]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-hppa.c
Correct spelling of "relocatable".
[thirdparty/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "alloca-conf.h"
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/hppa.h"
26 #include "libhppa.h"
27 #include "elf64-hppa.h"
28 #define ARCH_SIZE 64
29
30 #define PLT_ENTRY_SIZE 0x10
31 #define DLT_ENTRY_SIZE 0x8
32 #define OPD_ENTRY_SIZE 0x20
33
34 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
35
36 /* The stub is supposed to load the target address and target's DP
37 value out of the PLT, then do an external branch to the target
38 address.
39
40 LDD PLTOFF(%r27),%r1
41 BVE (%r1)
42 LDD PLTOFF+8(%r27),%r27
43
44 Note that we must use the LDD with a 14 bit displacement, not the one
45 with a 5 bit displacement. */
46 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
47 0x53, 0x7b, 0x00, 0x00 };
48
49 struct elf64_hppa_dyn_hash_entry
50 {
51 struct bfd_hash_entry root;
52
53 /* Offsets for this symbol in various linker sections. */
54 bfd_vma dlt_offset;
55 bfd_vma plt_offset;
56 bfd_vma opd_offset;
57 bfd_vma stub_offset;
58
59 /* The symbol table entry, if any, that this was derived from. */
60 struct elf_link_hash_entry *h;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* The index of the section symbol for the input section of
91 the relocation. Only needed when building shared libraries. */
92 int sec_symndx;
93
94 /* The offset within the input section of the relocation. */
95 bfd_vma offset;
96
97 /* The addend for the relocation. */
98 bfd_vma addend;
99
100 } *reloc_entries;
101
102 /* Nonzero if this symbol needs an entry in one of the linker
103 sections. */
104 unsigned want_dlt;
105 unsigned want_plt;
106 unsigned want_opd;
107 unsigned want_stub;
108 };
109
110 struct elf64_hppa_dyn_hash_table
111 {
112 struct bfd_hash_table root;
113 };
114
115 struct elf64_hppa_link_hash_table
116 {
117 struct elf_link_hash_table root;
118
119 /* Shortcuts to get to the various linker defined sections. */
120 asection *dlt_sec;
121 asection *dlt_rel_sec;
122 asection *plt_sec;
123 asection *plt_rel_sec;
124 asection *opd_sec;
125 asection *opd_rel_sec;
126 asection *other_rel_sec;
127
128 /* Offset of __gp within .plt section. When the PLT gets large we want
129 to slide __gp into the PLT section so that we can continue to use
130 single DP relative instructions to load values out of the PLT. */
131 bfd_vma gp_offset;
132
133 /* Note this is not strictly correct. We should create a stub section for
134 each input section with calls. The stub section should be placed before
135 the section with the call. */
136 asection *stub_sec;
137
138 bfd_vma text_segment_base;
139 bfd_vma data_segment_base;
140
141 struct elf64_hppa_dyn_hash_table dyn_hash_table;
142
143 /* We build tables to map from an input section back to its
144 symbol index. This is the BFD for which we currently have
145 a map. */
146 bfd *section_syms_bfd;
147
148 /* Array of symbol numbers for each input section attached to the
149 current BFD. */
150 int *section_syms;
151 };
152
153 #define elf64_hppa_hash_table(p) \
154 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
155
156 typedef struct bfd_hash_entry *(*new_hash_entry_func)
157 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
158
159 static bfd_boolean elf64_hppa_dyn_hash_table_init
160 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
161 new_hash_entry_func new));
162 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
163 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
164 const char *string));
165 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
166 PARAMS ((bfd *abfd));
167 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
168 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
169 bfd_boolean create, bfd_boolean copy));
170 static void elf64_hppa_dyn_hash_traverse
171 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
172 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
173 PTR info));
174
175 static const char *get_dyn_name
176 PARAMS ((asection *, struct elf_link_hash_entry *,
177 const Elf_Internal_Rela *, char **, size_t *));
178
179 /* This must follow the definitions of the various derived linker
180 hash tables and shared functions. */
181 #include "elf-hppa.h"
182
183 static bfd_boolean elf64_hppa_object_p
184 PARAMS ((bfd *));
185
186 static bfd_boolean elf64_hppa_section_from_shdr
187 PARAMS ((bfd *, Elf_Internal_Shdr *, const char *));
188
189 static void elf64_hppa_post_process_headers
190 PARAMS ((bfd *, struct bfd_link_info *));
191
192 static bfd_boolean elf64_hppa_create_dynamic_sections
193 PARAMS ((bfd *, struct bfd_link_info *));
194
195 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
196 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
197
198 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
199 PARAMS ((struct elf_link_hash_entry *, PTR));
200
201 static bfd_boolean elf64_hppa_size_dynamic_sections
202 PARAMS ((bfd *, struct bfd_link_info *));
203
204 static bfd_boolean elf64_hppa_link_output_symbol_hook
205 PARAMS ((bfd *abfd, struct bfd_link_info *, const char *,
206 Elf_Internal_Sym *, asection *input_sec));
207
208 static bfd_boolean elf64_hppa_finish_dynamic_symbol
209 PARAMS ((bfd *, struct bfd_link_info *,
210 struct elf_link_hash_entry *, Elf_Internal_Sym *));
211
212 static int elf64_hppa_additional_program_headers
213 PARAMS ((bfd *));
214
215 static bfd_boolean elf64_hppa_modify_segment_map
216 PARAMS ((bfd *));
217
218 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
219 PARAMS ((const Elf_Internal_Rela *));
220
221 static bfd_boolean elf64_hppa_finish_dynamic_sections
222 PARAMS ((bfd *, struct bfd_link_info *));
223
224 static bfd_boolean elf64_hppa_check_relocs
225 PARAMS ((bfd *, struct bfd_link_info *,
226 asection *, const Elf_Internal_Rela *));
227
228 static bfd_boolean elf64_hppa_dynamic_symbol_p
229 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
230
231 static bfd_boolean elf64_hppa_mark_exported_functions
232 PARAMS ((struct elf_link_hash_entry *, PTR));
233
234 static bfd_boolean elf64_hppa_finalize_opd
235 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
236
237 static bfd_boolean elf64_hppa_finalize_dlt
238 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
239
240 static bfd_boolean allocate_global_data_dlt
241 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
242
243 static bfd_boolean allocate_global_data_plt
244 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
245
246 static bfd_boolean allocate_global_data_stub
247 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
248
249 static bfd_boolean allocate_global_data_opd
250 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
251
252 static bfd_boolean get_reloc_section
253 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
254
255 static bfd_boolean count_dyn_reloc
256 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
257 int, asection *, int, bfd_vma, bfd_vma));
258
259 static bfd_boolean allocate_dynrel_entries
260 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
261
262 static bfd_boolean elf64_hppa_finalize_dynreloc
263 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
264
265 static bfd_boolean get_opd
266 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
267
268 static bfd_boolean get_plt
269 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
270
271 static bfd_boolean get_dlt
272 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
273
274 static bfd_boolean get_stub
275 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
276
277 static int elf64_hppa_elf_get_symbol_type
278 PARAMS ((Elf_Internal_Sym *, int));
279
280 static bfd_boolean
281 elf64_hppa_dyn_hash_table_init (ht, abfd, new)
282 struct elf64_hppa_dyn_hash_table *ht;
283 bfd *abfd ATTRIBUTE_UNUSED;
284 new_hash_entry_func new;
285 {
286 memset (ht, 0, sizeof (*ht));
287 return bfd_hash_table_init (&ht->root, new);
288 }
289
290 static struct bfd_hash_entry*
291 elf64_hppa_new_dyn_hash_entry (entry, table, string)
292 struct bfd_hash_entry *entry;
293 struct bfd_hash_table *table;
294 const char *string;
295 {
296 struct elf64_hppa_dyn_hash_entry *ret;
297 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
298
299 /* Allocate the structure if it has not already been allocated by a
300 subclass. */
301 if (!ret)
302 ret = bfd_hash_allocate (table, sizeof (*ret));
303
304 if (!ret)
305 return 0;
306
307 /* Initialize our local data. All zeros, and definitely easier
308 than setting 8 bit fields. */
309 memset (ret, 0, sizeof (*ret));
310
311 /* Call the allocation method of the superclass. */
312 ret = ((struct elf64_hppa_dyn_hash_entry *)
313 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
314
315 return &ret->root;
316 }
317
318 /* Create the derived linker hash table. The PA64 ELF port uses this
319 derived hash table to keep information specific to the PA ElF
320 linker (without using static variables). */
321
322 static struct bfd_link_hash_table*
323 elf64_hppa_hash_table_create (abfd)
324 bfd *abfd;
325 {
326 struct elf64_hppa_link_hash_table *ret;
327
328 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
329 if (!ret)
330 return 0;
331 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
332 _bfd_elf_link_hash_newfunc))
333 {
334 bfd_release (abfd, ret);
335 return 0;
336 }
337
338 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
339 elf64_hppa_new_dyn_hash_entry))
340 return 0;
341 return &ret->root.root;
342 }
343
344 /* Look up an entry in a PA64 ELF linker hash table. */
345
346 static struct elf64_hppa_dyn_hash_entry *
347 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
348 struct elf64_hppa_dyn_hash_table *table;
349 const char *string;
350 bfd_boolean create, copy;
351 {
352 return ((struct elf64_hppa_dyn_hash_entry *)
353 bfd_hash_lookup (&table->root, string, create, copy));
354 }
355
356 /* Traverse a PA64 ELF linker hash table. */
357
358 static void
359 elf64_hppa_dyn_hash_traverse (table, func, info)
360 struct elf64_hppa_dyn_hash_table *table;
361 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
362 PTR info;
363 {
364 (bfd_hash_traverse
365 (&table->root,
366 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
367 info));
368 }
369 \f
370 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
371
372 Additionally we set the default architecture and machine. */
373 static bfd_boolean
374 elf64_hppa_object_p (abfd)
375 bfd *abfd;
376 {
377 Elf_Internal_Ehdr * i_ehdrp;
378 unsigned int flags;
379
380 i_ehdrp = elf_elfheader (abfd);
381 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
382 {
383 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX)
384 return FALSE;
385 }
386 else
387 {
388 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
389 return FALSE;
390 }
391
392 flags = i_ehdrp->e_flags;
393 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
394 {
395 case EFA_PARISC_1_0:
396 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
397 case EFA_PARISC_1_1:
398 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
399 case EFA_PARISC_2_0:
400 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
401 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
402 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
403 }
404 /* Don't be fussy. */
405 return TRUE;
406 }
407
408 /* Given section type (hdr->sh_type), return a boolean indicating
409 whether or not the section is an elf64-hppa specific section. */
410 static bfd_boolean
411 elf64_hppa_section_from_shdr (abfd, hdr, name)
412 bfd *abfd;
413 Elf_Internal_Shdr *hdr;
414 const char *name;
415 {
416 asection *newsect;
417
418 switch (hdr->sh_type)
419 {
420 case SHT_PARISC_EXT:
421 if (strcmp (name, ".PARISC.archext") != 0)
422 return FALSE;
423 break;
424 case SHT_PARISC_UNWIND:
425 if (strcmp (name, ".PARISC.unwind") != 0)
426 return FALSE;
427 break;
428 case SHT_PARISC_DOC:
429 case SHT_PARISC_ANNOT:
430 default:
431 return FALSE;
432 }
433
434 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
435 return FALSE;
436 newsect = hdr->bfd_section;
437
438 return TRUE;
439 }
440
441 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
442 name describes what was once potentially anonymous memory. We
443 allocate memory as necessary, possibly reusing PBUF/PLEN. */
444
445 static const char *
446 get_dyn_name (sec, h, rel, pbuf, plen)
447 asection *sec;
448 struct elf_link_hash_entry *h;
449 const Elf_Internal_Rela *rel;
450 char **pbuf;
451 size_t *plen;
452 {
453 size_t nlen, tlen;
454 char *buf;
455 size_t len;
456
457 if (h && rel->r_addend == 0)
458 return h->root.root.string;
459
460 if (h)
461 nlen = strlen (h->root.root.string);
462 else
463 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
464 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
465
466 len = *plen;
467 buf = *pbuf;
468 if (len < tlen)
469 {
470 if (buf)
471 free (buf);
472 *pbuf = buf = malloc (tlen);
473 *plen = len = tlen;
474 if (!buf)
475 return NULL;
476 }
477
478 if (h)
479 {
480 memcpy (buf, h->root.root.string, nlen);
481 buf[nlen++] = '+';
482 sprintf_vma (buf + nlen, rel->r_addend);
483 }
484 else
485 {
486 nlen = sprintf (buf, "%x:%lx",
487 sec->id & 0xffffffff,
488 (long) ELF64_R_SYM (rel->r_info));
489 if (rel->r_addend)
490 {
491 buf[nlen++] = '+';
492 sprintf_vma (buf + nlen, rel->r_addend);
493 }
494 }
495
496 return buf;
497 }
498
499 /* SEC is a section containing relocs for an input BFD when linking; return
500 a suitable section for holding relocs in the output BFD for a link. */
501
502 static bfd_boolean
503 get_reloc_section (abfd, hppa_info, sec)
504 bfd *abfd;
505 struct elf64_hppa_link_hash_table *hppa_info;
506 asection *sec;
507 {
508 const char *srel_name;
509 asection *srel;
510 bfd *dynobj;
511
512 srel_name = (bfd_elf_string_from_elf_section
513 (abfd, elf_elfheader(abfd)->e_shstrndx,
514 elf_section_data(sec)->rel_hdr.sh_name));
515 if (srel_name == NULL)
516 return FALSE;
517
518 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
519 && strcmp (bfd_get_section_name (abfd, sec),
520 srel_name+5) == 0)
521 || (strncmp (srel_name, ".rel", 4) == 0
522 && strcmp (bfd_get_section_name (abfd, sec),
523 srel_name+4) == 0));
524
525 dynobj = hppa_info->root.dynobj;
526 if (!dynobj)
527 hppa_info->root.dynobj = dynobj = abfd;
528
529 srel = bfd_get_section_by_name (dynobj, srel_name);
530 if (srel == NULL)
531 {
532 srel = bfd_make_section (dynobj, srel_name);
533 if (srel == NULL
534 || !bfd_set_section_flags (dynobj, srel,
535 (SEC_ALLOC
536 | SEC_LOAD
537 | SEC_HAS_CONTENTS
538 | SEC_IN_MEMORY
539 | SEC_LINKER_CREATED
540 | SEC_READONLY))
541 || !bfd_set_section_alignment (dynobj, srel, 3))
542 return FALSE;
543 }
544
545 hppa_info->other_rel_sec = srel;
546 return TRUE;
547 }
548
549 /* Add a new entry to the list of dynamic relocations against DYN_H.
550
551 We use this to keep a record of all the FPTR relocations against a
552 particular symbol so that we can create FPTR relocations in the
553 output file. */
554
555 static bfd_boolean
556 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
557 bfd *abfd;
558 struct elf64_hppa_dyn_hash_entry *dyn_h;
559 int type;
560 asection *sec;
561 int sec_symndx;
562 bfd_vma offset;
563 bfd_vma addend;
564 {
565 struct elf64_hppa_dyn_reloc_entry *rent;
566
567 rent = (struct elf64_hppa_dyn_reloc_entry *)
568 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
569 if (!rent)
570 return FALSE;
571
572 rent->next = dyn_h->reloc_entries;
573 rent->type = type;
574 rent->sec = sec;
575 rent->sec_symndx = sec_symndx;
576 rent->offset = offset;
577 rent->addend = addend;
578 dyn_h->reloc_entries = rent;
579
580 return TRUE;
581 }
582
583 /* Scan the RELOCS and record the type of dynamic entries that each
584 referenced symbol needs. */
585
586 static bfd_boolean
587 elf64_hppa_check_relocs (abfd, info, sec, relocs)
588 bfd *abfd;
589 struct bfd_link_info *info;
590 asection *sec;
591 const Elf_Internal_Rela *relocs;
592 {
593 struct elf64_hppa_link_hash_table *hppa_info;
594 const Elf_Internal_Rela *relend;
595 Elf_Internal_Shdr *symtab_hdr;
596 const Elf_Internal_Rela *rel;
597 asection *dlt, *plt, *stubs;
598 char *buf;
599 size_t buf_len;
600 int sec_symndx;
601
602 if (info->relocatable)
603 return TRUE;
604
605 /* If this is the first dynamic object found in the link, create
606 the special sections required for dynamic linking. */
607 if (! elf_hash_table (info)->dynamic_sections_created)
608 {
609 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
610 return FALSE;
611 }
612
613 hppa_info = elf64_hppa_hash_table (info);
614 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
615
616 /* If necessary, build a new table holding section symbols indices
617 for this BFD. */
618
619 if (info->shared && hppa_info->section_syms_bfd != abfd)
620 {
621 unsigned long i;
622 unsigned int highest_shndx;
623 Elf_Internal_Sym *local_syms = NULL;
624 Elf_Internal_Sym *isym, *isymend;
625 bfd_size_type amt;
626
627 /* We're done with the old cache of section index to section symbol
628 index information. Free it.
629
630 ?!? Note we leak the last section_syms array. Presumably we
631 could free it in one of the later routines in this file. */
632 if (hppa_info->section_syms)
633 free (hppa_info->section_syms);
634
635 /* Read this BFD's local symbols. */
636 if (symtab_hdr->sh_info != 0)
637 {
638 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
639 if (local_syms == NULL)
640 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
641 symtab_hdr->sh_info, 0,
642 NULL, NULL, NULL);
643 if (local_syms == NULL)
644 return FALSE;
645 }
646
647 /* Record the highest section index referenced by the local symbols. */
648 highest_shndx = 0;
649 isymend = local_syms + symtab_hdr->sh_info;
650 for (isym = local_syms; isym < isymend; isym++)
651 {
652 if (isym->st_shndx > highest_shndx)
653 highest_shndx = isym->st_shndx;
654 }
655
656 /* Allocate an array to hold the section index to section symbol index
657 mapping. Bump by one since we start counting at zero. */
658 highest_shndx++;
659 amt = highest_shndx;
660 amt *= sizeof (int);
661 hppa_info->section_syms = (int *) bfd_malloc (amt);
662
663 /* Now walk the local symbols again. If we find a section symbol,
664 record the index of the symbol into the section_syms array. */
665 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
666 {
667 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
668 hppa_info->section_syms[isym->st_shndx] = i;
669 }
670
671 /* We are finished with the local symbols. */
672 if (local_syms != NULL
673 && symtab_hdr->contents != (unsigned char *) local_syms)
674 {
675 if (! info->keep_memory)
676 free (local_syms);
677 else
678 {
679 /* Cache the symbols for elf_link_input_bfd. */
680 symtab_hdr->contents = (unsigned char *) local_syms;
681 }
682 }
683
684 /* Record which BFD we built the section_syms mapping for. */
685 hppa_info->section_syms_bfd = abfd;
686 }
687
688 /* Record the symbol index for this input section. We may need it for
689 relocations when building shared libraries. When not building shared
690 libraries this value is never really used, but assign it to zero to
691 prevent out of bounds memory accesses in other routines. */
692 if (info->shared)
693 {
694 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
695
696 /* If we did not find a section symbol for this section, then
697 something went terribly wrong above. */
698 if (sec_symndx == -1)
699 return FALSE;
700
701 sec_symndx = hppa_info->section_syms[sec_symndx];
702 }
703 else
704 sec_symndx = 0;
705
706 dlt = plt = stubs = NULL;
707 buf = NULL;
708 buf_len = 0;
709
710 relend = relocs + sec->reloc_count;
711 for (rel = relocs; rel < relend; ++rel)
712 {
713 enum {
714 NEED_DLT = 1,
715 NEED_PLT = 2,
716 NEED_STUB = 4,
717 NEED_OPD = 8,
718 NEED_DYNREL = 16,
719 };
720
721 struct elf_link_hash_entry *h = NULL;
722 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
723 struct elf64_hppa_dyn_hash_entry *dyn_h;
724 int need_entry;
725 const char *addr_name;
726 bfd_boolean maybe_dynamic;
727 int dynrel_type = R_PARISC_NONE;
728 static reloc_howto_type *howto;
729
730 if (r_symndx >= symtab_hdr->sh_info)
731 {
732 /* We're dealing with a global symbol -- find its hash entry
733 and mark it as being referenced. */
734 long indx = r_symndx - symtab_hdr->sh_info;
735 h = elf_sym_hashes (abfd)[indx];
736 while (h->root.type == bfd_link_hash_indirect
737 || h->root.type == bfd_link_hash_warning)
738 h = (struct elf_link_hash_entry *) h->root.u.i.link;
739
740 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
741 }
742
743 /* We can only get preliminary data on whether a symbol is
744 locally or externally defined, as not all of the input files
745 have yet been processed. Do something with what we know, as
746 this may help reduce memory usage and processing time later. */
747 maybe_dynamic = FALSE;
748 if (h && ((info->shared
749 && (!info->symbolic || info->allow_shlib_undefined) )
750 || ! (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)
751 || h->root.type == bfd_link_hash_defweak))
752 maybe_dynamic = TRUE;
753
754 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
755 need_entry = 0;
756 switch (howto->type)
757 {
758 /* These are simple indirect references to symbols through the
759 DLT. We need to create a DLT entry for any symbols which
760 appears in a DLTIND relocation. */
761 case R_PARISC_DLTIND21L:
762 case R_PARISC_DLTIND14R:
763 case R_PARISC_DLTIND14F:
764 case R_PARISC_DLTIND14WR:
765 case R_PARISC_DLTIND14DR:
766 need_entry = NEED_DLT;
767 break;
768
769 /* ?!? These need a DLT entry. But I have no idea what to do with
770 the "link time TP value. */
771 case R_PARISC_LTOFF_TP21L:
772 case R_PARISC_LTOFF_TP14R:
773 case R_PARISC_LTOFF_TP14F:
774 case R_PARISC_LTOFF_TP64:
775 case R_PARISC_LTOFF_TP14WR:
776 case R_PARISC_LTOFF_TP14DR:
777 case R_PARISC_LTOFF_TP16F:
778 case R_PARISC_LTOFF_TP16WF:
779 case R_PARISC_LTOFF_TP16DF:
780 need_entry = NEED_DLT;
781 break;
782
783 /* These are function calls. Depending on their precise target we
784 may need to make a stub for them. The stub uses the PLT, so we
785 need to create PLT entries for these symbols too. */
786 case R_PARISC_PCREL12F:
787 case R_PARISC_PCREL17F:
788 case R_PARISC_PCREL22F:
789 case R_PARISC_PCREL32:
790 case R_PARISC_PCREL64:
791 case R_PARISC_PCREL21L:
792 case R_PARISC_PCREL17R:
793 case R_PARISC_PCREL17C:
794 case R_PARISC_PCREL14R:
795 case R_PARISC_PCREL14F:
796 case R_PARISC_PCREL22C:
797 case R_PARISC_PCREL14WR:
798 case R_PARISC_PCREL14DR:
799 case R_PARISC_PCREL16F:
800 case R_PARISC_PCREL16WF:
801 case R_PARISC_PCREL16DF:
802 need_entry = (NEED_PLT | NEED_STUB);
803 break;
804
805 case R_PARISC_PLTOFF21L:
806 case R_PARISC_PLTOFF14R:
807 case R_PARISC_PLTOFF14F:
808 case R_PARISC_PLTOFF14WR:
809 case R_PARISC_PLTOFF14DR:
810 case R_PARISC_PLTOFF16F:
811 case R_PARISC_PLTOFF16WF:
812 case R_PARISC_PLTOFF16DF:
813 need_entry = (NEED_PLT);
814 break;
815
816 case R_PARISC_DIR64:
817 if (info->shared || maybe_dynamic)
818 need_entry = (NEED_DYNREL);
819 dynrel_type = R_PARISC_DIR64;
820 break;
821
822 /* This is an indirect reference through the DLT to get the address
823 of a OPD descriptor. Thus we need to make a DLT entry that points
824 to an OPD entry. */
825 case R_PARISC_LTOFF_FPTR21L:
826 case R_PARISC_LTOFF_FPTR14R:
827 case R_PARISC_LTOFF_FPTR14WR:
828 case R_PARISC_LTOFF_FPTR14DR:
829 case R_PARISC_LTOFF_FPTR32:
830 case R_PARISC_LTOFF_FPTR64:
831 case R_PARISC_LTOFF_FPTR16F:
832 case R_PARISC_LTOFF_FPTR16WF:
833 case R_PARISC_LTOFF_FPTR16DF:
834 if (info->shared || maybe_dynamic)
835 need_entry = (NEED_DLT | NEED_OPD);
836 else
837 need_entry = (NEED_DLT | NEED_OPD);
838 dynrel_type = R_PARISC_FPTR64;
839 break;
840
841 /* This is a simple OPD entry. */
842 case R_PARISC_FPTR64:
843 if (info->shared || maybe_dynamic)
844 need_entry = (NEED_OPD | NEED_DYNREL);
845 else
846 need_entry = (NEED_OPD);
847 dynrel_type = R_PARISC_FPTR64;
848 break;
849
850 /* Add more cases as needed. */
851 }
852
853 if (!need_entry)
854 continue;
855
856 /* Collect a canonical name for this address. */
857 addr_name = get_dyn_name (sec, h, rel, &buf, &buf_len);
858
859 /* Collect the canonical entry data for this address. */
860 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
861 addr_name, TRUE, TRUE);
862 BFD_ASSERT (dyn_h);
863
864 /* Stash away enough information to be able to find this symbol
865 regardless of whether or not it is local or global. */
866 dyn_h->h = h;
867 dyn_h->owner = abfd;
868 dyn_h->sym_indx = r_symndx;
869
870 /* ?!? We may need to do some error checking in here. */
871 /* Create what's needed. */
872 if (need_entry & NEED_DLT)
873 {
874 if (! hppa_info->dlt_sec
875 && ! get_dlt (abfd, info, hppa_info))
876 goto err_out;
877 dyn_h->want_dlt = 1;
878 }
879
880 if (need_entry & NEED_PLT)
881 {
882 if (! hppa_info->plt_sec
883 && ! get_plt (abfd, info, hppa_info))
884 goto err_out;
885 dyn_h->want_plt = 1;
886 }
887
888 if (need_entry & NEED_STUB)
889 {
890 if (! hppa_info->stub_sec
891 && ! get_stub (abfd, info, hppa_info))
892 goto err_out;
893 dyn_h->want_stub = 1;
894 }
895
896 if (need_entry & NEED_OPD)
897 {
898 if (! hppa_info->opd_sec
899 && ! get_opd (abfd, info, hppa_info))
900 goto err_out;
901
902 dyn_h->want_opd = 1;
903
904 /* FPTRs are not allocated by the dynamic linker for PA64, though
905 it is possible that will change in the future. */
906
907 /* This could be a local function that had its address taken, in
908 which case H will be NULL. */
909 if (h)
910 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
911 }
912
913 /* Add a new dynamic relocation to the chain of dynamic
914 relocations for this symbol. */
915 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
916 {
917 if (! hppa_info->other_rel_sec
918 && ! get_reloc_section (abfd, hppa_info, sec))
919 goto err_out;
920
921 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
922 sec_symndx, rel->r_offset, rel->r_addend))
923 goto err_out;
924
925 /* If we are building a shared library and we just recorded
926 a dynamic R_PARISC_FPTR64 relocation, then make sure the
927 section symbol for this section ends up in the dynamic
928 symbol table. */
929 if (info->shared && dynrel_type == R_PARISC_FPTR64
930 && ! (_bfd_elf64_link_record_local_dynamic_symbol
931 (info, abfd, sec_symndx)))
932 return FALSE;
933 }
934 }
935
936 if (buf)
937 free (buf);
938 return TRUE;
939
940 err_out:
941 if (buf)
942 free (buf);
943 return FALSE;
944 }
945
946 struct elf64_hppa_allocate_data
947 {
948 struct bfd_link_info *info;
949 bfd_size_type ofs;
950 };
951
952 /* Should we do dynamic things to this symbol? */
953
954 static bfd_boolean
955 elf64_hppa_dynamic_symbol_p (h, info)
956 struct elf_link_hash_entry *h;
957 struct bfd_link_info *info;
958 {
959 if (h == NULL)
960 return FALSE;
961
962 while (h->root.type == bfd_link_hash_indirect
963 || h->root.type == bfd_link_hash_warning)
964 h = (struct elf_link_hash_entry *) h->root.u.i.link;
965
966 if (h->dynindx == -1)
967 return FALSE;
968
969 if (h->root.type == bfd_link_hash_undefweak
970 || h->root.type == bfd_link_hash_defweak)
971 return TRUE;
972
973 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
974 return FALSE;
975
976 if ((info->shared && (!info->symbolic || info->allow_shlib_undefined))
977 || ((h->elf_link_hash_flags
978 & (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR))
979 == (ELF_LINK_HASH_DEF_DYNAMIC | ELF_LINK_HASH_REF_REGULAR)))
980 return TRUE;
981
982 return FALSE;
983 }
984
985 /* Mark all funtions exported by this file so that we can later allocate
986 entries in .opd for them. */
987
988 static bfd_boolean
989 elf64_hppa_mark_exported_functions (h, data)
990 struct elf_link_hash_entry *h;
991 PTR data;
992 {
993 struct bfd_link_info *info = (struct bfd_link_info *)data;
994 struct elf64_hppa_link_hash_table *hppa_info;
995
996 hppa_info = elf64_hppa_hash_table (info);
997
998 if (h->root.type == bfd_link_hash_warning)
999 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1000
1001 if (h
1002 && (h->root.type == bfd_link_hash_defined
1003 || h->root.type == bfd_link_hash_defweak)
1004 && h->root.u.def.section->output_section != NULL
1005 && h->type == STT_FUNC)
1006 {
1007 struct elf64_hppa_dyn_hash_entry *dyn_h;
1008
1009 /* Add this symbol to the PA64 linker hash table. */
1010 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1011 h->root.root.string, TRUE, TRUE);
1012 BFD_ASSERT (dyn_h);
1013 dyn_h->h = h;
1014
1015 if (! hppa_info->opd_sec
1016 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1017 return FALSE;
1018
1019 dyn_h->want_opd = 1;
1020 /* Put a flag here for output_symbol_hook. */
1021 dyn_h->st_shndx = -1;
1022 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1023 }
1024
1025 return TRUE;
1026 }
1027
1028 /* Allocate space for a DLT entry. */
1029
1030 static bfd_boolean
1031 allocate_global_data_dlt (dyn_h, data)
1032 struct elf64_hppa_dyn_hash_entry *dyn_h;
1033 PTR data;
1034 {
1035 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1036
1037 if (dyn_h->want_dlt)
1038 {
1039 struct elf_link_hash_entry *h = dyn_h->h;
1040
1041 if (x->info->shared)
1042 {
1043 /* Possibly add the symbol to the local dynamic symbol
1044 table since we might need to create a dynamic relocation
1045 against it. */
1046 if (! h
1047 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1048 {
1049 bfd *owner;
1050 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1051
1052 if (! (_bfd_elf64_link_record_local_dynamic_symbol
1053 (x->info, owner, dyn_h->sym_indx)))
1054 return FALSE;
1055 }
1056 }
1057
1058 dyn_h->dlt_offset = x->ofs;
1059 x->ofs += DLT_ENTRY_SIZE;
1060 }
1061 return TRUE;
1062 }
1063
1064 /* Allocate space for a DLT.PLT entry. */
1065
1066 static bfd_boolean
1067 allocate_global_data_plt (dyn_h, data)
1068 struct elf64_hppa_dyn_hash_entry *dyn_h;
1069 PTR data;
1070 {
1071 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1072
1073 if (dyn_h->want_plt
1074 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1075 && !((dyn_h->h->root.type == bfd_link_hash_defined
1076 || dyn_h->h->root.type == bfd_link_hash_defweak)
1077 && dyn_h->h->root.u.def.section->output_section != NULL))
1078 {
1079 dyn_h->plt_offset = x->ofs;
1080 x->ofs += PLT_ENTRY_SIZE;
1081 if (dyn_h->plt_offset < 0x2000)
1082 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1083 }
1084 else
1085 dyn_h->want_plt = 0;
1086
1087 return TRUE;
1088 }
1089
1090 /* Allocate space for a STUB entry. */
1091
1092 static bfd_boolean
1093 allocate_global_data_stub (dyn_h, data)
1094 struct elf64_hppa_dyn_hash_entry *dyn_h;
1095 PTR data;
1096 {
1097 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1098
1099 if (dyn_h->want_stub
1100 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1101 && !((dyn_h->h->root.type == bfd_link_hash_defined
1102 || dyn_h->h->root.type == bfd_link_hash_defweak)
1103 && dyn_h->h->root.u.def.section->output_section != NULL))
1104 {
1105 dyn_h->stub_offset = x->ofs;
1106 x->ofs += sizeof (plt_stub);
1107 }
1108 else
1109 dyn_h->want_stub = 0;
1110 return TRUE;
1111 }
1112
1113 /* Allocate space for a FPTR entry. */
1114
1115 static bfd_boolean
1116 allocate_global_data_opd (dyn_h, data)
1117 struct elf64_hppa_dyn_hash_entry *dyn_h;
1118 PTR data;
1119 {
1120 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1121
1122 if (dyn_h->want_opd)
1123 {
1124 struct elf_link_hash_entry *h = dyn_h->h;
1125
1126 if (h)
1127 while (h->root.type == bfd_link_hash_indirect
1128 || h->root.type == bfd_link_hash_warning)
1129 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1130
1131 /* We never need an opd entry for a symbol which is not
1132 defined by this output file. */
1133 if (h && (h->root.type == bfd_link_hash_undefined
1134 || h->root.u.def.section->output_section == NULL))
1135 dyn_h->want_opd = 0;
1136
1137 /* If we are creating a shared library, took the address of a local
1138 function or might export this function from this object file, then
1139 we have to create an opd descriptor. */
1140 else if (x->info->shared
1141 || h == NULL
1142 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1143 || (h->root.type == bfd_link_hash_defined
1144 || h->root.type == bfd_link_hash_defweak))
1145 {
1146 /* If we are creating a shared library, then we will have to
1147 create a runtime relocation for the symbol to properly
1148 initialize the .opd entry. Make sure the symbol gets
1149 added to the dynamic symbol table. */
1150 if (x->info->shared
1151 && (h == NULL || (h->dynindx == -1)))
1152 {
1153 bfd *owner;
1154 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1155
1156 if (!_bfd_elf64_link_record_local_dynamic_symbol
1157 (x->info, owner, dyn_h->sym_indx))
1158 return FALSE;
1159 }
1160
1161 /* This may not be necessary or desirable anymore now that
1162 we have some support for dealing with section symbols
1163 in dynamic relocs. But name munging does make the result
1164 much easier to debug. ie, the EPLT reloc will reference
1165 a symbol like .foobar, instead of .text + offset. */
1166 if (x->info->shared && h)
1167 {
1168 char *new_name;
1169 struct elf_link_hash_entry *nh;
1170
1171 new_name = alloca (strlen (h->root.root.string) + 2);
1172 new_name[0] = '.';
1173 strcpy (new_name + 1, h->root.root.string);
1174
1175 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1176 new_name, TRUE, TRUE, TRUE);
1177
1178 nh->root.type = h->root.type;
1179 nh->root.u.def.value = h->root.u.def.value;
1180 nh->root.u.def.section = h->root.u.def.section;
1181
1182 if (! bfd_elf64_link_record_dynamic_symbol (x->info, nh))
1183 return FALSE;
1184
1185 }
1186 dyn_h->opd_offset = x->ofs;
1187 x->ofs += OPD_ENTRY_SIZE;
1188 }
1189
1190 /* Otherwise we do not need an opd entry. */
1191 else
1192 dyn_h->want_opd = 0;
1193 }
1194 return TRUE;
1195 }
1196
1197 /* HP requires the EI_OSABI field to be filled in. The assignment to
1198 EI_ABIVERSION may not be strictly necessary. */
1199
1200 static void
1201 elf64_hppa_post_process_headers (abfd, link_info)
1202 bfd * abfd;
1203 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1204 {
1205 Elf_Internal_Ehdr * i_ehdrp;
1206
1207 i_ehdrp = elf_elfheader (abfd);
1208
1209 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1210 {
1211 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1212 }
1213 else
1214 {
1215 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1216 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1217 }
1218 }
1219
1220 /* Create function descriptor section (.opd). This section is called .opd
1221 because it contains "official prodecure descriptors". The "official"
1222 refers to the fact that these descriptors are used when taking the address
1223 of a procedure, thus ensuring a unique address for each procedure. */
1224
1225 static bfd_boolean
1226 get_opd (abfd, info, hppa_info)
1227 bfd *abfd;
1228 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1229 struct elf64_hppa_link_hash_table *hppa_info;
1230 {
1231 asection *opd;
1232 bfd *dynobj;
1233
1234 opd = hppa_info->opd_sec;
1235 if (!opd)
1236 {
1237 dynobj = hppa_info->root.dynobj;
1238 if (!dynobj)
1239 hppa_info->root.dynobj = dynobj = abfd;
1240
1241 opd = bfd_make_section (dynobj, ".opd");
1242 if (!opd
1243 || !bfd_set_section_flags (dynobj, opd,
1244 (SEC_ALLOC
1245 | SEC_LOAD
1246 | SEC_HAS_CONTENTS
1247 | SEC_IN_MEMORY
1248 | SEC_LINKER_CREATED))
1249 || !bfd_set_section_alignment (abfd, opd, 3))
1250 {
1251 BFD_ASSERT (0);
1252 return FALSE;
1253 }
1254
1255 hppa_info->opd_sec = opd;
1256 }
1257
1258 return TRUE;
1259 }
1260
1261 /* Create the PLT section. */
1262
1263 static bfd_boolean
1264 get_plt (abfd, info, hppa_info)
1265 bfd *abfd;
1266 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1267 struct elf64_hppa_link_hash_table *hppa_info;
1268 {
1269 asection *plt;
1270 bfd *dynobj;
1271
1272 plt = hppa_info->plt_sec;
1273 if (!plt)
1274 {
1275 dynobj = hppa_info->root.dynobj;
1276 if (!dynobj)
1277 hppa_info->root.dynobj = dynobj = abfd;
1278
1279 plt = bfd_make_section (dynobj, ".plt");
1280 if (!plt
1281 || !bfd_set_section_flags (dynobj, plt,
1282 (SEC_ALLOC
1283 | SEC_LOAD
1284 | SEC_HAS_CONTENTS
1285 | SEC_IN_MEMORY
1286 | SEC_LINKER_CREATED))
1287 || !bfd_set_section_alignment (abfd, plt, 3))
1288 {
1289 BFD_ASSERT (0);
1290 return FALSE;
1291 }
1292
1293 hppa_info->plt_sec = plt;
1294 }
1295
1296 return TRUE;
1297 }
1298
1299 /* Create the DLT section. */
1300
1301 static bfd_boolean
1302 get_dlt (abfd, info, hppa_info)
1303 bfd *abfd;
1304 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1305 struct elf64_hppa_link_hash_table *hppa_info;
1306 {
1307 asection *dlt;
1308 bfd *dynobj;
1309
1310 dlt = hppa_info->dlt_sec;
1311 if (!dlt)
1312 {
1313 dynobj = hppa_info->root.dynobj;
1314 if (!dynobj)
1315 hppa_info->root.dynobj = dynobj = abfd;
1316
1317 dlt = bfd_make_section (dynobj, ".dlt");
1318 if (!dlt
1319 || !bfd_set_section_flags (dynobj, dlt,
1320 (SEC_ALLOC
1321 | SEC_LOAD
1322 | SEC_HAS_CONTENTS
1323 | SEC_IN_MEMORY
1324 | SEC_LINKER_CREATED))
1325 || !bfd_set_section_alignment (abfd, dlt, 3))
1326 {
1327 BFD_ASSERT (0);
1328 return FALSE;
1329 }
1330
1331 hppa_info->dlt_sec = dlt;
1332 }
1333
1334 return TRUE;
1335 }
1336
1337 /* Create the stubs section. */
1338
1339 static bfd_boolean
1340 get_stub (abfd, info, hppa_info)
1341 bfd *abfd;
1342 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1343 struct elf64_hppa_link_hash_table *hppa_info;
1344 {
1345 asection *stub;
1346 bfd *dynobj;
1347
1348 stub = hppa_info->stub_sec;
1349 if (!stub)
1350 {
1351 dynobj = hppa_info->root.dynobj;
1352 if (!dynobj)
1353 hppa_info->root.dynobj = dynobj = abfd;
1354
1355 stub = bfd_make_section (dynobj, ".stub");
1356 if (!stub
1357 || !bfd_set_section_flags (dynobj, stub,
1358 (SEC_ALLOC
1359 | SEC_LOAD
1360 | SEC_HAS_CONTENTS
1361 | SEC_IN_MEMORY
1362 | SEC_READONLY
1363 | SEC_LINKER_CREATED))
1364 || !bfd_set_section_alignment (abfd, stub, 3))
1365 {
1366 BFD_ASSERT (0);
1367 return FALSE;
1368 }
1369
1370 hppa_info->stub_sec = stub;
1371 }
1372
1373 return TRUE;
1374 }
1375
1376 /* Create sections necessary for dynamic linking. This is only a rough
1377 cut and will likely change as we learn more about the somewhat
1378 unusual dynamic linking scheme HP uses.
1379
1380 .stub:
1381 Contains code to implement cross-space calls. The first time one
1382 of the stubs is used it will call into the dynamic linker, later
1383 calls will go straight to the target.
1384
1385 The only stub we support right now looks like
1386
1387 ldd OFFSET(%dp),%r1
1388 bve %r0(%r1)
1389 ldd OFFSET+8(%dp),%dp
1390
1391 Other stubs may be needed in the future. We may want the remove
1392 the break/nop instruction. It is only used right now to keep the
1393 offset of a .plt entry and a .stub entry in sync.
1394
1395 .dlt:
1396 This is what most people call the .got. HP used a different name.
1397 Losers.
1398
1399 .rela.dlt:
1400 Relocations for the DLT.
1401
1402 .plt:
1403 Function pointers as address,gp pairs.
1404
1405 .rela.plt:
1406 Should contain dynamic IPLT (and EPLT?) relocations.
1407
1408 .opd:
1409 FPTRS
1410
1411 .rela.opd:
1412 EPLT relocations for symbols exported from shared libraries. */
1413
1414 static bfd_boolean
1415 elf64_hppa_create_dynamic_sections (abfd, info)
1416 bfd *abfd;
1417 struct bfd_link_info *info;
1418 {
1419 asection *s;
1420
1421 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1422 return FALSE;
1423
1424 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1425 return FALSE;
1426
1427 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1428 return FALSE;
1429
1430 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1431 return FALSE;
1432
1433 s = bfd_make_section(abfd, ".rela.dlt");
1434 if (s == NULL
1435 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1436 | SEC_HAS_CONTENTS
1437 | SEC_IN_MEMORY
1438 | SEC_READONLY
1439 | SEC_LINKER_CREATED))
1440 || !bfd_set_section_alignment (abfd, s, 3))
1441 return FALSE;
1442 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1443
1444 s = bfd_make_section(abfd, ".rela.plt");
1445 if (s == NULL
1446 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1447 | SEC_HAS_CONTENTS
1448 | SEC_IN_MEMORY
1449 | SEC_READONLY
1450 | SEC_LINKER_CREATED))
1451 || !bfd_set_section_alignment (abfd, s, 3))
1452 return FALSE;
1453 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1454
1455 s = bfd_make_section(abfd, ".rela.data");
1456 if (s == NULL
1457 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1458 | SEC_HAS_CONTENTS
1459 | SEC_IN_MEMORY
1460 | SEC_READONLY
1461 | SEC_LINKER_CREATED))
1462 || !bfd_set_section_alignment (abfd, s, 3))
1463 return FALSE;
1464 elf64_hppa_hash_table (info)->other_rel_sec = s;
1465
1466 s = bfd_make_section(abfd, ".rela.opd");
1467 if (s == NULL
1468 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1469 | SEC_HAS_CONTENTS
1470 | SEC_IN_MEMORY
1471 | SEC_READONLY
1472 | SEC_LINKER_CREATED))
1473 || !bfd_set_section_alignment (abfd, s, 3))
1474 return FALSE;
1475 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1476
1477 return TRUE;
1478 }
1479
1480 /* Allocate dynamic relocations for those symbols that turned out
1481 to be dynamic. */
1482
1483 static bfd_boolean
1484 allocate_dynrel_entries (dyn_h, data)
1485 struct elf64_hppa_dyn_hash_entry *dyn_h;
1486 PTR data;
1487 {
1488 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1489 struct elf64_hppa_link_hash_table *hppa_info;
1490 struct elf64_hppa_dyn_reloc_entry *rent;
1491 bfd_boolean dynamic_symbol, shared;
1492
1493 hppa_info = elf64_hppa_hash_table (x->info);
1494 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1495 shared = x->info->shared;
1496
1497 /* We may need to allocate relocations for a non-dynamic symbol
1498 when creating a shared library. */
1499 if (!dynamic_symbol && !shared)
1500 return TRUE;
1501
1502 /* Take care of the normal data relocations. */
1503
1504 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1505 {
1506 /* Allocate one iff we are building a shared library, the relocation
1507 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1508 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1509 continue;
1510
1511 hppa_info->other_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1512
1513 /* Make sure this symbol gets into the dynamic symbol table if it is
1514 not already recorded. ?!? This should not be in the loop since
1515 the symbol need only be added once. */
1516 if (dyn_h->h == 0
1517 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1518 if (!_bfd_elf64_link_record_local_dynamic_symbol
1519 (x->info, rent->sec->owner, dyn_h->sym_indx))
1520 return FALSE;
1521 }
1522
1523 /* Take care of the GOT and PLT relocations. */
1524
1525 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1526 hppa_info->dlt_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1527
1528 /* If we are building a shared library, then every symbol that has an
1529 opd entry will need an EPLT relocation to relocate the symbol's address
1530 and __gp value based on the runtime load address. */
1531 if (shared && dyn_h->want_opd)
1532 hppa_info->opd_rel_sec->_raw_size += sizeof (Elf64_External_Rela);
1533
1534 if (dyn_h->want_plt && dynamic_symbol)
1535 {
1536 bfd_size_type t = 0;
1537
1538 /* Dynamic symbols get one IPLT relocation. Local symbols in
1539 shared libraries get two REL relocations. Local symbols in
1540 main applications get nothing. */
1541 if (dynamic_symbol)
1542 t = sizeof (Elf64_External_Rela);
1543 else if (shared)
1544 t = 2 * sizeof (Elf64_External_Rela);
1545
1546 hppa_info->plt_rel_sec->_raw_size += t;
1547 }
1548
1549 return TRUE;
1550 }
1551
1552 /* Adjust a symbol defined by a dynamic object and referenced by a
1553 regular object. */
1554
1555 static bfd_boolean
1556 elf64_hppa_adjust_dynamic_symbol (info, h)
1557 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1558 struct elf_link_hash_entry *h;
1559 {
1560 /* ??? Undefined symbols with PLT entries should be re-defined
1561 to be the PLT entry. */
1562
1563 /* If this is a weak symbol, and there is a real definition, the
1564 processor independent code will have arranged for us to see the
1565 real definition first, and we can just use the same value. */
1566 if (h->weakdef != NULL)
1567 {
1568 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1569 || h->weakdef->root.type == bfd_link_hash_defweak);
1570 h->root.u.def.section = h->weakdef->root.u.def.section;
1571 h->root.u.def.value = h->weakdef->root.u.def.value;
1572 return TRUE;
1573 }
1574
1575 /* If this is a reference to a symbol defined by a dynamic object which
1576 is not a function, we might allocate the symbol in our .dynbss section
1577 and allocate a COPY dynamic relocation.
1578
1579 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1580 of hackery. */
1581
1582 return TRUE;
1583 }
1584
1585 /* This function is called via elf_link_hash_traverse to mark millicode
1586 symbols with a dynindx of -1 and to remove the string table reference
1587 from the dynamic symbol table. If the symbol is not a millicode symbol,
1588 elf64_hppa_mark_exported_functions is called. */
1589
1590 static bfd_boolean
1591 elf64_hppa_mark_milli_and_exported_functions (h, data)
1592 struct elf_link_hash_entry *h;
1593 PTR data;
1594 {
1595 struct bfd_link_info *info = (struct bfd_link_info *)data;
1596 struct elf_link_hash_entry *elf = h;
1597
1598 if (elf->root.type == bfd_link_hash_warning)
1599 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1600
1601 if (elf->type == STT_PARISC_MILLI)
1602 {
1603 if (elf->dynindx != -1)
1604 {
1605 elf->dynindx = -1;
1606 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1607 elf->dynstr_index);
1608 }
1609 return TRUE;
1610 }
1611
1612 return elf64_hppa_mark_exported_functions (h, data);
1613 }
1614
1615 /* Set the final sizes of the dynamic sections and allocate memory for
1616 the contents of our special sections. */
1617
1618 static bfd_boolean
1619 elf64_hppa_size_dynamic_sections (output_bfd, info)
1620 bfd *output_bfd;
1621 struct bfd_link_info *info;
1622 {
1623 bfd *dynobj;
1624 asection *s;
1625 bfd_boolean plt;
1626 bfd_boolean relocs;
1627 bfd_boolean reltext;
1628 struct elf64_hppa_allocate_data data;
1629 struct elf64_hppa_link_hash_table *hppa_info;
1630
1631 hppa_info = elf64_hppa_hash_table (info);
1632
1633 dynobj = elf_hash_table (info)->dynobj;
1634 BFD_ASSERT (dynobj != NULL);
1635
1636 /* Mark each function this program exports so that we will allocate
1637 space in the .opd section for each function's FPTR. If we are
1638 creating dynamic sections, change the dynamic index of millicode
1639 symbols to -1 and remove them from the string table for .dynstr.
1640
1641 We have to traverse the main linker hash table since we have to
1642 find functions which may not have been mentioned in any relocs. */
1643 elf_link_hash_traverse (elf_hash_table (info),
1644 (elf_hash_table (info)->dynamic_sections_created
1645 ? elf64_hppa_mark_milli_and_exported_functions
1646 : elf64_hppa_mark_exported_functions),
1647 info);
1648
1649 if (elf_hash_table (info)->dynamic_sections_created)
1650 {
1651 /* Set the contents of the .interp section to the interpreter. */
1652 if (! info->shared)
1653 {
1654 s = bfd_get_section_by_name (dynobj, ".interp");
1655 BFD_ASSERT (s != NULL);
1656 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1657 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1658 }
1659 }
1660 else
1661 {
1662 /* We may have created entries in the .rela.got section.
1663 However, if we are not creating the dynamic sections, we will
1664 not actually use these entries. Reset the size of .rela.dlt,
1665 which will cause it to get stripped from the output file
1666 below. */
1667 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1668 if (s != NULL)
1669 s->_raw_size = 0;
1670 }
1671
1672 /* Allocate the GOT entries. */
1673
1674 data.info = info;
1675 if (elf64_hppa_hash_table (info)->dlt_sec)
1676 {
1677 data.ofs = 0x0;
1678 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1679 allocate_global_data_dlt, &data);
1680 hppa_info->dlt_sec->_raw_size = data.ofs;
1681
1682 data.ofs = 0x0;
1683 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1684 allocate_global_data_plt, &data);
1685 hppa_info->plt_sec->_raw_size = data.ofs;
1686
1687 data.ofs = 0x0;
1688 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1689 allocate_global_data_stub, &data);
1690 hppa_info->stub_sec->_raw_size = data.ofs;
1691 }
1692
1693 /* Allocate space for entries in the .opd section. */
1694 if (elf64_hppa_hash_table (info)->opd_sec)
1695 {
1696 data.ofs = 0;
1697 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1698 allocate_global_data_opd, &data);
1699 hppa_info->opd_sec->_raw_size = data.ofs;
1700 }
1701
1702 /* Now allocate space for dynamic relocations, if necessary. */
1703 if (hppa_info->root.dynamic_sections_created)
1704 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1705 allocate_dynrel_entries, &data);
1706
1707 /* The sizes of all the sections are set. Allocate memory for them. */
1708 plt = FALSE;
1709 relocs = FALSE;
1710 reltext = FALSE;
1711 for (s = dynobj->sections; s != NULL; s = s->next)
1712 {
1713 const char *name;
1714 bfd_boolean strip;
1715
1716 if ((s->flags & SEC_LINKER_CREATED) == 0)
1717 continue;
1718
1719 /* It's OK to base decisions on the section name, because none
1720 of the dynobj section names depend upon the input files. */
1721 name = bfd_get_section_name (dynobj, s);
1722
1723 strip = 0;
1724
1725 if (strcmp (name, ".plt") == 0)
1726 {
1727 /* Strip this section if we don't need it; see the comment below. */
1728 if (s->_raw_size == 0)
1729 {
1730 strip = TRUE;
1731 }
1732 else
1733 {
1734 /* Remember whether there is a PLT. */
1735 plt = TRUE;
1736 }
1737 }
1738 else if (strcmp (name, ".dlt") == 0)
1739 {
1740 /* Strip this section if we don't need it; see the comment below. */
1741 if (s->_raw_size == 0)
1742 {
1743 strip = TRUE;
1744 }
1745 }
1746 else if (strcmp (name, ".opd") == 0)
1747 {
1748 /* Strip this section if we don't need it; see the comment below. */
1749 if (s->_raw_size == 0)
1750 {
1751 strip = TRUE;
1752 }
1753 }
1754 else if (strncmp (name, ".rela", 5) == 0)
1755 {
1756 /* If we don't need this section, strip it from the output file.
1757 This is mostly to handle .rela.bss and .rela.plt. We must
1758 create both sections in create_dynamic_sections, because they
1759 must be created before the linker maps input sections to output
1760 sections. The linker does that before adjust_dynamic_symbol
1761 is called, and it is that function which decides whether
1762 anything needs to go into these sections. */
1763 if (s->_raw_size == 0)
1764 {
1765 /* If we don't need this section, strip it from the
1766 output file. This is mostly to handle .rela.bss and
1767 .rela.plt. We must create both sections in
1768 create_dynamic_sections, because they must be created
1769 before the linker maps input sections to output
1770 sections. The linker does that before
1771 adjust_dynamic_symbol is called, and it is that
1772 function which decides whether anything needs to go
1773 into these sections. */
1774 strip = TRUE;
1775 }
1776 else
1777 {
1778 asection *target;
1779
1780 /* Remember whether there are any reloc sections other
1781 than .rela.plt. */
1782 if (strcmp (name, ".rela.plt") != 0)
1783 {
1784 const char *outname;
1785
1786 relocs = TRUE;
1787
1788 /* If this relocation section applies to a read only
1789 section, then we probably need a DT_TEXTREL
1790 entry. The entries in the .rela.plt section
1791 really apply to the .got section, which we
1792 created ourselves and so know is not readonly. */
1793 outname = bfd_get_section_name (output_bfd,
1794 s->output_section);
1795 target = bfd_get_section_by_name (output_bfd, outname + 4);
1796 if (target != NULL
1797 && (target->flags & SEC_READONLY) != 0
1798 && (target->flags & SEC_ALLOC) != 0)
1799 reltext = TRUE;
1800 }
1801
1802 /* We use the reloc_count field as a counter if we need
1803 to copy relocs into the output file. */
1804 s->reloc_count = 0;
1805 }
1806 }
1807 else if (strncmp (name, ".dlt", 4) != 0
1808 && strcmp (name, ".stub") != 0
1809 && strcmp (name, ".got") != 0)
1810 {
1811 /* It's not one of our sections, so don't allocate space. */
1812 continue;
1813 }
1814
1815 if (strip)
1816 {
1817 _bfd_strip_section_from_output (info, s);
1818 continue;
1819 }
1820
1821 /* Allocate memory for the section contents if it has not
1822 been allocated already. We use bfd_zalloc here in case
1823 unused entries are not reclaimed before the section's
1824 contents are written out. This should not happen, but this
1825 way if it does, we get a R_PARISC_NONE reloc instead of
1826 garbage. */
1827 if (s->contents == NULL)
1828 {
1829 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1830 if (s->contents == NULL && s->_raw_size != 0)
1831 return FALSE;
1832 }
1833 }
1834
1835 if (elf_hash_table (info)->dynamic_sections_created)
1836 {
1837 /* Always create a DT_PLTGOT. It actually has nothing to do with
1838 the PLT, it is how we communicate the __gp value of a load
1839 module to the dynamic linker. */
1840 #define add_dynamic_entry(TAG, VAL) \
1841 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1842
1843 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1844 || !add_dynamic_entry (DT_PLTGOT, 0))
1845 return FALSE;
1846
1847 /* Add some entries to the .dynamic section. We fill in the
1848 values later, in elf64_hppa_finish_dynamic_sections, but we
1849 must add the entries now so that we get the correct size for
1850 the .dynamic section. The DT_DEBUG entry is filled in by the
1851 dynamic linker and used by the debugger. */
1852 if (! info->shared)
1853 {
1854 if (!add_dynamic_entry (DT_DEBUG, 0)
1855 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1856 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1857 return FALSE;
1858 }
1859
1860 /* Force DT_FLAGS to always be set.
1861 Required by HPUX 11.00 patch PHSS_26559. */
1862 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1863 return FALSE;
1864
1865 if (plt)
1866 {
1867 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1868 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1869 || !add_dynamic_entry (DT_JMPREL, 0))
1870 return FALSE;
1871 }
1872
1873 if (relocs)
1874 {
1875 if (!add_dynamic_entry (DT_RELA, 0)
1876 || !add_dynamic_entry (DT_RELASZ, 0)
1877 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1878 return FALSE;
1879 }
1880
1881 if (reltext)
1882 {
1883 if (!add_dynamic_entry (DT_TEXTREL, 0))
1884 return FALSE;
1885 info->flags |= DF_TEXTREL;
1886 }
1887 }
1888 #undef add_dynamic_entry
1889
1890 return TRUE;
1891 }
1892
1893 /* Called after we have output the symbol into the dynamic symbol
1894 table, but before we output the symbol into the normal symbol
1895 table.
1896
1897 For some symbols we had to change their address when outputting
1898 the dynamic symbol table. We undo that change here so that
1899 the symbols have their expected value in the normal symbol
1900 table. Ick. */
1901
1902 static bfd_boolean
1903 elf64_hppa_link_output_symbol_hook (abfd, info, name, sym, input_sec)
1904 bfd *abfd ATTRIBUTE_UNUSED;
1905 struct bfd_link_info *info;
1906 const char *name;
1907 Elf_Internal_Sym *sym;
1908 asection *input_sec ATTRIBUTE_UNUSED;
1909 {
1910 struct elf64_hppa_link_hash_table *hppa_info;
1911 struct elf64_hppa_dyn_hash_entry *dyn_h;
1912
1913 /* We may be called with the file symbol or section symbols.
1914 They never need munging, so it is safe to ignore them. */
1915 if (!name)
1916 return TRUE;
1917
1918 /* Get the PA dyn_symbol (if any) associated with NAME. */
1919 hppa_info = elf64_hppa_hash_table (info);
1920 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1921 name, FALSE, FALSE);
1922
1923 /* Function symbols for which we created .opd entries *may* have been
1924 munged by finish_dynamic_symbol and have to be un-munged here.
1925
1926 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1927 into non-dynamic ones, so we initialize st_shndx to -1 in
1928 mark_exported_functions and check to see if it was overwritten
1929 here instead of just checking dyn_h->h->dynindx. */
1930 if (dyn_h && dyn_h->want_opd && dyn_h->st_shndx != -1)
1931 {
1932 /* Restore the saved value and section index. */
1933 sym->st_value = dyn_h->st_value;
1934 sym->st_shndx = dyn_h->st_shndx;
1935 }
1936
1937 return TRUE;
1938 }
1939
1940 /* Finish up dynamic symbol handling. We set the contents of various
1941 dynamic sections here. */
1942
1943 static bfd_boolean
1944 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1945 bfd *output_bfd;
1946 struct bfd_link_info *info;
1947 struct elf_link_hash_entry *h;
1948 Elf_Internal_Sym *sym;
1949 {
1950 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1951 struct elf64_hppa_link_hash_table *hppa_info;
1952 struct elf64_hppa_dyn_hash_entry *dyn_h;
1953
1954 hppa_info = elf64_hppa_hash_table (info);
1955 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1956 h->root.root.string, FALSE, FALSE);
1957
1958 stub = hppa_info->stub_sec;
1959 splt = hppa_info->plt_sec;
1960 sdlt = hppa_info->dlt_sec;
1961 sopd = hppa_info->opd_sec;
1962 spltrel = hppa_info->plt_rel_sec;
1963 sdltrel = hppa_info->dlt_rel_sec;
1964
1965 /* Incredible. It is actually necessary to NOT use the symbol's real
1966 value when building the dynamic symbol table for a shared library.
1967 At least for symbols that refer to functions.
1968
1969 We will store a new value and section index into the symbol long
1970 enough to output it into the dynamic symbol table, then we restore
1971 the original values (in elf64_hppa_link_output_symbol_hook). */
1972 if (dyn_h && dyn_h->want_opd)
1973 {
1974 BFD_ASSERT (sopd != NULL)
1975
1976 /* Save away the original value and section index so that we
1977 can restore them later. */
1978 dyn_h->st_value = sym->st_value;
1979 dyn_h->st_shndx = sym->st_shndx;
1980
1981 /* For the dynamic symbol table entry, we want the value to be
1982 address of this symbol's entry within the .opd section. */
1983 sym->st_value = (dyn_h->opd_offset
1984 + sopd->output_offset
1985 + sopd->output_section->vma);
1986 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1987 sopd->output_section);
1988 }
1989
1990 /* Initialize a .plt entry if requested. */
1991 if (dyn_h && dyn_h->want_plt
1992 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1993 {
1994 bfd_vma value;
1995 Elf_Internal_Rela rel;
1996 bfd_byte *loc;
1997
1998 BFD_ASSERT (splt != NULL && spltrel != NULL)
1999
2000 /* We do not actually care about the value in the PLT entry
2001 if we are creating a shared library and the symbol is
2002 still undefined, we create a dynamic relocation to fill
2003 in the correct value. */
2004 if (info->shared && h->root.type == bfd_link_hash_undefined)
2005 value = 0;
2006 else
2007 value = (h->root.u.def.value + h->root.u.def.section->vma);
2008
2009 /* Fill in the entry in the procedure linkage table.
2010
2011 The format of a plt entry is
2012 <funcaddr> <__gp>.
2013
2014 plt_offset is the offset within the PLT section at which to
2015 install the PLT entry.
2016
2017 We are modifying the in-memory PLT contents here, so we do not add
2018 in the output_offset of the PLT section. */
2019
2020 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2021 value = _bfd_get_gp_value (splt->output_section->owner);
2022 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2023
2024 /* Create a dynamic IPLT relocation for this entry.
2025
2026 We are creating a relocation in the output file's PLT section,
2027 which is included within the DLT secton. So we do need to include
2028 the PLT's output_offset in the computation of the relocation's
2029 address. */
2030 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2031 + splt->output_section->vma);
2032 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2033 rel.r_addend = 0;
2034
2035 loc = spltrel->contents;
2036 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2037 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2038 }
2039
2040 /* Initialize an external call stub entry if requested. */
2041 if (dyn_h && dyn_h->want_stub
2042 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2043 {
2044 bfd_vma value;
2045 int insn;
2046 unsigned int max_offset;
2047
2048 BFD_ASSERT (stub != NULL)
2049
2050 /* Install the generic stub template.
2051
2052 We are modifying the contents of the stub section, so we do not
2053 need to include the stub section's output_offset here. */
2054 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2055
2056 /* Fix up the first ldd instruction.
2057
2058 We are modifying the contents of the STUB section in memory,
2059 so we do not need to include its output offset in this computation.
2060
2061 Note the plt_offset value is the value of the PLT entry relative to
2062 the start of the PLT section. These instructions will reference
2063 data relative to the value of __gp, which may not necessarily have
2064 the same address as the start of the PLT section.
2065
2066 gp_offset contains the offset of __gp within the PLT section. */
2067 value = dyn_h->plt_offset - hppa_info->gp_offset;
2068
2069 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2070 if (output_bfd->arch_info->mach >= 25)
2071 {
2072 /* Wide mode allows 16 bit offsets. */
2073 max_offset = 32768;
2074 insn &= ~ 0xfff1;
2075 insn |= re_assemble_16 ((int) value);
2076 }
2077 else
2078 {
2079 max_offset = 8192;
2080 insn &= ~ 0x3ff1;
2081 insn |= re_assemble_14 ((int) value);
2082 }
2083
2084 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2085 {
2086 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2087 dyn_h->root.string,
2088 (long) value);
2089 return FALSE;
2090 }
2091
2092 bfd_put_32 (stub->owner, (bfd_vma) insn,
2093 stub->contents + dyn_h->stub_offset);
2094
2095 /* Fix up the second ldd instruction. */
2096 value += 8;
2097 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2098 if (output_bfd->arch_info->mach >= 25)
2099 {
2100 insn &= ~ 0xfff1;
2101 insn |= re_assemble_16 ((int) value);
2102 }
2103 else
2104 {
2105 insn &= ~ 0x3ff1;
2106 insn |= re_assemble_14 ((int) value);
2107 }
2108 bfd_put_32 (stub->owner, (bfd_vma) insn,
2109 stub->contents + dyn_h->stub_offset + 8);
2110 }
2111
2112 return TRUE;
2113 }
2114
2115 /* The .opd section contains FPTRs for each function this file
2116 exports. Initialize the FPTR entries. */
2117
2118 static bfd_boolean
2119 elf64_hppa_finalize_opd (dyn_h, data)
2120 struct elf64_hppa_dyn_hash_entry *dyn_h;
2121 PTR data;
2122 {
2123 struct bfd_link_info *info = (struct bfd_link_info *)data;
2124 struct elf64_hppa_link_hash_table *hppa_info;
2125 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2126 asection *sopd;
2127 asection *sopdrel;
2128
2129 hppa_info = elf64_hppa_hash_table (info);
2130 sopd = hppa_info->opd_sec;
2131 sopdrel = hppa_info->opd_rel_sec;
2132
2133 if (h && dyn_h->want_opd)
2134 {
2135 bfd_vma value;
2136
2137 /* The first two words of an .opd entry are zero.
2138
2139 We are modifying the contents of the OPD section in memory, so we
2140 do not need to include its output offset in this computation. */
2141 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2142
2143 value = (h->root.u.def.value
2144 + h->root.u.def.section->output_section->vma
2145 + h->root.u.def.section->output_offset);
2146
2147 /* The next word is the address of the function. */
2148 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2149
2150 /* The last word is our local __gp value. */
2151 value = _bfd_get_gp_value (sopd->output_section->owner);
2152 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2153 }
2154
2155 /* If we are generating a shared library, we must generate EPLT relocations
2156 for each entry in the .opd, even for static functions (they may have
2157 had their address taken). */
2158 if (info->shared && dyn_h && dyn_h->want_opd)
2159 {
2160 Elf_Internal_Rela rel;
2161 bfd_byte *loc;
2162 int dynindx;
2163
2164 /* We may need to do a relocation against a local symbol, in
2165 which case we have to look up it's dynamic symbol index off
2166 the local symbol hash table. */
2167 if (h && h->dynindx != -1)
2168 dynindx = h->dynindx;
2169 else
2170 dynindx
2171 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2172 dyn_h->sym_indx);
2173
2174 /* The offset of this relocation is the absolute address of the
2175 .opd entry for this symbol. */
2176 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2177 + sopd->output_section->vma);
2178
2179 /* If H is non-null, then we have an external symbol.
2180
2181 It is imperative that we use a different dynamic symbol for the
2182 EPLT relocation if the symbol has global scope.
2183
2184 In the dynamic symbol table, the function symbol will have a value
2185 which is address of the function's .opd entry.
2186
2187 Thus, we can not use that dynamic symbol for the EPLT relocation
2188 (if we did, the data in the .opd would reference itself rather
2189 than the actual address of the function). Instead we have to use
2190 a new dynamic symbol which has the same value as the original global
2191 function symbol.
2192
2193 We prefix the original symbol with a "." and use the new symbol in
2194 the EPLT relocation. This new symbol has already been recorded in
2195 the symbol table, we just have to look it up and use it.
2196
2197 We do not have such problems with static functions because we do
2198 not make their addresses in the dynamic symbol table point to
2199 the .opd entry. Ultimately this should be safe since a static
2200 function can not be directly referenced outside of its shared
2201 library.
2202
2203 We do have to play similar games for FPTR relocations in shared
2204 libraries, including those for static symbols. See the FPTR
2205 handling in elf64_hppa_finalize_dynreloc. */
2206 if (h)
2207 {
2208 char *new_name;
2209 struct elf_link_hash_entry *nh;
2210
2211 new_name = alloca (strlen (h->root.root.string) + 2);
2212 new_name[0] = '.';
2213 strcpy (new_name + 1, h->root.root.string);
2214
2215 nh = elf_link_hash_lookup (elf_hash_table (info),
2216 new_name, FALSE, FALSE, FALSE);
2217
2218 /* All we really want from the new symbol is its dynamic
2219 symbol index. */
2220 dynindx = nh->dynindx;
2221 }
2222
2223 rel.r_addend = 0;
2224 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2225
2226 loc = sopdrel->contents;
2227 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2228 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2229 }
2230 return TRUE;
2231 }
2232
2233 /* The .dlt section contains addresses for items referenced through the
2234 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2235 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2236
2237 static bfd_boolean
2238 elf64_hppa_finalize_dlt (dyn_h, data)
2239 struct elf64_hppa_dyn_hash_entry *dyn_h;
2240 PTR data;
2241 {
2242 struct bfd_link_info *info = (struct bfd_link_info *)data;
2243 struct elf64_hppa_link_hash_table *hppa_info;
2244 asection *sdlt, *sdltrel;
2245 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2246
2247 hppa_info = elf64_hppa_hash_table (info);
2248
2249 sdlt = hppa_info->dlt_sec;
2250 sdltrel = hppa_info->dlt_rel_sec;
2251
2252 /* H/DYN_H may refer to a local variable and we know it's
2253 address, so there is no need to create a relocation. Just install
2254 the proper value into the DLT, note this shortcut can not be
2255 skipped when building a shared library. */
2256 if (! info->shared && h && dyn_h->want_dlt)
2257 {
2258 bfd_vma value;
2259
2260 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2261 to point to the FPTR entry in the .opd section.
2262
2263 We include the OPD's output offset in this computation as
2264 we are referring to an absolute address in the resulting
2265 object file. */
2266 if (dyn_h->want_opd)
2267 {
2268 value = (dyn_h->opd_offset
2269 + hppa_info->opd_sec->output_offset
2270 + hppa_info->opd_sec->output_section->vma);
2271 }
2272 else if (h->root.u.def.section)
2273 {
2274 value = h->root.u.def.value + h->root.u.def.section->output_offset;
2275 if (h->root.u.def.section->output_section)
2276 value += h->root.u.def.section->output_section->vma;
2277 else
2278 value += h->root.u.def.section->vma;
2279 }
2280 else
2281 /* We have an undefined function reference. */
2282 value = 0;
2283
2284 /* We do not need to include the output offset of the DLT section
2285 here because we are modifying the in-memory contents. */
2286 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2287 }
2288
2289 /* Create a relocation for the DLT entry assocated with this symbol.
2290 When building a shared library the symbol does not have to be dynamic. */
2291 if (dyn_h->want_dlt
2292 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2293 {
2294 Elf_Internal_Rela rel;
2295 bfd_byte *loc;
2296 int dynindx;
2297
2298 /* We may need to do a relocation against a local symbol, in
2299 which case we have to look up it's dynamic symbol index off
2300 the local symbol hash table. */
2301 if (h && h->dynindx != -1)
2302 dynindx = h->dynindx;
2303 else
2304 dynindx
2305 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2306 dyn_h->sym_indx);
2307
2308 /* Create a dynamic relocation for this entry. Do include the output
2309 offset of the DLT entry since we need an absolute address in the
2310 resulting object file. */
2311 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2312 + sdlt->output_section->vma);
2313 if (h && h->type == STT_FUNC)
2314 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2315 else
2316 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2317 rel.r_addend = 0;
2318
2319 loc = sdltrel->contents;
2320 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2321 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2322 }
2323 return TRUE;
2324 }
2325
2326 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2327 for dynamic functions used to initialize static data. */
2328
2329 static bfd_boolean
2330 elf64_hppa_finalize_dynreloc (dyn_h, data)
2331 struct elf64_hppa_dyn_hash_entry *dyn_h;
2332 PTR data;
2333 {
2334 struct bfd_link_info *info = (struct bfd_link_info *)data;
2335 struct elf64_hppa_link_hash_table *hppa_info;
2336 struct elf_link_hash_entry *h;
2337 int dynamic_symbol;
2338
2339 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2340
2341 if (!dynamic_symbol && !info->shared)
2342 return TRUE;
2343
2344 if (dyn_h->reloc_entries)
2345 {
2346 struct elf64_hppa_dyn_reloc_entry *rent;
2347 int dynindx;
2348
2349 hppa_info = elf64_hppa_hash_table (info);
2350 h = dyn_h->h;
2351
2352 /* We may need to do a relocation against a local symbol, in
2353 which case we have to look up it's dynamic symbol index off
2354 the local symbol hash table. */
2355 if (h && h->dynindx != -1)
2356 dynindx = h->dynindx;
2357 else
2358 dynindx
2359 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2360 dyn_h->sym_indx);
2361
2362 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2363 {
2364 Elf_Internal_Rela rel;
2365 bfd_byte *loc;
2366
2367 /* Allocate one iff we are building a shared library, the relocation
2368 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2369 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2370 continue;
2371
2372 /* Create a dynamic relocation for this entry.
2373
2374 We need the output offset for the reloc's section because
2375 we are creating an absolute address in the resulting object
2376 file. */
2377 rel.r_offset = (rent->offset + rent->sec->output_offset
2378 + rent->sec->output_section->vma);
2379
2380 /* An FPTR64 relocation implies that we took the address of
2381 a function and that the function has an entry in the .opd
2382 section. We want the FPTR64 relocation to reference the
2383 entry in .opd.
2384
2385 We could munge the symbol value in the dynamic symbol table
2386 (in fact we already do for functions with global scope) to point
2387 to the .opd entry. Then we could use that dynamic symbol in
2388 this relocation.
2389
2390 Or we could do something sensible, not munge the symbol's
2391 address and instead just use a different symbol to reference
2392 the .opd entry. At least that seems sensible until you
2393 realize there's no local dynamic symbols we can use for that
2394 purpose. Thus the hair in the check_relocs routine.
2395
2396 We use a section symbol recorded by check_relocs as the
2397 base symbol for the relocation. The addend is the difference
2398 between the section symbol and the address of the .opd entry. */
2399 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2400 {
2401 bfd_vma value, value2;
2402
2403 /* First compute the address of the opd entry for this symbol. */
2404 value = (dyn_h->opd_offset
2405 + hppa_info->opd_sec->output_section->vma
2406 + hppa_info->opd_sec->output_offset);
2407
2408 /* Compute the value of the start of the section with
2409 the relocation. */
2410 value2 = (rent->sec->output_section->vma
2411 + rent->sec->output_offset);
2412
2413 /* Compute the difference between the start of the section
2414 with the relocation and the opd entry. */
2415 value -= value2;
2416
2417 /* The result becomes the addend of the relocation. */
2418 rel.r_addend = value;
2419
2420 /* The section symbol becomes the symbol for the dynamic
2421 relocation. */
2422 dynindx
2423 = _bfd_elf_link_lookup_local_dynindx (info,
2424 rent->sec->owner,
2425 rent->sec_symndx);
2426 }
2427 else
2428 rel.r_addend = rent->addend;
2429
2430 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2431
2432 loc = hppa_info->other_rel_sec->contents;
2433 loc += (hppa_info->other_rel_sec->reloc_count++
2434 * sizeof (Elf64_External_Rela));
2435 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2436 &rel, loc);
2437 }
2438 }
2439
2440 return TRUE;
2441 }
2442
2443 /* Used to decide how to sort relocs in an optimal manner for the
2444 dynamic linker, before writing them out. */
2445
2446 static enum elf_reloc_type_class
2447 elf64_hppa_reloc_type_class (rela)
2448 const Elf_Internal_Rela *rela;
2449 {
2450 if (ELF64_R_SYM (rela->r_info) == 0)
2451 return reloc_class_relative;
2452
2453 switch ((int) ELF64_R_TYPE (rela->r_info))
2454 {
2455 case R_PARISC_IPLT:
2456 return reloc_class_plt;
2457 case R_PARISC_COPY:
2458 return reloc_class_copy;
2459 default:
2460 return reloc_class_normal;
2461 }
2462 }
2463
2464 /* Finish up the dynamic sections. */
2465
2466 static bfd_boolean
2467 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2468 bfd *output_bfd;
2469 struct bfd_link_info *info;
2470 {
2471 bfd *dynobj;
2472 asection *sdyn;
2473 struct elf64_hppa_link_hash_table *hppa_info;
2474
2475 hppa_info = elf64_hppa_hash_table (info);
2476
2477 /* Finalize the contents of the .opd section. */
2478 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2479 elf64_hppa_finalize_opd,
2480 info);
2481
2482 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2483 elf64_hppa_finalize_dynreloc,
2484 info);
2485
2486 /* Finalize the contents of the .dlt section. */
2487 dynobj = elf_hash_table (info)->dynobj;
2488 /* Finalize the contents of the .dlt section. */
2489 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2490 elf64_hppa_finalize_dlt,
2491 info);
2492
2493 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2494
2495 if (elf_hash_table (info)->dynamic_sections_created)
2496 {
2497 Elf64_External_Dyn *dyncon, *dynconend;
2498
2499 BFD_ASSERT (sdyn != NULL);
2500
2501 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2502 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2503 for (; dyncon < dynconend; dyncon++)
2504 {
2505 Elf_Internal_Dyn dyn;
2506 asection *s;
2507
2508 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2509
2510 switch (dyn.d_tag)
2511 {
2512 default:
2513 break;
2514
2515 case DT_HP_LOAD_MAP:
2516 /* Compute the absolute address of 16byte scratchpad area
2517 for the dynamic linker.
2518
2519 By convention the linker script will allocate the scratchpad
2520 area at the start of the .data section. So all we have to
2521 to is find the start of the .data section. */
2522 s = bfd_get_section_by_name (output_bfd, ".data");
2523 dyn.d_un.d_ptr = s->vma;
2524 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2525 break;
2526
2527 case DT_PLTGOT:
2528 /* HP's use PLTGOT to set the GOT register. */
2529 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2530 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2531 break;
2532
2533 case DT_JMPREL:
2534 s = hppa_info->plt_rel_sec;
2535 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2536 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2537 break;
2538
2539 case DT_PLTRELSZ:
2540 s = hppa_info->plt_rel_sec;
2541 dyn.d_un.d_val = s->_raw_size;
2542 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2543 break;
2544
2545 case DT_RELA:
2546 s = hppa_info->other_rel_sec;
2547 if (! s || ! s->_raw_size)
2548 s = hppa_info->dlt_rel_sec;
2549 if (! s || ! s->_raw_size)
2550 s = hppa_info->opd_rel_sec;
2551 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2552 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2553 break;
2554
2555 case DT_RELASZ:
2556 s = hppa_info->other_rel_sec;
2557 dyn.d_un.d_val = s->_raw_size;
2558 s = hppa_info->dlt_rel_sec;
2559 dyn.d_un.d_val += s->_raw_size;
2560 s = hppa_info->opd_rel_sec;
2561 dyn.d_un.d_val += s->_raw_size;
2562 /* There is some question about whether or not the size of
2563 the PLT relocs should be included here. HP's tools do
2564 it, so we'll emulate them. */
2565 s = hppa_info->plt_rel_sec;
2566 dyn.d_un.d_val += s->_raw_size;
2567 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2568 break;
2569
2570 }
2571 }
2572 }
2573
2574 return TRUE;
2575 }
2576
2577 /* Return the number of additional phdrs we will need.
2578
2579 The generic ELF code only creates PT_PHDRs for executables. The HP
2580 dynamic linker requires PT_PHDRs for dynamic libraries too.
2581
2582 This routine indicates that the backend needs one additional program
2583 header for that case.
2584
2585 Note we do not have access to the link info structure here, so we have
2586 to guess whether or not we are building a shared library based on the
2587 existence of a .interp section. */
2588
2589 static int
2590 elf64_hppa_additional_program_headers (abfd)
2591 bfd *abfd;
2592 {
2593 asection *s;
2594
2595 /* If we are creating a shared library, then we have to create a
2596 PT_PHDR segment. HP's dynamic linker chokes without it. */
2597 s = bfd_get_section_by_name (abfd, ".interp");
2598 if (! s)
2599 return 1;
2600 return 0;
2601 }
2602
2603 /* Allocate and initialize any program headers required by this
2604 specific backend.
2605
2606 The generic ELF code only creates PT_PHDRs for executables. The HP
2607 dynamic linker requires PT_PHDRs for dynamic libraries too.
2608
2609 This allocates the PT_PHDR and initializes it in a manner suitable
2610 for the HP linker.
2611
2612 Note we do not have access to the link info structure here, so we have
2613 to guess whether or not we are building a shared library based on the
2614 existence of a .interp section. */
2615
2616 static bfd_boolean
2617 elf64_hppa_modify_segment_map (abfd)
2618 bfd *abfd;
2619 {
2620 struct elf_segment_map *m;
2621 asection *s;
2622
2623 s = bfd_get_section_by_name (abfd, ".interp");
2624 if (! s)
2625 {
2626 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2627 if (m->p_type == PT_PHDR)
2628 break;
2629 if (m == NULL)
2630 {
2631 m = ((struct elf_segment_map *)
2632 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2633 if (m == NULL)
2634 return FALSE;
2635
2636 m->p_type = PT_PHDR;
2637 m->p_flags = PF_R | PF_X;
2638 m->p_flags_valid = 1;
2639 m->p_paddr_valid = 1;
2640 m->includes_phdrs = 1;
2641
2642 m->next = elf_tdata (abfd)->segment_map;
2643 elf_tdata (abfd)->segment_map = m;
2644 }
2645 }
2646
2647 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2648 if (m->p_type == PT_LOAD)
2649 {
2650 unsigned int i;
2651
2652 for (i = 0; i < m->count; i++)
2653 {
2654 /* The code "hint" is not really a hint. It is a requirement
2655 for certain versions of the HP dynamic linker. Worse yet,
2656 it must be set even if the shared library does not have
2657 any code in its "text" segment (thus the check for .hash
2658 to catch this situation). */
2659 if (m->sections[i]->flags & SEC_CODE
2660 || (strcmp (m->sections[i]->name, ".hash") == 0))
2661 m->p_flags |= (PF_X | PF_HP_CODE);
2662 }
2663 }
2664
2665 return TRUE;
2666 }
2667
2668 /* Called when writing out an object file to decide the type of a
2669 symbol. */
2670 static int
2671 elf64_hppa_elf_get_symbol_type (elf_sym, type)
2672 Elf_Internal_Sym *elf_sym;
2673 int type;
2674 {
2675 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2676 return STT_PARISC_MILLI;
2677 else
2678 return type;
2679 }
2680
2681 /* The hash bucket size is the standard one, namely 4. */
2682
2683 const struct elf_size_info hppa64_elf_size_info =
2684 {
2685 sizeof (Elf64_External_Ehdr),
2686 sizeof (Elf64_External_Phdr),
2687 sizeof (Elf64_External_Shdr),
2688 sizeof (Elf64_External_Rel),
2689 sizeof (Elf64_External_Rela),
2690 sizeof (Elf64_External_Sym),
2691 sizeof (Elf64_External_Dyn),
2692 sizeof (Elf_External_Note),
2693 4,
2694 1,
2695 64, 3,
2696 ELFCLASS64, EV_CURRENT,
2697 bfd_elf64_write_out_phdrs,
2698 bfd_elf64_write_shdrs_and_ehdr,
2699 bfd_elf64_write_relocs,
2700 bfd_elf64_swap_symbol_in,
2701 bfd_elf64_swap_symbol_out,
2702 bfd_elf64_slurp_reloc_table,
2703 bfd_elf64_slurp_symbol_table,
2704 bfd_elf64_swap_dyn_in,
2705 bfd_elf64_swap_dyn_out,
2706 bfd_elf64_swap_reloc_in,
2707 bfd_elf64_swap_reloc_out,
2708 bfd_elf64_swap_reloca_in,
2709 bfd_elf64_swap_reloca_out
2710 };
2711
2712 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2713 #define TARGET_BIG_NAME "elf64-hppa"
2714 #define ELF_ARCH bfd_arch_hppa
2715 #define ELF_MACHINE_CODE EM_PARISC
2716 /* This is not strictly correct. The maximum page size for PA2.0 is
2717 64M. But everything still uses 4k. */
2718 #define ELF_MAXPAGESIZE 0x1000
2719 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2720 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2721 #define elf_info_to_howto elf_hppa_info_to_howto
2722 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2723
2724 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2725 #define elf_backend_object_p elf64_hppa_object_p
2726 #define elf_backend_final_write_processing \
2727 elf_hppa_final_write_processing
2728 #define elf_backend_fake_sections elf_hppa_fake_sections
2729 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2730
2731 #define elf_backend_relocate_section elf_hppa_relocate_section
2732
2733 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2734
2735 #define elf_backend_create_dynamic_sections \
2736 elf64_hppa_create_dynamic_sections
2737 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2738
2739 #define elf_backend_adjust_dynamic_symbol \
2740 elf64_hppa_adjust_dynamic_symbol
2741
2742 #define elf_backend_size_dynamic_sections \
2743 elf64_hppa_size_dynamic_sections
2744
2745 #define elf_backend_finish_dynamic_symbol \
2746 elf64_hppa_finish_dynamic_symbol
2747 #define elf_backend_finish_dynamic_sections \
2748 elf64_hppa_finish_dynamic_sections
2749
2750 /* Stuff for the BFD linker: */
2751 #define bfd_elf64_bfd_link_hash_table_create \
2752 elf64_hppa_hash_table_create
2753
2754 #define elf_backend_check_relocs \
2755 elf64_hppa_check_relocs
2756
2757 #define elf_backend_size_info \
2758 hppa64_elf_size_info
2759
2760 #define elf_backend_additional_program_headers \
2761 elf64_hppa_additional_program_headers
2762
2763 #define elf_backend_modify_segment_map \
2764 elf64_hppa_modify_segment_map
2765
2766 #define elf_backend_link_output_symbol_hook \
2767 elf64_hppa_link_output_symbol_hook
2768
2769 #define elf_backend_want_got_plt 0
2770 #define elf_backend_plt_readonly 0
2771 #define elf_backend_want_plt_sym 0
2772 #define elf_backend_got_header_size 0
2773 #define elf_backend_plt_header_size 0
2774 #define elf_backend_type_change_ok TRUE
2775 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2776 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2777 #define elf_backend_rela_normal 1
2778
2779 #include "elf64-target.h"
2780
2781 #undef TARGET_BIG_SYM
2782 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2783 #undef TARGET_BIG_NAME
2784 #define TARGET_BIG_NAME "elf64-hppa-linux"
2785
2786 #define INCLUDED_TARGET_FILE 1
2787 #include "elf64-target.h"