]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-xtensa.c
* elf32-xtensa.c (relax_section): Call pin_internal_relocs when
[thirdparty/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "xtensa-isa.h"
32 #include "xtensa-config.h"
33
34 #define XTENSA_NO_NOP_REMOVAL 0
35
36 /* Local helper functions. */
37
38 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
40 static bfd_reloc_status_type bfd_elf_xtensa_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_boolean do_fix_for_relocatable_link
43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
44 static void do_fix_for_final_link
45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
46
47 /* Local functions to handle Xtensa configurability. */
48
49 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
50 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
51 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
52 static xtensa_opcode get_const16_opcode (void);
53 static xtensa_opcode get_l32r_opcode (void);
54 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
55 static int get_relocation_opnd (xtensa_opcode, int);
56 static int get_relocation_slot (int);
57 static xtensa_opcode get_relocation_opcode
58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
59 static bfd_boolean is_l32r_relocation
60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
61 static bfd_boolean is_alt_relocation (int);
62 static bfd_boolean is_operand_relocation (int);
63 static bfd_size_type insn_decode_len
64 (bfd_byte *, bfd_size_type, bfd_size_type);
65 static xtensa_opcode insn_decode_opcode
66 (bfd_byte *, bfd_size_type, bfd_size_type, int);
67 static bfd_boolean check_branch_target_aligned
68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
69 static bfd_boolean check_loop_aligned
70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
71 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
72 static bfd_size_type get_asm_simplify_size
73 (bfd_byte *, bfd_size_type, bfd_size_type);
74
75 /* Functions for link-time code simplifications. */
76
77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
78 (bfd_byte *, bfd_vma, bfd_vma, char **);
79 static bfd_reloc_status_type contract_asm_expansion
80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
81 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
82 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
83
84 /* Access to internal relocations, section contents and symbols. */
85
86 static Elf_Internal_Rela *retrieve_internal_relocs
87 (bfd *, asection *, bfd_boolean);
88 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
89 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
90 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
91 static void pin_contents (asection *, bfd_byte *);
92 static void release_contents (asection *, bfd_byte *);
93 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
94
95 /* Miscellaneous utility functions. */
96
97 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
98 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
99 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
100 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
101 (bfd *, unsigned long);
102 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
103 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
104 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
105 static bfd_boolean xtensa_is_property_section (asection *);
106 static bfd_boolean xtensa_is_insntable_section (asection *);
107 static bfd_boolean xtensa_is_littable_section (asection *);
108 static bfd_boolean xtensa_is_proptable_section (asection *);
109 static int internal_reloc_compare (const void *, const void *);
110 static int internal_reloc_matches (const void *, const void *);
111 extern asection *xtensa_get_property_section (asection *, const char *);
112 static flagword xtensa_get_property_predef_flags (asection *);
113
114 /* Other functions called directly by the linker. */
115
116 typedef void (*deps_callback_t)
117 (asection *, bfd_vma, asection *, bfd_vma, void *);
118 extern bfd_boolean xtensa_callback_required_dependence
119 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
120
121
122 /* Globally visible flag for choosing size optimization of NOP removal
123 instead of branch-target-aware minimization for NOP removal.
124 When nonzero, narrow all instructions and remove all NOPs possible
125 around longcall expansions. */
126
127 int elf32xtensa_size_opt;
128
129
130 /* The "new_section_hook" is used to set up a per-section
131 "xtensa_relax_info" data structure with additional information used
132 during relaxation. */
133
134 typedef struct xtensa_relax_info_struct xtensa_relax_info;
135
136
137 /* The GNU tools do not easily allow extending interfaces to pass around
138 the pointer to the Xtensa ISA information, so instead we add a global
139 variable here (in BFD) that can be used by any of the tools that need
140 this information. */
141
142 xtensa_isa xtensa_default_isa;
143
144
145 /* When this is true, relocations may have been modified to refer to
146 symbols from other input files. The per-section list of "fix"
147 records needs to be checked when resolving relocations. */
148
149 static bfd_boolean relaxing_section = FALSE;
150
151 /* When this is true, during final links, literals that cannot be
152 coalesced and their relocations may be moved to other sections. */
153
154 int elf32xtensa_no_literal_movement = 1;
155
156 \f
157 static reloc_howto_type elf_howto_table[] =
158 {
159 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
160 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
161 FALSE, 0, 0, FALSE),
162 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
163 bfd_elf_xtensa_reloc, "R_XTENSA_32",
164 TRUE, 0xffffffff, 0xffffffff, FALSE),
165
166 /* Replace a 32-bit value with a value from the runtime linker (only
167 used by linker-generated stub functions). The r_addend value is
168 special: 1 means to substitute a pointer to the runtime linker's
169 dynamic resolver function; 2 means to substitute the link map for
170 the shared object. */
171 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
172 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
173
174 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
175 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
176 FALSE, 0, 0xffffffff, FALSE),
177 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
178 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
179 FALSE, 0, 0xffffffff, FALSE),
180 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
182 FALSE, 0, 0xffffffff, FALSE),
183 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
185 FALSE, 0, 0xffffffff, FALSE),
186
187 EMPTY_HOWTO (7),
188
189 /* Old relocations for backward compatibility. */
190 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
191 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
192 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
193 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
194 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
196
197 /* Assembly auto-expansion. */
198 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
199 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
200 /* Relax assembly auto-expansion. */
201 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
202 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
203
204 EMPTY_HOWTO (13),
205 EMPTY_HOWTO (14),
206
207 /* GNU extension to record C++ vtable hierarchy. */
208 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
209 NULL, "R_XTENSA_GNU_VTINHERIT",
210 FALSE, 0, 0, FALSE),
211 /* GNU extension to record C++ vtable member usage. */
212 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
213 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
214 FALSE, 0, 0, FALSE),
215
216 /* Relocations for supporting difference of symbols. */
217 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
218 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
219 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
220 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
221 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
222 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
223
224 /* General immediate operand relocations. */
225 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
226 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
227 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
228 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
229 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
230 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
231 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
232 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
233 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
235 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
237 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
239 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
241 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
243 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
245 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
247 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
249 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
251 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
253 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
255
256 /* "Alternate" relocations. The meaning of these is opcode-specific. */
257 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
259 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
261 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
263 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
265 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
267 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
269 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
271 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
273 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
275 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
277 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
279 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
281 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
283 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
285 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
287 };
288
289 #if DEBUG_GEN_RELOC
290 #define TRACE(str) \
291 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
292 #else
293 #define TRACE(str)
294 #endif
295
296 static reloc_howto_type *
297 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
298 bfd_reloc_code_real_type code)
299 {
300 switch (code)
301 {
302 case BFD_RELOC_NONE:
303 TRACE ("BFD_RELOC_NONE");
304 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
305
306 case BFD_RELOC_32:
307 TRACE ("BFD_RELOC_32");
308 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
309
310 case BFD_RELOC_XTENSA_DIFF8:
311 TRACE ("BFD_RELOC_XTENSA_DIFF8");
312 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
313
314 case BFD_RELOC_XTENSA_DIFF16:
315 TRACE ("BFD_RELOC_XTENSA_DIFF16");
316 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
317
318 case BFD_RELOC_XTENSA_DIFF32:
319 TRACE ("BFD_RELOC_XTENSA_DIFF32");
320 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
321
322 case BFD_RELOC_XTENSA_RTLD:
323 TRACE ("BFD_RELOC_XTENSA_RTLD");
324 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
325
326 case BFD_RELOC_XTENSA_GLOB_DAT:
327 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
328 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
329
330 case BFD_RELOC_XTENSA_JMP_SLOT:
331 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
332 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
333
334 case BFD_RELOC_XTENSA_RELATIVE:
335 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
336 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
337
338 case BFD_RELOC_XTENSA_PLT:
339 TRACE ("BFD_RELOC_XTENSA_PLT");
340 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
341
342 case BFD_RELOC_XTENSA_OP0:
343 TRACE ("BFD_RELOC_XTENSA_OP0");
344 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
345
346 case BFD_RELOC_XTENSA_OP1:
347 TRACE ("BFD_RELOC_XTENSA_OP1");
348 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
349
350 case BFD_RELOC_XTENSA_OP2:
351 TRACE ("BFD_RELOC_XTENSA_OP2");
352 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
353
354 case BFD_RELOC_XTENSA_ASM_EXPAND:
355 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
356 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
357
358 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
359 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
360 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
361
362 case BFD_RELOC_VTABLE_INHERIT:
363 TRACE ("BFD_RELOC_VTABLE_INHERIT");
364 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
365
366 case BFD_RELOC_VTABLE_ENTRY:
367 TRACE ("BFD_RELOC_VTABLE_ENTRY");
368 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
369
370 default:
371 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
372 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
373 {
374 unsigned n = (R_XTENSA_SLOT0_OP +
375 (code - BFD_RELOC_XTENSA_SLOT0_OP));
376 return &elf_howto_table[n];
377 }
378
379 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
380 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
381 {
382 unsigned n = (R_XTENSA_SLOT0_ALT +
383 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
384 return &elf_howto_table[n];
385 }
386
387 break;
388 }
389
390 TRACE ("Unknown");
391 return NULL;
392 }
393
394 static reloc_howto_type *
395 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
396 const char *r_name)
397 {
398 unsigned int i;
399
400 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
401 if (elf_howto_table[i].name != NULL
402 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
403 return &elf_howto_table[i];
404
405 return NULL;
406 }
407
408
409 /* Given an ELF "rela" relocation, find the corresponding howto and record
410 it in the BFD internal arelent representation of the relocation. */
411
412 static void
413 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
414 arelent *cache_ptr,
415 Elf_Internal_Rela *dst)
416 {
417 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
418
419 BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max);
420 cache_ptr->howto = &elf_howto_table[r_type];
421 }
422
423 \f
424 /* Functions for the Xtensa ELF linker. */
425
426 /* The name of the dynamic interpreter. This is put in the .interp
427 section. */
428
429 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
430
431 /* The size in bytes of an entry in the procedure linkage table.
432 (This does _not_ include the space for the literals associated with
433 the PLT entry.) */
434
435 #define PLT_ENTRY_SIZE 16
436
437 /* For _really_ large PLTs, we may need to alternate between literals
438 and code to keep the literals within the 256K range of the L32R
439 instructions in the code. It's unlikely that anyone would ever need
440 such a big PLT, but an arbitrary limit on the PLT size would be bad.
441 Thus, we split the PLT into chunks. Since there's very little
442 overhead (2 extra literals) for each chunk, the chunk size is kept
443 small so that the code for handling multiple chunks get used and
444 tested regularly. With 254 entries, there are 1K of literals for
445 each chunk, and that seems like a nice round number. */
446
447 #define PLT_ENTRIES_PER_CHUNK 254
448
449 /* PLT entries are actually used as stub functions for lazy symbol
450 resolution. Once the symbol is resolved, the stub function is never
451 invoked. Note: the 32-byte frame size used here cannot be changed
452 without a corresponding change in the runtime linker. */
453
454 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
455 {
456 0x6c, 0x10, 0x04, /* entry sp, 32 */
457 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
458 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
459 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
460 0x0a, 0x80, 0x00, /* jx a8 */
461 0 /* unused */
462 };
463
464 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
465 {
466 0x36, 0x41, 0x00, /* entry sp, 32 */
467 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
468 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
469 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
470 0xa0, 0x08, 0x00, /* jx a8 */
471 0 /* unused */
472 };
473
474 /* Xtensa ELF linker hash table. */
475
476 struct elf_xtensa_link_hash_table
477 {
478 struct elf_link_hash_table elf;
479
480 /* Short-cuts to get to dynamic linker sections. */
481 asection *sgot;
482 asection *sgotplt;
483 asection *srelgot;
484 asection *splt;
485 asection *srelplt;
486 asection *sgotloc;
487 asection *spltlittbl;
488
489 /* Total count of PLT relocations seen during check_relocs.
490 The actual PLT code must be split into multiple sections and all
491 the sections have to be created before size_dynamic_sections,
492 where we figure out the exact number of PLT entries that will be
493 needed. It is OK if this count is an overestimate, e.g., some
494 relocations may be removed by GC. */
495 int plt_reloc_count;
496 };
497
498 /* Get the Xtensa ELF linker hash table from a link_info structure. */
499
500 #define elf_xtensa_hash_table(p) \
501 ((struct elf_xtensa_link_hash_table *) ((p)->hash))
502
503 /* Create an Xtensa ELF linker hash table. */
504
505 static struct bfd_link_hash_table *
506 elf_xtensa_link_hash_table_create (bfd *abfd)
507 {
508 struct elf_xtensa_link_hash_table *ret;
509 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
510
511 ret = bfd_malloc (amt);
512 if (ret == NULL)
513 return NULL;
514
515 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
516 _bfd_elf_link_hash_newfunc,
517 sizeof (struct elf_link_hash_entry)))
518 {
519 free (ret);
520 return NULL;
521 }
522
523 ret->sgot = NULL;
524 ret->sgotplt = NULL;
525 ret->srelgot = NULL;
526 ret->splt = NULL;
527 ret->srelplt = NULL;
528 ret->sgotloc = NULL;
529 ret->spltlittbl = NULL;
530
531 ret->plt_reloc_count = 0;
532
533 return &ret->elf.root;
534 }
535
536 static inline bfd_boolean
537 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
538 struct bfd_link_info *info)
539 {
540 /* Check if we should do dynamic things to this symbol. The
541 "ignore_protected" argument need not be set, because Xtensa code
542 does not require special handling of STV_PROTECTED to make function
543 pointer comparisons work properly. The PLT addresses are never
544 used for function pointers. */
545
546 return _bfd_elf_dynamic_symbol_p (h, info, 0);
547 }
548
549 \f
550 static int
551 property_table_compare (const void *ap, const void *bp)
552 {
553 const property_table_entry *a = (const property_table_entry *) ap;
554 const property_table_entry *b = (const property_table_entry *) bp;
555
556 if (a->address == b->address)
557 {
558 if (a->size != b->size)
559 return (a->size - b->size);
560
561 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
562 return ((b->flags & XTENSA_PROP_ALIGN)
563 - (a->flags & XTENSA_PROP_ALIGN));
564
565 if ((a->flags & XTENSA_PROP_ALIGN)
566 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
567 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
568 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
569 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
570
571 if ((a->flags & XTENSA_PROP_UNREACHABLE)
572 != (b->flags & XTENSA_PROP_UNREACHABLE))
573 return ((b->flags & XTENSA_PROP_UNREACHABLE)
574 - (a->flags & XTENSA_PROP_UNREACHABLE));
575
576 return (a->flags - b->flags);
577 }
578
579 return (a->address - b->address);
580 }
581
582
583 static int
584 property_table_matches (const void *ap, const void *bp)
585 {
586 const property_table_entry *a = (const property_table_entry *) ap;
587 const property_table_entry *b = (const property_table_entry *) bp;
588
589 /* Check if one entry overlaps with the other. */
590 if ((b->address >= a->address && b->address < (a->address + a->size))
591 || (a->address >= b->address && a->address < (b->address + b->size)))
592 return 0;
593
594 return (a->address - b->address);
595 }
596
597
598 /* Get the literal table or property table entries for the given
599 section. Sets TABLE_P and returns the number of entries. On
600 error, returns a negative value. */
601
602 static int
603 xtensa_read_table_entries (bfd *abfd,
604 asection *section,
605 property_table_entry **table_p,
606 const char *sec_name,
607 bfd_boolean output_addr)
608 {
609 asection *table_section;
610 bfd_size_type table_size = 0;
611 bfd_byte *table_data;
612 property_table_entry *blocks;
613 int blk, block_count;
614 bfd_size_type num_records;
615 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
616 bfd_vma section_addr, off;
617 flagword predef_flags;
618 bfd_size_type table_entry_size, section_limit;
619
620 if (!section
621 || !(section->flags & SEC_ALLOC)
622 || (section->flags & SEC_DEBUGGING))
623 {
624 *table_p = NULL;
625 return 0;
626 }
627
628 table_section = xtensa_get_property_section (section, sec_name);
629 if (table_section)
630 table_size = table_section->size;
631
632 if (table_size == 0)
633 {
634 *table_p = NULL;
635 return 0;
636 }
637
638 predef_flags = xtensa_get_property_predef_flags (table_section);
639 table_entry_size = 12;
640 if (predef_flags)
641 table_entry_size -= 4;
642
643 num_records = table_size / table_entry_size;
644 table_data = retrieve_contents (abfd, table_section, TRUE);
645 blocks = (property_table_entry *)
646 bfd_malloc (num_records * sizeof (property_table_entry));
647 block_count = 0;
648
649 if (output_addr)
650 section_addr = section->output_section->vma + section->output_offset;
651 else
652 section_addr = section->vma;
653
654 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
655 if (internal_relocs && !table_section->reloc_done)
656 {
657 qsort (internal_relocs, table_section->reloc_count,
658 sizeof (Elf_Internal_Rela), internal_reloc_compare);
659 irel = internal_relocs;
660 }
661 else
662 irel = NULL;
663
664 section_limit = bfd_get_section_limit (abfd, section);
665 rel_end = internal_relocs + table_section->reloc_count;
666
667 for (off = 0; off < table_size; off += table_entry_size)
668 {
669 bfd_vma address = bfd_get_32 (abfd, table_data + off);
670
671 /* Skip any relocations before the current offset. This should help
672 avoid confusion caused by unexpected relocations for the preceding
673 table entry. */
674 while (irel &&
675 (irel->r_offset < off
676 || (irel->r_offset == off
677 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
678 {
679 irel += 1;
680 if (irel >= rel_end)
681 irel = 0;
682 }
683
684 if (irel && irel->r_offset == off)
685 {
686 bfd_vma sym_off;
687 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
688 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
689
690 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
691 continue;
692
693 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
694 BFD_ASSERT (sym_off == 0);
695 address += (section_addr + sym_off + irel->r_addend);
696 }
697 else
698 {
699 if (address < section_addr
700 || address >= section_addr + section_limit)
701 continue;
702 }
703
704 blocks[block_count].address = address;
705 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
706 if (predef_flags)
707 blocks[block_count].flags = predef_flags;
708 else
709 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
710 block_count++;
711 }
712
713 release_contents (table_section, table_data);
714 release_internal_relocs (table_section, internal_relocs);
715
716 if (block_count > 0)
717 {
718 /* Now sort them into address order for easy reference. */
719 qsort (blocks, block_count, sizeof (property_table_entry),
720 property_table_compare);
721
722 /* Check that the table contents are valid. Problems may occur,
723 for example, if an unrelocated object file is stripped. */
724 for (blk = 1; blk < block_count; blk++)
725 {
726 /* The only circumstance where two entries may legitimately
727 have the same address is when one of them is a zero-size
728 placeholder to mark a place where fill can be inserted.
729 The zero-size entry should come first. */
730 if (blocks[blk - 1].address == blocks[blk].address &&
731 blocks[blk - 1].size != 0)
732 {
733 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
734 abfd, section);
735 bfd_set_error (bfd_error_bad_value);
736 free (blocks);
737 return -1;
738 }
739 }
740 }
741
742 *table_p = blocks;
743 return block_count;
744 }
745
746
747 static property_table_entry *
748 elf_xtensa_find_property_entry (property_table_entry *property_table,
749 int property_table_size,
750 bfd_vma addr)
751 {
752 property_table_entry entry;
753 property_table_entry *rv;
754
755 if (property_table_size == 0)
756 return NULL;
757
758 entry.address = addr;
759 entry.size = 1;
760 entry.flags = 0;
761
762 rv = bsearch (&entry, property_table, property_table_size,
763 sizeof (property_table_entry), property_table_matches);
764 return rv;
765 }
766
767
768 static bfd_boolean
769 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
770 int lit_table_size,
771 bfd_vma addr)
772 {
773 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
774 return TRUE;
775
776 return FALSE;
777 }
778
779 \f
780 /* Look through the relocs for a section during the first phase, and
781 calculate needed space in the dynamic reloc sections. */
782
783 static bfd_boolean
784 elf_xtensa_check_relocs (bfd *abfd,
785 struct bfd_link_info *info,
786 asection *sec,
787 const Elf_Internal_Rela *relocs)
788 {
789 struct elf_xtensa_link_hash_table *htab;
790 Elf_Internal_Shdr *symtab_hdr;
791 struct elf_link_hash_entry **sym_hashes;
792 const Elf_Internal_Rela *rel;
793 const Elf_Internal_Rela *rel_end;
794
795 if (info->relocatable)
796 return TRUE;
797
798 htab = elf_xtensa_hash_table (info);
799 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
800 sym_hashes = elf_sym_hashes (abfd);
801
802 rel_end = relocs + sec->reloc_count;
803 for (rel = relocs; rel < rel_end; rel++)
804 {
805 unsigned int r_type;
806 unsigned long r_symndx;
807 struct elf_link_hash_entry *h;
808
809 r_symndx = ELF32_R_SYM (rel->r_info);
810 r_type = ELF32_R_TYPE (rel->r_info);
811
812 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
813 {
814 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
815 abfd, r_symndx);
816 return FALSE;
817 }
818
819 if (r_symndx < symtab_hdr->sh_info)
820 h = NULL;
821 else
822 {
823 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
824 while (h->root.type == bfd_link_hash_indirect
825 || h->root.type == bfd_link_hash_warning)
826 h = (struct elf_link_hash_entry *) h->root.u.i.link;
827 }
828
829 switch (r_type)
830 {
831 case R_XTENSA_32:
832 if (h == NULL)
833 goto local_literal;
834
835 if ((sec->flags & SEC_ALLOC) != 0)
836 {
837 if (h->got.refcount <= 0)
838 h->got.refcount = 1;
839 else
840 h->got.refcount += 1;
841 }
842 break;
843
844 case R_XTENSA_PLT:
845 /* If this relocation is against a local symbol, then it's
846 exactly the same as a normal local GOT entry. */
847 if (h == NULL)
848 goto local_literal;
849
850 if ((sec->flags & SEC_ALLOC) != 0)
851 {
852 if (h->plt.refcount <= 0)
853 {
854 h->needs_plt = 1;
855 h->plt.refcount = 1;
856 }
857 else
858 h->plt.refcount += 1;
859
860 /* Keep track of the total PLT relocation count even if we
861 don't yet know whether the dynamic sections will be
862 created. */
863 htab->plt_reloc_count += 1;
864
865 if (elf_hash_table (info)->dynamic_sections_created)
866 {
867 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
868 return FALSE;
869 }
870 }
871 break;
872
873 local_literal:
874 if ((sec->flags & SEC_ALLOC) != 0)
875 {
876 bfd_signed_vma *local_got_refcounts;
877
878 /* This is a global offset table entry for a local symbol. */
879 local_got_refcounts = elf_local_got_refcounts (abfd);
880 if (local_got_refcounts == NULL)
881 {
882 bfd_size_type size;
883
884 size = symtab_hdr->sh_info;
885 size *= sizeof (bfd_signed_vma);
886 local_got_refcounts =
887 (bfd_signed_vma *) bfd_zalloc (abfd, size);
888 if (local_got_refcounts == NULL)
889 return FALSE;
890 elf_local_got_refcounts (abfd) = local_got_refcounts;
891 }
892 local_got_refcounts[r_symndx] += 1;
893 }
894 break;
895
896 case R_XTENSA_OP0:
897 case R_XTENSA_OP1:
898 case R_XTENSA_OP2:
899 case R_XTENSA_SLOT0_OP:
900 case R_XTENSA_SLOT1_OP:
901 case R_XTENSA_SLOT2_OP:
902 case R_XTENSA_SLOT3_OP:
903 case R_XTENSA_SLOT4_OP:
904 case R_XTENSA_SLOT5_OP:
905 case R_XTENSA_SLOT6_OP:
906 case R_XTENSA_SLOT7_OP:
907 case R_XTENSA_SLOT8_OP:
908 case R_XTENSA_SLOT9_OP:
909 case R_XTENSA_SLOT10_OP:
910 case R_XTENSA_SLOT11_OP:
911 case R_XTENSA_SLOT12_OP:
912 case R_XTENSA_SLOT13_OP:
913 case R_XTENSA_SLOT14_OP:
914 case R_XTENSA_SLOT0_ALT:
915 case R_XTENSA_SLOT1_ALT:
916 case R_XTENSA_SLOT2_ALT:
917 case R_XTENSA_SLOT3_ALT:
918 case R_XTENSA_SLOT4_ALT:
919 case R_XTENSA_SLOT5_ALT:
920 case R_XTENSA_SLOT6_ALT:
921 case R_XTENSA_SLOT7_ALT:
922 case R_XTENSA_SLOT8_ALT:
923 case R_XTENSA_SLOT9_ALT:
924 case R_XTENSA_SLOT10_ALT:
925 case R_XTENSA_SLOT11_ALT:
926 case R_XTENSA_SLOT12_ALT:
927 case R_XTENSA_SLOT13_ALT:
928 case R_XTENSA_SLOT14_ALT:
929 case R_XTENSA_ASM_EXPAND:
930 case R_XTENSA_ASM_SIMPLIFY:
931 case R_XTENSA_DIFF8:
932 case R_XTENSA_DIFF16:
933 case R_XTENSA_DIFF32:
934 /* Nothing to do for these. */
935 break;
936
937 case R_XTENSA_GNU_VTINHERIT:
938 /* This relocation describes the C++ object vtable hierarchy.
939 Reconstruct it for later use during GC. */
940 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
941 return FALSE;
942 break;
943
944 case R_XTENSA_GNU_VTENTRY:
945 /* This relocation describes which C++ vtable entries are actually
946 used. Record for later use during GC. */
947 BFD_ASSERT (h != NULL);
948 if (h != NULL
949 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
950 return FALSE;
951 break;
952
953 default:
954 break;
955 }
956 }
957
958 return TRUE;
959 }
960
961
962 static void
963 elf_xtensa_make_sym_local (struct bfd_link_info *info,
964 struct elf_link_hash_entry *h)
965 {
966 if (info->shared)
967 {
968 if (h->plt.refcount > 0)
969 {
970 /* For shared objects, there's no need for PLT entries for local
971 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
972 if (h->got.refcount < 0)
973 h->got.refcount = 0;
974 h->got.refcount += h->plt.refcount;
975 h->plt.refcount = 0;
976 }
977 }
978 else
979 {
980 /* Don't need any dynamic relocations at all. */
981 h->plt.refcount = 0;
982 h->got.refcount = 0;
983 }
984 }
985
986
987 static void
988 elf_xtensa_hide_symbol (struct bfd_link_info *info,
989 struct elf_link_hash_entry *h,
990 bfd_boolean force_local)
991 {
992 /* For a shared link, move the plt refcount to the got refcount to leave
993 space for RELATIVE relocs. */
994 elf_xtensa_make_sym_local (info, h);
995
996 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
997 }
998
999
1000 /* Return the section that should be marked against GC for a given
1001 relocation. */
1002
1003 static asection *
1004 elf_xtensa_gc_mark_hook (asection *sec,
1005 struct bfd_link_info *info,
1006 Elf_Internal_Rela *rel,
1007 struct elf_link_hash_entry *h,
1008 Elf_Internal_Sym *sym)
1009 {
1010 /* Property sections are marked "KEEP" in the linker scripts, but they
1011 should not cause other sections to be marked. (This approach relies
1012 on elf_xtensa_discard_info to remove property table entries that
1013 describe discarded sections. Alternatively, it might be more
1014 efficient to avoid using "KEEP" in the linker scripts and instead use
1015 the gc_mark_extra_sections hook to mark only the property sections
1016 that describe marked sections. That alternative does not work well
1017 with the current property table sections, which do not correspond
1018 one-to-one with the sections they describe, but that should be fixed
1019 someday.) */
1020 if (xtensa_is_property_section (sec))
1021 return NULL;
1022
1023 if (h != NULL)
1024 switch (ELF32_R_TYPE (rel->r_info))
1025 {
1026 case R_XTENSA_GNU_VTINHERIT:
1027 case R_XTENSA_GNU_VTENTRY:
1028 return NULL;
1029 }
1030
1031 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1032 }
1033
1034
1035 /* Update the GOT & PLT entry reference counts
1036 for the section being removed. */
1037
1038 static bfd_boolean
1039 elf_xtensa_gc_sweep_hook (bfd *abfd,
1040 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1041 asection *sec,
1042 const Elf_Internal_Rela *relocs)
1043 {
1044 Elf_Internal_Shdr *symtab_hdr;
1045 struct elf_link_hash_entry **sym_hashes;
1046 bfd_signed_vma *local_got_refcounts;
1047 const Elf_Internal_Rela *rel, *relend;
1048
1049 if ((sec->flags & SEC_ALLOC) == 0)
1050 return TRUE;
1051
1052 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1053 sym_hashes = elf_sym_hashes (abfd);
1054 local_got_refcounts = elf_local_got_refcounts (abfd);
1055
1056 relend = relocs + sec->reloc_count;
1057 for (rel = relocs; rel < relend; rel++)
1058 {
1059 unsigned long r_symndx;
1060 unsigned int r_type;
1061 struct elf_link_hash_entry *h = NULL;
1062
1063 r_symndx = ELF32_R_SYM (rel->r_info);
1064 if (r_symndx >= symtab_hdr->sh_info)
1065 {
1066 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1067 while (h->root.type == bfd_link_hash_indirect
1068 || h->root.type == bfd_link_hash_warning)
1069 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1070 }
1071
1072 r_type = ELF32_R_TYPE (rel->r_info);
1073 switch (r_type)
1074 {
1075 case R_XTENSA_32:
1076 if (h == NULL)
1077 goto local_literal;
1078 if (h->got.refcount > 0)
1079 h->got.refcount--;
1080 break;
1081
1082 case R_XTENSA_PLT:
1083 if (h == NULL)
1084 goto local_literal;
1085 if (h->plt.refcount > 0)
1086 h->plt.refcount--;
1087 break;
1088
1089 local_literal:
1090 if (local_got_refcounts[r_symndx] > 0)
1091 local_got_refcounts[r_symndx] -= 1;
1092 break;
1093
1094 default:
1095 break;
1096 }
1097 }
1098
1099 return TRUE;
1100 }
1101
1102
1103 /* Create all the dynamic sections. */
1104
1105 static bfd_boolean
1106 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1107 {
1108 struct elf_xtensa_link_hash_table *htab;
1109 flagword flags, noalloc_flags;
1110
1111 htab = elf_xtensa_hash_table (info);
1112
1113 /* First do all the standard stuff. */
1114 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1115 return FALSE;
1116 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
1117 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
1118 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
1119 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
1120
1121 /* Create any extra PLT sections in case check_relocs has already
1122 been called on all the non-dynamic input files. */
1123 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1124 return FALSE;
1125
1126 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1127 | SEC_LINKER_CREATED | SEC_READONLY);
1128 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1129
1130 /* Mark the ".got.plt" section READONLY. */
1131 if (htab->sgotplt == NULL
1132 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1133 return FALSE;
1134
1135 /* Create ".rela.got". */
1136 htab->srelgot = bfd_make_section_with_flags (dynobj, ".rela.got", flags);
1137 if (htab->srelgot == NULL
1138 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
1139 return FALSE;
1140
1141 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1142 htab->sgotloc = bfd_make_section_with_flags (dynobj, ".got.loc", flags);
1143 if (htab->sgotloc == NULL
1144 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1145 return FALSE;
1146
1147 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1148 htab->spltlittbl = bfd_make_section_with_flags (dynobj, ".xt.lit.plt",
1149 noalloc_flags);
1150 if (htab->spltlittbl == NULL
1151 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1152 return FALSE;
1153
1154 return TRUE;
1155 }
1156
1157
1158 static bfd_boolean
1159 add_extra_plt_sections (struct bfd_link_info *info, int count)
1160 {
1161 bfd *dynobj = elf_hash_table (info)->dynobj;
1162 int chunk;
1163
1164 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1165 ".got.plt" sections. */
1166 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1167 {
1168 char *sname;
1169 flagword flags;
1170 asection *s;
1171
1172 /* Stop when we find a section has already been created. */
1173 if (elf_xtensa_get_plt_section (info, chunk))
1174 break;
1175
1176 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1177 | SEC_LINKER_CREATED | SEC_READONLY);
1178
1179 sname = (char *) bfd_malloc (10);
1180 sprintf (sname, ".plt.%u", chunk);
1181 s = bfd_make_section_with_flags (dynobj, sname, flags | SEC_CODE);
1182 if (s == NULL
1183 || ! bfd_set_section_alignment (dynobj, s, 2))
1184 return FALSE;
1185
1186 sname = (char *) bfd_malloc (14);
1187 sprintf (sname, ".got.plt.%u", chunk);
1188 s = bfd_make_section_with_flags (dynobj, sname, flags);
1189 if (s == NULL
1190 || ! bfd_set_section_alignment (dynobj, s, 2))
1191 return FALSE;
1192 }
1193
1194 return TRUE;
1195 }
1196
1197
1198 /* Adjust a symbol defined by a dynamic object and referenced by a
1199 regular object. The current definition is in some section of the
1200 dynamic object, but we're not including those sections. We have to
1201 change the definition to something the rest of the link can
1202 understand. */
1203
1204 static bfd_boolean
1205 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1206 struct elf_link_hash_entry *h)
1207 {
1208 /* If this is a weak symbol, and there is a real definition, the
1209 processor independent code will have arranged for us to see the
1210 real definition first, and we can just use the same value. */
1211 if (h->u.weakdef)
1212 {
1213 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1214 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1215 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1216 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1217 return TRUE;
1218 }
1219
1220 /* This is a reference to a symbol defined by a dynamic object. The
1221 reference must go through the GOT, so there's no need for COPY relocs,
1222 .dynbss, etc. */
1223
1224 return TRUE;
1225 }
1226
1227
1228 static bfd_boolean
1229 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1230 {
1231 struct bfd_link_info *info;
1232 struct elf_xtensa_link_hash_table *htab;
1233 bfd_boolean is_dynamic;
1234
1235 if (h->root.type == bfd_link_hash_indirect)
1236 return TRUE;
1237
1238 if (h->root.type == bfd_link_hash_warning)
1239 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1240
1241 info = (struct bfd_link_info *) arg;
1242 htab = elf_xtensa_hash_table (info);
1243
1244 is_dynamic = elf_xtensa_dynamic_symbol_p (h, info);
1245
1246 if (! is_dynamic)
1247 elf_xtensa_make_sym_local (info, h);
1248
1249 if (h->plt.refcount > 0)
1250 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1251
1252 if (h->got.refcount > 0)
1253 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1254
1255 return TRUE;
1256 }
1257
1258
1259 static void
1260 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1261 {
1262 struct elf_xtensa_link_hash_table *htab;
1263 bfd *i;
1264
1265 htab = elf_xtensa_hash_table (info);
1266
1267 for (i = info->input_bfds; i; i = i->link_next)
1268 {
1269 bfd_signed_vma *local_got_refcounts;
1270 bfd_size_type j, cnt;
1271 Elf_Internal_Shdr *symtab_hdr;
1272
1273 local_got_refcounts = elf_local_got_refcounts (i);
1274 if (!local_got_refcounts)
1275 continue;
1276
1277 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1278 cnt = symtab_hdr->sh_info;
1279
1280 for (j = 0; j < cnt; ++j)
1281 {
1282 if (local_got_refcounts[j] > 0)
1283 htab->srelgot->size += (local_got_refcounts[j]
1284 * sizeof (Elf32_External_Rela));
1285 }
1286 }
1287 }
1288
1289
1290 /* Set the sizes of the dynamic sections. */
1291
1292 static bfd_boolean
1293 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1294 struct bfd_link_info *info)
1295 {
1296 struct elf_xtensa_link_hash_table *htab;
1297 bfd *dynobj, *abfd;
1298 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1299 bfd_boolean relplt, relgot;
1300 int plt_entries, plt_chunks, chunk;
1301
1302 plt_entries = 0;
1303 plt_chunks = 0;
1304
1305 htab = elf_xtensa_hash_table (info);
1306 dynobj = elf_hash_table (info)->dynobj;
1307 if (dynobj == NULL)
1308 abort ();
1309 srelgot = htab->srelgot;
1310 srelplt = htab->srelplt;
1311
1312 if (elf_hash_table (info)->dynamic_sections_created)
1313 {
1314 BFD_ASSERT (htab->srelgot != NULL
1315 && htab->srelplt != NULL
1316 && htab->sgot != NULL
1317 && htab->spltlittbl != NULL
1318 && htab->sgotloc != NULL);
1319
1320 /* Set the contents of the .interp section to the interpreter. */
1321 if (info->executable)
1322 {
1323 s = bfd_get_section_by_name (dynobj, ".interp");
1324 if (s == NULL)
1325 abort ();
1326 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1327 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1328 }
1329
1330 /* Allocate room for one word in ".got". */
1331 htab->sgot->size = 4;
1332
1333 /* Allocate space in ".rela.got" for literals that reference global
1334 symbols and space in ".rela.plt" for literals that have PLT
1335 entries. */
1336 elf_link_hash_traverse (elf_hash_table (info),
1337 elf_xtensa_allocate_dynrelocs,
1338 (void *) info);
1339
1340 /* If we are generating a shared object, we also need space in
1341 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1342 reference local symbols. */
1343 if (info->shared)
1344 elf_xtensa_allocate_local_got_size (info);
1345
1346 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1347 each PLT entry, we need the PLT code plus a 4-byte literal.
1348 For each chunk of ".plt", we also need two more 4-byte
1349 literals, two corresponding entries in ".rela.got", and an
1350 8-byte entry in ".xt.lit.plt". */
1351 spltlittbl = htab->spltlittbl;
1352 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1353 plt_chunks =
1354 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1355
1356 /* Iterate over all the PLT chunks, including any extra sections
1357 created earlier because the initial count of PLT relocations
1358 was an overestimate. */
1359 for (chunk = 0;
1360 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1361 chunk++)
1362 {
1363 int chunk_entries;
1364
1365 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1366 BFD_ASSERT (sgotplt != NULL);
1367
1368 if (chunk < plt_chunks - 1)
1369 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1370 else if (chunk == plt_chunks - 1)
1371 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1372 else
1373 chunk_entries = 0;
1374
1375 if (chunk_entries != 0)
1376 {
1377 sgotplt->size = 4 * (chunk_entries + 2);
1378 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1379 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1380 spltlittbl->size += 8;
1381 }
1382 else
1383 {
1384 sgotplt->size = 0;
1385 splt->size = 0;
1386 }
1387 }
1388
1389 /* Allocate space in ".got.loc" to match the total size of all the
1390 literal tables. */
1391 sgotloc = htab->sgotloc;
1392 sgotloc->size = spltlittbl->size;
1393 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1394 {
1395 if (abfd->flags & DYNAMIC)
1396 continue;
1397 for (s = abfd->sections; s != NULL; s = s->next)
1398 {
1399 if (! elf_discarded_section (s)
1400 && xtensa_is_littable_section (s)
1401 && s != spltlittbl)
1402 sgotloc->size += s->size;
1403 }
1404 }
1405 }
1406
1407 /* Allocate memory for dynamic sections. */
1408 relplt = FALSE;
1409 relgot = FALSE;
1410 for (s = dynobj->sections; s != NULL; s = s->next)
1411 {
1412 const char *name;
1413
1414 if ((s->flags & SEC_LINKER_CREATED) == 0)
1415 continue;
1416
1417 /* It's OK to base decisions on the section name, because none
1418 of the dynobj section names depend upon the input files. */
1419 name = bfd_get_section_name (dynobj, s);
1420
1421 if (CONST_STRNEQ (name, ".rela"))
1422 {
1423 if (s->size != 0)
1424 {
1425 if (strcmp (name, ".rela.plt") == 0)
1426 relplt = TRUE;
1427 else if (strcmp (name, ".rela.got") == 0)
1428 relgot = TRUE;
1429
1430 /* We use the reloc_count field as a counter if we need
1431 to copy relocs into the output file. */
1432 s->reloc_count = 0;
1433 }
1434 }
1435 else if (! CONST_STRNEQ (name, ".plt.")
1436 && ! CONST_STRNEQ (name, ".got.plt.")
1437 && strcmp (name, ".got") != 0
1438 && strcmp (name, ".plt") != 0
1439 && strcmp (name, ".got.plt") != 0
1440 && strcmp (name, ".xt.lit.plt") != 0
1441 && strcmp (name, ".got.loc") != 0)
1442 {
1443 /* It's not one of our sections, so don't allocate space. */
1444 continue;
1445 }
1446
1447 if (s->size == 0)
1448 {
1449 /* If we don't need this section, strip it from the output
1450 file. We must create the ".plt*" and ".got.plt*"
1451 sections in create_dynamic_sections and/or check_relocs
1452 based on a conservative estimate of the PLT relocation
1453 count, because the sections must be created before the
1454 linker maps input sections to output sections. The
1455 linker does that before size_dynamic_sections, where we
1456 compute the exact size of the PLT, so there may be more
1457 of these sections than are actually needed. */
1458 s->flags |= SEC_EXCLUDE;
1459 }
1460 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1461 {
1462 /* Allocate memory for the section contents. */
1463 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1464 if (s->contents == NULL)
1465 return FALSE;
1466 }
1467 }
1468
1469 if (elf_hash_table (info)->dynamic_sections_created)
1470 {
1471 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1472 known until finish_dynamic_sections, but we need to get the relocs
1473 in place before they are sorted. */
1474 for (chunk = 0; chunk < plt_chunks; chunk++)
1475 {
1476 Elf_Internal_Rela irela;
1477 bfd_byte *loc;
1478
1479 irela.r_offset = 0;
1480 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1481 irela.r_addend = 0;
1482
1483 loc = (srelgot->contents
1484 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1485 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1486 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1487 loc + sizeof (Elf32_External_Rela));
1488 srelgot->reloc_count += 2;
1489 }
1490
1491 /* Add some entries to the .dynamic section. We fill in the
1492 values later, in elf_xtensa_finish_dynamic_sections, but we
1493 must add the entries now so that we get the correct size for
1494 the .dynamic section. The DT_DEBUG entry is filled in by the
1495 dynamic linker and used by the debugger. */
1496 #define add_dynamic_entry(TAG, VAL) \
1497 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1498
1499 if (info->executable)
1500 {
1501 if (!add_dynamic_entry (DT_DEBUG, 0))
1502 return FALSE;
1503 }
1504
1505 if (relplt)
1506 {
1507 if (!add_dynamic_entry (DT_PLTGOT, 0)
1508 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1509 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1510 || !add_dynamic_entry (DT_JMPREL, 0))
1511 return FALSE;
1512 }
1513
1514 if (relgot)
1515 {
1516 if (!add_dynamic_entry (DT_RELA, 0)
1517 || !add_dynamic_entry (DT_RELASZ, 0)
1518 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1519 return FALSE;
1520 }
1521
1522 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1523 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1524 return FALSE;
1525 }
1526 #undef add_dynamic_entry
1527
1528 return TRUE;
1529 }
1530
1531 \f
1532 /* Perform the specified relocation. The instruction at (contents + address)
1533 is modified to set one operand to represent the value in "relocation". The
1534 operand position is determined by the relocation type recorded in the
1535 howto. */
1536
1537 #define CALL_SEGMENT_BITS (30)
1538 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1539
1540 static bfd_reloc_status_type
1541 elf_xtensa_do_reloc (reloc_howto_type *howto,
1542 bfd *abfd,
1543 asection *input_section,
1544 bfd_vma relocation,
1545 bfd_byte *contents,
1546 bfd_vma address,
1547 bfd_boolean is_weak_undef,
1548 char **error_message)
1549 {
1550 xtensa_format fmt;
1551 xtensa_opcode opcode;
1552 xtensa_isa isa = xtensa_default_isa;
1553 static xtensa_insnbuf ibuff = NULL;
1554 static xtensa_insnbuf sbuff = NULL;
1555 bfd_vma self_address = 0;
1556 bfd_size_type input_size;
1557 int opnd, slot;
1558 uint32 newval;
1559
1560 if (!ibuff)
1561 {
1562 ibuff = xtensa_insnbuf_alloc (isa);
1563 sbuff = xtensa_insnbuf_alloc (isa);
1564 }
1565
1566 input_size = bfd_get_section_limit (abfd, input_section);
1567
1568 switch (howto->type)
1569 {
1570 case R_XTENSA_NONE:
1571 case R_XTENSA_DIFF8:
1572 case R_XTENSA_DIFF16:
1573 case R_XTENSA_DIFF32:
1574 return bfd_reloc_ok;
1575
1576 case R_XTENSA_ASM_EXPAND:
1577 if (!is_weak_undef)
1578 {
1579 /* Check for windowed CALL across a 1GB boundary. */
1580 xtensa_opcode opcode =
1581 get_expanded_call_opcode (contents + address,
1582 input_size - address, 0);
1583 if (is_windowed_call_opcode (opcode))
1584 {
1585 self_address = (input_section->output_section->vma
1586 + input_section->output_offset
1587 + address);
1588 if ((self_address >> CALL_SEGMENT_BITS)
1589 != (relocation >> CALL_SEGMENT_BITS))
1590 {
1591 *error_message = "windowed longcall crosses 1GB boundary; "
1592 "return may fail";
1593 return bfd_reloc_dangerous;
1594 }
1595 }
1596 }
1597 return bfd_reloc_ok;
1598
1599 case R_XTENSA_ASM_SIMPLIFY:
1600 {
1601 /* Convert the L32R/CALLX to CALL. */
1602 bfd_reloc_status_type retval =
1603 elf_xtensa_do_asm_simplify (contents, address, input_size,
1604 error_message);
1605 if (retval != bfd_reloc_ok)
1606 return bfd_reloc_dangerous;
1607
1608 /* The CALL needs to be relocated. Continue below for that part. */
1609 address += 3;
1610 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1611 }
1612 break;
1613
1614 case R_XTENSA_32:
1615 case R_XTENSA_PLT:
1616 {
1617 bfd_vma x;
1618 x = bfd_get_32 (abfd, contents + address);
1619 x = x + relocation;
1620 bfd_put_32 (abfd, x, contents + address);
1621 }
1622 return bfd_reloc_ok;
1623 }
1624
1625 /* Only instruction slot-specific relocations handled below.... */
1626 slot = get_relocation_slot (howto->type);
1627 if (slot == XTENSA_UNDEFINED)
1628 {
1629 *error_message = "unexpected relocation";
1630 return bfd_reloc_dangerous;
1631 }
1632
1633 /* Read the instruction into a buffer and decode the opcode. */
1634 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1635 input_size - address);
1636 fmt = xtensa_format_decode (isa, ibuff);
1637 if (fmt == XTENSA_UNDEFINED)
1638 {
1639 *error_message = "cannot decode instruction format";
1640 return bfd_reloc_dangerous;
1641 }
1642
1643 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1644
1645 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1646 if (opcode == XTENSA_UNDEFINED)
1647 {
1648 *error_message = "cannot decode instruction opcode";
1649 return bfd_reloc_dangerous;
1650 }
1651
1652 /* Check for opcode-specific "alternate" relocations. */
1653 if (is_alt_relocation (howto->type))
1654 {
1655 if (opcode == get_l32r_opcode ())
1656 {
1657 /* Handle the special-case of non-PC-relative L32R instructions. */
1658 bfd *output_bfd = input_section->output_section->owner;
1659 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1660 if (!lit4_sec)
1661 {
1662 *error_message = "relocation references missing .lit4 section";
1663 return bfd_reloc_dangerous;
1664 }
1665 self_address = ((lit4_sec->vma & ~0xfff)
1666 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1667 newval = relocation;
1668 opnd = 1;
1669 }
1670 else if (opcode == get_const16_opcode ())
1671 {
1672 /* ALT used for high 16 bits. */
1673 newval = relocation >> 16;
1674 opnd = 1;
1675 }
1676 else
1677 {
1678 /* No other "alternate" relocations currently defined. */
1679 *error_message = "unexpected relocation";
1680 return bfd_reloc_dangerous;
1681 }
1682 }
1683 else /* Not an "alternate" relocation.... */
1684 {
1685 if (opcode == get_const16_opcode ())
1686 {
1687 newval = relocation & 0xffff;
1688 opnd = 1;
1689 }
1690 else
1691 {
1692 /* ...normal PC-relative relocation.... */
1693
1694 /* Determine which operand is being relocated. */
1695 opnd = get_relocation_opnd (opcode, howto->type);
1696 if (opnd == XTENSA_UNDEFINED)
1697 {
1698 *error_message = "unexpected relocation";
1699 return bfd_reloc_dangerous;
1700 }
1701
1702 if (!howto->pc_relative)
1703 {
1704 *error_message = "expected PC-relative relocation";
1705 return bfd_reloc_dangerous;
1706 }
1707
1708 /* Calculate the PC address for this instruction. */
1709 self_address = (input_section->output_section->vma
1710 + input_section->output_offset
1711 + address);
1712
1713 newval = relocation;
1714 }
1715 }
1716
1717 /* Apply the relocation. */
1718 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1719 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1720 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1721 sbuff, newval))
1722 {
1723 const char *opname = xtensa_opcode_name (isa, opcode);
1724 const char *msg;
1725
1726 msg = "cannot encode";
1727 if (is_direct_call_opcode (opcode))
1728 {
1729 if ((relocation & 0x3) != 0)
1730 msg = "misaligned call target";
1731 else
1732 msg = "call target out of range";
1733 }
1734 else if (opcode == get_l32r_opcode ())
1735 {
1736 if ((relocation & 0x3) != 0)
1737 msg = "misaligned literal target";
1738 else if (is_alt_relocation (howto->type))
1739 msg = "literal target out of range (too many literals)";
1740 else if (self_address > relocation)
1741 msg = "literal target out of range (try using text-section-literals)";
1742 else
1743 msg = "literal placed after use";
1744 }
1745
1746 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
1747 return bfd_reloc_dangerous;
1748 }
1749
1750 /* Check for calls across 1GB boundaries. */
1751 if (is_direct_call_opcode (opcode)
1752 && is_windowed_call_opcode (opcode))
1753 {
1754 if ((self_address >> CALL_SEGMENT_BITS)
1755 != (relocation >> CALL_SEGMENT_BITS))
1756 {
1757 *error_message =
1758 "windowed call crosses 1GB boundary; return may fail";
1759 return bfd_reloc_dangerous;
1760 }
1761 }
1762
1763 /* Write the modified instruction back out of the buffer. */
1764 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
1765 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
1766 input_size - address);
1767 return bfd_reloc_ok;
1768 }
1769
1770
1771 static char *
1772 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
1773 {
1774 /* To reduce the size of the memory leak,
1775 we only use a single message buffer. */
1776 static bfd_size_type alloc_size = 0;
1777 static char *message = NULL;
1778 bfd_size_type orig_len, len = 0;
1779 bfd_boolean is_append;
1780
1781 VA_OPEN (ap, arglen);
1782 VA_FIXEDARG (ap, const char *, origmsg);
1783
1784 is_append = (origmsg == message);
1785
1786 orig_len = strlen (origmsg);
1787 len = orig_len + strlen (fmt) + arglen + 20;
1788 if (len > alloc_size)
1789 {
1790 message = (char *) bfd_realloc (message, len);
1791 alloc_size = len;
1792 }
1793 if (!is_append)
1794 memcpy (message, origmsg, orig_len);
1795 vsprintf (message + orig_len, fmt, ap);
1796 VA_CLOSE (ap);
1797 return message;
1798 }
1799
1800
1801 /* This function is registered as the "special_function" in the
1802 Xtensa howto for handling simplify operations.
1803 bfd_perform_relocation / bfd_install_relocation use it to
1804 perform (install) the specified relocation. Since this replaces the code
1805 in bfd_perform_relocation, it is basically an Xtensa-specific,
1806 stripped-down version of bfd_perform_relocation. */
1807
1808 static bfd_reloc_status_type
1809 bfd_elf_xtensa_reloc (bfd *abfd,
1810 arelent *reloc_entry,
1811 asymbol *symbol,
1812 void *data,
1813 asection *input_section,
1814 bfd *output_bfd,
1815 char **error_message)
1816 {
1817 bfd_vma relocation;
1818 bfd_reloc_status_type flag;
1819 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1820 bfd_vma output_base = 0;
1821 reloc_howto_type *howto = reloc_entry->howto;
1822 asection *reloc_target_output_section;
1823 bfd_boolean is_weak_undef;
1824
1825 if (!xtensa_default_isa)
1826 xtensa_default_isa = xtensa_isa_init (0, 0);
1827
1828 /* ELF relocs are against symbols. If we are producing relocatable
1829 output, and the reloc is against an external symbol, the resulting
1830 reloc will also be against the same symbol. In such a case, we
1831 don't want to change anything about the way the reloc is handled,
1832 since it will all be done at final link time. This test is similar
1833 to what bfd_elf_generic_reloc does except that it lets relocs with
1834 howto->partial_inplace go through even if the addend is non-zero.
1835 (The real problem is that partial_inplace is set for XTENSA_32
1836 relocs to begin with, but that's a long story and there's little we
1837 can do about it now....) */
1838
1839 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
1840 {
1841 reloc_entry->address += input_section->output_offset;
1842 return bfd_reloc_ok;
1843 }
1844
1845 /* Is the address of the relocation really within the section? */
1846 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1847 return bfd_reloc_outofrange;
1848
1849 /* Work out which section the relocation is targeted at and the
1850 initial relocation command value. */
1851
1852 /* Get symbol value. (Common symbols are special.) */
1853 if (bfd_is_com_section (symbol->section))
1854 relocation = 0;
1855 else
1856 relocation = symbol->value;
1857
1858 reloc_target_output_section = symbol->section->output_section;
1859
1860 /* Convert input-section-relative symbol value to absolute. */
1861 if ((output_bfd && !howto->partial_inplace)
1862 || reloc_target_output_section == NULL)
1863 output_base = 0;
1864 else
1865 output_base = reloc_target_output_section->vma;
1866
1867 relocation += output_base + symbol->section->output_offset;
1868
1869 /* Add in supplied addend. */
1870 relocation += reloc_entry->addend;
1871
1872 /* Here the variable relocation holds the final address of the
1873 symbol we are relocating against, plus any addend. */
1874 if (output_bfd)
1875 {
1876 if (!howto->partial_inplace)
1877 {
1878 /* This is a partial relocation, and we want to apply the relocation
1879 to the reloc entry rather than the raw data. Everything except
1880 relocations against section symbols has already been handled
1881 above. */
1882
1883 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
1884 reloc_entry->addend = relocation;
1885 reloc_entry->address += input_section->output_offset;
1886 return bfd_reloc_ok;
1887 }
1888 else
1889 {
1890 reloc_entry->address += input_section->output_offset;
1891 reloc_entry->addend = 0;
1892 }
1893 }
1894
1895 is_weak_undef = (bfd_is_und_section (symbol->section)
1896 && (symbol->flags & BSF_WEAK) != 0);
1897 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
1898 (bfd_byte *) data, (bfd_vma) octets,
1899 is_weak_undef, error_message);
1900
1901 if (flag == bfd_reloc_dangerous)
1902 {
1903 /* Add the symbol name to the error message. */
1904 if (! *error_message)
1905 *error_message = "";
1906 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
1907 strlen (symbol->name) + 17,
1908 symbol->name,
1909 (unsigned long) reloc_entry->addend);
1910 }
1911
1912 return flag;
1913 }
1914
1915
1916 /* Set up an entry in the procedure linkage table. */
1917
1918 static bfd_vma
1919 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
1920 bfd *output_bfd,
1921 unsigned reloc_index)
1922 {
1923 asection *splt, *sgotplt;
1924 bfd_vma plt_base, got_base;
1925 bfd_vma code_offset, lit_offset;
1926 int chunk;
1927
1928 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
1929 splt = elf_xtensa_get_plt_section (info, chunk);
1930 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1931 BFD_ASSERT (splt != NULL && sgotplt != NULL);
1932
1933 plt_base = splt->output_section->vma + splt->output_offset;
1934 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
1935
1936 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
1937 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
1938
1939 /* Fill in the literal entry. This is the offset of the dynamic
1940 relocation entry. */
1941 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
1942 sgotplt->contents + lit_offset);
1943
1944 /* Fill in the entry in the procedure linkage table. */
1945 memcpy (splt->contents + code_offset,
1946 (bfd_big_endian (output_bfd)
1947 ? elf_xtensa_be_plt_entry
1948 : elf_xtensa_le_plt_entry),
1949 PLT_ENTRY_SIZE);
1950 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
1951 plt_base + code_offset + 3),
1952 splt->contents + code_offset + 4);
1953 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
1954 plt_base + code_offset + 6),
1955 splt->contents + code_offset + 7);
1956 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
1957 plt_base + code_offset + 9),
1958 splt->contents + code_offset + 10);
1959
1960 return plt_base + code_offset;
1961 }
1962
1963
1964 /* Relocate an Xtensa ELF section. This is invoked by the linker for
1965 both relocatable and final links. */
1966
1967 static bfd_boolean
1968 elf_xtensa_relocate_section (bfd *output_bfd,
1969 struct bfd_link_info *info,
1970 bfd *input_bfd,
1971 asection *input_section,
1972 bfd_byte *contents,
1973 Elf_Internal_Rela *relocs,
1974 Elf_Internal_Sym *local_syms,
1975 asection **local_sections)
1976 {
1977 struct elf_xtensa_link_hash_table *htab;
1978 Elf_Internal_Shdr *symtab_hdr;
1979 Elf_Internal_Rela *rel;
1980 Elf_Internal_Rela *relend;
1981 struct elf_link_hash_entry **sym_hashes;
1982 property_table_entry *lit_table = 0;
1983 int ltblsize = 0;
1984 char *error_message = NULL;
1985 bfd_size_type input_size;
1986
1987 if (!xtensa_default_isa)
1988 xtensa_default_isa = xtensa_isa_init (0, 0);
1989
1990 htab = elf_xtensa_hash_table (info);
1991 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1992 sym_hashes = elf_sym_hashes (input_bfd);
1993
1994 if (elf_hash_table (info)->dynamic_sections_created)
1995 {
1996 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
1997 &lit_table, XTENSA_LIT_SEC_NAME,
1998 TRUE);
1999 if (ltblsize < 0)
2000 return FALSE;
2001 }
2002
2003 input_size = bfd_get_section_limit (input_bfd, input_section);
2004
2005 rel = relocs;
2006 relend = relocs + input_section->reloc_count;
2007 for (; rel < relend; rel++)
2008 {
2009 int r_type;
2010 reloc_howto_type *howto;
2011 unsigned long r_symndx;
2012 struct elf_link_hash_entry *h;
2013 Elf_Internal_Sym *sym;
2014 asection *sec;
2015 bfd_vma relocation;
2016 bfd_reloc_status_type r;
2017 bfd_boolean is_weak_undef;
2018 bfd_boolean unresolved_reloc;
2019 bfd_boolean warned;
2020
2021 r_type = ELF32_R_TYPE (rel->r_info);
2022 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2023 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2024 continue;
2025
2026 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2027 {
2028 bfd_set_error (bfd_error_bad_value);
2029 return FALSE;
2030 }
2031 howto = &elf_howto_table[r_type];
2032
2033 r_symndx = ELF32_R_SYM (rel->r_info);
2034
2035 h = NULL;
2036 sym = NULL;
2037 sec = NULL;
2038 is_weak_undef = FALSE;
2039 unresolved_reloc = FALSE;
2040 warned = FALSE;
2041
2042 if (howto->partial_inplace && !info->relocatable)
2043 {
2044 /* Because R_XTENSA_32 was made partial_inplace to fix some
2045 problems with DWARF info in partial links, there may be
2046 an addend stored in the contents. Take it out of there
2047 and move it back into the addend field of the reloc. */
2048 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2049 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2050 }
2051
2052 if (r_symndx < symtab_hdr->sh_info)
2053 {
2054 sym = local_syms + r_symndx;
2055 sec = local_sections[r_symndx];
2056 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2057 }
2058 else
2059 {
2060 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2061 r_symndx, symtab_hdr, sym_hashes,
2062 h, sec, relocation,
2063 unresolved_reloc, warned);
2064
2065 if (relocation == 0
2066 && !unresolved_reloc
2067 && h->root.type == bfd_link_hash_undefweak)
2068 is_weak_undef = TRUE;
2069 }
2070
2071 if (sec != NULL && elf_discarded_section (sec))
2072 {
2073 /* For relocs against symbols from removed linkonce sections,
2074 or sections discarded by a linker script, we just want the
2075 section contents zeroed. Avoid any special processing. */
2076 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
2077 rel->r_info = 0;
2078 rel->r_addend = 0;
2079 continue;
2080 }
2081
2082 if (info->relocatable)
2083 {
2084 /* This is a relocatable link.
2085 1) If the reloc is against a section symbol, adjust
2086 according to the output section.
2087 2) If there is a new target for this relocation,
2088 the new target will be in the same output section.
2089 We adjust the relocation by the output section
2090 difference. */
2091
2092 if (relaxing_section)
2093 {
2094 /* Check if this references a section in another input file. */
2095 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2096 contents))
2097 return FALSE;
2098 }
2099
2100 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2101 {
2102 char *error_message = NULL;
2103 /* Convert ASM_SIMPLIFY into the simpler relocation
2104 so that they never escape a relaxing link. */
2105 r = contract_asm_expansion (contents, input_size, rel,
2106 &error_message);
2107 if (r != bfd_reloc_ok)
2108 {
2109 if (!((*info->callbacks->reloc_dangerous)
2110 (info, error_message, input_bfd, input_section,
2111 rel->r_offset)))
2112 return FALSE;
2113 }
2114 r_type = ELF32_R_TYPE (rel->r_info);
2115 }
2116
2117 /* This is a relocatable link, so we don't have to change
2118 anything unless the reloc is against a section symbol,
2119 in which case we have to adjust according to where the
2120 section symbol winds up in the output section. */
2121 if (r_symndx < symtab_hdr->sh_info)
2122 {
2123 sym = local_syms + r_symndx;
2124 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2125 {
2126 sec = local_sections[r_symndx];
2127 rel->r_addend += sec->output_offset + sym->st_value;
2128 }
2129 }
2130
2131 /* If there is an addend with a partial_inplace howto,
2132 then move the addend to the contents. This is a hack
2133 to work around problems with DWARF in relocatable links
2134 with some previous version of BFD. Now we can't easily get
2135 rid of the hack without breaking backward compatibility.... */
2136 if (rel->r_addend)
2137 {
2138 howto = &elf_howto_table[r_type];
2139 if (howto->partial_inplace)
2140 {
2141 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2142 rel->r_addend, contents,
2143 rel->r_offset, FALSE,
2144 &error_message);
2145 if (r != bfd_reloc_ok)
2146 {
2147 if (!((*info->callbacks->reloc_dangerous)
2148 (info, error_message, input_bfd, input_section,
2149 rel->r_offset)))
2150 return FALSE;
2151 }
2152 rel->r_addend = 0;
2153 }
2154 }
2155
2156 /* Done with work for relocatable link; continue with next reloc. */
2157 continue;
2158 }
2159
2160 /* This is a final link. */
2161
2162 if (relaxing_section)
2163 {
2164 /* Check if this references a section in another input file. */
2165 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2166 &relocation);
2167 }
2168
2169 /* Sanity check the address. */
2170 if (rel->r_offset >= input_size
2171 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2172 {
2173 (*_bfd_error_handler)
2174 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2175 input_bfd, input_section, rel->r_offset, input_size);
2176 bfd_set_error (bfd_error_bad_value);
2177 return FALSE;
2178 }
2179
2180 /* Generate dynamic relocations. */
2181 if (elf_hash_table (info)->dynamic_sections_created)
2182 {
2183 bfd_boolean dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2184
2185 if (dynamic_symbol && is_operand_relocation (r_type))
2186 {
2187 /* This is an error. The symbol's real value won't be known
2188 until runtime and it's likely to be out of range anyway. */
2189 const char *name = h->root.root.string;
2190 error_message = vsprint_msg ("invalid relocation for dynamic "
2191 "symbol", ": %s",
2192 strlen (name) + 2, name);
2193 if (!((*info->callbacks->reloc_dangerous)
2194 (info, error_message, input_bfd, input_section,
2195 rel->r_offset)))
2196 return FALSE;
2197 }
2198 else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
2199 && (input_section->flags & SEC_ALLOC) != 0
2200 && (dynamic_symbol || info->shared))
2201 {
2202 Elf_Internal_Rela outrel;
2203 bfd_byte *loc;
2204 asection *srel;
2205
2206 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2207 srel = htab->srelplt;
2208 else
2209 srel = htab->srelgot;
2210
2211 BFD_ASSERT (srel != NULL);
2212
2213 outrel.r_offset =
2214 _bfd_elf_section_offset (output_bfd, info,
2215 input_section, rel->r_offset);
2216
2217 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2218 memset (&outrel, 0, sizeof outrel);
2219 else
2220 {
2221 outrel.r_offset += (input_section->output_section->vma
2222 + input_section->output_offset);
2223
2224 /* Complain if the relocation is in a read-only section
2225 and not in a literal pool. */
2226 if ((input_section->flags & SEC_READONLY) != 0
2227 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2228 outrel.r_offset))
2229 {
2230 error_message =
2231 _("dynamic relocation in read-only section");
2232 if (!((*info->callbacks->reloc_dangerous)
2233 (info, error_message, input_bfd, input_section,
2234 rel->r_offset)))
2235 return FALSE;
2236 }
2237
2238 if (dynamic_symbol)
2239 {
2240 outrel.r_addend = rel->r_addend;
2241 rel->r_addend = 0;
2242
2243 if (r_type == R_XTENSA_32)
2244 {
2245 outrel.r_info =
2246 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2247 relocation = 0;
2248 }
2249 else /* r_type == R_XTENSA_PLT */
2250 {
2251 outrel.r_info =
2252 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2253
2254 /* Create the PLT entry and set the initial
2255 contents of the literal entry to the address of
2256 the PLT entry. */
2257 relocation =
2258 elf_xtensa_create_plt_entry (info, output_bfd,
2259 srel->reloc_count);
2260 }
2261 unresolved_reloc = FALSE;
2262 }
2263 else
2264 {
2265 /* Generate a RELATIVE relocation. */
2266 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2267 outrel.r_addend = 0;
2268 }
2269 }
2270
2271 loc = (srel->contents
2272 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2273 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2274 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2275 <= srel->size);
2276 }
2277 }
2278
2279 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2280 because such sections are not SEC_ALLOC and thus ld.so will
2281 not process them. */
2282 if (unresolved_reloc
2283 && !((input_section->flags & SEC_DEBUGGING) != 0
2284 && h->def_dynamic))
2285 {
2286 (*_bfd_error_handler)
2287 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
2288 input_bfd,
2289 input_section,
2290 (long) rel->r_offset,
2291 howto->name,
2292 h->root.root.string);
2293 return FALSE;
2294 }
2295
2296 /* There's no point in calling bfd_perform_relocation here.
2297 Just go directly to our "special function". */
2298 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2299 relocation + rel->r_addend,
2300 contents, rel->r_offset, is_weak_undef,
2301 &error_message);
2302
2303 if (r != bfd_reloc_ok && !warned)
2304 {
2305 const char *name;
2306
2307 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
2308 BFD_ASSERT (error_message != NULL);
2309
2310 if (h)
2311 name = h->root.root.string;
2312 else
2313 {
2314 name = bfd_elf_string_from_elf_section
2315 (input_bfd, symtab_hdr->sh_link, sym->st_name);
2316 if (name && *name == '\0')
2317 name = bfd_section_name (input_bfd, sec);
2318 }
2319 if (name)
2320 {
2321 if (rel->r_addend == 0)
2322 error_message = vsprint_msg (error_message, ": %s",
2323 strlen (name) + 2, name);
2324 else
2325 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2326 strlen (name) + 22,
2327 name, (int)rel->r_addend);
2328 }
2329
2330 if (!((*info->callbacks->reloc_dangerous)
2331 (info, error_message, input_bfd, input_section,
2332 rel->r_offset)))
2333 return FALSE;
2334 }
2335 }
2336
2337 if (lit_table)
2338 free (lit_table);
2339
2340 input_section->reloc_done = TRUE;
2341
2342 return TRUE;
2343 }
2344
2345
2346 /* Finish up dynamic symbol handling. There's not much to do here since
2347 the PLT and GOT entries are all set up by relocate_section. */
2348
2349 static bfd_boolean
2350 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2351 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2352 struct elf_link_hash_entry *h,
2353 Elf_Internal_Sym *sym)
2354 {
2355 if (h->needs_plt && !h->def_regular)
2356 {
2357 /* Mark the symbol as undefined, rather than as defined in
2358 the .plt section. Leave the value alone. */
2359 sym->st_shndx = SHN_UNDEF;
2360 /* If the symbol is weak, we do need to clear the value.
2361 Otherwise, the PLT entry would provide a definition for
2362 the symbol even if the symbol wasn't defined anywhere,
2363 and so the symbol would never be NULL. */
2364 if (!h->ref_regular_nonweak)
2365 sym->st_value = 0;
2366 }
2367
2368 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2369 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2370 || h == elf_hash_table (info)->hgot)
2371 sym->st_shndx = SHN_ABS;
2372
2373 return TRUE;
2374 }
2375
2376
2377 /* Combine adjacent literal table entries in the output. Adjacent
2378 entries within each input section may have been removed during
2379 relaxation, but we repeat the process here, even though it's too late
2380 to shrink the output section, because it's important to minimize the
2381 number of literal table entries to reduce the start-up work for the
2382 runtime linker. Returns the number of remaining table entries or -1
2383 on error. */
2384
2385 static int
2386 elf_xtensa_combine_prop_entries (bfd *output_bfd,
2387 asection *sxtlit,
2388 asection *sgotloc)
2389 {
2390 bfd_byte *contents;
2391 property_table_entry *table;
2392 bfd_size_type section_size, sgotloc_size;
2393 bfd_vma offset;
2394 int n, m, num;
2395
2396 section_size = sxtlit->size;
2397 BFD_ASSERT (section_size % 8 == 0);
2398 num = section_size / 8;
2399
2400 sgotloc_size = sgotloc->size;
2401 if (sgotloc_size != section_size)
2402 {
2403 (*_bfd_error_handler)
2404 (_("internal inconsistency in size of .got.loc section"));
2405 return -1;
2406 }
2407
2408 table = bfd_malloc (num * sizeof (property_table_entry));
2409 if (table == 0)
2410 return -1;
2411
2412 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
2413 propagates to the output section, where it doesn't really apply and
2414 where it breaks the following call to bfd_malloc_and_get_section. */
2415 sxtlit->flags &= ~SEC_IN_MEMORY;
2416
2417 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
2418 {
2419 if (contents != 0)
2420 free (contents);
2421 free (table);
2422 return -1;
2423 }
2424
2425 /* There should never be any relocations left at this point, so this
2426 is quite a bit easier than what is done during relaxation. */
2427
2428 /* Copy the raw contents into a property table array and sort it. */
2429 offset = 0;
2430 for (n = 0; n < num; n++)
2431 {
2432 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
2433 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
2434 offset += 8;
2435 }
2436 qsort (table, num, sizeof (property_table_entry), property_table_compare);
2437
2438 for (n = 0; n < num; n++)
2439 {
2440 bfd_boolean remove = FALSE;
2441
2442 if (table[n].size == 0)
2443 remove = TRUE;
2444 else if (n > 0 &&
2445 (table[n-1].address + table[n-1].size == table[n].address))
2446 {
2447 table[n-1].size += table[n].size;
2448 remove = TRUE;
2449 }
2450
2451 if (remove)
2452 {
2453 for (m = n; m < num - 1; m++)
2454 {
2455 table[m].address = table[m+1].address;
2456 table[m].size = table[m+1].size;
2457 }
2458
2459 n--;
2460 num--;
2461 }
2462 }
2463
2464 /* Copy the data back to the raw contents. */
2465 offset = 0;
2466 for (n = 0; n < num; n++)
2467 {
2468 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
2469 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
2470 offset += 8;
2471 }
2472
2473 /* Clear the removed bytes. */
2474 if ((bfd_size_type) (num * 8) < section_size)
2475 memset (&contents[num * 8], 0, section_size - num * 8);
2476
2477 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
2478 section_size))
2479 return -1;
2480
2481 /* Copy the contents to ".got.loc". */
2482 memcpy (sgotloc->contents, contents, section_size);
2483
2484 free (contents);
2485 free (table);
2486 return num;
2487 }
2488
2489
2490 /* Finish up the dynamic sections. */
2491
2492 static bfd_boolean
2493 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
2494 struct bfd_link_info *info)
2495 {
2496 struct elf_xtensa_link_hash_table *htab;
2497 bfd *dynobj;
2498 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
2499 Elf32_External_Dyn *dyncon, *dynconend;
2500 int num_xtlit_entries;
2501
2502 if (! elf_hash_table (info)->dynamic_sections_created)
2503 return TRUE;
2504
2505 htab = elf_xtensa_hash_table (info);
2506 dynobj = elf_hash_table (info)->dynobj;
2507 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2508 BFD_ASSERT (sdyn != NULL);
2509
2510 /* Set the first entry in the global offset table to the address of
2511 the dynamic section. */
2512 sgot = htab->sgot;
2513 if (sgot)
2514 {
2515 BFD_ASSERT (sgot->size == 4);
2516 if (sdyn == NULL)
2517 bfd_put_32 (output_bfd, 0, sgot->contents);
2518 else
2519 bfd_put_32 (output_bfd,
2520 sdyn->output_section->vma + sdyn->output_offset,
2521 sgot->contents);
2522 }
2523
2524 srelplt = htab->srelplt;
2525 if (srelplt && srelplt->size != 0)
2526 {
2527 asection *sgotplt, *srelgot, *spltlittbl;
2528 int chunk, plt_chunks, plt_entries;
2529 Elf_Internal_Rela irela;
2530 bfd_byte *loc;
2531 unsigned rtld_reloc;
2532
2533 srelgot = htab->srelgot;
2534 spltlittbl = htab->spltlittbl;
2535 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
2536
2537 /* Find the first XTENSA_RTLD relocation. Presumably the rest
2538 of them follow immediately after.... */
2539 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
2540 {
2541 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2542 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2543 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
2544 break;
2545 }
2546 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
2547
2548 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
2549 plt_chunks =
2550 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
2551
2552 for (chunk = 0; chunk < plt_chunks; chunk++)
2553 {
2554 int chunk_entries = 0;
2555
2556 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2557 BFD_ASSERT (sgotplt != NULL);
2558
2559 /* Emit special RTLD relocations for the first two entries in
2560 each chunk of the .got.plt section. */
2561
2562 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
2563 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2564 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2565 irela.r_offset = (sgotplt->output_section->vma
2566 + sgotplt->output_offset);
2567 irela.r_addend = 1; /* tell rtld to set value to resolver function */
2568 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2569 rtld_reloc += 1;
2570 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2571
2572 /* Next literal immediately follows the first. */
2573 loc += sizeof (Elf32_External_Rela);
2574 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
2575 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
2576 irela.r_offset = (sgotplt->output_section->vma
2577 + sgotplt->output_offset + 4);
2578 /* Tell rtld to set value to object's link map. */
2579 irela.r_addend = 2;
2580 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
2581 rtld_reloc += 1;
2582 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
2583
2584 /* Fill in the literal table. */
2585 if (chunk < plt_chunks - 1)
2586 chunk_entries = PLT_ENTRIES_PER_CHUNK;
2587 else
2588 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
2589
2590 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
2591 bfd_put_32 (output_bfd,
2592 sgotplt->output_section->vma + sgotplt->output_offset,
2593 spltlittbl->contents + (chunk * 8) + 0);
2594 bfd_put_32 (output_bfd,
2595 8 + (chunk_entries * 4),
2596 spltlittbl->contents + (chunk * 8) + 4);
2597 }
2598
2599 /* All the dynamic relocations have been emitted at this point.
2600 Make sure the relocation sections are the correct size. */
2601 if (srelgot->size != (sizeof (Elf32_External_Rela)
2602 * srelgot->reloc_count)
2603 || srelplt->size != (sizeof (Elf32_External_Rela)
2604 * srelplt->reloc_count))
2605 abort ();
2606
2607 /* The .xt.lit.plt section has just been modified. This must
2608 happen before the code below which combines adjacent literal
2609 table entries, and the .xt.lit.plt contents have to be forced to
2610 the output here. */
2611 if (! bfd_set_section_contents (output_bfd,
2612 spltlittbl->output_section,
2613 spltlittbl->contents,
2614 spltlittbl->output_offset,
2615 spltlittbl->size))
2616 return FALSE;
2617 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
2618 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
2619 }
2620
2621 /* Combine adjacent literal table entries. */
2622 BFD_ASSERT (! info->relocatable);
2623 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
2624 sgotloc = htab->sgotloc;
2625 BFD_ASSERT (sxtlit && sgotloc);
2626 num_xtlit_entries =
2627 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
2628 if (num_xtlit_entries < 0)
2629 return FALSE;
2630
2631 dyncon = (Elf32_External_Dyn *) sdyn->contents;
2632 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
2633 for (; dyncon < dynconend; dyncon++)
2634 {
2635 Elf_Internal_Dyn dyn;
2636
2637 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
2638
2639 switch (dyn.d_tag)
2640 {
2641 default:
2642 break;
2643
2644 case DT_XTENSA_GOT_LOC_SZ:
2645 dyn.d_un.d_val = num_xtlit_entries;
2646 break;
2647
2648 case DT_XTENSA_GOT_LOC_OFF:
2649 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
2650 break;
2651
2652 case DT_PLTGOT:
2653 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2654 break;
2655
2656 case DT_JMPREL:
2657 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2658 break;
2659
2660 case DT_PLTRELSZ:
2661 dyn.d_un.d_val = htab->srelplt->output_section->size;
2662 break;
2663
2664 case DT_RELASZ:
2665 /* Adjust RELASZ to not include JMPREL. This matches what
2666 glibc expects and what is done for several other ELF
2667 targets (e.g., i386, alpha), but the "correct" behavior
2668 seems to be unresolved. Since the linker script arranges
2669 for .rela.plt to follow all other relocation sections, we
2670 don't have to worry about changing the DT_RELA entry. */
2671 if (htab->srelplt)
2672 dyn.d_un.d_val -= htab->srelplt->output_section->size;
2673 break;
2674 }
2675
2676 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
2677 }
2678
2679 return TRUE;
2680 }
2681
2682 \f
2683 /* Functions for dealing with the e_flags field. */
2684
2685 /* Merge backend specific data from an object file to the output
2686 object file when linking. */
2687
2688 static bfd_boolean
2689 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2690 {
2691 unsigned out_mach, in_mach;
2692 flagword out_flag, in_flag;
2693
2694 /* Check if we have the same endianess. */
2695 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
2696 return FALSE;
2697
2698 /* Don't even pretend to support mixed-format linking. */
2699 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2700 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2701 return FALSE;
2702
2703 out_flag = elf_elfheader (obfd)->e_flags;
2704 in_flag = elf_elfheader (ibfd)->e_flags;
2705
2706 out_mach = out_flag & EF_XTENSA_MACH;
2707 in_mach = in_flag & EF_XTENSA_MACH;
2708 if (out_mach != in_mach)
2709 {
2710 (*_bfd_error_handler)
2711 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
2712 ibfd, out_mach, in_mach);
2713 bfd_set_error (bfd_error_wrong_format);
2714 return FALSE;
2715 }
2716
2717 if (! elf_flags_init (obfd))
2718 {
2719 elf_flags_init (obfd) = TRUE;
2720 elf_elfheader (obfd)->e_flags = in_flag;
2721
2722 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
2723 && bfd_get_arch_info (obfd)->the_default)
2724 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
2725 bfd_get_mach (ibfd));
2726
2727 return TRUE;
2728 }
2729
2730 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
2731 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
2732
2733 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
2734 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
2735
2736 return TRUE;
2737 }
2738
2739
2740 static bfd_boolean
2741 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
2742 {
2743 BFD_ASSERT (!elf_flags_init (abfd)
2744 || elf_elfheader (abfd)->e_flags == flags);
2745
2746 elf_elfheader (abfd)->e_flags |= flags;
2747 elf_flags_init (abfd) = TRUE;
2748
2749 return TRUE;
2750 }
2751
2752
2753 static bfd_boolean
2754 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
2755 {
2756 FILE *f = (FILE *) farg;
2757 flagword e_flags = elf_elfheader (abfd)->e_flags;
2758
2759 fprintf (f, "\nXtensa header:\n");
2760 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
2761 fprintf (f, "\nMachine = Base\n");
2762 else
2763 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
2764
2765 fprintf (f, "Insn tables = %s\n",
2766 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
2767
2768 fprintf (f, "Literal tables = %s\n",
2769 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
2770
2771 return _bfd_elf_print_private_bfd_data (abfd, farg);
2772 }
2773
2774
2775 /* Set the right machine number for an Xtensa ELF file. */
2776
2777 static bfd_boolean
2778 elf_xtensa_object_p (bfd *abfd)
2779 {
2780 int mach;
2781 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
2782
2783 switch (arch)
2784 {
2785 case E_XTENSA_MACH:
2786 mach = bfd_mach_xtensa;
2787 break;
2788 default:
2789 return FALSE;
2790 }
2791
2792 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
2793 return TRUE;
2794 }
2795
2796
2797 /* The final processing done just before writing out an Xtensa ELF object
2798 file. This gets the Xtensa architecture right based on the machine
2799 number. */
2800
2801 static void
2802 elf_xtensa_final_write_processing (bfd *abfd,
2803 bfd_boolean linker ATTRIBUTE_UNUSED)
2804 {
2805 int mach;
2806 unsigned long val;
2807
2808 switch (mach = bfd_get_mach (abfd))
2809 {
2810 case bfd_mach_xtensa:
2811 val = E_XTENSA_MACH;
2812 break;
2813 default:
2814 return;
2815 }
2816
2817 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
2818 elf_elfheader (abfd)->e_flags |= val;
2819 }
2820
2821
2822 static enum elf_reloc_type_class
2823 elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela)
2824 {
2825 switch ((int) ELF32_R_TYPE (rela->r_info))
2826 {
2827 case R_XTENSA_RELATIVE:
2828 return reloc_class_relative;
2829 case R_XTENSA_JMP_SLOT:
2830 return reloc_class_plt;
2831 default:
2832 return reloc_class_normal;
2833 }
2834 }
2835
2836 \f
2837 static bfd_boolean
2838 elf_xtensa_discard_info_for_section (bfd *abfd,
2839 struct elf_reloc_cookie *cookie,
2840 struct bfd_link_info *info,
2841 asection *sec)
2842 {
2843 bfd_byte *contents;
2844 bfd_vma section_size;
2845 bfd_vma offset, actual_offset;
2846 bfd_size_type removed_bytes = 0;
2847 bfd_size_type entry_size;
2848
2849 if (sec->output_section
2850 && bfd_is_abs_section (sec->output_section))
2851 return FALSE;
2852
2853 if (xtensa_is_proptable_section (sec))
2854 entry_size = 12;
2855 else
2856 entry_size = 8;
2857
2858 section_size = sec->size;
2859 if (section_size == 0 || section_size % entry_size != 0)
2860 return FALSE;
2861
2862 contents = retrieve_contents (abfd, sec, info->keep_memory);
2863 if (!contents)
2864 return FALSE;
2865
2866 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
2867 if (!cookie->rels)
2868 {
2869 release_contents (sec, contents);
2870 return FALSE;
2871 }
2872
2873 /* Sort the relocations. They should already be in order when
2874 relaxation is enabled, but it might not be. */
2875 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
2876 internal_reloc_compare);
2877
2878 cookie->rel = cookie->rels;
2879 cookie->relend = cookie->rels + sec->reloc_count;
2880
2881 for (offset = 0; offset < section_size; offset += entry_size)
2882 {
2883 actual_offset = offset - removed_bytes;
2884
2885 /* The ...symbol_deleted_p function will skip over relocs but it
2886 won't adjust their offsets, so do that here. */
2887 while (cookie->rel < cookie->relend
2888 && cookie->rel->r_offset < offset)
2889 {
2890 cookie->rel->r_offset -= removed_bytes;
2891 cookie->rel++;
2892 }
2893
2894 while (cookie->rel < cookie->relend
2895 && cookie->rel->r_offset == offset)
2896 {
2897 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
2898 {
2899 /* Remove the table entry. (If the reloc type is NONE, then
2900 the entry has already been merged with another and deleted
2901 during relaxation.) */
2902 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
2903 {
2904 /* Shift the contents up. */
2905 if (offset + entry_size < section_size)
2906 memmove (&contents[actual_offset],
2907 &contents[actual_offset + entry_size],
2908 section_size - offset - entry_size);
2909 removed_bytes += entry_size;
2910 }
2911
2912 /* Remove this relocation. */
2913 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
2914 }
2915
2916 /* Adjust the relocation offset for previous removals. This
2917 should not be done before calling ...symbol_deleted_p
2918 because it might mess up the offset comparisons there.
2919 Make sure the offset doesn't underflow in the case where
2920 the first entry is removed. */
2921 if (cookie->rel->r_offset >= removed_bytes)
2922 cookie->rel->r_offset -= removed_bytes;
2923 else
2924 cookie->rel->r_offset = 0;
2925
2926 cookie->rel++;
2927 }
2928 }
2929
2930 if (removed_bytes != 0)
2931 {
2932 /* Adjust any remaining relocs (shouldn't be any). */
2933 for (; cookie->rel < cookie->relend; cookie->rel++)
2934 {
2935 if (cookie->rel->r_offset >= removed_bytes)
2936 cookie->rel->r_offset -= removed_bytes;
2937 else
2938 cookie->rel->r_offset = 0;
2939 }
2940
2941 /* Clear the removed bytes. */
2942 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
2943
2944 pin_contents (sec, contents);
2945 pin_internal_relocs (sec, cookie->rels);
2946
2947 /* Shrink size. */
2948 sec->size = section_size - removed_bytes;
2949
2950 if (xtensa_is_littable_section (sec))
2951 {
2952 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
2953 if (sgotloc)
2954 sgotloc->size -= removed_bytes;
2955 }
2956 }
2957 else
2958 {
2959 release_contents (sec, contents);
2960 release_internal_relocs (sec, cookie->rels);
2961 }
2962
2963 return (removed_bytes != 0);
2964 }
2965
2966
2967 static bfd_boolean
2968 elf_xtensa_discard_info (bfd *abfd,
2969 struct elf_reloc_cookie *cookie,
2970 struct bfd_link_info *info)
2971 {
2972 asection *sec;
2973 bfd_boolean changed = FALSE;
2974
2975 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2976 {
2977 if (xtensa_is_property_section (sec))
2978 {
2979 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
2980 changed = TRUE;
2981 }
2982 }
2983
2984 return changed;
2985 }
2986
2987
2988 static bfd_boolean
2989 elf_xtensa_ignore_discarded_relocs (asection *sec)
2990 {
2991 return xtensa_is_property_section (sec);
2992 }
2993
2994
2995 static unsigned int
2996 elf_xtensa_action_discarded (asection *sec)
2997 {
2998 if (strcmp (".xt_except_table", sec->name) == 0)
2999 return 0;
3000
3001 if (strcmp (".xt_except_desc", sec->name) == 0)
3002 return 0;
3003
3004 return _bfd_elf_default_action_discarded (sec);
3005 }
3006
3007 \f
3008 /* Support for core dump NOTE sections. */
3009
3010 static bfd_boolean
3011 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3012 {
3013 int offset;
3014 unsigned int size;
3015
3016 /* The size for Xtensa is variable, so don't try to recognize the format
3017 based on the size. Just assume this is GNU/Linux. */
3018
3019 /* pr_cursig */
3020 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
3021
3022 /* pr_pid */
3023 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
3024
3025 /* pr_reg */
3026 offset = 72;
3027 size = note->descsz - offset - 4;
3028
3029 /* Make a ".reg/999" section. */
3030 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3031 size, note->descpos + offset);
3032 }
3033
3034
3035 static bfd_boolean
3036 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3037 {
3038 switch (note->descsz)
3039 {
3040 default:
3041 return FALSE;
3042
3043 case 128: /* GNU/Linux elf_prpsinfo */
3044 elf_tdata (abfd)->core_program
3045 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3046 elf_tdata (abfd)->core_command
3047 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3048 }
3049
3050 /* Note that for some reason, a spurious space is tacked
3051 onto the end of the args in some (at least one anyway)
3052 implementations, so strip it off if it exists. */
3053
3054 {
3055 char *command = elf_tdata (abfd)->core_command;
3056 int n = strlen (command);
3057
3058 if (0 < n && command[n - 1] == ' ')
3059 command[n - 1] = '\0';
3060 }
3061
3062 return TRUE;
3063 }
3064
3065 \f
3066 /* Generic Xtensa configurability stuff. */
3067
3068 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3069 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3070 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3071 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3072 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3073 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3074 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3075 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3076
3077 static void
3078 init_call_opcodes (void)
3079 {
3080 if (callx0_op == XTENSA_UNDEFINED)
3081 {
3082 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3083 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3084 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3085 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3086 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3087 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3088 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3089 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3090 }
3091 }
3092
3093
3094 static bfd_boolean
3095 is_indirect_call_opcode (xtensa_opcode opcode)
3096 {
3097 init_call_opcodes ();
3098 return (opcode == callx0_op
3099 || opcode == callx4_op
3100 || opcode == callx8_op
3101 || opcode == callx12_op);
3102 }
3103
3104
3105 static bfd_boolean
3106 is_direct_call_opcode (xtensa_opcode opcode)
3107 {
3108 init_call_opcodes ();
3109 return (opcode == call0_op
3110 || opcode == call4_op
3111 || opcode == call8_op
3112 || opcode == call12_op);
3113 }
3114
3115
3116 static bfd_boolean
3117 is_windowed_call_opcode (xtensa_opcode opcode)
3118 {
3119 init_call_opcodes ();
3120 return (opcode == call4_op
3121 || opcode == call8_op
3122 || opcode == call12_op
3123 || opcode == callx4_op
3124 || opcode == callx8_op
3125 || opcode == callx12_op);
3126 }
3127
3128
3129 static xtensa_opcode
3130 get_const16_opcode (void)
3131 {
3132 static bfd_boolean done_lookup = FALSE;
3133 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3134 if (!done_lookup)
3135 {
3136 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3137 done_lookup = TRUE;
3138 }
3139 return const16_opcode;
3140 }
3141
3142
3143 static xtensa_opcode
3144 get_l32r_opcode (void)
3145 {
3146 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3147 static bfd_boolean done_lookup = FALSE;
3148
3149 if (!done_lookup)
3150 {
3151 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3152 done_lookup = TRUE;
3153 }
3154 return l32r_opcode;
3155 }
3156
3157
3158 static bfd_vma
3159 l32r_offset (bfd_vma addr, bfd_vma pc)
3160 {
3161 bfd_vma offset;
3162
3163 offset = addr - ((pc+3) & -4);
3164 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3165 offset = (signed int) offset >> 2;
3166 BFD_ASSERT ((signed int) offset >> 16 == -1);
3167 return offset;
3168 }
3169
3170
3171 static int
3172 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3173 {
3174 xtensa_isa isa = xtensa_default_isa;
3175 int last_immed, last_opnd, opi;
3176
3177 if (opcode == XTENSA_UNDEFINED)
3178 return XTENSA_UNDEFINED;
3179
3180 /* Find the last visible PC-relative immediate operand for the opcode.
3181 If there are no PC-relative immediates, then choose the last visible
3182 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3183 last_immed = XTENSA_UNDEFINED;
3184 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3185 for (opi = last_opnd - 1; opi >= 0; opi--)
3186 {
3187 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3188 continue;
3189 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3190 {
3191 last_immed = opi;
3192 break;
3193 }
3194 if (last_immed == XTENSA_UNDEFINED
3195 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3196 last_immed = opi;
3197 }
3198 if (last_immed < 0)
3199 return XTENSA_UNDEFINED;
3200
3201 /* If the operand number was specified in an old-style relocation,
3202 check for consistency with the operand computed above. */
3203 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3204 {
3205 int reloc_opnd = r_type - R_XTENSA_OP0;
3206 if (reloc_opnd != last_immed)
3207 return XTENSA_UNDEFINED;
3208 }
3209
3210 return last_immed;
3211 }
3212
3213
3214 int
3215 get_relocation_slot (int r_type)
3216 {
3217 switch (r_type)
3218 {
3219 case R_XTENSA_OP0:
3220 case R_XTENSA_OP1:
3221 case R_XTENSA_OP2:
3222 return 0;
3223
3224 default:
3225 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3226 return r_type - R_XTENSA_SLOT0_OP;
3227 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3228 return r_type - R_XTENSA_SLOT0_ALT;
3229 break;
3230 }
3231
3232 return XTENSA_UNDEFINED;
3233 }
3234
3235
3236 /* Get the opcode for a relocation. */
3237
3238 static xtensa_opcode
3239 get_relocation_opcode (bfd *abfd,
3240 asection *sec,
3241 bfd_byte *contents,
3242 Elf_Internal_Rela *irel)
3243 {
3244 static xtensa_insnbuf ibuff = NULL;
3245 static xtensa_insnbuf sbuff = NULL;
3246 xtensa_isa isa = xtensa_default_isa;
3247 xtensa_format fmt;
3248 int slot;
3249
3250 if (contents == NULL)
3251 return XTENSA_UNDEFINED;
3252
3253 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
3254 return XTENSA_UNDEFINED;
3255
3256 if (ibuff == NULL)
3257 {
3258 ibuff = xtensa_insnbuf_alloc (isa);
3259 sbuff = xtensa_insnbuf_alloc (isa);
3260 }
3261
3262 /* Decode the instruction. */
3263 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3264 sec->size - irel->r_offset);
3265 fmt = xtensa_format_decode (isa, ibuff);
3266 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3267 if (slot == XTENSA_UNDEFINED)
3268 return XTENSA_UNDEFINED;
3269 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3270 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
3271 }
3272
3273
3274 bfd_boolean
3275 is_l32r_relocation (bfd *abfd,
3276 asection *sec,
3277 bfd_byte *contents,
3278 Elf_Internal_Rela *irel)
3279 {
3280 xtensa_opcode opcode;
3281 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
3282 return FALSE;
3283 opcode = get_relocation_opcode (abfd, sec, contents, irel);
3284 return (opcode == get_l32r_opcode ());
3285 }
3286
3287
3288 static bfd_size_type
3289 get_asm_simplify_size (bfd_byte *contents,
3290 bfd_size_type content_len,
3291 bfd_size_type offset)
3292 {
3293 bfd_size_type insnlen, size = 0;
3294
3295 /* Decode the size of the next two instructions. */
3296 insnlen = insn_decode_len (contents, content_len, offset);
3297 if (insnlen == 0)
3298 return 0;
3299
3300 size += insnlen;
3301
3302 insnlen = insn_decode_len (contents, content_len, offset + size);
3303 if (insnlen == 0)
3304 return 0;
3305
3306 size += insnlen;
3307 return size;
3308 }
3309
3310
3311 bfd_boolean
3312 is_alt_relocation (int r_type)
3313 {
3314 return (r_type >= R_XTENSA_SLOT0_ALT
3315 && r_type <= R_XTENSA_SLOT14_ALT);
3316 }
3317
3318
3319 bfd_boolean
3320 is_operand_relocation (int r_type)
3321 {
3322 switch (r_type)
3323 {
3324 case R_XTENSA_OP0:
3325 case R_XTENSA_OP1:
3326 case R_XTENSA_OP2:
3327 return TRUE;
3328
3329 default:
3330 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3331 return TRUE;
3332 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3333 return TRUE;
3334 break;
3335 }
3336
3337 return FALSE;
3338 }
3339
3340
3341 #define MIN_INSN_LENGTH 2
3342
3343 /* Return 0 if it fails to decode. */
3344
3345 bfd_size_type
3346 insn_decode_len (bfd_byte *contents,
3347 bfd_size_type content_len,
3348 bfd_size_type offset)
3349 {
3350 int insn_len;
3351 xtensa_isa isa = xtensa_default_isa;
3352 xtensa_format fmt;
3353 static xtensa_insnbuf ibuff = NULL;
3354
3355 if (offset + MIN_INSN_LENGTH > content_len)
3356 return 0;
3357
3358 if (ibuff == NULL)
3359 ibuff = xtensa_insnbuf_alloc (isa);
3360 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
3361 content_len - offset);
3362 fmt = xtensa_format_decode (isa, ibuff);
3363 if (fmt == XTENSA_UNDEFINED)
3364 return 0;
3365 insn_len = xtensa_format_length (isa, fmt);
3366 if (insn_len == XTENSA_UNDEFINED)
3367 return 0;
3368 return insn_len;
3369 }
3370
3371
3372 /* Decode the opcode for a single slot instruction.
3373 Return 0 if it fails to decode or the instruction is multi-slot. */
3374
3375 xtensa_opcode
3376 insn_decode_opcode (bfd_byte *contents,
3377 bfd_size_type content_len,
3378 bfd_size_type offset,
3379 int slot)
3380 {
3381 xtensa_isa isa = xtensa_default_isa;
3382 xtensa_format fmt;
3383 static xtensa_insnbuf insnbuf = NULL;
3384 static xtensa_insnbuf slotbuf = NULL;
3385
3386 if (offset + MIN_INSN_LENGTH > content_len)
3387 return XTENSA_UNDEFINED;
3388
3389 if (insnbuf == NULL)
3390 {
3391 insnbuf = xtensa_insnbuf_alloc (isa);
3392 slotbuf = xtensa_insnbuf_alloc (isa);
3393 }
3394
3395 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3396 content_len - offset);
3397 fmt = xtensa_format_decode (isa, insnbuf);
3398 if (fmt == XTENSA_UNDEFINED)
3399 return XTENSA_UNDEFINED;
3400
3401 if (slot >= xtensa_format_num_slots (isa, fmt))
3402 return XTENSA_UNDEFINED;
3403
3404 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
3405 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
3406 }
3407
3408
3409 /* The offset is the offset in the contents.
3410 The address is the address of that offset. */
3411
3412 static bfd_boolean
3413 check_branch_target_aligned (bfd_byte *contents,
3414 bfd_size_type content_length,
3415 bfd_vma offset,
3416 bfd_vma address)
3417 {
3418 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
3419 if (insn_len == 0)
3420 return FALSE;
3421 return check_branch_target_aligned_address (address, insn_len);
3422 }
3423
3424
3425 static bfd_boolean
3426 check_loop_aligned (bfd_byte *contents,
3427 bfd_size_type content_length,
3428 bfd_vma offset,
3429 bfd_vma address)
3430 {
3431 bfd_size_type loop_len, insn_len;
3432 xtensa_opcode opcode;
3433
3434 opcode = insn_decode_opcode (contents, content_length, offset, 0);
3435 if (opcode == XTENSA_UNDEFINED
3436 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
3437 {
3438 BFD_ASSERT (FALSE);
3439 return FALSE;
3440 }
3441
3442 loop_len = insn_decode_len (contents, content_length, offset);
3443 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
3444 if (loop_len == 0 || insn_len == 0)
3445 {
3446 BFD_ASSERT (FALSE);
3447 return FALSE;
3448 }
3449
3450 return check_branch_target_aligned_address (address + loop_len, insn_len);
3451 }
3452
3453
3454 static bfd_boolean
3455 check_branch_target_aligned_address (bfd_vma addr, int len)
3456 {
3457 if (len == 8)
3458 return (addr % 8 == 0);
3459 return ((addr >> 2) == ((addr + len - 1) >> 2));
3460 }
3461
3462 \f
3463 /* Instruction widening and narrowing. */
3464
3465 /* When FLIX is available we need to access certain instructions only
3466 when they are 16-bit or 24-bit instructions. This table caches
3467 information about such instructions by walking through all the
3468 opcodes and finding the smallest single-slot format into which each
3469 can be encoded. */
3470
3471 static xtensa_format *op_single_fmt_table = NULL;
3472
3473
3474 static void
3475 init_op_single_format_table (void)
3476 {
3477 xtensa_isa isa = xtensa_default_isa;
3478 xtensa_insnbuf ibuf;
3479 xtensa_opcode opcode;
3480 xtensa_format fmt;
3481 int num_opcodes;
3482
3483 if (op_single_fmt_table)
3484 return;
3485
3486 ibuf = xtensa_insnbuf_alloc (isa);
3487 num_opcodes = xtensa_isa_num_opcodes (isa);
3488
3489 op_single_fmt_table = (xtensa_format *)
3490 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
3491 for (opcode = 0; opcode < num_opcodes; opcode++)
3492 {
3493 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
3494 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
3495 {
3496 if (xtensa_format_num_slots (isa, fmt) == 1
3497 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
3498 {
3499 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
3500 int fmt_length = xtensa_format_length (isa, fmt);
3501 if (old_fmt == XTENSA_UNDEFINED
3502 || fmt_length < xtensa_format_length (isa, old_fmt))
3503 op_single_fmt_table[opcode] = fmt;
3504 }
3505 }
3506 }
3507 xtensa_insnbuf_free (isa, ibuf);
3508 }
3509
3510
3511 static xtensa_format
3512 get_single_format (xtensa_opcode opcode)
3513 {
3514 init_op_single_format_table ();
3515 return op_single_fmt_table[opcode];
3516 }
3517
3518
3519 /* For the set of narrowable instructions we do NOT include the
3520 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
3521 involved during linker relaxation that may require these to
3522 re-expand in some conditions. Also, the narrowing "or" -> mov.n
3523 requires special case code to ensure it only works when op1 == op2. */
3524
3525 struct string_pair
3526 {
3527 const char *wide;
3528 const char *narrow;
3529 };
3530
3531 struct string_pair narrowable[] =
3532 {
3533 { "add", "add.n" },
3534 { "addi", "addi.n" },
3535 { "addmi", "addi.n" },
3536 { "l32i", "l32i.n" },
3537 { "movi", "movi.n" },
3538 { "ret", "ret.n" },
3539 { "retw", "retw.n" },
3540 { "s32i", "s32i.n" },
3541 { "or", "mov.n" } /* special case only when op1 == op2 */
3542 };
3543
3544 struct string_pair widenable[] =
3545 {
3546 { "add", "add.n" },
3547 { "addi", "addi.n" },
3548 { "addmi", "addi.n" },
3549 { "beqz", "beqz.n" },
3550 { "bnez", "bnez.n" },
3551 { "l32i", "l32i.n" },
3552 { "movi", "movi.n" },
3553 { "ret", "ret.n" },
3554 { "retw", "retw.n" },
3555 { "s32i", "s32i.n" },
3556 { "or", "mov.n" } /* special case only when op1 == op2 */
3557 };
3558
3559
3560 /* Check if an instruction can be "narrowed", i.e., changed from a standard
3561 3-byte instruction to a 2-byte "density" instruction. If it is valid,
3562 return the instruction buffer holding the narrow instruction. Otherwise,
3563 return 0. The set of valid narrowing are specified by a string table
3564 but require some special case operand checks in some cases. */
3565
3566 static xtensa_insnbuf
3567 can_narrow_instruction (xtensa_insnbuf slotbuf,
3568 xtensa_format fmt,
3569 xtensa_opcode opcode)
3570 {
3571 xtensa_isa isa = xtensa_default_isa;
3572 xtensa_format o_fmt;
3573 unsigned opi;
3574
3575 static xtensa_insnbuf o_insnbuf = NULL;
3576 static xtensa_insnbuf o_slotbuf = NULL;
3577
3578 if (o_insnbuf == NULL)
3579 {
3580 o_insnbuf = xtensa_insnbuf_alloc (isa);
3581 o_slotbuf = xtensa_insnbuf_alloc (isa);
3582 }
3583
3584 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
3585 {
3586 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
3587
3588 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
3589 {
3590 uint32 value, newval;
3591 int i, operand_count, o_operand_count;
3592 xtensa_opcode o_opcode;
3593
3594 /* Address does not matter in this case. We might need to
3595 fix it to handle branches/jumps. */
3596 bfd_vma self_address = 0;
3597
3598 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
3599 if (o_opcode == XTENSA_UNDEFINED)
3600 return 0;
3601 o_fmt = get_single_format (o_opcode);
3602 if (o_fmt == XTENSA_UNDEFINED)
3603 return 0;
3604
3605 if (xtensa_format_length (isa, fmt) != 3
3606 || xtensa_format_length (isa, o_fmt) != 2)
3607 return 0;
3608
3609 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3610 operand_count = xtensa_opcode_num_operands (isa, opcode);
3611 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3612
3613 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3614 return 0;
3615
3616 if (!is_or)
3617 {
3618 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3619 return 0;
3620 }
3621 else
3622 {
3623 uint32 rawval0, rawval1, rawval2;
3624
3625 if (o_operand_count + 1 != operand_count
3626 || xtensa_operand_get_field (isa, opcode, 0,
3627 fmt, 0, slotbuf, &rawval0) != 0
3628 || xtensa_operand_get_field (isa, opcode, 1,
3629 fmt, 0, slotbuf, &rawval1) != 0
3630 || xtensa_operand_get_field (isa, opcode, 2,
3631 fmt, 0, slotbuf, &rawval2) != 0
3632 || rawval1 != rawval2
3633 || rawval0 == rawval1 /* it is a nop */)
3634 return 0;
3635 }
3636
3637 for (i = 0; i < o_operand_count; ++i)
3638 {
3639 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
3640 slotbuf, &value)
3641 || xtensa_operand_decode (isa, opcode, i, &value))
3642 return 0;
3643
3644 /* PC-relative branches need adjustment, but
3645 the PC-rel operand will always have a relocation. */
3646 newval = value;
3647 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3648 self_address)
3649 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3650 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3651 o_slotbuf, newval))
3652 return 0;
3653 }
3654
3655 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3656 return 0;
3657
3658 return o_insnbuf;
3659 }
3660 }
3661 return 0;
3662 }
3663
3664
3665 /* Attempt to narrow an instruction. If the narrowing is valid, perform
3666 the action in-place directly into the contents and return TRUE. Otherwise,
3667 the return value is FALSE and the contents are not modified. */
3668
3669 static bfd_boolean
3670 narrow_instruction (bfd_byte *contents,
3671 bfd_size_type content_length,
3672 bfd_size_type offset)
3673 {
3674 xtensa_opcode opcode;
3675 bfd_size_type insn_len;
3676 xtensa_isa isa = xtensa_default_isa;
3677 xtensa_format fmt;
3678 xtensa_insnbuf o_insnbuf;
3679
3680 static xtensa_insnbuf insnbuf = NULL;
3681 static xtensa_insnbuf slotbuf = NULL;
3682
3683 if (insnbuf == NULL)
3684 {
3685 insnbuf = xtensa_insnbuf_alloc (isa);
3686 slotbuf = xtensa_insnbuf_alloc (isa);
3687 }
3688
3689 BFD_ASSERT (offset < content_length);
3690
3691 if (content_length < 2)
3692 return FALSE;
3693
3694 /* We will hand-code a few of these for a little while.
3695 These have all been specified in the assembler aleady. */
3696 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3697 content_length - offset);
3698 fmt = xtensa_format_decode (isa, insnbuf);
3699 if (xtensa_format_num_slots (isa, fmt) != 1)
3700 return FALSE;
3701
3702 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3703 return FALSE;
3704
3705 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3706 if (opcode == XTENSA_UNDEFINED)
3707 return FALSE;
3708 insn_len = xtensa_format_length (isa, fmt);
3709 if (insn_len > content_length)
3710 return FALSE;
3711
3712 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
3713 if (o_insnbuf)
3714 {
3715 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3716 content_length - offset);
3717 return TRUE;
3718 }
3719
3720 return FALSE;
3721 }
3722
3723
3724 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
3725 "density" instruction to a standard 3-byte instruction. If it is valid,
3726 return the instruction buffer holding the wide instruction. Otherwise,
3727 return 0. The set of valid widenings are specified by a string table
3728 but require some special case operand checks in some cases. */
3729
3730 static xtensa_insnbuf
3731 can_widen_instruction (xtensa_insnbuf slotbuf,
3732 xtensa_format fmt,
3733 xtensa_opcode opcode)
3734 {
3735 xtensa_isa isa = xtensa_default_isa;
3736 xtensa_format o_fmt;
3737 unsigned opi;
3738
3739 static xtensa_insnbuf o_insnbuf = NULL;
3740 static xtensa_insnbuf o_slotbuf = NULL;
3741
3742 if (o_insnbuf == NULL)
3743 {
3744 o_insnbuf = xtensa_insnbuf_alloc (isa);
3745 o_slotbuf = xtensa_insnbuf_alloc (isa);
3746 }
3747
3748 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
3749 {
3750 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
3751 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
3752 || strcmp ("bnez", widenable[opi].wide) == 0);
3753
3754 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
3755 {
3756 uint32 value, newval;
3757 int i, operand_count, o_operand_count, check_operand_count;
3758 xtensa_opcode o_opcode;
3759
3760 /* Address does not matter in this case. We might need to fix it
3761 to handle branches/jumps. */
3762 bfd_vma self_address = 0;
3763
3764 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
3765 if (o_opcode == XTENSA_UNDEFINED)
3766 return 0;
3767 o_fmt = get_single_format (o_opcode);
3768 if (o_fmt == XTENSA_UNDEFINED)
3769 return 0;
3770
3771 if (xtensa_format_length (isa, fmt) != 2
3772 || xtensa_format_length (isa, o_fmt) != 3)
3773 return 0;
3774
3775 xtensa_format_encode (isa, o_fmt, o_insnbuf);
3776 operand_count = xtensa_opcode_num_operands (isa, opcode);
3777 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
3778 check_operand_count = o_operand_count;
3779
3780 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
3781 return 0;
3782
3783 if (!is_or)
3784 {
3785 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
3786 return 0;
3787 }
3788 else
3789 {
3790 uint32 rawval0, rawval1;
3791
3792 if (o_operand_count != operand_count + 1
3793 || xtensa_operand_get_field (isa, opcode, 0,
3794 fmt, 0, slotbuf, &rawval0) != 0
3795 || xtensa_operand_get_field (isa, opcode, 1,
3796 fmt, 0, slotbuf, &rawval1) != 0
3797 || rawval0 == rawval1 /* it is a nop */)
3798 return 0;
3799 }
3800 if (is_branch)
3801 check_operand_count--;
3802
3803 for (i = 0; i < check_operand_count; i++)
3804 {
3805 int new_i = i;
3806 if (is_or && i == o_operand_count - 1)
3807 new_i = i - 1;
3808 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
3809 slotbuf, &value)
3810 || xtensa_operand_decode (isa, opcode, new_i, &value))
3811 return 0;
3812
3813 /* PC-relative branches need adjustment, but
3814 the PC-rel operand will always have a relocation. */
3815 newval = value;
3816 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
3817 self_address)
3818 || xtensa_operand_encode (isa, o_opcode, i, &newval)
3819 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
3820 o_slotbuf, newval))
3821 return 0;
3822 }
3823
3824 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
3825 return 0;
3826
3827 return o_insnbuf;
3828 }
3829 }
3830 return 0;
3831 }
3832
3833
3834 /* Attempt to widen an instruction. If the widening is valid, perform
3835 the action in-place directly into the contents and return TRUE. Otherwise,
3836 the return value is FALSE and the contents are not modified. */
3837
3838 static bfd_boolean
3839 widen_instruction (bfd_byte *contents,
3840 bfd_size_type content_length,
3841 bfd_size_type offset)
3842 {
3843 xtensa_opcode opcode;
3844 bfd_size_type insn_len;
3845 xtensa_isa isa = xtensa_default_isa;
3846 xtensa_format fmt;
3847 xtensa_insnbuf o_insnbuf;
3848
3849 static xtensa_insnbuf insnbuf = NULL;
3850 static xtensa_insnbuf slotbuf = NULL;
3851
3852 if (insnbuf == NULL)
3853 {
3854 insnbuf = xtensa_insnbuf_alloc (isa);
3855 slotbuf = xtensa_insnbuf_alloc (isa);
3856 }
3857
3858 BFD_ASSERT (offset < content_length);
3859
3860 if (content_length < 2)
3861 return FALSE;
3862
3863 /* We will hand-code a few of these for a little while.
3864 These have all been specified in the assembler aleady. */
3865 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
3866 content_length - offset);
3867 fmt = xtensa_format_decode (isa, insnbuf);
3868 if (xtensa_format_num_slots (isa, fmt) != 1)
3869 return FALSE;
3870
3871 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
3872 return FALSE;
3873
3874 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
3875 if (opcode == XTENSA_UNDEFINED)
3876 return FALSE;
3877 insn_len = xtensa_format_length (isa, fmt);
3878 if (insn_len > content_length)
3879 return FALSE;
3880
3881 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
3882 if (o_insnbuf)
3883 {
3884 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
3885 content_length - offset);
3886 return TRUE;
3887 }
3888 return FALSE;
3889 }
3890
3891 \f
3892 /* Code for transforming CALLs at link-time. */
3893
3894 static bfd_reloc_status_type
3895 elf_xtensa_do_asm_simplify (bfd_byte *contents,
3896 bfd_vma address,
3897 bfd_vma content_length,
3898 char **error_message)
3899 {
3900 static xtensa_insnbuf insnbuf = NULL;
3901 static xtensa_insnbuf slotbuf = NULL;
3902 xtensa_format core_format = XTENSA_UNDEFINED;
3903 xtensa_opcode opcode;
3904 xtensa_opcode direct_call_opcode;
3905 xtensa_isa isa = xtensa_default_isa;
3906 bfd_byte *chbuf = contents + address;
3907 int opn;
3908
3909 if (insnbuf == NULL)
3910 {
3911 insnbuf = xtensa_insnbuf_alloc (isa);
3912 slotbuf = xtensa_insnbuf_alloc (isa);
3913 }
3914
3915 if (content_length < address)
3916 {
3917 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3918 return bfd_reloc_other;
3919 }
3920
3921 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
3922 direct_call_opcode = swap_callx_for_call_opcode (opcode);
3923 if (direct_call_opcode == XTENSA_UNDEFINED)
3924 {
3925 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
3926 return bfd_reloc_other;
3927 }
3928
3929 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
3930 core_format = xtensa_format_lookup (isa, "x24");
3931 opcode = xtensa_opcode_lookup (isa, "or");
3932 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
3933 for (opn = 0; opn < 3; opn++)
3934 {
3935 uint32 regno = 1;
3936 xtensa_operand_encode (isa, opcode, opn, &regno);
3937 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
3938 slotbuf, regno);
3939 }
3940 xtensa_format_encode (isa, core_format, insnbuf);
3941 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3942 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
3943
3944 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
3945 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
3946 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
3947
3948 xtensa_format_encode (isa, core_format, insnbuf);
3949 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
3950 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
3951 content_length - address - 3);
3952
3953 return bfd_reloc_ok;
3954 }
3955
3956
3957 static bfd_reloc_status_type
3958 contract_asm_expansion (bfd_byte *contents,
3959 bfd_vma content_length,
3960 Elf_Internal_Rela *irel,
3961 char **error_message)
3962 {
3963 bfd_reloc_status_type retval =
3964 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
3965 error_message);
3966
3967 if (retval != bfd_reloc_ok)
3968 return bfd_reloc_dangerous;
3969
3970 /* Update the irel->r_offset field so that the right immediate and
3971 the right instruction are modified during the relocation. */
3972 irel->r_offset += 3;
3973 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
3974 return bfd_reloc_ok;
3975 }
3976
3977
3978 static xtensa_opcode
3979 swap_callx_for_call_opcode (xtensa_opcode opcode)
3980 {
3981 init_call_opcodes ();
3982
3983 if (opcode == callx0_op) return call0_op;
3984 if (opcode == callx4_op) return call4_op;
3985 if (opcode == callx8_op) return call8_op;
3986 if (opcode == callx12_op) return call12_op;
3987
3988 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
3989 return XTENSA_UNDEFINED;
3990 }
3991
3992
3993 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
3994 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
3995 If not, return XTENSA_UNDEFINED. */
3996
3997 #define L32R_TARGET_REG_OPERAND 0
3998 #define CONST16_TARGET_REG_OPERAND 0
3999 #define CALLN_SOURCE_OPERAND 0
4000
4001 static xtensa_opcode
4002 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4003 {
4004 static xtensa_insnbuf insnbuf = NULL;
4005 static xtensa_insnbuf slotbuf = NULL;
4006 xtensa_format fmt;
4007 xtensa_opcode opcode;
4008 xtensa_isa isa = xtensa_default_isa;
4009 uint32 regno, const16_regno, call_regno;
4010 int offset = 0;
4011
4012 if (insnbuf == NULL)
4013 {
4014 insnbuf = xtensa_insnbuf_alloc (isa);
4015 slotbuf = xtensa_insnbuf_alloc (isa);
4016 }
4017
4018 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4019 fmt = xtensa_format_decode (isa, insnbuf);
4020 if (fmt == XTENSA_UNDEFINED
4021 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4022 return XTENSA_UNDEFINED;
4023
4024 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4025 if (opcode == XTENSA_UNDEFINED)
4026 return XTENSA_UNDEFINED;
4027
4028 if (opcode == get_l32r_opcode ())
4029 {
4030 if (p_uses_l32r)
4031 *p_uses_l32r = TRUE;
4032 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4033 fmt, 0, slotbuf, &regno)
4034 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4035 &regno))
4036 return XTENSA_UNDEFINED;
4037 }
4038 else if (opcode == get_const16_opcode ())
4039 {
4040 if (p_uses_l32r)
4041 *p_uses_l32r = FALSE;
4042 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4043 fmt, 0, slotbuf, &regno)
4044 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4045 &regno))
4046 return XTENSA_UNDEFINED;
4047
4048 /* Check that the next instruction is also CONST16. */
4049 offset += xtensa_format_length (isa, fmt);
4050 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4051 fmt = xtensa_format_decode (isa, insnbuf);
4052 if (fmt == XTENSA_UNDEFINED
4053 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4054 return XTENSA_UNDEFINED;
4055 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4056 if (opcode != get_const16_opcode ())
4057 return XTENSA_UNDEFINED;
4058
4059 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4060 fmt, 0, slotbuf, &const16_regno)
4061 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4062 &const16_regno)
4063 || const16_regno != regno)
4064 return XTENSA_UNDEFINED;
4065 }
4066 else
4067 return XTENSA_UNDEFINED;
4068
4069 /* Next instruction should be an CALLXn with operand 0 == regno. */
4070 offset += xtensa_format_length (isa, fmt);
4071 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4072 fmt = xtensa_format_decode (isa, insnbuf);
4073 if (fmt == XTENSA_UNDEFINED
4074 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4075 return XTENSA_UNDEFINED;
4076 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4077 if (opcode == XTENSA_UNDEFINED
4078 || !is_indirect_call_opcode (opcode))
4079 return XTENSA_UNDEFINED;
4080
4081 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4082 fmt, 0, slotbuf, &call_regno)
4083 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4084 &call_regno))
4085 return XTENSA_UNDEFINED;
4086
4087 if (call_regno != regno)
4088 return XTENSA_UNDEFINED;
4089
4090 return opcode;
4091 }
4092
4093 \f
4094 /* Data structures used during relaxation. */
4095
4096 /* r_reloc: relocation values. */
4097
4098 /* Through the relaxation process, we need to keep track of the values
4099 that will result from evaluating relocations. The standard ELF
4100 relocation structure is not sufficient for this purpose because we're
4101 operating on multiple input files at once, so we need to know which
4102 input file a relocation refers to. The r_reloc structure thus
4103 records both the input file (bfd) and ELF relocation.
4104
4105 For efficiency, an r_reloc also contains a "target_offset" field to
4106 cache the target-section-relative offset value that is represented by
4107 the relocation.
4108
4109 The r_reloc also contains a virtual offset that allows multiple
4110 inserted literals to be placed at the same "address" with
4111 different offsets. */
4112
4113 typedef struct r_reloc_struct r_reloc;
4114
4115 struct r_reloc_struct
4116 {
4117 bfd *abfd;
4118 Elf_Internal_Rela rela;
4119 bfd_vma target_offset;
4120 bfd_vma virtual_offset;
4121 };
4122
4123
4124 /* The r_reloc structure is included by value in literal_value, but not
4125 every literal_value has an associated relocation -- some are simple
4126 constants. In such cases, we set all the fields in the r_reloc
4127 struct to zero. The r_reloc_is_const function should be used to
4128 detect this case. */
4129
4130 static bfd_boolean
4131 r_reloc_is_const (const r_reloc *r_rel)
4132 {
4133 return (r_rel->abfd == NULL);
4134 }
4135
4136
4137 static bfd_vma
4138 r_reloc_get_target_offset (const r_reloc *r_rel)
4139 {
4140 bfd_vma target_offset;
4141 unsigned long r_symndx;
4142
4143 BFD_ASSERT (!r_reloc_is_const (r_rel));
4144 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4145 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4146 return (target_offset + r_rel->rela.r_addend);
4147 }
4148
4149
4150 static struct elf_link_hash_entry *
4151 r_reloc_get_hash_entry (const r_reloc *r_rel)
4152 {
4153 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4154 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4155 }
4156
4157
4158 static asection *
4159 r_reloc_get_section (const r_reloc *r_rel)
4160 {
4161 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4162 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4163 }
4164
4165
4166 static bfd_boolean
4167 r_reloc_is_defined (const r_reloc *r_rel)
4168 {
4169 asection *sec;
4170 if (r_rel == NULL)
4171 return FALSE;
4172
4173 sec = r_reloc_get_section (r_rel);
4174 if (sec == bfd_abs_section_ptr
4175 || sec == bfd_com_section_ptr
4176 || sec == bfd_und_section_ptr)
4177 return FALSE;
4178 return TRUE;
4179 }
4180
4181
4182 static void
4183 r_reloc_init (r_reloc *r_rel,
4184 bfd *abfd,
4185 Elf_Internal_Rela *irel,
4186 bfd_byte *contents,
4187 bfd_size_type content_length)
4188 {
4189 int r_type;
4190 reloc_howto_type *howto;
4191
4192 if (irel)
4193 {
4194 r_rel->rela = *irel;
4195 r_rel->abfd = abfd;
4196 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4197 r_rel->virtual_offset = 0;
4198 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4199 howto = &elf_howto_table[r_type];
4200 if (howto->partial_inplace)
4201 {
4202 bfd_vma inplace_val;
4203 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4204
4205 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4206 r_rel->target_offset += inplace_val;
4207 }
4208 }
4209 else
4210 memset (r_rel, 0, sizeof (r_reloc));
4211 }
4212
4213
4214 #if DEBUG
4215
4216 static void
4217 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4218 {
4219 if (r_reloc_is_defined (r_rel))
4220 {
4221 asection *sec = r_reloc_get_section (r_rel);
4222 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4223 }
4224 else if (r_reloc_get_hash_entry (r_rel))
4225 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4226 else
4227 fprintf (fp, " ?? + ");
4228
4229 fprintf_vma (fp, r_rel->target_offset);
4230 if (r_rel->virtual_offset)
4231 {
4232 fprintf (fp, " + ");
4233 fprintf_vma (fp, r_rel->virtual_offset);
4234 }
4235
4236 fprintf (fp, ")");
4237 }
4238
4239 #endif /* DEBUG */
4240
4241 \f
4242 /* source_reloc: relocations that reference literals. */
4243
4244 /* To determine whether literals can be coalesced, we need to first
4245 record all the relocations that reference the literals. The
4246 source_reloc structure below is used for this purpose. The
4247 source_reloc entries are kept in a per-literal-section array, sorted
4248 by offset within the literal section (i.e., target offset).
4249
4250 The source_sec and r_rel.rela.r_offset fields identify the source of
4251 the relocation. The r_rel field records the relocation value, i.e.,
4252 the offset of the literal being referenced. The opnd field is needed
4253 to determine the range of the immediate field to which the relocation
4254 applies, so we can determine whether another literal with the same
4255 value is within range. The is_null field is true when the relocation
4256 is being removed (e.g., when an L32R is being removed due to a CALLX
4257 that is converted to a direct CALL). */
4258
4259 typedef struct source_reloc_struct source_reloc;
4260
4261 struct source_reloc_struct
4262 {
4263 asection *source_sec;
4264 r_reloc r_rel;
4265 xtensa_opcode opcode;
4266 int opnd;
4267 bfd_boolean is_null;
4268 bfd_boolean is_abs_literal;
4269 };
4270
4271
4272 static void
4273 init_source_reloc (source_reloc *reloc,
4274 asection *source_sec,
4275 const r_reloc *r_rel,
4276 xtensa_opcode opcode,
4277 int opnd,
4278 bfd_boolean is_abs_literal)
4279 {
4280 reloc->source_sec = source_sec;
4281 reloc->r_rel = *r_rel;
4282 reloc->opcode = opcode;
4283 reloc->opnd = opnd;
4284 reloc->is_null = FALSE;
4285 reloc->is_abs_literal = is_abs_literal;
4286 }
4287
4288
4289 /* Find the source_reloc for a particular source offset and relocation
4290 type. Note that the array is sorted by _target_ offset, so this is
4291 just a linear search. */
4292
4293 static source_reloc *
4294 find_source_reloc (source_reloc *src_relocs,
4295 int src_count,
4296 asection *sec,
4297 Elf_Internal_Rela *irel)
4298 {
4299 int i;
4300
4301 for (i = 0; i < src_count; i++)
4302 {
4303 if (src_relocs[i].source_sec == sec
4304 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4305 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4306 == ELF32_R_TYPE (irel->r_info)))
4307 return &src_relocs[i];
4308 }
4309
4310 return NULL;
4311 }
4312
4313
4314 static int
4315 source_reloc_compare (const void *ap, const void *bp)
4316 {
4317 const source_reloc *a = (const source_reloc *) ap;
4318 const source_reloc *b = (const source_reloc *) bp;
4319
4320 if (a->r_rel.target_offset != b->r_rel.target_offset)
4321 return (a->r_rel.target_offset - b->r_rel.target_offset);
4322
4323 /* We don't need to sort on these criteria for correctness,
4324 but enforcing a more strict ordering prevents unstable qsort
4325 from behaving differently with different implementations.
4326 Without the code below we get correct but different results
4327 on Solaris 2.7 and 2.8. We would like to always produce the
4328 same results no matter the host. */
4329
4330 if ((!a->is_null) - (!b->is_null))
4331 return ((!a->is_null) - (!b->is_null));
4332 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
4333 }
4334
4335 \f
4336 /* Literal values and value hash tables. */
4337
4338 /* Literals with the same value can be coalesced. The literal_value
4339 structure records the value of a literal: the "r_rel" field holds the
4340 information from the relocation on the literal (if there is one) and
4341 the "value" field holds the contents of the literal word itself.
4342
4343 The value_map structure records a literal value along with the
4344 location of a literal holding that value. The value_map hash table
4345 is indexed by the literal value, so that we can quickly check if a
4346 particular literal value has been seen before and is thus a candidate
4347 for coalescing. */
4348
4349 typedef struct literal_value_struct literal_value;
4350 typedef struct value_map_struct value_map;
4351 typedef struct value_map_hash_table_struct value_map_hash_table;
4352
4353 struct literal_value_struct
4354 {
4355 r_reloc r_rel;
4356 unsigned long value;
4357 bfd_boolean is_abs_literal;
4358 };
4359
4360 struct value_map_struct
4361 {
4362 literal_value val; /* The literal value. */
4363 r_reloc loc; /* Location of the literal. */
4364 value_map *next;
4365 };
4366
4367 struct value_map_hash_table_struct
4368 {
4369 unsigned bucket_count;
4370 value_map **buckets;
4371 unsigned count;
4372 bfd_boolean has_last_loc;
4373 r_reloc last_loc;
4374 };
4375
4376
4377 static void
4378 init_literal_value (literal_value *lit,
4379 const r_reloc *r_rel,
4380 unsigned long value,
4381 bfd_boolean is_abs_literal)
4382 {
4383 lit->r_rel = *r_rel;
4384 lit->value = value;
4385 lit->is_abs_literal = is_abs_literal;
4386 }
4387
4388
4389 static bfd_boolean
4390 literal_value_equal (const literal_value *src1,
4391 const literal_value *src2,
4392 bfd_boolean final_static_link)
4393 {
4394 struct elf_link_hash_entry *h1, *h2;
4395
4396 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
4397 return FALSE;
4398
4399 if (r_reloc_is_const (&src1->r_rel))
4400 return (src1->value == src2->value);
4401
4402 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
4403 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
4404 return FALSE;
4405
4406 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
4407 return FALSE;
4408
4409 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
4410 return FALSE;
4411
4412 if (src1->value != src2->value)
4413 return FALSE;
4414
4415 /* Now check for the same section (if defined) or the same elf_hash
4416 (if undefined or weak). */
4417 h1 = r_reloc_get_hash_entry (&src1->r_rel);
4418 h2 = r_reloc_get_hash_entry (&src2->r_rel);
4419 if (r_reloc_is_defined (&src1->r_rel)
4420 && (final_static_link
4421 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
4422 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
4423 {
4424 if (r_reloc_get_section (&src1->r_rel)
4425 != r_reloc_get_section (&src2->r_rel))
4426 return FALSE;
4427 }
4428 else
4429 {
4430 /* Require that the hash entries (i.e., symbols) be identical. */
4431 if (h1 != h2 || h1 == 0)
4432 return FALSE;
4433 }
4434
4435 if (src1->is_abs_literal != src2->is_abs_literal)
4436 return FALSE;
4437
4438 return TRUE;
4439 }
4440
4441
4442 /* Must be power of 2. */
4443 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
4444
4445 static value_map_hash_table *
4446 value_map_hash_table_init (void)
4447 {
4448 value_map_hash_table *values;
4449
4450 values = (value_map_hash_table *)
4451 bfd_zmalloc (sizeof (value_map_hash_table));
4452 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
4453 values->count = 0;
4454 values->buckets = (value_map **)
4455 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
4456 if (values->buckets == NULL)
4457 {
4458 free (values);
4459 return NULL;
4460 }
4461 values->has_last_loc = FALSE;
4462
4463 return values;
4464 }
4465
4466
4467 static void
4468 value_map_hash_table_delete (value_map_hash_table *table)
4469 {
4470 free (table->buckets);
4471 free (table);
4472 }
4473
4474
4475 static unsigned
4476 hash_bfd_vma (bfd_vma val)
4477 {
4478 return (val >> 2) + (val >> 10);
4479 }
4480
4481
4482 static unsigned
4483 literal_value_hash (const literal_value *src)
4484 {
4485 unsigned hash_val;
4486
4487 hash_val = hash_bfd_vma (src->value);
4488 if (!r_reloc_is_const (&src->r_rel))
4489 {
4490 void *sec_or_hash;
4491
4492 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
4493 hash_val += hash_bfd_vma (src->r_rel.target_offset);
4494 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
4495
4496 /* Now check for the same section and the same elf_hash. */
4497 if (r_reloc_is_defined (&src->r_rel))
4498 sec_or_hash = r_reloc_get_section (&src->r_rel);
4499 else
4500 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
4501 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
4502 }
4503 return hash_val;
4504 }
4505
4506
4507 /* Check if the specified literal_value has been seen before. */
4508
4509 static value_map *
4510 value_map_get_cached_value (value_map_hash_table *map,
4511 const literal_value *val,
4512 bfd_boolean final_static_link)
4513 {
4514 value_map *map_e;
4515 value_map *bucket;
4516 unsigned idx;
4517
4518 idx = literal_value_hash (val);
4519 idx = idx & (map->bucket_count - 1);
4520 bucket = map->buckets[idx];
4521 for (map_e = bucket; map_e; map_e = map_e->next)
4522 {
4523 if (literal_value_equal (&map_e->val, val, final_static_link))
4524 return map_e;
4525 }
4526 return NULL;
4527 }
4528
4529
4530 /* Record a new literal value. It is illegal to call this if VALUE
4531 already has an entry here. */
4532
4533 static value_map *
4534 add_value_map (value_map_hash_table *map,
4535 const literal_value *val,
4536 const r_reloc *loc,
4537 bfd_boolean final_static_link)
4538 {
4539 value_map **bucket_p;
4540 unsigned idx;
4541
4542 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
4543 if (val_e == NULL)
4544 {
4545 bfd_set_error (bfd_error_no_memory);
4546 return NULL;
4547 }
4548
4549 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
4550 val_e->val = *val;
4551 val_e->loc = *loc;
4552
4553 idx = literal_value_hash (val);
4554 idx = idx & (map->bucket_count - 1);
4555 bucket_p = &map->buckets[idx];
4556
4557 val_e->next = *bucket_p;
4558 *bucket_p = val_e;
4559 map->count++;
4560 /* FIXME: Consider resizing the hash table if we get too many entries. */
4561
4562 return val_e;
4563 }
4564
4565 \f
4566 /* Lists of text actions (ta_) for narrowing, widening, longcall
4567 conversion, space fill, code & literal removal, etc. */
4568
4569 /* The following text actions are generated:
4570
4571 "ta_remove_insn" remove an instruction or instructions
4572 "ta_remove_longcall" convert longcall to call
4573 "ta_convert_longcall" convert longcall to nop/call
4574 "ta_narrow_insn" narrow a wide instruction
4575 "ta_widen" widen a narrow instruction
4576 "ta_fill" add fill or remove fill
4577 removed < 0 is a fill; branches to the fill address will be
4578 changed to address + fill size (e.g., address - removed)
4579 removed >= 0 branches to the fill address will stay unchanged
4580 "ta_remove_literal" remove a literal; this action is
4581 indicated when a literal is removed
4582 or replaced.
4583 "ta_add_literal" insert a new literal; this action is
4584 indicated when a literal has been moved.
4585 It may use a virtual_offset because
4586 multiple literals can be placed at the
4587 same location.
4588
4589 For each of these text actions, we also record the number of bytes
4590 removed by performing the text action. In the case of a "ta_widen"
4591 or a "ta_fill" that adds space, the removed_bytes will be negative. */
4592
4593 typedef struct text_action_struct text_action;
4594 typedef struct text_action_list_struct text_action_list;
4595 typedef enum text_action_enum_t text_action_t;
4596
4597 enum text_action_enum_t
4598 {
4599 ta_none,
4600 ta_remove_insn, /* removed = -size */
4601 ta_remove_longcall, /* removed = -size */
4602 ta_convert_longcall, /* removed = 0 */
4603 ta_narrow_insn, /* removed = -1 */
4604 ta_widen_insn, /* removed = +1 */
4605 ta_fill, /* removed = +size */
4606 ta_remove_literal,
4607 ta_add_literal
4608 };
4609
4610
4611 /* Structure for a text action record. */
4612 struct text_action_struct
4613 {
4614 text_action_t action;
4615 asection *sec; /* Optional */
4616 bfd_vma offset;
4617 bfd_vma virtual_offset; /* Zero except for adding literals. */
4618 int removed_bytes;
4619 literal_value value; /* Only valid when adding literals. */
4620
4621 text_action *next;
4622 };
4623
4624
4625 /* List of all of the actions taken on a text section. */
4626 struct text_action_list_struct
4627 {
4628 text_action *head;
4629 };
4630
4631
4632 static text_action *
4633 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
4634 {
4635 text_action **m_p;
4636
4637 /* It is not necessary to fill at the end of a section. */
4638 if (sec->size == offset)
4639 return NULL;
4640
4641 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4642 {
4643 text_action *t = *m_p;
4644 /* When the action is another fill at the same address,
4645 just increase the size. */
4646 if (t->offset == offset && t->action == ta_fill)
4647 return t;
4648 }
4649 return NULL;
4650 }
4651
4652
4653 static int
4654 compute_removed_action_diff (const text_action *ta,
4655 asection *sec,
4656 bfd_vma offset,
4657 int removed,
4658 int removable_space)
4659 {
4660 int new_removed;
4661 int current_removed = 0;
4662
4663 if (ta)
4664 current_removed = ta->removed_bytes;
4665
4666 BFD_ASSERT (ta == NULL || ta->offset == offset);
4667 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
4668
4669 /* It is not necessary to fill at the end of a section. Clean this up. */
4670 if (sec->size == offset)
4671 new_removed = removable_space - 0;
4672 else
4673 {
4674 int space;
4675 int added = -removed - current_removed;
4676 /* Ignore multiples of the section alignment. */
4677 added = ((1 << sec->alignment_power) - 1) & added;
4678 new_removed = (-added);
4679
4680 /* Modify for removable. */
4681 space = removable_space - new_removed;
4682 new_removed = (removable_space
4683 - (((1 << sec->alignment_power) - 1) & space));
4684 }
4685 return (new_removed - current_removed);
4686 }
4687
4688
4689 static void
4690 adjust_fill_action (text_action *ta, int fill_diff)
4691 {
4692 ta->removed_bytes += fill_diff;
4693 }
4694
4695
4696 /* Add a modification action to the text. For the case of adding or
4697 removing space, modify any current fill and assume that
4698 "unreachable_space" bytes can be freely contracted. Note that a
4699 negative removed value is a fill. */
4700
4701 static void
4702 text_action_add (text_action_list *l,
4703 text_action_t action,
4704 asection *sec,
4705 bfd_vma offset,
4706 int removed)
4707 {
4708 text_action **m_p;
4709 text_action *ta;
4710
4711 /* It is not necessary to fill at the end of a section. */
4712 if (action == ta_fill && sec->size == offset)
4713 return;
4714
4715 /* It is not necessary to fill 0 bytes. */
4716 if (action == ta_fill && removed == 0)
4717 return;
4718
4719 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next)
4720 {
4721 text_action *t = *m_p;
4722 /* When the action is another fill at the same address,
4723 just increase the size. */
4724 if (t->offset == offset && t->action == ta_fill && action == ta_fill)
4725 {
4726 t->removed_bytes += removed;
4727 return;
4728 }
4729 }
4730
4731 /* Create a new record and fill it up. */
4732 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4733 ta->action = action;
4734 ta->sec = sec;
4735 ta->offset = offset;
4736 ta->removed_bytes = removed;
4737 ta->next = (*m_p);
4738 *m_p = ta;
4739 }
4740
4741
4742 static void
4743 text_action_add_literal (text_action_list *l,
4744 text_action_t action,
4745 const r_reloc *loc,
4746 const literal_value *value,
4747 int removed)
4748 {
4749 text_action **m_p;
4750 text_action *ta;
4751 asection *sec = r_reloc_get_section (loc);
4752 bfd_vma offset = loc->target_offset;
4753 bfd_vma virtual_offset = loc->virtual_offset;
4754
4755 BFD_ASSERT (action == ta_add_literal);
4756
4757 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next)
4758 {
4759 if ((*m_p)->offset > offset
4760 && ((*m_p)->offset != offset
4761 || (*m_p)->virtual_offset > virtual_offset))
4762 break;
4763 }
4764
4765 /* Create a new record and fill it up. */
4766 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
4767 ta->action = action;
4768 ta->sec = sec;
4769 ta->offset = offset;
4770 ta->virtual_offset = virtual_offset;
4771 ta->value = *value;
4772 ta->removed_bytes = removed;
4773 ta->next = (*m_p);
4774 *m_p = ta;
4775 }
4776
4777
4778 /* Find the total offset adjustment for the relaxations specified by
4779 text_actions, beginning from a particular starting action. This is
4780 typically used from offset_with_removed_text to search an entire list of
4781 actions, but it may also be called directly when adjusting adjacent offsets
4782 so that each search may begin where the previous one left off. */
4783
4784 static int
4785 removed_by_actions (text_action **p_start_action,
4786 bfd_vma offset,
4787 bfd_boolean before_fill)
4788 {
4789 text_action *r;
4790 int removed = 0;
4791
4792 r = *p_start_action;
4793 while (r)
4794 {
4795 if (r->offset > offset)
4796 break;
4797
4798 if (r->offset == offset
4799 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
4800 break;
4801
4802 removed += r->removed_bytes;
4803
4804 r = r->next;
4805 }
4806
4807 *p_start_action = r;
4808 return removed;
4809 }
4810
4811
4812 static bfd_vma
4813 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
4814 {
4815 text_action *r = action_list->head;
4816 return offset - removed_by_actions (&r, offset, FALSE);
4817 }
4818
4819
4820 static unsigned
4821 action_list_count (text_action_list *action_list)
4822 {
4823 text_action *r = action_list->head;
4824 unsigned count = 0;
4825 for (r = action_list->head; r != NULL; r = r->next)
4826 {
4827 count++;
4828 }
4829 return count;
4830 }
4831
4832
4833 /* The find_insn_action routine will only find non-fill actions. */
4834
4835 static text_action *
4836 find_insn_action (text_action_list *action_list, bfd_vma offset)
4837 {
4838 text_action *t;
4839 for (t = action_list->head; t; t = t->next)
4840 {
4841 if (t->offset == offset)
4842 {
4843 switch (t->action)
4844 {
4845 case ta_none:
4846 case ta_fill:
4847 break;
4848 case ta_remove_insn:
4849 case ta_remove_longcall:
4850 case ta_convert_longcall:
4851 case ta_narrow_insn:
4852 case ta_widen_insn:
4853 return t;
4854 case ta_remove_literal:
4855 case ta_add_literal:
4856 BFD_ASSERT (0);
4857 break;
4858 }
4859 }
4860 }
4861 return NULL;
4862 }
4863
4864
4865 #if DEBUG
4866
4867 static void
4868 print_action_list (FILE *fp, text_action_list *action_list)
4869 {
4870 text_action *r;
4871
4872 fprintf (fp, "Text Action\n");
4873 for (r = action_list->head; r != NULL; r = r->next)
4874 {
4875 const char *t = "unknown";
4876 switch (r->action)
4877 {
4878 case ta_remove_insn:
4879 t = "remove_insn"; break;
4880 case ta_remove_longcall:
4881 t = "remove_longcall"; break;
4882 case ta_convert_longcall:
4883 t = "remove_longcall"; break;
4884 case ta_narrow_insn:
4885 t = "narrow_insn"; break;
4886 case ta_widen_insn:
4887 t = "widen_insn"; break;
4888 case ta_fill:
4889 t = "fill"; break;
4890 case ta_none:
4891 t = "none"; break;
4892 case ta_remove_literal:
4893 t = "remove_literal"; break;
4894 case ta_add_literal:
4895 t = "add_literal"; break;
4896 }
4897
4898 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
4899 r->sec->owner->filename,
4900 r->sec->name, r->offset, t, r->removed_bytes);
4901 }
4902 }
4903
4904 #endif /* DEBUG */
4905
4906 \f
4907 /* Lists of literals being coalesced or removed. */
4908
4909 /* In the usual case, the literal identified by "from" is being
4910 coalesced with another literal identified by "to". If the literal is
4911 unused and is being removed altogether, "to.abfd" will be NULL.
4912 The removed_literal entries are kept on a per-section list, sorted
4913 by the "from" offset field. */
4914
4915 typedef struct removed_literal_struct removed_literal;
4916 typedef struct removed_literal_list_struct removed_literal_list;
4917
4918 struct removed_literal_struct
4919 {
4920 r_reloc from;
4921 r_reloc to;
4922 removed_literal *next;
4923 };
4924
4925 struct removed_literal_list_struct
4926 {
4927 removed_literal *head;
4928 removed_literal *tail;
4929 };
4930
4931
4932 /* Record that the literal at "from" is being removed. If "to" is not
4933 NULL, the "from" literal is being coalesced with the "to" literal. */
4934
4935 static void
4936 add_removed_literal (removed_literal_list *removed_list,
4937 const r_reloc *from,
4938 const r_reloc *to)
4939 {
4940 removed_literal *r, *new_r, *next_r;
4941
4942 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
4943
4944 new_r->from = *from;
4945 if (to)
4946 new_r->to = *to;
4947 else
4948 new_r->to.abfd = NULL;
4949 new_r->next = NULL;
4950
4951 r = removed_list->head;
4952 if (r == NULL)
4953 {
4954 removed_list->head = new_r;
4955 removed_list->tail = new_r;
4956 }
4957 /* Special check for common case of append. */
4958 else if (removed_list->tail->from.target_offset < from->target_offset)
4959 {
4960 removed_list->tail->next = new_r;
4961 removed_list->tail = new_r;
4962 }
4963 else
4964 {
4965 while (r->from.target_offset < from->target_offset && r->next)
4966 {
4967 r = r->next;
4968 }
4969 next_r = r->next;
4970 r->next = new_r;
4971 new_r->next = next_r;
4972 if (next_r == NULL)
4973 removed_list->tail = new_r;
4974 }
4975 }
4976
4977
4978 /* Check if the list of removed literals contains an entry for the
4979 given address. Return the entry if found. */
4980
4981 static removed_literal *
4982 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
4983 {
4984 removed_literal *r = removed_list->head;
4985 while (r && r->from.target_offset < addr)
4986 r = r->next;
4987 if (r && r->from.target_offset == addr)
4988 return r;
4989 return NULL;
4990 }
4991
4992
4993 #if DEBUG
4994
4995 static void
4996 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
4997 {
4998 removed_literal *r;
4999 r = removed_list->head;
5000 if (r)
5001 fprintf (fp, "Removed Literals\n");
5002 for (; r != NULL; r = r->next)
5003 {
5004 print_r_reloc (fp, &r->from);
5005 fprintf (fp, " => ");
5006 if (r->to.abfd == NULL)
5007 fprintf (fp, "REMOVED");
5008 else
5009 print_r_reloc (fp, &r->to);
5010 fprintf (fp, "\n");
5011 }
5012 }
5013
5014 #endif /* DEBUG */
5015
5016 \f
5017 /* Per-section data for relaxation. */
5018
5019 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5020
5021 struct xtensa_relax_info_struct
5022 {
5023 bfd_boolean is_relaxable_literal_section;
5024 bfd_boolean is_relaxable_asm_section;
5025 int visited; /* Number of times visited. */
5026
5027 source_reloc *src_relocs; /* Array[src_count]. */
5028 int src_count;
5029 int src_next; /* Next src_relocs entry to assign. */
5030
5031 removed_literal_list removed_list;
5032 text_action_list action_list;
5033
5034 reloc_bfd_fix *fix_list;
5035 reloc_bfd_fix *fix_array;
5036 unsigned fix_array_count;
5037
5038 /* Support for expanding the reloc array that is stored
5039 in the section structure. If the relocations have been
5040 reallocated, the newly allocated relocations will be referenced
5041 here along with the actual size allocated. The relocation
5042 count will always be found in the section structure. */
5043 Elf_Internal_Rela *allocated_relocs;
5044 unsigned relocs_count;
5045 unsigned allocated_relocs_count;
5046 };
5047
5048 struct elf_xtensa_section_data
5049 {
5050 struct bfd_elf_section_data elf;
5051 xtensa_relax_info relax_info;
5052 };
5053
5054
5055 static bfd_boolean
5056 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5057 {
5058 if (!sec->used_by_bfd)
5059 {
5060 struct elf_xtensa_section_data *sdata;
5061 bfd_size_type amt = sizeof (*sdata);
5062
5063 sdata = bfd_zalloc (abfd, amt);
5064 if (sdata == NULL)
5065 return FALSE;
5066 sec->used_by_bfd = sdata;
5067 }
5068
5069 return _bfd_elf_new_section_hook (abfd, sec);
5070 }
5071
5072
5073 static xtensa_relax_info *
5074 get_xtensa_relax_info (asection *sec)
5075 {
5076 struct elf_xtensa_section_data *section_data;
5077
5078 /* No info available if no section or if it is an output section. */
5079 if (!sec || sec == sec->output_section)
5080 return NULL;
5081
5082 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5083 return &section_data->relax_info;
5084 }
5085
5086
5087 static void
5088 init_xtensa_relax_info (asection *sec)
5089 {
5090 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5091
5092 relax_info->is_relaxable_literal_section = FALSE;
5093 relax_info->is_relaxable_asm_section = FALSE;
5094 relax_info->visited = 0;
5095
5096 relax_info->src_relocs = NULL;
5097 relax_info->src_count = 0;
5098 relax_info->src_next = 0;
5099
5100 relax_info->removed_list.head = NULL;
5101 relax_info->removed_list.tail = NULL;
5102
5103 relax_info->action_list.head = NULL;
5104
5105 relax_info->fix_list = NULL;
5106 relax_info->fix_array = NULL;
5107 relax_info->fix_array_count = 0;
5108
5109 relax_info->allocated_relocs = NULL;
5110 relax_info->relocs_count = 0;
5111 relax_info->allocated_relocs_count = 0;
5112 }
5113
5114 \f
5115 /* Coalescing literals may require a relocation to refer to a section in
5116 a different input file, but the standard relocation information
5117 cannot express that. Instead, the reloc_bfd_fix structures are used
5118 to "fix" the relocations that refer to sections in other input files.
5119 These structures are kept on per-section lists. The "src_type" field
5120 records the relocation type in case there are multiple relocations on
5121 the same location. FIXME: This is ugly; an alternative might be to
5122 add new symbols with the "owner" field to some other input file. */
5123
5124 struct reloc_bfd_fix_struct
5125 {
5126 asection *src_sec;
5127 bfd_vma src_offset;
5128 unsigned src_type; /* Relocation type. */
5129
5130 asection *target_sec;
5131 bfd_vma target_offset;
5132 bfd_boolean translated;
5133
5134 reloc_bfd_fix *next;
5135 };
5136
5137
5138 static reloc_bfd_fix *
5139 reloc_bfd_fix_init (asection *src_sec,
5140 bfd_vma src_offset,
5141 unsigned src_type,
5142 asection *target_sec,
5143 bfd_vma target_offset,
5144 bfd_boolean translated)
5145 {
5146 reloc_bfd_fix *fix;
5147
5148 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
5149 fix->src_sec = src_sec;
5150 fix->src_offset = src_offset;
5151 fix->src_type = src_type;
5152 fix->target_sec = target_sec;
5153 fix->target_offset = target_offset;
5154 fix->translated = translated;
5155
5156 return fix;
5157 }
5158
5159
5160 static void
5161 add_fix (asection *src_sec, reloc_bfd_fix *fix)
5162 {
5163 xtensa_relax_info *relax_info;
5164
5165 relax_info = get_xtensa_relax_info (src_sec);
5166 fix->next = relax_info->fix_list;
5167 relax_info->fix_list = fix;
5168 }
5169
5170
5171 static int
5172 fix_compare (const void *ap, const void *bp)
5173 {
5174 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
5175 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
5176
5177 if (a->src_offset != b->src_offset)
5178 return (a->src_offset - b->src_offset);
5179 return (a->src_type - b->src_type);
5180 }
5181
5182
5183 static void
5184 cache_fix_array (asection *sec)
5185 {
5186 unsigned i, count = 0;
5187 reloc_bfd_fix *r;
5188 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5189
5190 if (relax_info == NULL)
5191 return;
5192 if (relax_info->fix_list == NULL)
5193 return;
5194
5195 for (r = relax_info->fix_list; r != NULL; r = r->next)
5196 count++;
5197
5198 relax_info->fix_array =
5199 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
5200 relax_info->fix_array_count = count;
5201
5202 r = relax_info->fix_list;
5203 for (i = 0; i < count; i++, r = r->next)
5204 {
5205 relax_info->fix_array[count - 1 - i] = *r;
5206 relax_info->fix_array[count - 1 - i].next = NULL;
5207 }
5208
5209 qsort (relax_info->fix_array, relax_info->fix_array_count,
5210 sizeof (reloc_bfd_fix), fix_compare);
5211 }
5212
5213
5214 static reloc_bfd_fix *
5215 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
5216 {
5217 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5218 reloc_bfd_fix *rv;
5219 reloc_bfd_fix key;
5220
5221 if (relax_info == NULL)
5222 return NULL;
5223 if (relax_info->fix_list == NULL)
5224 return NULL;
5225
5226 if (relax_info->fix_array == NULL)
5227 cache_fix_array (sec);
5228
5229 key.src_offset = offset;
5230 key.src_type = type;
5231 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
5232 sizeof (reloc_bfd_fix), fix_compare);
5233 return rv;
5234 }
5235
5236 \f
5237 /* Section caching. */
5238
5239 typedef struct section_cache_struct section_cache_t;
5240
5241 struct section_cache_struct
5242 {
5243 asection *sec;
5244
5245 bfd_byte *contents; /* Cache of the section contents. */
5246 bfd_size_type content_length;
5247
5248 property_table_entry *ptbl; /* Cache of the section property table. */
5249 unsigned pte_count;
5250
5251 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5252 unsigned reloc_count;
5253 };
5254
5255
5256 static void
5257 init_section_cache (section_cache_t *sec_cache)
5258 {
5259 memset (sec_cache, 0, sizeof (*sec_cache));
5260 }
5261
5262
5263 static void
5264 clear_section_cache (section_cache_t *sec_cache)
5265 {
5266 if (sec_cache->sec)
5267 {
5268 release_contents (sec_cache->sec, sec_cache->contents);
5269 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
5270 if (sec_cache->ptbl)
5271 free (sec_cache->ptbl);
5272 memset (sec_cache, 0, sizeof (sec_cache));
5273 }
5274 }
5275
5276
5277 static bfd_boolean
5278 section_cache_section (section_cache_t *sec_cache,
5279 asection *sec,
5280 struct bfd_link_info *link_info)
5281 {
5282 bfd *abfd;
5283 property_table_entry *prop_table = NULL;
5284 int ptblsize = 0;
5285 bfd_byte *contents = NULL;
5286 Elf_Internal_Rela *internal_relocs = NULL;
5287 bfd_size_type sec_size;
5288
5289 if (sec == NULL)
5290 return FALSE;
5291 if (sec == sec_cache->sec)
5292 return TRUE;
5293
5294 abfd = sec->owner;
5295 sec_size = bfd_get_section_limit (abfd, sec);
5296
5297 /* Get the contents. */
5298 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
5299 if (contents == NULL && sec_size != 0)
5300 goto err;
5301
5302 /* Get the relocations. */
5303 internal_relocs = retrieve_internal_relocs (abfd, sec,
5304 link_info->keep_memory);
5305
5306 /* Get the entry table. */
5307 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
5308 XTENSA_PROP_SEC_NAME, FALSE);
5309 if (ptblsize < 0)
5310 goto err;
5311
5312 /* Fill in the new section cache. */
5313 clear_section_cache (sec_cache);
5314 memset (sec_cache, 0, sizeof (sec_cache));
5315
5316 sec_cache->sec = sec;
5317 sec_cache->contents = contents;
5318 sec_cache->content_length = sec_size;
5319 sec_cache->relocs = internal_relocs;
5320 sec_cache->reloc_count = sec->reloc_count;
5321 sec_cache->pte_count = ptblsize;
5322 sec_cache->ptbl = prop_table;
5323
5324 return TRUE;
5325
5326 err:
5327 release_contents (sec, contents);
5328 release_internal_relocs (sec, internal_relocs);
5329 if (prop_table)
5330 free (prop_table);
5331 return FALSE;
5332 }
5333
5334 \f
5335 /* Extended basic blocks. */
5336
5337 /* An ebb_struct represents an Extended Basic Block. Within this
5338 range, we guarantee that all instructions are decodable, the
5339 property table entries are contiguous, and no property table
5340 specifies a segment that cannot have instructions moved. This
5341 structure contains caches of the contents, property table and
5342 relocations for the specified section for easy use. The range is
5343 specified by ranges of indices for the byte offset, property table
5344 offsets and relocation offsets. These must be consistent. */
5345
5346 typedef struct ebb_struct ebb_t;
5347
5348 struct ebb_struct
5349 {
5350 asection *sec;
5351
5352 bfd_byte *contents; /* Cache of the section contents. */
5353 bfd_size_type content_length;
5354
5355 property_table_entry *ptbl; /* Cache of the section property table. */
5356 unsigned pte_count;
5357
5358 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
5359 unsigned reloc_count;
5360
5361 bfd_vma start_offset; /* Offset in section. */
5362 unsigned start_ptbl_idx; /* Offset in the property table. */
5363 unsigned start_reloc_idx; /* Offset in the relocations. */
5364
5365 bfd_vma end_offset;
5366 unsigned end_ptbl_idx;
5367 unsigned end_reloc_idx;
5368
5369 bfd_boolean ends_section; /* Is this the last ebb in a section? */
5370
5371 /* The unreachable property table at the end of this set of blocks;
5372 NULL if the end is not an unreachable block. */
5373 property_table_entry *ends_unreachable;
5374 };
5375
5376
5377 enum ebb_target_enum
5378 {
5379 EBB_NO_ALIGN = 0,
5380 EBB_DESIRE_TGT_ALIGN,
5381 EBB_REQUIRE_TGT_ALIGN,
5382 EBB_REQUIRE_LOOP_ALIGN,
5383 EBB_REQUIRE_ALIGN
5384 };
5385
5386
5387 /* proposed_action_struct is similar to the text_action_struct except
5388 that is represents a potential transformation, not one that will
5389 occur. We build a list of these for an extended basic block
5390 and use them to compute the actual actions desired. We must be
5391 careful that the entire set of actual actions we perform do not
5392 break any relocations that would fit if the actions were not
5393 performed. */
5394
5395 typedef struct proposed_action_struct proposed_action;
5396
5397 struct proposed_action_struct
5398 {
5399 enum ebb_target_enum align_type; /* for the target alignment */
5400 bfd_vma alignment_pow;
5401 text_action_t action;
5402 bfd_vma offset;
5403 int removed_bytes;
5404 bfd_boolean do_action; /* If false, then we will not perform the action. */
5405 };
5406
5407
5408 /* The ebb_constraint_struct keeps a set of proposed actions for an
5409 extended basic block. */
5410
5411 typedef struct ebb_constraint_struct ebb_constraint;
5412
5413 struct ebb_constraint_struct
5414 {
5415 ebb_t ebb;
5416 bfd_boolean start_movable;
5417
5418 /* Bytes of extra space at the beginning if movable. */
5419 int start_extra_space;
5420
5421 enum ebb_target_enum start_align;
5422
5423 bfd_boolean end_movable;
5424
5425 /* Bytes of extra space at the end if movable. */
5426 int end_extra_space;
5427
5428 unsigned action_count;
5429 unsigned action_allocated;
5430
5431 /* Array of proposed actions. */
5432 proposed_action *actions;
5433
5434 /* Action alignments -- one for each proposed action. */
5435 enum ebb_target_enum *action_aligns;
5436 };
5437
5438
5439 static void
5440 init_ebb_constraint (ebb_constraint *c)
5441 {
5442 memset (c, 0, sizeof (ebb_constraint));
5443 }
5444
5445
5446 static void
5447 free_ebb_constraint (ebb_constraint *c)
5448 {
5449 if (c->actions)
5450 free (c->actions);
5451 }
5452
5453
5454 static void
5455 init_ebb (ebb_t *ebb,
5456 asection *sec,
5457 bfd_byte *contents,
5458 bfd_size_type content_length,
5459 property_table_entry *prop_table,
5460 unsigned ptblsize,
5461 Elf_Internal_Rela *internal_relocs,
5462 unsigned reloc_count)
5463 {
5464 memset (ebb, 0, sizeof (ebb_t));
5465 ebb->sec = sec;
5466 ebb->contents = contents;
5467 ebb->content_length = content_length;
5468 ebb->ptbl = prop_table;
5469 ebb->pte_count = ptblsize;
5470 ebb->relocs = internal_relocs;
5471 ebb->reloc_count = reloc_count;
5472 ebb->start_offset = 0;
5473 ebb->end_offset = ebb->content_length - 1;
5474 ebb->start_ptbl_idx = 0;
5475 ebb->end_ptbl_idx = ptblsize;
5476 ebb->start_reloc_idx = 0;
5477 ebb->end_reloc_idx = reloc_count;
5478 }
5479
5480
5481 /* Extend the ebb to all decodable contiguous sections. The algorithm
5482 for building a basic block around an instruction is to push it
5483 forward until we hit the end of a section, an unreachable block or
5484 a block that cannot be transformed. Then we push it backwards
5485 searching for similar conditions. */
5486
5487 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
5488 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
5489 static bfd_size_type insn_block_decodable_len
5490 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
5491
5492 static bfd_boolean
5493 extend_ebb_bounds (ebb_t *ebb)
5494 {
5495 if (!extend_ebb_bounds_forward (ebb))
5496 return FALSE;
5497 if (!extend_ebb_bounds_backward (ebb))
5498 return FALSE;
5499 return TRUE;
5500 }
5501
5502
5503 static bfd_boolean
5504 extend_ebb_bounds_forward (ebb_t *ebb)
5505 {
5506 property_table_entry *the_entry, *new_entry;
5507
5508 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
5509
5510 /* Stop when (1) we cannot decode an instruction, (2) we are at
5511 the end of the property tables, (3) we hit a non-contiguous property
5512 table entry, (4) we hit a NO_TRANSFORM region. */
5513
5514 while (1)
5515 {
5516 bfd_vma entry_end;
5517 bfd_size_type insn_block_len;
5518
5519 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
5520 insn_block_len =
5521 insn_block_decodable_len (ebb->contents, ebb->content_length,
5522 ebb->end_offset,
5523 entry_end - ebb->end_offset);
5524 if (insn_block_len != (entry_end - ebb->end_offset))
5525 {
5526 (*_bfd_error_handler)
5527 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5528 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5529 return FALSE;
5530 }
5531 ebb->end_offset += insn_block_len;
5532
5533 if (ebb->end_offset == ebb->sec->size)
5534 ebb->ends_section = TRUE;
5535
5536 /* Update the reloc counter. */
5537 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
5538 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
5539 < ebb->end_offset))
5540 {
5541 ebb->end_reloc_idx++;
5542 }
5543
5544 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5545 return TRUE;
5546
5547 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5548 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
5549 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
5550 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
5551 break;
5552
5553 if (the_entry->address + the_entry->size != new_entry->address)
5554 break;
5555
5556 the_entry = new_entry;
5557 ebb->end_ptbl_idx++;
5558 }
5559
5560 /* Quick check for an unreachable or end of file just at the end. */
5561 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
5562 {
5563 if (ebb->end_offset == ebb->content_length)
5564 ebb->ends_section = TRUE;
5565 }
5566 else
5567 {
5568 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
5569 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
5570 && the_entry->address + the_entry->size == new_entry->address)
5571 ebb->ends_unreachable = new_entry;
5572 }
5573
5574 /* Any other ending requires exact alignment. */
5575 return TRUE;
5576 }
5577
5578
5579 static bfd_boolean
5580 extend_ebb_bounds_backward (ebb_t *ebb)
5581 {
5582 property_table_entry *the_entry, *new_entry;
5583
5584 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
5585
5586 /* Stop when (1) we cannot decode the instructions in the current entry.
5587 (2) we are at the beginning of the property tables, (3) we hit a
5588 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
5589
5590 while (1)
5591 {
5592 bfd_vma block_begin;
5593 bfd_size_type insn_block_len;
5594
5595 block_begin = the_entry->address - ebb->sec->vma;
5596 insn_block_len =
5597 insn_block_decodable_len (ebb->contents, ebb->content_length,
5598 block_begin,
5599 ebb->start_offset - block_begin);
5600 if (insn_block_len != ebb->start_offset - block_begin)
5601 {
5602 (*_bfd_error_handler)
5603 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
5604 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
5605 return FALSE;
5606 }
5607 ebb->start_offset -= insn_block_len;
5608
5609 /* Update the reloc counter. */
5610 while (ebb->start_reloc_idx > 0
5611 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
5612 >= ebb->start_offset))
5613 {
5614 ebb->start_reloc_idx--;
5615 }
5616
5617 if (ebb->start_ptbl_idx == 0)
5618 return TRUE;
5619
5620 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
5621 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
5622 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
5623 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
5624 return TRUE;
5625 if (new_entry->address + new_entry->size != the_entry->address)
5626 return TRUE;
5627
5628 the_entry = new_entry;
5629 ebb->start_ptbl_idx--;
5630 }
5631 return TRUE;
5632 }
5633
5634
5635 static bfd_size_type
5636 insn_block_decodable_len (bfd_byte *contents,
5637 bfd_size_type content_len,
5638 bfd_vma block_offset,
5639 bfd_size_type block_len)
5640 {
5641 bfd_vma offset = block_offset;
5642
5643 while (offset < block_offset + block_len)
5644 {
5645 bfd_size_type insn_len = 0;
5646
5647 insn_len = insn_decode_len (contents, content_len, offset);
5648 if (insn_len == 0)
5649 return (offset - block_offset);
5650 offset += insn_len;
5651 }
5652 return (offset - block_offset);
5653 }
5654
5655
5656 static void
5657 ebb_propose_action (ebb_constraint *c,
5658 enum ebb_target_enum align_type,
5659 bfd_vma alignment_pow,
5660 text_action_t action,
5661 bfd_vma offset,
5662 int removed_bytes,
5663 bfd_boolean do_action)
5664 {
5665 proposed_action *act;
5666
5667 if (c->action_allocated <= c->action_count)
5668 {
5669 unsigned new_allocated, i;
5670 proposed_action *new_actions;
5671
5672 new_allocated = (c->action_count + 2) * 2;
5673 new_actions = (proposed_action *)
5674 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
5675
5676 for (i = 0; i < c->action_count; i++)
5677 new_actions[i] = c->actions[i];
5678 if (c->actions)
5679 free (c->actions);
5680 c->actions = new_actions;
5681 c->action_allocated = new_allocated;
5682 }
5683
5684 act = &c->actions[c->action_count];
5685 act->align_type = align_type;
5686 act->alignment_pow = alignment_pow;
5687 act->action = action;
5688 act->offset = offset;
5689 act->removed_bytes = removed_bytes;
5690 act->do_action = do_action;
5691
5692 c->action_count++;
5693 }
5694
5695 \f
5696 /* Access to internal relocations, section contents and symbols. */
5697
5698 /* During relaxation, we need to modify relocations, section contents,
5699 and symbol definitions, and we need to keep the original values from
5700 being reloaded from the input files, i.e., we need to "pin" the
5701 modified values in memory. We also want to continue to observe the
5702 setting of the "keep-memory" flag. The following functions wrap the
5703 standard BFD functions to take care of this for us. */
5704
5705 static Elf_Internal_Rela *
5706 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5707 {
5708 Elf_Internal_Rela *internal_relocs;
5709
5710 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5711 return NULL;
5712
5713 internal_relocs = elf_section_data (sec)->relocs;
5714 if (internal_relocs == NULL)
5715 internal_relocs = (_bfd_elf_link_read_relocs
5716 (abfd, sec, NULL, NULL, keep_memory));
5717 return internal_relocs;
5718 }
5719
5720
5721 static void
5722 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5723 {
5724 elf_section_data (sec)->relocs = internal_relocs;
5725 }
5726
5727
5728 static void
5729 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
5730 {
5731 if (internal_relocs
5732 && elf_section_data (sec)->relocs != internal_relocs)
5733 free (internal_relocs);
5734 }
5735
5736
5737 static bfd_byte *
5738 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
5739 {
5740 bfd_byte *contents;
5741 bfd_size_type sec_size;
5742
5743 sec_size = bfd_get_section_limit (abfd, sec);
5744 contents = elf_section_data (sec)->this_hdr.contents;
5745
5746 if (contents == NULL && sec_size != 0)
5747 {
5748 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
5749 {
5750 if (contents)
5751 free (contents);
5752 return NULL;
5753 }
5754 if (keep_memory)
5755 elf_section_data (sec)->this_hdr.contents = contents;
5756 }
5757 return contents;
5758 }
5759
5760
5761 static void
5762 pin_contents (asection *sec, bfd_byte *contents)
5763 {
5764 elf_section_data (sec)->this_hdr.contents = contents;
5765 }
5766
5767
5768 static void
5769 release_contents (asection *sec, bfd_byte *contents)
5770 {
5771 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
5772 free (contents);
5773 }
5774
5775
5776 static Elf_Internal_Sym *
5777 retrieve_local_syms (bfd *input_bfd)
5778 {
5779 Elf_Internal_Shdr *symtab_hdr;
5780 Elf_Internal_Sym *isymbuf;
5781 size_t locsymcount;
5782
5783 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5784 locsymcount = symtab_hdr->sh_info;
5785
5786 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
5787 if (isymbuf == NULL && locsymcount != 0)
5788 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
5789 NULL, NULL, NULL);
5790
5791 /* Save the symbols for this input file so they won't be read again. */
5792 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
5793 symtab_hdr->contents = (unsigned char *) isymbuf;
5794
5795 return isymbuf;
5796 }
5797
5798 \f
5799 /* Code for link-time relaxation. */
5800
5801 /* Initialization for relaxation: */
5802 static bfd_boolean analyze_relocations (struct bfd_link_info *);
5803 static bfd_boolean find_relaxable_sections
5804 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
5805 static bfd_boolean collect_source_relocs
5806 (bfd *, asection *, struct bfd_link_info *);
5807 static bfd_boolean is_resolvable_asm_expansion
5808 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
5809 bfd_boolean *);
5810 static Elf_Internal_Rela *find_associated_l32r_irel
5811 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
5812 static bfd_boolean compute_text_actions
5813 (bfd *, asection *, struct bfd_link_info *);
5814 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
5815 static bfd_boolean compute_ebb_actions (ebb_constraint *);
5816 static bfd_boolean check_section_ebb_pcrels_fit
5817 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *,
5818 const xtensa_opcode *);
5819 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
5820 static void text_action_add_proposed
5821 (text_action_list *, const ebb_constraint *, asection *);
5822 static int compute_fill_extra_space (property_table_entry *);
5823
5824 /* First pass: */
5825 static bfd_boolean compute_removed_literals
5826 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
5827 static Elf_Internal_Rela *get_irel_at_offset
5828 (asection *, Elf_Internal_Rela *, bfd_vma);
5829 static bfd_boolean is_removable_literal
5830 (const source_reloc *, int, const source_reloc *, int, asection *,
5831 property_table_entry *, int);
5832 static bfd_boolean remove_dead_literal
5833 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
5834 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
5835 static bfd_boolean identify_literal_placement
5836 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
5837 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
5838 source_reloc *, property_table_entry *, int, section_cache_t *,
5839 bfd_boolean);
5840 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
5841 static bfd_boolean coalesce_shared_literal
5842 (asection *, source_reloc *, property_table_entry *, int, value_map *);
5843 static bfd_boolean move_shared_literal
5844 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
5845 int, const r_reloc *, const literal_value *, section_cache_t *);
5846
5847 /* Second pass: */
5848 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
5849 static bfd_boolean translate_section_fixes (asection *);
5850 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
5851 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
5852 static void shrink_dynamic_reloc_sections
5853 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
5854 static bfd_boolean move_literal
5855 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
5856 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
5857 static bfd_boolean relax_property_section
5858 (bfd *, asection *, struct bfd_link_info *);
5859
5860 /* Third pass: */
5861 static bfd_boolean relax_section_symbols (bfd *, asection *);
5862
5863
5864 static bfd_boolean
5865 elf_xtensa_relax_section (bfd *abfd,
5866 asection *sec,
5867 struct bfd_link_info *link_info,
5868 bfd_boolean *again)
5869 {
5870 static value_map_hash_table *values = NULL;
5871 static bfd_boolean relocations_analyzed = FALSE;
5872 xtensa_relax_info *relax_info;
5873
5874 if (!relocations_analyzed)
5875 {
5876 /* Do some overall initialization for relaxation. */
5877 values = value_map_hash_table_init ();
5878 if (values == NULL)
5879 return FALSE;
5880 relaxing_section = TRUE;
5881 if (!analyze_relocations (link_info))
5882 return FALSE;
5883 relocations_analyzed = TRUE;
5884 }
5885 *again = FALSE;
5886
5887 /* Don't mess with linker-created sections. */
5888 if ((sec->flags & SEC_LINKER_CREATED) != 0)
5889 return TRUE;
5890
5891 relax_info = get_xtensa_relax_info (sec);
5892 BFD_ASSERT (relax_info != NULL);
5893
5894 switch (relax_info->visited)
5895 {
5896 case 0:
5897 /* Note: It would be nice to fold this pass into
5898 analyze_relocations, but it is important for this step that the
5899 sections be examined in link order. */
5900 if (!compute_removed_literals (abfd, sec, link_info, values))
5901 return FALSE;
5902 *again = TRUE;
5903 break;
5904
5905 case 1:
5906 if (values)
5907 value_map_hash_table_delete (values);
5908 values = NULL;
5909 if (!relax_section (abfd, sec, link_info))
5910 return FALSE;
5911 *again = TRUE;
5912 break;
5913
5914 case 2:
5915 if (!relax_section_symbols (abfd, sec))
5916 return FALSE;
5917 break;
5918 }
5919
5920 relax_info->visited++;
5921 return TRUE;
5922 }
5923
5924 \f
5925 /* Initialization for relaxation. */
5926
5927 /* This function is called once at the start of relaxation. It scans
5928 all the input sections and marks the ones that are relaxable (i.e.,
5929 literal sections with L32R relocations against them), and then
5930 collects source_reloc information for all the relocations against
5931 those relaxable sections. During this process, it also detects
5932 longcalls, i.e., calls relaxed by the assembler into indirect
5933 calls, that can be optimized back into direct calls. Within each
5934 extended basic block (ebb) containing an optimized longcall, it
5935 computes a set of "text actions" that can be performed to remove
5936 the L32R associated with the longcall while optionally preserving
5937 branch target alignments. */
5938
5939 static bfd_boolean
5940 analyze_relocations (struct bfd_link_info *link_info)
5941 {
5942 bfd *abfd;
5943 asection *sec;
5944 bfd_boolean is_relaxable = FALSE;
5945
5946 /* Initialize the per-section relaxation info. */
5947 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5948 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5949 {
5950 init_xtensa_relax_info (sec);
5951 }
5952
5953 /* Mark relaxable sections (and count relocations against each one). */
5954 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5955 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5956 {
5957 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
5958 return FALSE;
5959 }
5960
5961 /* Bail out if there are no relaxable sections. */
5962 if (!is_relaxable)
5963 return TRUE;
5964
5965 /* Allocate space for source_relocs. */
5966 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5967 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5968 {
5969 xtensa_relax_info *relax_info;
5970
5971 relax_info = get_xtensa_relax_info (sec);
5972 if (relax_info->is_relaxable_literal_section
5973 || relax_info->is_relaxable_asm_section)
5974 {
5975 relax_info->src_relocs = (source_reloc *)
5976 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
5977 }
5978 else
5979 relax_info->src_count = 0;
5980 }
5981
5982 /* Collect info on relocations against each relaxable section. */
5983 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5984 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5985 {
5986 if (!collect_source_relocs (abfd, sec, link_info))
5987 return FALSE;
5988 }
5989
5990 /* Compute the text actions. */
5991 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next)
5992 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5993 {
5994 if (!compute_text_actions (abfd, sec, link_info))
5995 return FALSE;
5996 }
5997
5998 return TRUE;
5999 }
6000
6001
6002 /* Find all the sections that might be relaxed. The motivation for
6003 this pass is that collect_source_relocs() needs to record _all_ the
6004 relocations that target each relaxable section. That is expensive
6005 and unnecessary unless the target section is actually going to be
6006 relaxed. This pass identifies all such sections by checking if
6007 they have L32Rs pointing to them. In the process, the total number
6008 of relocations targeting each section is also counted so that we
6009 know how much space to allocate for source_relocs against each
6010 relaxable literal section. */
6011
6012 static bfd_boolean
6013 find_relaxable_sections (bfd *abfd,
6014 asection *sec,
6015 struct bfd_link_info *link_info,
6016 bfd_boolean *is_relaxable_p)
6017 {
6018 Elf_Internal_Rela *internal_relocs;
6019 bfd_byte *contents;
6020 bfd_boolean ok = TRUE;
6021 unsigned i;
6022 xtensa_relax_info *source_relax_info;
6023 bfd_boolean is_l32r_reloc;
6024
6025 internal_relocs = retrieve_internal_relocs (abfd, sec,
6026 link_info->keep_memory);
6027 if (internal_relocs == NULL)
6028 return ok;
6029
6030 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6031 if (contents == NULL && sec->size != 0)
6032 {
6033 ok = FALSE;
6034 goto error_return;
6035 }
6036
6037 source_relax_info = get_xtensa_relax_info (sec);
6038 for (i = 0; i < sec->reloc_count; i++)
6039 {
6040 Elf_Internal_Rela *irel = &internal_relocs[i];
6041 r_reloc r_rel;
6042 asection *target_sec;
6043 xtensa_relax_info *target_relax_info;
6044
6045 /* If this section has not already been marked as "relaxable", and
6046 if it contains any ASM_EXPAND relocations (marking expanded
6047 longcalls) that can be optimized into direct calls, then mark
6048 the section as "relaxable". */
6049 if (source_relax_info
6050 && !source_relax_info->is_relaxable_asm_section
6051 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6052 {
6053 bfd_boolean is_reachable = FALSE;
6054 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6055 link_info, &is_reachable)
6056 && is_reachable)
6057 {
6058 source_relax_info->is_relaxable_asm_section = TRUE;
6059 *is_relaxable_p = TRUE;
6060 }
6061 }
6062
6063 r_reloc_init (&r_rel, abfd, irel, contents,
6064 bfd_get_section_limit (abfd, sec));
6065
6066 target_sec = r_reloc_get_section (&r_rel);
6067 target_relax_info = get_xtensa_relax_info (target_sec);
6068 if (!target_relax_info)
6069 continue;
6070
6071 /* Count PC-relative operand relocations against the target section.
6072 Note: The conditions tested here must match the conditions under
6073 which init_source_reloc is called in collect_source_relocs(). */
6074 is_l32r_reloc = FALSE;
6075 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6076 {
6077 xtensa_opcode opcode =
6078 get_relocation_opcode (abfd, sec, contents, irel);
6079 if (opcode != XTENSA_UNDEFINED)
6080 {
6081 is_l32r_reloc = (opcode == get_l32r_opcode ());
6082 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6083 || is_l32r_reloc)
6084 target_relax_info->src_count++;
6085 }
6086 }
6087
6088 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
6089 {
6090 /* Mark the target section as relaxable. */
6091 target_relax_info->is_relaxable_literal_section = TRUE;
6092 *is_relaxable_p = TRUE;
6093 }
6094 }
6095
6096 error_return:
6097 release_contents (sec, contents);
6098 release_internal_relocs (sec, internal_relocs);
6099 return ok;
6100 }
6101
6102
6103 /* Record _all_ the relocations that point to relaxable sections, and
6104 get rid of ASM_EXPAND relocs by either converting them to
6105 ASM_SIMPLIFY or by removing them. */
6106
6107 static bfd_boolean
6108 collect_source_relocs (bfd *abfd,
6109 asection *sec,
6110 struct bfd_link_info *link_info)
6111 {
6112 Elf_Internal_Rela *internal_relocs;
6113 bfd_byte *contents;
6114 bfd_boolean ok = TRUE;
6115 unsigned i;
6116 bfd_size_type sec_size;
6117
6118 internal_relocs = retrieve_internal_relocs (abfd, sec,
6119 link_info->keep_memory);
6120 if (internal_relocs == NULL)
6121 return ok;
6122
6123 sec_size = bfd_get_section_limit (abfd, sec);
6124 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6125 if (contents == NULL && sec_size != 0)
6126 {
6127 ok = FALSE;
6128 goto error_return;
6129 }
6130
6131 /* Record relocations against relaxable literal sections. */
6132 for (i = 0; i < sec->reloc_count; i++)
6133 {
6134 Elf_Internal_Rela *irel = &internal_relocs[i];
6135 r_reloc r_rel;
6136 asection *target_sec;
6137 xtensa_relax_info *target_relax_info;
6138
6139 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6140
6141 target_sec = r_reloc_get_section (&r_rel);
6142 target_relax_info = get_xtensa_relax_info (target_sec);
6143
6144 if (target_relax_info
6145 && (target_relax_info->is_relaxable_literal_section
6146 || target_relax_info->is_relaxable_asm_section))
6147 {
6148 xtensa_opcode opcode = XTENSA_UNDEFINED;
6149 int opnd = -1;
6150 bfd_boolean is_abs_literal = FALSE;
6151
6152 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
6153 {
6154 /* None of the current alternate relocs are PC-relative,
6155 and only PC-relative relocs matter here. However, we
6156 still need to record the opcode for literal
6157 coalescing. */
6158 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6159 if (opcode == get_l32r_opcode ())
6160 {
6161 is_abs_literal = TRUE;
6162 opnd = 1;
6163 }
6164 else
6165 opcode = XTENSA_UNDEFINED;
6166 }
6167 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6168 {
6169 opcode = get_relocation_opcode (abfd, sec, contents, irel);
6170 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
6171 }
6172
6173 if (opcode != XTENSA_UNDEFINED)
6174 {
6175 int src_next = target_relax_info->src_next++;
6176 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
6177
6178 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
6179 is_abs_literal);
6180 }
6181 }
6182 }
6183
6184 /* Now get rid of ASM_EXPAND relocations. At this point, the
6185 src_relocs array for the target literal section may still be
6186 incomplete, but it must at least contain the entries for the L32R
6187 relocations associated with ASM_EXPANDs because they were just
6188 added in the preceding loop over the relocations. */
6189
6190 for (i = 0; i < sec->reloc_count; i++)
6191 {
6192 Elf_Internal_Rela *irel = &internal_relocs[i];
6193 bfd_boolean is_reachable;
6194
6195 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
6196 &is_reachable))
6197 continue;
6198
6199 if (is_reachable)
6200 {
6201 Elf_Internal_Rela *l32r_irel;
6202 r_reloc r_rel;
6203 asection *target_sec;
6204 xtensa_relax_info *target_relax_info;
6205
6206 /* Mark the source_reloc for the L32R so that it will be
6207 removed in compute_removed_literals(), along with the
6208 associated literal. */
6209 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
6210 irel, internal_relocs);
6211 if (l32r_irel == NULL)
6212 continue;
6213
6214 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
6215
6216 target_sec = r_reloc_get_section (&r_rel);
6217 target_relax_info = get_xtensa_relax_info (target_sec);
6218
6219 if (target_relax_info
6220 && (target_relax_info->is_relaxable_literal_section
6221 || target_relax_info->is_relaxable_asm_section))
6222 {
6223 source_reloc *s_reloc;
6224
6225 /* Search the source_relocs for the entry corresponding to
6226 the l32r_irel. Note: The src_relocs array is not yet
6227 sorted, but it wouldn't matter anyway because we're
6228 searching by source offset instead of target offset. */
6229 s_reloc = find_source_reloc (target_relax_info->src_relocs,
6230 target_relax_info->src_next,
6231 sec, l32r_irel);
6232 BFD_ASSERT (s_reloc);
6233 s_reloc->is_null = TRUE;
6234 }
6235
6236 /* Convert this reloc to ASM_SIMPLIFY. */
6237 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
6238 R_XTENSA_ASM_SIMPLIFY);
6239 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6240
6241 pin_internal_relocs (sec, internal_relocs);
6242 }
6243 else
6244 {
6245 /* It is resolvable but doesn't reach. We resolve now
6246 by eliminating the relocation -- the call will remain
6247 expanded into L32R/CALLX. */
6248 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
6249 pin_internal_relocs (sec, internal_relocs);
6250 }
6251 }
6252
6253 error_return:
6254 release_contents (sec, contents);
6255 release_internal_relocs (sec, internal_relocs);
6256 return ok;
6257 }
6258
6259
6260 /* Return TRUE if the asm expansion can be resolved. Generally it can
6261 be resolved on a final link or when a partial link locates it in the
6262 same section as the target. Set "is_reachable" flag if the target of
6263 the call is within the range of a direct call, given the current VMA
6264 for this section and the target section. */
6265
6266 bfd_boolean
6267 is_resolvable_asm_expansion (bfd *abfd,
6268 asection *sec,
6269 bfd_byte *contents,
6270 Elf_Internal_Rela *irel,
6271 struct bfd_link_info *link_info,
6272 bfd_boolean *is_reachable_p)
6273 {
6274 asection *target_sec;
6275 bfd_vma target_offset;
6276 r_reloc r_rel;
6277 xtensa_opcode opcode, direct_call_opcode;
6278 bfd_vma self_address;
6279 bfd_vma dest_address;
6280 bfd_boolean uses_l32r;
6281 bfd_size_type sec_size;
6282
6283 *is_reachable_p = FALSE;
6284
6285 if (contents == NULL)
6286 return FALSE;
6287
6288 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
6289 return FALSE;
6290
6291 sec_size = bfd_get_section_limit (abfd, sec);
6292 opcode = get_expanded_call_opcode (contents + irel->r_offset,
6293 sec_size - irel->r_offset, &uses_l32r);
6294 /* Optimization of longcalls that use CONST16 is not yet implemented. */
6295 if (!uses_l32r)
6296 return FALSE;
6297
6298 direct_call_opcode = swap_callx_for_call_opcode (opcode);
6299 if (direct_call_opcode == XTENSA_UNDEFINED)
6300 return FALSE;
6301
6302 /* Check and see that the target resolves. */
6303 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
6304 if (!r_reloc_is_defined (&r_rel))
6305 return FALSE;
6306
6307 target_sec = r_reloc_get_section (&r_rel);
6308 target_offset = r_rel.target_offset;
6309
6310 /* If the target is in a shared library, then it doesn't reach. This
6311 isn't supposed to come up because the compiler should never generate
6312 non-PIC calls on systems that use shared libraries, but the linker
6313 shouldn't crash regardless. */
6314 if (!target_sec->output_section)
6315 return FALSE;
6316
6317 /* For relocatable sections, we can only simplify when the output
6318 section of the target is the same as the output section of the
6319 source. */
6320 if (link_info->relocatable
6321 && (target_sec->output_section != sec->output_section
6322 || is_reloc_sym_weak (abfd, irel)))
6323 return FALSE;
6324
6325 self_address = (sec->output_section->vma
6326 + sec->output_offset + irel->r_offset + 3);
6327 dest_address = (target_sec->output_section->vma
6328 + target_sec->output_offset + target_offset);
6329
6330 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
6331 self_address, dest_address);
6332
6333 if ((self_address >> CALL_SEGMENT_BITS) !=
6334 (dest_address >> CALL_SEGMENT_BITS))
6335 return FALSE;
6336
6337 return TRUE;
6338 }
6339
6340
6341 static Elf_Internal_Rela *
6342 find_associated_l32r_irel (bfd *abfd,
6343 asection *sec,
6344 bfd_byte *contents,
6345 Elf_Internal_Rela *other_irel,
6346 Elf_Internal_Rela *internal_relocs)
6347 {
6348 unsigned i;
6349
6350 for (i = 0; i < sec->reloc_count; i++)
6351 {
6352 Elf_Internal_Rela *irel = &internal_relocs[i];
6353
6354 if (irel == other_irel)
6355 continue;
6356 if (irel->r_offset != other_irel->r_offset)
6357 continue;
6358 if (is_l32r_relocation (abfd, sec, contents, irel))
6359 return irel;
6360 }
6361
6362 return NULL;
6363 }
6364
6365
6366 static xtensa_opcode *
6367 build_reloc_opcodes (bfd *abfd,
6368 asection *sec,
6369 bfd_byte *contents,
6370 Elf_Internal_Rela *internal_relocs)
6371 {
6372 unsigned i;
6373 xtensa_opcode *reloc_opcodes =
6374 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
6375 for (i = 0; i < sec->reloc_count; i++)
6376 {
6377 Elf_Internal_Rela *irel = &internal_relocs[i];
6378 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
6379 }
6380 return reloc_opcodes;
6381 }
6382
6383
6384 /* The compute_text_actions function will build a list of potential
6385 transformation actions for code in the extended basic block of each
6386 longcall that is optimized to a direct call. From this list we
6387 generate a set of actions to actually perform that optimizes for
6388 space and, if not using size_opt, maintains branch target
6389 alignments.
6390
6391 These actions to be performed are placed on a per-section list.
6392 The actual changes are performed by relax_section() in the second
6393 pass. */
6394
6395 bfd_boolean
6396 compute_text_actions (bfd *abfd,
6397 asection *sec,
6398 struct bfd_link_info *link_info)
6399 {
6400 xtensa_opcode *reloc_opcodes = NULL;
6401 xtensa_relax_info *relax_info;
6402 bfd_byte *contents;
6403 Elf_Internal_Rela *internal_relocs;
6404 bfd_boolean ok = TRUE;
6405 unsigned i;
6406 property_table_entry *prop_table = 0;
6407 int ptblsize = 0;
6408 bfd_size_type sec_size;
6409
6410 relax_info = get_xtensa_relax_info (sec);
6411 BFD_ASSERT (relax_info);
6412 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
6413
6414 /* Do nothing if the section contains no optimized longcalls. */
6415 if (!relax_info->is_relaxable_asm_section)
6416 return ok;
6417
6418 internal_relocs = retrieve_internal_relocs (abfd, sec,
6419 link_info->keep_memory);
6420
6421 if (internal_relocs)
6422 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
6423 internal_reloc_compare);
6424
6425 sec_size = bfd_get_section_limit (abfd, sec);
6426 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6427 if (contents == NULL && sec_size != 0)
6428 {
6429 ok = FALSE;
6430 goto error_return;
6431 }
6432
6433 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6434 XTENSA_PROP_SEC_NAME, FALSE);
6435 if (ptblsize < 0)
6436 {
6437 ok = FALSE;
6438 goto error_return;
6439 }
6440
6441 for (i = 0; i < sec->reloc_count; i++)
6442 {
6443 Elf_Internal_Rela *irel = &internal_relocs[i];
6444 bfd_vma r_offset;
6445 property_table_entry *the_entry;
6446 int ptbl_idx;
6447 ebb_t *ebb;
6448 ebb_constraint ebb_table;
6449 bfd_size_type simplify_size;
6450
6451 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
6452 continue;
6453 r_offset = irel->r_offset;
6454
6455 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
6456 if (simplify_size == 0)
6457 {
6458 (*_bfd_error_handler)
6459 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
6460 sec->owner, sec, r_offset);
6461 continue;
6462 }
6463
6464 /* If the instruction table is not around, then don't do this
6465 relaxation. */
6466 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
6467 sec->vma + irel->r_offset);
6468 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
6469 {
6470 text_action_add (&relax_info->action_list,
6471 ta_convert_longcall, sec, r_offset,
6472 0);
6473 continue;
6474 }
6475
6476 /* If the next longcall happens to be at the same address as an
6477 unreachable section of size 0, then skip forward. */
6478 ptbl_idx = the_entry - prop_table;
6479 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
6480 && the_entry->size == 0
6481 && ptbl_idx + 1 < ptblsize
6482 && (prop_table[ptbl_idx + 1].address
6483 == prop_table[ptbl_idx].address))
6484 {
6485 ptbl_idx++;
6486 the_entry++;
6487 }
6488
6489 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
6490 /* NO_REORDER is OK */
6491 continue;
6492
6493 init_ebb_constraint (&ebb_table);
6494 ebb = &ebb_table.ebb;
6495 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
6496 internal_relocs, sec->reloc_count);
6497 ebb->start_offset = r_offset + simplify_size;
6498 ebb->end_offset = r_offset + simplify_size;
6499 ebb->start_ptbl_idx = ptbl_idx;
6500 ebb->end_ptbl_idx = ptbl_idx;
6501 ebb->start_reloc_idx = i;
6502 ebb->end_reloc_idx = i;
6503
6504 /* Precompute the opcode for each relocation. */
6505 if (reloc_opcodes == NULL)
6506 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents,
6507 internal_relocs);
6508
6509 if (!extend_ebb_bounds (ebb)
6510 || !compute_ebb_proposed_actions (&ebb_table)
6511 || !compute_ebb_actions (&ebb_table)
6512 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
6513 internal_relocs, &ebb_table,
6514 reloc_opcodes)
6515 || !check_section_ebb_reduces (&ebb_table))
6516 {
6517 /* If anything goes wrong or we get unlucky and something does
6518 not fit, with our plan because of expansion between
6519 critical branches, just convert to a NOP. */
6520
6521 text_action_add (&relax_info->action_list,
6522 ta_convert_longcall, sec, r_offset, 0);
6523 i = ebb_table.ebb.end_reloc_idx;
6524 free_ebb_constraint (&ebb_table);
6525 continue;
6526 }
6527
6528 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
6529
6530 /* Update the index so we do not go looking at the relocations
6531 we have already processed. */
6532 i = ebb_table.ebb.end_reloc_idx;
6533 free_ebb_constraint (&ebb_table);
6534 }
6535
6536 #if DEBUG
6537 if (relax_info->action_list.head)
6538 print_action_list (stderr, &relax_info->action_list);
6539 #endif
6540
6541 error_return:
6542 release_contents (sec, contents);
6543 release_internal_relocs (sec, internal_relocs);
6544 if (prop_table)
6545 free (prop_table);
6546 if (reloc_opcodes)
6547 free (reloc_opcodes);
6548
6549 return ok;
6550 }
6551
6552
6553 /* Do not widen an instruction if it is preceeded by a
6554 loop opcode. It might cause misalignment. */
6555
6556 static bfd_boolean
6557 prev_instr_is_a_loop (bfd_byte *contents,
6558 bfd_size_type content_length,
6559 bfd_size_type offset)
6560 {
6561 xtensa_opcode prev_opcode;
6562
6563 if (offset < 3)
6564 return FALSE;
6565 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
6566 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
6567 }
6568
6569
6570 /* Find all of the possible actions for an extended basic block. */
6571
6572 bfd_boolean
6573 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
6574 {
6575 const ebb_t *ebb = &ebb_table->ebb;
6576 unsigned rel_idx = ebb->start_reloc_idx;
6577 property_table_entry *entry, *start_entry, *end_entry;
6578 bfd_vma offset = 0;
6579 xtensa_isa isa = xtensa_default_isa;
6580 xtensa_format fmt;
6581 static xtensa_insnbuf insnbuf = NULL;
6582 static xtensa_insnbuf slotbuf = NULL;
6583
6584 if (insnbuf == NULL)
6585 {
6586 insnbuf = xtensa_insnbuf_alloc (isa);
6587 slotbuf = xtensa_insnbuf_alloc (isa);
6588 }
6589
6590 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6591 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6592
6593 for (entry = start_entry; entry <= end_entry; entry++)
6594 {
6595 bfd_vma start_offset, end_offset;
6596 bfd_size_type insn_len;
6597
6598 start_offset = entry->address - ebb->sec->vma;
6599 end_offset = entry->address + entry->size - ebb->sec->vma;
6600
6601 if (entry == start_entry)
6602 start_offset = ebb->start_offset;
6603 if (entry == end_entry)
6604 end_offset = ebb->end_offset;
6605 offset = start_offset;
6606
6607 if (offset == entry->address - ebb->sec->vma
6608 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
6609 {
6610 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
6611 BFD_ASSERT (offset != end_offset);
6612 if (offset == end_offset)
6613 return FALSE;
6614
6615 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
6616 offset);
6617 if (insn_len == 0)
6618 goto decode_error;
6619
6620 if (check_branch_target_aligned_address (offset, insn_len))
6621 align_type = EBB_REQUIRE_TGT_ALIGN;
6622
6623 ebb_propose_action (ebb_table, align_type, 0,
6624 ta_none, offset, 0, TRUE);
6625 }
6626
6627 while (offset != end_offset)
6628 {
6629 Elf_Internal_Rela *irel;
6630 xtensa_opcode opcode;
6631
6632 while (rel_idx < ebb->end_reloc_idx
6633 && (ebb->relocs[rel_idx].r_offset < offset
6634 || (ebb->relocs[rel_idx].r_offset == offset
6635 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
6636 != R_XTENSA_ASM_SIMPLIFY))))
6637 rel_idx++;
6638
6639 /* Check for longcall. */
6640 irel = &ebb->relocs[rel_idx];
6641 if (irel->r_offset == offset
6642 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
6643 {
6644 bfd_size_type simplify_size;
6645
6646 simplify_size = get_asm_simplify_size (ebb->contents,
6647 ebb->content_length,
6648 irel->r_offset);
6649 if (simplify_size == 0)
6650 goto decode_error;
6651
6652 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6653 ta_convert_longcall, offset, 0, TRUE);
6654
6655 offset += simplify_size;
6656 continue;
6657 }
6658
6659 if (offset + MIN_INSN_LENGTH > ebb->content_length)
6660 goto decode_error;
6661 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
6662 ebb->content_length - offset);
6663 fmt = xtensa_format_decode (isa, insnbuf);
6664 if (fmt == XTENSA_UNDEFINED)
6665 goto decode_error;
6666 insn_len = xtensa_format_length (isa, fmt);
6667 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
6668 goto decode_error;
6669
6670 if (xtensa_format_num_slots (isa, fmt) != 1)
6671 {
6672 offset += insn_len;
6673 continue;
6674 }
6675
6676 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
6677 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
6678 if (opcode == XTENSA_UNDEFINED)
6679 goto decode_error;
6680
6681 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
6682 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
6683 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
6684 {
6685 /* Add an instruction narrow action. */
6686 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6687 ta_narrow_insn, offset, 0, FALSE);
6688 }
6689 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
6690 && can_widen_instruction (slotbuf, fmt, opcode) != 0
6691 && ! prev_instr_is_a_loop (ebb->contents,
6692 ebb->content_length, offset))
6693 {
6694 /* Add an instruction widen action. */
6695 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6696 ta_widen_insn, offset, 0, FALSE);
6697 }
6698 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
6699 {
6700 /* Check for branch targets. */
6701 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
6702 ta_none, offset, 0, TRUE);
6703 }
6704
6705 offset += insn_len;
6706 }
6707 }
6708
6709 if (ebb->ends_unreachable)
6710 {
6711 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
6712 ta_fill, ebb->end_offset, 0, TRUE);
6713 }
6714
6715 return TRUE;
6716
6717 decode_error:
6718 (*_bfd_error_handler)
6719 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6720 ebb->sec->owner, ebb->sec, offset);
6721 return FALSE;
6722 }
6723
6724
6725 /* After all of the information has collected about the
6726 transformations possible in an EBB, compute the appropriate actions
6727 here in compute_ebb_actions. We still must check later to make
6728 sure that the actions do not break any relocations. The algorithm
6729 used here is pretty greedy. Basically, it removes as many no-ops
6730 as possible so that the end of the EBB has the same alignment
6731 characteristics as the original. First, it uses narrowing, then
6732 fill space at the end of the EBB, and finally widenings. If that
6733 does not work, it tries again with one fewer no-op removed. The
6734 optimization will only be performed if all of the branch targets
6735 that were aligned before transformation are also aligned after the
6736 transformation.
6737
6738 When the size_opt flag is set, ignore the branch target alignments,
6739 narrow all wide instructions, and remove all no-ops unless the end
6740 of the EBB prevents it. */
6741
6742 bfd_boolean
6743 compute_ebb_actions (ebb_constraint *ebb_table)
6744 {
6745 unsigned i = 0;
6746 unsigned j;
6747 int removed_bytes = 0;
6748 ebb_t *ebb = &ebb_table->ebb;
6749 unsigned seg_idx_start = 0;
6750 unsigned seg_idx_end = 0;
6751
6752 /* We perform this like the assembler relaxation algorithm: Start by
6753 assuming all instructions are narrow and all no-ops removed; then
6754 walk through.... */
6755
6756 /* For each segment of this that has a solid constraint, check to
6757 see if there are any combinations that will keep the constraint.
6758 If so, use it. */
6759 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
6760 {
6761 bfd_boolean requires_text_end_align = FALSE;
6762 unsigned longcall_count = 0;
6763 unsigned longcall_convert_count = 0;
6764 unsigned narrowable_count = 0;
6765 unsigned narrowable_convert_count = 0;
6766 unsigned widenable_count = 0;
6767 unsigned widenable_convert_count = 0;
6768
6769 proposed_action *action = NULL;
6770 int align = (1 << ebb_table->ebb.sec->alignment_power);
6771
6772 seg_idx_start = seg_idx_end;
6773
6774 for (i = seg_idx_start; i < ebb_table->action_count; i++)
6775 {
6776 action = &ebb_table->actions[i];
6777 if (action->action == ta_convert_longcall)
6778 longcall_count++;
6779 if (action->action == ta_narrow_insn)
6780 narrowable_count++;
6781 if (action->action == ta_widen_insn)
6782 widenable_count++;
6783 if (action->action == ta_fill)
6784 break;
6785 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6786 break;
6787 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
6788 && !elf32xtensa_size_opt)
6789 break;
6790 }
6791 seg_idx_end = i;
6792
6793 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
6794 requires_text_end_align = TRUE;
6795
6796 if (elf32xtensa_size_opt && !requires_text_end_align
6797 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
6798 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
6799 {
6800 longcall_convert_count = longcall_count;
6801 narrowable_convert_count = narrowable_count;
6802 widenable_convert_count = 0;
6803 }
6804 else
6805 {
6806 /* There is a constraint. Convert the max number of longcalls. */
6807 narrowable_convert_count = 0;
6808 longcall_convert_count = 0;
6809 widenable_convert_count = 0;
6810
6811 for (j = 0; j < longcall_count; j++)
6812 {
6813 int removed = (longcall_count - j) * 3 & (align - 1);
6814 unsigned desire_narrow = (align - removed) & (align - 1);
6815 unsigned desire_widen = removed;
6816 if (desire_narrow <= narrowable_count)
6817 {
6818 narrowable_convert_count = desire_narrow;
6819 narrowable_convert_count +=
6820 (align * ((narrowable_count - narrowable_convert_count)
6821 / align));
6822 longcall_convert_count = (longcall_count - j);
6823 widenable_convert_count = 0;
6824 break;
6825 }
6826 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
6827 {
6828 narrowable_convert_count = 0;
6829 longcall_convert_count = longcall_count - j;
6830 widenable_convert_count = desire_widen;
6831 break;
6832 }
6833 }
6834 }
6835
6836 /* Now the number of conversions are saved. Do them. */
6837 for (i = seg_idx_start; i < seg_idx_end; i++)
6838 {
6839 action = &ebb_table->actions[i];
6840 switch (action->action)
6841 {
6842 case ta_convert_longcall:
6843 if (longcall_convert_count != 0)
6844 {
6845 action->action = ta_remove_longcall;
6846 action->do_action = TRUE;
6847 action->removed_bytes += 3;
6848 longcall_convert_count--;
6849 }
6850 break;
6851 case ta_narrow_insn:
6852 if (narrowable_convert_count != 0)
6853 {
6854 action->do_action = TRUE;
6855 action->removed_bytes += 1;
6856 narrowable_convert_count--;
6857 }
6858 break;
6859 case ta_widen_insn:
6860 if (widenable_convert_count != 0)
6861 {
6862 action->do_action = TRUE;
6863 action->removed_bytes -= 1;
6864 widenable_convert_count--;
6865 }
6866 break;
6867 default:
6868 break;
6869 }
6870 }
6871 }
6872
6873 /* Now we move on to some local opts. Try to remove each of the
6874 remaining longcalls. */
6875
6876 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
6877 {
6878 removed_bytes = 0;
6879 for (i = 0; i < ebb_table->action_count; i++)
6880 {
6881 int old_removed_bytes = removed_bytes;
6882 proposed_action *action = &ebb_table->actions[i];
6883
6884 if (action->do_action && action->action == ta_convert_longcall)
6885 {
6886 bfd_boolean bad_alignment = FALSE;
6887 removed_bytes += 3;
6888 for (j = i + 1; j < ebb_table->action_count; j++)
6889 {
6890 proposed_action *new_action = &ebb_table->actions[j];
6891 bfd_vma offset = new_action->offset;
6892 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
6893 {
6894 if (!check_branch_target_aligned
6895 (ebb_table->ebb.contents,
6896 ebb_table->ebb.content_length,
6897 offset, offset - removed_bytes))
6898 {
6899 bad_alignment = TRUE;
6900 break;
6901 }
6902 }
6903 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
6904 {
6905 if (!check_loop_aligned (ebb_table->ebb.contents,
6906 ebb_table->ebb.content_length,
6907 offset,
6908 offset - removed_bytes))
6909 {
6910 bad_alignment = TRUE;
6911 break;
6912 }
6913 }
6914 if (new_action->action == ta_narrow_insn
6915 && !new_action->do_action
6916 && ebb_table->ebb.sec->alignment_power == 2)
6917 {
6918 /* Narrow an instruction and we are done. */
6919 new_action->do_action = TRUE;
6920 new_action->removed_bytes += 1;
6921 bad_alignment = FALSE;
6922 break;
6923 }
6924 if (new_action->action == ta_widen_insn
6925 && new_action->do_action
6926 && ebb_table->ebb.sec->alignment_power == 2)
6927 {
6928 /* Narrow an instruction and we are done. */
6929 new_action->do_action = FALSE;
6930 new_action->removed_bytes += 1;
6931 bad_alignment = FALSE;
6932 break;
6933 }
6934 if (new_action->do_action)
6935 removed_bytes += new_action->removed_bytes;
6936 }
6937 if (!bad_alignment)
6938 {
6939 action->removed_bytes += 3;
6940 action->action = ta_remove_longcall;
6941 action->do_action = TRUE;
6942 }
6943 }
6944 removed_bytes = old_removed_bytes;
6945 if (action->do_action)
6946 removed_bytes += action->removed_bytes;
6947 }
6948 }
6949
6950 removed_bytes = 0;
6951 for (i = 0; i < ebb_table->action_count; ++i)
6952 {
6953 proposed_action *action = &ebb_table->actions[i];
6954 if (action->do_action)
6955 removed_bytes += action->removed_bytes;
6956 }
6957
6958 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
6959 && ebb->ends_unreachable)
6960 {
6961 proposed_action *action;
6962 int br;
6963 int extra_space;
6964
6965 BFD_ASSERT (ebb_table->action_count != 0);
6966 action = &ebb_table->actions[ebb_table->action_count - 1];
6967 BFD_ASSERT (action->action == ta_fill);
6968 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
6969
6970 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
6971 br = action->removed_bytes + removed_bytes + extra_space;
6972 br = br & ((1 << ebb->sec->alignment_power ) - 1);
6973
6974 action->removed_bytes = extra_space - br;
6975 }
6976 return TRUE;
6977 }
6978
6979
6980 /* The xlate_map is a sorted array of address mappings designed to
6981 answer the offset_with_removed_text() query with a binary search instead
6982 of a linear search through the section's action_list. */
6983
6984 typedef struct xlate_map_entry xlate_map_entry_t;
6985 typedef struct xlate_map xlate_map_t;
6986
6987 struct xlate_map_entry
6988 {
6989 unsigned orig_address;
6990 unsigned new_address;
6991 unsigned size;
6992 };
6993
6994 struct xlate_map
6995 {
6996 unsigned entry_count;
6997 xlate_map_entry_t *entry;
6998 };
6999
7000
7001 static int
7002 xlate_compare (const void *a_v, const void *b_v)
7003 {
7004 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
7005 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
7006 if (a->orig_address < b->orig_address)
7007 return -1;
7008 if (a->orig_address > (b->orig_address + b->size - 1))
7009 return 1;
7010 return 0;
7011 }
7012
7013
7014 static bfd_vma
7015 xlate_offset_with_removed_text (const xlate_map_t *map,
7016 text_action_list *action_list,
7017 bfd_vma offset)
7018 {
7019 xlate_map_entry_t tmp;
7020 void *r;
7021 xlate_map_entry_t *e;
7022
7023 if (map == NULL)
7024 return offset_with_removed_text (action_list, offset);
7025
7026 if (map->entry_count == 0)
7027 return offset;
7028
7029 tmp.orig_address = offset;
7030 tmp.new_address = offset;
7031 tmp.size = 1;
7032
7033 r = bsearch (&offset, map->entry, map->entry_count,
7034 sizeof (xlate_map_entry_t), &xlate_compare);
7035 e = (xlate_map_entry_t *) r;
7036
7037 BFD_ASSERT (e != NULL);
7038 if (e == NULL)
7039 return offset;
7040 return e->new_address - e->orig_address + offset;
7041 }
7042
7043
7044 /* Build a binary searchable offset translation map from a section's
7045 action list. */
7046
7047 static xlate_map_t *
7048 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
7049 {
7050 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
7051 text_action_list *action_list = &relax_info->action_list;
7052 unsigned num_actions = 0;
7053 text_action *r;
7054 int removed;
7055 xlate_map_entry_t *current_entry;
7056
7057 if (map == NULL)
7058 return NULL;
7059
7060 num_actions = action_list_count (action_list);
7061 map->entry = (xlate_map_entry_t *)
7062 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
7063 if (map->entry == NULL)
7064 {
7065 free (map);
7066 return NULL;
7067 }
7068 map->entry_count = 0;
7069
7070 removed = 0;
7071 current_entry = &map->entry[0];
7072
7073 current_entry->orig_address = 0;
7074 current_entry->new_address = 0;
7075 current_entry->size = 0;
7076
7077 for (r = action_list->head; r != NULL; r = r->next)
7078 {
7079 unsigned orig_size = 0;
7080 switch (r->action)
7081 {
7082 case ta_none:
7083 case ta_remove_insn:
7084 case ta_convert_longcall:
7085 case ta_remove_literal:
7086 case ta_add_literal:
7087 break;
7088 case ta_remove_longcall:
7089 orig_size = 6;
7090 break;
7091 case ta_narrow_insn:
7092 orig_size = 3;
7093 break;
7094 case ta_widen_insn:
7095 orig_size = 2;
7096 break;
7097 case ta_fill:
7098 break;
7099 }
7100 current_entry->size =
7101 r->offset + orig_size - current_entry->orig_address;
7102 if (current_entry->size != 0)
7103 {
7104 current_entry++;
7105 map->entry_count++;
7106 }
7107 current_entry->orig_address = r->offset + orig_size;
7108 removed += r->removed_bytes;
7109 current_entry->new_address = r->offset + orig_size - removed;
7110 current_entry->size = 0;
7111 }
7112
7113 current_entry->size = (bfd_get_section_limit (sec->owner, sec)
7114 - current_entry->orig_address);
7115 if (current_entry->size != 0)
7116 map->entry_count++;
7117
7118 return map;
7119 }
7120
7121
7122 /* Free an offset translation map. */
7123
7124 static void
7125 free_xlate_map (xlate_map_t *map)
7126 {
7127 if (map && map->entry)
7128 free (map->entry);
7129 if (map)
7130 free (map);
7131 }
7132
7133
7134 /* Use check_section_ebb_pcrels_fit to make sure that all of the
7135 relocations in a section will fit if a proposed set of actions
7136 are performed. */
7137
7138 static bfd_boolean
7139 check_section_ebb_pcrels_fit (bfd *abfd,
7140 asection *sec,
7141 bfd_byte *contents,
7142 Elf_Internal_Rela *internal_relocs,
7143 const ebb_constraint *constraint,
7144 const xtensa_opcode *reloc_opcodes)
7145 {
7146 unsigned i, j;
7147 Elf_Internal_Rela *irel;
7148 xlate_map_t *xmap = NULL;
7149 bfd_boolean ok = TRUE;
7150 xtensa_relax_info *relax_info;
7151
7152 relax_info = get_xtensa_relax_info (sec);
7153
7154 if (relax_info && sec->reloc_count > 100)
7155 {
7156 xmap = build_xlate_map (sec, relax_info);
7157 /* NULL indicates out of memory, but the slow version
7158 can still be used. */
7159 }
7160
7161 for (i = 0; i < sec->reloc_count; i++)
7162 {
7163 r_reloc r_rel;
7164 bfd_vma orig_self_offset, orig_target_offset;
7165 bfd_vma self_offset, target_offset;
7166 int r_type;
7167 reloc_howto_type *howto;
7168 int self_removed_bytes, target_removed_bytes;
7169
7170 irel = &internal_relocs[i];
7171 r_type = ELF32_R_TYPE (irel->r_info);
7172
7173 howto = &elf_howto_table[r_type];
7174 /* We maintain the required invariant: PC-relative relocations
7175 that fit before linking must fit after linking. Thus we only
7176 need to deal with relocations to the same section that are
7177 PC-relative. */
7178 if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY
7179 || !howto->pc_relative)
7180 continue;
7181
7182 r_reloc_init (&r_rel, abfd, irel, contents,
7183 bfd_get_section_limit (abfd, sec));
7184
7185 if (r_reloc_get_section (&r_rel) != sec)
7186 continue;
7187
7188 orig_self_offset = irel->r_offset;
7189 orig_target_offset = r_rel.target_offset;
7190
7191 self_offset = orig_self_offset;
7192 target_offset = orig_target_offset;
7193
7194 if (relax_info)
7195 {
7196 self_offset =
7197 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7198 orig_self_offset);
7199 target_offset =
7200 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
7201 orig_target_offset);
7202 }
7203
7204 self_removed_bytes = 0;
7205 target_removed_bytes = 0;
7206
7207 for (j = 0; j < constraint->action_count; ++j)
7208 {
7209 proposed_action *action = &constraint->actions[j];
7210 bfd_vma offset = action->offset;
7211 int removed_bytes = action->removed_bytes;
7212 if (offset < orig_self_offset
7213 || (offset == orig_self_offset && action->action == ta_fill
7214 && action->removed_bytes < 0))
7215 self_removed_bytes += removed_bytes;
7216 if (offset < orig_target_offset
7217 || (offset == orig_target_offset && action->action == ta_fill
7218 && action->removed_bytes < 0))
7219 target_removed_bytes += removed_bytes;
7220 }
7221 self_offset -= self_removed_bytes;
7222 target_offset -= target_removed_bytes;
7223
7224 /* Try to encode it. Get the operand and check. */
7225 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7226 {
7227 /* None of the current alternate relocs are PC-relative,
7228 and only PC-relative relocs matter here. */
7229 }
7230 else
7231 {
7232 xtensa_opcode opcode;
7233 int opnum;
7234
7235 if (reloc_opcodes)
7236 opcode = reloc_opcodes[i];
7237 else
7238 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7239 if (opcode == XTENSA_UNDEFINED)
7240 {
7241 ok = FALSE;
7242 break;
7243 }
7244
7245 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7246 if (opnum == XTENSA_UNDEFINED)
7247 {
7248 ok = FALSE;
7249 break;
7250 }
7251
7252 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
7253 {
7254 ok = FALSE;
7255 break;
7256 }
7257 }
7258 }
7259
7260 if (xmap)
7261 free_xlate_map (xmap);
7262
7263 return ok;
7264 }
7265
7266
7267 static bfd_boolean
7268 check_section_ebb_reduces (const ebb_constraint *constraint)
7269 {
7270 int removed = 0;
7271 unsigned i;
7272
7273 for (i = 0; i < constraint->action_count; i++)
7274 {
7275 const proposed_action *action = &constraint->actions[i];
7276 if (action->do_action)
7277 removed += action->removed_bytes;
7278 }
7279 if (removed < 0)
7280 return FALSE;
7281
7282 return TRUE;
7283 }
7284
7285
7286 void
7287 text_action_add_proposed (text_action_list *l,
7288 const ebb_constraint *ebb_table,
7289 asection *sec)
7290 {
7291 unsigned i;
7292
7293 for (i = 0; i < ebb_table->action_count; i++)
7294 {
7295 proposed_action *action = &ebb_table->actions[i];
7296
7297 if (!action->do_action)
7298 continue;
7299 switch (action->action)
7300 {
7301 case ta_remove_insn:
7302 case ta_remove_longcall:
7303 case ta_convert_longcall:
7304 case ta_narrow_insn:
7305 case ta_widen_insn:
7306 case ta_fill:
7307 case ta_remove_literal:
7308 text_action_add (l, action->action, sec, action->offset,
7309 action->removed_bytes);
7310 break;
7311 case ta_none:
7312 break;
7313 default:
7314 BFD_ASSERT (0);
7315 break;
7316 }
7317 }
7318 }
7319
7320
7321 int
7322 compute_fill_extra_space (property_table_entry *entry)
7323 {
7324 int fill_extra_space;
7325
7326 if (!entry)
7327 return 0;
7328
7329 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
7330 return 0;
7331
7332 fill_extra_space = entry->size;
7333 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
7334 {
7335 /* Fill bytes for alignment:
7336 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
7337 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
7338 int nsm = (1 << pow) - 1;
7339 bfd_vma addr = entry->address + entry->size;
7340 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
7341 fill_extra_space += align_fill;
7342 }
7343 return fill_extra_space;
7344 }
7345
7346 \f
7347 /* First relaxation pass. */
7348
7349 /* If the section contains relaxable literals, check each literal to
7350 see if it has the same value as another literal that has already
7351 been seen, either in the current section or a previous one. If so,
7352 add an entry to the per-section list of removed literals. The
7353 actual changes are deferred until the next pass. */
7354
7355 static bfd_boolean
7356 compute_removed_literals (bfd *abfd,
7357 asection *sec,
7358 struct bfd_link_info *link_info,
7359 value_map_hash_table *values)
7360 {
7361 xtensa_relax_info *relax_info;
7362 bfd_byte *contents;
7363 Elf_Internal_Rela *internal_relocs;
7364 source_reloc *src_relocs, *rel;
7365 bfd_boolean ok = TRUE;
7366 property_table_entry *prop_table = NULL;
7367 int ptblsize;
7368 int i, prev_i;
7369 bfd_boolean last_loc_is_prev = FALSE;
7370 bfd_vma last_target_offset = 0;
7371 section_cache_t target_sec_cache;
7372 bfd_size_type sec_size;
7373
7374 init_section_cache (&target_sec_cache);
7375
7376 /* Do nothing if it is not a relaxable literal section. */
7377 relax_info = get_xtensa_relax_info (sec);
7378 BFD_ASSERT (relax_info);
7379 if (!relax_info->is_relaxable_literal_section)
7380 return ok;
7381
7382 internal_relocs = retrieve_internal_relocs (abfd, sec,
7383 link_info->keep_memory);
7384
7385 sec_size = bfd_get_section_limit (abfd, sec);
7386 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7387 if (contents == NULL && sec_size != 0)
7388 {
7389 ok = FALSE;
7390 goto error_return;
7391 }
7392
7393 /* Sort the source_relocs by target offset. */
7394 src_relocs = relax_info->src_relocs;
7395 qsort (src_relocs, relax_info->src_count,
7396 sizeof (source_reloc), source_reloc_compare);
7397 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7398 internal_reloc_compare);
7399
7400 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7401 XTENSA_PROP_SEC_NAME, FALSE);
7402 if (ptblsize < 0)
7403 {
7404 ok = FALSE;
7405 goto error_return;
7406 }
7407
7408 prev_i = -1;
7409 for (i = 0; i < relax_info->src_count; i++)
7410 {
7411 Elf_Internal_Rela *irel = NULL;
7412
7413 rel = &src_relocs[i];
7414 if (get_l32r_opcode () != rel->opcode)
7415 continue;
7416 irel = get_irel_at_offset (sec, internal_relocs,
7417 rel->r_rel.target_offset);
7418
7419 /* If the relocation on this is not a simple R_XTENSA_32 or
7420 R_XTENSA_PLT then do not consider it. This may happen when
7421 the difference of two symbols is used in a literal. */
7422 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
7423 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
7424 continue;
7425
7426 /* If the target_offset for this relocation is the same as the
7427 previous relocation, then we've already considered whether the
7428 literal can be coalesced. Skip to the next one.... */
7429 if (i != 0 && prev_i != -1
7430 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
7431 continue;
7432 prev_i = i;
7433
7434 if (last_loc_is_prev &&
7435 last_target_offset + 4 != rel->r_rel.target_offset)
7436 last_loc_is_prev = FALSE;
7437
7438 /* Check if the relocation was from an L32R that is being removed
7439 because a CALLX was converted to a direct CALL, and check if
7440 there are no other relocations to the literal. */
7441 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
7442 sec, prop_table, ptblsize))
7443 {
7444 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
7445 irel, rel, prop_table, ptblsize))
7446 {
7447 ok = FALSE;
7448 goto error_return;
7449 }
7450 last_target_offset = rel->r_rel.target_offset;
7451 continue;
7452 }
7453
7454 if (!identify_literal_placement (abfd, sec, contents, link_info,
7455 values,
7456 &last_loc_is_prev, irel,
7457 relax_info->src_count - i, rel,
7458 prop_table, ptblsize,
7459 &target_sec_cache, rel->is_abs_literal))
7460 {
7461 ok = FALSE;
7462 goto error_return;
7463 }
7464 last_target_offset = rel->r_rel.target_offset;
7465 }
7466
7467 #if DEBUG
7468 print_removed_literals (stderr, &relax_info->removed_list);
7469 print_action_list (stderr, &relax_info->action_list);
7470 #endif /* DEBUG */
7471
7472 error_return:
7473 if (prop_table) free (prop_table);
7474 clear_section_cache (&target_sec_cache);
7475
7476 release_contents (sec, contents);
7477 release_internal_relocs (sec, internal_relocs);
7478 return ok;
7479 }
7480
7481
7482 static Elf_Internal_Rela *
7483 get_irel_at_offset (asection *sec,
7484 Elf_Internal_Rela *internal_relocs,
7485 bfd_vma offset)
7486 {
7487 unsigned i;
7488 Elf_Internal_Rela *irel;
7489 unsigned r_type;
7490 Elf_Internal_Rela key;
7491
7492 if (!internal_relocs)
7493 return NULL;
7494
7495 key.r_offset = offset;
7496 irel = bsearch (&key, internal_relocs, sec->reloc_count,
7497 sizeof (Elf_Internal_Rela), internal_reloc_matches);
7498 if (!irel)
7499 return NULL;
7500
7501 /* bsearch does not guarantee which will be returned if there are
7502 multiple matches. We need the first that is not an alignment. */
7503 i = irel - internal_relocs;
7504 while (i > 0)
7505 {
7506 if (internal_relocs[i-1].r_offset != offset)
7507 break;
7508 i--;
7509 }
7510 for ( ; i < sec->reloc_count; i++)
7511 {
7512 irel = &internal_relocs[i];
7513 r_type = ELF32_R_TYPE (irel->r_info);
7514 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
7515 return irel;
7516 }
7517
7518 return NULL;
7519 }
7520
7521
7522 bfd_boolean
7523 is_removable_literal (const source_reloc *rel,
7524 int i,
7525 const source_reloc *src_relocs,
7526 int src_count,
7527 asection *sec,
7528 property_table_entry *prop_table,
7529 int ptblsize)
7530 {
7531 const source_reloc *curr_rel;
7532 property_table_entry *entry;
7533
7534 if (!rel->is_null)
7535 return FALSE;
7536
7537 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7538 sec->vma + rel->r_rel.target_offset);
7539 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
7540 return FALSE;
7541
7542 for (++i; i < src_count; ++i)
7543 {
7544 curr_rel = &src_relocs[i];
7545 /* If all others have the same target offset.... */
7546 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
7547 return TRUE;
7548
7549 if (!curr_rel->is_null
7550 && !xtensa_is_property_section (curr_rel->source_sec)
7551 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
7552 return FALSE;
7553 }
7554 return TRUE;
7555 }
7556
7557
7558 bfd_boolean
7559 remove_dead_literal (bfd *abfd,
7560 asection *sec,
7561 struct bfd_link_info *link_info,
7562 Elf_Internal_Rela *internal_relocs,
7563 Elf_Internal_Rela *irel,
7564 source_reloc *rel,
7565 property_table_entry *prop_table,
7566 int ptblsize)
7567 {
7568 property_table_entry *entry;
7569 xtensa_relax_info *relax_info;
7570
7571 relax_info = get_xtensa_relax_info (sec);
7572 if (!relax_info)
7573 return FALSE;
7574
7575 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7576 sec->vma + rel->r_rel.target_offset);
7577
7578 /* Mark the unused literal so that it will be removed. */
7579 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
7580
7581 text_action_add (&relax_info->action_list,
7582 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7583
7584 /* If the section is 4-byte aligned, do not add fill. */
7585 if (sec->alignment_power > 2)
7586 {
7587 int fill_extra_space;
7588 bfd_vma entry_sec_offset;
7589 text_action *fa;
7590 property_table_entry *the_add_entry;
7591 int removed_diff;
7592
7593 if (entry)
7594 entry_sec_offset = entry->address - sec->vma + entry->size;
7595 else
7596 entry_sec_offset = rel->r_rel.target_offset + 4;
7597
7598 /* If the literal range is at the end of the section,
7599 do not add fill. */
7600 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7601 entry_sec_offset);
7602 fill_extra_space = compute_fill_extra_space (the_add_entry);
7603
7604 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7605 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7606 -4, fill_extra_space);
7607 if (fa)
7608 adjust_fill_action (fa, removed_diff);
7609 else
7610 text_action_add (&relax_info->action_list,
7611 ta_fill, sec, entry_sec_offset, removed_diff);
7612 }
7613
7614 /* Zero out the relocation on this literal location. */
7615 if (irel)
7616 {
7617 if (elf_hash_table (link_info)->dynamic_sections_created)
7618 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
7619
7620 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7621 pin_internal_relocs (sec, internal_relocs);
7622 }
7623
7624 /* Do not modify "last_loc_is_prev". */
7625 return TRUE;
7626 }
7627
7628
7629 bfd_boolean
7630 identify_literal_placement (bfd *abfd,
7631 asection *sec,
7632 bfd_byte *contents,
7633 struct bfd_link_info *link_info,
7634 value_map_hash_table *values,
7635 bfd_boolean *last_loc_is_prev_p,
7636 Elf_Internal_Rela *irel,
7637 int remaining_src_rels,
7638 source_reloc *rel,
7639 property_table_entry *prop_table,
7640 int ptblsize,
7641 section_cache_t *target_sec_cache,
7642 bfd_boolean is_abs_literal)
7643 {
7644 literal_value val;
7645 value_map *val_map;
7646 xtensa_relax_info *relax_info;
7647 bfd_boolean literal_placed = FALSE;
7648 r_reloc r_rel;
7649 unsigned long value;
7650 bfd_boolean final_static_link;
7651 bfd_size_type sec_size;
7652
7653 relax_info = get_xtensa_relax_info (sec);
7654 if (!relax_info)
7655 return FALSE;
7656
7657 sec_size = bfd_get_section_limit (abfd, sec);
7658
7659 final_static_link =
7660 (!link_info->relocatable
7661 && !elf_hash_table (link_info)->dynamic_sections_created);
7662
7663 /* The placement algorithm first checks to see if the literal is
7664 already in the value map. If so and the value map is reachable
7665 from all uses, then the literal is moved to that location. If
7666 not, then we identify the last location where a fresh literal was
7667 placed. If the literal can be safely moved there, then we do so.
7668 If not, then we assume that the literal is not to move and leave
7669 the literal where it is, marking it as the last literal
7670 location. */
7671
7672 /* Find the literal value. */
7673 value = 0;
7674 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7675 if (!irel)
7676 {
7677 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
7678 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
7679 }
7680 init_literal_value (&val, &r_rel, value, is_abs_literal);
7681
7682 /* Check if we've seen another literal with the same value that
7683 is in the same output section. */
7684 val_map = value_map_get_cached_value (values, &val, final_static_link);
7685
7686 if (val_map
7687 && (r_reloc_get_section (&val_map->loc)->output_section
7688 == sec->output_section)
7689 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
7690 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
7691 {
7692 /* No change to last_loc_is_prev. */
7693 literal_placed = TRUE;
7694 }
7695
7696 /* For relocatable links, do not try to move literals. To do it
7697 correctly might increase the number of relocations in an input
7698 section making the default relocatable linking fail. */
7699 if (!link_info->relocatable && !literal_placed
7700 && values->has_last_loc && !(*last_loc_is_prev_p))
7701 {
7702 asection *target_sec = r_reloc_get_section (&values->last_loc);
7703 if (target_sec && target_sec->output_section == sec->output_section)
7704 {
7705 /* Increment the virtual offset. */
7706 r_reloc try_loc = values->last_loc;
7707 try_loc.virtual_offset += 4;
7708
7709 /* There is a last loc that was in the same output section. */
7710 if (relocations_reach (rel, remaining_src_rels, &try_loc)
7711 && move_shared_literal (sec, link_info, rel,
7712 prop_table, ptblsize,
7713 &try_loc, &val, target_sec_cache))
7714 {
7715 values->last_loc.virtual_offset += 4;
7716 literal_placed = TRUE;
7717 if (!val_map)
7718 val_map = add_value_map (values, &val, &try_loc,
7719 final_static_link);
7720 else
7721 val_map->loc = try_loc;
7722 }
7723 }
7724 }
7725
7726 if (!literal_placed)
7727 {
7728 /* Nothing worked, leave the literal alone but update the last loc. */
7729 values->has_last_loc = TRUE;
7730 values->last_loc = rel->r_rel;
7731 if (!val_map)
7732 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
7733 else
7734 val_map->loc = rel->r_rel;
7735 *last_loc_is_prev_p = TRUE;
7736 }
7737
7738 return TRUE;
7739 }
7740
7741
7742 /* Check if the original relocations (presumably on L32R instructions)
7743 identified by reloc[0..N] can be changed to reference the literal
7744 identified by r_rel. If r_rel is out of range for any of the
7745 original relocations, then we don't want to coalesce the original
7746 literal with the one at r_rel. We only check reloc[0..N], where the
7747 offsets are all the same as for reloc[0] (i.e., they're all
7748 referencing the same literal) and where N is also bounded by the
7749 number of remaining entries in the "reloc" array. The "reloc" array
7750 is sorted by target offset so we know all the entries for the same
7751 literal will be contiguous. */
7752
7753 static bfd_boolean
7754 relocations_reach (source_reloc *reloc,
7755 int remaining_relocs,
7756 const r_reloc *r_rel)
7757 {
7758 bfd_vma from_offset, source_address, dest_address;
7759 asection *sec;
7760 int i;
7761
7762 if (!r_reloc_is_defined (r_rel))
7763 return FALSE;
7764
7765 sec = r_reloc_get_section (r_rel);
7766 from_offset = reloc[0].r_rel.target_offset;
7767
7768 for (i = 0; i < remaining_relocs; i++)
7769 {
7770 if (reloc[i].r_rel.target_offset != from_offset)
7771 break;
7772
7773 /* Ignore relocations that have been removed. */
7774 if (reloc[i].is_null)
7775 continue;
7776
7777 /* The original and new output section for these must be the same
7778 in order to coalesce. */
7779 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
7780 != sec->output_section)
7781 return FALSE;
7782
7783 /* Absolute literals in the same output section can always be
7784 combined. */
7785 if (reloc[i].is_abs_literal)
7786 continue;
7787
7788 /* A literal with no PC-relative relocations can be moved anywhere. */
7789 if (reloc[i].opnd != -1)
7790 {
7791 /* Otherwise, check to see that it fits. */
7792 source_address = (reloc[i].source_sec->output_section->vma
7793 + reloc[i].source_sec->output_offset
7794 + reloc[i].r_rel.rela.r_offset);
7795 dest_address = (sec->output_section->vma
7796 + sec->output_offset
7797 + r_rel->target_offset);
7798
7799 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
7800 source_address, dest_address))
7801 return FALSE;
7802 }
7803 }
7804
7805 return TRUE;
7806 }
7807
7808
7809 /* Move a literal to another literal location because it is
7810 the same as the other literal value. */
7811
7812 static bfd_boolean
7813 coalesce_shared_literal (asection *sec,
7814 source_reloc *rel,
7815 property_table_entry *prop_table,
7816 int ptblsize,
7817 value_map *val_map)
7818 {
7819 property_table_entry *entry;
7820 text_action *fa;
7821 property_table_entry *the_add_entry;
7822 int removed_diff;
7823 xtensa_relax_info *relax_info;
7824
7825 relax_info = get_xtensa_relax_info (sec);
7826 if (!relax_info)
7827 return FALSE;
7828
7829 entry = elf_xtensa_find_property_entry
7830 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7831 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
7832 return TRUE;
7833
7834 /* Mark that the literal will be coalesced. */
7835 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
7836
7837 text_action_add (&relax_info->action_list,
7838 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7839
7840 /* If the section is 4-byte aligned, do not add fill. */
7841 if (sec->alignment_power > 2)
7842 {
7843 int fill_extra_space;
7844 bfd_vma entry_sec_offset;
7845
7846 if (entry)
7847 entry_sec_offset = entry->address - sec->vma + entry->size;
7848 else
7849 entry_sec_offset = rel->r_rel.target_offset + 4;
7850
7851 /* If the literal range is at the end of the section,
7852 do not add fill. */
7853 fill_extra_space = 0;
7854 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7855 entry_sec_offset);
7856 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7857 fill_extra_space = the_add_entry->size;
7858
7859 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
7860 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
7861 -4, fill_extra_space);
7862 if (fa)
7863 adjust_fill_action (fa, removed_diff);
7864 else
7865 text_action_add (&relax_info->action_list,
7866 ta_fill, sec, entry_sec_offset, removed_diff);
7867 }
7868
7869 return TRUE;
7870 }
7871
7872
7873 /* Move a literal to another location. This may actually increase the
7874 total amount of space used because of alignments so we need to do
7875 this carefully. Also, it may make a branch go out of range. */
7876
7877 static bfd_boolean
7878 move_shared_literal (asection *sec,
7879 struct bfd_link_info *link_info,
7880 source_reloc *rel,
7881 property_table_entry *prop_table,
7882 int ptblsize,
7883 const r_reloc *target_loc,
7884 const literal_value *lit_value,
7885 section_cache_t *target_sec_cache)
7886 {
7887 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
7888 text_action *fa, *target_fa;
7889 int removed_diff;
7890 xtensa_relax_info *relax_info, *target_relax_info;
7891 asection *target_sec;
7892 ebb_t *ebb;
7893 ebb_constraint ebb_table;
7894 bfd_boolean relocs_fit;
7895
7896 /* If this routine always returns FALSE, the literals that cannot be
7897 coalesced will not be moved. */
7898 if (elf32xtensa_no_literal_movement)
7899 return FALSE;
7900
7901 relax_info = get_xtensa_relax_info (sec);
7902 if (!relax_info)
7903 return FALSE;
7904
7905 target_sec = r_reloc_get_section (target_loc);
7906 target_relax_info = get_xtensa_relax_info (target_sec);
7907
7908 /* Literals to undefined sections may not be moved because they
7909 must report an error. */
7910 if (bfd_is_und_section (target_sec))
7911 return FALSE;
7912
7913 src_entry = elf_xtensa_find_property_entry
7914 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
7915
7916 if (!section_cache_section (target_sec_cache, target_sec, link_info))
7917 return FALSE;
7918
7919 target_entry = elf_xtensa_find_property_entry
7920 (target_sec_cache->ptbl, target_sec_cache->pte_count,
7921 target_sec->vma + target_loc->target_offset);
7922
7923 if (!target_entry)
7924 return FALSE;
7925
7926 /* Make sure that we have not broken any branches. */
7927 relocs_fit = FALSE;
7928
7929 init_ebb_constraint (&ebb_table);
7930 ebb = &ebb_table.ebb;
7931 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
7932 target_sec_cache->content_length,
7933 target_sec_cache->ptbl, target_sec_cache->pte_count,
7934 target_sec_cache->relocs, target_sec_cache->reloc_count);
7935
7936 /* Propose to add 4 bytes + worst-case alignment size increase to
7937 destination. */
7938 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
7939 ta_fill, target_loc->target_offset,
7940 -4 - (1 << target_sec->alignment_power), TRUE);
7941
7942 /* Check all of the PC-relative relocations to make sure they still fit. */
7943 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
7944 target_sec_cache->contents,
7945 target_sec_cache->relocs,
7946 &ebb_table, NULL);
7947
7948 if (!relocs_fit)
7949 return FALSE;
7950
7951 text_action_add_literal (&target_relax_info->action_list,
7952 ta_add_literal, target_loc, lit_value, -4);
7953
7954 if (target_sec->alignment_power > 2 && target_entry != src_entry)
7955 {
7956 /* May need to add or remove some fill to maintain alignment. */
7957 int fill_extra_space;
7958 bfd_vma entry_sec_offset;
7959
7960 entry_sec_offset =
7961 target_entry->address - target_sec->vma + target_entry->size;
7962
7963 /* If the literal range is at the end of the section,
7964 do not add fill. */
7965 fill_extra_space = 0;
7966 the_add_entry =
7967 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
7968 target_sec_cache->pte_count,
7969 entry_sec_offset);
7970 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
7971 fill_extra_space = the_add_entry->size;
7972
7973 target_fa = find_fill_action (&target_relax_info->action_list,
7974 target_sec, entry_sec_offset);
7975 removed_diff = compute_removed_action_diff (target_fa, target_sec,
7976 entry_sec_offset, 4,
7977 fill_extra_space);
7978 if (target_fa)
7979 adjust_fill_action (target_fa, removed_diff);
7980 else
7981 text_action_add (&target_relax_info->action_list,
7982 ta_fill, target_sec, entry_sec_offset, removed_diff);
7983 }
7984
7985 /* Mark that the literal will be moved to the new location. */
7986 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
7987
7988 /* Remove the literal. */
7989 text_action_add (&relax_info->action_list,
7990 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
7991
7992 /* If the section is 4-byte aligned, do not add fill. */
7993 if (sec->alignment_power > 2 && target_entry != src_entry)
7994 {
7995 int fill_extra_space;
7996 bfd_vma entry_sec_offset;
7997
7998 if (src_entry)
7999 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
8000 else
8001 entry_sec_offset = rel->r_rel.target_offset+4;
8002
8003 /* If the literal range is at the end of the section,
8004 do not add fill. */
8005 fill_extra_space = 0;
8006 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8007 entry_sec_offset);
8008 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
8009 fill_extra_space = the_add_entry->size;
8010
8011 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8012 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8013 -4, fill_extra_space);
8014 if (fa)
8015 adjust_fill_action (fa, removed_diff);
8016 else
8017 text_action_add (&relax_info->action_list,
8018 ta_fill, sec, entry_sec_offset, removed_diff);
8019 }
8020
8021 return TRUE;
8022 }
8023
8024 \f
8025 /* Second relaxation pass. */
8026
8027 /* Modify all of the relocations to point to the right spot, and if this
8028 is a relaxable section, delete the unwanted literals and fix the
8029 section size. */
8030
8031 bfd_boolean
8032 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
8033 {
8034 Elf_Internal_Rela *internal_relocs;
8035 xtensa_relax_info *relax_info;
8036 bfd_byte *contents;
8037 bfd_boolean ok = TRUE;
8038 unsigned i;
8039 bfd_boolean rv = FALSE;
8040 bfd_boolean virtual_action;
8041 bfd_size_type sec_size;
8042
8043 sec_size = bfd_get_section_limit (abfd, sec);
8044 relax_info = get_xtensa_relax_info (sec);
8045 BFD_ASSERT (relax_info);
8046
8047 /* First translate any of the fixes that have been added already. */
8048 translate_section_fixes (sec);
8049
8050 /* Handle property sections (e.g., literal tables) specially. */
8051 if (xtensa_is_property_section (sec))
8052 {
8053 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
8054 return relax_property_section (abfd, sec, link_info);
8055 }
8056
8057 internal_relocs = retrieve_internal_relocs (abfd, sec,
8058 link_info->keep_memory);
8059 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8060 if (contents == NULL && sec_size != 0)
8061 {
8062 ok = FALSE;
8063 goto error_return;
8064 }
8065
8066 if (internal_relocs)
8067 {
8068 for (i = 0; i < sec->reloc_count; i++)
8069 {
8070 Elf_Internal_Rela *irel;
8071 xtensa_relax_info *target_relax_info;
8072 bfd_vma source_offset, old_source_offset;
8073 r_reloc r_rel;
8074 unsigned r_type;
8075 asection *target_sec;
8076
8077 /* Locally change the source address.
8078 Translate the target to the new target address.
8079 If it points to this section and has been removed,
8080 NULLify it.
8081 Write it back. */
8082
8083 irel = &internal_relocs[i];
8084 source_offset = irel->r_offset;
8085 old_source_offset = source_offset;
8086
8087 r_type = ELF32_R_TYPE (irel->r_info);
8088 r_reloc_init (&r_rel, abfd, irel, contents,
8089 bfd_get_section_limit (abfd, sec));
8090
8091 /* If this section could have changed then we may need to
8092 change the relocation's offset. */
8093
8094 if (relax_info->is_relaxable_literal_section
8095 || relax_info->is_relaxable_asm_section)
8096 {
8097 pin_internal_relocs (sec, internal_relocs);
8098
8099 if (r_type != R_XTENSA_NONE
8100 && find_removed_literal (&relax_info->removed_list,
8101 irel->r_offset))
8102 {
8103 /* Remove this relocation. */
8104 if (elf_hash_table (link_info)->dynamic_sections_created)
8105 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8106 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8107 irel->r_offset = offset_with_removed_text
8108 (&relax_info->action_list, irel->r_offset);
8109 continue;
8110 }
8111
8112 if (r_type == R_XTENSA_ASM_SIMPLIFY)
8113 {
8114 text_action *action =
8115 find_insn_action (&relax_info->action_list,
8116 irel->r_offset);
8117 if (action && (action->action == ta_convert_longcall
8118 || action->action == ta_remove_longcall))
8119 {
8120 bfd_reloc_status_type retval;
8121 char *error_message = NULL;
8122
8123 retval = contract_asm_expansion (contents, sec_size,
8124 irel, &error_message);
8125 if (retval != bfd_reloc_ok)
8126 {
8127 (*link_info->callbacks->reloc_dangerous)
8128 (link_info, error_message, abfd, sec,
8129 irel->r_offset);
8130 goto error_return;
8131 }
8132 /* Update the action so that the code that moves
8133 the contents will do the right thing. */
8134 if (action->action == ta_remove_longcall)
8135 action->action = ta_remove_insn;
8136 else
8137 action->action = ta_none;
8138 /* Refresh the info in the r_rel. */
8139 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8140 r_type = ELF32_R_TYPE (irel->r_info);
8141 }
8142 }
8143
8144 source_offset = offset_with_removed_text
8145 (&relax_info->action_list, irel->r_offset);
8146 irel->r_offset = source_offset;
8147 }
8148
8149 /* If the target section could have changed then
8150 we may need to change the relocation's target offset. */
8151
8152 target_sec = r_reloc_get_section (&r_rel);
8153 target_relax_info = get_xtensa_relax_info (target_sec);
8154
8155 if (target_relax_info
8156 && (target_relax_info->is_relaxable_literal_section
8157 || target_relax_info->is_relaxable_asm_section))
8158 {
8159 r_reloc new_reloc;
8160 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
8161
8162 if (r_type == R_XTENSA_DIFF8
8163 || r_type == R_XTENSA_DIFF16
8164 || r_type == R_XTENSA_DIFF32)
8165 {
8166 bfd_vma diff_value = 0, new_end_offset, diff_mask = 0;
8167
8168 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
8169 {
8170 (*link_info->callbacks->reloc_dangerous)
8171 (link_info, _("invalid relocation address"),
8172 abfd, sec, old_source_offset);
8173 goto error_return;
8174 }
8175
8176 switch (r_type)
8177 {
8178 case R_XTENSA_DIFF8:
8179 diff_value =
8180 bfd_get_8 (abfd, &contents[old_source_offset]);
8181 break;
8182 case R_XTENSA_DIFF16:
8183 diff_value =
8184 bfd_get_16 (abfd, &contents[old_source_offset]);
8185 break;
8186 case R_XTENSA_DIFF32:
8187 diff_value =
8188 bfd_get_32 (abfd, &contents[old_source_offset]);
8189 break;
8190 }
8191
8192 new_end_offset = offset_with_removed_text
8193 (&target_relax_info->action_list,
8194 r_rel.target_offset + diff_value);
8195 diff_value = new_end_offset - new_reloc.target_offset;
8196
8197 switch (r_type)
8198 {
8199 case R_XTENSA_DIFF8:
8200 diff_mask = 0xff;
8201 bfd_put_8 (abfd, diff_value,
8202 &contents[old_source_offset]);
8203 break;
8204 case R_XTENSA_DIFF16:
8205 diff_mask = 0xffff;
8206 bfd_put_16 (abfd, diff_value,
8207 &contents[old_source_offset]);
8208 break;
8209 case R_XTENSA_DIFF32:
8210 diff_mask = 0xffffffff;
8211 bfd_put_32 (abfd, diff_value,
8212 &contents[old_source_offset]);
8213 break;
8214 }
8215
8216 /* Check for overflow. */
8217 if ((diff_value & ~diff_mask) != 0)
8218 {
8219 (*link_info->callbacks->reloc_dangerous)
8220 (link_info, _("overflow after relaxation"),
8221 abfd, sec, old_source_offset);
8222 goto error_return;
8223 }
8224
8225 pin_contents (sec, contents);
8226 }
8227 else
8228 {
8229 /* If the relocation still references a section in the same
8230 input file, modify the relocation directly instead of
8231 adding a "fix" record. */
8232 if (target_sec->owner == abfd)
8233 {
8234 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
8235 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
8236 irel->r_addend = new_reloc.rela.r_addend;
8237 pin_internal_relocs (sec, internal_relocs);
8238 }
8239 else
8240 {
8241 bfd_vma addend_displacement;
8242 reloc_bfd_fix *fix;
8243
8244 addend_displacement =
8245 new_reloc.target_offset + new_reloc.virtual_offset;
8246 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
8247 target_sec,
8248 addend_displacement, TRUE);
8249 add_fix (sec, fix);
8250 }
8251 }
8252 }
8253 }
8254 }
8255
8256 if ((relax_info->is_relaxable_literal_section
8257 || relax_info->is_relaxable_asm_section)
8258 && relax_info->action_list.head)
8259 {
8260 /* Walk through the planned actions and build up a table
8261 of move, copy and fill records. Use the move, copy and
8262 fill records to perform the actions once. */
8263
8264 bfd_size_type size = sec->size;
8265 int removed = 0;
8266 bfd_size_type final_size, copy_size, orig_insn_size;
8267 bfd_byte *scratch = NULL;
8268 bfd_byte *dup_contents = NULL;
8269 bfd_size_type orig_size = size;
8270 bfd_vma orig_dot = 0;
8271 bfd_vma orig_dot_copied = 0; /* Byte copied already from
8272 orig dot in physical memory. */
8273 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
8274 bfd_vma dup_dot = 0;
8275
8276 text_action *action = relax_info->action_list.head;
8277
8278 final_size = sec->size;
8279 for (action = relax_info->action_list.head; action;
8280 action = action->next)
8281 {
8282 final_size -= action->removed_bytes;
8283 }
8284
8285 scratch = (bfd_byte *) bfd_zmalloc (final_size);
8286 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
8287
8288 /* The dot is the current fill location. */
8289 #if DEBUG
8290 print_action_list (stderr, &relax_info->action_list);
8291 #endif
8292
8293 for (action = relax_info->action_list.head; action;
8294 action = action->next)
8295 {
8296 virtual_action = FALSE;
8297 if (action->offset > orig_dot)
8298 {
8299 orig_dot += orig_dot_copied;
8300 orig_dot_copied = 0;
8301 orig_dot_vo = 0;
8302 /* Out of the virtual world. */
8303 }
8304
8305 if (action->offset > orig_dot)
8306 {
8307 copy_size = action->offset - orig_dot;
8308 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8309 orig_dot += copy_size;
8310 dup_dot += copy_size;
8311 BFD_ASSERT (action->offset == orig_dot);
8312 }
8313 else if (action->offset < orig_dot)
8314 {
8315 if (action->action == ta_fill
8316 && action->offset - action->removed_bytes == orig_dot)
8317 {
8318 /* This is OK because the fill only effects the dup_dot. */
8319 }
8320 else if (action->action == ta_add_literal)
8321 {
8322 /* TBD. Might need to handle this. */
8323 }
8324 }
8325 if (action->offset == orig_dot)
8326 {
8327 if (action->virtual_offset > orig_dot_vo)
8328 {
8329 if (orig_dot_vo == 0)
8330 {
8331 /* Need to copy virtual_offset bytes. Probably four. */
8332 copy_size = action->virtual_offset - orig_dot_vo;
8333 memmove (&dup_contents[dup_dot],
8334 &contents[orig_dot], copy_size);
8335 orig_dot_copied = copy_size;
8336 dup_dot += copy_size;
8337 }
8338 virtual_action = TRUE;
8339 }
8340 else
8341 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
8342 }
8343 switch (action->action)
8344 {
8345 case ta_remove_literal:
8346 case ta_remove_insn:
8347 BFD_ASSERT (action->removed_bytes >= 0);
8348 orig_dot += action->removed_bytes;
8349 break;
8350
8351 case ta_narrow_insn:
8352 orig_insn_size = 3;
8353 copy_size = 2;
8354 memmove (scratch, &contents[orig_dot], orig_insn_size);
8355 BFD_ASSERT (action->removed_bytes == 1);
8356 rv = narrow_instruction (scratch, final_size, 0);
8357 BFD_ASSERT (rv);
8358 memmove (&dup_contents[dup_dot], scratch, copy_size);
8359 orig_dot += orig_insn_size;
8360 dup_dot += copy_size;
8361 break;
8362
8363 case ta_fill:
8364 if (action->removed_bytes >= 0)
8365 orig_dot += action->removed_bytes;
8366 else
8367 {
8368 /* Already zeroed in dup_contents. Just bump the
8369 counters. */
8370 dup_dot += (-action->removed_bytes);
8371 }
8372 break;
8373
8374 case ta_none:
8375 BFD_ASSERT (action->removed_bytes == 0);
8376 break;
8377
8378 case ta_convert_longcall:
8379 case ta_remove_longcall:
8380 /* These will be removed or converted before we get here. */
8381 BFD_ASSERT (0);
8382 break;
8383
8384 case ta_widen_insn:
8385 orig_insn_size = 2;
8386 copy_size = 3;
8387 memmove (scratch, &contents[orig_dot], orig_insn_size);
8388 BFD_ASSERT (action->removed_bytes == -1);
8389 rv = widen_instruction (scratch, final_size, 0);
8390 BFD_ASSERT (rv);
8391 memmove (&dup_contents[dup_dot], scratch, copy_size);
8392 orig_dot += orig_insn_size;
8393 dup_dot += copy_size;
8394 break;
8395
8396 case ta_add_literal:
8397 orig_insn_size = 0;
8398 copy_size = 4;
8399 BFD_ASSERT (action->removed_bytes == -4);
8400 /* TBD -- place the literal value here and insert
8401 into the table. */
8402 memset (&dup_contents[dup_dot], 0, 4);
8403 pin_internal_relocs (sec, internal_relocs);
8404 pin_contents (sec, contents);
8405
8406 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
8407 relax_info, &internal_relocs, &action->value))
8408 goto error_return;
8409
8410 if (virtual_action)
8411 orig_dot_vo += copy_size;
8412
8413 orig_dot += orig_insn_size;
8414 dup_dot += copy_size;
8415 break;
8416
8417 default:
8418 /* Not implemented yet. */
8419 BFD_ASSERT (0);
8420 break;
8421 }
8422
8423 size -= action->removed_bytes;
8424 removed += action->removed_bytes;
8425 BFD_ASSERT (dup_dot <= final_size);
8426 BFD_ASSERT (orig_dot <= orig_size);
8427 }
8428
8429 orig_dot += orig_dot_copied;
8430 orig_dot_copied = 0;
8431
8432 if (orig_dot != orig_size)
8433 {
8434 copy_size = orig_size - orig_dot;
8435 BFD_ASSERT (orig_size > orig_dot);
8436 BFD_ASSERT (dup_dot + copy_size == final_size);
8437 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
8438 orig_dot += copy_size;
8439 dup_dot += copy_size;
8440 }
8441 BFD_ASSERT (orig_size == orig_dot);
8442 BFD_ASSERT (final_size == dup_dot);
8443
8444 /* Move the dup_contents back. */
8445 if (final_size > orig_size)
8446 {
8447 /* Contents need to be reallocated. Swap the dup_contents into
8448 contents. */
8449 sec->contents = dup_contents;
8450 free (contents);
8451 contents = dup_contents;
8452 pin_contents (sec, contents);
8453 }
8454 else
8455 {
8456 BFD_ASSERT (final_size <= orig_size);
8457 memset (contents, 0, orig_size);
8458 memcpy (contents, dup_contents, final_size);
8459 free (dup_contents);
8460 }
8461 free (scratch);
8462 pin_contents (sec, contents);
8463
8464 sec->size = final_size;
8465 }
8466
8467 error_return:
8468 release_internal_relocs (sec, internal_relocs);
8469 release_contents (sec, contents);
8470 return ok;
8471 }
8472
8473
8474 static bfd_boolean
8475 translate_section_fixes (asection *sec)
8476 {
8477 xtensa_relax_info *relax_info;
8478 reloc_bfd_fix *r;
8479
8480 relax_info = get_xtensa_relax_info (sec);
8481 if (!relax_info)
8482 return TRUE;
8483
8484 for (r = relax_info->fix_list; r != NULL; r = r->next)
8485 if (!translate_reloc_bfd_fix (r))
8486 return FALSE;
8487
8488 return TRUE;
8489 }
8490
8491
8492 /* Translate a fix given the mapping in the relax info for the target
8493 section. If it has already been translated, no work is required. */
8494
8495 static bfd_boolean
8496 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
8497 {
8498 reloc_bfd_fix new_fix;
8499 asection *sec;
8500 xtensa_relax_info *relax_info;
8501 removed_literal *removed;
8502 bfd_vma new_offset, target_offset;
8503
8504 if (fix->translated)
8505 return TRUE;
8506
8507 sec = fix->target_sec;
8508 target_offset = fix->target_offset;
8509
8510 relax_info = get_xtensa_relax_info (sec);
8511 if (!relax_info)
8512 {
8513 fix->translated = TRUE;
8514 return TRUE;
8515 }
8516
8517 new_fix = *fix;
8518
8519 /* The fix does not need to be translated if the section cannot change. */
8520 if (!relax_info->is_relaxable_literal_section
8521 && !relax_info->is_relaxable_asm_section)
8522 {
8523 fix->translated = TRUE;
8524 return TRUE;
8525 }
8526
8527 /* If the literal has been moved and this relocation was on an
8528 opcode, then the relocation should move to the new literal
8529 location. Otherwise, the relocation should move within the
8530 section. */
8531
8532 removed = FALSE;
8533 if (is_operand_relocation (fix->src_type))
8534 {
8535 /* Check if the original relocation is against a literal being
8536 removed. */
8537 removed = find_removed_literal (&relax_info->removed_list,
8538 target_offset);
8539 }
8540
8541 if (removed)
8542 {
8543 asection *new_sec;
8544
8545 /* The fact that there is still a relocation to this literal indicates
8546 that the literal is being coalesced, not simply removed. */
8547 BFD_ASSERT (removed->to.abfd != NULL);
8548
8549 /* This was moved to some other address (possibly another section). */
8550 new_sec = r_reloc_get_section (&removed->to);
8551 if (new_sec != sec)
8552 {
8553 sec = new_sec;
8554 relax_info = get_xtensa_relax_info (sec);
8555 if (!relax_info ||
8556 (!relax_info->is_relaxable_literal_section
8557 && !relax_info->is_relaxable_asm_section))
8558 {
8559 target_offset = removed->to.target_offset;
8560 new_fix.target_sec = new_sec;
8561 new_fix.target_offset = target_offset;
8562 new_fix.translated = TRUE;
8563 *fix = new_fix;
8564 return TRUE;
8565 }
8566 }
8567 target_offset = removed->to.target_offset;
8568 new_fix.target_sec = new_sec;
8569 }
8570
8571 /* The target address may have been moved within its section. */
8572 new_offset = offset_with_removed_text (&relax_info->action_list,
8573 target_offset);
8574
8575 new_fix.target_offset = new_offset;
8576 new_fix.target_offset = new_offset;
8577 new_fix.translated = TRUE;
8578 *fix = new_fix;
8579 return TRUE;
8580 }
8581
8582
8583 /* Fix up a relocation to take account of removed literals. */
8584
8585 static asection *
8586 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
8587 {
8588 xtensa_relax_info *relax_info;
8589 removed_literal *removed;
8590 bfd_vma target_offset, base_offset;
8591 text_action *act;
8592
8593 *new_rel = *orig_rel;
8594
8595 if (!r_reloc_is_defined (orig_rel))
8596 return sec ;
8597
8598 relax_info = get_xtensa_relax_info (sec);
8599 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
8600 || relax_info->is_relaxable_asm_section));
8601
8602 target_offset = orig_rel->target_offset;
8603
8604 removed = FALSE;
8605 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
8606 {
8607 /* Check if the original relocation is against a literal being
8608 removed. */
8609 removed = find_removed_literal (&relax_info->removed_list,
8610 target_offset);
8611 }
8612 if (removed && removed->to.abfd)
8613 {
8614 asection *new_sec;
8615
8616 /* The fact that there is still a relocation to this literal indicates
8617 that the literal is being coalesced, not simply removed. */
8618 BFD_ASSERT (removed->to.abfd != NULL);
8619
8620 /* This was moved to some other address
8621 (possibly in another section). */
8622 *new_rel = removed->to;
8623 new_sec = r_reloc_get_section (new_rel);
8624 if (new_sec != sec)
8625 {
8626 sec = new_sec;
8627 relax_info = get_xtensa_relax_info (sec);
8628 if (!relax_info
8629 || (!relax_info->is_relaxable_literal_section
8630 && !relax_info->is_relaxable_asm_section))
8631 return sec;
8632 }
8633 target_offset = new_rel->target_offset;
8634 }
8635
8636 /* Find the base offset of the reloc symbol, excluding any addend from the
8637 reloc or from the section contents (for a partial_inplace reloc). Then
8638 find the adjusted values of the offsets due to relaxation. The base
8639 offset is needed to determine the change to the reloc's addend; the reloc
8640 addend should not be adjusted due to relaxations located before the base
8641 offset. */
8642
8643 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
8644 act = relax_info->action_list.head;
8645 if (base_offset <= target_offset)
8646 {
8647 int base_removed = removed_by_actions (&act, base_offset, FALSE);
8648 int addend_removed = removed_by_actions (&act, target_offset, FALSE);
8649 new_rel->target_offset = target_offset - base_removed - addend_removed;
8650 new_rel->rela.r_addend -= addend_removed;
8651 }
8652 else
8653 {
8654 /* Handle a negative addend. The base offset comes first. */
8655 int tgt_removed = removed_by_actions (&act, target_offset, FALSE);
8656 int addend_removed = removed_by_actions (&act, base_offset, FALSE);
8657 new_rel->target_offset = target_offset - tgt_removed;
8658 new_rel->rela.r_addend += addend_removed;
8659 }
8660
8661 return sec;
8662 }
8663
8664
8665 /* For dynamic links, there may be a dynamic relocation for each
8666 literal. The number of dynamic relocations must be computed in
8667 size_dynamic_sections, which occurs before relaxation. When a
8668 literal is removed, this function checks if there is a corresponding
8669 dynamic relocation and shrinks the size of the appropriate dynamic
8670 relocation section accordingly. At this point, the contents of the
8671 dynamic relocation sections have not yet been filled in, so there's
8672 nothing else that needs to be done. */
8673
8674 static void
8675 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
8676 bfd *abfd,
8677 asection *input_section,
8678 Elf_Internal_Rela *rel)
8679 {
8680 struct elf_xtensa_link_hash_table *htab;
8681 Elf_Internal_Shdr *symtab_hdr;
8682 struct elf_link_hash_entry **sym_hashes;
8683 unsigned long r_symndx;
8684 int r_type;
8685 struct elf_link_hash_entry *h;
8686 bfd_boolean dynamic_symbol;
8687
8688 htab = elf_xtensa_hash_table (info);
8689 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8690 sym_hashes = elf_sym_hashes (abfd);
8691
8692 r_type = ELF32_R_TYPE (rel->r_info);
8693 r_symndx = ELF32_R_SYM (rel->r_info);
8694
8695 if (r_symndx < symtab_hdr->sh_info)
8696 h = NULL;
8697 else
8698 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8699
8700 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
8701
8702 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
8703 && (input_section->flags & SEC_ALLOC) != 0
8704 && (dynamic_symbol || info->shared))
8705 {
8706 asection *srel;
8707 bfd_boolean is_plt = FALSE;
8708
8709 if (dynamic_symbol && r_type == R_XTENSA_PLT)
8710 {
8711 srel = htab->srelplt;
8712 is_plt = TRUE;
8713 }
8714 else
8715 srel = htab->srelgot;
8716
8717 /* Reduce size of the .rela.* section by one reloc. */
8718 BFD_ASSERT (srel != NULL);
8719 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
8720 srel->size -= sizeof (Elf32_External_Rela);
8721
8722 if (is_plt)
8723 {
8724 asection *splt, *sgotplt, *srelgot;
8725 int reloc_index, chunk;
8726
8727 /* Find the PLT reloc index of the entry being removed. This
8728 is computed from the size of ".rela.plt". It is needed to
8729 figure out which PLT chunk to resize. Usually "last index
8730 = size - 1" since the index starts at zero, but in this
8731 context, the size has just been decremented so there's no
8732 need to subtract one. */
8733 reloc_index = srel->size / sizeof (Elf32_External_Rela);
8734
8735 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
8736 splt = elf_xtensa_get_plt_section (info, chunk);
8737 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
8738 BFD_ASSERT (splt != NULL && sgotplt != NULL);
8739
8740 /* Check if an entire PLT chunk has just been eliminated. */
8741 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
8742 {
8743 /* The two magic GOT entries for that chunk can go away. */
8744 srelgot = htab->srelgot;
8745 BFD_ASSERT (srelgot != NULL);
8746 srelgot->reloc_count -= 2;
8747 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
8748 sgotplt->size -= 8;
8749
8750 /* There should be only one entry left (and it will be
8751 removed below). */
8752 BFD_ASSERT (sgotplt->size == 4);
8753 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
8754 }
8755
8756 BFD_ASSERT (sgotplt->size >= 4);
8757 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
8758
8759 sgotplt->size -= 4;
8760 splt->size -= PLT_ENTRY_SIZE;
8761 }
8762 }
8763 }
8764
8765
8766 /* Take an r_rel and move it to another section. This usually
8767 requires extending the interal_relocation array and pinning it. If
8768 the original r_rel is from the same BFD, we can complete this here.
8769 Otherwise, we add a fix record to let the final link fix the
8770 appropriate address. Contents and internal relocations for the
8771 section must be pinned after calling this routine. */
8772
8773 static bfd_boolean
8774 move_literal (bfd *abfd,
8775 struct bfd_link_info *link_info,
8776 asection *sec,
8777 bfd_vma offset,
8778 bfd_byte *contents,
8779 xtensa_relax_info *relax_info,
8780 Elf_Internal_Rela **internal_relocs_p,
8781 const literal_value *lit)
8782 {
8783 Elf_Internal_Rela *new_relocs = NULL;
8784 size_t new_relocs_count = 0;
8785 Elf_Internal_Rela this_rela;
8786 const r_reloc *r_rel;
8787
8788 r_rel = &lit->r_rel;
8789 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
8790
8791 if (r_reloc_is_const (r_rel))
8792 bfd_put_32 (abfd, lit->value, contents + offset);
8793 else
8794 {
8795 int r_type;
8796 unsigned i;
8797 asection *target_sec;
8798 reloc_bfd_fix *fix;
8799 unsigned insert_at;
8800
8801 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
8802 target_sec = r_reloc_get_section (r_rel);
8803
8804 /* This is the difficult case. We have to create a fix up. */
8805 this_rela.r_offset = offset;
8806 this_rela.r_info = ELF32_R_INFO (0, r_type);
8807 this_rela.r_addend =
8808 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
8809 bfd_put_32 (abfd, lit->value, contents + offset);
8810
8811 /* Currently, we cannot move relocations during a relocatable link. */
8812 BFD_ASSERT (!link_info->relocatable);
8813 fix = reloc_bfd_fix_init (sec, offset, r_type,
8814 r_reloc_get_section (r_rel),
8815 r_rel->target_offset + r_rel->virtual_offset,
8816 FALSE);
8817 /* We also need to mark that relocations are needed here. */
8818 sec->flags |= SEC_RELOC;
8819
8820 translate_reloc_bfd_fix (fix);
8821 /* This fix has not yet been translated. */
8822 add_fix (sec, fix);
8823
8824 /* Add the relocation. If we have already allocated our own
8825 space for the relocations and we have room for more, then use
8826 it. Otherwise, allocate new space and move the literals. */
8827 insert_at = sec->reloc_count;
8828 for (i = 0; i < sec->reloc_count; ++i)
8829 {
8830 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
8831 {
8832 insert_at = i;
8833 break;
8834 }
8835 }
8836
8837 if (*internal_relocs_p != relax_info->allocated_relocs
8838 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
8839 {
8840 BFD_ASSERT (relax_info->allocated_relocs == NULL
8841 || sec->reloc_count == relax_info->relocs_count);
8842
8843 if (relax_info->allocated_relocs_count == 0)
8844 new_relocs_count = (sec->reloc_count + 2) * 2;
8845 else
8846 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
8847
8848 new_relocs = (Elf_Internal_Rela *)
8849 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
8850 if (!new_relocs)
8851 return FALSE;
8852
8853 /* We could handle this more quickly by finding the split point. */
8854 if (insert_at != 0)
8855 memcpy (new_relocs, *internal_relocs_p,
8856 insert_at * sizeof (Elf_Internal_Rela));
8857
8858 new_relocs[insert_at] = this_rela;
8859
8860 if (insert_at != sec->reloc_count)
8861 memcpy (new_relocs + insert_at + 1,
8862 (*internal_relocs_p) + insert_at,
8863 (sec->reloc_count - insert_at)
8864 * sizeof (Elf_Internal_Rela));
8865
8866 if (*internal_relocs_p != relax_info->allocated_relocs)
8867 {
8868 /* The first time we re-allocate, we can only free the
8869 old relocs if they were allocated with bfd_malloc.
8870 This is not true when keep_memory is in effect. */
8871 if (!link_info->keep_memory)
8872 free (*internal_relocs_p);
8873 }
8874 else
8875 free (*internal_relocs_p);
8876 relax_info->allocated_relocs = new_relocs;
8877 relax_info->allocated_relocs_count = new_relocs_count;
8878 elf_section_data (sec)->relocs = new_relocs;
8879 sec->reloc_count++;
8880 relax_info->relocs_count = sec->reloc_count;
8881 *internal_relocs_p = new_relocs;
8882 }
8883 else
8884 {
8885 if (insert_at != sec->reloc_count)
8886 {
8887 unsigned idx;
8888 for (idx = sec->reloc_count; idx > insert_at; idx--)
8889 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
8890 }
8891 (*internal_relocs_p)[insert_at] = this_rela;
8892 sec->reloc_count++;
8893 if (relax_info->allocated_relocs)
8894 relax_info->relocs_count = sec->reloc_count;
8895 }
8896 }
8897 return TRUE;
8898 }
8899
8900
8901 /* This is similar to relax_section except that when a target is moved,
8902 we shift addresses up. We also need to modify the size. This
8903 algorithm does NOT allow for relocations into the middle of the
8904 property sections. */
8905
8906 static bfd_boolean
8907 relax_property_section (bfd *abfd,
8908 asection *sec,
8909 struct bfd_link_info *link_info)
8910 {
8911 Elf_Internal_Rela *internal_relocs;
8912 bfd_byte *contents;
8913 unsigned i;
8914 bfd_boolean ok = TRUE;
8915 bfd_boolean is_full_prop_section;
8916 size_t last_zfill_target_offset = 0;
8917 asection *last_zfill_target_sec = NULL;
8918 bfd_size_type sec_size;
8919 bfd_size_type entry_size;
8920
8921 sec_size = bfd_get_section_limit (abfd, sec);
8922 internal_relocs = retrieve_internal_relocs (abfd, sec,
8923 link_info->keep_memory);
8924 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8925 if (contents == NULL && sec_size != 0)
8926 {
8927 ok = FALSE;
8928 goto error_return;
8929 }
8930
8931 is_full_prop_section = xtensa_is_proptable_section (sec);
8932 if (is_full_prop_section)
8933 entry_size = 12;
8934 else
8935 entry_size = 8;
8936
8937 if (internal_relocs)
8938 {
8939 for (i = 0; i < sec->reloc_count; i++)
8940 {
8941 Elf_Internal_Rela *irel;
8942 xtensa_relax_info *target_relax_info;
8943 unsigned r_type;
8944 asection *target_sec;
8945 literal_value val;
8946 bfd_byte *size_p, *flags_p;
8947
8948 /* Locally change the source address.
8949 Translate the target to the new target address.
8950 If it points to this section and has been removed, MOVE IT.
8951 Also, don't forget to modify the associated SIZE at
8952 (offset + 4). */
8953
8954 irel = &internal_relocs[i];
8955 r_type = ELF32_R_TYPE (irel->r_info);
8956 if (r_type == R_XTENSA_NONE)
8957 continue;
8958
8959 /* Find the literal value. */
8960 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
8961 size_p = &contents[irel->r_offset + 4];
8962 flags_p = NULL;
8963 if (is_full_prop_section)
8964 flags_p = &contents[irel->r_offset + 8];
8965 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
8966
8967 target_sec = r_reloc_get_section (&val.r_rel);
8968 target_relax_info = get_xtensa_relax_info (target_sec);
8969
8970 if (target_relax_info
8971 && (target_relax_info->is_relaxable_literal_section
8972 || target_relax_info->is_relaxable_asm_section ))
8973 {
8974 /* Translate the relocation's destination. */
8975 bfd_vma old_offset = val.r_rel.target_offset;
8976 bfd_vma new_offset;
8977 long old_size, new_size;
8978 text_action *act = target_relax_info->action_list.head;
8979 new_offset = old_offset -
8980 removed_by_actions (&act, old_offset, FALSE);
8981
8982 /* Assert that we are not out of bounds. */
8983 old_size = bfd_get_32 (abfd, size_p);
8984 new_size = old_size;
8985
8986 if (old_size == 0)
8987 {
8988 /* Only the first zero-sized unreachable entry is
8989 allowed to expand. In this case the new offset
8990 should be the offset before the fill and the new
8991 size is the expansion size. For other zero-sized
8992 entries the resulting size should be zero with an
8993 offset before or after the fill address depending
8994 on whether the expanding unreachable entry
8995 preceeds it. */
8996 if (last_zfill_target_sec == 0
8997 || last_zfill_target_sec != target_sec
8998 || last_zfill_target_offset != old_offset)
8999 {
9000 bfd_vma new_end_offset = new_offset;
9001
9002 /* Recompute the new_offset, but this time don't
9003 include any fill inserted by relaxation. */
9004 act = target_relax_info->action_list.head;
9005 new_offset = old_offset -
9006 removed_by_actions (&act, old_offset, TRUE);
9007
9008 /* If it is not unreachable and we have not yet
9009 seen an unreachable at this address, place it
9010 before the fill address. */
9011 if (flags_p && (bfd_get_32 (abfd, flags_p)
9012 & XTENSA_PROP_UNREACHABLE) != 0)
9013 {
9014 new_size = new_end_offset - new_offset;
9015
9016 last_zfill_target_sec = target_sec;
9017 last_zfill_target_offset = old_offset;
9018 }
9019 }
9020 }
9021 else
9022 new_size -=
9023 removed_by_actions (&act, old_offset + old_size, TRUE);
9024
9025 if (new_size != old_size)
9026 {
9027 bfd_put_32 (abfd, new_size, size_p);
9028 pin_contents (sec, contents);
9029 }
9030
9031 if (new_offset != old_offset)
9032 {
9033 bfd_vma diff = new_offset - old_offset;
9034 irel->r_addend += diff;
9035 pin_internal_relocs (sec, internal_relocs);
9036 }
9037 }
9038 }
9039 }
9040
9041 /* Combine adjacent property table entries. This is also done in
9042 finish_dynamic_sections() but at that point it's too late to
9043 reclaim the space in the output section, so we do this twice. */
9044
9045 if (internal_relocs && (!link_info->relocatable
9046 || xtensa_is_littable_section (sec)))
9047 {
9048 Elf_Internal_Rela *last_irel = NULL;
9049 Elf_Internal_Rela *irel, *next_rel, *rel_end;
9050 int removed_bytes = 0;
9051 bfd_vma offset;
9052 bfd_vma section_size;
9053 flagword predef_flags;
9054
9055 predef_flags = xtensa_get_property_predef_flags (sec);
9056
9057 /* Walk over memory and relocations at the same time.
9058 This REQUIRES that the internal_relocs be sorted by offset. */
9059 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
9060 internal_reloc_compare);
9061
9062 pin_internal_relocs (sec, internal_relocs);
9063 pin_contents (sec, contents);
9064
9065 next_rel = internal_relocs;
9066 rel_end = internal_relocs + sec->reloc_count;
9067
9068 section_size = sec->size;
9069 BFD_ASSERT (section_size % entry_size == 0);
9070
9071 for (offset = 0; offset < section_size; offset += entry_size)
9072 {
9073 Elf_Internal_Rela *offset_rel, *extra_rel;
9074 bfd_vma bytes_to_remove, size, actual_offset;
9075 bfd_boolean remove_this_rel;
9076 flagword flags;
9077
9078 /* Find the first relocation for the entry at the current offset.
9079 Adjust the offsets of any extra relocations for the previous
9080 entry. */
9081 offset_rel = NULL;
9082 if (next_rel)
9083 {
9084 for (irel = next_rel; irel < rel_end; irel++)
9085 {
9086 if ((irel->r_offset == offset
9087 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9088 || irel->r_offset > offset)
9089 {
9090 offset_rel = irel;
9091 break;
9092 }
9093 irel->r_offset -= removed_bytes;
9094 }
9095 }
9096
9097 /* Find the next relocation (if there are any left). */
9098 extra_rel = NULL;
9099 if (offset_rel)
9100 {
9101 for (irel = offset_rel + 1; irel < rel_end; irel++)
9102 {
9103 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
9104 {
9105 extra_rel = irel;
9106 break;
9107 }
9108 }
9109 }
9110
9111 /* Check if there are relocations on the current entry. There
9112 should usually be a relocation on the offset field. If there
9113 are relocations on the size or flags, then we can't optimize
9114 this entry. Also, find the next relocation to examine on the
9115 next iteration. */
9116 if (offset_rel)
9117 {
9118 if (offset_rel->r_offset >= offset + entry_size)
9119 {
9120 next_rel = offset_rel;
9121 /* There are no relocations on the current entry, but we
9122 might still be able to remove it if the size is zero. */
9123 offset_rel = NULL;
9124 }
9125 else if (offset_rel->r_offset > offset
9126 || (extra_rel
9127 && extra_rel->r_offset < offset + entry_size))
9128 {
9129 /* There is a relocation on the size or flags, so we can't
9130 do anything with this entry. Continue with the next. */
9131 next_rel = offset_rel;
9132 continue;
9133 }
9134 else
9135 {
9136 BFD_ASSERT (offset_rel->r_offset == offset);
9137 offset_rel->r_offset -= removed_bytes;
9138 next_rel = offset_rel + 1;
9139 }
9140 }
9141 else
9142 next_rel = NULL;
9143
9144 remove_this_rel = FALSE;
9145 bytes_to_remove = 0;
9146 actual_offset = offset - removed_bytes;
9147 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
9148
9149 if (is_full_prop_section)
9150 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
9151 else
9152 flags = predef_flags;
9153
9154 if (size == 0
9155 && (flags & XTENSA_PROP_ALIGN) == 0
9156 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
9157 {
9158 /* Always remove entries with zero size and no alignment. */
9159 bytes_to_remove = entry_size;
9160 if (offset_rel)
9161 remove_this_rel = TRUE;
9162 }
9163 else if (offset_rel
9164 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
9165 {
9166 if (last_irel)
9167 {
9168 flagword old_flags;
9169 bfd_vma old_size =
9170 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
9171 bfd_vma old_address =
9172 (last_irel->r_addend
9173 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
9174 bfd_vma new_address =
9175 (offset_rel->r_addend
9176 + bfd_get_32 (abfd, &contents[actual_offset]));
9177 if (is_full_prop_section)
9178 old_flags = bfd_get_32
9179 (abfd, &contents[last_irel->r_offset + 8]);
9180 else
9181 old_flags = predef_flags;
9182
9183 if ((ELF32_R_SYM (offset_rel->r_info)
9184 == ELF32_R_SYM (last_irel->r_info))
9185 && old_address + old_size == new_address
9186 && old_flags == flags
9187 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
9188 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
9189 {
9190 /* Fix the old size. */
9191 bfd_put_32 (abfd, old_size + size,
9192 &contents[last_irel->r_offset + 4]);
9193 bytes_to_remove = entry_size;
9194 remove_this_rel = TRUE;
9195 }
9196 else
9197 last_irel = offset_rel;
9198 }
9199 else
9200 last_irel = offset_rel;
9201 }
9202
9203 if (remove_this_rel)
9204 {
9205 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9206 /* In case this is the last entry, move the relocation offset
9207 to the previous entry, if there is one. */
9208 if (offset_rel->r_offset >= bytes_to_remove)
9209 offset_rel->r_offset -= bytes_to_remove;
9210 else
9211 offset_rel->r_offset = 0;
9212 }
9213
9214 if (bytes_to_remove != 0)
9215 {
9216 removed_bytes += bytes_to_remove;
9217 if (offset + bytes_to_remove < section_size)
9218 memmove (&contents[actual_offset],
9219 &contents[actual_offset + bytes_to_remove],
9220 section_size - offset - bytes_to_remove);
9221 }
9222 }
9223
9224 if (removed_bytes)
9225 {
9226 /* Fix up any extra relocations on the last entry. */
9227 for (irel = next_rel; irel < rel_end; irel++)
9228 irel->r_offset -= removed_bytes;
9229
9230 /* Clear the removed bytes. */
9231 memset (&contents[section_size - removed_bytes], 0, removed_bytes);
9232
9233 sec->size = section_size - removed_bytes;
9234
9235 if (xtensa_is_littable_section (sec))
9236 {
9237 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
9238 if (sgotloc)
9239 sgotloc->size -= removed_bytes;
9240 }
9241 }
9242 }
9243
9244 error_return:
9245 release_internal_relocs (sec, internal_relocs);
9246 release_contents (sec, contents);
9247 return ok;
9248 }
9249
9250 \f
9251 /* Third relaxation pass. */
9252
9253 /* Change symbol values to account for removed literals. */
9254
9255 bfd_boolean
9256 relax_section_symbols (bfd *abfd, asection *sec)
9257 {
9258 xtensa_relax_info *relax_info;
9259 unsigned int sec_shndx;
9260 Elf_Internal_Shdr *symtab_hdr;
9261 Elf_Internal_Sym *isymbuf;
9262 unsigned i, num_syms, num_locals;
9263
9264 relax_info = get_xtensa_relax_info (sec);
9265 BFD_ASSERT (relax_info);
9266
9267 if (!relax_info->is_relaxable_literal_section
9268 && !relax_info->is_relaxable_asm_section)
9269 return TRUE;
9270
9271 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
9272
9273 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9274 isymbuf = retrieve_local_syms (abfd);
9275
9276 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
9277 num_locals = symtab_hdr->sh_info;
9278
9279 /* Adjust the local symbols defined in this section. */
9280 for (i = 0; i < num_locals; i++)
9281 {
9282 Elf_Internal_Sym *isym = &isymbuf[i];
9283
9284 if (isym->st_shndx == sec_shndx)
9285 {
9286 text_action *act = relax_info->action_list.head;
9287 bfd_vma orig_addr = isym->st_value;
9288
9289 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE);
9290
9291 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
9292 isym->st_size -=
9293 removed_by_actions (&act, orig_addr + isym->st_size, FALSE);
9294 }
9295 }
9296
9297 /* Now adjust the global symbols defined in this section. */
9298 for (i = 0; i < (num_syms - num_locals); i++)
9299 {
9300 struct elf_link_hash_entry *sym_hash;
9301
9302 sym_hash = elf_sym_hashes (abfd)[i];
9303
9304 if (sym_hash->root.type == bfd_link_hash_warning)
9305 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
9306
9307 if ((sym_hash->root.type == bfd_link_hash_defined
9308 || sym_hash->root.type == bfd_link_hash_defweak)
9309 && sym_hash->root.u.def.section == sec)
9310 {
9311 text_action *act = relax_info->action_list.head;
9312 bfd_vma orig_addr = sym_hash->root.u.def.value;
9313
9314 sym_hash->root.u.def.value -=
9315 removed_by_actions (&act, orig_addr, FALSE);
9316
9317 if (sym_hash->type == STT_FUNC)
9318 sym_hash->size -=
9319 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE);
9320 }
9321 }
9322
9323 return TRUE;
9324 }
9325
9326 \f
9327 /* "Fix" handling functions, called while performing relocations. */
9328
9329 static bfd_boolean
9330 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
9331 bfd *input_bfd,
9332 asection *input_section,
9333 bfd_byte *contents)
9334 {
9335 r_reloc r_rel;
9336 asection *sec, *old_sec;
9337 bfd_vma old_offset;
9338 int r_type = ELF32_R_TYPE (rel->r_info);
9339 reloc_bfd_fix *fix;
9340
9341 if (r_type == R_XTENSA_NONE)
9342 return TRUE;
9343
9344 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9345 if (!fix)
9346 return TRUE;
9347
9348 r_reloc_init (&r_rel, input_bfd, rel, contents,
9349 bfd_get_section_limit (input_bfd, input_section));
9350 old_sec = r_reloc_get_section (&r_rel);
9351 old_offset = r_rel.target_offset;
9352
9353 if (!old_sec || !r_reloc_is_defined (&r_rel))
9354 {
9355 if (r_type != R_XTENSA_ASM_EXPAND)
9356 {
9357 (*_bfd_error_handler)
9358 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
9359 input_bfd, input_section, rel->r_offset,
9360 elf_howto_table[r_type].name);
9361 return FALSE;
9362 }
9363 /* Leave it be. Resolution will happen in a later stage. */
9364 }
9365 else
9366 {
9367 sec = fix->target_sec;
9368 rel->r_addend += ((sec->output_offset + fix->target_offset)
9369 - (old_sec->output_offset + old_offset));
9370 }
9371 return TRUE;
9372 }
9373
9374
9375 static void
9376 do_fix_for_final_link (Elf_Internal_Rela *rel,
9377 bfd *input_bfd,
9378 asection *input_section,
9379 bfd_byte *contents,
9380 bfd_vma *relocationp)
9381 {
9382 asection *sec;
9383 int r_type = ELF32_R_TYPE (rel->r_info);
9384 reloc_bfd_fix *fix;
9385 bfd_vma fixup_diff;
9386
9387 if (r_type == R_XTENSA_NONE)
9388 return;
9389
9390 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
9391 if (!fix)
9392 return;
9393
9394 sec = fix->target_sec;
9395
9396 fixup_diff = rel->r_addend;
9397 if (elf_howto_table[fix->src_type].partial_inplace)
9398 {
9399 bfd_vma inplace_val;
9400 BFD_ASSERT (fix->src_offset
9401 < bfd_get_section_limit (input_bfd, input_section));
9402 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
9403 fixup_diff += inplace_val;
9404 }
9405
9406 *relocationp = (sec->output_section->vma
9407 + sec->output_offset
9408 + fix->target_offset - fixup_diff);
9409 }
9410
9411 \f
9412 /* Miscellaneous utility functions.... */
9413
9414 static asection *
9415 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
9416 {
9417 struct elf_xtensa_link_hash_table *htab;
9418 bfd *dynobj;
9419 char plt_name[10];
9420
9421 if (chunk == 0)
9422 {
9423 htab = elf_xtensa_hash_table (info);
9424 return htab->splt;
9425 }
9426
9427 dynobj = elf_hash_table (info)->dynobj;
9428 sprintf (plt_name, ".plt.%u", chunk);
9429 return bfd_get_section_by_name (dynobj, plt_name);
9430 }
9431
9432
9433 static asection *
9434 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
9435 {
9436 struct elf_xtensa_link_hash_table *htab;
9437 bfd *dynobj;
9438 char got_name[14];
9439
9440 if (chunk == 0)
9441 {
9442 htab = elf_xtensa_hash_table (info);
9443 return htab->sgotplt;
9444 }
9445
9446 dynobj = elf_hash_table (info)->dynobj;
9447 sprintf (got_name, ".got.plt.%u", chunk);
9448 return bfd_get_section_by_name (dynobj, got_name);
9449 }
9450
9451
9452 /* Get the input section for a given symbol index.
9453 If the symbol is:
9454 . a section symbol, return the section;
9455 . a common symbol, return the common section;
9456 . an undefined symbol, return the undefined section;
9457 . an indirect symbol, follow the links;
9458 . an absolute value, return the absolute section. */
9459
9460 static asection *
9461 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
9462 {
9463 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9464 asection *target_sec = NULL;
9465 if (r_symndx < symtab_hdr->sh_info)
9466 {
9467 Elf_Internal_Sym *isymbuf;
9468 unsigned int section_index;
9469
9470 isymbuf = retrieve_local_syms (abfd);
9471 section_index = isymbuf[r_symndx].st_shndx;
9472
9473 if (section_index == SHN_UNDEF)
9474 target_sec = bfd_und_section_ptr;
9475 else if (section_index > 0 && section_index < SHN_LORESERVE)
9476 target_sec = bfd_section_from_elf_index (abfd, section_index);
9477 else if (section_index == SHN_ABS)
9478 target_sec = bfd_abs_section_ptr;
9479 else if (section_index == SHN_COMMON)
9480 target_sec = bfd_com_section_ptr;
9481 else
9482 /* Who knows? */
9483 target_sec = NULL;
9484 }
9485 else
9486 {
9487 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9488 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
9489
9490 while (h->root.type == bfd_link_hash_indirect
9491 || h->root.type == bfd_link_hash_warning)
9492 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9493
9494 switch (h->root.type)
9495 {
9496 case bfd_link_hash_defined:
9497 case bfd_link_hash_defweak:
9498 target_sec = h->root.u.def.section;
9499 break;
9500 case bfd_link_hash_common:
9501 target_sec = bfd_com_section_ptr;
9502 break;
9503 case bfd_link_hash_undefined:
9504 case bfd_link_hash_undefweak:
9505 target_sec = bfd_und_section_ptr;
9506 break;
9507 default: /* New indirect warning. */
9508 target_sec = bfd_und_section_ptr;
9509 break;
9510 }
9511 }
9512 return target_sec;
9513 }
9514
9515
9516 static struct elf_link_hash_entry *
9517 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
9518 {
9519 unsigned long indx;
9520 struct elf_link_hash_entry *h;
9521 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9522
9523 if (r_symndx < symtab_hdr->sh_info)
9524 return NULL;
9525
9526 indx = r_symndx - symtab_hdr->sh_info;
9527 h = elf_sym_hashes (abfd)[indx];
9528 while (h->root.type == bfd_link_hash_indirect
9529 || h->root.type == bfd_link_hash_warning)
9530 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9531 return h;
9532 }
9533
9534
9535 /* Get the section-relative offset for a symbol number. */
9536
9537 static bfd_vma
9538 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
9539 {
9540 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9541 bfd_vma offset = 0;
9542
9543 if (r_symndx < symtab_hdr->sh_info)
9544 {
9545 Elf_Internal_Sym *isymbuf;
9546 isymbuf = retrieve_local_syms (abfd);
9547 offset = isymbuf[r_symndx].st_value;
9548 }
9549 else
9550 {
9551 unsigned long indx = r_symndx - symtab_hdr->sh_info;
9552 struct elf_link_hash_entry *h =
9553 elf_sym_hashes (abfd)[indx];
9554
9555 while (h->root.type == bfd_link_hash_indirect
9556 || h->root.type == bfd_link_hash_warning)
9557 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9558 if (h->root.type == bfd_link_hash_defined
9559 || h->root.type == bfd_link_hash_defweak)
9560 offset = h->root.u.def.value;
9561 }
9562 return offset;
9563 }
9564
9565
9566 static bfd_boolean
9567 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
9568 {
9569 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
9570 struct elf_link_hash_entry *h;
9571
9572 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
9573 if (h && h->root.type == bfd_link_hash_defweak)
9574 return TRUE;
9575 return FALSE;
9576 }
9577
9578
9579 static bfd_boolean
9580 pcrel_reloc_fits (xtensa_opcode opc,
9581 int opnd,
9582 bfd_vma self_address,
9583 bfd_vma dest_address)
9584 {
9585 xtensa_isa isa = xtensa_default_isa;
9586 uint32 valp = dest_address;
9587 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
9588 || xtensa_operand_encode (isa, opc, opnd, &valp))
9589 return FALSE;
9590 return TRUE;
9591 }
9592
9593
9594 static bfd_boolean
9595 xtensa_is_property_section (asection *sec)
9596 {
9597 if (xtensa_is_insntable_section (sec)
9598 || xtensa_is_littable_section (sec)
9599 || xtensa_is_proptable_section (sec))
9600 return TRUE;
9601
9602 return FALSE;
9603 }
9604
9605
9606 static bfd_boolean
9607 xtensa_is_insntable_section (asection *sec)
9608 {
9609 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
9610 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
9611 return TRUE;
9612
9613 return FALSE;
9614 }
9615
9616
9617 static bfd_boolean
9618 xtensa_is_littable_section (asection *sec)
9619 {
9620 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
9621 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
9622 return TRUE;
9623
9624 return FALSE;
9625 }
9626
9627
9628 static bfd_boolean
9629 xtensa_is_proptable_section (asection *sec)
9630 {
9631 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
9632 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
9633 return TRUE;
9634
9635 return FALSE;
9636 }
9637
9638
9639 static int
9640 internal_reloc_compare (const void *ap, const void *bp)
9641 {
9642 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9643 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9644
9645 if (a->r_offset != b->r_offset)
9646 return (a->r_offset - b->r_offset);
9647
9648 /* We don't need to sort on these criteria for correctness,
9649 but enforcing a more strict ordering prevents unstable qsort
9650 from behaving differently with different implementations.
9651 Without the code below we get correct but different results
9652 on Solaris 2.7 and 2.8. We would like to always produce the
9653 same results no matter the host. */
9654
9655 if (a->r_info != b->r_info)
9656 return (a->r_info - b->r_info);
9657
9658 return (a->r_addend - b->r_addend);
9659 }
9660
9661
9662 static int
9663 internal_reloc_matches (const void *ap, const void *bp)
9664 {
9665 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
9666 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
9667
9668 /* Check if one entry overlaps with the other; this shouldn't happen
9669 except when searching for a match. */
9670 return (a->r_offset - b->r_offset);
9671 }
9672
9673
9674 /* Predicate function used to look up a section in a particular group. */
9675
9676 static bfd_boolean
9677 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
9678 {
9679 const char *gname = inf;
9680 const char *group_name = elf_group_name (sec);
9681
9682 return (group_name == gname
9683 || (group_name != NULL
9684 && gname != NULL
9685 && strcmp (group_name, gname) == 0));
9686 }
9687
9688
9689 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
9690
9691 asection *
9692 xtensa_get_property_section (asection *sec, const char *base_name)
9693 {
9694 const char *suffix, *group_name;
9695 char *prop_sec_name;
9696 asection *prop_sec;
9697
9698 group_name = elf_group_name (sec);
9699 if (group_name)
9700 {
9701 suffix = strrchr (sec->name, '.');
9702 if (suffix == sec->name)
9703 suffix = 0;
9704 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
9705 + (suffix ? strlen (suffix) : 0));
9706 strcpy (prop_sec_name, base_name);
9707 if (suffix)
9708 strcat (prop_sec_name, suffix);
9709 }
9710 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
9711 {
9712 char *linkonce_kind = 0;
9713
9714 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
9715 linkonce_kind = "x.";
9716 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
9717 linkonce_kind = "p.";
9718 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
9719 linkonce_kind = "prop.";
9720 else
9721 abort ();
9722
9723 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
9724 + strlen (linkonce_kind) + 1);
9725 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
9726 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
9727
9728 suffix = sec->name + linkonce_len;
9729 /* For backward compatibility, replace "t." instead of inserting
9730 the new linkonce_kind (but not for "prop" sections). */
9731 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
9732 suffix += 2;
9733 strcat (prop_sec_name + linkonce_len, suffix);
9734 }
9735 else
9736 prop_sec_name = strdup (base_name);
9737
9738 /* Check if the section already exists. */
9739 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
9740 match_section_group,
9741 (void *) group_name);
9742 /* If not, create it. */
9743 if (! prop_sec)
9744 {
9745 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
9746 flags |= (bfd_get_section_flags (sec->owner, sec)
9747 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
9748
9749 prop_sec = bfd_make_section_anyway_with_flags
9750 (sec->owner, strdup (prop_sec_name), flags);
9751 if (! prop_sec)
9752 return 0;
9753
9754 elf_group_name (prop_sec) = group_name;
9755 }
9756
9757 free (prop_sec_name);
9758 return prop_sec;
9759 }
9760
9761
9762 flagword
9763 xtensa_get_property_predef_flags (asection *sec)
9764 {
9765 if (xtensa_is_insntable_section (sec))
9766 return (XTENSA_PROP_INSN
9767 | XTENSA_PROP_NO_TRANSFORM
9768 | XTENSA_PROP_INSN_NO_REORDER);
9769
9770 if (xtensa_is_littable_section (sec))
9771 return (XTENSA_PROP_LITERAL
9772 | XTENSA_PROP_NO_TRANSFORM
9773 | XTENSA_PROP_INSN_NO_REORDER);
9774
9775 return 0;
9776 }
9777
9778 \f
9779 /* Other functions called directly by the linker. */
9780
9781 bfd_boolean
9782 xtensa_callback_required_dependence (bfd *abfd,
9783 asection *sec,
9784 struct bfd_link_info *link_info,
9785 deps_callback_t callback,
9786 void *closure)
9787 {
9788 Elf_Internal_Rela *internal_relocs;
9789 bfd_byte *contents;
9790 unsigned i;
9791 bfd_boolean ok = TRUE;
9792 bfd_size_type sec_size;
9793
9794 sec_size = bfd_get_section_limit (abfd, sec);
9795
9796 /* ".plt*" sections have no explicit relocations but they contain L32R
9797 instructions that reference the corresponding ".got.plt*" sections. */
9798 if ((sec->flags & SEC_LINKER_CREATED) != 0
9799 && CONST_STRNEQ (sec->name, ".plt"))
9800 {
9801 asection *sgotplt;
9802
9803 /* Find the corresponding ".got.plt*" section. */
9804 if (sec->name[4] == '\0')
9805 sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt");
9806 else
9807 {
9808 char got_name[14];
9809 int chunk = 0;
9810
9811 BFD_ASSERT (sec->name[4] == '.');
9812 chunk = strtol (&sec->name[5], NULL, 10);
9813
9814 sprintf (got_name, ".got.plt.%u", chunk);
9815 sgotplt = bfd_get_section_by_name (sec->owner, got_name);
9816 }
9817 BFD_ASSERT (sgotplt);
9818
9819 /* Assume worst-case offsets: L32R at the very end of the ".plt"
9820 section referencing a literal at the very beginning of
9821 ".got.plt". This is very close to the real dependence, anyway. */
9822 (*callback) (sec, sec_size, sgotplt, 0, closure);
9823 }
9824
9825 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
9826 when building uclibc, which runs "ld -b binary /dev/null". */
9827 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
9828 return ok;
9829
9830 internal_relocs = retrieve_internal_relocs (abfd, sec,
9831 link_info->keep_memory);
9832 if (internal_relocs == NULL
9833 || sec->reloc_count == 0)
9834 return ok;
9835
9836 /* Cache the contents for the duration of this scan. */
9837 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9838 if (contents == NULL && sec_size != 0)
9839 {
9840 ok = FALSE;
9841 goto error_return;
9842 }
9843
9844 if (!xtensa_default_isa)
9845 xtensa_default_isa = xtensa_isa_init (0, 0);
9846
9847 for (i = 0; i < sec->reloc_count; i++)
9848 {
9849 Elf_Internal_Rela *irel = &internal_relocs[i];
9850 if (is_l32r_relocation (abfd, sec, contents, irel))
9851 {
9852 r_reloc l32r_rel;
9853 asection *target_sec;
9854 bfd_vma target_offset;
9855
9856 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
9857 target_sec = NULL;
9858 target_offset = 0;
9859 /* L32Rs must be local to the input file. */
9860 if (r_reloc_is_defined (&l32r_rel))
9861 {
9862 target_sec = r_reloc_get_section (&l32r_rel);
9863 target_offset = l32r_rel.target_offset;
9864 }
9865 (*callback) (sec, irel->r_offset, target_sec, target_offset,
9866 closure);
9867 }
9868 }
9869
9870 error_return:
9871 release_internal_relocs (sec, internal_relocs);
9872 release_contents (sec, contents);
9873 return ok;
9874 }
9875
9876 /* The default literal sections should always be marked as "code" (i.e.,
9877 SHF_EXECINSTR). This is particularly important for the Linux kernel
9878 module loader so that the literals are not placed after the text. */
9879 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
9880 {
9881 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9882 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9883 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
9884 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
9885 { NULL, 0, 0, 0, 0 }
9886 };
9887 \f
9888 #ifndef ELF_ARCH
9889 #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec
9890 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
9891 #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec
9892 #define TARGET_BIG_NAME "elf32-xtensa-be"
9893 #define ELF_ARCH bfd_arch_xtensa
9894
9895 #define ELF_MACHINE_CODE EM_XTENSA
9896 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
9897
9898 #if XCHAL_HAVE_MMU
9899 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
9900 #else /* !XCHAL_HAVE_MMU */
9901 #define ELF_MAXPAGESIZE 1
9902 #endif /* !XCHAL_HAVE_MMU */
9903 #endif /* ELF_ARCH */
9904
9905 #define elf_backend_can_gc_sections 1
9906 #define elf_backend_can_refcount 1
9907 #define elf_backend_plt_readonly 1
9908 #define elf_backend_got_header_size 4
9909 #define elf_backend_want_dynbss 0
9910 #define elf_backend_want_got_plt 1
9911
9912 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
9913
9914 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
9915 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
9916 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
9917 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
9918 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
9919 #define bfd_elf32_bfd_reloc_name_lookup \
9920 elf_xtensa_reloc_name_lookup
9921 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
9922 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
9923
9924 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
9925 #define elf_backend_check_relocs elf_xtensa_check_relocs
9926 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
9927 #define elf_backend_discard_info elf_xtensa_discard_info
9928 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
9929 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
9930 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
9931 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
9932 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
9933 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
9934 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
9935 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
9936 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
9937 #define elf_backend_object_p elf_xtensa_object_p
9938 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
9939 #define elf_backend_relocate_section elf_xtensa_relocate_section
9940 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
9941 #define elf_backend_omit_section_dynsym \
9942 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
9943 #define elf_backend_special_sections elf_xtensa_special_sections
9944 #define elf_backend_action_discarded elf_xtensa_action_discarded
9945
9946 #include "elf32-target.h"