]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-xtensa.c
* elf32-xtensa.c (reloc_bfd_fix_struct): Delete target_abfd field.
[thirdparty/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
33
34 #define XTENSA_NO_NOP_REMOVAL 0
35
36 /* Local helper functions. */
37
38 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
46
47 /* Local functions to handle Xtensa configurability. */
48
49 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52 static xtensa_opcode get_const16_opcode (void);
53 static xtensa_opcode get_l32r_opcode (void);
54 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55 static int get_relocation_opnd (xtensa_opcode, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
59 static bfd_boolean is_l32r_relocation
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61 static bfd_boolean is_alt_relocation (int);
62 static bfd_boolean is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte *, bfd_size_type, bfd_size_type);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte *, bfd_size_type, bfd_size_type);
74
75 /* Functions for link-time code simplifications. */
76
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte *, bfd_vma, bfd_vma, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
83
84 /* Access to internal relocations, section contents and symbols. */
85
86 static Elf_Internal_Rela *retrieve_internal_relocs
87 (bfd *, asection *, bfd_boolean);
88 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91 static void pin_contents (asection *, bfd_byte *);
92 static void release_contents (asection *, bfd_byte *);
93 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
94
95 /* Miscellaneous utility functions. */
96
97 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
99 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
100 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
101 (bfd *, unsigned long);
102 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105 static bfd_boolean xtensa_is_property_section (asection *);
106 static bfd_boolean xtensa_is_insntable_section (asection *);
107 static bfd_boolean xtensa_is_littable_section (asection *);
108 static bfd_boolean xtensa_is_proptable_section (asection *);
109 static int internal_reloc_compare (const void *, const void *);
110 static int internal_reloc_matches (const void *, const void *);
111 extern asection *xtensa_get_property_section (asection *, const char *);
112 static flagword xtensa_get_property_predef_flags (asection *);
113
114 /* Other functions called directly by the linker. */
115
116 typedef void (*deps_callback_t)
117 (asection *, bfd_vma, asection *, bfd_vma, void *);
118 extern bfd_boolean xtensa_callback_required_dependence
119 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
120
121
122 /* Globally visible flag for choosing size optimization of NOP removal
123 instead of branch-target-aware minimization for NOP removal.
124 When nonzero, narrow all instructions and remove all NOPs possible
125 around longcall expansions. */
126
127 int elf32xtensa_size_opt;
128
129
130 /* The "new_section_hook" is used to set up a per-section
131 "xtensa_relax_info" data structure with additional information used
132 during relaxation. */
133
134 typedef struct xtensa_relax_info_struct xtensa_relax_info;
135
136
137 /* The GNU tools do not easily allow extending interfaces to pass around
138 the pointer to the Xtensa ISA information, so instead we add a global
139 variable here (in BFD) that can be used by any of the tools that need
140 this information. */
141
142 xtensa_isa xtensa_default_isa;
143
144
145 /* When this is true, relocations may have been modified to refer to
146 symbols from other input files. The per-section list of "fix"
147 records needs to be checked when resolving relocations. */
148
149 static bfd_boolean relaxing_section = FALSE;
150
151 /* When this is true, during final links, literals that cannot be
152 coalesced and their relocations may be moved to other sections. */
153
154 int elf32xtensa_no_literal_movement = 1;
155
156 \f
157 static reloc_howto_type elf_howto_table[] =
158 {
159 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
160 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
161 FALSE, 0, 0, FALSE),
162 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
163 bfd_elf_xtensa_reloc, "R_XTENSA_32",
164 TRUE, 0xffffffff, 0xffffffff, FALSE),
165
166 /* Replace a 32-bit value with a value from the runtime linker (only
167 used by linker-generated stub functions). The r_addend value is
168 special: 1 means to substitute a pointer to the runtime linker's
169 dynamic resolver function; 2 means to substitute the link map for
170 the shared object. */
171 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
172 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
173
174 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
175 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
176 FALSE, 0, 0xffffffff, FALSE),
177 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
178 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
179 FALSE, 0, 0xffffffff, FALSE),
180 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
182 FALSE, 0, 0xffffffff, FALSE),
183 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
185 FALSE, 0, 0xffffffff, FALSE),
186
187 EMPTY_HOWTO (7),
188
189 /* Old relocations for backward compatibility. */
190 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
191 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
192 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
193 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
194 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
196
197 /* Assembly auto-expansion. */
198 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
199 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
200 /* Relax assembly auto-expansion. */
201 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
202 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
203
204 EMPTY_HOWTO (13),
205 EMPTY_HOWTO (14),
206
207 /* GNU extension to record C++ vtable hierarchy. */
208 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
209 NULL, "R_XTENSA_GNU_VTINHERIT",
210 FALSE, 0, 0, FALSE),
211 /* GNU extension to record C++ vtable member usage. */
212 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
213 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
214 FALSE, 0, 0, FALSE),
215
216 /* Relocations for supporting difference of symbols. */
217 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
218 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
219 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
220 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
221 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
222 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
223
224 /* General immediate operand relocations. */
225 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
226 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
227 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
228 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
229 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
230 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
231 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
232 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
233 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
235 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
237 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
239 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
241 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
243 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
245 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
247 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
249 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
251 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
253 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
255
256 /* "Alternate" relocations. The meaning of these is opcode-specific. */
257 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
259 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
261 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
263 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
265 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
267 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
269 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
271 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
273 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
275 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
277 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
279 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
281 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
283 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
285 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
287 };
288
289 #if DEBUG_GEN_RELOC
290 #define TRACE(str) \
291 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
292 #else
293 #define TRACE(str)
294 #endif
295
296 static reloc_howto_type *
297 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
298 bfd_reloc_code_real_type code)
299 {
300 switch (code)
301 {
302 case BFD_RELOC_NONE:
303 TRACE ("BFD_RELOC_NONE");
304 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
305
306 case BFD_RELOC_32:
307 TRACE ("BFD_RELOC_32");
308 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
309
310 case BFD_RELOC_XTENSA_DIFF8:
311 TRACE ("BFD_RELOC_XTENSA_DIFF8");
312 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
313
314 case BFD_RELOC_XTENSA_DIFF16:
315 TRACE ("BFD_RELOC_XTENSA_DIFF16");
316 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
317
318 case BFD_RELOC_XTENSA_DIFF32:
319 TRACE ("BFD_RELOC_XTENSA_DIFF32");
320 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
321
322 case BFD_RELOC_XTENSA_RTLD:
323 TRACE ("BFD_RELOC_XTENSA_RTLD");
324 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
325
326 case BFD_RELOC_XTENSA_GLOB_DAT:
327 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
328 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
329
330 case BFD_RELOC_XTENSA_JMP_SLOT:
331 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
332 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
333
334 case BFD_RELOC_XTENSA_RELATIVE:
335 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
336 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
337
338 case BFD_RELOC_XTENSA_PLT:
339 TRACE ("BFD_RELOC_XTENSA_PLT");
340 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
341
342 case BFD_RELOC_XTENSA_OP0:
343 TRACE ("BFD_RELOC_XTENSA_OP0");
344 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
345
346 case BFD_RELOC_XTENSA_OP1:
347 TRACE ("BFD_RELOC_XTENSA_OP1");
348 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
349
350 case BFD_RELOC_XTENSA_OP2:
351 TRACE ("BFD_RELOC_XTENSA_OP2");
352 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
353
354 case BFD_RELOC_XTENSA_ASM_EXPAND:
355 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
356 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
357
358 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
359 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
360 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
361
362 case BFD_RELOC_VTABLE_INHERIT:
363 TRACE ("BFD_RELOC_VTABLE_INHERIT");
364 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
365
366 case BFD_RELOC_VTABLE_ENTRY:
367 TRACE ("BFD_RELOC_VTABLE_ENTRY");
368 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
369
370 default:
371 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
372 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
373 {
374 unsigned n = (R_XTENSA_SLOT0_OP +
375 (code - BFD_RELOC_XTENSA_SLOT0_OP));
376 return &elf_howto_table[n];
377 }
378
379 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
380 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
381 {
382 unsigned n = (R_XTENSA_SLOT0_ALT +
383 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
384 return &elf_howto_table[n];
385 }
386
387 break;
388 }
389
390 TRACE ("Unknown");
391 return NULL;
392 }
393
394 static reloc_howto_type *
395 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
396 const char *r_name)
397 {
398 unsigned int i;
399
400 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
401 if (elf_howto_table[i].name != NULL
402 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
403 return &elf_howto_table[i];
404
405 return NULL;
406 }
407
408
409 /* Given an ELF "rela" relocation, find the corresponding howto and record
410 it in the BFD internal arelent representation of the relocation. */
411
412 static void
413 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
414 arelent *cache_ptr,
415 Elf_Internal_Rela *dst)
416 {
417 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
418
419 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
420 cache_ptr->howto = &elf_howto_table[r_type];
421 }
422
423 \f
424 /* Functions for the Xtensa ELF linker. */
425
426 /* The name of the dynamic interpreter. This is put in the .interp
427 section. */
428
429 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
430
431 /* The size in bytes of an entry in the procedure linkage table.
432 (This does _not_ include the space for the literals associated with
433 the PLT entry.) */
434
435 #define PLT_ENTRY_SIZE 16
436
437 /* For _really_ large PLTs, we may need to alternate between literals
438 and code to keep the literals within the 256K range of the L32R
439 instructions in the code. It's unlikely that anyone would ever need
440 such a big PLT, but an arbitrary limit on the PLT size would be bad.
441 Thus, we split the PLT into chunks. Since there's very little
442 overhead (2 extra literals) for each chunk, the chunk size is kept
443 small so that the code for handling multiple chunks get used and
444 tested regularly. With 254 entries, there are 1K of literals for
445 each chunk, and that seems like a nice round number. */
446
447 #define PLT_ENTRIES_PER_CHUNK 254
448
449 /* PLT entries are actually used as stub functions for lazy symbol
450 resolution. Once the symbol is resolved, the stub function is never
451 invoked. Note: the 32-byte frame size used here cannot be changed
452 without a corresponding change in the runtime linker. */
453
454 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
455 {
456 0x6c, 0x10, 0x04, /* entry sp, 32 */
457 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
458 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
459 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
460 0x0a, 0x80, 0x00, /* jx a8 */
461 0 /* unused */
462 };
463
464 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
465 {
466 0x36, 0x41, 0x00, /* entry sp, 32 */
467 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
468 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
469 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
470 0xa0, 0x08, 0x00, /* jx a8 */
471 0 /* unused */
472 };
473
474 /* Xtensa ELF linker hash table. */
475
476 struct elf_xtensa_link_hash_table
477 {
478 struct elf_link_hash_table elf;
479
480 /* Short-cuts to get to dynamic linker sections. */
481 asection *sgot;
482 asection *sgotplt;
483 asection *srelgot;
484 asection *splt;
485 asection *srelplt;
486 asection *sgotloc;
487 asection *spltlittbl;
488
489 /* Total count of PLT relocations seen during check_relocs.
490 The actual PLT code must be split into multiple sections and all
491 the sections have to be created before size_dynamic_sections,
492 where we figure out the exact number of PLT entries that will be
493 needed. It is OK if this count is an overestimate, e.g., some
494 relocations may be removed by GC. */
495 int plt_reloc_count;
496 };
497
498 /* Get the Xtensa ELF linker hash table from a link_info structure. */
499
500 #define elf_xtensa_hash_table(p) \
501 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
502
503 /* Create an Xtensa ELF linker hash table. */
504
505 static struct bfd_link_hash_table *
506 elf_xtensa_link_hash_table_create (bfd *abfd)
507 {
508 struct elf_xtensa_link_hash_table *ret;
509 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
510
511 ret = bfd_malloc (amt);
512 if (ret == NULL)
513 return NULL;
514
515 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
516 _bfd_elf_link_hash_newfunc,
517 sizeof (struct elf_link_hash_entry)))
518 {
519 free (ret);
520 return NULL;
521 }
522
523 ret->sgot = NULL;
524 ret->sgotplt = NULL;
525 ret->srelgot = NULL;
526 ret->splt = NULL;
527 ret->srelplt = NULL;
528 ret->sgotloc = NULL;
529 ret->spltlittbl = NULL;
530
531 ret->plt_reloc_count = 0;
532
533 return &ret->elf.root;
534 }
535
536 static inline bfd_boolean
537 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
538 struct bfd_link_info *info)
539 {
540 /* Check if we should do dynamic things to this symbol. The
541 "ignore_protected" argument need not be set, because Xtensa code
542 does not require special handling of STV_PROTECTED to make function
543 pointer comparisons work properly. The PLT addresses are never
544 used for function pointers. */
545
546 return _bfd_elf_dynamic_symbol_p (h, info, 0);
547 }
548
549 \f
550 static int
551 property_table_compare (const void *ap, const void *bp)
552 {
553 const property_table_entry *a = (const property_table_entry *) ap;
554 const property_table_entry *b = (const property_table_entry *) bp;
555
556 if (a->address == b->address)
557 {
558 if (a->size != b->size)
559 return (a->size - b->size);
560
561 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
562 return ((b->flags & XTENSA_PROP_ALIGN)
563 - (a->flags & XTENSA_PROP_ALIGN));
564
565 if ((a->flags & XTENSA_PROP_ALIGN)
566 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
567 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
568 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
569 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
570
571 if ((a->flags & XTENSA_PROP_UNREACHABLE)
572 != (b->flags & XTENSA_PROP_UNREACHABLE))
573 return ((b->flags & XTENSA_PROP_UNREACHABLE)
574 - (a->flags & XTENSA_PROP_UNREACHABLE));
575
576 return (a->flags - b->flags);
577 }
578
579 return (a->address - b->address);
580 }
581
582
583 static int
584 property_table_matches (const void *ap, const void *bp)
585 {
586 const property_table_entry *a = (const property_table_entry *) ap;
587 const property_table_entry *b = (const property_table_entry *) bp;
588
589 /* Check if one entry overlaps with the other. */
590 if ((b->address >= a->address && b->address < (a->address + a->size))
591 || (a->address >= b->address && a->address < (b->address + b->size)))
592 return 0;
593
594 return (a->address - b->address);
595 }
596
597
598 /* Get the literal table or property table entries for the given
599 section. Sets TABLE_P and returns the number of entries. On
600 error, returns a negative value. */
601
602 static int
603 xtensa_read_table_entries (bfd *abfd,
604 asection *section,
605 property_table_entry **table_p,
606 const char *sec_name,
607 bfd_boolean output_addr)
608 {
609 asection *table_section;
610 bfd_size_type table_size = 0;
611 bfd_byte *table_data;
612 property_table_entry *blocks;
613 int blk, block_count;
614 bfd_size_type num_records;
615 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
616 bfd_vma section_addr, off;
617 flagword predef_flags;
618 bfd_size_type table_entry_size, section_limit;
619
620 if (!section
621 || !(section->flags & SEC_ALLOC)
622 || (section->flags & SEC_DEBUGGING))
623 {
624 *table_p = NULL;
625 return 0;
626 }
627
628 table_section = xtensa_get_property_section (section, sec_name);
629 if (table_section)
630 table_size = table_section->size;
631
632 if (table_size == 0)
633 {
634 *table_p = NULL;
635 return 0;
636 }
637
638 predef_flags = xtensa_get_property_predef_flags (table_section);
639 table_entry_size = 12;
640 if (predef_flags)
641 table_entry_size -= 4;
642
643 num_records = table_size / table_entry_size;
644 table_data = retrieve_contents (abfd, table_section, TRUE);
645 blocks = (property_table_entry *)
646 bfd_malloc (num_records * sizeof (property_table_entry));
647 block_count = 0;
648
649 if (output_addr)
650 section_addr = section->output_section->vma + section->output_offset;
651 else
652 section_addr = section->vma;
653
654 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
655 if (internal_relocs && !table_section->reloc_done)
656 {
657 qsort (internal_relocs, table_section->reloc_count,
658 sizeof (Elf_Internal_Rela), internal_reloc_compare);
659 irel = internal_relocs;
660 }
661 else
662 irel = NULL;
663
664 section_limit = bfd_get_section_limit (abfd, section);
665 rel_end = internal_relocs + table_section->reloc_count;
666
667 for (off = 0; off < table_size; off += table_entry_size)
668 {
669 bfd_vma address = bfd_get_32 (abfd, table_data + off);
670
671 /* Skip any relocations before the current offset. This should help
672 avoid confusion caused by unexpected relocations for the preceding
673 table entry. */
674 while (irel &&
675 (irel->r_offset < off
676 || (irel->r_offset == off
677 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
678 {
679 irel += 1;
680 if (irel >= rel_end)
681 irel = 0;
682 }
683
684 if (irel && irel->r_offset == off)
685 {
686 bfd_vma sym_off;
687 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
688 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
689
690 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
691 continue;
692
693 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
694 BFD_ASSERT (sym_off == 0);
695 address += (section_addr + sym_off + irel->r_addend);
696 }
697 else
698 {
699 if (address < section_addr
700 || address >= section_addr + section_limit)
701 continue;
702 }
703
704 blocks[block_count].address = address;
705 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
706 if (predef_flags)
707 blocks[block_count].flags = predef_flags;
708 else
709 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
710 block_count++;
711 }
712
713 release_contents (table_section, table_data);
714 release_internal_relocs (table_section, internal_relocs);
715
716 if (block_count > 0)
717 {
718 /* Now sort them into address order for easy reference. */
719 qsort (blocks, block_count, sizeof (property_table_entry),
720 property_table_compare);
721
722 /* Check that the table contents are valid. Problems may occur,
723 for example, if an unrelocated object file is stripped. */
724 for (blk = 1; blk < block_count; blk++)
725 {
726 /* The only circumstance where two entries may legitimately
727 have the same address is when one of them is a zero-size
728 placeholder to mark a place where fill can be inserted.
729 The zero-size entry should come first. */
730 if (blocks[blk - 1].address == blocks[blk].address &&
731 blocks[blk - 1].size != 0)
732 {
733 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
734 abfd, section);
735 bfd_set_error (bfd_error_bad_value);
736 free (blocks);
737 return -1;
738 }
739 }
740 }
741
742 *table_p = blocks;
743 return block_count;
744 }
745
746
747 static property_table_entry *
748 elf_xtensa_find_property_entry (property_table_entry *property_table,
749 int property_table_size,
750 bfd_vma addr)
751 {
752 property_table_entry entry;
753 property_table_entry *rv;
754
755 if (property_table_size == 0)
756 return NULL;
757
758 entry.address = addr;
759 entry.size = 1;
760 entry.flags = 0;
761
762 rv = bsearch (&entry, property_table, property_table_size,
763 sizeof (property_table_entry), property_table_matches);
764 return rv;
765 }
766
767
768 static bfd_boolean
769 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
770 int lit_table_size,
771 bfd_vma addr)
772 {
773 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
774 return TRUE;
775
776 return FALSE;
777 }
778
779 \f
780 /* Look through the relocs for a section during the first phase, and
781 calculate needed space in the dynamic reloc sections. */
782
783 static bfd_boolean
784 elf_xtensa_check_relocs (bfd *abfd,
785 struct bfd_link_info *info,
786 asection *sec,
787 const Elf_Internal_Rela *relocs)
788 {
789 struct elf_xtensa_link_hash_table *htab;
790 Elf_Internal_Shdr *symtab_hdr;
791 struct elf_link_hash_entry **sym_hashes;
792 const Elf_Internal_Rela *rel;
793 const Elf_Internal_Rela *rel_end;
794
795 if (info->relocatable)
796 return TRUE;
797
798 htab = elf_xtensa_hash_table (info);
799 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
800 sym_hashes = elf_sym_hashes (abfd);
801
802 rel_end = relocs + sec->reloc_count;
803 for (rel = relocs; rel < rel_end; rel++)
804 {
805 unsigned int r_type;
806 unsigned long r_symndx;
807 struct elf_link_hash_entry *h;
808
809 r_symndx = ELF32_R_SYM (rel->r_info);
810 r_type = ELF32_R_TYPE (rel->r_info);
811
812 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
813 {
814 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
815 abfd, r_symndx);
816 return FALSE;
817 }
818
819 if (r_symndx < symtab_hdr->sh_info)
820 h = NULL;
821 else
822 {
823 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
824 while (h->root.type == bfd_link_hash_indirect
825 || h->root.type == bfd_link_hash_warning)
826 h = (struct elf_link_hash_entry *) h->root.u.i.link;
827 }
828
829 switch (r_type)
830 {
831 case R_XTENSA_32:
832 if (h == NULL)
833 goto local_literal;
834
835 if ((sec->flags & SEC_ALLOC) != 0)
836 {
837 if (h->got.refcount <= 0)
838 h->got.refcount = 1;
839 else
840 h->got.refcount += 1;
841 }
842 break;
843
844 case R_XTENSA_PLT:
845 /* If this relocation is against a local symbol, then it's
846 exactly the same as a normal local GOT entry. */
847 if (h == NULL)
848 goto local_literal;
849
850 if ((sec->flags & SEC_ALLOC) != 0)
851 {
852 if (h->plt.refcount <= 0)
853 {
854 h->needs_plt = 1;
855 h->plt.refcount = 1;
856 }
857 else
858 h->plt.refcount += 1;
859
860 /* Keep track of the total PLT relocation count even if we
861 don't yet know whether the dynamic sections will be
862 created. */
863 htab->plt_reloc_count += 1;
864
865 if (elf_hash_table (info)->dynamic_sections_created)
866 {
867 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
868 return FALSE;
869 }
870 }
871 break;
872
873 local_literal:
874 if ((sec->flags & SEC_ALLOC) != 0)
875 {
876 bfd_signed_vma *local_got_refcounts;
877
878 /* This is a global offset table entry for a local symbol. */
879 local_got_refcounts = elf_local_got_refcounts (abfd);
880 if (local_got_refcounts == NULL)
881 {
882 bfd_size_type size;
883
884 size = symtab_hdr->sh_info;
885 size *= sizeof (bfd_signed_vma);
886 local_got_refcounts =
887 (bfd_signed_vma *) bfd_zalloc (abfd, size);
888 if (local_got_refcounts == NULL)
889 return FALSE;
890 elf_local_got_refcounts (abfd) = local_got_refcounts;
891 }
892 local_got_refcounts[r_symndx] += 1;
893 }
894 break;
895
896 case R_XTENSA_OP0:
897 case R_XTENSA_OP1:
898 case R_XTENSA_OP2:
899 case R_XTENSA_SLOT0_OP:
900 case R_XTENSA_SLOT1_OP:
901 case R_XTENSA_SLOT2_OP:
902 case R_XTENSA_SLOT3_OP:
903 case R_XTENSA_SLOT4_OP:
904 case R_XTENSA_SLOT5_OP:
905 case R_XTENSA_SLOT6_OP:
906 case R_XTENSA_SLOT7_OP:
907 case R_XTENSA_SLOT8_OP:
908 case R_XTENSA_SLOT9_OP:
909 case R_XTENSA_SLOT10_OP:
910 case R_XTENSA_SLOT11_OP:
911 case R_XTENSA_SLOT12_OP:
912 case R_XTENSA_SLOT13_OP:
913 case R_XTENSA_SLOT14_OP:
914 case R_XTENSA_SLOT0_ALT:
915 case R_XTENSA_SLOT1_ALT:
916 case R_XTENSA_SLOT2_ALT:
917 case R_XTENSA_SLOT3_ALT:
918 case R_XTENSA_SLOT4_ALT:
919 case R_XTENSA_SLOT5_ALT:
920 case R_XTENSA_SLOT6_ALT:
921 case R_XTENSA_SLOT7_ALT:
922 case R_XTENSA_SLOT8_ALT:
923 case R_XTENSA_SLOT9_ALT:
924 case R_XTENSA_SLOT10_ALT:
925 case R_XTENSA_SLOT11_ALT:
926 case R_XTENSA_SLOT12_ALT:
927 case R_XTENSA_SLOT13_ALT:
928 case R_XTENSA_SLOT14_ALT:
929 case R_XTENSA_ASM_EXPAND:
930 case R_XTENSA_ASM_SIMPLIFY:
931 case R_XTENSA_DIFF8:
932 case R_XTENSA_DIFF16:
933 case R_XTENSA_DIFF32:
934 /* Nothing to do for these. */
935 break;
936
937 case R_XTENSA_GNU_VTINHERIT:
938 /* This relocation describes the C++ object vtable hierarchy.
939 Reconstruct it for later use during GC. */
940 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
941 return FALSE;
942 break;
943
944 case R_XTENSA_GNU_VTENTRY:
945 /* This relocation describes which C++ vtable entries are actually
946 used. Record for later use during GC. */
947 BFD_ASSERT (h != NULL);
948 if (h != NULL
949 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
950 return FALSE;
951 break;
952
953 default:
954 break;
955 }
956 }
957
958 return TRUE;
959 }
960
961
962 static void
963 elf_xtensa_make_sym_local (struct bfd_link_info *info,
964 struct elf_link_hash_entry *h)
965 {
966 if (info->shared)
967 {
968 if (h->plt.refcount > 0)
969 {
970 /* For shared objects, there's no need for PLT entries for local
971 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
972 if (h->got.refcount < 0)
973 h->got.refcount = 0;
974 h->got.refcount += h->plt.refcount;
975 h->plt.refcount = 0;
976 }
977 }
978 else
979 {
980 /* Don't need any dynamic relocations at all. */
981 h->plt.refcount = 0;
982 h->got.refcount = 0;
983 }
984 }
985
986
987 static void
988 elf_xtensa_hide_symbol (struct bfd_link_info *info,
989 struct elf_link_hash_entry *h,
990 bfd_boolean force_local)
991 {
992 /* For a shared link, move the plt refcount to the got refcount to leave
993 space for RELATIVE relocs. */
994 elf_xtensa_make_sym_local (info, h);
995
996 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
997 }
998
999
1000 /* Return the section that should be marked against GC for a given
1001 relocation. */
1002
1003 static asection *
1004 elf_xtensa_gc_mark_hook (asection *sec,
1005 struct bfd_link_info *info,
1006 Elf_Internal_Rela *rel,
1007 struct elf_link_hash_entry *h,
1008 Elf_Internal_Sym *sym)
1009 {
1010 /* Property sections are marked "KEEP" in the linker scripts, but they
1011 should not cause other sections to be marked. (This approach relies
1012 on elf_xtensa_discard_info to remove property table entries that
1013 describe discarded sections. Alternatively, it might be more
1014 efficient to avoid using "KEEP" in the linker scripts and instead use
1015 the gc_mark_extra_sections hook to mark only the property sections
1016 that describe marked sections. That alternative does not work well
1017 with the current property table sections, which do not correspond
1018 one-to-one with the sections they describe, but that should be fixed
1019 someday.) */
1020 if (xtensa_is_property_section (sec))
1021 return NULL;
1022
1023 if (h != NULL)
1024 switch (ELF32_R_TYPE (rel->r_info))
1025 {
1026 case R_XTENSA_GNU_VTINHERIT:
1027 case R_XTENSA_GNU_VTENTRY:
1028 return NULL;
1029 }
1030
1031 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1032 }
1033
1034
1035 /* Update the GOT & PLT entry reference counts
1036 for the section being removed. */
1037
1038 static bfd_boolean
1039 elf_xtensa_gc_sweep_hook (bfd *abfd,
1040 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1041 asection *sec,
1042 const Elf_Internal_Rela *relocs)
1043 {
1044 Elf_Internal_Shdr *symtab_hdr;
1045 struct elf_link_hash_entry **sym_hashes;
1046 bfd_signed_vma *local_got_refcounts;
1047 const Elf_Internal_Rela *rel, *relend;
1048
1049 if ((sec->flags & SEC_ALLOC) == 0)
1050 return TRUE;
1051
1052 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1053 sym_hashes = elf_sym_hashes (abfd);
1054 local_got_refcounts = elf_local_got_refcounts (abfd);
1055
1056 relend = relocs + sec->reloc_count;
1057 for (rel = relocs; rel < relend; rel++)
1058 {
1059 unsigned long r_symndx;
1060 unsigned int r_type;
1061 struct elf_link_hash_entry *h = NULL;
1062
1063 r_symndx = ELF32_R_SYM (rel->r_info);
1064 if (r_symndx >= symtab_hdr->sh_info)
1065 {
1066 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1067 while (h->root.type == bfd_link_hash_indirect
1068 || h->root.type == bfd_link_hash_warning)
1069 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1070 }
1071
1072 r_type = ELF32_R_TYPE (rel->r_info);
1073 switch (r_type)
1074 {
1075 case R_XTENSA_32:
1076 if (h == NULL)
1077 goto local_literal;
1078 if (h->got.refcount > 0)
1079 h->got.refcount--;
1080 break;
1081
1082 case R_XTENSA_PLT:
1083 if (h == NULL)
1084 goto local_literal;
1085 if (h->plt.refcount > 0)
1086 h->plt.refcount--;
1087 break;
1088
1089 local_literal:
1090 if (local_got_refcounts[r_symndx] > 0)
1091 local_got_refcounts[r_symndx] -= 1;
1092 break;
1093
1094 default:
1095 break;
1096 }
1097 }
1098
1099 return TRUE;
1100 }
1101
1102
1103 /* Create all the dynamic sections. */
1104
1105 static bfd_boolean
1106 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1107 {
1108 struct elf_xtensa_link_hash_table *htab;
1109 flagword flags, noalloc_flags;
1110
1111 htab = elf_xtensa_hash_table (info);
1112
1113 /* First do all the standard stuff. */
1114 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1115 return FALSE;
1116 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1117 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1118 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1119 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
1120
1121 /* Create any extra PLT sections in case check_relocs has already
1122 been called on all the non-dynamic input files. */
1123 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1124 return FALSE;
1125
1126 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1127 | SEC_LINKER_CREATED | SEC_READONLY);
1128 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1129
1130 /* Mark the ".got.plt" section READONLY. */
1131 if (htab->sgotplt == NULL
1132 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1133 return FALSE;
1134
1135 /* Create ".rela.got". */
1136 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1137 if (htab->srelgot == NULL
1138 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
1139 return FALSE;
1140
1141 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1142 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1143 if (htab->sgotloc == NULL
1144 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1145 return FALSE;
1146
1147 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1148 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1149 noalloc_flags);
1150 if (htab->spltlittbl == NULL
1151 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1152 return FALSE;
1153
1154 return TRUE;
1155 }
1156
1157
1158 static bfd_boolean
1159 add_extra_plt_sections (struct bfd_link_info *info, int count)
1160 {
1161 bfd *dynobj = elf_hash_table (info)->dynobj;
1162 int chunk;
1163
1164 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1165 ".got.plt" sections. */
1166 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1167 {
1168 char *sname;
1169 flagword flags;
1170 asection *s;
1171
1172 /* Stop when we find a section has already been created. */
1173 if (elf_xtensa_get_plt_section (info, chunk))
1174 break;
1175
1176 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1177 | SEC_LINKER_CREATED | SEC_READONLY);
1178
1179 sname = (char *) bfd_malloc (10);
1180 sprintf (sname, ".plt.%u", chunk);
1181 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
1182 if (s == NULL
1183 || ! bfd_set_section_alignment (dynobj, s, 2))
1184 return FALSE;
1185
1186 sname = (char *) bfd_malloc (14);
1187 sprintf (sname, ".got.plt.%u", chunk);
1188 s = bfd_make_section_with_flags (dynobj, sname, flags);
1189 if (s == NULL
1190 || ! bfd_set_section_alignment (dynobj, s, 2))
1191 return FALSE;
1192 }
1193
1194 return TRUE;
1195 }
1196
1197
1198 /* Adjust a symbol defined by a dynamic object and referenced by a
1199 regular object. The current definition is in some section of the
1200 dynamic object, but we're not including those sections. We have to
1201 change the definition to something the rest of the link can
1202 understand. */
1203
1204 static bfd_boolean
1205 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1206 struct elf_link_hash_entry *h)
1207 {
1208 /* If this is a weak symbol, and there is a real definition, the
1209 processor independent code will have arranged for us to see the
1210 real definition first, and we can just use the same value. */
1211 if (h->u.weakdef)
1212 {
1213 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1214 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1215 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1216 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1217 return TRUE;
1218 }
1219
1220 /* This is a reference to a symbol defined by a dynamic object. The
1221 reference must go through the GOT, so there's no need for COPY relocs,
1222 .dynbss, etc. */
1223
1224 return TRUE;
1225 }
1226
1227
1228 static bfd_boolean
1229 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1230 {
1231 struct bfd_link_info *info;
1232 struct elf_xtensa_link_hash_table *htab;
1233 bfd_boolean is_dynamic;
1234
1235 if (h->root.type == bfd_link_hash_indirect)
1236 return TRUE;
1237
1238 if (h->root.type == bfd_link_hash_warning)
1239 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1240
1241 info = (struct bfd_link_info *) arg;
1242 htab = elf_xtensa_hash_table (info);
1243
1244 is_dynamic = elf_xtensa_dynamic_symbol_p (h, info);
1245
1246 if (! is_dynamic)
1247 elf_xtensa_make_sym_local (info, h);
1248
1249 if (h->plt.refcount > 0)
1250 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1251
1252 if (h->got.refcount > 0)
1253 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1254
1255 return TRUE;
1256 }
1257
1258
1259 static void
1260 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1261 {
1262 struct elf_xtensa_link_hash_table *htab;
1263 bfd *i;
1264
1265 htab = elf_xtensa_hash_table (info);
1266
1267 for (i = info->input_bfds; i; i = i->link_next)
1268 {
1269 bfd_signed_vma *local_got_refcounts;
1270 bfd_size_type j, cnt;
1271 Elf_Internal_Shdr *symtab_hdr;
1272
1273 local_got_refcounts = elf_local_got_refcounts (i);
1274 if (!local_got_refcounts)
1275 continue;
1276
1277 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1278 cnt = symtab_hdr->sh_info;
1279
1280 for (j = 0; j < cnt; ++j)
1281 {
1282 if (local_got_refcounts[j] > 0)
1283 htab->srelgot->size += (local_got_refcounts[j]
1284 * sizeof (Elf32_External_Rela));
1285 }
1286 }
1287 }
1288
1289
1290 /* Set the sizes of the dynamic sections. */
1291
1292 static bfd_boolean
1293 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1294 struct bfd_link_info *info)
1295 {
1296 struct elf_xtensa_link_hash_table *htab;
1297 bfd *dynobj, *abfd;
1298 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1299 bfd_boolean relplt, relgot;
1300 int plt_entries, plt_chunks, chunk;
1301
1302 plt_entries = 0;
1303 plt_chunks = 0;
1304
1305 htab = elf_xtensa_hash_table (info);
1306 dynobj = elf_hash_table (info)->dynobj;
1307 if (dynobj == NULL)
1308 abort ();
1309 srelgot = htab->srelgot;
1310 srelplt = htab->srelplt;
1311
1312 if (elf_hash_table (info)->dynamic_sections_created)
1313 {
1314 BFD_ASSERT (htab->srelgot != NULL
1315 && htab->srelplt != NULL
1316 && htab->sgot != NULL
1317 && htab->spltlittbl != NULL
1318 && htab->sgotloc != NULL);
1319
1320 /* Set the contents of the .interp section to the interpreter. */
1321 if (info->executable)
1322 {
1323 s = bfd_get_section_by_name (dynobj, ".interp");
1324 if (s == NULL)
1325 abort ();
1326 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1327 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1328 }
1329
1330 /* Allocate room for one word in ".got". */
1331 htab->sgot->size = 4;
1332
1333 /* Allocate space in ".rela.got" for literals that reference global
1334 symbols and space in ".rela.plt" for literals that have PLT
1335 entries. */
1336 elf_link_hash_traverse (elf_hash_table (info),
1337 elf_xtensa_allocate_dynrelocs,
1338 (void *) info);
1339
1340 /* If we are generating a shared object, we also need space in
1341 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1342 reference local symbols. */
1343 if (info->shared)
1344 elf_xtensa_allocate_local_got_size (info);
1345
1346 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1347 each PLT entry, we need the PLT code plus a 4-byte literal.
1348 For each chunk of ".plt", we also need two more 4-byte
1349 literals, two corresponding entries in ".rela.got", and an
1350 8-byte entry in ".xt.lit.plt". */
1351 spltlittbl = htab->spltlittbl;
1352 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1353 plt_chunks =
1354 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1355
1356 /* Iterate over all the PLT chunks, including any extra sections
1357 created earlier because the initial count of PLT relocations
1358 was an overestimate. */
1359 for (chunk = 0;
1360 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1361 chunk++)
1362 {
1363 int chunk_entries;
1364
1365 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1366 BFD_ASSERT (sgotplt != NULL);
1367
1368 if (chunk < plt_chunks - 1)
1369 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1370 else if (chunk == plt_chunks - 1)
1371 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1372 else
1373 chunk_entries = 0;
1374
1375 if (chunk_entries != 0)
1376 {
1377 sgotplt->size = 4 * (chunk_entries + 2);
1378 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1379 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1380 spltlittbl->size += 8;
1381 }
1382 else
1383 {
1384 sgotplt->size = 0;
1385 splt->size = 0;
1386 }
1387 }
1388
1389 /* Allocate space in ".got.loc" to match the total size of all the
1390 literal tables. */
1391 sgotloc = htab->sgotloc;
1392 sgotloc->size = spltlittbl->size;
1393 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1394 {
1395 if (abfd->flags & DYNAMIC)
1396 continue;
1397 for (s = abfd->sections; s != NULL; s = s->next)
1398 {
1399 if (! elf_discarded_section (s)
1400 && xtensa_is_littable_section (s)
1401 && s != spltlittbl)
1402 sgotloc->size += s->size;
1403 }
1404 }
1405 }
1406
1407 /* Allocate memory for dynamic sections. */
1408 relplt = FALSE;
1409 relgot = FALSE;
1410 for (s = dynobj->sections; s != NULL; s = s->next)
1411 {
1412 const char *name;
1413
1414 if ((s->flags & SEC_LINKER_CREATED) == 0)
1415 continue;
1416
1417 /* It's OK to base decisions on the section name, because none
1418 of the dynobj section names depend upon the input files. */
1419 name = bfd_get_section_name (dynobj, s);
1420
1421 if (CONST_STRNEQ (name, ".rela"))
1422 {
1423 if (s->size != 0)
1424 {
1425 if (strcmp (name, ".rela.plt") == 0)
1426 relplt = TRUE;
1427 else if (strcmp (name, ".rela.got") == 0)
1428 relgot = TRUE;
1429
1430 /* We use the reloc_count field as a counter if we need
1431 to copy relocs into the output file. */
1432 s->reloc_count = 0;
1433 }
1434 }
1435 else if (! CONST_STRNEQ (name, ".plt.")
1436 && ! CONST_STRNEQ (name, ".got.plt.")
1437 && strcmp (name, ".got") != 0
1438 && strcmp (name, ".plt") != 0
1439 && strcmp (name, ".got.plt") != 0
1440 && strcmp (name, ".xt.lit.plt") != 0
1441 && strcmp (name, ".got.loc") != 0)
1442 {
1443 /* It's not one of our sections, so don't allocate space. */
1444 continue;
1445 }
1446
1447 if (s->size == 0)
1448 {
1449 /* If we don't need this section, strip it from the output
1450 file. We must create the ".plt*" and ".got.plt*"
1451 sections in create_dynamic_sections and/or check_relocs
1452 based on a conservative estimate of the PLT relocation
1453 count, because the sections must be created before the
1454 linker maps input sections to output sections. The
1455 linker does that before size_dynamic_sections, where we
1456 compute the exact size of the PLT, so there may be more
1457 of these sections than are actually needed. */
1458 s->flags |= SEC_EXCLUDE;
1459 }
1460 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1461 {
1462 /* Allocate memory for the section contents. */
1463 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1464 if (s->contents == NULL)
1465 return FALSE;
1466 }
1467 }
1468
1469 if (elf_hash_table (info)->dynamic_sections_created)
1470 {
1471 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1472 known until finish_dynamic_sections, but we need to get the relocs
1473 in place before they are sorted. */
1474 for (chunk = 0; chunk < plt_chunks; chunk++)
1475 {
1476 Elf_Internal_Rela irela;
1477 bfd_byte *loc;
1478
1479 irela.r_offset = 0;
1480 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1481 irela.r_addend = 0;
1482
1483 loc = (srelgot->contents
1484 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1485 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1486 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1487 loc + sizeof (Elf32_External_Rela));
1488 srelgot->reloc_count += 2;
1489 }
1490
1491 /* Add some entries to the .dynamic section. We fill in the
1492 values later, in elf_xtensa_finish_dynamic_sections, but we
1493 must add the entries now so that we get the correct size for
1494 the .dynamic section. The DT_DEBUG entry is filled in by the
1495 dynamic linker and used by the debugger. */
1496 #define add_dynamic_entry(TAG, VAL) \
1497 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1498
1499 if (info->executable)
1500 {
1501 if (!add_dynamic_entry (DT_DEBUG, 0))
1502 return FALSE;
1503 }
1504
1505 if (relplt)
1506 {
1507 if (!add_dynamic_entry (DT_PLTGOT, 0)
1508 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1509 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1510 || !add_dynamic_entry (DT_JMPREL, 0))
1511 return FALSE;
1512 }
1513
1514 if (relgot)
1515 {
1516 if (!add_dynamic_entry (DT_RELA, 0)
1517 || !add_dynamic_entry (DT_RELASZ, 0)
1518 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1519 return FALSE;
1520 }
1521
1522 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1523 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1524 return FALSE;
1525 }
1526 #undef add_dynamic_entry
1527
1528 return TRUE;
1529 }
1530
1531 \f
1532 /* Perform the specified relocation. The instruction at (contents + address)
1533 is modified to set one operand to represent the value in "relocation". The
1534 operand position is determined by the relocation type recorded in the
1535 howto. */
1536
1537 #define CALL_SEGMENT_BITS (30)
1538 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1539
1540 static bfd_reloc_status_type
1541 elf_xtensa_do_reloc (reloc_howto_type *howto,
1542 bfd *abfd,
1543 asection *input_section,
1544 bfd_vma relocation,
1545 bfd_byte *contents,
1546 bfd_vma address,
1547 bfd_boolean is_weak_undef,
1548 char **error_message)
1549 {
1550 xtensa_format fmt;
1551 xtensa_opcode opcode;
1552 xtensa_isa isa = xtensa_default_isa;
1553 static xtensa_insnbuf ibuff = NULL;
1554 static xtensa_insnbuf sbuff = NULL;
1555 bfd_vma self_address = 0;
1556 bfd_size_type input_size;
1557 int opnd, slot;
1558 uint32 newval;
1559
1560 if (!ibuff)
1561 {
1562 ibuff = xtensa_insnbuf_alloc (isa);
1563 sbuff = xtensa_insnbuf_alloc (isa);
1564 }
1565
1566 input_size = bfd_get_section_limit (abfd, input_section);
1567
1568 switch (howto->type)
1569 {
1570 case R_XTENSA_NONE:
1571 case R_XTENSA_DIFF8:
1572 case R_XTENSA_DIFF16:
1573 case R_XTENSA_DIFF32:
1574 return bfd_reloc_ok;
1575
1576 case R_XTENSA_ASM_EXPAND:
1577 if (!is_weak_undef)
1578 {
1579 /* Check for windowed CALL across a 1GB boundary. */
1580 xtensa_opcode opcode =
1581 get_expanded_call_opcode (contents + address,
1582 input_size - address, 0);
1583 if (is_windowed_call_opcode (opcode))
1584 {
1585 self_address = (input_section->output_section->vma
1586 + input_section->output_offset
1587 + address);
1588 if ((self_address >> CALL_SEGMENT_BITS)
1589 != (relocation >> CALL_SEGMENT_BITS))
1590 {
1591 *error_message = "windowed longcall crosses 1GB boundary; "
1592 "return may fail";
1593 return bfd_reloc_dangerous;
1594 }
1595 }
1596 }
1597 return bfd_reloc_ok;
1598
1599 case R_XTENSA_ASM_SIMPLIFY:
1600 {
1601 /* Convert the L32R/CALLX to CALL. */
1602 bfd_reloc_status_type retval =
1603 elf_xtensa_do_asm_simplify (contents, address, input_size,
1604 error_message);
1605 if (retval != bfd_reloc_ok)
1606 return bfd_reloc_dangerous;
1607
1608 /* The CALL needs to be relocated. Continue below for that part. */
1609 address += 3;
1610 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1611 }
1612 break;
1613
1614 case R_XTENSA_32:
1615 case R_XTENSA_PLT:
1616 {
1617 bfd_vma x;
1618 x = bfd_get_32 (abfd, contents + address);
1619 x = x + relocation;
1620 bfd_put_32 (abfd, x, contents + address);
1621 }
1622 return bfd_reloc_ok;
1623 }
1624
1625 /* Only instruction slot-specific relocations handled below.... */
1626 slot = get_relocation_slot (howto->type);
1627 if (slot == XTENSA_UNDEFINED)
1628 {
1629 *error_message = "unexpected relocation";
1630 return bfd_reloc_dangerous;
1631 }
1632
1633 /* Read the instruction into a buffer and decode the opcode. */
1634 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1635 input_size - address);
1636 fmt = xtensa_format_decode (isa, ibuff);
1637 if (fmt == XTENSA_UNDEFINED)
1638 {
1639 *error_message = "cannot decode instruction format";
1640 return bfd_reloc_dangerous;
1641 }
1642
1643 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1644
1645 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1646 if (opcode == XTENSA_UNDEFINED)
1647 {
1648 *error_message = "cannot decode instruction opcode";
1649 return bfd_reloc_dangerous;
1650 }
1651
1652 /* Check for opcode-specific "alternate" relocations. */
1653 if (is_alt_relocation (howto->type))
1654 {
1655 if (opcode == get_l32r_opcode ())
1656 {
1657 /* Handle the special-case of non-PC-relative L32R instructions. */
1658 bfd *output_bfd = input_section->output_section->owner;
1659 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1660 if (!lit4_sec)
1661 {
1662 *error_message = "relocation references missing .lit4 section";
1663 return bfd_reloc_dangerous;
1664 }
1665 self_address = ((lit4_sec->vma & ~0xfff)
1666 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1667 newval = relocation;
1668 opnd = 1;
1669 }
1670 else if (opcode == get_const16_opcode ())
1671 {
1672 /* ALT used for high 16 bits. */
1673 newval = relocation >> 16;
1674 opnd = 1;
1675 }
1676 else
1677 {
1678 /* No other "alternate" relocations currently defined. */
1679 *error_message = "unexpected relocation";
1680 return bfd_reloc_dangerous;
1681 }
1682 }
1683 else /* Not an "alternate" relocation.... */
1684 {
1685 if (opcode == get_const16_opcode ())
1686 {
1687 newval = relocation & 0xffff;
1688 opnd = 1;
1689 }
1690 else
1691 {
1692 /* ...normal PC-relative relocation.... */
1693
1694 /* Determine which operand is being relocated. */
1695 opnd = get_relocation_opnd (opcode, howto->type);
1696 if (opnd == XTENSA_UNDEFINED)
1697 {
1698 *error_message = "unexpected relocation";
1699 return bfd_reloc_dangerous;
1700 }
1701
1702 if (!howto->pc_relative)
1703 {
1704 *error_message = "expected PC-relative relocation";
1705 return bfd_reloc_dangerous;
1706 }
1707
1708 /* Calculate the PC address for this instruction. */
1709 self_address = (input_section->output_section->vma
1710 + input_section->output_offset
1711 + address);
1712
1713 newval = relocation;
1714 }
1715 }
1716
1717 /* Apply the relocation. */
1718 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1719 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1720 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1721 sbuff, newval))
1722 {
1723 const char *opname = xtensa_opcode_name (isa, opcode);
1724 const char *msg;
1725
1726 msg = "cannot encode";
1727 if (is_direct_call_opcode (opcode))
1728 {
1729 if ((relocation & 0x3) != 0)
1730 msg = "misaligned call target";
1731 else
1732 msg = "call target out of range";
1733 }
1734 else if (opcode == get_l32r_opcode ())
1735 {
1736 if ((relocation & 0x3) != 0)
1737 msg = "misaligned literal target";
1738 else if (is_alt_relocation (howto->type))
1739 msg = "literal target out of range (too many literals)";
1740 else if (self_address > relocation)
1741 msg = "literal target out of range (try using text-section-literals)";
1742 else
1743 msg = "literal placed after use";
1744 }
1745
1746 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
1747 return bfd_reloc_dangerous;
1748 }
1749
1750 /* Check for calls across 1GB boundaries. */
1751 if (is_direct_call_opcode (opcode)
1752 && is_windowed_call_opcode (opcode))
1753 {
1754 if ((self_address >> CALL_SEGMENT_BITS)
1755 != (relocation >> CALL_SEGMENT_BITS))
1756 {
1757 *error_message =
1758 "windowed call crosses 1GB boundary; return may fail";
1759 return bfd_reloc_dangerous;
1760 }
1761 }
1762
1763 /* Write the modified instruction back out of the buffer. */
1764 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1765 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1766 input_size - address);
1767 return bfd_reloc_ok;
1768 }
1769
1770
1771 static char *
1772 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
1773 {
1774 /* To reduce the size of the memory leak,
1775 we only use a single message buffer. */
1776 static bfd_size_type alloc_size = 0;
1777 static char *message = NULL;
1778 bfd_size_type orig_len, len = 0;
1779 bfd_boolean is_append;
1780
1781 VA_OPEN (ap, arglen);
1782 VA_FIXEDARG (ap, const char *, origmsg);
1783
1784 is_append = (origmsg == message);
1785
1786 orig_len = strlen (origmsg);
1787 len = orig_len + strlen (fmt) + arglen + 20;
1788 if (len > alloc_size)
1789 {
1790 message = (char *) bfd_realloc (message, len);
1791 alloc_size = len;
1792 }
1793 if (!is_append)
1794 memcpy (message, origmsg, orig_len);
1795 vsprintf (message + orig_len, fmt, ap);
1796 VA_CLOSE (ap);
1797 return message;
1798 }
1799
1800
1801 /* This function is registered as the "special_function" in the
1802 Xtensa howto for handling simplify operations.
1803 bfd_perform_relocation / bfd_install_relocation use it to
1804 perform (install) the specified relocation. Since this replaces the code
1805 in bfd_perform_relocation, it is basically an Xtensa-specific,
1806 stripped-down version of bfd_perform_relocation. */
1807
1808 static bfd_reloc_status_type
1809 bfd_elf_xtensa_reloc (bfd *abfd,
1810 arelent *reloc_entry,
1811 asymbol *symbol,
1812 void *data,
1813 asection *input_section,
1814 bfd *output_bfd,
1815 char **error_message)
1816 {
1817 bfd_vma relocation;
1818 bfd_reloc_status_type flag;
1819 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1820 bfd_vma output_base = 0;
1821 reloc_howto_type *howto = reloc_entry->howto;
1822 asection *reloc_target_output_section;
1823 bfd_boolean is_weak_undef;
1824
1825 if (!xtensa_default_isa)
1826 xtensa_default_isa = xtensa_isa_init (0, 0);
1827
1828 /* ELF relocs are against symbols. If we are producing relocatable
1829 output, and the reloc is against an external symbol, the resulting
1830 reloc will also be against the same symbol. In such a case, we
1831 don't want to change anything about the way the reloc is handled,
1832 since it will all be done at final link time. This test is similar
1833 to what bfd_elf_generic_reloc does except that it lets relocs with
1834 howto->partial_inplace go through even if the addend is non-zero.
1835 (The real problem is that partial_inplace is set for XTENSA_32
1836 relocs to begin with, but that's a long story and there's little we
1837 can do about it now....) */
1838
1839 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
1840 {
1841 reloc_entry->address += input_section->output_offset;
1842 return bfd_reloc_ok;
1843 }
1844
1845 /* Is the address of the relocation really within the section? */
1846 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1847 return bfd_reloc_outofrange;
1848
1849 /* Work out which section the relocation is targeted at and the
1850 initial relocation command value. */
1851
1852 /* Get symbol value. (Common symbols are special.) */
1853 if (bfd_is_com_section (symbol->section))
1854 relocation = 0;
1855 else
1856 relocation = symbol->value;
1857
1858 reloc_target_output_section = symbol->section->output_section;
1859
1860 /* Convert input-section-relative symbol value to absolute. */
1861 if ((output_bfd && !howto->partial_inplace)
1862 || reloc_target_output_section == NULL)
1863 output_base = 0;
1864 else
1865 output_base = reloc_target_output_section->vma;
1866
1867 relocation += output_base + symbol->section->output_offset;
1868
1869 /* Add in supplied addend. */
1870 relocation += reloc_entry->addend;
1871
1872 /* Here the variable relocation holds the final address of the
1873 symbol we are relocating against, plus any addend. */
1874 if (output_bfd)
1875 {
1876 if (!howto->partial_inplace)
1877 {
1878 /* This is a partial relocation, and we want to apply the relocation
1879 to the reloc entry rather than the raw data. Everything except
1880 relocations against section symbols has already been handled
1881 above. */
1882
1883 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1884 reloc_entry->addend = relocation;
1885 reloc_entry->address += input_section->output_offset;
1886 return bfd_reloc_ok;
1887 }
1888 else
1889 {
1890 reloc_entry->address += input_section->output_offset;
1891 reloc_entry->addend = 0;
1892 }
1893 }
1894
1895 is_weak_undef = (bfd_is_und_section (symbol->section)
1896 && (symbol->flags & BSF_WEAK) != 0);
1897 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1898 (bfd_byte *) data, (bfd_vma) octets,
1899 is_weak_undef, error_message);
1900
1901 if (flag == bfd_reloc_dangerous)
1902 {
1903 /* Add the symbol name to the error message. */
1904 if (! *error_message)
1905 *error_message = "";
1906 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1907 strlen (symbol->name) + 17,
1908 symbol->name,
1909 (unsigned long) reloc_entry->addend);
1910 }
1911
1912 return flag;
1913 }
1914
1915
1916 /* Set up an entry in the procedure linkage table. */
1917
1918 static bfd_vma
1919 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
1920 bfd *output_bfd,
1921 unsigned reloc_index)
1922 {
1923 asection *splt, *sgotplt;
1924 bfd_vma plt_base, got_base;
1925 bfd_vma code_offset, lit_offset;
1926 int chunk;
1927
1928 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1929 splt = elf_xtensa_get_plt_section (info, chunk);
1930 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1931 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1932
1933 plt_base = splt->output_section->vma + splt->output_offset;
1934 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1935
1936 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1937 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1938
1939 /* Fill in the literal entry. This is the offset of the dynamic
1940 relocation entry. */
1941 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1942 sgotplt->contents + lit_offset);
1943
1944 /* Fill in the entry in the procedure linkage table. */
1945 memcpy (splt->contents + code_offset,
1946 (bfd_big_endian (output_bfd)
1947 ? elf_xtensa_be_plt_entry
1948 : elf_xtensa_le_plt_entry),
1949 PLT_ENTRY_SIZE);
1950 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1951 plt_base + code_offset + 3),
1952 splt->contents + code_offset + 4);
1953 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1954 plt_base + code_offset + 6),
1955 splt->contents + code_offset + 7);
1956 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1957 plt_base + code_offset + 9),
1958 splt->contents + code_offset + 10);
1959
1960 return plt_base + code_offset;
1961 }
1962
1963
1964 /* Relocate an Xtensa ELF section. This is invoked by the linker for
1965 both relocatable and final links. */
1966
1967 static bfd_boolean
1968 elf_xtensa_relocate_section (bfd *output_bfd,
1969 struct bfd_link_info *info,
1970 bfd *input_bfd,
1971 asection *input_section,
1972 bfd_byte *contents,
1973 Elf_Internal_Rela *relocs,
1974 Elf_Internal_Sym *local_syms,
1975 asection **local_sections)
1976 {
1977 struct elf_xtensa_link_hash_table *htab;
1978 Elf_Internal_Shdr *symtab_hdr;
1979 Elf_Internal_Rela *rel;
1980 Elf_Internal_Rela *relend;
1981 struct elf_link_hash_entry **sym_hashes;
1982 property_table_entry *lit_table = 0;
1983 int ltblsize = 0;
1984 char *error_message = NULL;
1985 bfd_size_type input_size;
1986
1987 if (!xtensa_default_isa)
1988 xtensa_default_isa = xtensa_isa_init (0, 0);
1989
1990 htab = elf_xtensa_hash_table (info);
1991 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1992 sym_hashes = elf_sym_hashes (input_bfd);
1993
1994 if (elf_hash_table (info)->dynamic_sections_created)
1995 {
1996 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
1997 &lit_table, XTENSA_LIT_SEC_NAME,
1998 TRUE);
1999 if (ltblsize < 0)
2000 return FALSE;
2001 }
2002
2003 input_size = bfd_get_section_limit (input_bfd, input_section);
2004
2005 rel = relocs;
2006 relend = relocs + input_section->reloc_count;
2007 for (; rel < relend; rel++)
2008 {
2009 int r_type;
2010 reloc_howto_type *howto;
2011 unsigned long r_symndx;
2012 struct elf_link_hash_entry *h;
2013 Elf_Internal_Sym *sym;
2014 asection *sec;
2015 bfd_vma relocation;
2016 bfd_reloc_status_type r;
2017 bfd_boolean is_weak_undef;
2018 bfd_boolean unresolved_reloc;
2019 bfd_boolean warned;
2020
2021 r_type = ELF32_R_TYPE (rel->r_info);
2022 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2023 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2024 continue;
2025
2026 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2027 {
2028 bfd_set_error (bfd_error_bad_value);
2029 return FALSE;
2030 }
2031 howto = &elf_howto_table[r_type];
2032
2033 r_symndx = ELF32_R_SYM (rel->r_info);
2034
2035 h = NULL;
2036 sym = NULL;
2037 sec = NULL;
2038 is_weak_undef = FALSE;
2039 unresolved_reloc = FALSE;
2040 warned = FALSE;
2041
2042 if (howto->partial_inplace && !info->relocatable)
2043 {
2044 /* Because R_XTENSA_32 was made partial_inplace to fix some
2045 problems with DWARF info in partial links, there may be
2046 an addend stored in the contents. Take it out of there
2047 and move it back into the addend field of the reloc. */
2048 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2049 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2050 }
2051
2052 if (r_symndx < symtab_hdr->sh_info)
2053 {
2054 sym = local_syms + r_symndx;
2055 sec = local_sections[r_symndx];
2056 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2057 }
2058 else
2059 {
2060 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2061 r_symndx, symtab_hdr, sym_hashes,
2062 h, sec, relocation,
2063 unresolved_reloc, warned);
2064
2065 if (relocation == 0
2066 && !unresolved_reloc
2067 && h->root.type == bfd_link_hash_undefweak)
2068 is_weak_undef = TRUE;
2069 }
2070
2071 if (sec != NULL && elf_discarded_section (sec))
2072 {
2073 /* For relocs against symbols from removed linkonce sections,
2074 or sections discarded by a linker script, we just want the
2075 section contents zeroed. Avoid any special processing. */
2076 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2077 rel->r_info = 0;
2078 rel->r_addend = 0;
2079 continue;
2080 }
2081
2082 if (info->relocatable)
2083 {
2084 /* This is a relocatable link.
2085 1) If the reloc is against a section symbol, adjust
2086 according to the output section.
2087 2) If there is a new target for this relocation,
2088 the new target will be in the same output section.
2089 We adjust the relocation by the output section
2090 difference. */
2091
2092 if (relaxing_section)
2093 {
2094 /* Check if this references a section in another input file. */
2095 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2096 contents))
2097 return FALSE;
2098 r_type = ELF32_R_TYPE (rel->r_info);
2099 }
2100
2101 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2102 {
2103 char *error_message = NULL;
2104 /* Convert ASM_SIMPLIFY into the simpler relocation
2105 so that they never escape a relaxing link. */
2106 r = contract_asm_expansion (contents, input_size, rel,
2107 &error_message);
2108 if (r != bfd_reloc_ok)
2109 {
2110 if (!((*info->callbacks->reloc_dangerous)
2111 (info, error_message, input_bfd, input_section,
2112 rel->r_offset)))
2113 return FALSE;
2114 }
2115 r_type = ELF32_R_TYPE (rel->r_info);
2116 }
2117
2118 /* This is a relocatable link, so we don't have to change
2119 anything unless the reloc is against a section symbol,
2120 in which case we have to adjust according to where the
2121 section symbol winds up in the output section. */
2122 if (r_symndx < symtab_hdr->sh_info)
2123 {
2124 sym = local_syms + r_symndx;
2125 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2126 {
2127 sec = local_sections[r_symndx];
2128 rel->r_addend += sec->output_offset + sym->st_value;
2129 }
2130 }
2131
2132 /* If there is an addend with a partial_inplace howto,
2133 then move the addend to the contents. This is a hack
2134 to work around problems with DWARF in relocatable links
2135 with some previous version of BFD. Now we can't easily get
2136 rid of the hack without breaking backward compatibility.... */
2137 if (rel->r_addend)
2138 {
2139 howto = &elf_howto_table[r_type];
2140 if (howto->partial_inplace)
2141 {
2142 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2143 rel->r_addend, contents,
2144 rel->r_offset, FALSE,
2145 &error_message);
2146 if (r != bfd_reloc_ok)
2147 {
2148 if (!((*info->callbacks->reloc_dangerous)
2149 (info, error_message, input_bfd, input_section,
2150 rel->r_offset)))
2151 return FALSE;
2152 }
2153 rel->r_addend = 0;
2154 }
2155 }
2156
2157 /* Done with work for relocatable link; continue with next reloc. */
2158 continue;
2159 }
2160
2161 /* This is a final link. */
2162
2163 if (relaxing_section)
2164 {
2165 /* Check if this references a section in another input file. */
2166 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2167 &relocation);
2168
2169 /* Update some already cached values. */
2170 r_type = ELF32_R_TYPE (rel->r_info);
2171 howto = &elf_howto_table[r_type];
2172 }
2173
2174 /* Sanity check the address. */
2175 if (rel->r_offset >= input_size
2176 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2177 {
2178 (*_bfd_error_handler)
2179 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2180 input_bfd, input_section, rel->r_offset, input_size);
2181 bfd_set_error (bfd_error_bad_value);
2182 return FALSE;
2183 }
2184
2185 /* Generate dynamic relocations. */
2186 if (elf_hash_table (info)->dynamic_sections_created)
2187 {
2188 bfd_boolean dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2189
2190 if (dynamic_symbol && is_operand_relocation (r_type))
2191 {
2192 /* This is an error. The symbol's real value won't be known
2193 until runtime and it's likely to be out of range anyway. */
2194 const char *name = h->root.root.string;
2195 error_message = vsprint_msg ("invalid relocation for dynamic "
2196 "symbol", ": %s",
2197 strlen (name) + 2, name);
2198 if (!((*info->callbacks->reloc_dangerous)
2199 (info, error_message, input_bfd, input_section,
2200 rel->r_offset)))
2201 return FALSE;
2202 }
2203 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2204 && (input_section->flags & SEC_ALLOC) != 0
2205 && (dynamic_symbol || info->shared))
2206 {
2207 Elf_Internal_Rela outrel;
2208 bfd_byte *loc;
2209 asection *srel;
2210
2211 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2212 srel = htab->srelplt;
2213 else
2214 srel = htab->srelgot;
2215
2216 BFD_ASSERT (srel != NULL);
2217
2218 outrel.r_offset =
2219 _bfd_elf_section_offset (output_bfd, info,
2220 input_section, rel->r_offset);
2221
2222 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2223 memset (&outrel, 0, sizeof outrel);
2224 else
2225 {
2226 outrel.r_offset += (input_section->output_section->vma
2227 + input_section->output_offset);
2228
2229 /* Complain if the relocation is in a read-only section
2230 and not in a literal pool. */
2231 if ((input_section->flags & SEC_READONLY) != 0
2232 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2233 outrel.r_offset))
2234 {
2235 error_message =
2236 _("dynamic relocation in read-only section");
2237 if (!((*info->callbacks->reloc_dangerous)
2238 (info, error_message, input_bfd, input_section,
2239 rel->r_offset)))
2240 return FALSE;
2241 }
2242
2243 if (dynamic_symbol)
2244 {
2245 outrel.r_addend = rel->r_addend;
2246 rel->r_addend = 0;
2247
2248 if (r_type == R_XTENSA_32)
2249 {
2250 outrel.r_info =
2251 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2252 relocation = 0;
2253 }
2254 else /* r_type == R_XTENSA_PLT */
2255 {
2256 outrel.r_info =
2257 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2258
2259 /* Create the PLT entry and set the initial
2260 contents of the literal entry to the address of
2261 the PLT entry. */
2262 relocation =
2263 elf_xtensa_create_plt_entry (info, output_bfd,
2264 srel->reloc_count);
2265 }
2266 unresolved_reloc = FALSE;
2267 }
2268 else
2269 {
2270 /* Generate a RELATIVE relocation. */
2271 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2272 outrel.r_addend = 0;
2273 }
2274 }
2275
2276 loc = (srel->contents
2277 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2278 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2279 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2280 <= srel->size);
2281 }
2282 }
2283
2284 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2285 because such sections are not SEC_ALLOC and thus ld.so will
2286 not process them. */
2287 if (unresolved_reloc
2288 && !((input_section->flags & SEC_DEBUGGING) != 0
2289 && h->def_dynamic))
2290 {
2291 (*_bfd_error_handler)
2292 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2293 input_bfd,
2294 input_section,
2295 (long) rel->r_offset,
2296 howto->name,
2297 h->root.root.string);
2298 return FALSE;
2299 }
2300
2301 /* There's no point in calling bfd_perform_relocation here.
2302 Just go directly to our "special function". */
2303 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2304 relocation + rel->r_addend,
2305 contents, rel->r_offset, is_weak_undef,
2306 &error_message);
2307
2308 if (r != bfd_reloc_ok && !warned)
2309 {
2310 const char *name;
2311
2312 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
2313 BFD_ASSERT (error_message != NULL);
2314
2315 if (h)
2316 name = h->root.root.string;
2317 else
2318 {
2319 name = bfd_elf_string_from_elf_section
2320 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2321 if (name && *name == '\0')
2322 name = bfd_section_name (input_bfd, sec);
2323 }
2324 if (name)
2325 {
2326 if (rel->r_addend == 0)
2327 error_message = vsprint_msg (error_message, ": %s",
2328 strlen (name) + 2, name);
2329 else
2330 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2331 strlen (name) + 22,
2332 name, (int)rel->r_addend);
2333 }
2334
2335 if (!((*info->callbacks->reloc_dangerous)
2336 (info, error_message, input_bfd, input_section,
2337 rel->r_offset)))
2338 return FALSE;
2339 }
2340 }
2341
2342 if (lit_table)
2343 free (lit_table);
2344
2345 input_section->reloc_done = TRUE;
2346
2347 return TRUE;
2348 }
2349
2350
2351 /* Finish up dynamic symbol handling. There's not much to do here since
2352 the PLT and GOT entries are all set up by relocate_section. */
2353
2354 static bfd_boolean
2355 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2356 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2357 struct elf_link_hash_entry *h,
2358 Elf_Internal_Sym *sym)
2359 {
2360 if (h->needs_plt && !h->def_regular)
2361 {
2362 /* Mark the symbol as undefined, rather than as defined in
2363 the .plt section. Leave the value alone. */
2364 sym->st_shndx = SHN_UNDEF;
2365 /* If the symbol is weak, we do need to clear the value.
2366 Otherwise, the PLT entry would provide a definition for
2367 the symbol even if the symbol wasn't defined anywhere,
2368 and so the symbol would never be NULL. */
2369 if (!h->ref_regular_nonweak)
2370 sym->st_value = 0;
2371 }
2372
2373 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2374 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2375 || h == elf_hash_table (info)->hgot)
2376 sym->st_shndx = SHN_ABS;
2377
2378 return TRUE;
2379 }
2380
2381
2382 /* Combine adjacent literal table entries in the output. Adjacent
2383 entries within each input section may have been removed during
2384 relaxation, but we repeat the process here, even though it's too late
2385 to shrink the output section, because it's important to minimize the
2386 number of literal table entries to reduce the start-up work for the
2387 runtime linker. Returns the number of remaining table entries or -1
2388 on error. */
2389
2390 static int
2391 elf_xtensa_combine_prop_entries (bfd *output_bfd,
2392 asection *sxtlit,
2393 asection *sgotloc)
2394 {
2395 bfd_byte *contents;
2396 property_table_entry *table;
2397 bfd_size_type section_size, sgotloc_size;
2398 bfd_vma offset;
2399 int n, m, num;
2400
2401 section_size = sxtlit->size;
2402 BFD_ASSERT (section_size % 8 == 0);
2403 num = section_size / 8;
2404
2405 sgotloc_size = sgotloc->size;
2406 if (sgotloc_size != section_size)
2407 {
2408 (*_bfd_error_handler)
2409 (_("internal inconsistency in size of .got.loc section"));
2410 return -1;
2411 }
2412
2413 table = bfd_malloc (num * sizeof (property_table_entry));
2414 if (table == 0)
2415 return -1;
2416
2417 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2418 propagates to the output section, where it doesn't really apply and
2419 where it breaks the following call to bfd_malloc_and_get_section. */
2420 sxtlit->flags &= ~SEC_IN_MEMORY;
2421
2422 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2423 {
2424 if (contents != 0)
2425 free (contents);
2426 free (table);
2427 return -1;
2428 }
2429
2430 /* There should never be any relocations left at this point, so this
2431 is quite a bit easier than what is done during relaxation. */
2432
2433 /* Copy the raw contents into a property table array and sort it. */
2434 offset = 0;
2435 for (n = 0; n < num; n++)
2436 {
2437 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2438 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2439 offset += 8;
2440 }
2441 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2442
2443 for (n = 0; n < num; n++)
2444 {
2445 bfd_boolean remove = FALSE;
2446
2447 if (table[n].size == 0)
2448 remove = TRUE;
2449 else if (n > 0 &&
2450 (table[n-1].address + table[n-1].size == table[n].address))
2451 {
2452 table[n-1].size += table[n].size;
2453 remove = TRUE;
2454 }
2455
2456 if (remove)
2457 {
2458 for (m = n; m < num - 1; m++)
2459 {
2460 table[m].address = table[m+1].address;
2461 table[m].size = table[m+1].size;
2462 }
2463
2464 n--;
2465 num--;
2466 }
2467 }
2468
2469 /* Copy the data back to the raw contents. */
2470 offset = 0;
2471 for (n = 0; n < num; n++)
2472 {
2473 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2474 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2475 offset += 8;
2476 }
2477
2478 /* Clear the removed bytes. */
2479 if ((bfd_size_type) (num * 8) < section_size)
2480 memset (&contents[num * 8], 0, section_size - num * 8);
2481
2482 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2483 section_size))
2484 return -1;
2485
2486 /* Copy the contents to ".got.loc". */
2487 memcpy (sgotloc->contents, contents, section_size);
2488
2489 free (contents);
2490 free (table);
2491 return num;
2492 }
2493
2494
2495 /* Finish up the dynamic sections. */
2496
2497 static bfd_boolean
2498 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2499 struct bfd_link_info *info)
2500 {
2501 struct elf_xtensa_link_hash_table *htab;
2502 bfd *dynobj;
2503 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
2504 Elf32_External_Dyn *dyncon, *dynconend;
2505 int num_xtlit_entries;
2506
2507 if (! elf_hash_table (info)->dynamic_sections_created)
2508 return TRUE;
2509
2510 htab = elf_xtensa_hash_table (info);
2511 dynobj = elf_hash_table (info)->dynobj;
2512 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2513 BFD_ASSERT (sdyn != NULL);
2514
2515 /* Set the first entry in the global offset table to the address of
2516 the dynamic section. */
2517 sgot = htab->sgot;
2518 if (sgot)
2519 {
2520 BFD_ASSERT (sgot->size == 4);
2521 if (sdyn == NULL)
2522 bfd_put_32 (output_bfd, 0, sgot->contents);
2523 else
2524 bfd_put_32 (output_bfd,
2525 sdyn->output_section->vma + sdyn->output_offset,
2526 sgot->contents);
2527 }
2528
2529 srelplt = htab->srelplt;
2530 if (srelplt && srelplt->size != 0)
2531 {
2532 asection *sgotplt, *srelgot, *spltlittbl;
2533 int chunk, plt_chunks, plt_entries;
2534 Elf_Internal_Rela irela;
2535 bfd_byte *loc;
2536 unsigned rtld_reloc;
2537
2538 srelgot = htab->srelgot;
2539 spltlittbl = htab->spltlittbl;
2540 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
2541
2542 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2543 of them follow immediately after.... */
2544 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2545 {
2546 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2547 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2548 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2549 break;
2550 }
2551 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2552
2553 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
2554 plt_chunks =
2555 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2556
2557 for (chunk = 0; chunk < plt_chunks; chunk++)
2558 {
2559 int chunk_entries = 0;
2560
2561 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2562 BFD_ASSERT (sgotplt != NULL);
2563
2564 /* Emit special RTLD relocations for the first two entries in
2565 each chunk of the .got.plt section. */
2566
2567 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2568 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2569 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2570 irela.r_offset = (sgotplt->output_section->vma
2571 + sgotplt->output_offset);
2572 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2573 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2574 rtld_reloc += 1;
2575 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2576
2577 /* Next literal immediately follows the first. */
2578 loc += sizeof (Elf32_External_Rela);
2579 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2580 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2581 irela.r_offset = (sgotplt->output_section->vma
2582 + sgotplt->output_offset + 4);
2583 /* Tell rtld to set value to object's link map. */
2584 irela.r_addend = 2;
2585 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2586 rtld_reloc += 1;
2587 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2588
2589 /* Fill in the literal table. */
2590 if (chunk < plt_chunks - 1)
2591 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2592 else
2593 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2594
2595 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
2596 bfd_put_32 (output_bfd,
2597 sgotplt->output_section->vma + sgotplt->output_offset,
2598 spltlittbl->contents + (chunk * 8) + 0);
2599 bfd_put_32 (output_bfd,
2600 8 + (chunk_entries * 4),
2601 spltlittbl->contents + (chunk * 8) + 4);
2602 }
2603
2604 /* All the dynamic relocations have been emitted at this point.
2605 Make sure the relocation sections are the correct size. */
2606 if (srelgot->size != (sizeof (Elf32_External_Rela)
2607 * srelgot->reloc_count)
2608 || srelplt->size != (sizeof (Elf32_External_Rela)
2609 * srelplt->reloc_count))
2610 abort ();
2611
2612 /* The .xt.lit.plt section has just been modified. This must
2613 happen before the code below which combines adjacent literal
2614 table entries, and the .xt.lit.plt contents have to be forced to
2615 the output here. */
2616 if (! bfd_set_section_contents (output_bfd,
2617 spltlittbl->output_section,
2618 spltlittbl->contents,
2619 spltlittbl->output_offset,
2620 spltlittbl->size))
2621 return FALSE;
2622 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2623 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2624 }
2625
2626 /* Combine adjacent literal table entries. */
2627 BFD_ASSERT (! info->relocatable);
2628 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2629 sgotloc = htab->sgotloc;
2630 BFD_ASSERT (sxtlit && sgotloc);
2631 num_xtlit_entries =
2632 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
2633 if (num_xtlit_entries < 0)
2634 return FALSE;
2635
2636 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2637 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
2638 for (; dyncon < dynconend; dyncon++)
2639 {
2640 Elf_Internal_Dyn dyn;
2641
2642 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2643
2644 switch (dyn.d_tag)
2645 {
2646 default:
2647 break;
2648
2649 case DT_XTENSA_GOT_LOC_SZ:
2650 dyn.d_un.d_val = num_xtlit_entries;
2651 break;
2652
2653 case DT_XTENSA_GOT_LOC_OFF:
2654 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
2655 break;
2656
2657 case DT_PLTGOT:
2658 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2659 break;
2660
2661 case DT_JMPREL:
2662 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2663 break;
2664
2665 case DT_PLTRELSZ:
2666 dyn.d_un.d_val = htab->srelplt->output_section->size;
2667 break;
2668
2669 case DT_RELASZ:
2670 /* Adjust RELASZ to not include JMPREL. This matches what
2671 glibc expects and what is done for several other ELF
2672 targets (e.g., i386, alpha), but the "correct" behavior
2673 seems to be unresolved. Since the linker script arranges
2674 for .rela.plt to follow all other relocation sections, we
2675 don't have to worry about changing the DT_RELA entry. */
2676 if (htab->srelplt)
2677 dyn.d_un.d_val -= htab->srelplt->output_section->size;
2678 break;
2679 }
2680
2681 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2682 }
2683
2684 return TRUE;
2685 }
2686
2687 \f
2688 /* Functions for dealing with the e_flags field. */
2689
2690 /* Merge backend specific data from an object file to the output
2691 object file when linking. */
2692
2693 static bfd_boolean
2694 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2695 {
2696 unsigned out_mach, in_mach;
2697 flagword out_flag, in_flag;
2698
2699 /* Check if we have the same endianess. */
2700 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2701 return FALSE;
2702
2703 /* Don't even pretend to support mixed-format linking. */
2704 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2705 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2706 return FALSE;
2707
2708 out_flag = elf_elfheader (obfd)->e_flags;
2709 in_flag = elf_elfheader (ibfd)->e_flags;
2710
2711 out_mach = out_flag & EF_XTENSA_MACH;
2712 in_mach = in_flag & EF_XTENSA_MACH;
2713 if (out_mach != in_mach)
2714 {
2715 (*_bfd_error_handler)
2716 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
2717 ibfd, out_mach, in_mach);
2718 bfd_set_error (bfd_error_wrong_format);
2719 return FALSE;
2720 }
2721
2722 if (! elf_flags_init (obfd))
2723 {
2724 elf_flags_init (obfd) = TRUE;
2725 elf_elfheader (obfd)->e_flags = in_flag;
2726
2727 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2728 && bfd_get_arch_info (obfd)->the_default)
2729 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2730 bfd_get_mach (ibfd));
2731
2732 return TRUE;
2733 }
2734
2735 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2736 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
2737
2738 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2739 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
2740
2741 return TRUE;
2742 }
2743
2744
2745 static bfd_boolean
2746 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
2747 {
2748 BFD_ASSERT (!elf_flags_init (abfd)
2749 || elf_elfheader (abfd)->e_flags == flags);
2750
2751 elf_elfheader (abfd)->e_flags |= flags;
2752 elf_flags_init (abfd) = TRUE;
2753
2754 return TRUE;
2755 }
2756
2757
2758 static bfd_boolean
2759 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
2760 {
2761 FILE *f = (FILE *) farg;
2762 flagword e_flags = elf_elfheader (abfd)->e_flags;
2763
2764 fprintf (f, "\nXtensa header:\n");
2765 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
2766 fprintf (f, "\nMachine = Base\n");
2767 else
2768 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2769
2770 fprintf (f, "Insn tables = %s\n",
2771 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2772
2773 fprintf (f, "Literal tables = %s\n",
2774 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2775
2776 return _bfd_elf_print_private_bfd_data (abfd, farg);
2777 }
2778
2779
2780 /* Set the right machine number for an Xtensa ELF file. */
2781
2782 static bfd_boolean
2783 elf_xtensa_object_p (bfd *abfd)
2784 {
2785 int mach;
2786 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2787
2788 switch (arch)
2789 {
2790 case E_XTENSA_MACH:
2791 mach = bfd_mach_xtensa;
2792 break;
2793 default:
2794 return FALSE;
2795 }
2796
2797 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2798 return TRUE;
2799 }
2800
2801
2802 /* The final processing done just before writing out an Xtensa ELF object
2803 file. This gets the Xtensa architecture right based on the machine
2804 number. */
2805
2806 static void
2807 elf_xtensa_final_write_processing (bfd *abfd,
2808 bfd_boolean linker ATTRIBUTE_UNUSED)
2809 {
2810 int mach;
2811 unsigned long val;
2812
2813 switch (mach = bfd_get_mach (abfd))
2814 {
2815 case bfd_mach_xtensa:
2816 val = E_XTENSA_MACH;
2817 break;
2818 default:
2819 return;
2820 }
2821
2822 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2823 elf_elfheader (abfd)->e_flags |= val;
2824 }
2825
2826
2827 static enum elf_reloc_type_class
2828 elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
2829 {
2830 switch ((int) ELF32_R_TYPE (rela->r_info))
2831 {
2832 case R_XTENSA_RELATIVE:
2833 return reloc_class_relative;
2834 case R_XTENSA_JMP_SLOT:
2835 return reloc_class_plt;
2836 default:
2837 return reloc_class_normal;
2838 }
2839 }
2840
2841 \f
2842 static bfd_boolean
2843 elf_xtensa_discard_info_for_section (bfd *abfd,
2844 struct elf_reloc_cookie *cookie,
2845 struct bfd_link_info *info,
2846 asection *sec)
2847 {
2848 bfd_byte *contents;
2849 bfd_vma section_size;
2850 bfd_vma offset, actual_offset;
2851 bfd_size_type removed_bytes = 0;
2852 bfd_size_type entry_size;
2853
2854 if (sec->output_section
2855 && bfd_is_abs_section (sec->output_section))
2856 return FALSE;
2857
2858 if (xtensa_is_proptable_section (sec))
2859 entry_size = 12;
2860 else
2861 entry_size = 8;
2862
2863 section_size = sec->size;
2864 if (section_size == 0 || section_size % entry_size != 0)
2865 return FALSE;
2866
2867 contents = retrieve_contents (abfd, sec, info->keep_memory);
2868 if (!contents)
2869 return FALSE;
2870
2871 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2872 if (!cookie->rels)
2873 {
2874 release_contents (sec, contents);
2875 return FALSE;
2876 }
2877
2878 /* Sort the relocations. They should already be in order when
2879 relaxation is enabled, but it might not be. */
2880 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
2881 internal_reloc_compare);
2882
2883 cookie->rel = cookie->rels;
2884 cookie->relend = cookie->rels + sec->reloc_count;
2885
2886 for (offset = 0; offset < section_size; offset += entry_size)
2887 {
2888 actual_offset = offset - removed_bytes;
2889
2890 /* The ...symbol_deleted_p function will skip over relocs but it
2891 won't adjust their offsets, so do that here. */
2892 while (cookie->rel < cookie->relend
2893 && cookie->rel->r_offset < offset)
2894 {
2895 cookie->rel->r_offset -= removed_bytes;
2896 cookie->rel++;
2897 }
2898
2899 while (cookie->rel < cookie->relend
2900 && cookie->rel->r_offset == offset)
2901 {
2902 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
2903 {
2904 /* Remove the table entry. (If the reloc type is NONE, then
2905 the entry has already been merged with another and deleted
2906 during relaxation.) */
2907 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2908 {
2909 /* Shift the contents up. */
2910 if (offset + entry_size < section_size)
2911 memmove (&contents[actual_offset],
2912 &contents[actual_offset + entry_size],
2913 section_size - offset - entry_size);
2914 removed_bytes += entry_size;
2915 }
2916
2917 /* Remove this relocation. */
2918 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2919 }
2920
2921 /* Adjust the relocation offset for previous removals. This
2922 should not be done before calling ...symbol_deleted_p
2923 because it might mess up the offset comparisons there.
2924 Make sure the offset doesn't underflow in the case where
2925 the first entry is removed. */
2926 if (cookie->rel->r_offset >= removed_bytes)
2927 cookie->rel->r_offset -= removed_bytes;
2928 else
2929 cookie->rel->r_offset = 0;
2930
2931 cookie->rel++;
2932 }
2933 }
2934
2935 if (removed_bytes != 0)
2936 {
2937 /* Adjust any remaining relocs (shouldn't be any). */
2938 for (; cookie->rel < cookie->relend; cookie->rel++)
2939 {
2940 if (cookie->rel->r_offset >= removed_bytes)
2941 cookie->rel->r_offset -= removed_bytes;
2942 else
2943 cookie->rel->r_offset = 0;
2944 }
2945
2946 /* Clear the removed bytes. */
2947 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2948
2949 pin_contents (sec, contents);
2950 pin_internal_relocs (sec, cookie->rels);
2951
2952 /* Shrink size. */
2953 sec->size = section_size - removed_bytes;
2954
2955 if (xtensa_is_littable_section (sec))
2956 {
2957 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
2958 if (sgotloc)
2959 sgotloc->size -= removed_bytes;
2960 }
2961 }
2962 else
2963 {
2964 release_contents (sec, contents);
2965 release_internal_relocs (sec, cookie->rels);
2966 }
2967
2968 return (removed_bytes != 0);
2969 }
2970
2971
2972 static bfd_boolean
2973 elf_xtensa_discard_info (bfd *abfd,
2974 struct elf_reloc_cookie *cookie,
2975 struct bfd_link_info *info)
2976 {
2977 asection *sec;
2978 bfd_boolean changed = FALSE;
2979
2980 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2981 {
2982 if (xtensa_is_property_section (sec))
2983 {
2984 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2985 changed = TRUE;
2986 }
2987 }
2988
2989 return changed;
2990 }
2991
2992
2993 static bfd_boolean
2994 elf_xtensa_ignore_discarded_relocs (asection *sec)
2995 {
2996 return xtensa_is_property_section (sec);
2997 }
2998
2999
3000 static unsigned int
3001 elf_xtensa_action_discarded (asection *sec)
3002 {
3003 if (strcmp (".xt_except_table", sec->name) == 0)
3004 return 0;
3005
3006 if (strcmp (".xt_except_desc", sec->name) == 0)
3007 return 0;
3008
3009 return _bfd_elf_default_action_discarded (sec);
3010 }
3011
3012 \f
3013 /* Support for core dump NOTE sections. */
3014
3015 static bfd_boolean
3016 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3017 {
3018 int offset;
3019 unsigned int size;
3020
3021 /* The size for Xtensa is variable, so don't try to recognize the format
3022 based on the size. Just assume this is GNU/Linux. */
3023
3024 /* pr_cursig */
3025 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3026
3027 /* pr_pid */
3028 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3029
3030 /* pr_reg */
3031 offset = 72;
3032 size = note->descsz - offset - 4;
3033
3034 /* Make a ".reg/999" section. */
3035 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3036 size, note->descpos + offset);
3037 }
3038
3039
3040 static bfd_boolean
3041 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3042 {
3043 switch (note->descsz)
3044 {
3045 default:
3046 return FALSE;
3047
3048 case 128: /* GNU/Linux elf_prpsinfo */
3049 elf_tdata (abfd)->core_program
3050 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3051 elf_tdata (abfd)->core_command
3052 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3053 }
3054
3055 /* Note that for some reason, a spurious space is tacked
3056 onto the end of the args in some (at least one anyway)
3057 implementations, so strip it off if it exists. */
3058
3059 {
3060 char *command = elf_tdata (abfd)->core_command;
3061 int n = strlen (command);
3062
3063 if (0 < n && command[n - 1] == ' ')
3064 command[n - 1] = '\0';
3065 }
3066
3067 return TRUE;
3068 }
3069
3070 \f
3071 /* Generic Xtensa configurability stuff. */
3072
3073 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3074 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3075 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3076 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3077 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3078 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3079 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3080 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3081
3082 static void
3083 init_call_opcodes (void)
3084 {
3085 if (callx0_op == XTENSA_UNDEFINED)
3086 {
3087 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3088 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3089 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3090 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3091 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3092 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3093 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3094 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3095 }
3096 }
3097
3098
3099 static bfd_boolean
3100 is_indirect_call_opcode (xtensa_opcode opcode)
3101 {
3102 init_call_opcodes ();
3103 return (opcode == callx0_op
3104 || opcode == callx4_op
3105 || opcode == callx8_op
3106 || opcode == callx12_op);
3107 }
3108
3109
3110 static bfd_boolean
3111 is_direct_call_opcode (xtensa_opcode opcode)
3112 {
3113 init_call_opcodes ();
3114 return (opcode == call0_op
3115 || opcode == call4_op
3116 || opcode == call8_op
3117 || opcode == call12_op);
3118 }
3119
3120
3121 static bfd_boolean
3122 is_windowed_call_opcode (xtensa_opcode opcode)
3123 {
3124 init_call_opcodes ();
3125 return (opcode == call4_op
3126 || opcode == call8_op
3127 || opcode == call12_op
3128 || opcode == callx4_op
3129 || opcode == callx8_op
3130 || opcode == callx12_op);
3131 }
3132
3133
3134 static xtensa_opcode
3135 get_const16_opcode (void)
3136 {
3137 static bfd_boolean done_lookup = FALSE;
3138 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3139 if (!done_lookup)
3140 {
3141 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3142 done_lookup = TRUE;
3143 }
3144 return const16_opcode;
3145 }
3146
3147
3148 static xtensa_opcode
3149 get_l32r_opcode (void)
3150 {
3151 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3152 static bfd_boolean done_lookup = FALSE;
3153
3154 if (!done_lookup)
3155 {
3156 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3157 done_lookup = TRUE;
3158 }
3159 return l32r_opcode;
3160 }
3161
3162
3163 static bfd_vma
3164 l32r_offset (bfd_vma addr, bfd_vma pc)
3165 {
3166 bfd_vma offset;
3167
3168 offset = addr - ((pc+3) & -4);
3169 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3170 offset = (signed int) offset >> 2;
3171 BFD_ASSERT ((signed int) offset >> 16 == -1);
3172 return offset;
3173 }
3174
3175
3176 static int
3177 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3178 {
3179 xtensa_isa isa = xtensa_default_isa;
3180 int last_immed, last_opnd, opi;
3181
3182 if (opcode == XTENSA_UNDEFINED)
3183 return XTENSA_UNDEFINED;
3184
3185 /* Find the last visible PC-relative immediate operand for the opcode.
3186 If there are no PC-relative immediates, then choose the last visible
3187 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3188 last_immed = XTENSA_UNDEFINED;
3189 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3190 for (opi = last_opnd - 1; opi >= 0; opi--)
3191 {
3192 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3193 continue;
3194 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3195 {
3196 last_immed = opi;
3197 break;
3198 }
3199 if (last_immed == XTENSA_UNDEFINED
3200 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3201 last_immed = opi;
3202 }
3203 if (last_immed < 0)
3204 return XTENSA_UNDEFINED;
3205
3206 /* If the operand number was specified in an old-style relocation,
3207 check for consistency with the operand computed above. */
3208 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3209 {
3210 int reloc_opnd = r_type - R_XTENSA_OP0;
3211 if (reloc_opnd != last_immed)
3212 return XTENSA_UNDEFINED;
3213 }
3214
3215 return last_immed;
3216 }
3217
3218
3219 int
3220 get_relocation_slot (int r_type)
3221 {
3222 switch (r_type)
3223 {
3224 case R_XTENSA_OP0:
3225 case R_XTENSA_OP1:
3226 case R_XTENSA_OP2:
3227 return 0;
3228
3229 default:
3230 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3231 return r_type - R_XTENSA_SLOT0_OP;
3232 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3233 return r_type - R_XTENSA_SLOT0_ALT;
3234 break;
3235 }
3236
3237 return XTENSA_UNDEFINED;
3238 }
3239
3240
3241 /* Get the opcode for a relocation. */
3242
3243 static xtensa_opcode
3244 get_relocation_opcode (bfd *abfd,
3245 asection *sec,
3246 bfd_byte *contents,
3247 Elf_Internal_Rela *irel)
3248 {
3249 static xtensa_insnbuf ibuff = NULL;
3250 static xtensa_insnbuf sbuff = NULL;
3251 xtensa_isa isa = xtensa_default_isa;
3252 xtensa_format fmt;
3253 int slot;
3254
3255 if (contents == NULL)
3256 return XTENSA_UNDEFINED;
3257
3258 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
3259 return XTENSA_UNDEFINED;
3260
3261 if (ibuff == NULL)
3262 {
3263 ibuff = xtensa_insnbuf_alloc (isa);
3264 sbuff = xtensa_insnbuf_alloc (isa);
3265 }
3266
3267 /* Decode the instruction. */
3268 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3269 sec->size - irel->r_offset);
3270 fmt = xtensa_format_decode (isa, ibuff);
3271 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3272 if (slot == XTENSA_UNDEFINED)
3273 return XTENSA_UNDEFINED;
3274 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3275 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
3276 }
3277
3278
3279 bfd_boolean
3280 is_l32r_relocation (bfd *abfd,
3281 asection *sec,
3282 bfd_byte *contents,
3283 Elf_Internal_Rela *irel)
3284 {
3285 xtensa_opcode opcode;
3286 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
3287 return FALSE;
3288 opcode = get_relocation_opcode (abfd, sec, contents, irel);
3289 return (opcode == get_l32r_opcode ());
3290 }
3291
3292
3293 static bfd_size_type
3294 get_asm_simplify_size (bfd_byte *contents,
3295 bfd_size_type content_len,
3296 bfd_size_type offset)
3297 {
3298 bfd_size_type insnlen, size = 0;
3299
3300 /* Decode the size of the next two instructions. */
3301 insnlen = insn_decode_len (contents, content_len, offset);
3302 if (insnlen == 0)
3303 return 0;
3304
3305 size += insnlen;
3306
3307 insnlen = insn_decode_len (contents, content_len, offset + size);
3308 if (insnlen == 0)
3309 return 0;
3310
3311 size += insnlen;
3312 return size;
3313 }
3314
3315
3316 bfd_boolean
3317 is_alt_relocation (int r_type)
3318 {
3319 return (r_type >= R_XTENSA_SLOT0_ALT
3320 && r_type <= R_XTENSA_SLOT14_ALT);
3321 }
3322
3323
3324 bfd_boolean
3325 is_operand_relocation (int r_type)
3326 {
3327 switch (r_type)
3328 {
3329 case R_XTENSA_OP0:
3330 case R_XTENSA_OP1:
3331 case R_XTENSA_OP2:
3332 return TRUE;
3333
3334 default:
3335 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3336 return TRUE;
3337 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3338 return TRUE;
3339 break;
3340 }
3341
3342 return FALSE;
3343 }
3344
3345
3346 #define MIN_INSN_LENGTH 2
3347
3348 /* Return 0 if it fails to decode. */
3349
3350 bfd_size_type
3351 insn_decode_len (bfd_byte *contents,
3352 bfd_size_type content_len,
3353 bfd_size_type offset)
3354 {
3355 int insn_len;
3356 xtensa_isa isa = xtensa_default_isa;
3357 xtensa_format fmt;
3358 static xtensa_insnbuf ibuff = NULL;
3359
3360 if (offset + MIN_INSN_LENGTH > content_len)
3361 return 0;
3362
3363 if (ibuff == NULL)
3364 ibuff = xtensa_insnbuf_alloc (isa);
3365 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3366 content_len - offset);
3367 fmt = xtensa_format_decode (isa, ibuff);
3368 if (fmt == XTENSA_UNDEFINED)
3369 return 0;
3370 insn_len = xtensa_format_length (isa, fmt);
3371 if (insn_len == XTENSA_UNDEFINED)
3372 return 0;
3373 return insn_len;
3374 }
3375
3376
3377 /* Decode the opcode for a single slot instruction.
3378 Return 0 if it fails to decode or the instruction is multi-slot. */
3379
3380 xtensa_opcode
3381 insn_decode_opcode (bfd_byte *contents,
3382 bfd_size_type content_len,
3383 bfd_size_type offset,
3384 int slot)
3385 {
3386 xtensa_isa isa = xtensa_default_isa;
3387 xtensa_format fmt;
3388 static xtensa_insnbuf insnbuf = NULL;
3389 static xtensa_insnbuf slotbuf = NULL;
3390
3391 if (offset + MIN_INSN_LENGTH > content_len)
3392 return XTENSA_UNDEFINED;
3393
3394 if (insnbuf == NULL)
3395 {
3396 insnbuf = xtensa_insnbuf_alloc (isa);
3397 slotbuf = xtensa_insnbuf_alloc (isa);
3398 }
3399
3400 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3401 content_len - offset);
3402 fmt = xtensa_format_decode (isa, insnbuf);
3403 if (fmt == XTENSA_UNDEFINED)
3404 return XTENSA_UNDEFINED;
3405
3406 if (slot >= xtensa_format_num_slots (isa, fmt))
3407 return XTENSA_UNDEFINED;
3408
3409 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3410 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3411 }
3412
3413
3414 /* The offset is the offset in the contents.
3415 The address is the address of that offset. */
3416
3417 static bfd_boolean
3418 check_branch_target_aligned (bfd_byte *contents,
3419 bfd_size_type content_length,
3420 bfd_vma offset,
3421 bfd_vma address)
3422 {
3423 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3424 if (insn_len == 0)
3425 return FALSE;
3426 return check_branch_target_aligned_address (address, insn_len);
3427 }
3428
3429
3430 static bfd_boolean
3431 check_loop_aligned (bfd_byte *contents,
3432 bfd_size_type content_length,
3433 bfd_vma offset,
3434 bfd_vma address)
3435 {
3436 bfd_size_type loop_len, insn_len;
3437 xtensa_opcode opcode;
3438
3439 opcode = insn_decode_opcode (contents, content_length, offset, 0);
3440 if (opcode == XTENSA_UNDEFINED
3441 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
3442 {
3443 BFD_ASSERT (FALSE);
3444 return FALSE;
3445 }
3446
3447 loop_len = insn_decode_len (contents, content_length, offset);
3448 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
3449 if (loop_len == 0 || insn_len == 0)
3450 {
3451 BFD_ASSERT (FALSE);
3452 return FALSE;
3453 }
3454
3455 return check_branch_target_aligned_address (address + loop_len, insn_len);
3456 }
3457
3458
3459 static bfd_boolean
3460 check_branch_target_aligned_address (bfd_vma addr, int len)
3461 {
3462 if (len == 8)
3463 return (addr % 8 == 0);
3464 return ((addr >> 2) == ((addr + len - 1) >> 2));
3465 }
3466
3467 \f
3468 /* Instruction widening and narrowing. */
3469
3470 /* When FLIX is available we need to access certain instructions only
3471 when they are 16-bit or 24-bit instructions. This table caches
3472 information about such instructions by walking through all the
3473 opcodes and finding the smallest single-slot format into which each
3474 can be encoded. */
3475
3476 static xtensa_format *op_single_fmt_table = NULL;
3477
3478
3479 static void
3480 init_op_single_format_table (void)
3481 {
3482 xtensa_isa isa = xtensa_default_isa;
3483 xtensa_insnbuf ibuf;
3484 xtensa_opcode opcode;
3485 xtensa_format fmt;
3486 int num_opcodes;
3487
3488 if (op_single_fmt_table)
3489 return;
3490
3491 ibuf = xtensa_insnbuf_alloc (isa);
3492 num_opcodes = xtensa_isa_num_opcodes (isa);
3493
3494 op_single_fmt_table = (xtensa_format *)
3495 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3496 for (opcode = 0; opcode < num_opcodes; opcode++)
3497 {
3498 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3499 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3500 {
3501 if (xtensa_format_num_slots (isa, fmt) == 1
3502 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3503 {
3504 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3505 int fmt_length = xtensa_format_length (isa, fmt);
3506 if (old_fmt == XTENSA_UNDEFINED
3507 || fmt_length < xtensa_format_length (isa, old_fmt))
3508 op_single_fmt_table[opcode] = fmt;
3509 }
3510 }
3511 }
3512 xtensa_insnbuf_free (isa, ibuf);
3513 }
3514
3515
3516 static xtensa_format
3517 get_single_format (xtensa_opcode opcode)
3518 {
3519 init_op_single_format_table ();
3520 return op_single_fmt_table[opcode];
3521 }
3522
3523
3524 /* For the set of narrowable instructions we do NOT include the
3525 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3526 involved during linker relaxation that may require these to
3527 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3528 requires special case code to ensure it only works when op1 == op2. */
3529
3530 struct string_pair
3531 {
3532 const char *wide;
3533 const char *narrow;
3534 };
3535
3536 struct string_pair narrowable[] =
3537 {
3538 { "add", "add.n" },
3539 { "addi", "addi.n" },
3540 { "addmi", "addi.n" },
3541 { "l32i", "l32i.n" },
3542 { "movi", "movi.n" },
3543 { "ret", "ret.n" },
3544 { "retw", "retw.n" },
3545 { "s32i", "s32i.n" },
3546 { "or", "mov.n" } /* special case only when op1 == op2 */
3547 };
3548
3549 struct string_pair widenable[] =
3550 {
3551 { "add", "add.n" },
3552 { "addi", "addi.n" },
3553 { "addmi", "addi.n" },
3554 { "beqz", "beqz.n" },
3555 { "bnez", "bnez.n" },
3556 { "l32i", "l32i.n" },
3557 { "movi", "movi.n" },
3558 { "ret", "ret.n" },
3559 { "retw", "retw.n" },
3560 { "s32i", "s32i.n" },
3561 { "or", "mov.n" } /* special case only when op1 == op2 */
3562 };
3563
3564
3565 /* Check if an instruction can be "narrowed", i.e., changed from a standard
3566 3-byte instruction to a 2-byte "density" instruction. If it is valid,
3567 return the instruction buffer holding the narrow instruction. Otherwise,
3568 return 0. The set of valid narrowing are specified by a string table
3569 but require some special case operand checks in some cases. */
3570
3571 static xtensa_insnbuf
3572 can_narrow_instruction (xtensa_insnbuf slotbuf,
3573 xtensa_format fmt,
3574 xtensa_opcode opcode)
3575 {
3576 xtensa_isa isa = xtensa_default_isa;
3577 xtensa_format o_fmt;
3578 unsigned opi;
3579
3580 static xtensa_insnbuf o_insnbuf = NULL;
3581 static xtensa_insnbuf o_slotbuf = NULL;
3582
3583 if (o_insnbuf == NULL)
3584 {
3585 o_insnbuf = xtensa_insnbuf_alloc (isa);
3586 o_slotbuf = xtensa_insnbuf_alloc (isa);
3587 }
3588
3589 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
3590 {
3591 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
3592
3593 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3594 {
3595 uint32 value, newval;
3596 int i, operand_count, o_operand_count;
3597 xtensa_opcode o_opcode;
3598
3599 /* Address does not matter in this case. We might need to
3600 fix it to handle branches/jumps. */
3601 bfd_vma self_address = 0;
3602
3603 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3604 if (o_opcode == XTENSA_UNDEFINED)
3605 return 0;
3606 o_fmt = get_single_format (o_opcode);
3607 if (o_fmt == XTENSA_UNDEFINED)
3608 return 0;
3609
3610 if (xtensa_format_length (isa, fmt) != 3
3611 || xtensa_format_length (isa, o_fmt) != 2)
3612 return 0;
3613
3614 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3615 operand_count = xtensa_opcode_num_operands (isa, opcode);
3616 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3617
3618 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3619 return 0;
3620
3621 if (!is_or)
3622 {
3623 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3624 return 0;
3625 }
3626 else
3627 {
3628 uint32 rawval0, rawval1, rawval2;
3629
3630 if (o_operand_count + 1 != operand_count
3631 || xtensa_operand_get_field (isa, opcode, 0,
3632 fmt, 0, slotbuf, &rawval0) != 0
3633 || xtensa_operand_get_field (isa, opcode, 1,
3634 fmt, 0, slotbuf, &rawval1) != 0
3635 || xtensa_operand_get_field (isa, opcode, 2,
3636 fmt, 0, slotbuf, &rawval2) != 0
3637 || rawval1 != rawval2
3638 || rawval0 == rawval1 /* it is a nop */)
3639 return 0;
3640 }
3641
3642 for (i = 0; i < o_operand_count; ++i)
3643 {
3644 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3645 slotbuf, &value)
3646 || xtensa_operand_decode (isa, opcode, i, &value))
3647 return 0;
3648
3649 /* PC-relative branches need adjustment, but
3650 the PC-rel operand will always have a relocation. */
3651 newval = value;
3652 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3653 self_address)
3654 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3655 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3656 o_slotbuf, newval))
3657 return 0;
3658 }
3659
3660 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3661 return 0;
3662
3663 return o_insnbuf;
3664 }
3665 }
3666 return 0;
3667 }
3668
3669
3670 /* Attempt to narrow an instruction. If the narrowing is valid, perform
3671 the action in-place directly into the contents and return TRUE. Otherwise,
3672 the return value is FALSE and the contents are not modified. */
3673
3674 static bfd_boolean
3675 narrow_instruction (bfd_byte *contents,
3676 bfd_size_type content_length,
3677 bfd_size_type offset)
3678 {
3679 xtensa_opcode opcode;
3680 bfd_size_type insn_len;
3681 xtensa_isa isa = xtensa_default_isa;
3682 xtensa_format fmt;
3683 xtensa_insnbuf o_insnbuf;
3684
3685 static xtensa_insnbuf insnbuf = NULL;
3686 static xtensa_insnbuf slotbuf = NULL;
3687
3688 if (insnbuf == NULL)
3689 {
3690 insnbuf = xtensa_insnbuf_alloc (isa);
3691 slotbuf = xtensa_insnbuf_alloc (isa);
3692 }
3693
3694 BFD_ASSERT (offset < content_length);
3695
3696 if (content_length < 2)
3697 return FALSE;
3698
3699 /* We will hand-code a few of these for a little while.
3700 These have all been specified in the assembler aleady. */
3701 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3702 content_length - offset);
3703 fmt = xtensa_format_decode (isa, insnbuf);
3704 if (xtensa_format_num_slots (isa, fmt) != 1)
3705 return FALSE;
3706
3707 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3708 return FALSE;
3709
3710 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3711 if (opcode == XTENSA_UNDEFINED)
3712 return FALSE;
3713 insn_len = xtensa_format_length (isa, fmt);
3714 if (insn_len > content_length)
3715 return FALSE;
3716
3717 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
3718 if (o_insnbuf)
3719 {
3720 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3721 content_length - offset);
3722 return TRUE;
3723 }
3724
3725 return FALSE;
3726 }
3727
3728
3729 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
3730 "density" instruction to a standard 3-byte instruction. If it is valid,
3731 return the instruction buffer holding the wide instruction. Otherwise,
3732 return 0. The set of valid widenings are specified by a string table
3733 but require some special case operand checks in some cases. */
3734
3735 static xtensa_insnbuf
3736 can_widen_instruction (xtensa_insnbuf slotbuf,
3737 xtensa_format fmt,
3738 xtensa_opcode opcode)
3739 {
3740 xtensa_isa isa = xtensa_default_isa;
3741 xtensa_format o_fmt;
3742 unsigned opi;
3743
3744 static xtensa_insnbuf o_insnbuf = NULL;
3745 static xtensa_insnbuf o_slotbuf = NULL;
3746
3747 if (o_insnbuf == NULL)
3748 {
3749 o_insnbuf = xtensa_insnbuf_alloc (isa);
3750 o_slotbuf = xtensa_insnbuf_alloc (isa);
3751 }
3752
3753 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
3754 {
3755 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3756 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3757 || strcmp ("bnez", widenable[opi].wide) == 0);
3758
3759 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3760 {
3761 uint32 value, newval;
3762 int i, operand_count, o_operand_count, check_operand_count;
3763 xtensa_opcode o_opcode;
3764
3765 /* Address does not matter in this case. We might need to fix it
3766 to handle branches/jumps. */
3767 bfd_vma self_address = 0;
3768
3769 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3770 if (o_opcode == XTENSA_UNDEFINED)
3771 return 0;
3772 o_fmt = get_single_format (o_opcode);
3773 if (o_fmt == XTENSA_UNDEFINED)
3774 return 0;
3775
3776 if (xtensa_format_length (isa, fmt) != 2
3777 || xtensa_format_length (isa, o_fmt) != 3)
3778 return 0;
3779
3780 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3781 operand_count = xtensa_opcode_num_operands (isa, opcode);
3782 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3783 check_operand_count = o_operand_count;
3784
3785 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3786 return 0;
3787
3788 if (!is_or)
3789 {
3790 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3791 return 0;
3792 }
3793 else
3794 {
3795 uint32 rawval0, rawval1;
3796
3797 if (o_operand_count != operand_count + 1
3798 || xtensa_operand_get_field (isa, opcode, 0,
3799 fmt, 0, slotbuf, &rawval0) != 0
3800 || xtensa_operand_get_field (isa, opcode, 1,
3801 fmt, 0, slotbuf, &rawval1) != 0
3802 || rawval0 == rawval1 /* it is a nop */)
3803 return 0;
3804 }
3805 if (is_branch)
3806 check_operand_count--;
3807
3808 for (i = 0; i < check_operand_count; i++)
3809 {
3810 int new_i = i;
3811 if (is_or && i == o_operand_count - 1)
3812 new_i = i - 1;
3813 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3814 slotbuf, &value)
3815 || xtensa_operand_decode (isa, opcode, new_i, &value))
3816 return 0;
3817
3818 /* PC-relative branches need adjustment, but
3819 the PC-rel operand will always have a relocation. */
3820 newval = value;
3821 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3822 self_address)
3823 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3824 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3825 o_slotbuf, newval))
3826 return 0;
3827 }
3828
3829 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3830 return 0;
3831
3832 return o_insnbuf;
3833 }
3834 }
3835 return 0;
3836 }
3837
3838
3839 /* Attempt to widen an instruction. If the widening is valid, perform
3840 the action in-place directly into the contents and return TRUE. Otherwise,
3841 the return value is FALSE and the contents are not modified. */
3842
3843 static bfd_boolean
3844 widen_instruction (bfd_byte *contents,
3845 bfd_size_type content_length,
3846 bfd_size_type offset)
3847 {
3848 xtensa_opcode opcode;
3849 bfd_size_type insn_len;
3850 xtensa_isa isa = xtensa_default_isa;
3851 xtensa_format fmt;
3852 xtensa_insnbuf o_insnbuf;
3853
3854 static xtensa_insnbuf insnbuf = NULL;
3855 static xtensa_insnbuf slotbuf = NULL;
3856
3857 if (insnbuf == NULL)
3858 {
3859 insnbuf = xtensa_insnbuf_alloc (isa);
3860 slotbuf = xtensa_insnbuf_alloc (isa);
3861 }
3862
3863 BFD_ASSERT (offset < content_length);
3864
3865 if (content_length < 2)
3866 return FALSE;
3867
3868 /* We will hand-code a few of these for a little while.
3869 These have all been specified in the assembler aleady. */
3870 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3871 content_length - offset);
3872 fmt = xtensa_format_decode (isa, insnbuf);
3873 if (xtensa_format_num_slots (isa, fmt) != 1)
3874 return FALSE;
3875
3876 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3877 return FALSE;
3878
3879 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3880 if (opcode == XTENSA_UNDEFINED)
3881 return FALSE;
3882 insn_len = xtensa_format_length (isa, fmt);
3883 if (insn_len > content_length)
3884 return FALSE;
3885
3886 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
3887 if (o_insnbuf)
3888 {
3889 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3890 content_length - offset);
3891 return TRUE;
3892 }
3893 return FALSE;
3894 }
3895
3896 \f
3897 /* Code for transforming CALLs at link-time. */
3898
3899 static bfd_reloc_status_type
3900 elf_xtensa_do_asm_simplify (bfd_byte *contents,
3901 bfd_vma address,
3902 bfd_vma content_length,
3903 char **error_message)
3904 {
3905 static xtensa_insnbuf insnbuf = NULL;
3906 static xtensa_insnbuf slotbuf = NULL;
3907 xtensa_format core_format = XTENSA_UNDEFINED;
3908 xtensa_opcode opcode;
3909 xtensa_opcode direct_call_opcode;
3910 xtensa_isa isa = xtensa_default_isa;
3911 bfd_byte *chbuf = contents + address;
3912 int opn;
3913
3914 if (insnbuf == NULL)
3915 {
3916 insnbuf = xtensa_insnbuf_alloc (isa);
3917 slotbuf = xtensa_insnbuf_alloc (isa);
3918 }
3919
3920 if (content_length < address)
3921 {
3922 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3923 return bfd_reloc_other;
3924 }
3925
3926 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3927 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3928 if (direct_call_opcode == XTENSA_UNDEFINED)
3929 {
3930 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3931 return bfd_reloc_other;
3932 }
3933
3934 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3935 core_format = xtensa_format_lookup (isa, "x24");
3936 opcode = xtensa_opcode_lookup (isa, "or");
3937 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3938 for (opn = 0; opn < 3; opn++)
3939 {
3940 uint32 regno = 1;
3941 xtensa_operand_encode (isa, opcode, opn, &regno);
3942 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3943 slotbuf, regno);
3944 }
3945 xtensa_format_encode (isa, core_format, insnbuf);
3946 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3947 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
3948
3949 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3950 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3951 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
3952
3953 xtensa_format_encode (isa, core_format, insnbuf);
3954 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3955 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3956 content_length - address - 3);
3957
3958 return bfd_reloc_ok;
3959 }
3960
3961
3962 static bfd_reloc_status_type
3963 contract_asm_expansion (bfd_byte *contents,
3964 bfd_vma content_length,
3965 Elf_Internal_Rela *irel,
3966 char **error_message)
3967 {
3968 bfd_reloc_status_type retval =
3969 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3970 error_message);
3971
3972 if (retval != bfd_reloc_ok)
3973 return bfd_reloc_dangerous;
3974
3975 /* Update the irel->r_offset field so that the right immediate and
3976 the right instruction are modified during the relocation. */
3977 irel->r_offset += 3;
3978 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3979 return bfd_reloc_ok;
3980 }
3981
3982
3983 static xtensa_opcode
3984 swap_callx_for_call_opcode (xtensa_opcode opcode)
3985 {
3986 init_call_opcodes ();
3987
3988 if (opcode == callx0_op) return call0_op;
3989 if (opcode == callx4_op) return call4_op;
3990 if (opcode == callx8_op) return call8_op;
3991 if (opcode == callx12_op) return call12_op;
3992
3993 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3994 return XTENSA_UNDEFINED;
3995 }
3996
3997
3998 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3999 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4000 If not, return XTENSA_UNDEFINED. */
4001
4002 #define L32R_TARGET_REG_OPERAND 0
4003 #define CONST16_TARGET_REG_OPERAND 0
4004 #define CALLN_SOURCE_OPERAND 0
4005
4006 static xtensa_opcode
4007 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4008 {
4009 static xtensa_insnbuf insnbuf = NULL;
4010 static xtensa_insnbuf slotbuf = NULL;
4011 xtensa_format fmt;
4012 xtensa_opcode opcode;
4013 xtensa_isa isa = xtensa_default_isa;
4014 uint32 regno, const16_regno, call_regno;
4015 int offset = 0;
4016
4017 if (insnbuf == NULL)
4018 {
4019 insnbuf = xtensa_insnbuf_alloc (isa);
4020 slotbuf = xtensa_insnbuf_alloc (isa);
4021 }
4022
4023 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4024 fmt = xtensa_format_decode (isa, insnbuf);
4025 if (fmt == XTENSA_UNDEFINED
4026 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4027 return XTENSA_UNDEFINED;
4028
4029 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4030 if (opcode == XTENSA_UNDEFINED)
4031 return XTENSA_UNDEFINED;
4032
4033 if (opcode == get_l32r_opcode ())
4034 {
4035 if (p_uses_l32r)
4036 *p_uses_l32r = TRUE;
4037 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4038 fmt, 0, slotbuf, &regno)
4039 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4040 &regno))
4041 return XTENSA_UNDEFINED;
4042 }
4043 else if (opcode == get_const16_opcode ())
4044 {
4045 if (p_uses_l32r)
4046 *p_uses_l32r = FALSE;
4047 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4048 fmt, 0, slotbuf, &regno)
4049 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4050 &regno))
4051 return XTENSA_UNDEFINED;
4052
4053 /* Check that the next instruction is also CONST16. */
4054 offset += xtensa_format_length (isa, fmt);
4055 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4056 fmt = xtensa_format_decode (isa, insnbuf);
4057 if (fmt == XTENSA_UNDEFINED
4058 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4059 return XTENSA_UNDEFINED;
4060 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4061 if (opcode != get_const16_opcode ())
4062 return XTENSA_UNDEFINED;
4063
4064 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4065 fmt, 0, slotbuf, &const16_regno)
4066 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4067 &const16_regno)
4068 || const16_regno != regno)
4069 return XTENSA_UNDEFINED;
4070 }
4071 else
4072 return XTENSA_UNDEFINED;
4073
4074 /* Next instruction should be an CALLXn with operand 0 == regno. */
4075 offset += xtensa_format_length (isa, fmt);
4076 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4077 fmt = xtensa_format_decode (isa, insnbuf);
4078 if (fmt == XTENSA_UNDEFINED
4079 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4080 return XTENSA_UNDEFINED;
4081 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4082 if (opcode == XTENSA_UNDEFINED
4083 || !is_indirect_call_opcode (opcode))
4084 return XTENSA_UNDEFINED;
4085
4086 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4087 fmt, 0, slotbuf, &call_regno)
4088 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4089 &call_regno))
4090 return XTENSA_UNDEFINED;
4091
4092 if (call_regno != regno)
4093 return XTENSA_UNDEFINED;
4094
4095 return opcode;
4096 }
4097
4098 \f
4099 /* Data structures used during relaxation. */
4100
4101 /* r_reloc: relocation values. */
4102
4103 /* Through the relaxation process, we need to keep track of the values
4104 that will result from evaluating relocations. The standard ELF
4105 relocation structure is not sufficient for this purpose because we're
4106 operating on multiple input files at once, so we need to know which
4107 input file a relocation refers to. The r_reloc structure thus
4108 records both the input file (bfd) and ELF relocation.
4109
4110 For efficiency, an r_reloc also contains a "target_offset" field to
4111 cache the target-section-relative offset value that is represented by
4112 the relocation.
4113
4114 The r_reloc also contains a virtual offset that allows multiple
4115 inserted literals to be placed at the same "address" with
4116 different offsets. */
4117
4118 typedef struct r_reloc_struct r_reloc;
4119
4120 struct r_reloc_struct
4121 {
4122 bfd *abfd;
4123 Elf_Internal_Rela rela;
4124 bfd_vma target_offset;
4125 bfd_vma virtual_offset;
4126 };
4127
4128
4129 /* The r_reloc structure is included by value in literal_value, but not
4130 every literal_value has an associated relocation -- some are simple
4131 constants. In such cases, we set all the fields in the r_reloc
4132 struct to zero. The r_reloc_is_const function should be used to
4133 detect this case. */
4134
4135 static bfd_boolean
4136 r_reloc_is_const (const r_reloc *r_rel)
4137 {
4138 return (r_rel->abfd == NULL);
4139 }
4140
4141
4142 static bfd_vma
4143 r_reloc_get_target_offset (const r_reloc *r_rel)
4144 {
4145 bfd_vma target_offset;
4146 unsigned long r_symndx;
4147
4148 BFD_ASSERT (!r_reloc_is_const (r_rel));
4149 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4150 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4151 return (target_offset + r_rel->rela.r_addend);
4152 }
4153
4154
4155 static struct elf_link_hash_entry *
4156 r_reloc_get_hash_entry (const r_reloc *r_rel)
4157 {
4158 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4159 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4160 }
4161
4162
4163 static asection *
4164 r_reloc_get_section (const r_reloc *r_rel)
4165 {
4166 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4167 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4168 }
4169
4170
4171 static bfd_boolean
4172 r_reloc_is_defined (const r_reloc *r_rel)
4173 {
4174 asection *sec;
4175 if (r_rel == NULL)
4176 return FALSE;
4177
4178 sec = r_reloc_get_section (r_rel);
4179 if (sec == bfd_abs_section_ptr
4180 || sec == bfd_com_section_ptr
4181 || sec == bfd_und_section_ptr)
4182 return FALSE;
4183 return TRUE;
4184 }
4185
4186
4187 static void
4188 r_reloc_init (r_reloc *r_rel,
4189 bfd *abfd,
4190 Elf_Internal_Rela *irel,
4191 bfd_byte *contents,
4192 bfd_size_type content_length)
4193 {
4194 int r_type;
4195 reloc_howto_type *howto;
4196
4197 if (irel)
4198 {
4199 r_rel->rela = *irel;
4200 r_rel->abfd = abfd;
4201 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4202 r_rel->virtual_offset = 0;
4203 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4204 howto = &elf_howto_table[r_type];
4205 if (howto->partial_inplace)
4206 {
4207 bfd_vma inplace_val;
4208 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4209
4210 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4211 r_rel->target_offset += inplace_val;
4212 }
4213 }
4214 else
4215 memset (r_rel, 0, sizeof (r_reloc));
4216 }
4217
4218
4219 #if DEBUG
4220
4221 static void
4222 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4223 {
4224 if (r_reloc_is_defined (r_rel))
4225 {
4226 asection *sec = r_reloc_get_section (r_rel);
4227 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4228 }
4229 else if (r_reloc_get_hash_entry (r_rel))
4230 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4231 else
4232 fprintf (fp, " ?? + ");
4233
4234 fprintf_vma (fp, r_rel->target_offset);
4235 if (r_rel->virtual_offset)
4236 {
4237 fprintf (fp, " + ");
4238 fprintf_vma (fp, r_rel->virtual_offset);
4239 }
4240
4241 fprintf (fp, ")");
4242 }
4243
4244 #endif /* DEBUG */
4245
4246 \f
4247 /* source_reloc: relocations that reference literals. */
4248
4249 /* To determine whether literals can be coalesced, we need to first
4250 record all the relocations that reference the literals. The
4251 source_reloc structure below is used for this purpose. The
4252 source_reloc entries are kept in a per-literal-section array, sorted
4253 by offset within the literal section (i.e., target offset).
4254
4255 The source_sec and r_rel.rela.r_offset fields identify the source of
4256 the relocation. The r_rel field records the relocation value, i.e.,
4257 the offset of the literal being referenced. The opnd field is needed
4258 to determine the range of the immediate field to which the relocation
4259 applies, so we can determine whether another literal with the same
4260 value is within range. The is_null field is true when the relocation
4261 is being removed (e.g., when an L32R is being removed due to a CALLX
4262 that is converted to a direct CALL). */
4263
4264 typedef struct source_reloc_struct source_reloc;
4265
4266 struct source_reloc_struct
4267 {
4268 asection *source_sec;
4269 r_reloc r_rel;
4270 xtensa_opcode opcode;
4271 int opnd;
4272 bfd_boolean is_null;
4273 bfd_boolean is_abs_literal;
4274 };
4275
4276
4277 static void
4278 init_source_reloc (source_reloc *reloc,
4279 asection *source_sec,
4280 const r_reloc *r_rel,
4281 xtensa_opcode opcode,
4282 int opnd,
4283 bfd_boolean is_abs_literal)
4284 {
4285 reloc->source_sec = source_sec;
4286 reloc->r_rel = *r_rel;
4287 reloc->opcode = opcode;
4288 reloc->opnd = opnd;
4289 reloc->is_null = FALSE;
4290 reloc->is_abs_literal = is_abs_literal;
4291 }
4292
4293
4294 /* Find the source_reloc for a particular source offset and relocation
4295 type. Note that the array is sorted by _target_ offset, so this is
4296 just a linear search. */
4297
4298 static source_reloc *
4299 find_source_reloc (source_reloc *src_relocs,
4300 int src_count,
4301 asection *sec,
4302 Elf_Internal_Rela *irel)
4303 {
4304 int i;
4305
4306 for (i = 0; i < src_count; i++)
4307 {
4308 if (src_relocs[i].source_sec == sec
4309 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4310 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4311 == ELF32_R_TYPE (irel->r_info)))
4312 return &src_relocs[i];
4313 }
4314
4315 return NULL;
4316 }
4317
4318
4319 static int
4320 source_reloc_compare (const void *ap, const void *bp)
4321 {
4322 const source_reloc *a = (const source_reloc *) ap;
4323 const source_reloc *b = (const source_reloc *) bp;
4324
4325 if (a->r_rel.target_offset != b->r_rel.target_offset)
4326 return (a->r_rel.target_offset - b->r_rel.target_offset);
4327
4328 /* We don't need to sort on these criteria for correctness,
4329 but enforcing a more strict ordering prevents unstable qsort
4330 from behaving differently with different implementations.
4331 Without the code below we get correct but different results
4332 on Solaris 2.7 and 2.8. We would like to always produce the
4333 same results no matter the host. */
4334
4335 if ((!a->is_null) - (!b->is_null))
4336 return ((!a->is_null) - (!b->is_null));
4337 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
4338 }
4339
4340 \f
4341 /* Literal values and value hash tables. */
4342
4343 /* Literals with the same value can be coalesced. The literal_value
4344 structure records the value of a literal: the "r_rel" field holds the
4345 information from the relocation on the literal (if there is one) and
4346 the "value" field holds the contents of the literal word itself.
4347
4348 The value_map structure records a literal value along with the
4349 location of a literal holding that value. The value_map hash table
4350 is indexed by the literal value, so that we can quickly check if a
4351 particular literal value has been seen before and is thus a candidate
4352 for coalescing. */
4353
4354 typedef struct literal_value_struct literal_value;
4355 typedef struct value_map_struct value_map;
4356 typedef struct value_map_hash_table_struct value_map_hash_table;
4357
4358 struct literal_value_struct
4359 {
4360 r_reloc r_rel;
4361 unsigned long value;
4362 bfd_boolean is_abs_literal;
4363 };
4364
4365 struct value_map_struct
4366 {
4367 literal_value val; /* The literal value. */
4368 r_reloc loc; /* Location of the literal. */
4369 value_map *next;
4370 };
4371
4372 struct value_map_hash_table_struct
4373 {
4374 unsigned bucket_count;
4375 value_map **buckets;
4376 unsigned count;
4377 bfd_boolean has_last_loc;
4378 r_reloc last_loc;
4379 };
4380
4381
4382 static void
4383 init_literal_value (literal_value *lit,
4384 const r_reloc *r_rel,
4385 unsigned long value,
4386 bfd_boolean is_abs_literal)
4387 {
4388 lit->r_rel = *r_rel;
4389 lit->value = value;
4390 lit->is_abs_literal = is_abs_literal;
4391 }
4392
4393
4394 static bfd_boolean
4395 literal_value_equal (const literal_value *src1,
4396 const literal_value *src2,
4397 bfd_boolean final_static_link)
4398 {
4399 struct elf_link_hash_entry *h1, *h2;
4400
4401 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4402 return FALSE;
4403
4404 if (r_reloc_is_const (&src1->r_rel))
4405 return (src1->value == src2->value);
4406
4407 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4408 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4409 return FALSE;
4410
4411 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4412 return FALSE;
4413
4414 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4415 return FALSE;
4416
4417 if (src1->value != src2->value)
4418 return FALSE;
4419
4420 /* Now check for the same section (if defined) or the same elf_hash
4421 (if undefined or weak). */
4422 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4423 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4424 if (r_reloc_is_defined (&src1->r_rel)
4425 && (final_static_link
4426 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4427 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4428 {
4429 if (r_reloc_get_section (&src1->r_rel)
4430 != r_reloc_get_section (&src2->r_rel))
4431 return FALSE;
4432 }
4433 else
4434 {
4435 /* Require that the hash entries (i.e., symbols) be identical. */
4436 if (h1 != h2 || h1 == 0)
4437 return FALSE;
4438 }
4439
4440 if (src1->is_abs_literal != src2->is_abs_literal)
4441 return FALSE;
4442
4443 return TRUE;
4444 }
4445
4446
4447 /* Must be power of 2. */
4448 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
4449
4450 static value_map_hash_table *
4451 value_map_hash_table_init (void)
4452 {
4453 value_map_hash_table *values;
4454
4455 values = (value_map_hash_table *)
4456 bfd_zmalloc (sizeof (value_map_hash_table));
4457 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4458 values->count = 0;
4459 values->buckets = (value_map **)
4460 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4461 if (values->buckets == NULL)
4462 {
4463 free (values);
4464 return NULL;
4465 }
4466 values->has_last_loc = FALSE;
4467
4468 return values;
4469 }
4470
4471
4472 static void
4473 value_map_hash_table_delete (value_map_hash_table *table)
4474 {
4475 free (table->buckets);
4476 free (table);
4477 }
4478
4479
4480 static unsigned
4481 hash_bfd_vma (bfd_vma val)
4482 {
4483 return (val >> 2) + (val >> 10);
4484 }
4485
4486
4487 static unsigned
4488 literal_value_hash (const literal_value *src)
4489 {
4490 unsigned hash_val;
4491
4492 hash_val = hash_bfd_vma (src->value);
4493 if (!r_reloc_is_const (&src->r_rel))
4494 {
4495 void *sec_or_hash;
4496
4497 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4498 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4499 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4500
4501 /* Now check for the same section and the same elf_hash. */
4502 if (r_reloc_is_defined (&src->r_rel))
4503 sec_or_hash = r_reloc_get_section (&src->r_rel);
4504 else
4505 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
4506 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
4507 }
4508 return hash_val;
4509 }
4510
4511
4512 /* Check if the specified literal_value has been seen before. */
4513
4514 static value_map *
4515 value_map_get_cached_value (value_map_hash_table *map,
4516 const literal_value *val,
4517 bfd_boolean final_static_link)
4518 {
4519 value_map *map_e;
4520 value_map *bucket;
4521 unsigned idx;
4522
4523 idx = literal_value_hash (val);
4524 idx = idx & (map->bucket_count - 1);
4525 bucket = map->buckets[idx];
4526 for (map_e = bucket; map_e; map_e = map_e->next)
4527 {
4528 if (literal_value_equal (&map_e->val, val, final_static_link))
4529 return map_e;
4530 }
4531 return NULL;
4532 }
4533
4534
4535 /* Record a new literal value. It is illegal to call this if VALUE
4536 already has an entry here. */
4537
4538 static value_map *
4539 add_value_map (value_map_hash_table *map,
4540 const literal_value *val,
4541 const r_reloc *loc,
4542 bfd_boolean final_static_link)
4543 {
4544 value_map **bucket_p;
4545 unsigned idx;
4546
4547 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4548 if (val_e == NULL)
4549 {
4550 bfd_set_error (bfd_error_no_memory);
4551 return NULL;
4552 }
4553
4554 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4555 val_e->val = *val;
4556 val_e->loc = *loc;
4557
4558 idx = literal_value_hash (val);
4559 idx = idx & (map->bucket_count - 1);
4560 bucket_p = &map->buckets[idx];
4561
4562 val_e->next = *bucket_p;
4563 *bucket_p = val_e;
4564 map->count++;
4565 /* FIXME: Consider resizing the hash table if we get too many entries. */
4566
4567 return val_e;
4568 }
4569
4570 \f
4571 /* Lists of text actions (ta_) for narrowing, widening, longcall
4572 conversion, space fill, code & literal removal, etc. */
4573
4574 /* The following text actions are generated:
4575
4576 "ta_remove_insn" remove an instruction or instructions
4577 "ta_remove_longcall" convert longcall to call
4578 "ta_convert_longcall" convert longcall to nop/call
4579 "ta_narrow_insn" narrow a wide instruction
4580 "ta_widen" widen a narrow instruction
4581 "ta_fill" add fill or remove fill
4582 removed < 0 is a fill; branches to the fill address will be
4583 changed to address + fill size (e.g., address - removed)
4584 removed >= 0 branches to the fill address will stay unchanged
4585 "ta_remove_literal" remove a literal; this action is
4586 indicated when a literal is removed
4587 or replaced.
4588 "ta_add_literal" insert a new literal; this action is
4589 indicated when a literal has been moved.
4590 It may use a virtual_offset because
4591 multiple literals can be placed at the
4592 same location.
4593
4594 For each of these text actions, we also record the number of bytes
4595 removed by performing the text action. In the case of a "ta_widen"
4596 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4597
4598 typedef struct text_action_struct text_action;
4599 typedef struct text_action_list_struct text_action_list;
4600 typedef enum text_action_enum_t text_action_t;
4601
4602 enum text_action_enum_t
4603 {
4604 ta_none,
4605 ta_remove_insn, /* removed = -size */
4606 ta_remove_longcall, /* removed = -size */
4607 ta_convert_longcall, /* removed = 0 */
4608 ta_narrow_insn, /* removed = -1 */
4609 ta_widen_insn, /* removed = +1 */
4610 ta_fill, /* removed = +size */
4611 ta_remove_literal,
4612 ta_add_literal
4613 };
4614
4615
4616 /* Structure for a text action record. */
4617 struct text_action_struct
4618 {
4619 text_action_t action;
4620 asection *sec; /* Optional */
4621 bfd_vma offset;
4622 bfd_vma virtual_offset; /* Zero except for adding literals. */
4623 int removed_bytes;
4624 literal_value value; /* Only valid when adding literals. */
4625
4626 text_action *next;
4627 };
4628
4629
4630 /* List of all of the actions taken on a text section. */
4631 struct text_action_list_struct
4632 {
4633 text_action *head;
4634 };
4635
4636
4637 static text_action *
4638 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
4639 {
4640 text_action **m_p;
4641
4642 /* It is not necessary to fill at the end of a section. */
4643 if (sec->size == offset)
4644 return NULL;
4645
4646 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4647 {
4648 text_action *t = *m_p;
4649 /* When the action is another fill at the same address,
4650 just increase the size. */
4651 if (t->offset == offset && t->action == ta_fill)
4652 return t;
4653 }
4654 return NULL;
4655 }
4656
4657
4658 static int
4659 compute_removed_action_diff (const text_action *ta,
4660 asection *sec,
4661 bfd_vma offset,
4662 int removed,
4663 int removable_space)
4664 {
4665 int new_removed;
4666 int current_removed = 0;
4667
4668 if (ta)
4669 current_removed = ta->removed_bytes;
4670
4671 BFD_ASSERT (ta == NULL || ta->offset == offset);
4672 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4673
4674 /* It is not necessary to fill at the end of a section. Clean this up. */
4675 if (sec->size == offset)
4676 new_removed = removable_space - 0;
4677 else
4678 {
4679 int space;
4680 int added = -removed - current_removed;
4681 /* Ignore multiples of the section alignment. */
4682 added = ((1 << sec->alignment_power) - 1) & added;
4683 new_removed = (-added);
4684
4685 /* Modify for removable. */
4686 space = removable_space - new_removed;
4687 new_removed = (removable_space
4688 - (((1 << sec->alignment_power) - 1) & space));
4689 }
4690 return (new_removed - current_removed);
4691 }
4692
4693
4694 static void
4695 adjust_fill_action (text_action *ta, int fill_diff)
4696 {
4697 ta->removed_bytes += fill_diff;
4698 }
4699
4700
4701 /* Add a modification action to the text. For the case of adding or
4702 removing space, modify any current fill and assume that
4703 "unreachable_space" bytes can be freely contracted. Note that a
4704 negative removed value is a fill. */
4705
4706 static void
4707 text_action_add (text_action_list *l,
4708 text_action_t action,
4709 asection *sec,
4710 bfd_vma offset,
4711 int removed)
4712 {
4713 text_action **m_p;
4714 text_action *ta;
4715
4716 /* It is not necessary to fill at the end of a section. */
4717 if (action == ta_fill && sec->size == offset)
4718 return;
4719
4720 /* It is not necessary to fill 0 bytes. */
4721 if (action == ta_fill && removed == 0)
4722 return;
4723
4724 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4725 {
4726 text_action *t = *m_p;
4727 /* When the action is another fill at the same address,
4728 just increase the size. */
4729 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4730 {
4731 t->removed_bytes += removed;
4732 return;
4733 }
4734 }
4735
4736 /* Create a new record and fill it up. */
4737 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4738 ta->action = action;
4739 ta->sec = sec;
4740 ta->offset = offset;
4741 ta->removed_bytes = removed;
4742 ta->next = (*m_p);
4743 *m_p = ta;
4744 }
4745
4746
4747 static void
4748 text_action_add_literal (text_action_list *l,
4749 text_action_t action,
4750 const r_reloc *loc,
4751 const literal_value *value,
4752 int removed)
4753 {
4754 text_action **m_p;
4755 text_action *ta;
4756 asection *sec = r_reloc_get_section (loc);
4757 bfd_vma offset = loc->target_offset;
4758 bfd_vma virtual_offset = loc->virtual_offset;
4759
4760 BFD_ASSERT (action == ta_add_literal);
4761
4762 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4763 {
4764 if ((*m_p)->offset > offset
4765 && ((*m_p)->offset != offset
4766 || (*m_p)->virtual_offset > virtual_offset))
4767 break;
4768 }
4769
4770 /* Create a new record and fill it up. */
4771 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4772 ta->action = action;
4773 ta->sec = sec;
4774 ta->offset = offset;
4775 ta->virtual_offset = virtual_offset;
4776 ta->value = *value;
4777 ta->removed_bytes = removed;
4778 ta->next = (*m_p);
4779 *m_p = ta;
4780 }
4781
4782
4783 static bfd_vma
4784 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
4785 {
4786 text_action *r;
4787 int removed = 0;
4788
4789 for (r = action_list->head; r && r->offset <= offset; r = r->next)
4790 {
4791 if (r->offset < offset
4792 || (r->action == ta_fill && r->removed_bytes < 0))
4793 removed += r->removed_bytes;
4794 }
4795
4796 return (offset - removed);
4797 }
4798
4799
4800 static unsigned
4801 action_list_count (text_action_list *action_list)
4802 {
4803 text_action *r = action_list->head;
4804 unsigned count = 0;
4805 for (r = action_list->head; r != NULL; r = r->next)
4806 {
4807 count++;
4808 }
4809 return count;
4810 }
4811
4812
4813 static bfd_vma
4814 offset_with_removed_text_before_fill (text_action_list *action_list,
4815 bfd_vma offset)
4816 {
4817 text_action *r;
4818 int removed = 0;
4819
4820 for (r = action_list->head; r && r->offset < offset; r = r->next)
4821 removed += r->removed_bytes;
4822
4823 return (offset - removed);
4824 }
4825
4826
4827 /* The find_insn_action routine will only find non-fill actions. */
4828
4829 static text_action *
4830 find_insn_action (text_action_list *action_list, bfd_vma offset)
4831 {
4832 text_action *t;
4833 for (t = action_list->head; t; t = t->next)
4834 {
4835 if (t->offset == offset)
4836 {
4837 switch (t->action)
4838 {
4839 case ta_none:
4840 case ta_fill:
4841 break;
4842 case ta_remove_insn:
4843 case ta_remove_longcall:
4844 case ta_convert_longcall:
4845 case ta_narrow_insn:
4846 case ta_widen_insn:
4847 return t;
4848 case ta_remove_literal:
4849 case ta_add_literal:
4850 BFD_ASSERT (0);
4851 break;
4852 }
4853 }
4854 }
4855 return NULL;
4856 }
4857
4858
4859 #if DEBUG
4860
4861 static void
4862 print_action_list (FILE *fp, text_action_list *action_list)
4863 {
4864 text_action *r;
4865
4866 fprintf (fp, "Text Action\n");
4867 for (r = action_list->head; r != NULL; r = r->next)
4868 {
4869 const char *t = "unknown";
4870 switch (r->action)
4871 {
4872 case ta_remove_insn:
4873 t = "remove_insn"; break;
4874 case ta_remove_longcall:
4875 t = "remove_longcall"; break;
4876 case ta_convert_longcall:
4877 t = "remove_longcall"; break;
4878 case ta_narrow_insn:
4879 t = "narrow_insn"; break;
4880 case ta_widen_insn:
4881 t = "widen_insn"; break;
4882 case ta_fill:
4883 t = "fill"; break;
4884 case ta_none:
4885 t = "none"; break;
4886 case ta_remove_literal:
4887 t = "remove_literal"; break;
4888 case ta_add_literal:
4889 t = "add_literal"; break;
4890 }
4891
4892 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4893 r->sec->owner->filename,
4894 r->sec->name, r->offset, t, r->removed_bytes);
4895 }
4896 }
4897
4898 #endif /* DEBUG */
4899
4900 \f
4901 /* Lists of literals being coalesced or removed. */
4902
4903 /* In the usual case, the literal identified by "from" is being
4904 coalesced with another literal identified by "to". If the literal is
4905 unused and is being removed altogether, "to.abfd" will be NULL.
4906 The removed_literal entries are kept on a per-section list, sorted
4907 by the "from" offset field. */
4908
4909 typedef struct removed_literal_struct removed_literal;
4910 typedef struct removed_literal_list_struct removed_literal_list;
4911
4912 struct removed_literal_struct
4913 {
4914 r_reloc from;
4915 r_reloc to;
4916 removed_literal *next;
4917 };
4918
4919 struct removed_literal_list_struct
4920 {
4921 removed_literal *head;
4922 removed_literal *tail;
4923 };
4924
4925
4926 /* Record that the literal at "from" is being removed. If "to" is not
4927 NULL, the "from" literal is being coalesced with the "to" literal. */
4928
4929 static void
4930 add_removed_literal (removed_literal_list *removed_list,
4931 const r_reloc *from,
4932 const r_reloc *to)
4933 {
4934 removed_literal *r, *new_r, *next_r;
4935
4936 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4937
4938 new_r->from = *from;
4939 if (to)
4940 new_r->to = *to;
4941 else
4942 new_r->to.abfd = NULL;
4943 new_r->next = NULL;
4944
4945 r = removed_list->head;
4946 if (r == NULL)
4947 {
4948 removed_list->head = new_r;
4949 removed_list->tail = new_r;
4950 }
4951 /* Special check for common case of append. */
4952 else if (removed_list->tail->from.target_offset < from->target_offset)
4953 {
4954 removed_list->tail->next = new_r;
4955 removed_list->tail = new_r;
4956 }
4957 else
4958 {
4959 while (r->from.target_offset < from->target_offset && r->next)
4960 {
4961 r = r->next;
4962 }
4963 next_r = r->next;
4964 r->next = new_r;
4965 new_r->next = next_r;
4966 if (next_r == NULL)
4967 removed_list->tail = new_r;
4968 }
4969 }
4970
4971
4972 /* Check if the list of removed literals contains an entry for the
4973 given address. Return the entry if found. */
4974
4975 static removed_literal *
4976 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
4977 {
4978 removed_literal *r = removed_list->head;
4979 while (r && r->from.target_offset < addr)
4980 r = r->next;
4981 if (r && r->from.target_offset == addr)
4982 return r;
4983 return NULL;
4984 }
4985
4986
4987 #if DEBUG
4988
4989 static void
4990 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
4991 {
4992 removed_literal *r;
4993 r = removed_list->head;
4994 if (r)
4995 fprintf (fp, "Removed Literals\n");
4996 for (; r != NULL; r = r->next)
4997 {
4998 print_r_reloc (fp, &r->from);
4999 fprintf (fp, " => ");
5000 if (r->to.abfd == NULL)
5001 fprintf (fp, "REMOVED");
5002 else
5003 print_r_reloc (fp, &r->to);
5004 fprintf (fp, "\n");
5005 }
5006 }
5007
5008 #endif /* DEBUG */
5009
5010 \f
5011 /* Per-section data for relaxation. */
5012
5013 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5014
5015 struct xtensa_relax_info_struct
5016 {
5017 bfd_boolean is_relaxable_literal_section;
5018 bfd_boolean is_relaxable_asm_section;
5019 int visited; /* Number of times visited. */
5020
5021 source_reloc *src_relocs; /* Array[src_count]. */
5022 int src_count;
5023 int src_next; /* Next src_relocs entry to assign. */
5024
5025 removed_literal_list removed_list;
5026 text_action_list action_list;
5027
5028 reloc_bfd_fix *fix_list;
5029 reloc_bfd_fix *fix_array;
5030 unsigned fix_array_count;
5031
5032 /* Support for expanding the reloc array that is stored
5033 in the section structure. If the relocations have been
5034 reallocated, the newly allocated relocations will be referenced
5035 here along with the actual size allocated. The relocation
5036 count will always be found in the section structure. */
5037 Elf_Internal_Rela *allocated_relocs;
5038 unsigned relocs_count;
5039 unsigned allocated_relocs_count;
5040 };
5041
5042 struct elf_xtensa_section_data
5043 {
5044 struct bfd_elf_section_data elf;
5045 xtensa_relax_info relax_info;
5046 };
5047
5048
5049 static bfd_boolean
5050 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5051 {
5052 if (!sec->used_by_bfd)
5053 {
5054 struct elf_xtensa_section_data *sdata;
5055 bfd_size_type amt = sizeof (*sdata);
5056
5057 sdata = bfd_zalloc (abfd, amt);
5058 if (sdata == NULL)
5059 return FALSE;
5060 sec->used_by_bfd = sdata;
5061 }
5062
5063 return _bfd_elf_new_section_hook (abfd, sec);
5064 }
5065
5066
5067 static xtensa_relax_info *
5068 get_xtensa_relax_info (asection *sec)
5069 {
5070 struct elf_xtensa_section_data *section_data;
5071
5072 /* No info available if no section or if it is an output section. */
5073 if (!sec || sec == sec->output_section)
5074 return NULL;
5075
5076 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5077 return &section_data->relax_info;
5078 }
5079
5080
5081 static void
5082 init_xtensa_relax_info (asection *sec)
5083 {
5084 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5085
5086 relax_info->is_relaxable_literal_section = FALSE;
5087 relax_info->is_relaxable_asm_section = FALSE;
5088 relax_info->visited = 0;
5089
5090 relax_info->src_relocs = NULL;
5091 relax_info->src_count = 0;
5092 relax_info->src_next = 0;
5093
5094 relax_info->removed_list.head = NULL;
5095 relax_info->removed_list.tail = NULL;
5096
5097 relax_info->action_list.head = NULL;
5098
5099 relax_info->fix_list = NULL;
5100 relax_info->fix_array = NULL;
5101 relax_info->fix_array_count = 0;
5102
5103 relax_info->allocated_relocs = NULL;
5104 relax_info->relocs_count = 0;
5105 relax_info->allocated_relocs_count = 0;
5106 }
5107
5108 \f
5109 /* Coalescing literals may require a relocation to refer to a section in
5110 a different input file, but the standard relocation information
5111 cannot express that. Instead, the reloc_bfd_fix structures are used
5112 to "fix" the relocations that refer to sections in other input files.
5113 These structures are kept on per-section lists. The "src_type" field
5114 records the relocation type in case there are multiple relocations on
5115 the same location. FIXME: This is ugly; an alternative might be to
5116 add new symbols with the "owner" field to some other input file. */
5117
5118 struct reloc_bfd_fix_struct
5119 {
5120 asection *src_sec;
5121 bfd_vma src_offset;
5122 unsigned src_type; /* Relocation type. */
5123
5124 asection *target_sec;
5125 bfd_vma target_offset;
5126 bfd_boolean translated;
5127
5128 reloc_bfd_fix *next;
5129 };
5130
5131
5132 static reloc_bfd_fix *
5133 reloc_bfd_fix_init (asection *src_sec,
5134 bfd_vma src_offset,
5135 unsigned src_type,
5136 asection *target_sec,
5137 bfd_vma target_offset,
5138 bfd_boolean translated)
5139 {
5140 reloc_bfd_fix *fix;
5141
5142 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5143 fix->src_sec = src_sec;
5144 fix->src_offset = src_offset;
5145 fix->src_type = src_type;
5146 fix->target_sec = target_sec;
5147 fix->target_offset = target_offset;
5148 fix->translated = translated;
5149
5150 return fix;
5151 }
5152
5153
5154 static void
5155 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5156 {
5157 xtensa_relax_info *relax_info;
5158
5159 relax_info = get_xtensa_relax_info (src_sec);
5160 fix->next = relax_info->fix_list;
5161 relax_info->fix_list = fix;
5162 }
5163
5164
5165 static int
5166 fix_compare (const void *ap, const void *bp)
5167 {
5168 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5169 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5170
5171 if (a->src_offset != b->src_offset)
5172 return (a->src_offset - b->src_offset);
5173 return (a->src_type - b->src_type);
5174 }
5175
5176
5177 static void
5178 cache_fix_array (asection *sec)
5179 {
5180 unsigned i, count = 0;
5181 reloc_bfd_fix *r;
5182 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5183
5184 if (relax_info == NULL)
5185 return;
5186 if (relax_info->fix_list == NULL)
5187 return;
5188
5189 for (r = relax_info->fix_list; r != NULL; r = r->next)
5190 count++;
5191
5192 relax_info->fix_array =
5193 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5194 relax_info->fix_array_count = count;
5195
5196 r = relax_info->fix_list;
5197 for (i = 0; i < count; i++, r = r->next)
5198 {
5199 relax_info->fix_array[count - 1 - i] = *r;
5200 relax_info->fix_array[count - 1 - i].next = NULL;
5201 }
5202
5203 qsort (relax_info->fix_array, relax_info->fix_array_count,
5204 sizeof (reloc_bfd_fix), fix_compare);
5205 }
5206
5207
5208 static reloc_bfd_fix *
5209 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
5210 {
5211 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5212 reloc_bfd_fix *rv;
5213 reloc_bfd_fix key;
5214
5215 if (relax_info == NULL)
5216 return NULL;
5217 if (relax_info->fix_list == NULL)
5218 return NULL;
5219
5220 if (relax_info->fix_array == NULL)
5221 cache_fix_array (sec);
5222
5223 key.src_offset = offset;
5224 key.src_type = type;
5225 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5226 sizeof (reloc_bfd_fix), fix_compare);
5227 return rv;
5228 }
5229
5230 \f
5231 /* Section caching. */
5232
5233 typedef struct section_cache_struct section_cache_t;
5234
5235 struct section_cache_struct
5236 {
5237 asection *sec;
5238
5239 bfd_byte *contents; /* Cache of the section contents. */
5240 bfd_size_type content_length;
5241
5242 property_table_entry *ptbl; /* Cache of the section property table. */
5243 unsigned pte_count;
5244
5245 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5246 unsigned reloc_count;
5247 };
5248
5249
5250 static void
5251 init_section_cache (section_cache_t *sec_cache)
5252 {
5253 memset (sec_cache, 0, sizeof (*sec_cache));
5254 }
5255
5256
5257 static void
5258 clear_section_cache (section_cache_t *sec_cache)
5259 {
5260 if (sec_cache->sec)
5261 {
5262 release_contents (sec_cache->sec, sec_cache->contents);
5263 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5264 if (sec_cache->ptbl)
5265 free (sec_cache->ptbl);
5266 memset (sec_cache, 0, sizeof (sec_cache));
5267 }
5268 }
5269
5270
5271 static bfd_boolean
5272 section_cache_section (section_cache_t *sec_cache,
5273 asection *sec,
5274 struct bfd_link_info *link_info)
5275 {
5276 bfd *abfd;
5277 property_table_entry *prop_table = NULL;
5278 int ptblsize = 0;
5279 bfd_byte *contents = NULL;
5280 Elf_Internal_Rela *internal_relocs = NULL;
5281 bfd_size_type sec_size;
5282
5283 if (sec == NULL)
5284 return FALSE;
5285 if (sec == sec_cache->sec)
5286 return TRUE;
5287
5288 abfd = sec->owner;
5289 sec_size = bfd_get_section_limit (abfd, sec);
5290
5291 /* Get the contents. */
5292 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5293 if (contents == NULL && sec_size != 0)
5294 goto err;
5295
5296 /* Get the relocations. */
5297 internal_relocs = retrieve_internal_relocs (abfd, sec,
5298 link_info->keep_memory);
5299
5300 /* Get the entry table. */
5301 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5302 XTENSA_PROP_SEC_NAME, FALSE);
5303 if (ptblsize < 0)
5304 goto err;
5305
5306 /* Fill in the new section cache. */
5307 clear_section_cache (sec_cache);
5308 memset (sec_cache, 0, sizeof (sec_cache));
5309
5310 sec_cache->sec = sec;
5311 sec_cache->contents = contents;
5312 sec_cache->content_length = sec_size;
5313 sec_cache->relocs = internal_relocs;
5314 sec_cache->reloc_count = sec->reloc_count;
5315 sec_cache->pte_count = ptblsize;
5316 sec_cache->ptbl = prop_table;
5317
5318 return TRUE;
5319
5320 err:
5321 release_contents (sec, contents);
5322 release_internal_relocs (sec, internal_relocs);
5323 if (prop_table)
5324 free (prop_table);
5325 return FALSE;
5326 }
5327
5328 \f
5329 /* Extended basic blocks. */
5330
5331 /* An ebb_struct represents an Extended Basic Block. Within this
5332 range, we guarantee that all instructions are decodable, the
5333 property table entries are contiguous, and no property table
5334 specifies a segment that cannot have instructions moved. This
5335 structure contains caches of the contents, property table and
5336 relocations for the specified section for easy use. The range is
5337 specified by ranges of indices for the byte offset, property table
5338 offsets and relocation offsets. These must be consistent. */
5339
5340 typedef struct ebb_struct ebb_t;
5341
5342 struct ebb_struct
5343 {
5344 asection *sec;
5345
5346 bfd_byte *contents; /* Cache of the section contents. */
5347 bfd_size_type content_length;
5348
5349 property_table_entry *ptbl; /* Cache of the section property table. */
5350 unsigned pte_count;
5351
5352 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5353 unsigned reloc_count;
5354
5355 bfd_vma start_offset; /* Offset in section. */
5356 unsigned start_ptbl_idx; /* Offset in the property table. */
5357 unsigned start_reloc_idx; /* Offset in the relocations. */
5358
5359 bfd_vma end_offset;
5360 unsigned end_ptbl_idx;
5361 unsigned end_reloc_idx;
5362
5363 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5364
5365 /* The unreachable property table at the end of this set of blocks;
5366 NULL if the end is not an unreachable block. */
5367 property_table_entry *ends_unreachable;
5368 };
5369
5370
5371 enum ebb_target_enum
5372 {
5373 EBB_NO_ALIGN = 0,
5374 EBB_DESIRE_TGT_ALIGN,
5375 EBB_REQUIRE_TGT_ALIGN,
5376 EBB_REQUIRE_LOOP_ALIGN,
5377 EBB_REQUIRE_ALIGN
5378 };
5379
5380
5381 /* proposed_action_struct is similar to the text_action_struct except
5382 that is represents a potential transformation, not one that will
5383 occur. We build a list of these for an extended basic block
5384 and use them to compute the actual actions desired. We must be
5385 careful that the entire set of actual actions we perform do not
5386 break any relocations that would fit if the actions were not
5387 performed. */
5388
5389 typedef struct proposed_action_struct proposed_action;
5390
5391 struct proposed_action_struct
5392 {
5393 enum ebb_target_enum align_type; /* for the target alignment */
5394 bfd_vma alignment_pow;
5395 text_action_t action;
5396 bfd_vma offset;
5397 int removed_bytes;
5398 bfd_boolean do_action; /* If false, then we will not perform the action. */
5399 };
5400
5401
5402 /* The ebb_constraint_struct keeps a set of proposed actions for an
5403 extended basic block. */
5404
5405 typedef struct ebb_constraint_struct ebb_constraint;
5406
5407 struct ebb_constraint_struct
5408 {
5409 ebb_t ebb;
5410 bfd_boolean start_movable;
5411
5412 /* Bytes of extra space at the beginning if movable. */
5413 int start_extra_space;
5414
5415 enum ebb_target_enum start_align;
5416
5417 bfd_boolean end_movable;
5418
5419 /* Bytes of extra space at the end if movable. */
5420 int end_extra_space;
5421
5422 unsigned action_count;
5423 unsigned action_allocated;
5424
5425 /* Array of proposed actions. */
5426 proposed_action *actions;
5427
5428 /* Action alignments -- one for each proposed action. */
5429 enum ebb_target_enum *action_aligns;
5430 };
5431
5432
5433 static void
5434 init_ebb_constraint (ebb_constraint *c)
5435 {
5436 memset (c, 0, sizeof (ebb_constraint));
5437 }
5438
5439
5440 static void
5441 free_ebb_constraint (ebb_constraint *c)
5442 {
5443 if (c->actions)
5444 free (c->actions);
5445 }
5446
5447
5448 static void
5449 init_ebb (ebb_t *ebb,
5450 asection *sec,
5451 bfd_byte *contents,
5452 bfd_size_type content_length,
5453 property_table_entry *prop_table,
5454 unsigned ptblsize,
5455 Elf_Internal_Rela *internal_relocs,
5456 unsigned reloc_count)
5457 {
5458 memset (ebb, 0, sizeof (ebb_t));
5459 ebb->sec = sec;
5460 ebb->contents = contents;
5461 ebb->content_length = content_length;
5462 ebb->ptbl = prop_table;
5463 ebb->pte_count = ptblsize;
5464 ebb->relocs = internal_relocs;
5465 ebb->reloc_count = reloc_count;
5466 ebb->start_offset = 0;
5467 ebb->end_offset = ebb->content_length - 1;
5468 ebb->start_ptbl_idx = 0;
5469 ebb->end_ptbl_idx = ptblsize;
5470 ebb->start_reloc_idx = 0;
5471 ebb->end_reloc_idx = reloc_count;
5472 }
5473
5474
5475 /* Extend the ebb to all decodable contiguous sections. The algorithm
5476 for building a basic block around an instruction is to push it
5477 forward until we hit the end of a section, an unreachable block or
5478 a block that cannot be transformed. Then we push it backwards
5479 searching for similar conditions. */
5480
5481 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5482 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5483 static bfd_size_type insn_block_decodable_len
5484 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5485
5486 static bfd_boolean
5487 extend_ebb_bounds (ebb_t *ebb)
5488 {
5489 if (!extend_ebb_bounds_forward (ebb))
5490 return FALSE;
5491 if (!extend_ebb_bounds_backward (ebb))
5492 return FALSE;
5493 return TRUE;
5494 }
5495
5496
5497 static bfd_boolean
5498 extend_ebb_bounds_forward (ebb_t *ebb)
5499 {
5500 property_table_entry *the_entry, *new_entry;
5501
5502 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5503
5504 /* Stop when (1) we cannot decode an instruction, (2) we are at
5505 the end of the property tables, (3) we hit a non-contiguous property
5506 table entry, (4) we hit a NO_TRANSFORM region. */
5507
5508 while (1)
5509 {
5510 bfd_vma entry_end;
5511 bfd_size_type insn_block_len;
5512
5513 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5514 insn_block_len =
5515 insn_block_decodable_len (ebb->contents, ebb->content_length,
5516 ebb->end_offset,
5517 entry_end - ebb->end_offset);
5518 if (insn_block_len != (entry_end - ebb->end_offset))
5519 {
5520 (*_bfd_error_handler)
5521 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5522 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5523 return FALSE;
5524 }
5525 ebb->end_offset += insn_block_len;
5526
5527 if (ebb->end_offset == ebb->sec->size)
5528 ebb->ends_section = TRUE;
5529
5530 /* Update the reloc counter. */
5531 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5532 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5533 < ebb->end_offset))
5534 {
5535 ebb->end_reloc_idx++;
5536 }
5537
5538 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5539 return TRUE;
5540
5541 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5542 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5543 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
5544 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5545 break;
5546
5547 if (the_entry->address + the_entry->size != new_entry->address)
5548 break;
5549
5550 the_entry = new_entry;
5551 ebb->end_ptbl_idx++;
5552 }
5553
5554 /* Quick check for an unreachable or end of file just at the end. */
5555 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5556 {
5557 if (ebb->end_offset == ebb->content_length)
5558 ebb->ends_section = TRUE;
5559 }
5560 else
5561 {
5562 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5563 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5564 && the_entry->address + the_entry->size == new_entry->address)
5565 ebb->ends_unreachable = new_entry;
5566 }
5567
5568 /* Any other ending requires exact alignment. */
5569 return TRUE;
5570 }
5571
5572
5573 static bfd_boolean
5574 extend_ebb_bounds_backward (ebb_t *ebb)
5575 {
5576 property_table_entry *the_entry, *new_entry;
5577
5578 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5579
5580 /* Stop when (1) we cannot decode the instructions in the current entry.
5581 (2) we are at the beginning of the property tables, (3) we hit a
5582 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5583
5584 while (1)
5585 {
5586 bfd_vma block_begin;
5587 bfd_size_type insn_block_len;
5588
5589 block_begin = the_entry->address - ebb->sec->vma;
5590 insn_block_len =
5591 insn_block_decodable_len (ebb->contents, ebb->content_length,
5592 block_begin,
5593 ebb->start_offset - block_begin);
5594 if (insn_block_len != ebb->start_offset - block_begin)
5595 {
5596 (*_bfd_error_handler)
5597 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5598 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5599 return FALSE;
5600 }
5601 ebb->start_offset -= insn_block_len;
5602
5603 /* Update the reloc counter. */
5604 while (ebb->start_reloc_idx > 0
5605 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5606 >= ebb->start_offset))
5607 {
5608 ebb->start_reloc_idx--;
5609 }
5610
5611 if (ebb->start_ptbl_idx == 0)
5612 return TRUE;
5613
5614 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5615 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5616 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
5617 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5618 return TRUE;
5619 if (new_entry->address + new_entry->size != the_entry->address)
5620 return TRUE;
5621
5622 the_entry = new_entry;
5623 ebb->start_ptbl_idx--;
5624 }
5625 return TRUE;
5626 }
5627
5628
5629 static bfd_size_type
5630 insn_block_decodable_len (bfd_byte *contents,
5631 bfd_size_type content_len,
5632 bfd_vma block_offset,
5633 bfd_size_type block_len)
5634 {
5635 bfd_vma offset = block_offset;
5636
5637 while (offset < block_offset + block_len)
5638 {
5639 bfd_size_type insn_len = 0;
5640
5641 insn_len = insn_decode_len (contents, content_len, offset);
5642 if (insn_len == 0)
5643 return (offset - block_offset);
5644 offset += insn_len;
5645 }
5646 return (offset - block_offset);
5647 }
5648
5649
5650 static void
5651 ebb_propose_action (ebb_constraint *c,
5652 enum ebb_target_enum align_type,
5653 bfd_vma alignment_pow,
5654 text_action_t action,
5655 bfd_vma offset,
5656 int removed_bytes,
5657 bfd_boolean do_action)
5658 {
5659 proposed_action *act;
5660
5661 if (c->action_allocated <= c->action_count)
5662 {
5663 unsigned new_allocated, i;
5664 proposed_action *new_actions;
5665
5666 new_allocated = (c->action_count + 2) * 2;
5667 new_actions = (proposed_action *)
5668 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5669
5670 for (i = 0; i < c->action_count; i++)
5671 new_actions[i] = c->actions[i];
5672 if (c->actions)
5673 free (c->actions);
5674 c->actions = new_actions;
5675 c->action_allocated = new_allocated;
5676 }
5677
5678 act = &c->actions[c->action_count];
5679 act->align_type = align_type;
5680 act->alignment_pow = alignment_pow;
5681 act->action = action;
5682 act->offset = offset;
5683 act->removed_bytes = removed_bytes;
5684 act->do_action = do_action;
5685
5686 c->action_count++;
5687 }
5688
5689 \f
5690 /* Access to internal relocations, section contents and symbols. */
5691
5692 /* During relaxation, we need to modify relocations, section contents,
5693 and symbol definitions, and we need to keep the original values from
5694 being reloaded from the input files, i.e., we need to "pin" the
5695 modified values in memory. We also want to continue to observe the
5696 setting of the "keep-memory" flag. The following functions wrap the
5697 standard BFD functions to take care of this for us. */
5698
5699 static Elf_Internal_Rela *
5700 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5701 {
5702 Elf_Internal_Rela *internal_relocs;
5703
5704 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5705 return NULL;
5706
5707 internal_relocs = elf_section_data (sec)->relocs;
5708 if (internal_relocs == NULL)
5709 internal_relocs = (_bfd_elf_link_read_relocs
5710 (abfd, sec, NULL, NULL, keep_memory));
5711 return internal_relocs;
5712 }
5713
5714
5715 static void
5716 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5717 {
5718 elf_section_data (sec)->relocs = internal_relocs;
5719 }
5720
5721
5722 static void
5723 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5724 {
5725 if (internal_relocs
5726 && elf_section_data (sec)->relocs != internal_relocs)
5727 free (internal_relocs);
5728 }
5729
5730
5731 static bfd_byte *
5732 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5733 {
5734 bfd_byte *contents;
5735 bfd_size_type sec_size;
5736
5737 sec_size = bfd_get_section_limit (abfd, sec);
5738 contents = elf_section_data (sec)->this_hdr.contents;
5739
5740 if (contents == NULL && sec_size != 0)
5741 {
5742 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5743 {
5744 if (contents)
5745 free (contents);
5746 return NULL;
5747 }
5748 if (keep_memory)
5749 elf_section_data (sec)->this_hdr.contents = contents;
5750 }
5751 return contents;
5752 }
5753
5754
5755 static void
5756 pin_contents (asection *sec, bfd_byte *contents)
5757 {
5758 elf_section_data (sec)->this_hdr.contents = contents;
5759 }
5760
5761
5762 static void
5763 release_contents (asection *sec, bfd_byte *contents)
5764 {
5765 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5766 free (contents);
5767 }
5768
5769
5770 static Elf_Internal_Sym *
5771 retrieve_local_syms (bfd *input_bfd)
5772 {
5773 Elf_Internal_Shdr *symtab_hdr;
5774 Elf_Internal_Sym *isymbuf;
5775 size_t locsymcount;
5776
5777 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5778 locsymcount = symtab_hdr->sh_info;
5779
5780 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5781 if (isymbuf == NULL && locsymcount != 0)
5782 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5783 NULL, NULL, NULL);
5784
5785 /* Save the symbols for this input file so they won't be read again. */
5786 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5787 symtab_hdr->contents = (unsigned char *) isymbuf;
5788
5789 return isymbuf;
5790 }
5791
5792 \f
5793 /* Code for link-time relaxation. */
5794
5795 /* Initialization for relaxation: */
5796 static bfd_boolean analyze_relocations (struct bfd_link_info *);
5797 static bfd_boolean find_relaxable_sections
5798 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
5799 static bfd_boolean collect_source_relocs
5800 (bfd *, asection *, struct bfd_link_info *);
5801 static bfd_boolean is_resolvable_asm_expansion
5802 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5803 bfd_boolean *);
5804 static Elf_Internal_Rela *find_associated_l32r_irel
5805 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
5806 static bfd_boolean compute_text_actions
5807 (bfd *, asection *, struct bfd_link_info *);
5808 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5809 static bfd_boolean compute_ebb_actions (ebb_constraint *);
5810 static bfd_boolean check_section_ebb_pcrels_fit
5811 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5812 const xtensa_opcode *);
5813 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
5814 static void text_action_add_proposed
5815 (text_action_list *, const ebb_constraint *, asection *);
5816 static int compute_fill_extra_space (property_table_entry *);
5817
5818 /* First pass: */
5819 static bfd_boolean compute_removed_literals
5820 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
5821 static Elf_Internal_Rela *get_irel_at_offset
5822 (asection *, Elf_Internal_Rela *, bfd_vma);
5823 static bfd_boolean is_removable_literal
5824 (const source_reloc *, int, const source_reloc *, int, asection *,
5825 property_table_entry *, int);
5826 static bfd_boolean remove_dead_literal
5827 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5828 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5829 static bfd_boolean identify_literal_placement
5830 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5831 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5832 source_reloc *, property_table_entry *, int, section_cache_t *,
5833 bfd_boolean);
5834 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
5835 static bfd_boolean coalesce_shared_literal
5836 (asection *, source_reloc *, property_table_entry *, int, value_map *);
5837 static bfd_boolean move_shared_literal
5838 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5839 int, const r_reloc *, const literal_value *, section_cache_t *);
5840
5841 /* Second pass: */
5842 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5843 static bfd_boolean translate_section_fixes (asection *);
5844 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5845 static void translate_reloc (const r_reloc *, r_reloc *);
5846 static void shrink_dynamic_reloc_sections
5847 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
5848 static bfd_boolean move_literal
5849 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5850 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
5851 static bfd_boolean relax_property_section
5852 (bfd *, asection *, struct bfd_link_info *);
5853
5854 /* Third pass: */
5855 static bfd_boolean relax_section_symbols (bfd *, asection *);
5856
5857
5858 static bfd_boolean
5859 elf_xtensa_relax_section (bfd *abfd,
5860 asection *sec,
5861 struct bfd_link_info *link_info,
5862 bfd_boolean *again)
5863 {
5864 static value_map_hash_table *values = NULL;
5865 static bfd_boolean relocations_analyzed = FALSE;
5866 xtensa_relax_info *relax_info;
5867
5868 if (!relocations_analyzed)
5869 {
5870 /* Do some overall initialization for relaxation. */
5871 values = value_map_hash_table_init ();
5872 if (values == NULL)
5873 return FALSE;
5874 relaxing_section = TRUE;
5875 if (!analyze_relocations (link_info))
5876 return FALSE;
5877 relocations_analyzed = TRUE;
5878 }
5879 *again = FALSE;
5880
5881 /* Don't mess with linker-created sections. */
5882 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5883 return TRUE;
5884
5885 relax_info = get_xtensa_relax_info (sec);
5886 BFD_ASSERT (relax_info != NULL);
5887
5888 switch (relax_info->visited)
5889 {
5890 case 0:
5891 /* Note: It would be nice to fold this pass into
5892 analyze_relocations, but it is important for this step that the
5893 sections be examined in link order. */
5894 if (!compute_removed_literals (abfd, sec, link_info, values))
5895 return FALSE;
5896 *again = TRUE;
5897 break;
5898
5899 case 1:
5900 if (values)
5901 value_map_hash_table_delete (values);
5902 values = NULL;
5903 if (!relax_section (abfd, sec, link_info))
5904 return FALSE;
5905 *again = TRUE;
5906 break;
5907
5908 case 2:
5909 if (!relax_section_symbols (abfd, sec))
5910 return FALSE;
5911 break;
5912 }
5913
5914 relax_info->visited++;
5915 return TRUE;
5916 }
5917
5918 \f
5919 /* Initialization for relaxation. */
5920
5921 /* This function is called once at the start of relaxation. It scans
5922 all the input sections and marks the ones that are relaxable (i.e.,
5923 literal sections with L32R relocations against them), and then
5924 collects source_reloc information for all the relocations against
5925 those relaxable sections. During this process, it also detects
5926 longcalls, i.e., calls relaxed by the assembler into indirect
5927 calls, that can be optimized back into direct calls. Within each
5928 extended basic block (ebb) containing an optimized longcall, it
5929 computes a set of "text actions" that can be performed to remove
5930 the L32R associated with the longcall while optionally preserving
5931 branch target alignments. */
5932
5933 static bfd_boolean
5934 analyze_relocations (struct bfd_link_info *link_info)
5935 {
5936 bfd *abfd;
5937 asection *sec;
5938 bfd_boolean is_relaxable = FALSE;
5939
5940 /* Initialize the per-section relaxation info. */
5941 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5942 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5943 {
5944 init_xtensa_relax_info (sec);
5945 }
5946
5947 /* Mark relaxable sections (and count relocations against each one). */
5948 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5949 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5950 {
5951 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5952 return FALSE;
5953 }
5954
5955 /* Bail out if there are no relaxable sections. */
5956 if (!is_relaxable)
5957 return TRUE;
5958
5959 /* Allocate space for source_relocs. */
5960 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5961 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5962 {
5963 xtensa_relax_info *relax_info;
5964
5965 relax_info = get_xtensa_relax_info (sec);
5966 if (relax_info->is_relaxable_literal_section
5967 || relax_info->is_relaxable_asm_section)
5968 {
5969 relax_info->src_relocs = (source_reloc *)
5970 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5971 }
5972 else
5973 relax_info->src_count = 0;
5974 }
5975
5976 /* Collect info on relocations against each relaxable section. */
5977 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5978 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5979 {
5980 if (!collect_source_relocs (abfd, sec, link_info))
5981 return FALSE;
5982 }
5983
5984 /* Compute the text actions. */
5985 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5986 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5987 {
5988 if (!compute_text_actions (abfd, sec, link_info))
5989 return FALSE;
5990 }
5991
5992 return TRUE;
5993 }
5994
5995
5996 /* Find all the sections that might be relaxed. The motivation for
5997 this pass is that collect_source_relocs() needs to record _all_ the
5998 relocations that target each relaxable section. That is expensive
5999 and unnecessary unless the target section is actually going to be
6000 relaxed. This pass identifies all such sections by checking if
6001 they have L32Rs pointing to them. In the process, the total number
6002 of relocations targeting each section is also counted so that we
6003 know how much space to allocate for source_relocs against each
6004 relaxable literal section. */
6005
6006 static bfd_boolean
6007 find_relaxable_sections (bfd *abfd,
6008 asection *sec,
6009 struct bfd_link_info *link_info,
6010 bfd_boolean *is_relaxable_p)
6011 {
6012 Elf_Internal_Rela *internal_relocs;
6013 bfd_byte *contents;
6014 bfd_boolean ok = TRUE;
6015 unsigned i;
6016 xtensa_relax_info *source_relax_info;
6017 bfd_boolean is_l32r_reloc;
6018
6019 internal_relocs = retrieve_internal_relocs (abfd, sec,
6020 link_info->keep_memory);
6021 if (internal_relocs == NULL)
6022 return ok;
6023
6024 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6025 if (contents == NULL && sec->size != 0)
6026 {
6027 ok = FALSE;
6028 goto error_return;
6029 }
6030
6031 source_relax_info = get_xtensa_relax_info (sec);
6032 for (i = 0; i < sec->reloc_count; i++)
6033 {
6034 Elf_Internal_Rela *irel = &internal_relocs[i];
6035 r_reloc r_rel;
6036 asection *target_sec;
6037 xtensa_relax_info *target_relax_info;
6038
6039 /* If this section has not already been marked as "relaxable", and
6040 if it contains any ASM_EXPAND relocations (marking expanded
6041 longcalls) that can be optimized into direct calls, then mark
6042 the section as "relaxable". */
6043 if (source_relax_info
6044 && !source_relax_info->is_relaxable_asm_section
6045 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6046 {
6047 bfd_boolean is_reachable = FALSE;
6048 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6049 link_info, &is_reachable)
6050 && is_reachable)
6051 {
6052 source_relax_info->is_relaxable_asm_section = TRUE;
6053 *is_relaxable_p = TRUE;
6054 }
6055 }
6056
6057 r_reloc_init (&r_rel, abfd, irel, contents,
6058 bfd_get_section_limit (abfd, sec));
6059
6060 target_sec = r_reloc_get_section (&r_rel);
6061 target_relax_info = get_xtensa_relax_info (target_sec);
6062 if (!target_relax_info)
6063 continue;
6064
6065 /* Count PC-relative operand relocations against the target section.
6066 Note: The conditions tested here must match the conditions under
6067 which init_source_reloc is called in collect_source_relocs(). */
6068 is_l32r_reloc = FALSE;
6069 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6070 {
6071 xtensa_opcode opcode =
6072 get_relocation_opcode (abfd, sec, contents, irel);
6073 if (opcode != XTENSA_UNDEFINED)
6074 {
6075 is_l32r_reloc = (opcode == get_l32r_opcode ());
6076 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6077 || is_l32r_reloc)
6078 target_relax_info->src_count++;
6079 }
6080 }
6081
6082 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
6083 {
6084 /* Mark the target section as relaxable. */
6085 target_relax_info->is_relaxable_literal_section = TRUE;
6086 *is_relaxable_p = TRUE;
6087 }
6088 }
6089
6090 error_return:
6091 release_contents (sec, contents);
6092 release_internal_relocs (sec, internal_relocs);
6093 return ok;
6094 }
6095
6096
6097 /* Record _all_ the relocations that point to relaxable sections, and
6098 get rid of ASM_EXPAND relocs by either converting them to
6099 ASM_SIMPLIFY or by removing them. */
6100
6101 static bfd_boolean
6102 collect_source_relocs (bfd *abfd,
6103 asection *sec,
6104 struct bfd_link_info *link_info)
6105 {
6106 Elf_Internal_Rela *internal_relocs;
6107 bfd_byte *contents;
6108 bfd_boolean ok = TRUE;
6109 unsigned i;
6110 bfd_size_type sec_size;
6111
6112 internal_relocs = retrieve_internal_relocs (abfd, sec,
6113 link_info->keep_memory);
6114 if (internal_relocs == NULL)
6115 return ok;
6116
6117 sec_size = bfd_get_section_limit (abfd, sec);
6118 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6119 if (contents == NULL && sec_size != 0)
6120 {
6121 ok = FALSE;
6122 goto error_return;
6123 }
6124
6125 /* Record relocations against relaxable literal sections. */
6126 for (i = 0; i < sec->reloc_count; i++)
6127 {
6128 Elf_Internal_Rela *irel = &internal_relocs[i];
6129 r_reloc r_rel;
6130 asection *target_sec;
6131 xtensa_relax_info *target_relax_info;
6132
6133 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6134
6135 target_sec = r_reloc_get_section (&r_rel);
6136 target_relax_info = get_xtensa_relax_info (target_sec);
6137
6138 if (target_relax_info
6139 && (target_relax_info->is_relaxable_literal_section
6140 || target_relax_info->is_relaxable_asm_section))
6141 {
6142 xtensa_opcode opcode = XTENSA_UNDEFINED;
6143 int opnd = -1;
6144 bfd_boolean is_abs_literal = FALSE;
6145
6146 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6147 {
6148 /* None of the current alternate relocs are PC-relative,
6149 and only PC-relative relocs matter here. However, we
6150 still need to record the opcode for literal
6151 coalescing. */
6152 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6153 if (opcode == get_l32r_opcode ())
6154 {
6155 is_abs_literal = TRUE;
6156 opnd = 1;
6157 }
6158 else
6159 opcode = XTENSA_UNDEFINED;
6160 }
6161 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6162 {
6163 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6164 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6165 }
6166
6167 if (opcode != XTENSA_UNDEFINED)
6168 {
6169 int src_next = target_relax_info->src_next++;
6170 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6171
6172 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6173 is_abs_literal);
6174 }
6175 }
6176 }
6177
6178 /* Now get rid of ASM_EXPAND relocations. At this point, the
6179 src_relocs array for the target literal section may still be
6180 incomplete, but it must at least contain the entries for the L32R
6181 relocations associated with ASM_EXPANDs because they were just
6182 added in the preceding loop over the relocations. */
6183
6184 for (i = 0; i < sec->reloc_count; i++)
6185 {
6186 Elf_Internal_Rela *irel = &internal_relocs[i];
6187 bfd_boolean is_reachable;
6188
6189 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6190 &is_reachable))
6191 continue;
6192
6193 if (is_reachable)
6194 {
6195 Elf_Internal_Rela *l32r_irel;
6196 r_reloc r_rel;
6197 asection *target_sec;
6198 xtensa_relax_info *target_relax_info;
6199
6200 /* Mark the source_reloc for the L32R so that it will be
6201 removed in compute_removed_literals(), along with the
6202 associated literal. */
6203 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6204 irel, internal_relocs);
6205 if (l32r_irel == NULL)
6206 continue;
6207
6208 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6209
6210 target_sec = r_reloc_get_section (&r_rel);
6211 target_relax_info = get_xtensa_relax_info (target_sec);
6212
6213 if (target_relax_info
6214 && (target_relax_info->is_relaxable_literal_section
6215 || target_relax_info->is_relaxable_asm_section))
6216 {
6217 source_reloc *s_reloc;
6218
6219 /* Search the source_relocs for the entry corresponding to
6220 the l32r_irel. Note: The src_relocs array is not yet
6221 sorted, but it wouldn't matter anyway because we're
6222 searching by source offset instead of target offset. */
6223 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6224 target_relax_info->src_next,
6225 sec, l32r_irel);
6226 BFD_ASSERT (s_reloc);
6227 s_reloc->is_null = TRUE;
6228 }
6229
6230 /* Convert this reloc to ASM_SIMPLIFY. */
6231 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6232 R_XTENSA_ASM_SIMPLIFY);
6233 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6234
6235 pin_internal_relocs (sec, internal_relocs);
6236 }
6237 else
6238 {
6239 /* It is resolvable but doesn't reach. We resolve now
6240 by eliminating the relocation -- the call will remain
6241 expanded into L32R/CALLX. */
6242 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6243 pin_internal_relocs (sec, internal_relocs);
6244 }
6245 }
6246
6247 error_return:
6248 release_contents (sec, contents);
6249 release_internal_relocs (sec, internal_relocs);
6250 return ok;
6251 }
6252
6253
6254 /* Return TRUE if the asm expansion can be resolved. Generally it can
6255 be resolved on a final link or when a partial link locates it in the
6256 same section as the target. Set "is_reachable" flag if the target of
6257 the call is within the range of a direct call, given the current VMA
6258 for this section and the target section. */
6259
6260 bfd_boolean
6261 is_resolvable_asm_expansion (bfd *abfd,
6262 asection *sec,
6263 bfd_byte *contents,
6264 Elf_Internal_Rela *irel,
6265 struct bfd_link_info *link_info,
6266 bfd_boolean *is_reachable_p)
6267 {
6268 asection *target_sec;
6269 bfd_vma target_offset;
6270 r_reloc r_rel;
6271 xtensa_opcode opcode, direct_call_opcode;
6272 bfd_vma self_address;
6273 bfd_vma dest_address;
6274 bfd_boolean uses_l32r;
6275 bfd_size_type sec_size;
6276
6277 *is_reachable_p = FALSE;
6278
6279 if (contents == NULL)
6280 return FALSE;
6281
6282 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6283 return FALSE;
6284
6285 sec_size = bfd_get_section_limit (abfd, sec);
6286 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6287 sec_size - irel->r_offset, &uses_l32r);
6288 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6289 if (!uses_l32r)
6290 return FALSE;
6291
6292 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6293 if (direct_call_opcode == XTENSA_UNDEFINED)
6294 return FALSE;
6295
6296 /* Check and see that the target resolves. */
6297 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6298 if (!r_reloc_is_defined (&r_rel))
6299 return FALSE;
6300
6301 target_sec = r_reloc_get_section (&r_rel);
6302 target_offset = r_rel.target_offset;
6303
6304 /* If the target is in a shared library, then it doesn't reach. This
6305 isn't supposed to come up because the compiler should never generate
6306 non-PIC calls on systems that use shared libraries, but the linker
6307 shouldn't crash regardless. */
6308 if (!target_sec->output_section)
6309 return FALSE;
6310
6311 /* For relocatable sections, we can only simplify when the output
6312 section of the target is the same as the output section of the
6313 source. */
6314 if (link_info->relocatable
6315 && (target_sec->output_section != sec->output_section
6316 || is_reloc_sym_weak (abfd, irel)))
6317 return FALSE;
6318
6319 self_address = (sec->output_section->vma
6320 + sec->output_offset + irel->r_offset + 3);
6321 dest_address = (target_sec->output_section->vma
6322 + target_sec->output_offset + target_offset);
6323
6324 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6325 self_address, dest_address);
6326
6327 if ((self_address >> CALL_SEGMENT_BITS) !=
6328 (dest_address >> CALL_SEGMENT_BITS))
6329 return FALSE;
6330
6331 return TRUE;
6332 }
6333
6334
6335 static Elf_Internal_Rela *
6336 find_associated_l32r_irel (bfd *abfd,
6337 asection *sec,
6338 bfd_byte *contents,
6339 Elf_Internal_Rela *other_irel,
6340 Elf_Internal_Rela *internal_relocs)
6341 {
6342 unsigned i;
6343
6344 for (i = 0; i < sec->reloc_count; i++)
6345 {
6346 Elf_Internal_Rela *irel = &internal_relocs[i];
6347
6348 if (irel == other_irel)
6349 continue;
6350 if (irel->r_offset != other_irel->r_offset)
6351 continue;
6352 if (is_l32r_relocation (abfd, sec, contents, irel))
6353 return irel;
6354 }
6355
6356 return NULL;
6357 }
6358
6359
6360 static xtensa_opcode *
6361 build_reloc_opcodes (bfd *abfd,
6362 asection *sec,
6363 bfd_byte *contents,
6364 Elf_Internal_Rela *internal_relocs)
6365 {
6366 unsigned i;
6367 xtensa_opcode *reloc_opcodes =
6368 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6369 for (i = 0; i < sec->reloc_count; i++)
6370 {
6371 Elf_Internal_Rela *irel = &internal_relocs[i];
6372 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6373 }
6374 return reloc_opcodes;
6375 }
6376
6377
6378 /* The compute_text_actions function will build a list of potential
6379 transformation actions for code in the extended basic block of each
6380 longcall that is optimized to a direct call. From this list we
6381 generate a set of actions to actually perform that optimizes for
6382 space and, if not using size_opt, maintains branch target
6383 alignments.
6384
6385 These actions to be performed are placed on a per-section list.
6386 The actual changes are performed by relax_section() in the second
6387 pass. */
6388
6389 bfd_boolean
6390 compute_text_actions (bfd *abfd,
6391 asection *sec,
6392 struct bfd_link_info *link_info)
6393 {
6394 xtensa_opcode *reloc_opcodes = NULL;
6395 xtensa_relax_info *relax_info;
6396 bfd_byte *contents;
6397 Elf_Internal_Rela *internal_relocs;
6398 bfd_boolean ok = TRUE;
6399 unsigned i;
6400 property_table_entry *prop_table = 0;
6401 int ptblsize = 0;
6402 bfd_size_type sec_size;
6403
6404 relax_info = get_xtensa_relax_info (sec);
6405 BFD_ASSERT (relax_info);
6406 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
6407
6408 /* Do nothing if the section contains no optimized longcalls. */
6409 if (!relax_info->is_relaxable_asm_section)
6410 return ok;
6411
6412 internal_relocs = retrieve_internal_relocs (abfd, sec,
6413 link_info->keep_memory);
6414
6415 if (internal_relocs)
6416 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6417 internal_reloc_compare);
6418
6419 sec_size = bfd_get_section_limit (abfd, sec);
6420 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6421 if (contents == NULL && sec_size != 0)
6422 {
6423 ok = FALSE;
6424 goto error_return;
6425 }
6426
6427 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6428 XTENSA_PROP_SEC_NAME, FALSE);
6429 if (ptblsize < 0)
6430 {
6431 ok = FALSE;
6432 goto error_return;
6433 }
6434
6435 for (i = 0; i < sec->reloc_count; i++)
6436 {
6437 Elf_Internal_Rela *irel = &internal_relocs[i];
6438 bfd_vma r_offset;
6439 property_table_entry *the_entry;
6440 int ptbl_idx;
6441 ebb_t *ebb;
6442 ebb_constraint ebb_table;
6443 bfd_size_type simplify_size;
6444
6445 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6446 continue;
6447 r_offset = irel->r_offset;
6448
6449 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6450 if (simplify_size == 0)
6451 {
6452 (*_bfd_error_handler)
6453 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6454 sec->owner, sec, r_offset);
6455 continue;
6456 }
6457
6458 /* If the instruction table is not around, then don't do this
6459 relaxation. */
6460 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6461 sec->vma + irel->r_offset);
6462 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6463 {
6464 text_action_add (&relax_info->action_list,
6465 ta_convert_longcall, sec, r_offset,
6466 0);
6467 continue;
6468 }
6469
6470 /* If the next longcall happens to be at the same address as an
6471 unreachable section of size 0, then skip forward. */
6472 ptbl_idx = the_entry - prop_table;
6473 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6474 && the_entry->size == 0
6475 && ptbl_idx + 1 < ptblsize
6476 && (prop_table[ptbl_idx + 1].address
6477 == prop_table[ptbl_idx].address))
6478 {
6479 ptbl_idx++;
6480 the_entry++;
6481 }
6482
6483 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
6484 /* NO_REORDER is OK */
6485 continue;
6486
6487 init_ebb_constraint (&ebb_table);
6488 ebb = &ebb_table.ebb;
6489 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6490 internal_relocs, sec->reloc_count);
6491 ebb->start_offset = r_offset + simplify_size;
6492 ebb->end_offset = r_offset + simplify_size;
6493 ebb->start_ptbl_idx = ptbl_idx;
6494 ebb->end_ptbl_idx = ptbl_idx;
6495 ebb->start_reloc_idx = i;
6496 ebb->end_reloc_idx = i;
6497
6498 /* Precompute the opcode for each relocation. */
6499 if (reloc_opcodes == NULL)
6500 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6501 internal_relocs);
6502
6503 if (!extend_ebb_bounds (ebb)
6504 || !compute_ebb_proposed_actions (&ebb_table)
6505 || !compute_ebb_actions (&ebb_table)
6506 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
6507 internal_relocs, &ebb_table,
6508 reloc_opcodes)
6509 || !check_section_ebb_reduces (&ebb_table))
6510 {
6511 /* If anything goes wrong or we get unlucky and something does
6512 not fit, with our plan because of expansion between
6513 critical branches, just convert to a NOP. */
6514
6515 text_action_add (&relax_info->action_list,
6516 ta_convert_longcall, sec, r_offset, 0);
6517 i = ebb_table.ebb.end_reloc_idx;
6518 free_ebb_constraint (&ebb_table);
6519 continue;
6520 }
6521
6522 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6523
6524 /* Update the index so we do not go looking at the relocations
6525 we have already processed. */
6526 i = ebb_table.ebb.end_reloc_idx;
6527 free_ebb_constraint (&ebb_table);
6528 }
6529
6530 #if DEBUG
6531 if (relax_info->action_list.head)
6532 print_action_list (stderr, &relax_info->action_list);
6533 #endif
6534
6535 error_return:
6536 release_contents (sec, contents);
6537 release_internal_relocs (sec, internal_relocs);
6538 if (prop_table)
6539 free (prop_table);
6540 if (reloc_opcodes)
6541 free (reloc_opcodes);
6542
6543 return ok;
6544 }
6545
6546
6547 /* Do not widen an instruction if it is preceeded by a
6548 loop opcode. It might cause misalignment. */
6549
6550 static bfd_boolean
6551 prev_instr_is_a_loop (bfd_byte *contents,
6552 bfd_size_type content_length,
6553 bfd_size_type offset)
6554 {
6555 xtensa_opcode prev_opcode;
6556
6557 if (offset < 3)
6558 return FALSE;
6559 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
6560 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
6561 }
6562
6563
6564 /* Find all of the possible actions for an extended basic block. */
6565
6566 bfd_boolean
6567 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
6568 {
6569 const ebb_t *ebb = &ebb_table->ebb;
6570 unsigned rel_idx = ebb->start_reloc_idx;
6571 property_table_entry *entry, *start_entry, *end_entry;
6572 bfd_vma offset = 0;
6573 xtensa_isa isa = xtensa_default_isa;
6574 xtensa_format fmt;
6575 static xtensa_insnbuf insnbuf = NULL;
6576 static xtensa_insnbuf slotbuf = NULL;
6577
6578 if (insnbuf == NULL)
6579 {
6580 insnbuf = xtensa_insnbuf_alloc (isa);
6581 slotbuf = xtensa_insnbuf_alloc (isa);
6582 }
6583
6584 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6585 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6586
6587 for (entry = start_entry; entry <= end_entry; entry++)
6588 {
6589 bfd_vma start_offset, end_offset;
6590 bfd_size_type insn_len;
6591
6592 start_offset = entry->address - ebb->sec->vma;
6593 end_offset = entry->address + entry->size - ebb->sec->vma;
6594
6595 if (entry == start_entry)
6596 start_offset = ebb->start_offset;
6597 if (entry == end_entry)
6598 end_offset = ebb->end_offset;
6599 offset = start_offset;
6600
6601 if (offset == entry->address - ebb->sec->vma
6602 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6603 {
6604 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6605 BFD_ASSERT (offset != end_offset);
6606 if (offset == end_offset)
6607 return FALSE;
6608
6609 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6610 offset);
6611 if (insn_len == 0)
6612 goto decode_error;
6613
6614 if (check_branch_target_aligned_address (offset, insn_len))
6615 align_type = EBB_REQUIRE_TGT_ALIGN;
6616
6617 ebb_propose_action (ebb_table, align_type, 0,
6618 ta_none, offset, 0, TRUE);
6619 }
6620
6621 while (offset != end_offset)
6622 {
6623 Elf_Internal_Rela *irel;
6624 xtensa_opcode opcode;
6625
6626 while (rel_idx < ebb->end_reloc_idx
6627 && (ebb->relocs[rel_idx].r_offset < offset
6628 || (ebb->relocs[rel_idx].r_offset == offset
6629 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6630 != R_XTENSA_ASM_SIMPLIFY))))
6631 rel_idx++;
6632
6633 /* Check for longcall. */
6634 irel = &ebb->relocs[rel_idx];
6635 if (irel->r_offset == offset
6636 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6637 {
6638 bfd_size_type simplify_size;
6639
6640 simplify_size = get_asm_simplify_size (ebb->contents,
6641 ebb->content_length,
6642 irel->r_offset);
6643 if (simplify_size == 0)
6644 goto decode_error;
6645
6646 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6647 ta_convert_longcall, offset, 0, TRUE);
6648
6649 offset += simplify_size;
6650 continue;
6651 }
6652
6653 if (offset + MIN_INSN_LENGTH > ebb->content_length)
6654 goto decode_error;
6655 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
6656 ebb->content_length - offset);
6657 fmt = xtensa_format_decode (isa, insnbuf);
6658 if (fmt == XTENSA_UNDEFINED)
6659 goto decode_error;
6660 insn_len = xtensa_format_length (isa, fmt);
6661 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
6662 goto decode_error;
6663
6664 if (xtensa_format_num_slots (isa, fmt) != 1)
6665 {
6666 offset += insn_len;
6667 continue;
6668 }
6669
6670 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
6671 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
6672 if (opcode == XTENSA_UNDEFINED)
6673 goto decode_error;
6674
6675 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6676 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
6677 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
6678 {
6679 /* Add an instruction narrow action. */
6680 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6681 ta_narrow_insn, offset, 0, FALSE);
6682 }
6683 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
6684 && can_widen_instruction (slotbuf, fmt, opcode) != 0
6685 && ! prev_instr_is_a_loop (ebb->contents,
6686 ebb->content_length, offset))
6687 {
6688 /* Add an instruction widen action. */
6689 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6690 ta_widen_insn, offset, 0, FALSE);
6691 }
6692 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
6693 {
6694 /* Check for branch targets. */
6695 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6696 ta_none, offset, 0, TRUE);
6697 }
6698
6699 offset += insn_len;
6700 }
6701 }
6702
6703 if (ebb->ends_unreachable)
6704 {
6705 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6706 ta_fill, ebb->end_offset, 0, TRUE);
6707 }
6708
6709 return TRUE;
6710
6711 decode_error:
6712 (*_bfd_error_handler)
6713 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6714 ebb->sec->owner, ebb->sec, offset);
6715 return FALSE;
6716 }
6717
6718
6719 /* After all of the information has collected about the
6720 transformations possible in an EBB, compute the appropriate actions
6721 here in compute_ebb_actions. We still must check later to make
6722 sure that the actions do not break any relocations. The algorithm
6723 used here is pretty greedy. Basically, it removes as many no-ops
6724 as possible so that the end of the EBB has the same alignment
6725 characteristics as the original. First, it uses narrowing, then
6726 fill space at the end of the EBB, and finally widenings. If that
6727 does not work, it tries again with one fewer no-op removed. The
6728 optimization will only be performed if all of the branch targets
6729 that were aligned before transformation are also aligned after the
6730 transformation.
6731
6732 When the size_opt flag is set, ignore the branch target alignments,
6733 narrow all wide instructions, and remove all no-ops unless the end
6734 of the EBB prevents it. */
6735
6736 bfd_boolean
6737 compute_ebb_actions (ebb_constraint *ebb_table)
6738 {
6739 unsigned i = 0;
6740 unsigned j;
6741 int removed_bytes = 0;
6742 ebb_t *ebb = &ebb_table->ebb;
6743 unsigned seg_idx_start = 0;
6744 unsigned seg_idx_end = 0;
6745
6746 /* We perform this like the assembler relaxation algorithm: Start by
6747 assuming all instructions are narrow and all no-ops removed; then
6748 walk through.... */
6749
6750 /* For each segment of this that has a solid constraint, check to
6751 see if there are any combinations that will keep the constraint.
6752 If so, use it. */
6753 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
6754 {
6755 bfd_boolean requires_text_end_align = FALSE;
6756 unsigned longcall_count = 0;
6757 unsigned longcall_convert_count = 0;
6758 unsigned narrowable_count = 0;
6759 unsigned narrowable_convert_count = 0;
6760 unsigned widenable_count = 0;
6761 unsigned widenable_convert_count = 0;
6762
6763 proposed_action *action = NULL;
6764 int align = (1 << ebb_table->ebb.sec->alignment_power);
6765
6766 seg_idx_start = seg_idx_end;
6767
6768 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6769 {
6770 action = &ebb_table->actions[i];
6771 if (action->action == ta_convert_longcall)
6772 longcall_count++;
6773 if (action->action == ta_narrow_insn)
6774 narrowable_count++;
6775 if (action->action == ta_widen_insn)
6776 widenable_count++;
6777 if (action->action == ta_fill)
6778 break;
6779 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6780 break;
6781 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6782 && !elf32xtensa_size_opt)
6783 break;
6784 }
6785 seg_idx_end = i;
6786
6787 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6788 requires_text_end_align = TRUE;
6789
6790 if (elf32xtensa_size_opt && !requires_text_end_align
6791 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6792 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6793 {
6794 longcall_convert_count = longcall_count;
6795 narrowable_convert_count = narrowable_count;
6796 widenable_convert_count = 0;
6797 }
6798 else
6799 {
6800 /* There is a constraint. Convert the max number of longcalls. */
6801 narrowable_convert_count = 0;
6802 longcall_convert_count = 0;
6803 widenable_convert_count = 0;
6804
6805 for (j = 0; j < longcall_count; j++)
6806 {
6807 int removed = (longcall_count - j) * 3 & (align - 1);
6808 unsigned desire_narrow = (align - removed) & (align - 1);
6809 unsigned desire_widen = removed;
6810 if (desire_narrow <= narrowable_count)
6811 {
6812 narrowable_convert_count = desire_narrow;
6813 narrowable_convert_count +=
6814 (align * ((narrowable_count - narrowable_convert_count)
6815 / align));
6816 longcall_convert_count = (longcall_count - j);
6817 widenable_convert_count = 0;
6818 break;
6819 }
6820 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6821 {
6822 narrowable_convert_count = 0;
6823 longcall_convert_count = longcall_count - j;
6824 widenable_convert_count = desire_widen;
6825 break;
6826 }
6827 }
6828 }
6829
6830 /* Now the number of conversions are saved. Do them. */
6831 for (i = seg_idx_start; i < seg_idx_end; i++)
6832 {
6833 action = &ebb_table->actions[i];
6834 switch (action->action)
6835 {
6836 case ta_convert_longcall:
6837 if (longcall_convert_count != 0)
6838 {
6839 action->action = ta_remove_longcall;
6840 action->do_action = TRUE;
6841 action->removed_bytes += 3;
6842 longcall_convert_count--;
6843 }
6844 break;
6845 case ta_narrow_insn:
6846 if (narrowable_convert_count != 0)
6847 {
6848 action->do_action = TRUE;
6849 action->removed_bytes += 1;
6850 narrowable_convert_count--;
6851 }
6852 break;
6853 case ta_widen_insn:
6854 if (widenable_convert_count != 0)
6855 {
6856 action->do_action = TRUE;
6857 action->removed_bytes -= 1;
6858 widenable_convert_count--;
6859 }
6860 break;
6861 default:
6862 break;
6863 }
6864 }
6865 }
6866
6867 /* Now we move on to some local opts. Try to remove each of the
6868 remaining longcalls. */
6869
6870 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6871 {
6872 removed_bytes = 0;
6873 for (i = 0; i < ebb_table->action_count; i++)
6874 {
6875 int old_removed_bytes = removed_bytes;
6876 proposed_action *action = &ebb_table->actions[i];
6877
6878 if (action->do_action && action->action == ta_convert_longcall)
6879 {
6880 bfd_boolean bad_alignment = FALSE;
6881 removed_bytes += 3;
6882 for (j = i + 1; j < ebb_table->action_count; j++)
6883 {
6884 proposed_action *new_action = &ebb_table->actions[j];
6885 bfd_vma offset = new_action->offset;
6886 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6887 {
6888 if (!check_branch_target_aligned
6889 (ebb_table->ebb.contents,
6890 ebb_table->ebb.content_length,
6891 offset, offset - removed_bytes))
6892 {
6893 bad_alignment = TRUE;
6894 break;
6895 }
6896 }
6897 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6898 {
6899 if (!check_loop_aligned (ebb_table->ebb.contents,
6900 ebb_table->ebb.content_length,
6901 offset,
6902 offset - removed_bytes))
6903 {
6904 bad_alignment = TRUE;
6905 break;
6906 }
6907 }
6908 if (new_action->action == ta_narrow_insn
6909 && !new_action->do_action
6910 && ebb_table->ebb.sec->alignment_power == 2)
6911 {
6912 /* Narrow an instruction and we are done. */
6913 new_action->do_action = TRUE;
6914 new_action->removed_bytes += 1;
6915 bad_alignment = FALSE;
6916 break;
6917 }
6918 if (new_action->action == ta_widen_insn
6919 && new_action->do_action
6920 && ebb_table->ebb.sec->alignment_power == 2)
6921 {
6922 /* Narrow an instruction and we are done. */
6923 new_action->do_action = FALSE;
6924 new_action->removed_bytes += 1;
6925 bad_alignment = FALSE;
6926 break;
6927 }
6928 if (new_action->do_action)
6929 removed_bytes += new_action->removed_bytes;
6930 }
6931 if (!bad_alignment)
6932 {
6933 action->removed_bytes += 3;
6934 action->action = ta_remove_longcall;
6935 action->do_action = TRUE;
6936 }
6937 }
6938 removed_bytes = old_removed_bytes;
6939 if (action->do_action)
6940 removed_bytes += action->removed_bytes;
6941 }
6942 }
6943
6944 removed_bytes = 0;
6945 for (i = 0; i < ebb_table->action_count; ++i)
6946 {
6947 proposed_action *action = &ebb_table->actions[i];
6948 if (action->do_action)
6949 removed_bytes += action->removed_bytes;
6950 }
6951
6952 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6953 && ebb->ends_unreachable)
6954 {
6955 proposed_action *action;
6956 int br;
6957 int extra_space;
6958
6959 BFD_ASSERT (ebb_table->action_count != 0);
6960 action = &ebb_table->actions[ebb_table->action_count - 1];
6961 BFD_ASSERT (action->action == ta_fill);
6962 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6963
6964 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6965 br = action->removed_bytes + removed_bytes + extra_space;
6966 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6967
6968 action->removed_bytes = extra_space - br;
6969 }
6970 return TRUE;
6971 }
6972
6973
6974 /* The xlate_map is a sorted array of address mappings designed to
6975 answer the offset_with_removed_text() query with a binary search instead
6976 of a linear search through the section's action_list. */
6977
6978 typedef struct xlate_map_entry xlate_map_entry_t;
6979 typedef struct xlate_map xlate_map_t;
6980
6981 struct xlate_map_entry
6982 {
6983 unsigned orig_address;
6984 unsigned new_address;
6985 unsigned size;
6986 };
6987
6988 struct xlate_map
6989 {
6990 unsigned entry_count;
6991 xlate_map_entry_t *entry;
6992 };
6993
6994
6995 static int
6996 xlate_compare (const void *a_v, const void *b_v)
6997 {
6998 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6999 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
7000 if (a->orig_address < b->orig_address)
7001 return -1;
7002 if (a->orig_address > (b->orig_address + b->size - 1))
7003 return 1;
7004 return 0;
7005 }
7006
7007
7008 static bfd_vma
7009 xlate_offset_with_removed_text (const xlate_map_t *map,
7010 text_action_list *action_list,
7011 bfd_vma offset)
7012 {
7013 xlate_map_entry_t tmp;
7014 void *r;
7015 xlate_map_entry_t *e;
7016
7017 if (map == NULL)
7018 return offset_with_removed_text (action_list, offset);
7019
7020 if (map->entry_count == 0)
7021 return offset;
7022
7023 tmp.orig_address = offset;
7024 tmp.new_address = offset;
7025 tmp.size = 1;
7026
7027 r = bsearch (&offset, map->entry, map->entry_count,
7028 sizeof (xlate_map_entry_t), &xlate_compare);
7029 e = (xlate_map_entry_t *) r;
7030
7031 BFD_ASSERT (e != NULL);
7032 if (e == NULL)
7033 return offset;
7034 return e->new_address - e->orig_address + offset;
7035 }
7036
7037
7038 /* Build a binary searchable offset translation map from a section's
7039 action list. */
7040
7041 static xlate_map_t *
7042 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7043 {
7044 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7045 text_action_list *action_list = &relax_info->action_list;
7046 unsigned num_actions = 0;
7047 text_action *r;
7048 int removed;
7049 xlate_map_entry_t *current_entry;
7050
7051 if (map == NULL)
7052 return NULL;
7053
7054 num_actions = action_list_count (action_list);
7055 map->entry = (xlate_map_entry_t *)
7056 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7057 if (map->entry == NULL)
7058 {
7059 free (map);
7060 return NULL;
7061 }
7062 map->entry_count = 0;
7063
7064 removed = 0;
7065 current_entry = &map->entry[0];
7066
7067 current_entry->orig_address = 0;
7068 current_entry->new_address = 0;
7069 current_entry->size = 0;
7070
7071 for (r = action_list->head; r != NULL; r = r->next)
7072 {
7073 unsigned orig_size = 0;
7074 switch (r->action)
7075 {
7076 case ta_none:
7077 case ta_remove_insn:
7078 case ta_convert_longcall:
7079 case ta_remove_literal:
7080 case ta_add_literal:
7081 break;
7082 case ta_remove_longcall:
7083 orig_size = 6;
7084 break;
7085 case ta_narrow_insn:
7086 orig_size = 3;
7087 break;
7088 case ta_widen_insn:
7089 orig_size = 2;
7090 break;
7091 case ta_fill:
7092 break;
7093 }
7094 current_entry->size =
7095 r->offset + orig_size - current_entry->orig_address;
7096 if (current_entry->size != 0)
7097 {
7098 current_entry++;
7099 map->entry_count++;
7100 }
7101 current_entry->orig_address = r->offset + orig_size;
7102 removed += r->removed_bytes;
7103 current_entry->new_address = r->offset + orig_size - removed;
7104 current_entry->size = 0;
7105 }
7106
7107 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7108 - current_entry->orig_address);
7109 if (current_entry->size != 0)
7110 map->entry_count++;
7111
7112 return map;
7113 }
7114
7115
7116 /* Free an offset translation map. */
7117
7118 static void
7119 free_xlate_map (xlate_map_t *map)
7120 {
7121 if (map && map->entry)
7122 free (map->entry);
7123 if (map)
7124 free (map);
7125 }
7126
7127
7128 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7129 relocations in a section will fit if a proposed set of actions
7130 are performed. */
7131
7132 static bfd_boolean
7133 check_section_ebb_pcrels_fit (bfd *abfd,
7134 asection *sec,
7135 bfd_byte *contents,
7136 Elf_Internal_Rela *internal_relocs,
7137 const ebb_constraint *constraint,
7138 const xtensa_opcode *reloc_opcodes)
7139 {
7140 unsigned i, j;
7141 Elf_Internal_Rela *irel;
7142 xlate_map_t *xmap = NULL;
7143 bfd_boolean ok = TRUE;
7144 xtensa_relax_info *relax_info;
7145
7146 relax_info = get_xtensa_relax_info (sec);
7147
7148 if (relax_info && sec->reloc_count > 100)
7149 {
7150 xmap = build_xlate_map (sec, relax_info);
7151 /* NULL indicates out of memory, but the slow version
7152 can still be used. */
7153 }
7154
7155 for (i = 0; i < sec->reloc_count; i++)
7156 {
7157 r_reloc r_rel;
7158 bfd_vma orig_self_offset, orig_target_offset;
7159 bfd_vma self_offset, target_offset;
7160 int r_type;
7161 reloc_howto_type *howto;
7162 int self_removed_bytes, target_removed_bytes;
7163
7164 irel = &internal_relocs[i];
7165 r_type = ELF32_R_TYPE (irel->r_info);
7166
7167 howto = &elf_howto_table[r_type];
7168 /* We maintain the required invariant: PC-relative relocations
7169 that fit before linking must fit after linking. Thus we only
7170 need to deal with relocations to the same section that are
7171 PC-relative. */
7172 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
7173 || !howto->pc_relative)
7174 continue;
7175
7176 r_reloc_init (&r_rel, abfd, irel, contents,
7177 bfd_get_section_limit (abfd, sec));
7178
7179 if (r_reloc_get_section (&r_rel) != sec)
7180 continue;
7181
7182 orig_self_offset = irel->r_offset;
7183 orig_target_offset = r_rel.target_offset;
7184
7185 self_offset = orig_self_offset;
7186 target_offset = orig_target_offset;
7187
7188 if (relax_info)
7189 {
7190 self_offset =
7191 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7192 orig_self_offset);
7193 target_offset =
7194 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7195 orig_target_offset);
7196 }
7197
7198 self_removed_bytes = 0;
7199 target_removed_bytes = 0;
7200
7201 for (j = 0; j < constraint->action_count; ++j)
7202 {
7203 proposed_action *action = &constraint->actions[j];
7204 bfd_vma offset = action->offset;
7205 int removed_bytes = action->removed_bytes;
7206 if (offset < orig_self_offset
7207 || (offset == orig_self_offset && action->action == ta_fill
7208 && action->removed_bytes < 0))
7209 self_removed_bytes += removed_bytes;
7210 if (offset < orig_target_offset
7211 || (offset == orig_target_offset && action->action == ta_fill
7212 && action->removed_bytes < 0))
7213 target_removed_bytes += removed_bytes;
7214 }
7215 self_offset -= self_removed_bytes;
7216 target_offset -= target_removed_bytes;
7217
7218 /* Try to encode it. Get the operand and check. */
7219 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7220 {
7221 /* None of the current alternate relocs are PC-relative,
7222 and only PC-relative relocs matter here. */
7223 }
7224 else
7225 {
7226 xtensa_opcode opcode;
7227 int opnum;
7228
7229 if (reloc_opcodes)
7230 opcode = reloc_opcodes[i];
7231 else
7232 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7233 if (opcode == XTENSA_UNDEFINED)
7234 {
7235 ok = FALSE;
7236 break;
7237 }
7238
7239 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7240 if (opnum == XTENSA_UNDEFINED)
7241 {
7242 ok = FALSE;
7243 break;
7244 }
7245
7246 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
7247 {
7248 ok = FALSE;
7249 break;
7250 }
7251 }
7252 }
7253
7254 if (xmap)
7255 free_xlate_map (xmap);
7256
7257 return ok;
7258 }
7259
7260
7261 static bfd_boolean
7262 check_section_ebb_reduces (const ebb_constraint *constraint)
7263 {
7264 int removed = 0;
7265 unsigned i;
7266
7267 for (i = 0; i < constraint->action_count; i++)
7268 {
7269 const proposed_action *action = &constraint->actions[i];
7270 if (action->do_action)
7271 removed += action->removed_bytes;
7272 }
7273 if (removed < 0)
7274 return FALSE;
7275
7276 return TRUE;
7277 }
7278
7279
7280 void
7281 text_action_add_proposed (text_action_list *l,
7282 const ebb_constraint *ebb_table,
7283 asection *sec)
7284 {
7285 unsigned i;
7286
7287 for (i = 0; i < ebb_table->action_count; i++)
7288 {
7289 proposed_action *action = &ebb_table->actions[i];
7290
7291 if (!action->do_action)
7292 continue;
7293 switch (action->action)
7294 {
7295 case ta_remove_insn:
7296 case ta_remove_longcall:
7297 case ta_convert_longcall:
7298 case ta_narrow_insn:
7299 case ta_widen_insn:
7300 case ta_fill:
7301 case ta_remove_literal:
7302 text_action_add (l, action->action, sec, action->offset,
7303 action->removed_bytes);
7304 break;
7305 case ta_none:
7306 break;
7307 default:
7308 BFD_ASSERT (0);
7309 break;
7310 }
7311 }
7312 }
7313
7314
7315 int
7316 compute_fill_extra_space (property_table_entry *entry)
7317 {
7318 int fill_extra_space;
7319
7320 if (!entry)
7321 return 0;
7322
7323 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7324 return 0;
7325
7326 fill_extra_space = entry->size;
7327 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7328 {
7329 /* Fill bytes for alignment:
7330 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7331 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7332 int nsm = (1 << pow) - 1;
7333 bfd_vma addr = entry->address + entry->size;
7334 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7335 fill_extra_space += align_fill;
7336 }
7337 return fill_extra_space;
7338 }
7339
7340 \f
7341 /* First relaxation pass. */
7342
7343 /* If the section contains relaxable literals, check each literal to
7344 see if it has the same value as another literal that has already
7345 been seen, either in the current section or a previous one. If so,
7346 add an entry to the per-section list of removed literals. The
7347 actual changes are deferred until the next pass. */
7348
7349 static bfd_boolean
7350 compute_removed_literals (bfd *abfd,
7351 asection *sec,
7352 struct bfd_link_info *link_info,
7353 value_map_hash_table *values)
7354 {
7355 xtensa_relax_info *relax_info;
7356 bfd_byte *contents;
7357 Elf_Internal_Rela *internal_relocs;
7358 source_reloc *src_relocs, *rel;
7359 bfd_boolean ok = TRUE;
7360 property_table_entry *prop_table = NULL;
7361 int ptblsize;
7362 int i, prev_i;
7363 bfd_boolean last_loc_is_prev = FALSE;
7364 bfd_vma last_target_offset = 0;
7365 section_cache_t target_sec_cache;
7366 bfd_size_type sec_size;
7367
7368 init_section_cache (&target_sec_cache);
7369
7370 /* Do nothing if it is not a relaxable literal section. */
7371 relax_info = get_xtensa_relax_info (sec);
7372 BFD_ASSERT (relax_info);
7373 if (!relax_info->is_relaxable_literal_section)
7374 return ok;
7375
7376 internal_relocs = retrieve_internal_relocs (abfd, sec,
7377 link_info->keep_memory);
7378
7379 sec_size = bfd_get_section_limit (abfd, sec);
7380 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7381 if (contents == NULL && sec_size != 0)
7382 {
7383 ok = FALSE;
7384 goto error_return;
7385 }
7386
7387 /* Sort the source_relocs by target offset. */
7388 src_relocs = relax_info->src_relocs;
7389 qsort (src_relocs, relax_info->src_count,
7390 sizeof (source_reloc), source_reloc_compare);
7391 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7392 internal_reloc_compare);
7393
7394 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7395 XTENSA_PROP_SEC_NAME, FALSE);
7396 if (ptblsize < 0)
7397 {
7398 ok = FALSE;
7399 goto error_return;
7400 }
7401
7402 prev_i = -1;
7403 for (i = 0; i < relax_info->src_count; i++)
7404 {
7405 Elf_Internal_Rela *irel = NULL;
7406
7407 rel = &src_relocs[i];
7408 if (get_l32r_opcode () != rel->opcode)
7409 continue;
7410 irel = get_irel_at_offset (sec, internal_relocs,
7411 rel->r_rel.target_offset);
7412
7413 /* If the relocation on this is not a simple R_XTENSA_32 or
7414 R_XTENSA_PLT then do not consider it. This may happen when
7415 the difference of two symbols is used in a literal. */
7416 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7417 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7418 continue;
7419
7420 /* If the target_offset for this relocation is the same as the
7421 previous relocation, then we've already considered whether the
7422 literal can be coalesced. Skip to the next one.... */
7423 if (i != 0 && prev_i != -1
7424 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
7425 continue;
7426 prev_i = i;
7427
7428 if (last_loc_is_prev &&
7429 last_target_offset + 4 != rel->r_rel.target_offset)
7430 last_loc_is_prev = FALSE;
7431
7432 /* Check if the relocation was from an L32R that is being removed
7433 because a CALLX was converted to a direct CALL, and check if
7434 there are no other relocations to the literal. */
7435 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
7436 sec, prop_table, ptblsize))
7437 {
7438 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7439 irel, rel, prop_table, ptblsize))
7440 {
7441 ok = FALSE;
7442 goto error_return;
7443 }
7444 last_target_offset = rel->r_rel.target_offset;
7445 continue;
7446 }
7447
7448 if (!identify_literal_placement (abfd, sec, contents, link_info,
7449 values,
7450 &last_loc_is_prev, irel,
7451 relax_info->src_count - i, rel,
7452 prop_table, ptblsize,
7453 &target_sec_cache, rel->is_abs_literal))
7454 {
7455 ok = FALSE;
7456 goto error_return;
7457 }
7458 last_target_offset = rel->r_rel.target_offset;
7459 }
7460
7461 #if DEBUG
7462 print_removed_literals (stderr, &relax_info->removed_list);
7463 print_action_list (stderr, &relax_info->action_list);
7464 #endif /* DEBUG */
7465
7466 error_return:
7467 if (prop_table) free (prop_table);
7468 clear_section_cache (&target_sec_cache);
7469
7470 release_contents (sec, contents);
7471 release_internal_relocs (sec, internal_relocs);
7472 return ok;
7473 }
7474
7475
7476 static Elf_Internal_Rela *
7477 get_irel_at_offset (asection *sec,
7478 Elf_Internal_Rela *internal_relocs,
7479 bfd_vma offset)
7480 {
7481 unsigned i;
7482 Elf_Internal_Rela *irel;
7483 unsigned r_type;
7484 Elf_Internal_Rela key;
7485
7486 if (!internal_relocs)
7487 return NULL;
7488
7489 key.r_offset = offset;
7490 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7491 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7492 if (!irel)
7493 return NULL;
7494
7495 /* bsearch does not guarantee which will be returned if there are
7496 multiple matches. We need the first that is not an alignment. */
7497 i = irel - internal_relocs;
7498 while (i > 0)
7499 {
7500 if (internal_relocs[i-1].r_offset != offset)
7501 break;
7502 i--;
7503 }
7504 for ( ; i < sec->reloc_count; i++)
7505 {
7506 irel = &internal_relocs[i];
7507 r_type = ELF32_R_TYPE (irel->r_info);
7508 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7509 return irel;
7510 }
7511
7512 return NULL;
7513 }
7514
7515
7516 bfd_boolean
7517 is_removable_literal (const source_reloc *rel,
7518 int i,
7519 const source_reloc *src_relocs,
7520 int src_count,
7521 asection *sec,
7522 property_table_entry *prop_table,
7523 int ptblsize)
7524 {
7525 const source_reloc *curr_rel;
7526 property_table_entry *entry;
7527
7528 if (!rel->is_null)
7529 return FALSE;
7530
7531 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7532 sec->vma + rel->r_rel.target_offset);
7533 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
7534 return FALSE;
7535
7536 for (++i; i < src_count; ++i)
7537 {
7538 curr_rel = &src_relocs[i];
7539 /* If all others have the same target offset.... */
7540 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7541 return TRUE;
7542
7543 if (!curr_rel->is_null
7544 && !xtensa_is_property_section (curr_rel->source_sec)
7545 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7546 return FALSE;
7547 }
7548 return TRUE;
7549 }
7550
7551
7552 bfd_boolean
7553 remove_dead_literal (bfd *abfd,
7554 asection *sec,
7555 struct bfd_link_info *link_info,
7556 Elf_Internal_Rela *internal_relocs,
7557 Elf_Internal_Rela *irel,
7558 source_reloc *rel,
7559 property_table_entry *prop_table,
7560 int ptblsize)
7561 {
7562 property_table_entry *entry;
7563 xtensa_relax_info *relax_info;
7564
7565 relax_info = get_xtensa_relax_info (sec);
7566 if (!relax_info)
7567 return FALSE;
7568
7569 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7570 sec->vma + rel->r_rel.target_offset);
7571
7572 /* Mark the unused literal so that it will be removed. */
7573 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7574
7575 text_action_add (&relax_info->action_list,
7576 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7577
7578 /* If the section is 4-byte aligned, do not add fill. */
7579 if (sec->alignment_power > 2)
7580 {
7581 int fill_extra_space;
7582 bfd_vma entry_sec_offset;
7583 text_action *fa;
7584 property_table_entry *the_add_entry;
7585 int removed_diff;
7586
7587 if (entry)
7588 entry_sec_offset = entry->address - sec->vma + entry->size;
7589 else
7590 entry_sec_offset = rel->r_rel.target_offset + 4;
7591
7592 /* If the literal range is at the end of the section,
7593 do not add fill. */
7594 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7595 entry_sec_offset);
7596 fill_extra_space = compute_fill_extra_space (the_add_entry);
7597
7598 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7599 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7600 -4, fill_extra_space);
7601 if (fa)
7602 adjust_fill_action (fa, removed_diff);
7603 else
7604 text_action_add (&relax_info->action_list,
7605 ta_fill, sec, entry_sec_offset, removed_diff);
7606 }
7607
7608 /* Zero out the relocation on this literal location. */
7609 if (irel)
7610 {
7611 if (elf_hash_table (link_info)->dynamic_sections_created)
7612 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7613
7614 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7615 pin_internal_relocs (sec, internal_relocs);
7616 }
7617
7618 /* Do not modify "last_loc_is_prev". */
7619 return TRUE;
7620 }
7621
7622
7623 bfd_boolean
7624 identify_literal_placement (bfd *abfd,
7625 asection *sec,
7626 bfd_byte *contents,
7627 struct bfd_link_info *link_info,
7628 value_map_hash_table *values,
7629 bfd_boolean *last_loc_is_prev_p,
7630 Elf_Internal_Rela *irel,
7631 int remaining_src_rels,
7632 source_reloc *rel,
7633 property_table_entry *prop_table,
7634 int ptblsize,
7635 section_cache_t *target_sec_cache,
7636 bfd_boolean is_abs_literal)
7637 {
7638 literal_value val;
7639 value_map *val_map;
7640 xtensa_relax_info *relax_info;
7641 bfd_boolean literal_placed = FALSE;
7642 r_reloc r_rel;
7643 unsigned long value;
7644 bfd_boolean final_static_link;
7645 bfd_size_type sec_size;
7646
7647 relax_info = get_xtensa_relax_info (sec);
7648 if (!relax_info)
7649 return FALSE;
7650
7651 sec_size = bfd_get_section_limit (abfd, sec);
7652
7653 final_static_link =
7654 (!link_info->relocatable
7655 && !elf_hash_table (link_info)->dynamic_sections_created);
7656
7657 /* The placement algorithm first checks to see if the literal is
7658 already in the value map. If so and the value map is reachable
7659 from all uses, then the literal is moved to that location. If
7660 not, then we identify the last location where a fresh literal was
7661 placed. If the literal can be safely moved there, then we do so.
7662 If not, then we assume that the literal is not to move and leave
7663 the literal where it is, marking it as the last literal
7664 location. */
7665
7666 /* Find the literal value. */
7667 value = 0;
7668 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7669 if (!irel)
7670 {
7671 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7672 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7673 }
7674 init_literal_value (&val, &r_rel, value, is_abs_literal);
7675
7676 /* Check if we've seen another literal with the same value that
7677 is in the same output section. */
7678 val_map = value_map_get_cached_value (values, &val, final_static_link);
7679
7680 if (val_map
7681 && (r_reloc_get_section (&val_map->loc)->output_section
7682 == sec->output_section)
7683 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7684 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7685 {
7686 /* No change to last_loc_is_prev. */
7687 literal_placed = TRUE;
7688 }
7689
7690 /* For relocatable links, do not try to move literals. To do it
7691 correctly might increase the number of relocations in an input
7692 section making the default relocatable linking fail. */
7693 if (!link_info->relocatable && !literal_placed
7694 && values->has_last_loc && !(*last_loc_is_prev_p))
7695 {
7696 asection *target_sec = r_reloc_get_section (&values->last_loc);
7697 if (target_sec && target_sec->output_section == sec->output_section)
7698 {
7699 /* Increment the virtual offset. */
7700 r_reloc try_loc = values->last_loc;
7701 try_loc.virtual_offset += 4;
7702
7703 /* There is a last loc that was in the same output section. */
7704 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7705 && move_shared_literal (sec, link_info, rel,
7706 prop_table, ptblsize,
7707 &try_loc, &val, target_sec_cache))
7708 {
7709 values->last_loc.virtual_offset += 4;
7710 literal_placed = TRUE;
7711 if (!val_map)
7712 val_map = add_value_map (values, &val, &try_loc,
7713 final_static_link);
7714 else
7715 val_map->loc = try_loc;
7716 }
7717 }
7718 }
7719
7720 if (!literal_placed)
7721 {
7722 /* Nothing worked, leave the literal alone but update the last loc. */
7723 values->has_last_loc = TRUE;
7724 values->last_loc = rel->r_rel;
7725 if (!val_map)
7726 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
7727 else
7728 val_map->loc = rel->r_rel;
7729 *last_loc_is_prev_p = TRUE;
7730 }
7731
7732 return TRUE;
7733 }
7734
7735
7736 /* Check if the original relocations (presumably on L32R instructions)
7737 identified by reloc[0..N] can be changed to reference the literal
7738 identified by r_rel. If r_rel is out of range for any of the
7739 original relocations, then we don't want to coalesce the original
7740 literal with the one at r_rel. We only check reloc[0..N], where the
7741 offsets are all the same as for reloc[0] (i.e., they're all
7742 referencing the same literal) and where N is also bounded by the
7743 number of remaining entries in the "reloc" array. The "reloc" array
7744 is sorted by target offset so we know all the entries for the same
7745 literal will be contiguous. */
7746
7747 static bfd_boolean
7748 relocations_reach (source_reloc *reloc,
7749 int remaining_relocs,
7750 const r_reloc *r_rel)
7751 {
7752 bfd_vma from_offset, source_address, dest_address;
7753 asection *sec;
7754 int i;
7755
7756 if (!r_reloc_is_defined (r_rel))
7757 return FALSE;
7758
7759 sec = r_reloc_get_section (r_rel);
7760 from_offset = reloc[0].r_rel.target_offset;
7761
7762 for (i = 0; i < remaining_relocs; i++)
7763 {
7764 if (reloc[i].r_rel.target_offset != from_offset)
7765 break;
7766
7767 /* Ignore relocations that have been removed. */
7768 if (reloc[i].is_null)
7769 continue;
7770
7771 /* The original and new output section for these must be the same
7772 in order to coalesce. */
7773 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7774 != sec->output_section)
7775 return FALSE;
7776
7777 /* Absolute literals in the same output section can always be
7778 combined. */
7779 if (reloc[i].is_abs_literal)
7780 continue;
7781
7782 /* A literal with no PC-relative relocations can be moved anywhere. */
7783 if (reloc[i].opnd != -1)
7784 {
7785 /* Otherwise, check to see that it fits. */
7786 source_address = (reloc[i].source_sec->output_section->vma
7787 + reloc[i].source_sec->output_offset
7788 + reloc[i].r_rel.rela.r_offset);
7789 dest_address = (sec->output_section->vma
7790 + sec->output_offset
7791 + r_rel->target_offset);
7792
7793 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7794 source_address, dest_address))
7795 return FALSE;
7796 }
7797 }
7798
7799 return TRUE;
7800 }
7801
7802
7803 /* Move a literal to another literal location because it is
7804 the same as the other literal value. */
7805
7806 static bfd_boolean
7807 coalesce_shared_literal (asection *sec,
7808 source_reloc *rel,
7809 property_table_entry *prop_table,
7810 int ptblsize,
7811 value_map *val_map)
7812 {
7813 property_table_entry *entry;
7814 text_action *fa;
7815 property_table_entry *the_add_entry;
7816 int removed_diff;
7817 xtensa_relax_info *relax_info;
7818
7819 relax_info = get_xtensa_relax_info (sec);
7820 if (!relax_info)
7821 return FALSE;
7822
7823 entry = elf_xtensa_find_property_entry
7824 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7825 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
7826 return TRUE;
7827
7828 /* Mark that the literal will be coalesced. */
7829 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7830
7831 text_action_add (&relax_info->action_list,
7832 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7833
7834 /* If the section is 4-byte aligned, do not add fill. */
7835 if (sec->alignment_power > 2)
7836 {
7837 int fill_extra_space;
7838 bfd_vma entry_sec_offset;
7839
7840 if (entry)
7841 entry_sec_offset = entry->address - sec->vma + entry->size;
7842 else
7843 entry_sec_offset = rel->r_rel.target_offset + 4;
7844
7845 /* If the literal range is at the end of the section,
7846 do not add fill. */
7847 fill_extra_space = 0;
7848 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7849 entry_sec_offset);
7850 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7851 fill_extra_space = the_add_entry->size;
7852
7853 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7854 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7855 -4, fill_extra_space);
7856 if (fa)
7857 adjust_fill_action (fa, removed_diff);
7858 else
7859 text_action_add (&relax_info->action_list,
7860 ta_fill, sec, entry_sec_offset, removed_diff);
7861 }
7862
7863 return TRUE;
7864 }
7865
7866
7867 /* Move a literal to another location. This may actually increase the
7868 total amount of space used because of alignments so we need to do
7869 this carefully. Also, it may make a branch go out of range. */
7870
7871 static bfd_boolean
7872 move_shared_literal (asection *sec,
7873 struct bfd_link_info *link_info,
7874 source_reloc *rel,
7875 property_table_entry *prop_table,
7876 int ptblsize,
7877 const r_reloc *target_loc,
7878 const literal_value *lit_value,
7879 section_cache_t *target_sec_cache)
7880 {
7881 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7882 text_action *fa, *target_fa;
7883 int removed_diff;
7884 xtensa_relax_info *relax_info, *target_relax_info;
7885 asection *target_sec;
7886 ebb_t *ebb;
7887 ebb_constraint ebb_table;
7888 bfd_boolean relocs_fit;
7889
7890 /* If this routine always returns FALSE, the literals that cannot be
7891 coalesced will not be moved. */
7892 if (elf32xtensa_no_literal_movement)
7893 return FALSE;
7894
7895 relax_info = get_xtensa_relax_info (sec);
7896 if (!relax_info)
7897 return FALSE;
7898
7899 target_sec = r_reloc_get_section (target_loc);
7900 target_relax_info = get_xtensa_relax_info (target_sec);
7901
7902 /* Literals to undefined sections may not be moved because they
7903 must report an error. */
7904 if (bfd_is_und_section (target_sec))
7905 return FALSE;
7906
7907 src_entry = elf_xtensa_find_property_entry
7908 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7909
7910 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7911 return FALSE;
7912
7913 target_entry = elf_xtensa_find_property_entry
7914 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7915 target_sec->vma + target_loc->target_offset);
7916
7917 if (!target_entry)
7918 return FALSE;
7919
7920 /* Make sure that we have not broken any branches. */
7921 relocs_fit = FALSE;
7922
7923 init_ebb_constraint (&ebb_table);
7924 ebb = &ebb_table.ebb;
7925 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7926 target_sec_cache->content_length,
7927 target_sec_cache->ptbl, target_sec_cache->pte_count,
7928 target_sec_cache->relocs, target_sec_cache->reloc_count);
7929
7930 /* Propose to add 4 bytes + worst-case alignment size increase to
7931 destination. */
7932 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7933 ta_fill, target_loc->target_offset,
7934 -4 - (1 << target_sec->alignment_power), TRUE);
7935
7936 /* Check all of the PC-relative relocations to make sure they still fit. */
7937 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7938 target_sec_cache->contents,
7939 target_sec_cache->relocs,
7940 &ebb_table, NULL);
7941
7942 if (!relocs_fit)
7943 return FALSE;
7944
7945 text_action_add_literal (&target_relax_info->action_list,
7946 ta_add_literal, target_loc, lit_value, -4);
7947
7948 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7949 {
7950 /* May need to add or remove some fill to maintain alignment. */
7951 int fill_extra_space;
7952 bfd_vma entry_sec_offset;
7953
7954 entry_sec_offset =
7955 target_entry->address - target_sec->vma + target_entry->size;
7956
7957 /* If the literal range is at the end of the section,
7958 do not add fill. */
7959 fill_extra_space = 0;
7960 the_add_entry =
7961 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7962 target_sec_cache->pte_count,
7963 entry_sec_offset);
7964 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7965 fill_extra_space = the_add_entry->size;
7966
7967 target_fa = find_fill_action (&target_relax_info->action_list,
7968 target_sec, entry_sec_offset);
7969 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7970 entry_sec_offset, 4,
7971 fill_extra_space);
7972 if (target_fa)
7973 adjust_fill_action (target_fa, removed_diff);
7974 else
7975 text_action_add (&target_relax_info->action_list,
7976 ta_fill, target_sec, entry_sec_offset, removed_diff);
7977 }
7978
7979 /* Mark that the literal will be moved to the new location. */
7980 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7981
7982 /* Remove the literal. */
7983 text_action_add (&relax_info->action_list,
7984 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7985
7986 /* If the section is 4-byte aligned, do not add fill. */
7987 if (sec->alignment_power > 2 && target_entry != src_entry)
7988 {
7989 int fill_extra_space;
7990 bfd_vma entry_sec_offset;
7991
7992 if (src_entry)
7993 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7994 else
7995 entry_sec_offset = rel->r_rel.target_offset+4;
7996
7997 /* If the literal range is at the end of the section,
7998 do not add fill. */
7999 fill_extra_space = 0;
8000 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8001 entry_sec_offset);
8002 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8003 fill_extra_space = the_add_entry->size;
8004
8005 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8006 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8007 -4, fill_extra_space);
8008 if (fa)
8009 adjust_fill_action (fa, removed_diff);
8010 else
8011 text_action_add (&relax_info->action_list,
8012 ta_fill, sec, entry_sec_offset, removed_diff);
8013 }
8014
8015 return TRUE;
8016 }
8017
8018 \f
8019 /* Second relaxation pass. */
8020
8021 /* Modify all of the relocations to point to the right spot, and if this
8022 is a relaxable section, delete the unwanted literals and fix the
8023 section size. */
8024
8025 bfd_boolean
8026 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
8027 {
8028 Elf_Internal_Rela *internal_relocs;
8029 xtensa_relax_info *relax_info;
8030 bfd_byte *contents;
8031 bfd_boolean ok = TRUE;
8032 unsigned i;
8033 bfd_boolean rv = FALSE;
8034 bfd_boolean virtual_action;
8035 bfd_size_type sec_size;
8036
8037 sec_size = bfd_get_section_limit (abfd, sec);
8038 relax_info = get_xtensa_relax_info (sec);
8039 BFD_ASSERT (relax_info);
8040
8041 /* First translate any of the fixes that have been added already. */
8042 translate_section_fixes (sec);
8043
8044 /* Handle property sections (e.g., literal tables) specially. */
8045 if (xtensa_is_property_section (sec))
8046 {
8047 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8048 return relax_property_section (abfd, sec, link_info);
8049 }
8050
8051 internal_relocs = retrieve_internal_relocs (abfd, sec,
8052 link_info->keep_memory);
8053 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8054 if (contents == NULL && sec_size != 0)
8055 {
8056 ok = FALSE;
8057 goto error_return;
8058 }
8059
8060 if (internal_relocs)
8061 {
8062 for (i = 0; i < sec->reloc_count; i++)
8063 {
8064 Elf_Internal_Rela *irel;
8065 xtensa_relax_info *target_relax_info;
8066 bfd_vma source_offset, old_source_offset;
8067 r_reloc r_rel;
8068 unsigned r_type;
8069 asection *target_sec;
8070
8071 /* Locally change the source address.
8072 Translate the target to the new target address.
8073 If it points to this section and has been removed,
8074 NULLify it.
8075 Write it back. */
8076
8077 irel = &internal_relocs[i];
8078 source_offset = irel->r_offset;
8079 old_source_offset = source_offset;
8080
8081 r_type = ELF32_R_TYPE (irel->r_info);
8082 r_reloc_init (&r_rel, abfd, irel, contents,
8083 bfd_get_section_limit (abfd, sec));
8084
8085 /* If this section could have changed then we may need to
8086 change the relocation's offset. */
8087
8088 if (relax_info->is_relaxable_literal_section
8089 || relax_info->is_relaxable_asm_section)
8090 {
8091 if (r_type != R_XTENSA_NONE
8092 && find_removed_literal (&relax_info->removed_list,
8093 irel->r_offset))
8094 {
8095 /* Remove this relocation. */
8096 if (elf_hash_table (link_info)->dynamic_sections_created)
8097 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8098 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8099 irel->r_offset = offset_with_removed_text
8100 (&relax_info->action_list, irel->r_offset);
8101 pin_internal_relocs (sec, internal_relocs);
8102 continue;
8103 }
8104
8105 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8106 {
8107 text_action *action =
8108 find_insn_action (&relax_info->action_list,
8109 irel->r_offset);
8110 if (action && (action->action == ta_convert_longcall
8111 || action->action == ta_remove_longcall))
8112 {
8113 bfd_reloc_status_type retval;
8114 char *error_message = NULL;
8115
8116 retval = contract_asm_expansion (contents, sec_size,
8117 irel, &error_message);
8118 if (retval != bfd_reloc_ok)
8119 {
8120 (*link_info->callbacks->reloc_dangerous)
8121 (link_info, error_message, abfd, sec,
8122 irel->r_offset);
8123 goto error_return;
8124 }
8125 /* Update the action so that the code that moves
8126 the contents will do the right thing. */
8127 if (action->action == ta_remove_longcall)
8128 action->action = ta_remove_insn;
8129 else
8130 action->action = ta_none;
8131 /* Refresh the info in the r_rel. */
8132 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8133 r_type = ELF32_R_TYPE (irel->r_info);
8134 }
8135 }
8136
8137 source_offset = offset_with_removed_text
8138 (&relax_info->action_list, irel->r_offset);
8139 irel->r_offset = source_offset;
8140 }
8141
8142 /* If the target section could have changed then
8143 we may need to change the relocation's target offset. */
8144
8145 target_sec = r_reloc_get_section (&r_rel);
8146 target_relax_info = get_xtensa_relax_info (target_sec);
8147
8148 if (target_relax_info
8149 && (target_relax_info->is_relaxable_literal_section
8150 || target_relax_info->is_relaxable_asm_section))
8151 {
8152 r_reloc new_reloc;
8153 reloc_bfd_fix *fix;
8154 bfd_vma addend_displacement;
8155
8156 translate_reloc (&r_rel, &new_reloc);
8157
8158 if (r_type == R_XTENSA_DIFF8
8159 || r_type == R_XTENSA_DIFF16
8160 || r_type == R_XTENSA_DIFF32)
8161 {
8162 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8163
8164 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8165 {
8166 (*link_info->callbacks->reloc_dangerous)
8167 (link_info, _("invalid relocation address"),
8168 abfd, sec, old_source_offset);
8169 goto error_return;
8170 }
8171
8172 switch (r_type)
8173 {
8174 case R_XTENSA_DIFF8:
8175 diff_value =
8176 bfd_get_8 (abfd, &contents[old_source_offset]);
8177 break;
8178 case R_XTENSA_DIFF16:
8179 diff_value =
8180 bfd_get_16 (abfd, &contents[old_source_offset]);
8181 break;
8182 case R_XTENSA_DIFF32:
8183 diff_value =
8184 bfd_get_32 (abfd, &contents[old_source_offset]);
8185 break;
8186 }
8187
8188 new_end_offset = offset_with_removed_text
8189 (&target_relax_info->action_list,
8190 r_rel.target_offset + diff_value);
8191 diff_value = new_end_offset - new_reloc.target_offset;
8192
8193 switch (r_type)
8194 {
8195 case R_XTENSA_DIFF8:
8196 diff_mask = 0xff;
8197 bfd_put_8 (abfd, diff_value,
8198 &contents[old_source_offset]);
8199 break;
8200 case R_XTENSA_DIFF16:
8201 diff_mask = 0xffff;
8202 bfd_put_16 (abfd, diff_value,
8203 &contents[old_source_offset]);
8204 break;
8205 case R_XTENSA_DIFF32:
8206 diff_mask = 0xffffffff;
8207 bfd_put_32 (abfd, diff_value,
8208 &contents[old_source_offset]);
8209 break;
8210 }
8211
8212 /* Check for overflow. */
8213 if ((diff_value & ~diff_mask) != 0)
8214 {
8215 (*link_info->callbacks->reloc_dangerous)
8216 (link_info, _("overflow after relaxation"),
8217 abfd, sec, old_source_offset);
8218 goto error_return;
8219 }
8220
8221 pin_contents (sec, contents);
8222 }
8223
8224 /* FIXME: If the relocation still references a section in
8225 the same input file, the relocation should be modified
8226 directly instead of adding a "fix" record. */
8227
8228 addend_displacement =
8229 new_reloc.target_offset + new_reloc.virtual_offset;
8230
8231 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
8232 r_reloc_get_section (&new_reloc),
8233 addend_displacement, TRUE);
8234 add_fix (sec, fix);
8235 }
8236
8237 pin_internal_relocs (sec, internal_relocs);
8238 }
8239 }
8240
8241 if ((relax_info->is_relaxable_literal_section
8242 || relax_info->is_relaxable_asm_section)
8243 && relax_info->action_list.head)
8244 {
8245 /* Walk through the planned actions and build up a table
8246 of move, copy and fill records. Use the move, copy and
8247 fill records to perform the actions once. */
8248
8249 bfd_size_type size = sec->size;
8250 int removed = 0;
8251 bfd_size_type final_size, copy_size, orig_insn_size;
8252 bfd_byte *scratch = NULL;
8253 bfd_byte *dup_contents = NULL;
8254 bfd_size_type orig_size = size;
8255 bfd_vma orig_dot = 0;
8256 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8257 orig dot in physical memory. */
8258 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8259 bfd_vma dup_dot = 0;
8260
8261 text_action *action = relax_info->action_list.head;
8262
8263 final_size = sec->size;
8264 for (action = relax_info->action_list.head; action;
8265 action = action->next)
8266 {
8267 final_size -= action->removed_bytes;
8268 }
8269
8270 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8271 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8272
8273 /* The dot is the current fill location. */
8274 #if DEBUG
8275 print_action_list (stderr, &relax_info->action_list);
8276 #endif
8277
8278 for (action = relax_info->action_list.head; action;
8279 action = action->next)
8280 {
8281 virtual_action = FALSE;
8282 if (action->offset > orig_dot)
8283 {
8284 orig_dot += orig_dot_copied;
8285 orig_dot_copied = 0;
8286 orig_dot_vo = 0;
8287 /* Out of the virtual world. */
8288 }
8289
8290 if (action->offset > orig_dot)
8291 {
8292 copy_size = action->offset - orig_dot;
8293 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8294 orig_dot += copy_size;
8295 dup_dot += copy_size;
8296 BFD_ASSERT (action->offset == orig_dot);
8297 }
8298 else if (action->offset < orig_dot)
8299 {
8300 if (action->action == ta_fill
8301 && action->offset - action->removed_bytes == orig_dot)
8302 {
8303 /* This is OK because the fill only effects the dup_dot. */
8304 }
8305 else if (action->action == ta_add_literal)
8306 {
8307 /* TBD. Might need to handle this. */
8308 }
8309 }
8310 if (action->offset == orig_dot)
8311 {
8312 if (action->virtual_offset > orig_dot_vo)
8313 {
8314 if (orig_dot_vo == 0)
8315 {
8316 /* Need to copy virtual_offset bytes. Probably four. */
8317 copy_size = action->virtual_offset - orig_dot_vo;
8318 memmove (&dup_contents[dup_dot],
8319 &contents[orig_dot], copy_size);
8320 orig_dot_copied = copy_size;
8321 dup_dot += copy_size;
8322 }
8323 virtual_action = TRUE;
8324 }
8325 else
8326 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8327 }
8328 switch (action->action)
8329 {
8330 case ta_remove_literal:
8331 case ta_remove_insn:
8332 BFD_ASSERT (action->removed_bytes >= 0);
8333 orig_dot += action->removed_bytes;
8334 break;
8335
8336 case ta_narrow_insn:
8337 orig_insn_size = 3;
8338 copy_size = 2;
8339 memmove (scratch, &contents[orig_dot], orig_insn_size);
8340 BFD_ASSERT (action->removed_bytes == 1);
8341 rv = narrow_instruction (scratch, final_size, 0);
8342 BFD_ASSERT (rv);
8343 memmove (&dup_contents[dup_dot], scratch, copy_size);
8344 orig_dot += orig_insn_size;
8345 dup_dot += copy_size;
8346 break;
8347
8348 case ta_fill:
8349 if (action->removed_bytes >= 0)
8350 orig_dot += action->removed_bytes;
8351 else
8352 {
8353 /* Already zeroed in dup_contents. Just bump the
8354 counters. */
8355 dup_dot += (-action->removed_bytes);
8356 }
8357 break;
8358
8359 case ta_none:
8360 BFD_ASSERT (action->removed_bytes == 0);
8361 break;
8362
8363 case ta_convert_longcall:
8364 case ta_remove_longcall:
8365 /* These will be removed or converted before we get here. */
8366 BFD_ASSERT (0);
8367 break;
8368
8369 case ta_widen_insn:
8370 orig_insn_size = 2;
8371 copy_size = 3;
8372 memmove (scratch, &contents[orig_dot], orig_insn_size);
8373 BFD_ASSERT (action->removed_bytes == -1);
8374 rv = widen_instruction (scratch, final_size, 0);
8375 BFD_ASSERT (rv);
8376 memmove (&dup_contents[dup_dot], scratch, copy_size);
8377 orig_dot += orig_insn_size;
8378 dup_dot += copy_size;
8379 break;
8380
8381 case ta_add_literal:
8382 orig_insn_size = 0;
8383 copy_size = 4;
8384 BFD_ASSERT (action->removed_bytes == -4);
8385 /* TBD -- place the literal value here and insert
8386 into the table. */
8387 memset (&dup_contents[dup_dot], 0, 4);
8388 pin_internal_relocs (sec, internal_relocs);
8389 pin_contents (sec, contents);
8390
8391 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8392 relax_info, &internal_relocs, &action->value))
8393 goto error_return;
8394
8395 if (virtual_action)
8396 orig_dot_vo += copy_size;
8397
8398 orig_dot += orig_insn_size;
8399 dup_dot += copy_size;
8400 break;
8401
8402 default:
8403 /* Not implemented yet. */
8404 BFD_ASSERT (0);
8405 break;
8406 }
8407
8408 size -= action->removed_bytes;
8409 removed += action->removed_bytes;
8410 BFD_ASSERT (dup_dot <= final_size);
8411 BFD_ASSERT (orig_dot <= orig_size);
8412 }
8413
8414 orig_dot += orig_dot_copied;
8415 orig_dot_copied = 0;
8416
8417 if (orig_dot != orig_size)
8418 {
8419 copy_size = orig_size - orig_dot;
8420 BFD_ASSERT (orig_size > orig_dot);
8421 BFD_ASSERT (dup_dot + copy_size == final_size);
8422 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8423 orig_dot += copy_size;
8424 dup_dot += copy_size;
8425 }
8426 BFD_ASSERT (orig_size == orig_dot);
8427 BFD_ASSERT (final_size == dup_dot);
8428
8429 /* Move the dup_contents back. */
8430 if (final_size > orig_size)
8431 {
8432 /* Contents need to be reallocated. Swap the dup_contents into
8433 contents. */
8434 sec->contents = dup_contents;
8435 free (contents);
8436 contents = dup_contents;
8437 pin_contents (sec, contents);
8438 }
8439 else
8440 {
8441 BFD_ASSERT (final_size <= orig_size);
8442 memset (contents, 0, orig_size);
8443 memcpy (contents, dup_contents, final_size);
8444 free (dup_contents);
8445 }
8446 free (scratch);
8447 pin_contents (sec, contents);
8448
8449 sec->size = final_size;
8450 }
8451
8452 error_return:
8453 release_internal_relocs (sec, internal_relocs);
8454 release_contents (sec, contents);
8455 return ok;
8456 }
8457
8458
8459 static bfd_boolean
8460 translate_section_fixes (asection *sec)
8461 {
8462 xtensa_relax_info *relax_info;
8463 reloc_bfd_fix *r;
8464
8465 relax_info = get_xtensa_relax_info (sec);
8466 if (!relax_info)
8467 return TRUE;
8468
8469 for (r = relax_info->fix_list; r != NULL; r = r->next)
8470 if (!translate_reloc_bfd_fix (r))
8471 return FALSE;
8472
8473 return TRUE;
8474 }
8475
8476
8477 /* Translate a fix given the mapping in the relax info for the target
8478 section. If it has already been translated, no work is required. */
8479
8480 static bfd_boolean
8481 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
8482 {
8483 reloc_bfd_fix new_fix;
8484 asection *sec;
8485 xtensa_relax_info *relax_info;
8486 removed_literal *removed;
8487 bfd_vma new_offset, target_offset;
8488
8489 if (fix->translated)
8490 return TRUE;
8491
8492 sec = fix->target_sec;
8493 target_offset = fix->target_offset;
8494
8495 relax_info = get_xtensa_relax_info (sec);
8496 if (!relax_info)
8497 {
8498 fix->translated = TRUE;
8499 return TRUE;
8500 }
8501
8502 new_fix = *fix;
8503
8504 /* The fix does not need to be translated if the section cannot change. */
8505 if (!relax_info->is_relaxable_literal_section
8506 && !relax_info->is_relaxable_asm_section)
8507 {
8508 fix->translated = TRUE;
8509 return TRUE;
8510 }
8511
8512 /* If the literal has been moved and this relocation was on an
8513 opcode, then the relocation should move to the new literal
8514 location. Otherwise, the relocation should move within the
8515 section. */
8516
8517 removed = FALSE;
8518 if (is_operand_relocation (fix->src_type))
8519 {
8520 /* Check if the original relocation is against a literal being
8521 removed. */
8522 removed = find_removed_literal (&relax_info->removed_list,
8523 target_offset);
8524 }
8525
8526 if (removed)
8527 {
8528 asection *new_sec;
8529
8530 /* The fact that there is still a relocation to this literal indicates
8531 that the literal is being coalesced, not simply removed. */
8532 BFD_ASSERT (removed->to.abfd != NULL);
8533
8534 /* This was moved to some other address (possibly another section). */
8535 new_sec = r_reloc_get_section (&removed->to);
8536 if (new_sec != sec)
8537 {
8538 sec = new_sec;
8539 relax_info = get_xtensa_relax_info (sec);
8540 if (!relax_info ||
8541 (!relax_info->is_relaxable_literal_section
8542 && !relax_info->is_relaxable_asm_section))
8543 {
8544 target_offset = removed->to.target_offset;
8545 new_fix.target_sec = new_sec;
8546 new_fix.target_offset = target_offset;
8547 new_fix.translated = TRUE;
8548 *fix = new_fix;
8549 return TRUE;
8550 }
8551 }
8552 target_offset = removed->to.target_offset;
8553 new_fix.target_sec = new_sec;
8554 }
8555
8556 /* The target address may have been moved within its section. */
8557 new_offset = offset_with_removed_text (&relax_info->action_list,
8558 target_offset);
8559
8560 new_fix.target_offset = new_offset;
8561 new_fix.target_offset = new_offset;
8562 new_fix.translated = TRUE;
8563 *fix = new_fix;
8564 return TRUE;
8565 }
8566
8567
8568 /* Fix up a relocation to take account of removed literals. */
8569
8570 static void
8571 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel)
8572 {
8573 asection *sec;
8574 xtensa_relax_info *relax_info;
8575 removed_literal *removed;
8576 bfd_vma new_offset, target_offset, removed_bytes;
8577
8578 *new_rel = *orig_rel;
8579
8580 if (!r_reloc_is_defined (orig_rel))
8581 return;
8582 sec = r_reloc_get_section (orig_rel);
8583
8584 relax_info = get_xtensa_relax_info (sec);
8585 BFD_ASSERT (relax_info);
8586
8587 if (!relax_info->is_relaxable_literal_section
8588 && !relax_info->is_relaxable_asm_section)
8589 return;
8590
8591 target_offset = orig_rel->target_offset;
8592
8593 removed = FALSE;
8594 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8595 {
8596 /* Check if the original relocation is against a literal being
8597 removed. */
8598 removed = find_removed_literal (&relax_info->removed_list,
8599 target_offset);
8600 }
8601 if (removed && removed->to.abfd)
8602 {
8603 asection *new_sec;
8604
8605 /* The fact that there is still a relocation to this literal indicates
8606 that the literal is being coalesced, not simply removed. */
8607 BFD_ASSERT (removed->to.abfd != NULL);
8608
8609 /* This was moved to some other address
8610 (possibly in another section). */
8611 *new_rel = removed->to;
8612 new_sec = r_reloc_get_section (new_rel);
8613 if (new_sec != sec)
8614 {
8615 sec = new_sec;
8616 relax_info = get_xtensa_relax_info (sec);
8617 if (!relax_info
8618 || (!relax_info->is_relaxable_literal_section
8619 && !relax_info->is_relaxable_asm_section))
8620 return;
8621 }
8622 target_offset = new_rel->target_offset;
8623 }
8624
8625 /* ...and the target address may have been moved within its section. */
8626 new_offset = offset_with_removed_text (&relax_info->action_list,
8627 target_offset);
8628
8629 /* Modify the offset and addend. */
8630 removed_bytes = target_offset - new_offset;
8631 new_rel->target_offset = new_offset;
8632 new_rel->rela.r_addend -= removed_bytes;
8633 }
8634
8635
8636 /* For dynamic links, there may be a dynamic relocation for each
8637 literal. The number of dynamic relocations must be computed in
8638 size_dynamic_sections, which occurs before relaxation. When a
8639 literal is removed, this function checks if there is a corresponding
8640 dynamic relocation and shrinks the size of the appropriate dynamic
8641 relocation section accordingly. At this point, the contents of the
8642 dynamic relocation sections have not yet been filled in, so there's
8643 nothing else that needs to be done. */
8644
8645 static void
8646 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8647 bfd *abfd,
8648 asection *input_section,
8649 Elf_Internal_Rela *rel)
8650 {
8651 struct elf_xtensa_link_hash_table *htab;
8652 Elf_Internal_Shdr *symtab_hdr;
8653 struct elf_link_hash_entry **sym_hashes;
8654 unsigned long r_symndx;
8655 int r_type;
8656 struct elf_link_hash_entry *h;
8657 bfd_boolean dynamic_symbol;
8658
8659 htab = elf_xtensa_hash_table (info);
8660 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8661 sym_hashes = elf_sym_hashes (abfd);
8662
8663 r_type = ELF32_R_TYPE (rel->r_info);
8664 r_symndx = ELF32_R_SYM (rel->r_info);
8665
8666 if (r_symndx < symtab_hdr->sh_info)
8667 h = NULL;
8668 else
8669 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8670
8671 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
8672
8673 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8674 && (input_section->flags & SEC_ALLOC) != 0
8675 && (dynamic_symbol || info->shared))
8676 {
8677 asection *srel;
8678 bfd_boolean is_plt = FALSE;
8679
8680 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8681 {
8682 srel = htab->srelplt;
8683 is_plt = TRUE;
8684 }
8685 else
8686 srel = htab->srelgot;
8687
8688 /* Reduce size of the .rela.* section by one reloc. */
8689 BFD_ASSERT (srel != NULL);
8690 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8691 srel->size -= sizeof (Elf32_External_Rela);
8692
8693 if (is_plt)
8694 {
8695 asection *splt, *sgotplt, *srelgot;
8696 int reloc_index, chunk;
8697
8698 /* Find the PLT reloc index of the entry being removed. This
8699 is computed from the size of ".rela.plt". It is needed to
8700 figure out which PLT chunk to resize. Usually "last index
8701 = size - 1" since the index starts at zero, but in this
8702 context, the size has just been decremented so there's no
8703 need to subtract one. */
8704 reloc_index = srel->size / sizeof (Elf32_External_Rela);
8705
8706 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8707 splt = elf_xtensa_get_plt_section (info, chunk);
8708 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
8709 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8710
8711 /* Check if an entire PLT chunk has just been eliminated. */
8712 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8713 {
8714 /* The two magic GOT entries for that chunk can go away. */
8715 srelgot = htab->srelgot;
8716 BFD_ASSERT (srelgot != NULL);
8717 srelgot->reloc_count -= 2;
8718 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8719 sgotplt->size -= 8;
8720
8721 /* There should be only one entry left (and it will be
8722 removed below). */
8723 BFD_ASSERT (sgotplt->size == 4);
8724 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
8725 }
8726
8727 BFD_ASSERT (sgotplt->size >= 4);
8728 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
8729
8730 sgotplt->size -= 4;
8731 splt->size -= PLT_ENTRY_SIZE;
8732 }
8733 }
8734 }
8735
8736
8737 /* Take an r_rel and move it to another section. This usually
8738 requires extending the interal_relocation array and pinning it. If
8739 the original r_rel is from the same BFD, we can complete this here.
8740 Otherwise, we add a fix record to let the final link fix the
8741 appropriate address. Contents and internal relocations for the
8742 section must be pinned after calling this routine. */
8743
8744 static bfd_boolean
8745 move_literal (bfd *abfd,
8746 struct bfd_link_info *link_info,
8747 asection *sec,
8748 bfd_vma offset,
8749 bfd_byte *contents,
8750 xtensa_relax_info *relax_info,
8751 Elf_Internal_Rela **internal_relocs_p,
8752 const literal_value *lit)
8753 {
8754 Elf_Internal_Rela *new_relocs = NULL;
8755 size_t new_relocs_count = 0;
8756 Elf_Internal_Rela this_rela;
8757 const r_reloc *r_rel;
8758
8759 r_rel = &lit->r_rel;
8760 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8761
8762 if (r_reloc_is_const (r_rel))
8763 bfd_put_32 (abfd, lit->value, contents + offset);
8764 else
8765 {
8766 int r_type;
8767 unsigned i;
8768 asection *target_sec;
8769 reloc_bfd_fix *fix;
8770 unsigned insert_at;
8771
8772 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8773 target_sec = r_reloc_get_section (r_rel);
8774
8775 /* This is the difficult case. We have to create a fix up. */
8776 this_rela.r_offset = offset;
8777 this_rela.r_info = ELF32_R_INFO (0, r_type);
8778 this_rela.r_addend =
8779 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8780 bfd_put_32 (abfd, lit->value, contents + offset);
8781
8782 /* Currently, we cannot move relocations during a relocatable link. */
8783 BFD_ASSERT (!link_info->relocatable);
8784 fix = reloc_bfd_fix_init (sec, offset, r_type,
8785 r_reloc_get_section (r_rel),
8786 r_rel->target_offset + r_rel->virtual_offset,
8787 FALSE);
8788 /* We also need to mark that relocations are needed here. */
8789 sec->flags |= SEC_RELOC;
8790
8791 translate_reloc_bfd_fix (fix);
8792 /* This fix has not yet been translated. */
8793 add_fix (sec, fix);
8794
8795 /* Add the relocation. If we have already allocated our own
8796 space for the relocations and we have room for more, then use
8797 it. Otherwise, allocate new space and move the literals. */
8798 insert_at = sec->reloc_count;
8799 for (i = 0; i < sec->reloc_count; ++i)
8800 {
8801 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8802 {
8803 insert_at = i;
8804 break;
8805 }
8806 }
8807
8808 if (*internal_relocs_p != relax_info->allocated_relocs
8809 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8810 {
8811 BFD_ASSERT (relax_info->allocated_relocs == NULL
8812 || sec->reloc_count == relax_info->relocs_count);
8813
8814 if (relax_info->allocated_relocs_count == 0)
8815 new_relocs_count = (sec->reloc_count + 2) * 2;
8816 else
8817 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8818
8819 new_relocs = (Elf_Internal_Rela *)
8820 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8821 if (!new_relocs)
8822 return FALSE;
8823
8824 /* We could handle this more quickly by finding the split point. */
8825 if (insert_at != 0)
8826 memcpy (new_relocs, *internal_relocs_p,
8827 insert_at * sizeof (Elf_Internal_Rela));
8828
8829 new_relocs[insert_at] = this_rela;
8830
8831 if (insert_at != sec->reloc_count)
8832 memcpy (new_relocs + insert_at + 1,
8833 (*internal_relocs_p) + insert_at,
8834 (sec->reloc_count - insert_at)
8835 * sizeof (Elf_Internal_Rela));
8836
8837 if (*internal_relocs_p != relax_info->allocated_relocs)
8838 {
8839 /* The first time we re-allocate, we can only free the
8840 old relocs if they were allocated with bfd_malloc.
8841 This is not true when keep_memory is in effect. */
8842 if (!link_info->keep_memory)
8843 free (*internal_relocs_p);
8844 }
8845 else
8846 free (*internal_relocs_p);
8847 relax_info->allocated_relocs = new_relocs;
8848 relax_info->allocated_relocs_count = new_relocs_count;
8849 elf_section_data (sec)->relocs = new_relocs;
8850 sec->reloc_count++;
8851 relax_info->relocs_count = sec->reloc_count;
8852 *internal_relocs_p = new_relocs;
8853 }
8854 else
8855 {
8856 if (insert_at != sec->reloc_count)
8857 {
8858 unsigned idx;
8859 for (idx = sec->reloc_count; idx > insert_at; idx--)
8860 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8861 }
8862 (*internal_relocs_p)[insert_at] = this_rela;
8863 sec->reloc_count++;
8864 if (relax_info->allocated_relocs)
8865 relax_info->relocs_count = sec->reloc_count;
8866 }
8867 }
8868 return TRUE;
8869 }
8870
8871
8872 /* This is similar to relax_section except that when a target is moved,
8873 we shift addresses up. We also need to modify the size. This
8874 algorithm does NOT allow for relocations into the middle of the
8875 property sections. */
8876
8877 static bfd_boolean
8878 relax_property_section (bfd *abfd,
8879 asection *sec,
8880 struct bfd_link_info *link_info)
8881 {
8882 Elf_Internal_Rela *internal_relocs;
8883 bfd_byte *contents;
8884 unsigned i;
8885 bfd_boolean ok = TRUE;
8886 bfd_boolean is_full_prop_section;
8887 size_t last_zfill_target_offset = 0;
8888 asection *last_zfill_target_sec = NULL;
8889 bfd_size_type sec_size;
8890 bfd_size_type entry_size;
8891
8892 sec_size = bfd_get_section_limit (abfd, sec);
8893 internal_relocs = retrieve_internal_relocs (abfd, sec,
8894 link_info->keep_memory);
8895 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8896 if (contents == NULL && sec_size != 0)
8897 {
8898 ok = FALSE;
8899 goto error_return;
8900 }
8901
8902 is_full_prop_section = xtensa_is_proptable_section (sec);
8903 if (is_full_prop_section)
8904 entry_size = 12;
8905 else
8906 entry_size = 8;
8907
8908 if (internal_relocs)
8909 {
8910 for (i = 0; i < sec->reloc_count; i++)
8911 {
8912 Elf_Internal_Rela *irel;
8913 xtensa_relax_info *target_relax_info;
8914 unsigned r_type;
8915 asection *target_sec;
8916 literal_value val;
8917 bfd_byte *size_p, *flags_p;
8918
8919 /* Locally change the source address.
8920 Translate the target to the new target address.
8921 If it points to this section and has been removed, MOVE IT.
8922 Also, don't forget to modify the associated SIZE at
8923 (offset + 4). */
8924
8925 irel = &internal_relocs[i];
8926 r_type = ELF32_R_TYPE (irel->r_info);
8927 if (r_type == R_XTENSA_NONE)
8928 continue;
8929
8930 /* Find the literal value. */
8931 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8932 size_p = &contents[irel->r_offset + 4];
8933 flags_p = NULL;
8934 if (is_full_prop_section)
8935 flags_p = &contents[irel->r_offset + 8];
8936 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
8937
8938 target_sec = r_reloc_get_section (&val.r_rel);
8939 target_relax_info = get_xtensa_relax_info (target_sec);
8940
8941 if (target_relax_info
8942 && (target_relax_info->is_relaxable_literal_section
8943 || target_relax_info->is_relaxable_asm_section ))
8944 {
8945 /* Translate the relocation's destination. */
8946 bfd_vma new_offset, new_end_offset;
8947 long old_size, new_size;
8948
8949 new_offset = offset_with_removed_text
8950 (&target_relax_info->action_list, val.r_rel.target_offset);
8951
8952 /* Assert that we are not out of bounds. */
8953 old_size = bfd_get_32 (abfd, size_p);
8954
8955 if (old_size == 0)
8956 {
8957 /* Only the first zero-sized unreachable entry is
8958 allowed to expand. In this case the new offset
8959 should be the offset before the fill and the new
8960 size is the expansion size. For other zero-sized
8961 entries the resulting size should be zero with an
8962 offset before or after the fill address depending
8963 on whether the expanding unreachable entry
8964 preceeds it. */
8965 if (last_zfill_target_sec
8966 && last_zfill_target_sec == target_sec
8967 && last_zfill_target_offset == val.r_rel.target_offset)
8968 new_end_offset = new_offset;
8969 else
8970 {
8971 new_end_offset = new_offset;
8972 new_offset = offset_with_removed_text_before_fill
8973 (&target_relax_info->action_list,
8974 val.r_rel.target_offset);
8975
8976 /* If it is not unreachable and we have not yet
8977 seen an unreachable at this address, place it
8978 before the fill address. */
8979 if (!flags_p
8980 || (bfd_get_32 (abfd, flags_p)
8981 & XTENSA_PROP_UNREACHABLE) == 0)
8982 new_end_offset = new_offset;
8983 else
8984 {
8985 last_zfill_target_sec = target_sec;
8986 last_zfill_target_offset = val.r_rel.target_offset;
8987 }
8988 }
8989 }
8990 else
8991 {
8992 new_end_offset = offset_with_removed_text_before_fill
8993 (&target_relax_info->action_list,
8994 val.r_rel.target_offset + old_size);
8995 }
8996
8997 new_size = new_end_offset - new_offset;
8998
8999 if (new_size != old_size)
9000 {
9001 bfd_put_32 (abfd, new_size, size_p);
9002 pin_contents (sec, contents);
9003 }
9004
9005 if (new_offset != val.r_rel.target_offset)
9006 {
9007 bfd_vma diff = new_offset - val.r_rel.target_offset;
9008 irel->r_addend += diff;
9009 pin_internal_relocs (sec, internal_relocs);
9010 }
9011 }
9012 }
9013 }
9014
9015 /* Combine adjacent property table entries. This is also done in
9016 finish_dynamic_sections() but at that point it's too late to
9017 reclaim the space in the output section, so we do this twice. */
9018
9019 if (internal_relocs && (!link_info->relocatable
9020 || xtensa_is_littable_section (sec)))
9021 {
9022 Elf_Internal_Rela *last_irel = NULL;
9023 Elf_Internal_Rela *irel, *next_rel, *rel_end;
9024 int removed_bytes = 0;
9025 bfd_vma offset;
9026 bfd_vma section_size;
9027 flagword predef_flags;
9028
9029 predef_flags = xtensa_get_property_predef_flags (sec);
9030
9031 /* Walk over memory and relocations at the same time.
9032 This REQUIRES that the internal_relocs be sorted by offset. */
9033 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9034 internal_reloc_compare);
9035
9036 pin_internal_relocs (sec, internal_relocs);
9037 pin_contents (sec, contents);
9038
9039 next_rel = internal_relocs;
9040 rel_end = internal_relocs + sec->reloc_count;
9041
9042 section_size = sec->size;
9043 BFD_ASSERT (section_size % entry_size == 0);
9044
9045 for (offset = 0; offset < section_size; offset += entry_size)
9046 {
9047 Elf_Internal_Rela *offset_rel, *extra_rel;
9048 bfd_vma bytes_to_remove, size, actual_offset;
9049 bfd_boolean remove_this_rel;
9050 flagword flags;
9051
9052 /* Find the first relocation for the entry at the current offset.
9053 Adjust the offsets of any extra relocations for the previous
9054 entry. */
9055 offset_rel = NULL;
9056 if (next_rel)
9057 {
9058 for (irel = next_rel; irel < rel_end; irel++)
9059 {
9060 if ((irel->r_offset == offset
9061 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9062 || irel->r_offset > offset)
9063 {
9064 offset_rel = irel;
9065 break;
9066 }
9067 irel->r_offset -= removed_bytes;
9068 }
9069 }
9070
9071 /* Find the next relocation (if there are any left). */
9072 extra_rel = NULL;
9073 if (offset_rel)
9074 {
9075 for (irel = offset_rel + 1; irel < rel_end; irel++)
9076 {
9077 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9078 {
9079 extra_rel = irel;
9080 break;
9081 }
9082 }
9083 }
9084
9085 /* Check if there are relocations on the current entry. There
9086 should usually be a relocation on the offset field. If there
9087 are relocations on the size or flags, then we can't optimize
9088 this entry. Also, find the next relocation to examine on the
9089 next iteration. */
9090 if (offset_rel)
9091 {
9092 if (offset_rel->r_offset >= offset + entry_size)
9093 {
9094 next_rel = offset_rel;
9095 /* There are no relocations on the current entry, but we
9096 might still be able to remove it if the size is zero. */
9097 offset_rel = NULL;
9098 }
9099 else if (offset_rel->r_offset > offset
9100 || (extra_rel
9101 && extra_rel->r_offset < offset + entry_size))
9102 {
9103 /* There is a relocation on the size or flags, so we can't
9104 do anything with this entry. Continue with the next. */
9105 next_rel = offset_rel;
9106 continue;
9107 }
9108 else
9109 {
9110 BFD_ASSERT (offset_rel->r_offset == offset);
9111 offset_rel->r_offset -= removed_bytes;
9112 next_rel = offset_rel + 1;
9113 }
9114 }
9115 else
9116 next_rel = NULL;
9117
9118 remove_this_rel = FALSE;
9119 bytes_to_remove = 0;
9120 actual_offset = offset - removed_bytes;
9121 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9122
9123 if (is_full_prop_section)
9124 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9125 else
9126 flags = predef_flags;
9127
9128 if (size == 0
9129 && (flags & XTENSA_PROP_ALIGN) == 0
9130 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
9131 {
9132 /* Always remove entries with zero size and no alignment. */
9133 bytes_to_remove = entry_size;
9134 if (offset_rel)
9135 remove_this_rel = TRUE;
9136 }
9137 else if (offset_rel
9138 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
9139 {
9140 if (last_irel)
9141 {
9142 flagword old_flags;
9143 bfd_vma old_size =
9144 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9145 bfd_vma old_address =
9146 (last_irel->r_addend
9147 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9148 bfd_vma new_address =
9149 (offset_rel->r_addend
9150 + bfd_get_32 (abfd, &contents[actual_offset]));
9151 if (is_full_prop_section)
9152 old_flags = bfd_get_32
9153 (abfd, &contents[last_irel->r_offset + 8]);
9154 else
9155 old_flags = predef_flags;
9156
9157 if ((ELF32_R_SYM (offset_rel->r_info)
9158 == ELF32_R_SYM (last_irel->r_info))
9159 && old_address + old_size == new_address
9160 && old_flags == flags
9161 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9162 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
9163 {
9164 /* Fix the old size. */
9165 bfd_put_32 (abfd, old_size + size,
9166 &contents[last_irel->r_offset + 4]);
9167 bytes_to_remove = entry_size;
9168 remove_this_rel = TRUE;
9169 }
9170 else
9171 last_irel = offset_rel;
9172 }
9173 else
9174 last_irel = offset_rel;
9175 }
9176
9177 if (remove_this_rel)
9178 {
9179 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9180 /* In case this is the last entry, move the relocation offset
9181 to the previous entry, if there is one. */
9182 if (offset_rel->r_offset >= bytes_to_remove)
9183 offset_rel->r_offset -= bytes_to_remove;
9184 else
9185 offset_rel->r_offset = 0;
9186 }
9187
9188 if (bytes_to_remove != 0)
9189 {
9190 removed_bytes += bytes_to_remove;
9191 if (offset + bytes_to_remove < section_size)
9192 memmove (&contents[actual_offset],
9193 &contents[actual_offset + bytes_to_remove],
9194 section_size - offset - bytes_to_remove);
9195 }
9196 }
9197
9198 if (removed_bytes)
9199 {
9200 /* Fix up any extra relocations on the last entry. */
9201 for (irel = next_rel; irel < rel_end; irel++)
9202 irel->r_offset -= removed_bytes;
9203
9204 /* Clear the removed bytes. */
9205 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
9206
9207 sec->size = section_size - removed_bytes;
9208
9209 if (xtensa_is_littable_section (sec))
9210 {
9211 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
9212 if (sgotloc)
9213 sgotloc->size -= removed_bytes;
9214 }
9215 }
9216 }
9217
9218 error_return:
9219 release_internal_relocs (sec, internal_relocs);
9220 release_contents (sec, contents);
9221 return ok;
9222 }
9223
9224 \f
9225 /* Third relaxation pass. */
9226
9227 /* Change symbol values to account for removed literals. */
9228
9229 bfd_boolean
9230 relax_section_symbols (bfd *abfd, asection *sec)
9231 {
9232 xtensa_relax_info *relax_info;
9233 unsigned int sec_shndx;
9234 Elf_Internal_Shdr *symtab_hdr;
9235 Elf_Internal_Sym *isymbuf;
9236 unsigned i, num_syms, num_locals;
9237
9238 relax_info = get_xtensa_relax_info (sec);
9239 BFD_ASSERT (relax_info);
9240
9241 if (!relax_info->is_relaxable_literal_section
9242 && !relax_info->is_relaxable_asm_section)
9243 return TRUE;
9244
9245 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9246
9247 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9248 isymbuf = retrieve_local_syms (abfd);
9249
9250 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9251 num_locals = symtab_hdr->sh_info;
9252
9253 /* Adjust the local symbols defined in this section. */
9254 for (i = 0; i < num_locals; i++)
9255 {
9256 Elf_Internal_Sym *isym = &isymbuf[i];
9257
9258 if (isym->st_shndx == sec_shndx)
9259 {
9260 bfd_vma new_address = offset_with_removed_text
9261 (&relax_info->action_list, isym->st_value);
9262 bfd_vma new_size = isym->st_size;
9263
9264 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9265 {
9266 bfd_vma new_end = offset_with_removed_text
9267 (&relax_info->action_list, isym->st_value + isym->st_size);
9268 new_size = new_end - new_address;
9269 }
9270
9271 isym->st_value = new_address;
9272 isym->st_size = new_size;
9273 }
9274 }
9275
9276 /* Now adjust the global symbols defined in this section. */
9277 for (i = 0; i < (num_syms - num_locals); i++)
9278 {
9279 struct elf_link_hash_entry *sym_hash;
9280
9281 sym_hash = elf_sym_hashes (abfd)[i];
9282
9283 if (sym_hash->root.type == bfd_link_hash_warning)
9284 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9285
9286 if ((sym_hash->root.type == bfd_link_hash_defined
9287 || sym_hash->root.type == bfd_link_hash_defweak)
9288 && sym_hash->root.u.def.section == sec)
9289 {
9290 bfd_vma new_address = offset_with_removed_text
9291 (&relax_info->action_list, sym_hash->root.u.def.value);
9292 bfd_vma new_size = sym_hash->size;
9293
9294 if (sym_hash->type == STT_FUNC)
9295 {
9296 bfd_vma new_end = offset_with_removed_text
9297 (&relax_info->action_list,
9298 sym_hash->root.u.def.value + sym_hash->size);
9299 new_size = new_end - new_address;
9300 }
9301
9302 sym_hash->root.u.def.value = new_address;
9303 sym_hash->size = new_size;
9304 }
9305 }
9306
9307 return TRUE;
9308 }
9309
9310 \f
9311 /* "Fix" handling functions, called while performing relocations. */
9312
9313 static bfd_boolean
9314 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9315 bfd *input_bfd,
9316 asection *input_section,
9317 bfd_byte *contents)
9318 {
9319 r_reloc r_rel;
9320 asection *sec, *old_sec;
9321 bfd_vma old_offset;
9322 int r_type = ELF32_R_TYPE (rel->r_info);
9323 reloc_bfd_fix *fix;
9324
9325 if (r_type == R_XTENSA_NONE)
9326 return TRUE;
9327
9328 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9329 if (!fix)
9330 return TRUE;
9331
9332 r_reloc_init (&r_rel, input_bfd, rel, contents,
9333 bfd_get_section_limit (input_bfd, input_section));
9334 old_sec = r_reloc_get_section (&r_rel);
9335 old_offset = r_rel.target_offset;
9336
9337 if (!old_sec || !r_reloc_is_defined (&r_rel))
9338 {
9339 if (r_type != R_XTENSA_ASM_EXPAND)
9340 {
9341 (*_bfd_error_handler)
9342 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9343 input_bfd, input_section, rel->r_offset,
9344 elf_howto_table[r_type].name);
9345 return FALSE;
9346 }
9347 /* Leave it be. Resolution will happen in a later stage. */
9348 }
9349 else
9350 {
9351 sec = fix->target_sec;
9352 rel->r_addend += ((sec->output_offset + fix->target_offset)
9353 - (old_sec->output_offset + old_offset));
9354 }
9355 return TRUE;
9356 }
9357
9358
9359 static void
9360 do_fix_for_final_link (Elf_Internal_Rela *rel,
9361 bfd *input_bfd,
9362 asection *input_section,
9363 bfd_byte *contents,
9364 bfd_vma *relocationp)
9365 {
9366 asection *sec;
9367 int r_type = ELF32_R_TYPE (rel->r_info);
9368 reloc_bfd_fix *fix;
9369 bfd_vma fixup_diff;
9370
9371 if (r_type == R_XTENSA_NONE)
9372 return;
9373
9374 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9375 if (!fix)
9376 return;
9377
9378 sec = fix->target_sec;
9379
9380 fixup_diff = rel->r_addend;
9381 if (elf_howto_table[fix->src_type].partial_inplace)
9382 {
9383 bfd_vma inplace_val;
9384 BFD_ASSERT (fix->src_offset
9385 < bfd_get_section_limit (input_bfd, input_section));
9386 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9387 fixup_diff += inplace_val;
9388 }
9389
9390 *relocationp = (sec->output_section->vma
9391 + sec->output_offset
9392 + fix->target_offset - fixup_diff);
9393 }
9394
9395 \f
9396 /* Miscellaneous utility functions.... */
9397
9398 static asection *
9399 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
9400 {
9401 struct elf_xtensa_link_hash_table *htab;
9402 bfd *dynobj;
9403 char plt_name[10];
9404
9405 if (chunk == 0)
9406 {
9407 htab = elf_xtensa_hash_table (info);
9408 return htab->splt;
9409 }
9410
9411 dynobj = elf_hash_table (info)->dynobj;
9412 sprintf (plt_name, ".plt.%u", chunk);
9413 return bfd_get_section_by_name (dynobj, plt_name);
9414 }
9415
9416
9417 static asection *
9418 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
9419 {
9420 struct elf_xtensa_link_hash_table *htab;
9421 bfd *dynobj;
9422 char got_name[14];
9423
9424 if (chunk == 0)
9425 {
9426 htab = elf_xtensa_hash_table (info);
9427 return htab->sgotplt;
9428 }
9429
9430 dynobj = elf_hash_table (info)->dynobj;
9431 sprintf (got_name, ".got.plt.%u", chunk);
9432 return bfd_get_section_by_name (dynobj, got_name);
9433 }
9434
9435
9436 /* Get the input section for a given symbol index.
9437 If the symbol is:
9438 . a section symbol, return the section;
9439 . a common symbol, return the common section;
9440 . an undefined symbol, return the undefined section;
9441 . an indirect symbol, follow the links;
9442 . an absolute value, return the absolute section. */
9443
9444 static asection *
9445 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
9446 {
9447 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9448 asection *target_sec = NULL;
9449 if (r_symndx < symtab_hdr->sh_info)
9450 {
9451 Elf_Internal_Sym *isymbuf;
9452 unsigned int section_index;
9453
9454 isymbuf = retrieve_local_syms (abfd);
9455 section_index = isymbuf[r_symndx].st_shndx;
9456
9457 if (section_index == SHN_UNDEF)
9458 target_sec = bfd_und_section_ptr;
9459 else if (section_index > 0 && section_index < SHN_LORESERVE)
9460 target_sec = bfd_section_from_elf_index (abfd, section_index);
9461 else if (section_index == SHN_ABS)
9462 target_sec = bfd_abs_section_ptr;
9463 else if (section_index == SHN_COMMON)
9464 target_sec = bfd_com_section_ptr;
9465 else
9466 /* Who knows? */
9467 target_sec = NULL;
9468 }
9469 else
9470 {
9471 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9472 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9473
9474 while (h->root.type == bfd_link_hash_indirect
9475 || h->root.type == bfd_link_hash_warning)
9476 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9477
9478 switch (h->root.type)
9479 {
9480 case bfd_link_hash_defined:
9481 case bfd_link_hash_defweak:
9482 target_sec = h->root.u.def.section;
9483 break;
9484 case bfd_link_hash_common:
9485 target_sec = bfd_com_section_ptr;
9486 break;
9487 case bfd_link_hash_undefined:
9488 case bfd_link_hash_undefweak:
9489 target_sec = bfd_und_section_ptr;
9490 break;
9491 default: /* New indirect warning. */
9492 target_sec = bfd_und_section_ptr;
9493 break;
9494 }
9495 }
9496 return target_sec;
9497 }
9498
9499
9500 static struct elf_link_hash_entry *
9501 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
9502 {
9503 unsigned long indx;
9504 struct elf_link_hash_entry *h;
9505 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9506
9507 if (r_symndx < symtab_hdr->sh_info)
9508 return NULL;
9509
9510 indx = r_symndx - symtab_hdr->sh_info;
9511 h = elf_sym_hashes (abfd)[indx];
9512 while (h->root.type == bfd_link_hash_indirect
9513 || h->root.type == bfd_link_hash_warning)
9514 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9515 return h;
9516 }
9517
9518
9519 /* Get the section-relative offset for a symbol number. */
9520
9521 static bfd_vma
9522 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
9523 {
9524 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9525 bfd_vma offset = 0;
9526
9527 if (r_symndx < symtab_hdr->sh_info)
9528 {
9529 Elf_Internal_Sym *isymbuf;
9530 isymbuf = retrieve_local_syms (abfd);
9531 offset = isymbuf[r_symndx].st_value;
9532 }
9533 else
9534 {
9535 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9536 struct elf_link_hash_entry *h =
9537 elf_sym_hashes (abfd)[indx];
9538
9539 while (h->root.type == bfd_link_hash_indirect
9540 || h->root.type == bfd_link_hash_warning)
9541 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9542 if (h->root.type == bfd_link_hash_defined
9543 || h->root.type == bfd_link_hash_defweak)
9544 offset = h->root.u.def.value;
9545 }
9546 return offset;
9547 }
9548
9549
9550 static bfd_boolean
9551 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
9552 {
9553 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9554 struct elf_link_hash_entry *h;
9555
9556 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9557 if (h && h->root.type == bfd_link_hash_defweak)
9558 return TRUE;
9559 return FALSE;
9560 }
9561
9562
9563 static bfd_boolean
9564 pcrel_reloc_fits (xtensa_opcode opc,
9565 int opnd,
9566 bfd_vma self_address,
9567 bfd_vma dest_address)
9568 {
9569 xtensa_isa isa = xtensa_default_isa;
9570 uint32 valp = dest_address;
9571 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9572 || xtensa_operand_encode (isa, opc, opnd, &valp))
9573 return FALSE;
9574 return TRUE;
9575 }
9576
9577
9578 static bfd_boolean
9579 xtensa_is_property_section (asection *sec)
9580 {
9581 if (xtensa_is_insntable_section (sec)
9582 || xtensa_is_littable_section (sec)
9583 || xtensa_is_proptable_section (sec))
9584 return TRUE;
9585
9586 return FALSE;
9587 }
9588
9589
9590 static bfd_boolean
9591 xtensa_is_insntable_section (asection *sec)
9592 {
9593 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9594 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
9595 return TRUE;
9596
9597 return FALSE;
9598 }
9599
9600
9601 static bfd_boolean
9602 xtensa_is_littable_section (asection *sec)
9603 {
9604 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
9605 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
9606 return TRUE;
9607
9608 return FALSE;
9609 }
9610
9611
9612 static bfd_boolean
9613 xtensa_is_proptable_section (asection *sec)
9614 {
9615 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
9616 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
9617 return TRUE;
9618
9619 return FALSE;
9620 }
9621
9622
9623 static int
9624 internal_reloc_compare (const void *ap, const void *bp)
9625 {
9626 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9627 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9628
9629 if (a->r_offset != b->r_offset)
9630 return (a->r_offset - b->r_offset);
9631
9632 /* We don't need to sort on these criteria for correctness,
9633 but enforcing a more strict ordering prevents unstable qsort
9634 from behaving differently with different implementations.
9635 Without the code below we get correct but different results
9636 on Solaris 2.7 and 2.8. We would like to always produce the
9637 same results no matter the host. */
9638
9639 if (a->r_info != b->r_info)
9640 return (a->r_info - b->r_info);
9641
9642 return (a->r_addend - b->r_addend);
9643 }
9644
9645
9646 static int
9647 internal_reloc_matches (const void *ap, const void *bp)
9648 {
9649 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9650 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9651
9652 /* Check if one entry overlaps with the other; this shouldn't happen
9653 except when searching for a match. */
9654 return (a->r_offset - b->r_offset);
9655 }
9656
9657
9658 /* Predicate function used to look up a section in a particular group. */
9659
9660 static bfd_boolean
9661 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
9662 {
9663 const char *gname = inf;
9664 const char *group_name = elf_group_name (sec);
9665
9666 return (group_name == gname
9667 || (group_name != NULL
9668 && gname != NULL
9669 && strcmp (group_name, gname) == 0));
9670 }
9671
9672
9673 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9674
9675 asection *
9676 xtensa_get_property_section (asection *sec, const char *base_name)
9677 {
9678 const char *suffix, *group_name;
9679 char *prop_sec_name;
9680 asection *prop_sec;
9681
9682 group_name = elf_group_name (sec);
9683 if (group_name)
9684 {
9685 suffix = strrchr (sec->name, '.');
9686 if (suffix == sec->name)
9687 suffix = 0;
9688 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
9689 + (suffix ? strlen (suffix) : 0));
9690 strcpy (prop_sec_name, base_name);
9691 if (suffix)
9692 strcat (prop_sec_name, suffix);
9693 }
9694 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
9695 {
9696 char *linkonce_kind = 0;
9697
9698 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
9699 linkonce_kind = "x.";
9700 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
9701 linkonce_kind = "p.";
9702 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9703 linkonce_kind = "prop.";
9704 else
9705 abort ();
9706
9707 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9708 + strlen (linkonce_kind) + 1);
9709 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
9710 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
9711
9712 suffix = sec->name + linkonce_len;
9713 /* For backward compatibility, replace "t." instead of inserting
9714 the new linkonce_kind (but not for "prop" sections). */
9715 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
9716 suffix += 2;
9717 strcat (prop_sec_name + linkonce_len, suffix);
9718 }
9719 else
9720 prop_sec_name = strdup (base_name);
9721
9722 /* Check if the section already exists. */
9723 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
9724 match_section_group,
9725 (void *) group_name);
9726 /* If not, create it. */
9727 if (! prop_sec)
9728 {
9729 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
9730 flags |= (bfd_get_section_flags (sec->owner, sec)
9731 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
9732
9733 prop_sec = bfd_make_section_anyway_with_flags
9734 (sec->owner, strdup (prop_sec_name), flags);
9735 if (! prop_sec)
9736 return 0;
9737
9738 elf_group_name (prop_sec) = group_name;
9739 }
9740
9741 free (prop_sec_name);
9742 return prop_sec;
9743 }
9744
9745
9746 flagword
9747 xtensa_get_property_predef_flags (asection *sec)
9748 {
9749 if (xtensa_is_insntable_section (sec))
9750 return (XTENSA_PROP_INSN
9751 | XTENSA_PROP_NO_TRANSFORM
9752 | XTENSA_PROP_INSN_NO_REORDER);
9753
9754 if (xtensa_is_littable_section (sec))
9755 return (XTENSA_PROP_LITERAL
9756 | XTENSA_PROP_NO_TRANSFORM
9757 | XTENSA_PROP_INSN_NO_REORDER);
9758
9759 return 0;
9760 }
9761
9762 \f
9763 /* Other functions called directly by the linker. */
9764
9765 bfd_boolean
9766 xtensa_callback_required_dependence (bfd *abfd,
9767 asection *sec,
9768 struct bfd_link_info *link_info,
9769 deps_callback_t callback,
9770 void *closure)
9771 {
9772 Elf_Internal_Rela *internal_relocs;
9773 bfd_byte *contents;
9774 unsigned i;
9775 bfd_boolean ok = TRUE;
9776 bfd_size_type sec_size;
9777
9778 sec_size = bfd_get_section_limit (abfd, sec);
9779
9780 /* ".plt*" sections have no explicit relocations but they contain L32R
9781 instructions that reference the corresponding ".got.plt*" sections. */
9782 if ((sec->flags & SEC_LINKER_CREATED) != 0
9783 && CONST_STRNEQ (sec->name, ".plt"))
9784 {
9785 asection *sgotplt;
9786
9787 /* Find the corresponding ".got.plt*" section. */
9788 if (sec->name[4] == '\0')
9789 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9790 else
9791 {
9792 char got_name[14];
9793 int chunk = 0;
9794
9795 BFD_ASSERT (sec->name[4] == '.');
9796 chunk = strtol (&sec->name[5], NULL, 10);
9797
9798 sprintf (got_name, ".got.plt.%u", chunk);
9799 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9800 }
9801 BFD_ASSERT (sgotplt);
9802
9803 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9804 section referencing a literal at the very beginning of
9805 ".got.plt". This is very close to the real dependence, anyway. */
9806 (*callback) (sec, sec_size, sgotplt, 0, closure);
9807 }
9808
9809 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
9810 when building uclibc, which runs "ld -b binary /dev/null". */
9811 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9812 return ok;
9813
9814 internal_relocs = retrieve_internal_relocs (abfd, sec,
9815 link_info->keep_memory);
9816 if (internal_relocs == NULL
9817 || sec->reloc_count == 0)
9818 return ok;
9819
9820 /* Cache the contents for the duration of this scan. */
9821 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9822 if (contents == NULL && sec_size != 0)
9823 {
9824 ok = FALSE;
9825 goto error_return;
9826 }
9827
9828 if (!xtensa_default_isa)
9829 xtensa_default_isa = xtensa_isa_init (0, 0);
9830
9831 for (i = 0; i < sec->reloc_count; i++)
9832 {
9833 Elf_Internal_Rela *irel = &internal_relocs[i];
9834 if (is_l32r_relocation (abfd, sec, contents, irel))
9835 {
9836 r_reloc l32r_rel;
9837 asection *target_sec;
9838 bfd_vma target_offset;
9839
9840 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
9841 target_sec = NULL;
9842 target_offset = 0;
9843 /* L32Rs must be local to the input file. */
9844 if (r_reloc_is_defined (&l32r_rel))
9845 {
9846 target_sec = r_reloc_get_section (&l32r_rel);
9847 target_offset = l32r_rel.target_offset;
9848 }
9849 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9850 closure);
9851 }
9852 }
9853
9854 error_return:
9855 release_internal_relocs (sec, internal_relocs);
9856 release_contents (sec, contents);
9857 return ok;
9858 }
9859
9860 /* The default literal sections should always be marked as "code" (i.e.,
9861 SHF_EXECINSTR). This is particularly important for the Linux kernel
9862 module loader so that the literals are not placed after the text. */
9863 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
9864 {
9865 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9866 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9867 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9868 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
9869 { NULL, 0, 0, 0, 0 }
9870 };
9871 \f
9872 #ifndef ELF_ARCH
9873 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9874 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
9875 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9876 #define TARGET_BIG_NAME "elf32-xtensa-be"
9877 #define ELF_ARCH bfd_arch_xtensa
9878
9879 #define ELF_MACHINE_CODE EM_XTENSA
9880 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
9881
9882 #if XCHAL_HAVE_MMU
9883 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9884 #else /* !XCHAL_HAVE_MMU */
9885 #define ELF_MAXPAGESIZE 1
9886 #endif /* !XCHAL_HAVE_MMU */
9887 #endif /* ELF_ARCH */
9888
9889 #define elf_backend_can_gc_sections 1
9890 #define elf_backend_can_refcount 1
9891 #define elf_backend_plt_readonly 1
9892 #define elf_backend_got_header_size 4
9893 #define elf_backend_want_dynbss 0
9894 #define elf_backend_want_got_plt 1
9895
9896 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
9897
9898 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9899 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9900 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9901 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9902 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9903 #define bfd_elf32_bfd_reloc_name_lookup \
9904 elf_xtensa_reloc_name_lookup
9905 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9906 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
9907
9908 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9909 #define elf_backend_check_relocs elf_xtensa_check_relocs
9910 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9911 #define elf_backend_discard_info elf_xtensa_discard_info
9912 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9913 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
9914 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9915 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9916 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9917 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9918 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9919 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9920 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
9921 #define elf_backend_object_p elf_xtensa_object_p
9922 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9923 #define elf_backend_relocate_section elf_xtensa_relocate_section
9924 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
9925 #define elf_backend_omit_section_dynsym \
9926 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
9927 #define elf_backend_special_sections elf_xtensa_special_sections
9928 #define elf_backend_action_discarded elf_xtensa_action_discarded
9929
9930 #include "elf32-target.h"