]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-xtensa.c
bfd/
[thirdparty/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
33
34 #define XTENSA_NO_NOP_REMOVAL 0
35
36 /* Local helper functions. */
37
38 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
46
47 /* Local functions to handle Xtensa configurability. */
48
49 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52 static xtensa_opcode get_const16_opcode (void);
53 static xtensa_opcode get_l32r_opcode (void);
54 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55 static int get_relocation_opnd (xtensa_opcode, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
59 static bfd_boolean is_l32r_relocation
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61 static bfd_boolean is_alt_relocation (int);
62 static bfd_boolean is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte *, bfd_size_type, bfd_size_type);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte *, bfd_size_type, bfd_size_type);
74
75 /* Functions for link-time code simplifications. */
76
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte *, bfd_vma, bfd_vma, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
83
84 /* Access to internal relocations, section contents and symbols. */
85
86 static Elf_Internal_Rela *retrieve_internal_relocs
87 (bfd *, asection *, bfd_boolean);
88 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91 static void pin_contents (asection *, bfd_byte *);
92 static void release_contents (asection *, bfd_byte *);
93 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
94
95 /* Miscellaneous utility functions. */
96
97 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
99 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
100 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
101 (bfd *, unsigned long);
102 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105 static bfd_boolean xtensa_is_property_section (asection *);
106 static bfd_boolean xtensa_is_insntable_section (asection *);
107 static bfd_boolean xtensa_is_littable_section (asection *);
108 static bfd_boolean xtensa_is_proptable_section (asection *);
109 static int internal_reloc_compare (const void *, const void *);
110 static int internal_reloc_matches (const void *, const void *);
111 static asection *xtensa_get_property_section (asection *, const char *);
112 extern asection *xtensa_make_property_section (asection *, const char *);
113 static flagword xtensa_get_property_predef_flags (asection *);
114
115 /* Other functions called directly by the linker. */
116
117 typedef void (*deps_callback_t)
118 (asection *, bfd_vma, asection *, bfd_vma, void *);
119 extern bfd_boolean xtensa_callback_required_dependence
120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
121
122
123 /* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
127
128 int elf32xtensa_size_opt;
129
130
131 /* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
134
135 typedef struct xtensa_relax_info_struct xtensa_relax_info;
136
137
138 /* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
141 this information. */
142
143 xtensa_isa xtensa_default_isa;
144
145
146 /* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
149
150 static bfd_boolean relaxing_section = FALSE;
151
152 /* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
154
155 int elf32xtensa_no_literal_movement = 1;
156
157 \f
158 static reloc_howto_type elf_howto_table[] =
159 {
160 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
161 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
162 FALSE, 0, 0, FALSE),
163 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
164 bfd_elf_xtensa_reloc, "R_XTENSA_32",
165 TRUE, 0xffffffff, 0xffffffff, FALSE),
166
167 /* Replace a 32-bit value with a value from the runtime linker (only
168 used by linker-generated stub functions). The r_addend value is
169 special: 1 means to substitute a pointer to the runtime linker's
170 dynamic resolver function; 2 means to substitute the link map for
171 the shared object. */
172 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
173 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
174
175 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
176 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
177 FALSE, 0, 0xffffffff, FALSE),
178 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
179 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
180 FALSE, 0, 0xffffffff, FALSE),
181 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
182 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
183 FALSE, 0, 0xffffffff, FALSE),
184 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
186 FALSE, 0, 0xffffffff, FALSE),
187
188 EMPTY_HOWTO (7),
189
190 /* Old relocations for backward compatibility. */
191 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
192 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
193 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
194 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
195 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
196 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
197
198 /* Assembly auto-expansion. */
199 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
200 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
201 /* Relax assembly auto-expansion. */
202 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
203 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
204
205 EMPTY_HOWTO (13),
206
207 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
208 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
209 FALSE, 0, 0xffffffff, TRUE),
210
211 /* GNU extension to record C++ vtable hierarchy. */
212 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
213 NULL, "R_XTENSA_GNU_VTINHERIT",
214 FALSE, 0, 0, FALSE),
215 /* GNU extension to record C++ vtable member usage. */
216 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
217 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
218 FALSE, 0, 0, FALSE),
219
220 /* Relocations for supporting difference of symbols. */
221 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
222 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
223 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
224 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
225 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
226 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
227
228 /* General immediate operand relocations. */
229 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
230 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
231 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
232 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
233 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
235 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
237 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
239 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
241 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
243 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
245 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
247 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
249 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
251 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
253 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
255 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
257 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
259
260 /* "Alternate" relocations. The meaning of these is opcode-specific. */
261 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
263 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
265 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
267 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
269 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
271 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
273 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
275 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
277 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
279 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
281 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
283 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
285 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
287 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
289 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
291 };
292
293 #if DEBUG_GEN_RELOC
294 #define TRACE(str) \
295 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
296 #else
297 #define TRACE(str)
298 #endif
299
300 static reloc_howto_type *
301 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
302 bfd_reloc_code_real_type code)
303 {
304 switch (code)
305 {
306 case BFD_RELOC_NONE:
307 TRACE ("BFD_RELOC_NONE");
308 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
309
310 case BFD_RELOC_32:
311 TRACE ("BFD_RELOC_32");
312 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
313
314 case BFD_RELOC_32_PCREL:
315 TRACE ("BFD_RELOC_32_PCREL");
316 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
317
318 case BFD_RELOC_XTENSA_DIFF8:
319 TRACE ("BFD_RELOC_XTENSA_DIFF8");
320 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
321
322 case BFD_RELOC_XTENSA_DIFF16:
323 TRACE ("BFD_RELOC_XTENSA_DIFF16");
324 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
325
326 case BFD_RELOC_XTENSA_DIFF32:
327 TRACE ("BFD_RELOC_XTENSA_DIFF32");
328 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
329
330 case BFD_RELOC_XTENSA_RTLD:
331 TRACE ("BFD_RELOC_XTENSA_RTLD");
332 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
333
334 case BFD_RELOC_XTENSA_GLOB_DAT:
335 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
336 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
337
338 case BFD_RELOC_XTENSA_JMP_SLOT:
339 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
340 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
341
342 case BFD_RELOC_XTENSA_RELATIVE:
343 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
344 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
345
346 case BFD_RELOC_XTENSA_PLT:
347 TRACE ("BFD_RELOC_XTENSA_PLT");
348 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
349
350 case BFD_RELOC_XTENSA_OP0:
351 TRACE ("BFD_RELOC_XTENSA_OP0");
352 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
353
354 case BFD_RELOC_XTENSA_OP1:
355 TRACE ("BFD_RELOC_XTENSA_OP1");
356 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
357
358 case BFD_RELOC_XTENSA_OP2:
359 TRACE ("BFD_RELOC_XTENSA_OP2");
360 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
361
362 case BFD_RELOC_XTENSA_ASM_EXPAND:
363 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
364 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
365
366 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
367 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
368 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
369
370 case BFD_RELOC_VTABLE_INHERIT:
371 TRACE ("BFD_RELOC_VTABLE_INHERIT");
372 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
373
374 case BFD_RELOC_VTABLE_ENTRY:
375 TRACE ("BFD_RELOC_VTABLE_ENTRY");
376 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
377
378 default:
379 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
380 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
381 {
382 unsigned n = (R_XTENSA_SLOT0_OP +
383 (code - BFD_RELOC_XTENSA_SLOT0_OP));
384 return &elf_howto_table[n];
385 }
386
387 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
388 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
389 {
390 unsigned n = (R_XTENSA_SLOT0_ALT +
391 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
392 return &elf_howto_table[n];
393 }
394
395 break;
396 }
397
398 TRACE ("Unknown");
399 return NULL;
400 }
401
402 static reloc_howto_type *
403 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
404 const char *r_name)
405 {
406 unsigned int i;
407
408 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
409 if (elf_howto_table[i].name != NULL
410 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
411 return &elf_howto_table[i];
412
413 return NULL;
414 }
415
416
417 /* Given an ELF "rela" relocation, find the corresponding howto and record
418 it in the BFD internal arelent representation of the relocation. */
419
420 static void
421 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
422 arelent *cache_ptr,
423 Elf_Internal_Rela *dst)
424 {
425 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
426
427 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
428 cache_ptr->howto = &elf_howto_table[r_type];
429 }
430
431 \f
432 /* Functions for the Xtensa ELF linker. */
433
434 /* The name of the dynamic interpreter. This is put in the .interp
435 section. */
436
437 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
438
439 /* The size in bytes of an entry in the procedure linkage table.
440 (This does _not_ include the space for the literals associated with
441 the PLT entry.) */
442
443 #define PLT_ENTRY_SIZE 16
444
445 /* For _really_ large PLTs, we may need to alternate between literals
446 and code to keep the literals within the 256K range of the L32R
447 instructions in the code. It's unlikely that anyone would ever need
448 such a big PLT, but an arbitrary limit on the PLT size would be bad.
449 Thus, we split the PLT into chunks. Since there's very little
450 overhead (2 extra literals) for each chunk, the chunk size is kept
451 small so that the code for handling multiple chunks get used and
452 tested regularly. With 254 entries, there are 1K of literals for
453 each chunk, and that seems like a nice round number. */
454
455 #define PLT_ENTRIES_PER_CHUNK 254
456
457 /* PLT entries are actually used as stub functions for lazy symbol
458 resolution. Once the symbol is resolved, the stub function is never
459 invoked. Note: the 32-byte frame size used here cannot be changed
460 without a corresponding change in the runtime linker. */
461
462 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
463 {
464 0x6c, 0x10, 0x04, /* entry sp, 32 */
465 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
466 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
467 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
468 0x0a, 0x80, 0x00, /* jx a8 */
469 0 /* unused */
470 };
471
472 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
473 {
474 0x36, 0x41, 0x00, /* entry sp, 32 */
475 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
476 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
477 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
478 0xa0, 0x08, 0x00, /* jx a8 */
479 0 /* unused */
480 };
481
482 /* Xtensa ELF linker hash table. */
483
484 struct elf_xtensa_link_hash_table
485 {
486 struct elf_link_hash_table elf;
487
488 /* Short-cuts to get to dynamic linker sections. */
489 asection *sgot;
490 asection *sgotplt;
491 asection *srelgot;
492 asection *splt;
493 asection *srelplt;
494 asection *sgotloc;
495 asection *spltlittbl;
496
497 /* Total count of PLT relocations seen during check_relocs.
498 The actual PLT code must be split into multiple sections and all
499 the sections have to be created before size_dynamic_sections,
500 where we figure out the exact number of PLT entries that will be
501 needed. It is OK if this count is an overestimate, e.g., some
502 relocations may be removed by GC. */
503 int plt_reloc_count;
504 };
505
506 /* Get the Xtensa ELF linker hash table from a link_info structure. */
507
508 #define elf_xtensa_hash_table(p) \
509 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
510
511 /* Create an Xtensa ELF linker hash table. */
512
513 static struct bfd_link_hash_table *
514 elf_xtensa_link_hash_table_create (bfd *abfd)
515 {
516 struct elf_xtensa_link_hash_table *ret;
517 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
518
519 ret = bfd_malloc (amt);
520 if (ret == NULL)
521 return NULL;
522
523 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
524 _bfd_elf_link_hash_newfunc,
525 sizeof (struct elf_link_hash_entry)))
526 {
527 free (ret);
528 return NULL;
529 }
530
531 ret->sgot = NULL;
532 ret->sgotplt = NULL;
533 ret->srelgot = NULL;
534 ret->splt = NULL;
535 ret->srelplt = NULL;
536 ret->sgotloc = NULL;
537 ret->spltlittbl = NULL;
538
539 ret->plt_reloc_count = 0;
540
541 return &ret->elf.root;
542 }
543
544 static inline bfd_boolean
545 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
546 struct bfd_link_info *info)
547 {
548 /* Check if we should do dynamic things to this symbol. The
549 "ignore_protected" argument need not be set, because Xtensa code
550 does not require special handling of STV_PROTECTED to make function
551 pointer comparisons work properly. The PLT addresses are never
552 used for function pointers. */
553
554 return _bfd_elf_dynamic_symbol_p (h, info, 0);
555 }
556
557 \f
558 static int
559 property_table_compare (const void *ap, const void *bp)
560 {
561 const property_table_entry *a = (const property_table_entry *) ap;
562 const property_table_entry *b = (const property_table_entry *) bp;
563
564 if (a->address == b->address)
565 {
566 if (a->size != b->size)
567 return (a->size - b->size);
568
569 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
570 return ((b->flags & XTENSA_PROP_ALIGN)
571 - (a->flags & XTENSA_PROP_ALIGN));
572
573 if ((a->flags & XTENSA_PROP_ALIGN)
574 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
575 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
576 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
577 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
578
579 if ((a->flags & XTENSA_PROP_UNREACHABLE)
580 != (b->flags & XTENSA_PROP_UNREACHABLE))
581 return ((b->flags & XTENSA_PROP_UNREACHABLE)
582 - (a->flags & XTENSA_PROP_UNREACHABLE));
583
584 return (a->flags - b->flags);
585 }
586
587 return (a->address - b->address);
588 }
589
590
591 static int
592 property_table_matches (const void *ap, const void *bp)
593 {
594 const property_table_entry *a = (const property_table_entry *) ap;
595 const property_table_entry *b = (const property_table_entry *) bp;
596
597 /* Check if one entry overlaps with the other. */
598 if ((b->address >= a->address && b->address < (a->address + a->size))
599 || (a->address >= b->address && a->address < (b->address + b->size)))
600 return 0;
601
602 return (a->address - b->address);
603 }
604
605
606 /* Get the literal table or property table entries for the given
607 section. Sets TABLE_P and returns the number of entries. On
608 error, returns a negative value. */
609
610 static int
611 xtensa_read_table_entries (bfd *abfd,
612 asection *section,
613 property_table_entry **table_p,
614 const char *sec_name,
615 bfd_boolean output_addr)
616 {
617 asection *table_section;
618 bfd_size_type table_size = 0;
619 bfd_byte *table_data;
620 property_table_entry *blocks;
621 int blk, block_count;
622 bfd_size_type num_records;
623 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
624 bfd_vma section_addr, off;
625 flagword predef_flags;
626 bfd_size_type table_entry_size, section_limit;
627
628 if (!section
629 || !(section->flags & SEC_ALLOC)
630 || (section->flags & SEC_DEBUGGING))
631 {
632 *table_p = NULL;
633 return 0;
634 }
635
636 table_section = xtensa_get_property_section (section, sec_name);
637 if (table_section)
638 table_size = table_section->size;
639
640 if (table_size == 0)
641 {
642 *table_p = NULL;
643 return 0;
644 }
645
646 predef_flags = xtensa_get_property_predef_flags (table_section);
647 table_entry_size = 12;
648 if (predef_flags)
649 table_entry_size -= 4;
650
651 num_records = table_size / table_entry_size;
652 table_data = retrieve_contents (abfd, table_section, TRUE);
653 blocks = (property_table_entry *)
654 bfd_malloc (num_records * sizeof (property_table_entry));
655 block_count = 0;
656
657 if (output_addr)
658 section_addr = section->output_section->vma + section->output_offset;
659 else
660 section_addr = section->vma;
661
662 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
663 if (internal_relocs && !table_section->reloc_done)
664 {
665 qsort (internal_relocs, table_section->reloc_count,
666 sizeof (Elf_Internal_Rela), internal_reloc_compare);
667 irel = internal_relocs;
668 }
669 else
670 irel = NULL;
671
672 section_limit = bfd_get_section_limit (abfd, section);
673 rel_end = internal_relocs + table_section->reloc_count;
674
675 for (off = 0; off < table_size; off += table_entry_size)
676 {
677 bfd_vma address = bfd_get_32 (abfd, table_data + off);
678
679 /* Skip any relocations before the current offset. This should help
680 avoid confusion caused by unexpected relocations for the preceding
681 table entry. */
682 while (irel &&
683 (irel->r_offset < off
684 || (irel->r_offset == off
685 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
686 {
687 irel += 1;
688 if (irel >= rel_end)
689 irel = 0;
690 }
691
692 if (irel && irel->r_offset == off)
693 {
694 bfd_vma sym_off;
695 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
696 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
697
698 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
699 continue;
700
701 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
702 BFD_ASSERT (sym_off == 0);
703 address += (section_addr + sym_off + irel->r_addend);
704 }
705 else
706 {
707 if (address < section_addr
708 || address >= section_addr + section_limit)
709 continue;
710 }
711
712 blocks[block_count].address = address;
713 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
714 if (predef_flags)
715 blocks[block_count].flags = predef_flags;
716 else
717 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
718 block_count++;
719 }
720
721 release_contents (table_section, table_data);
722 release_internal_relocs (table_section, internal_relocs);
723
724 if (block_count > 0)
725 {
726 /* Now sort them into address order for easy reference. */
727 qsort (blocks, block_count, sizeof (property_table_entry),
728 property_table_compare);
729
730 /* Check that the table contents are valid. Problems may occur,
731 for example, if an unrelocated object file is stripped. */
732 for (blk = 1; blk < block_count; blk++)
733 {
734 /* The only circumstance where two entries may legitimately
735 have the same address is when one of them is a zero-size
736 placeholder to mark a place where fill can be inserted.
737 The zero-size entry should come first. */
738 if (blocks[blk - 1].address == blocks[blk].address &&
739 blocks[blk - 1].size != 0)
740 {
741 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
742 abfd, section);
743 bfd_set_error (bfd_error_bad_value);
744 free (blocks);
745 return -1;
746 }
747 }
748 }
749
750 *table_p = blocks;
751 return block_count;
752 }
753
754
755 static property_table_entry *
756 elf_xtensa_find_property_entry (property_table_entry *property_table,
757 int property_table_size,
758 bfd_vma addr)
759 {
760 property_table_entry entry;
761 property_table_entry *rv;
762
763 if (property_table_size == 0)
764 return NULL;
765
766 entry.address = addr;
767 entry.size = 1;
768 entry.flags = 0;
769
770 rv = bsearch (&entry, property_table, property_table_size,
771 sizeof (property_table_entry), property_table_matches);
772 return rv;
773 }
774
775
776 static bfd_boolean
777 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
778 int lit_table_size,
779 bfd_vma addr)
780 {
781 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
782 return TRUE;
783
784 return FALSE;
785 }
786
787 \f
788 /* Look through the relocs for a section during the first phase, and
789 calculate needed space in the dynamic reloc sections. */
790
791 static bfd_boolean
792 elf_xtensa_check_relocs (bfd *abfd,
793 struct bfd_link_info *info,
794 asection *sec,
795 const Elf_Internal_Rela *relocs)
796 {
797 struct elf_xtensa_link_hash_table *htab;
798 Elf_Internal_Shdr *symtab_hdr;
799 struct elf_link_hash_entry **sym_hashes;
800 const Elf_Internal_Rela *rel;
801 const Elf_Internal_Rela *rel_end;
802
803 if (info->relocatable)
804 return TRUE;
805
806 htab = elf_xtensa_hash_table (info);
807 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
808 sym_hashes = elf_sym_hashes (abfd);
809
810 rel_end = relocs + sec->reloc_count;
811 for (rel = relocs; rel < rel_end; rel++)
812 {
813 unsigned int r_type;
814 unsigned long r_symndx;
815 struct elf_link_hash_entry *h;
816
817 r_symndx = ELF32_R_SYM (rel->r_info);
818 r_type = ELF32_R_TYPE (rel->r_info);
819
820 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
821 {
822 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
823 abfd, r_symndx);
824 return FALSE;
825 }
826
827 if (r_symndx < symtab_hdr->sh_info)
828 h = NULL;
829 else
830 {
831 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
832 while (h->root.type == bfd_link_hash_indirect
833 || h->root.type == bfd_link_hash_warning)
834 h = (struct elf_link_hash_entry *) h->root.u.i.link;
835 }
836
837 switch (r_type)
838 {
839 case R_XTENSA_32:
840 if (h == NULL)
841 goto local_literal;
842
843 if ((sec->flags & SEC_ALLOC) != 0)
844 {
845 if (h->got.refcount <= 0)
846 h->got.refcount = 1;
847 else
848 h->got.refcount += 1;
849 }
850 break;
851
852 case R_XTENSA_PLT:
853 /* If this relocation is against a local symbol, then it's
854 exactly the same as a normal local GOT entry. */
855 if (h == NULL)
856 goto local_literal;
857
858 if ((sec->flags & SEC_ALLOC) != 0)
859 {
860 if (h->plt.refcount <= 0)
861 {
862 h->needs_plt = 1;
863 h->plt.refcount = 1;
864 }
865 else
866 h->plt.refcount += 1;
867
868 /* Keep track of the total PLT relocation count even if we
869 don't yet know whether the dynamic sections will be
870 created. */
871 htab->plt_reloc_count += 1;
872
873 if (elf_hash_table (info)->dynamic_sections_created)
874 {
875 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
876 return FALSE;
877 }
878 }
879 break;
880
881 local_literal:
882 if ((sec->flags & SEC_ALLOC) != 0)
883 {
884 bfd_signed_vma *local_got_refcounts;
885
886 /* This is a global offset table entry for a local symbol. */
887 local_got_refcounts = elf_local_got_refcounts (abfd);
888 if (local_got_refcounts == NULL)
889 {
890 bfd_size_type size;
891
892 size = symtab_hdr->sh_info;
893 size *= sizeof (bfd_signed_vma);
894 local_got_refcounts =
895 (bfd_signed_vma *) bfd_zalloc (abfd, size);
896 if (local_got_refcounts == NULL)
897 return FALSE;
898 elf_local_got_refcounts (abfd) = local_got_refcounts;
899 }
900 local_got_refcounts[r_symndx] += 1;
901 }
902 break;
903
904 case R_XTENSA_GNU_VTINHERIT:
905 /* This relocation describes the C++ object vtable hierarchy.
906 Reconstruct it for later use during GC. */
907 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
908 return FALSE;
909 break;
910
911 case R_XTENSA_GNU_VTENTRY:
912 /* This relocation describes which C++ vtable entries are actually
913 used. Record for later use during GC. */
914 BFD_ASSERT (h != NULL);
915 if (h != NULL
916 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
917 return FALSE;
918 break;
919
920 default:
921 break;
922 }
923 }
924
925 return TRUE;
926 }
927
928
929 static void
930 elf_xtensa_make_sym_local (struct bfd_link_info *info,
931 struct elf_link_hash_entry *h)
932 {
933 if (info->shared)
934 {
935 if (h->plt.refcount > 0)
936 {
937 /* For shared objects, there's no need for PLT entries for local
938 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
939 if (h->got.refcount < 0)
940 h->got.refcount = 0;
941 h->got.refcount += h->plt.refcount;
942 h->plt.refcount = 0;
943 }
944 }
945 else
946 {
947 /* Don't need any dynamic relocations at all. */
948 h->plt.refcount = 0;
949 h->got.refcount = 0;
950 }
951 }
952
953
954 static void
955 elf_xtensa_hide_symbol (struct bfd_link_info *info,
956 struct elf_link_hash_entry *h,
957 bfd_boolean force_local)
958 {
959 /* For a shared link, move the plt refcount to the got refcount to leave
960 space for RELATIVE relocs. */
961 elf_xtensa_make_sym_local (info, h);
962
963 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
964 }
965
966
967 /* Return the section that should be marked against GC for a given
968 relocation. */
969
970 static asection *
971 elf_xtensa_gc_mark_hook (asection *sec,
972 struct bfd_link_info *info,
973 Elf_Internal_Rela *rel,
974 struct elf_link_hash_entry *h,
975 Elf_Internal_Sym *sym)
976 {
977 /* Property sections are marked "KEEP" in the linker scripts, but they
978 should not cause other sections to be marked. (This approach relies
979 on elf_xtensa_discard_info to remove property table entries that
980 describe discarded sections. Alternatively, it might be more
981 efficient to avoid using "KEEP" in the linker scripts and instead use
982 the gc_mark_extra_sections hook to mark only the property sections
983 that describe marked sections. That alternative does not work well
984 with the current property table sections, which do not correspond
985 one-to-one with the sections they describe, but that should be fixed
986 someday.) */
987 if (xtensa_is_property_section (sec))
988 return NULL;
989
990 if (h != NULL)
991 switch (ELF32_R_TYPE (rel->r_info))
992 {
993 case R_XTENSA_GNU_VTINHERIT:
994 case R_XTENSA_GNU_VTENTRY:
995 return NULL;
996 }
997
998 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
999 }
1000
1001
1002 /* Update the GOT & PLT entry reference counts
1003 for the section being removed. */
1004
1005 static bfd_boolean
1006 elf_xtensa_gc_sweep_hook (bfd *abfd,
1007 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1008 asection *sec,
1009 const Elf_Internal_Rela *relocs)
1010 {
1011 Elf_Internal_Shdr *symtab_hdr;
1012 struct elf_link_hash_entry **sym_hashes;
1013 bfd_signed_vma *local_got_refcounts;
1014 const Elf_Internal_Rela *rel, *relend;
1015
1016 if (info->relocatable)
1017 return TRUE;
1018
1019 if ((sec->flags & SEC_ALLOC) == 0)
1020 return TRUE;
1021
1022 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1023 sym_hashes = elf_sym_hashes (abfd);
1024 local_got_refcounts = elf_local_got_refcounts (abfd);
1025
1026 relend = relocs + sec->reloc_count;
1027 for (rel = relocs; rel < relend; rel++)
1028 {
1029 unsigned long r_symndx;
1030 unsigned int r_type;
1031 struct elf_link_hash_entry *h = NULL;
1032
1033 r_symndx = ELF32_R_SYM (rel->r_info);
1034 if (r_symndx >= symtab_hdr->sh_info)
1035 {
1036 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1037 while (h->root.type == bfd_link_hash_indirect
1038 || h->root.type == bfd_link_hash_warning)
1039 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1040 }
1041
1042 r_type = ELF32_R_TYPE (rel->r_info);
1043 switch (r_type)
1044 {
1045 case R_XTENSA_32:
1046 if (h == NULL)
1047 goto local_literal;
1048 if (h->got.refcount > 0)
1049 h->got.refcount--;
1050 break;
1051
1052 case R_XTENSA_PLT:
1053 if (h == NULL)
1054 goto local_literal;
1055 if (h->plt.refcount > 0)
1056 h->plt.refcount--;
1057 break;
1058
1059 local_literal:
1060 if (local_got_refcounts[r_symndx] > 0)
1061 local_got_refcounts[r_symndx] -= 1;
1062 break;
1063
1064 default:
1065 break;
1066 }
1067 }
1068
1069 return TRUE;
1070 }
1071
1072
1073 /* Create all the dynamic sections. */
1074
1075 static bfd_boolean
1076 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1077 {
1078 struct elf_xtensa_link_hash_table *htab;
1079 flagword flags, noalloc_flags;
1080
1081 htab = elf_xtensa_hash_table (info);
1082
1083 /* First do all the standard stuff. */
1084 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1085 return FALSE;
1086 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1087 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1088 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1089 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
1090
1091 /* Create any extra PLT sections in case check_relocs has already
1092 been called on all the non-dynamic input files. */
1093 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1094 return FALSE;
1095
1096 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1097 | SEC_LINKER_CREATED | SEC_READONLY);
1098 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1099
1100 /* Mark the ".got.plt" section READONLY. */
1101 if (htab->sgotplt == NULL
1102 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1103 return FALSE;
1104
1105 /* Create ".rela.got". */
1106 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1107 if (htab->srelgot == NULL
1108 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
1109 return FALSE;
1110
1111 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1112 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1113 if (htab->sgotloc == NULL
1114 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1115 return FALSE;
1116
1117 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1118 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1119 noalloc_flags);
1120 if (htab->spltlittbl == NULL
1121 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1122 return FALSE;
1123
1124 return TRUE;
1125 }
1126
1127
1128 static bfd_boolean
1129 add_extra_plt_sections (struct bfd_link_info *info, int count)
1130 {
1131 bfd *dynobj = elf_hash_table (info)->dynobj;
1132 int chunk;
1133
1134 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1135 ".got.plt" sections. */
1136 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1137 {
1138 char *sname;
1139 flagword flags;
1140 asection *s;
1141
1142 /* Stop when we find a section has already been created. */
1143 if (elf_xtensa_get_plt_section (info, chunk))
1144 break;
1145
1146 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1147 | SEC_LINKER_CREATED | SEC_READONLY);
1148
1149 sname = (char *) bfd_malloc (10);
1150 sprintf (sname, ".plt.%u", chunk);
1151 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
1152 if (s == NULL
1153 || ! bfd_set_section_alignment (dynobj, s, 2))
1154 return FALSE;
1155
1156 sname = (char *) bfd_malloc (14);
1157 sprintf (sname, ".got.plt.%u", chunk);
1158 s = bfd_make_section_with_flags (dynobj, sname, flags);
1159 if (s == NULL
1160 || ! bfd_set_section_alignment (dynobj, s, 2))
1161 return FALSE;
1162 }
1163
1164 return TRUE;
1165 }
1166
1167
1168 /* Adjust a symbol defined by a dynamic object and referenced by a
1169 regular object. The current definition is in some section of the
1170 dynamic object, but we're not including those sections. We have to
1171 change the definition to something the rest of the link can
1172 understand. */
1173
1174 static bfd_boolean
1175 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1176 struct elf_link_hash_entry *h)
1177 {
1178 /* If this is a weak symbol, and there is a real definition, the
1179 processor independent code will have arranged for us to see the
1180 real definition first, and we can just use the same value. */
1181 if (h->u.weakdef)
1182 {
1183 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1184 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1185 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1186 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1187 return TRUE;
1188 }
1189
1190 /* This is a reference to a symbol defined by a dynamic object. The
1191 reference must go through the GOT, so there's no need for COPY relocs,
1192 .dynbss, etc. */
1193
1194 return TRUE;
1195 }
1196
1197
1198 static bfd_boolean
1199 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1200 {
1201 struct bfd_link_info *info;
1202 struct elf_xtensa_link_hash_table *htab;
1203 bfd_boolean is_dynamic;
1204
1205 if (h->root.type == bfd_link_hash_indirect)
1206 return TRUE;
1207
1208 if (h->root.type == bfd_link_hash_warning)
1209 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1210
1211 info = (struct bfd_link_info *) arg;
1212 htab = elf_xtensa_hash_table (info);
1213
1214 is_dynamic = elf_xtensa_dynamic_symbol_p (h, info);
1215
1216 if (! is_dynamic)
1217 elf_xtensa_make_sym_local (info, h);
1218
1219 if (h->plt.refcount > 0)
1220 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1221
1222 if (h->got.refcount > 0)
1223 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1224
1225 return TRUE;
1226 }
1227
1228
1229 static void
1230 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1231 {
1232 struct elf_xtensa_link_hash_table *htab;
1233 bfd *i;
1234
1235 htab = elf_xtensa_hash_table (info);
1236
1237 for (i = info->input_bfds; i; i = i->link_next)
1238 {
1239 bfd_signed_vma *local_got_refcounts;
1240 bfd_size_type j, cnt;
1241 Elf_Internal_Shdr *symtab_hdr;
1242
1243 local_got_refcounts = elf_local_got_refcounts (i);
1244 if (!local_got_refcounts)
1245 continue;
1246
1247 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1248 cnt = symtab_hdr->sh_info;
1249
1250 for (j = 0; j < cnt; ++j)
1251 {
1252 if (local_got_refcounts[j] > 0)
1253 htab->srelgot->size += (local_got_refcounts[j]
1254 * sizeof (Elf32_External_Rela));
1255 }
1256 }
1257 }
1258
1259
1260 /* Set the sizes of the dynamic sections. */
1261
1262 static bfd_boolean
1263 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1264 struct bfd_link_info *info)
1265 {
1266 struct elf_xtensa_link_hash_table *htab;
1267 bfd *dynobj, *abfd;
1268 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1269 bfd_boolean relplt, relgot;
1270 int plt_entries, plt_chunks, chunk;
1271
1272 plt_entries = 0;
1273 plt_chunks = 0;
1274
1275 htab = elf_xtensa_hash_table (info);
1276 dynobj = elf_hash_table (info)->dynobj;
1277 if (dynobj == NULL)
1278 abort ();
1279 srelgot = htab->srelgot;
1280 srelplt = htab->srelplt;
1281
1282 if (elf_hash_table (info)->dynamic_sections_created)
1283 {
1284 BFD_ASSERT (htab->srelgot != NULL
1285 && htab->srelplt != NULL
1286 && htab->sgot != NULL
1287 && htab->spltlittbl != NULL
1288 && htab->sgotloc != NULL);
1289
1290 /* Set the contents of the .interp section to the interpreter. */
1291 if (info->executable)
1292 {
1293 s = bfd_get_section_by_name (dynobj, ".interp");
1294 if (s == NULL)
1295 abort ();
1296 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1297 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1298 }
1299
1300 /* Allocate room for one word in ".got". */
1301 htab->sgot->size = 4;
1302
1303 /* Allocate space in ".rela.got" for literals that reference global
1304 symbols and space in ".rela.plt" for literals that have PLT
1305 entries. */
1306 elf_link_hash_traverse (elf_hash_table (info),
1307 elf_xtensa_allocate_dynrelocs,
1308 (void *) info);
1309
1310 /* If we are generating a shared object, we also need space in
1311 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1312 reference local symbols. */
1313 if (info->shared)
1314 elf_xtensa_allocate_local_got_size (info);
1315
1316 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1317 each PLT entry, we need the PLT code plus a 4-byte literal.
1318 For each chunk of ".plt", we also need two more 4-byte
1319 literals, two corresponding entries in ".rela.got", and an
1320 8-byte entry in ".xt.lit.plt". */
1321 spltlittbl = htab->spltlittbl;
1322 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1323 plt_chunks =
1324 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1325
1326 /* Iterate over all the PLT chunks, including any extra sections
1327 created earlier because the initial count of PLT relocations
1328 was an overestimate. */
1329 for (chunk = 0;
1330 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1331 chunk++)
1332 {
1333 int chunk_entries;
1334
1335 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1336 BFD_ASSERT (sgotplt != NULL);
1337
1338 if (chunk < plt_chunks - 1)
1339 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1340 else if (chunk == plt_chunks - 1)
1341 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1342 else
1343 chunk_entries = 0;
1344
1345 if (chunk_entries != 0)
1346 {
1347 sgotplt->size = 4 * (chunk_entries + 2);
1348 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1349 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1350 spltlittbl->size += 8;
1351 }
1352 else
1353 {
1354 sgotplt->size = 0;
1355 splt->size = 0;
1356 }
1357 }
1358
1359 /* Allocate space in ".got.loc" to match the total size of all the
1360 literal tables. */
1361 sgotloc = htab->sgotloc;
1362 sgotloc->size = spltlittbl->size;
1363 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1364 {
1365 if (abfd->flags & DYNAMIC)
1366 continue;
1367 for (s = abfd->sections; s != NULL; s = s->next)
1368 {
1369 if (! elf_discarded_section (s)
1370 && xtensa_is_littable_section (s)
1371 && s != spltlittbl)
1372 sgotloc->size += s->size;
1373 }
1374 }
1375 }
1376
1377 /* Allocate memory for dynamic sections. */
1378 relplt = FALSE;
1379 relgot = FALSE;
1380 for (s = dynobj->sections; s != NULL; s = s->next)
1381 {
1382 const char *name;
1383
1384 if ((s->flags & SEC_LINKER_CREATED) == 0)
1385 continue;
1386
1387 /* It's OK to base decisions on the section name, because none
1388 of the dynobj section names depend upon the input files. */
1389 name = bfd_get_section_name (dynobj, s);
1390
1391 if (CONST_STRNEQ (name, ".rela"))
1392 {
1393 if (s->size != 0)
1394 {
1395 if (strcmp (name, ".rela.plt") == 0)
1396 relplt = TRUE;
1397 else if (strcmp (name, ".rela.got") == 0)
1398 relgot = TRUE;
1399
1400 /* We use the reloc_count field as a counter if we need
1401 to copy relocs into the output file. */
1402 s->reloc_count = 0;
1403 }
1404 }
1405 else if (! CONST_STRNEQ (name, ".plt.")
1406 && ! CONST_STRNEQ (name, ".got.plt.")
1407 && strcmp (name, ".got") != 0
1408 && strcmp (name, ".plt") != 0
1409 && strcmp (name, ".got.plt") != 0
1410 && strcmp (name, ".xt.lit.plt") != 0
1411 && strcmp (name, ".got.loc") != 0)
1412 {
1413 /* It's not one of our sections, so don't allocate space. */
1414 continue;
1415 }
1416
1417 if (s->size == 0)
1418 {
1419 /* If we don't need this section, strip it from the output
1420 file. We must create the ".plt*" and ".got.plt*"
1421 sections in create_dynamic_sections and/or check_relocs
1422 based on a conservative estimate of the PLT relocation
1423 count, because the sections must be created before the
1424 linker maps input sections to output sections. The
1425 linker does that before size_dynamic_sections, where we
1426 compute the exact size of the PLT, so there may be more
1427 of these sections than are actually needed. */
1428 s->flags |= SEC_EXCLUDE;
1429 }
1430 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1431 {
1432 /* Allocate memory for the section contents. */
1433 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1434 if (s->contents == NULL)
1435 return FALSE;
1436 }
1437 }
1438
1439 if (elf_hash_table (info)->dynamic_sections_created)
1440 {
1441 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1442 known until finish_dynamic_sections, but we need to get the relocs
1443 in place before they are sorted. */
1444 for (chunk = 0; chunk < plt_chunks; chunk++)
1445 {
1446 Elf_Internal_Rela irela;
1447 bfd_byte *loc;
1448
1449 irela.r_offset = 0;
1450 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1451 irela.r_addend = 0;
1452
1453 loc = (srelgot->contents
1454 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1455 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1456 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1457 loc + sizeof (Elf32_External_Rela));
1458 srelgot->reloc_count += 2;
1459 }
1460
1461 /* Add some entries to the .dynamic section. We fill in the
1462 values later, in elf_xtensa_finish_dynamic_sections, but we
1463 must add the entries now so that we get the correct size for
1464 the .dynamic section. The DT_DEBUG entry is filled in by the
1465 dynamic linker and used by the debugger. */
1466 #define add_dynamic_entry(TAG, VAL) \
1467 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1468
1469 if (info->executable)
1470 {
1471 if (!add_dynamic_entry (DT_DEBUG, 0))
1472 return FALSE;
1473 }
1474
1475 if (relplt)
1476 {
1477 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1478 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1479 || !add_dynamic_entry (DT_JMPREL, 0))
1480 return FALSE;
1481 }
1482
1483 if (relgot)
1484 {
1485 if (!add_dynamic_entry (DT_RELA, 0)
1486 || !add_dynamic_entry (DT_RELASZ, 0)
1487 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1488 return FALSE;
1489 }
1490
1491 if (!add_dynamic_entry (DT_PLTGOT, 0)
1492 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1493 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1494 return FALSE;
1495 }
1496 #undef add_dynamic_entry
1497
1498 return TRUE;
1499 }
1500
1501 \f
1502 /* Perform the specified relocation. The instruction at (contents + address)
1503 is modified to set one operand to represent the value in "relocation". The
1504 operand position is determined by the relocation type recorded in the
1505 howto. */
1506
1507 #define CALL_SEGMENT_BITS (30)
1508 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1509
1510 static bfd_reloc_status_type
1511 elf_xtensa_do_reloc (reloc_howto_type *howto,
1512 bfd *abfd,
1513 asection *input_section,
1514 bfd_vma relocation,
1515 bfd_byte *contents,
1516 bfd_vma address,
1517 bfd_boolean is_weak_undef,
1518 char **error_message)
1519 {
1520 xtensa_format fmt;
1521 xtensa_opcode opcode;
1522 xtensa_isa isa = xtensa_default_isa;
1523 static xtensa_insnbuf ibuff = NULL;
1524 static xtensa_insnbuf sbuff = NULL;
1525 bfd_vma self_address;
1526 bfd_size_type input_size;
1527 int opnd, slot;
1528 uint32 newval;
1529
1530 if (!ibuff)
1531 {
1532 ibuff = xtensa_insnbuf_alloc (isa);
1533 sbuff = xtensa_insnbuf_alloc (isa);
1534 }
1535
1536 input_size = bfd_get_section_limit (abfd, input_section);
1537
1538 /* Calculate the PC address for this instruction. */
1539 self_address = (input_section->output_section->vma
1540 + input_section->output_offset
1541 + address);
1542
1543 switch (howto->type)
1544 {
1545 case R_XTENSA_NONE:
1546 case R_XTENSA_DIFF8:
1547 case R_XTENSA_DIFF16:
1548 case R_XTENSA_DIFF32:
1549 return bfd_reloc_ok;
1550
1551 case R_XTENSA_ASM_EXPAND:
1552 if (!is_weak_undef)
1553 {
1554 /* Check for windowed CALL across a 1GB boundary. */
1555 xtensa_opcode opcode =
1556 get_expanded_call_opcode (contents + address,
1557 input_size - address, 0);
1558 if (is_windowed_call_opcode (opcode))
1559 {
1560 if ((self_address >> CALL_SEGMENT_BITS)
1561 != (relocation >> CALL_SEGMENT_BITS))
1562 {
1563 *error_message = "windowed longcall crosses 1GB boundary; "
1564 "return may fail";
1565 return bfd_reloc_dangerous;
1566 }
1567 }
1568 }
1569 return bfd_reloc_ok;
1570
1571 case R_XTENSA_ASM_SIMPLIFY:
1572 {
1573 /* Convert the L32R/CALLX to CALL. */
1574 bfd_reloc_status_type retval =
1575 elf_xtensa_do_asm_simplify (contents, address, input_size,
1576 error_message);
1577 if (retval != bfd_reloc_ok)
1578 return bfd_reloc_dangerous;
1579
1580 /* The CALL needs to be relocated. Continue below for that part. */
1581 address += 3;
1582 self_address += 3;
1583 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1584 }
1585 break;
1586
1587 case R_XTENSA_32:
1588 case R_XTENSA_PLT:
1589 {
1590 bfd_vma x;
1591 x = bfd_get_32 (abfd, contents + address);
1592 x = x + relocation;
1593 bfd_put_32 (abfd, x, contents + address);
1594 }
1595 return bfd_reloc_ok;
1596
1597 case R_XTENSA_32_PCREL:
1598 bfd_put_32 (abfd, relocation - self_address, contents + address);
1599 return bfd_reloc_ok;
1600 }
1601
1602 /* Only instruction slot-specific relocations handled below.... */
1603 slot = get_relocation_slot (howto->type);
1604 if (slot == XTENSA_UNDEFINED)
1605 {
1606 *error_message = "unexpected relocation";
1607 return bfd_reloc_dangerous;
1608 }
1609
1610 /* Read the instruction into a buffer and decode the opcode. */
1611 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1612 input_size - address);
1613 fmt = xtensa_format_decode (isa, ibuff);
1614 if (fmt == XTENSA_UNDEFINED)
1615 {
1616 *error_message = "cannot decode instruction format";
1617 return bfd_reloc_dangerous;
1618 }
1619
1620 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1621
1622 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1623 if (opcode == XTENSA_UNDEFINED)
1624 {
1625 *error_message = "cannot decode instruction opcode";
1626 return bfd_reloc_dangerous;
1627 }
1628
1629 /* Check for opcode-specific "alternate" relocations. */
1630 if (is_alt_relocation (howto->type))
1631 {
1632 if (opcode == get_l32r_opcode ())
1633 {
1634 /* Handle the special-case of non-PC-relative L32R instructions. */
1635 bfd *output_bfd = input_section->output_section->owner;
1636 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1637 if (!lit4_sec)
1638 {
1639 *error_message = "relocation references missing .lit4 section";
1640 return bfd_reloc_dangerous;
1641 }
1642 self_address = ((lit4_sec->vma & ~0xfff)
1643 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1644 newval = relocation;
1645 opnd = 1;
1646 }
1647 else if (opcode == get_const16_opcode ())
1648 {
1649 /* ALT used for high 16 bits. */
1650 newval = relocation >> 16;
1651 opnd = 1;
1652 }
1653 else
1654 {
1655 /* No other "alternate" relocations currently defined. */
1656 *error_message = "unexpected relocation";
1657 return bfd_reloc_dangerous;
1658 }
1659 }
1660 else /* Not an "alternate" relocation.... */
1661 {
1662 if (opcode == get_const16_opcode ())
1663 {
1664 newval = relocation & 0xffff;
1665 opnd = 1;
1666 }
1667 else
1668 {
1669 /* ...normal PC-relative relocation.... */
1670
1671 /* Determine which operand is being relocated. */
1672 opnd = get_relocation_opnd (opcode, howto->type);
1673 if (opnd == XTENSA_UNDEFINED)
1674 {
1675 *error_message = "unexpected relocation";
1676 return bfd_reloc_dangerous;
1677 }
1678
1679 if (!howto->pc_relative)
1680 {
1681 *error_message = "expected PC-relative relocation";
1682 return bfd_reloc_dangerous;
1683 }
1684
1685 newval = relocation;
1686 }
1687 }
1688
1689 /* Apply the relocation. */
1690 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1691 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1692 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1693 sbuff, newval))
1694 {
1695 const char *opname = xtensa_opcode_name (isa, opcode);
1696 const char *msg;
1697
1698 msg = "cannot encode";
1699 if (is_direct_call_opcode (opcode))
1700 {
1701 if ((relocation & 0x3) != 0)
1702 msg = "misaligned call target";
1703 else
1704 msg = "call target out of range";
1705 }
1706 else if (opcode == get_l32r_opcode ())
1707 {
1708 if ((relocation & 0x3) != 0)
1709 msg = "misaligned literal target";
1710 else if (is_alt_relocation (howto->type))
1711 msg = "literal target out of range (too many literals)";
1712 else if (self_address > relocation)
1713 msg = "literal target out of range (try using text-section-literals)";
1714 else
1715 msg = "literal placed after use";
1716 }
1717
1718 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
1719 return bfd_reloc_dangerous;
1720 }
1721
1722 /* Check for calls across 1GB boundaries. */
1723 if (is_direct_call_opcode (opcode)
1724 && is_windowed_call_opcode (opcode))
1725 {
1726 if ((self_address >> CALL_SEGMENT_BITS)
1727 != (relocation >> CALL_SEGMENT_BITS))
1728 {
1729 *error_message =
1730 "windowed call crosses 1GB boundary; return may fail";
1731 return bfd_reloc_dangerous;
1732 }
1733 }
1734
1735 /* Write the modified instruction back out of the buffer. */
1736 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1737 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1738 input_size - address);
1739 return bfd_reloc_ok;
1740 }
1741
1742
1743 static char *
1744 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
1745 {
1746 /* To reduce the size of the memory leak,
1747 we only use a single message buffer. */
1748 static bfd_size_type alloc_size = 0;
1749 static char *message = NULL;
1750 bfd_size_type orig_len, len = 0;
1751 bfd_boolean is_append;
1752
1753 VA_OPEN (ap, arglen);
1754 VA_FIXEDARG (ap, const char *, origmsg);
1755
1756 is_append = (origmsg == message);
1757
1758 orig_len = strlen (origmsg);
1759 len = orig_len + strlen (fmt) + arglen + 20;
1760 if (len > alloc_size)
1761 {
1762 message = (char *) bfd_realloc_or_free (message, len);
1763 alloc_size = len;
1764 }
1765 if (message != NULL)
1766 {
1767 if (!is_append)
1768 memcpy (message, origmsg, orig_len);
1769 vsprintf (message + orig_len, fmt, ap);
1770 }
1771 VA_CLOSE (ap);
1772 return message;
1773 }
1774
1775
1776 /* This function is registered as the "special_function" in the
1777 Xtensa howto for handling simplify operations.
1778 bfd_perform_relocation / bfd_install_relocation use it to
1779 perform (install) the specified relocation. Since this replaces the code
1780 in bfd_perform_relocation, it is basically an Xtensa-specific,
1781 stripped-down version of bfd_perform_relocation. */
1782
1783 static bfd_reloc_status_type
1784 bfd_elf_xtensa_reloc (bfd *abfd,
1785 arelent *reloc_entry,
1786 asymbol *symbol,
1787 void *data,
1788 asection *input_section,
1789 bfd *output_bfd,
1790 char **error_message)
1791 {
1792 bfd_vma relocation;
1793 bfd_reloc_status_type flag;
1794 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1795 bfd_vma output_base = 0;
1796 reloc_howto_type *howto = reloc_entry->howto;
1797 asection *reloc_target_output_section;
1798 bfd_boolean is_weak_undef;
1799
1800 if (!xtensa_default_isa)
1801 xtensa_default_isa = xtensa_isa_init (0, 0);
1802
1803 /* ELF relocs are against symbols. If we are producing relocatable
1804 output, and the reloc is against an external symbol, the resulting
1805 reloc will also be against the same symbol. In such a case, we
1806 don't want to change anything about the way the reloc is handled,
1807 since it will all be done at final link time. This test is similar
1808 to what bfd_elf_generic_reloc does except that it lets relocs with
1809 howto->partial_inplace go through even if the addend is non-zero.
1810 (The real problem is that partial_inplace is set for XTENSA_32
1811 relocs to begin with, but that's a long story and there's little we
1812 can do about it now....) */
1813
1814 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
1815 {
1816 reloc_entry->address += input_section->output_offset;
1817 return bfd_reloc_ok;
1818 }
1819
1820 /* Is the address of the relocation really within the section? */
1821 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1822 return bfd_reloc_outofrange;
1823
1824 /* Work out which section the relocation is targeted at and the
1825 initial relocation command value. */
1826
1827 /* Get symbol value. (Common symbols are special.) */
1828 if (bfd_is_com_section (symbol->section))
1829 relocation = 0;
1830 else
1831 relocation = symbol->value;
1832
1833 reloc_target_output_section = symbol->section->output_section;
1834
1835 /* Convert input-section-relative symbol value to absolute. */
1836 if ((output_bfd && !howto->partial_inplace)
1837 || reloc_target_output_section == NULL)
1838 output_base = 0;
1839 else
1840 output_base = reloc_target_output_section->vma;
1841
1842 relocation += output_base + symbol->section->output_offset;
1843
1844 /* Add in supplied addend. */
1845 relocation += reloc_entry->addend;
1846
1847 /* Here the variable relocation holds the final address of the
1848 symbol we are relocating against, plus any addend. */
1849 if (output_bfd)
1850 {
1851 if (!howto->partial_inplace)
1852 {
1853 /* This is a partial relocation, and we want to apply the relocation
1854 to the reloc entry rather than the raw data. Everything except
1855 relocations against section symbols has already been handled
1856 above. */
1857
1858 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1859 reloc_entry->addend = relocation;
1860 reloc_entry->address += input_section->output_offset;
1861 return bfd_reloc_ok;
1862 }
1863 else
1864 {
1865 reloc_entry->address += input_section->output_offset;
1866 reloc_entry->addend = 0;
1867 }
1868 }
1869
1870 is_weak_undef = (bfd_is_und_section (symbol->section)
1871 && (symbol->flags & BSF_WEAK) != 0);
1872 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1873 (bfd_byte *) data, (bfd_vma) octets,
1874 is_weak_undef, error_message);
1875
1876 if (flag == bfd_reloc_dangerous)
1877 {
1878 /* Add the symbol name to the error message. */
1879 if (! *error_message)
1880 *error_message = "";
1881 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1882 strlen (symbol->name) + 17,
1883 symbol->name,
1884 (unsigned long) reloc_entry->addend);
1885 }
1886
1887 return flag;
1888 }
1889
1890
1891 /* Set up an entry in the procedure linkage table. */
1892
1893 static bfd_vma
1894 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
1895 bfd *output_bfd,
1896 unsigned reloc_index)
1897 {
1898 asection *splt, *sgotplt;
1899 bfd_vma plt_base, got_base;
1900 bfd_vma code_offset, lit_offset;
1901 int chunk;
1902
1903 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1904 splt = elf_xtensa_get_plt_section (info, chunk);
1905 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1906 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1907
1908 plt_base = splt->output_section->vma + splt->output_offset;
1909 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1910
1911 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1912 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1913
1914 /* Fill in the literal entry. This is the offset of the dynamic
1915 relocation entry. */
1916 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1917 sgotplt->contents + lit_offset);
1918
1919 /* Fill in the entry in the procedure linkage table. */
1920 memcpy (splt->contents + code_offset,
1921 (bfd_big_endian (output_bfd)
1922 ? elf_xtensa_be_plt_entry
1923 : elf_xtensa_le_plt_entry),
1924 PLT_ENTRY_SIZE);
1925 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1926 plt_base + code_offset + 3),
1927 splt->contents + code_offset + 4);
1928 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1929 plt_base + code_offset + 6),
1930 splt->contents + code_offset + 7);
1931 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1932 plt_base + code_offset + 9),
1933 splt->contents + code_offset + 10);
1934
1935 return plt_base + code_offset;
1936 }
1937
1938
1939 /* Relocate an Xtensa ELF section. This is invoked by the linker for
1940 both relocatable and final links. */
1941
1942 static bfd_boolean
1943 elf_xtensa_relocate_section (bfd *output_bfd,
1944 struct bfd_link_info *info,
1945 bfd *input_bfd,
1946 asection *input_section,
1947 bfd_byte *contents,
1948 Elf_Internal_Rela *relocs,
1949 Elf_Internal_Sym *local_syms,
1950 asection **local_sections)
1951 {
1952 struct elf_xtensa_link_hash_table *htab;
1953 Elf_Internal_Shdr *symtab_hdr;
1954 Elf_Internal_Rela *rel;
1955 Elf_Internal_Rela *relend;
1956 struct elf_link_hash_entry **sym_hashes;
1957 property_table_entry *lit_table = 0;
1958 int ltblsize = 0;
1959 char *error_message = NULL;
1960 bfd_size_type input_size;
1961
1962 if (!xtensa_default_isa)
1963 xtensa_default_isa = xtensa_isa_init (0, 0);
1964
1965 htab = elf_xtensa_hash_table (info);
1966 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1967 sym_hashes = elf_sym_hashes (input_bfd);
1968
1969 if (elf_hash_table (info)->dynamic_sections_created)
1970 {
1971 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
1972 &lit_table, XTENSA_LIT_SEC_NAME,
1973 TRUE);
1974 if (ltblsize < 0)
1975 return FALSE;
1976 }
1977
1978 input_size = bfd_get_section_limit (input_bfd, input_section);
1979
1980 rel = relocs;
1981 relend = relocs + input_section->reloc_count;
1982 for (; rel < relend; rel++)
1983 {
1984 int r_type;
1985 reloc_howto_type *howto;
1986 unsigned long r_symndx;
1987 struct elf_link_hash_entry *h;
1988 Elf_Internal_Sym *sym;
1989 asection *sec;
1990 bfd_vma relocation;
1991 bfd_reloc_status_type r;
1992 bfd_boolean is_weak_undef;
1993 bfd_boolean unresolved_reloc;
1994 bfd_boolean warned;
1995
1996 r_type = ELF32_R_TYPE (rel->r_info);
1997 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
1998 || r_type == (int) R_XTENSA_GNU_VTENTRY)
1999 continue;
2000
2001 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2002 {
2003 bfd_set_error (bfd_error_bad_value);
2004 return FALSE;
2005 }
2006 howto = &elf_howto_table[r_type];
2007
2008 r_symndx = ELF32_R_SYM (rel->r_info);
2009
2010 h = NULL;
2011 sym = NULL;
2012 sec = NULL;
2013 is_weak_undef = FALSE;
2014 unresolved_reloc = FALSE;
2015 warned = FALSE;
2016
2017 if (howto->partial_inplace && !info->relocatable)
2018 {
2019 /* Because R_XTENSA_32 was made partial_inplace to fix some
2020 problems with DWARF info in partial links, there may be
2021 an addend stored in the contents. Take it out of there
2022 and move it back into the addend field of the reloc. */
2023 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2024 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2025 }
2026
2027 if (r_symndx < symtab_hdr->sh_info)
2028 {
2029 sym = local_syms + r_symndx;
2030 sec = local_sections[r_symndx];
2031 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2032 }
2033 else
2034 {
2035 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2036 r_symndx, symtab_hdr, sym_hashes,
2037 h, sec, relocation,
2038 unresolved_reloc, warned);
2039
2040 if (relocation == 0
2041 && !unresolved_reloc
2042 && h->root.type == bfd_link_hash_undefweak)
2043 is_weak_undef = TRUE;
2044 }
2045
2046 if (sec != NULL && elf_discarded_section (sec))
2047 {
2048 /* For relocs against symbols from removed linkonce sections,
2049 or sections discarded by a linker script, we just want the
2050 section contents zeroed. Avoid any special processing. */
2051 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2052 rel->r_info = 0;
2053 rel->r_addend = 0;
2054 continue;
2055 }
2056
2057 if (info->relocatable)
2058 {
2059 /* This is a relocatable link.
2060 1) If the reloc is against a section symbol, adjust
2061 according to the output section.
2062 2) If there is a new target for this relocation,
2063 the new target will be in the same output section.
2064 We adjust the relocation by the output section
2065 difference. */
2066
2067 if (relaxing_section)
2068 {
2069 /* Check if this references a section in another input file. */
2070 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2071 contents))
2072 return FALSE;
2073 }
2074
2075 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2076 {
2077 char *error_message = NULL;
2078 /* Convert ASM_SIMPLIFY into the simpler relocation
2079 so that they never escape a relaxing link. */
2080 r = contract_asm_expansion (contents, input_size, rel,
2081 &error_message);
2082 if (r != bfd_reloc_ok)
2083 {
2084 if (!((*info->callbacks->reloc_dangerous)
2085 (info, error_message, input_bfd, input_section,
2086 rel->r_offset)))
2087 return FALSE;
2088 }
2089 r_type = ELF32_R_TYPE (rel->r_info);
2090 }
2091
2092 /* This is a relocatable link, so we don't have to change
2093 anything unless the reloc is against a section symbol,
2094 in which case we have to adjust according to where the
2095 section symbol winds up in the output section. */
2096 if (r_symndx < symtab_hdr->sh_info)
2097 {
2098 sym = local_syms + r_symndx;
2099 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2100 {
2101 sec = local_sections[r_symndx];
2102 rel->r_addend += sec->output_offset + sym->st_value;
2103 }
2104 }
2105
2106 /* If there is an addend with a partial_inplace howto,
2107 then move the addend to the contents. This is a hack
2108 to work around problems with DWARF in relocatable links
2109 with some previous version of BFD. Now we can't easily get
2110 rid of the hack without breaking backward compatibility.... */
2111 if (rel->r_addend)
2112 {
2113 howto = &elf_howto_table[r_type];
2114 if (howto->partial_inplace)
2115 {
2116 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2117 rel->r_addend, contents,
2118 rel->r_offset, FALSE,
2119 &error_message);
2120 if (r != bfd_reloc_ok)
2121 {
2122 if (!((*info->callbacks->reloc_dangerous)
2123 (info, error_message, input_bfd, input_section,
2124 rel->r_offset)))
2125 return FALSE;
2126 }
2127 rel->r_addend = 0;
2128 }
2129 }
2130
2131 /* Done with work for relocatable link; continue with next reloc. */
2132 continue;
2133 }
2134
2135 /* This is a final link. */
2136
2137 if (relaxing_section)
2138 {
2139 /* Check if this references a section in another input file. */
2140 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2141 &relocation);
2142 }
2143
2144 /* Sanity check the address. */
2145 if (rel->r_offset >= input_size
2146 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2147 {
2148 (*_bfd_error_handler)
2149 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2150 input_bfd, input_section, rel->r_offset, input_size);
2151 bfd_set_error (bfd_error_bad_value);
2152 return FALSE;
2153 }
2154
2155 /* Generate dynamic relocations. */
2156 if (elf_hash_table (info)->dynamic_sections_created)
2157 {
2158 bfd_boolean dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2159
2160 if (dynamic_symbol && (is_operand_relocation (r_type)
2161 || r_type == R_XTENSA_32_PCREL))
2162 {
2163 const char *name = h->root.root.string;
2164 error_message =
2165 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
2166 strlen (name) + 2, name);
2167 if (!((*info->callbacks->reloc_dangerous)
2168 (info, error_message, input_bfd, input_section,
2169 rel->r_offset)))
2170 return FALSE;
2171 continue;
2172 }
2173 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2174 && (input_section->flags & SEC_ALLOC) != 0
2175 && (dynamic_symbol || info->shared))
2176 {
2177 Elf_Internal_Rela outrel;
2178 bfd_byte *loc;
2179 asection *srel;
2180
2181 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2182 srel = htab->srelplt;
2183 else
2184 srel = htab->srelgot;
2185
2186 BFD_ASSERT (srel != NULL);
2187
2188 outrel.r_offset =
2189 _bfd_elf_section_offset (output_bfd, info,
2190 input_section, rel->r_offset);
2191
2192 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2193 memset (&outrel, 0, sizeof outrel);
2194 else
2195 {
2196 outrel.r_offset += (input_section->output_section->vma
2197 + input_section->output_offset);
2198
2199 /* Complain if the relocation is in a read-only section
2200 and not in a literal pool. */
2201 if ((input_section->flags & SEC_READONLY) != 0
2202 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2203 outrel.r_offset))
2204 {
2205 error_message =
2206 _("dynamic relocation in read-only section");
2207 if (!((*info->callbacks->reloc_dangerous)
2208 (info, error_message, input_bfd, input_section,
2209 rel->r_offset)))
2210 return FALSE;
2211 }
2212
2213 if (dynamic_symbol)
2214 {
2215 outrel.r_addend = rel->r_addend;
2216 rel->r_addend = 0;
2217
2218 if (r_type == R_XTENSA_32)
2219 {
2220 outrel.r_info =
2221 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2222 relocation = 0;
2223 }
2224 else /* r_type == R_XTENSA_PLT */
2225 {
2226 outrel.r_info =
2227 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2228
2229 /* Create the PLT entry and set the initial
2230 contents of the literal entry to the address of
2231 the PLT entry. */
2232 relocation =
2233 elf_xtensa_create_plt_entry (info, output_bfd,
2234 srel->reloc_count);
2235 }
2236 unresolved_reloc = FALSE;
2237 }
2238 else
2239 {
2240 /* Generate a RELATIVE relocation. */
2241 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2242 outrel.r_addend = 0;
2243 }
2244 }
2245
2246 loc = (srel->contents
2247 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2248 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2249 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2250 <= srel->size);
2251 }
2252 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2253 {
2254 /* This should only happen for non-PIC code, which is not
2255 supposed to be used on systems with dynamic linking.
2256 Just ignore these relocations. */
2257 continue;
2258 }
2259 }
2260
2261 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2262 because such sections are not SEC_ALLOC and thus ld.so will
2263 not process them. */
2264 if (unresolved_reloc
2265 && !((input_section->flags & SEC_DEBUGGING) != 0
2266 && h->def_dynamic))
2267 {
2268 (*_bfd_error_handler)
2269 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2270 input_bfd,
2271 input_section,
2272 (long) rel->r_offset,
2273 howto->name,
2274 h->root.root.string);
2275 return FALSE;
2276 }
2277
2278 /* There's no point in calling bfd_perform_relocation here.
2279 Just go directly to our "special function". */
2280 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2281 relocation + rel->r_addend,
2282 contents, rel->r_offset, is_weak_undef,
2283 &error_message);
2284
2285 if (r != bfd_reloc_ok && !warned)
2286 {
2287 const char *name;
2288
2289 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
2290 BFD_ASSERT (error_message != NULL);
2291
2292 if (h)
2293 name = h->root.root.string;
2294 else
2295 {
2296 name = bfd_elf_string_from_elf_section
2297 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2298 if (name && *name == '\0')
2299 name = bfd_section_name (input_bfd, sec);
2300 }
2301 if (name)
2302 {
2303 if (rel->r_addend == 0)
2304 error_message = vsprint_msg (error_message, ": %s",
2305 strlen (name) + 2, name);
2306 else
2307 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2308 strlen (name) + 22,
2309 name, (int)rel->r_addend);
2310 }
2311
2312 if (!((*info->callbacks->reloc_dangerous)
2313 (info, error_message, input_bfd, input_section,
2314 rel->r_offset)))
2315 return FALSE;
2316 }
2317 }
2318
2319 if (lit_table)
2320 free (lit_table);
2321
2322 input_section->reloc_done = TRUE;
2323
2324 return TRUE;
2325 }
2326
2327
2328 /* Finish up dynamic symbol handling. There's not much to do here since
2329 the PLT and GOT entries are all set up by relocate_section. */
2330
2331 static bfd_boolean
2332 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2333 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2334 struct elf_link_hash_entry *h,
2335 Elf_Internal_Sym *sym)
2336 {
2337 if (h->needs_plt && !h->def_regular)
2338 {
2339 /* Mark the symbol as undefined, rather than as defined in
2340 the .plt section. Leave the value alone. */
2341 sym->st_shndx = SHN_UNDEF;
2342 /* If the symbol is weak, we do need to clear the value.
2343 Otherwise, the PLT entry would provide a definition for
2344 the symbol even if the symbol wasn't defined anywhere,
2345 and so the symbol would never be NULL. */
2346 if (!h->ref_regular_nonweak)
2347 sym->st_value = 0;
2348 }
2349
2350 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2351 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2352 || h == elf_hash_table (info)->hgot)
2353 sym->st_shndx = SHN_ABS;
2354
2355 return TRUE;
2356 }
2357
2358
2359 /* Combine adjacent literal table entries in the output. Adjacent
2360 entries within each input section may have been removed during
2361 relaxation, but we repeat the process here, even though it's too late
2362 to shrink the output section, because it's important to minimize the
2363 number of literal table entries to reduce the start-up work for the
2364 runtime linker. Returns the number of remaining table entries or -1
2365 on error. */
2366
2367 static int
2368 elf_xtensa_combine_prop_entries (bfd *output_bfd,
2369 asection *sxtlit,
2370 asection *sgotloc)
2371 {
2372 bfd_byte *contents;
2373 property_table_entry *table;
2374 bfd_size_type section_size, sgotloc_size;
2375 bfd_vma offset;
2376 int n, m, num;
2377
2378 section_size = sxtlit->size;
2379 BFD_ASSERT (section_size % 8 == 0);
2380 num = section_size / 8;
2381
2382 sgotloc_size = sgotloc->size;
2383 if (sgotloc_size != section_size)
2384 {
2385 (*_bfd_error_handler)
2386 (_("internal inconsistency in size of .got.loc section"));
2387 return -1;
2388 }
2389
2390 table = bfd_malloc (num * sizeof (property_table_entry));
2391 if (table == 0)
2392 return -1;
2393
2394 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2395 propagates to the output section, where it doesn't really apply and
2396 where it breaks the following call to bfd_malloc_and_get_section. */
2397 sxtlit->flags &= ~SEC_IN_MEMORY;
2398
2399 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2400 {
2401 if (contents != 0)
2402 free (contents);
2403 free (table);
2404 return -1;
2405 }
2406
2407 /* There should never be any relocations left at this point, so this
2408 is quite a bit easier than what is done during relaxation. */
2409
2410 /* Copy the raw contents into a property table array and sort it. */
2411 offset = 0;
2412 for (n = 0; n < num; n++)
2413 {
2414 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2415 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2416 offset += 8;
2417 }
2418 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2419
2420 for (n = 0; n < num; n++)
2421 {
2422 bfd_boolean remove = FALSE;
2423
2424 if (table[n].size == 0)
2425 remove = TRUE;
2426 else if (n > 0 &&
2427 (table[n-1].address + table[n-1].size == table[n].address))
2428 {
2429 table[n-1].size += table[n].size;
2430 remove = TRUE;
2431 }
2432
2433 if (remove)
2434 {
2435 for (m = n; m < num - 1; m++)
2436 {
2437 table[m].address = table[m+1].address;
2438 table[m].size = table[m+1].size;
2439 }
2440
2441 n--;
2442 num--;
2443 }
2444 }
2445
2446 /* Copy the data back to the raw contents. */
2447 offset = 0;
2448 for (n = 0; n < num; n++)
2449 {
2450 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2451 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2452 offset += 8;
2453 }
2454
2455 /* Clear the removed bytes. */
2456 if ((bfd_size_type) (num * 8) < section_size)
2457 memset (&contents[num * 8], 0, section_size - num * 8);
2458
2459 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2460 section_size))
2461 return -1;
2462
2463 /* Copy the contents to ".got.loc". */
2464 memcpy (sgotloc->contents, contents, section_size);
2465
2466 free (contents);
2467 free (table);
2468 return num;
2469 }
2470
2471
2472 /* Finish up the dynamic sections. */
2473
2474 static bfd_boolean
2475 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2476 struct bfd_link_info *info)
2477 {
2478 struct elf_xtensa_link_hash_table *htab;
2479 bfd *dynobj;
2480 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
2481 Elf32_External_Dyn *dyncon, *dynconend;
2482 int num_xtlit_entries = 0;
2483
2484 if (! elf_hash_table (info)->dynamic_sections_created)
2485 return TRUE;
2486
2487 htab = elf_xtensa_hash_table (info);
2488 dynobj = elf_hash_table (info)->dynobj;
2489 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2490 BFD_ASSERT (sdyn != NULL);
2491
2492 /* Set the first entry in the global offset table to the address of
2493 the dynamic section. */
2494 sgot = htab->sgot;
2495 if (sgot)
2496 {
2497 BFD_ASSERT (sgot->size == 4);
2498 if (sdyn == NULL)
2499 bfd_put_32 (output_bfd, 0, sgot->contents);
2500 else
2501 bfd_put_32 (output_bfd,
2502 sdyn->output_section->vma + sdyn->output_offset,
2503 sgot->contents);
2504 }
2505
2506 srelplt = htab->srelplt;
2507 if (srelplt && srelplt->size != 0)
2508 {
2509 asection *sgotplt, *srelgot, *spltlittbl;
2510 int chunk, plt_chunks, plt_entries;
2511 Elf_Internal_Rela irela;
2512 bfd_byte *loc;
2513 unsigned rtld_reloc;
2514
2515 srelgot = htab->srelgot;
2516 spltlittbl = htab->spltlittbl;
2517 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
2518
2519 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2520 of them follow immediately after.... */
2521 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2522 {
2523 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2524 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2525 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2526 break;
2527 }
2528 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2529
2530 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
2531 plt_chunks =
2532 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2533
2534 for (chunk = 0; chunk < plt_chunks; chunk++)
2535 {
2536 int chunk_entries = 0;
2537
2538 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2539 BFD_ASSERT (sgotplt != NULL);
2540
2541 /* Emit special RTLD relocations for the first two entries in
2542 each chunk of the .got.plt section. */
2543
2544 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2545 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2546 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2547 irela.r_offset = (sgotplt->output_section->vma
2548 + sgotplt->output_offset);
2549 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2550 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2551 rtld_reloc += 1;
2552 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2553
2554 /* Next literal immediately follows the first. */
2555 loc += sizeof (Elf32_External_Rela);
2556 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2557 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2558 irela.r_offset = (sgotplt->output_section->vma
2559 + sgotplt->output_offset + 4);
2560 /* Tell rtld to set value to object's link map. */
2561 irela.r_addend = 2;
2562 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2563 rtld_reloc += 1;
2564 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2565
2566 /* Fill in the literal table. */
2567 if (chunk < plt_chunks - 1)
2568 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2569 else
2570 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2571
2572 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
2573 bfd_put_32 (output_bfd,
2574 sgotplt->output_section->vma + sgotplt->output_offset,
2575 spltlittbl->contents + (chunk * 8) + 0);
2576 bfd_put_32 (output_bfd,
2577 8 + (chunk_entries * 4),
2578 spltlittbl->contents + (chunk * 8) + 4);
2579 }
2580
2581 /* All the dynamic relocations have been emitted at this point.
2582 Make sure the relocation sections are the correct size. */
2583 if (srelgot->size != (sizeof (Elf32_External_Rela)
2584 * srelgot->reloc_count)
2585 || srelplt->size != (sizeof (Elf32_External_Rela)
2586 * srelplt->reloc_count))
2587 abort ();
2588
2589 /* The .xt.lit.plt section has just been modified. This must
2590 happen before the code below which combines adjacent literal
2591 table entries, and the .xt.lit.plt contents have to be forced to
2592 the output here. */
2593 if (! bfd_set_section_contents (output_bfd,
2594 spltlittbl->output_section,
2595 spltlittbl->contents,
2596 spltlittbl->output_offset,
2597 spltlittbl->size))
2598 return FALSE;
2599 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2600 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2601 }
2602
2603 /* Combine adjacent literal table entries. */
2604 BFD_ASSERT (! info->relocatable);
2605 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2606 sgotloc = htab->sgotloc;
2607 BFD_ASSERT (sgotloc);
2608 if (sxtlit)
2609 {
2610 num_xtlit_entries =
2611 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
2612 if (num_xtlit_entries < 0)
2613 return FALSE;
2614 }
2615
2616 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2617 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
2618 for (; dyncon < dynconend; dyncon++)
2619 {
2620 Elf_Internal_Dyn dyn;
2621
2622 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2623
2624 switch (dyn.d_tag)
2625 {
2626 default:
2627 break;
2628
2629 case DT_XTENSA_GOT_LOC_SZ:
2630 dyn.d_un.d_val = num_xtlit_entries;
2631 break;
2632
2633 case DT_XTENSA_GOT_LOC_OFF:
2634 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
2635 break;
2636
2637 case DT_PLTGOT:
2638 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2639 break;
2640
2641 case DT_JMPREL:
2642 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2643 break;
2644
2645 case DT_PLTRELSZ:
2646 dyn.d_un.d_val = htab->srelplt->output_section->size;
2647 break;
2648
2649 case DT_RELASZ:
2650 /* Adjust RELASZ to not include JMPREL. This matches what
2651 glibc expects and what is done for several other ELF
2652 targets (e.g., i386, alpha), but the "correct" behavior
2653 seems to be unresolved. Since the linker script arranges
2654 for .rela.plt to follow all other relocation sections, we
2655 don't have to worry about changing the DT_RELA entry. */
2656 if (htab->srelplt)
2657 dyn.d_un.d_val -= htab->srelplt->output_section->size;
2658 break;
2659 }
2660
2661 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2662 }
2663
2664 return TRUE;
2665 }
2666
2667 \f
2668 /* Functions for dealing with the e_flags field. */
2669
2670 /* Merge backend specific data from an object file to the output
2671 object file when linking. */
2672
2673 static bfd_boolean
2674 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2675 {
2676 unsigned out_mach, in_mach;
2677 flagword out_flag, in_flag;
2678
2679 /* Check if we have the same endianess. */
2680 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2681 return FALSE;
2682
2683 /* Don't even pretend to support mixed-format linking. */
2684 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2685 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2686 return FALSE;
2687
2688 out_flag = elf_elfheader (obfd)->e_flags;
2689 in_flag = elf_elfheader (ibfd)->e_flags;
2690
2691 out_mach = out_flag & EF_XTENSA_MACH;
2692 in_mach = in_flag & EF_XTENSA_MACH;
2693 if (out_mach != in_mach)
2694 {
2695 (*_bfd_error_handler)
2696 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
2697 ibfd, out_mach, in_mach);
2698 bfd_set_error (bfd_error_wrong_format);
2699 return FALSE;
2700 }
2701
2702 if (! elf_flags_init (obfd))
2703 {
2704 elf_flags_init (obfd) = TRUE;
2705 elf_elfheader (obfd)->e_flags = in_flag;
2706
2707 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2708 && bfd_get_arch_info (obfd)->the_default)
2709 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2710 bfd_get_mach (ibfd));
2711
2712 return TRUE;
2713 }
2714
2715 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2716 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
2717
2718 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2719 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
2720
2721 return TRUE;
2722 }
2723
2724
2725 static bfd_boolean
2726 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
2727 {
2728 BFD_ASSERT (!elf_flags_init (abfd)
2729 || elf_elfheader (abfd)->e_flags == flags);
2730
2731 elf_elfheader (abfd)->e_flags |= flags;
2732 elf_flags_init (abfd) = TRUE;
2733
2734 return TRUE;
2735 }
2736
2737
2738 static bfd_boolean
2739 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
2740 {
2741 FILE *f = (FILE *) farg;
2742 flagword e_flags = elf_elfheader (abfd)->e_flags;
2743
2744 fprintf (f, "\nXtensa header:\n");
2745 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
2746 fprintf (f, "\nMachine = Base\n");
2747 else
2748 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2749
2750 fprintf (f, "Insn tables = %s\n",
2751 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2752
2753 fprintf (f, "Literal tables = %s\n",
2754 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2755
2756 return _bfd_elf_print_private_bfd_data (abfd, farg);
2757 }
2758
2759
2760 /* Set the right machine number for an Xtensa ELF file. */
2761
2762 static bfd_boolean
2763 elf_xtensa_object_p (bfd *abfd)
2764 {
2765 int mach;
2766 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2767
2768 switch (arch)
2769 {
2770 case E_XTENSA_MACH:
2771 mach = bfd_mach_xtensa;
2772 break;
2773 default:
2774 return FALSE;
2775 }
2776
2777 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2778 return TRUE;
2779 }
2780
2781
2782 /* The final processing done just before writing out an Xtensa ELF object
2783 file. This gets the Xtensa architecture right based on the machine
2784 number. */
2785
2786 static void
2787 elf_xtensa_final_write_processing (bfd *abfd,
2788 bfd_boolean linker ATTRIBUTE_UNUSED)
2789 {
2790 int mach;
2791 unsigned long val;
2792
2793 switch (mach = bfd_get_mach (abfd))
2794 {
2795 case bfd_mach_xtensa:
2796 val = E_XTENSA_MACH;
2797 break;
2798 default:
2799 return;
2800 }
2801
2802 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2803 elf_elfheader (abfd)->e_flags |= val;
2804 }
2805
2806
2807 static enum elf_reloc_type_class
2808 elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
2809 {
2810 switch ((int) ELF32_R_TYPE (rela->r_info))
2811 {
2812 case R_XTENSA_RELATIVE:
2813 return reloc_class_relative;
2814 case R_XTENSA_JMP_SLOT:
2815 return reloc_class_plt;
2816 default:
2817 return reloc_class_normal;
2818 }
2819 }
2820
2821 \f
2822 static bfd_boolean
2823 elf_xtensa_discard_info_for_section (bfd *abfd,
2824 struct elf_reloc_cookie *cookie,
2825 struct bfd_link_info *info,
2826 asection *sec)
2827 {
2828 bfd_byte *contents;
2829 bfd_vma offset, actual_offset;
2830 bfd_size_type removed_bytes = 0;
2831 bfd_size_type entry_size;
2832
2833 if (sec->output_section
2834 && bfd_is_abs_section (sec->output_section))
2835 return FALSE;
2836
2837 if (xtensa_is_proptable_section (sec))
2838 entry_size = 12;
2839 else
2840 entry_size = 8;
2841
2842 if (sec->size == 0 || sec->size % entry_size != 0)
2843 return FALSE;
2844
2845 contents = retrieve_contents (abfd, sec, info->keep_memory);
2846 if (!contents)
2847 return FALSE;
2848
2849 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2850 if (!cookie->rels)
2851 {
2852 release_contents (sec, contents);
2853 return FALSE;
2854 }
2855
2856 /* Sort the relocations. They should already be in order when
2857 relaxation is enabled, but it might not be. */
2858 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
2859 internal_reloc_compare);
2860
2861 cookie->rel = cookie->rels;
2862 cookie->relend = cookie->rels + sec->reloc_count;
2863
2864 for (offset = 0; offset < sec->size; offset += entry_size)
2865 {
2866 actual_offset = offset - removed_bytes;
2867
2868 /* The ...symbol_deleted_p function will skip over relocs but it
2869 won't adjust their offsets, so do that here. */
2870 while (cookie->rel < cookie->relend
2871 && cookie->rel->r_offset < offset)
2872 {
2873 cookie->rel->r_offset -= removed_bytes;
2874 cookie->rel++;
2875 }
2876
2877 while (cookie->rel < cookie->relend
2878 && cookie->rel->r_offset == offset)
2879 {
2880 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
2881 {
2882 /* Remove the table entry. (If the reloc type is NONE, then
2883 the entry has already been merged with another and deleted
2884 during relaxation.) */
2885 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2886 {
2887 /* Shift the contents up. */
2888 if (offset + entry_size < sec->size)
2889 memmove (&contents[actual_offset],
2890 &contents[actual_offset + entry_size],
2891 sec->size - offset - entry_size);
2892 removed_bytes += entry_size;
2893 }
2894
2895 /* Remove this relocation. */
2896 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2897 }
2898
2899 /* Adjust the relocation offset for previous removals. This
2900 should not be done before calling ...symbol_deleted_p
2901 because it might mess up the offset comparisons there.
2902 Make sure the offset doesn't underflow in the case where
2903 the first entry is removed. */
2904 if (cookie->rel->r_offset >= removed_bytes)
2905 cookie->rel->r_offset -= removed_bytes;
2906 else
2907 cookie->rel->r_offset = 0;
2908
2909 cookie->rel++;
2910 }
2911 }
2912
2913 if (removed_bytes != 0)
2914 {
2915 /* Adjust any remaining relocs (shouldn't be any). */
2916 for (; cookie->rel < cookie->relend; cookie->rel++)
2917 {
2918 if (cookie->rel->r_offset >= removed_bytes)
2919 cookie->rel->r_offset -= removed_bytes;
2920 else
2921 cookie->rel->r_offset = 0;
2922 }
2923
2924 /* Clear the removed bytes. */
2925 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
2926
2927 pin_contents (sec, contents);
2928 pin_internal_relocs (sec, cookie->rels);
2929
2930 /* Shrink size. */
2931 if (sec->rawsize == 0)
2932 sec->rawsize = sec->size;
2933 sec->size -= removed_bytes;
2934
2935 if (xtensa_is_littable_section (sec))
2936 {
2937 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
2938 if (sgotloc)
2939 sgotloc->size -= removed_bytes;
2940 }
2941 }
2942 else
2943 {
2944 release_contents (sec, contents);
2945 release_internal_relocs (sec, cookie->rels);
2946 }
2947
2948 return (removed_bytes != 0);
2949 }
2950
2951
2952 static bfd_boolean
2953 elf_xtensa_discard_info (bfd *abfd,
2954 struct elf_reloc_cookie *cookie,
2955 struct bfd_link_info *info)
2956 {
2957 asection *sec;
2958 bfd_boolean changed = FALSE;
2959
2960 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2961 {
2962 if (xtensa_is_property_section (sec))
2963 {
2964 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2965 changed = TRUE;
2966 }
2967 }
2968
2969 return changed;
2970 }
2971
2972
2973 static bfd_boolean
2974 elf_xtensa_ignore_discarded_relocs (asection *sec)
2975 {
2976 return xtensa_is_property_section (sec);
2977 }
2978
2979
2980 static unsigned int
2981 elf_xtensa_action_discarded (asection *sec)
2982 {
2983 if (strcmp (".xt_except_table", sec->name) == 0)
2984 return 0;
2985
2986 if (strcmp (".xt_except_desc", sec->name) == 0)
2987 return 0;
2988
2989 return _bfd_elf_default_action_discarded (sec);
2990 }
2991
2992 \f
2993 /* Support for core dump NOTE sections. */
2994
2995 static bfd_boolean
2996 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2997 {
2998 int offset;
2999 unsigned int size;
3000
3001 /* The size for Xtensa is variable, so don't try to recognize the format
3002 based on the size. Just assume this is GNU/Linux. */
3003
3004 /* pr_cursig */
3005 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3006
3007 /* pr_pid */
3008 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3009
3010 /* pr_reg */
3011 offset = 72;
3012 size = note->descsz - offset - 4;
3013
3014 /* Make a ".reg/999" section. */
3015 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3016 size, note->descpos + offset);
3017 }
3018
3019
3020 static bfd_boolean
3021 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3022 {
3023 switch (note->descsz)
3024 {
3025 default:
3026 return FALSE;
3027
3028 case 128: /* GNU/Linux elf_prpsinfo */
3029 elf_tdata (abfd)->core_program
3030 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3031 elf_tdata (abfd)->core_command
3032 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3033 }
3034
3035 /* Note that for some reason, a spurious space is tacked
3036 onto the end of the args in some (at least one anyway)
3037 implementations, so strip it off if it exists. */
3038
3039 {
3040 char *command = elf_tdata (abfd)->core_command;
3041 int n = strlen (command);
3042
3043 if (0 < n && command[n - 1] == ' ')
3044 command[n - 1] = '\0';
3045 }
3046
3047 return TRUE;
3048 }
3049
3050 \f
3051 /* Generic Xtensa configurability stuff. */
3052
3053 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3054 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3055 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3056 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3057 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3058 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3059 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3060 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3061
3062 static void
3063 init_call_opcodes (void)
3064 {
3065 if (callx0_op == XTENSA_UNDEFINED)
3066 {
3067 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3068 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3069 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3070 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3071 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3072 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3073 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3074 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3075 }
3076 }
3077
3078
3079 static bfd_boolean
3080 is_indirect_call_opcode (xtensa_opcode opcode)
3081 {
3082 init_call_opcodes ();
3083 return (opcode == callx0_op
3084 || opcode == callx4_op
3085 || opcode == callx8_op
3086 || opcode == callx12_op);
3087 }
3088
3089
3090 static bfd_boolean
3091 is_direct_call_opcode (xtensa_opcode opcode)
3092 {
3093 init_call_opcodes ();
3094 return (opcode == call0_op
3095 || opcode == call4_op
3096 || opcode == call8_op
3097 || opcode == call12_op);
3098 }
3099
3100
3101 static bfd_boolean
3102 is_windowed_call_opcode (xtensa_opcode opcode)
3103 {
3104 init_call_opcodes ();
3105 return (opcode == call4_op
3106 || opcode == call8_op
3107 || opcode == call12_op
3108 || opcode == callx4_op
3109 || opcode == callx8_op
3110 || opcode == callx12_op);
3111 }
3112
3113
3114 static xtensa_opcode
3115 get_const16_opcode (void)
3116 {
3117 static bfd_boolean done_lookup = FALSE;
3118 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3119 if (!done_lookup)
3120 {
3121 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3122 done_lookup = TRUE;
3123 }
3124 return const16_opcode;
3125 }
3126
3127
3128 static xtensa_opcode
3129 get_l32r_opcode (void)
3130 {
3131 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3132 static bfd_boolean done_lookup = FALSE;
3133
3134 if (!done_lookup)
3135 {
3136 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3137 done_lookup = TRUE;
3138 }
3139 return l32r_opcode;
3140 }
3141
3142
3143 static bfd_vma
3144 l32r_offset (bfd_vma addr, bfd_vma pc)
3145 {
3146 bfd_vma offset;
3147
3148 offset = addr - ((pc+3) & -4);
3149 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3150 offset = (signed int) offset >> 2;
3151 BFD_ASSERT ((signed int) offset >> 16 == -1);
3152 return offset;
3153 }
3154
3155
3156 static int
3157 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3158 {
3159 xtensa_isa isa = xtensa_default_isa;
3160 int last_immed, last_opnd, opi;
3161
3162 if (opcode == XTENSA_UNDEFINED)
3163 return XTENSA_UNDEFINED;
3164
3165 /* Find the last visible PC-relative immediate operand for the opcode.
3166 If there are no PC-relative immediates, then choose the last visible
3167 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3168 last_immed = XTENSA_UNDEFINED;
3169 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3170 for (opi = last_opnd - 1; opi >= 0; opi--)
3171 {
3172 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3173 continue;
3174 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3175 {
3176 last_immed = opi;
3177 break;
3178 }
3179 if (last_immed == XTENSA_UNDEFINED
3180 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3181 last_immed = opi;
3182 }
3183 if (last_immed < 0)
3184 return XTENSA_UNDEFINED;
3185
3186 /* If the operand number was specified in an old-style relocation,
3187 check for consistency with the operand computed above. */
3188 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3189 {
3190 int reloc_opnd = r_type - R_XTENSA_OP0;
3191 if (reloc_opnd != last_immed)
3192 return XTENSA_UNDEFINED;
3193 }
3194
3195 return last_immed;
3196 }
3197
3198
3199 int
3200 get_relocation_slot (int r_type)
3201 {
3202 switch (r_type)
3203 {
3204 case R_XTENSA_OP0:
3205 case R_XTENSA_OP1:
3206 case R_XTENSA_OP2:
3207 return 0;
3208
3209 default:
3210 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3211 return r_type - R_XTENSA_SLOT0_OP;
3212 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3213 return r_type - R_XTENSA_SLOT0_ALT;
3214 break;
3215 }
3216
3217 return XTENSA_UNDEFINED;
3218 }
3219
3220
3221 /* Get the opcode for a relocation. */
3222
3223 static xtensa_opcode
3224 get_relocation_opcode (bfd *abfd,
3225 asection *sec,
3226 bfd_byte *contents,
3227 Elf_Internal_Rela *irel)
3228 {
3229 static xtensa_insnbuf ibuff = NULL;
3230 static xtensa_insnbuf sbuff = NULL;
3231 xtensa_isa isa = xtensa_default_isa;
3232 xtensa_format fmt;
3233 int slot;
3234
3235 if (contents == NULL)
3236 return XTENSA_UNDEFINED;
3237
3238 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
3239 return XTENSA_UNDEFINED;
3240
3241 if (ibuff == NULL)
3242 {
3243 ibuff = xtensa_insnbuf_alloc (isa);
3244 sbuff = xtensa_insnbuf_alloc (isa);
3245 }
3246
3247 /* Decode the instruction. */
3248 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3249 sec->size - irel->r_offset);
3250 fmt = xtensa_format_decode (isa, ibuff);
3251 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3252 if (slot == XTENSA_UNDEFINED)
3253 return XTENSA_UNDEFINED;
3254 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3255 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
3256 }
3257
3258
3259 bfd_boolean
3260 is_l32r_relocation (bfd *abfd,
3261 asection *sec,
3262 bfd_byte *contents,
3263 Elf_Internal_Rela *irel)
3264 {
3265 xtensa_opcode opcode;
3266 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
3267 return FALSE;
3268 opcode = get_relocation_opcode (abfd, sec, contents, irel);
3269 return (opcode == get_l32r_opcode ());
3270 }
3271
3272
3273 static bfd_size_type
3274 get_asm_simplify_size (bfd_byte *contents,
3275 bfd_size_type content_len,
3276 bfd_size_type offset)
3277 {
3278 bfd_size_type insnlen, size = 0;
3279
3280 /* Decode the size of the next two instructions. */
3281 insnlen = insn_decode_len (contents, content_len, offset);
3282 if (insnlen == 0)
3283 return 0;
3284
3285 size += insnlen;
3286
3287 insnlen = insn_decode_len (contents, content_len, offset + size);
3288 if (insnlen == 0)
3289 return 0;
3290
3291 size += insnlen;
3292 return size;
3293 }
3294
3295
3296 bfd_boolean
3297 is_alt_relocation (int r_type)
3298 {
3299 return (r_type >= R_XTENSA_SLOT0_ALT
3300 && r_type <= R_XTENSA_SLOT14_ALT);
3301 }
3302
3303
3304 bfd_boolean
3305 is_operand_relocation (int r_type)
3306 {
3307 switch (r_type)
3308 {
3309 case R_XTENSA_OP0:
3310 case R_XTENSA_OP1:
3311 case R_XTENSA_OP2:
3312 return TRUE;
3313
3314 default:
3315 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3316 return TRUE;
3317 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3318 return TRUE;
3319 break;
3320 }
3321
3322 return FALSE;
3323 }
3324
3325
3326 #define MIN_INSN_LENGTH 2
3327
3328 /* Return 0 if it fails to decode. */
3329
3330 bfd_size_type
3331 insn_decode_len (bfd_byte *contents,
3332 bfd_size_type content_len,
3333 bfd_size_type offset)
3334 {
3335 int insn_len;
3336 xtensa_isa isa = xtensa_default_isa;
3337 xtensa_format fmt;
3338 static xtensa_insnbuf ibuff = NULL;
3339
3340 if (offset + MIN_INSN_LENGTH > content_len)
3341 return 0;
3342
3343 if (ibuff == NULL)
3344 ibuff = xtensa_insnbuf_alloc (isa);
3345 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3346 content_len - offset);
3347 fmt = xtensa_format_decode (isa, ibuff);
3348 if (fmt == XTENSA_UNDEFINED)
3349 return 0;
3350 insn_len = xtensa_format_length (isa, fmt);
3351 if (insn_len == XTENSA_UNDEFINED)
3352 return 0;
3353 return insn_len;
3354 }
3355
3356
3357 /* Decode the opcode for a single slot instruction.
3358 Return 0 if it fails to decode or the instruction is multi-slot. */
3359
3360 xtensa_opcode
3361 insn_decode_opcode (bfd_byte *contents,
3362 bfd_size_type content_len,
3363 bfd_size_type offset,
3364 int slot)
3365 {
3366 xtensa_isa isa = xtensa_default_isa;
3367 xtensa_format fmt;
3368 static xtensa_insnbuf insnbuf = NULL;
3369 static xtensa_insnbuf slotbuf = NULL;
3370
3371 if (offset + MIN_INSN_LENGTH > content_len)
3372 return XTENSA_UNDEFINED;
3373
3374 if (insnbuf == NULL)
3375 {
3376 insnbuf = xtensa_insnbuf_alloc (isa);
3377 slotbuf = xtensa_insnbuf_alloc (isa);
3378 }
3379
3380 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3381 content_len - offset);
3382 fmt = xtensa_format_decode (isa, insnbuf);
3383 if (fmt == XTENSA_UNDEFINED)
3384 return XTENSA_UNDEFINED;
3385
3386 if (slot >= xtensa_format_num_slots (isa, fmt))
3387 return XTENSA_UNDEFINED;
3388
3389 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3390 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3391 }
3392
3393
3394 /* The offset is the offset in the contents.
3395 The address is the address of that offset. */
3396
3397 static bfd_boolean
3398 check_branch_target_aligned (bfd_byte *contents,
3399 bfd_size_type content_length,
3400 bfd_vma offset,
3401 bfd_vma address)
3402 {
3403 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3404 if (insn_len == 0)
3405 return FALSE;
3406 return check_branch_target_aligned_address (address, insn_len);
3407 }
3408
3409
3410 static bfd_boolean
3411 check_loop_aligned (bfd_byte *contents,
3412 bfd_size_type content_length,
3413 bfd_vma offset,
3414 bfd_vma address)
3415 {
3416 bfd_size_type loop_len, insn_len;
3417 xtensa_opcode opcode;
3418
3419 opcode = insn_decode_opcode (contents, content_length, offset, 0);
3420 if (opcode == XTENSA_UNDEFINED
3421 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
3422 {
3423 BFD_ASSERT (FALSE);
3424 return FALSE;
3425 }
3426
3427 loop_len = insn_decode_len (contents, content_length, offset);
3428 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
3429 if (loop_len == 0 || insn_len == 0)
3430 {
3431 BFD_ASSERT (FALSE);
3432 return FALSE;
3433 }
3434
3435 return check_branch_target_aligned_address (address + loop_len, insn_len);
3436 }
3437
3438
3439 static bfd_boolean
3440 check_branch_target_aligned_address (bfd_vma addr, int len)
3441 {
3442 if (len == 8)
3443 return (addr % 8 == 0);
3444 return ((addr >> 2) == ((addr + len - 1) >> 2));
3445 }
3446
3447 \f
3448 /* Instruction widening and narrowing. */
3449
3450 /* When FLIX is available we need to access certain instructions only
3451 when they are 16-bit or 24-bit instructions. This table caches
3452 information about such instructions by walking through all the
3453 opcodes and finding the smallest single-slot format into which each
3454 can be encoded. */
3455
3456 static xtensa_format *op_single_fmt_table = NULL;
3457
3458
3459 static void
3460 init_op_single_format_table (void)
3461 {
3462 xtensa_isa isa = xtensa_default_isa;
3463 xtensa_insnbuf ibuf;
3464 xtensa_opcode opcode;
3465 xtensa_format fmt;
3466 int num_opcodes;
3467
3468 if (op_single_fmt_table)
3469 return;
3470
3471 ibuf = xtensa_insnbuf_alloc (isa);
3472 num_opcodes = xtensa_isa_num_opcodes (isa);
3473
3474 op_single_fmt_table = (xtensa_format *)
3475 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3476 for (opcode = 0; opcode < num_opcodes; opcode++)
3477 {
3478 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3479 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3480 {
3481 if (xtensa_format_num_slots (isa, fmt) == 1
3482 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3483 {
3484 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3485 int fmt_length = xtensa_format_length (isa, fmt);
3486 if (old_fmt == XTENSA_UNDEFINED
3487 || fmt_length < xtensa_format_length (isa, old_fmt))
3488 op_single_fmt_table[opcode] = fmt;
3489 }
3490 }
3491 }
3492 xtensa_insnbuf_free (isa, ibuf);
3493 }
3494
3495
3496 static xtensa_format
3497 get_single_format (xtensa_opcode opcode)
3498 {
3499 init_op_single_format_table ();
3500 return op_single_fmt_table[opcode];
3501 }
3502
3503
3504 /* For the set of narrowable instructions we do NOT include the
3505 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3506 involved during linker relaxation that may require these to
3507 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3508 requires special case code to ensure it only works when op1 == op2. */
3509
3510 struct string_pair
3511 {
3512 const char *wide;
3513 const char *narrow;
3514 };
3515
3516 struct string_pair narrowable[] =
3517 {
3518 { "add", "add.n" },
3519 { "addi", "addi.n" },
3520 { "addmi", "addi.n" },
3521 { "l32i", "l32i.n" },
3522 { "movi", "movi.n" },
3523 { "ret", "ret.n" },
3524 { "retw", "retw.n" },
3525 { "s32i", "s32i.n" },
3526 { "or", "mov.n" } /* special case only when op1 == op2 */
3527 };
3528
3529 struct string_pair widenable[] =
3530 {
3531 { "add", "add.n" },
3532 { "addi", "addi.n" },
3533 { "addmi", "addi.n" },
3534 { "beqz", "beqz.n" },
3535 { "bnez", "bnez.n" },
3536 { "l32i", "l32i.n" },
3537 { "movi", "movi.n" },
3538 { "ret", "ret.n" },
3539 { "retw", "retw.n" },
3540 { "s32i", "s32i.n" },
3541 { "or", "mov.n" } /* special case only when op1 == op2 */
3542 };
3543
3544
3545 /* Check if an instruction can be "narrowed", i.e., changed from a standard
3546 3-byte instruction to a 2-byte "density" instruction. If it is valid,
3547 return the instruction buffer holding the narrow instruction. Otherwise,
3548 return 0. The set of valid narrowing are specified by a string table
3549 but require some special case operand checks in some cases. */
3550
3551 static xtensa_insnbuf
3552 can_narrow_instruction (xtensa_insnbuf slotbuf,
3553 xtensa_format fmt,
3554 xtensa_opcode opcode)
3555 {
3556 xtensa_isa isa = xtensa_default_isa;
3557 xtensa_format o_fmt;
3558 unsigned opi;
3559
3560 static xtensa_insnbuf o_insnbuf = NULL;
3561 static xtensa_insnbuf o_slotbuf = NULL;
3562
3563 if (o_insnbuf == NULL)
3564 {
3565 o_insnbuf = xtensa_insnbuf_alloc (isa);
3566 o_slotbuf = xtensa_insnbuf_alloc (isa);
3567 }
3568
3569 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
3570 {
3571 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
3572
3573 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3574 {
3575 uint32 value, newval;
3576 int i, operand_count, o_operand_count;
3577 xtensa_opcode o_opcode;
3578
3579 /* Address does not matter in this case. We might need to
3580 fix it to handle branches/jumps. */
3581 bfd_vma self_address = 0;
3582
3583 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3584 if (o_opcode == XTENSA_UNDEFINED)
3585 return 0;
3586 o_fmt = get_single_format (o_opcode);
3587 if (o_fmt == XTENSA_UNDEFINED)
3588 return 0;
3589
3590 if (xtensa_format_length (isa, fmt) != 3
3591 || xtensa_format_length (isa, o_fmt) != 2)
3592 return 0;
3593
3594 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3595 operand_count = xtensa_opcode_num_operands (isa, opcode);
3596 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3597
3598 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3599 return 0;
3600
3601 if (!is_or)
3602 {
3603 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3604 return 0;
3605 }
3606 else
3607 {
3608 uint32 rawval0, rawval1, rawval2;
3609
3610 if (o_operand_count + 1 != operand_count
3611 || xtensa_operand_get_field (isa, opcode, 0,
3612 fmt, 0, slotbuf, &rawval0) != 0
3613 || xtensa_operand_get_field (isa, opcode, 1,
3614 fmt, 0, slotbuf, &rawval1) != 0
3615 || xtensa_operand_get_field (isa, opcode, 2,
3616 fmt, 0, slotbuf, &rawval2) != 0
3617 || rawval1 != rawval2
3618 || rawval0 == rawval1 /* it is a nop */)
3619 return 0;
3620 }
3621
3622 for (i = 0; i < o_operand_count; ++i)
3623 {
3624 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3625 slotbuf, &value)
3626 || xtensa_operand_decode (isa, opcode, i, &value))
3627 return 0;
3628
3629 /* PC-relative branches need adjustment, but
3630 the PC-rel operand will always have a relocation. */
3631 newval = value;
3632 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3633 self_address)
3634 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3635 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3636 o_slotbuf, newval))
3637 return 0;
3638 }
3639
3640 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3641 return 0;
3642
3643 return o_insnbuf;
3644 }
3645 }
3646 return 0;
3647 }
3648
3649
3650 /* Attempt to narrow an instruction. If the narrowing is valid, perform
3651 the action in-place directly into the contents and return TRUE. Otherwise,
3652 the return value is FALSE and the contents are not modified. */
3653
3654 static bfd_boolean
3655 narrow_instruction (bfd_byte *contents,
3656 bfd_size_type content_length,
3657 bfd_size_type offset)
3658 {
3659 xtensa_opcode opcode;
3660 bfd_size_type insn_len;
3661 xtensa_isa isa = xtensa_default_isa;
3662 xtensa_format fmt;
3663 xtensa_insnbuf o_insnbuf;
3664
3665 static xtensa_insnbuf insnbuf = NULL;
3666 static xtensa_insnbuf slotbuf = NULL;
3667
3668 if (insnbuf == NULL)
3669 {
3670 insnbuf = xtensa_insnbuf_alloc (isa);
3671 slotbuf = xtensa_insnbuf_alloc (isa);
3672 }
3673
3674 BFD_ASSERT (offset < content_length);
3675
3676 if (content_length < 2)
3677 return FALSE;
3678
3679 /* We will hand-code a few of these for a little while.
3680 These have all been specified in the assembler aleady. */
3681 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3682 content_length - offset);
3683 fmt = xtensa_format_decode (isa, insnbuf);
3684 if (xtensa_format_num_slots (isa, fmt) != 1)
3685 return FALSE;
3686
3687 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3688 return FALSE;
3689
3690 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3691 if (opcode == XTENSA_UNDEFINED)
3692 return FALSE;
3693 insn_len = xtensa_format_length (isa, fmt);
3694 if (insn_len > content_length)
3695 return FALSE;
3696
3697 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
3698 if (o_insnbuf)
3699 {
3700 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3701 content_length - offset);
3702 return TRUE;
3703 }
3704
3705 return FALSE;
3706 }
3707
3708
3709 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
3710 "density" instruction to a standard 3-byte instruction. If it is valid,
3711 return the instruction buffer holding the wide instruction. Otherwise,
3712 return 0. The set of valid widenings are specified by a string table
3713 but require some special case operand checks in some cases. */
3714
3715 static xtensa_insnbuf
3716 can_widen_instruction (xtensa_insnbuf slotbuf,
3717 xtensa_format fmt,
3718 xtensa_opcode opcode)
3719 {
3720 xtensa_isa isa = xtensa_default_isa;
3721 xtensa_format o_fmt;
3722 unsigned opi;
3723
3724 static xtensa_insnbuf o_insnbuf = NULL;
3725 static xtensa_insnbuf o_slotbuf = NULL;
3726
3727 if (o_insnbuf == NULL)
3728 {
3729 o_insnbuf = xtensa_insnbuf_alloc (isa);
3730 o_slotbuf = xtensa_insnbuf_alloc (isa);
3731 }
3732
3733 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
3734 {
3735 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3736 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3737 || strcmp ("bnez", widenable[opi].wide) == 0);
3738
3739 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3740 {
3741 uint32 value, newval;
3742 int i, operand_count, o_operand_count, check_operand_count;
3743 xtensa_opcode o_opcode;
3744
3745 /* Address does not matter in this case. We might need to fix it
3746 to handle branches/jumps. */
3747 bfd_vma self_address = 0;
3748
3749 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3750 if (o_opcode == XTENSA_UNDEFINED)
3751 return 0;
3752 o_fmt = get_single_format (o_opcode);
3753 if (o_fmt == XTENSA_UNDEFINED)
3754 return 0;
3755
3756 if (xtensa_format_length (isa, fmt) != 2
3757 || xtensa_format_length (isa, o_fmt) != 3)
3758 return 0;
3759
3760 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3761 operand_count = xtensa_opcode_num_operands (isa, opcode);
3762 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3763 check_operand_count = o_operand_count;
3764
3765 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3766 return 0;
3767
3768 if (!is_or)
3769 {
3770 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3771 return 0;
3772 }
3773 else
3774 {
3775 uint32 rawval0, rawval1;
3776
3777 if (o_operand_count != operand_count + 1
3778 || xtensa_operand_get_field (isa, opcode, 0,
3779 fmt, 0, slotbuf, &rawval0) != 0
3780 || xtensa_operand_get_field (isa, opcode, 1,
3781 fmt, 0, slotbuf, &rawval1) != 0
3782 || rawval0 == rawval1 /* it is a nop */)
3783 return 0;
3784 }
3785 if (is_branch)
3786 check_operand_count--;
3787
3788 for (i = 0; i < check_operand_count; i++)
3789 {
3790 int new_i = i;
3791 if (is_or && i == o_operand_count - 1)
3792 new_i = i - 1;
3793 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3794 slotbuf, &value)
3795 || xtensa_operand_decode (isa, opcode, new_i, &value))
3796 return 0;
3797
3798 /* PC-relative branches need adjustment, but
3799 the PC-rel operand will always have a relocation. */
3800 newval = value;
3801 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3802 self_address)
3803 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3804 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3805 o_slotbuf, newval))
3806 return 0;
3807 }
3808
3809 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3810 return 0;
3811
3812 return o_insnbuf;
3813 }
3814 }
3815 return 0;
3816 }
3817
3818
3819 /* Attempt to widen an instruction. If the widening is valid, perform
3820 the action in-place directly into the contents and return TRUE. Otherwise,
3821 the return value is FALSE and the contents are not modified. */
3822
3823 static bfd_boolean
3824 widen_instruction (bfd_byte *contents,
3825 bfd_size_type content_length,
3826 bfd_size_type offset)
3827 {
3828 xtensa_opcode opcode;
3829 bfd_size_type insn_len;
3830 xtensa_isa isa = xtensa_default_isa;
3831 xtensa_format fmt;
3832 xtensa_insnbuf o_insnbuf;
3833
3834 static xtensa_insnbuf insnbuf = NULL;
3835 static xtensa_insnbuf slotbuf = NULL;
3836
3837 if (insnbuf == NULL)
3838 {
3839 insnbuf = xtensa_insnbuf_alloc (isa);
3840 slotbuf = xtensa_insnbuf_alloc (isa);
3841 }
3842
3843 BFD_ASSERT (offset < content_length);
3844
3845 if (content_length < 2)
3846 return FALSE;
3847
3848 /* We will hand-code a few of these for a little while.
3849 These have all been specified in the assembler aleady. */
3850 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3851 content_length - offset);
3852 fmt = xtensa_format_decode (isa, insnbuf);
3853 if (xtensa_format_num_slots (isa, fmt) != 1)
3854 return FALSE;
3855
3856 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3857 return FALSE;
3858
3859 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3860 if (opcode == XTENSA_UNDEFINED)
3861 return FALSE;
3862 insn_len = xtensa_format_length (isa, fmt);
3863 if (insn_len > content_length)
3864 return FALSE;
3865
3866 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
3867 if (o_insnbuf)
3868 {
3869 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3870 content_length - offset);
3871 return TRUE;
3872 }
3873 return FALSE;
3874 }
3875
3876 \f
3877 /* Code for transforming CALLs at link-time. */
3878
3879 static bfd_reloc_status_type
3880 elf_xtensa_do_asm_simplify (bfd_byte *contents,
3881 bfd_vma address,
3882 bfd_vma content_length,
3883 char **error_message)
3884 {
3885 static xtensa_insnbuf insnbuf = NULL;
3886 static xtensa_insnbuf slotbuf = NULL;
3887 xtensa_format core_format = XTENSA_UNDEFINED;
3888 xtensa_opcode opcode;
3889 xtensa_opcode direct_call_opcode;
3890 xtensa_isa isa = xtensa_default_isa;
3891 bfd_byte *chbuf = contents + address;
3892 int opn;
3893
3894 if (insnbuf == NULL)
3895 {
3896 insnbuf = xtensa_insnbuf_alloc (isa);
3897 slotbuf = xtensa_insnbuf_alloc (isa);
3898 }
3899
3900 if (content_length < address)
3901 {
3902 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3903 return bfd_reloc_other;
3904 }
3905
3906 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3907 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3908 if (direct_call_opcode == XTENSA_UNDEFINED)
3909 {
3910 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3911 return bfd_reloc_other;
3912 }
3913
3914 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3915 core_format = xtensa_format_lookup (isa, "x24");
3916 opcode = xtensa_opcode_lookup (isa, "or");
3917 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3918 for (opn = 0; opn < 3; opn++)
3919 {
3920 uint32 regno = 1;
3921 xtensa_operand_encode (isa, opcode, opn, &regno);
3922 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3923 slotbuf, regno);
3924 }
3925 xtensa_format_encode (isa, core_format, insnbuf);
3926 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3927 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
3928
3929 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3930 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3931 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
3932
3933 xtensa_format_encode (isa, core_format, insnbuf);
3934 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3935 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3936 content_length - address - 3);
3937
3938 return bfd_reloc_ok;
3939 }
3940
3941
3942 static bfd_reloc_status_type
3943 contract_asm_expansion (bfd_byte *contents,
3944 bfd_vma content_length,
3945 Elf_Internal_Rela *irel,
3946 char **error_message)
3947 {
3948 bfd_reloc_status_type retval =
3949 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3950 error_message);
3951
3952 if (retval != bfd_reloc_ok)
3953 return bfd_reloc_dangerous;
3954
3955 /* Update the irel->r_offset field so that the right immediate and
3956 the right instruction are modified during the relocation. */
3957 irel->r_offset += 3;
3958 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3959 return bfd_reloc_ok;
3960 }
3961
3962
3963 static xtensa_opcode
3964 swap_callx_for_call_opcode (xtensa_opcode opcode)
3965 {
3966 init_call_opcodes ();
3967
3968 if (opcode == callx0_op) return call0_op;
3969 if (opcode == callx4_op) return call4_op;
3970 if (opcode == callx8_op) return call8_op;
3971 if (opcode == callx12_op) return call12_op;
3972
3973 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3974 return XTENSA_UNDEFINED;
3975 }
3976
3977
3978 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3979 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3980 If not, return XTENSA_UNDEFINED. */
3981
3982 #define L32R_TARGET_REG_OPERAND 0
3983 #define CONST16_TARGET_REG_OPERAND 0
3984 #define CALLN_SOURCE_OPERAND 0
3985
3986 static xtensa_opcode
3987 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
3988 {
3989 static xtensa_insnbuf insnbuf = NULL;
3990 static xtensa_insnbuf slotbuf = NULL;
3991 xtensa_format fmt;
3992 xtensa_opcode opcode;
3993 xtensa_isa isa = xtensa_default_isa;
3994 uint32 regno, const16_regno, call_regno;
3995 int offset = 0;
3996
3997 if (insnbuf == NULL)
3998 {
3999 insnbuf = xtensa_insnbuf_alloc (isa);
4000 slotbuf = xtensa_insnbuf_alloc (isa);
4001 }
4002
4003 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4004 fmt = xtensa_format_decode (isa, insnbuf);
4005 if (fmt == XTENSA_UNDEFINED
4006 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4007 return XTENSA_UNDEFINED;
4008
4009 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4010 if (opcode == XTENSA_UNDEFINED)
4011 return XTENSA_UNDEFINED;
4012
4013 if (opcode == get_l32r_opcode ())
4014 {
4015 if (p_uses_l32r)
4016 *p_uses_l32r = TRUE;
4017 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4018 fmt, 0, slotbuf, &regno)
4019 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4020 &regno))
4021 return XTENSA_UNDEFINED;
4022 }
4023 else if (opcode == get_const16_opcode ())
4024 {
4025 if (p_uses_l32r)
4026 *p_uses_l32r = FALSE;
4027 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4028 fmt, 0, slotbuf, &regno)
4029 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4030 &regno))
4031 return XTENSA_UNDEFINED;
4032
4033 /* Check that the next instruction is also CONST16. */
4034 offset += xtensa_format_length (isa, fmt);
4035 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4036 fmt = xtensa_format_decode (isa, insnbuf);
4037 if (fmt == XTENSA_UNDEFINED
4038 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4039 return XTENSA_UNDEFINED;
4040 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4041 if (opcode != get_const16_opcode ())
4042 return XTENSA_UNDEFINED;
4043
4044 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4045 fmt, 0, slotbuf, &const16_regno)
4046 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4047 &const16_regno)
4048 || const16_regno != regno)
4049 return XTENSA_UNDEFINED;
4050 }
4051 else
4052 return XTENSA_UNDEFINED;
4053
4054 /* Next instruction should be an CALLXn with operand 0 == regno. */
4055 offset += xtensa_format_length (isa, fmt);
4056 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4057 fmt = xtensa_format_decode (isa, insnbuf);
4058 if (fmt == XTENSA_UNDEFINED
4059 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4060 return XTENSA_UNDEFINED;
4061 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4062 if (opcode == XTENSA_UNDEFINED
4063 || !is_indirect_call_opcode (opcode))
4064 return XTENSA_UNDEFINED;
4065
4066 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4067 fmt, 0, slotbuf, &call_regno)
4068 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4069 &call_regno))
4070 return XTENSA_UNDEFINED;
4071
4072 if (call_regno != regno)
4073 return XTENSA_UNDEFINED;
4074
4075 return opcode;
4076 }
4077
4078 \f
4079 /* Data structures used during relaxation. */
4080
4081 /* r_reloc: relocation values. */
4082
4083 /* Through the relaxation process, we need to keep track of the values
4084 that will result from evaluating relocations. The standard ELF
4085 relocation structure is not sufficient for this purpose because we're
4086 operating on multiple input files at once, so we need to know which
4087 input file a relocation refers to. The r_reloc structure thus
4088 records both the input file (bfd) and ELF relocation.
4089
4090 For efficiency, an r_reloc also contains a "target_offset" field to
4091 cache the target-section-relative offset value that is represented by
4092 the relocation.
4093
4094 The r_reloc also contains a virtual offset that allows multiple
4095 inserted literals to be placed at the same "address" with
4096 different offsets. */
4097
4098 typedef struct r_reloc_struct r_reloc;
4099
4100 struct r_reloc_struct
4101 {
4102 bfd *abfd;
4103 Elf_Internal_Rela rela;
4104 bfd_vma target_offset;
4105 bfd_vma virtual_offset;
4106 };
4107
4108
4109 /* The r_reloc structure is included by value in literal_value, but not
4110 every literal_value has an associated relocation -- some are simple
4111 constants. In such cases, we set all the fields in the r_reloc
4112 struct to zero. The r_reloc_is_const function should be used to
4113 detect this case. */
4114
4115 static bfd_boolean
4116 r_reloc_is_const (const r_reloc *r_rel)
4117 {
4118 return (r_rel->abfd == NULL);
4119 }
4120
4121
4122 static bfd_vma
4123 r_reloc_get_target_offset (const r_reloc *r_rel)
4124 {
4125 bfd_vma target_offset;
4126 unsigned long r_symndx;
4127
4128 BFD_ASSERT (!r_reloc_is_const (r_rel));
4129 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4130 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4131 return (target_offset + r_rel->rela.r_addend);
4132 }
4133
4134
4135 static struct elf_link_hash_entry *
4136 r_reloc_get_hash_entry (const r_reloc *r_rel)
4137 {
4138 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4139 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4140 }
4141
4142
4143 static asection *
4144 r_reloc_get_section (const r_reloc *r_rel)
4145 {
4146 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4147 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4148 }
4149
4150
4151 static bfd_boolean
4152 r_reloc_is_defined (const r_reloc *r_rel)
4153 {
4154 asection *sec;
4155 if (r_rel == NULL)
4156 return FALSE;
4157
4158 sec = r_reloc_get_section (r_rel);
4159 if (sec == bfd_abs_section_ptr
4160 || sec == bfd_com_section_ptr
4161 || sec == bfd_und_section_ptr)
4162 return FALSE;
4163 return TRUE;
4164 }
4165
4166
4167 static void
4168 r_reloc_init (r_reloc *r_rel,
4169 bfd *abfd,
4170 Elf_Internal_Rela *irel,
4171 bfd_byte *contents,
4172 bfd_size_type content_length)
4173 {
4174 int r_type;
4175 reloc_howto_type *howto;
4176
4177 if (irel)
4178 {
4179 r_rel->rela = *irel;
4180 r_rel->abfd = abfd;
4181 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4182 r_rel->virtual_offset = 0;
4183 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4184 howto = &elf_howto_table[r_type];
4185 if (howto->partial_inplace)
4186 {
4187 bfd_vma inplace_val;
4188 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4189
4190 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4191 r_rel->target_offset += inplace_val;
4192 }
4193 }
4194 else
4195 memset (r_rel, 0, sizeof (r_reloc));
4196 }
4197
4198
4199 #if DEBUG
4200
4201 static void
4202 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4203 {
4204 if (r_reloc_is_defined (r_rel))
4205 {
4206 asection *sec = r_reloc_get_section (r_rel);
4207 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4208 }
4209 else if (r_reloc_get_hash_entry (r_rel))
4210 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4211 else
4212 fprintf (fp, " ?? + ");
4213
4214 fprintf_vma (fp, r_rel->target_offset);
4215 if (r_rel->virtual_offset)
4216 {
4217 fprintf (fp, " + ");
4218 fprintf_vma (fp, r_rel->virtual_offset);
4219 }
4220
4221 fprintf (fp, ")");
4222 }
4223
4224 #endif /* DEBUG */
4225
4226 \f
4227 /* source_reloc: relocations that reference literals. */
4228
4229 /* To determine whether literals can be coalesced, we need to first
4230 record all the relocations that reference the literals. The
4231 source_reloc structure below is used for this purpose. The
4232 source_reloc entries are kept in a per-literal-section array, sorted
4233 by offset within the literal section (i.e., target offset).
4234
4235 The source_sec and r_rel.rela.r_offset fields identify the source of
4236 the relocation. The r_rel field records the relocation value, i.e.,
4237 the offset of the literal being referenced. The opnd field is needed
4238 to determine the range of the immediate field to which the relocation
4239 applies, so we can determine whether another literal with the same
4240 value is within range. The is_null field is true when the relocation
4241 is being removed (e.g., when an L32R is being removed due to a CALLX
4242 that is converted to a direct CALL). */
4243
4244 typedef struct source_reloc_struct source_reloc;
4245
4246 struct source_reloc_struct
4247 {
4248 asection *source_sec;
4249 r_reloc r_rel;
4250 xtensa_opcode opcode;
4251 int opnd;
4252 bfd_boolean is_null;
4253 bfd_boolean is_abs_literal;
4254 };
4255
4256
4257 static void
4258 init_source_reloc (source_reloc *reloc,
4259 asection *source_sec,
4260 const r_reloc *r_rel,
4261 xtensa_opcode opcode,
4262 int opnd,
4263 bfd_boolean is_abs_literal)
4264 {
4265 reloc->source_sec = source_sec;
4266 reloc->r_rel = *r_rel;
4267 reloc->opcode = opcode;
4268 reloc->opnd = opnd;
4269 reloc->is_null = FALSE;
4270 reloc->is_abs_literal = is_abs_literal;
4271 }
4272
4273
4274 /* Find the source_reloc for a particular source offset and relocation
4275 type. Note that the array is sorted by _target_ offset, so this is
4276 just a linear search. */
4277
4278 static source_reloc *
4279 find_source_reloc (source_reloc *src_relocs,
4280 int src_count,
4281 asection *sec,
4282 Elf_Internal_Rela *irel)
4283 {
4284 int i;
4285
4286 for (i = 0; i < src_count; i++)
4287 {
4288 if (src_relocs[i].source_sec == sec
4289 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4290 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4291 == ELF32_R_TYPE (irel->r_info)))
4292 return &src_relocs[i];
4293 }
4294
4295 return NULL;
4296 }
4297
4298
4299 static int
4300 source_reloc_compare (const void *ap, const void *bp)
4301 {
4302 const source_reloc *a = (const source_reloc *) ap;
4303 const source_reloc *b = (const source_reloc *) bp;
4304
4305 if (a->r_rel.target_offset != b->r_rel.target_offset)
4306 return (a->r_rel.target_offset - b->r_rel.target_offset);
4307
4308 /* We don't need to sort on these criteria for correctness,
4309 but enforcing a more strict ordering prevents unstable qsort
4310 from behaving differently with different implementations.
4311 Without the code below we get correct but different results
4312 on Solaris 2.7 and 2.8. We would like to always produce the
4313 same results no matter the host. */
4314
4315 if ((!a->is_null) - (!b->is_null))
4316 return ((!a->is_null) - (!b->is_null));
4317 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
4318 }
4319
4320 \f
4321 /* Literal values and value hash tables. */
4322
4323 /* Literals with the same value can be coalesced. The literal_value
4324 structure records the value of a literal: the "r_rel" field holds the
4325 information from the relocation on the literal (if there is one) and
4326 the "value" field holds the contents of the literal word itself.
4327
4328 The value_map structure records a literal value along with the
4329 location of a literal holding that value. The value_map hash table
4330 is indexed by the literal value, so that we can quickly check if a
4331 particular literal value has been seen before and is thus a candidate
4332 for coalescing. */
4333
4334 typedef struct literal_value_struct literal_value;
4335 typedef struct value_map_struct value_map;
4336 typedef struct value_map_hash_table_struct value_map_hash_table;
4337
4338 struct literal_value_struct
4339 {
4340 r_reloc r_rel;
4341 unsigned long value;
4342 bfd_boolean is_abs_literal;
4343 };
4344
4345 struct value_map_struct
4346 {
4347 literal_value val; /* The literal value. */
4348 r_reloc loc; /* Location of the literal. */
4349 value_map *next;
4350 };
4351
4352 struct value_map_hash_table_struct
4353 {
4354 unsigned bucket_count;
4355 value_map **buckets;
4356 unsigned count;
4357 bfd_boolean has_last_loc;
4358 r_reloc last_loc;
4359 };
4360
4361
4362 static void
4363 init_literal_value (literal_value *lit,
4364 const r_reloc *r_rel,
4365 unsigned long value,
4366 bfd_boolean is_abs_literal)
4367 {
4368 lit->r_rel = *r_rel;
4369 lit->value = value;
4370 lit->is_abs_literal = is_abs_literal;
4371 }
4372
4373
4374 static bfd_boolean
4375 literal_value_equal (const literal_value *src1,
4376 const literal_value *src2,
4377 bfd_boolean final_static_link)
4378 {
4379 struct elf_link_hash_entry *h1, *h2;
4380
4381 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4382 return FALSE;
4383
4384 if (r_reloc_is_const (&src1->r_rel))
4385 return (src1->value == src2->value);
4386
4387 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4388 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4389 return FALSE;
4390
4391 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4392 return FALSE;
4393
4394 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4395 return FALSE;
4396
4397 if (src1->value != src2->value)
4398 return FALSE;
4399
4400 /* Now check for the same section (if defined) or the same elf_hash
4401 (if undefined or weak). */
4402 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4403 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4404 if (r_reloc_is_defined (&src1->r_rel)
4405 && (final_static_link
4406 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4407 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4408 {
4409 if (r_reloc_get_section (&src1->r_rel)
4410 != r_reloc_get_section (&src2->r_rel))
4411 return FALSE;
4412 }
4413 else
4414 {
4415 /* Require that the hash entries (i.e., symbols) be identical. */
4416 if (h1 != h2 || h1 == 0)
4417 return FALSE;
4418 }
4419
4420 if (src1->is_abs_literal != src2->is_abs_literal)
4421 return FALSE;
4422
4423 return TRUE;
4424 }
4425
4426
4427 /* Must be power of 2. */
4428 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
4429
4430 static value_map_hash_table *
4431 value_map_hash_table_init (void)
4432 {
4433 value_map_hash_table *values;
4434
4435 values = (value_map_hash_table *)
4436 bfd_zmalloc (sizeof (value_map_hash_table));
4437 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4438 values->count = 0;
4439 values->buckets = (value_map **)
4440 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4441 if (values->buckets == NULL)
4442 {
4443 free (values);
4444 return NULL;
4445 }
4446 values->has_last_loc = FALSE;
4447
4448 return values;
4449 }
4450
4451
4452 static void
4453 value_map_hash_table_delete (value_map_hash_table *table)
4454 {
4455 free (table->buckets);
4456 free (table);
4457 }
4458
4459
4460 static unsigned
4461 hash_bfd_vma (bfd_vma val)
4462 {
4463 return (val >> 2) + (val >> 10);
4464 }
4465
4466
4467 static unsigned
4468 literal_value_hash (const literal_value *src)
4469 {
4470 unsigned hash_val;
4471
4472 hash_val = hash_bfd_vma (src->value);
4473 if (!r_reloc_is_const (&src->r_rel))
4474 {
4475 void *sec_or_hash;
4476
4477 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4478 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4479 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4480
4481 /* Now check for the same section and the same elf_hash. */
4482 if (r_reloc_is_defined (&src->r_rel))
4483 sec_or_hash = r_reloc_get_section (&src->r_rel);
4484 else
4485 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
4486 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
4487 }
4488 return hash_val;
4489 }
4490
4491
4492 /* Check if the specified literal_value has been seen before. */
4493
4494 static value_map *
4495 value_map_get_cached_value (value_map_hash_table *map,
4496 const literal_value *val,
4497 bfd_boolean final_static_link)
4498 {
4499 value_map *map_e;
4500 value_map *bucket;
4501 unsigned idx;
4502
4503 idx = literal_value_hash (val);
4504 idx = idx & (map->bucket_count - 1);
4505 bucket = map->buckets[idx];
4506 for (map_e = bucket; map_e; map_e = map_e->next)
4507 {
4508 if (literal_value_equal (&map_e->val, val, final_static_link))
4509 return map_e;
4510 }
4511 return NULL;
4512 }
4513
4514
4515 /* Record a new literal value. It is illegal to call this if VALUE
4516 already has an entry here. */
4517
4518 static value_map *
4519 add_value_map (value_map_hash_table *map,
4520 const literal_value *val,
4521 const r_reloc *loc,
4522 bfd_boolean final_static_link)
4523 {
4524 value_map **bucket_p;
4525 unsigned idx;
4526
4527 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4528 if (val_e == NULL)
4529 {
4530 bfd_set_error (bfd_error_no_memory);
4531 return NULL;
4532 }
4533
4534 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4535 val_e->val = *val;
4536 val_e->loc = *loc;
4537
4538 idx = literal_value_hash (val);
4539 idx = idx & (map->bucket_count - 1);
4540 bucket_p = &map->buckets[idx];
4541
4542 val_e->next = *bucket_p;
4543 *bucket_p = val_e;
4544 map->count++;
4545 /* FIXME: Consider resizing the hash table if we get too many entries. */
4546
4547 return val_e;
4548 }
4549
4550 \f
4551 /* Lists of text actions (ta_) for narrowing, widening, longcall
4552 conversion, space fill, code & literal removal, etc. */
4553
4554 /* The following text actions are generated:
4555
4556 "ta_remove_insn" remove an instruction or instructions
4557 "ta_remove_longcall" convert longcall to call
4558 "ta_convert_longcall" convert longcall to nop/call
4559 "ta_narrow_insn" narrow a wide instruction
4560 "ta_widen" widen a narrow instruction
4561 "ta_fill" add fill or remove fill
4562 removed < 0 is a fill; branches to the fill address will be
4563 changed to address + fill size (e.g., address - removed)
4564 removed >= 0 branches to the fill address will stay unchanged
4565 "ta_remove_literal" remove a literal; this action is
4566 indicated when a literal is removed
4567 or replaced.
4568 "ta_add_literal" insert a new literal; this action is
4569 indicated when a literal has been moved.
4570 It may use a virtual_offset because
4571 multiple literals can be placed at the
4572 same location.
4573
4574 For each of these text actions, we also record the number of bytes
4575 removed by performing the text action. In the case of a "ta_widen"
4576 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4577
4578 typedef struct text_action_struct text_action;
4579 typedef struct text_action_list_struct text_action_list;
4580 typedef enum text_action_enum_t text_action_t;
4581
4582 enum text_action_enum_t
4583 {
4584 ta_none,
4585 ta_remove_insn, /* removed = -size */
4586 ta_remove_longcall, /* removed = -size */
4587 ta_convert_longcall, /* removed = 0 */
4588 ta_narrow_insn, /* removed = -1 */
4589 ta_widen_insn, /* removed = +1 */
4590 ta_fill, /* removed = +size */
4591 ta_remove_literal,
4592 ta_add_literal
4593 };
4594
4595
4596 /* Structure for a text action record. */
4597 struct text_action_struct
4598 {
4599 text_action_t action;
4600 asection *sec; /* Optional */
4601 bfd_vma offset;
4602 bfd_vma virtual_offset; /* Zero except for adding literals. */
4603 int removed_bytes;
4604 literal_value value; /* Only valid when adding literals. */
4605
4606 text_action *next;
4607 };
4608
4609
4610 /* List of all of the actions taken on a text section. */
4611 struct text_action_list_struct
4612 {
4613 text_action *head;
4614 };
4615
4616
4617 static text_action *
4618 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
4619 {
4620 text_action **m_p;
4621
4622 /* It is not necessary to fill at the end of a section. */
4623 if (sec->size == offset)
4624 return NULL;
4625
4626 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4627 {
4628 text_action *t = *m_p;
4629 /* When the action is another fill at the same address,
4630 just increase the size. */
4631 if (t->offset == offset && t->action == ta_fill)
4632 return t;
4633 }
4634 return NULL;
4635 }
4636
4637
4638 static int
4639 compute_removed_action_diff (const text_action *ta,
4640 asection *sec,
4641 bfd_vma offset,
4642 int removed,
4643 int removable_space)
4644 {
4645 int new_removed;
4646 int current_removed = 0;
4647
4648 if (ta)
4649 current_removed = ta->removed_bytes;
4650
4651 BFD_ASSERT (ta == NULL || ta->offset == offset);
4652 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4653
4654 /* It is not necessary to fill at the end of a section. Clean this up. */
4655 if (sec->size == offset)
4656 new_removed = removable_space - 0;
4657 else
4658 {
4659 int space;
4660 int added = -removed - current_removed;
4661 /* Ignore multiples of the section alignment. */
4662 added = ((1 << sec->alignment_power) - 1) & added;
4663 new_removed = (-added);
4664
4665 /* Modify for removable. */
4666 space = removable_space - new_removed;
4667 new_removed = (removable_space
4668 - (((1 << sec->alignment_power) - 1) & space));
4669 }
4670 return (new_removed - current_removed);
4671 }
4672
4673
4674 static void
4675 adjust_fill_action (text_action *ta, int fill_diff)
4676 {
4677 ta->removed_bytes += fill_diff;
4678 }
4679
4680
4681 /* Add a modification action to the text. For the case of adding or
4682 removing space, modify any current fill and assume that
4683 "unreachable_space" bytes can be freely contracted. Note that a
4684 negative removed value is a fill. */
4685
4686 static void
4687 text_action_add (text_action_list *l,
4688 text_action_t action,
4689 asection *sec,
4690 bfd_vma offset,
4691 int removed)
4692 {
4693 text_action **m_p;
4694 text_action *ta;
4695
4696 /* It is not necessary to fill at the end of a section. */
4697 if (action == ta_fill && sec->size == offset)
4698 return;
4699
4700 /* It is not necessary to fill 0 bytes. */
4701 if (action == ta_fill && removed == 0)
4702 return;
4703
4704 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4705 {
4706 text_action *t = *m_p;
4707 /* When the action is another fill at the same address,
4708 just increase the size. */
4709 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4710 {
4711 t->removed_bytes += removed;
4712 return;
4713 }
4714 }
4715
4716 /* Create a new record and fill it up. */
4717 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4718 ta->action = action;
4719 ta->sec = sec;
4720 ta->offset = offset;
4721 ta->removed_bytes = removed;
4722 ta->next = (*m_p);
4723 *m_p = ta;
4724 }
4725
4726
4727 static void
4728 text_action_add_literal (text_action_list *l,
4729 text_action_t action,
4730 const r_reloc *loc,
4731 const literal_value *value,
4732 int removed)
4733 {
4734 text_action **m_p;
4735 text_action *ta;
4736 asection *sec = r_reloc_get_section (loc);
4737 bfd_vma offset = loc->target_offset;
4738 bfd_vma virtual_offset = loc->virtual_offset;
4739
4740 BFD_ASSERT (action == ta_add_literal);
4741
4742 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4743 {
4744 if ((*m_p)->offset > offset
4745 && ((*m_p)->offset != offset
4746 || (*m_p)->virtual_offset > virtual_offset))
4747 break;
4748 }
4749
4750 /* Create a new record and fill it up. */
4751 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4752 ta->action = action;
4753 ta->sec = sec;
4754 ta->offset = offset;
4755 ta->virtual_offset = virtual_offset;
4756 ta->value = *value;
4757 ta->removed_bytes = removed;
4758 ta->next = (*m_p);
4759 *m_p = ta;
4760 }
4761
4762
4763 /* Find the total offset adjustment for the relaxations specified by
4764 text_actions, beginning from a particular starting action. This is
4765 typically used from offset_with_removed_text to search an entire list of
4766 actions, but it may also be called directly when adjusting adjacent offsets
4767 so that each search may begin where the previous one left off. */
4768
4769 static int
4770 removed_by_actions (text_action **p_start_action,
4771 bfd_vma offset,
4772 bfd_boolean before_fill)
4773 {
4774 text_action *r;
4775 int removed = 0;
4776
4777 r = *p_start_action;
4778 while (r)
4779 {
4780 if (r->offset > offset)
4781 break;
4782
4783 if (r->offset == offset
4784 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
4785 break;
4786
4787 removed += r->removed_bytes;
4788
4789 r = r->next;
4790 }
4791
4792 *p_start_action = r;
4793 return removed;
4794 }
4795
4796
4797 static bfd_vma
4798 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
4799 {
4800 text_action *r = action_list->head;
4801 return offset - removed_by_actions (&r, offset, FALSE);
4802 }
4803
4804
4805 static unsigned
4806 action_list_count (text_action_list *action_list)
4807 {
4808 text_action *r = action_list->head;
4809 unsigned count = 0;
4810 for (r = action_list->head; r != NULL; r = r->next)
4811 {
4812 count++;
4813 }
4814 return count;
4815 }
4816
4817
4818 /* The find_insn_action routine will only find non-fill actions. */
4819
4820 static text_action *
4821 find_insn_action (text_action_list *action_list, bfd_vma offset)
4822 {
4823 text_action *t;
4824 for (t = action_list->head; t; t = t->next)
4825 {
4826 if (t->offset == offset)
4827 {
4828 switch (t->action)
4829 {
4830 case ta_none:
4831 case ta_fill:
4832 break;
4833 case ta_remove_insn:
4834 case ta_remove_longcall:
4835 case ta_convert_longcall:
4836 case ta_narrow_insn:
4837 case ta_widen_insn:
4838 return t;
4839 case ta_remove_literal:
4840 case ta_add_literal:
4841 BFD_ASSERT (0);
4842 break;
4843 }
4844 }
4845 }
4846 return NULL;
4847 }
4848
4849
4850 #if DEBUG
4851
4852 static void
4853 print_action_list (FILE *fp, text_action_list *action_list)
4854 {
4855 text_action *r;
4856
4857 fprintf (fp, "Text Action\n");
4858 for (r = action_list->head; r != NULL; r = r->next)
4859 {
4860 const char *t = "unknown";
4861 switch (r->action)
4862 {
4863 case ta_remove_insn:
4864 t = "remove_insn"; break;
4865 case ta_remove_longcall:
4866 t = "remove_longcall"; break;
4867 case ta_convert_longcall:
4868 t = "convert_longcall"; break;
4869 case ta_narrow_insn:
4870 t = "narrow_insn"; break;
4871 case ta_widen_insn:
4872 t = "widen_insn"; break;
4873 case ta_fill:
4874 t = "fill"; break;
4875 case ta_none:
4876 t = "none"; break;
4877 case ta_remove_literal:
4878 t = "remove_literal"; break;
4879 case ta_add_literal:
4880 t = "add_literal"; break;
4881 }
4882
4883 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4884 r->sec->owner->filename,
4885 r->sec->name, r->offset, t, r->removed_bytes);
4886 }
4887 }
4888
4889 #endif /* DEBUG */
4890
4891 \f
4892 /* Lists of literals being coalesced or removed. */
4893
4894 /* In the usual case, the literal identified by "from" is being
4895 coalesced with another literal identified by "to". If the literal is
4896 unused and is being removed altogether, "to.abfd" will be NULL.
4897 The removed_literal entries are kept on a per-section list, sorted
4898 by the "from" offset field. */
4899
4900 typedef struct removed_literal_struct removed_literal;
4901 typedef struct removed_literal_list_struct removed_literal_list;
4902
4903 struct removed_literal_struct
4904 {
4905 r_reloc from;
4906 r_reloc to;
4907 removed_literal *next;
4908 };
4909
4910 struct removed_literal_list_struct
4911 {
4912 removed_literal *head;
4913 removed_literal *tail;
4914 };
4915
4916
4917 /* Record that the literal at "from" is being removed. If "to" is not
4918 NULL, the "from" literal is being coalesced with the "to" literal. */
4919
4920 static void
4921 add_removed_literal (removed_literal_list *removed_list,
4922 const r_reloc *from,
4923 const r_reloc *to)
4924 {
4925 removed_literal *r, *new_r, *next_r;
4926
4927 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4928
4929 new_r->from = *from;
4930 if (to)
4931 new_r->to = *to;
4932 else
4933 new_r->to.abfd = NULL;
4934 new_r->next = NULL;
4935
4936 r = removed_list->head;
4937 if (r == NULL)
4938 {
4939 removed_list->head = new_r;
4940 removed_list->tail = new_r;
4941 }
4942 /* Special check for common case of append. */
4943 else if (removed_list->tail->from.target_offset < from->target_offset)
4944 {
4945 removed_list->tail->next = new_r;
4946 removed_list->tail = new_r;
4947 }
4948 else
4949 {
4950 while (r->from.target_offset < from->target_offset && r->next)
4951 {
4952 r = r->next;
4953 }
4954 next_r = r->next;
4955 r->next = new_r;
4956 new_r->next = next_r;
4957 if (next_r == NULL)
4958 removed_list->tail = new_r;
4959 }
4960 }
4961
4962
4963 /* Check if the list of removed literals contains an entry for the
4964 given address. Return the entry if found. */
4965
4966 static removed_literal *
4967 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
4968 {
4969 removed_literal *r = removed_list->head;
4970 while (r && r->from.target_offset < addr)
4971 r = r->next;
4972 if (r && r->from.target_offset == addr)
4973 return r;
4974 return NULL;
4975 }
4976
4977
4978 #if DEBUG
4979
4980 static void
4981 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
4982 {
4983 removed_literal *r;
4984 r = removed_list->head;
4985 if (r)
4986 fprintf (fp, "Removed Literals\n");
4987 for (; r != NULL; r = r->next)
4988 {
4989 print_r_reloc (fp, &r->from);
4990 fprintf (fp, " => ");
4991 if (r->to.abfd == NULL)
4992 fprintf (fp, "REMOVED");
4993 else
4994 print_r_reloc (fp, &r->to);
4995 fprintf (fp, "\n");
4996 }
4997 }
4998
4999 #endif /* DEBUG */
5000
5001 \f
5002 /* Per-section data for relaxation. */
5003
5004 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5005
5006 struct xtensa_relax_info_struct
5007 {
5008 bfd_boolean is_relaxable_literal_section;
5009 bfd_boolean is_relaxable_asm_section;
5010 int visited; /* Number of times visited. */
5011
5012 source_reloc *src_relocs; /* Array[src_count]. */
5013 int src_count;
5014 int src_next; /* Next src_relocs entry to assign. */
5015
5016 removed_literal_list removed_list;
5017 text_action_list action_list;
5018
5019 reloc_bfd_fix *fix_list;
5020 reloc_bfd_fix *fix_array;
5021 unsigned fix_array_count;
5022
5023 /* Support for expanding the reloc array that is stored
5024 in the section structure. If the relocations have been
5025 reallocated, the newly allocated relocations will be referenced
5026 here along with the actual size allocated. The relocation
5027 count will always be found in the section structure. */
5028 Elf_Internal_Rela *allocated_relocs;
5029 unsigned relocs_count;
5030 unsigned allocated_relocs_count;
5031 };
5032
5033 struct elf_xtensa_section_data
5034 {
5035 struct bfd_elf_section_data elf;
5036 xtensa_relax_info relax_info;
5037 };
5038
5039
5040 static bfd_boolean
5041 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5042 {
5043 if (!sec->used_by_bfd)
5044 {
5045 struct elf_xtensa_section_data *sdata;
5046 bfd_size_type amt = sizeof (*sdata);
5047
5048 sdata = bfd_zalloc (abfd, amt);
5049 if (sdata == NULL)
5050 return FALSE;
5051 sec->used_by_bfd = sdata;
5052 }
5053
5054 return _bfd_elf_new_section_hook (abfd, sec);
5055 }
5056
5057
5058 static xtensa_relax_info *
5059 get_xtensa_relax_info (asection *sec)
5060 {
5061 struct elf_xtensa_section_data *section_data;
5062
5063 /* No info available if no section or if it is an output section. */
5064 if (!sec || sec == sec->output_section)
5065 return NULL;
5066
5067 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5068 return &section_data->relax_info;
5069 }
5070
5071
5072 static void
5073 init_xtensa_relax_info (asection *sec)
5074 {
5075 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5076
5077 relax_info->is_relaxable_literal_section = FALSE;
5078 relax_info->is_relaxable_asm_section = FALSE;
5079 relax_info->visited = 0;
5080
5081 relax_info->src_relocs = NULL;
5082 relax_info->src_count = 0;
5083 relax_info->src_next = 0;
5084
5085 relax_info->removed_list.head = NULL;
5086 relax_info->removed_list.tail = NULL;
5087
5088 relax_info->action_list.head = NULL;
5089
5090 relax_info->fix_list = NULL;
5091 relax_info->fix_array = NULL;
5092 relax_info->fix_array_count = 0;
5093
5094 relax_info->allocated_relocs = NULL;
5095 relax_info->relocs_count = 0;
5096 relax_info->allocated_relocs_count = 0;
5097 }
5098
5099 \f
5100 /* Coalescing literals may require a relocation to refer to a section in
5101 a different input file, but the standard relocation information
5102 cannot express that. Instead, the reloc_bfd_fix structures are used
5103 to "fix" the relocations that refer to sections in other input files.
5104 These structures are kept on per-section lists. The "src_type" field
5105 records the relocation type in case there are multiple relocations on
5106 the same location. FIXME: This is ugly; an alternative might be to
5107 add new symbols with the "owner" field to some other input file. */
5108
5109 struct reloc_bfd_fix_struct
5110 {
5111 asection *src_sec;
5112 bfd_vma src_offset;
5113 unsigned src_type; /* Relocation type. */
5114
5115 asection *target_sec;
5116 bfd_vma target_offset;
5117 bfd_boolean translated;
5118
5119 reloc_bfd_fix *next;
5120 };
5121
5122
5123 static reloc_bfd_fix *
5124 reloc_bfd_fix_init (asection *src_sec,
5125 bfd_vma src_offset,
5126 unsigned src_type,
5127 asection *target_sec,
5128 bfd_vma target_offset,
5129 bfd_boolean translated)
5130 {
5131 reloc_bfd_fix *fix;
5132
5133 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5134 fix->src_sec = src_sec;
5135 fix->src_offset = src_offset;
5136 fix->src_type = src_type;
5137 fix->target_sec = target_sec;
5138 fix->target_offset = target_offset;
5139 fix->translated = translated;
5140
5141 return fix;
5142 }
5143
5144
5145 static void
5146 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5147 {
5148 xtensa_relax_info *relax_info;
5149
5150 relax_info = get_xtensa_relax_info (src_sec);
5151 fix->next = relax_info->fix_list;
5152 relax_info->fix_list = fix;
5153 }
5154
5155
5156 static int
5157 fix_compare (const void *ap, const void *bp)
5158 {
5159 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5160 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5161
5162 if (a->src_offset != b->src_offset)
5163 return (a->src_offset - b->src_offset);
5164 return (a->src_type - b->src_type);
5165 }
5166
5167
5168 static void
5169 cache_fix_array (asection *sec)
5170 {
5171 unsigned i, count = 0;
5172 reloc_bfd_fix *r;
5173 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5174
5175 if (relax_info == NULL)
5176 return;
5177 if (relax_info->fix_list == NULL)
5178 return;
5179
5180 for (r = relax_info->fix_list; r != NULL; r = r->next)
5181 count++;
5182
5183 relax_info->fix_array =
5184 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5185 relax_info->fix_array_count = count;
5186
5187 r = relax_info->fix_list;
5188 for (i = 0; i < count; i++, r = r->next)
5189 {
5190 relax_info->fix_array[count - 1 - i] = *r;
5191 relax_info->fix_array[count - 1 - i].next = NULL;
5192 }
5193
5194 qsort (relax_info->fix_array, relax_info->fix_array_count,
5195 sizeof (reloc_bfd_fix), fix_compare);
5196 }
5197
5198
5199 static reloc_bfd_fix *
5200 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
5201 {
5202 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5203 reloc_bfd_fix *rv;
5204 reloc_bfd_fix key;
5205
5206 if (relax_info == NULL)
5207 return NULL;
5208 if (relax_info->fix_list == NULL)
5209 return NULL;
5210
5211 if (relax_info->fix_array == NULL)
5212 cache_fix_array (sec);
5213
5214 key.src_offset = offset;
5215 key.src_type = type;
5216 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5217 sizeof (reloc_bfd_fix), fix_compare);
5218 return rv;
5219 }
5220
5221 \f
5222 /* Section caching. */
5223
5224 typedef struct section_cache_struct section_cache_t;
5225
5226 struct section_cache_struct
5227 {
5228 asection *sec;
5229
5230 bfd_byte *contents; /* Cache of the section contents. */
5231 bfd_size_type content_length;
5232
5233 property_table_entry *ptbl; /* Cache of the section property table. */
5234 unsigned pte_count;
5235
5236 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5237 unsigned reloc_count;
5238 };
5239
5240
5241 static void
5242 init_section_cache (section_cache_t *sec_cache)
5243 {
5244 memset (sec_cache, 0, sizeof (*sec_cache));
5245 }
5246
5247
5248 static void
5249 clear_section_cache (section_cache_t *sec_cache)
5250 {
5251 if (sec_cache->sec)
5252 {
5253 release_contents (sec_cache->sec, sec_cache->contents);
5254 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5255 if (sec_cache->ptbl)
5256 free (sec_cache->ptbl);
5257 memset (sec_cache, 0, sizeof (sec_cache));
5258 }
5259 }
5260
5261
5262 static bfd_boolean
5263 section_cache_section (section_cache_t *sec_cache,
5264 asection *sec,
5265 struct bfd_link_info *link_info)
5266 {
5267 bfd *abfd;
5268 property_table_entry *prop_table = NULL;
5269 int ptblsize = 0;
5270 bfd_byte *contents = NULL;
5271 Elf_Internal_Rela *internal_relocs = NULL;
5272 bfd_size_type sec_size;
5273
5274 if (sec == NULL)
5275 return FALSE;
5276 if (sec == sec_cache->sec)
5277 return TRUE;
5278
5279 abfd = sec->owner;
5280 sec_size = bfd_get_section_limit (abfd, sec);
5281
5282 /* Get the contents. */
5283 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5284 if (contents == NULL && sec_size != 0)
5285 goto err;
5286
5287 /* Get the relocations. */
5288 internal_relocs = retrieve_internal_relocs (abfd, sec,
5289 link_info->keep_memory);
5290
5291 /* Get the entry table. */
5292 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5293 XTENSA_PROP_SEC_NAME, FALSE);
5294 if (ptblsize < 0)
5295 goto err;
5296
5297 /* Fill in the new section cache. */
5298 clear_section_cache (sec_cache);
5299 memset (sec_cache, 0, sizeof (sec_cache));
5300
5301 sec_cache->sec = sec;
5302 sec_cache->contents = contents;
5303 sec_cache->content_length = sec_size;
5304 sec_cache->relocs = internal_relocs;
5305 sec_cache->reloc_count = sec->reloc_count;
5306 sec_cache->pte_count = ptblsize;
5307 sec_cache->ptbl = prop_table;
5308
5309 return TRUE;
5310
5311 err:
5312 release_contents (sec, contents);
5313 release_internal_relocs (sec, internal_relocs);
5314 if (prop_table)
5315 free (prop_table);
5316 return FALSE;
5317 }
5318
5319 \f
5320 /* Extended basic blocks. */
5321
5322 /* An ebb_struct represents an Extended Basic Block. Within this
5323 range, we guarantee that all instructions are decodable, the
5324 property table entries are contiguous, and no property table
5325 specifies a segment that cannot have instructions moved. This
5326 structure contains caches of the contents, property table and
5327 relocations for the specified section for easy use. The range is
5328 specified by ranges of indices for the byte offset, property table
5329 offsets and relocation offsets. These must be consistent. */
5330
5331 typedef struct ebb_struct ebb_t;
5332
5333 struct ebb_struct
5334 {
5335 asection *sec;
5336
5337 bfd_byte *contents; /* Cache of the section contents. */
5338 bfd_size_type content_length;
5339
5340 property_table_entry *ptbl; /* Cache of the section property table. */
5341 unsigned pte_count;
5342
5343 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5344 unsigned reloc_count;
5345
5346 bfd_vma start_offset; /* Offset in section. */
5347 unsigned start_ptbl_idx; /* Offset in the property table. */
5348 unsigned start_reloc_idx; /* Offset in the relocations. */
5349
5350 bfd_vma end_offset;
5351 unsigned end_ptbl_idx;
5352 unsigned end_reloc_idx;
5353
5354 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5355
5356 /* The unreachable property table at the end of this set of blocks;
5357 NULL if the end is not an unreachable block. */
5358 property_table_entry *ends_unreachable;
5359 };
5360
5361
5362 enum ebb_target_enum
5363 {
5364 EBB_NO_ALIGN = 0,
5365 EBB_DESIRE_TGT_ALIGN,
5366 EBB_REQUIRE_TGT_ALIGN,
5367 EBB_REQUIRE_LOOP_ALIGN,
5368 EBB_REQUIRE_ALIGN
5369 };
5370
5371
5372 /* proposed_action_struct is similar to the text_action_struct except
5373 that is represents a potential transformation, not one that will
5374 occur. We build a list of these for an extended basic block
5375 and use them to compute the actual actions desired. We must be
5376 careful that the entire set of actual actions we perform do not
5377 break any relocations that would fit if the actions were not
5378 performed. */
5379
5380 typedef struct proposed_action_struct proposed_action;
5381
5382 struct proposed_action_struct
5383 {
5384 enum ebb_target_enum align_type; /* for the target alignment */
5385 bfd_vma alignment_pow;
5386 text_action_t action;
5387 bfd_vma offset;
5388 int removed_bytes;
5389 bfd_boolean do_action; /* If false, then we will not perform the action. */
5390 };
5391
5392
5393 /* The ebb_constraint_struct keeps a set of proposed actions for an
5394 extended basic block. */
5395
5396 typedef struct ebb_constraint_struct ebb_constraint;
5397
5398 struct ebb_constraint_struct
5399 {
5400 ebb_t ebb;
5401 bfd_boolean start_movable;
5402
5403 /* Bytes of extra space at the beginning if movable. */
5404 int start_extra_space;
5405
5406 enum ebb_target_enum start_align;
5407
5408 bfd_boolean end_movable;
5409
5410 /* Bytes of extra space at the end if movable. */
5411 int end_extra_space;
5412
5413 unsigned action_count;
5414 unsigned action_allocated;
5415
5416 /* Array of proposed actions. */
5417 proposed_action *actions;
5418
5419 /* Action alignments -- one for each proposed action. */
5420 enum ebb_target_enum *action_aligns;
5421 };
5422
5423
5424 static void
5425 init_ebb_constraint (ebb_constraint *c)
5426 {
5427 memset (c, 0, sizeof (ebb_constraint));
5428 }
5429
5430
5431 static void
5432 free_ebb_constraint (ebb_constraint *c)
5433 {
5434 if (c->actions)
5435 free (c->actions);
5436 }
5437
5438
5439 static void
5440 init_ebb (ebb_t *ebb,
5441 asection *sec,
5442 bfd_byte *contents,
5443 bfd_size_type content_length,
5444 property_table_entry *prop_table,
5445 unsigned ptblsize,
5446 Elf_Internal_Rela *internal_relocs,
5447 unsigned reloc_count)
5448 {
5449 memset (ebb, 0, sizeof (ebb_t));
5450 ebb->sec = sec;
5451 ebb->contents = contents;
5452 ebb->content_length = content_length;
5453 ebb->ptbl = prop_table;
5454 ebb->pte_count = ptblsize;
5455 ebb->relocs = internal_relocs;
5456 ebb->reloc_count = reloc_count;
5457 ebb->start_offset = 0;
5458 ebb->end_offset = ebb->content_length - 1;
5459 ebb->start_ptbl_idx = 0;
5460 ebb->end_ptbl_idx = ptblsize;
5461 ebb->start_reloc_idx = 0;
5462 ebb->end_reloc_idx = reloc_count;
5463 }
5464
5465
5466 /* Extend the ebb to all decodable contiguous sections. The algorithm
5467 for building a basic block around an instruction is to push it
5468 forward until we hit the end of a section, an unreachable block or
5469 a block that cannot be transformed. Then we push it backwards
5470 searching for similar conditions. */
5471
5472 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5473 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5474 static bfd_size_type insn_block_decodable_len
5475 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5476
5477 static bfd_boolean
5478 extend_ebb_bounds (ebb_t *ebb)
5479 {
5480 if (!extend_ebb_bounds_forward (ebb))
5481 return FALSE;
5482 if (!extend_ebb_bounds_backward (ebb))
5483 return FALSE;
5484 return TRUE;
5485 }
5486
5487
5488 static bfd_boolean
5489 extend_ebb_bounds_forward (ebb_t *ebb)
5490 {
5491 property_table_entry *the_entry, *new_entry;
5492
5493 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5494
5495 /* Stop when (1) we cannot decode an instruction, (2) we are at
5496 the end of the property tables, (3) we hit a non-contiguous property
5497 table entry, (4) we hit a NO_TRANSFORM region. */
5498
5499 while (1)
5500 {
5501 bfd_vma entry_end;
5502 bfd_size_type insn_block_len;
5503
5504 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5505 insn_block_len =
5506 insn_block_decodable_len (ebb->contents, ebb->content_length,
5507 ebb->end_offset,
5508 entry_end - ebb->end_offset);
5509 if (insn_block_len != (entry_end - ebb->end_offset))
5510 {
5511 (*_bfd_error_handler)
5512 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5513 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5514 return FALSE;
5515 }
5516 ebb->end_offset += insn_block_len;
5517
5518 if (ebb->end_offset == ebb->sec->size)
5519 ebb->ends_section = TRUE;
5520
5521 /* Update the reloc counter. */
5522 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5523 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5524 < ebb->end_offset))
5525 {
5526 ebb->end_reloc_idx++;
5527 }
5528
5529 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5530 return TRUE;
5531
5532 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5533 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5534 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
5535 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5536 break;
5537
5538 if (the_entry->address + the_entry->size != new_entry->address)
5539 break;
5540
5541 the_entry = new_entry;
5542 ebb->end_ptbl_idx++;
5543 }
5544
5545 /* Quick check for an unreachable or end of file just at the end. */
5546 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5547 {
5548 if (ebb->end_offset == ebb->content_length)
5549 ebb->ends_section = TRUE;
5550 }
5551 else
5552 {
5553 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5554 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5555 && the_entry->address + the_entry->size == new_entry->address)
5556 ebb->ends_unreachable = new_entry;
5557 }
5558
5559 /* Any other ending requires exact alignment. */
5560 return TRUE;
5561 }
5562
5563
5564 static bfd_boolean
5565 extend_ebb_bounds_backward (ebb_t *ebb)
5566 {
5567 property_table_entry *the_entry, *new_entry;
5568
5569 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5570
5571 /* Stop when (1) we cannot decode the instructions in the current entry.
5572 (2) we are at the beginning of the property tables, (3) we hit a
5573 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5574
5575 while (1)
5576 {
5577 bfd_vma block_begin;
5578 bfd_size_type insn_block_len;
5579
5580 block_begin = the_entry->address - ebb->sec->vma;
5581 insn_block_len =
5582 insn_block_decodable_len (ebb->contents, ebb->content_length,
5583 block_begin,
5584 ebb->start_offset - block_begin);
5585 if (insn_block_len != ebb->start_offset - block_begin)
5586 {
5587 (*_bfd_error_handler)
5588 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5589 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5590 return FALSE;
5591 }
5592 ebb->start_offset -= insn_block_len;
5593
5594 /* Update the reloc counter. */
5595 while (ebb->start_reloc_idx > 0
5596 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5597 >= ebb->start_offset))
5598 {
5599 ebb->start_reloc_idx--;
5600 }
5601
5602 if (ebb->start_ptbl_idx == 0)
5603 return TRUE;
5604
5605 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5606 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5607 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
5608 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5609 return TRUE;
5610 if (new_entry->address + new_entry->size != the_entry->address)
5611 return TRUE;
5612
5613 the_entry = new_entry;
5614 ebb->start_ptbl_idx--;
5615 }
5616 return TRUE;
5617 }
5618
5619
5620 static bfd_size_type
5621 insn_block_decodable_len (bfd_byte *contents,
5622 bfd_size_type content_len,
5623 bfd_vma block_offset,
5624 bfd_size_type block_len)
5625 {
5626 bfd_vma offset = block_offset;
5627
5628 while (offset < block_offset + block_len)
5629 {
5630 bfd_size_type insn_len = 0;
5631
5632 insn_len = insn_decode_len (contents, content_len, offset);
5633 if (insn_len == 0)
5634 return (offset - block_offset);
5635 offset += insn_len;
5636 }
5637 return (offset - block_offset);
5638 }
5639
5640
5641 static void
5642 ebb_propose_action (ebb_constraint *c,
5643 enum ebb_target_enum align_type,
5644 bfd_vma alignment_pow,
5645 text_action_t action,
5646 bfd_vma offset,
5647 int removed_bytes,
5648 bfd_boolean do_action)
5649 {
5650 proposed_action *act;
5651
5652 if (c->action_allocated <= c->action_count)
5653 {
5654 unsigned new_allocated, i;
5655 proposed_action *new_actions;
5656
5657 new_allocated = (c->action_count + 2) * 2;
5658 new_actions = (proposed_action *)
5659 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5660
5661 for (i = 0; i < c->action_count; i++)
5662 new_actions[i] = c->actions[i];
5663 if (c->actions)
5664 free (c->actions);
5665 c->actions = new_actions;
5666 c->action_allocated = new_allocated;
5667 }
5668
5669 act = &c->actions[c->action_count];
5670 act->align_type = align_type;
5671 act->alignment_pow = alignment_pow;
5672 act->action = action;
5673 act->offset = offset;
5674 act->removed_bytes = removed_bytes;
5675 act->do_action = do_action;
5676
5677 c->action_count++;
5678 }
5679
5680 \f
5681 /* Access to internal relocations, section contents and symbols. */
5682
5683 /* During relaxation, we need to modify relocations, section contents,
5684 and symbol definitions, and we need to keep the original values from
5685 being reloaded from the input files, i.e., we need to "pin" the
5686 modified values in memory. We also want to continue to observe the
5687 setting of the "keep-memory" flag. The following functions wrap the
5688 standard BFD functions to take care of this for us. */
5689
5690 static Elf_Internal_Rela *
5691 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5692 {
5693 Elf_Internal_Rela *internal_relocs;
5694
5695 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5696 return NULL;
5697
5698 internal_relocs = elf_section_data (sec)->relocs;
5699 if (internal_relocs == NULL)
5700 internal_relocs = (_bfd_elf_link_read_relocs
5701 (abfd, sec, NULL, NULL, keep_memory));
5702 return internal_relocs;
5703 }
5704
5705
5706 static void
5707 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5708 {
5709 elf_section_data (sec)->relocs = internal_relocs;
5710 }
5711
5712
5713 static void
5714 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5715 {
5716 if (internal_relocs
5717 && elf_section_data (sec)->relocs != internal_relocs)
5718 free (internal_relocs);
5719 }
5720
5721
5722 static bfd_byte *
5723 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5724 {
5725 bfd_byte *contents;
5726 bfd_size_type sec_size;
5727
5728 sec_size = bfd_get_section_limit (abfd, sec);
5729 contents = elf_section_data (sec)->this_hdr.contents;
5730
5731 if (contents == NULL && sec_size != 0)
5732 {
5733 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5734 {
5735 if (contents)
5736 free (contents);
5737 return NULL;
5738 }
5739 if (keep_memory)
5740 elf_section_data (sec)->this_hdr.contents = contents;
5741 }
5742 return contents;
5743 }
5744
5745
5746 static void
5747 pin_contents (asection *sec, bfd_byte *contents)
5748 {
5749 elf_section_data (sec)->this_hdr.contents = contents;
5750 }
5751
5752
5753 static void
5754 release_contents (asection *sec, bfd_byte *contents)
5755 {
5756 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5757 free (contents);
5758 }
5759
5760
5761 static Elf_Internal_Sym *
5762 retrieve_local_syms (bfd *input_bfd)
5763 {
5764 Elf_Internal_Shdr *symtab_hdr;
5765 Elf_Internal_Sym *isymbuf;
5766 size_t locsymcount;
5767
5768 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5769 locsymcount = symtab_hdr->sh_info;
5770
5771 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5772 if (isymbuf == NULL && locsymcount != 0)
5773 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5774 NULL, NULL, NULL);
5775
5776 /* Save the symbols for this input file so they won't be read again. */
5777 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5778 symtab_hdr->contents = (unsigned char *) isymbuf;
5779
5780 return isymbuf;
5781 }
5782
5783 \f
5784 /* Code for link-time relaxation. */
5785
5786 /* Initialization for relaxation: */
5787 static bfd_boolean analyze_relocations (struct bfd_link_info *);
5788 static bfd_boolean find_relaxable_sections
5789 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
5790 static bfd_boolean collect_source_relocs
5791 (bfd *, asection *, struct bfd_link_info *);
5792 static bfd_boolean is_resolvable_asm_expansion
5793 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5794 bfd_boolean *);
5795 static Elf_Internal_Rela *find_associated_l32r_irel
5796 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
5797 static bfd_boolean compute_text_actions
5798 (bfd *, asection *, struct bfd_link_info *);
5799 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5800 static bfd_boolean compute_ebb_actions (ebb_constraint *);
5801 static bfd_boolean check_section_ebb_pcrels_fit
5802 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5803 const xtensa_opcode *);
5804 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
5805 static void text_action_add_proposed
5806 (text_action_list *, const ebb_constraint *, asection *);
5807 static int compute_fill_extra_space (property_table_entry *);
5808
5809 /* First pass: */
5810 static bfd_boolean compute_removed_literals
5811 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
5812 static Elf_Internal_Rela *get_irel_at_offset
5813 (asection *, Elf_Internal_Rela *, bfd_vma);
5814 static bfd_boolean is_removable_literal
5815 (const source_reloc *, int, const source_reloc *, int, asection *,
5816 property_table_entry *, int);
5817 static bfd_boolean remove_dead_literal
5818 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5819 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5820 static bfd_boolean identify_literal_placement
5821 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5822 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5823 source_reloc *, property_table_entry *, int, section_cache_t *,
5824 bfd_boolean);
5825 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
5826 static bfd_boolean coalesce_shared_literal
5827 (asection *, source_reloc *, property_table_entry *, int, value_map *);
5828 static bfd_boolean move_shared_literal
5829 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5830 int, const r_reloc *, const literal_value *, section_cache_t *);
5831
5832 /* Second pass: */
5833 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5834 static bfd_boolean translate_section_fixes (asection *);
5835 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5836 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
5837 static void shrink_dynamic_reloc_sections
5838 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
5839 static bfd_boolean move_literal
5840 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5841 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
5842 static bfd_boolean relax_property_section
5843 (bfd *, asection *, struct bfd_link_info *);
5844
5845 /* Third pass: */
5846 static bfd_boolean relax_section_symbols (bfd *, asection *);
5847
5848
5849 static bfd_boolean
5850 elf_xtensa_relax_section (bfd *abfd,
5851 asection *sec,
5852 struct bfd_link_info *link_info,
5853 bfd_boolean *again)
5854 {
5855 static value_map_hash_table *values = NULL;
5856 static bfd_boolean relocations_analyzed = FALSE;
5857 xtensa_relax_info *relax_info;
5858
5859 if (!relocations_analyzed)
5860 {
5861 /* Do some overall initialization for relaxation. */
5862 values = value_map_hash_table_init ();
5863 if (values == NULL)
5864 return FALSE;
5865 relaxing_section = TRUE;
5866 if (!analyze_relocations (link_info))
5867 return FALSE;
5868 relocations_analyzed = TRUE;
5869 }
5870 *again = FALSE;
5871
5872 /* Don't mess with linker-created sections. */
5873 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5874 return TRUE;
5875
5876 relax_info = get_xtensa_relax_info (sec);
5877 BFD_ASSERT (relax_info != NULL);
5878
5879 switch (relax_info->visited)
5880 {
5881 case 0:
5882 /* Note: It would be nice to fold this pass into
5883 analyze_relocations, but it is important for this step that the
5884 sections be examined in link order. */
5885 if (!compute_removed_literals (abfd, sec, link_info, values))
5886 return FALSE;
5887 *again = TRUE;
5888 break;
5889
5890 case 1:
5891 if (values)
5892 value_map_hash_table_delete (values);
5893 values = NULL;
5894 if (!relax_section (abfd, sec, link_info))
5895 return FALSE;
5896 *again = TRUE;
5897 break;
5898
5899 case 2:
5900 if (!relax_section_symbols (abfd, sec))
5901 return FALSE;
5902 break;
5903 }
5904
5905 relax_info->visited++;
5906 return TRUE;
5907 }
5908
5909 \f
5910 /* Initialization for relaxation. */
5911
5912 /* This function is called once at the start of relaxation. It scans
5913 all the input sections and marks the ones that are relaxable (i.e.,
5914 literal sections with L32R relocations against them), and then
5915 collects source_reloc information for all the relocations against
5916 those relaxable sections. During this process, it also detects
5917 longcalls, i.e., calls relaxed by the assembler into indirect
5918 calls, that can be optimized back into direct calls. Within each
5919 extended basic block (ebb) containing an optimized longcall, it
5920 computes a set of "text actions" that can be performed to remove
5921 the L32R associated with the longcall while optionally preserving
5922 branch target alignments. */
5923
5924 static bfd_boolean
5925 analyze_relocations (struct bfd_link_info *link_info)
5926 {
5927 bfd *abfd;
5928 asection *sec;
5929 bfd_boolean is_relaxable = FALSE;
5930
5931 /* Initialize the per-section relaxation info. */
5932 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5933 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5934 {
5935 init_xtensa_relax_info (sec);
5936 }
5937
5938 /* Mark relaxable sections (and count relocations against each one). */
5939 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5940 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5941 {
5942 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5943 return FALSE;
5944 }
5945
5946 /* Bail out if there are no relaxable sections. */
5947 if (!is_relaxable)
5948 return TRUE;
5949
5950 /* Allocate space for source_relocs. */
5951 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5952 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5953 {
5954 xtensa_relax_info *relax_info;
5955
5956 relax_info = get_xtensa_relax_info (sec);
5957 if (relax_info->is_relaxable_literal_section
5958 || relax_info->is_relaxable_asm_section)
5959 {
5960 relax_info->src_relocs = (source_reloc *)
5961 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5962 }
5963 else
5964 relax_info->src_count = 0;
5965 }
5966
5967 /* Collect info on relocations against each relaxable section. */
5968 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5969 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5970 {
5971 if (!collect_source_relocs (abfd, sec, link_info))
5972 return FALSE;
5973 }
5974
5975 /* Compute the text actions. */
5976 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5977 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5978 {
5979 if (!compute_text_actions (abfd, sec, link_info))
5980 return FALSE;
5981 }
5982
5983 return TRUE;
5984 }
5985
5986
5987 /* Find all the sections that might be relaxed. The motivation for
5988 this pass is that collect_source_relocs() needs to record _all_ the
5989 relocations that target each relaxable section. That is expensive
5990 and unnecessary unless the target section is actually going to be
5991 relaxed. This pass identifies all such sections by checking if
5992 they have L32Rs pointing to them. In the process, the total number
5993 of relocations targeting each section is also counted so that we
5994 know how much space to allocate for source_relocs against each
5995 relaxable literal section. */
5996
5997 static bfd_boolean
5998 find_relaxable_sections (bfd *abfd,
5999 asection *sec,
6000 struct bfd_link_info *link_info,
6001 bfd_boolean *is_relaxable_p)
6002 {
6003 Elf_Internal_Rela *internal_relocs;
6004 bfd_byte *contents;
6005 bfd_boolean ok = TRUE;
6006 unsigned i;
6007 xtensa_relax_info *source_relax_info;
6008 bfd_boolean is_l32r_reloc;
6009
6010 internal_relocs = retrieve_internal_relocs (abfd, sec,
6011 link_info->keep_memory);
6012 if (internal_relocs == NULL)
6013 return ok;
6014
6015 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6016 if (contents == NULL && sec->size != 0)
6017 {
6018 ok = FALSE;
6019 goto error_return;
6020 }
6021
6022 source_relax_info = get_xtensa_relax_info (sec);
6023 for (i = 0; i < sec->reloc_count; i++)
6024 {
6025 Elf_Internal_Rela *irel = &internal_relocs[i];
6026 r_reloc r_rel;
6027 asection *target_sec;
6028 xtensa_relax_info *target_relax_info;
6029
6030 /* If this section has not already been marked as "relaxable", and
6031 if it contains any ASM_EXPAND relocations (marking expanded
6032 longcalls) that can be optimized into direct calls, then mark
6033 the section as "relaxable". */
6034 if (source_relax_info
6035 && !source_relax_info->is_relaxable_asm_section
6036 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6037 {
6038 bfd_boolean is_reachable = FALSE;
6039 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6040 link_info, &is_reachable)
6041 && is_reachable)
6042 {
6043 source_relax_info->is_relaxable_asm_section = TRUE;
6044 *is_relaxable_p = TRUE;
6045 }
6046 }
6047
6048 r_reloc_init (&r_rel, abfd, irel, contents,
6049 bfd_get_section_limit (abfd, sec));
6050
6051 target_sec = r_reloc_get_section (&r_rel);
6052 target_relax_info = get_xtensa_relax_info (target_sec);
6053 if (!target_relax_info)
6054 continue;
6055
6056 /* Count PC-relative operand relocations against the target section.
6057 Note: The conditions tested here must match the conditions under
6058 which init_source_reloc is called in collect_source_relocs(). */
6059 is_l32r_reloc = FALSE;
6060 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6061 {
6062 xtensa_opcode opcode =
6063 get_relocation_opcode (abfd, sec, contents, irel);
6064 if (opcode != XTENSA_UNDEFINED)
6065 {
6066 is_l32r_reloc = (opcode == get_l32r_opcode ());
6067 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6068 || is_l32r_reloc)
6069 target_relax_info->src_count++;
6070 }
6071 }
6072
6073 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
6074 {
6075 /* Mark the target section as relaxable. */
6076 target_relax_info->is_relaxable_literal_section = TRUE;
6077 *is_relaxable_p = TRUE;
6078 }
6079 }
6080
6081 error_return:
6082 release_contents (sec, contents);
6083 release_internal_relocs (sec, internal_relocs);
6084 return ok;
6085 }
6086
6087
6088 /* Record _all_ the relocations that point to relaxable sections, and
6089 get rid of ASM_EXPAND relocs by either converting them to
6090 ASM_SIMPLIFY or by removing them. */
6091
6092 static bfd_boolean
6093 collect_source_relocs (bfd *abfd,
6094 asection *sec,
6095 struct bfd_link_info *link_info)
6096 {
6097 Elf_Internal_Rela *internal_relocs;
6098 bfd_byte *contents;
6099 bfd_boolean ok = TRUE;
6100 unsigned i;
6101 bfd_size_type sec_size;
6102
6103 internal_relocs = retrieve_internal_relocs (abfd, sec,
6104 link_info->keep_memory);
6105 if (internal_relocs == NULL)
6106 return ok;
6107
6108 sec_size = bfd_get_section_limit (abfd, sec);
6109 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6110 if (contents == NULL && sec_size != 0)
6111 {
6112 ok = FALSE;
6113 goto error_return;
6114 }
6115
6116 /* Record relocations against relaxable literal sections. */
6117 for (i = 0; i < sec->reloc_count; i++)
6118 {
6119 Elf_Internal_Rela *irel = &internal_relocs[i];
6120 r_reloc r_rel;
6121 asection *target_sec;
6122 xtensa_relax_info *target_relax_info;
6123
6124 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6125
6126 target_sec = r_reloc_get_section (&r_rel);
6127 target_relax_info = get_xtensa_relax_info (target_sec);
6128
6129 if (target_relax_info
6130 && (target_relax_info->is_relaxable_literal_section
6131 || target_relax_info->is_relaxable_asm_section))
6132 {
6133 xtensa_opcode opcode = XTENSA_UNDEFINED;
6134 int opnd = -1;
6135 bfd_boolean is_abs_literal = FALSE;
6136
6137 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6138 {
6139 /* None of the current alternate relocs are PC-relative,
6140 and only PC-relative relocs matter here. However, we
6141 still need to record the opcode for literal
6142 coalescing. */
6143 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6144 if (opcode == get_l32r_opcode ())
6145 {
6146 is_abs_literal = TRUE;
6147 opnd = 1;
6148 }
6149 else
6150 opcode = XTENSA_UNDEFINED;
6151 }
6152 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6153 {
6154 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6155 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6156 }
6157
6158 if (opcode != XTENSA_UNDEFINED)
6159 {
6160 int src_next = target_relax_info->src_next++;
6161 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6162
6163 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6164 is_abs_literal);
6165 }
6166 }
6167 }
6168
6169 /* Now get rid of ASM_EXPAND relocations. At this point, the
6170 src_relocs array for the target literal section may still be
6171 incomplete, but it must at least contain the entries for the L32R
6172 relocations associated with ASM_EXPANDs because they were just
6173 added in the preceding loop over the relocations. */
6174
6175 for (i = 0; i < sec->reloc_count; i++)
6176 {
6177 Elf_Internal_Rela *irel = &internal_relocs[i];
6178 bfd_boolean is_reachable;
6179
6180 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6181 &is_reachable))
6182 continue;
6183
6184 if (is_reachable)
6185 {
6186 Elf_Internal_Rela *l32r_irel;
6187 r_reloc r_rel;
6188 asection *target_sec;
6189 xtensa_relax_info *target_relax_info;
6190
6191 /* Mark the source_reloc for the L32R so that it will be
6192 removed in compute_removed_literals(), along with the
6193 associated literal. */
6194 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6195 irel, internal_relocs);
6196 if (l32r_irel == NULL)
6197 continue;
6198
6199 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6200
6201 target_sec = r_reloc_get_section (&r_rel);
6202 target_relax_info = get_xtensa_relax_info (target_sec);
6203
6204 if (target_relax_info
6205 && (target_relax_info->is_relaxable_literal_section
6206 || target_relax_info->is_relaxable_asm_section))
6207 {
6208 source_reloc *s_reloc;
6209
6210 /* Search the source_relocs for the entry corresponding to
6211 the l32r_irel. Note: The src_relocs array is not yet
6212 sorted, but it wouldn't matter anyway because we're
6213 searching by source offset instead of target offset. */
6214 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6215 target_relax_info->src_next,
6216 sec, l32r_irel);
6217 BFD_ASSERT (s_reloc);
6218 s_reloc->is_null = TRUE;
6219 }
6220
6221 /* Convert this reloc to ASM_SIMPLIFY. */
6222 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6223 R_XTENSA_ASM_SIMPLIFY);
6224 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6225
6226 pin_internal_relocs (sec, internal_relocs);
6227 }
6228 else
6229 {
6230 /* It is resolvable but doesn't reach. We resolve now
6231 by eliminating the relocation -- the call will remain
6232 expanded into L32R/CALLX. */
6233 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6234 pin_internal_relocs (sec, internal_relocs);
6235 }
6236 }
6237
6238 error_return:
6239 release_contents (sec, contents);
6240 release_internal_relocs (sec, internal_relocs);
6241 return ok;
6242 }
6243
6244
6245 /* Return TRUE if the asm expansion can be resolved. Generally it can
6246 be resolved on a final link or when a partial link locates it in the
6247 same section as the target. Set "is_reachable" flag if the target of
6248 the call is within the range of a direct call, given the current VMA
6249 for this section and the target section. */
6250
6251 bfd_boolean
6252 is_resolvable_asm_expansion (bfd *abfd,
6253 asection *sec,
6254 bfd_byte *contents,
6255 Elf_Internal_Rela *irel,
6256 struct bfd_link_info *link_info,
6257 bfd_boolean *is_reachable_p)
6258 {
6259 asection *target_sec;
6260 bfd_vma target_offset;
6261 r_reloc r_rel;
6262 xtensa_opcode opcode, direct_call_opcode;
6263 bfd_vma self_address;
6264 bfd_vma dest_address;
6265 bfd_boolean uses_l32r;
6266 bfd_size_type sec_size;
6267
6268 *is_reachable_p = FALSE;
6269
6270 if (contents == NULL)
6271 return FALSE;
6272
6273 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6274 return FALSE;
6275
6276 sec_size = bfd_get_section_limit (abfd, sec);
6277 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6278 sec_size - irel->r_offset, &uses_l32r);
6279 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6280 if (!uses_l32r)
6281 return FALSE;
6282
6283 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6284 if (direct_call_opcode == XTENSA_UNDEFINED)
6285 return FALSE;
6286
6287 /* Check and see that the target resolves. */
6288 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6289 if (!r_reloc_is_defined (&r_rel))
6290 return FALSE;
6291
6292 target_sec = r_reloc_get_section (&r_rel);
6293 target_offset = r_rel.target_offset;
6294
6295 /* If the target is in a shared library, then it doesn't reach. This
6296 isn't supposed to come up because the compiler should never generate
6297 non-PIC calls on systems that use shared libraries, but the linker
6298 shouldn't crash regardless. */
6299 if (!target_sec->output_section)
6300 return FALSE;
6301
6302 /* For relocatable sections, we can only simplify when the output
6303 section of the target is the same as the output section of the
6304 source. */
6305 if (link_info->relocatable
6306 && (target_sec->output_section != sec->output_section
6307 || is_reloc_sym_weak (abfd, irel)))
6308 return FALSE;
6309
6310 self_address = (sec->output_section->vma
6311 + sec->output_offset + irel->r_offset + 3);
6312 dest_address = (target_sec->output_section->vma
6313 + target_sec->output_offset + target_offset);
6314
6315 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6316 self_address, dest_address);
6317
6318 if ((self_address >> CALL_SEGMENT_BITS) !=
6319 (dest_address >> CALL_SEGMENT_BITS))
6320 return FALSE;
6321
6322 return TRUE;
6323 }
6324
6325
6326 static Elf_Internal_Rela *
6327 find_associated_l32r_irel (bfd *abfd,
6328 asection *sec,
6329 bfd_byte *contents,
6330 Elf_Internal_Rela *other_irel,
6331 Elf_Internal_Rela *internal_relocs)
6332 {
6333 unsigned i;
6334
6335 for (i = 0; i < sec->reloc_count; i++)
6336 {
6337 Elf_Internal_Rela *irel = &internal_relocs[i];
6338
6339 if (irel == other_irel)
6340 continue;
6341 if (irel->r_offset != other_irel->r_offset)
6342 continue;
6343 if (is_l32r_relocation (abfd, sec, contents, irel))
6344 return irel;
6345 }
6346
6347 return NULL;
6348 }
6349
6350
6351 static xtensa_opcode *
6352 build_reloc_opcodes (bfd *abfd,
6353 asection *sec,
6354 bfd_byte *contents,
6355 Elf_Internal_Rela *internal_relocs)
6356 {
6357 unsigned i;
6358 xtensa_opcode *reloc_opcodes =
6359 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6360 for (i = 0; i < sec->reloc_count; i++)
6361 {
6362 Elf_Internal_Rela *irel = &internal_relocs[i];
6363 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6364 }
6365 return reloc_opcodes;
6366 }
6367
6368
6369 /* The compute_text_actions function will build a list of potential
6370 transformation actions for code in the extended basic block of each
6371 longcall that is optimized to a direct call. From this list we
6372 generate a set of actions to actually perform that optimizes for
6373 space and, if not using size_opt, maintains branch target
6374 alignments.
6375
6376 These actions to be performed are placed on a per-section list.
6377 The actual changes are performed by relax_section() in the second
6378 pass. */
6379
6380 bfd_boolean
6381 compute_text_actions (bfd *abfd,
6382 asection *sec,
6383 struct bfd_link_info *link_info)
6384 {
6385 xtensa_opcode *reloc_opcodes = NULL;
6386 xtensa_relax_info *relax_info;
6387 bfd_byte *contents;
6388 Elf_Internal_Rela *internal_relocs;
6389 bfd_boolean ok = TRUE;
6390 unsigned i;
6391 property_table_entry *prop_table = 0;
6392 int ptblsize = 0;
6393 bfd_size_type sec_size;
6394
6395 relax_info = get_xtensa_relax_info (sec);
6396 BFD_ASSERT (relax_info);
6397 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
6398
6399 /* Do nothing if the section contains no optimized longcalls. */
6400 if (!relax_info->is_relaxable_asm_section)
6401 return ok;
6402
6403 internal_relocs = retrieve_internal_relocs (abfd, sec,
6404 link_info->keep_memory);
6405
6406 if (internal_relocs)
6407 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6408 internal_reloc_compare);
6409
6410 sec_size = bfd_get_section_limit (abfd, sec);
6411 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6412 if (contents == NULL && sec_size != 0)
6413 {
6414 ok = FALSE;
6415 goto error_return;
6416 }
6417
6418 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6419 XTENSA_PROP_SEC_NAME, FALSE);
6420 if (ptblsize < 0)
6421 {
6422 ok = FALSE;
6423 goto error_return;
6424 }
6425
6426 for (i = 0; i < sec->reloc_count; i++)
6427 {
6428 Elf_Internal_Rela *irel = &internal_relocs[i];
6429 bfd_vma r_offset;
6430 property_table_entry *the_entry;
6431 int ptbl_idx;
6432 ebb_t *ebb;
6433 ebb_constraint ebb_table;
6434 bfd_size_type simplify_size;
6435
6436 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6437 continue;
6438 r_offset = irel->r_offset;
6439
6440 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6441 if (simplify_size == 0)
6442 {
6443 (*_bfd_error_handler)
6444 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6445 sec->owner, sec, r_offset);
6446 continue;
6447 }
6448
6449 /* If the instruction table is not around, then don't do this
6450 relaxation. */
6451 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6452 sec->vma + irel->r_offset);
6453 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6454 {
6455 text_action_add (&relax_info->action_list,
6456 ta_convert_longcall, sec, r_offset,
6457 0);
6458 continue;
6459 }
6460
6461 /* If the next longcall happens to be at the same address as an
6462 unreachable section of size 0, then skip forward. */
6463 ptbl_idx = the_entry - prop_table;
6464 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6465 && the_entry->size == 0
6466 && ptbl_idx + 1 < ptblsize
6467 && (prop_table[ptbl_idx + 1].address
6468 == prop_table[ptbl_idx].address))
6469 {
6470 ptbl_idx++;
6471 the_entry++;
6472 }
6473
6474 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
6475 /* NO_REORDER is OK */
6476 continue;
6477
6478 init_ebb_constraint (&ebb_table);
6479 ebb = &ebb_table.ebb;
6480 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6481 internal_relocs, sec->reloc_count);
6482 ebb->start_offset = r_offset + simplify_size;
6483 ebb->end_offset = r_offset + simplify_size;
6484 ebb->start_ptbl_idx = ptbl_idx;
6485 ebb->end_ptbl_idx = ptbl_idx;
6486 ebb->start_reloc_idx = i;
6487 ebb->end_reloc_idx = i;
6488
6489 /* Precompute the opcode for each relocation. */
6490 if (reloc_opcodes == NULL)
6491 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6492 internal_relocs);
6493
6494 if (!extend_ebb_bounds (ebb)
6495 || !compute_ebb_proposed_actions (&ebb_table)
6496 || !compute_ebb_actions (&ebb_table)
6497 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
6498 internal_relocs, &ebb_table,
6499 reloc_opcodes)
6500 || !check_section_ebb_reduces (&ebb_table))
6501 {
6502 /* If anything goes wrong or we get unlucky and something does
6503 not fit, with our plan because of expansion between
6504 critical branches, just convert to a NOP. */
6505
6506 text_action_add (&relax_info->action_list,
6507 ta_convert_longcall, sec, r_offset, 0);
6508 i = ebb_table.ebb.end_reloc_idx;
6509 free_ebb_constraint (&ebb_table);
6510 continue;
6511 }
6512
6513 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6514
6515 /* Update the index so we do not go looking at the relocations
6516 we have already processed. */
6517 i = ebb_table.ebb.end_reloc_idx;
6518 free_ebb_constraint (&ebb_table);
6519 }
6520
6521 #if DEBUG
6522 if (relax_info->action_list.head)
6523 print_action_list (stderr, &relax_info->action_list);
6524 #endif
6525
6526 error_return:
6527 release_contents (sec, contents);
6528 release_internal_relocs (sec, internal_relocs);
6529 if (prop_table)
6530 free (prop_table);
6531 if (reloc_opcodes)
6532 free (reloc_opcodes);
6533
6534 return ok;
6535 }
6536
6537
6538 /* Do not widen an instruction if it is preceeded by a
6539 loop opcode. It might cause misalignment. */
6540
6541 static bfd_boolean
6542 prev_instr_is_a_loop (bfd_byte *contents,
6543 bfd_size_type content_length,
6544 bfd_size_type offset)
6545 {
6546 xtensa_opcode prev_opcode;
6547
6548 if (offset < 3)
6549 return FALSE;
6550 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
6551 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
6552 }
6553
6554
6555 /* Find all of the possible actions for an extended basic block. */
6556
6557 bfd_boolean
6558 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
6559 {
6560 const ebb_t *ebb = &ebb_table->ebb;
6561 unsigned rel_idx = ebb->start_reloc_idx;
6562 property_table_entry *entry, *start_entry, *end_entry;
6563 bfd_vma offset = 0;
6564 xtensa_isa isa = xtensa_default_isa;
6565 xtensa_format fmt;
6566 static xtensa_insnbuf insnbuf = NULL;
6567 static xtensa_insnbuf slotbuf = NULL;
6568
6569 if (insnbuf == NULL)
6570 {
6571 insnbuf = xtensa_insnbuf_alloc (isa);
6572 slotbuf = xtensa_insnbuf_alloc (isa);
6573 }
6574
6575 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6576 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6577
6578 for (entry = start_entry; entry <= end_entry; entry++)
6579 {
6580 bfd_vma start_offset, end_offset;
6581 bfd_size_type insn_len;
6582
6583 start_offset = entry->address - ebb->sec->vma;
6584 end_offset = entry->address + entry->size - ebb->sec->vma;
6585
6586 if (entry == start_entry)
6587 start_offset = ebb->start_offset;
6588 if (entry == end_entry)
6589 end_offset = ebb->end_offset;
6590 offset = start_offset;
6591
6592 if (offset == entry->address - ebb->sec->vma
6593 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6594 {
6595 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6596 BFD_ASSERT (offset != end_offset);
6597 if (offset == end_offset)
6598 return FALSE;
6599
6600 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6601 offset);
6602 if (insn_len == 0)
6603 goto decode_error;
6604
6605 if (check_branch_target_aligned_address (offset, insn_len))
6606 align_type = EBB_REQUIRE_TGT_ALIGN;
6607
6608 ebb_propose_action (ebb_table, align_type, 0,
6609 ta_none, offset, 0, TRUE);
6610 }
6611
6612 while (offset != end_offset)
6613 {
6614 Elf_Internal_Rela *irel;
6615 xtensa_opcode opcode;
6616
6617 while (rel_idx < ebb->end_reloc_idx
6618 && (ebb->relocs[rel_idx].r_offset < offset
6619 || (ebb->relocs[rel_idx].r_offset == offset
6620 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6621 != R_XTENSA_ASM_SIMPLIFY))))
6622 rel_idx++;
6623
6624 /* Check for longcall. */
6625 irel = &ebb->relocs[rel_idx];
6626 if (irel->r_offset == offset
6627 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6628 {
6629 bfd_size_type simplify_size;
6630
6631 simplify_size = get_asm_simplify_size (ebb->contents,
6632 ebb->content_length,
6633 irel->r_offset);
6634 if (simplify_size == 0)
6635 goto decode_error;
6636
6637 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6638 ta_convert_longcall, offset, 0, TRUE);
6639
6640 offset += simplify_size;
6641 continue;
6642 }
6643
6644 if (offset + MIN_INSN_LENGTH > ebb->content_length)
6645 goto decode_error;
6646 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
6647 ebb->content_length - offset);
6648 fmt = xtensa_format_decode (isa, insnbuf);
6649 if (fmt == XTENSA_UNDEFINED)
6650 goto decode_error;
6651 insn_len = xtensa_format_length (isa, fmt);
6652 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
6653 goto decode_error;
6654
6655 if (xtensa_format_num_slots (isa, fmt) != 1)
6656 {
6657 offset += insn_len;
6658 continue;
6659 }
6660
6661 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
6662 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
6663 if (opcode == XTENSA_UNDEFINED)
6664 goto decode_error;
6665
6666 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6667 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
6668 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
6669 {
6670 /* Add an instruction narrow action. */
6671 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6672 ta_narrow_insn, offset, 0, FALSE);
6673 }
6674 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
6675 && can_widen_instruction (slotbuf, fmt, opcode) != 0
6676 && ! prev_instr_is_a_loop (ebb->contents,
6677 ebb->content_length, offset))
6678 {
6679 /* Add an instruction widen action. */
6680 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6681 ta_widen_insn, offset, 0, FALSE);
6682 }
6683 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
6684 {
6685 /* Check for branch targets. */
6686 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6687 ta_none, offset, 0, TRUE);
6688 }
6689
6690 offset += insn_len;
6691 }
6692 }
6693
6694 if (ebb->ends_unreachable)
6695 {
6696 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6697 ta_fill, ebb->end_offset, 0, TRUE);
6698 }
6699
6700 return TRUE;
6701
6702 decode_error:
6703 (*_bfd_error_handler)
6704 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6705 ebb->sec->owner, ebb->sec, offset);
6706 return FALSE;
6707 }
6708
6709
6710 /* After all of the information has collected about the
6711 transformations possible in an EBB, compute the appropriate actions
6712 here in compute_ebb_actions. We still must check later to make
6713 sure that the actions do not break any relocations. The algorithm
6714 used here is pretty greedy. Basically, it removes as many no-ops
6715 as possible so that the end of the EBB has the same alignment
6716 characteristics as the original. First, it uses narrowing, then
6717 fill space at the end of the EBB, and finally widenings. If that
6718 does not work, it tries again with one fewer no-op removed. The
6719 optimization will only be performed if all of the branch targets
6720 that were aligned before transformation are also aligned after the
6721 transformation.
6722
6723 When the size_opt flag is set, ignore the branch target alignments,
6724 narrow all wide instructions, and remove all no-ops unless the end
6725 of the EBB prevents it. */
6726
6727 bfd_boolean
6728 compute_ebb_actions (ebb_constraint *ebb_table)
6729 {
6730 unsigned i = 0;
6731 unsigned j;
6732 int removed_bytes = 0;
6733 ebb_t *ebb = &ebb_table->ebb;
6734 unsigned seg_idx_start = 0;
6735 unsigned seg_idx_end = 0;
6736
6737 /* We perform this like the assembler relaxation algorithm: Start by
6738 assuming all instructions are narrow and all no-ops removed; then
6739 walk through.... */
6740
6741 /* For each segment of this that has a solid constraint, check to
6742 see if there are any combinations that will keep the constraint.
6743 If so, use it. */
6744 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
6745 {
6746 bfd_boolean requires_text_end_align = FALSE;
6747 unsigned longcall_count = 0;
6748 unsigned longcall_convert_count = 0;
6749 unsigned narrowable_count = 0;
6750 unsigned narrowable_convert_count = 0;
6751 unsigned widenable_count = 0;
6752 unsigned widenable_convert_count = 0;
6753
6754 proposed_action *action = NULL;
6755 int align = (1 << ebb_table->ebb.sec->alignment_power);
6756
6757 seg_idx_start = seg_idx_end;
6758
6759 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6760 {
6761 action = &ebb_table->actions[i];
6762 if (action->action == ta_convert_longcall)
6763 longcall_count++;
6764 if (action->action == ta_narrow_insn)
6765 narrowable_count++;
6766 if (action->action == ta_widen_insn)
6767 widenable_count++;
6768 if (action->action == ta_fill)
6769 break;
6770 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6771 break;
6772 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6773 && !elf32xtensa_size_opt)
6774 break;
6775 }
6776 seg_idx_end = i;
6777
6778 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6779 requires_text_end_align = TRUE;
6780
6781 if (elf32xtensa_size_opt && !requires_text_end_align
6782 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6783 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6784 {
6785 longcall_convert_count = longcall_count;
6786 narrowable_convert_count = narrowable_count;
6787 widenable_convert_count = 0;
6788 }
6789 else
6790 {
6791 /* There is a constraint. Convert the max number of longcalls. */
6792 narrowable_convert_count = 0;
6793 longcall_convert_count = 0;
6794 widenable_convert_count = 0;
6795
6796 for (j = 0; j < longcall_count; j++)
6797 {
6798 int removed = (longcall_count - j) * 3 & (align - 1);
6799 unsigned desire_narrow = (align - removed) & (align - 1);
6800 unsigned desire_widen = removed;
6801 if (desire_narrow <= narrowable_count)
6802 {
6803 narrowable_convert_count = desire_narrow;
6804 narrowable_convert_count +=
6805 (align * ((narrowable_count - narrowable_convert_count)
6806 / align));
6807 longcall_convert_count = (longcall_count - j);
6808 widenable_convert_count = 0;
6809 break;
6810 }
6811 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6812 {
6813 narrowable_convert_count = 0;
6814 longcall_convert_count = longcall_count - j;
6815 widenable_convert_count = desire_widen;
6816 break;
6817 }
6818 }
6819 }
6820
6821 /* Now the number of conversions are saved. Do them. */
6822 for (i = seg_idx_start; i < seg_idx_end; i++)
6823 {
6824 action = &ebb_table->actions[i];
6825 switch (action->action)
6826 {
6827 case ta_convert_longcall:
6828 if (longcall_convert_count != 0)
6829 {
6830 action->action = ta_remove_longcall;
6831 action->do_action = TRUE;
6832 action->removed_bytes += 3;
6833 longcall_convert_count--;
6834 }
6835 break;
6836 case ta_narrow_insn:
6837 if (narrowable_convert_count != 0)
6838 {
6839 action->do_action = TRUE;
6840 action->removed_bytes += 1;
6841 narrowable_convert_count--;
6842 }
6843 break;
6844 case ta_widen_insn:
6845 if (widenable_convert_count != 0)
6846 {
6847 action->do_action = TRUE;
6848 action->removed_bytes -= 1;
6849 widenable_convert_count--;
6850 }
6851 break;
6852 default:
6853 break;
6854 }
6855 }
6856 }
6857
6858 /* Now we move on to some local opts. Try to remove each of the
6859 remaining longcalls. */
6860
6861 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6862 {
6863 removed_bytes = 0;
6864 for (i = 0; i < ebb_table->action_count; i++)
6865 {
6866 int old_removed_bytes = removed_bytes;
6867 proposed_action *action = &ebb_table->actions[i];
6868
6869 if (action->do_action && action->action == ta_convert_longcall)
6870 {
6871 bfd_boolean bad_alignment = FALSE;
6872 removed_bytes += 3;
6873 for (j = i + 1; j < ebb_table->action_count; j++)
6874 {
6875 proposed_action *new_action = &ebb_table->actions[j];
6876 bfd_vma offset = new_action->offset;
6877 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6878 {
6879 if (!check_branch_target_aligned
6880 (ebb_table->ebb.contents,
6881 ebb_table->ebb.content_length,
6882 offset, offset - removed_bytes))
6883 {
6884 bad_alignment = TRUE;
6885 break;
6886 }
6887 }
6888 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6889 {
6890 if (!check_loop_aligned (ebb_table->ebb.contents,
6891 ebb_table->ebb.content_length,
6892 offset,
6893 offset - removed_bytes))
6894 {
6895 bad_alignment = TRUE;
6896 break;
6897 }
6898 }
6899 if (new_action->action == ta_narrow_insn
6900 && !new_action->do_action
6901 && ebb_table->ebb.sec->alignment_power == 2)
6902 {
6903 /* Narrow an instruction and we are done. */
6904 new_action->do_action = TRUE;
6905 new_action->removed_bytes += 1;
6906 bad_alignment = FALSE;
6907 break;
6908 }
6909 if (new_action->action == ta_widen_insn
6910 && new_action->do_action
6911 && ebb_table->ebb.sec->alignment_power == 2)
6912 {
6913 /* Narrow an instruction and we are done. */
6914 new_action->do_action = FALSE;
6915 new_action->removed_bytes += 1;
6916 bad_alignment = FALSE;
6917 break;
6918 }
6919 if (new_action->do_action)
6920 removed_bytes += new_action->removed_bytes;
6921 }
6922 if (!bad_alignment)
6923 {
6924 action->removed_bytes += 3;
6925 action->action = ta_remove_longcall;
6926 action->do_action = TRUE;
6927 }
6928 }
6929 removed_bytes = old_removed_bytes;
6930 if (action->do_action)
6931 removed_bytes += action->removed_bytes;
6932 }
6933 }
6934
6935 removed_bytes = 0;
6936 for (i = 0; i < ebb_table->action_count; ++i)
6937 {
6938 proposed_action *action = &ebb_table->actions[i];
6939 if (action->do_action)
6940 removed_bytes += action->removed_bytes;
6941 }
6942
6943 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6944 && ebb->ends_unreachable)
6945 {
6946 proposed_action *action;
6947 int br;
6948 int extra_space;
6949
6950 BFD_ASSERT (ebb_table->action_count != 0);
6951 action = &ebb_table->actions[ebb_table->action_count - 1];
6952 BFD_ASSERT (action->action == ta_fill);
6953 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6954
6955 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6956 br = action->removed_bytes + removed_bytes + extra_space;
6957 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6958
6959 action->removed_bytes = extra_space - br;
6960 }
6961 return TRUE;
6962 }
6963
6964
6965 /* The xlate_map is a sorted array of address mappings designed to
6966 answer the offset_with_removed_text() query with a binary search instead
6967 of a linear search through the section's action_list. */
6968
6969 typedef struct xlate_map_entry xlate_map_entry_t;
6970 typedef struct xlate_map xlate_map_t;
6971
6972 struct xlate_map_entry
6973 {
6974 unsigned orig_address;
6975 unsigned new_address;
6976 unsigned size;
6977 };
6978
6979 struct xlate_map
6980 {
6981 unsigned entry_count;
6982 xlate_map_entry_t *entry;
6983 };
6984
6985
6986 static int
6987 xlate_compare (const void *a_v, const void *b_v)
6988 {
6989 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
6990 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
6991 if (a->orig_address < b->orig_address)
6992 return -1;
6993 if (a->orig_address > (b->orig_address + b->size - 1))
6994 return 1;
6995 return 0;
6996 }
6997
6998
6999 static bfd_vma
7000 xlate_offset_with_removed_text (const xlate_map_t *map,
7001 text_action_list *action_list,
7002 bfd_vma offset)
7003 {
7004 xlate_map_entry_t tmp;
7005 void *r;
7006 xlate_map_entry_t *e;
7007
7008 if (map == NULL)
7009 return offset_with_removed_text (action_list, offset);
7010
7011 if (map->entry_count == 0)
7012 return offset;
7013
7014 tmp.orig_address = offset;
7015 tmp.new_address = offset;
7016 tmp.size = 1;
7017
7018 r = bsearch (&offset, map->entry, map->entry_count,
7019 sizeof (xlate_map_entry_t), &xlate_compare);
7020 e = (xlate_map_entry_t *) r;
7021
7022 BFD_ASSERT (e != NULL);
7023 if (e == NULL)
7024 return offset;
7025 return e->new_address - e->orig_address + offset;
7026 }
7027
7028
7029 /* Build a binary searchable offset translation map from a section's
7030 action list. */
7031
7032 static xlate_map_t *
7033 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7034 {
7035 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7036 text_action_list *action_list = &relax_info->action_list;
7037 unsigned num_actions = 0;
7038 text_action *r;
7039 int removed;
7040 xlate_map_entry_t *current_entry;
7041
7042 if (map == NULL)
7043 return NULL;
7044
7045 num_actions = action_list_count (action_list);
7046 map->entry = (xlate_map_entry_t *)
7047 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7048 if (map->entry == NULL)
7049 {
7050 free (map);
7051 return NULL;
7052 }
7053 map->entry_count = 0;
7054
7055 removed = 0;
7056 current_entry = &map->entry[0];
7057
7058 current_entry->orig_address = 0;
7059 current_entry->new_address = 0;
7060 current_entry->size = 0;
7061
7062 for (r = action_list->head; r != NULL; r = r->next)
7063 {
7064 unsigned orig_size = 0;
7065 switch (r->action)
7066 {
7067 case ta_none:
7068 case ta_remove_insn:
7069 case ta_convert_longcall:
7070 case ta_remove_literal:
7071 case ta_add_literal:
7072 break;
7073 case ta_remove_longcall:
7074 orig_size = 6;
7075 break;
7076 case ta_narrow_insn:
7077 orig_size = 3;
7078 break;
7079 case ta_widen_insn:
7080 orig_size = 2;
7081 break;
7082 case ta_fill:
7083 break;
7084 }
7085 current_entry->size =
7086 r->offset + orig_size - current_entry->orig_address;
7087 if (current_entry->size != 0)
7088 {
7089 current_entry++;
7090 map->entry_count++;
7091 }
7092 current_entry->orig_address = r->offset + orig_size;
7093 removed += r->removed_bytes;
7094 current_entry->new_address = r->offset + orig_size - removed;
7095 current_entry->size = 0;
7096 }
7097
7098 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7099 - current_entry->orig_address);
7100 if (current_entry->size != 0)
7101 map->entry_count++;
7102
7103 return map;
7104 }
7105
7106
7107 /* Free an offset translation map. */
7108
7109 static void
7110 free_xlate_map (xlate_map_t *map)
7111 {
7112 if (map && map->entry)
7113 free (map->entry);
7114 if (map)
7115 free (map);
7116 }
7117
7118
7119 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7120 relocations in a section will fit if a proposed set of actions
7121 are performed. */
7122
7123 static bfd_boolean
7124 check_section_ebb_pcrels_fit (bfd *abfd,
7125 asection *sec,
7126 bfd_byte *contents,
7127 Elf_Internal_Rela *internal_relocs,
7128 const ebb_constraint *constraint,
7129 const xtensa_opcode *reloc_opcodes)
7130 {
7131 unsigned i, j;
7132 Elf_Internal_Rela *irel;
7133 xlate_map_t *xmap = NULL;
7134 bfd_boolean ok = TRUE;
7135 xtensa_relax_info *relax_info;
7136
7137 relax_info = get_xtensa_relax_info (sec);
7138
7139 if (relax_info && sec->reloc_count > 100)
7140 {
7141 xmap = build_xlate_map (sec, relax_info);
7142 /* NULL indicates out of memory, but the slow version
7143 can still be used. */
7144 }
7145
7146 for (i = 0; i < sec->reloc_count; i++)
7147 {
7148 r_reloc r_rel;
7149 bfd_vma orig_self_offset, orig_target_offset;
7150 bfd_vma self_offset, target_offset;
7151 int r_type;
7152 reloc_howto_type *howto;
7153 int self_removed_bytes, target_removed_bytes;
7154
7155 irel = &internal_relocs[i];
7156 r_type = ELF32_R_TYPE (irel->r_info);
7157
7158 howto = &elf_howto_table[r_type];
7159 /* We maintain the required invariant: PC-relative relocations
7160 that fit before linking must fit after linking. Thus we only
7161 need to deal with relocations to the same section that are
7162 PC-relative. */
7163 if (r_type == R_XTENSA_ASM_SIMPLIFY
7164 || r_type == R_XTENSA_32_PCREL
7165 || !howto->pc_relative)
7166 continue;
7167
7168 r_reloc_init (&r_rel, abfd, irel, contents,
7169 bfd_get_section_limit (abfd, sec));
7170
7171 if (r_reloc_get_section (&r_rel) != sec)
7172 continue;
7173
7174 orig_self_offset = irel->r_offset;
7175 orig_target_offset = r_rel.target_offset;
7176
7177 self_offset = orig_self_offset;
7178 target_offset = orig_target_offset;
7179
7180 if (relax_info)
7181 {
7182 self_offset =
7183 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7184 orig_self_offset);
7185 target_offset =
7186 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7187 orig_target_offset);
7188 }
7189
7190 self_removed_bytes = 0;
7191 target_removed_bytes = 0;
7192
7193 for (j = 0; j < constraint->action_count; ++j)
7194 {
7195 proposed_action *action = &constraint->actions[j];
7196 bfd_vma offset = action->offset;
7197 int removed_bytes = action->removed_bytes;
7198 if (offset < orig_self_offset
7199 || (offset == orig_self_offset && action->action == ta_fill
7200 && action->removed_bytes < 0))
7201 self_removed_bytes += removed_bytes;
7202 if (offset < orig_target_offset
7203 || (offset == orig_target_offset && action->action == ta_fill
7204 && action->removed_bytes < 0))
7205 target_removed_bytes += removed_bytes;
7206 }
7207 self_offset -= self_removed_bytes;
7208 target_offset -= target_removed_bytes;
7209
7210 /* Try to encode it. Get the operand and check. */
7211 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7212 {
7213 /* None of the current alternate relocs are PC-relative,
7214 and only PC-relative relocs matter here. */
7215 }
7216 else
7217 {
7218 xtensa_opcode opcode;
7219 int opnum;
7220
7221 if (reloc_opcodes)
7222 opcode = reloc_opcodes[i];
7223 else
7224 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7225 if (opcode == XTENSA_UNDEFINED)
7226 {
7227 ok = FALSE;
7228 break;
7229 }
7230
7231 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7232 if (opnum == XTENSA_UNDEFINED)
7233 {
7234 ok = FALSE;
7235 break;
7236 }
7237
7238 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
7239 {
7240 ok = FALSE;
7241 break;
7242 }
7243 }
7244 }
7245
7246 if (xmap)
7247 free_xlate_map (xmap);
7248
7249 return ok;
7250 }
7251
7252
7253 static bfd_boolean
7254 check_section_ebb_reduces (const ebb_constraint *constraint)
7255 {
7256 int removed = 0;
7257 unsigned i;
7258
7259 for (i = 0; i < constraint->action_count; i++)
7260 {
7261 const proposed_action *action = &constraint->actions[i];
7262 if (action->do_action)
7263 removed += action->removed_bytes;
7264 }
7265 if (removed < 0)
7266 return FALSE;
7267
7268 return TRUE;
7269 }
7270
7271
7272 void
7273 text_action_add_proposed (text_action_list *l,
7274 const ebb_constraint *ebb_table,
7275 asection *sec)
7276 {
7277 unsigned i;
7278
7279 for (i = 0; i < ebb_table->action_count; i++)
7280 {
7281 proposed_action *action = &ebb_table->actions[i];
7282
7283 if (!action->do_action)
7284 continue;
7285 switch (action->action)
7286 {
7287 case ta_remove_insn:
7288 case ta_remove_longcall:
7289 case ta_convert_longcall:
7290 case ta_narrow_insn:
7291 case ta_widen_insn:
7292 case ta_fill:
7293 case ta_remove_literal:
7294 text_action_add (l, action->action, sec, action->offset,
7295 action->removed_bytes);
7296 break;
7297 case ta_none:
7298 break;
7299 default:
7300 BFD_ASSERT (0);
7301 break;
7302 }
7303 }
7304 }
7305
7306
7307 int
7308 compute_fill_extra_space (property_table_entry *entry)
7309 {
7310 int fill_extra_space;
7311
7312 if (!entry)
7313 return 0;
7314
7315 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7316 return 0;
7317
7318 fill_extra_space = entry->size;
7319 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7320 {
7321 /* Fill bytes for alignment:
7322 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7323 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7324 int nsm = (1 << pow) - 1;
7325 bfd_vma addr = entry->address + entry->size;
7326 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7327 fill_extra_space += align_fill;
7328 }
7329 return fill_extra_space;
7330 }
7331
7332 \f
7333 /* First relaxation pass. */
7334
7335 /* If the section contains relaxable literals, check each literal to
7336 see if it has the same value as another literal that has already
7337 been seen, either in the current section or a previous one. If so,
7338 add an entry to the per-section list of removed literals. The
7339 actual changes are deferred until the next pass. */
7340
7341 static bfd_boolean
7342 compute_removed_literals (bfd *abfd,
7343 asection *sec,
7344 struct bfd_link_info *link_info,
7345 value_map_hash_table *values)
7346 {
7347 xtensa_relax_info *relax_info;
7348 bfd_byte *contents;
7349 Elf_Internal_Rela *internal_relocs;
7350 source_reloc *src_relocs, *rel;
7351 bfd_boolean ok = TRUE;
7352 property_table_entry *prop_table = NULL;
7353 int ptblsize;
7354 int i, prev_i;
7355 bfd_boolean last_loc_is_prev = FALSE;
7356 bfd_vma last_target_offset = 0;
7357 section_cache_t target_sec_cache;
7358 bfd_size_type sec_size;
7359
7360 init_section_cache (&target_sec_cache);
7361
7362 /* Do nothing if it is not a relaxable literal section. */
7363 relax_info = get_xtensa_relax_info (sec);
7364 BFD_ASSERT (relax_info);
7365 if (!relax_info->is_relaxable_literal_section)
7366 return ok;
7367
7368 internal_relocs = retrieve_internal_relocs (abfd, sec,
7369 link_info->keep_memory);
7370
7371 sec_size = bfd_get_section_limit (abfd, sec);
7372 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7373 if (contents == NULL && sec_size != 0)
7374 {
7375 ok = FALSE;
7376 goto error_return;
7377 }
7378
7379 /* Sort the source_relocs by target offset. */
7380 src_relocs = relax_info->src_relocs;
7381 qsort (src_relocs, relax_info->src_count,
7382 sizeof (source_reloc), source_reloc_compare);
7383 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7384 internal_reloc_compare);
7385
7386 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7387 XTENSA_PROP_SEC_NAME, FALSE);
7388 if (ptblsize < 0)
7389 {
7390 ok = FALSE;
7391 goto error_return;
7392 }
7393
7394 prev_i = -1;
7395 for (i = 0; i < relax_info->src_count; i++)
7396 {
7397 Elf_Internal_Rela *irel = NULL;
7398
7399 rel = &src_relocs[i];
7400 if (get_l32r_opcode () != rel->opcode)
7401 continue;
7402 irel = get_irel_at_offset (sec, internal_relocs,
7403 rel->r_rel.target_offset);
7404
7405 /* If the relocation on this is not a simple R_XTENSA_32 or
7406 R_XTENSA_PLT then do not consider it. This may happen when
7407 the difference of two symbols is used in a literal. */
7408 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7409 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7410 continue;
7411
7412 /* If the target_offset for this relocation is the same as the
7413 previous relocation, then we've already considered whether the
7414 literal can be coalesced. Skip to the next one.... */
7415 if (i != 0 && prev_i != -1
7416 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
7417 continue;
7418 prev_i = i;
7419
7420 if (last_loc_is_prev &&
7421 last_target_offset + 4 != rel->r_rel.target_offset)
7422 last_loc_is_prev = FALSE;
7423
7424 /* Check if the relocation was from an L32R that is being removed
7425 because a CALLX was converted to a direct CALL, and check if
7426 there are no other relocations to the literal. */
7427 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
7428 sec, prop_table, ptblsize))
7429 {
7430 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7431 irel, rel, prop_table, ptblsize))
7432 {
7433 ok = FALSE;
7434 goto error_return;
7435 }
7436 last_target_offset = rel->r_rel.target_offset;
7437 continue;
7438 }
7439
7440 if (!identify_literal_placement (abfd, sec, contents, link_info,
7441 values,
7442 &last_loc_is_prev, irel,
7443 relax_info->src_count - i, rel,
7444 prop_table, ptblsize,
7445 &target_sec_cache, rel->is_abs_literal))
7446 {
7447 ok = FALSE;
7448 goto error_return;
7449 }
7450 last_target_offset = rel->r_rel.target_offset;
7451 }
7452
7453 #if DEBUG
7454 print_removed_literals (stderr, &relax_info->removed_list);
7455 print_action_list (stderr, &relax_info->action_list);
7456 #endif /* DEBUG */
7457
7458 error_return:
7459 if (prop_table) free (prop_table);
7460 clear_section_cache (&target_sec_cache);
7461
7462 release_contents (sec, contents);
7463 release_internal_relocs (sec, internal_relocs);
7464 return ok;
7465 }
7466
7467
7468 static Elf_Internal_Rela *
7469 get_irel_at_offset (asection *sec,
7470 Elf_Internal_Rela *internal_relocs,
7471 bfd_vma offset)
7472 {
7473 unsigned i;
7474 Elf_Internal_Rela *irel;
7475 unsigned r_type;
7476 Elf_Internal_Rela key;
7477
7478 if (!internal_relocs)
7479 return NULL;
7480
7481 key.r_offset = offset;
7482 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7483 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7484 if (!irel)
7485 return NULL;
7486
7487 /* bsearch does not guarantee which will be returned if there are
7488 multiple matches. We need the first that is not an alignment. */
7489 i = irel - internal_relocs;
7490 while (i > 0)
7491 {
7492 if (internal_relocs[i-1].r_offset != offset)
7493 break;
7494 i--;
7495 }
7496 for ( ; i < sec->reloc_count; i++)
7497 {
7498 irel = &internal_relocs[i];
7499 r_type = ELF32_R_TYPE (irel->r_info);
7500 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7501 return irel;
7502 }
7503
7504 return NULL;
7505 }
7506
7507
7508 bfd_boolean
7509 is_removable_literal (const source_reloc *rel,
7510 int i,
7511 const source_reloc *src_relocs,
7512 int src_count,
7513 asection *sec,
7514 property_table_entry *prop_table,
7515 int ptblsize)
7516 {
7517 const source_reloc *curr_rel;
7518 property_table_entry *entry;
7519
7520 if (!rel->is_null)
7521 return FALSE;
7522
7523 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7524 sec->vma + rel->r_rel.target_offset);
7525 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
7526 return FALSE;
7527
7528 for (++i; i < src_count; ++i)
7529 {
7530 curr_rel = &src_relocs[i];
7531 /* If all others have the same target offset.... */
7532 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7533 return TRUE;
7534
7535 if (!curr_rel->is_null
7536 && !xtensa_is_property_section (curr_rel->source_sec)
7537 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7538 return FALSE;
7539 }
7540 return TRUE;
7541 }
7542
7543
7544 bfd_boolean
7545 remove_dead_literal (bfd *abfd,
7546 asection *sec,
7547 struct bfd_link_info *link_info,
7548 Elf_Internal_Rela *internal_relocs,
7549 Elf_Internal_Rela *irel,
7550 source_reloc *rel,
7551 property_table_entry *prop_table,
7552 int ptblsize)
7553 {
7554 property_table_entry *entry;
7555 xtensa_relax_info *relax_info;
7556
7557 relax_info = get_xtensa_relax_info (sec);
7558 if (!relax_info)
7559 return FALSE;
7560
7561 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7562 sec->vma + rel->r_rel.target_offset);
7563
7564 /* Mark the unused literal so that it will be removed. */
7565 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7566
7567 text_action_add (&relax_info->action_list,
7568 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7569
7570 /* If the section is 4-byte aligned, do not add fill. */
7571 if (sec->alignment_power > 2)
7572 {
7573 int fill_extra_space;
7574 bfd_vma entry_sec_offset;
7575 text_action *fa;
7576 property_table_entry *the_add_entry;
7577 int removed_diff;
7578
7579 if (entry)
7580 entry_sec_offset = entry->address - sec->vma + entry->size;
7581 else
7582 entry_sec_offset = rel->r_rel.target_offset + 4;
7583
7584 /* If the literal range is at the end of the section,
7585 do not add fill. */
7586 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7587 entry_sec_offset);
7588 fill_extra_space = compute_fill_extra_space (the_add_entry);
7589
7590 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7591 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7592 -4, fill_extra_space);
7593 if (fa)
7594 adjust_fill_action (fa, removed_diff);
7595 else
7596 text_action_add (&relax_info->action_list,
7597 ta_fill, sec, entry_sec_offset, removed_diff);
7598 }
7599
7600 /* Zero out the relocation on this literal location. */
7601 if (irel)
7602 {
7603 if (elf_hash_table (link_info)->dynamic_sections_created)
7604 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7605
7606 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7607 pin_internal_relocs (sec, internal_relocs);
7608 }
7609
7610 /* Do not modify "last_loc_is_prev". */
7611 return TRUE;
7612 }
7613
7614
7615 bfd_boolean
7616 identify_literal_placement (bfd *abfd,
7617 asection *sec,
7618 bfd_byte *contents,
7619 struct bfd_link_info *link_info,
7620 value_map_hash_table *values,
7621 bfd_boolean *last_loc_is_prev_p,
7622 Elf_Internal_Rela *irel,
7623 int remaining_src_rels,
7624 source_reloc *rel,
7625 property_table_entry *prop_table,
7626 int ptblsize,
7627 section_cache_t *target_sec_cache,
7628 bfd_boolean is_abs_literal)
7629 {
7630 literal_value val;
7631 value_map *val_map;
7632 xtensa_relax_info *relax_info;
7633 bfd_boolean literal_placed = FALSE;
7634 r_reloc r_rel;
7635 unsigned long value;
7636 bfd_boolean final_static_link;
7637 bfd_size_type sec_size;
7638
7639 relax_info = get_xtensa_relax_info (sec);
7640 if (!relax_info)
7641 return FALSE;
7642
7643 sec_size = bfd_get_section_limit (abfd, sec);
7644
7645 final_static_link =
7646 (!link_info->relocatable
7647 && !elf_hash_table (link_info)->dynamic_sections_created);
7648
7649 /* The placement algorithm first checks to see if the literal is
7650 already in the value map. If so and the value map is reachable
7651 from all uses, then the literal is moved to that location. If
7652 not, then we identify the last location where a fresh literal was
7653 placed. If the literal can be safely moved there, then we do so.
7654 If not, then we assume that the literal is not to move and leave
7655 the literal where it is, marking it as the last literal
7656 location. */
7657
7658 /* Find the literal value. */
7659 value = 0;
7660 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7661 if (!irel)
7662 {
7663 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7664 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7665 }
7666 init_literal_value (&val, &r_rel, value, is_abs_literal);
7667
7668 /* Check if we've seen another literal with the same value that
7669 is in the same output section. */
7670 val_map = value_map_get_cached_value (values, &val, final_static_link);
7671
7672 if (val_map
7673 && (r_reloc_get_section (&val_map->loc)->output_section
7674 == sec->output_section)
7675 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7676 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7677 {
7678 /* No change to last_loc_is_prev. */
7679 literal_placed = TRUE;
7680 }
7681
7682 /* For relocatable links, do not try to move literals. To do it
7683 correctly might increase the number of relocations in an input
7684 section making the default relocatable linking fail. */
7685 if (!link_info->relocatable && !literal_placed
7686 && values->has_last_loc && !(*last_loc_is_prev_p))
7687 {
7688 asection *target_sec = r_reloc_get_section (&values->last_loc);
7689 if (target_sec && target_sec->output_section == sec->output_section)
7690 {
7691 /* Increment the virtual offset. */
7692 r_reloc try_loc = values->last_loc;
7693 try_loc.virtual_offset += 4;
7694
7695 /* There is a last loc that was in the same output section. */
7696 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7697 && move_shared_literal (sec, link_info, rel,
7698 prop_table, ptblsize,
7699 &try_loc, &val, target_sec_cache))
7700 {
7701 values->last_loc.virtual_offset += 4;
7702 literal_placed = TRUE;
7703 if (!val_map)
7704 val_map = add_value_map (values, &val, &try_loc,
7705 final_static_link);
7706 else
7707 val_map->loc = try_loc;
7708 }
7709 }
7710 }
7711
7712 if (!literal_placed)
7713 {
7714 /* Nothing worked, leave the literal alone but update the last loc. */
7715 values->has_last_loc = TRUE;
7716 values->last_loc = rel->r_rel;
7717 if (!val_map)
7718 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
7719 else
7720 val_map->loc = rel->r_rel;
7721 *last_loc_is_prev_p = TRUE;
7722 }
7723
7724 return TRUE;
7725 }
7726
7727
7728 /* Check if the original relocations (presumably on L32R instructions)
7729 identified by reloc[0..N] can be changed to reference the literal
7730 identified by r_rel. If r_rel is out of range for any of the
7731 original relocations, then we don't want to coalesce the original
7732 literal with the one at r_rel. We only check reloc[0..N], where the
7733 offsets are all the same as for reloc[0] (i.e., they're all
7734 referencing the same literal) and where N is also bounded by the
7735 number of remaining entries in the "reloc" array. The "reloc" array
7736 is sorted by target offset so we know all the entries for the same
7737 literal will be contiguous. */
7738
7739 static bfd_boolean
7740 relocations_reach (source_reloc *reloc,
7741 int remaining_relocs,
7742 const r_reloc *r_rel)
7743 {
7744 bfd_vma from_offset, source_address, dest_address;
7745 asection *sec;
7746 int i;
7747
7748 if (!r_reloc_is_defined (r_rel))
7749 return FALSE;
7750
7751 sec = r_reloc_get_section (r_rel);
7752 from_offset = reloc[0].r_rel.target_offset;
7753
7754 for (i = 0; i < remaining_relocs; i++)
7755 {
7756 if (reloc[i].r_rel.target_offset != from_offset)
7757 break;
7758
7759 /* Ignore relocations that have been removed. */
7760 if (reloc[i].is_null)
7761 continue;
7762
7763 /* The original and new output section for these must be the same
7764 in order to coalesce. */
7765 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7766 != sec->output_section)
7767 return FALSE;
7768
7769 /* Absolute literals in the same output section can always be
7770 combined. */
7771 if (reloc[i].is_abs_literal)
7772 continue;
7773
7774 /* A literal with no PC-relative relocations can be moved anywhere. */
7775 if (reloc[i].opnd != -1)
7776 {
7777 /* Otherwise, check to see that it fits. */
7778 source_address = (reloc[i].source_sec->output_section->vma
7779 + reloc[i].source_sec->output_offset
7780 + reloc[i].r_rel.rela.r_offset);
7781 dest_address = (sec->output_section->vma
7782 + sec->output_offset
7783 + r_rel->target_offset);
7784
7785 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7786 source_address, dest_address))
7787 return FALSE;
7788 }
7789 }
7790
7791 return TRUE;
7792 }
7793
7794
7795 /* Move a literal to another literal location because it is
7796 the same as the other literal value. */
7797
7798 static bfd_boolean
7799 coalesce_shared_literal (asection *sec,
7800 source_reloc *rel,
7801 property_table_entry *prop_table,
7802 int ptblsize,
7803 value_map *val_map)
7804 {
7805 property_table_entry *entry;
7806 text_action *fa;
7807 property_table_entry *the_add_entry;
7808 int removed_diff;
7809 xtensa_relax_info *relax_info;
7810
7811 relax_info = get_xtensa_relax_info (sec);
7812 if (!relax_info)
7813 return FALSE;
7814
7815 entry = elf_xtensa_find_property_entry
7816 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7817 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
7818 return TRUE;
7819
7820 /* Mark that the literal will be coalesced. */
7821 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7822
7823 text_action_add (&relax_info->action_list,
7824 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7825
7826 /* If the section is 4-byte aligned, do not add fill. */
7827 if (sec->alignment_power > 2)
7828 {
7829 int fill_extra_space;
7830 bfd_vma entry_sec_offset;
7831
7832 if (entry)
7833 entry_sec_offset = entry->address - sec->vma + entry->size;
7834 else
7835 entry_sec_offset = rel->r_rel.target_offset + 4;
7836
7837 /* If the literal range is at the end of the section,
7838 do not add fill. */
7839 fill_extra_space = 0;
7840 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7841 entry_sec_offset);
7842 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7843 fill_extra_space = the_add_entry->size;
7844
7845 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7846 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7847 -4, fill_extra_space);
7848 if (fa)
7849 adjust_fill_action (fa, removed_diff);
7850 else
7851 text_action_add (&relax_info->action_list,
7852 ta_fill, sec, entry_sec_offset, removed_diff);
7853 }
7854
7855 return TRUE;
7856 }
7857
7858
7859 /* Move a literal to another location. This may actually increase the
7860 total amount of space used because of alignments so we need to do
7861 this carefully. Also, it may make a branch go out of range. */
7862
7863 static bfd_boolean
7864 move_shared_literal (asection *sec,
7865 struct bfd_link_info *link_info,
7866 source_reloc *rel,
7867 property_table_entry *prop_table,
7868 int ptblsize,
7869 const r_reloc *target_loc,
7870 const literal_value *lit_value,
7871 section_cache_t *target_sec_cache)
7872 {
7873 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7874 text_action *fa, *target_fa;
7875 int removed_diff;
7876 xtensa_relax_info *relax_info, *target_relax_info;
7877 asection *target_sec;
7878 ebb_t *ebb;
7879 ebb_constraint ebb_table;
7880 bfd_boolean relocs_fit;
7881
7882 /* If this routine always returns FALSE, the literals that cannot be
7883 coalesced will not be moved. */
7884 if (elf32xtensa_no_literal_movement)
7885 return FALSE;
7886
7887 relax_info = get_xtensa_relax_info (sec);
7888 if (!relax_info)
7889 return FALSE;
7890
7891 target_sec = r_reloc_get_section (target_loc);
7892 target_relax_info = get_xtensa_relax_info (target_sec);
7893
7894 /* Literals to undefined sections may not be moved because they
7895 must report an error. */
7896 if (bfd_is_und_section (target_sec))
7897 return FALSE;
7898
7899 src_entry = elf_xtensa_find_property_entry
7900 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7901
7902 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7903 return FALSE;
7904
7905 target_entry = elf_xtensa_find_property_entry
7906 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7907 target_sec->vma + target_loc->target_offset);
7908
7909 if (!target_entry)
7910 return FALSE;
7911
7912 /* Make sure that we have not broken any branches. */
7913 relocs_fit = FALSE;
7914
7915 init_ebb_constraint (&ebb_table);
7916 ebb = &ebb_table.ebb;
7917 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7918 target_sec_cache->content_length,
7919 target_sec_cache->ptbl, target_sec_cache->pte_count,
7920 target_sec_cache->relocs, target_sec_cache->reloc_count);
7921
7922 /* Propose to add 4 bytes + worst-case alignment size increase to
7923 destination. */
7924 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7925 ta_fill, target_loc->target_offset,
7926 -4 - (1 << target_sec->alignment_power), TRUE);
7927
7928 /* Check all of the PC-relative relocations to make sure they still fit. */
7929 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7930 target_sec_cache->contents,
7931 target_sec_cache->relocs,
7932 &ebb_table, NULL);
7933
7934 if (!relocs_fit)
7935 return FALSE;
7936
7937 text_action_add_literal (&target_relax_info->action_list,
7938 ta_add_literal, target_loc, lit_value, -4);
7939
7940 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7941 {
7942 /* May need to add or remove some fill to maintain alignment. */
7943 int fill_extra_space;
7944 bfd_vma entry_sec_offset;
7945
7946 entry_sec_offset =
7947 target_entry->address - target_sec->vma + target_entry->size;
7948
7949 /* If the literal range is at the end of the section,
7950 do not add fill. */
7951 fill_extra_space = 0;
7952 the_add_entry =
7953 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7954 target_sec_cache->pte_count,
7955 entry_sec_offset);
7956 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7957 fill_extra_space = the_add_entry->size;
7958
7959 target_fa = find_fill_action (&target_relax_info->action_list,
7960 target_sec, entry_sec_offset);
7961 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7962 entry_sec_offset, 4,
7963 fill_extra_space);
7964 if (target_fa)
7965 adjust_fill_action (target_fa, removed_diff);
7966 else
7967 text_action_add (&target_relax_info->action_list,
7968 ta_fill, target_sec, entry_sec_offset, removed_diff);
7969 }
7970
7971 /* Mark that the literal will be moved to the new location. */
7972 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7973
7974 /* Remove the literal. */
7975 text_action_add (&relax_info->action_list,
7976 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7977
7978 /* If the section is 4-byte aligned, do not add fill. */
7979 if (sec->alignment_power > 2 && target_entry != src_entry)
7980 {
7981 int fill_extra_space;
7982 bfd_vma entry_sec_offset;
7983
7984 if (src_entry)
7985 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
7986 else
7987 entry_sec_offset = rel->r_rel.target_offset+4;
7988
7989 /* If the literal range is at the end of the section,
7990 do not add fill. */
7991 fill_extra_space = 0;
7992 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7993 entry_sec_offset);
7994 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7995 fill_extra_space = the_add_entry->size;
7996
7997 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7998 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7999 -4, fill_extra_space);
8000 if (fa)
8001 adjust_fill_action (fa, removed_diff);
8002 else
8003 text_action_add (&relax_info->action_list,
8004 ta_fill, sec, entry_sec_offset, removed_diff);
8005 }
8006
8007 return TRUE;
8008 }
8009
8010 \f
8011 /* Second relaxation pass. */
8012
8013 /* Modify all of the relocations to point to the right spot, and if this
8014 is a relaxable section, delete the unwanted literals and fix the
8015 section size. */
8016
8017 bfd_boolean
8018 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
8019 {
8020 Elf_Internal_Rela *internal_relocs;
8021 xtensa_relax_info *relax_info;
8022 bfd_byte *contents;
8023 bfd_boolean ok = TRUE;
8024 unsigned i;
8025 bfd_boolean rv = FALSE;
8026 bfd_boolean virtual_action;
8027 bfd_size_type sec_size;
8028
8029 sec_size = bfd_get_section_limit (abfd, sec);
8030 relax_info = get_xtensa_relax_info (sec);
8031 BFD_ASSERT (relax_info);
8032
8033 /* First translate any of the fixes that have been added already. */
8034 translate_section_fixes (sec);
8035
8036 /* Handle property sections (e.g., literal tables) specially. */
8037 if (xtensa_is_property_section (sec))
8038 {
8039 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8040 return relax_property_section (abfd, sec, link_info);
8041 }
8042
8043 internal_relocs = retrieve_internal_relocs (abfd, sec,
8044 link_info->keep_memory);
8045 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8046 if (contents == NULL && sec_size != 0)
8047 {
8048 ok = FALSE;
8049 goto error_return;
8050 }
8051
8052 if (internal_relocs)
8053 {
8054 for (i = 0; i < sec->reloc_count; i++)
8055 {
8056 Elf_Internal_Rela *irel;
8057 xtensa_relax_info *target_relax_info;
8058 bfd_vma source_offset, old_source_offset;
8059 r_reloc r_rel;
8060 unsigned r_type;
8061 asection *target_sec;
8062
8063 /* Locally change the source address.
8064 Translate the target to the new target address.
8065 If it points to this section and has been removed,
8066 NULLify it.
8067 Write it back. */
8068
8069 irel = &internal_relocs[i];
8070 source_offset = irel->r_offset;
8071 old_source_offset = source_offset;
8072
8073 r_type = ELF32_R_TYPE (irel->r_info);
8074 r_reloc_init (&r_rel, abfd, irel, contents,
8075 bfd_get_section_limit (abfd, sec));
8076
8077 /* If this section could have changed then we may need to
8078 change the relocation's offset. */
8079
8080 if (relax_info->is_relaxable_literal_section
8081 || relax_info->is_relaxable_asm_section)
8082 {
8083 pin_internal_relocs (sec, internal_relocs);
8084
8085 if (r_type != R_XTENSA_NONE
8086 && find_removed_literal (&relax_info->removed_list,
8087 irel->r_offset))
8088 {
8089 /* Remove this relocation. */
8090 if (elf_hash_table (link_info)->dynamic_sections_created)
8091 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8092 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8093 irel->r_offset = offset_with_removed_text
8094 (&relax_info->action_list, irel->r_offset);
8095 continue;
8096 }
8097
8098 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8099 {
8100 text_action *action =
8101 find_insn_action (&relax_info->action_list,
8102 irel->r_offset);
8103 if (action && (action->action == ta_convert_longcall
8104 || action->action == ta_remove_longcall))
8105 {
8106 bfd_reloc_status_type retval;
8107 char *error_message = NULL;
8108
8109 retval = contract_asm_expansion (contents, sec_size,
8110 irel, &error_message);
8111 if (retval != bfd_reloc_ok)
8112 {
8113 (*link_info->callbacks->reloc_dangerous)
8114 (link_info, error_message, abfd, sec,
8115 irel->r_offset);
8116 goto error_return;
8117 }
8118 /* Update the action so that the code that moves
8119 the contents will do the right thing. */
8120 if (action->action == ta_remove_longcall)
8121 action->action = ta_remove_insn;
8122 else
8123 action->action = ta_none;
8124 /* Refresh the info in the r_rel. */
8125 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8126 r_type = ELF32_R_TYPE (irel->r_info);
8127 }
8128 }
8129
8130 source_offset = offset_with_removed_text
8131 (&relax_info->action_list, irel->r_offset);
8132 irel->r_offset = source_offset;
8133 }
8134
8135 /* If the target section could have changed then
8136 we may need to change the relocation's target offset. */
8137
8138 target_sec = r_reloc_get_section (&r_rel);
8139
8140 /* For a reference to a discarded section from a DWARF section,
8141 i.e., where action_discarded is PRETEND, the symbol will
8142 eventually be modified to refer to the kept section (at least if
8143 the kept and discarded sections are the same size). Anticipate
8144 that here and adjust things accordingly. */
8145 if (! elf_xtensa_ignore_discarded_relocs (sec)
8146 && elf_xtensa_action_discarded (sec) == PRETEND
8147 && sec->sec_info_type != ELF_INFO_TYPE_STABS
8148 && target_sec != NULL
8149 && elf_discarded_section (target_sec))
8150 {
8151 /* It would be natural to call _bfd_elf_check_kept_section
8152 here, but it's not exported from elflink.c. It's also a
8153 fairly expensive check. Adjusting the relocations to the
8154 discarded section is fairly harmless; it will only adjust
8155 some addends and difference values. If it turns out that
8156 _bfd_elf_check_kept_section fails later, it won't matter,
8157 so just compare the section names to find the right group
8158 member. */
8159 asection *kept = target_sec->kept_section;
8160 if (kept != NULL)
8161 {
8162 if ((kept->flags & SEC_GROUP) != 0)
8163 {
8164 asection *first = elf_next_in_group (kept);
8165 asection *s = first;
8166
8167 kept = NULL;
8168 while (s != NULL)
8169 {
8170 if (strcmp (s->name, target_sec->name) == 0)
8171 {
8172 kept = s;
8173 break;
8174 }
8175 s = elf_next_in_group (s);
8176 if (s == first)
8177 break;
8178 }
8179 }
8180 }
8181 if (kept != NULL
8182 && ((target_sec->rawsize != 0
8183 ? target_sec->rawsize : target_sec->size)
8184 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
8185 target_sec = kept;
8186 }
8187
8188 target_relax_info = get_xtensa_relax_info (target_sec);
8189 if (target_relax_info
8190 && (target_relax_info->is_relaxable_literal_section
8191 || target_relax_info->is_relaxable_asm_section))
8192 {
8193 r_reloc new_reloc;
8194 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
8195
8196 if (r_type == R_XTENSA_DIFF8
8197 || r_type == R_XTENSA_DIFF16
8198 || r_type == R_XTENSA_DIFF32)
8199 {
8200 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8201
8202 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8203 {
8204 (*link_info->callbacks->reloc_dangerous)
8205 (link_info, _("invalid relocation address"),
8206 abfd, sec, old_source_offset);
8207 goto error_return;
8208 }
8209
8210 switch (r_type)
8211 {
8212 case R_XTENSA_DIFF8:
8213 diff_value =
8214 bfd_get_8 (abfd, &contents[old_source_offset]);
8215 break;
8216 case R_XTENSA_DIFF16:
8217 diff_value =
8218 bfd_get_16 (abfd, &contents[old_source_offset]);
8219 break;
8220 case R_XTENSA_DIFF32:
8221 diff_value =
8222 bfd_get_32 (abfd, &contents[old_source_offset]);
8223 break;
8224 }
8225
8226 new_end_offset = offset_with_removed_text
8227 (&target_relax_info->action_list,
8228 r_rel.target_offset + diff_value);
8229 diff_value = new_end_offset - new_reloc.target_offset;
8230
8231 switch (r_type)
8232 {
8233 case R_XTENSA_DIFF8:
8234 diff_mask = 0xff;
8235 bfd_put_8 (abfd, diff_value,
8236 &contents[old_source_offset]);
8237 break;
8238 case R_XTENSA_DIFF16:
8239 diff_mask = 0xffff;
8240 bfd_put_16 (abfd, diff_value,
8241 &contents[old_source_offset]);
8242 break;
8243 case R_XTENSA_DIFF32:
8244 diff_mask = 0xffffffff;
8245 bfd_put_32 (abfd, diff_value,
8246 &contents[old_source_offset]);
8247 break;
8248 }
8249
8250 /* Check for overflow. */
8251 if ((diff_value & ~diff_mask) != 0)
8252 {
8253 (*link_info->callbacks->reloc_dangerous)
8254 (link_info, _("overflow after relaxation"),
8255 abfd, sec, old_source_offset);
8256 goto error_return;
8257 }
8258
8259 pin_contents (sec, contents);
8260 }
8261
8262 /* If the relocation still references a section in the same
8263 input file, modify the relocation directly instead of
8264 adding a "fix" record. */
8265 if (target_sec->owner == abfd)
8266 {
8267 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
8268 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
8269 irel->r_addend = new_reloc.rela.r_addend;
8270 pin_internal_relocs (sec, internal_relocs);
8271 }
8272 else
8273 {
8274 bfd_vma addend_displacement;
8275 reloc_bfd_fix *fix;
8276
8277 addend_displacement =
8278 new_reloc.target_offset + new_reloc.virtual_offset;
8279 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
8280 target_sec,
8281 addend_displacement, TRUE);
8282 add_fix (sec, fix);
8283 }
8284 }
8285 }
8286 }
8287
8288 if ((relax_info->is_relaxable_literal_section
8289 || relax_info->is_relaxable_asm_section)
8290 && relax_info->action_list.head)
8291 {
8292 /* Walk through the planned actions and build up a table
8293 of move, copy and fill records. Use the move, copy and
8294 fill records to perform the actions once. */
8295
8296 int removed = 0;
8297 bfd_size_type final_size, copy_size, orig_insn_size;
8298 bfd_byte *scratch = NULL;
8299 bfd_byte *dup_contents = NULL;
8300 bfd_size_type orig_size = sec->size;
8301 bfd_vma orig_dot = 0;
8302 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8303 orig dot in physical memory. */
8304 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8305 bfd_vma dup_dot = 0;
8306
8307 text_action *action = relax_info->action_list.head;
8308
8309 final_size = sec->size;
8310 for (action = relax_info->action_list.head; action;
8311 action = action->next)
8312 {
8313 final_size -= action->removed_bytes;
8314 }
8315
8316 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8317 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8318
8319 /* The dot is the current fill location. */
8320 #if DEBUG
8321 print_action_list (stderr, &relax_info->action_list);
8322 #endif
8323
8324 for (action = relax_info->action_list.head; action;
8325 action = action->next)
8326 {
8327 virtual_action = FALSE;
8328 if (action->offset > orig_dot)
8329 {
8330 orig_dot += orig_dot_copied;
8331 orig_dot_copied = 0;
8332 orig_dot_vo = 0;
8333 /* Out of the virtual world. */
8334 }
8335
8336 if (action->offset > orig_dot)
8337 {
8338 copy_size = action->offset - orig_dot;
8339 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8340 orig_dot += copy_size;
8341 dup_dot += copy_size;
8342 BFD_ASSERT (action->offset == orig_dot);
8343 }
8344 else if (action->offset < orig_dot)
8345 {
8346 if (action->action == ta_fill
8347 && action->offset - action->removed_bytes == orig_dot)
8348 {
8349 /* This is OK because the fill only effects the dup_dot. */
8350 }
8351 else if (action->action == ta_add_literal)
8352 {
8353 /* TBD. Might need to handle this. */
8354 }
8355 }
8356 if (action->offset == orig_dot)
8357 {
8358 if (action->virtual_offset > orig_dot_vo)
8359 {
8360 if (orig_dot_vo == 0)
8361 {
8362 /* Need to copy virtual_offset bytes. Probably four. */
8363 copy_size = action->virtual_offset - orig_dot_vo;
8364 memmove (&dup_contents[dup_dot],
8365 &contents[orig_dot], copy_size);
8366 orig_dot_copied = copy_size;
8367 dup_dot += copy_size;
8368 }
8369 virtual_action = TRUE;
8370 }
8371 else
8372 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8373 }
8374 switch (action->action)
8375 {
8376 case ta_remove_literal:
8377 case ta_remove_insn:
8378 BFD_ASSERT (action->removed_bytes >= 0);
8379 orig_dot += action->removed_bytes;
8380 break;
8381
8382 case ta_narrow_insn:
8383 orig_insn_size = 3;
8384 copy_size = 2;
8385 memmove (scratch, &contents[orig_dot], orig_insn_size);
8386 BFD_ASSERT (action->removed_bytes == 1);
8387 rv = narrow_instruction (scratch, final_size, 0);
8388 BFD_ASSERT (rv);
8389 memmove (&dup_contents[dup_dot], scratch, copy_size);
8390 orig_dot += orig_insn_size;
8391 dup_dot += copy_size;
8392 break;
8393
8394 case ta_fill:
8395 if (action->removed_bytes >= 0)
8396 orig_dot += action->removed_bytes;
8397 else
8398 {
8399 /* Already zeroed in dup_contents. Just bump the
8400 counters. */
8401 dup_dot += (-action->removed_bytes);
8402 }
8403 break;
8404
8405 case ta_none:
8406 BFD_ASSERT (action->removed_bytes == 0);
8407 break;
8408
8409 case ta_convert_longcall:
8410 case ta_remove_longcall:
8411 /* These will be removed or converted before we get here. */
8412 BFD_ASSERT (0);
8413 break;
8414
8415 case ta_widen_insn:
8416 orig_insn_size = 2;
8417 copy_size = 3;
8418 memmove (scratch, &contents[orig_dot], orig_insn_size);
8419 BFD_ASSERT (action->removed_bytes == -1);
8420 rv = widen_instruction (scratch, final_size, 0);
8421 BFD_ASSERT (rv);
8422 memmove (&dup_contents[dup_dot], scratch, copy_size);
8423 orig_dot += orig_insn_size;
8424 dup_dot += copy_size;
8425 break;
8426
8427 case ta_add_literal:
8428 orig_insn_size = 0;
8429 copy_size = 4;
8430 BFD_ASSERT (action->removed_bytes == -4);
8431 /* TBD -- place the literal value here and insert
8432 into the table. */
8433 memset (&dup_contents[dup_dot], 0, 4);
8434 pin_internal_relocs (sec, internal_relocs);
8435 pin_contents (sec, contents);
8436
8437 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8438 relax_info, &internal_relocs, &action->value))
8439 goto error_return;
8440
8441 if (virtual_action)
8442 orig_dot_vo += copy_size;
8443
8444 orig_dot += orig_insn_size;
8445 dup_dot += copy_size;
8446 break;
8447
8448 default:
8449 /* Not implemented yet. */
8450 BFD_ASSERT (0);
8451 break;
8452 }
8453
8454 removed += action->removed_bytes;
8455 BFD_ASSERT (dup_dot <= final_size);
8456 BFD_ASSERT (orig_dot <= orig_size);
8457 }
8458
8459 orig_dot += orig_dot_copied;
8460 orig_dot_copied = 0;
8461
8462 if (orig_dot != orig_size)
8463 {
8464 copy_size = orig_size - orig_dot;
8465 BFD_ASSERT (orig_size > orig_dot);
8466 BFD_ASSERT (dup_dot + copy_size == final_size);
8467 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8468 orig_dot += copy_size;
8469 dup_dot += copy_size;
8470 }
8471 BFD_ASSERT (orig_size == orig_dot);
8472 BFD_ASSERT (final_size == dup_dot);
8473
8474 /* Move the dup_contents back. */
8475 if (final_size > orig_size)
8476 {
8477 /* Contents need to be reallocated. Swap the dup_contents into
8478 contents. */
8479 sec->contents = dup_contents;
8480 free (contents);
8481 contents = dup_contents;
8482 pin_contents (sec, contents);
8483 }
8484 else
8485 {
8486 BFD_ASSERT (final_size <= orig_size);
8487 memset (contents, 0, orig_size);
8488 memcpy (contents, dup_contents, final_size);
8489 free (dup_contents);
8490 }
8491 free (scratch);
8492 pin_contents (sec, contents);
8493
8494 if (sec->rawsize == 0)
8495 sec->rawsize = sec->size;
8496 sec->size = final_size;
8497 }
8498
8499 error_return:
8500 release_internal_relocs (sec, internal_relocs);
8501 release_contents (sec, contents);
8502 return ok;
8503 }
8504
8505
8506 static bfd_boolean
8507 translate_section_fixes (asection *sec)
8508 {
8509 xtensa_relax_info *relax_info;
8510 reloc_bfd_fix *r;
8511
8512 relax_info = get_xtensa_relax_info (sec);
8513 if (!relax_info)
8514 return TRUE;
8515
8516 for (r = relax_info->fix_list; r != NULL; r = r->next)
8517 if (!translate_reloc_bfd_fix (r))
8518 return FALSE;
8519
8520 return TRUE;
8521 }
8522
8523
8524 /* Translate a fix given the mapping in the relax info for the target
8525 section. If it has already been translated, no work is required. */
8526
8527 static bfd_boolean
8528 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
8529 {
8530 reloc_bfd_fix new_fix;
8531 asection *sec;
8532 xtensa_relax_info *relax_info;
8533 removed_literal *removed;
8534 bfd_vma new_offset, target_offset;
8535
8536 if (fix->translated)
8537 return TRUE;
8538
8539 sec = fix->target_sec;
8540 target_offset = fix->target_offset;
8541
8542 relax_info = get_xtensa_relax_info (sec);
8543 if (!relax_info)
8544 {
8545 fix->translated = TRUE;
8546 return TRUE;
8547 }
8548
8549 new_fix = *fix;
8550
8551 /* The fix does not need to be translated if the section cannot change. */
8552 if (!relax_info->is_relaxable_literal_section
8553 && !relax_info->is_relaxable_asm_section)
8554 {
8555 fix->translated = TRUE;
8556 return TRUE;
8557 }
8558
8559 /* If the literal has been moved and this relocation was on an
8560 opcode, then the relocation should move to the new literal
8561 location. Otherwise, the relocation should move within the
8562 section. */
8563
8564 removed = FALSE;
8565 if (is_operand_relocation (fix->src_type))
8566 {
8567 /* Check if the original relocation is against a literal being
8568 removed. */
8569 removed = find_removed_literal (&relax_info->removed_list,
8570 target_offset);
8571 }
8572
8573 if (removed)
8574 {
8575 asection *new_sec;
8576
8577 /* The fact that there is still a relocation to this literal indicates
8578 that the literal is being coalesced, not simply removed. */
8579 BFD_ASSERT (removed->to.abfd != NULL);
8580
8581 /* This was moved to some other address (possibly another section). */
8582 new_sec = r_reloc_get_section (&removed->to);
8583 if (new_sec != sec)
8584 {
8585 sec = new_sec;
8586 relax_info = get_xtensa_relax_info (sec);
8587 if (!relax_info ||
8588 (!relax_info->is_relaxable_literal_section
8589 && !relax_info->is_relaxable_asm_section))
8590 {
8591 target_offset = removed->to.target_offset;
8592 new_fix.target_sec = new_sec;
8593 new_fix.target_offset = target_offset;
8594 new_fix.translated = TRUE;
8595 *fix = new_fix;
8596 return TRUE;
8597 }
8598 }
8599 target_offset = removed->to.target_offset;
8600 new_fix.target_sec = new_sec;
8601 }
8602
8603 /* The target address may have been moved within its section. */
8604 new_offset = offset_with_removed_text (&relax_info->action_list,
8605 target_offset);
8606
8607 new_fix.target_offset = new_offset;
8608 new_fix.target_offset = new_offset;
8609 new_fix.translated = TRUE;
8610 *fix = new_fix;
8611 return TRUE;
8612 }
8613
8614
8615 /* Fix up a relocation to take account of removed literals. */
8616
8617 static asection *
8618 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
8619 {
8620 xtensa_relax_info *relax_info;
8621 removed_literal *removed;
8622 bfd_vma target_offset, base_offset;
8623 text_action *act;
8624
8625 *new_rel = *orig_rel;
8626
8627 if (!r_reloc_is_defined (orig_rel))
8628 return sec ;
8629
8630 relax_info = get_xtensa_relax_info (sec);
8631 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
8632 || relax_info->is_relaxable_asm_section));
8633
8634 target_offset = orig_rel->target_offset;
8635
8636 removed = FALSE;
8637 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8638 {
8639 /* Check if the original relocation is against a literal being
8640 removed. */
8641 removed = find_removed_literal (&relax_info->removed_list,
8642 target_offset);
8643 }
8644 if (removed && removed->to.abfd)
8645 {
8646 asection *new_sec;
8647
8648 /* The fact that there is still a relocation to this literal indicates
8649 that the literal is being coalesced, not simply removed. */
8650 BFD_ASSERT (removed->to.abfd != NULL);
8651
8652 /* This was moved to some other address
8653 (possibly in another section). */
8654 *new_rel = removed->to;
8655 new_sec = r_reloc_get_section (new_rel);
8656 if (new_sec != sec)
8657 {
8658 sec = new_sec;
8659 relax_info = get_xtensa_relax_info (sec);
8660 if (!relax_info
8661 || (!relax_info->is_relaxable_literal_section
8662 && !relax_info->is_relaxable_asm_section))
8663 return sec;
8664 }
8665 target_offset = new_rel->target_offset;
8666 }
8667
8668 /* Find the base offset of the reloc symbol, excluding any addend from the
8669 reloc or from the section contents (for a partial_inplace reloc). Then
8670 find the adjusted values of the offsets due to relaxation. The base
8671 offset is needed to determine the change to the reloc's addend; the reloc
8672 addend should not be adjusted due to relaxations located before the base
8673 offset. */
8674
8675 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
8676 act = relax_info->action_list.head;
8677 if (base_offset <= target_offset)
8678 {
8679 int base_removed = removed_by_actions (&act, base_offset, FALSE);
8680 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
8681 new_rel->target_offset = target_offset - base_removed - addend_removed;
8682 new_rel->rela.r_addend -= addend_removed;
8683 }
8684 else
8685 {
8686 /* Handle a negative addend. The base offset comes first. */
8687 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
8688 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
8689 new_rel->target_offset = target_offset - tgt_removed;
8690 new_rel->rela.r_addend += addend_removed;
8691 }
8692
8693 return sec;
8694 }
8695
8696
8697 /* For dynamic links, there may be a dynamic relocation for each
8698 literal. The number of dynamic relocations must be computed in
8699 size_dynamic_sections, which occurs before relaxation. When a
8700 literal is removed, this function checks if there is a corresponding
8701 dynamic relocation and shrinks the size of the appropriate dynamic
8702 relocation section accordingly. At this point, the contents of the
8703 dynamic relocation sections have not yet been filled in, so there's
8704 nothing else that needs to be done. */
8705
8706 static void
8707 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8708 bfd *abfd,
8709 asection *input_section,
8710 Elf_Internal_Rela *rel)
8711 {
8712 struct elf_xtensa_link_hash_table *htab;
8713 Elf_Internal_Shdr *symtab_hdr;
8714 struct elf_link_hash_entry **sym_hashes;
8715 unsigned long r_symndx;
8716 int r_type;
8717 struct elf_link_hash_entry *h;
8718 bfd_boolean dynamic_symbol;
8719
8720 htab = elf_xtensa_hash_table (info);
8721 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8722 sym_hashes = elf_sym_hashes (abfd);
8723
8724 r_type = ELF32_R_TYPE (rel->r_info);
8725 r_symndx = ELF32_R_SYM (rel->r_info);
8726
8727 if (r_symndx < symtab_hdr->sh_info)
8728 h = NULL;
8729 else
8730 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8731
8732 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
8733
8734 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8735 && (input_section->flags & SEC_ALLOC) != 0
8736 && (dynamic_symbol || info->shared))
8737 {
8738 asection *srel;
8739 bfd_boolean is_plt = FALSE;
8740
8741 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8742 {
8743 srel = htab->srelplt;
8744 is_plt = TRUE;
8745 }
8746 else
8747 srel = htab->srelgot;
8748
8749 /* Reduce size of the .rela.* section by one reloc. */
8750 BFD_ASSERT (srel != NULL);
8751 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8752 srel->size -= sizeof (Elf32_External_Rela);
8753
8754 if (is_plt)
8755 {
8756 asection *splt, *sgotplt, *srelgot;
8757 int reloc_index, chunk;
8758
8759 /* Find the PLT reloc index of the entry being removed. This
8760 is computed from the size of ".rela.plt". It is needed to
8761 figure out which PLT chunk to resize. Usually "last index
8762 = size - 1" since the index starts at zero, but in this
8763 context, the size has just been decremented so there's no
8764 need to subtract one. */
8765 reloc_index = srel->size / sizeof (Elf32_External_Rela);
8766
8767 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8768 splt = elf_xtensa_get_plt_section (info, chunk);
8769 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
8770 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8771
8772 /* Check if an entire PLT chunk has just been eliminated. */
8773 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8774 {
8775 /* The two magic GOT entries for that chunk can go away. */
8776 srelgot = htab->srelgot;
8777 BFD_ASSERT (srelgot != NULL);
8778 srelgot->reloc_count -= 2;
8779 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8780 sgotplt->size -= 8;
8781
8782 /* There should be only one entry left (and it will be
8783 removed below). */
8784 BFD_ASSERT (sgotplt->size == 4);
8785 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
8786 }
8787
8788 BFD_ASSERT (sgotplt->size >= 4);
8789 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
8790
8791 sgotplt->size -= 4;
8792 splt->size -= PLT_ENTRY_SIZE;
8793 }
8794 }
8795 }
8796
8797
8798 /* Take an r_rel and move it to another section. This usually
8799 requires extending the interal_relocation array and pinning it. If
8800 the original r_rel is from the same BFD, we can complete this here.
8801 Otherwise, we add a fix record to let the final link fix the
8802 appropriate address. Contents and internal relocations for the
8803 section must be pinned after calling this routine. */
8804
8805 static bfd_boolean
8806 move_literal (bfd *abfd,
8807 struct bfd_link_info *link_info,
8808 asection *sec,
8809 bfd_vma offset,
8810 bfd_byte *contents,
8811 xtensa_relax_info *relax_info,
8812 Elf_Internal_Rela **internal_relocs_p,
8813 const literal_value *lit)
8814 {
8815 Elf_Internal_Rela *new_relocs = NULL;
8816 size_t new_relocs_count = 0;
8817 Elf_Internal_Rela this_rela;
8818 const r_reloc *r_rel;
8819
8820 r_rel = &lit->r_rel;
8821 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8822
8823 if (r_reloc_is_const (r_rel))
8824 bfd_put_32 (abfd, lit->value, contents + offset);
8825 else
8826 {
8827 int r_type;
8828 unsigned i;
8829 asection *target_sec;
8830 reloc_bfd_fix *fix;
8831 unsigned insert_at;
8832
8833 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8834 target_sec = r_reloc_get_section (r_rel);
8835
8836 /* This is the difficult case. We have to create a fix up. */
8837 this_rela.r_offset = offset;
8838 this_rela.r_info = ELF32_R_INFO (0, r_type);
8839 this_rela.r_addend =
8840 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8841 bfd_put_32 (abfd, lit->value, contents + offset);
8842
8843 /* Currently, we cannot move relocations during a relocatable link. */
8844 BFD_ASSERT (!link_info->relocatable);
8845 fix = reloc_bfd_fix_init (sec, offset, r_type,
8846 r_reloc_get_section (r_rel),
8847 r_rel->target_offset + r_rel->virtual_offset,
8848 FALSE);
8849 /* We also need to mark that relocations are needed here. */
8850 sec->flags |= SEC_RELOC;
8851
8852 translate_reloc_bfd_fix (fix);
8853 /* This fix has not yet been translated. */
8854 add_fix (sec, fix);
8855
8856 /* Add the relocation. If we have already allocated our own
8857 space for the relocations and we have room for more, then use
8858 it. Otherwise, allocate new space and move the literals. */
8859 insert_at = sec->reloc_count;
8860 for (i = 0; i < sec->reloc_count; ++i)
8861 {
8862 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8863 {
8864 insert_at = i;
8865 break;
8866 }
8867 }
8868
8869 if (*internal_relocs_p != relax_info->allocated_relocs
8870 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8871 {
8872 BFD_ASSERT (relax_info->allocated_relocs == NULL
8873 || sec->reloc_count == relax_info->relocs_count);
8874
8875 if (relax_info->allocated_relocs_count == 0)
8876 new_relocs_count = (sec->reloc_count + 2) * 2;
8877 else
8878 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8879
8880 new_relocs = (Elf_Internal_Rela *)
8881 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8882 if (!new_relocs)
8883 return FALSE;
8884
8885 /* We could handle this more quickly by finding the split point. */
8886 if (insert_at != 0)
8887 memcpy (new_relocs, *internal_relocs_p,
8888 insert_at * sizeof (Elf_Internal_Rela));
8889
8890 new_relocs[insert_at] = this_rela;
8891
8892 if (insert_at != sec->reloc_count)
8893 memcpy (new_relocs + insert_at + 1,
8894 (*internal_relocs_p) + insert_at,
8895 (sec->reloc_count - insert_at)
8896 * sizeof (Elf_Internal_Rela));
8897
8898 if (*internal_relocs_p != relax_info->allocated_relocs)
8899 {
8900 /* The first time we re-allocate, we can only free the
8901 old relocs if they were allocated with bfd_malloc.
8902 This is not true when keep_memory is in effect. */
8903 if (!link_info->keep_memory)
8904 free (*internal_relocs_p);
8905 }
8906 else
8907 free (*internal_relocs_p);
8908 relax_info->allocated_relocs = new_relocs;
8909 relax_info->allocated_relocs_count = new_relocs_count;
8910 elf_section_data (sec)->relocs = new_relocs;
8911 sec->reloc_count++;
8912 relax_info->relocs_count = sec->reloc_count;
8913 *internal_relocs_p = new_relocs;
8914 }
8915 else
8916 {
8917 if (insert_at != sec->reloc_count)
8918 {
8919 unsigned idx;
8920 for (idx = sec->reloc_count; idx > insert_at; idx--)
8921 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8922 }
8923 (*internal_relocs_p)[insert_at] = this_rela;
8924 sec->reloc_count++;
8925 if (relax_info->allocated_relocs)
8926 relax_info->relocs_count = sec->reloc_count;
8927 }
8928 }
8929 return TRUE;
8930 }
8931
8932
8933 /* This is similar to relax_section except that when a target is moved,
8934 we shift addresses up. We also need to modify the size. This
8935 algorithm does NOT allow for relocations into the middle of the
8936 property sections. */
8937
8938 static bfd_boolean
8939 relax_property_section (bfd *abfd,
8940 asection *sec,
8941 struct bfd_link_info *link_info)
8942 {
8943 Elf_Internal_Rela *internal_relocs;
8944 bfd_byte *contents;
8945 unsigned i;
8946 bfd_boolean ok = TRUE;
8947 bfd_boolean is_full_prop_section;
8948 size_t last_zfill_target_offset = 0;
8949 asection *last_zfill_target_sec = NULL;
8950 bfd_size_type sec_size;
8951 bfd_size_type entry_size;
8952
8953 sec_size = bfd_get_section_limit (abfd, sec);
8954 internal_relocs = retrieve_internal_relocs (abfd, sec,
8955 link_info->keep_memory);
8956 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8957 if (contents == NULL && sec_size != 0)
8958 {
8959 ok = FALSE;
8960 goto error_return;
8961 }
8962
8963 is_full_prop_section = xtensa_is_proptable_section (sec);
8964 if (is_full_prop_section)
8965 entry_size = 12;
8966 else
8967 entry_size = 8;
8968
8969 if (internal_relocs)
8970 {
8971 for (i = 0; i < sec->reloc_count; i++)
8972 {
8973 Elf_Internal_Rela *irel;
8974 xtensa_relax_info *target_relax_info;
8975 unsigned r_type;
8976 asection *target_sec;
8977 literal_value val;
8978 bfd_byte *size_p, *flags_p;
8979
8980 /* Locally change the source address.
8981 Translate the target to the new target address.
8982 If it points to this section and has been removed, MOVE IT.
8983 Also, don't forget to modify the associated SIZE at
8984 (offset + 4). */
8985
8986 irel = &internal_relocs[i];
8987 r_type = ELF32_R_TYPE (irel->r_info);
8988 if (r_type == R_XTENSA_NONE)
8989 continue;
8990
8991 /* Find the literal value. */
8992 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8993 size_p = &contents[irel->r_offset + 4];
8994 flags_p = NULL;
8995 if (is_full_prop_section)
8996 flags_p = &contents[irel->r_offset + 8];
8997 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
8998
8999 target_sec = r_reloc_get_section (&val.r_rel);
9000 target_relax_info = get_xtensa_relax_info (target_sec);
9001
9002 if (target_relax_info
9003 && (target_relax_info->is_relaxable_literal_section
9004 || target_relax_info->is_relaxable_asm_section ))
9005 {
9006 /* Translate the relocation's destination. */
9007 bfd_vma old_offset = val.r_rel.target_offset;
9008 bfd_vma new_offset;
9009 long old_size, new_size;
9010 text_action *act = target_relax_info->action_list.head;
9011 new_offset = old_offset -
9012 removed_by_actions (&act, old_offset, FALSE);
9013
9014 /* Assert that we are not out of bounds. */
9015 old_size = bfd_get_32 (abfd, size_p);
9016 new_size = old_size;
9017
9018 if (old_size == 0)
9019 {
9020 /* Only the first zero-sized unreachable entry is
9021 allowed to expand. In this case the new offset
9022 should be the offset before the fill and the new
9023 size is the expansion size. For other zero-sized
9024 entries the resulting size should be zero with an
9025 offset before or after the fill address depending
9026 on whether the expanding unreachable entry
9027 preceeds it. */
9028 if (last_zfill_target_sec == 0
9029 || last_zfill_target_sec != target_sec
9030 || last_zfill_target_offset != old_offset)
9031 {
9032 bfd_vma new_end_offset = new_offset;
9033
9034 /* Recompute the new_offset, but this time don't
9035 include any fill inserted by relaxation. */
9036 act = target_relax_info->action_list.head;
9037 new_offset = old_offset -
9038 removed_by_actions (&act, old_offset, TRUE);
9039
9040 /* If it is not unreachable and we have not yet
9041 seen an unreachable at this address, place it
9042 before the fill address. */
9043 if (flags_p && (bfd_get_32 (abfd, flags_p)
9044 & XTENSA_PROP_UNREACHABLE) != 0)
9045 {
9046 new_size = new_end_offset - new_offset;
9047
9048 last_zfill_target_sec = target_sec;
9049 last_zfill_target_offset = old_offset;
9050 }
9051 }
9052 }
9053 else
9054 new_size -=
9055 removed_by_actions (&act, old_offset + old_size, TRUE);
9056
9057 if (new_size != old_size)
9058 {
9059 bfd_put_32 (abfd, new_size, size_p);
9060 pin_contents (sec, contents);
9061 }
9062
9063 if (new_offset != old_offset)
9064 {
9065 bfd_vma diff = new_offset - old_offset;
9066 irel->r_addend += diff;
9067 pin_internal_relocs (sec, internal_relocs);
9068 }
9069 }
9070 }
9071 }
9072
9073 /* Combine adjacent property table entries. This is also done in
9074 finish_dynamic_sections() but at that point it's too late to
9075 reclaim the space in the output section, so we do this twice. */
9076
9077 if (internal_relocs && (!link_info->relocatable
9078 || xtensa_is_littable_section (sec)))
9079 {
9080 Elf_Internal_Rela *last_irel = NULL;
9081 Elf_Internal_Rela *irel, *next_rel, *rel_end;
9082 int removed_bytes = 0;
9083 bfd_vma offset;
9084 flagword predef_flags;
9085
9086 predef_flags = xtensa_get_property_predef_flags (sec);
9087
9088 /* Walk over memory and relocations at the same time.
9089 This REQUIRES that the internal_relocs be sorted by offset. */
9090 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9091 internal_reloc_compare);
9092
9093 pin_internal_relocs (sec, internal_relocs);
9094 pin_contents (sec, contents);
9095
9096 next_rel = internal_relocs;
9097 rel_end = internal_relocs + sec->reloc_count;
9098
9099 BFD_ASSERT (sec->size % entry_size == 0);
9100
9101 for (offset = 0; offset < sec->size; offset += entry_size)
9102 {
9103 Elf_Internal_Rela *offset_rel, *extra_rel;
9104 bfd_vma bytes_to_remove, size, actual_offset;
9105 bfd_boolean remove_this_rel;
9106 flagword flags;
9107
9108 /* Find the first relocation for the entry at the current offset.
9109 Adjust the offsets of any extra relocations for the previous
9110 entry. */
9111 offset_rel = NULL;
9112 if (next_rel)
9113 {
9114 for (irel = next_rel; irel < rel_end; irel++)
9115 {
9116 if ((irel->r_offset == offset
9117 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9118 || irel->r_offset > offset)
9119 {
9120 offset_rel = irel;
9121 break;
9122 }
9123 irel->r_offset -= removed_bytes;
9124 }
9125 }
9126
9127 /* Find the next relocation (if there are any left). */
9128 extra_rel = NULL;
9129 if (offset_rel)
9130 {
9131 for (irel = offset_rel + 1; irel < rel_end; irel++)
9132 {
9133 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9134 {
9135 extra_rel = irel;
9136 break;
9137 }
9138 }
9139 }
9140
9141 /* Check if there are relocations on the current entry. There
9142 should usually be a relocation on the offset field. If there
9143 are relocations on the size or flags, then we can't optimize
9144 this entry. Also, find the next relocation to examine on the
9145 next iteration. */
9146 if (offset_rel)
9147 {
9148 if (offset_rel->r_offset >= offset + entry_size)
9149 {
9150 next_rel = offset_rel;
9151 /* There are no relocations on the current entry, but we
9152 might still be able to remove it if the size is zero. */
9153 offset_rel = NULL;
9154 }
9155 else if (offset_rel->r_offset > offset
9156 || (extra_rel
9157 && extra_rel->r_offset < offset + entry_size))
9158 {
9159 /* There is a relocation on the size or flags, so we can't
9160 do anything with this entry. Continue with the next. */
9161 next_rel = offset_rel;
9162 continue;
9163 }
9164 else
9165 {
9166 BFD_ASSERT (offset_rel->r_offset == offset);
9167 offset_rel->r_offset -= removed_bytes;
9168 next_rel = offset_rel + 1;
9169 }
9170 }
9171 else
9172 next_rel = NULL;
9173
9174 remove_this_rel = FALSE;
9175 bytes_to_remove = 0;
9176 actual_offset = offset - removed_bytes;
9177 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9178
9179 if (is_full_prop_section)
9180 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9181 else
9182 flags = predef_flags;
9183
9184 if (size == 0
9185 && (flags & XTENSA_PROP_ALIGN) == 0
9186 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
9187 {
9188 /* Always remove entries with zero size and no alignment. */
9189 bytes_to_remove = entry_size;
9190 if (offset_rel)
9191 remove_this_rel = TRUE;
9192 }
9193 else if (offset_rel
9194 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
9195 {
9196 if (last_irel)
9197 {
9198 flagword old_flags;
9199 bfd_vma old_size =
9200 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9201 bfd_vma old_address =
9202 (last_irel->r_addend
9203 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9204 bfd_vma new_address =
9205 (offset_rel->r_addend
9206 + bfd_get_32 (abfd, &contents[actual_offset]));
9207 if (is_full_prop_section)
9208 old_flags = bfd_get_32
9209 (abfd, &contents[last_irel->r_offset + 8]);
9210 else
9211 old_flags = predef_flags;
9212
9213 if ((ELF32_R_SYM (offset_rel->r_info)
9214 == ELF32_R_SYM (last_irel->r_info))
9215 && old_address + old_size == new_address
9216 && old_flags == flags
9217 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9218 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
9219 {
9220 /* Fix the old size. */
9221 bfd_put_32 (abfd, old_size + size,
9222 &contents[last_irel->r_offset + 4]);
9223 bytes_to_remove = entry_size;
9224 remove_this_rel = TRUE;
9225 }
9226 else
9227 last_irel = offset_rel;
9228 }
9229 else
9230 last_irel = offset_rel;
9231 }
9232
9233 if (remove_this_rel)
9234 {
9235 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9236 /* In case this is the last entry, move the relocation offset
9237 to the previous entry, if there is one. */
9238 if (offset_rel->r_offset >= bytes_to_remove)
9239 offset_rel->r_offset -= bytes_to_remove;
9240 else
9241 offset_rel->r_offset = 0;
9242 }
9243
9244 if (bytes_to_remove != 0)
9245 {
9246 removed_bytes += bytes_to_remove;
9247 if (offset + bytes_to_remove < sec->size)
9248 memmove (&contents[actual_offset],
9249 &contents[actual_offset + bytes_to_remove],
9250 sec->size - offset - bytes_to_remove);
9251 }
9252 }
9253
9254 if (removed_bytes)
9255 {
9256 /* Fix up any extra relocations on the last entry. */
9257 for (irel = next_rel; irel < rel_end; irel++)
9258 irel->r_offset -= removed_bytes;
9259
9260 /* Clear the removed bytes. */
9261 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
9262
9263 if (sec->rawsize == 0)
9264 sec->rawsize = sec->size;
9265 sec->size -= removed_bytes;
9266
9267 if (xtensa_is_littable_section (sec))
9268 {
9269 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
9270 if (sgotloc)
9271 sgotloc->size -= removed_bytes;
9272 }
9273 }
9274 }
9275
9276 error_return:
9277 release_internal_relocs (sec, internal_relocs);
9278 release_contents (sec, contents);
9279 return ok;
9280 }
9281
9282 \f
9283 /* Third relaxation pass. */
9284
9285 /* Change symbol values to account for removed literals. */
9286
9287 bfd_boolean
9288 relax_section_symbols (bfd *abfd, asection *sec)
9289 {
9290 xtensa_relax_info *relax_info;
9291 unsigned int sec_shndx;
9292 Elf_Internal_Shdr *symtab_hdr;
9293 Elf_Internal_Sym *isymbuf;
9294 unsigned i, num_syms, num_locals;
9295
9296 relax_info = get_xtensa_relax_info (sec);
9297 BFD_ASSERT (relax_info);
9298
9299 if (!relax_info->is_relaxable_literal_section
9300 && !relax_info->is_relaxable_asm_section)
9301 return TRUE;
9302
9303 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9304
9305 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9306 isymbuf = retrieve_local_syms (abfd);
9307
9308 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9309 num_locals = symtab_hdr->sh_info;
9310
9311 /* Adjust the local symbols defined in this section. */
9312 for (i = 0; i < num_locals; i++)
9313 {
9314 Elf_Internal_Sym *isym = &isymbuf[i];
9315
9316 if (isym->st_shndx == sec_shndx)
9317 {
9318 text_action *act = relax_info->action_list.head;
9319 bfd_vma orig_addr = isym->st_value;
9320
9321 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
9322
9323 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9324 isym->st_size -=
9325 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
9326 }
9327 }
9328
9329 /* Now adjust the global symbols defined in this section. */
9330 for (i = 0; i < (num_syms - num_locals); i++)
9331 {
9332 struct elf_link_hash_entry *sym_hash;
9333
9334 sym_hash = elf_sym_hashes (abfd)[i];
9335
9336 if (sym_hash->root.type == bfd_link_hash_warning)
9337 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9338
9339 if ((sym_hash->root.type == bfd_link_hash_defined
9340 || sym_hash->root.type == bfd_link_hash_defweak)
9341 && sym_hash->root.u.def.section == sec)
9342 {
9343 text_action *act = relax_info->action_list.head;
9344 bfd_vma orig_addr = sym_hash->root.u.def.value;
9345
9346 sym_hash->root.u.def.value -=
9347 removed_by_actions (&act, orig_addr, FALSE);
9348
9349 if (sym_hash->type == STT_FUNC)
9350 sym_hash->size -=
9351 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
9352 }
9353 }
9354
9355 return TRUE;
9356 }
9357
9358 \f
9359 /* "Fix" handling functions, called while performing relocations. */
9360
9361 static bfd_boolean
9362 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9363 bfd *input_bfd,
9364 asection *input_section,
9365 bfd_byte *contents)
9366 {
9367 r_reloc r_rel;
9368 asection *sec, *old_sec;
9369 bfd_vma old_offset;
9370 int r_type = ELF32_R_TYPE (rel->r_info);
9371 reloc_bfd_fix *fix;
9372
9373 if (r_type == R_XTENSA_NONE)
9374 return TRUE;
9375
9376 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9377 if (!fix)
9378 return TRUE;
9379
9380 r_reloc_init (&r_rel, input_bfd, rel, contents,
9381 bfd_get_section_limit (input_bfd, input_section));
9382 old_sec = r_reloc_get_section (&r_rel);
9383 old_offset = r_rel.target_offset;
9384
9385 if (!old_sec || !r_reloc_is_defined (&r_rel))
9386 {
9387 if (r_type != R_XTENSA_ASM_EXPAND)
9388 {
9389 (*_bfd_error_handler)
9390 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9391 input_bfd, input_section, rel->r_offset,
9392 elf_howto_table[r_type].name);
9393 return FALSE;
9394 }
9395 /* Leave it be. Resolution will happen in a later stage. */
9396 }
9397 else
9398 {
9399 sec = fix->target_sec;
9400 rel->r_addend += ((sec->output_offset + fix->target_offset)
9401 - (old_sec->output_offset + old_offset));
9402 }
9403 return TRUE;
9404 }
9405
9406
9407 static void
9408 do_fix_for_final_link (Elf_Internal_Rela *rel,
9409 bfd *input_bfd,
9410 asection *input_section,
9411 bfd_byte *contents,
9412 bfd_vma *relocationp)
9413 {
9414 asection *sec;
9415 int r_type = ELF32_R_TYPE (rel->r_info);
9416 reloc_bfd_fix *fix;
9417 bfd_vma fixup_diff;
9418
9419 if (r_type == R_XTENSA_NONE)
9420 return;
9421
9422 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9423 if (!fix)
9424 return;
9425
9426 sec = fix->target_sec;
9427
9428 fixup_diff = rel->r_addend;
9429 if (elf_howto_table[fix->src_type].partial_inplace)
9430 {
9431 bfd_vma inplace_val;
9432 BFD_ASSERT (fix->src_offset
9433 < bfd_get_section_limit (input_bfd, input_section));
9434 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9435 fixup_diff += inplace_val;
9436 }
9437
9438 *relocationp = (sec->output_section->vma
9439 + sec->output_offset
9440 + fix->target_offset - fixup_diff);
9441 }
9442
9443 \f
9444 /* Miscellaneous utility functions.... */
9445
9446 static asection *
9447 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
9448 {
9449 struct elf_xtensa_link_hash_table *htab;
9450 bfd *dynobj;
9451 char plt_name[10];
9452
9453 if (chunk == 0)
9454 {
9455 htab = elf_xtensa_hash_table (info);
9456 return htab->splt;
9457 }
9458
9459 dynobj = elf_hash_table (info)->dynobj;
9460 sprintf (plt_name, ".plt.%u", chunk);
9461 return bfd_get_section_by_name (dynobj, plt_name);
9462 }
9463
9464
9465 static asection *
9466 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
9467 {
9468 struct elf_xtensa_link_hash_table *htab;
9469 bfd *dynobj;
9470 char got_name[14];
9471
9472 if (chunk == 0)
9473 {
9474 htab = elf_xtensa_hash_table (info);
9475 return htab->sgotplt;
9476 }
9477
9478 dynobj = elf_hash_table (info)->dynobj;
9479 sprintf (got_name, ".got.plt.%u", chunk);
9480 return bfd_get_section_by_name (dynobj, got_name);
9481 }
9482
9483
9484 /* Get the input section for a given symbol index.
9485 If the symbol is:
9486 . a section symbol, return the section;
9487 . a common symbol, return the common section;
9488 . an undefined symbol, return the undefined section;
9489 . an indirect symbol, follow the links;
9490 . an absolute value, return the absolute section. */
9491
9492 static asection *
9493 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
9494 {
9495 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9496 asection *target_sec = NULL;
9497 if (r_symndx < symtab_hdr->sh_info)
9498 {
9499 Elf_Internal_Sym *isymbuf;
9500 unsigned int section_index;
9501
9502 isymbuf = retrieve_local_syms (abfd);
9503 section_index = isymbuf[r_symndx].st_shndx;
9504
9505 if (section_index == SHN_UNDEF)
9506 target_sec = bfd_und_section_ptr;
9507 else if (section_index == SHN_ABS)
9508 target_sec = bfd_abs_section_ptr;
9509 else if (section_index == SHN_COMMON)
9510 target_sec = bfd_com_section_ptr;
9511 else
9512 target_sec = bfd_section_from_elf_index (abfd, section_index);
9513 }
9514 else
9515 {
9516 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9517 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9518
9519 while (h->root.type == bfd_link_hash_indirect
9520 || h->root.type == bfd_link_hash_warning)
9521 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9522
9523 switch (h->root.type)
9524 {
9525 case bfd_link_hash_defined:
9526 case bfd_link_hash_defweak:
9527 target_sec = h->root.u.def.section;
9528 break;
9529 case bfd_link_hash_common:
9530 target_sec = bfd_com_section_ptr;
9531 break;
9532 case bfd_link_hash_undefined:
9533 case bfd_link_hash_undefweak:
9534 target_sec = bfd_und_section_ptr;
9535 break;
9536 default: /* New indirect warning. */
9537 target_sec = bfd_und_section_ptr;
9538 break;
9539 }
9540 }
9541 return target_sec;
9542 }
9543
9544
9545 static struct elf_link_hash_entry *
9546 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
9547 {
9548 unsigned long indx;
9549 struct elf_link_hash_entry *h;
9550 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9551
9552 if (r_symndx < symtab_hdr->sh_info)
9553 return NULL;
9554
9555 indx = r_symndx - symtab_hdr->sh_info;
9556 h = elf_sym_hashes (abfd)[indx];
9557 while (h->root.type == bfd_link_hash_indirect
9558 || h->root.type == bfd_link_hash_warning)
9559 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9560 return h;
9561 }
9562
9563
9564 /* Get the section-relative offset for a symbol number. */
9565
9566 static bfd_vma
9567 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
9568 {
9569 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9570 bfd_vma offset = 0;
9571
9572 if (r_symndx < symtab_hdr->sh_info)
9573 {
9574 Elf_Internal_Sym *isymbuf;
9575 isymbuf = retrieve_local_syms (abfd);
9576 offset = isymbuf[r_symndx].st_value;
9577 }
9578 else
9579 {
9580 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9581 struct elf_link_hash_entry *h =
9582 elf_sym_hashes (abfd)[indx];
9583
9584 while (h->root.type == bfd_link_hash_indirect
9585 || h->root.type == bfd_link_hash_warning)
9586 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9587 if (h->root.type == bfd_link_hash_defined
9588 || h->root.type == bfd_link_hash_defweak)
9589 offset = h->root.u.def.value;
9590 }
9591 return offset;
9592 }
9593
9594
9595 static bfd_boolean
9596 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
9597 {
9598 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9599 struct elf_link_hash_entry *h;
9600
9601 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9602 if (h && h->root.type == bfd_link_hash_defweak)
9603 return TRUE;
9604 return FALSE;
9605 }
9606
9607
9608 static bfd_boolean
9609 pcrel_reloc_fits (xtensa_opcode opc,
9610 int opnd,
9611 bfd_vma self_address,
9612 bfd_vma dest_address)
9613 {
9614 xtensa_isa isa = xtensa_default_isa;
9615 uint32 valp = dest_address;
9616 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9617 || xtensa_operand_encode (isa, opc, opnd, &valp))
9618 return FALSE;
9619 return TRUE;
9620 }
9621
9622
9623 static bfd_boolean
9624 xtensa_is_property_section (asection *sec)
9625 {
9626 if (xtensa_is_insntable_section (sec)
9627 || xtensa_is_littable_section (sec)
9628 || xtensa_is_proptable_section (sec))
9629 return TRUE;
9630
9631 return FALSE;
9632 }
9633
9634
9635 static bfd_boolean
9636 xtensa_is_insntable_section (asection *sec)
9637 {
9638 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9639 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
9640 return TRUE;
9641
9642 return FALSE;
9643 }
9644
9645
9646 static bfd_boolean
9647 xtensa_is_littable_section (asection *sec)
9648 {
9649 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
9650 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
9651 return TRUE;
9652
9653 return FALSE;
9654 }
9655
9656
9657 static bfd_boolean
9658 xtensa_is_proptable_section (asection *sec)
9659 {
9660 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
9661 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
9662 return TRUE;
9663
9664 return FALSE;
9665 }
9666
9667
9668 static int
9669 internal_reloc_compare (const void *ap, const void *bp)
9670 {
9671 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9672 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9673
9674 if (a->r_offset != b->r_offset)
9675 return (a->r_offset - b->r_offset);
9676
9677 /* We don't need to sort on these criteria for correctness,
9678 but enforcing a more strict ordering prevents unstable qsort
9679 from behaving differently with different implementations.
9680 Without the code below we get correct but different results
9681 on Solaris 2.7 and 2.8. We would like to always produce the
9682 same results no matter the host. */
9683
9684 if (a->r_info != b->r_info)
9685 return (a->r_info - b->r_info);
9686
9687 return (a->r_addend - b->r_addend);
9688 }
9689
9690
9691 static int
9692 internal_reloc_matches (const void *ap, const void *bp)
9693 {
9694 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9695 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9696
9697 /* Check if one entry overlaps with the other; this shouldn't happen
9698 except when searching for a match. */
9699 return (a->r_offset - b->r_offset);
9700 }
9701
9702
9703 /* Predicate function used to look up a section in a particular group. */
9704
9705 static bfd_boolean
9706 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
9707 {
9708 const char *gname = inf;
9709 const char *group_name = elf_group_name (sec);
9710
9711 return (group_name == gname
9712 || (group_name != NULL
9713 && gname != NULL
9714 && strcmp (group_name, gname) == 0));
9715 }
9716
9717
9718 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9719
9720 static char *
9721 xtensa_property_section_name (asection *sec, const char *base_name)
9722 {
9723 const char *suffix, *group_name;
9724 char *prop_sec_name;
9725
9726 group_name = elf_group_name (sec);
9727 if (group_name)
9728 {
9729 suffix = strrchr (sec->name, '.');
9730 if (suffix == sec->name)
9731 suffix = 0;
9732 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
9733 + (suffix ? strlen (suffix) : 0));
9734 strcpy (prop_sec_name, base_name);
9735 if (suffix)
9736 strcat (prop_sec_name, suffix);
9737 }
9738 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
9739 {
9740 char *linkonce_kind = 0;
9741
9742 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
9743 linkonce_kind = "x.";
9744 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
9745 linkonce_kind = "p.";
9746 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9747 linkonce_kind = "prop.";
9748 else
9749 abort ();
9750
9751 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9752 + strlen (linkonce_kind) + 1);
9753 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
9754 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
9755
9756 suffix = sec->name + linkonce_len;
9757 /* For backward compatibility, replace "t." instead of inserting
9758 the new linkonce_kind (but not for "prop" sections). */
9759 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
9760 suffix += 2;
9761 strcat (prop_sec_name + linkonce_len, suffix);
9762 }
9763 else
9764 prop_sec_name = strdup (base_name);
9765
9766 return prop_sec_name;
9767 }
9768
9769
9770 static asection *
9771 xtensa_get_property_section (asection *sec, const char *base_name)
9772 {
9773 char *prop_sec_name;
9774 asection *prop_sec;
9775
9776 prop_sec_name = xtensa_property_section_name (sec, base_name);
9777 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
9778 match_section_group,
9779 (void *) elf_group_name (sec));
9780 free (prop_sec_name);
9781 return prop_sec;
9782 }
9783
9784
9785 asection *
9786 xtensa_make_property_section (asection *sec, const char *base_name)
9787 {
9788 char *prop_sec_name;
9789 asection *prop_sec;
9790
9791 /* Check if the section already exists. */
9792 prop_sec_name = xtensa_property_section_name (sec, base_name);
9793 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
9794 match_section_group,
9795 (void *) elf_group_name (sec));
9796 /* If not, create it. */
9797 if (! prop_sec)
9798 {
9799 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
9800 flags |= (bfd_get_section_flags (sec->owner, sec)
9801 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
9802
9803 prop_sec = bfd_make_section_anyway_with_flags
9804 (sec->owner, strdup (prop_sec_name), flags);
9805 if (! prop_sec)
9806 return 0;
9807
9808 elf_group_name (prop_sec) = elf_group_name (sec);
9809 }
9810
9811 free (prop_sec_name);
9812 return prop_sec;
9813 }
9814
9815
9816 flagword
9817 xtensa_get_property_predef_flags (asection *sec)
9818 {
9819 if (xtensa_is_insntable_section (sec))
9820 return (XTENSA_PROP_INSN
9821 | XTENSA_PROP_NO_TRANSFORM
9822 | XTENSA_PROP_INSN_NO_REORDER);
9823
9824 if (xtensa_is_littable_section (sec))
9825 return (XTENSA_PROP_LITERAL
9826 | XTENSA_PROP_NO_TRANSFORM
9827 | XTENSA_PROP_INSN_NO_REORDER);
9828
9829 return 0;
9830 }
9831
9832 \f
9833 /* Other functions called directly by the linker. */
9834
9835 bfd_boolean
9836 xtensa_callback_required_dependence (bfd *abfd,
9837 asection *sec,
9838 struct bfd_link_info *link_info,
9839 deps_callback_t callback,
9840 void *closure)
9841 {
9842 Elf_Internal_Rela *internal_relocs;
9843 bfd_byte *contents;
9844 unsigned i;
9845 bfd_boolean ok = TRUE;
9846 bfd_size_type sec_size;
9847
9848 sec_size = bfd_get_section_limit (abfd, sec);
9849
9850 /* ".plt*" sections have no explicit relocations but they contain L32R
9851 instructions that reference the corresponding ".got.plt*" sections. */
9852 if ((sec->flags & SEC_LINKER_CREATED) != 0
9853 && CONST_STRNEQ (sec->name, ".plt"))
9854 {
9855 asection *sgotplt;
9856
9857 /* Find the corresponding ".got.plt*" section. */
9858 if (sec->name[4] == '\0')
9859 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9860 else
9861 {
9862 char got_name[14];
9863 int chunk = 0;
9864
9865 BFD_ASSERT (sec->name[4] == '.');
9866 chunk = strtol (&sec->name[5], NULL, 10);
9867
9868 sprintf (got_name, ".got.plt.%u", chunk);
9869 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9870 }
9871 BFD_ASSERT (sgotplt);
9872
9873 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9874 section referencing a literal at the very beginning of
9875 ".got.plt". This is very close to the real dependence, anyway. */
9876 (*callback) (sec, sec_size, sgotplt, 0, closure);
9877 }
9878
9879 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
9880 when building uclibc, which runs "ld -b binary /dev/null". */
9881 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9882 return ok;
9883
9884 internal_relocs = retrieve_internal_relocs (abfd, sec,
9885 link_info->keep_memory);
9886 if (internal_relocs == NULL
9887 || sec->reloc_count == 0)
9888 return ok;
9889
9890 /* Cache the contents for the duration of this scan. */
9891 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9892 if (contents == NULL && sec_size != 0)
9893 {
9894 ok = FALSE;
9895 goto error_return;
9896 }
9897
9898 if (!xtensa_default_isa)
9899 xtensa_default_isa = xtensa_isa_init (0, 0);
9900
9901 for (i = 0; i < sec->reloc_count; i++)
9902 {
9903 Elf_Internal_Rela *irel = &internal_relocs[i];
9904 if (is_l32r_relocation (abfd, sec, contents, irel))
9905 {
9906 r_reloc l32r_rel;
9907 asection *target_sec;
9908 bfd_vma target_offset;
9909
9910 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
9911 target_sec = NULL;
9912 target_offset = 0;
9913 /* L32Rs must be local to the input file. */
9914 if (r_reloc_is_defined (&l32r_rel))
9915 {
9916 target_sec = r_reloc_get_section (&l32r_rel);
9917 target_offset = l32r_rel.target_offset;
9918 }
9919 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9920 closure);
9921 }
9922 }
9923
9924 error_return:
9925 release_internal_relocs (sec, internal_relocs);
9926 release_contents (sec, contents);
9927 return ok;
9928 }
9929
9930 /* The default literal sections should always be marked as "code" (i.e.,
9931 SHF_EXECINSTR). This is particularly important for the Linux kernel
9932 module loader so that the literals are not placed after the text. */
9933 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
9934 {
9935 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9936 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9937 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9938 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
9939 { NULL, 0, 0, 0, 0 }
9940 };
9941 \f
9942 #ifndef ELF_ARCH
9943 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9944 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
9945 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9946 #define TARGET_BIG_NAME "elf32-xtensa-be"
9947 #define ELF_ARCH bfd_arch_xtensa
9948
9949 #define ELF_MACHINE_CODE EM_XTENSA
9950 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
9951
9952 #if XCHAL_HAVE_MMU
9953 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9954 #else /* !XCHAL_HAVE_MMU */
9955 #define ELF_MAXPAGESIZE 1
9956 #endif /* !XCHAL_HAVE_MMU */
9957 #endif /* ELF_ARCH */
9958
9959 #define elf_backend_can_gc_sections 1
9960 #define elf_backend_can_refcount 1
9961 #define elf_backend_plt_readonly 1
9962 #define elf_backend_got_header_size 4
9963 #define elf_backend_want_dynbss 0
9964 #define elf_backend_want_got_plt 1
9965
9966 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
9967
9968 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9969 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9970 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9971 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9972 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9973 #define bfd_elf32_bfd_reloc_name_lookup \
9974 elf_xtensa_reloc_name_lookup
9975 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9976 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
9977
9978 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9979 #define elf_backend_check_relocs elf_xtensa_check_relocs
9980 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9981 #define elf_backend_discard_info elf_xtensa_discard_info
9982 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9983 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
9984 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9985 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9986 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9987 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9988 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9989 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9990 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
9991 #define elf_backend_object_p elf_xtensa_object_p
9992 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9993 #define elf_backend_relocate_section elf_xtensa_relocate_section
9994 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
9995 #define elf_backend_omit_section_dynsym \
9996 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
9997 #define elf_backend_special_sections elf_xtensa_special_sections
9998 #define elf_backend_action_discarded elf_xtensa_action_discarded
9999
10000 #include "elf32-target.h"