DIR8WPZ:
1016 off = insn & 0xff;
1017 stop = start + 4 + off * 2;
1018 break;
1019
1020 case R_SH_DIR8WPL:
1021 off = insn & 0xff;
1022 stop = (start & ~(bfd_vma) 3) + 4 + off * 4;
1023 break;
1024
1025 case R_SH_SWITCH8:
1026 case R_SH_SWITCH16:
1027 case R_SH_SWITCH32:
1028 /* These relocs types represent
1029 .word L2-L1
1030 The r_addend field holds the difference between the reloc
1031 address and L1. That is the start of the reloc, and
1032 adding in the contents gives us the top. We must adjust
1033 both the r_offset field and the section contents.
1034 N.B. in gas / coff bfd, the elf bfd r_addend is called r_offset,
1035 and the elf bfd r_offset is called r_vaddr. */
1036
1037 stop = irel->r_offset;
1038 start = (bfd_vma) ((bfd_signed_vma) stop - (long) irel->r_addend);
1039
1040 if (start > addr
1041 && start < toaddr
1042 && (stop <= addr || stop >= toaddr))
1043 irel->r_addend += count;
1044 else if (stop > addr
1045 && stop < toaddr
1046 && (start <= addr || start >= toaddr))
1047 irel->r_addend -= count;
1048
1049 if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_SWITCH16)
1050 voff = bfd_get_signed_16 (abfd, contents + nraddr);
1051 else if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_SWITCH8)
1052 voff = bfd_get_8 (abfd, contents + nraddr);
1053 else
1054 voff = bfd_get_signed_32 (abfd, contents + nraddr);
1055 stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1056
1057 break;
1058
1059 case R_SH_USES:
1060 start = irel->r_offset;
1061 stop = (bfd_vma) ((bfd_signed_vma) start
1062 + (long) irel->r_addend
1063 + 4);
1064 break;
1065 }
1066
1067 if (start > addr
1068 && start < toaddr
1069 && (stop <= addr || stop >= toaddr))
1070 adjust = count;
1071 else if (stop > addr
1072 && stop < toaddr
1073 && (start <= addr || start >= toaddr))
1074 adjust = - count;
1075 else
1076 adjust = 0;
1077
1078 if (adjust != 0)
1079 {
1080 oinsn = insn;
1081 overflow = FALSE;
1082 switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info))
1083 {
1084 default:
1085 abort ();
1086 break;
1087
1088 case R_SH_DIR8WPN:
1089 case R_SH_DIR8WPZ:
1090 insn += adjust / 2;
1091 if ((oinsn & 0xff00) != (insn & 0xff00))
1092 overflow = TRUE;
1093 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1094 break;
1095
1096 case R_SH_IND12W:
1097 insn += adjust / 2;
1098 if ((oinsn & 0xf000) != (insn & 0xf000))
1099 overflow = TRUE;
1100 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1101 break;
1102
1103 case R_SH_DIR8WPL:
1104 BFD_ASSERT (adjust == count || count >= 4);
1105 if (count >= 4)
1106 insn += adjust / 4;
1107 else
1108 {
1109 if ((irel->r_offset & 3) == 0)
1110 ++insn;
1111 }
1112 if ((oinsn & 0xff00) != (insn & 0xff00))
1113 overflow = TRUE;
1114 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1115 break;
1116
1117 case R_SH_SWITCH8:
1118 voff += adjust;
1119 if (voff < 0 || voff >= 0xff)
1120 overflow = TRUE;
1121 bfd_put_8 (abfd, voff, contents + nraddr);
1122 break;
1123
1124 case R_SH_SWITCH16:
1125 voff += adjust;
1126 if (voff < - 0x8000 || voff >= 0x8000)
1127 overflow = TRUE;
1128 bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
1129 break;
1130
1131 case R_SH_SWITCH32:
1132 voff += adjust;
1133 bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
1134 break;
1135
1136 case R_SH_USES:
1137 irel->r_addend += adjust;
1138 break;
1139 }
1140
1141 if (overflow)
1142 {
1143 ((*_bfd_error_handler)
1144 (_("%B: 0x%lx: fatal: reloc overflow while relaxing"),
1145 abfd, (unsigned long) irel->r_offset));
1146 bfd_set_error (bfd_error_bad_value);
1147 return FALSE;
1148 }
1149 }
1150
1151 irel->r_offset = nraddr;
1152 }
1153
1154 /* Look through all the other sections. If there contain any IMM32
1155 relocs against internal symbols which we are not going to adjust
1156 below, we may need to adjust the addends. */
1157 for (o = abfd->sections; o != NULL; o = o->next)
1158 {
1159 Elf_Internal_Rela *internal_relocs;
1160 Elf_Internal_Rela *irelscan, *irelscanend;
1161 bfd_byte *ocontents;
1162
1163 if (o == sec
1164 || (o->flags & SEC_RELOC) == 0
1165 || o->reloc_count == 0)
1166 continue;
1167
1168 /* We always cache the relocs. Perhaps, if info->keep_memory is
1169 FALSE, we should free them, if we are permitted to, when we
1170 leave sh_coff_relax_section. */
1171 internal_relocs = (_bfd_elf_link_read_relocs
1172 (abfd, o, NULL, (Elf_Internal_Rela *) NULL, TRUE));
1173 if (internal_relocs == NULL)
1174 return FALSE;
1175
1176 ocontents = NULL;
1177 irelscanend = internal_relocs + o->reloc_count;
1178 for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
1179 {
1180 /* Dwarf line numbers use R_SH_SWITCH32 relocs. */
1181 if (ELF32_R_TYPE (irelscan->r_info) == (int) R_SH_SWITCH32)
1182 {
1183 bfd_vma start, stop;
1184 bfd_signed_vma voff;
1185
1186 if (ocontents == NULL)
1187 {
1188 if (elf_section_data (o)->this_hdr.contents != NULL)
1189 ocontents = elf_section_data (o)->this_hdr.contents;
1190 else
1191 {
1192 /* We always cache the section contents.
1193 Perhaps, if info->keep_memory is FALSE, we
1194 should free them, if we are permitted to,
1195 when we leave sh_coff_relax_section. */
1196 if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
1197 {
1198 if (ocontents != NULL)
1199 free (ocontents);
1200 return FALSE;
1201 }
1202
1203 elf_section_data (o)->this_hdr.contents = ocontents;
1204 }
1205 }
1206
1207 stop = irelscan->r_offset;
1208 start
1209 = (bfd_vma) ((bfd_signed_vma) stop - (long) irelscan->r_addend);
1210
1211 /* STOP is in a different section, so it won't change. */
1212 if (start > addr && start < toaddr)
1213 irelscan->r_addend += count;
1214
1215 voff = bfd_get_signed_32 (abfd, ocontents + irelscan->r_offset);
1216 stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1217
1218 if (start > addr
1219 && start < toaddr
1220 && (stop <= addr || stop >= toaddr))
1221 bfd_put_signed_32 (abfd, (bfd_vma) voff + count,
1222 ocontents + irelscan->r_offset);
1223 else if (stop > addr
1224 && stop < toaddr
1225 && (start <= addr || start >= toaddr))
1226 bfd_put_signed_32 (abfd, (bfd_vma) voff - count,
1227 ocontents + irelscan->r_offset);
1228 }
1229
1230 if (ELF32_R_TYPE (irelscan->r_info) != (int) R_SH_DIR32)
1231 continue;
1232
1233 if (ELF32_R_SYM (irelscan->r_info) >= symtab_hdr->sh_info)
1234 continue;
1235
1236
1237 isym = isymbuf + ELF32_R_SYM (irelscan->r_info);
1238 if (isym->st_shndx == sec_shndx
1239 && (isym->st_value <= addr
1240 || isym->st_value >= toaddr))
1241 {
1242 bfd_vma val;
1243
1244 if (ocontents == NULL)
1245 {
1246 if (elf_section_data (o)->this_hdr.contents != NULL)
1247 ocontents = elf_section_data (o)->this_hdr.contents;
1248 else
1249 {
1250 /* We always cache the section contents.
1251 Perhaps, if info->keep_memory is FALSE, we
1252 should free them, if we are permitted to,
1253 when we leave sh_coff_relax_section. */
1254 if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
1255 {
1256 if (ocontents != NULL)
1257 free (ocontents);
1258 return FALSE;
1259 }
1260
1261 elf_section_data (o)->this_hdr.contents = ocontents;
1262 }
1263 }
1264
1265 val = bfd_get_32 (abfd, ocontents + irelscan->r_offset);
1266 val += isym->st_value;
1267 if (val > addr && val < toaddr)
1268 bfd_put_32 (abfd, val - count,
1269 ocontents + irelscan->r_offset);
1270 }
1271 }
1272 }
1273
1274 /* Adjust the local symbols defined in this section. */
1275 isymend = isymbuf + symtab_hdr->sh_info;
1276 for (isym = isymbuf; isym < isymend; isym++)
1277 {
1278 if (isym->st_shndx == sec_shndx
1279 && isym->st_value > addr
1280 && isym->st_value < toaddr)
1281 isym->st_value -= count;
1282 }
1283
1284 /* Now adjust the global symbols defined in this section. */
1285 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
1286 - symtab_hdr->sh_info);
1287 sym_hashes = elf_sym_hashes (abfd);
1288 end_hashes = sym_hashes + symcount;
1289 for (; sym_hashes < end_hashes; sym_hashes++)
1290 {
1291 struct elf_link_hash_entry *sym_hash = *sym_hashes;
1292 if ((sym_hash->root.type == bfd_link_hash_defined
1293 || sym_hash->root.type == bfd_link_hash_defweak)
1294 && sym_hash->root.u.def.section == sec
1295 && sym_hash->root.u.def.value > addr
1296 && sym_hash->root.u.def.value < toaddr)
1297 {
1298 sym_hash->root.u.def.value -= count;
1299 }
1300 }
1301
1302 /* See if we can move the ALIGN reloc forward. We have adjusted
1303 r_offset for it already. */
1304 if (irelalign != NULL)
1305 {
1306 bfd_vma alignto, alignaddr;
1307
1308 alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend);
1309 alignaddr = BFD_ALIGN (irelalign->r_offset,
1310 1 << irelalign->r_addend);
1311 if (alignto != alignaddr)
1312 {
1313 /* Tail recursion. */
1314 return sh_elf_relax_delete_bytes (abfd, sec, alignaddr,
1315 (int) (alignto - alignaddr));
1316 }
1317 }
1318
1319 return TRUE;
1320 }
1321
1322 /* Look for loads and stores which we can align to four byte
1323 boundaries. This is like sh_align_loads in coff-sh.c. */
1324
1325 static bfd_boolean
1326 sh_elf_align_loads (bfd *abfd ATTRIBUTE_UNUSED, asection *sec,
1327 Elf_Internal_Rela *internal_relocs,
1328 bfd_byte *contents ATTRIBUTE_UNUSED,
1329 bfd_boolean *pswapped)
1330 {
1331 Elf_Internal_Rela *irel, *irelend;
1332 bfd_vma *labels = NULL;
1333 bfd_vma *label, *label_end;
1334 bfd_size_type amt;
1335
1336 *pswapped = FALSE;
1337
1338 irelend = internal_relocs + sec->reloc_count;
1339
1340 /* Get all the addresses with labels on them. */
1341 amt = sec->reloc_count;
1342 amt *= sizeof (bfd_vma);
1343 labels = (bfd_vma *) bfd_malloc (amt);
1344 if (labels == NULL)
1345 goto error_return;
1346 label_end = labels;
1347 for (irel = internal_relocs; irel < irelend; irel++)
1348 {
1349 if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_LABEL)
1350 {
1351 *label_end = irel->r_offset;
1352 ++label_end;
1353 }
1354 }
1355
1356 /* Note that the assembler currently always outputs relocs in
1357 address order. If that ever changes, this code will need to sort
1358 the label values and the relocs. */
1359
1360 label = labels;
1361
1362 for (irel = internal_relocs; irel < irelend; irel++)
1363 {
1364 bfd_vma start, stop;
1365
1366 if (ELF32_R_TYPE (irel->r_info) != (int) R_SH_CODE)
1367 continue;
1368
1369 start = irel->r_offset;
1370
1371 for (irel++; irel < irelend; irel++)
1372 if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_DATA)
1373 break;
1374 if (irel < irelend)
1375 stop = irel->r_offset;
1376 else
1377 stop = sec->size;
1378
1379 if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_elf_swap_insns,
1380 internal_relocs, &label,
1381 label_end, start, stop, pswapped))
1382 goto error_return;
1383 }
1384
1385 free (labels);
1386
1387 return TRUE;
1388
1389 error_return:
1390 if (labels != NULL)
1391 free (labels);
1392 return FALSE;
1393 }
1394
1395 #ifndef SH64_ELF
1396 /* Swap two SH instructions. This is like sh_swap_insns in coff-sh.c. */
1397
1398 static bfd_boolean
1399 sh_elf_swap_insns (bfd *abfd, asection *sec, void *relocs,
1400 bfd_byte *contents, bfd_vma addr)
1401 {
1402 Elf_Internal_Rela *internal_relocs = (Elf_Internal_Rela *) relocs;
1403 unsigned short i1, i2;
1404 Elf_Internal_Rela *irel, *irelend;
1405
1406 /* Swap the instructions themselves. */
1407 i1 = bfd_get_16 (abfd, contents + addr);
1408 i2 = bfd_get_16 (abfd, contents + addr + 2);
1409 bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
1410 bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
1411
1412 /* Adjust all reloc addresses. */
1413 irelend = internal_relocs + sec->reloc_count;
1414 for (irel = internal_relocs; irel < irelend; irel++)
1415 {
1416 enum elf_sh_reloc_type type;
1417 int add;
1418
1419 /* There are a few special types of relocs that we don't want to
1420 adjust. These relocs do not apply to the instruction itself,
1421 but are only associated with the address. */
1422 type = (enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info);
1423 if (type == R_SH_ALIGN
1424 || type == R_SH_CODE
1425 || type == R_SH_DATA
1426 || type == R_SH_LABEL)
1427 continue;
1428
1429 /* If an R_SH_USES reloc points to one of the addresses being
1430 swapped, we must adjust it. It would be incorrect to do this
1431 for a jump, though, since we want to execute both
1432 instructions after the jump. (We have avoided swapping
1433 around a label, so the jump will not wind up executing an
1434 instruction it shouldn't). */
1435 if (type == R_SH_USES)
1436 {
1437 bfd_vma off;
1438
1439 off = irel->r_offset + 4 + irel->r_addend;
1440 if (off == addr)
1441 irel->r_offset += 2;
1442 else if (off == addr + 2)
1443 irel->r_offset -= 2;
1444 }
1445
1446 if (irel->r_offset == addr)
1447 {
1448 irel->r_offset += 2;
1449 add = -2;
1450 }
1451 else if (irel->r_offset == addr + 2)
1452 {
1453 irel->r_offset -= 2;
1454 add = 2;
1455 }
1456 else
1457 add = 0;
1458
1459 if (add != 0)
1460 {
1461 bfd_byte *loc;
1462 unsigned short insn, oinsn;
1463 bfd_boolean overflow;
1464
1465 loc = contents + irel->r_offset;
1466 overflow = FALSE;
1467 switch (type)
1468 {
1469 default:
1470 break;
1471
1472 case R_SH_DIR8WPN:
1473 case R_SH_DIR8WPZ:
1474 insn = bfd_get_16 (abfd, loc);
1475 oinsn = insn;
1476 insn += add / 2;
1477 if ((oinsn & 0xff00) != (insn & 0xff00))
1478 overflow = TRUE;
1479 bfd_put_16 (abfd, (bfd_vma) insn, loc);
1480 break;
1481
1482 case R_SH_IND12W:
1483 insn = bfd_get_16 (abfd, loc);
1484 oinsn = insn;
1485 insn += add / 2;
1486 if ((oinsn & 0xf000) != (insn & 0xf000))
1487 overflow = TRUE;
1488 bfd_put_16 (abfd, (bfd_vma) insn, loc);
1489 break;
1490
1491 case R_SH_DIR8WPL:
1492 /* This reloc ignores the least significant 3 bits of
1493 the program counter before adding in the offset.
1494 This means that if ADDR is at an even address, the
1495 swap will not affect the offset. If ADDR is an at an
1496 odd address, then the instruction will be crossing a
1497 four byte boundary, and must be adjusted. */
1498 if ((addr & 3) != 0)
1499 {
1500 insn = bfd_get_16 (abfd, loc);
1501 oinsn = insn;
1502 insn += add / 2;
1503 if ((oinsn & 0xff00) != (insn & 0xff00))
1504 overflow = TRUE;
1505 bfd_put_16 (abfd, (bfd_vma) insn, loc);
1506 }
1507
1508 break;
1509 }
1510
1511 if (overflow)
1512 {
1513 ((*_bfd_error_handler)
1514 (_("%B: 0x%lx: fatal: reloc overflow while relaxing"),
1515 abfd, (unsigned long) irel->r_offset));
1516 bfd_set_error (bfd_error_bad_value);
1517 return FALSE;
1518 }
1519 }
1520 }
1521
1522 return TRUE;
1523 }
1524 #endif /* defined SH64_ELF */
1525 \f
1526 /* Describes one of the various PLT styles. */
1527
1528 struct elf_sh_plt_info
1529 {
1530 /* The template for the first PLT entry, or NULL if there is no special
1531 first entry. */
1532 const bfd_byte *plt0_entry;
1533
1534 /* The size of PLT0_ENTRY in bytes, or 0 if PLT0_ENTRY is NULL. */
1535 bfd_vma plt0_entry_size;
1536
1537 /* Index I is the offset into PLT0_ENTRY of a pointer to
1538 _GLOBAL_OFFSET_TABLE_ + I * 4. The value is MINUS_ONE
1539 if there is no such pointer. */
1540 bfd_vma plt0_got_fields[3];
1541
1542 /* The template for a symbol's PLT entry. */
1543 const bfd_byte *symbol_entry;
1544
1545 /* The size of SYMBOL_ENTRY in bytes. */
1546 bfd_vma symbol_entry_size;
1547
1548 /* Byte offsets of fields in SYMBOL_ENTRY. Not all fields are used
1549 on all targets. The comments by each member indicate the value
1550 that the field must hold. */
1551 struct {
1552 bfd_vma got_entry; /* the address of the symbol's .got.plt entry */
1553 bfd_vma plt; /* .plt (or a branch to .plt on VxWorks) */
1554 bfd_vma reloc_offset; /* the offset of the symbol's JMP_SLOT reloc */
1555 } symbol_fields;
1556
1557 /* The offset of the resolver stub from the start of SYMBOL_ENTRY. */
1558 bfd_vma symbol_resolve_offset;
1559 };
1560
1561 #ifdef INCLUDE_SHMEDIA
1562
1563 /* The size in bytes of an entry in the procedure linkage table. */
1564
1565 #define ELF_PLT_ENTRY_SIZE 64
1566
1567 /* First entry in an absolute procedure linkage table look like this. */
1568
1569 static const bfd_byte elf_sh_plt0_entry_be[ELF_PLT_ENTRY_SIZE] =
1570 {
1571 0xcc, 0x00, 0x01, 0x10, /* movi .got.plt >> 16, r17 */
1572 0xc8, 0x00, 0x01, 0x10, /* shori .got.plt & 65535, r17 */
1573 0x89, 0x10, 0x09, 0x90, /* ld.l r17, 8, r25 */
1574 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
1575 0x89, 0x10, 0x05, 0x10, /* ld.l r17, 4, r17 */
1576 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
1577 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1578 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1579 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1580 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1581 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1582 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1583 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1584 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1585 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1586 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1587 };
1588
1589 static const bfd_byte elf_sh_plt0_entry_le[ELF_PLT_ENTRY_SIZE] =
1590 {
1591 0x10, 0x01, 0x00, 0xcc, /* movi .got.plt >> 16, r17 */
1592 0x10, 0x01, 0x00, 0xc8, /* shori .got.plt & 65535, r17 */
1593 0x90, 0x09, 0x10, 0x89, /* ld.l r17, 8, r25 */
1594 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
1595 0x10, 0x05, 0x10, 0x89, /* ld.l r17, 4, r17 */
1596 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
1597 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1598 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1599 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1600 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1601 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1602 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1603 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1604 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1605 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1606 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1607 };
1608
1609 /* Sebsequent entries in an absolute procedure linkage table look like
1610 this. */
1611
1612 static const bfd_byte elf_sh_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
1613 {
1614 0xcc, 0x00, 0x01, 0x90, /* movi nameN-in-GOT >> 16, r25 */
1615 0xc8, 0x00, 0x01, 0x90, /* shori nameN-in-GOT & 65535, r25 */
1616 0x89, 0x90, 0x01, 0x90, /* ld.l r25, 0, r25 */
1617 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
1618 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
1619 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1620 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1621 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1622 0xcc, 0x00, 0x01, 0x90, /* movi .PLT0 >> 16, r25 */
1623 0xc8, 0x00, 0x01, 0x90, /* shori .PLT0 & 65535, r25 */
1624 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
1625 0xcc, 0x00, 0x01, 0x50, /* movi reloc-offset >> 16, r21 */
1626 0xc8, 0x00, 0x01, 0x50, /* shori reloc-offset & 65535, r21 */
1627 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
1628 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1629 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1630 };
1631
1632 static const bfd_byte elf_sh_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
1633 {
1634 0x90, 0x01, 0x00, 0xcc, /* movi nameN-in-GOT >> 16, r25 */
1635 0x90, 0x01, 0x00, 0xc8, /* shori nameN-in-GOT & 65535, r25 */
1636 0x90, 0x01, 0x90, 0x89, /* ld.l r25, 0, r25 */
1637 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
1638 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
1639 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1640 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1641 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1642 0x90, 0x01, 0x00, 0xcc, /* movi .PLT0 >> 16, r25 */
1643 0x90, 0x01, 0x00, 0xc8, /* shori .PLT0 & 65535, r25 */
1644 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
1645 0x50, 0x01, 0x00, 0xcc, /* movi reloc-offset >> 16, r21 */
1646 0x50, 0x01, 0x00, 0xc8, /* shori reloc-offset & 65535, r21 */
1647 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
1648 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1649 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1650 };
1651
1652 /* Entries in a PIC procedure linkage table look like this. */
1653
1654 static const bfd_byte elf_sh_pic_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
1655 {
1656 0xcc, 0x00, 0x01, 0x90, /* movi nameN@GOT >> 16, r25 */
1657 0xc8, 0x00, 0x01, 0x90, /* shori nameN@GOT & 65535, r25 */
1658 0x40, 0xc2, 0x65, 0x90, /* ldx.l r12, r25, r25 */
1659 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
1660 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
1661 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1662 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1663 0x6f, 0xf0, 0xff, 0xf0, /* nop */
1664 0xce, 0x00, 0x01, 0x10, /* movi -GOT_BIAS, r17 */
1665 0x00, 0xc8, 0x45, 0x10, /* add.l r12, r17, r17 */
1666 0x89, 0x10, 0x09, 0x90, /* ld.l r17, 8, r25 */
1667 0x6b, 0xf1, 0x66, 0x00, /* ptabs r25, tr0 */
1668 0x89, 0x10, 0x05, 0x10, /* ld.l r17, 4, r17 */
1669 0xcc, 0x00, 0x01, 0x50, /* movi reloc-offset >> 16, r21 */
1670 0xc8, 0x00, 0x01, 0x50, /* shori reloc-offset & 65535, r21 */
1671 0x44, 0x01, 0xff, 0xf0, /* blink tr0, r63 */
1672 };
1673
1674 static const bfd_byte elf_sh_pic_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
1675 {
1676 0x90, 0x01, 0x00, 0xcc, /* movi nameN@GOT >> 16, r25 */
1677 0x90, 0x01, 0x00, 0xc8, /* shori nameN@GOT & 65535, r25 */
1678 0x90, 0x65, 0xc2, 0x40, /* ldx.l r12, r25, r25 */
1679 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
1680 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
1681 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1682 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1683 0xf0, 0xff, 0xf0, 0x6f, /* nop */
1684 0x10, 0x01, 0x00, 0xce, /* movi -GOT_BIAS, r17 */
1685 0x10, 0x45, 0xc8, 0x00, /* add.l r12, r17, r17 */
1686 0x90, 0x09, 0x10, 0x89, /* ld.l r17, 8, r25 */
1687 0x00, 0x66, 0xf1, 0x6b, /* ptabs r25, tr0 */
1688 0x10, 0x05, 0x10, 0x89, /* ld.l r17, 4, r17 */
1689 0x50, 0x01, 0x00, 0xcc, /* movi reloc-offset >> 16, r21 */
1690 0x50, 0x01, 0x00, 0xc8, /* shori reloc-offset & 65535, r21 */
1691 0xf0, 0xff, 0x01, 0x44, /* blink tr0, r63 */
1692 };
1693
1694 static const struct elf_sh_plt_info elf_sh_plts[2][2] = {
1695 {
1696 {
1697 /* Big-endian non-PIC. */
1698 elf_sh_plt0_entry_be,
1699 ELF_PLT_ENTRY_SIZE,
1700 { 0, MINUS_ONE, MINUS_ONE },
1701 elf_sh_plt_entry_be,
1702 ELF_PLT_ENTRY_SIZE,
1703 { 0, 32, 48 },
1704 33 /* includes ISA encoding */
1705 },
1706 {
1707 /* Little-endian non-PIC. */
1708 elf_sh_plt0_entry_le,
1709 ELF_PLT_ENTRY_SIZE,
1710 { 0, MINUS_ONE, MINUS_ONE },
1711 elf_sh_plt_entry_le,
1712 ELF_PLT_ENTRY_SIZE,
1713 { 0, 32, 48 },
1714 33 /* includes ISA encoding */
1715 },
1716 },
1717 {
1718 {
1719 /* Big-endian PIC. */
1720 elf_sh_plt0_entry_be,
1721 ELF_PLT_ENTRY_SIZE,
1722 { MINUS_ONE, MINUS_ONE, MINUS_ONE },
1723 elf_sh_pic_plt_entry_be,
1724 ELF_PLT_ENTRY_SIZE,
1725 { 0, MINUS_ONE, 52 },
1726 33 /* includes ISA encoding */
1727 },
1728 {
1729 /* Little-endian PIC. */
1730 elf_sh_plt0_entry_le,
1731 ELF_PLT_ENTRY_SIZE,
1732 { MINUS_ONE, MINUS_ONE, MINUS_ONE },
1733 elf_sh_pic_plt_entry_le,
1734 ELF_PLT_ENTRY_SIZE,
1735 { 0, MINUS_ONE, 52 },
1736 33 /* includes ISA encoding */
1737 },
1738 }
1739 };
1740
1741 /* Return offset of the linker in PLT0 entry. */
1742 #define elf_sh_plt0_gotplt_offset(info) 0
1743
1744 /* Install a 32-bit PLT field starting at ADDR, which occurs in OUTPUT_BFD.
1745 VALUE is the field's value and CODE_P is true if VALUE refers to code,
1746 not data.
1747
1748 On SH64, each 32-bit field is loaded by a movi/shori pair. */
1749
1750 inline static void
1751 install_plt_field (bfd *output_bfd, bfd_boolean code_p,
1752 unsigned long value, bfd_byte *addr)
1753 {
1754 value |= code_p;
1755 bfd_put_32 (output_bfd,
1756 bfd_get_32 (output_bfd, addr)
1757 | ((value >> 6) & 0x3fffc00),
1758 addr);
1759 bfd_put_32 (output_bfd,
1760 bfd_get_32 (output_bfd, addr + 4)
1761 | ((value << 10) & 0x3fffc00),
1762 addr + 4);
1763 }
1764
1765 /* Return the type of PLT associated with ABFD. PIC_P is true if
1766 the object is position-independent. */
1767
1768 static const struct elf_sh_plt_info *
1769 get_plt_info (bfd *abfd ATTRIBUTE_UNUSED, bfd_boolean pic_p)
1770 {
1771 return &elf_sh_plts[pic_p][!bfd_big_endian (abfd)];
1772 }
1773 #else
1774 /* The size in bytes of an entry in the procedure linkage table. */
1775
1776 #define ELF_PLT_ENTRY_SIZE 28
1777
1778 /* First entry in an absolute procedure linkage table look like this. */
1779
1780 /* Note - this code has been "optimised" not to use r2. r2 is used by
1781 GCC to return the address of large structures, so it should not be
1782 corrupted here. This does mean however, that this PLT does not conform
1783 to the SH PIC ABI. That spec says that r0 contains the type of the PLT
1784 and r2 contains the GOT id. This version stores the GOT id in r0 and
1785 ignores the type. Loaders can easily detect this difference however,
1786 since the type will always be 0 or 8, and the GOT ids will always be
1787 greater than or equal to 12. */
1788 static const bfd_byte elf_sh_plt0_entry_be[ELF_PLT_ENTRY_SIZE] =
1789 {
1790 0xd0, 0x05, /* mov.l 2f,r0 */
1791 0x60, 0x02, /* mov.l @r0,r0 */
1792 0x2f, 0x06, /* mov.l r0,@-r15 */
1793 0xd0, 0x03, /* mov.l 1f,r0 */
1794 0x60, 0x02, /* mov.l @r0,r0 */
1795 0x40, 0x2b, /* jmp @r0 */
1796 0x60, 0xf6, /* mov.l @r15+,r0 */
1797 0x00, 0x09, /* nop */
1798 0x00, 0x09, /* nop */
1799 0x00, 0x09, /* nop */
1800 0, 0, 0, 0, /* 1: replaced with address of .got.plt + 8. */
1801 0, 0, 0, 0, /* 2: replaced with address of .got.plt + 4. */
1802 };
1803
1804 static const bfd_byte elf_sh_plt0_entry_le[ELF_PLT_ENTRY_SIZE] =
1805 {
1806 0x05, 0xd0, /* mov.l 2f,r0 */
1807 0x02, 0x60, /* mov.l @r0,r0 */
1808 0x06, 0x2f, /* mov.l r0,@-r15 */
1809 0x03, 0xd0, /* mov.l 1f,r0 */
1810 0x02, 0x60, /* mov.l @r0,r0 */
1811 0x2b, 0x40, /* jmp @r0 */
1812 0xf6, 0x60, /* mov.l @r15+,r0 */
1813 0x09, 0x00, /* nop */
1814 0x09, 0x00, /* nop */
1815 0x09, 0x00, /* nop */
1816 0, 0, 0, 0, /* 1: replaced with address of .got.plt + 8. */
1817 0, 0, 0, 0, /* 2: replaced with address of .got.plt + 4. */
1818 };
1819
1820 /* Sebsequent entries in an absolute procedure linkage table look like
1821 this. */
1822
1823 static const bfd_byte elf_sh_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
1824 {
1825 0xd0, 0x04, /* mov.l 1f,r0 */
1826 0x60, 0x02, /* mov.l @(r0,r12),r0 */
1827 0xd1, 0x02, /* mov.l 0f,r1 */
1828 0x40, 0x2b, /* jmp @r0 */
1829 0x60, 0x13, /* mov r1,r0 */
1830 0xd1, 0x03, /* mov.l 2f,r1 */
1831 0x40, 0x2b, /* jmp @r0 */
1832 0x00, 0x09, /* nop */
1833 0, 0, 0, 0, /* 0: replaced with address of .PLT0. */
1834 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */
1835 0, 0, 0, 0, /* 2: replaced with offset into relocation table. */
1836 };
1837
1838 static const bfd_byte elf_sh_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
1839 {
1840 0x04, 0xd0, /* mov.l 1f,r0 */
1841 0x02, 0x60, /* mov.l @r0,r0 */
1842 0x02, 0xd1, /* mov.l 0f,r1 */
1843 0x2b, 0x40, /* jmp @r0 */
1844 0x13, 0x60, /* mov r1,r0 */
1845 0x03, 0xd1, /* mov.l 2f,r1 */
1846 0x2b, 0x40, /* jmp @r0 */
1847 0x09, 0x00, /* nop */
1848 0, 0, 0, 0, /* 0: replaced with address of .PLT0. */
1849 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */
1850 0, 0, 0, 0, /* 2: replaced with offset into relocation table. */
1851 };
1852
1853 /* Entries in a PIC procedure linkage table look like this. */
1854
1855 static const bfd_byte elf_sh_pic_plt_entry_be[ELF_PLT_ENTRY_SIZE] =
1856 {
1857 0xd0, 0x04, /* mov.l 1f,r0 */
1858 0x00, 0xce, /* mov.l @(r0,r12),r0 */
1859 0x40, 0x2b, /* jmp @r0 */
1860 0x00, 0x09, /* nop */
1861 0x50, 0xc2, /* mov.l @(8,r12),r0 */
1862 0xd1, 0x03, /* mov.l 2f,r1 */
1863 0x40, 0x2b, /* jmp @r0 */
1864 0x50, 0xc1, /* mov.l @(4,r12),r0 */
1865 0x00, 0x09, /* nop */
1866 0x00, 0x09, /* nop */
1867 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */
1868 0, 0, 0, 0 /* 2: replaced with offset into relocation table. */
1869 };
1870
1871 static const bfd_byte elf_sh_pic_plt_entry_le[ELF_PLT_ENTRY_SIZE] =
1872 {
1873 0x04, 0xd0, /* mov.l 1f,r0 */
1874 0xce, 0x00, /* mov.l @(r0,r12),r0 */
1875 0x2b, 0x40, /* jmp @r0 */
1876 0x09, 0x00, /* nop */
1877 0xc2, 0x50, /* mov.l @(8,r12),r0 */
1878 0x03, 0xd1, /* mov.l 2f,r1 */
1879 0x2b, 0x40, /* jmp @r0 */
1880 0xc1, 0x50, /* mov.l @(4,r12),r0 */
1881 0x09, 0x00, /* nop */
1882 0x09, 0x00, /* nop */
1883 0, 0, 0, 0, /* 1: replaced with address of this symbol in .got. */
1884 0, 0, 0, 0 /* 2: replaced with offset into relocation table. */
1885 };
1886
1887 static const struct elf_sh_plt_info elf_sh_plts[2][2] = {
1888 {
1889 {
1890 /* Big-endian non-PIC. */
1891 elf_sh_plt0_entry_be,
1892 ELF_PLT_ENTRY_SIZE,
1893 { MINUS_ONE, 24, 20 },
1894 elf_sh_plt_entry_be,
1895 ELF_PLT_ENTRY_SIZE,
1896 { 20, 16, 24 },
1897 8
1898 },
1899 {
1900 /* Little-endian non-PIC. */
1901 elf_sh_plt0_entry_le,
1902 ELF_PLT_ENTRY_SIZE,
1903 { MINUS_ONE, 24, 20 },
1904 elf_sh_plt_entry_le,
1905 ELF_PLT_ENTRY_SIZE,
1906 { 20, 16, 24 },
1907 8
1908 },
1909 },
1910 {
1911 {
1912 /* Big-endian PIC. */
1913 elf_sh_plt0_entry_be,
1914 ELF_PLT_ENTRY_SIZE,
1915 { MINUS_ONE, MINUS_ONE, MINUS_ONE },
1916 elf_sh_pic_plt_entry_be,
1917 ELF_PLT_ENTRY_SIZE,
1918 { 20, MINUS_ONE, 24 },
1919 8
1920 },
1921 {
1922 /* Little-endian PIC. */
1923 elf_sh_plt0_entry_le,
1924 ELF_PLT_ENTRY_SIZE,
1925 { MINUS_ONE, MINUS_ONE, MINUS_ONE },
1926 elf_sh_pic_plt_entry_le,
1927 ELF_PLT_ENTRY_SIZE,
1928 { 20, MINUS_ONE, 24 },
1929 8
1930 },
1931 }
1932 };
1933
1934 #define VXWORKS_PLT_HEADER_SIZE 12
1935 #define VXWORKS_PLT_ENTRY_SIZE 24
1936
1937 static const bfd_byte vxworks_sh_plt0_entry_be[VXWORKS_PLT_HEADER_SIZE] =
1938 {
1939 0xd1, 0x01, /* mov.l @(8,pc),r1 */
1940 0x61, 0x12, /* mov.l @r1,r1 */
1941 0x41, 0x2b, /* jmp @r1 */
1942 0x00, 0x09, /* nop */
1943 0, 0, 0, 0 /* 0: replaced with _GLOBAL_OFFSET_TABLE+8. */
1944 };
1945
1946 static const bfd_byte vxworks_sh_plt0_entry_le[VXWORKS_PLT_HEADER_SIZE] =
1947 {
1948 0x01, 0xd1, /* mov.l @(8,pc),r1 */
1949 0x12, 0x61, /* mov.l @r1,r1 */
1950 0x2b, 0x41, /* jmp @r1 */
1951 0x09, 0x00, /* nop */
1952 0, 0, 0, 0 /* 0: replaced with _GLOBAL_OFFSET_TABLE+8. */
1953 };
1954
1955 static const bfd_byte vxworks_sh_plt_entry_be[VXWORKS_PLT_ENTRY_SIZE] =
1956 {
1957 0xd0, 0x01, /* mov.l @(8,pc),r0 */
1958 0x60, 0x02, /* mov.l @r0,r0 */
1959 0x40, 0x2b, /* jmp @r0 */
1960 0x00, 0x09, /* nop */
1961 0, 0, 0, 0, /* 0: replaced with address of this symbol in .got. */
1962 0xd0, 0x01, /* mov.l @(8,pc),r0 */
1963 0xa0, 0x00, /* bra PLT (We need to fix the offset.) */
1964 0x00, 0x09, /* nop */
1965 0x00, 0x09, /* nop */
1966 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */
1967 };
1968
1969 static const bfd_byte vxworks_sh_plt_entry_le[VXWORKS_PLT_ENTRY_SIZE] =
1970 {
1971 0x01, 0xd0, /* mov.l @(8,pc),r0 */
1972 0x02, 0x60, /* mov.l @r0,r0 */
1973 0x2b, 0x40, /* jmp @r0 */
1974 0x09, 0x00, /* nop */
1975 0, 0, 0, 0, /* 0: replaced with address of this symbol in .got. */
1976 0x01, 0xd0, /* mov.l @(8,pc),r0 */
1977 0x00, 0xa0, /* bra PLT (We need to fix the offset.) */
1978 0x09, 0x00, /* nop */
1979 0x09, 0x00, /* nop */
1980 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */
1981 };
1982
1983 static const bfd_byte vxworks_sh_pic_plt_entry_be[VXWORKS_PLT_ENTRY_SIZE] =
1984 {
1985 0xd0, 0x01, /* mov.l @(8,pc),r0 */
1986 0x00, 0xce, /* mov.l @(r0,r12),r0 */
1987 0x40, 0x2b, /* jmp @r0 */
1988 0x00, 0x09, /* nop */
1989 0, 0, 0, 0, /* 0: replaced with offset of this symbol in .got. */
1990 0xd0, 0x01, /* mov.l @(8,pc),r0 */
1991 0x51, 0xc2, /* mov.l @(8,r12),r1 */
1992 0x41, 0x2b, /* jmp @r1 */
1993 0x00, 0x09, /* nop */
1994 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */
1995 };
1996
1997 static const bfd_byte vxworks_sh_pic_plt_entry_le[VXWORKS_PLT_ENTRY_SIZE] =
1998 {
1999 0x01, 0xd0, /* mov.l @(8,pc),r0 */
2000 0xce, 0x00, /* mov.l @(r0,r12),r0 */
2001 0x2b, 0x40, /* jmp @r0 */
2002 0x09, 0x00, /* nop */
2003 0, 0, 0, 0, /* 0: replaced with offset of this symbol in .got. */
2004 0x01, 0xd0, /* mov.l @(8,pc),r0 */
2005 0xc2, 0x51, /* mov.l @(8,r12),r1 */
2006 0x2b, 0x41, /* jmp @r1 */
2007 0x09, 0x00, /* nop */
2008 0, 0, 0, 0, /* 1: replaced with offset into relocation table. */
2009 };
2010
2011 static const struct elf_sh_plt_info vxworks_sh_plts[2][2] = {
2012 {
2013 {
2014 /* Big-endian non-PIC. */
2015 vxworks_sh_plt0_entry_be,
2016 VXWORKS_PLT_HEADER_SIZE,
2017 { MINUS_ONE, MINUS_ONE, 8 },
2018 vxworks_sh_plt_entry_be,
2019 VXWORKS_PLT_ENTRY_SIZE,
2020 { 8, 14, 20 },
2021 12
2022 },
2023 {
2024 /* Little-endian non-PIC. */
2025 vxworks_sh_plt0_entry_le,
2026 VXWORKS_PLT_HEADER_SIZE,
2027 { MINUS_ONE, MINUS_ONE, 8 },
2028 vxworks_sh_plt_entry_le,
2029 VXWORKS_PLT_ENTRY_SIZE,
2030 { 8, 14, 20 },
2031 12
2032 },
2033 },
2034 {
2035 {
2036 /* Big-endian PIC. */
2037 NULL,
2038 0,
2039 { MINUS_ONE, MINUS_ONE, MINUS_ONE },
2040 vxworks_sh_pic_plt_entry_be,
2041 VXWORKS_PLT_ENTRY_SIZE,
2042 { 8, MINUS_ONE, 20 },
2043 12
2044 },
2045 {
2046 /* Little-endian PIC. */
2047 NULL,
2048 0,
2049 { MINUS_ONE, MINUS_ONE, MINUS_ONE },
2050 vxworks_sh_pic_plt_entry_le,
2051 VXWORKS_PLT_ENTRY_SIZE,
2052 { 8, MINUS_ONE, 20 },
2053 12
2054 },
2055 }
2056 };
2057
2058 /* Return the type of PLT associated with ABFD. PIC_P is true if
2059 the object is position-independent. */
2060
2061 static const struct elf_sh_plt_info *
2062 get_plt_info (bfd *abfd ATTRIBUTE_UNUSED, bfd_boolean pic_p)
2063 {
2064 if (vxworks_object_p (abfd))
2065 return &vxworks_sh_plts[pic_p][!bfd_big_endian (abfd)];
2066 return &elf_sh_plts[pic_p][!bfd_big_endian (abfd)];
2067 }
2068
2069 /* Install a 32-bit PLT field starting at ADDR, which occurs in OUTPUT_BFD.
2070 VALUE is the field's value and CODE_P is true if VALUE refers to code,
2071 not data. */
2072
2073 inline static void
2074 install_plt_field (bfd *output_bfd, bfd_boolean code_p ATTRIBUTE_UNUSED,
2075 unsigned long value, bfd_byte *addr)
2076 {
2077 bfd_put_32 (output_bfd, value, addr);
2078 }
2079 #endif
2080
2081 /* Return the index of the PLT entry at byte offset OFFSET. */
2082
2083 static bfd_vma
2084 get_plt_index (const struct elf_sh_plt_info *info, bfd_vma offset)
2085 {
2086 return (offset - info->plt0_entry_size) / info->symbol_entry_size;
2087 }
2088
2089 /* Do the inverse operation. */
2090
2091 static bfd_vma
2092 get_plt_offset (const struct elf_sh_plt_info *info, bfd_vma index)
2093 {
2094 return info->plt0_entry_size + (index * info->symbol_entry_size);
2095 }
2096
2097 /* The sh linker needs to keep track of the number of relocs that it
2098 decides to copy as dynamic relocs in check_relocs for each symbol.
2099 This is so that it can later discard them if they are found to be
2100 unnecessary. We store the information in a field extending the
2101 regular ELF linker hash table. */
2102
2103 struct elf_sh_dyn_relocs
2104 {
2105 struct elf_sh_dyn_relocs *next;
2106
2107 /* The input section of the reloc. */
2108 asection *sec;
2109
2110 /* Total number of relocs copied for the input section. */
2111 bfd_size_type count;
2112
2113 /* Number of pc-relative relocs copied for the input section. */
2114 bfd_size_type pc_count;
2115 };
2116
2117 /* sh ELF linker hash entry. */
2118
2119 struct elf_sh_link_hash_entry
2120 {
2121 struct elf_link_hash_entry root;
2122
2123 #ifdef INCLUDE_SHMEDIA
2124 union
2125 {
2126 bfd_signed_vma refcount;
2127 bfd_vma offset;
2128 } datalabel_got;
2129 #endif
2130
2131 /* Track dynamic relocs copied for this symbol. */
2132 struct elf_sh_dyn_relocs *dyn_relocs;
2133
2134 bfd_signed_vma gotplt_refcount;
2135
2136 enum {
2137 GOT_UNKNOWN = 0, GOT_NORMAL, GOT_TLS_GD, GOT_TLS_IE
2138 } tls_type;
2139 };
2140
2141 #define sh_elf_hash_entry(ent) ((struct elf_sh_link_hash_entry *)(ent))
2142
2143 struct sh_elf_obj_tdata
2144 {
2145 struct elf_obj_tdata root;
2146
2147 /* tls_type for each local got entry. */
2148 char *local_got_tls_type;
2149 };
2150
2151 #define sh_elf_tdata(abfd) \
2152 ((struct sh_elf_obj_tdata *) (abfd)->tdata.any)
2153
2154 #define sh_elf_local_got_tls_type(abfd) \
2155 (sh_elf_tdata (abfd)->local_got_tls_type)
2156
2157 /* Override the generic function because we need to store sh_elf_obj_tdata
2158 as the specific tdata. */
2159
2160 static bfd_boolean
2161 sh_elf_mkobject (bfd *abfd)
2162 {
2163 if (abfd->tdata.any == NULL)
2164 {
2165 bfd_size_type amt = sizeof (struct sh_elf_obj_tdata);
2166 abfd->tdata.any = bfd_zalloc (abfd, amt);
2167 if (abfd->tdata.any == NULL)
2168 return FALSE;
2169 }
2170 return bfd_elf_mkobject (abfd);
2171 }
2172
2173 /* sh ELF linker hash table. */
2174
2175 struct elf_sh_link_hash_table
2176 {
2177 struct elf_link_hash_table root;
2178
2179 /* Short-cuts to get to dynamic linker sections. */
2180 asection *sgot;
2181 asection *sgotplt;
2182 asection *srelgot;
2183 asection *splt;
2184 asection *srelplt;
2185 asection *sdynbss;
2186 asection *srelbss;
2187
2188 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2189 asection *srelplt2;
2190
2191 /* Small local sym to section mapping cache. */
2192 struct sym_sec_cache sym_sec;
2193
2194 /* A counter or offset to track a TLS got entry. */
2195 union
2196 {
2197 bfd_signed_vma refcount;
2198 bfd_vma offset;
2199 } tls_ldm_got;
2200
2201 /* The type of PLT to use. */
2202 const struct elf_sh_plt_info *plt_info;
2203
2204 /* True if the target system is VxWorks. */
2205 bfd_boolean vxworks_p;
2206 };
2207
2208 /* Traverse an sh ELF linker hash table. */
2209
2210 #define sh_elf_link_hash_traverse(table, func, info) \
2211 (elf_link_hash_traverse \
2212 (&(table)->root, \
2213 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2214 (info)))
2215
2216 /* Get the sh ELF linker hash table from a link_info structure. */
2217
2218 #define sh_elf_hash_table(p) \
2219 ((struct elf_sh_link_hash_table *) ((p)->hash))
2220
2221 /* Create an entry in an sh ELF linker hash table. */
2222
2223 static struct bfd_hash_entry *
2224 sh_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
2225 struct bfd_hash_table *table,
2226 const char *string)
2227 {
2228 struct elf_sh_link_hash_entry *ret =
2229 (struct elf_sh_link_hash_entry *) entry;
2230
2231 /* Allocate the structure if it has not already been allocated by a
2232 subclass. */
2233 if (ret == (struct elf_sh_link_hash_entry *) NULL)
2234 ret = ((struct elf_sh_link_hash_entry *)
2235 bfd_hash_allocate (table,
2236 sizeof (struct elf_sh_link_hash_entry)));
2237 if (ret == (struct elf_sh_link_hash_entry *) NULL)
2238 return (struct bfd_hash_entry *) ret;
2239
2240 /* Call the allocation method of the superclass. */
2241 ret = ((struct elf_sh_link_hash_entry *)
2242 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2243 table, string));
2244 if (ret != (struct elf_sh_link_hash_entry *) NULL)
2245 {
2246 ret->dyn_relocs = NULL;
2247 ret->gotplt_refcount = 0;
2248 #ifdef INCLUDE_SHMEDIA
2249 ret->datalabel_got.refcount = ret->root.got.refcount;
2250 #endif
2251 ret->tls_type = GOT_UNKNOWN;
2252 }
2253
2254 return (struct bfd_hash_entry *) ret;
2255 }
2256
2257 /* Create an sh ELF linker hash table. */
2258
2259 static struct bfd_link_hash_table *
2260 sh_elf_link_hash_table_create (bfd *abfd)
2261 {
2262 struct elf_sh_link_hash_table *ret;
2263 bfd_size_type amt = sizeof (struct elf_sh_link_hash_table);
2264
2265 ret = (struct elf_sh_link_hash_table *) bfd_malloc (amt);
2266 if (ret == (struct elf_sh_link_hash_table *) NULL)
2267 return NULL;
2268
2269 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
2270 sh_elf_link_hash_newfunc,
2271 sizeof (struct elf_sh_link_hash_entry)))
2272 {
2273 free (ret);
2274 return NULL;
2275 }
2276
2277 ret->sgot = NULL;
2278 ret->sgotplt = NULL;
2279 ret->srelgot = NULL;
2280 ret->splt = NULL;
2281 ret->srelplt = NULL;
2282 ret->sdynbss = NULL;
2283 ret->srelbss = NULL;
2284 ret->srelplt2 = NULL;
2285 ret->sym_sec.abfd = NULL;
2286 ret->tls_ldm_got.refcount = 0;
2287 ret->plt_info = NULL;
2288 ret->vxworks_p = vxworks_object_p (abfd);
2289
2290 return &ret->root.root;
2291 }
2292
2293 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
2294 shortcuts to them in our hash table. */
2295
2296 static bfd_boolean
2297 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2298 {
2299 struct elf_sh_link_hash_table *htab;
2300
2301 if (! _bfd_elf_create_got_section (dynobj, info))
2302 return FALSE;
2303
2304 htab = sh_elf_hash_table (info);
2305 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2306 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2307 if (! htab->sgot || ! htab->sgotplt)
2308 abort ();
2309
2310 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got",
2311 (SEC_ALLOC | SEC_LOAD
2312 | SEC_HAS_CONTENTS
2313 | SEC_IN_MEMORY
2314 | SEC_LINKER_CREATED
2315 | SEC_READONLY));
2316 if (htab->srelgot == NULL
2317 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2318 return FALSE;
2319 return TRUE;
2320 }
2321
2322 /* Create dynamic sections when linking against a dynamic object. */
2323
2324 static bfd_boolean
2325 sh_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
2326 {
2327 struct elf_sh_link_hash_table *htab;
2328 flagword flags, pltflags;
2329 register asection *s;
2330 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2331 int ptralign = 0;
2332
2333 switch (bed->s->arch_size)
2334 {
2335 case 32:
2336 ptralign = 2;
2337 break;
2338
2339 case 64:
2340 ptralign = 3;
2341 break;
2342
2343 default:
2344 bfd_set_error (bfd_error_bad_value);
2345 return FALSE;
2346 }
2347
2348 htab = sh_elf_hash_table (info);
2349 if (htab->root.dynamic_sections_created)
2350 return TRUE;
2351
2352 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
2353 .rel[a].bss sections. */
2354
2355 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
2356 | SEC_LINKER_CREATED);
2357
2358 pltflags = flags;
2359 pltflags |= SEC_CODE;
2360 if (bed->plt_not_loaded)
2361 pltflags &= ~ (SEC_LOAD | SEC_HAS_CONTENTS);
2362 if (bed->plt_readonly)
2363 pltflags |= SEC_READONLY;
2364
2365 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
2366 htab->splt = s;
2367 if (s == NULL
2368 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
2369 return FALSE;
2370
2371 if (bed->want_plt_sym)
2372 {
2373 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
2374 .plt section. */
2375 struct elf_link_hash_entry *h;
2376 struct bfd_link_hash_entry *bh = NULL;
2377
2378 if (! (_bfd_generic_link_add_one_symbol
2379 (info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s,
2380 (bfd_vma) 0, (const char *) NULL, FALSE,
2381 get_elf_backend_data (abfd)->collect, &bh)))
2382 return FALSE;
2383
2384 h = (struct elf_link_hash_entry *) bh;
2385 h->def_regular = 1;
2386 h->type = STT_OBJECT;
2387 htab->root.hplt = h;
2388
2389 if (info->shared
2390 && ! bfd_elf_link_record_dynamic_symbol (info, h))
2391 return FALSE;
2392 }
2393
2394 s = bfd_make_section_with_flags (abfd,
2395 bed->default_use_rela_p ? ".rela.plt" : ".rel.plt",
2396 flags | SEC_READONLY);
2397 htab->srelplt = s;
2398 if (s == NULL
2399 || ! bfd_set_section_alignment (abfd, s, ptralign))
2400 return FALSE;
2401
2402 if (htab->sgot == NULL
2403 && !create_got_section (abfd, info))
2404 return FALSE;
2405
2406 {
2407 const char *secname;
2408 char *relname;
2409 flagword secflags;
2410 asection *sec;
2411
2412 for (sec = abfd->sections; sec; sec = sec->next)
2413 {
2414 secflags = bfd_get_section_flags (abfd, sec);
2415 if ((secflags & (SEC_DATA | SEC_LINKER_CREATED))
2416 || ((secflags & SEC_HAS_CONTENTS) != SEC_HAS_CONTENTS))
2417 continue;
2418 secname = bfd_get_section_name (abfd, sec);
2419 relname = (char *) bfd_malloc ((bfd_size_type) strlen (secname) + 6);
2420 strcpy (relname, ".rela");
2421 strcat (relname, secname);
2422 if (bfd_get_section_by_name (abfd, secname))
2423 continue;
2424 s = bfd_make_section_with_flags (abfd, relname,
2425 flags | SEC_READONLY);
2426 if (s == NULL
2427 || ! bfd_set_section_alignment (abfd, s, ptralign))
2428 return FALSE;
2429 }
2430 }
2431
2432 if (bed->want_dynbss)
2433 {
2434 /* The .dynbss section is a place to put symbols which are defined
2435 by dynamic objects, are referenced by regular objects, and are
2436 not functions. We must allocate space for them in the process
2437 image and use a R_*_COPY reloc to tell the dynamic linker to
2438 initialize them at run time. The linker script puts the .dynbss
2439 section into the .bss section of the final image. */
2440 s = bfd_make_section_with_flags (abfd, ".dynbss",
2441 SEC_ALLOC | SEC_LINKER_CREATED);
2442 htab->sdynbss = s;
2443 if (s == NULL)
2444 return FALSE;
2445
2446 /* The .rel[a].bss section holds copy relocs. This section is not
2447 normally needed. We need to create it here, though, so that the
2448 linker will map it to an output section. We can't just create it
2449 only if we need it, because we will not know whether we need it
2450 until we have seen all the input files, and the first time the
2451 main linker code calls BFD after examining all the input files
2452 (size_dynamic_sections) the input sections have already been
2453 mapped to the output sections. If the section turns out not to
2454 be needed, we can discard it later. We will never need this
2455 section when generating a shared object, since they do not use
2456 copy relocs. */
2457 if (! info->shared)
2458 {
2459 s = bfd_make_section_with_flags (abfd,
2460 (bed->default_use_rela_p
2461 ? ".rela.bss" : ".rel.bss"),
2462 flags | SEC_READONLY);
2463 htab->srelbss = s;
2464 if (s == NULL
2465 || ! bfd_set_section_alignment (abfd, s, ptralign))
2466 return FALSE;
2467 }
2468 }
2469
2470 if (htab->vxworks_p)
2471 {
2472 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
2473 return FALSE;
2474 }
2475
2476 return TRUE;
2477 }
2478 \f
2479 /* Adjust a symbol defined by a dynamic object and referenced by a
2480 regular object. The current definition is in some section of the
2481 dynamic object, but we're not including those sections. We have to
2482 change the definition to something the rest of the link can
2483 understand. */
2484
2485 static bfd_boolean
2486 sh_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
2487 struct elf_link_hash_entry *h)
2488 {
2489 struct elf_sh_link_hash_table *htab;
2490 struct elf_sh_link_hash_entry *eh;
2491 struct elf_sh_dyn_relocs *p;
2492 asection *s;
2493
2494 htab = sh_elf_hash_table (info);
2495
2496 /* Make sure we know what is going on here. */
2497 BFD_ASSERT (htab->root.dynobj != NULL
2498 && (h->needs_plt
2499 || h->u.weakdef != NULL
2500 || (h->def_dynamic
2501 && h->ref_regular
2502 && !h->def_regular)));
2503
2504 /* If this is a function, put it in the procedure linkage table. We
2505 will fill in the contents of the procedure linkage table later,
2506 when we know the address of the .got section. */
2507 if (h->type == STT_FUNC
2508 || h->needs_plt)
2509 {
2510 if (h->plt.refcount <= 0
2511 || SYMBOL_CALLS_LOCAL (info, h)
2512 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2513 && h->root.type == bfd_link_hash_undefweak))
2514 {
2515 /* This case can occur if we saw a PLT reloc in an input
2516 file, but the symbol was never referred to by a dynamic
2517 object. In such a case, we don't actually need to build
2518 a procedure linkage table, and we can just do a REL32
2519 reloc instead. */
2520 h->plt.offset = (bfd_vma) -1;
2521 h->needs_plt = 0;
2522 }
2523
2524 return TRUE;
2525 }
2526 else
2527 h->plt.offset = (bfd_vma) -1;
2528
2529 /* If this is a weak symbol, and there is a real definition, the
2530 processor independent code will have arranged for us to see the
2531 real definition first, and we can just use the same value. */
2532 if (h->u.weakdef != NULL)
2533 {
2534 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2535 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2536 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2537 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2538 if (info->nocopyreloc)
2539 h->non_got_ref = h->u.weakdef->non_got_ref;
2540 return TRUE;
2541 }
2542
2543 /* This is a reference to a symbol defined by a dynamic object which
2544 is not a function. */
2545
2546 /* If we are creating a shared library, we must presume that the
2547 only references to the symbol are via the global offset table.
2548 For such cases we need not do anything here; the relocations will
2549 be handled correctly by relocate_section. */
2550 if (info->shared)
2551 return TRUE;
2552
2553 /* If there are no references to this symbol that do not use the
2554 GOT, we don't need to generate a copy reloc. */
2555 if (!h->non_got_ref)
2556 return TRUE;
2557
2558 /* If -z nocopyreloc was given, we won't generate them either. */
2559 if (info->nocopyreloc)
2560 {
2561 h->non_got_ref = 0;
2562 return TRUE;
2563 }
2564
2565 eh = (struct elf_sh_link_hash_entry *) h;
2566 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2567 {
2568 s = p->sec->output_section;
2569 if (s != NULL && (s->flags & (SEC_READONLY | SEC_HAS_CONTENTS)) != 0)
2570 break;
2571 }
2572
2573 /* If we didn't find any dynamic relocs in sections which needs the
2574 copy reloc, then we'll be keeping the dynamic relocs and avoiding
2575 the copy reloc. */
2576 if (p == NULL)
2577 {
2578 h->non_got_ref = 0;
2579 return TRUE;
2580 }
2581
2582 if (h->size == 0)
2583 {
2584 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
2585 h->root.root.string);
2586 return TRUE;
2587 }
2588
2589 /* We must allocate the symbol in our .dynbss section, which will
2590 become part of the .bss section of the executable. There will be
2591 an entry for this symbol in the .dynsym section. The dynamic
2592 object will contain position independent code, so all references
2593 from the dynamic object to this symbol will go through the global
2594 offset table. The dynamic linker will use the .dynsym entry to
2595 determine the address it must put in the global offset table, so
2596 both the dynamic object and the regular object will refer to the
2597 same memory location for the variable. */
2598
2599 s = htab->sdynbss;
2600 BFD_ASSERT (s != NULL);
2601
2602 /* We must generate a R_SH_COPY reloc to tell the dynamic linker to
2603 copy the initial value out of the dynamic object and into the
2604 runtime process image. We need to remember the offset into the
2605 .rela.bss section we are going to use. */
2606 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
2607 {
2608 asection *srel;
2609
2610 srel = htab->srelbss;
2611 BFD_ASSERT (srel != NULL);
2612 srel->size += sizeof (Elf32_External_Rela);
2613 h->needs_copy = 1;
2614 }
2615
2616 return _bfd_elf_adjust_dynamic_copy (h, s);
2617 }
2618
2619 /* Allocate space in .plt, .got and associated reloc sections for
2620 dynamic relocs. */
2621
2622 static bfd_boolean
2623 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
2624 {
2625 struct bfd_link_info *info;
2626 struct elf_sh_link_hash_table *htab;
2627 struct elf_sh_link_hash_entry *eh;
2628 struct elf_sh_dyn_relocs *p;
2629
2630 if (h->root.type == bfd_link_hash_indirect)
2631 return TRUE;
2632
2633 if (h->root.type == bfd_link_hash_warning)
2634 /* When warning symbols are created, they **replace** the "real"
2635 entry in the hash table, thus we never get to see the real
2636 symbol in a hash traversal. So look at it now. */
2637 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2638
2639 info = (struct bfd_link_info *) inf;
2640 htab = sh_elf_hash_table (info);
2641
2642 eh = (struct elf_sh_link_hash_entry *) h;
2643 if ((h->got.refcount > 0
2644 || h->forced_local)
2645 && eh->gotplt_refcount > 0)
2646 {
2647 /* The symbol has been forced local, or we have some direct got refs,
2648 so treat all the gotplt refs as got refs. */
2649 h->got.refcount += eh->gotplt_refcount;
2650 if (h->plt.refcount >= eh->gotplt_refcount)
2651 h->plt.refcount -= eh->gotplt_refcount;
2652 }
2653
2654 if (htab->root.dynamic_sections_created
2655 && h->plt.refcount > 0
2656 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2657 || h->root.type != bfd_link_hash_undefweak))
2658 {
2659 /* Make sure this symbol is output as a dynamic symbol.
2660 Undefined weak syms won't yet be marked as dynamic. */
2661 if (h->dynindx == -1
2662 && !h->forced_local)
2663 {
2664 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2665 return FALSE;
2666 }
2667
2668 if (info->shared
2669 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
2670 {
2671 asection *s = htab->splt;
2672
2673 /* If this is the first .plt entry, make room for the special
2674 first entry. */
2675 if (s->size == 0)
2676 s->size += htab->plt_info->plt0_entry_size;
2677
2678 h->plt.offset = s->size;
2679
2680 /* If this symbol is not defined in a regular file, and we are
2681 not generating a shared library, then set the symbol to this
2682 location in the .plt. This is required to make function
2683 pointers compare as equal between the normal executable and
2684 the shared library. */
2685 if (! info->shared
2686 && !h->def_regular)
2687 {
2688 h->root.u.def.section = s;
2689 h->root.u.def.value = h->plt.offset;
2690 }
2691
2692 /* Make room for this entry. */
2693 s->size += htab->plt_info->symbol_entry_size;
2694
2695 /* We also need to make an entry in the .got.plt section, which
2696 will be placed in the .got section by the linker script. */
2697 htab->sgotplt->size += 4;
2698
2699 /* We also need to make an entry in the .rel.plt section. */
2700 htab->srelplt->size += sizeof (Elf32_External_Rela);
2701
2702 if (htab->vxworks_p && !info->shared)
2703 {
2704 /* VxWorks executables have a second set of relocations
2705 for each PLT entry. They go in a separate relocation
2706 section, which is processed by the kernel loader. */
2707
2708 /* There is a relocation for the initial PLT entry:
2709 an R_SH_DIR32 relocation for _GLOBAL_OFFSET_TABLE_. */
2710 if (h->plt.offset == htab->plt_info->plt0_entry_size)
2711 htab->srelplt2->size += sizeof (Elf32_External_Rela);
2712
2713 /* There are two extra relocations for each subsequent
2714 PLT entry: an R_SH_DIR32 relocation for the GOT entry,
2715 and an R_SH_DIR32 relocation for the PLT entry. */
2716 htab->srelplt2->size += sizeof (Elf32_External_Rela) * 2;
2717 }
2718 }
2719 else
2720 {
2721 h->plt.offset = (bfd_vma) -1;
2722 h->needs_plt = 0;
2723 }
2724 }
2725 else
2726 {
2727 h->plt.offset = (bfd_vma) -1;
2728 h->needs_plt = 0;
2729 }
2730
2731 if (h->got.refcount > 0)
2732 {
2733 asection *s;
2734 bfd_boolean dyn;
2735 int tls_type = sh_elf_hash_entry (h)->tls_type;
2736
2737 /* Make sure this symbol is output as a dynamic symbol.
2738 Undefined weak syms won't yet be marked as dynamic. */
2739 if (h->dynindx == -1
2740 && !h->forced_local)
2741 {
2742 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2743 return FALSE;
2744 }
2745
2746 s = htab->sgot;
2747 h->got.offset = s->size;
2748 s->size += 4;
2749 /* R_SH_TLS_GD needs 2 consecutive GOT slots. */
2750 if (tls_type == GOT_TLS_GD)
2751 s->size += 4;
2752 dyn = htab->root.dynamic_sections_created;
2753 /* R_SH_TLS_IE_32 needs one dynamic relocation if dynamic,
2754 R_SH_TLS_GD needs one if local symbol and two if global. */
2755 if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
2756 || (tls_type == GOT_TLS_IE && dyn))
2757 htab->srelgot->size += sizeof (Elf32_External_Rela);
2758 else if (tls_type == GOT_TLS_GD)
2759 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2760 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2761 || h->root.type != bfd_link_hash_undefweak)
2762 && (info->shared
2763 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
2764 htab->srelgot->size += sizeof (Elf32_External_Rela);
2765 }
2766 else
2767 h->got.offset = (bfd_vma) -1;
2768
2769 #ifdef INCLUDE_SHMEDIA
2770 if (eh->datalabel_got.refcount > 0)
2771 {
2772 asection *s;
2773 bfd_boolean dyn;
2774
2775 /* Make sure this symbol is output as a dynamic symbol.
2776 Undefined weak syms won't yet be marked as dynamic. */
2777 if (h->dynindx == -1
2778 && !h->forced_local)
2779 {
2780 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2781 return FALSE;
2782 }
2783
2784 s = htab->sgot;
2785 eh->datalabel_got.offset = s->size;
2786 s->size += 4;
2787 dyn = htab->root.dynamic_sections_created;
2788 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h))
2789 htab->srelgot->size += sizeof (Elf32_External_Rela);
2790 }
2791 else
2792 eh->datalabel_got.offset = (bfd_vma) -1;
2793 #endif
2794
2795 if (eh->dyn_relocs == NULL)
2796 return TRUE;
2797
2798 /* In the shared -Bsymbolic case, discard space allocated for
2799 dynamic pc-relative relocs against symbols which turn out to be
2800 defined in regular objects. For the normal shared case, discard
2801 space for pc-relative relocs that have become local due to symbol
2802 visibility changes. */
2803
2804 if (info->shared)
2805 {
2806 if (SYMBOL_CALLS_LOCAL (info, h))
2807 {
2808 struct elf_sh_dyn_relocs **pp;
2809
2810 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
2811 {
2812 p->count -= p->pc_count;
2813 p->pc_count = 0;
2814 if (p->count == 0)
2815 *pp = p->next;
2816 else
2817 pp = &p->next;
2818 }
2819 }
2820
2821 /* Also discard relocs on undefined weak syms with non-default
2822 visibility. */
2823 if (eh->dyn_relocs != NULL
2824 && h->root.type == bfd_link_hash_undefweak)
2825 {
2826 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2827 eh->dyn_relocs = NULL;
2828
2829 /* Make sure undefined weak symbols are output as a dynamic
2830 symbol in PIEs. */
2831 else if (h->dynindx == -1
2832 && !h->forced_local)
2833 {
2834 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2835 return FALSE;
2836 }
2837 }
2838 }
2839 else
2840 {
2841 /* For the non-shared case, discard space for relocs against
2842 symbols which turn out to need copy relocs or are not
2843 dynamic. */
2844
2845 if (!h->non_got_ref
2846 && ((h->def_dynamic
2847 && !h->def_regular)
2848 || (htab->root.dynamic_sections_created
2849 && (h->root.type == bfd_link_hash_undefweak
2850 || h->root.type == bfd_link_hash_undefined))))
2851 {
2852 /* Make sure this symbol is output as a dynamic symbol.
2853 Undefined weak syms won't yet be marked as dynamic. */
2854 if (h->dynindx == -1
2855 && !h->forced_local)
2856 {
2857 if (! bfd_elf_link_record_dynamic_symbol (info, h))
2858 return FALSE;
2859 }
2860
2861 /* If that succeeded, we know we'll be keeping all the
2862 relocs. */
2863 if (h->dynindx != -1)
2864 goto keep;
2865 }
2866
2867 eh->dyn_relocs = NULL;
2868
2869 keep: ;
2870 }
2871
2872 /* Finally, allocate space. */
2873 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2874 {
2875 asection *sreloc = elf_section_data (p->sec)->sreloc;
2876 sreloc->size += p->count * sizeof (Elf32_External_Rela);
2877 }
2878
2879 return TRUE;
2880 }
2881
2882 /* Find any dynamic relocs that apply to read-only sections. */
2883
2884 static bfd_boolean
2885 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
2886 {
2887 struct elf_sh_link_hash_entry *eh;
2888 struct elf_sh_dyn_relocs *p;
2889
2890 if (h->root.type == bfd_link_hash_warning)
2891 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2892
2893 eh = (struct elf_sh_link_hash_entry *) h;
2894 for (p = eh->dyn_relocs; p != NULL; p = p->next)
2895 {
2896 asection *s = p->sec->output_section;
2897
2898 if (s != NULL && (s->flags & SEC_READONLY) != 0)
2899 {
2900 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2901
2902 info->flags |= DF_TEXTREL;
2903
2904 /* Not an error, just cut short the traversal. */
2905 return FALSE;
2906 }
2907 }
2908 return TRUE;
2909 }
2910
2911 /* This function is called after all the input files have been read,
2912 and the input sections have been assigned to output sections.
2913 It's a convenient place to determine the PLT style. */
2914
2915 static bfd_boolean
2916 sh_elf_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
2917 {
2918 sh_elf_hash_table (info)->plt_info = get_plt_info (output_bfd, info->shared);
2919 return TRUE;
2920 }
2921
2922 /* Set the sizes of the dynamic sections. */
2923
2924 static bfd_boolean
2925 sh_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2926 struct bfd_link_info *info)
2927 {
2928 struct elf_sh_link_hash_table *htab;
2929 bfd *dynobj;
2930 asection *s;
2931 bfd_boolean relocs;
2932 bfd *ibfd;
2933
2934 htab = sh_elf_hash_table (info);
2935 dynobj = htab->root.dynobj;
2936 BFD_ASSERT (dynobj != NULL);
2937
2938 if (htab->root.dynamic_sections_created)
2939 {
2940 /* Set the contents of the .interp section to the interpreter. */
2941 if (info->executable)
2942 {
2943 s = bfd_get_section_by_name (dynobj, ".interp");
2944 BFD_ASSERT (s != NULL);
2945 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2946 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2947 }
2948 }
2949
2950 /* Set up .got offsets for local syms, and space for local dynamic
2951 relocs. */
2952 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2953 {
2954 bfd_signed_vma *local_got;
2955 bfd_signed_vma *end_local_got;
2956 char *local_tls_type;
2957 bfd_size_type locsymcount;
2958 Elf_Internal_Shdr *symtab_hdr;
2959 asection *srel;
2960
2961 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2962 continue;
2963
2964 for (s = ibfd->sections; s != NULL; s = s->next)
2965 {
2966 struct elf_sh_dyn_relocs *p;
2967
2968 for (p = ((struct elf_sh_dyn_relocs *)
2969 elf_section_data (s)->local_dynrel);
2970 p != NULL;
2971 p = p->next)
2972 {
2973 if (! bfd_is_abs_section (p->sec)
2974 && bfd_is_abs_section (p->sec->output_section))
2975 {
2976 /* Input section has been discarded, either because
2977 it is a copy of a linkonce section or due to
2978 linker script /DISCARD/, so we'll be discarding
2979 the relocs too. */
2980 }
2981 else if (p->count != 0)
2982 {
2983 srel = elf_section_data (p->sec)->sreloc;
2984 srel->size += p->count * sizeof (Elf32_External_Rela);
2985 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
2986 info->flags |= DF_TEXTREL;
2987 }
2988 }
2989 }
2990
2991 local_got = elf_local_got_refcounts (ibfd);
2992 if (!local_got)
2993 continue;
2994
2995 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2996 locsymcount = symtab_hdr->sh_info;
2997 #ifdef INCLUDE_SHMEDIA
2998 /* Count datalabel local GOT. */
2999 locsymcount *= 2;
3000 #endif
3001 end_local_got = local_got + locsymcount;
3002 local_tls_type = sh_elf_local_got_tls_type (ibfd);
3003 s = htab->sgot;
3004 srel = htab->srelgot;
3005 for (; local_got < end_local_got; ++local_got)
3006 {
3007 if (*local_got > 0)
3008 {
3009 *local_got = s->size;
3010 s->size += 4;
3011 if (*local_tls_type == GOT_TLS_GD)
3012 s->size += 4;
3013 if (info->shared)
3014 srel->size += sizeof (Elf32_External_Rela);
3015 }
3016 else
3017 *local_got = (bfd_vma) -1;
3018 ++local_tls_type;
3019 }
3020 }
3021
3022 if (htab->tls_ldm_got.refcount > 0)
3023 {
3024 /* Allocate 2 got entries and 1 dynamic reloc for R_SH_TLS_LD_32
3025 relocs. */
3026 htab->tls_ldm_got.offset = htab->sgot->size;
3027 htab->sgot->size += 8;
3028 htab->srelgot->size += sizeof (Elf32_External_Rela);
3029 }
3030 else
3031 htab->tls_ldm_got.offset = -1;
3032
3033 /* Allocate global sym .plt and .got entries, and space for global
3034 sym dynamic relocs. */
3035 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
3036
3037 /* We now have determined the sizes of the various dynamic sections.
3038 Allocate memory for them. */
3039 relocs = FALSE;
3040 for (s = dynobj->sections; s != NULL; s = s->next)
3041 {
3042 if ((s->flags & SEC_LINKER_CREATED) == 0)
3043 continue;
3044
3045 if (s == htab->splt
3046 || s == htab->sgot
3047 || s == htab->sgotplt
3048 || s == htab->sdynbss)
3049 {
3050 /* Strip this section if we don't need it; see the
3051 comment below. */
3052 }
3053 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
3054 {
3055 if (s->size != 0 && s != htab->srelplt && s != htab->srelplt2)
3056 relocs = TRUE;
3057
3058 /* We use the reloc_count field as a counter if we need
3059 to copy relocs into the output file. */
3060 s->reloc_count = 0;
3061 }
3062 else
3063 {
3064 /* It's not one of our sections, so don't allocate space. */
3065 continue;
3066 }
3067
3068 if (s->size == 0)
3069 {
3070 /* If we don't need this section, strip it from the
3071 output file. This is mostly to handle .rela.bss and
3072 .rela.plt. We must create both sections in
3073 create_dynamic_sections, because they must be created
3074 before the linker maps input sections to output
3075 sections. The linker does that before
3076 adjust_dynamic_symbol is called, and it is that
3077 function which decides whether anything needs to go
3078 into these sections. */
3079
3080 s->flags |= SEC_EXCLUDE;
3081 continue;
3082 }
3083
3084 if ((s->flags & SEC_HAS_CONTENTS) == 0)
3085 continue;
3086
3087 /* Allocate memory for the section contents. We use bfd_zalloc
3088 here in case unused entries are not reclaimed before the
3089 section's contents are written out. This should not happen,
3090 but this way if it does, we get a R_SH_NONE reloc instead
3091 of garbage. */
3092 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3093 if (s->contents == NULL)
3094 return FALSE;
3095 }
3096
3097 if (htab->root.dynamic_sections_created)
3098 {
3099 /* Add some entries to the .dynamic section. We fill in the
3100 values later, in sh_elf_finish_dynamic_sections, but we
3101 must add the entries now so that we get the correct size for
3102 the .dynamic section. The DT_DEBUG entry is filled in by the
3103 dynamic linker and used by the debugger. */
3104 #define add_dynamic_entry(TAG, VAL) \
3105 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3106
3107 if (info->executable)
3108 {
3109 if (! add_dynamic_entry (DT_DEBUG, 0))
3110 return FALSE;
3111 }
3112
3113 if (htab->splt->size != 0)
3114 {
3115 if (! add_dynamic_entry (DT_PLTGOT, 0)
3116 || ! add_dynamic_entry (DT_PLTRELSZ, 0)
3117 || ! add_dynamic_entry (DT_PLTREL, DT_RELA)
3118 || ! add_dynamic_entry (DT_JMPREL, 0))
3119 return FALSE;
3120 }
3121
3122 if (relocs)
3123 {
3124 if (! add_dynamic_entry (DT_RELA, 0)
3125 || ! add_dynamic_entry (DT_RELASZ, 0)
3126 || ! add_dynamic_entry (DT_RELAENT,
3127 sizeof (Elf32_External_Rela)))
3128 return FALSE;
3129
3130 /* If any dynamic relocs apply to a read-only section,
3131 then we need a DT_TEXTREL entry. */
3132 if ((info->flags & DF_TEXTREL) == 0)
3133 elf_link_hash_traverse (&htab->root, readonly_dynrelocs, info);
3134
3135 if ((info->flags & DF_TEXTREL) != 0)
3136 {
3137 if (! add_dynamic_entry (DT_TEXTREL, 0))
3138 return FALSE;
3139 }
3140 }
3141 }
3142 #undef add_dynamic_entry
3143
3144 return TRUE;
3145 }
3146 \f
3147 /* Relocate an SH ELF section. */
3148
3149 static bfd_boolean
3150 sh_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
3151 bfd *input_bfd, asection *input_section,
3152 bfd_byte *contents, Elf_Internal_Rela *relocs,
3153 Elf_Internal_Sym *local_syms,
3154 asection **local_sections)
3155 {
3156 struct elf_sh_link_hash_table *htab;
3157 Elf_Internal_Shdr *symtab_hdr;
3158 struct elf_link_hash_entry **sym_hashes;
3159 Elf_Internal_Rela *rel, *relend;
3160 bfd *dynobj;
3161 bfd_vma *local_got_offsets;
3162 asection *sgot;
3163 asection *sgotplt;
3164 asection *splt;
3165 asection *sreloc;
3166 asection *srelgot;
3167
3168 htab = sh_elf_hash_table (info);
3169 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3170 sym_hashes = elf_sym_hashes (input_bfd);
3171 dynobj = htab->root.dynobj;
3172 local_got_offsets = elf_local_got_offsets (input_bfd);
3173
3174 sgot = htab->sgot;
3175 sgotplt = htab->sgotplt;
3176 splt = htab->splt;
3177 sreloc = NULL;
3178 srelgot = NULL;
3179
3180 rel = relocs;
3181 relend = relocs + input_section->reloc_count;
3182 for (; rel < relend; rel++)
3183 {
3184 int r_type;
3185 reloc_howto_type *howto;
3186 unsigned long r_symndx;
3187 Elf_Internal_Sym *sym;
3188 asection *sec;
3189 struct elf_link_hash_entry *h;
3190 bfd_vma relocation;
3191 bfd_vma addend = (bfd_vma) 0;
3192 bfd_reloc_status_type r;
3193 int seen_stt_datalabel = 0;
3194 bfd_vma off;
3195 int tls_type;
3196
3197 r_symndx = ELF32_R_SYM (rel->r_info);
3198
3199 r_type = ELF32_R_TYPE (rel->r_info);
3200
3201 /* Many of the relocs are only used for relaxing, and are
3202 handled entirely by the relaxation code. */
3203 if (r_type >= (int) R_SH_GNU_VTINHERIT
3204 && r_type <= (int) R_SH_LABEL)
3205 continue;
3206 if (r_type == (int) R_SH_NONE)
3207 continue;
3208
3209 if (r_type < 0
3210 || r_type >= R_SH_max
3211 || (r_type >= (int) R_SH_FIRST_INVALID_RELOC
3212 && r_type <= (int) R_SH_LAST_INVALID_RELOC)
3213 || ( r_type >= (int) R_SH_FIRST_INVALID_RELOC_3
3214 && r_type <= (int) R_SH_LAST_INVALID_RELOC_3)
3215 || ( r_type >= (int) R_SH_FIRST_INVALID_RELOC_4
3216 && r_type <= (int) R_SH_LAST_INVALID_RELOC_4)
3217 || ( r_type >= (int) R_SH_FIRST_INVALID_RELOC_5
3218 && r_type <= (int) R_SH_LAST_INVALID_RELOC_5)
3219 || (r_type >= (int) R_SH_FIRST_INVALID_RELOC_2
3220 && r_type <= (int) R_SH_LAST_INVALID_RELOC_2))
3221 {
3222 bfd_set_error (bfd_error_bad_value);
3223 return FALSE;
3224 }
3225
3226 howto = get_howto_table (output_bfd) + r_type;
3227
3228 /* For relocs that aren't partial_inplace, we get the addend from
3229 the relocation. */
3230 if (! howto->partial_inplace)
3231 addend = rel->r_addend;
3232
3233 h = NULL;
3234 sym = NULL;
3235 sec = NULL;
3236 if (r_symndx < symtab_hdr->sh_info)
3237 {
3238 sym = local_syms + r_symndx;
3239 sec = local_sections[r_symndx];
3240 relocation = (sec->output_section->vma
3241 + sec->output_offset
3242 + sym->st_value);
3243 /* A local symbol never has STO_SH5_ISA32, so we don't need
3244 datalabel processing here. Make sure this does not change
3245 without notice. */
3246 if ((sym->st_other & STO_SH5_ISA32) != 0)
3247 ((*info->callbacks->reloc_dangerous)
3248 (info,
3249 _("Unexpected STO_SH5_ISA32 on local symbol is not handled"),
3250 input_bfd, input_section, rel->r_offset));
3251
3252 if (sec != NULL && elf_discarded_section (sec))
3253 /* Handled below. */
3254 ;
3255 else if (info->relocatable)
3256 {
3257 /* This is a relocatable link. We don't have to change
3258 anything, unless the reloc is against a section symbol,
3259 in which case we have to adjust according to where the
3260 section symbol winds up in the output section. */
3261 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3262 {
3263 if (! howto->partial_inplace)
3264 {
3265 /* For relocations with the addend in the
3266 relocation, we need just to update the addend.
3267 All real relocs are of type partial_inplace; this
3268 code is mostly for completeness. */
3269 rel->r_addend += sec->output_offset;
3270
3271 continue;
3272 }
3273
3274 /* Relocs of type partial_inplace need to pick up the
3275 contents in the contents and add the offset resulting
3276 from the changed location of the section symbol.
3277 Using _bfd_final_link_relocate (e.g. goto
3278 final_link_relocate) here would be wrong, because
3279 relocations marked pc_relative would get the current
3280 location subtracted, and we must only do that at the
3281 final link. */
3282 r = _bfd_relocate_contents (howto, input_bfd,
3283 sec->output_offset
3284 + sym->st_value,
3285 contents + rel->r_offset);
3286 goto relocation_done;
3287 }
3288
3289 continue;
3290 }
3291 else if (! howto->partial_inplace)
3292 {
3293 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3294 addend = rel->r_addend;
3295 }
3296 else if ((sec->flags & SEC_MERGE)
3297 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
3298 {
3299 asection *msec;
3300
3301 if (howto->rightshift || howto->src_mask != 0xffffffff)
3302 {
3303 (*_bfd_error_handler)
3304 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
3305 input_bfd, input_section,
3306 (long) rel->r_offset, howto->name);
3307 return FALSE;
3308 }
3309
3310 addend = bfd_get_32 (input_bfd, contents + rel->r_offset);
3311 msec = sec;
3312 addend =
3313 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
3314 - relocation;
3315 addend += msec->output_section->vma + msec->output_offset;
3316 bfd_put_32 (input_bfd, addend, contents + rel->r_offset);
3317 addend = 0;
3318 }
3319 }
3320 else
3321 {
3322 /* FIXME: Ought to make use of the RELOC_FOR_GLOBAL_SYMBOL macro. */
3323
3324 relocation = 0;
3325 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
3326 while (h->root.type == bfd_link_hash_indirect
3327 || h->root.type == bfd_link_hash_warning)
3328 {
3329 #ifdef INCLUDE_SHMEDIA
3330 /* If the reference passes a symbol marked with
3331 STT_DATALABEL, then any STO_SH5_ISA32 on the final value
3332 doesn't count. */
3333 seen_stt_datalabel |= h->type == STT_DATALABEL;
3334 #endif
3335 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3336 }
3337 if (h->root.type == bfd_link_hash_defined
3338 || h->root.type == bfd_link_hash_defweak)
3339 {
3340 bfd_boolean dyn;
3341
3342 dyn = htab->root.dynamic_sections_created;
3343 sec = h->root.u.def.section;
3344 /* In these cases, we don't need the relocation value.
3345 We check specially because in some obscure cases
3346 sec->output_section will be NULL. */
3347 if (r_type == R_SH_GOTPC
3348 || r_type == R_SH_GOTPC_LOW16
3349 || r_type == R_SH_GOTPC_MEDLOW16
3350 || r_type == R_SH_GOTPC_MEDHI16
3351 || r_type == R_SH_GOTPC_HI16
3352 || ((r_type == R_SH_PLT32
3353 || r_type == R_SH_PLT_LOW16
3354 || r_type == R_SH_PLT_MEDLOW16
3355 || r_type == R_SH_PLT_MEDHI16
3356 || r_type == R_SH_PLT_HI16)
3357 && h->plt.offset != (bfd_vma) -1)
3358 || ((r_type == R_SH_GOT32
3359 || r_type == R_SH_GOT_LOW16
3360 || r_type == R_SH_GOT_MEDLOW16
3361 || r_type == R_SH_GOT_MEDHI16
3362 || r_type == R_SH_GOT_HI16)
3363 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3364 && (! info->shared
3365 || (! info->symbolic && h->dynindx != -1)
3366 || !h->def_regular))
3367 /* The cases above are those in which relocation is
3368 overwritten in the switch block below. The cases
3369 below are those in which we must defer relocation
3370 to run-time, because we can't resolve absolute
3371 addresses when creating a shared library. */
3372 || (info->shared
3373 && ((! info->symbolic && h->dynindx != -1)
3374 || !h->def_regular)
3375 && ((r_type == R_SH_DIR32
3376 && !h->forced_local)
3377 || (r_type == R_SH_REL32
3378 && !SYMBOL_CALLS_LOCAL (info, h)))
3379 && ((input_section->flags & SEC_ALLOC) != 0
3380 /* DWARF will emit R_SH_DIR32 relocations in its
3381 sections against symbols defined externally
3382 in shared libraries. We can't do anything
3383 with them here. */
3384 || ((input_section->flags & SEC_DEBUGGING) != 0
3385 && h->def_dynamic)))
3386 /* Dynamic relocs are not propagated for SEC_DEBUGGING
3387 sections because such sections are not SEC_ALLOC and
3388 thus ld.so will not process them. */
3389 || (sec->output_section == NULL
3390 && ((input_section->flags & SEC_DEBUGGING) != 0
3391 && h->def_dynamic))
3392 || (sec->output_section == NULL
3393 && (sh_elf_hash_entry (h)->tls_type == GOT_TLS_IE
3394 || sh_elf_hash_entry (h)->tls_type == GOT_TLS_GD)))
3395 ;
3396 else if (sec->output_section != NULL)
3397 relocation = ((h->root.u.def.value
3398 + sec->output_section->vma
3399 + sec->output_offset)
3400 /* A STO_SH5_ISA32 causes a "bitor 1" to the
3401 symbol value, unless we've seen
3402 STT_DATALABEL on the way to it. */
3403 | ((h->other & STO_SH5_ISA32) != 0
3404 && ! seen_stt_datalabel));
3405 else if (!info->relocatable)
3406 {
3407 (*_bfd_error_handler)
3408 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3409 input_bfd,
3410 input_section,
3411 (long) rel->r_offset,
3412 howto->name,
3413 h->root.root.string);
3414 return FALSE;
3415 }
3416 }
3417 else if (h->root.type == bfd_link_hash_undefweak)
3418 ;
3419 else if (info->unresolved_syms_in_objects == RM_IGNORE
3420 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3421 ;
3422 else if (!info->relocatable)
3423 {
3424 if (! info->callbacks->undefined_symbol
3425 (info, h->root.root.string, input_bfd,
3426 input_section, rel->r_offset,
3427 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3428 || ELF_ST_VISIBILITY (h->other))))
3429 return FALSE;
3430 }
3431 }
3432
3433 if (sec != NULL && elf_discarded_section (sec))
3434 {
3435 /* For relocs against symbols from removed linkonce sections,
3436 or sections discarded by a linker script, we just want the
3437 section contents zeroed. Avoid any special processing. */
3438 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
3439 rel->r_info = 0;
3440 rel->r_addend = 0;
3441 continue;
3442 }
3443
3444 if (info->relocatable)
3445 continue;
3446
3447 switch ((int) r_type)
3448 {
3449 final_link_relocate:
3450 /* COFF relocs don't use the addend. The addend is used for
3451 R_SH_DIR32 to be compatible with other compilers. */
3452 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
3453 contents, rel->r_offset,
3454 relocation, addend);
3455 break;
3456
3457 case R_SH_IND12W:
3458 goto final_link_relocate;
3459
3460 case R_SH_DIR8WPN:
3461 case R_SH_DIR8WPZ:
3462 case R_SH_DIR8WPL:
3463 /* If the reloc is against the start of this section, then
3464 the assembler has already taken care of it and the reloc
3465 is here only to assist in relaxing. If the reloc is not
3466 against the start of this section, then it's against an
3467 external symbol and we must deal with it ourselves. */
3468 if (input_section->output_section->vma + input_section->output_offset
3469 != relocation)
3470 {
3471 int disp = (relocation
3472 - input_section->output_section->vma
3473 - input_section->output_offset
3474 - rel->r_offset);
3475 int mask = 0;
3476 switch (r_type)
3477 {
3478 case R_SH_DIR8WPN:
3479 case R_SH_DIR8WPZ: mask = 1; break;
3480 case R_SH_DIR8WPL: mask = 3; break;
3481 default: mask = 0; break;
3482 }
3483 if (disp & mask)
3484 {
3485 ((*_bfd_error_handler)
3486 (_("%B: 0x%lx: fatal: unaligned branch target for relax-support relocation"),
3487 input_section->owner,
3488 (unsigned long) rel->r_offset));
3489 bfd_set_error (bfd_error_bad_value);
3490 return FALSE;
3491 }
3492 relocation -= 4;
3493 goto final_link_relocate;
3494 }
3495 r = bfd_reloc_ok;
3496 break;
3497
3498 default:
3499 #ifdef INCLUDE_SHMEDIA
3500 if (shmedia_prepare_reloc (info, input_bfd, input_section,
3501 contents, rel, &relocation))
3502 goto final_link_relocate;
3503 #endif
3504 bfd_set_error (bfd_error_bad_value);
3505 return FALSE;
3506
3507 case R_SH_DIR16:
3508 case R_SH_DIR8:
3509 case R_SH_DIR8U:
3510 case R_SH_DIR8S:
3511 case R_SH_DIR4U:
3512 goto final_link_relocate;
3513
3514 case R_SH_DIR8UL:
3515 case R_SH_DIR4UL:
3516 if (relocation & 3)
3517 {
3518 ((*_bfd_error_handler)
3519 (_("%B: 0x%lx: fatal: unaligned %s relocation 0x%lx"),
3520 input_section->owner,
3521 (unsigned long) rel->r_offset, howto->name,
3522 (unsigned long) relocation));
3523 bfd_set_error (bfd_error_bad_value);
3524 return FALSE;
3525 }
3526 goto final_link_relocate;
3527
3528 case R_SH_DIR8UW:
3529 case R_SH_DIR8SW:
3530 case R_SH_DIR4UW:
3531 if (relocation & 1)
3532 {
3533 ((*_bfd_error_handler)
3534 (_("%B: 0x%lx: fatal: unaligned %s relocation 0x%lx"),
3535 input_section->owner,
3536 (unsigned long) rel->r_offset, howto->name,
3537 (unsigned long) relocation));
3538 bfd_set_error (bfd_error_bad_value);
3539 return FALSE;
3540 }
3541 goto final_link_relocate;
3542
3543 case R_SH_PSHA:
3544 if ((signed int)relocation < -32
3545 || (signed int)relocation > 32)
3546 {
3547 ((*_bfd_error_handler)
3548 (_("%B: 0x%lx: fatal: R_SH_PSHA relocation %d not in range -32..32"),
3549 input_section->owner,
3550 (unsigned long) rel->r_offset,
3551 (unsigned long) relocation));
3552 bfd_set_error (bfd_error_bad_value);
3553 return FALSE;
3554 }
3555 goto final_link_relocate;
3556
3557 case R_SH_PSHL:
3558 if ((signed int)relocation < -16
3559 || (signed int)relocation > 16)
3560 {
3561 ((*_bfd_error_handler)
3562 (_("%B: 0x%lx: fatal: R_SH_PSHL relocation %d not in range -32..32"),
3563 input_section->owner,
3564 (unsigned long) rel->r_offset,
3565 (unsigned long) relocation));
3566 bfd_set_error (bfd_error_bad_value);
3567 return FALSE;
3568 }
3569 goto final_link_relocate;
3570
3571 case R_SH_DIR32:
3572 case R_SH_REL32:
3573 #ifdef INCLUDE_SHMEDIA
3574 case R_SH_IMM_LOW16_PCREL:
3575 case R_SH_IMM_MEDLOW16_PCREL:
3576 case R_SH_IMM_MEDHI16_PCREL:
3577 case R_SH_IMM_HI16_PCREL:
3578 #endif
3579 if (info->shared
3580 && (h == NULL
3581 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3582 || h->root.type != bfd_link_hash_undefweak)
3583 && r_symndx != 0
3584 && (input_section->flags & SEC_ALLOC) != 0
3585 && (r_type == R_SH_DIR32
3586 || !SYMBOL_CALLS_LOCAL (info, h)))
3587 {
3588 Elf_Internal_Rela outrel;
3589 bfd_byte *loc;
3590 bfd_boolean skip, relocate;
3591
3592 /* When generating a shared object, these relocations
3593 are copied into the output file to be resolved at run
3594 time. */
3595
3596 if (sreloc == NULL)
3597 {
3598 const char *name;
3599
3600 name = (bfd_elf_string_from_elf_section
3601 (input_bfd,
3602 elf_elfheader (input_bfd)->e_shstrndx,
3603 elf_section_data (input_section)->rel_hdr.sh_name));
3604 if (name == NULL)
3605 return FALSE;
3606
3607 BFD_ASSERT (CONST_STRNEQ (name, ".rela")
3608 && strcmp (bfd_get_section_name (input_bfd,
3609 input_section),
3610 name + 5) == 0);
3611
3612 sreloc = bfd_get_section_by_name (dynobj, name);
3613 BFD_ASSERT (sreloc != NULL);
3614 }
3615
3616 skip = FALSE;
3617 relocate = FALSE;
3618
3619 outrel.r_offset =
3620 _bfd_elf_section_offset (output_bfd, info, input_section,
3621 rel->r_offset);
3622 if (outrel.r_offset == (bfd_vma) -1)
3623 skip = TRUE;
3624 else if (outrel.r_offset == (bfd_vma) -2)
3625 skip = TRUE, relocate = TRUE;
3626 outrel.r_offset += (input_section->output_section->vma
3627 + input_section->output_offset);
3628
3629 if (skip)
3630 memset (&outrel, 0, sizeof outrel);
3631 else if (r_type == R_SH_REL32)
3632 {
3633 BFD_ASSERT (h != NULL && h->dynindx != -1);
3634 outrel.r_info = ELF32_R_INFO (h->dynindx, R_SH_REL32);
3635 outrel.r_addend
3636 = (howto->partial_inplace
3637 ? bfd_get_32 (input_bfd, contents + rel->r_offset)
3638 : addend);
3639 }
3640 #ifdef INCLUDE_SHMEDIA
3641 else if (r_type == R_SH_IMM_LOW16_PCREL
3642 || r_type == R_SH_IMM_MEDLOW16_PCREL
3643 || r_type == R_SH_IMM_MEDHI16_PCREL
3644 || r_type == R_SH_IMM_HI16_PCREL)
3645 {
3646 BFD_ASSERT (h != NULL && h->dynindx != -1);
3647 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
3648 outrel.r_addend = addend;
3649 }
3650 #endif
3651 else
3652 {
3653 /* h->dynindx may be -1 if this symbol was marked to
3654 become local. */
3655 if (h == NULL
3656 || ((info->symbolic || h->dynindx == -1)
3657 && h->def_regular))
3658 {
3659 relocate = howto->partial_inplace;
3660 outrel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
3661 }
3662 else
3663 {
3664 BFD_ASSERT (h->dynindx != -1);
3665 outrel.r_info = ELF32_R_INFO (h->dynindx, R_SH_DIR32);
3666 }
3667 outrel.r_addend = relocation;
3668 outrel.r_addend
3669 += (howto->partial_inplace
3670 ? bfd_get_32 (input_bfd, contents + rel->r_offset)
3671 : addend);
3672 }
3673
3674 loc = sreloc->contents;
3675 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3676 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3677
3678 /* If this reloc is against an external symbol, we do
3679 not want to fiddle with the addend. Otherwise, we
3680 need to include the symbol value so that it becomes
3681 an addend for the dynamic reloc. */
3682 if (! relocate)
3683 continue;
3684 }
3685 goto final_link_relocate;
3686
3687 case R_SH_GOTPLT32:
3688 #ifdef INCLUDE_SHMEDIA
3689 case R_SH_GOTPLT_LOW16:
3690 case R_SH_GOTPLT_MEDLOW16:
3691 case R_SH_GOTPLT_MEDHI16:
3692 case R_SH_GOTPLT_HI16:
3693 case R_SH_GOTPLT10BY4:
3694 case R_SH_GOTPLT10BY8:
3695 #endif
3696 /* Relocation is to the entry for this symbol in the
3697 procedure linkage table. */
3698
3699 if (h == NULL
3700 || h->forced_local
3701 || ! info->shared
3702 || info->symbolic
3703 || h->dynindx == -1
3704 || h->plt.offset == (bfd_vma) -1
3705 || h->got.offset != (bfd_vma) -1)
3706 goto force_got;
3707
3708 /* Relocation is to the entry for this symbol in the global
3709 offset table extension for the procedure linkage table. */
3710
3711 BFD_ASSERT (sgotplt != NULL);
3712 relocation = (sgotplt->output_offset
3713 + (get_plt_index (htab->plt_info, h->plt.offset)
3714 + 3) * 4);
3715
3716 #ifdef GOT_BIAS
3717 relocation -= GOT_BIAS;
3718 #endif
3719
3720 goto final_link_relocate;
3721
3722 force_got:
3723 case R_SH_GOT32:
3724 #ifdef INCLUDE_SHMEDIA
3725 case R_SH_GOT_LOW16:
3726 case R_SH_GOT_MEDLOW16:
3727 case R_SH_GOT_MEDHI16:
3728 case R_SH_GOT_HI16:
3729 case R_SH_GOT10BY4:
3730 case R_SH_GOT10BY8:
3731 #endif
3732 /* Relocation is to the entry for this symbol in the global
3733 offset table. */
3734
3735 BFD_ASSERT (sgot != NULL);
3736
3737 if (h != NULL)
3738 {
3739 bfd_boolean dyn;
3740
3741 off = h->got.offset;
3742 #ifdef INCLUDE_SHMEDIA
3743 if (seen_stt_datalabel)
3744 {
3745 struct elf_sh_link_hash_entry *hsh;
3746
3747 hsh = (struct elf_sh_link_hash_entry *)h;
3748 off = hsh->datalabel_got.offset;
3749 }
3750 #endif
3751 BFD_ASSERT (off != (bfd_vma) -1);
3752
3753 dyn = htab->root.dynamic_sections_created;
3754 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3755 || (info->shared
3756 && SYMBOL_REFERENCES_LOCAL (info, h))
3757 || (ELF_ST_VISIBILITY (h->other)
3758 && h->root.type == bfd_link_hash_undefweak))
3759 {
3760 /* This is actually a static link, or it is a
3761 -Bsymbolic link and the symbol is defined
3762 locally, or the symbol was forced to be local
3763 because of a version file. We must initialize
3764 this entry in the global offset table. Since the
3765 offset must always be a multiple of 4, we use the
3766 least significant bit to record whether we have
3767 initialized it already.
3768
3769 When doing a dynamic link, we create a .rela.got
3770 relocation entry to initialize the value. This
3771 is done in the finish_dynamic_symbol routine. */
3772 if ((off & 1) != 0)
3773 off &= ~1;
3774 else
3775 {
3776 bfd_put_32 (output_bfd, relocation,
3777 sgot->contents + off);
3778 #ifdef INCLUDE_SHMEDIA
3779 if (seen_stt_datalabel)
3780 {
3781 struct elf_sh_link_hash_entry *hsh;
3782
3783 hsh = (struct elf_sh_link_hash_entry *)h;
3784 hsh->datalabel_got.offset |= 1;
3785 }
3786 else
3787 #endif
3788 h->got.offset |= 1;
3789 }
3790 }
3791
3792 relocation = sgot->output_offset + off;
3793 }
3794 else
3795 {
3796 #ifdef INCLUDE_SHMEDIA
3797 if (rel->r_addend)
3798 {
3799 BFD_ASSERT (local_got_offsets != NULL
3800 && (local_got_offsets[symtab_hdr->sh_info
3801 + r_symndx]
3802 != (bfd_vma) -1));
3803
3804 off = local_got_offsets[symtab_hdr->sh_info
3805 + r_symndx];
3806 }
3807 else
3808 {
3809 #endif
3810 BFD_ASSERT (local_got_offsets != NULL
3811 && local_got_offsets[r_symndx] != (bfd_vma) -1);
3812
3813 off = local_got_offsets[r_symndx];
3814 #ifdef INCLUDE_SHMEDIA
3815 }
3816 #endif
3817
3818 /* The offset must always be a multiple of 4. We use
3819 the least significant bit to record whether we have
3820 already generated the necessary reloc. */
3821 if ((off & 1) != 0)
3822 off &= ~1;
3823 else
3824 {
3825 bfd_put_32 (output_bfd, relocation, sgot->contents + off);
3826
3827 if (info->shared)
3828 {
3829 Elf_Internal_Rela outrel;
3830 bfd_byte *loc;
3831
3832 if (srelgot == NULL)
3833 {
3834 srelgot = bfd_get_section_by_name (dynobj,
3835 ".rela.got");
3836 BFD_ASSERT (srelgot != NULL);
3837 }
3838
3839 outrel.r_offset = (sgot->output_section->vma
3840 + sgot->output_offset
3841 + off);
3842 outrel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
3843 outrel.r_addend = relocation;
3844 loc = srelgot->contents;
3845 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3846 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3847 }
3848
3849 #ifdef INCLUDE_SHMEDIA
3850 if (rel->r_addend)
3851 local_got_offsets[symtab_hdr->sh_info + r_symndx] |= 1;
3852 else
3853 #endif
3854 local_got_offsets[r_symndx] |= 1;
3855 }
3856
3857 relocation = sgot->output_offset + off;
3858 }
3859
3860 #ifdef GOT_BIAS
3861 relocation -= GOT_BIAS;
3862 #endif
3863
3864 goto final_link_relocate;
3865
3866 case R_SH_GOTOFF:
3867 #ifdef INCLUDE_SHMEDIA
3868 case R_SH_GOTOFF_LOW16:
3869 case R_SH_GOTOFF_MEDLOW16:
3870 case R_SH_GOTOFF_MEDHI16:
3871 case R_SH_GOTOFF_HI16:
3872 #endif
3873 /* Relocation is relative to the start of the global offset
3874 table. */
3875
3876 BFD_ASSERT (sgot != NULL);
3877
3878 /* Note that sgot->output_offset is not involved in this
3879 calculation. We always want the start of .got. If we
3880 defined _GLOBAL_OFFSET_TABLE in a different way, as is
3881 permitted by the ABI, we might have to change this
3882 calculation. */
3883 relocation -= sgot->output_section->vma;
3884
3885 #ifdef GOT_BIAS
3886 relocation -= GOT_BIAS;
3887 #endif
3888
3889 addend = rel->r_addend;
3890
3891 goto final_link_relocate;
3892
3893 case R_SH_GOTPC:
3894 #ifdef INCLUDE_SHMEDIA
3895 case R_SH_GOTPC_LOW16:
3896 case R_SH_GOTPC_MEDLOW16:
3897 case R_SH_GOTPC_MEDHI16:
3898 case R_SH_GOTPC_HI16:
3899 #endif
3900 /* Use global offset table as symbol value. */
3901
3902 BFD_ASSERT (sgot != NULL);
3903 relocation = sgot->output_section->vma;
3904
3905 #ifdef GOT_BIAS
3906 relocation += GOT_BIAS;
3907 #endif
3908
3909 addend = rel->r_addend;
3910
3911 goto final_link_relocate;
3912
3913 case R_SH_PLT32:
3914 #ifdef INCLUDE_SHMEDIA
3915 case R_SH_PLT_LOW16:
3916 case R_SH_PLT_MEDLOW16:
3917 case R_SH_PLT_MEDHI16:
3918 case R_SH_PLT_HI16:
3919 #endif
3920 /* Relocation is to the entry for this symbol in the
3921 procedure linkage table. */
3922
3923 /* Resolve a PLT reloc against a local symbol directly,
3924 without using the procedure linkage table. */
3925 if (h == NULL)
3926 goto final_link_relocate;
3927
3928 if (h->forced_local)
3929 goto final_link_relocate;
3930
3931 if (h->plt.offset == (bfd_vma) -1)
3932 {
3933 /* We didn't make a PLT entry for this symbol. This
3934 happens when statically linking PIC code, or when
3935 using -Bsymbolic. */
3936 goto final_link_relocate;
3937 }
3938
3939 BFD_ASSERT (splt != NULL);
3940 relocation = (splt->output_section->vma
3941 + splt->output_offset
3942 + h->plt.offset);
3943
3944 #ifdef INCLUDE_SHMEDIA
3945 relocation++;
3946 #endif
3947
3948 addend = rel->r_addend;
3949
3950 goto final_link_relocate;
3951
3952 case R_SH_LOOP_START:
3953 {
3954 static bfd_vma start, end;
3955
3956 start = (relocation + rel->r_addend
3957 - (sec->output_section->vma + sec->output_offset));
3958 r = sh_elf_reloc_loop (r_type, input_bfd, input_section, contents,
3959 rel->r_offset, sec, start, end);
3960 break;
3961
3962 case R_SH_LOOP_END:
3963 end = (relocation + rel->r_addend
3964 - (sec->output_section->vma + sec->output_offset));
3965 r = sh_elf_reloc_loop (r_type, input_bfd, input_section, contents,
3966 rel->r_offset, sec, start, end);
3967 break;
3968 }
3969
3970 case R_SH_TLS_GD_32:
3971 case R_SH_TLS_IE_32:
3972 r_type = sh_elf_optimized_tls_reloc (info, r_type, h == NULL);
3973 tls_type = GOT_UNKNOWN;
3974 if (h == NULL && local_got_offsets)
3975 tls_type = sh_elf_local_got_tls_type (input_bfd) [r_symndx];
3976 else if (h != NULL)
3977 {
3978 tls_type = sh_elf_hash_entry (h)->tls_type;
3979 if (! info->shared
3980 && (h->dynindx == -1
3981 || h->def_regular))
3982 r_type = R_SH_TLS_LE_32;
3983 }
3984
3985 if (r_type == R_SH_TLS_GD_32 && tls_type == GOT_TLS_IE)
3986 r_type = R_SH_TLS_IE_32;
3987
3988 if (r_type == R_SH_TLS_LE_32)
3989 {
3990 bfd_vma offset;
3991 unsigned short insn;
3992
3993 if (ELF32_R_TYPE (rel->r_info) == R_SH_TLS_GD_32)
3994 {
3995 /* GD->LE transition:
3996 mov.l 1f,r4; mova 2f,r0; mov.l 2f,r1; add r0,r1;
3997 jsr @r1; add r12,r4; bra 3f; nop; .align 2;
3998 1: .long x$TLSGD; 2: .long __tls_get_addr@PLT; 3:
3999 We change it into:
4000 mov.l 1f,r4; stc gbr,r0; add r4,r0; nop;
4001 nop; nop; ...
4002 1: .long x@TPOFF; 2: .long __tls_get_addr@PLT; 3:. */
4003
4004 offset = rel->r_offset;
4005 BFD_ASSERT (offset >= 16);
4006 /* Size of GD instructions is 16 or 18. */
4007 offset -= 16;
4008 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4009 if ((insn & 0xff00) == 0xc700)
4010 {
4011 BFD_ASSERT (offset >= 2);
4012 offset -= 2;
4013 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4014 }
4015
4016 BFD_ASSERT ((insn & 0xff00) == 0xd400);
4017 insn = bfd_get_16 (input_bfd, contents + offset + 2);
4018 BFD_ASSERT ((insn & 0xff00) == 0xc700);
4019 insn = bfd_get_16 (input_bfd, contents + offset + 4);
4020 BFD_ASSERT ((insn & 0xff00) == 0xd100);
4021 insn = bfd_get_16 (input_bfd, contents + offset + 6);
4022 BFD_ASSERT (insn == 0x310c);
4023 insn = bfd_get_16 (input_bfd, contents + offset + 8);
4024 BFD_ASSERT (insn == 0x410b);
4025 insn = bfd_get_16 (input_bfd, contents + offset + 10);
4026 BFD_ASSERT (insn == 0x34cc);
4027
4028 bfd_put_16 (output_bfd, 0x0012, contents + offset + 2);
4029 bfd_put_16 (output_bfd, 0x304c, contents + offset + 4);
4030 bfd_put_16 (output_bfd, 0x0009, contents + offset + 6);
4031 bfd_put_16 (output_bfd, 0x0009, contents + offset + 8);
4032 bfd_put_16 (output_bfd, 0x0009, contents + offset + 10);
4033 }
4034 else
4035 {
4036 int index;
4037
4038 /* IE->LE transition:
4039 mov.l 1f,r0; stc gbr,rN; mov.l @(r0,r12),rM;
4040 bra 2f; add ...; .align 2; 1: x@GOTTPOFF; 2:
4041 We change it into:
4042 mov.l .Ln,rM; stc gbr,rN; nop; ...;
4043 1: x@TPOFF; 2:. */
4044
4045 offset = rel->r_offset;
4046 BFD_ASSERT (offset >= 16);
4047 /* Size of IE instructions is 10 or 12. */
4048 offset -= 10;
4049 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4050 if ((insn & 0xf0ff) == 0x0012)
4051 {
4052 BFD_ASSERT (offset >= 2);
4053 offset -= 2;
4054 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4055 }
4056
4057 BFD_ASSERT ((insn & 0xff00) == 0xd000);
4058 index = insn & 0x00ff;
4059 insn = bfd_get_16 (input_bfd, contents + offset + 2);
4060 BFD_ASSERT ((insn & 0xf0ff) == 0x0012);
4061 insn = bfd_get_16 (input_bfd, contents + offset + 4);
4062 BFD_ASSERT ((insn & 0xf0ff) == 0x00ce);
4063 insn = 0xd000 | (insn & 0x0f00) | index;
4064 bfd_put_16 (output_bfd, insn, contents + offset + 0);
4065 bfd_put_16 (output_bfd, 0x0009, contents + offset + 4);
4066 }
4067
4068 bfd_put_32 (output_bfd, tpoff (info, relocation),
4069 contents + rel->r_offset);
4070 continue;
4071 }
4072
4073 sgot = htab->sgot;
4074 if (sgot == NULL)
4075 abort ();
4076
4077 if (h != NULL)
4078 off = h->got.offset;
4079 else
4080 {
4081 if (local_got_offsets == NULL)
4082 abort ();
4083
4084 off = local_got_offsets[r_symndx];
4085 }
4086
4087 /* Relocate R_SH_TLS_IE_32 directly when statically linking. */
4088 if (r_type == R_SH_TLS_IE_32
4089 && ! htab->root.dynamic_sections_created)
4090 {
4091 off &= ~1;
4092 bfd_put_32 (output_bfd, tpoff (info, relocation),
4093 sgot->contents + off);
4094 bfd_put_32 (output_bfd, sgot->output_offset + off,
4095 contents + rel->r_offset);
4096 continue;
4097 }
4098
4099 if ((off & 1) != 0)
4100 off &= ~1;
4101 else
4102 {
4103 Elf_Internal_Rela outrel;
4104 bfd_byte *loc;
4105 int dr_type, indx;
4106
4107 if (srelgot == NULL)
4108 {
4109 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
4110 BFD_ASSERT (srelgot != NULL);
4111 }
4112
4113 outrel.r_offset = (sgot->output_section->vma
4114 + sgot->output_offset + off);
4115
4116 if (h == NULL || h->dynindx == -1)
4117 indx = 0;
4118 else
4119 indx = h->dynindx;
4120
4121 dr_type = (r_type == R_SH_TLS_GD_32 ? R_SH_TLS_DTPMOD32 :
4122 R_SH_TLS_TPOFF32);
4123 if (dr_type == R_SH_TLS_TPOFF32 && indx == 0)
4124 outrel.r_addend = relocation - dtpoff_base (info);
4125 else
4126 outrel.r_addend = 0;
4127 outrel.r_info = ELF32_R_INFO (indx, dr_type);
4128 loc = srelgot->contents;
4129 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4130 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4131
4132 if (r_type == R_SH_TLS_GD_32)
4133 {
4134 if (indx == 0)
4135 {
4136 bfd_put_32 (output_bfd,
4137 relocation - dtpoff_base (info),
4138 sgot->contents + off + 4);
4139 }
4140 else
4141 {
4142 outrel.r_info = ELF32_R_INFO (indx,
4143 R_SH_TLS_DTPOFF32);
4144 outrel.r_offset += 4;
4145 outrel.r_addend = 0;
4146 srelgot->reloc_count++;
4147 loc += sizeof (Elf32_External_Rela);
4148 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4149 }
4150 }
4151
4152 if (h != NULL)
4153 h->got.offset |= 1;
4154 else
4155 local_got_offsets[r_symndx] |= 1;
4156 }
4157
4158 if (off >= (bfd_vma) -2)
4159 abort ();
4160
4161 if (r_type == (int) ELF32_R_TYPE (rel->r_info))
4162 relocation = sgot->output_offset + off;
4163 else
4164 {
4165 bfd_vma offset;
4166 unsigned short insn;
4167
4168 /* GD->IE transition:
4169 mov.l 1f,r4; mova 2f,r0; mov.l 2f,r1; add r0,r1;
4170 jsr @r1; add r12,r4; bra 3f; nop; .align 2;
4171 1: .long x$TLSGD; 2: .long __tls_get_addr@PLT; 3:
4172 We change it into:
4173 mov.l 1f,r0; stc gbr,r4; mov.l @(r0,r12),r0; add r4,r0;
4174 nop; nop; bra 3f; nop; .align 2;
4175 1: .long x@TPOFF; 2:...; 3:. */
4176
4177 offset = rel->r_offset;
4178 BFD_ASSERT (offset >= 16);
4179 /* Size of GD instructions is 16 or 18. */
4180 offset -= 16;
4181 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4182 if ((insn & 0xff00) == 0xc700)
4183 {
4184 BFD_ASSERT (offset >= 2);
4185 offset -= 2;
4186 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4187 }
4188
4189 BFD_ASSERT ((insn & 0xff00) == 0xd400);
4190
4191 /* Replace mov.l 1f,R4 with mov.l 1f,r0. */
4192 bfd_put_16 (output_bfd, insn & 0xf0ff, contents + offset);
4193
4194 insn = bfd_get_16 (input_bfd, contents + offset + 2);
4195 BFD_ASSERT ((insn & 0xff00) == 0xc700);
4196 insn = bfd_get_16 (input_bfd, contents + offset + 4);
4197 BFD_ASSERT ((insn & 0xff00) == 0xd100);
4198 insn = bfd_get_16 (input_bfd, contents + offset + 6);
4199 BFD_ASSERT (insn == 0x310c);
4200 insn = bfd_get_16 (input_bfd, contents + offset + 8);
4201 BFD_ASSERT (insn == 0x410b);
4202 insn = bfd_get_16 (input_bfd, contents + offset + 10);
4203 BFD_ASSERT (insn == 0x34cc);
4204
4205 bfd_put_16 (output_bfd, 0x0412, contents + offset + 2);
4206 bfd_put_16 (output_bfd, 0x00ce, contents + offset + 4);
4207 bfd_put_16 (output_bfd, 0x304c, contents + offset + 6);
4208 bfd_put_16 (output_bfd, 0x0009, contents + offset + 8);
4209 bfd_put_16 (output_bfd, 0x0009, contents + offset + 10);
4210
4211 bfd_put_32 (output_bfd, sgot->output_offset + off,
4212 contents + rel->r_offset);
4213
4214 continue;
4215 }
4216
4217 addend = rel->r_addend;
4218
4219 goto final_link_relocate;
4220
4221 case R_SH_TLS_LD_32:
4222 if (! info->shared)
4223 {
4224 bfd_vma offset;
4225 unsigned short insn;
4226
4227 /* LD->LE transition:
4228 mov.l 1f,r4; mova 2f,r0; mov.l 2f,r1; add r0,r1;
4229 jsr @r1; add r12,r4; bra 3f; nop; .align 2;
4230 1: .long x$TLSLD; 2: .long __tls_get_addr@PLT; 3:
4231 We change it into:
4232 stc gbr,r0; nop; nop; nop;
4233 nop; nop; bra 3f; ...; 3:. */
4234
4235 offset = rel->r_offset;
4236 BFD_ASSERT (offset >= 16);
4237 /* Size of LD instructions is 16 or 18. */
4238 offset -= 16;
4239 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4240 if ((insn & 0xff00) == 0xc700)
4241 {
4242 BFD_ASSERT (offset >= 2);
4243 offset -= 2;
4244 insn = bfd_get_16 (input_bfd, contents + offset + 0);
4245 }
4246
4247 BFD_ASSERT ((insn & 0xff00) == 0xd400);
4248 insn = bfd_get_16 (input_bfd, contents + offset + 2);
4249 BFD_ASSERT ((insn & 0xff00) == 0xc700);
4250 insn = bfd_get_16 (input_bfd, contents + offset + 4);
4251 BFD_ASSERT ((insn & 0xff00) == 0xd100);
4252 insn = bfd_get_16 (input_bfd, contents + offset + 6);
4253 BFD_ASSERT (insn == 0x310c);
4254 insn = bfd_get_16 (input_bfd, contents + offset + 8);
4255 BFD_ASSERT (insn == 0x410b);
4256 insn = bfd_get_16 (input_bfd, contents + offset + 10);
4257 BFD_ASSERT (insn == 0x34cc);
4258
4259 bfd_put_16 (output_bfd, 0x0012, contents + offset + 0);
4260 bfd_put_16 (output_bfd, 0x0009, contents + offset + 2);
4261 bfd_put_16 (output_bfd, 0x0009, contents + offset + 4);
4262 bfd_put_16 (output_bfd, 0x0009, contents + offset + 6);
4263 bfd_put_16 (output_bfd, 0x0009, contents + offset + 8);
4264 bfd_put_16 (output_bfd, 0x0009, contents + offset + 10);
4265
4266 continue;
4267 }
4268
4269 sgot = htab->sgot;
4270 if (sgot == NULL)
4271 abort ();
4272
4273 off = htab->tls_ldm_got.offset;
4274 if (off & 1)
4275 off &= ~1;
4276 else
4277 {
4278 Elf_Internal_Rela outrel;
4279 bfd_byte *loc;
4280
4281 srelgot = htab->srelgot;
4282 if (srelgot == NULL)
4283 abort ();
4284
4285 outrel.r_offset = (sgot->output_section->vma
4286 + sgot->output_offset + off);
4287 outrel.r_addend = 0;
4288 outrel.r_info = ELF32_R_INFO (0, R_SH_TLS_DTPMOD32);
4289 loc = srelgot->contents;
4290 loc += srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4291 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4292 htab->tls_ldm_got.offset |= 1;
4293 }
4294
4295 relocation = sgot->output_offset + off;
4296 addend = rel->r_addend;
4297
4298 goto final_link_relocate;
4299
4300 case R_SH_TLS_LDO_32:
4301 if (! info->shared)
4302 relocation = tpoff (info, relocation);
4303 else
4304 relocation -= dtpoff_base (info);
4305
4306 addend = rel->r_addend;
4307 goto final_link_relocate;
4308
4309 case R_SH_TLS_LE_32:
4310 {
4311 int indx;
4312 Elf_Internal_Rela outrel;
4313 bfd_byte *loc;
4314
4315 if (! info->shared)
4316 {
4317 relocation = tpoff (info, relocation);
4318 addend = rel->r_addend;
4319 goto final_link_relocate;
4320 }
4321
4322 if (sreloc == NULL)
4323 {
4324 const char *name;
4325
4326 name = (bfd_elf_string_from_elf_section
4327 (input_bfd,
4328 elf_elfheader (input_bfd)->e_shstrndx,
4329 elf_section_data (input_section)->rel_hdr.sh_name));
4330 if (name == NULL)
4331 return FALSE;
4332
4333 BFD_ASSERT (CONST_STRNEQ (name, ".rela")
4334 && strcmp (bfd_get_section_name (input_bfd,
4335 input_section),
4336 name + 5) == 0);
4337
4338 sreloc = bfd_get_section_by_name (dynobj, name);
4339 BFD_ASSERT (sreloc != NULL);
4340 }
4341
4342 if (h == NULL || h->dynindx == -1)
4343 indx = 0;
4344 else
4345 indx = h->dynindx;
4346
4347 outrel.r_offset = (input_section->output_section->vma
4348 + input_section->output_offset
4349 + rel->r_offset);
4350 outrel.r_info = ELF32_R_INFO (indx, R_SH_TLS_TPOFF32);
4351 if (indx == 0)
4352 outrel.r_addend = relocation - dtpoff_base (info);
4353 else
4354 outrel.r_addend = 0;
4355
4356 loc = sreloc->contents;
4357 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4358 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4359 continue;
4360 }
4361 }
4362
4363 relocation_done:
4364 if (r != bfd_reloc_ok)
4365 {
4366 switch (r)
4367 {
4368 default:
4369 case bfd_reloc_outofrange:
4370 abort ();
4371 case bfd_reloc_overflow:
4372 {
4373 const char *name;
4374
4375 if (h != NULL)
4376 name = NULL;
4377 else
4378 {
4379 name = (bfd_elf_string_from_elf_section
4380 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4381 if (name == NULL)
4382 return FALSE;
4383 if (*name == '\0')
4384 name = bfd_section_name (input_bfd, sec);
4385 }
4386 if (! ((*info->callbacks->reloc_overflow)
4387 (info, (h ? &h->root : NULL), name, howto->name,
4388 (bfd_vma) 0, input_bfd, input_section,
4389 rel->r_offset)))
4390 return FALSE;
4391 }
4392 break;
4393 }
4394 }
4395 }
4396
4397 return TRUE;
4398 }
4399
4400 /* This is a version of bfd_generic_get_relocated_section_contents
4401 which uses sh_elf_relocate_section. */
4402
4403 static bfd_byte *
4404 sh_elf_get_relocated_section_contents (bfd *output_bfd,
4405 struct bfd_link_info *link_info,
4406 struct bfd_link_order *link_order,
4407 bfd_byte *data,
4408 bfd_boolean relocatable,
4409 asymbol **symbols)
4410 {
4411 Elf_Internal_Shdr *symtab_hdr;
4412 asection *input_section = link_order->u.indirect.section;
4413 bfd *input_bfd = input_section->owner;
4414 asection **sections = NULL;
4415 Elf_Internal_Rela *internal_relocs = NULL;
4416 Elf_Internal_Sym *isymbuf = NULL;
4417
4418 /* We only need to handle the case of relaxing, or of having a
4419 particular set of section contents, specially. */
4420 if (relocatable
4421 || elf_section_data (input_section)->this_hdr.contents == NULL)
4422 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
4423 link_order, data,
4424 relocatable,
4425 symbols);
4426
4427 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4428
4429 memcpy (data, elf_section_data (input_section)->this_hdr.contents,
4430 (size_t) input_section->size);
4431
4432 if ((input_section->flags & SEC_RELOC) != 0
4433 && input_section->reloc_count > 0)
4434 {
4435 asection **secpp;
4436 Elf_Internal_Sym *isym, *isymend;
4437 bfd_size_type amt;
4438
4439 internal_relocs = (_bfd_elf_link_read_relocs
4440 (input_bfd, input_section, NULL,
4441 (Elf_Internal_Rela *) NULL, FALSE));
4442 if (internal_relocs == NULL)
4443 goto error_return;
4444
4445 if (symtab_hdr->sh_info != 0)
4446 {
4447 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4448 if (isymbuf == NULL)
4449 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4450 symtab_hdr->sh_info, 0,
4451 NULL, NULL, NULL);
4452 if (isymbuf == NULL)
4453 goto error_return;
4454 }
4455
4456 amt = symtab_hdr->sh_info;
4457 amt *= sizeof (asection *);
4458 sections = (asection **) bfd_malloc (amt);
4459 if (sections == NULL && amt != 0)
4460 goto error_return;
4461
4462 isymend = isymbuf + symtab_hdr->sh_info;
4463 for (isym = isymbuf, secpp = sections; isym < isymend; ++isym, ++secpp)
4464 {
4465 asection *isec;
4466
4467 if (isym->st_shndx == SHN_UNDEF)
4468 isec = bfd_und_section_ptr;
4469 else if (isym->st_shndx == SHN_ABS)
4470 isec = bfd_abs_section_ptr;
4471 else if (isym->st_shndx == SHN_COMMON)
4472 isec = bfd_com_section_ptr;
4473 else
4474 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
4475
4476 *secpp = isec;
4477 }
4478
4479 if (! sh_elf_relocate_section (output_bfd, link_info, input_bfd,
4480 input_section, data, internal_relocs,
4481 isymbuf, sections))
4482 goto error_return;
4483
4484 if (sections != NULL)
4485 free (sections);
4486 if (isymbuf != NULL
4487 && symtab_hdr->contents != (unsigned char *) isymbuf)
4488 free (isymbuf);
4489 if (elf_section_data (input_section)->relocs != internal_relocs)
4490 free (internal_relocs);
4491 }
4492
4493 return data;
4494
4495 error_return:
4496 if (sections != NULL)
4497 free (sections);
4498 if (isymbuf != NULL
4499 && symtab_hdr->contents != (unsigned char *) isymbuf)
4500 free (isymbuf);
4501 if (internal_relocs != NULL
4502 && elf_section_data (input_section)->relocs != internal_relocs)
4503 free (internal_relocs);
4504 return NULL;
4505 }
4506
4507 /* Return the base VMA address which should be subtracted from real addresses
4508 when resolving @dtpoff relocation.
4509 This is PT_TLS segment p_vaddr. */
4510
4511 static bfd_vma
4512 dtpoff_base (struct bfd_link_info *info)
4513 {
4514 /* If tls_sec is NULL, we should have signalled an error already. */
4515 if (elf_hash_table (info)->tls_sec == NULL)
4516 return 0;
4517 return elf_hash_table (info)->tls_sec->vma;
4518 }
4519
4520 /* Return the relocation value for R_SH_TLS_TPOFF32.. */
4521
4522 static bfd_vma
4523 tpoff (struct bfd_link_info *info, bfd_vma address)
4524 {
4525 /* If tls_sec is NULL, we should have signalled an error already. */
4526 if (elf_hash_table (info)->tls_sec == NULL)
4527 return 0;
4528 /* SH TLS ABI is variant I and static TLS block start just after tcbhead
4529 structure which has 2 pointer fields. */
4530 return (address - elf_hash_table (info)->tls_sec->vma
4531 + align_power ((bfd_vma) 8,
4532 elf_hash_table (info)->tls_sec->alignment_power));
4533 }
4534
4535 static asection *
4536 sh_elf_gc_mark_hook (asection *sec,
4537 struct bfd_link_info *info,
4538 Elf_Internal_Rela *rel,
4539 struct elf_link_hash_entry *h,
4540 Elf_Internal_Sym *sym)
4541 {
4542 if (h != NULL)
4543 switch (ELF32_R_TYPE (rel->r_info))
4544 {
4545 case R_SH_GNU_VTINHERIT:
4546 case R_SH_GNU_VTENTRY:
4547 return NULL;
4548 }
4549
4550 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
4551 }
4552
4553 /* Update the got entry reference counts for the section being removed. */
4554
4555 static bfd_boolean
4556 sh_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
4557 asection *sec, const Elf_Internal_Rela *relocs)
4558 {
4559 Elf_Internal_Shdr *symtab_hdr;
4560 struct elf_link_hash_entry **sym_hashes;
4561 bfd_signed_vma *local_got_refcounts;
4562 const Elf_Internal_Rela *rel, *relend;
4563
4564 elf_section_data (sec)->local_dynrel = NULL;
4565
4566 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4567 sym_hashes = elf_sym_hashes (abfd);
4568 local_got_refcounts = elf_local_got_refcounts (abfd);
4569
4570 relend = relocs + sec->reloc_count;
4571 for (rel = relocs; rel < relend; rel++)
4572 {
4573 unsigned long r_symndx;
4574 unsigned int r_type;
4575 struct elf_link_hash_entry *h = NULL;
4576 #ifdef INCLUDE_SHMEDIA
4577 int seen_stt_datalabel = 0;
4578 #endif
4579
4580 r_symndx = ELF32_R_SYM (rel->r_info);
4581 if (r_symndx >= symtab_hdr->sh_info)
4582 {
4583 struct elf_sh_link_hash_entry *eh;
4584 struct elf_sh_dyn_relocs **pp;
4585 struct elf_sh_dyn_relocs *p;
4586
4587 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4588 while (h->root.type == bfd_link_hash_indirect
4589 || h->root.type == bfd_link_hash_warning)
4590 {
4591 #ifdef INCLUDE_SHMEDIA
4592 seen_stt_datalabel |= h->type == STT_DATALABEL;
4593 #endif
4594 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4595 }
4596 eh = (struct elf_sh_link_hash_entry *) h;
4597 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
4598 if (p->sec == sec)
4599 {
4600 /* Everything must go for SEC. */
4601 *pp = p->next;
4602 break;
4603 }
4604 }
4605
4606 r_type = ELF32_R_TYPE (rel->r_info);
4607 switch (sh_elf_optimized_tls_reloc (info, r_type, h != NULL))
4608 {
4609 case R_SH_TLS_LD_32:
4610 if (sh_elf_hash_table (info)->tls_ldm_got.refcount > 0)
4611 sh_elf_hash_table (info)->tls_ldm_got.refcount -= 1;
4612 break;
4613
4614 case R_SH_GOT32:
4615 case R_SH_GOTOFF:
4616 case R_SH_GOTPC:
4617 #ifdef INCLUDE_SHMEDIA
4618 case R_SH_GOT_LOW16:
4619 case R_SH_GOT_MEDLOW16:
4620 case R_SH_GOT_MEDHI16:
4621 case R_SH_GOT_HI16:
4622 case R_SH_GOT10BY4:
4623 case R_SH_GOT10BY8:
4624 case R_SH_GOTOFF_LOW16:
4625 case R_SH_GOTOFF_MEDLOW16:
4626 case R_SH_GOTOFF_MEDHI16:
4627 case R_SH_GOTOFF_HI16:
4628 case R_SH_GOTPC_LOW16:
4629 case R_SH_GOTPC_MEDLOW16:
4630 case R_SH_GOTPC_MEDHI16:
4631 case R_SH_GOTPC_HI16:
4632 #endif
4633 case R_SH_TLS_GD_32:
4634 case R_SH_TLS_IE_32:
4635 if (h != NULL)
4636 {
4637 #ifdef INCLUDE_SHMEDIA
4638 if (seen_stt_datalabel)
4639 {
4640 struct elf_sh_link_hash_entry *eh;
4641 eh = (struct elf_sh_link_hash_entry *) h;
4642 if (eh->datalabel_got.refcount > 0)
4643 eh->datalabel_got.refcount -= 1;
4644 }
4645 else
4646 #endif
4647 if (h->got.refcount > 0)
4648 h->got.refcount -= 1;
4649 }
4650 else if (local_got_refcounts != NULL)
4651 {
4652 #ifdef INCLUDE_SHMEDIA
4653 if (rel->r_addend & 1)
4654 {
4655 if (local_got_refcounts[symtab_hdr->sh_info + r_symndx] > 0)
4656 local_got_refcounts[symtab_hdr->sh_info + r_symndx] -= 1;
4657 }
4658 else
4659 #endif
4660 if (local_got_refcounts[r_symndx] > 0)
4661 local_got_refcounts[r_symndx] -= 1;
4662 }
4663 break;
4664
4665 case R_SH_DIR32:
4666 case R_SH_REL32:
4667 if (info->shared)
4668 break;
4669 /* Fall thru */
4670
4671 case R_SH_PLT32:
4672 #ifdef INCLUDE_SHMEDIA
4673 case R_SH_PLT_LOW16:
4674 case R_SH_PLT_MEDLOW16:
4675 case R_SH_PLT_MEDHI16:
4676 case R_SH_PLT_HI16:
4677 #endif
4678 if (h != NULL)
4679 {
4680 if (h->plt.refcount > 0)
4681 h->plt.refcount -= 1;
4682 }
4683 break;
4684
4685 case R_SH_GOTPLT32:
4686 #ifdef INCLUDE_SHMEDIA
4687 case R_SH_GOTPLT_LOW16:
4688 case R_SH_GOTPLT_MEDLOW16:
4689 case R_SH_GOTPLT_MEDHI16:
4690 case R_SH_GOTPLT_HI16:
4691 case R_SH_GOTPLT10BY4:
4692 case R_SH_GOTPLT10BY8:
4693 #endif
4694 if (h != NULL)
4695 {
4696 struct elf_sh_link_hash_entry *eh;
4697 eh = (struct elf_sh_link_hash_entry *) h;
4698 if (eh->gotplt_refcount > 0)
4699 {
4700 eh->gotplt_refcount -= 1;
4701 if (h->plt.refcount > 0)
4702 h->plt.refcount -= 1;
4703 }
4704 #ifdef INCLUDE_SHMEDIA
4705 else if (seen_stt_datalabel)
4706 {
4707 if (eh->datalabel_got.refcount > 0)
4708 eh->datalabel_got.refcount -= 1;
4709 }
4710 #endif
4711 else if (h->got.refcount > 0)
4712 h->got.refcount -= 1;
4713 }
4714 else if (local_got_refcounts != NULL)
4715 {
4716 #ifdef INCLUDE_SHMEDIA
4717 if (rel->r_addend & 1)
4718 {
4719 if (local_got_refcounts[symtab_hdr->sh_info + r_symndx] > 0)
4720 local_got_refcounts[symtab_hdr->sh_info + r_symndx] -= 1;
4721 }
4722 else
4723 #endif
4724 if (local_got_refcounts[r_symndx] > 0)
4725 local_got_refcounts[r_symndx] -= 1;
4726 }
4727 break;
4728
4729 default:
4730 break;
4731 }
4732 }
4733
4734 return TRUE;
4735 }
4736
4737 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4738
4739 static void
4740 sh_elf_copy_indirect_symbol (struct bfd_link_info *info,
4741 struct elf_link_hash_entry *dir,
4742 struct elf_link_hash_entry *ind)
4743 {
4744 struct elf_sh_link_hash_entry *edir, *eind;
4745
4746 edir = (struct elf_sh_link_hash_entry *) dir;
4747 eind = (struct elf_sh_link_hash_entry *) ind;
4748
4749 if (eind->dyn_relocs != NULL)
4750 {
4751 if (edir->dyn_relocs != NULL)
4752 {
4753 struct elf_sh_dyn_relocs **pp;
4754 struct elf_sh_dyn_relocs *p;
4755
4756 /* Add reloc counts against the indirect sym to the direct sym
4757 list. Merge any entries against the same section. */
4758 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4759 {
4760 struct elf_sh_dyn_relocs *q;
4761
4762 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4763 if (q->sec == p->sec)
4764 {
4765 q->pc_count += p->pc_count;
4766 q->count += p->count;
4767 *pp = p->next;
4768 break;
4769 }
4770 if (q == NULL)
4771 pp = &p->next;
4772 }
4773 *pp = edir->dyn_relocs;
4774 }
4775
4776 edir->dyn_relocs = eind->dyn_relocs;
4777 eind->dyn_relocs = NULL;
4778 }
4779 edir->gotplt_refcount = eind->gotplt_refcount;
4780 eind->gotplt_refcount = 0;
4781 #ifdef INCLUDE_SHMEDIA
4782 edir->datalabel_got.refcount += eind->datalabel_got.refcount;
4783 eind->datalabel_got.refcount = 0;
4784 #endif
4785
4786 if (ind->root.type == bfd_link_hash_indirect
4787 && dir->got.refcount <= 0)
4788 {
4789 edir->tls_type = eind->tls_type;
4790 eind->tls_type = GOT_UNKNOWN;
4791 }
4792
4793 if (ind->root.type != bfd_link_hash_indirect
4794 && dir->dynamic_adjusted)
4795 {
4796 /* If called to transfer flags for a weakdef during processing
4797 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
4798 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4799 dir->ref_dynamic |= ind->ref_dynamic;
4800 dir->ref_regular |= ind->ref_regular;
4801 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
4802 dir->needs_plt |= ind->needs_plt;
4803 }
4804 else
4805 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4806 }
4807
4808 static int
4809 sh_elf_optimized_tls_reloc (struct bfd_link_info *info, int r_type,
4810 int is_local)
4811 {
4812 if (info->shared)
4813 return r_type;
4814
4815 switch (r_type)
4816 {
4817 case R_SH_TLS_GD_32:
4818 case R_SH_TLS_IE_32:
4819 if (is_local)
4820 return R_SH_TLS_LE_32;
4821 return R_SH_TLS_IE_32;
4822 case R_SH_TLS_LD_32:
4823 return R_SH_TLS_LE_32;
4824 }
4825
4826 return r_type;
4827 }
4828
4829 /* Look through the relocs for a section during the first phase.
4830 Since we don't do .gots or .plts, we just need to consider the
4831 virtual table relocs for gc. */
4832
4833 static bfd_boolean
4834 sh_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec,
4835 const Elf_Internal_Rela *relocs)
4836 {
4837 Elf_Internal_Shdr *symtab_hdr;
4838 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4839 struct elf_sh_link_hash_table *htab;
4840 const Elf_Internal_Rela *rel;
4841 const Elf_Internal_Rela *rel_end;
4842 bfd_vma *local_got_offsets;
4843 asection *sgot;
4844 asection *srelgot;
4845 asection *sreloc;
4846 unsigned int r_type;
4847 int tls_type, old_tls_type;
4848
4849 sgot = NULL;
4850 srelgot = NULL;
4851 sreloc = NULL;
4852
4853 if (info->relocatable)
4854 return TRUE;
4855
4856 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4857 sym_hashes = elf_sym_hashes (abfd);
4858 sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof (Elf32_External_Sym);
4859 if (!elf_bad_symtab (abfd))
4860 sym_hashes_end -= symtab_hdr->sh_info;
4861
4862 htab = sh_elf_hash_table (info);
4863 local_got_offsets = elf_local_got_offsets (abfd);
4864
4865 rel_end = relocs + sec->reloc_count;
4866 for (rel = relocs; rel < rel_end; rel++)
4867 {
4868 struct elf_link_hash_entry *h;
4869 unsigned long r_symndx;
4870 #ifdef INCLUDE_SHMEDIA
4871 int seen_stt_datalabel = 0;
4872 #endif
4873
4874 r_symndx = ELF32_R_SYM (rel->r_info);
4875 r_type = ELF32_R_TYPE (rel->r_info);
4876
4877 if (r_symndx < symtab_hdr->sh_info)
4878 h = NULL;
4879 else
4880 {
4881 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4882 while (h->root.type == bfd_link_hash_indirect
4883 || h->root.type == bfd_link_hash_warning)
4884 {
4885 #ifdef INCLUDE_SHMEDIA
4886 seen_stt_datalabel |= h->type == STT_DATALABEL;
4887 #endif
4888 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4889 }
4890 }
4891
4892 r_type = sh_elf_optimized_tls_reloc (info, r_type, h == NULL);
4893 if (! info->shared
4894 && r_type == R_SH_TLS_IE_32
4895 && h != NULL
4896 && h->root.type != bfd_link_hash_undefined
4897 && h->root.type != bfd_link_hash_undefweak
4898 && (h->dynindx == -1
4899 || h->def_regular))
4900 r_type = R_SH_TLS_LE_32;
4901
4902 /* Some relocs require a global offset table. */
4903 if (htab->sgot == NULL)
4904 {
4905 switch (r_type)
4906 {
4907 case R_SH_GOTPLT32:
4908 case R_SH_GOT32:
4909 case R_SH_GOTOFF:
4910 case R_SH_GOTPC:
4911 #ifdef INCLUDE_SHMEDIA
4912 case R_SH_GOTPLT_LOW16:
4913 case R_SH_GOTPLT_MEDLOW16:
4914 case R_SH_GOTPLT_MEDHI16:
4915 case R_SH_GOTPLT_HI16:
4916 case R_SH_GOTPLT10BY4:
4917 case R_SH_GOTPLT10BY8:
4918 case R_SH_GOT_LOW16:
4919 case R_SH_GOT_MEDLOW16:
4920 case R_SH_GOT_MEDHI16:
4921 case R_SH_GOT_HI16:
4922 case R_SH_GOT10BY4:
4923 case R_SH_GOT10BY8:
4924 case R_SH_GOTOFF_LOW16:
4925 case R_SH_GOTOFF_MEDLOW16:
4926 case R_SH_GOTOFF_MEDHI16:
4927 case R_SH_GOTOFF_HI16:
4928 case R_SH_GOTPC_LOW16:
4929 case R_SH_GOTPC_MEDLOW16:
4930 case R_SH_GOTPC_MEDHI16:
4931 case R_SH_GOTPC_HI16:
4932 #endif
4933 case R_SH_TLS_GD_32:
4934 case R_SH_TLS_LD_32:
4935 case R_SH_TLS_IE_32:
4936 if (htab->sgot == NULL)
4937 {
4938 if (htab->root.dynobj == NULL)
4939 htab->root.dynobj = abfd;
4940 if (!create_got_section (htab->root.dynobj, info))
4941 return FALSE;
4942 }
4943 break;
4944
4945 default:
4946 break;
4947 }
4948 }
4949
4950 switch (r_type)
4951 {
4952 /* This relocation describes the C++ object vtable hierarchy.
4953 Reconstruct it for later use during GC. */
4954 case R_SH_GNU_VTINHERIT:
4955 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4956 return FALSE;
4957 break;
4958
4959 /* This relocation describes which C++ vtable entries are actually
4960 used. Record for later use during GC. */
4961 case R_SH_GNU_VTENTRY:
4962 BFD_ASSERT (h != NULL);
4963 if (h != NULL
4964 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4965 return FALSE;
4966 break;
4967
4968 case R_SH_TLS_IE_32:
4969 if (info->shared)
4970 info->flags |= DF_STATIC_TLS;
4971
4972 /* FALLTHROUGH */
4973 force_got:
4974 case R_SH_TLS_GD_32:
4975 case R_SH_GOT32:
4976 #ifdef INCLUDE_SHMEDIA
4977 case R_SH_GOT_LOW16:
4978 case R_SH_GOT_MEDLOW16:
4979 case R_SH_GOT_MEDHI16:
4980 case R_SH_GOT_HI16:
4981 case R_SH_GOT10BY4:
4982 case R_SH_GOT10BY8:
4983 #endif
4984 switch (r_type)
4985 {
4986 default:
4987 tls_type = GOT_NORMAL;
4988 break;
4989 case R_SH_TLS_GD_32:
4990 tls_type = GOT_TLS_GD;
4991 break;
4992 case R_SH_TLS_IE_32:
4993 tls_type = GOT_TLS_IE;
4994 break;
4995 }
4996
4997 if (h != NULL)
4998 {
4999 #ifdef INCLUDE_SHMEDIA
5000 if (seen_stt_datalabel)
5001 {
5002 struct elf_sh_link_hash_entry *eh
5003 = (struct elf_sh_link_hash_entry *) h;
5004
5005 eh->datalabel_got.refcount += 1;
5006 }
5007 else
5008 #endif
5009 h->got.refcount += 1;
5010 old_tls_type = sh_elf_hash_entry (h)->tls_type;
5011 }
5012 else
5013 {
5014 bfd_signed_vma *local_got_refcounts;
5015
5016 /* This is a global offset table entry for a local
5017 symbol. */
5018 local_got_refcounts = elf_local_got_refcounts (abfd);
5019 if (local_got_refcounts == NULL)
5020 {
5021 bfd_size_type size;
5022
5023 size = symtab_hdr->sh_info;
5024 size *= sizeof (bfd_signed_vma);
5025 #ifdef INCLUDE_SHMEDIA
5026 /* Reserve space for both the datalabel and
5027 codelabel local GOT offsets. */
5028 size *= 2;
5029 #endif
5030 size += symtab_hdr->sh_info;
5031 local_got_refcounts = ((bfd_signed_vma *)
5032 bfd_zalloc (abfd, size));
5033 if (local_got_refcounts == NULL)
5034 return FALSE;
5035 elf_local_got_refcounts (abfd) = local_got_refcounts;
5036 #ifdef INCLUDE_SHMEDIA
5037 /* Take care of both the datalabel and codelabel local
5038 GOT offsets. */
5039 sh_elf_local_got_tls_type (abfd)
5040 = (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
5041 #else
5042 sh_elf_local_got_tls_type (abfd)
5043 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
5044 #endif
5045 }
5046 #ifdef INCLUDE_SHMEDIA
5047 if (rel->r_addend & 1)
5048 local_got_refcounts[symtab_hdr->sh_info + r_symndx] += 1;
5049 else
5050 #endif
5051 local_got_refcounts[r_symndx] += 1;
5052 old_tls_type = sh_elf_local_got_tls_type (abfd) [r_symndx];
5053 }
5054
5055 /* If a TLS symbol is accessed using IE at least once,
5056 there is no point to use dynamic model for it. */
5057 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
5058 && (old_tls_type != GOT_TLS_GD || tls_type != GOT_TLS_IE))
5059 {
5060 if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD)
5061 tls_type = GOT_TLS_IE;
5062 else
5063 {
5064 (*_bfd_error_handler)
5065 (_("%B: `%s' accessed both as normal and thread local symbol"),
5066 abfd, h->root.root.string);
5067 return FALSE;
5068 }
5069 }
5070
5071 if (old_tls_type != tls_type)
5072 {
5073 if (h != NULL)
5074 sh_elf_hash_entry (h)->tls_type = tls_type;
5075 else
5076 sh_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
5077 }
5078
5079 break;
5080
5081 case R_SH_TLS_LD_32:
5082 sh_elf_hash_table(info)->tls_ldm_got.refcount += 1;
5083 break;
5084
5085 case R_SH_GOTPLT32:
5086 #ifdef INCLUDE_SHMEDIA
5087 case R_SH_GOTPLT_LOW16:
5088 case R_SH_GOTPLT_MEDLOW16:
5089 case R_SH_GOTPLT_MEDHI16:
5090 case R_SH_GOTPLT_HI16:
5091 case R_SH_GOTPLT10BY4:
5092 case R_SH_GOTPLT10BY8:
5093 #endif
5094 /* If this is a local symbol, we resolve it directly without
5095 creating a procedure linkage table entry. */
5096
5097 if (h == NULL
5098 || h->forced_local
5099 || ! info->shared
5100 || info->symbolic
5101 || h->dynindx == -1)
5102 goto force_got;
5103
5104 h->needs_plt = 1;
5105 h->plt.refcount += 1;
5106 ((struct elf_sh_link_hash_entry *) h)->gotplt_refcount += 1;
5107
5108 break;
5109
5110 case R_SH_PLT32:
5111 #ifdef INCLUDE_SHMEDIA
5112 case R_SH_PLT_LOW16:
5113 case R_SH_PLT_MEDLOW16:
5114 case R_SH_PLT_MEDHI16:
5115 case R_SH_PLT_HI16:
5116 #endif
5117 /* This symbol requires a procedure linkage table entry. We
5118 actually build the entry in adjust_dynamic_symbol,
5119 because this might be a case of linking PIC code which is
5120 never referenced by a dynamic object, in which case we
5121 don't need to generate a procedure linkage table entry
5122 after all. */
5123
5124 /* If this is a local symbol, we resolve it directly without
5125 creating a procedure linkage table entry. */
5126 if (h == NULL)
5127 continue;
5128
5129 if (h->forced_local)
5130 break;
5131
5132 h->needs_plt = 1;
5133 h->plt.refcount += 1;
5134 break;
5135
5136 case R_SH_DIR32:
5137 case R_SH_REL32:
5138 #ifdef INCLUDE_SHMEDIA
5139 case R_SH_IMM_LOW16_PCREL:
5140 case R_SH_IMM_MEDLOW16_PCREL:
5141 case R_SH_IMM_MEDHI16_PCREL:
5142 case R_SH_IMM_HI16_PCREL:
5143 #endif
5144 if (h != NULL && ! info->shared)
5145 {
5146 h->non_got_ref = 1;
5147 h->plt.refcount += 1;
5148 }
5149
5150 /* If we are creating a shared library, and this is a reloc
5151 against a global symbol, or a non PC relative reloc
5152 against a local symbol, then we need to copy the reloc
5153 into the shared library. However, if we are linking with
5154 -Bsymbolic, we do not need to copy a reloc against a
5155 global symbol which is defined in an object we are
5156 including in the link (i.e., DEF_REGULAR is set). At
5157 this point we have not seen all the input files, so it is
5158 possible that DEF_REGULAR is not set now but will be set
5159 later (it is never cleared). We account for that
5160 possibility below by storing information in the
5161 dyn_relocs field of the hash table entry. A similar
5162 situation occurs when creating shared libraries and symbol
5163 visibility changes render the symbol local.
5164
5165 If on the other hand, we are creating an executable, we
5166 may need to keep relocations for symbols satisfied by a
5167 dynamic library if we manage to avoid copy relocs for the
5168 symbol. */
5169 if ((info->shared
5170 && (sec->flags & SEC_ALLOC) != 0
5171 && (r_type != R_SH_REL32
5172 || (h != NULL
5173 && (! info->symbolic
5174 || h->root.type == bfd_link_hash_defweak
5175 || !h->def_regular))))
5176 || (! info->shared
5177 && (sec->flags & SEC_ALLOC) != 0
5178 && h != NULL
5179 && (h->root.type == bfd_link_hash_defweak
5180 || !h->def_regular)))
5181 {
5182 struct elf_sh_dyn_relocs *p;
5183 struct elf_sh_dyn_relocs **head;
5184
5185 if (htab->root.dynobj == NULL)
5186 htab->root.dynobj = abfd;
5187
5188 /* When creating a shared object, we must copy these
5189 reloc types into the output file. We create a reloc
5190 section in dynobj and make room for this reloc. */
5191 if (sreloc == NULL)
5192 {
5193 const char *name;
5194
5195 name = (bfd_elf_string_from_elf_section
5196 (abfd,
5197 elf_elfheader (abfd)->e_shstrndx,
5198 elf_section_data (sec)->rel_hdr.sh_name));
5199 if (name == NULL)
5200 return FALSE;
5201
5202 BFD_ASSERT (CONST_STRNEQ (name, ".rela")
5203 && strcmp (bfd_get_section_name (abfd, sec),
5204 name + 5) == 0);
5205
5206 sreloc = bfd_get_section_by_name (htab->root.dynobj, name);
5207 if (sreloc == NULL)
5208 {
5209 flagword flags;
5210
5211 flags = (SEC_HAS_CONTENTS | SEC_READONLY
5212 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
5213 if ((sec->flags & SEC_ALLOC) != 0)
5214 flags |= SEC_ALLOC | SEC_LOAD;
5215 sreloc = bfd_make_section_with_flags (htab->root.dynobj,
5216 name,
5217 flags);
5218 if (sreloc == NULL
5219 || ! bfd_set_section_alignment (htab->root.dynobj,
5220 sreloc, 2))
5221 return FALSE;
5222 }
5223 elf_section_data (sec)->sreloc = sreloc;
5224 }
5225
5226 /* If this is a global symbol, we count the number of
5227 relocations we need for this symbol. */
5228 if (h != NULL)
5229 head = &((struct elf_sh_link_hash_entry *) h)->dyn_relocs;
5230 else
5231 {
5232 asection *s;
5233 void *vpp;
5234
5235 /* Track dynamic relocs needed for local syms too. */
5236 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
5237 sec, r_symndx);
5238 if (s == NULL)
5239 return FALSE;
5240
5241 vpp = &elf_section_data (s)->local_dynrel;
5242 head = (struct elf_sh_dyn_relocs **) vpp;
5243 }
5244
5245 p = *head;
5246 if (p == NULL || p->sec != sec)
5247 {
5248 bfd_size_type amt = sizeof (*p);
5249 p = bfd_alloc (htab->root.dynobj, amt);
5250 if (p == NULL)
5251 return FALSE;
5252 p->next = *head;
5253 *head = p;
5254 p->sec = sec;
5255 p->count = 0;
5256 p->pc_count = 0;
5257 }
5258
5259 p->count += 1;
5260 if (r_type == R_SH_REL32
5261 #ifdef INCLUDE_SHMEDIA
5262 || r_type == R_SH_IMM_LOW16_PCREL
5263 || r_type == R_SH_IMM_MEDLOW16_PCREL
5264 || r_type == R_SH_IMM_MEDHI16_PCREL
5265 || r_type == R_SH_IMM_HI16_PCREL
5266 #endif
5267 )
5268 p->pc_count += 1;
5269 }
5270
5271 break;
5272
5273 case R_SH_TLS_LE_32:
5274 if (info->shared)
5275 {
5276 (*_bfd_error_handler)
5277 (_("%B: TLS local exec code cannot be linked into shared objects"),
5278 abfd);
5279 return FALSE;
5280 }
5281
5282 break;
5283
5284 case R_SH_TLS_LDO_32:
5285 /* Nothing to do. */
5286 break;
5287
5288 default:
5289 break;
5290 }
5291 }
5292
5293 return TRUE;
5294 }
5295
5296 #ifndef sh_elf_set_mach_from_flags
5297 static unsigned int sh_ef_bfd_table[] = { EF_SH_BFD_TABLE };
5298
5299 static bfd_boolean
5300 sh_elf_set_mach_from_flags (bfd *abfd)
5301 {
5302 flagword flags = elf_elfheader (abfd)->e_flags & EF_SH_MACH_MASK;
5303
5304 if (flags >= sizeof(sh_ef_bfd_table))
5305 return FALSE;
5306
5307 if (sh_ef_bfd_table[flags] == 0)
5308 return FALSE;
5309
5310 bfd_default_set_arch_mach (abfd, bfd_arch_sh, sh_ef_bfd_table[flags]);
5311
5312 return TRUE;
5313 }
5314
5315
5316 /* Reverse table lookup for sh_ef_bfd_table[].
5317 Given a bfd MACH value from archures.c
5318 return the equivalent ELF flags from the table.
5319 Return -1 if no match is found. */
5320
5321 int
5322 sh_elf_get_flags_from_mach (unsigned long mach)
5323 {
5324 int i = ARRAY_SIZE (sh_ef_bfd_table) - 1;
5325
5326 for (; i>0; i--)
5327 if (sh_ef_bfd_table[i] == mach)
5328 return i;
5329
5330 /* shouldn't get here */
5331 BFD_FAIL();
5332
5333 return -1;
5334 }
5335 #endif /* not sh_elf_set_mach_from_flags */
5336
5337 #ifndef sh_elf_set_private_flags
5338 /* Function to keep SH specific file flags. */
5339
5340 static bfd_boolean
5341 sh_elf_set_private_flags (bfd *abfd, flagword flags)
5342 {
5343 BFD_ASSERT (! elf_flags_init (abfd)
5344 || elf_elfheader (abfd)->e_flags == flags);
5345
5346 elf_elfheader (abfd)->e_flags = flags;
5347 elf_flags_init (abfd) = TRUE;
5348 return sh_elf_set_mach_from_flags (abfd);
5349 }
5350 #endif /* not sh_elf_set_private_flags */
5351
5352 #ifndef sh_elf_copy_private_data
5353 /* Copy backend specific data from one object module to another */
5354
5355 static bfd_boolean
5356 sh_elf_copy_private_data (bfd * ibfd, bfd * obfd)
5357 {
5358 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5359 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5360 return TRUE;
5361
5362 /* Copy object attributes. */
5363 _bfd_elf_copy_obj_attributes (ibfd, obfd);
5364
5365 return sh_elf_set_private_flags (obfd, elf_elfheader (ibfd)->e_flags);
5366 }
5367 #endif /* not sh_elf_copy_private_data */
5368
5369 #ifndef sh_elf_merge_private_data
5370
5371 /* This function returns the ELF architecture number that
5372 corresponds to the given arch_sh* flags. */
5373
5374 int
5375 sh_find_elf_flags (unsigned int arch_set)
5376 {
5377 extern unsigned long sh_get_bfd_mach_from_arch_set (unsigned int);
5378 unsigned long bfd_mach = sh_get_bfd_mach_from_arch_set (arch_set);
5379
5380 return sh_elf_get_flags_from_mach (bfd_mach);
5381 }
5382
5383 /* This routine initialises the elf flags when required and
5384 calls sh_merge_bfd_arch() to check dsp/fpu compatibility. */
5385
5386 static bfd_boolean
5387 sh_elf_merge_private_data (bfd *ibfd, bfd *obfd)
5388 {
5389 extern bfd_boolean sh_merge_bfd_arch (bfd *, bfd *);
5390
5391 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5392 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5393 return TRUE;
5394
5395 if (! elf_flags_init (obfd))
5396 {
5397 /* This happens when ld starts out with a 'blank' output file. */
5398 elf_flags_init (obfd) = TRUE;
5399 elf_elfheader (obfd)->e_flags = EF_SH1;
5400 sh_elf_set_mach_from_flags (obfd);
5401 }
5402
5403 if (! sh_merge_bfd_arch (ibfd, obfd))
5404 {
5405 _bfd_error_handler ("%B: uses instructions which are incompatible "
5406 "with instructions used in previous modules",
5407 ibfd);
5408 bfd_set_error (bfd_error_bad_value);
5409 return FALSE;
5410 }
5411
5412 elf_elfheader (obfd)->e_flags =
5413 sh_elf_get_flags_from_mach (bfd_get_mach (obfd));
5414
5415 return TRUE;
5416 }
5417 #endif /* not sh_elf_merge_private_data */
5418
5419 /* Override the generic function because we need to store sh_elf_obj_tdata
5420 as the specific tdata. We set also the machine architecture from flags
5421 here. */
5422
5423 static bfd_boolean
5424 sh_elf_object_p (bfd *abfd)
5425 {
5426 return sh_elf_set_mach_from_flags (abfd);
5427 }
5428
5429 /* Finish up dynamic symbol handling. We set the contents of various
5430 dynamic sections here. */
5431
5432 static bfd_boolean
5433 sh_elf_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info,
5434 struct elf_link_hash_entry *h,
5435 Elf_Internal_Sym *sym)
5436 {
5437 struct elf_sh_link_hash_table *htab;
5438
5439 htab = sh_elf_hash_table (info);
5440
5441 if (h->plt.offset != (bfd_vma) -1)
5442 {
5443 asection *splt;
5444 asection *sgot;
5445 asection *srel;
5446
5447 bfd_vma plt_index;
5448 bfd_vma got_offset;
5449 Elf_Internal_Rela rel;
5450 bfd_byte *loc;
5451
5452 /* This symbol has an entry in the procedure linkage table. Set
5453 it up. */
5454
5455 BFD_ASSERT (h->dynindx != -1);
5456
5457 splt = htab->splt;
5458 sgot = htab->sgotplt;
5459 srel = htab->srelplt;
5460 BFD_ASSERT (splt != NULL && sgot != NULL && srel != NULL);
5461
5462 /* Get the index in the procedure linkage table which
5463 corresponds to this symbol. This is the index of this symbol
5464 in all the symbols for which we are making plt entries. The
5465 first entry in the procedure linkage table is reserved. */
5466 plt_index = get_plt_index (htab->plt_info, h->plt.offset);
5467
5468 /* Get the offset into the .got table of the entry that
5469 corresponds to this function. Each .got entry is 4 bytes.
5470 The first three are reserved. */
5471 got_offset = (plt_index + 3) * 4;
5472
5473 #ifdef GOT_BIAS
5474 if (info->shared)
5475 got_offset -= GOT_BIAS;
5476 #endif
5477
5478 /* Fill in the entry in the procedure linkage table. */
5479 memcpy (splt->contents + h->plt.offset,
5480 htab->plt_info->symbol_entry,
5481 htab->plt_info->symbol_entry_size);
5482
5483 if (info->shared)
5484 install_plt_field (output_bfd, FALSE, got_offset,
5485 (splt->contents
5486 + h->plt.offset
5487 + htab->plt_info->symbol_fields.got_entry));
5488 else
5489 {
5490 install_plt_field (output_bfd, FALSE,
5491 (sgot->output_section->vma
5492 + sgot->output_offset
5493 + got_offset),
5494 (splt->contents
5495 + h->plt.offset
5496 + htab->plt_info->symbol_fields.got_entry));
5497 if (htab->vxworks_p)
5498 {
5499 unsigned int reachable_plts, plts_per_4k;
5500 int distance;
5501
5502 /* Divide the PLT into groups. The first group contains
5503 REACHABLE_PLTS entries and the other groups contain
5504 PLTS_PER_4K entries. Entries in the first group can
5505 branch directly to .plt; those in later groups branch
5506 to the last element of the previous group. */
5507 /* ??? It would be better to create multiple copies of
5508 the common resolver stub. */
5509 reachable_plts = ((4096
5510 - htab->plt_info->plt0_entry_size
5511 - (htab->plt_info->symbol_fields.plt + 4))
5512 / htab->plt_info->symbol_entry_size) + 1;
5513 plts_per_4k = (4096 / htab->plt_info->symbol_entry_size);
5514 if (plt_index < reachable_plts)
5515 distance = -(h->plt.offset
5516 + htab->plt_info->symbol_fields.plt);
5517 else
5518 distance = -(((plt_index - reachable_plts) % plts_per_4k + 1)
5519 * htab->plt_info->symbol_entry_size);
5520
5521 /* Install the 'bra' with this offset. */
5522 bfd_put_16 (output_bfd,
5523 0xa000 | (0x0fff & ((distance - 4) / 2)),
5524 (splt->contents
5525 + h->plt.offset
5526 + htab->plt_info->symbol_fields.plt));
5527 }
5528 else
5529 install_plt_field (output_bfd, TRUE,
5530 splt->output_section->vma + splt->output_offset,
5531 (splt->contents
5532 + h->plt.offset
5533 + htab->plt_info->symbol_fields.plt));
5534 }
5535
5536 #ifdef GOT_BIAS
5537 if (info->shared)
5538 got_offset += GOT_BIAS;
5539 #endif
5540
5541 install_plt_field (output_bfd, FALSE,
5542 plt_index * sizeof (Elf32_External_Rela),
5543 (splt->contents
5544 + h->plt.offset
5545 + htab->plt_info->symbol_fields.reloc_offset));
5546
5547 /* Fill in the entry in the global offset table. */
5548 bfd_put_32 (output_bfd,
5549 (splt->output_section->vma
5550 + splt->output_offset
5551 + h->plt.offset
5552 + htab->plt_info->symbol_resolve_offset),
5553 sgot->contents + got_offset);
5554
5555 /* Fill in the entry in the .rela.plt section. */
5556 rel.r_offset = (sgot->output_section->vma
5557 + sgot->output_offset
5558 + got_offset);
5559 rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_JMP_SLOT);
5560 rel.r_addend = 0;
5561 #ifdef GOT_BIAS
5562 rel.r_addend = GOT_BIAS;
5563 #endif
5564 loc = srel->contents + plt_index * sizeof (Elf32_External_Rela);
5565 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
5566
5567 if (htab->vxworks_p && !info->shared)
5568 {
5569 /* Create the .rela.plt.unloaded relocations for this PLT entry.
5570 Begin by pointing LOC to the first such relocation. */
5571 loc = (htab->srelplt2->contents
5572 + (plt_index * 2 + 1) * sizeof (Elf32_External_Rela));
5573
5574 /* Create a .rela.plt.unloaded R_SH_DIR32 relocation
5575 for the PLT entry's pointer to the .got.plt entry. */
5576 rel.r_offset = (htab->splt->output_section->vma
5577 + htab->splt->output_offset
5578 + h->plt.offset
5579 + htab->plt_info->symbol_fields.got_entry);
5580 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_SH_DIR32);
5581 rel.r_addend = got_offset;
5582 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
5583 loc += sizeof (Elf32_External_Rela);
5584
5585 /* Create a .rela.plt.unloaded R_SH_DIR32 relocation for
5586 the .got.plt entry, which initially points to .plt. */
5587 rel.r_offset = (htab->sgotplt->output_section->vma
5588 + htab->sgotplt->output_offset
5589 + got_offset);
5590 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_SH_DIR32);
5591 rel.r_addend = 0;
5592 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
5593 }
5594
5595 if (!h->def_regular)
5596 {
5597 /* Mark the symbol as undefined, rather than as defined in
5598 the .plt section. Leave the value alone. */
5599 sym->st_shndx = SHN_UNDEF;
5600 }
5601 }
5602
5603 if (h->got.offset != (bfd_vma) -1
5604 && sh_elf_hash_entry (h)->tls_type != GOT_TLS_GD
5605 && sh_elf_hash_entry (h)->tls_type != GOT_TLS_IE)
5606 {
5607 asection *sgot;
5608 asection *srel;
5609 Elf_Internal_Rela rel;
5610 bfd_byte *loc;
5611
5612 /* This symbol has an entry in the global offset table. Set it
5613 up. */
5614
5615 sgot = htab->sgot;
5616 srel = htab->srelgot;
5617 BFD_ASSERT (sgot != NULL && srel != NULL);
5618
5619 rel.r_offset = (sgot->output_section->vma
5620 + sgot->output_offset
5621 + (h->got.offset &~ (bfd_vma) 1));
5622
5623 /* If this is a static link, or it is a -Bsymbolic link and the
5624 symbol is defined locally or was forced to be local because
5625 of a version file, we just want to emit a RELATIVE reloc.
5626 The entry in the global offset table will already have been
5627 initialized in the relocate_section function. */
5628 if (info->shared
5629 && SYMBOL_REFERENCES_LOCAL (info, h))
5630 {
5631 rel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
5632 rel.r_addend = (h->root.u.def.value
5633 + h->root.u.def.section->output_section->vma
5634 + h->root.u.def.section->output_offset);
5635 }
5636 else
5637 {
5638 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + h->got.offset);
5639 rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_GLOB_DAT);
5640 rel.r_addend = 0;
5641 }
5642
5643 loc = srel->contents;
5644 loc += srel->reloc_count++ * sizeof (Elf32_External_Rela);
5645 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
5646 }
5647
5648 #ifdef INCLUDE_SHMEDIA
5649 {
5650 struct elf_sh_link_hash_entry *eh;
5651
5652 eh = (struct elf_sh_link_hash_entry *) h;
5653 if (eh->datalabel_got.offset != (bfd_vma) -1)
5654 {
5655 asection *sgot;
5656 asection *srel;
5657 Elf_Internal_Rela rel;
5658 bfd_byte *loc;
5659
5660 /* This symbol has a datalabel entry in the global offset table.
5661 Set it up. */
5662
5663 sgot = htab->sgot;
5664 srel = htab->srelgot;
5665 BFD_ASSERT (sgot != NULL && srel != NULL);
5666
5667 rel.r_offset = (sgot->output_section->vma
5668 + sgot->output_offset
5669 + (eh->datalabel_got.offset &~ (bfd_vma) 1));
5670
5671 /* If this is a static link, or it is a -Bsymbolic link and the
5672 symbol is defined locally or was forced to be local because
5673 of a version file, we just want to emit a RELATIVE reloc.
5674 The entry in the global offset table will already have been
5675 initialized in the relocate_section function. */
5676 if (info->shared
5677 && SYMBOL_REFERENCES_LOCAL (info, h))
5678 {
5679 rel.r_info = ELF32_R_INFO (0, R_SH_RELATIVE);
5680 rel.r_addend = (h->root.u.def.value
5681 + h->root.u.def.section->output_section->vma
5682 + h->root.u.def.section->output_offset);
5683 }
5684 else
5685 {
5686 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents
5687 + eh->datalabel_got.offset);
5688 rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_GLOB_DAT);
5689 rel.r_addend = 0;
5690 }
5691
5692 loc = srel->contents;
5693 loc += srel->reloc_count++ * sizeof (Elf32_External_Rela);
5694 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
5695 }
5696 }
5697 #endif
5698
5699 if (h->needs_copy)
5700 {
5701 asection *s;
5702 Elf_Internal_Rela rel;
5703 bfd_byte *loc;
5704
5705 /* This symbol needs a copy reloc. Set it up. */
5706
5707 BFD_ASSERT (h->dynindx != -1
5708 && (h->root.type == bfd_link_hash_defined
5709 || h->root.type == bfd_link_hash_defweak));
5710
5711 s = bfd_get_section_by_name (h->root.u.def.section->owner,
5712 ".rela.bss");
5713 BFD_ASSERT (s != NULL);
5714
5715 rel.r_offset = (h->root.u.def.value
5716 + h->root.u.def.section->output_section->vma
5717 + h->root.u.def.section->output_offset);
5718 rel.r_info = ELF32_R_INFO (h->dynindx, R_SH_COPY);
5719 rel.r_addend = 0;
5720 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5721 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
5722 }
5723
5724 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
5725 _GLOBAL_OFFSET_TABLE_ is not absolute: it is relative to the
5726 ".got" section. */
5727 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
5728 || (!htab->vxworks_p && h == htab->root.hgot))
5729 sym->st_shndx = SHN_ABS;
5730
5731 return TRUE;
5732 }
5733
5734 /* Finish up the dynamic sections. */
5735
5736 static bfd_boolean
5737 sh_elf_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
5738 {
5739 struct elf_sh_link_hash_table *htab;
5740 asection *sgot;
5741 asection *sdyn;
5742
5743 htab = sh_elf_hash_table (info);
5744 sgot = htab->sgotplt;
5745 sdyn = bfd_get_section_by_name (htab->root.dynobj, ".dynamic");
5746
5747 if (htab->root.dynamic_sections_created)
5748 {
5749 asection *splt;
5750 Elf32_External_Dyn *dyncon, *dynconend;
5751
5752 BFD_ASSERT (sgot != NULL && sdyn != NULL);
5753
5754 dyncon = (Elf32_External_Dyn *) sdyn->contents;
5755 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
5756 for (; dyncon < dynconend; dyncon++)
5757 {
5758 Elf_Internal_Dyn dyn;
5759 asection *s;
5760 #ifdef INCLUDE_SHMEDIA
5761 const char *name;
5762 #endif
5763
5764 bfd_elf32_swap_dyn_in (htab->root.dynobj, dyncon, &dyn);
5765
5766 switch (dyn.d_tag)
5767 {
5768 default:
5769 break;
5770
5771 #ifdef INCLUDE_SHMEDIA
5772 case DT_INIT:
5773 name = info->init_function;
5774 goto get_sym;
5775
5776 case DT_FINI:
5777 name = info->fini_function;
5778 get_sym:
5779 if (dyn.d_un.d_val != 0)
5780 {
5781 struct elf_link_hash_entry *h;
5782
5783 h = elf_link_hash_lookup (&htab->root, name,
5784 FALSE, FALSE, TRUE);
5785 if (h != NULL && (h->other & STO_SH5_ISA32))
5786 {
5787 dyn.d_un.d_val |= 1;
5788 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5789 }
5790 }
5791 break;
5792 #endif
5793
5794 case DT_PLTGOT:
5795 s = htab->sgot->output_section;
5796 goto get_vma;
5797
5798 case DT_JMPREL:
5799 s = htab->srelplt->output_section;
5800 get_vma:
5801 BFD_ASSERT (s != NULL);
5802 dyn.d_un.d_ptr = s->vma;
5803 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5804 break;
5805
5806 case DT_PLTRELSZ:
5807 s = htab->srelplt->output_section;
5808 BFD_ASSERT (s != NULL);
5809 dyn.d_un.d_val = s->size;
5810 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5811 break;
5812
5813 case DT_RELASZ:
5814 /* My reading of the SVR4 ABI indicates that the
5815 procedure linkage table relocs (DT_JMPREL) should be
5816 included in the overall relocs (DT_RELA). This is
5817 what Solaris does. However, UnixWare can not handle
5818 that case. Therefore, we override the DT_RELASZ entry
5819 here to make it not include the JMPREL relocs. Since
5820 the linker script arranges for .rela.plt to follow all
5821 other relocation sections, we don't have to worry
5822 about changing the DT_RELA entry. */
5823 if (htab->srelplt != NULL)
5824 {
5825 s = htab->srelplt->output_section;
5826 dyn.d_un.d_val -= s->size;
5827 }
5828 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
5829 break;
5830 }
5831 }
5832
5833 /* Fill in the first entry in the procedure linkage table. */
5834 splt = htab->splt;
5835 if (splt && splt->size > 0 && htab->plt_info->plt0_entry)
5836 {
5837 unsigned int i;
5838
5839 memcpy (splt->contents,
5840 htab->plt_info->plt0_entry,
5841 htab->plt_info->plt0_entry_size);
5842 for (i = 0; i < ARRAY_SIZE (htab->plt_info->plt0_got_fields); i++)
5843 if (htab->plt_info->plt0_got_fields[i] != MINUS_ONE)
5844 install_plt_field (output_bfd, FALSE,
5845 (sgot->output_section->vma
5846 + sgot->output_offset
5847 + (i * 4)),
5848 (splt->contents
5849 + htab->plt_info->plt0_got_fields[i]));
5850
5851 if (htab->vxworks_p)
5852 {
5853 /* Finalize the .rela.plt.unloaded contents. */
5854 Elf_Internal_Rela rel;
5855 bfd_byte *loc;
5856
5857 /* Create a .rela.plt.unloaded R_SH_DIR32 relocation for the
5858 first PLT entry's pointer to _GLOBAL_OFFSET_TABLE_ + 8. */
5859 loc = htab->srelplt2->contents;
5860 rel.r_offset = (splt->output_section->vma
5861 + splt->output_offset
5862 + htab->plt_info->plt0_got_fields[2]);
5863 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_SH_DIR32);
5864 rel.r_addend = 8;
5865 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
5866 loc += sizeof (Elf32_External_Rela);
5867
5868 /* Fix up the remaining .rela.plt.unloaded relocations.
5869 They may have the wrong symbol index for _G_O_T_ or
5870 _P_L_T_ depending on the order in which symbols were
5871 output. */
5872 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
5873 {
5874 /* The PLT entry's pointer to the .got.plt slot. */
5875 bfd_elf32_swap_reloc_in (output_bfd, loc, &rel);
5876 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx,
5877 R_SH_DIR32);
5878 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
5879 loc += sizeof (Elf32_External_Rela);
5880
5881 /* The .got.plt slot's pointer to .plt. */
5882 bfd_elf32_swap_reloc_in (output_bfd, loc, &rel);
5883 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx,
5884 R_SH_DIR32);
5885 bfd_elf32_swap_reloc_out (output_bfd, &rel, loc);
5886 loc += sizeof (Elf32_External_Rela);
5887 }
5888 }
5889
5890 /* UnixWare sets the entsize of .plt to 4, although that doesn't
5891 really seem like the right value. */
5892 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
5893 }
5894 }
5895
5896 /* Fill in the first three entries in the global offset table. */
5897 if (sgot && sgot->size > 0)
5898 {
5899 if (sdyn == NULL)
5900 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
5901 else
5902 bfd_put_32 (output_bfd,
5903 sdyn->output_section->vma + sdyn->output_offset,
5904 sgot->contents);
5905 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
5906 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
5907
5908 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
5909 }
5910
5911 return TRUE;
5912 }
5913
5914 static enum elf_reloc_type_class
5915 sh_elf_reloc_type_class (const Elf_Internal_Rela *rela)
5916 {
5917 switch ((int) ELF32_R_TYPE (rela->r_info))
5918 {
5919 case R_SH_RELATIVE:
5920 return reloc_class_relative;
5921 case R_SH_JMP_SLOT:
5922 return reloc_class_plt;
5923 case R_SH_COPY:
5924 return reloc_class_copy;
5925 default:
5926 return reloc_class_normal;
5927 }
5928 }
5929
5930 #if !defined SH_TARGET_ALREADY_DEFINED
5931 /* Support for Linux core dump NOTE sections. */
5932
5933 static bfd_boolean
5934 elf32_shlin_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
5935 {
5936 int offset;
5937 unsigned int size;
5938
5939 switch (note->descsz)
5940 {
5941 default:
5942 return FALSE;
5943
5944 case 168: /* Linux/SH */
5945 /* pr_cursig */
5946 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
5947
5948 /* pr_pid */
5949 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
5950
5951 /* pr_reg */
5952 offset = 72;
5953 size = 92;
5954
5955 break;
5956 }
5957
5958 /* Make a ".reg/999" section. */
5959 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
5960 size, note->descpos + offset);
5961 }
5962
5963 static bfd_boolean
5964 elf32_shlin_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
5965 {
5966 switch (note->descsz)
5967 {
5968 default:
5969 return FALSE;
5970
5971 case 124: /* Linux/SH elf_prpsinfo */
5972 elf_tdata (abfd)->core_program
5973 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
5974 elf_tdata (abfd)->core_command
5975 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
5976 }
5977
5978 /* Note that for some reason, a spurious space is tacked
5979 onto the end of the args in some (at least one anyway)
5980 implementations, so strip it off if it exists. */
5981
5982 {
5983 char *command = elf_tdata (abfd)->core_command;
5984 int n = strlen (command);
5985
5986 if (0 < n && command[n - 1] == ' ')
5987 command[n - 1] = '\0';
5988 }
5989
5990 return TRUE;
5991 }
5992 #endif /* not SH_TARGET_ALREADY_DEFINED */
5993
5994
5995 /* Return address for Ith PLT stub in section PLT, for relocation REL
5996 or (bfd_vma) -1 if it should not be included. */
5997
5998 static bfd_vma
5999 sh_elf_plt_sym_val (bfd_vma i, const asection *plt,
6000 const arelent *rel ATTRIBUTE_UNUSED)
6001 {
6002 const struct elf_sh_plt_info *plt_info;
6003
6004 plt_info = get_plt_info (plt->owner, (plt->owner->flags & DYNAMIC) != 0);
6005 return plt->vma + get_plt_offset (plt_info, i);
6006 }
6007
6008 #if !defined SH_TARGET_ALREADY_DEFINED
6009 #define TARGET_BIG_SYM bfd_elf32_sh_vec
6010 #define TARGET_BIG_NAME "elf32-sh"
6011 #define TARGET_LITTLE_SYM bfd_elf32_shl_vec
6012 #define TARGET_LITTLE_NAME "elf32-shl"
6013 #endif
6014
6015 #define ELF_ARCH bfd_arch_sh
6016 #define ELF_MACHINE_CODE EM_SH
6017 #ifdef __QNXTARGET__
6018 #define ELF_MAXPAGESIZE 0x1000
6019 #else
6020 #define ELF_MAXPAGESIZE 0x80
6021 #endif
6022
6023 #define elf_symbol_leading_char '_'
6024
6025 #define bfd_elf32_bfd_reloc_type_lookup sh_elf_reloc_type_lookup
6026 #define bfd_elf32_bfd_reloc_name_lookup \
6027 sh_elf_reloc_name_lookup
6028 #define elf_info_to_howto sh_elf_info_to_howto
6029 #define bfd_elf32_bfd_relax_section sh_elf_relax_section
6030 #define elf_backend_relocate_section sh_elf_relocate_section
6031 #define bfd_elf32_bfd_get_relocated_section_contents \
6032 sh_elf_get_relocated_section_contents
6033 #define bfd_elf32_mkobject sh_elf_mkobject
6034 #define elf_backend_object_p sh_elf_object_p
6035 #define bfd_elf32_bfd_set_private_bfd_flags \
6036 sh_elf_set_private_flags
6037 #define bfd_elf32_bfd_copy_private_bfd_data \
6038 sh_elf_copy_private_data
6039 #define bfd_elf32_bfd_merge_private_bfd_data \
6040 sh_elf_merge_private_data
6041
6042 #define elf_backend_gc_mark_hook sh_elf_gc_mark_hook
6043 #define elf_backend_gc_sweep_hook sh_elf_gc_sweep_hook
6044 #define elf_backend_check_relocs sh_elf_check_relocs
6045 #define elf_backend_copy_indirect_symbol \
6046 sh_elf_copy_indirect_symbol
6047 #define elf_backend_create_dynamic_sections \
6048 sh_elf_create_dynamic_sections
6049 #define bfd_elf32_bfd_link_hash_table_create \
6050 sh_elf_link_hash_table_create
6051 #define elf_backend_adjust_dynamic_symbol \
6052 sh_elf_adjust_dynamic_symbol
6053 #define elf_backend_always_size_sections \
6054 sh_elf_always_size_sections
6055 #define elf_backend_size_dynamic_sections \
6056 sh_elf_size_dynamic_sections
6057 #define elf_backend_omit_section_dynsym \
6058 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
6059 #define elf_backend_finish_dynamic_symbol \
6060 sh_elf_finish_dynamic_symbol
6061 #define elf_backend_finish_dynamic_sections \
6062 sh_elf_finish_dynamic_sections
6063 #define elf_backend_reloc_type_class sh_elf_reloc_type_class
6064 #define elf_backend_plt_sym_val sh_elf_plt_sym_val
6065
6066 #define elf_backend_can_gc_sections 1
6067 #define elf_backend_can_refcount 1
6068 #define elf_backend_want_got_plt 1
6069 #define elf_backend_plt_readonly 1
6070 #define elf_backend_want_plt_sym 0
6071 #define elf_backend_got_header_size 12
6072
6073 #if !defined INCLUDE_SHMEDIA && !defined SH_TARGET_ALREADY_DEFINED
6074
6075 #include "elf32-target.h"
6076
6077 /* NetBSD support. */
6078 #undef TARGET_BIG_SYM
6079 #define TARGET_BIG_SYM bfd_elf32_shnbsd_vec
6080 #undef TARGET_BIG_NAME
6081 #define TARGET_BIG_NAME "elf32-sh-nbsd"
6082 #undef TARGET_LITTLE_SYM
6083 #define TARGET_LITTLE_SYM bfd_elf32_shlnbsd_vec
6084 #undef TARGET_LITTLE_NAME
6085 #define TARGET_LITTLE_NAME "elf32-shl-nbsd"
6086 #undef ELF_MAXPAGESIZE
6087 #define ELF_MAXPAGESIZE 0x10000
6088 #undef ELF_COMMONPAGESIZE
6089 #undef elf_symbol_leading_char
6090 #define elf_symbol_leading_char 0
6091 #undef elf32_bed
6092 #define elf32_bed elf32_sh_nbsd_bed
6093
6094 #include "elf32-target.h"
6095
6096
6097 /* Linux support. */
6098 #undef TARGET_BIG_SYM
6099 #define TARGET_BIG_SYM bfd_elf32_shblin_vec
6100 #undef TARGET_BIG_NAME
6101 #define TARGET_BIG_NAME "elf32-shbig-linux"
6102 #undef TARGET_LITTLE_SYM
6103 #define TARGET_LITTLE_SYM bfd_elf32_shlin_vec
6104 #undef TARGET_LITTLE_NAME
6105 #define TARGET_LITTLE_NAME "elf32-sh-linux"
6106 #undef ELF_COMMONPAGESIZE
6107 #define ELF_COMMONPAGESIZE 0x1000
6108
6109 #undef elf_backend_grok_prstatus
6110 #define elf_backend_grok_prstatus elf32_shlin_grok_prstatus
6111 #undef elf_backend_grok_psinfo
6112 #define elf_backend_grok_psinfo elf32_shlin_grok_psinfo
6113 #undef elf32_bed
6114 #define elf32_bed elf32_sh_lin_bed
6115
6116 #include "elf32-target.h"
6117
6118 #undef TARGET_BIG_SYM
6119 #define TARGET_BIG_SYM bfd_elf32_shvxworks_vec
6120 #undef TARGET_BIG_NAME
6121 #define TARGET_BIG_NAME "elf32-sh-vxworks"
6122 #undef TARGET_LITTLE_SYM
6123 #define TARGET_LITTLE_SYM bfd_elf32_shlvxworks_vec
6124 #undef TARGET_LITTLE_NAME
6125 #define TARGET_LITTLE_NAME "elf32-shl-vxworks"
6126 #undef elf32_bed
6127 #define elf32_bed elf32_sh_vxworks_bed
6128
6129 #undef elf_backend_want_plt_sym
6130 #define elf_backend_want_plt_sym 1
6131 #undef elf_symbol_leading_char
6132 #define elf_symbol_leading_char '_'
6133 #define elf_backend_want_got_underscore 1
6134 #undef elf_backend_grok_prstatus
6135 #undef elf_backend_grok_psinfo
6136 #undef elf_backend_add_symbol_hook
6137 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
6138 #undef elf_backend_link_output_symbol_hook
6139 #define elf_backend_link_output_symbol_hook \
6140 elf_vxworks_link_output_symbol_hook
6141 #undef elf_backend_emit_relocs
6142 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
6143 #undef elf_backend_final_write_processing
6144 #define elf_backend_final_write_processing \
6145 elf_vxworks_final_write_processing
6146 #undef ELF_MAXPAGESIZE
6147 #define ELF_MAXPAGESIZE 0x1000
6148 #undef ELF_COMMONPAGESIZE
6149
6150 #include "elf32-target.h"
6151
6152 #endif /* neither INCLUDE_SHMEDIA nor SH_TARGET_ALREADY_DEFINED */